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ABSTRACT

Experimental studies of magnetotunnelling in heterostructures

have revealed series of resonances due to electrons tunnelling from a

2DEG in a lightly-doped emitter into magnetoquantised states in the

collector contact of a single-barrier structure (Hickmott, 1987 and

Snell et al. 1987) or in the quantum well of a double-barrier

structure (Eaves et a1., 1988 and Leadbeater et a1., 1989). These

experiments are very suitable for theoretical analysis since a

transverse magnetic field (parallel to the barrier interfaces) has

little effect on the electronic states of the 2DEG, provided the

diamagnetic energy is much less than the binding energy of the bound

state of the accumulation layer potential. The tunnelling electrons

then have a small range of transverse momenta between +PF and -PF,

where PF = l'lkF is the Fermi momentum in the 2DEG. This range
determines the positions of the orbit centres of the magnetoquantised

states into which the electrons are injected after emergence from the
tunnel barrier. For the single-barrier heterostructures described in

this thesis, these are interfacial Landau states corresponding to

classical orbits in which the electron skips along the barrier

interface. For double-barrier structures there are interfacial

states at high magnetic fields and traversing states at low magnetic

fields. Owing to the high electric field in the quantum well, the

corresponding classical orbits are cycloidal trajectories which

intersect both barrier interfaces (traversing states) or just one

barrier interface (skipping states).



The variation of the tunnel current I with magnetic field B

and voltage V is calculated using the Bardeen transfer-Hamiltonian

approach within a WKB approximation. The accumulation layer

potential is modelled according to a simple variational solution.

This enables a physical interpretation of the experimental results to

be given in terms of the effect of the magnetic field on the

effect ive barri er hei ght and the ampli tudes of the magnetoquantised

wave functions at the barrier interfaces. Both of these effects are

required to account for the observed dependence of current on

magnetic field I(B) and the amplitudes of the oscillatory structure

revealed in the derivative plots of dI/dB and d2I/dB2.

accounts for:

The model

(a) the observation of two series of resonances corresponding

to +PF and -PF electrons in experiments on (InGa)As/InP

single-barrier structures.

(b) the absence of the +PF series of resonances in

GaAs/(A1Ga)As single-barrier structures.

(c) the changeover from traversing to skipping states in

GaAs/(A1Ga)As double-barrier structures and the

characteristic decrease in oscillatory amplitudes in the

changeover region.
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CHAPTER ONE

A REVIEW OF THE BASIC PHYSICS AND
PROPERTIES OF SEMICONDUCTORS

1.1 Introduction

For many years, the elemental semiconductors silicon and

germanium have been widely used in the manufacture of transistors and

integrated circuits. More recently, research interest has focussed

on III-V semiconductor compounds, comprising elements from groups III

and V of the periodic table. The properties of III-V compounds have

been widely investigated since the low effective mass of conduct ion

electrons in these materials suggests possible future applications in

high speed devices. However, this advantage is partially offset by

intrinsic alloy scattering processes which reduce the electron

mobility (Bastard, 1983). The properties of bulk semiconductors have

been reviewed by Smith (1918) and Seeger (1982).

The recent development of growth techniques such as molecular

beam epitaxy (MBE), which allow crystals to be grown to monolayer

precision, has led to a whole new class of semiconductor hetero-

structures and superlattlces (see, for example, Capasso, 1986). These

structures, collecti vely referred to as low-di mens ional st ructures

(LDS), consist of layers of different compound semiconductor

materials. Discontinuities in the band-edge energies of the
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constituent bulk materials behave as potential steps to electron (or
hole) motion normal to the interfaces. By varying the composition
and dimensions of the layers, heterostructures containing effective
potential energy wells or barriers can be grown which allow
fundamental processes such as quantum confinement (Dingle et al.,
1975) or quantum tunnelling (Esaki, 1986) to be studied. All the

work presented in this thesis concerns electron tunnelling phenomena
in single- and double-barrier III-V heterostructures.

This chapter begins with a discussion of the basic concepts
of bulk semiconductor theory. The effective-mass equation describing
the electronic eigenstates of a bulk crystal in the presence of
perturbing electromagnetic fields is introduced, and solved for the
case of crossed electric and magnetic fields. The effective-mass
model is then extended to heterostructures in which the conduction
band (CB) edge position appears as an effective potential energy
term. Finally, the time-independent effective-mass formalism of
electron tunnelling is outlined for the case of single- and double-
barrier heterostructures.

1.2 Electrons in a Periodic Potential

The one-electron Schrodinger equation for electron motion in
a perfectly periodic crystal lattice is



[_~2 V2 + VCr)] ~(r) & E ~(_r) ,
2mo -

(1.1)

where m , is the free electron mass. The potential energy V(.!:.)

describes the electron-ion interaction and satisfies V(.!:.)• V(.!:.+ R)

for all Bravais lattice vectors R. The eigenfunctions of equation

(1.1) are the Bloch functions

() -~ () ik.r~.!:, -N u.!:,e--, ( 1.2)

where N is the number of uni t cells in the crystal and k is the

electron wavevector, which is constrained to lie wi thin the first

Brillouin zone. The function u(.!:,)reflects the lattice periodicity,

that is

( 1 .3)

and is consequently referred to as the cell-periodic component of the

Bloch function. Normalisation of the Bloch functions over the entire

crystal volume requires that u(r) is normalised over one unit cell.

To ensure that the properties of the Bloch functions ~(.!:.)are

independent of the size of the crystal, the Born-von Karman periodic

boundary condition

IjI(r + T) • 'i'(r) ( 1 .4)

is imposed,
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where

in which {2'i} are integers, and {Lil are the crystal dimensions

measured along the directions of the primitive lattice vectors {~i}.
.. ik ,T d' th f 1Th is condt tion requires that e - - an lS ere ore on y

satisfied by a discrete set of electron wavevectors within the first

Brillouin zone.

Substituting the Bloch wavefunction (1.2) into equation

(1.1), u(r) is found to satisfy

[
(P + -rik) 2 ]-=;___..;=-- + V (!:_) u(r) ..E u(!:_),

2mo
(1 .5)

where P - -i1"l11

For given ~, this equation has an infinite number of

solutions unk(!:_)which satisfy the periodic boundary condition (1.3).

These solutions, and the associated set of discrete eigenvalues

En(~)' are distinguished by the band index n. For given n, the
energy levels En(~) corresponding to the allowed values of k within

the first Brillouin zone are collectively referred to as the nth

energy band. Distinct energy bands are often separated by gaps in

the energy spectrum which do not correspond to any allowed solutions

of equat ion (1.1).



5

The core electrons of the constituent atoms are assumed to

be localised at individual lattice sites forming, with the nucleus, a

periodic array of positive ion cores. Only the valence electrons

occupy extended Bloch eigenstates. At T = OK, the highest occupied

Bloch states are assumed to belong to the rth band only. The

position of these highest occupied energy levels relative to the top

of the rth band determines the intrinsic electrical properties of the

crystal. It can be shown (see, for example Ashcroft and Mermin,

1976) that if the Bloch states wi thin a particular band are either

all occupied or all vacant, the electrons in that band carry no nett

current when a voltage is applied to the crystal. Consequently, if

the highest occupied levels at T - 0 K coincide with the top of the

rth band, referred to as the valence band, no bands are partially

filled and the crystal is an insulator.

The temperature dependence of the electrical conducti vity

depends on the energy difference, or fundamental gap Eg, between the

top of the valence band and the lowest unoccupied energy level at T •

OK, which defines the conduction band-edge energy. If, at

temperature TK, the ratio kT/Eg is very small, few electrons are

thermally excited into the conduction band and the material remains

essentially insulating. For crystals with lower band gaps, kT/Eg may

be sufficiently large that thermal excitation of electrons into the

conduction band leads to a significant increase in conductivity. Such

materials are referred to as intrinsic semiconductors.
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The electrical properties of semiconductors depend on the

conduction and valence band energy-wavevector relations Ec(~) and

Ev(k) close to the band extrema. For all the semiconductor materials

considered in this thesis, Ec(~) has a minimum at ~ = 0, referred to

as the r-point of the Brillouin zone. Close to this point, Ec(~) is

given approximately by the Taylor expansion

E (k) - E (0)c - c
112

+ -
2 ( 1 .6)

where

is referred to as the effecti ve-mass tensor by analogy wi th the

kinetic energy of a free electron with momentumE - ~k.

ICI5{',
Kane (~982) obtained a semi-empirical expression for m*ij

using so-called ~.E perturbation theory. Equation (1.5) may be

written in the form

(1 .7)

where 1'1
Hl - - k.Pmo - -
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For small ~, H 1 and H2 act as perturbations to the

Hamiltonian Ho - !:2/2mo + V(!.), for which the energy eigenvalues

En(O) and cell-periodic Bloch functions uno(!.) are presumed known.
The eigenfunctions Unk(!.)of equation (1.7) and the associated eigen-
values can be found using standard perturbation theory. Non-
degenerate perturbat ion theory is applicable for energies close to
the conduction band edge and gives, to first order

~ ~.<nol~lco> umo(!.)
u (r)· u (r) + - 1.ck - co - mo n1c E (0) - E (0)c n

(1 .8)

and, to second order

E (k) - E (0)c - c

(1 .9)

where

__!!La_
~ - 61J·m ij

2
+ -mo

<colfllno><nolfjlco)
n~c E (0) - E (0)c n

(1.10)
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For crystals wi th inversion symmetry, which includes III-V

compounds, (colplco> .. 0 and so equation (1.9) implies that the

conduction band has a minimum at k ..O.

expansion (1.10) for m* ..-1lJ
band for which En(O) lies closest to Ec(O), usually the valence band.

The series is dominated by the

Consequently, materials wi th small band gaps are expected to have

light effective masses.

Equations (1.8), (1.9) and (1.10) describe parabolic bands

and therefore only give an accurate quantitative description of the

conduction bands of III-V semiconductor materials for energies within

- 10 meV of the band edge (Blakemore, 1982). For higher energies,

degenerate perturbation theory must be used to account for non-

parabolici ty. Nevertheless, these equations are useful in the

development of effective-mass theory, which is used throughout this

thesis to determine the electroni c eigenstates of a crystal in the

presence of perturbing electromagnetic fields.

1.3 General Properties of III-V Semiconductors

Every heterostructure described in this thesis is composed of

III-V semiconductor materials which are binary or ternary compounds

of elements from groups III and V of the periodic table. These

elements crystallise in the zinc-blende structure, which consists of

two interpenetrating face-centred cubic (fcc) sublattices. Each
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sublattice contains either group III or group V atoms exclusively.

Each atom is tetrahedrally bonded to four atoms of the opposi te

group. The bonding is partly covalent and partly ionic.

In the ternary III-V alloy (InxGa1-x)As, gallium and indium

atoms are assumed to be randomly distributed on the group III

sublattice sites, with x giving the probability that anyone site is

occupied by an indium atom. For x 0.53, this alloy has the same
olattice constant as InP (5.8694 A at 300 K) and can be grown on an

InP substrate without lattice mismatch or strain at the interface.

Similarly, (AlxGa1-x)As is lattice-matched to GaAs when x ~ 0.3. All

following references to (A1Ga)As and (InGa)As refer to these

compositions.

The crystal lattice of III-V compounds is fcc and the basis

contains one group III atom and one group V atom, which are displaced

relative to each other by one quarter of the diagonal of the

conventional fcc unit cell. The primitive lattice vectors of the fcc

structure extend from an origin 0 at one corner of the conventional

unit cell, to the mid-point of the three adjacent faces. The lattice

vectors of the conventional unit cell are a!, a1 and a~, where a is

the lattice constant and the unit vectors !, I and z extend along the

three mutually perpendicular cell edges which meet at the origin Q.

The Born-von Karman periodic boundary condition (1.4) is modified for

III-V crystals so that {a·}_1 are the conventional lattice vectors

rather than the primitive lattice vectors. Consequently, the

components of the electron wavevector .!5. - kx! + kYI + kz~ must

satisfy
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2nm 2nn
= -- and kz -Ly Lz (1.10

where i, m and n are integers and Lx, Ly, Lz are the crystal

dimensions in the ~, I and ~ directions respectively.

Figure 1.1 shows the energy band structure of GaAs in the

vicinity of the valence and conduction bands. GaAs is a direct-gap

material, that is the lowest conduction band minimum and the highest

valence band maximum are located at the same pOint in the Brillouin

zone, in this case at k ~ o. The two highest valence bands are

degenerate at k = O. Because these bands have different curvatures,

corresponding to different effective masses, they are referred to as

the light- and heavy-hole bands. The lower-lying valence band is

called the split-off band in reference to spin-orbit splitting of the

4p orbitals which are occupied by the valence electrons of isolated

group III and group V atoms.

In the vicini ty of ~ ...0, the conduction band of GaAs is

practically isotropic and parabolic so that the effective mass m* can

be treated as a scalar Quant ity. For energies ~ 10 meV, the band

becomes increasingly nonparabolic and must be described by an energy-

dependent effective mass. By solving equation (1.7) using degenerate

perturbation theory, in which the unperturbed energy levels are the

conduction band and uppermost valence band edges (2-level ~.E
theory), Ec(~) is found to be approximately (Kane, 1957)
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Figure 1.1 The band structure of GaAs in the vicinity of the energy
gap between the valence and lowest conduction bands at
T - 300 K. (After Blakemore, 1982).
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(1. 12)

where m*(Ec) ..m*(l + a.Ec) in which the nonparabolicity factor a. ;;;
1 lEg. This express ion is also applicable to (A1Ga)As, (InGa)As and
In?, which are all direct-gap semiconductors with similar band-
structures to GaAs.

The presence of impurities in semiconductors can greatly
affect the electrical characteristics. For example, silicon added to
GaAs goes preferentially onto the Ga atom lattice and forms a shallow
donor, with an energy level about 6 meV below the CB edge. The extra
valence electron which Si (a group IV element) has, compared to Ga (a
group III element) is not required for bonding and can be easily
excited into the CB to form a free carrier. Low concentrations of
donor impurities (NO ~ 1021 m-I) give n--type semiconductors. High
concentrations (NO; 1023 m-') give n+-type semiconductors. All the
semiconductors studied in this thesis are n-type. Group II elements
added to GaAs, preferentially occupy the group III atom sites,
forming shallow acceptor levels close to the valence band. The
addition of acceptor ImpurIties forms p-type material in which the
free carriers are positively-charged quasi-particles called holes.
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1.~ The Effective-Mass Equation

In the presence of an external magnetic field ~ '" y_ x ~,

where A is the vector potential, and a perturbing electrostatic

potential ¢(~),which is either externally applied or associated with

internal electric fields, the one-electron scnr-oo inger equation for

conduction electrons in a semiconductor crystal is (neglecting spin

interactions)

H 'I'(r) (
(P + eA) 2

+ VCr) (1.13)

where -e is the electronic charge.

By analogy with the classical Hamiltonian of an electron in a

magnetic field (see, for example, Dicke and Wittke, 1960), the

operator ~ ..-i~Y_, represents the classical canonical momentum aLI at,

where L is the Lagrangian.

The velocity operator! for an electron in a magnetic field

is v '" [!:,H]/il1.. (~+ e~)/mo' so that the first term in equation

(1.13) is simply the kinetic energy operator mo~2/2.

If no perturbing electromagnetic fields are present, the

eigenf uncti ons of equa tion (1.13) are bulk Bloch funct ions.

Approximate solutions of equation (1.13) can therefore be expanded in

terms of the complete set of Bloch functions, that is
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_1 ik.r
Ii' ( r ) - N 2 L C (k ) unk (!:)e - -n,! n- (1.14)

Using this wavefunction in equation (1.13) it can be shown (see for

example Altarelll, 1988, or Ridley, 1988) that provided

(i) In the unperturbed system, the conduction electrons

occupy energy levels Ec(!) - Ec(O) + ~2k2/2m* close to an isotropic
conduction band minimum at k z O.

(ii) The Fourier components .Ag_ and v~ of the perturbing

magnetic and electrostatic potentials are only appreciable if Igl «

2n/a, or equivalently the perturbing potentials vary slowly over a

unit cell.

(111) The matrix elements of A(!:) and e~(!:) are much smaller

than the inter-band gaps Ec(O) - En(O) n ~ c,

_ 1

then the Fourier series F(!:) - N 2 ~ Cc(~) ik.re --

satisfies

(E - E (0» F(!:)
c

(1.15)

in which the effects of the periodic crystal potential are

incorporated into the effective mass. This equation is known as the

isotropic, parabolic effective-mass equation.
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The slowly-varying perturbing potentials only mix states

within the same band so that for the conduction band, the perturbed

wavefunction (1.14) becomes

_1 ik.r~(_r) • N 'I C (k) u k(r) e - -K c - c- (1.16)

which. using the !.£ expression (1.8) for uck(~)' may be written

-i~ (~F(r).E~c)uio(r)
~(r) • F(r) uco(r) + i~c mo(Ec(O) - E~(O)) (1.17)

where Eic - <~olplco>.

To first order. F(~) acts as a slow modulation to the rapidly-

varying Bloch term uco(r) and is therefore referred to as an envelope

or effective-mass wavefunction. The second-order term shows that the

contribution made by the other! • Q Bloch functions is proportional

to the gradient of the envelope function. This term must be included

when deriving the boundary conditions which F(r) must satisfy at the

interface between two different semiconductor materials.

Provided that the perturbing electric field does not destroy

the bandstructure, its main effect is to shift the band edge

positions by an amount equal to the local electrostatic potential

energy -e<p(r). This effect is referred to as band bending. If a

nonparabolic band is described by an effective mass which depends on
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the energy of the electron relative to the band edge, as in equation

(1.12), then band bending causes the effective mass to vary with

position. In this case, the effective-mass equation is usually

written (Lassnig, 1985)

(1.18)

where T(r) = E - Ec(O) + e4>(!:.)is the semiclassical local kinetic

energy. The kinetic energy operator is written in a way which

retains the Hermitian character of the Hamiltonian following Ben-

Daniel and Duke (1966).

The expectation values of operators involving the free

electron mass (such as the velocity operator! = (-i~V + e~)/mo), can

be found using the approximate wavefunction (1.17).

However, for parabolic, isotropic conduction bands, the same

result is obtained using the effect ive-mass wavefunct ion F (r) to

evaluate the expectation value of a modified operator, in which the

effective mass m* replaces the free electron mass. Consequently, an

electron in a crystal responds to electromagnetic fields in the same

way as a free electron of mass m*.
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1.5 The Effect of Crossed Electric and Magnetic Fields on the
Conduction Band Eigenstates of a Bulk Semiconductor

The classical equation of motion of an electron of mass m* in
the presence of electric (F) and magnetic (~) fields is

dvm* -e(F + v X B) (1.19)
dt

where ~ is the velocity of the electron. In crossed electric (E ..
-F~) and magnetic (~ z B~) fields, assuming vet - 0) - 0 and ret - 0)

- 0 the solutions of equation (1.19) are

x -
F

(1 - coswet) ,wcB

y ..

and z - 0 ,

where we - Be/m* is the cyclotron frequency. In the x-direction the
electron executes simple harmonic motion. Electronic motion in the
y-direction contains both simple harmoni c and translat ional
components, which result in an average drift velocity of vd • FIB.



11

Consequently, the electron executes cycloidal motion along

electrostatic equipotentials as shown in Figure 1.2. The drift

velocity vd in the direction perpendicular to both the electric and

magnetic fields is responsible for the classical Hall effect.

For this crossed-field configuration, the parabolic,

isotropic effective-mass equation (1.18) is, in the Landau gauge A '"
(0, 8x, 0)

H '¥(x,y,z)
(-i~ + e8x)2ay

2m*
ft2 a2

- -:::::T -- - eFx)'¥(x,y ,z)2m az2

'"E '¥(x,y,z) ( 1 .20)•

The canonical momentum operators -i~a/ay and -ina/az commute

with H so that the envelope functions '¥(x,y,z) are of the form

(1.21)

in which the electron wavevector components are related to the

canonical momentum eigenvalues Py II' ~ky and Pz .. 1'ikz•

dependent factor ~(x) satisfies the 1D Schrodinger equation

The x-

H

( 1 .22)



z II B
y_

F x

Equlpotentlals

Figure 1.2 Projection in the x-y plane of the classical cycloidal
orbit traversed by an electron in crossed electric
(-I II !) and magnetic (.§. II ~) fields. The electron is
constrained to move within electrostatic equipotentials
in the x-direction and has nett translational velocity
vd = FIB in the y-directlon.
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where

Ex,y
1'l2k 2

z
- E - -2-m';"-

gives the energy associated with motion perpendicular to the magnetic

field.

The one-dimensional potential energy in equation (1.22) is

the sum of the electrostatic potential energy -eFx, and the potential

energy of a linear simple harmonic oscillator (SHO) centred at Xo -

-flky/Be, and of angular frequency equal to the class ical cyclotron

frequency wc. Classically, this term is the kinetic energy Ty(x),

associated with motion in the y-direction, of an electron with

canonical momentum Py This kinetic energy varies with

position as momentum is transferred between the x-and y-components by

the action of the Lorentz force. The classical kinetic energy

associated with motion in the x-direction 1s Tx(x) - Ex - Ty(Y) + eFx

so that the motion is effectively constrained by the potential energy

well V(x) - Ty(x) -eFx which appears in the Hamiltonian of equation

(1.22). The electric field term shifts the oscillator origin from Xo

- ~ky/e8 to X - -(~ky/Be) + m*Vd/8e, so that equation (1.22) may be

written in the form

( 1 .23)
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The eigenvalues of this equation are the SHO eigenvalues (n +

~)flwc and the eigenfunctions are the SHO eigenfunctions 4ln(x - X)
centred at X. Consequently, the eigenvalues of equation (1.20) are

1E (k , k ) = (n + -2)~wC - eFX +n y z

m*v 2 1'i2k 2
d z

--2- + 2m* ( 1 .24)

with corresponding eigenfunctions

( 1.25)

where n = 0,1,2 ••. and An are normalising constants.

It can be shown (see, for example, Cohen-Tannoudj i et al.,
1977) that the expectation value of the y-component of velocity of an
electron in the eigenstate f isn,ky,kz

1
dE (k ,k )

< > n y z
Vy .. 11 dky (1.26)

which equals the classical drift velocity and is identical for every

eigenstate of equation (1.20).

The first term on the RHS of equation (1.24) gives the

quantised energy associated with orbital motion perpendicular to the

magnetic field. The second term is the electrostatic potential energy
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at the orbit centre. The third term gives the kinetic energy

associated with the transverse drift of the orbit centre. The final

term gives the kinetic energy associated with motion parallel to the

magnetic field.

If no electric field is applied, these eigenvalues become

1
E (k ) - (n + -2Tflwc +n z 2m* (1.27)

where the quantised energy levels associated with motion

perpendicular to the magnetic field are referred to as Landau levels.

Classically, the electrons execute helical motion around the z-axis,

which corresponds to circular cyclotron orbits of angular frequency

Wc when projected in the x-y plane.

By considering the boundary conditions (1.11) which ky and kz
must satisfy, the energy densi ty of states (DOS) per unit area

perpendicular to the magnetic field 1s found to be (see, for example,

Ridley 1988),

( 1 .28)

0 En < 0z

where e(En) E lz
En ~ 0z
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1

DeE~) s Lzem*/~)e2m*EQ)-2 is the density of states for motion in the

z-direction, and ~ = E - en + 1/2)~wc is the energy associated with
motion in this direction, of an electron, with total energy E, which
occupies the nth Landau level. The factor of 2 arises from spin
degeneracy. The total DOS D(E) is shown in Figure 1.3. In a real
system, the singulari ties which occur when E - en + 1/2)'flwc are
smoothed by collision broadening, which is not included in the
single-particle Hamiltonian. The lifetime of the eigenstates
corresponding to each Landau level is approximately equal to the

momentum relaxation time Tm, so that the collision broadening bEu
satisfies

(1. 29)

In order to obtain well-defined Landau levels, this
broadening must be much less than the level splitting, that is

2m
bEu < < -nWc" T ( 1.30)

where T is the classical cyclotron period.
This inequality can only be satisfied provided

(1.31)

so that the electron must be able to complete whole cyclotron orbits
before scattering.



E 8=0
I
I
I

D(E)

Figure 1.3 Energy density of states D(E) in the conduction band of a
bulk semiconductor subject to a strong magnetic field
(solid curves). The separation between adjacent maxima
is ~wc. The broken curve shows the conduction band
density of states in zero magnetic field.
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1.6 Heterojunctlons

A heterojunction comprises two different semiconductor

materials which meet at a common interface. The bulk band structure

is assumed to be unaffected by the loss of translational symmetry

right up to the interface. However, there is usually a discontinuity

in the band edge positions due primarily to the different electron

affinities of the two materials. In equilibrium, band bending occurs

near the interface to maintain a uniform chemical potential, or Fermi

level, throughout the structure. This is achieved by charge

transfer, which forms regions in which there is nett charge, referred

to as space-charge regions. These space-charge regions create an

electric field normal to the interface. The potential variation

associated with this field leads to band bending which shifts the

occupied energy levels in each material until the chemical potential
is uniform.

Figure 1.4 shows a heterostructure comprising two materials

labelled Land R which occupy semi-infinite regions to the left and

right of the y-z plane. The conduction band edge energies are EL(O)

and ER(O) respectively where EL(O) < ER(O).

The Schr-bdInger equation for conduction electrons in this

system is

( , .32)



--- --------------------

I
o

.... x

Figure 1.4 Conduction band profile of an idealised heterojunction
comprising different semiconductor materials which meet
at a common interface (x - 0). The conduction band
offset ~Ec • ER(O) - EL(O) is the difference between the
band-edge energies of the high- and low-gap materials.



23

where the potential energy

x < 0
VCr) ..{

x ~ 0

describes the interaction between the electrons and the lattice
potential of each material.

The electrostatic potential ¢(x), associated with the
space-charge regions is a function of x- alone since the electrons

are free to move parallel to the interface. The solutions of

equation (1.32) can be expanded as a linear combination of the Bloch
functions of the two materials CLassnig, 1985) so that

(1.33)

where Sex) is the unit step function defined by

o x < 0

S( x) ..

x ~ 0 •

Just as for bulk crystals, the envelope functions
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satisfy the effective-mass equations

and

x < 0

x ~ 0

(1.34)

(1 .35 )

If the effective mass and conduction band edge are allowed to
vary with x, these equations may be combined to give

where

and

mL * x < 0

m~x ) ..

x < 0
Ec(x) =

x ~ 0

(1 .36)



25

describes the spatial variation of the conduction band edge. This

so-called conduction band profile appears in equation (1.36) as an

effective potential energy term. Consequently, the band-edge

discontinuity has the same effect on electron motion normal to the

interface as a potential energy step of height ~Ec = ER(O) - EL(O).

Since the effective potential energy in equation (1.36) is a function

of x alone, F(r) may be written in the form

F(r) = F(x) eikyy eikzz ( 1 .37)

Even though ky and kz are conserved quantities, the transverse

kinetic energy Ey,z is not conserved because the effecti ve mass

varies with position. However, provided this mass variation is

Within this approximation, F(x) satisfies

(_ 112 L 1 d )2 dx (m*(x) dx + Ec(x) F(x)" Ex F(x) ( 1 .38)

where Ex = E - Ey,z is the energy associated with motion normal to

the interface, which is only conserved when the effecti ve mass is

taken to be spatially invariant.
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1.7 Interfacial Matching Conditions for the Effective-

Mass Wavefunctions

Assuming that F(x) is continuous at a heterojunction

interface so that

(1.39)

Hermann and Weisbuch (1977) showed by integrating equation (1.38)

between -6 and cS and letting 6 .. 0, that the first deri vati ve must

satisfy

( 1 dF(x») (1 dF(X»)
m*(x) dx 0_· m*(x) dx 0+. (1.40)

In order for these matching conditions to be physically

meaningful, they must guarantee the conservation of probability flux

at the interface. Provided that both constituent materials of the

heterojunction have parabolic conduction bands, the solutions ~(!)of
equation (1.32) are given piecewise by equation (1.17), in which the

cell-periodic Bloch functions and the band- edge energies are

understood to be those of the low-gap material for x < 0, and of the

high-gap material for x ~ O.

At some point on the plane x .. x 0' the probability flux

carried in the x-direction by ~(r) is
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(1.41)

which is related to the local current density J(xo) s eP(xo)' If
'I'(r)is an eigenfunction of equation (1.32). 1'¥(r:)lz is conserved so
that P(xo) must be continuous everywhere and in particular at the
interface. However. since the position of any real interface cannot
be specified on an atomic scale.

it is
meaningless to think in terms of flux conservation at some arbitrary
interface. Instead we require conservation of the average flux
evaluated over one or more unit cells close to the interface.

Close to xo. this average flux is

(1.42)

where n is the volume of integration.

Combining equations (1.17). (1.41) and (1.42). it can be
shown (see. for example. Altarelli. 1988) that provided unk(r) varies

- -
slowly with transverse wavevector.

(1.43)

where mi* is given by the scalar form of the effective-mass tensor

(1.10) and equals mL* if x < 0 and mR* if x ~ O.
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Consequently, for parabolic bands, equations (1.39) and

(1.40) do ensure that the average flux is conserved at an interface.

In order that these matching conditions also guarantee average flux

conservation for nonparabolic bands, this average flux must equal

F*(x) dF(X))
dx xOKXO

(1 .44)

For a Bloch electron with total energy E(~) - ~2(kx2 + ky2 +

* ikxxkz2)/2m (1 + ~E), described by the envelope function F(x) - e •

equation (1.44) predicts

(1 .45)

whereas the exact express ion equals the expectat ion value of the

longitudinal velocity component

1 (lE z. *~ ~ -lIkx/m (1 + 2~E)
x (1.46)

For Bloch electrons in a nonparabolic band. the average flux

predicted by equation (1.44) is clearly inaccurate. so that equations

(1.39) and (1.40) do not guarantee exact flux conservation. However,

provided ~ is small. the difference between equations (1.45) and

(1.46) is also small and the boundary condition (1.40) appropriate to

the parabolic case may be used.
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1.8 Quantum-Mechanical Tunnelling in Semiconductor

Heterostructures

In classical mechanics, a particle which is incident on a

potential energy barrier of height greater than the incident kinetic

energy is reflected with 100% certainty. Similarly, if the incident

kinetic energy exceeds the potential energy barrier height, the

particle is certain to be transmitted.

In quantum mechanics, however, this is not the case. If an

electron is incident with kinetic energy less than the potential

energy barrier height, it can penetrate into the barrier, or classically

forbidden region.

If the potential barrier is finite in length, the electron

has a finite probability of being transmitted. This is the basis of

quantum-mechanical tunnelling which is described in detail for

electrons in free space in most quantum mechanics texts. With the

advent of growth techniques such as molecular beam epitaxy, it is

possible to grow heterostructures with sharp, strain-free interfaces.

We have already seen that the conduct ion band discont inuity in a

heterojunction acts as a potential energy step. Similarly, a layer

of high band-gap material which separates two regions of lower-gap

material acts as a rectangular potential energy barrier to electron

motion normal to the interface. Such heterostructures are well

suited to the experimental study of quantum tunnelling since by

varying the composition and thickness of the layers, potential
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barriers of different widths and heights can be obtained. The

influence of these device parameters on the tunnelling process can be

compared with theoretical models of tunnelling.

Here we discuss the coherent effecti ve-mass model of

tunnelling which is applicable to electrons occupying current-

carrying eigenstates of the entire system. Tunnelling between

localised quasi <bound states is discussed in Chapter 3 within the

framework of the sequential transfer-Hamiltonian model.

Figure 1.5 shows the conduction band profile of a single-

barrier heterostructure containing n+ contacts in which the electro-

static potential energy variation is not sufficiently rapid to cause

bound state formation.

The conduction band effective-mass equation for this system

is

(1.47)

where

*mL

m* (x ) = { mB *

mL*(1 + Cl(E - Ec(x»)

x < -b

-b ~ x ~ 0

x > 0



----- ------
eV

o x

Figure 1.5 Schematic conduction band profile Ec(x) of a single-
barrier heterostructure containing heavily n-doped
contacts, with the same bulk Fermi energy EF. For the
bias voltage shown, the electrostatic potential variation
in the contact regions is insufficient to cause bound-
state formation.
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An energy-dependent mass is used for x > 0 because, due to

the electrostatic potential dropped across the barrier, electrons may

be injected far above the band edge of the right-hand collector

contact.

Since electron motion is unconstrained parallel to the

interfaces, the solutions of equation (1.47) are of the form (1.37)

where F(x) satisfies the approximate 1D equation

1"i2 d 1) d )(-2 dx (m*(x) dx + Ec(x) F(x)" Ex F(x) (1.48 )

Piecewise WKB solutions of this equation which represent an electron

incident on the barrier from the left are

x :;; -b

-b s x s 0

iJx Cl (x) dx
_1 0

o Cl :lex) e x Ii: 0

( 1 .49 )
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where the functions

1
a(x) k(x) = (2mL*(Ex - EC(X)))2/~

and

1

~(x) (2mB*(Ec(x) - EX)2/~

assume that Ec( x) varies suff iciently slowly that terms involving

dm*(x)/dx may be neglected. In the classically allowed regions, F(x)

is valid provided the change in potential energy which occurs over

one local wavelength A(X) = 2~/k(x) or 2n/a(x) is small compared with

the kinetic energy 2n21'P/m*(x){(x). The same validity requirement

applies in the barrier region where A(X) ... 21T/~(x) is the distance

over which F(x) changes by a factor of approximately e21T•

Neglecting terms involving dk(x)/dx (valid provided the WKB

validity requirements are satisfied), the average probability flux

incident on the left-hand barrier interface is, combining equations

(1 .44) and (1.49),

( 1 .50)

and the average transmitted flux is

(1.51)
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where

The barrier transmission coefficient, defined to be the

average transmi tted flux divided by the average incident flux, is

given by

2
D

A
( 1.52)

The relation between A and D, found by imposing the matching

conditions (1.39) and (1.40) on F(x) at each barrier interface (see,

for example, Merzbacher, 1970), is such that

o
- 2f II(x ) dx

-b

(1.53)

If the effective mass and electrostatic potential do not vary

with position so that k Cx) ,. o.(x) K k and m*(x) .. m* for all x,

equation (1.53) becomes

(1.54)
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which is identical to the standard free electron result, except that
~ and k depend on m* rather than mo. Equation (1.53) is used
throughout this thesis in the interpretation of expressions for
tunnelling transition rates, derived using the transfer-Hamiltonian
tunnelling formalism, (see Chapter 3).

1.9 Resonant Tunnelling

Figure 1.6 shows the conduction band profile of a symmetric
double-barrier resonant-tunnelling structure (DBRTS), containing two
layers (2 and 4) of high-gap semiconductor material, each of which
acts as a potential energy barrier to electron motion in the x-
direction. For electrons incident from the left with longitudinal
kinetic energy Ex < ~Ec, the global transmission coefficient of this
system is found just as for the single-barrier structure, by matching
the piecewise solutions of the effective-mass equation at each
interface. This transmission coefficient is (Azbel, 1983, and Ricco
and Azbel, 1984)

( 1 .55)

where e is a measure of the degree of wavefunction penetration into

the barrier region (Toombs and Sheard, 1989), TB is the transmission
coefficient of each barrier, considered in isolation and RB is the

reflection coefficient which equals the reflected flux divided by the
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incident flux. Figure 1.7 shows T2B for barriers of height 300 meV
o 0and width 40 A. The well width is 100 A and the effective mass is

taken to be m* a 0.07 m , throughout the device. The transmission
coefficient shows a series of sharp maxima, at which the peak height
equals unity. This phenomenon is known as resonant tunnelling. It
can be seen from equation (1.55) that this occurs whenever kw - e •

nn, where n is a non-negative integer. This is almost exactly the
same as the quantisation condition for the energy levels En of the
isolated quantum well formed by extending the two barrier layers to
±ao. Therefore, the transmission coefficient has a maximum whenever
the incident energy Ex coincides with the quasi-bound states of the
quantum well.

Well and Vinter (1987) and Sheard and Toombs (1988) have
calculated the voltage-dependence of the tunnel current which flows
through a symmetric double-barrier structure in which, at low
temperatures, the conduction electrons in the n+ emitter and
collector contacts form degenerate 3D Fermi gases of Fermi energy

Whenever the nth bound state energy En' measured relative to
the conduction band edge of the emitter contact, lies in the range 0

~ En ~ EF, the transmission coefficient of electrons incident on the
LH barrier with kinetic energy Ex En, equals unity. With
increasing voltage, the bound state energy En, and consequently the

resonant kinetic energy Ex, both fall. The occupied electron states

in the n+ emitter lie within a Fermi sphere in ~-space, so that the
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Figure 1.7 The transmission coefficient T26 of a symmetric double-
barrier structure as a function of longitudinal kinetic
energy Ex. Toe potential barriers are of Qeight 300 meV
and width 40 X. The well is of width 100 X and the
effective mass of the low band-gap material is taken to
be m * .. 0.07 mo. (After Toombs and Sheard, 1989).
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number of electrons per unit energy N(Ex), which are resonant with
the nth bound state increases wi th decreasing Ex and increasing
voltage. These electrons make the major contribution to the tunnel
current, which consequently rises with voltage as shown in Figure
1.8. reaching a maximum when En coincides with the conduction band
edge of the emitter contact. When the bound state energy falls below
this conduction band edge, the tunnel current drops rapidly, giving
rise to a region of negative differential resistance (NDR), which is
characteristic of resonant tunnelling. Resonant tunnelling in
heterostructures was first observed at liquid helium temperatures by
Chang et al. (1974). Since then. improvements in sample quality have
extended the temperature range for the observation of NDR up to room
temperature (Morkoc, 1986, and Goodhue, 1986), and raised the
measured peak-to-valley ratios in the current-voltage characteristics
to 63: 1 in an (InGa)As/A1As/lnAs DBRTS at a temperature of 77 K
(Broeckaert, 1988).

Henini et ale (1989) and Leadbeater et ale (1989) have
observed up to 70 regions of NDR in the current-voltage
characteristics of GaAs/(A1Ga)As based DBRTS containing wide-wells
(600

o
A 1800

o
A) which support many bound states. Electron

tunnelling in such wide-well structures, in the presence of a

transverse (~ 1!) magnetic field is considered in Chapter 7 of this
thesis.

A time-dependent formalism of resonant tunnelling was first

proposed by Luryi (1985), 1n which electron transmission 1s regarded
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Figure 1.8 Current-voltage characteristic of a symmetric DBRTS with
n+ contacts, showing the region of negative differential
resistance which occurs as the bound state energy in the
well falls below the conduction band edge of the emitter
contact.
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as two successive transitions, first from the emitter into the well

and then from the well into the collector. Payne (1986) and Weil and

Vinter (1987) used the Bardeen transfer-Hamiltonian formalism,

discussed in Chapter 3, to show that the sequential model of resonant

tunnelling and the time-independent model, based on the global

transmission coefficient of the system, both give identical

express ions for the resonant current f lowing through a symmetric

DBRTS with heavily n-dope d emi tter and collector contacts. Sheard

and Toombs (1988) have shown that the two approaches also give the

same resonant current for an asymmetric DBRTS.

Detailed comparison of the coherent and sequential tunnelling

models is given by Buttiker (1988) and in the review article by

Mendez (1988).
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CHAPTER TWO

THE ELECTROSTATICS AND ELECTRONIC ENERGY LEVELS
OF ASYMMETRICALLY-DOPED SINGLE-BARRIER TUNNELLING STRUCTURES

2.1 Introduction

Hickmott (1987) and Snell et al. (1987) have investigated the

effect of a quantising magnetic field B on the tunnel current I which- -
flows through n-type single-barrier heterostructures when a lightly-

doped emitter is biassed negatively relative to a heavily-doped

collector contact (forward bias). When the magnetic field is applied

in the plane of the barrier (~ 1 !), oscillatory structure is

observed in the voltage- and field-dependence of the tunnel current,

and more clearly in the first and second derivatives.

This chapter aims to establish the general properties of the

single-barrier structures under forward-bias conditions and in zero

magnetic field. The nature of the occupied energy levels is of

particular importance, since this must be taken into account in the

development of an appropriate magnetotunnelling formalism.
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2.2 Constructional Details of the Single-barrier Structures

The composition and schematic conduction band profile of the

single-barrier structures is shown in Figure 2.1, together with the

coordinate axes referred to throughout this thesis. Detailed

specifications of each structure are given in Chapters 5 and 6.

The heavily-doped capping layer 1 acts as a reservoir which

supplies electrons to the 'active' layers 2, 3 and 4 which determine

the electrical properties of the device, and comprise a single layer

of high band-gap barrier-acting material (InP or (AlGa)As) sandwiched

between two lower band-gap contact layers «InGa)As or GaAs). These

contact layers are lightly n-doped (NO ~ 1021 m-3) on the LHS of the

barrier and heavily n-doped (NO == 1023 m-3) on the RHS of the

barrier. The n+ buffer layer 5 is deposited on the substrate.

All reported measurements were performed at liquid heli urn

temperatures (T = 4.2 K). At these low temperatures, the chemical

potential, or Fermi level, in the n" layer lies close to the donor

binding energy.

The high concentration of donor impuri ties in the n" layer

causes sufficient overlap between adjacent donor state wavefunctions

that the impurity levels form an impurity band which merges with the

conduction band. At liquid helium temperatures, electrons from

ionised donors in the n" layer occupy conduction band states up to

the Fermi energy EFR, thus forming a degenerate three-dimensional

electron gas (3DEG) in the right-hand contact.
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Assuming the conduction band of the n+ material is isotropic,

EFR is related to the donor density ND m-3 by

(2. 1)

where mL * is the conduction band- edge effecti ve mass and c is the

nonparabolici ty parameter defined in equation (1.12). When non-

parabolicity is included, EFR is lower than the parabolic-band value

given by the RHS of equation (2.1).

2.3 Equilibrium Electrostatics

When no bias is applied, the heterostructure is in

equilibrium and a constant Fermi level is maintained throughout the

device. This is achieved by the transfer of electrons from the n"

region into lower-lying conduction band states in the n- layer. This

transfer of electrons leaves behind fixed positive space charge in

the n+ contact which, in the absence of negative space c~arge in the

barrier region, creates an electric field at the LHS of the barrier,

directed towards the n- layer, normal to the barrier interface. The

electronic potential energy therefore increases in the n- layer with

distance from the barrier, so that the transferred electrons are

attracted to the interface, forming an accumulation layer of negative

charge. This accumulated charge screens the electric field which

exists at the LH barrier interface so that a fini te potential is
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dropped across the n- layer. Similarly, the electric field created at

the RH barrier interface by electron depletion from the n+ layer, is

screened by the fixed positive space charge, resulting in a finite

potential difference across this layer. Charge transfer occurs until

the sum of the potentials dropped across the n'", barrier, and n"

regions equals (EFR + ED)/e where ED is the donor binding energy.

Measurements of the capacitance-voltage characteri stics

reveal the existence of positive space charge in the barrier region

of the (InGa)As/lnP samples (Snell, 1987a) and negative space charge

in the GaAs/(A1Ga)As devices (Hickmott, 1988). This negative

space charge is suff iciently high that in equil ibri urn, the n--layer

of the GaAs/(A1Ga)As structures is depleted close to the barrier

interface (Hickmot t ,1985) and electron accumulation only occurs in

response to an applied forward bias.

2.4 Non-equilibrium Electrostatics

If a forward bias V is applied which raises the electronic

potential energy in the LH n" reservoir (layer 1 in Figure 2.1),

relative to the RH n+ reservoir (layer 4), the difference between the

left- and right-hand Fermi levels equals eV, and the system is no

longer in equilibrium. However, provided the rate of electron

diffusion through the n- layer is high compared with the tunnelling

transi tion rate, the Fermi levels of the 2DEG and LH reservoir are

approximately equal and lie close to the donor level in the bulk of
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the n- layer, away from the accumulation region. Consequently, the LH

reservoir, the donors in the bulk of the n- layer, and the 2DEG are

all in approximate equilibrium. The electrostatic potential dropped

across the neutral region of the n- layer can be deduced by comparing

the forward-bias current-voltage characteristic of the tunnelling

structures with that of a bulk n- control sample. For the (InGa)As

samples, this potential difference is found to be small ($ 3 mV)

compared with the applied voltage, over the entire range of bias used

in the transverse magnetotunnelling experiments of Snell et al.

(1987).

Provided that the tunnelling rate is also small compared with

the LO phonon emission rate, which is the dominant energy relaxation

mechanism of hot electrons in III-V materials at 4.2 K (see, for

example, Ridley 1988), electrons injected into the n+ contact cool

rapidly to the bulk Fermi energy EFR, leaving unoccupied states in

the n+ layer, below the Fermi level of the 2DEG. Consequently,

although the n- and n+ layers each in approximate localare

equilibrium, they are not in equilibrium with one another. Neglecting

the small chemical potential difference between the LH reservoir and

the 2DEG, the difference between the Fermi levels of the 2DEG and n+
in

collector contact equals the work" eV done by an external voltage

source in returning a thermalised electron to the n-layer.

An applied forward bias enhances the electric field at the LH

barrier interface. If sufficiently large electrostatic potential

variations occur over short distances in the accumulation layer, the
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energy associated with motion normal to the barrier interface may be
quantised, leading to the formation of bound states as shown
in Figure 2.1.

Strictly, these states are 'quas r-bounc ' since the
accumulated electrons eventually undergo tunnelling transitions into
the n+ layer.

Assuming the validity of the isotropic effecti vs-mass
equation (1.36) for the rapidly-varying accumulation layer potential,
the envelope wavefunctions of the ith bound state may be written

ljIi(x ) i
'¥i (x , y, z ) - 1 e kyY eikzz ,

(LyLz)2
i-O,1,2 ••• (2.2)

where LyLz is the cross-sectional area.
Neglect ing conduction band nonparabol icity, the x-dependent factors
ljIi(X)satisfy the 1-D Schrodinger equation.

where

-ecp(x) x < -b or x > °

-b ~ x ~ °
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The origin of the energy scale is taken to be the conduction band

edge in the n+ layer, far away from the barrier interface.

,The bound state energy, Ebi, is related to the total energy,

Ei (k , k ) ..E' +y z bi (2.4)

The transverse plane wave states associated with each bound state are

occupied up to the LH Fermi level. These occupied states are

referred to as sub bands. From the boundary condi tions (1.11), the

density of states (DOS), per spin, per unit cross-sectional area LyLz
is, for the ith subband

D. (E)
1

(2.5)

where S(E - Eti) is the unit step function. When only the lowest

subband is occupied, the accumulated electrons form a two-dimensional

electron gas (2DEG). If more than one subband is occupied, the

system is not strictly 2D since there is still a limited degree of

freedom normal to the interface via inter- subband scattering. The

format ion of 2DEGs in the accumulat ion layers of all the tunnel

structures described in this thesis has been confirmed experimentally

(Eaves et al., 1987 and Hickmott, 1985a).
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From equation (2.5), the Fermi energy EF of the 2DEG,

measured from the bound state energy Eto is related to the sheet

electron concentration ns by

(2.6)

In ~-space at T = 0 K, the occupied states lie within a Fermi

circle in the ky-kz plane, centred at the origin and of radius equal
1

to the magnitude of the Fermi wavevector kF Z [2mL* EF]2/~.

The electrostatic potential ¢(x) in equation (2.3) is related

to the space-charge density p(x) through Poisson's equation

d
[
€ (x) dc;6(X)] _

dx r dx

p(x) (2.1 )

where (r(x) is the local dielectric constant given by

£rL x < -b or x > 0

in which the subscripts Land H refer to the low and high band-gap

materials.
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Assuming that the charge due to the accumulated electrons is much

greater than that due to ionised donors in the n- layer, p(x) depends

on the bound state wavefunctions ~i(X) through

p (x ) - eE n. I~. (x ) 12
111

(2.8)

where ni is the sheet electron concentration in the ith subband. The

set of equations (2.3) for each subband are coupled through the

dependence of the electrostatic potential on the bound state wave-

functions and must therefore be solved self-consistently. Variational

methods have been used to obtain approximate solutions of equation

(2.3) for heterojunctions in which the accumulated electrons occupy

truly bound eigenstates.

When only one subband is occupied, these solutions are

usually based on the Fang-Howard trial wavefunction (Fang and Howard,

1966)

b+x
Cb + x~ e2ao
(2a30)2

x :;; +b

(2.9)

o x > -b

where ao is the variational parameter which minimises the bound state

energy for given 2DEG sheet electron concentration ns.
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This wavefunction was first proposed to describe electrons in

the invers ion layer of s il icon MOSFETS. Calculat ions reported by

Stern (1972) and in the general review of the properties of 20

systems by Ando, Fowler and Stern (1982) also refer mainly to silicon

MOSFETS.

By definition, the Fang-Howard wavefunction neglects

penetration into the barrier region. This is a reasonable

approximation for sil icon/ sil icon dioxide interfaces but not

necessarily for III-V heterostructures which generally have lower

conduction band offsets.

Bastard (1983) used a modified Fang-Howard wavefunction,which

includes barrier-penetration, specifically to calculate the lowest

bound state energy for (InGa)As/InP heterojunctions. It was shown

that for these structures less than 4% of the charge in the 20EG is

located within the barrier. For GaAs/(AlGa)As-based systems, both the

conduction band offset and the effective mass of the barrier material

are higher, so that the penetration of the wavefunction is even less

important. Consequently, the Fang-Howard

reasonably accurate descr i ption of the

wavefunct ion gi yes a

20EGs formed in the

accumulation layers of III-V tunnel structures provided that the

barrier is also sufficiently wide to prevent significant penetration

of the electron wavefunction.

The simplicity of the Fang-Howard wavefunction facilitates

the analytic treatment of the effect of a perturbing transverse
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magnetic field on 2DEGstates, given in Chapter 4.

The electrostatic potential energy -e4>(x), which determines

the conduction band profile, is found by solving Poisson's equation

throughout the device subject to the boundary conditions

-e4>(x ~ -~) :: eV + EFR (2.10)

d4>(x)
dx Ix ~ -ex> :: 0 (2.11)

-FL
dp(x)
dx n e/coc Ls r

(2.12)

dp(x) I = E:rL dp(x) I
dx x ~ -b+ E:rH dx x ~ -b- (2.13)

(2.14)

Equation (2.11) states the requirement that the electric

field vanishes in the n" layer, far from the barrier interface.

Equation (2.12) relates the electri c field FL at the LH barri er

interface to the 2DEG sheet electron concentration and follows

directly from Gauss' law. Equations (2.13) and (2.14) follow from

continuity of the normal component of electric displacement.
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Solving Poisson's equation for the accumulation layer charge

distri but ion specified by the Fang-Howard wavefunct ion (2.9) and

imposing the boundary conditions (2.10) and (2.12) gives

x+b
aoe

x :ii - b (2.15)

The bound state energy is found by minimising the energy

expectation value (IjJFHIH IIjJFH> where H is the effective-mass

Hamiltonian (2.3) in which the potential energy is given by equation
(2.15). For given ns, the required variational parameter (Stern,
1912)

(2.16)

is related to the mean stand-off distance -(x+b), of the 2DEG from

the LH barrier interface by

-(x+b) = 3ao (2.11)

The bound state energy Ebo, measured relative to the electro-

static potential energy at x = -b, is (Stern, 1972)



50

5 1'12 (2.18)

Measured relative to the origin of the energy scale, Ec(x ~ ~), this

bound state energy is given by

El = E - e~(-b)bo bo

(2.19)

From equation (2.15), the potential energy gained as an electron in

the n" layer moves away from the LH barrier interface is, in the

limit x .,.-~

eVa -e~(x ~ -~) + e~(x = -b) (2.20)

Comparing this with the expressions for EF and Ebo given in

equations (2.6) and (2.18), it is clear that eVa" EF + Ebo' This

lack of self-consistency is one of the shortcomings of the Fang-

Howard wavefunction which is avoided by the use of two-parameter

wavefunctions such as that of Bastard (1983).

Measurements of the capacitance-voltage characteristics have

revealed the existence of positive space charge in the barrier region

of the (InGa)As/lnP structures (Snell, 1987a). Sol ving Poisson IS

equation assuming uniform posi tive space charge of density Ne m-1,

and imposing the boundary condition (2.13) gives
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-elP(x) :: ( Nb2 _ n (_b_ + ~))
2~ s ~ £~rH ~rH rL

+ eV + EFR (2.21)

<b s x ~ 0

Consequently, the electronic potential energy at the LH

barrier interface exceeds that at the RH barrier interface by

(2.22)

The electrostatic potential variation in the n" layer is modelled

using Thomas-Fermi screening theory (see, for example, Ashcroft and

Mermin, 1976). This semiclassical theory is valid provided that the

change in electronic potential energy which occurs over one Thomas-

Fermi wavelength AFR ~ 2n/kFR is small compared with the local Fermi
energy, and predicts

-e4l(x) .. -e4l s

-x
2.3e x ) 0 (2.23)

where the Thomas-Fermi screening length 2.s satisfies

(2.24)
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The potential ~s at the RH barrier interface is obtained by matching
the derivatives of equations (2.21) and (2.23) using the electric
displacement continuity condition (2.14). The required value of ~s

is
~ z el (Nb - n )/£0 £ Ls s s r (2.25)

Owing to the high donor density ND = 1023 m-' in the n+ contact, the
screening length ls is small. Consequently, ~s is also small and is
neglected when calculating the eigenvalues of the n" layer in the
presence of a transverse magnetic field (see Section 4.3). At fixed
forward bias V, the 2DEG electron concentration ns(V) is found by
solution of the energy conservation equation

(2.26)

where eVa' eVb and ~s are given as functions of ns in equations
(2.20), (2.22) and (2.25).

2.5 Calculation of the 2DEG Sheet Electron Density as a
Function of Forward-bias Voltage

The data paints in Figure 2.2 show the 2DEG sheet electron
concentration in the (InGa)As/lnP single-barrier structures measured
for a variety of forward-bias voltages. These values of ns were
deduced from the periodicity of maxima observed in the first

derivative of the magneto-current I(B), measured under forward-b ias
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conditions, and in the presence of a longitudinal magnetic field (!"
l) (Snell, 1987a). In this geometry, the magnetic field quantises

the transverse mot ion of the 2DEG electrons into discrete Landau

levels. Chan et a1. (1981) have modelled the I(B) characteristics

us ing a self-cons istent calculat ion of the 2DEG bound state energy

and sheet electron concentration based on a two-parameter variational

wave-function. This model predicts maxima in dI/dB whenever EF(B • 0)

- 11'l'i2ns/mL*., (n + 4»l'lwcwhere EF(B - 0) is the zero-field Fermi

energy and 4> is a field-independent phase factor.

Consequently, the zero-field sheet electron concentration can

be determined from the periodicity of maxima in dI/dB, plotted as a

function as 1/8.

The solid line in Figure 2.2 shows the voltage-dependence of

ns' calculated from equation (2.26). Reasonable agreement is

obtained with the measured values if uniform positive space charge of

density 1023 e m-3 is included in the barrier region.

This charge densi ty equals the nom inal dop ing concentrat ion

in the n+ layer, which suggests that dopant atoms may have diffused

into the barrier region. However, unintentional doping to this high

level is unlikely, and the apparent barrier space charge is probably

associated wi th surface states formed at the barrier interfaces

(Snell, 1987a).

The discrepancy between the observed and calculated electron

densities, at high bias voltages, is probably due to the breakdown of
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Thomas-Fermi screening theory as the change in electronic potential
energy occuring over one Fermi wavelength becomes comparable with the

local Fermi energy. Although the validity of Thomas-Fermi theory is
questionable at high forward bias, the broken curve in Figure 2.2
shows that the agreement with experiment is far worse if the voltage
dropped across the n+ layer is totally neglected.

The calculated ns(V) variation allows the 2DEG variational
parameter a0' Fermi energy EF and bound state energy Ebo' to be
determined for given forward bias. The electrostatic potential
energy variation, and consequently the conduction band profile
follow directly from equations (2.15), (2.21) and (2.23).

2.6 The Constant Capacitance Approximation

The calculated 2DEG sheet electron concentration varies
almost linearly over the range of bias shown in Figure 2.2.
Consequently, ns(V) may be written, to good approximation

(2.27)

where C is the (constant) capacitance per unit area and VFB is the
reverse-bias voltage for which there is no accumulated charge in the
n" layer, and therefore no band bending. For this reason VFB is
referred to as the flat-band voltage. For the (InGa)As/lnP

structures, C = 4.25 X 10-3 F m-2 and VFB = 50 mV (Snell, 1987a). In
the absence of space charge in the barrier region, the predicted
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flat-band voltage is VFB = EFR/e = 17 mV. The higher measured value

of VFB indicates the existence of positive space charge in the

barrier.

Within the constant capacitance approximation, the 2DEG Fermi

energy (2.6) is a linear function of voltage given by

1T 112 C(V + VFB)
EF - ~* e 2m *L

(2.28)

2.7 Summary

The application of a forward-bias voltage to an

asymmetrically n-doped single-barrier structure leads to the
formation of a 2DEG in the n" emitter contact, adjacent to the
barrier. The bound state energy and mean stand-off distance of the
2DEG can be obtained as functions of the sheet electron concentration
ns from a variational calculat ion based on the Fang-Howard trial
wavefunction.

The voltage-dependence of ns calculated using the Fang-Howard
model of the 2DEG is in reasonable agreement with that measured for
the (InGa)As/lnP samples, assuming the existence of positive space
charge 1023 e m-3 in the barrier region. Once ns is known, the
conduction band profile can be calculated by solving Poisson's

equation throughout the device.
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CHAPTER THREE

THE BARDEEN TRANSFER-HAMILTONIAN FORMALISM
OF ELECTRON TUNNELLING

3.1 Introduction

In Section 1.1 the average flux carri ed over one or more

unit cells by the conduction band eigenstates of a perturbed crystal

lattice, was shown to depend only on the associated envelope

functions and on the effective mass of the conduction electrons. In

Section 1.8, the transmission coefficient of a single-barrier hetero-

structure was calculated in the presence of slowly-varying electro-

static potentials by using WKB envelope functions to determine the

mean incident and transmitted fluxes carried by extended conduction

band eigenstates.

Such time-independent models of electron tunnelling are,

however, inapplicable when electronic motion in the tunnelling

direction is sufficiently constrained that bound or quasi-bound

eigenstates are formed. This constraint may be due to rapid

variation of the conduction band edge position, which is the case for

the 2DEG states discussed in Chapter 2, or due to confinement by a

transverse (in-plane) magnetic field, which leads to the formation of

Landau and interfacial Landau states as described in Chapter 4.
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These bound eigenstates carry no probability flux in the

direction of confinement and therefore give no information about the

tunnel current I. Since all the tunnell ing problems discussed in

this thesis involve electron tunnelling from 2DEG states into

magnetically-quantised interfacial states, an alternative time-

dependent tunnelling formalism is required.

The transfer-Hamiltonian approach (Duke, 1969) is explic itly

time-dependent since tunnelling is described as a sequential process

in which electrons make transitions between eigenstates of left-hand

(LH) and right-hand (RH) 'subsystems' comprising the barrier region

and either the LH or the RH contact regions respectively.

The transfer-Hamiltonian method was first developed by

Oppenheimer (1928) to calculate the ionisation rate of atomic

hydrogen in a high electric field. Bardeen (1961) used a similar

time-dependent approach to describe electron tunnell ing in metal-

insulator-metal systems when one, or both, of the metals are super-

conducting.

In this chapter, a generalised version of the Bardeen

transfer-Hamiltonian formalism is described which allows for the

presence of a transverse magnetic field (8 1 l). The effect of

conduction band nonparabolicity in the RH collector contact is also

included through an energy- and position-dependent effective mass.
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Guided by the time-independent calculations of Section 1.8,

this formalism involves only the envelope functions of the LH and RH

eigenstates. Some justification for this assumption is given in

Section 3.6 where the transmission coefficient of a single square

barrier is calculated within the transfer-Hamiltonian approximation,

and shown to be identical to the more usual time-independent

expression (1.53).

In Section 3.7, an expression for the transition rate between

bound eigenstates of two weakly-coupled square wells is derived and

interpreted semiclassically.

3.2 The Conduction Band Effective-mass Equation for a Single-

barrier Heterostructure in the Presence of a Transverse
Magnetic Field (~l~)

The results derived in this chapter are applicable to

direct-gap single-barrier heterostructures in which any electric or

magnetic fields preserve the invariance of the effective-mass

Hamiltonian under translations parallel to the barrier interfaces.

The most general system which satisfies these requirements

includes an inhomogeneous electric field, ~(x) normal to the barrier

interfaces and a uniform transverse magnetic field (B ~ Oz)

represented by the vector potential in the Landau gauge A ~ (0, Bx,

0). Referred to the co-ordinate axes of Figure 2.1, the conduction

band effective-mass equation for this system is
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H \Un( ) En \Un( )T TT x,y,z = T TT x,y,z (3.1)

where the isotropic effective-mass Hamiltonian is, from equation

(1.18)

(-if! _1_ + eBx)2
+ at

2m (x)
(3.2)

For nonparabolic bands, the effective mass is an implicit function of
nthe total energy Er given by

* [ 1 nmL + uL(ET - Ec(X))] ; x < -b

m* (x) = { * -b ~ x ~ 0mB ;

* [ 1 nmR + uR(ET - Ec(x))] x > 0

where mB* is the band-edge effective mass of the barrier material,
mL* and mR* are the band-edge masses of the LH and RH contact

materials, and uL and UR are the corresponding nonparabolicity
factors.
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Lassnig (1987) has shown, using 3-level ~'E theory that the

effective mass falls linearly with energy below the conduction band

edge. This reduction in mass increases the wavefunction amplitudes in

the barrier, and consequently the tunnelling transition rates.

However, for high and wide barriers, the electron wavefunctions decay

rapidly in the barrier region so that the bound-state eigenvalues,

which determine the allowed, energy-conserving transitions, are

fairly insensitive to the parameters of the barrier material, and in

particular the effective mass. Since the interpretation of

magnetotunnelling data presented in Chapters 5 and 6 depends

primarily on the conservation requirements which must be satisfied in

tunnelling transitions, rather than on the absolute transition rates,

the effective mass in the barrier material is taken to be the

band-edge mass ms*.

From equation (3.2), HT is invariant under translation

parallel to the barrier interfaces, and therefore has eigenfunctions

'i'¥ of the form

'i'~ (x , y, z )

where LyLz is the cross-sectional area, and ky,kz are the transverse

wavevector components. Substi tut1ng equat ion (3.3) into equation
n~T(X) is found to be a normalised solution of the one-

dimensional Schrodinger equation
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En n( )T WT x

C3. 4)

where the effective potential energy

is the sum of the conduction band profile and the SHO magnetic

potential energy (MPE)

The MPE depends on the transverse wavevector component ky, wh ich

determines the orbi t centre, and also on the energy eigenvalues E~

through the effective mass. Since the eigenvalues of equation (3.4)

influence the Hamiltonian in this way, they must be calculated

self-consistently.

The kinetic energy Ez = ~2kz2/2m*(x), associated with motion

parallel to the magnetic field varies wi th posi tion normal to the

barrier interface due to changes in the effective mass. This kinetic

energy variation may be interpreted as an additional x-dependent

potential, just as the semiclassical kinetic energy associated with

motion along the y-axis is referred to as the magnetic potential

energy.
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However, since the effective mass variations are small for

all the heterostructures discussed in this thesis, m*(x) can be taken

to equal mL* throughout. Within this approximation,

so that Ez = ~2kz2/2mL* is conserved. This simplification is central

to the model of magnetotunnelling in single-barrier structures

presented in Chapters 5 and 6. Subtracting this constant kinetic

energy Ez from both sides of equation <3.4) yields a new eigen-

equat ion with eigenvalues equal to the electron energy assoc iated

with motion in the x-y plane, perpendicular to the magnetic field.

The solutions of this equation are considered in detail in Chapter 4.

3.3 Definition of the Left- and Right-hand Sub-Hamiltonians of a

Single-barrier Structure

In this section left- and right-hand sub-Hamiltonians HL and

HR are defined in terms of the effective-mass Hamiltonian HT of the

entire system. The systems described by HL and HR are referred to as

left- and right-hand subsystems of the single-barrier structure and

contain the barrier region and ei ther the LH or RH contact regions

respectively.



63

The left-hand sub-Hamiltonian HL is defined by

x ~ 0

(3.5)

x > 0

where p -mv.

For the purposes of this definition, the effective mass in

equation (3.2) is understood to depend on the energy eigenvalues {ECl
of HL, rather than on {fT}, and the conduction band-edge energy at x
= 0 is taken to be Ec(O) = Ec(x ~ 0-), that is the band-edge position

in the high-gap material close to the RH barrier interface. Since HL

retains the invariance of HT under translation parallel to the

barrier interfaces, its eigenfunctions are of the form

2. _1 2.~ (x,y,z) = (L L ) 2 ~L(X) e
L y z

°kL1 z
Z C3.6 )

where kL andy
Lkz are transverse wavevector components 2.and ~L (x)

satisfies equation (3.4), in which the energies and wavevector

components are understood to be those associated with l~, and EEFF(X,
L 2. L 2.ky, EL) = EEFF(O-, ky, EL); x ~ 0.

Similarly, the RH sub-Hamiltonian HR is defined by
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x ~ -b

where the effective mass in equation (3.2) is understood to depend on

1 { ErR}the energy eigenva ues and the conduction band-edge

energy at x = +b takes the limiting value of Ec(x) in the barrier

region as x ~ -b+. In this definition, HR is separable and thus has

eigenfunctions of the form

r'¥R(x,y,z)
ikR Y

_1 r y
(L L ) 2 ~R(X) ey z

. Rlk zz C3.8 )e

where ~R(X) satisfies the one-dimensional Schrodinger equation (3.4)
. R r R rin WhlCh EEFF(X. kyo ER) = EEFF(-b+. kyo ER) ; x $ -b.

Following Bardeen (1961), the sub-Hamiltonians HL and HR are

defined so that the effective 1-D potential energy EEFF(x, kyo E) is

constant in the RH and LH contact regions respectively. However.

since the transfer-Hamiltonian formalism is only applicable to

systems which contain a high and wide barrier (see Section 3.4). the

x-components of the eigenfunctions '¥L2. and '¥R decay rapidly in the

barrier and are. therefore. quite insensitive to the precise

definition of the sub-Hamiltonians in the regions of assumed constant

potential.
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2.
It follows from the definition (3.5) of HL that {'ilL}are

exact eigenfunctions of HT for x ~ 0 but not for x > 0, that is

= E2. 'IIi x ~ 0L L

HT 'IIi (3.9)L

'"
E2. 'lit x > 0L L

Similarly,

=: Er ,¥r x '= -bR R

HT ,¥r (3.10)R

'"
Er ,¥r x < -bR R

These results are used in the next section which shows how electron

tunnelling can be described in terms of transitions between eigen-

states of the left- and right-hand subsystems.

3.4 Calculation of the Rate of 'Tunnelling' Transitions between

Eigenstates of the Left- and Right-hand Sub-Hamiltonians

Provided that the potential energy barrier is high and wide,

the x-components of the left- and right-hand eigenfunctions 'jiLtand
r'¥R, decay rapidly in the barrier region so that
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C3.11)

where the integral is evaluated over the entire heterostructure.

Since the left- and right-hand eigenfunctions are approximately

orthogonal, they may be used as a basis set from which time-

dependent wavefunctions of the whole system may be constructed as

follows:

-iEjt/11
+ r c. C t ) IIIJ

R
'(x, y , z) e R

J J
(3.12)

where the summations are over all left- and right-hand eigenstates.

Neglecting overlap integrals between left- and right-hand eigen-

functions, normalisation of ~T requires

0.13)

Suppose that at t 0, CjCO) = 0 for all j and anCO) = 6nt where

n = t

o n ~ t
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At t '" 0, '¥T(X,y,z,O) = '¥C(X,y,Z) so that the electron initially
2. S' \lJ2..appears to occupy the eigenstate 'ilL of the LH subsystem. 1nce TL 1S

not an eigenstate of the whole system, ~T evolves with time according

to the time-dependent Schrodinger equation

(3.14)

Substituting equation (3.12) into this equation gives

The expansion coefficients change wi th time thereby mixing

additional LH and RH eigenstates into the wavefunction 'i'T(x,y,z,t),

and inducing transitions from the initial state 'i'C. If the subsystem

eigenfunctions \lJnLand \lJj tT TR were exac eigenfunctions of HT, the

expansion coefficients would remain constant in time, for any choice



68

of initial state and no transitions would occur. Similar time-

dependent coefficients are found in conventional time-dependent

perturbation theory where, in contrast to the tunnelling problem,

transitions occur between exact, orthogonal eigenfunctions of an

approximate (unperturbed) Hamiltonian.

In the limit of an infinite potential energy barrier, exact

eigenfunctions of the whole system can be constructed from the left-

and right-hand eigenfunctions. The transfer-Hamiltonian tunnelling

formalism is therefore perturbative in the sense that when the

barrier is relaxed to a physically realistic height, the change in

the LH and RH eigenfunctions must be small, so that the approximate

orthogonality requirement (3.11) is satisfied.

Transitions from the initial state ~~ into eigenstates of the

RH subsystem describe electron tunnelling since the mean x-coordinate

of the electron moves from an initial value to the left of the

barrier to a new position on the RHS of the barrier, characteristic
rof the RH eigenstate ~R.

The probability Plr(t) that at time t the electron has made a

transition from ~tinto the rth RH eigenstate ~~ is

r*Plr(t) = IV ~R (x,y,z) ~T(x,y,z,t) dV (3.16)
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which, neglecting overlap integrals between the LH and RH eigenstates

becomes

(3.17)

rTo calculate cr(t), the inner product of '¥R and equation (3.15) is

taken. Since the eigenstates of each subsystem are orthogonal, this

gives

- iE~tin
+ i~ c (t) e + Er c (t)

r R r

-iEjt/fl
~ () (J r* H lIJ ev ) e R+ J cj t V '¥R T TR

(3.18)

This expression can be simplified by estimating the magnitudes of the

expansion coefficients and their derivatives. Differentiating
equation (3.13) with respect to t gives

E a (t) a*(t) + a*(t) a (t) + JEcJ,(t) c~(t) + c~(t) cJ,(t) = 0nn n n n J J

<3.19)
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whence, from the initial conditions

and

c.(O) 0,
J

a~(o) = O. The evolution of ~T is therefore slow so that at time t
the expansion coefficients may be approximated by

for all n C3. 20)

a (t) = 0
n

Equation (3.18) can be further simplified by writing

where the regions VL and VR include all space to the LHS and RHS
respecti vely of the plane x = s where -b ~ s ~ O. From equation
(3.7), HT = HR for all x ~ -b so that HT HR everywhere in VR.
Similarly from equation (3.5 ), HT = HL everywhere 1n VL.



71

The integral over VL in equation (3.21) is negligible since

the x-component of each eigenfunction w
r
R d idl·T ecays rap y In the

barr ier region. Equation (3.21) may therefore be written to good

approximation

H 't'j dV
T R

(3.22)

Substituting equations (3.20) and (3.22) into equation (3.18) gives

-iE~t/flEi (f 'l'r*'l't dV) e + Er c (t)
L V R L R r

C3 .23)

whence

(3.24)

In time-dependent perturbation theory, a formally identical equation
leads to the Fermi golden rule for the transi tion rate between two

orthogonal eigenstates 'liLtand 'I'{ of an unperturbed system when the

perturbed Hamiltonian is HT (see, for example, Merzbacher, 1970).
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Integration of equation (3.24) gives a similar golden rule
lfor the electronic transition rate Wlr from the eigenstate ~L of the

LH subsystem into the eigenstate ~~ of the RH subsystem.

This transition rate is

C3. 25)

where

(H - El) ~l dVT L L (3.26)

The delta function in equation (3.25) ensures that transitions only

occur between states of the same energy.

3.5 An Expression for the Transition Matrix Element Mlr

In this section the matrix element Mlr is expressed in the

form of a one-dimensional probability flux which depends only on the
2. rx-dependent factors WL(X) and WR(X) of the LH and RH eigenfunctions,

and their derivatives.

The integral in equation (3.26) can be evaluated over the

regions VL and VR defined in the previous section, giving

C3. 27)
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The integral over VL vanishes since HT
i iand HL'¥L = EL'¥L.

HL everywhere in this region

Since in addition, HT HR everywhere in VR, equation (3.27) becomes

(H - E2..),¥2..dVR L L (3.28 )

which may be expressed in the more symmetrical form

(3.29)

* r* r *where the extra term in the integrand vanishes because HR'¥R = (HR'¥R)
r * r*= (ER'¥R) - ER'¥R

In the original Bardeen formalism, which includes no magnetic

fields, this additional term contains the sub-Hamiltonian HR rather

than its complex conjugate HR*' This is because when B .. 0, the

effective-mass Hamiltonian is real, so HR* - HR.

2.. rUsing equations (3.6) and (3.8) for '¥L(X,y,Z) and 'I'R(x,y,z)

in equation <3.29) ERr for energy conserving

transitions gives



14

M~r = LyLz
e

'kR-1 z
z e

e

, R-1k Y
Y

'kR-1 z
Z r* 1~R (x ) dx dy dz- e e

<3.30 )

where the integral over VR has been expressed as a triple integral

over the x, y and z co-ordinates of this region. It follows from the

definition (3.1) of HR that for x ~ -b,

e
'kL1 z

z ~~ (x )L

<3.31 )

where EEFF(x, k~. ~) is the effective potential energy of the RH

subsystem, given for x ~ -b in equation (3.4).
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Similarly,

°kR-1 Z
Ze

e

R-ik Y
Y

°kR-1 Z
Z

fl2k
R2

( 112 d (1 d) + Z E ( R Er) _ Er) 'Ir* ( )- ~dX m*(x) dx 2m*(x) + EFF X,ky' R R ~R xe

<3.32 )

Substituting equations (3.31) and (3.32) into equation (3.30) gives

M ir dz

Since all allowed wavevector components satisfy the periodic boundary

( ) k L Rconditions 1.11 , the integrals over y and z vanish unless y:s ky
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L Rand kz = kz, in which case they equal unity. Transitions therefore

only occur between states with identical transverse wavevector

components so that the matrix element (3.33) becomes

fl2
= - "2 12.r 6 L kR

k ,Y Y
6 L kRk ,z z

(3.34a)

where

2-

[ r* d 1 d1jJL(x)
= *:-~e(x-s) 1jJR(x) dx (m*(x) dx )

(3.34b)

in which S(x - s ) is the un i t step function defined in equation

(1.33).

Evaluating the integral in equation (3.34b) by parts and imposing the

boundary conditions

2.
2. d1jJL(x)

1jJL(x)and + 0 as x + +~ anddx

r*r* d1jJR(x)
1jJR(x) and + 0 as x + -~dx

gives
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r*
i d~R (X»)

~L(x) 6(x-s) dxdx

from which it follows that

The plane separating the regions VL and VR was chosen to lie
within the barrier, rather than at an interface, to avoid the problem
of which effective mass should be chosen at the interface. From
equation (3.2), m*(s) .. mB* for all s within the barrier region.
Throughout this thesis equation <3.36) is evaluated in the limit
x ~ 0_, that is close to the RH barrier interface.

Combining equations (3.34) and (3.36) gives, finally

(3.37)

where
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has the same form as the probability flux carried by a single

wavefunction (see, for example, Merzbacher, 1910).

For any single-barrier tunnelling problem, once the LH and RH

eigenvalues, and the x-dependent factors of the associated eigen-

functions are known, allowed tunnell ing transitions can be

identified, and the transition rates calculated using equations

(3.25) and (3.31).

3.6 Calculation of the Transmission Coefficient of a Rectangular

Potential Energy Barrier

In this section, the transmission coefficient of a

rectangular potential energy barrier is calculated using the

transfer-Hamiltonian formalism, and shown to be identical to the more

usual time-independent expression (1.53).

In the absence of magnetic fields, the effective potential

energy variation in a single-barrier heterostructure, is described by

the spatial dependence of the conduction band edge, Ec(x). If no

space-charge regions are present, the high band-gap material forms a

rectangular potential energy barrier as shown in Figure 3.1.

The envelope eigenfunctions of the LH and RH subsystems are

of the form given in equations <3.6) and <3.8) where Iji~x) satisfies
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(a)
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~Ek b 6ECR

Ec(x)
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(c)

R
Ex

o

Figure 3.1 (a) The conduction band profile Ec(x) of an idealised
single-barrier heterostructure, together with the
effective potential energy variation of (b) the left-hand
subsystem and (c) the right-hand subsystem. Schematic
left- and right- hand eigenfunctions ~L~(X) and ~Rr(x)
are also shown.
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fl2kL2 fl2kL2

2m*1x) - 2m*~x)] ~~(x)

t£R - t£L x < +b
c c

where

mt. x < -b

and m*(x) • t
m; x ~ -b

Similarly, ~~(x) satisfies

(3.39 )
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liER x s 0c

where ER(X) =c

0 x > 0

and,

m* x s 0
B

m*(x)

m* x > 0
R

The step-like potential energy profiles of the LH and RH

subsystems are shown in Figure 3.1.

Solving equations (3.38) and (3.39) piecewise in each region

and imposing the matching conditions (1.39) and (1.40) gives

[ikL + ~L(m* Im!)] L
x L l:j -ik (x+b )x x < -b+ A e

[ikL - ~L(m*/m*)]x L B

2-
"'L(x)

L
u (m· 1m·)]L B

L
e-~ (x+b) x i: -b

(3.40 )
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and,
R+ik xx + B e

R-ik xx x ) 0

(3.41)

R
\.1 Xe

x s 0

where the longitudinal wavevector components are related to the total

energies EC and E~ by

the decay constants of the LH and RH eigenfunctions are

"L .. [2m* (t£R
.. B c

and A and B are normalisation constants.
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The quantum numbers i and r refer to the wavevector
L L L R R Rcomponents (kx, ky, kz) and (kx, ky, kz) which specify individual LH

and RH eigenstates.

Evaluating the wavefunctions (3.40) and (3.41) and their

derivatives in the limit x ~ 0_, and using these results in equations
i(3.25) and (3.37), the transition rate Wir from the initial state ~L

rto the final state ~R' is found to be

8n 1'13

(3.42)

The total transition rate Wi into all RH eigenstates which satisfy

the transverse wavevector conservation requirement is found by

integrating equation (3.42) over using the periodic boundary

conditions (1.11) to determine the density of states. This

transition rate is

W '"
k~ =0
x

where Lx is the length of the RH (collector) contact and
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(3.44)

Using this relation to change the variable of integration in equation

(3.43) from k~ to ~ gives

W
2.

L
kL2 kR ( L + R)2 e-2~ b 6(~E) d(~)x x \.I \.I

m*R
fs:

(3.45)

whence
L

-2\.1 be
(3.46 )

where k~ satisfies ~(k~) - 0, to ensure energy conservation.

The position-dependent effective mass m*(x) couples the
longitudinal and transverse components of motion so that the allowed

R L Lvalue of kx is a function of Ky and kz and the transition rate Wi
depends on the kinetic energy associated with transverse motion. If
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the effective mass is taken to be constant throughout the device, the

longitudinal and transverse components of motion are decoupled, and

the transition rate (3.46)then depends only on the incident kinetic

energy of the electrons.

The transition rate Wi gives the probability per unit time

that an electron which initially occupies the state ~t is transmitted

through the barrier. This transition rate may be expressed as the

product of the barrier transmission coefficient, and the probability

. d b th t 11 . t f lULlflux carrle y e rave lng wave componen 0 T which propagates

along the x-axis.

Using equations (1.41) and (3.40) to calculate the incident

probability flux gives

Wi ::: (3.47 )

where TTH is the transfer-Hamiltonian expression for the barrier

transmission coefficient.

Comparing equations (3.46) and (3.47) and setting the RH
1

normalisation constant B ~ Lx-2 for a high and wide barrier gives
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(3.48 )

which is identical to the time-independent transmission coefficient

(1.53) when band bending and nonparabolici ty are neglected so that
L Rm*(O+) = mR*' ~(x) = ~(-b+) = ~(O-) = ~L. k(-b_) • kx and a(O+) • kx•

Duke (1969) demonstrated the equivalence of the time-independent and

transfer-Hamiltonian transmission coefficients when mL* - mB* • mR*'

but the more general case of unequal masses was not considered.

In any real system. space-charge regions give rise to

electrostatic potential variations so that the effecti ve potential

energy barrier is not rectangular. However. provided these

potentials are slowly varying. the transfer-Hamiltonian transmission

coefficient TTH can still be calculated from the WKB eigenfunctions

of the LH and RH subsystems. Within the WKB approximation. TTH is

again found to be identical to the time-independent expression

(1.53).
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3.7 Application of the Transfer-Hamiltonian Formalism to
Tunnelling Between Bound Eigenstates

In the prev ious sect ion, the transfer-Hami Itonian trans-
mission coefficient of a rectangular potential barrier was shown to
be identical to the more familiar time-independent expression,
derived from the current-carrying eigenstates of the system.

Time-dependent models of tunnelling were, however, primarily
developed to calculate the transition rates between quasi-bound left-
and right-hand eigenstates, such as the 2DEG states discussed in
Chapter 2. Such states carry no current in the direction of
confinement and cannot therefore be treated using a time-independent
formalism. In this section, the transfer-Hamil tonian formal ism is
used to calculate the tunnelling transition rate between bound states
of two weakly-coupled rectangular potential energy wells.

Figure 3.2 shows the conduction band profile of a hetero-
structure in which two different low band-gap materials act as
potential energy wells to motion perpendicular to the interfaces.
The potent ial energy L Rprofiles Ec(x) and Ec(x) of the LH and RH
subsystems each contain one potential well as shown 1n Figures 3.2b
and 3.2c. Both wells are assumed to be sufficiently deep and wide to
support at least one bound eigenstate, for which the energy
associated with motion normal to the interfaces is quantised.

L RSolving equation (3.4) for EEFF(X) - Ec(x) or Ec(x), the x-components
2. r~(x) and ~R(X) of the 2.th LH and rth RH bound eigenstates with

Ltransverse wave vectors ~I L L R
• (ky. kz) and kll R R

- k(ky• kz) are of the



m8* m8*
Ec(x)I

WL b WR
~E

------
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C
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------------f-
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Figure 3.2 (a) The conduction band profile of a double-well hetero-
structure containing two different low band-gap
materials. The effective potential energy variation of
(b) the left-hand subsystem and (c) the right-hand
subsystem are also shown, together with schematic left-
and right-hand ground-state wavefunctions.
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form

A k e'Y(X - a1)
1

[(m*'Y/ms)2 + k2]2

~(X) OK t A sin [k(x - a j ) + 6]

A k (_1)i+1 e-'Y(X - a2)
1

[(m*'Y/ms)2 + k2]2

where for the LH subsystem,

m*
2. ( B\5 - 6 - arctanL m*L

k • k!L is related to the total energy by

o :;j 62. :;j 11/2 ,
L

(3.49 )
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and satisfies the energy quantisation condition

These expressions are easily adapted to the RH subsystem by

substi tuting 2. -+ r , ~II-+ 11 and mak ing appropri ate changes to the

material parameters and interface positions.

Evaluating ~(x) and ~~(x) and their derivatives in the limit

x -+ 0_. and using these expressions in equations (3.25) and (3.31).
the transition rate W2.r from the 2,th bound state of the LH subsystem

to the rth bound state of the RH subsystem is found to be

8 m* m*L R

(3.50)
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where the delta function ensures that transitions only occur between
eigenstates with the same total energy.

The transverse wavevector components must also be conserved
so that yt = y~ and equation (3.50) becomes

w - 21l1'l2.r

x (3.51)

where

k2.2 + y2.2 ( s r *)xL L mL mB

and

The first bracketed term in equation (3.51) is the frequency of
collisions which an electron, with longitudinal kinetic energy

2.2~2kxL/2mL* makes classically with each wall of a confining potential
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well of ~The end correction 2LEFF to the LH well

width originates from quantum-mechanical penetration of the electron

wavefunction into the classically forbidden regions at each side of

the well.

* *If mB .. mL , 1/)', simply gives the penetration

length over which the amplitude of the wavefunction falls to lie of

its value at the barrier interface. In the limi t of impenetrable

barriers, )'~ + ~ and the end correction vanishes.

The second bracketed term in equation (3.51) is the

frequency of the collisions which an electron mov ing wi th constant
r *long itudinal speed llkxR/mR makes classically wi th each wall of a

rpotential well of width wR + 2LEFF.

The final term in equation C3 .51) is the transmission

coefficient (1.53) of the central potential barrier if, in the

absence of capping layers, free electrons incident from the left with

kinetic energy equal to the mean longitudinal kinetic energy

112ki2
xL

2m*
L

of the ~th LH bound state, are partially transmitted into travelling

wave states on the RHS of the barrier wi th longi tudinal kinetic
energy
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2m*R

equal to that of the rth RH bound state.

3.8 Summary

The time-dependent tunnelling formalism developed in this

chapter is applicable to tunnelling problems in single-barrier

heterostructures provided that the effective-mass Hamiltonian is

invariant under translation parallel to the barrier interfaces. In

particular, the formalism may be used to describe electron tunnelling

when a magnetic field is applied in the plane of the barrier,

perpendicular to the tunnel current. In this geometry, the

requirement that both the total energy and the transverse wavevector

components be conserved in tunnelling transitions is of central

importance to understanding the magnetotunnelling data presented in

Chapters 5 and 6. The semiclassical analysis of the transition rate

between bound eigenstates of two square wells provides guidance in

the interpretation of more complicated expressions encountered in

these magnetotunnelling problems.



92

CHAPTER FOUR

CALCULATION OF THE LEFT- AND RIGHT-HAND EIGENSTATES
OF AN ASYMMETRICALLY-DOPED SINGLE-BARRIER HETEROSTRUCTURE
UNDER FORWARD-BIAS CONDITIONS AND IN THE PRESENCE OF A

TRANSVERSE MAGNETIC FIELD

4.1 Introduction

This thesis aims to study the effect of a transverse magnetic
field on tunnelling transitions from the 2DEG states formed under
forward bias in the accumulation layers of single- and double-barrier
heterostructures. In order to describe these tunnell ing processes
within the transfer-Hamiltonian formalism, the energy eigenvalues and
associated envelope eigenfunctions of the LH and RH subsystems must

be found as functions of the transverse wavevector components ky and

kz• Using these eigenvalues, the allowed energy- and transverse
wavevector-conserving transitions can be identified.

The transitions rates, which determine the tunnel current,
can then be calculated using the x-dependent factors of the
associated effective-mass eigenfunctions.

In this chapter, the left- and right-hand eigenstates of the
single-barrier structures described in Chapter 2 are determined, and

interpreted in terms of the corresponding classical trajectories.
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~.2 The Effect of a Transverse Magnetic Field on the 2DEG States

of the Left-hand Subsystem

u , 2. , Introduction

In zero magnetic field, the LH sub-Hamiltonian HE is given by

the bracketed term on LHS of equation (1.36), where the effecti ve

potential energy is the conduction band profile Ec(x) of the

accumulation layer and barrier region for x < 0 and, by definition,

equals Ec(O-) for x ~ o.

For given forward bias V, Ec(x) is calculated as described in

Chapter 2 by assuming that the potential energy well in the

accumulation layer supports only one bound state, described by the

Fang-Howard wavefunction.

Consequently, the bound state eigenfunctions of HE are of the

form

(4. 1 )

and the associated eigenvalues are

1'12
= E' + (ky2 + kz2)bo 2m*L (4 .2)
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where EtbO is the bound state energy (2.19), measured from the

conduction band edge of the n+ contact.

In addition, H~ has extended state eigenfunctions of the form

wO(x)
'1'0 (x,y,z) :::-_e_~l
e (LyLz)2

ikyY ikzze e (4.3)

corresponding to the eigenvalues

o ~2(k 2 + kZ2):::E + ----~y----~--
ex 2m*L (4.4)

where, for extended states,

EO > E (-Cl») ::: E' + E + Eex c bo F D (4.5)

In the presence of a transverse magnetic field ~ II ~, the LH sub-

Hamiltonian HL is, from equations (3.2) and (3.5)

(4.6)

where

-iflBex d
-~--- +m*L ay x < 0

Ht ::: (4.1)

o x ~ 0
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Equation (4.7) assumes that the magnetic field does not raise the
2DEG energy levels sufficiently for nonparabolicity effects in the n-

contact to become important.

4.2.2 Perturbation calculation of the 2DEG energy levels

In the 2DEG, electronic mot ion is constrained in the x-

direction by the high electric field at the LH barrier interface.
Consequently, for small magnetic fields, H' acts in equation (4.6) as

a perturbation to the zero-field Hamiltonian When using

perturbation theory, care must be taken however, because some

i t t of HLo aree gens a es degenerate due to the transverse kinetic

energy.

Nondegenerate perturbation theory is only applicable if the

matrix elements of H' vanish between the 2DEG states and all other
odegenerate eigenfunctions of HL. This ensures that the first-order

correction to the wavefunctions and the second-order contribution to
the perturbed energy levels remain finite.

From equations (4.1) and (4.7), the matrix element of H'

between the unperturbed 2DEG states with transverse wavevectors ~'~ _

(ky', kz') and ~I • (ky, kz) is

(11.8)
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where J =
co
Ix=-'"

(4.9)

Since ky and kz satisfy the periodic boundary conditions (1.11), the

integrals over y and z are only non-zero When~" = ~I".Consequently,
the matrix elements of HI vanish between all distinct bound eigen-

states, including those which are degenerate.

Degenerate 2DEG and extended eigenstates have different

transverse energies and therefore also have distinct transverse

wavevector components. The matrix elements of H I therefore always

vanish between such degenerate states.

Since the matrix elements of HI do vanish between the

unperturbed 2DEG eigenfunctions and all other degenerate eigen-
ofunctions of HL. nondegenerate perturbation theory may be used to

calculate the shift in the 2DEG energy levels caused by the magnetic

field.

To first order, this energy shift is

0* 0
IV 'I'L HI 'i'L dV (4.10)

where the explicit position-dependence of the wavefunctions is

omitted for clarity.

Substituting equations (4.1) and (4.7) into equation (4.10)

gives



where

and

-b x(b + X)2
.. J_rIl 2a~

.. J-b x2(b + X)2
-Cl) 2a~

Hence ~L may be written

where
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(b+x)

e

(b+x)
aoe

(4.11)

dx • -(b + 3ao)

dx

2m*L (4.12)

(4.13)
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is simply the change in the y-component of momentum of an electron

which moves classically from x = -Cb + 3ao) (the mean stand-off

position of the 2DEG) to x = 0 under the action of the Lorentz force.

Combining equations (4.2) and (4.12), the perturbed energy of

a 2DEG electron, with wavevector components ky and kz, in a

transverse magnetic field is

E (ky, kz) = E' +
L be

1i2(ky - kO)2 1'l2kz2.
+ + ---

2m*L 2m*L
• (4.14)

From equation (1.26), the expectation value of the y-component of

velocity of an electron in the 2DEG is related to its total energy by

(4.15)

and vanishes for ky = ko•

Consequently, electrons which occupy perturbed 2DEG states with

wavevector components ky = ko and kz = 0 have no transverse kinetic

energy so that the bound state energy E~~ of the perturbed system is

E' + t.E'bo bo (4.16)
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where t.Ebo = 3B2e2a2
012m*L is the diamagnetic shift of the bound

state energy. At T :: OK, all energy levels are occupied from the

bound state energy to the left-hand Fermi level so that the Fermi
,

energy of the perturbed 2DEG system is EF - t.EbO, where EF is the

zero-field Fermi energy (2.6).

The 2DEG energy density of states depends only on the

periodic boundary conditions satisfied by ky and kz, and is therefore

unchanged by the magnetic field, which thus only affects the 2DEG

sheet electron concentration through the small diamagnetic shift of

the bound state energy. Since in general t.Ebo « EF (see Sect ion

4.2.3), the magnetic field has little effect on either the amount or

distribution of accumulated charge. Changes in the 2DEG sheet

electron concentration and in the zero-field conduction band profile

can therefore both be neglected.

In !-space, the occupied 2DEG states lie within a shifted Fermi

circle of radius kF * 1(2mL EF)2/~ and centred at (ko, 0) as shown in

Figure 4.1.

The expectation value of the y-component of momentum of a

2DEG electron with transverse wavevector component ky is, using

equation (4.15)

(4.17)

where ky' ::ky - ko



kz

o kO ky

Figure 4.1 In the presence of a transverse magnetic field at T - OK.
the occupied 2DEG states lie within a Fermi circle in
~-space centred at (ky. kz) - (ko• 0). where
ko - Be(b + 3ao)/~. Although the magnetic field shifts
the distribution of occupied ~-states. it has no effect
on the magnitude of the Fermi wavevector kF. to first
approximation.
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It follows that the range of transverse momentum components
corresponding to the occupied states in !-space is

(4.18)

where PF = nkF is the Fermi momentum.

Thus, although the magnetic field shifts the !-space distribution of
occupied 2DEG states, it has no effect on the transverse velocity or
momentum distributions.

Validity of the nondegenerate perturbation calculation

The first-order energy shift (4.11) can be written in the
form

(4.19)

where

The first term on the RHS of equation (4.19) is the expectation value
of a constant perturbation which produces a bodily shift in the 2DEG
energy levels, but has no effect on the unperturbed Fang-Howard
wavefunction.
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The spatially-varying perturbation contained in the second

term on the RHS of equation (4.19) does influence the Fang-Howard

wavefunction but its effect is small provided

B2e2 -X)2)«x -2m*L (4 .20)

that is , the diamagnetic shift of the bound state energy must be

small compared with the minimum energy separation EF between

unperturbed bound and extended states which give non-vanishing matrix

elements of H' .

For the (InGa)As/lnP samples described in Chapter 5, ~Ebo ..4

meV and EF s 17 meV when V - 100 mV and B - 5T, so that nondegenerate

perturbation theory is expected to be reasona?ly accurate.

By contrast, measurements on the GaAs/(A1Ga)As samples

described in Chapter 6 were performed up to higher fields of ~ 18 T,

for which lIEbO .. 14 meV and EF .. 18 meV when V • 240 mV. The

perturbation calculation is therefore of questionable validity at

such high fields which may be sufficient to destroy the bound state

(Helm et al., 1989).
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4.3 Eigenstates of the Right-hand Subsystem in a Transverse

Magnetic Field

Introduction

In the presence of a magnetic field ~ II ~, descri bed by the

vector poten tial ~ in the Landau gauge ~ - (0, Bx, 0), the RH

eigenfunctions are of the form (3.8). It follows from equations

(3.4) and (3.7) that the x-dependent factors satisfy

112 d 1 d 1'l2k 2

( - - - ( ) - + Z + E ( x») IjI ( x) - E ( ky , k z ) IjI ( x )
2 dx m*(x) dx 2m*(x) EFF R

(4.21)

where

x > -b

x S +b

and, neglecting the small potential dropped across the n" contact

(see Section 2.4) so that Ec(x) - 0 for x > 0,

mB* x s 0

m*(x). {

x > 0
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The approximation Ec(x) = 0; x > 0 is used in all subsequent

calculations of the RH eigenstates. Because the effective mass

changes discontinuously at each barrier interface, the kinetic energy

Ez = fl2kz2/2m*(x) associated with motion along the magnetic field

direction is not conserved. However, generally EF « EbO so that

this transverse kinetic energy is a small fraction of the total

energy of each occupied 2DEG state. Neglecting conduction band

nonparabolici ty in the n" contact, Ez is conserved in tunnelling

transi tions and therefore makes the same small contri but ion to the

total energy of accessible RH eigenstates. Consequently, Ez may be

approximated by fl2kz2/2m*L in equation (4.21) without significantly

changing the solutions of interest. Within this approximation, the

energy En(ky) associated wi th motion perpendicular to the magnetic

field is conserved and equation (4.21) may be written

(4.22)

where

Since 112kz2/2m\ « ER(ky, kz) for all accessible RH eigenstates,

ER(ky, kz) = En(ky) so that the effective mass defined in equation

(4.21) can be approximated by m*(x) = mL* = m*L (1 + aEn) for x > o.
This approximation totally decouples electron motion parallel and

perpendicular to the magnetic field direction.
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For all bias voltages, EF + EbO < Ec(-b+),so that tunnelling

only occurs into bound eigenstates of the RH subsystem with discrete

energy levels EnCky) distinguished by the quantum number n. This set

of eigenvalues depends on ky through the orbit centre posi tion X k
Y

which determines the degree of electron confinement.

Qualitative discussion of the RH eigenvalues

Before calculating detailed solutions of equation (4.22), it

is worthwhile considering the quali tati ve ky-dependence of the

eigenvalues En(ky). The effective potential energy EEFF(X) of the RH

subsystem is shown schematically in Figure 4.2 for ky < O. If the

orbit centre of the magnetic potential energy ~ > 0 (ky < 0), two
y

types of bound state may exist, classified according to the position

of the energy level EnCky) relative to the MPE EMAG(O+)

n2ky2/2m*CO+) at the RH barrier interface. Each type of bound state

corresponds to a dist inct classical traj ectory. The eigenvalues of

the so-called bulk Landau states, such as the mth level shown 1n

Figure 4.2 satisfy

(4.23)

and correspond to classical orbi ts which are bounded by two soft

turning points, B1 and B2• These orbits do not intersect with the

potential barrier (Bl > 0) and describe bulk cyclotron motion.



I
I
I
I
I

Bulk Landau States:
I
I
I

(b) Er(ky}
Interfacial Landau States

I
I
I
I

EMAG (0+) :
----- -----r-- ----------------

Em(ky)

-b Wr

Figure 4.2 The effective potential energy of the RH subsystem shown
schematically for ky < 0 (Xk > 0). Bulk and interfacial
Landau levels are classified~ as shown, according to
their positions relative to the magnetic potential energy
EMAG (0+) at the RH barrier interface.
The classical trajectory corresponding to the mth bulk
Landau level shown, is bounded by soft turning points 81

and 82, does not intersect with the barrier interface and
describes bulk circular cyclotron orbits. By contrast,
the classical trajectory corresponding to the rth
interfacial Landau state has a hard LH turning point at
x 2 0 from which the electron is specularly reflected and
undergoes 'skipping' motion along the barrier interface.
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Interfacial Landau levels such as the rth level in Figure 4.2
satisfy

(4.24)

The associated classical orbit extends between the hard turning point
at x ..0 and the soft RH turning point at x ..wn. Classically, the
electron is specularly reflected at x .. 0 and therefore describes
skipping motion along the RH barrier interface. If the orbit centre

Xk < 0 (ky > 0), interfacial Landau states only are formed. The
y

classical motion corresponding to interfacial and bulk Landau states
is discussed more fully in Section 4.4.

Suppose that, for given ky < 0, the nth eigenvalue of
equation (4.22) corresponds to a bulk Landau state. Within the WKB
approximation, the value of EnO<y) depends only on the MPE between
the classical turning points and equals the nth bulk Landau level,

(4.25)

For given magnetic field, the orbit centre \
y

towards the RH barrier interface with increasing ky « 0) so that

EMAG(O+) falls. However, provided (n + ~~Be/m*L remains lower than
EMAG(O+), the WKB approximation (4.25) for En(ky) is unchanged.
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A more complete calculation would reveal a slight increase in

En(ky), because the shift in orbi t centre increases the overlap
between the bulk Landau state wavefunction and the perturbing
potential energy barrier.

The transition from bulk to interfacial Landau levels occurs,
1

for the nth level, when ky ..-(2(n+~)Be/1'l)2. For this value of ky,
EMAG(O+) equals the nth bulk Landau level so that the LH turning

point changes from soft to hard. Further increasing ky moves the
orbit centre still closer to the RH barrier interface. This
increases the confinement of the nth bound state wavefunction,

thereby raising the interfacial Landau level En(ky).

4.3.3 Calculation of the Interfacial Landau Levels

Vigneron and Ausloos (1978) considered the effect of a
transverse magnetic field on the eigenstates of a heterojunction.
The x-dependent eigenfunctions of this system satisfy a 1D
Schrodinger equation in which the MPE and the stepped conduction band
edge form a so-called bound oscillator potential. Piecewise solutions
of this equation, on each side of the potential energy step, are the
parabolic cylinder functions (Miller, 1965). In principle, exact
eigenvalues of the system can be calculated from the requirement that
the parabolic cylinder functions vanish as x + ±ao, and by imposing
the matching conditions (1.39) and (1.40) at the interface. However,

analytical expressions for these eigenvalues can only be obtained for
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certain conduction band offsets and SHO orbit centre positions.

Johnson et a1. (1987) calculated the energy levels of this bound

oscillator system, as a function of orbit centre position, by solving

the matching equations numerically.

From equations (2.21) and (4.21), the effective 1D potential

energy of the RH subsystem of the single-barrier structures only

contains terms linear or quadratic in x. Consequently, the parabolic

cylinder functions are also piecewise solutions of equation (4.22).

By numerically solving the matching equations for these solutions at

each barrier interface, exact RH eigenvalues can, in principle, be

obtained as a function of Xk • However, approximate analytical
y

solutions of equation (4.22) , calculated within the WKB

approximation, lead to a more physical interpretation of the
oscillatory structure observed in the forward-bias 1(8)

characteristics (see Chapter 5). Vawter (1968) found that WKB eigen-

values of the bound oscillator system never differ from the exact

values by more than 10% and are generally accurate to within 1%. When

uncertainties in the device parameters are considered, nominally

exact numerical solutions of equation (4.22) are therefore likely to

be no more physically realistic than the WKB solutions.

The turning points of the nth interfacial Landau states occur

at x ; 0 and x = wn. Consequently, piecewise solutions of equation

(4.22) corresponding to these states are, to first order of the WKB

approximation
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Iii (X) :::
n

_1D CL 2n n () iT(x)x e +

G -~ (X) e-Z(x)
n ~n3

_1F CL 2
n n

1

[2mB*(EEFF(X) - En)]2 I~

where ~n1(x)

1

CLn(X):::[2m*L (En - EEFF(X))]2 I~ ,

1

~n3(x) :::[2m*L (EEFF(x) - En)]2 In ,

and the integral functions

Q(x) ~n1(X) ex

X $ 0

(X) -iT(x)e

( a)

; 0 ( x ~ wn (b)

-b ( X $ 0

X $ -b

(c)

(4.26)
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all increase with distance from the turning points. These first-

order solutions are locally valid provided either

(4.27)

or «la(x)12
n (4.28)

depending on the x-coordinate.

These requirements are satisfied if only a small fractional change in

~ni(x) or an(x) occurs over a distance 21T/\.lni(x)or 21T/cxn(X). Both

inequali ties are clearly violated at the RH turning point where

CXn(Wn) = ~n3(wn) = 0, and the WKB wavefunction diverges. In order to

calculate the interfacial Landau levels, more accurate solutions of

equation (4.22) are required which can be matched at x = wn•

If the potential energy varies almost linearly close to wn'

approximate solutions of equation (4.22) in this region are (see, for

example, Capri, 1985)
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+ 1A (l2 (x) Jl (T(x» + An n, n
1

(l2 (X) J 1 (T(x»
n -,

(4.29a)

I/J(x ) =
n

(4.29b)

where J + l(X) are Bessel functions of the first kind and 1+ 1(z) are- , - ,
the modified Bessel functions (Olver, 1965). Provided that the

region of linear potential energy variation extends sufficiently far
to the right of the turning point for the asymptotic forms of I+l(z)-,
to be valid, then, for large x,

_ i5n
6 - Gn

(4.30)

which for x ~ wn has the same form as the WKB solution (4.26c). Since
Z(x) increases with x, Gn+ must equal -Gn- in order that I/Jn(x)
vanishes as x ~ ~ The Bessel function coefficients An+ and An- can

then be related to Gn- by imposing the matching conditions (1.39) and

(1.40) on the small argument forms of equation (4.29) at x = wn•
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The required coefficients are

+A ;: A
n n

Gn
(4.31)

Provided the region of linear potential energy variation

extends sufficiently far left of the turning point that the

asymptotic forms of J+l (T(x)) may be used in equation (4.29a),
-3

IjJn(x)becomes

IjJ(x)
n

_1
ex 2
n (x) COS[T(X) - ~1 x « wn (4.32)

This expression takes the same form as the WKB solution (4.26b) and

relates the expansion coefficients Dn and Fn. Provided the validity

requirement (4.28) is satisfied, equation (4.32) is accurate

throughout the classically allowed region.

Using Bessel functions to match WKB solutions across a soft

turning point leads to the so-called connection formulae (see, for

example, Merzbacher, 1970), of which the relation between equation

(4.26c) and equation (4.32) is one example.

The quantisation condition for the interfacial Landau levels

is obtained by imposing the matching conditions (1.39) and (1.40) on

equations (4.26a) and (4.32) at x = O. These conditions give

_1
ex 2
n (4.33)
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and

C 1n 2
mB* \.In'

d\.l ,(0 )
(0 ) [, __ ~, __ n -)

(2\.l~1 (0_» dx

(4.34)

Eliminating Gn- from equations (4.33) and (4.34) gives, after some

algebra

(4.35 )

The derivation of this equation assumes that the WKB validity

requirements (4.27) and (4.28) are both satisfied at x - 0. Using

these conditions to simplify equation (4.35) gives, to good

approximation

(4 .36 )
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It is easily verified by direct sUbstitution that the nth solution of

this equation is

(4.37)

wher e n = 0, 1, 2 •••

and the inverse tangent lies in the range 0 to n/2 inclusive.

The integral on the LHS of equation (4.37) gives the phase

change of the WKB wavefunction over the classically allowed region.

In the limit of an impenetrable barrier at x = 0, ~n1(0-) ~ 00 so that

the energy quantisation condition (4.37) becomes

JWn 0 (X) dx = (n + ~4) no n (4.38)

Substituting the local semiclassical x-component of momentum

Pn(x) = ~on(x) into this equation gives

( 4 .39 )

which, apart from the phase factor, is simply the Bohr-Sommerfeld

canonical momentum quantisation condi tion (see, for example,

Merzbacher, 1970).
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If the impenetrable barrier is relaxed, the inverse tangent

term in equation (4.37) decreases, thereby reducing the phase shift

across the classically allowed region. Physically this arises from

the penetration of the electron wavefunction into the barrier region.

To obtain an implicit expression for the energy levels EnCky)

from equation (4.37), it is necessary to evaluate the phase change

integral which, using the expression for o'n(x) given in equation

(4.26), may be written

2mL* En
Ben (4.40a)

where ( flky) ~u(x) = Be x + 1 (2mL* E )
Be n (4.40b)

and (4.40c)

For interfacial Landau states, EnCky) ~ EMAG(O+) = ~2ky2/2m*L so that
1

u , lies in the range -1 ~ Uo ~ 1. When Uo = -1, ky = -(2m.LEn) 2/1'\,

which corresponds to the transition from interfacial to bulk Landau

states.

The integral in equation (4.40) 1s easily evaluated giving,

(4.41)
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where

1

f(uo) = sin-1 u , + uo(1 - uo2)2 (4.42)

Combining equations (4.37) and (4.41), the interfacial Landau level

quantisation condition becomes

n::: 0,1, ..

This implicit equation for En(ky) must in general be solved

numerically. However, it is worthwhile considering the case of an

infinite potential barrier, and ky = 0 so that the orbit centre Xk =
Y

-~ky/Be lies at the RH barrier interface. For this value of ky, Uo =

o and equation (4.43) becomes

En(O) = 2(n + ~) ~Be/mL* ,n = 0, 1, 2 ... (4.44)

These are the odd-integer Landau levels corresponding to

odd-parity SHO eigenfunctions which vanish at the RH barrier

interface (x = 0).
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Figure 4.3 shows interfacial and bulk Landau state dispersion

curves En(ky} calculated numerically from equation (4.43), for the

(InGa) As/! nP structures descri bed in Chapter 5. The dashed curve

shows the MPE EMAG(O+)= "fl2ky2/2ffii::, as a function of ky < 0, and

marks the transition between bulk and interfacial Landau states.

For gi ven ky < 0, any energy level lying below this curve

corresponds to a bulk Landau state. Similarly, eigenvalues which

exceed the MPEat x = 0 correspond to interfacial Landau states. The

corresponding classical skipping trajectories are shown inset in

Figure 4.3. The transition from interfacial to bulk Landau levels is

di scont inuous because the WKB phase change given by the RHS of

equation (4.43) changes abruptly to (n + ~)n as the LH turning point

'softens'. Interfacial Landau levels near this transition region are

likely to be inaccurate since the WKBvalidity requirement (4.28) is

violated close to x = o.

From equation (1.26), the gradient dEn(ky)/dky of the

dispersion curves is proportional to the expectation value of the

y-component of veloci ty. As expected, thi s mean veloc i ty vani shes

for the bulk Landau states, which correspond to closed circular

cyclotron orbi ts , and is post ti ve for interfacial Landau states I

which correspond to skipping trajectories in which there is nett

translational motion along the barrier interface.

Conduction band nonparabolicity in the n+ collector leads to

reduced separation of the higher-lying energy levels. This effect is



En(ky} [meV]

y

x

EMAG (0+ ,ky)
~

7---
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Figure 4.3 Bulk and interfacial Landau level dispersion curves
En(ky), n ..0, 1, ••• 7, calculated for the (InGa)As/lnP
single-barrier structures when B - 5 T and V - 100 mV.
The nonparabolicity factor of the n+ contact is taken to
be a ..1.3 eV-1

, and the conduction band offset either
230 meV (solid curves) or infinite (broken curves). The
magnetic potential energy EMAG (0+, ky) at the RH barrier
interface is shown for ky < 0 and marks the transition
from bulk to interfacial Landau states. Inset are the
classical skipping trajectories corresponding to
interfacial states with ky < 0 and ky > O.
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most easily seen in the bulk Landau levels and also in the odd-

integer Landau levels, which are the eigenvalues of the RH subsystem

when ky = O.

The series of dotted curves show the interfacial Landau

levels in the limit of an impenetrable potential barrier. The energy

levels are raised owing to increased confinement of the electron

wavefunctions. The percentage difference between interfacial levels

calculated for finite and infinite potential energy barriers is

smaller for higher-ly ing levels. This is because for high quantum

numbers, the phase change in the energy quantisation condition (4.43)

is dominated by the (n + 1/4)n term. The inverse tangent term, which

contains information about the barrier height, makes a comparatively

small contribution (~ n/2).

As shown in Figure 4.4, the function f(uo) defined in

equation (4.42) is almost linear for -1 ~ u , ~

approximated by
and may be

(4 .45 )

Combined with the infinite-barrier approximation, this simplification

of f(uo) enables approximate analytical expressions for the energy

levels En(ky) to be found, which are within 10% of the exact

numerical values. This approximation is widely used in the
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analytical treatment of magnetotunnelling given in Chapters 5 and 6
of this thesis.

4.4 Classical Trajectories of the Bulk and Interfacial

Landau States

By analogy wi th equation <3.2), the classical Hamiltonian

describing motion in the x-y plane corresponding to the Landau state

'¥ isn,ky

H =
p~

2mL*
•
(Py + eBx)2
...........---- + E (x)

2mL* c
(4.46)

where Px and Py :I ~ky are the canonical momentum components.

The classical trajectory is obtained from solution of

Hamiltons equations

( a) • dH
Y :I apy (b)

(4.47)

•
Px :I - axdH (c) ,

• aH
Py :I - ay (d)
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For x > 0, EC(x) - 0 and the electron moves under the influence of
the Lorentz force alone. The solutions of equation (4.47) are well
known for this case. When looking anti-parallel to the magnetic
field, the electron moves anti-clockwise around a circle of radius Rn

1 1

.. (2mL*En)2/Be with constant orbital speed vn - (2En/mL*) 2 as shown
in Figure 4.5. The x-coordinate of the centre of this circle is Xk y

= -Tlky/Be. By defini t ion , the energies and transverse wave vector
1

components of bulk Landau states satisfy ky ~ -(2mL*En)2/~ so that

__ 1

(2mL* En)2
~ • RnBe (4.48)

and the electron completes closed, circular cyclotron orbits.

__ 1

For interfacial Landau states ky > - (2mL*En)2/~ 50 that

Be ~ R
n

(4.49)

and the classical trajectory intersects with the RH barrier

interface. Since the barrier is a classically forbidden region,
which exerts no in-plane component of force, the electron is
specularly reflected from the interface. As shown in Figure 4.5, the
electron 'skips' along the barrier in a series of arcs of radius Rn.

With each successive skip, the orbit centre moves discretely along
the line x • Xk ' 50 that the electron has a nett drift velocity in

y



y
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/
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Figure 4.5 Projection in the x-y plane of (a) the classical
cyclotron orbits corresponding to bulk Landau states and
(b) the classical skipping orbits corresponding to
interfacial Landau states. The WKB interfacial Landau
level quantisation condition (4.43) leads to
quantisation of the shaded area An, bounded by the
electron path and the RH barrier interface.
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the y-direction. This agrees with the quantum mechanical expectation

value (1.26) which is proportional to the positive gradient of the

interfacial Landau state dispersion curve. From equation (4.47b). the

local y-component of velocity is

vy(X)
(Py + eBx) =~ky + eBx

mL* mL*
(4.50)

so that at the RH barrier interface.

(4.51)

The skipping electron moves with constant orbital speed vn ;
1

(2En/mL*) 2and is therefore incident on the barrier at an angle e.
given by

e cos-1 ( ~_k~y )
1

(2mL* En)2

(4.52)

which gives a physical interpretation of the variable Uo defined in

equation (4.40).
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The arclength Sn of the skipping orbit shown in Figure 4.5 is

S

1
-- 22(2mL* En) cos-1 uc- 2R e • ---=~_..:.,:----~

n n Be
(4.53)

so that the time-of-flight between successive skips is

Sn 2mL*
- -- - ---- cos-1 ucvn Be

(4.54 )

The frequency of classical collisions between the skipping electron

and the RH barrier interface is therefore

(4 .55)

From equation (4.40c), cos-1 uc • n for bulk orbits so that

Fn simply equals the bulk cyclotron frequency wc/2n•

When ky - 0, the magnetic potential energy is centred at the

RH barrier interface (\ - 0), and the electron trajectory consists
y

of a series of semicircles. From equation (4.40c), cos"! u , • 11/2

when ky - 0 so that Fn - wc/no As expected this is twice the bulk

cyclotron frequency.
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As ky is increased from zero, the orbit centre Xky - ~ky/Be
moves further left of the RH barrier interface. In addition,

equation (4.52) predicts that for given En, u , increases towards
unity so that the angle of incidence e • cos-1 u, falls and the
skipping frequency (4.55) rises.

This increased skipping frequency is central to the physical
interpretation of the amplitudes of oscillatory structure observed
under forward bias in the magneto-current and derivatives of the
single-barrier structures (see Chapters 5 and 6).

It is clear from Figure 4.5 that the area An' enclosed by the
RH barrier interface and the projection of the skipping orbit on the
x-y plane is

(4.56)

where f(uo) is defined in equation (4.42).

Comparing equation (4.56) with the quantisation condition
(4.43) gives, in the limit of an impenetrable barrier

(4.57)
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so that the area of the skipping orbit is quantised in units of hlBe,

which is twice the area of n = 0 bulk cyclotron orbits. It follows

that the magnetic flux ¢n = BAn passing through this orbit is

quantised in units of hie.

4.5 Summary

In this chapter, the effect of a transverse magnetic field on

occupied 2DEG states has been described using nondegenerate

perturbation theory. The field causes a diamagnetic shift t.Ebo of

the bound state energy and, in ~-space, the centre of the Fermi

circle undergoes translation from (ky, kz) = (0, 0) to (Be(b +

3ao)/fl, 0). However, provided t.Ebo « EFL so that the use of non-

degenerate perturbation theory is valid, the change in magnitude of

the Fermi wavevector is negligible.

Electronic motion in the n+ layer is constrained in the

x-direction by the magnetic field and the potential energy barrier.

This confinement quantises the energy associated with motion

perpendicular to the magnetic field into bulk or interfacial Landau

levels. Interfacial Landau states correspond to classical skipping

trajectories which intersect with the barrier interface. The

associated energy levels can be calculated wi thin the WKB

approximation and depend on the transverse wavevector component ky,

which determines the orbit centre position and consequent degree of

magnetic confinement. The WKB energy quantisation condition leads to

areal quantisation of the skipping orbit projection on the x-y plane.
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CHAPTER FIVE

TRANSVERSE MAGNETOTUNNELLING IN ASYMMETRICALLY-
DOPED (InGa)As/InP SINGLE-BARRIER HETEROSTRUCTURES

5.1 Introduction

In the previous chapter, the LH and RH eigenstates of an

asymmetrically-doped single-barrier structure were calculated under

forward-bias conditions, and in the presence of a transverse magnetic

field ~ II !. In this chapter, these results are used within a

transfer-Hamiltonian formalism, to calculate the tunnel current due

to electronic transitions from the 2DEG into interfacial Landau

states in the n+ collector contact. The predicted field-dependences

of the tunnel current and derivatives are compared with measurements

reported by Snell (1987a) and Snell et al. (1987).

5.2 Device Specifications

The heterostructures used in the experiments of Snell et al.

were grown by metalorganic chernical-vapour deposl t ion and cons isted

of the following layers, illustrated in Figure 2.1: (1) 8000 ~ of

(InGa)As, doped at ND .. 1023 m-3; (2) 8000 ~ of (InGa)As, NO • 5 x

10 2 1 m- 3 ;
o 0

168 A of InP, NO - 6 X 1021 m-'; (4) 3600 A of
o

(InGa)As, NO ,. 1023 m-'j (5) 2000 A of InP, NO • 5 X 102' m-'.
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Using a nonparabolici ty factor a = 5 eV-1 (Sarkar et al.,

1985) and taking the conduction band-edge mass of (InGa)As to be

0.0~1 mo, the Fermi energy (2.1) in the n+ contact is EFR = 16 meV.

A conduction band offset flEc = 230 meV is assumed and the

conduction band-edge mass of InP is taken to be mB* = 0.077 mo'

5.3 Experimental Magnetotunnelling Data

Figures 5.1 and 5.2 show the field-dependence of the tunnel

current I(B) measured for a range of forward-bias voltages. The

experimental techniques used to obtain these curves have been

described in detail by Snell (1987a).

For all voltages, the tunnel current falls rapidly with

increasing field, and for V = 100 mV, is almost quenched for B ~ 15

T. Weak oscillatory structure superimposed on this falloff is

clearly revealed in the second derivative curves d2I/dB2, shown in

Figures 5.1 and 5.3. For each bias voltage, two distinct series of

oscillations are observed over clearly separated ranges of magnetic

field. Those oscillations visible at low fields are collectively

referred to as the +PF seri es, and those at hi gher fields the -PF

series. With the exception of the last (highest-field) -PF

oscillation observed for V = 100 mV, the oscillatory ampl1 tudes of

both series increase with field. In addition, with increasing

voltage, the +PF asci llatory ampl1 tudes weaken relat i ve to those of

the -PF series.
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Figure 5.2 Normalised I(B) characteristics of the (1nGa)As/1nP
samples measured at T - 4.2 K for a variety of
forward-bias voltages. The y-axis intervals correspond
to a change of 10% in I(B)/1(O). (After Snell, 1981a).
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Figure 5.3 d2I/d82 characteristics of the (InGa)As/lnP samples
measured at T - 4.2 K for a variety of forward-bias
voltages. The +PF (-PF) series of oscillations revealed
at low (high) fields are distinguished by horizontal
brackets. (After Snell, 1987a).

o
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Both series of oscillations are periodic in 1/B (Snell,

1987a) with maxima occurring at the resonant field values Bn± given

by

n-O,1, •• (5.1)

where ~ is a field-independent phase factor and BF±(V) are voltage-
dependent 'fundamental' fields which equal the reciprocal of the
periodici ties in 1/B of the ±PF series. Figure 5.4 shows that both
fundamental fields increase almost linearly with voltage. Since the
oscillatory structure is evidently voltage-dependent, it cannot
originate from the standard Shubnikov-de Haas effect in the n+ layer
(see, for example, Ridley, 1988), and is more likely to be associated
with the strongly voltage-dependent tunnelling process.

A successful theory of magnetotunnelling in these single-
barrier structures should explain the physical origin of the two
series of oscillatory structure, give reasonable quantitative
predictions for the voltage-dependence of the fundamental fields and,
in addition, account for qualitative features such as the clear
separation of the ±PF series and the increase in oscillatory
amplitudes generally observed with increasing magnetic field.
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5.4 A Transfer-Hamiltonian Model for the Tunnel Current

Under foward-bias conditions and in a transverse magnetic
field, current flow through the device can be described within the
transfer-Hamiltonian formalism in terms of transitions from the
perturbed 2DEG states in the n" emitter, into bulk or interfacial
Landau states in the n" collector (see Chapter 4). These Landau
states are magnetically conf ined perpendicular to the barrier
interface and therefore carry no nett current in this direction.
Current continuity is maintained in the n" contact by scattering
processes which enable electrons to diffuse between localised Landau
states with different orbit centre positions. At liquid helium

temperatures, the dominant scattering mechanism of hot electrons in
bulk n+ (InGa)As is LO polar phonon emission(see, for example, Ridley
1988) which occurs at a rate of approximately 1013 S-l

(Lobentanzer et al., 1987). This scattering rate is much faster
than the tunnelling transition rate-l07 S-l over the entire range of
voltages studied (25 - 125 mV). Consequently, electrons injected
into the n+ collector cool rapidly to the bulk Fermi level EFR, which
is only weakly field-dependent (Brey et al., 1988).

For bias voltages V > 10 mV, Ebo > EFR so that. as can be
seen from Figure 2.1, the occupancies of states in the 2DEG and n"

contact in the energy range Ebo ~ E ~ Ebo + EF can be taken as 1 and
o respectively at T ~ 4 K.

The current is limited primarily by the tunnelling transition



128

rate and is therefore insensitive to changes in the LO phonon
emission rate caused by the magnetic field. Consequently, transverse
Shubnikov-de Haas oscillations (see, for example, Ridley, 1988) are
unlikely to be seen, and the oscillatory structure observed in
d21/d82 almost certainly originates from the effect of the magnetic
field on the tunnelling process itself.

It was shown in Section 3.5 that tunnelling transitions in
the presence of a transverse magnetic field, must conserve both the
total energy and the transverse wave vector ~II. The current ~In (ky,
kz) due to wavevector-conserving transitions from the perturbed 2DEG
state with ~II ,. (ky. kz) into the nth interfacial or bulk Landau
state is

(5.2)

where Wn (ky, kz) is the transition rate (3.25) which depends only on
the x-dependent factors of the initial and final state wavefunctions.

Since these wavefunctions satisfy 1D Schrodinger equations of
the form (4.22) which are independent of kz, the transition matrix
element (3.37) is also independent of kz and is written Mn(ky).
Combining equations (3.25) and (5.2) gives

(5.3)
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where

is the difference between the LH (2DEG) and RH (interfacial Landau)

energy levels given by equations (4.14) and (4.22).

At fixed voltage and field, the current In(V, B) resulting

from all transitions into the nth Landau state is obtained by

integrating ~In(ky' kz) over the range of occupied 2DEGstates shown

in Figure 4.1, using the periodic boundary conditions (1.11) to

determine the density of states in ~-space. Prov ided the bias

voltage is sufficiently large that the electrons tunnel into empty

states in the n+ layer (V ~ 10 rnV), this current is

(5.4)

where ky' - ky - ko,

and LyLz is the cross-sectional area of the sample.
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The expression for 6En given in equation (5.3) is independent

of kz, so that the integral over kz in equation (5.4) is easily
evaluated giving

(5.5)

which, changing the variable of integration from ky' to ~En becomes

1 2
J_(_kF~__2-__k~y_'_2)_2_I_M~n_(k_y~)_1__6_(~_E_n_)__d_~E__n

t2ky' dEnCky) )
m*L dky

(5.6 )

The integral in equation (5.6) is evaluated over the range of 6En
corresponding to Iky,1 ~ kF and gives

E
i

}
k '''k ·'(n)y Yl

(5.7)

where {kyi' (n) - kyi(n) - ko; i • 1, 2, ••• } are the solutions of the
energy conservation condition

(5.8)

within the range - kF ~ kyi' (n) ~ +kF •
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This condition can be interpreted graphically by looking for

intersections in the E - ky plane between the nth Landau state
dispersion curve and the parabola

E(k ) = ~2(k - k )2/2m*L + E'Y Y 0 bo (5.9)

which gives the energy, assocLa ted with mot ion perpendicular to the
magnetic field, of the occupied 2DEG states.

As shown in Figure 5.5, each Landau state dispersion curve
makes at most one intersection with the 2DEG parabola, so that the
energy conservation equation (5.8) has a unique solution, ky'(n), in
the specified range.

Thus, the series expansion (5.7) contains only one term and
may be written

In(V,B) • }
k • -k • (n )y y

(5.10)

Each intercept in Figure 5.5 corresponds to a conduction
channel, comprising a set of 2DEG electrons with Ikzl ~(kF2

1

-ky•2(n»)2, which contributes to the tunnel current.
current flowing into all RH Landau states is

The total



Figure 5.5

En{ky} [meV]

12___1\J
11-'

\
\

10--\
\

9---

8---

I
I
I
I
I
I
I
I

---.JkF
7---

6----

5----

4-----

3----- ko = 8e(b + 3aO}/11

2------

1-------

-4

\
\,

"-

-2 0 2 4

ky [108 m-1]

0---------

Bulk and interfacial Landau state dispersion curves
En(ky) n ..0, 1, ••• 12 of the (InGa)As/InP
single-barrier structures calculated for V - 100 mV and
B • 5 T, taking the nonparabolicity factor of (InGa)As
to be a - 1.3 eV-l, and assuming a finite conduction
band offset ~Ec - 230 meV. The broken curve shows the
magnetic potential energy at the RH barrier interface as
a function of ky and marks the transition from bulk to
interfacial Landau states. The parabola centred at ko
shows the range of occupied 2DEG states calculated for
the same voltage and field. Intercepts between the 2DEG
and interfacial Landau state dispersion curves are
marked by open circles and correspond to groups of 2DEG
electrons which contribute to the tunnel current.
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I(V,B) = E In(V,B)
n:Iky'(n) s kFI

(5.11)

where the summation is over all open conduction channels. D'yakonov
and Raikh (1985) derived a similar expression for the transverse
magneto-current flowing through a single-barrier structure with
heavily n-doped emitter and collector contacts.

It should be noted that all intersection points shown in
Figure 5.5 correspond to interfacial Landau states. In fact,
tunnelling into bulk Landau levels cannot occur in the (InGa)As/lnP

structures, owing to the low Fermi momentum PF - ~kF of the 2DEG (see
Section 5.7).

5.5 The Origin or the ±PF Series or Oscillatory Structure
Observed in d2I/d~2

Figure 5.5 shows the intersection pOints {ky(n)} for V-lOO
mV and B - 5 T. Changing the magnetic field at constant bias alters
both the 2DEG and Landau state dispersion curves, thereby shifting
the intersection points. In this section, the ±PF series of
oscillatory structure observed in d2I/dB2 are shown to originate from
the gain or loss of intercepts from the extremities of the 2DEG
parabola.
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The origin k , .. Be (b + 3ao)11l of the parabolic 2DEG

dispersion relation (5.9) increases with field so that, as can be
seen from Figure 5.5, the range of occupied ~-states shifts to higher
ky values. Neglecting the small diamagnetic shift (4.20) in the
bound state energy Ebo, the range of occupied 2DEG energy levels EbO
~ E ~ EbO + EF shown in Figure 2.1 is, however, unchanged by the
magnetic field.

Increasing the magnetic field also reduces the distance
between the classical turning pOints of each interfacial Landau

state. This increases the confinement of the associated wave-
functions, thereby raising the energy levels En(ky). It can be seen
from Figure 5.5 that the combined effect of changing the 2DEG and
Landau state dispersion curves causes the +kF extremity of the 2DEG
parabola to make successive intersections with lower-index dispersion
curves, as the magnetic field increases, so that new conduction

channels are opened whenever ky' (n) • +kF' When this resonance
condition is satisfied, 2DEG electrons with transverse momentum Py' -
mL*<vy> - +PF - +~kF tunnel into the nth interfacial Landau state.
As the field is further increased, the intercept moves away from the

+kF extremity of the 2DEG parabola (ky'(n) decreases) and is
eventually lost from the -kF extremity, resulting in the closure of
the nth conduction channel when ky'(n) - -kF' Thus, tunnelling into
each interfacial Landau state only occurs over the field range Bn+ ~

8 ~ 8n-, Where Bn± are the resonant fields for which ky'(n) - ± kF.
For field values outside this range, the requirements of energy and

transverse wavevector conservation cannot be satisfied for any

transitions from the 2DEG into the nth interfacial Landau state.
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This successive opening and closure of tunnelling channels is
intuitively expected to give rise to oscillatory structure in the
magneto-current and derivatives, whenever intercepts are gained or
lost from the extremities of the 2DEG parabola. The expression (A.2)
for dl/dB given in Appendix 1, actually predicts over-dramatic
oscillations since dl/dB -+ ±'" as ky' (n) -+ ± kF. SuCh divergent
oscillations are not, of course, observed and arise from the neglect
of energy level broadening in the transfer-Hamiltonian formalism.
Nevertheless, the model clearly predicts two distinct series of
oscillations in dl/dB; maxima associated with 2DEG electrons with

transverse momentum Py' • +PF tunnelling into interfacial Landau
states; and minima associated with transitions made by 2DEG electrons
with equal and oPPosite momentum Py' • - PF'

5.6 Calculation of the Periodicities of the ±PF Series

Equation (A.2) of Appendix 1 predicts that extrema in dl/dB

will be observed at the resonant field values Bn± for which the nth
interfacial Landau state dispers ion curve passes through either
extremity of the 2DEG parabola, that is

(5.12)

and

(5.13)
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Snell et al. (1987) and Chan et ale (1988) derived approximate

analytical expressions for Bn± by substituting equations (5.12) and
(5.13) together with the linear approximation (4.42) for f(uo), in
equation (4.43). In the limit of an infinite potential barrier at x •
0, this gives,

1

e1"1 (b + 3ao)(~m*L(eV + EFR»2
- .. ---------- (2( n + !) + ---~--;;-=------=.~-

± m*L (eV + EFR)(1 + uF) ~
Bn

) ,

(5.14)

where "fIkFuF - -----~----
1

[2m*L(eV + EFR)]2

is the electronic effective mass 1n the n+ collector appropriate to
the injection energy eV + EFR.

Using the constant capacitance approximation (2.28), uF may
be written

(5.15)
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and, apart from the weak voltage-dependence of the effective mass,
depends only on the sample geometry and material parameters.
Consequently. the RHS of equation (5.14) is independent of nagnetic
field so that the extrema in dI/dB are predicted to occur
periodically in 1/B with the distinct periodicities

(5.16)

Since uF and m*L are only weakly voltage-dependent. the corresponding
fundamental fields

(5.17)

defined in equation (5.1) are expected to increase almost linearly

with voltage. at distinct rates which depend only on fundamental
constants and on the device geometry and material parameters.

Theoretical values of BF±(V) calculated from equation (5.17)
are shown in Figure 5.4. The best fit to the data is obtained using
Q = 1.3 eV-1, which is lower than the value 5 eV-1 measured optically
by Sarkar et ale (1985), but is reasonable considering the large
range of injection energies (40 - 220 meV) investigated (Heiblum et

al., 1987).
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The theoretical fit to the data is remarkably good

considering some of the approximations made in the model. The
linearisation (4.45) of f(uo) made by Chan et al. (1988) is probably
one of the most important approximations.

5.7 Tunnelling into Bulk Landau Levels Does Not Occur

The resonance conditions (5.12) and (5.13) can, in principle,
also be satisfied whenever 2DEG electrons with transverse momentum

Py' - ± PF tunnel into bulk Landau states, thereby giving rise to a
third series of oscillations in dI/dB at the resonant field values Bn
given by

(n + ~)'fle n-0,1,2 ••• (5.18)

The voltage-dependence of the associated fundamental field

(5.19)

is shown by the broken curve in Figure 5.4 for Cl • 1.3 eV-1• The

theoretical values of BF(V) cannot be reconc iled with the data for
any reasonable choice of Cl (Snell et al., 1987).



138

To further support the model of tunnelling into interfacial
Landau levels, Sheard et al. (1988) used the following argument to

prove that 2DEG electrons wi th Py' .. ± PF (kyI • ±kF) cannot make
transitions into bulk Landau levels, and therefore do not give rise
to oscillatory structure.

From Figure 4.5, 2DEG electrons with the transverse wave-
vector component ky only tunnel into bulk Landau states in the n"

collector, if the classical orbit centre position exceeds the orbital
radius, that is

X
ky (5.20 )

For electrons with ky (k , + kF) inequality (5.20) is never
satisfied, since the corresponding orbit centre Xk < o.

y

For electrons at the Fermi energy of the 2DEG with ky - (ko -

kF) and En(ky) - eV + EFR, inequality (5.20) becomes

1

-fl (Bne (2m*L (eV + EFR))2
.. - - (b + 3ao) - kF) i:: --------

Bne ~ Bne
(5.21)

which may be written

uF i:: u 1 + 1 (5.22)
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where

1

U1 = Bne(b + 3ao)/(2m*L(eV + EFR»2

and uF is gi ven within the constant capaci tance approximation by

equation (5.15). For the (InGa)As samples, C '!!o 4250 ~F m-2 (Snell

et al., 1987), so that the highest possible value of uF,

corresponding to miL = m*L' is approximately 0.37. Since u , is

always positive, inequality (5.22) cannot be satisfied and tunnelling

into bulk Landau states does not occur. By contrast, in a metal-

oxide semiconductor structure, the large and voltage-independent

Fermi momentum in the metal allows the observation of tunnelling into

bulk Landau levels in the semiconductor (Tsui, 1975).

5.8 Calculation and Interpretation of the 2DEGto Interfacial

Landau State Transition Matrix Element

In order to evaluate the tunnel current (5.11) and, in

parti cular, to gi ve a physi cal explanation for the field-dependence

of the oscillatory amplitudes observed in d2I/d82, the squared

transition matrix elements IMn(ky) 12 must first be determined. In

this section, an expression for IMn(ky) 12 is derived from equation

<3.37) using the x-dependent factors of the 2DEG and interfacial

Landau state wavefunctions.
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To obtain non-vanishing matrix elements, the 2DEG states are
represented by a modified Fang-Howard wavefunction

(x+b-o)
x :;; -b

(5.23)

6 x
-1 ~n1 (x) dx-b(~nl(-b+) )~ 0 e 2ao

2ao'~nl(X) e

x ~ -b

where the penetration parameter

6 • (~+ m*L ~n~(-b+»)-1
2ao m*s

and ~n1(x) is the barrier decay function defined in equation (4.26).

This wavefunct ion has a finite ampl itude throughout the
barrier region and is similar to that of Bastard (1983), except that
for x ~ -b, the uniformly decaying exponential function is replaced
by a WKS solution which takes into account the electrostatic
potential variations in the barrier region. The modified wave-
function (5.23) is normalised by neglecting the small fraction which
penetrates into the barrier region. Over the ranges of bias and
field studied, the penetration length ~nl-1(-b+) over which the



1~ 1

amplitude of ~'FH(x) in the barrier falls by a factor of
approximately e-1 is much less than 2ao• Consequently, the decay

parameter 0 ; mS*/(mL*~nl(-b+». Within this approximation, and using
the WKS validity condition (~.27) to justify the neglect of terms

involving d~nl(x)/dx, the derivative of ~FH(x) is

x ~ -b

d~' FH(x) _ \
dx

(5.24)

_ m*S ( ~nl(x) )~
m*L 2ao3~nl(-b+) e

x ~ -b

where terms of order 02 and above are omitted.

To determine the transition matrix element (3.37), equations
(5.23) and (5.2~) are evaluated at the RH barrier interface giving

(5.25)

and,
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(5.26)

To obtain similar limiting expressions for the interfacial

state wavefunctions IjJn(x ) and deri vati ves, these wavefunct ions must

be normalised. Neglecting penetration into the classically forbidden

regions, normalisation of the WKB interfacial state wavefunctions

(4.32) requires

wn -1 IT
f Cl (X) oos" (T(x) - -) dx • 1
o n 4

(5.21)

where T(x) .. fWn ()x Cln x dx

Provided that the WKB validity condition (4.28) is satisfied, Cln(X)

varies slowly over the distance; IT/Cln(X) required for the phase of

the squared cosine term in equation (5.21) to change by IT. Over

this distance, the average value of the squared cosine term is

approximately 1/2 so that equation (5.21) becomes

3 fllG -12(_) n
IT m*L

wn dx
f - 1
o vn(x)

(5.28)

where vn(x) .. 1'iCln(x)/m*L is the semiclassical local x-component of

veloci ty.
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The integral in equation (5.28) gives the time taken for the
electron to move between the turning points of its classical skipping

trajectory, that is

(5.29 )

where Fn is the classical skipping frequency (4.55) of electrons along
the RH barrier interface. Combining equations (5.28) and (5.29), the
required normalisation coefficient is

(5.30)

For low-index interfacial Landau states, the assumption that
an(x) varies slowly over distances; n/an(x) is invalid so that both
the form (4.32) and the normalisation coefficient (5.30) of the
associated WKB wavefunctions are of limited accuracy. The WKB

approximation is thus not expected to give precise quantitative
information about these low-index states.

Neglecting terms involving dan(x)/dx, the derivative of ~n(x)
in the classically allowed region is

d IjIn ( x ) .. 2 (iiiiL Fn ) ~

dx 11
1 n

a2 (x ) sin (T(x) --)
n 4 (5.31)
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In the limit x ~ 0+, equations (4.32) and (5.31) become

(5.32)

and

dljin (0+) ...2 (IIiiL Fn)~
dx ~ sin wn 1T(I an(x) dx - -) (5.33)o 4

If follows from the energy quantisation condition (4.36) that

cos

(5.34)

and

(5.35 )

Using these expressions 1n equations (5.32) and (5.33), and imposing
the matching conditions (1.39) and (1.40) at the RH barrier

interface, gives

1

(-1)n a~ (0+) m*B

1 '
- 2(an2(0+) m*B2 + ~n12(O-) m*L2)

(5.36)
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and

(5.37 )

Substituting equations (5.25), (5.26), (5.36) and (5.37) into

equation (3.37) it follows that

.. 112

(5.38 )

where, from equation (2.18),

is the semiclassical long i tudinal q ~) velocity component of the

2DEGelectrons at the LH barrier interface, in zero magnetic field.
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Since the motion of 2DEG electrons normal to the barrier interface is
only slightly perturbed by the transverse magnetic field (see Section
4.2.2), this incident velocity is approximately equal to ~k(-b_)/m*L

for all fields.

Each term in equation (5.38) can be interpreted semi-
classically. The first bracketed term on the RHS is the frequency of
the collisions which an electron moving with constant longitudinal

kinetic energy Ebo, makes classically with each wall of a rectangular
confining potential well of width 5ao' which is almost twice the
mean 2DEG stand-off distance 3ao' Consequently, this term is
approximately equal to the classical coll ision frequency between a

2DEG electron and the LH barrier interface.

Similarly, the second bracketed term in equat ion (5.38) is
the classical skipping frequency (4.55) of an electron with
transverse wave vector component ky, which occupies the nth
interfacial Landau state.

Suppose that the effective potential energy barrier
(including the magnetic term) is part of a system containing an n"
emitter contact in which electrons with incident kinetic energy Ebo •
1'i2k2(-b_)/2m*Loccupy travelling wave states. Then, the third term
on the RHS of equation (5.38) is the WKB barrier transmission

coefficient (1.53) when free electrons incident from the left with

kinetic energy fl2k2(-b_)/2rn*L « 1'I2~2n1(-b+)/2m*B,are partially

transmitted into travelling wave states in the n" collector with

emergent longitudinal kinetic energy 1'I2an2(O+)/2m*L.
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The squared matrix element IMn(ky)12 is thus formally

identical to that derived in Section 3.7 for transitions between two

weakly-coupled rectangular potential wells. In contrast to this

earlier example however, the collision frequency terms in equation

(5.38) contain no end corrections because the 2DEG and interfacial

Landau state wavefunctions (5.23) and (4.32) are normalised by

neglecting penetration into the classically forbidden regions.

In Section 5.12, this semiclassical interpretation of

IMn(ky)12 1s used to explain the field-dependence of the oscillatory

amplitudes observed in d2I/d82
, by considering the effect of the

field on both the barrier transmission coefficient and on the

classical skipping frequencies of the interfacial electrons. The

first (bracketed) term on the RHS of equation (5.38), identified as

the classical collision frequency of the 2DEG electrons, is field-

independent and thus has no effect on the envelope of the oscillatory

ampli tudes.

5.9 Simulation of the Tunnel Current I(B)

The first step in evaluating the tunnel current (5.1') for

given voltage and field is to calculate the set of wavevector

components {ky'(n): Iky'(n)1 ~ kF} (see Figure 5.5) which satisfy the

energy conservation requirement (5.8).
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These wavevector components are obtained by numerical
solution of equation (4.43) in which En(ky) • 1'l2(ky- ko)2/2m*L +

Eto, using the full expression (4.42) for f(uo). The effects of the
finite barrier height and of nonparabolicity (a - 1.3 eV-1

) in the n+

contact are also taken into account.

Once the allowed transverse wave vector components are known,
the corresponding squared matrix elements (5.38) are calculated. The

gradients dEn/dky of the interfacial Landau state dispersion curves,
are evaluated at each intersection point by numerical solution of the
implicit equation for dEn/dky obtained by differentiating equation
(4.43) with respect to kyo The current contribution In(V, B) arising
from tunnelling transitions into the nth interfacial Landau state is
then calculated by using these values in equation (5.10). The total
tunnel current is the sum of these contributions.

Normalised current curves I(B)/l(O) calculated for a range of
forward-bias voltages are shown in Figures 5.6, 5.7 and 5.8, together
with the current contributions In(B) n - 0,', ... 9. Higher-index
contributions are omitted for clarity.

The shapes of the calculated I(B) characteristics are in
reasonable agreement with the corresponding experimental curves shown
in Figures 5.1 and 5.2.

In particular, for V - 25 mV, the closure of the n - 4, 3, 2,

1 and 0 tunnelling channels imposes weak oscillatory 'shoulders' on
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Normalised 1(8) characteristics of the (1nGa)As/1nP
single-barrier structures calculated for V - 25 mV,
taking the nonparabolicity factor of (1nGa)As to be
a = 1.3 eV-1, and assuming a conduction band offset
~Ec - 230 meV. The individual current contributions
In(8) n ..0, 1, ••• 9 are also shown.

Figure 5.6
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Figure 5.7 Normalised 1(B) characteristics of the (InGa)As/lnP
single-barrier structures calculated for (a) 100 mV and
(b) 75 mV, taking ~ - 1.3 eV-1 and 6Ec - 230 meV. The
individual current contribution In(B) n - 0, 1, ••• 6
are also shown.
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Figure 5.8 Normalised I(B) characteristics of the (InGa)As/InP
structures calculated for V a 125 mV, taking a = 1.3
eV-1 and 6Ec m 230 meV. The individual current
contributions In(B) n - 0, 1, ••• 9 are also shown.
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the decreasing part (B ~ 1.5 T) of both the measured and simulated

curves.

In general however, the structure in the simulated curves is

unrealistically sharp and pronounced. This is to be expected since

the transfer-Hamiltonian formalism neglects energy level broadening

and only encompasses elastic tunnelling transitions which also

conserve the transverse wavevector. The measured current probably

contains additional contributions from inelastic phonon-assisted and

elastic impurity-assisted transitions (see, for example, Duke 1969),

which change the electron wavevector. It follows that the opening

and closure of elastic, wavevector-conserving conduction channels

produces greater fractional changes in the calculated current, which

contains no additional contributions.

For V :::25 mV and V = 100 mV, the calculated l(B) curves

shown in Figures 5.6 and 5.7 fall to zero at field values B~(V) which

are much lower than observed (Figures 5.1 and 5.2).

This discrepancy is due to inaccuracy of the WKB interfacial

Landau levels in the quantum limit n :::0, and also of the

perturbation calculation of the 2DEG energy levels at higher fields.

Uncertainties in the conduction band offset, the effective mass in

the barrier region and the nonparabolicity factor of (InGa)As also

affect the values of Bo-(V) through their influence on the n :::0

dispersion curve.
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For all voltages, the measured zero-field current density

Im(O) is several orders of magnitude higher than the calculated value

IC(O). For example, when V • 100 mV, Im(o) = 6.4 x 10~ A m-2 whereas

The magn i tude of the tunnel current depends

primarily on the decay function ~nl(x) which appears exponentially in

the transition rate (5.38). This decay function is calculated

assuming that the effective mass in the barrier region equals the

conduction band-edge mass of InP. However, Lassnig (1987) has shown

using ~.£ theory that the effective tunnelling mass in III-V hetero-

structures falls almost linearly with energy T{x ) • Ec(x) - En(Ky)

below the conduction band edge, that is

m*(T(x» - m*B(1 - ~T(x» (5.39)

where ~ ~ 1/Eg • 0.73 eV-1 for InP at 4.2 K.

When V • 100 mV, the 2DEG electrons tunnel approximately 160

meV below the top of the InP barrier, for which the effecti ve

tunnelling mass (5.39) is approximately 0.88 m*B. This small

reduct ion in mass increases the predicted zero-f ield tunnel current

by approximately 4 times to IC (0) ;; 290 A m-2, in sl ightly better

agreement with the measured value. Because the trans i t ion rate

(5.38) depends exponentially on the tunnelling mass, the calculated

current is extremely sens t ttve to the value of~. However, for V -

100 mV, comparable values of IC(O) and Im(O) are only obtained taking

c ;; 3.5 eV-l, which is almost five times the ~.£ prediction.

Never theless, such uncertaint ies in the tunnell ing mass part ially

explain the discrepancies between IC(O) and rm(O).
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Generalisation of Lassnig' s ~.E. calculation to include the
effect of a transverse magnetic field is not trivial and, since the
main aim of this chapter is to explain the shapes, rather than the
absolute values of the tunnel current and derivatives, the energy-
dependence of the tunnelling mass is neglected.

5.10 Physical Explanation Cor the Field-Dependence and Relative
Magnitudes of the Current Contributions In(B)

5.10.1 Introduction

Figures 5.6, 5.7 and 5.8 show the current contributions 1n(B)
calculated from equation (5.10) for a range of forward-bias voltages.
For V - 25 mV each current contribution is almost symmetrical under
reflection in the line B - (Bn+ + Bn-)/2 and attains a maximum value
InMAX = In(BnMAX), which increases with decreasing n , For higher
biasses, InMAX increases less rapidly with decreasing n and, for V -
100 mV and V - 125 mV, loMAX < llMAX. In addition, BnMAX approaches
Bn- so that the current contributions become increasingly
asymmetric.

These trends are most easily understood in physical terms by
considering the factors

1

Nn(S) • (kF2 - ky'2(n»2 (5.40)
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(5.41)

and (5.42)

of In(S) given in equation (5.10). Each factor depends para-

metrically on magnetic field through the allowed transver se wave-

vector components {ky(n)}. Wn(B) is the 'normalised' transition rate
obtained by integrating equation (3.25) over the energy range of all

final states, in order to eliminate the delta function.

The field-dependence of each factor is shown in Figures 5.9
and 5.10 for V .. 25 mV. The normalised transition rate Wn(S) is,

from equat ion (5.38), proport ional to the product of the barrier
transmission coefficient Tn(S) and the classical interfacial skipping
frequency Fn(S), which are both shown in Figure 5.11. The physical
reasons for the field-dependence of each factor are now considered in
some detail, since this is also central to the interpretation of the
oscillatory amplitudes of dI/dS and d21/dS2 given in Sections 5.12

and 5.13.

5.10.2 Field-dependence of the factors Nn(S), calculated for

V - 25 mV

It follows from equation (5.40) and the ~-space distribution
of occupied 2DEG states shown 1n Figure 4.1, that 2DEG electrons

with the transverse wavevector component ky(n) have values of Kz in
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the range -Nn(B) ::i kz :;;Nn(B). Thus, Nn(B) is proportional to the
number of electrons tunnelling into the nth interfacial Landau state
for given magnetic field. Figure 5.9a shows that Nn(B) • 0 when B •
Bn± (ky'(n) = ± kF) and attains a maximum value of + kF at the field
value Bn for which the nth interfacial state dispersion curve passes
through the centre of the 2DEG parabola (ky'(n) - 0).

5.10.3 Field-dependence of the factors 0nCB) calculated for

V • 25 mV

The factors 0n(B) shown for V • 25 mV in Figure 5.9b are,
from equation (5.42), related to the number of 20EG and interfacial
Landau states per unit energy, close to the intersection pOint ky(n).
The reciprocal of 0nCB) is proportional to the absolute change in the
expectation value of the y-component of veloci ty of 2DEG electrons
with transverse wavevector component ky(n) tunnelling into the nth
interfac ial Landau state. This veloci ty change 15 greater for -kF
electrons tunnelling when B - Bm- than for +kF electrons tunnelling
at an adjacent resonant field Bn+ ; Bm-. Consequently, Dn(Bn+ ; Bm-)
) 0m(Bm-) •

Figure 5.9b also shows that for given n , 0nCBn+) > Dn(Bn-),
the difference being primarily due to the opposite slopes at either
extremity of the 20EG parabola. The values of 0n(Bn±) both decrease
slowly with increasing Bni, as the gradients dEn(ko±l<F)/dky
increase.
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5.10.4 Field-dependence of the barrier transmission coefficients
Tn(B) calculated for V - 25 mV

From equation (1.53), the barrier transmission coefficients

Tn(B) shown in Figure 5.11b depend exponentially on the decay
functions ~nl(x). From equations (4.21) and (4.26), JJn1(x) depends
on the sum of the conduction band profile Ec(x) and the magnetic
potential energy EMAG(x) in the barrier region, which determine the
effective barrier height, and also on the tunnelling energy En(ky).

When B = B~, 2DEG electrons with ky'(n) • + kF tunnel into
the nth interfacial Landau state with orbit centre position

B + 'n e
(5.43)

which, as shown in Figure 5.12 for the case n • 0, lies to the left
of the mean 2DEG stand-off position <x> , As the intercept ky'(n)
moves away from the +kF extremity of the 2DEG parabola with
increasing field (see Figure 5.5), the orbit centre X - -Cb +ky(n)
3a 0) -1'1ky'(ri) IBe moves along the x-axis towards the LH barrier
interface, so that the mean magnetic potential in the barrier region
decreases. It can be seen from Figure 5.5, that the tunnelling energy

En(ky} also decreases as ky'(n) moves away from the +kF extremity of
the 2DEG parabola. For fields just above Bn+, En(ky} falls more
rapidly than the mean magnetic potential energy in the barrier

regIon. The effectIve barrier height therefore increases relative to
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En(ky) resulting in the reduced transmission clearly seen in Figure

5.11b. As ky'(n) -+ O. En(ky) falls less rapidly than the magnetic

potent ial energy in the barrier region. so that the total effective

barrier height falls relative to En(ky), and the transmission

coefficient rises. Maximum transmission is attained when B - Bn-,

and the orbit centre

(5.44)

lies to the right of the mean 2DEG stand-off position, so that the

mean magnetic potential in the barrier reaches a minimum as shown in

Figure 5.12 for the case n - O.

The tunnelling energy of 2DEG electrons with ky' (n) - ±kF

equals eV + EFR so that the corresponding transmission coefficients

Tn(Bn±) depend only on the magnetic potential energy EMAG(x) in the

barrier region, which raises the effective barrier height. Using

EMAG(-b/2) to estimate the average increase in barrier height t.En±

experienced by ± kF electrons tunnelling into the nth interfacial

Landau state ~ives, from equation (4.21),

(5.45 )
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Equation (5.115) predicts reduced transmission of +kF
electrons as the effective barrier height increases with Bn+. in
agreement with the calculated variation of Tn{Bn+) shown in Figure

5.11b. By contrast. for -kF electrons. Tn(Bn-) is expected to
increase with Bn- for Bn- ~ Br where

B I (:2. 3 )T • 1\ kF e 2 + a 0 • ( 5 • 116)

and to decrease with Bn- for Bn- ~ Br. Such variation is clearly
observed in Figure 5.11b. which shows maximum -kF transmission being
attained for B,- ; 2 T. in good agreement with the estimated value

BT • 2.2 T.

The reason for this behaviour is easily understood. Equation
(5.114) shows that for Bn- < flkF/e(b + 3ao). the orbit centre X- is
located on the RHS of the potential barrier. With increasing
Bn-(decreasing n). X_ moves towards the RH barrier interface so that
the effective barrier height is reduced and Tn(Bn-) rises. Maximum
transmission is reached when Bn- = BT. for which X_ lies close to the
centre of the barrier. With increasing Bn- > BT. X_ moves further to
the left of the barrier so that the effective barrier height rises
and the transmission coefficient falls.



157

5.10.5 Field-dependence of the interfacial Landau state skipping

frequencies Fn(B) calculated for V - 25 mV

The semiclassical skipping frequencies Fn(B) corresponding to

the n - 0,1, ••• 9 interfacial Landau states are shown for V • 25 mV

in Figure 5.11a. For this voltage, the tunnelling energy lies in the

range 34 meV S En(ky) S 42 meV and therefore varies only slowly with

magnetic field as the intersection point ky(n) moves through the 2DEG
__ 1

parabola. The orbital speed vn I: (2En(kyCn»/m*L)2 is thus almost

identical for all interfacial electrons, regardless of field or

index. It follows that variations in the skipping frequency (4.55)

are due primarily to changes in the skipping arclength Sn • 2Rn cos-1

Uo (see Figure 4.5). With increasing field (and decreasing ky'(n»,

the orbi t centre Xk • -(b+3a 0) - (flky'IBe) of the nth interfacial
y

Landau state moves along the x-axis. As can be seen from Figure 4.5,

this shift tends to increase the skipping arclength Sn. However, this

effect is small compared with the contraction of the orbital radius

Rn which, from equation (4.48), falls as 8-1, leading to a nett

reduct ion of Sn. Since the orbi tal speed remains approximately

constant, the skipping frequency Fn(B) increases with field as shown

in Figure 5.11a.

The calculated field-dependence of the angle of incidence en

'" cos-1 u , (see Figure 4.5) of the skipping electrons, shown in

Figure 5.13, confirms this interpretation.

rises sub-linearly with field so that the variation of the skipping

frequency (4.55) is daninated by the linear increase in angular

velocity Be/miL.
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Figure 5.5 shows that for given field, lower-index inter-

facial Landau states are accessed by 2DEG electrons wi th higher

transverse wavevector components ky (n ) , which therefore have orbi t

centres Xky(n) a -nky(n)/Be further to the left of the barrier. Since
1

the orbital radii (4.48) and orbital speeds (2m*LEn) 2 vary slowly

with n over the range 34 meV ~ En ~ 42 meV of occupied 2DEGlevels at

V = 25 mV, electrons tunnelling into lower-index states traverse

shorter skipping arclengths and thus have higher skipping frequencies

Fn(B) as shown in Figure 5.11a.

Figure 5.13 shows that the angle of incidence cos-1uo of both

+kF and -kF electrons decreases with increasing Bn±. It follows from

equation (4.55) that the skipping frequencies Fn(Bn±) rise super-

linearly as shown in Figure 5.11a. Physically the ±kF skipping

frequencies increase with field as the orbital radii and skipping
1

arc lengths contract, whilst the orbi tal speed (2m*L (eV + EFR))2

remains the same.

5.10.6 Field-dependence of the normalised transition rates

Wn(B) calculated for V - 25 mV

From equations (5.38) and (5.41), the normalised transition

rates Wn(B) shown in Figure 5.10 are proportional to the product of

the barrier transmission coefficients Tn(B) and the interfacial state

skipping frequencies Fn(B). For given n , Wn(B) generally increases

with field, since Tn(B) and Fn(B) both rise. However, Wn(B) also
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reflects the slight reduction in transmission coefficient visible in
Figure 5.11b as the field is raised just above Bn+. It is clear from
Figure 5.10 that the average transition rate into the nth interfacial
Landau state, evaluated over the field range Bn+ ~ B ~ Bn-, increases
with decreasing quantum number n , Figure 5.11 shows that this
increase is entirely due to the higher skipping frequencies of the
lower-index interfacial states, since the average transmission
coefficient decreases with n, owing to the increased contribution of
the magnetiC potential to the effective barrier height.

5.10.1 Interpretation of the field-dependence of the current
contributions In(B) calculated for V - 25 mV

Comparison of Figures 5.9 and 5.10 shows that for V - 25 mV,
the transition rates Wn(B) and density of states terms Dn(B) vary
slowly with field compared with the factors Nn(B). These factors
increase rapidly from zero when B - Bni, to a maximum value of + kF
at the field values Bno for which ky'(n) - O. These rapidly-varying
terms therefore determine the shape of the current contributions
In(B) which, as shown in Figure 5.6, attain maximum values InMAX
when B ; Bno. Since Nn(BnO) a +kF for all n, these maximum current
contributions depend approximately on the values of Dn(BnO), Tn(BnO)
and Fn(BnO), marked by open circles in Figures 5.9 and 5.11.
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By definition, ky'(n) - 0 when B = Bno so that ky(n) = ko and
the orbit centre XKo - -Cb + 3ao) is fixed at the mean stand-off
position of the 2DEG. Consequently, the mean magnetic potential in
the barrier region and the total effecti ve barrier height, both
increase with Bno, as shown in Figure 5.14, leading to the diminished
transmission coefficients Tn(BnO) shown in Figure 5.'1b. The values
of Dn(BnO) - (dEn/dky)-l shown in Figure 5.9b also decrease slowly as
the gradients of the interfacial state dispers ion curves increase

with 8no• Both of these effects are small, however, compared with the
dramatic increase of the skipping frequencies Fn(BnO) which occurs as
the orbital radii and skipping arclengths (4.53) contract with

__ 1

increasing Bn 0, whilst the orbital speed vn - (2Ebo'Im*L)2 remains
constant. This trend is clearly reflected in the increasing
transition rates Wn(BnO) shown in Figure 5.10, and is entirely
responsible for the higher peaK currents I MAXn result ing from

transitions into lower-index interfacial states.

Figure 5.14 shows the magnetic potential energy experienced
by 2DEG electrons tunnelling at the field values B10 and 800 (> 81°),

when V - 25 roV. Quantum-mechanically, increased magnetic confinement
(wo < Wi) at the higher field Bi

o raises the amplitude of the
magneto-quantised interfacial state wavefunction at the RH barrier

interface (~O(OT) > ~1(0+», despite the accompanying increase of the
mean magnetic potential energy (MPE) in the barrier region (Fromhold
et al., 1990). At low voltages, this mean MPE has little effect on

the degree of wavefunction penetration (see Section 5.13). From



.... ........
.....c... ... ...

...............
'...,,"

" ,,...... ... ......

II

>.
..a

'0
Q)o
0 c: <l.l
C:CO >Q) .......
....... c ~
s, Q) Q) 0
Q).c: .c:Q)
c.~ ~c....
x CfJ c....
Q) Q) c c.... Q)

~ 0 0
CO ....... Q)

CfJ ~ ~ c:.c:
Q) CfJ ....... ~~
> CfJ
s, ::5 0 CfJ

)(
::5 CO c.~ c
0 '0 c: 0c Q) ....... .......
c CO s, o~
Q) ...J ~ C.CO
.:.:: c: s,
OM Q) 00....,
s, CO 0 c CfJ
..a ....... ....... ::5
"""'O~ C:M

CO ....... t....-l
>. c.... .o ::5 .......
bOt.. s, ....,
s, <l.l 0 c....
Q)...., Q) 0c C:..-l .c.... Q) ....... CO E-o >.

~ ....... ~M ..-......, .......
COO c . s,
.......'-"'Q) /\. CO...., ...., X M

0
c OV 0
Q) 0..~ ...., c s,
0 0 0 0 Q)
c. c: •..-1 ....... c... 0

~ ...., .......
0 Q) Q) •..-1 >

0
....... .c c CfJ . <l.l...., ...., 000 c: '0

\\ , Q) ro 0.. ~

'"
c: 0 E 0 Q)
tlO~ c.... .c:.c:

I CO c:.c: c.... CfJ~, E· .........., 0

-
0 I 0 ~, A '0 OOCO '0 CfJ ::5

r----- )( c: c: c: M 0
V CO ....... CO CO .c:

~

M . ...., ao
"-"M> CfJ Q) ::l
X Q) E t.- O
....... C: Cl CO t..',I OC:lf"IW .c:

,'11 W ::IN Cl CfJ ~
~ N ~

I' I <l.l .......*
, , I M 0 c:..a ...J
, I I ....... > CO t.. E
I , c.... II Q) 0
I , I 0 '0 E Q)
I , I t.. - c: bO..a, , , 0. >'CO Q) c:

/ I .:.:: .c: ....... 0
/ I

,
'0 ....... ~ 0.....,

I c: .c: E-o c.- CO ~ .c: ....... c:)( ..a .......N ~ .:.:: Q)-(.) ~ •• ..-1 CfJ .:.::
W c: N ~ CO

0 CfJ '-"' M ....,
....... c: Q) CO~ OE-o'O 0 CfJ
0 t.. •..-1 ....... .......
::5 ~ \.0 0 rJ)
'0 0 . c: CfJ CfJ
c: <l.l '..-1 CO CfJ
0 ..-l O..-l CO
U Q) n 0 0 E

.:::r.....
•

LC\

Q)
t..
::l
bO
.......
c...

o
II

e

....



161

equation (5.38), the higher wavefunction amplitude lVo(O+) leads to

faster transitions into the n • 0 interfacial state so that the peak
current contribution loMAX> I1MAX as shown in Figure 5.6.

5.10.8 The effect of increasing voltage on the factors Nn(B),
Dn(B), Wn(B), Fn(B) and Tn(B)

Figures 5.15, 5.16 and 5.17 show the field-dependence of the
factors of In(B) calculated for V - 125 mY. The most dramatic effect
of increasing the voltage is on the barrier transmission coefficients

Comparison of Figures 5.11b and 5.17b shows that these
transmission coefficients are at least one order of magnitude higher
for V 2 125 mV than for V - 25 mY, because the higher electric field
in the barrier region significantly reduces the mean effective
barrier height. In addition, for given n, Tn(B) rises more rapidly
with field at the higher voltage.

As discussed in Section 5.10.4 for the case V - 25 mY, the
orbit centre of the magnetic potential energy moves closer to the
barrier as the field is increased from Bn+ to Bn-. Consequently, the
mean magnetic potential in the barrier region (EMAG) falls and Tn(B)
rises as shown in Figure 5.17b. However, because the mean zero-field
barrier height is much lower at the higher voltage V - 125 mV, a

comparable reduction in EMAG produces a greater percentage decrease
in the total effective barrier height, leading to a more dramatic

rise in transmission coefficient. This effect is considered in more
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detail in Section 5.13. For given n, Tn(B) increases so rapidly with

field when V • 125 mV that it has a visible effect on the shape of

the In(B) curves shown in Figure 5.8.

The qualitative field-dependence of the -kF transmission

coefficients Tn(Bn-) was explained in Section 5.10.4 for V ~ 25 mV.

For V • 125 mV, equation (5.46) predicts maximum transmission of -kF

electrons when Bn- ; BT S 4 T. This estimate is in good agreement

with the position of the maximum calculated -kF transmission

coefficient Ts(Bs-) shown in Figure 5.17b.

The reduction of Tn(Bn-) which occurs with increasing Bn- ~ 4

T, is generally slow compared with the rapid increase of the

corresponding skipping frequencies Fn(Bn-) shown in Figure 5.17a.

This increase therefore dominates the field-dependence of the

transition rates Wn(Bn-) shown in Figure 5.16. However, at the

highest fields, the mean magnetic potential energy in the barrier

region makes a large contribution to the total effecti ve barrier

height. Consequently, the barrier transmission coefficient falls

rapidly and, as shown in Figure 5.17b, To(Bo-) ; 0.5 T1(B1-). This

dramatic reduction in transmission coefficient more than compensates

for the comparatively small increase in skipping frequency (Fo(Bo-) a

1.5 F1(B1-», leading to the diminished value of Wo(Bo-), clearly

revealed in Figure 5.16.

This effect is central to the explanation given in Section

5.13.2 for the observed weakening of the -PF series at high fields

and bias voltages.
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5.11 Simulation of the Magneto-current Derivatives dI/dB
and d2I/dB2

5.11.1 Unaveraged derivatives

Figure 5.18 shows the first derivative of the magneto-current
curve 5.6, calculated for V - 25 mV. The current contributions In(B)
n • 0, 1, •••9 are also shown. As predicted by equation (A.2) of
Appendix 1, maxima (minima) in dr/dB originate from the opening
(closure) of conduction channels whenever B The
oscillatory amplitudes are not, of course, infinite since the
calculated derivative is equal to the linear gradient between

adjacent data paints with finite field and current values.

Generally. the amplitudes of both the ±PF series of
oscillations increase with field. In addition, for B ~ Bo+. the -PF
minima are of much smaller magnitude than adjacent +PF maxima.
Although these trends are in reasonable qualitative agreement with
the observed features (Figure 5.3) • the simulated osc illatory
structure is unrealistically sharp, because the experimental
derivatives were obtained using an averaging routine intended to
smooth out noise.

For comparison with experiment, theoretical derivatives must
be calculated using the same smoothing procedure, which is described

in Section 5.11.2.
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Figure 5.18 (a) Magneto-current derivative, dl/dB, calculated for
V - 25 mV, (b) Individual current contributions In(B),
ncO, 1, .• 9. Maxima (minima) in dI/dB originate from
the opening (closure) of these tunnelling channels.
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An additional advantage of calculating smoothed derivatives

in this way is that approximate analytical expressions can be
obtained which directly relate the extremal values of the averaged

Tn(Bn±), appropriate to ±kF transitions. The field-dependence of the
oscillatory amplitudes can thus be understood physically by
considering the effect of the field on the barrier transmission
coefficient and interfacial state skipping frequencies.

5.11.2 Description of the averaging procedure used to obtain the
experimental magneto-current derivatives

Suppose that N discrete current measurements 1(Bl) i - " 2,
••• N are made at the equally-spaced field values Bi. To obtain the
averaged first derivative of this set of data, the mean field and
current values <B:, I:) of the first A data pOints are calculated,
and also those of the adjacent A pOints, starting from the A + 1th
point. The value of the averaged first derivative at the mean field
value Bl' - Bl + (A - ~)oB of both sets of data is defined to be

(5.47)

The two sets of A pOints are then stepped, one data pOint at a time,
through the whole data set, repeat ing the calculat ion of the grad ient

at each step. Thus, at the field value Bi' • Bi + (A - ~)6B (= Bi+A
for A » 1) the averaged first derivative is
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dI(->
dB B-B~'

2,+ 2A-1
L

i-2.+A

~+A-1
L
i-~

(5.48 )

The averaged second derivative is calculated in the same way, from
the averaged first derivative data pOints.

When A - 1, this differentiation procedure simply gives the
linear gradient between adjacent data points, For larger A, more
points are averaged, so that high-frequency oscillatory components
are smoothed from the derivative curves. When calculating

theoretical derivatives, A is chosen so that current averaging is
performed over the same range of field ~B - (A - 1)6B ~ 0.2 T (Snell,
1987a), used to obtain the measured curves.

5.11.3 Relation between the extremal values of the averaged first
derivative (dr/dB) and the factors Dn(Bn±), Tn(Bn±)
and Fn(Bn±)

The aim of this section is to obtain approximate analytical
expressions for the extremal values of <dI/dB> attained close to the
resonant fields Bni•

Using equation (5.11) in equation (5.48) and introducing the
dummy variable j • i + A gives, for A » 1
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dI(->
dB B-Bj

(5.49)
AliB

where liB • (A - 1)6B ; A6B is the field range over which current
averaging is performed. Figure 5.18 shows that if Bj ; Bn±, and the
separation between Bni and adjacent resonant fields greatly exceeds
liB (; 0.2 T), the nth current contribution varies most rapidly over

the field range Bj - liB S B S Bj + 6B. Consequently. for Bj ; Bn±,
equation (5.49) is dominated by the nth term and may be written, to

good approximation

dI(->
dB Bj

(5.50)

where

Figure 5.19 shows the schematic field-dependence of the discrete data
points {Bi, In(Bi)} close to the resonant field Bn+. which is taken

to lie between BK and BK+l. The data paints {(Bi' In(Bi» i • j. j +
1. j + A - 1} which lie on or within the ordinates B - Bj and B •

Bj+A-l are collectively referred to as the RH data bin. An
expression for the average current value lR of these paints is given

in equation (5.50). Similarly. lL is the average current value of the

LH data bin which, as shown in Figure 5.19. comprises all data points

lying on or within the lines B • Bj-A and B • Bj-l. Equation (5.50)
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Figure 5.19 Schematic variation of the discrete data points (Bi,
In(Bi)), close to the resonant field Bn+, which lies
between BK and BK+l. The 'averaged' derivative
<dl/dB>B.' at the field value Bj' - O.5(Bj-1 + Bj) ; Bj
close toJBn+, is approximately egual to the difference
between the mean current values IR and IL of the RH
and LH data bins (comprising the A data points above or
below Bj), divided by the corresponding difference ~B +
6B in mean field values. For the simulated derivatives,
A is chosen so that current averaging is performed over
the same field range as the measured curves.
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therefore asserts that the averaged first derivative at the field

value Bj' is proportional to the difference between the mean current

values IR and IL of the RH and LH data bins.

It is clear from Figure 5.19 that if Bj+A-1 < BK+1 - Bn+, the

average current in each bin vanishes and <dIn/ dB> Bj = O. In this

case, the series expression (5.49) is not dominated by the nth term,

and equation (5.50) is clearly inaccurate. As the data bins are

steppped, one data point at a time to higher fields, <dIn/dB> B.
J

remains zero until Bj+A-1 = BK+1 when, as can be seen from Figure

5.19, the RH data bin contains one positive current value In(BK+1),

so that <dln/dB>B > O. As the data bins are moved to yet higherK-A+2
fields, more data pOints with finite current values are included in

the RH bin and IR increases rapidly. Provided Bj-1 remains less than

BK+1 so that IL = 0, <dln/dB>B'
J

also increases rapidly and soon

dominates the series expansion (5.49), which is then given to

reasonable approximation by equation (5.50).

The maximum value of <dIn/dB) B.
J

is attained when the

difference

dIn<-->
dB Bj+1

dIn<-->
dB Bj

(5.51)

between adjacent averaged derivative values is closest to zero.
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Assuming that this maximum is attained for some Bj ~ Bn+ +

~B, so that In(Bj ~B) • 0, the value of Bj can be found

graphically by looking for intercepts between the curves In(B + ~B)

and 21n(B). However, it is clear from inspection of Figures 5.20,

5.21 and 5.22 that the maximum value of <dI/dB> is attained when Bj

; Bn+ ; BK and thus, from equation (5.50) is given approximately by

d1 +
(-) ; (A~B)-1
dB n

K+A-l
1:

i-K (5.52)

A similar analysis shows that if the -PF resonant field Bn- lies

between the discrete field values BL-1 and BL, the associated minimum

value of <dI/dB) is approximately

dI -
(-) ;;; -(A~B)-1
dB n (5.53)

For the simulated derivatives, the number of pOints averaged A ; 15

» 1, so that the extremal values (5.52) and (5.53) may be written in

the integral form

(5.54)

where the mean current values

-±In

s± ±6B
f n 1n(B) dB •
B±
n
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Figure 5.20 (a) Averaged magneto-current derivative (dI/dB>
calculated for V - 25 mV, taking ~B - 0.2 T. The ±PF
series of oscillations, originating from the opening and
closure of the indicated tunnelling channels are
distinguished by horizontal brackets. (b) The current
contributions In(B), n - 0, " ..• 9. The mean current
values 1n+(ln-) are shown by crosses (open circles).
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<dl/dB>(a) 100 mV

Figure 5.21 Averaged derivative <dI/dB) and current contributions
In(B), n ..0, 1, •.• 6, calculated for (a) 100 mV and
(b) 75 mV, taking ~B - 0.2 T. The ±PF series of
oscillations are distinguished by horizontal brackets
and the mean current values In+ (In-) are marked by
crosses (open circles).

(b) 75 mV <dl/dB>
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Figure 5.22 (a) Averaged derivative <dI/dB) calculated for V • 125
mV, taking ~B • 0.2 T. The ±PF series of oscillations
are distinguished by horizontal brackets. (b) The
current contributions In(B), n ~ 0, 1,
.. 9. The mean current values In+ (In-) are marked by
crosses (open circles).

B (T)
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Figures 5.9,5.10,5.15 and 5.16 show that the factors NnCB) vary

rapidly over the field ranges B~ ~ B ~ Bn + ~B and Bn - ~B ~ B ~ Bn

compared with the transition rates Wn(B) and density of states

factors 0nCB). Equation C5.54) may therefore be written, to good

approximation

<.9l>± ±(~B)-l -+ ±C~B)-l +
WnCB~)

-+
= r- = OnCB-) N-

dB n n n n

(5.55)

OnCB±)
+

Tn(B~)
-+

cc FnCB-) N-
n n n

where the mean values

Thus equation C5.55) predicts direct proportionality between the
+ + +extremal values (dl/dB>i1 and the factors Dn(B~), Wn(B~) describing

±kF transitions into the nth interfacial Landau state.
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5.11.4 Comparison between the simulated and measured magneto-current
derivatives

First derivative curves calculated following the averaging
procedure described in Section 5.11.2, taking ~B • 0.2 T, are shown
for a variety of bias voltages in Figures 5.20, 5.21 and 5.22. The
individual current contributions In(B) are also shown. Comparison of
Figures 5.18 and 5.20 reveals that the averaging process smoothes out
the small -PF minima which are visible at low fields in the
unaveraged curve. For each voltage, this results in clear separation
of the ±PF series, as observed experimentally.

In general, both ±PF series of oscillations grow stronger
with field, except for the final (high field) -PF oscillations
calculated for V - 100 mV, and V - 125 mV.

The field-dependence of the ±PF oscl1latory structure
revealed in the simulated (d2I/dB2) curves 5.23 and 5.24 clearly
reflects that of the first derivatives. Both the measured (Figures
5.1 and 5.3) and simulated <d2I/dB2) curves reveal distinct ±PF
series which generally strengthen with increasing field. The
diminished -PF OSCillatory amplitudes observed at high fields when V
• 100 mV (Figure 5.1) are also reproduced in the simulated second
derivative 5.24b.

Weakening of the +PF series relative to the -PF series Is

apparent with increasing voltage in both the theoretical and



(a) 75 mV

(b) 25 mV

8

Figure 5.23 Averaged second derivative <d2I/d82) calculated for
(a) 75 mV, (b) 25 mV, taking ~8 • 0.2 T. The ±PF series
of oscillations are distinguished by horizontal
brackets.

o 2 64
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Figure 5.24 Averaged second derivatives (d2I/d82) calculated for (a)
125 mV, (b) 100 mV, taking 68 - 0.2 T. The ±PF series
of oscillations are distinguished by horizontal
brackets.

B[T]
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experimental <d21/dB2) curves. This effect is explained in Section

5.13.3.

The predicted positions of the +PF oscillations, and the
field values corresponding to the transition between the ±PF series,
compare reasonably with experiment. By contrast, the predicted -PF
resonant fields Bn are generally much lower than observed. This

-discrepancy is not surprising since the predicted values of Bn depend
on the perturbed 2DEG and WKB interfacial Landau levels, which are
both less accurate at the higher fields for which the -PF series is
observed. However, despite this lack of quantitative accuracy, all
the qualitative features of the measured <d2I/dB2) curves are clearly
reproduced in the simulated derivatives.

-±5.11.5 Verification of the predicted correlation between In and
<dl/dB>~

Equation (5.54) predicts that provided the separation between
adjacent resonant fields greatly exceeds 6B - 0.2 T, the extremal
values of <dl/dB) are directly proportional to the corresponding mean

- ±current values In shown, for 25 mV, in Figure 5.20. Owing to the
large separation Bn-1 - Bn at high fields, equation (5.54) accurately
predicts the field-dependence of the visIble -PF minima (dI/dB>n,
which increase in magnitude with increasing field at approximately
the same rate as the mean current values In.
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However, the -PF oscillatory amplitudes increase even faster
than these minima owing to the greater separation, Bn-l -Bn, between
lower-index -PF resonant fields. For example, Figure 5.20 shows that
soon after <dl/dB) begins to rise following closure of the n • 3

channel, 12(B), and consequently <dIldB>, decrease rapidly so that

the amplitude of the n - 3 - PF oscillation remains small. By
contrast, <d1/dB) rises almost to zero following closure of the n -
channel, before loeB) drops rapidly. Thus the amplitude of the n a 1

-PF oscillation is almost equal to the minimum value <dI/dB>;.

Although the separation between adjacent .PF resonant fields

is not sufficiently large when V • 25 mV for equation (5.54) to be of
quantitative accuracy, the increase of the .PF maxima <dl/dB>~
visible with increasing field in Figure 5.20 is broadly consistent
with the higher mean current values I~of the lower-index channels.
Just as for the -PF series, the strengthening of the .PF oscillations
is also partly due to the increased separation B~-l - B~ between
higher .PF resonant fields, which reduces the smoothing effect of the
averaging procedure.

Figure 5.20 shows that the mean current values corresponding

to adjacent resonant fields B~ ; Bm < B~ satisfy 1~ > 1m. It follows
from equation (5.54) that the .PF series will dominate the
oscillatory structure at low fields. This dominance is further
enhanced by the averaging routine used to calculate the derivatives,

which smoothes out the small -PF minima visible in the unaveraged
curve 5.18. In Section 5.12.2, this smoothing procedure is shown to
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simulate the effect of interfacial Landau level broadening, which
prevents resolution of the more closely-spaced interfacial Landau
levels, near the -kF extremity of the 2DEG parabola (see Figure 5.5).

5.12 Physical Explanation for the Field-dependence of the
Oscillatory Amplitudes of <dr/dB) and <d2r/dB2) when V - 25 mV

5.12.1 Introduction

-+The field dependence of I~ and consequently of the extremal
±values <dl/dB>n, is most easily understood physically by considering

the factors of In(B) shown for V - 25 mV in Figures 5.9, 5.10 and
5.11. Comparison of Figures 5.9 and 5.10 shows that the mean values
-+ ±Nn defined in equation (5.55) vary slowly with n compared with Wn(Bn)
and Equation (5.55) therefore predicts, to reasonable
approximation

(5.56)

which directly relates the extremal values of the averaged first
derivative to the density of states factors, barrier transmiss ion
coefficients, and interfacial Skipping frequencies associated with
±kF transitions into the nth interfacial Landau state.
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5.12.2 Explanation for the clear separation of the ±PF series

Figure 5.10 shows that the transition rates Wn(Bn+) and
Wm(Bm-) of ±kF electrons tunnelling at adjacent resonant fields Bn+ ;
Bm- (for example Bo+ and 86- .. 1.3 T) are approximately equal.
However, Figure 5.9b shows that the corresponding density of states

terms satisfy Dn(8~) ~ 3Dm(Bm), primarily because of the opposite
slopes at either extremity of the 2DEG parabola (see Section 5.10.3).
Consequently equation (5.56) predicts <dI/dB)~ ;;3 I<dI/dB>ml. This

disparity is clearly revealed in the unaveraged derivative shown in
Figure 5.18 and partly explains why the +PF series dominates the
oscillatory structure at low fields. However, the complete separation
of the ±PF series in the averaged derivative 5.20 is a consequence of
the averaging procedure which smoothes out small high-frequency -PF
oscillations at low fields. Physically this averaging process
simulates the effect of interfacial Landau level broadening for the
following reasons.

The high rate of channel closure at low fields originates
from the high energy density of interfacial states close to the -kF
extremity of the 2DEG parabola, as compared to the +kF extremity (see
Figure 5.5).

Quantised energy levels are only resolved provided the
separat ion between adjacent levels exceeds the 11fetime broadening.

The dominant scattering mechanism of hot electrons in III-V materials

at 4.2 K is LO phonon emission (see, for example, Ridley, 1988).
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Thus, for given ky, the nth interfac ial Landau level can only be

resolved provided

(5.57)

where WLO= 1013 S-l (Lobentanzer et al., 1987) is the approximate LO

phonon emission rate of hot electrons in (InGa)As.

In the limit of large n inequality (5.57) is, from the

correspondence principle (see, for example, Merzbacher, 1970),

equivalent to the semiclassical requirement

F (B) » WLO
n 2n

(5.58)

that the interfacial electrons complete at least one skipping orbit

before scattering.

The value of WLO/2~ ; 1.6 x 1012 S-l appropriate to (InGa)As

is indicated by the broken line in Figure 5.1 l a , It is clear from

this figure that inequality (5.58) predicts no visible -PF

oscillations for B < S; ; 1.5 T. Since the highest +PF resonant

field B~ < B;, it follows that no interference is expected between

the ±PF series. In addition, Fn(Sri) s WLOl2n for all Bri s 1 T.

Consequently, the +PF series is expected to vanish for S < 1 Tt in

reasonable agreement wi th the measured threshold field shown 1n

Figure 5.3. Thus, the smoothing procedure simulates the predicted
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effects of level broadening at low fields since it removes all but

the n .. 0 and n ,. 1 +PF oscillations. which are the only ones to

satisfy the energy level resolution requirement (5.58).

5.12.3 Field-dependence of the ±PF oscillatory amplitudes

Figure 5.9b shows that for V ,. 25 mV, the values of Dn(Bri)

are almost independent of n , Similarly, the values of Dn(Bn) vary

only slowly with n , Equation (5.56) therefore predicts that the

±extremal values <dl/dB>n of the ±PF oscillations will increase wi th

field following the normalised trans ition rates Wn(Bn=l

± ±Tn(Bn) shown in Figure 5.10. Semiclassically the values of Wn(Bn)

increase wi th field owing to contraction of the orbi tal radius Rn

which reduces the arclength (4.53) traversed between successive

collisions with the RH barrier interface (see Section 5.10.5),

thereby increasing the skipping frequencies Fn(B~), as shown in

Figure 5.11a.

This rapid increase of Fn(B~) more than compensates for the

+decreasing transmission coefficients Tn(Bn) shown in Figure 5.1 lb

(see Section 5.10.4), and is thus reflected in the higher transition

:I; ± - ±rates Wn(Bn) and increased extremal values <dI/dB>n ex In of Figure

5.20.
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Quantum-mechanically, the extremal values <dl/dB>; increase

with ~ owing to increased magnetic confinement 1n the n" contact,

which raises the amplitudes Ij!n(O-)of the interfacial state wave-

functions at the RH barrier interface, and thus, from equations
+(3.25) and (5.38), the transition rates Wn(Bn).

Figure 5.20 shows that the ±PF OSCillatory amplitudes

increase more rapidly with field than the extremal values ±<dl/dB>n,

since increased separation Bn±-l - Bn± between adjacent lower-index

resonant fields reduces the smoothing effect of the averaging

procedure. This has particular influence on the more closely-spaced

+PF oscillations and is largely responsible for the dramatic

strengthening of the +PF series revealed in Figure 5.20.

The reduced smoothing of more widely-spaced oscillations at

higher fields simulates the physical effect of increased interfacial

Landau level separation which, for large n, 1s equivalent to the

enhanced semiclassical skipping frequencies Fn(B~) at higher fields

shown in Figure 5.11a and explained in Section 5.10.5. Increased

resolution of the interfacial Landau levels at higher fields gives

rise to more pronounced oscillatory structure as, semiclassically, a

greater fraction of the tunnelling electrons complete entire
skipping orbits before scattering.

The higher skipping frequencies of ±kF electrons tunnelling

at higher fields therefore gives rise to stronger :tPF OSCillatory

structure for two distinct reasons.
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+Firstly, the associated rise in the transition rates Wn(Bn) ~

+ ±
Fn( Bn) increases the extremal values (dl/dB>n predicted by equation

(5.56). Secondly, the oscillatory ampli tudes become more pronounced

as a greater fraction of the tunnelling electrons complete whole

skipping orbits before scattering.

5.13 The Effect of Increasing Voltage on the Oscillatory Structure

5.13.1 The effect of increasing voltage on the relative amplitudes

of adjacent ±PF oscillations

Comparison of Figures 5.20 and 5.22 shows that the ratio

Im/I~ of mean current values corresponding to adjacent resonant

fields Bm ~ B~ increases with voltage and is close to unity for V -

125 mV. Equation (5.54) therefore predicts that for V - 125 mV,

adjacent ~PF extrema in (dl/dB> will be of comparable magnitude. The

clear separation of the ±PF series in the derivative curves 5.22 and

5.24a calculated for V - 125 mV is thus entirely due to smoothing of

the higher-frequency -PF oscillations at low fields, which simulates

the poor resolution of interfacial Landau levels close to the -kF

extremi ty of the 2DEG parabola, as compared wi th the +kF extreml ty

(see Figure 5.5). The increased resolution of interfacial Landau

levels close to the +kF extremi ty corresponds. for large n, to the

higher +kF skipping frequencies Fn(B~) ) Fm(BrTi) shown in Figure
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5.17a. Thus, semiclassically, the +PF series is expected to dominate

the oscillatory structure at low fields and high voltages, entirely

because a greater fraction of +kF tunnelling electrons complete whole

skipping orbits in the n+ contact before scattering.

-+Figures 5.9a and 5.15a show that the mean values Nn defined

in equation (5.55) vary slowly with n and are of comparable magnitude

for V ,. 25 mV and V - 125 mV. It follows from equation (5.55) that

the voltage-dependence of 1-/1+m n can be explained physically by

considering that of the ratios Drn(Brn)/D~(B~), Fm(Brn)/Fn(B~) and

Compari son of Figure 5.9b wi th 5.' 5b

and 5.11a with 5.17a shows that for both voltages, Dm(Bm)/Dn(B~) ;;

1/3 and Fm(Bm)/Fn(B~) ;; 1/2. Consequently, 1m/I~ ~ Tm(Bm)/6Tn(B~) is

expected to increase from approximately one third to uni ty as the

voltage is increased from V ,. 25 mV to 125 mV, and the transmission

coefficient ratio Tm(Bm ~ B~)/Tn(B~) rises from ;2 to ;6, as shown in

Figures 5.11b and 5.17b. These predicted mean current ratios are in

reasonable agreement with the calculated values shown in Figure 5.20

and 5.22.

Provided the mean magnetic potential energy in the barrier

region experienced by ±kF electrons tunnelling at adjacent

resonant fields B~ ; Bm, is small compared with the mean zero-field

barrier height Eo measured from the Fermi level of the 2DEG,

expansion of the exponential term in equation (1.53) predicts

1 +
'"exp ([(2m*)2b/flj[(E

B MAG (5.59)
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The voltage-dependence of this ratio can be understood by

comparing Figures 5.25a and 5.25b which show the conduction band and
magnetic potential energy profiles experienced by ±kF electrons
tunnelling when (a) V - 25 mV and B = 1.3 T ; Bo+ ~ B,- and (b) V -
125 mV and B - 4.1 T = Bo+ ; B~-. For both voltages X+ < X- so that
the mean total effective barrier height is higher for +kF electrons
(EMAG+ Eo > EMAG+ Eo) which therefore have lower transmission
coefficients as shown in Figures 5.11b and 5.17b. However, it is
clear from Figure 5.25 that the mean zero-field barrier height Eo
decreases with increasing voltage. Consequently, at higher voltages,
a given difference EMAG - EMAG between the mean magnetic potential
energies (MPE) experienced by ±kF electrons produces a greater
percentage difference in the total effective barrier heights, thereby
increasing the transmission coefficient ratio (5.59).

Since the resonant fields generally increase with voltage

(see Figures 5.6, 5.1 and 5.8), the mean MPE difference EMAG - EMAG
also increases as shown in Figure 5.25, thus further enhancing the
transmission coefficient ratio (5.59). This ratio, and from equation
(5.55), the mean current ratio Im/f~, are therefore expected to
increase continuously with voltage, thereby increasing the ratio

<dI/dB>m/<dl/dB>~ of adjacent ±PF extrema predicted by equation
(5.55). For precisely this reason, no +PF oscillatory structure is
observed in the l(B) characteristics and derivatives of GaAs/(AlGa)As
single-barrier structures measured at comparatively high (V ~ 240 mV)
forward-bias voltages (see Chapter 6).
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5.13.2 The effect of increasing voltage on the field-dependence

of the ±PF oscillatory amplitudes

As explained in Section 5.10.5, the ±kF skipping frequencies
+ +Fn(Bii) increase with Er"nbecause the skipping arclength decreases,

whilst the orbital speed remains the same. By contrast, the

transmission coefficients generally decrease as the mean
- +magnetic potential energy in the barrier EMAG, and consequently the

effective barrier height both increase with Bn±.

At higher voltages, a given change - +in EMAG produces a
greater fractional change in the total effective barrier height, and

+consequently in Tn(Bi1). Figure 5.17b shows that in contrast to the
lower voltage V - 25 mV (see Sect ion 5.10.4), when V - 125 mV, the
values of Tn(Bri) decrease with Sri at approximately the same rate as
the skipping frequencies Fn(Bri) increase. Consequently the

transition rates Wn(B~) « Tn(B~)Fn(B~) vary only slowly with B~, as
shown in Figure 5.16. Since the values of Dn(Bri) also vary slowly
with B~ (Figure 5.15b) equation (5.55) predicts that the extremal
values <dI/dB>~ will be almost identical for all n, The
strengthening of the +PF series apparent with increasing field in
Figures 5.22 and 5.24a is therefore entirely due to reduced smoothing
of the more widely-spaced +PF oscillations at higher fields.
Physically, this simulates the effect of increased separation between
adjacent interfacial Landau levels at higher fields which, for large

n, corresponds to the higher skipping frequencies Fn(Bii) shown in

Figure 5.17a. Semiclassically then, the +PF oscillatory structure
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becomes more pronounced at higher fields as a greater fraction of the

tunnelling electrons complete whole skipping orbits before

scattering.

Figure 5.11a shows that in general, the -kF skipping

frequencies Fn(Bri) increase with Bn at a faster rate than the
decreasing transmission coefficients Fn(Bn). Consequently, in
general, the -kF transition rates Wn(Bn) ~ Tn(Bn) Fn(Bn) also
increase with field as shown in Figure 5.16. The -PF oscillatory
amplitudes are therefore expected to increase with field, as shown in
Figure 5.22, partly owing to the increased minima <dI/dB)i1 ~ Wn(Bri) ~

Fn(Bri) predicted by equation (5.55), and partly because as Fn(Bri)
rises, a greater fraction of the tunnelling electrons complete whole
skipping orbits before scattering, thereby giving rise to more
pronounced oscillatory structure.

It should be noted that the transmission coefficient falls so
rapidly at the highest -PF resonant fields (To(Bo-) ; 0.5 T1 (81-) in
Figure 5.17b) that the transition rate also falls (Wo(Bo-) < W1(B1-)
in Figure 5.16). Despite the increased fraction of tunnelling
electrons which, at the higher field, complete whole skipping orbits
before scattering (Fo(Bo-) > F1(B1-», the reduced minimum value
l<dI/dB)o-1 < l<dI/dB>1-1 predicted by equation (5.55) as a
consequence of the lower transition rate Wo(Bo-), is reflected in the

diminished n • 0 - PF OSCillatory amplitude, clearly revealed in

Figure 5.22. Weakening of the -PF series as the decreasing

transmission coefficients Tn(Bn-) dominate the transition rate at
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high voltages and magnetic fields, is apparent in the second
derivative curve 5.1 measured for V-lOO mV, and is also clearly
reproduced in the derivatives 5.21a, 5.22 and 5.24 calculated for V -
100 mV and V z 125 mV.

5.13.3 The effect of increasing voltage on the relative strengths
of the ±PF series

Comparison of Figures 5.11b and 5.17b shows that for given n,

Tn(B) increases more rapidly with field at higher voltages. The
barrier transmission increases as the orbit centre X k moves closer

y

to the barrier with increasing field, thereby reducing the mean
magnetic potential energy in the barrier region and the total
effective barrier height (see Section 5.10.4). At higher voltages,
the mean zero-field barrier height is lower (see Figure 5.25) so that
a given reduct ion in mean magnetic potent ial energy produces a
greater fractional reduction in the total effective barrier height,
which results in a more dramatic increase in the transmission
coefficient Tn(B). The rapid increase of Tn(B) for V - 125 mV is
reflected in the shapes of the current contributions In(B) which are
less symmetrical than for lower voltages (Figures 5.6 and 5.8).

Equation (5.56) predicts that since Dn(Bn)/Dn(B~) ;; 1/3 and

Fn(Bn)/Fn(B~) ;; 2 over the voltage range 25 mV + 125 mV (Figures

5.9b, 5.1la, 5.15b and 5.17a), the ratio of ±PF extrema arising from

the opening and closure of the nth tunnelling channel is
approximately
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<dI/dB>+ n
(5.60)

<dl/dB>- n

It follows that at higher voltages. the increased transmission

coefficient ratio Tn(Bn)/Tn(Bri) will cause the +PF series of

oscillatory structure to diminish relative to the -PF' Such

weakening of the +PF series wi th increasing voltage is visible in

both the measured deri vati ves 5.1 and 5.3 and the corresponding

simulated curves shown in Figures 5.20.5.21.5.22.5.23 and 5.24.

5.14 Summary

The current I which flows as a result of tunnelling

transitions from perturbed 2DEG states in the LH (emitter) contact

into magneto-quantised interfacial states in the RH (collector)

contact of asymmetrically-doped (InGa)As/lnP Single-barrier

structures under forward bias and wi th B 1 .!.. has been calculated

within the transfer-Hamiltonian formalism. In this transverse field

geometry. the requirements of total energy and transverse wavevector

conservation gives rise to two distinct (±PF) series of oscillations

in the simulated I(B) characteristics and derivatives. These
±oscillations occur at the resonant fields Bn for which 2DEG electrons

wi th transverse momentum mL* <vy> - Py' - ±1'lkFtunnel into the nth

interfac ial state. Good agreement is obt ained between the me asured

fundamental fields BF±(V), equal to the inverse periodicities of the
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±PF series plotted as a function of liB, and theoretical values

calculated using WKBinterfacial Landau levels, in the limit of an

infinite conduction band offset, and taking the nonparabolicity

parameter of (InGa)As to be Cl .. 1.3 eV-1• The fundamental fields

predicted for ±kF transi tions into bulk Landau levels cannot be

reconciled with the data for any reasonable value of a. This is not

surprising, however, since the Fermi energy of the 2DEG is

insufficient to allow such transitions into bulk Landau states.

The simulated 1(B) characteristics reproduce all the

qualitative features of the measured curves. In particular,

quenching of the current is predicted for field values B ~ Bo-{V),

above which there are no intercep ts in the E-ky plane between the

occupied 2DEGand interfacial Landau state dispersion curves. The

predicted values of Bo-(V) are, however, generally lower than

observed owing to inaccuracies of the WKBinterfacial Landau levels

in the quantum limi t n - 0, and also, at high fields, in the

perturbation calculation of the 2DEGenergy levels.

Approximate analytical expressions can be obtained for the

extremal values of magneto-current deri vat1 ves (dI Id8), calculated

us ing the same averaging procedure as the measured curves. These

+extremal values (dl/dB)n are directly proportional to the density of

states factors Dn(B~), interfacial skipping frequencies Fn{Bn1 and
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barrier transmission coefficients Tn{Bn1, of 2DEG electrons wi th

ky' (n) Thus. the field-dependence of the oscillatory

amplitudes gives information about the effect of the field on

electronic motion in the n+ layer and also on the barrier

transmission coefficient.

High skipping frequencies correspond, for large n, to widely

spaced, well resolved. interfac ial Landau leve ls. The averaging

procedure simulates the effect of level broadening by suppressing
+ +high frequency oscillatory structure (Bn - Bil-l small) originating

from closely spaced interfacial Landau levels.

Both the ±PF series of oscillations are visible in the

simulated derivati ves over clearly separated field ranges, in good

agreement with experiment. The +PF series dominates the oscillatory

structure at low fields (B ~ B 0+) because the difference in orb it

centre positions, X+ < X_. ensures that the skipping frequency Fn{B~)

of +kF interfacial electrons exceeds that of -kF electrons tunnelling

at a comparable magnetic field Bm ; B~. Since Fn(B~ ; Bm) > Fm{Bffi),

a greater fraction of the +kF electrons complete whole cyclotron

orbits before scatter ing, thereby giving rise to more pronounced

oscillatory structure. In addition. the absolute change ~v, in the

mean y-component of velocity is smaller for the +kF electrons. The

density of states factor Dn(B) a: AV-1 is therefore higher for +kF

transitions, which, from equation (5.55), also contributes to the

dominance of the +PF series at low fields.
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In general, both the simulated and measured ±PF series of
oscillations strengthen with increasing field. This trend reflects

+that of the skipping frequencies Fn(Bn), which increase with field as
the skipping arclength contracts whilst the orbital speed remains the
same. At low voltages, the ±kF skipping frequencies rise so rapidly
with field that the transition rates, and consequently the extremal

+values <dI/dB>; also increase.

In addition, a greater fraction of the tunnelling electrons
complete whole skipping orbits before scattering, thereby giving rise
to more pronounced oscillatory structure.

At higher voltages however, the magnetic potential makes a
greater percentage contribution to the total effective barrier
height, so that the rapid decrease in barrier transmission which
occurs at high fields, is reflected in reduced transition rates and

ultimately in diminished -PF oscillatory amplitudes of both the
measured and simulated derivatives.

The transmission coefficient ratio Tm(Bm)/Tn(B~) of ±kF
electrons tunnelling at adjacent resonant fields Bn ~ Bm, increases
with voltage as the difference in mean magnetic potential experienced

by the ±kF electrons produces a greater percentage difference in the
total effective barrier heights. This effect gives rise to visible

weakening of both the simulated and measured +PF oscillations with
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increasing voltage, and is central to the explanat ion, given in

Chapter 6, for the absence of +PF structure in the I(B)
characteristics of similar GaAs/(AlGa)As structures, measured at high
voltages (V ~ 200 mV).

Gueret et al. (1987) accurately described transverse magneto-
tunnelling phenomena in devices containing low and wide barriers by
considering the effect of the field on the barrier height and
transmission coefficient only.

Within this approximation, equation (5.56) predicts that both
the ±PF oscillatory amplitudes will decrease with increasing field,
as the mean magnetic potential energy in the barrier region
increases, and the transmission coefficient falls. In addition, the
-kF electrons have higher transmission coeffiCients, and are
therefore expected to give rise to dominant OSCillatory structure at

low fields (~B:). ThUS, the measurements of Snell et al. (1987) on
structures containing a high and narrow barrier can only be explained
if the effect of the magnetic field on both the effective barrier
height, and on the amplitudes ~n(O+) of the magneto-quantised
wavefunctions (or equivalently the semiclassical skipping fre-
quencies), is considered (Fromhold et al., 1990).
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CHAPTER SIX

TRANSVERSE MAGNETOTUNNELLING IN ASYMMETRICALLY-DOPED
GaAs/(AIGa)As SINGLE-BARRIER HETEROSTRUCTURES

6.1 Introduction

The first experimental investigation of transverse magneto-
tunnelling in asymmetrically-doped single-barrier structures was

reported by Hickmott (1987) for GaAs/(Alo.37Gao.6,)As-based samples.
Under forward-bias, a single series of oscillatory structure is
observed in both the I(V) (Hickmott, 1987) and I(B) (Hickmott, 1988)

characteristics, and more clearly in their derivatives. Hickmott

(1987) attributed the origin of these oscillations to electrons at
the Fermi level in the 2DEG tunnelling into bulk Landau levels in the
n" collector, although the oscillatory periodicities predicted by
this model are in poor agreement with experiment (see Section 6.5.2)

However, in Section 6.4, the observation of only one (-PF)
series of oscillatory structure in the I(B} curves and derivatives
is shown to be fully consistent with the model of tunnelling into
interfacial Landau states developed in Chapter 5. The absence of the

+PF series of oscillations is due to the comparatively high voltages
(V ;;:200 mV) required to obtain a measurable tunnel current in the

GaAsl (AlGa)As structures, which contain higher and wider potential

barriers than the (InGa)As/lnP samples considered in Chapter 5.
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In Section 6.5.2, the periodicity of the single (-PF) series

of oscillations revealed in the simulated LnI(V) characteristics of

the GaAsl (A1Ga)As structures is also shown to be in good agreement

with experiment.

6.2 Sample Construction

The composition of the GaAs/(A1Ga)As single-barrier

structures is described generally in Chapter 2 and is similar to that

of the (InGa)As/lnP samples specified in Section 5.2.

The nominal doping concentrat ions of the n" emitter and n"

collector contacts are 1.7 x 1021 m-3 and 9 x 1023 m-3 respectively.

Taking the conduction band-edge effective mass and non-

parabolicity factor of GaAs to be m*L = 0.067 mo and a = 0.834 eV-1

respectively (Heiblum et al., 1987), the Fermi energy of the 3DEG

formed in the n+ contact is, from equation (2.1), EFR = 44 meV. The
owidth of the (A1Ga)As barrier layer is 230 A and the conduction band

offset is approximately 300 meV (Hickmott et al., 1985). The

conduction band-edge mass of (A1Ga)As is taken to be m*B = 0.1 mo.

For forward-bias voltages V ~ 100 mV, the measured

differential capacitance per unit area is approximately constant and

equal to C = 2.93 X 10-3 F m-2 (Hickmott, 1988).
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The 2DEGsheet electron concentration ns(V) is obtained using

this value of C in equation (2.27), together with the measured

flat-band voltage VFB = 30 mV (Hickmott, 1988), which reveals the

existence of negative space charge in the barrier region. The

conduction band profile Ec(x) is determined for given ns(V) by

sol ving Poisson's equat ion throughout the devi ce, as descri bed in

Chapter 2.

It should be noted that owing to the higher applied voltages,

band bending in the n+ layer of the GaAs/(A1Ga)As structures is

likely to be more pronounced than 1n the (InGa)As/InP structures.

This band bending is further enhanced by the existence of negative

space charge 1n the (A1Ga)As barrier region (Hlckmott, 1988), which

increases the electric field and electrostatic potential energy at

the RH barrier interface. By contrast, positive space charge in the

InP barriers reduces band bending in the n+ layer. Thus, the

interfacial Landau levels and associated wavefunctions. whi ch are

calculated assuming Ec(x) = 0 throughout the n+ layer, are expected

to be less accurate for the GaAs/(A1Ga)As structures. It follows

that the calculated tunnel current, which depends implicitly on the

interfacial Landau levels, will also be less accurate for the

GaAs/(A1Ga)As structures.
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6.3 Features of the Measured I(B) and d1I/dB1 Curves

Figure 6.1 shows normalised l(B) characteristics of the
GaAs/(AlGa)As structures measured for a range of forward-bias
voltages. Just as for the (InGa)As/lnP samples, the tunnel current
falls rapidly, almost to zero, with increasing magnetic field. For B
'= 1 T, weak oscillatory structure is observed superimposed on this
fall off, which is more clearly revealed in the second derivative

curves shown in Figure 6.2. Only one series of oscillations is

present, which is notably weaker than for the (InGa)As/lnP structures

(Figures 5.1 and 5.3) •

6.4 Calculation of the Current-field Characteristics and
Interpretation of the Oscillatory Structure revealed in the
Simulated Derivative Curves

6.4.1 Simulation of the 1(B) curves and derivatives

As for the (lnGa)As/lnP samples, tunnelling into bulk Landau

levels does not occur because the electrons in the 2DEG have
insuff icient transverse momentum (small kF). Thisis easily proven
by showing that the device parameters given in Section 6.2 lead to

violation of inequality (5.22).

Equation (5.11) gives the current flowing in transitions from

the 2DEG into interfacial Landau states in the n+ collector. Care
must be taken when evaluating this current for the comparatively high
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bias voltages used in the experiments of Hickmott since, for V ~ 260

mV, Ec(O-) < eV + EFR so that electrons close to the Fermi level of

the 2DEG may tunnel into travelling wave states above the top RHS of

the potential barrier (Fowler and Nordheim, 1928). To avoid problems

associated wi th imaginary values of the decay function )..ln1(0-) in

this high-voltage regime, the interfacial Landau levels are

calculated from equation (4.43) within the infinite barrier

approximation )..ln1(0-)~ ~, which is reasonably accurate for large n.

In addition, the squared transition matrix elements IMn(ky)12

are calculated for V ~ 260 mV by assuming that the electrons tunnel

through a rectangular potential barrier of width b + ~ where ~ is the

classical turning point in the barrier region given by

(6.1)

The (constant) effecti ve barr ier hei ght is taken to be the

mean potential energy between x = -b and x = i. This simplification

retains the essential physics and avoids problems arising from

otherwise divergent WKB wavefunctions (4.32).

Figure 6.3 shows theoretical 1(B) curves calculated from

equation (5.11) for a variety of forward-bias voltages. The shapes

of these curves are in good qualitative agreement with the measured

characteristics shown in Figure 6.1. The superimposed oscillatory
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structure is emphasised in the second deri vati ve curves shown in

Figure 6.4. These derivatives are calculated following the averaging

procedure described in Section 5.11.2, taking bB = 0.2 T.

The qualitative field-dependence of the extremal values of

(d2I/dB2) reflects that of the averaged first derivative curve

(dIldB), shown for V = 240 mV in Figure 6.5, together with the

individual current contributions In(B). This first derivative is

calculated using exact interfacial Landau levels and transition

matrix elements (5.38), since V = 240 mV is below the threshold for

Fowler-Nordheim tunnelling.

Each current contribution In(B) increases dramatically over

the field range Bn+ s B s Bn-, reflecting the behaviour of the

corresponding transmission coefficient Tn(B) shown for V = 240 mV in

Figure 6.6b.

As explained in Section 5.13.3, the application of a high

forward-bias voltage, reduces the mean zero-field barrier height.

Consequently, the reduction in mean magnetic potential in the barrier

region which occurs as the orbi t centre moves towards the barri er

with increasing field) Bn+ (see Section 5.10.4), produces a large

percentage reduction in the total effective barrier height, causing

the dramatic increase of both Tn(B) and In(B).
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Figure 6.4 Simulated <d2I/d82) characteristics of the GaAsf(AIGa)As
single-barrier structures, calculated for several
forward-bias voltages taking a· 1.1 eV-1• Only one
(-PF) series of oscillations is revealed in each curve.
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Figure 6.5 (a) Simulated (dI/dB) characteristic of the GaAs/(A1Ga)As
single-barrier structures calculated for V • 240 mV,
taking a = 1.1 eV-1 and ~B ~ 0.2 T. Only one (-PF)
series of oscillatory structure is revealed. (b)
Individual current contributions In(B), n = 0, 1, ..• 21,
calculated over_the !ield ranges Bn+ ~ B ~ Bn-. The mean
current values In+ (In-) are indicated by crosses (open
circles).
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Figure 6.6 (a) Semiclassical skipping frequencies Fn(B), and (b)
Barrier transmission coefficients Tn(B), n D 0, 1,
21, of the GaAs/(A1Ga)As structures calculated for V -
240 mV over the field ranges Bn+ ~ B ~ Bn-.
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6.4.2 Verification of the predicted correlation between the
-PF extrema <dl/dB>n- and the mean current values In-

It is clear from Figure 6.5 that the oscillatory structure
in (dI/dB) originates from the closure of tunnelling channels ,which

gives rise to a series of -PF minima whenever B = Bn-.

Provided the separation between adjacent resonant fields
greatly exceeds the averaging bin width ~B = 0.2 T (which for 240 mV
is the case for B ;;:7 T),equation (5.54) predicts direct pro-
portionality between the extremal values (dI/dB>n± of (dI/dB) and the

corresponding mean values In± of In(B), evaluated over the field
ranges Bn± ~ Bn± ± ~B.

The predicted correlation (dI/dB>n-~ In- is clearly revealed
in Figure 6.5, with both sets of values attaining a maximum for B = 8

T. Below 8 T, the oscillatory ampl itudes in (dI/dB> decrease with
field, partly reflecting the diminished values of In-, and also
partly because reduced separation between adjacent -PF resonant
fields leads to increased smoothing.

Owing to the slow increase of each current contribution In(B)
with increasing field just above Bn+, the values of I~ are much lower

than 1m, for all B ~ Bo+. Equation (5.54) therefore predicts that +PF
oscillatory maxima in (dI/dB>, associated with the opening of new

tunnelling channels, will be small compared with -PF minima resulting
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from channel closure. In fact, no +PF oscillatory structure is
present in the simulated <dI/dB> curve 6.5a, in good agreement with

experiment.

6.4.3 Physical explanation for the absence of +PF oscillations

The variation of In±, and consequently of the extremal values
<dI/dB>n±' is most easily understood in physical terms by considering
the factors Nn(B) = (kF2 - ky'2(n»~. Dn(B) = 1~2ky'/m*L - dEn/dkyl-l
and Wn(B) = 2nIMn(ky)12/~ of In(B), which are shown for V • 240 mV in
Figures 6.7 and 6.8• The normalised transition rates Wn(B) are
proportional to the product of the barrier transmission coefficients

Tn(B) and the interfacial state skipping frequencies Fn(B) which are
shown for V = 240 mV in Figure 6.6. The qualitative features of each
set of curves were explained in Section 5.10 with reference to the
(InGa)As/lnP structures.

Equation (5.55) predicts that the magnitudes of In± and
<dI/dB>n± are proportional to the product of the mean values Nn±, the
density of states factors Dn(Bn±) and the normalised transition rates
Wn(Bn±) of 2DEG electrons with transverse momentum Py' - ± PF. Since
the values of Nn± shown in Figure 6.7a vary slowly with n, this
relation may be written

(dIi dB)± a: I±n n
(6.2)
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Figure 6.7b shows that for adjacent resonant fields Bn+ ;

Bm-, DnCBn+) ~ 2Dm CBm-), the difference being primarily due to the

opposite slopes at either extremity of the 2DEG parabola. This

dispari ty is, however, small compared to that of the corresponding

transition r at.e s : Figure 6.8 shows that Wm{Bm-) » Wn{Bn+) for all

Bn+ ; Bm-. Equation (6.2) therefore predicts Im- » In+, as observed

in Figure 6.5, and also

+(dI/dB> »(dI/dB>m n (6.3)

so that the -PF series is expected to totally dominate the

oscillatory structure.

By contrast, in the (InGa)As/lnP structures the ±kF

transition rates are of comparable magni tude (see Figures 5.10 and

5.16). Thus, in these samples, the +PF series dominates the

oscillatory structure at low fields owing to the favourable densi ty

Comparison of Figures 5.11 a, 5. 17a and 6.6a reveals that

GaAs/(AIGa)As samples, independent of voltage.

transition rates is higher for the GaAs/(AlGa)As structures simply
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because the transmission coefficient ratio Tm(Bm-)/Tn(Bn+) is also
higher (see Figures 5.11b, 5.17b and 6.6b). This ratio is so much
higher for the GaAs/(A1Ga)As samples because they are measured at
higher voltages. Consequently, the mean zero-field barrier height is
lower, so that the difference between the mean magnetic potential

-±energies EMAG experienced by ±kF electrons tunnelling at comparable
magnetic fields produces a greater fractional difference in the total
effective barrier heights and transmission coefficients (see Section

5.13.1).

This can be seen by comparing the conduction band and
magnetic potential energy profiles experienced by ±kF electrons
tunnelling at adjacent resonant fields in the (InGa)As/lnP structures
(Figure 5.25) and GaAs/(A1Ga)As structures (Figure 6.9). The mean
zero-field barrier height Eo in the (InGa)As/lnP structures is ; 190
meV for V - 25 mV and 120 meV for V 125 mV, and in the

GaAs/(A1Ga)As structures is : lOO meV for V - 240 mV. In addition,
the resonant fields generally increase with voltage, so that for the
(InGa)As/lnP structures E+MAG -EMAG ; 25 meV when V - 25 mV and ;80
meV when V - 125 mV. For the GaAs/(A1Ga)As structures EMAG -EMAG ;
110 meV when V - 240 mV. Thus, equatIon (5.59) predicts that
Tm(Bm-)/Tn(Bn+) will be much higher for the GaAs/(A1Ga)As structures.

The thicker barrier (230 ~ compared with 170 ~), and higher effective

mass mB* (0.1 mo compared with 0.011 mo) of the GaAs/(A1Ga)As
structures also contributes to the increased transmission coefficient

ratio (5.59). The absence of +PF oscillations 1n the I(B) curves of

the GaAs/(A1Ga)As structures is therefore partly due to unfavourable
barrier parameters.
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For voltages V ~ 50 mV, the ±kF transmission coefficients do
not dominate the transition rates and simulated derivatives do reveal

the +PF series of oscillations (Fromhold et a1., 1990a). However,
this oscillatory structure has not yet been observed in GaAs/(AlGa)As
devices because, owing to the high and wide barriers, the current for
V ~ 100 mV is below the experimental noise level (Hickmott, 1987).

6.4.4 Predicted field-dependence of the -PF oscillatory amplitudes

Figure 6.7b shows that the density of states factors Dn(Bn-)

vary slowly with n. Equation (6.2) therefore predicts direct
proportionality between the oscillatory minima (dl/dB>n- and the -kF
transition rates Wn (Bn-) • This correlation is clearly revealed in
Figures 6.5a and 6.8, with both sets of values reaching a maximum at
B ;:7 T.

For fields below 5 T, no oscillatory structure is present in
either the simulated or measured derivatives. This is due to
conduction band nonparabolici ty in the n" contact, which leads to

closely spaced, and therefore poorly resolved interfacial Landau
levels at the high injection energies of - 300 meV.

Figure 6.6b shows that the -kF transmission coefficients
Tn(Bn-) vary slowly over the field range 5 T :;; B s 7 T. This is
because for this range of field, the orbit centre X lies within theky
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barrier (see Section 5.10.4) so that the magnetic potential has
little effect on the total effective barrier height and transmission
coefficient. Over this field range the transition rates Wn(Bn-) and,
from equation (6.2), the oscillatory minima <dl/dB>n shown in Figure
6.5 therefore reflect the variation of the skipping frequencies
Fn(Bn-) which, as shown in Figure 6.6a, increase with field owing to
contraction of the orbital radius (see Section 5.10.5)' Above 1 T,
Figures 6.6 and 6.8 show that the variation of the transition rates
Wn(Bn-) is dominated by the rapidly decreasing transmission
coefficients, so that the osc illatory minima (dl/dB>n also decrease
as shown in Figure 6.5.

Although the observed oscillatory structure does not weaken
at high fields, as in the simulated derivatives, the predicted
threshold fields ~ 5 T, below which no oscillations are observed are
in reasonable agreement with the measured values.

6.4.5 Comparison with other models

Brey et al. (1988a, 1988b), Schulz and Tejedor (1989), and
Platero et al. (1990) have also used a transfer-Hamiltonian approach

to calculate the I(B) characteristics of the GaAs/(AlGa)As structures
measured by Hickmott.

These simulations are based on a calculation of the energy

levels En (ky) of the entire structure, rather than the left- and

right-hand sUbsystems. However, self-conSistent calculation of these
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energy levels, t ak l ng into account electrostatic screening by the

2DEG was not attempted. Such screening effects are more easily

incorporated in calculations of separate left-hand eigenvalues by

using the Fang-Howard wavefunction to model the potential variation

throughout the accumulation layer (see Section 4.2).

Allowed transitions between degenerate left- and right-hand

eigenstates wi th the same ky value are identified by looking for

intercepts between the corresponding dispersion curves, as described

in Section 5.4. Owing to the repulsion of degenerate levels (see,

for example, Merzbache r , 1970), these intercepts appear as anti-

crossings in the E-ky relation of the whole structure. Each anti-

cross ing corresponds to an allowed tunnelling channel since the

ampli tude of the associated wavefunctions is appreciable on both

sides of the barrier, (Helm et al., 1989, Peeters et al., 1989).

Theoretical I(B) and d2I/dB2 curves calculated for V • 400 mV

by Schulz and t ejecor (1989) reveal a single series of oscUlatory

structure, periodic in l/B, over the field range 10 T s B s 18 T.

This structure or iginates as ant i-cross ings in the energy spectrum

En<ky) of the entire system rise above the Fermi level in the emitter

contact, with increasing field. These oscillations are thus

equivalent to the -PF series described in Section 6.4, which occur as

intercepts are lost from the -kF extremity of the 2DEG parabola.

However, owing to the neglect of nonparabol1ci ty in the n" contact,

and electrostatic screening by the 2DEGon the energy leve Is of the

system, the oscillatory periodicities predicted by Schulz and

Tejedor are not in good agreement wi th the measured values. In



202

addition, no explanation is given for the field-dependence of the
oscillatory amplitudes, which is more easily understood in physical
terms using the semiclassical model described in Chapters 5 and 6 of

this thesis.

6.5 Analysis of the Oscillatory Structure Observed in the
Forward-bias leV) Characteristics of GaAs/(AlGa)As Single-
barrier Structures in a Transverse Magnetic Field

6.5.1 Experimental data

In the previous section, the observation of only one series
of oscillatory structure in the l(B) and d21/dB2 characteristics of
GaAs/(AlGa)As single-barrier structures measured for V ~ 200 mV was

shown to be consistent with the model of tunnelling into interfacial
Landau states described in Chapter 5.

Hickmott (1987) also observed a single series of oscillations
in the current-voltage characteristics of these devices when a
uniform transverse magnetic field is applied.

Figure 6.10a shows the logarittun of the difference I(V,B)
-I(V,O) between the tunnel current measured for B - 13 T and B • 0 T,

as a function of applied foward bias. The first derivative of this

curve, shown in Figure 6.10b, clearly reveals a single series of
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oscillatory structure which becomes more closely spaced and decreases

in amplitude with increasing voltage.

The separation cVn = Vn - Vn-l between adjacent maxima in

this derivative is plotted in Figure 6.10c as a function of Vn-, and

for a variety of temperatures. The solid line gives the average

value of cVn at each Vn- and shows that the separation between

adjacent maxima falls almost linearly with increasing voltage.

6.5.2 Simulation of the leV) Characteristics

The voltage-dependence of the tunnel current (5.11) flowing

into interfacial Landau states arises from changes in the 2DEG and

interfacial Landau state dispersion curves, and consequently of the

allowed transverse wavevector components {ky(n)}.

Changing the voltage modifies the interfacial Landau state

wavefunctions through its influence on the electrostatic potential in

the barrier region. However, this has little effect on the

associated energy levels, particularly those with high n which, from

equation (4.43), are fairly insensitive to changes in barrier

penetration.

Both the highest (eV + EFR) and lowest (. Ebo) occupied 2DEG

levels increase almost linearly with voltage so that the 2DEG

parabola is shifted to higher energies in the E-ky plane. In
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addition, the mean stand-off distance 3ao, and consequently the mean

ky value k, = Be (b + 3ao)l1i of the occupied 2DEG states both
decrease with increasing voltage. It is easily seen from Figure 5.5
that shifting the occupied 2DEG states to higher energies and lower

ky values causes the -kF extremity of the 2DEG parabola to make
successive intersections with higher-index interfaci al Landau

dispersion curves, resulting in the opening of new conduction

channels whenever V ..Vn- and ky'(n) ..-kF.

As the voltage is raised above Vn-, the intersection with the
nth interfacial state dispersion curve moves towards the +kF

extremity of the 2DEG parabola, resulting in closure of the nth
tunnelling channel when V .. V +n and ky'(n) .. +kp , Thus, with
increasing voltage, the intersection points move through the 2DEG
parabola in the opposite direction as for increasing magnetic field.

It can be shown, using a similar analysis to that given in
Appendix 1, that equation (5.11) predicts dI/dV + ±m whenever ky'(n)
= + kF and V s Vn+. Consequently the successive opening and closure
of tunnelling channels is expected to give rise to two sets of

oscillatory structure in dI/dV.

The broken curve in Figure 6.11a shows the natural logarithm

of the tunnel current I(V) calculated for B • 13 T from equat ion
(5.11), taking the nonparabolicity factor of the n+ GaAs layer to be

~ = 1.1 eV-l• This curve is not intended for direct comparison with

the experimental curve of Figure 6.10a which shows the logarithm of
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Figure 6.11 (a) Broken curve shows the natural logarithm of the
tunnel current LnI calculated as a function of applied
voltage when ~ 1!- 13 T, taking a - 1.1 eV-1
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solid curves show the natural logarithm of the
individual current contributions In(V) n - 0, " ••• 23,
over the field ranges Vn- s V s Vn+. (b) Derivative of
LnI(V) showing the single (-PF) series of oscillatory
maxima which occur when V • Vn-.
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the difference between the tunnel current measured in finite and zero

magnetic fields. The solid curves in Figure 6.11a show the
logarithms of the individual current contributions rn(V) for Vn- ~ V

s Vn+.

In the Fowler-Nordheim tunnelling regime (V ~ 260 mV), the
current is calculated within the approximations described in Section
6.4.1, to avoid problems arising from imaginary values of the decay

function ~nl(O-).

Oscillatory structure in the Ln leV) curve is observed at the

voltages Vn- for which 2DEG electrons with transverse momentum Py' -
-PF tunnel into the nth interfacial Landau state. This structure is
more clearly revealed in the first derivative <dLnI(V)/dV> shown in
Figure 6.11b, which is calculated following the averaging procedure
described in Section 5.11.2, using an averaging bin width 6V - 5 mV.

No oscillatory structure associated with the closure of
tunnell ing channels 1e observed in either the LnI (V) curve or its
derivative.

It was shown in Section 6.4.3 that at h1gh applied biasses,
the transition rates from the 2DEG into interfacial Landau states
depend mainly on the corresponding transmi ssion coeff icients,
determined by the magnetic potential energy in the barrier region.

For given voltage and field, this magnetic potential energy depends

only on the transverse wavevector component ky(n) of the tunnelling
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electrons, which determines the orbi t centre position. Electrons

with the smallest positive value of ky(n) have orbi t centres X k •
Y

~ky(n)/Be which lie closest to the potential barrier, and therefore
have the highest transmission coefficient. At high biasses, these
electrons also have the fastest transition rates and therefore
dominate the tunnel current. Figure 6.11a shows that for given V,
the maximum current contribution arises from transitions into the
highest-index interfacial state which, from Figure 5.5 is accessed by
2DEG electrons with the lowest of the allowed wavevector components

When V is just above Vi-' the lowest value of {ky(n)} 1s
ky(1) ; k, - kF so that the current contribution Ii(V) due to the
newly-opened ith tunnelling channel, soon dominates the total tunnel
current as shown in Figure 6.11a. Consequently, the opening of new
channels produces visible -PF oscillatory structure in LnI(V) and its
derivative.

As the voltage is increased from Vi-' ky(i) also increases so
that the orbit centre • -11ky(1)/Be moves further left, thereby
raising the magnetic potential energy in the barrier region and the
total effective barrier height. This increase is so large that
despite the increased electrostatic trimming of the potential
barrier, the value of Ln Ii(V) close to Vi+ 1s smaller than that
close to Vi-.
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As the voltage is raised from Vi- to Vi+' additional higher-
index tunnelling channels are opened, which are accessed by 2DEG
electrons with lower values of ky(n), and therefore dominate the
current. Consequently, when V reaches Vi+' 2DEG electrons tunnelling
into the ith interfacial Landau state contribute only a small
fraction of the total current, and closure of the channel has no
visible effect on either LnI or its derivative.

Weakening of the oscillatory structure in d(LnI)/dV, is
clearly visible with increasing voltage '= 330 mV in Figure 6.11b.
This is due to nonparabolicity in the n" contact which causes the
density of interfacial Landau levels to increase with energy.
Consequently, at higher voltages, more tunnelling channels are open,
as shown in Figure 6.11a, so that the separation between the allowed
wavevector components {ky(n)} is reduced. It follows that the
difference between the orbit centre positions and transition rates of
electrons tunnelling into the nth and n-lth interfacial states is
also reduced. Because the number of open tunnelling channels
increases with voltage and the difference between the transition
rates into higher-index channels is reduced, the highest-index

current contribution is a smaller fraction of the total current. This
can be seen from Figure 6.11a which shows that the difference between
the logarithm of the total tunnel current and that of the highest-
index contribution increases with voltage. At higher voltages the
opening of new tunnelling channels therefore produces a smaller

fractional increase in the total current so that the oscillatory

'ripples' in LnI become less pronounced leading to diminished
oscillatory amplitudes in d(LnI)/dV.
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The solid curve in Figure 6.12 shows the voltage-dependence

of the separation ~Vn between adjacent maxima in the first derivative
curve dLnl/dV. The reduction in ~Vn with increasing voltage is
primarily due to nonparabolicity in the n+ collector, which reduces
the energy separation between high-lying interfacial Landau levels.

Taking the nonparabolicity factor of GaAs to be a • 1.1 eV-1
,

which is comparable to that measured by Helblum et ale (1987). the
predicted values of ~Vn lie within the experimental limits over the
entire voltage range. Similar results were obtained by Sheard et al.
(1988), but the use of a voltage-independent stand-off distance 3ao -

8 nm gave rise to discrepancies at bias voltages V :;;300 mV. It

should be noted that the values of ~Vn expected for tunnelling into
bulk Landau levels shown by the broken curve in Figure 6.12, cannot
be reconciled with the experimental data for any reasonable choice of

a.

6.6 Summary

The observation of a single series of oscillations in the
current-voltage and current-field characteristics of GaAsl (AlGa)As
Single-barrier structures is fully consistent with the model of
tunnelling into interfacial Landau states developed in Chapter 5.

Tunnelling into bulk Landau levels does not occur due to the low

Fermi momentum PF • ~kF of the 2DEG formed in these samples.
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The absence of any +PF oscillations is attributed to the high

applied bias voltages (240 mV - 100 mV). Over this range of bias,

the magnetic potential energy makes a large contribution to the total

effective barrier height and greatly affects the barrier transmission

coefficient. Owing to the different orbit centre positions X+ < X-,

the potential barrier experienced by 2DEG electrons with ky' (n) = +kF

is significantly higher than for -kF electrons tunnelling at similar

voltages and fields. Consequently, the transmission coefficients and

normalised transition rates are several orders of magnitude lower for

the +kF electrons (Figures 6.6b and 6.8). Equation (6.2) therefore

predicts that the -PF series will dominate the oscillatory structure

observed in <dr/dB) and <d2I/dB2>.

Taking the nonparabolicity factor of GaAs to be a • 1.1 eV-1,

the periodicities of the single series of -PF oscillations revealed

in both the simulated and measured dLnI/dV curves are in good

agreement over the entire voltage range.
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CHAPTER SEVEN

TRANSVERSE MAGNETOTUNNELLING IN WIDE-WELL
DOUBLE-BARRIER RESONANT-TUNNELLING STRUCTURES (DBRTS)

7.1 Introduction

In Chapters 5 and 6. oscillatory structure observed in the
current-field and current-voltage characteristics of asymmetrically-
doped single-barrier structures under forward-bias conditions and in
the presence of a transverse magnetic field. was shown to originate
from 2DEG electrons with transverse momentum Py' = ±PF tunnelling
into magneto-quantlsed interfacial states in the n+ contact.

In this geometry. similar oscillations have also been
observed in the I(B) and I(V) characteristics of GaAs/(AlGa)As DBRTS

o 0containing a wide quantum well (600 A - 1800 A) and a lightly n-doped
emitter contact in which a 2DEG is formed under bias (Eaves et al••
1988 j Alves et al.. 1989 j Heni ni et al.. 1989; Leadbeater et al.•
1989).

The origin of this oscillatory structure has been attributed
to electrons at the Fermi level in the 2DEG tunnelling into hybrid
magneto-electric states in the quantum well (Eaves et al., 1988).
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In this chapter, a model of transverse magnetotunnelling in

wide-well DBRTSis developed and used to calculate the current-field
o

characteristics and derivatives of the 1200 A well GaAs/(AlGa)As

DBRTSused in the experiments of Leadbeater et al. (1989).

Just as for the single-barr! er structures, the oscillatory

ampli tudes of the simulated <dI / dB) curve are shown to be

proporti onal to the transmi ssion coeffi ci ent of the LH (emi t ter)

barrier and the frequency of the semiclassical collisions between

each ±kF electron in the well and the emitter barrier.

Because most of the applied voltage is dropped across the

wide quantum well, the emitter-barri er transmi ssi on coefficient is

only weakly field-dependent (see Section 7.12.3). The field-

dependence of the oscillatory amplitudes therefore primarily reflects

that of the collision frequencies of electrons wi th the interfaces

bounding the well.

Consequently, these wide-well structures are ideal for

investigating the effect of the magnetic field on the semiclassical

dynamics of electrons in the well. In particular, the diminished

oscillatory ampli tudes observed in <dl/dS> and <d2l/dS2) over the

field range corresponding to the transi tion from traversing states

which interact with both barriers, to cycloidal skipping states which

interact with the emitter barrier only, are shown to originate from

the low collision frequencies characteristic of this transition

region.
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Previous theoretical studies of resonant tunnelling in a

transverse magnetic field have concentrated on explaining the shift

of the negati ve- differential- resistance regions to higher voltages,

which is generally observed with increasing field (Ben Amor et al.,

1988; England et al., 1989a, 1989b).

7.2 Device Construction

The DBRTS used in the experiments of Leadbeater et al. (1989)

were grown by molecular beam epitaxy on GaAs substrates heavily doped

with Si (electron carrier concentration n = 2 x 102
.. m-') and

comprised the following layers, in order of growth from the substrate

(i) a 2 ~m thick buffer layer of GaAs doped at n s 2 x 102 .. m-'; (ii)
o500 A of GaAS, n = 2 x 1022 m-'; (iii) a spacer layer of undoped

o 0GaAS, 2. = 25 Ai (iv) an undoped (Alo ...Gao.,)As barrier, b - 56 Ai (v)

an undoped GaAs quantum well of width w s 600 ~ or 1200 ~; (vi) an

undoped (Ai o...Gao. 6 )As barri er, o
b = 56 Ai (vii) a spacer layer of

o 0undoped GaAs, 2. = 25 A; (viii) 500 A of GaAs, n - 2 x 1022 m-'; (i x)

a 0.5 ~m top contact layer of GaAs, n = 2 x 102 .. m-'. Only the 1200
oA well structures are considered in this chapter.

The graded doping of the n-type contact layers and the

inclusion of undoped spacer layers adjacent to the barriers is

intended to improve the performance of the device by limiting dopant

diffusion into the barrier region. This reduces the elastic

scattering of tunnelling electrons by ionised impuri ties, which has
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been shown to have an adverse effect on the electrical properties of

resonant tunnelling devices (Leadbeater et al., 1989).

Taking the nonparabolicity parameter of GaAs to be a = 1 eV-1

(Heiblum et al., 1987), the Fermi energy (2.1) of the 3DEG formed in

the n+ contact regions, is EFR c 73 meV.

7.3 Nonequilibrium Electrostatics

Figure 7.1 shows the schematic conduction band profile of the

DBRTS used in the experiments of Leadbeater et a1. (1989), under an
applied voltage V. The co-ordinate system referred to throughout
this chapter is also shown.

A quasi-2DEG is formed in the accumulation layer. adjacent to
the emitter barrier. Most of the applied voltage is dropped across
the wide undoped well region so that the mean height of the emitter
barrier is approximately equal to the conduction band offset ~Ec' The
transmi ssion coefficient of this barrier 1e therefore suff iciently
low that the average lifetime (- ns) of an electron in the
accumulation layer, given by the reciprocal of the transi tion rate
into the well region, is long compared to the energy relaxation time
due to acoustic phonon emission (- 0.1 ns). Consequently, the 2DEG

is degenerate at liquid heliurntemperatures. Assuming, in addition,

that the conductivity of the lightly-doped emitter contact is

sufficiently large, a uniform Fermi level is maintained throughout
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the doped region of the emitter contact and the 2DEG, which are thus

in approximate equilibrium.

The doping concentration in the n" region of the emi tter

contact is sufficiently high that the Fermi level lies just above the

conduct ion band edge. There are thus a small number of extended

states in the emitter contact which contribute to the tunnel current.

However, the main contribution is due to the two-dimensional

electrons in the accumulation layer.

The electronic potential energy variation throughout the

accumulation layer is given, within the Fang-Howard approximation by

equation (2.15). Just as for the single-barrier structures, the 2DEG

sheet electron concentration is determined for each bias voltage from

the periodicity of maxima observed in the first derivatIve of the

tunnel current I, measured as a function of longi tudinal magnetic

field ~ II ! (see Section 2.5).

approximately (Leadbeater, 1990)

This sheet electron density is

Resonant tunnell ing occurs when the energi es of the bound

states in the emitter 2DEG and quantum well coi ncide (see Sect 10n

1.9). The associated buildup of negative space charge in the well

can modify the potential profile and, if sufficiently large, can give

rise to a bistable region in the I(V) characteristics (Sheard and
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Toombs, 1988). On resonance, the charge in the well is given by Qw =
QsTL/(TL + TR), where Qs is the 2DEG charge and TLI TR are the

transmission coefficients of the emitter and collector barriers.

Figure 7.1 shows that most of the voltage is dropped across the wide

well, so that the top of the collector barrier is approximately eV

below that of the emitter barrier. Hence TR » TL and Qw is small.

Provided that the space charge associated with ionised

impurities is also small, and neglecting the difference between the

dielectric constants of GaAs and (AlGa)As, the electric field!. =

-(ns e/£o£rL)~ created by the 2DEG, extends throughout both barriers,

the well region, and the undoped spacer layer adjacent to the

collector barrier. The electronic potential energy in these regions

is thus approximately

-b ~x ~ b + w + ~ (7.2)

where £rL is the dielectric constant of GaAs and ~ is the width of

the undoped spacer layer. The electric field F is screened by a

depletion region of length s in the lightly-doped part of the

collector contact (see Figure 7.1). The electronic potential energy

throughout this depletion region is
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-e¢(x) =

b + W + ~ ~ x ~ b + w + 1 + s

where NL is the n" donor dens! t y , and the small potential dropped

across the undepleted part of the n- region is neglected so that

-e~(b + w + ~ + s) = EFR.

The depletion length s is determined from the requirement

that the sum of the potentials dropped across the accumulation layer,

the barr! er and well regions, and the collector contact equals V +

The conduction band profile is related to the electrostatic

potential by

-e<p(x) x ( -b o < x ( w x > w + b

Ec(x) = (7.4)
-e~(x) + 6Eci -b :;; x :;; 0 w:;;x:;;w+b

where 6Ec ~ 330 meV is the conduction band offset.
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7.4 Features of the Measured Transverse Magneto-current

Figure 7.2 shows typical l(S) and d2I1dS2 curves (~ 1 f),
measured at T = 4.2 K for V = 600 mV. The current falls rapidly to

zero with increasing field. Three distinct series of oscUlations

are observed, labelled t+, t- and s-. None of the series is periodic

in 1/8, which would be the case for tunnelling into bulk Landau

levels. The t- and s- series are separated by a field range x 2 T

over which no oscillatory structure is observed. The amplitudes of

both the t- and s- series decrease rapidly to zero as the field

approaches this transition region.

Similar oscillatory structure is observed over a range of

bi as voltages. Although the positions of the extrema are strongly

voltage-dependent, suggesting close association wi th the tunnelling

process itself, the qual1 tati ve field-dependence of the oscillatory

amplitudes is unchanged (Leadbeater, 1990).

7.5 The Transfer-Hamiltonian Formalism of Resonant Tunnelling

The first time-dependent picture of resonant tunnelling was

proposed by Luryi (1985), who suggested that the process can be

considered as two sequential transitions; first from the LH emitter

contact into a bound state in the quantum well, and subsequently from

the well into the RH collector contact.
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Payne (1986), used the transfer-Hamiltonian approach to
formulate a model of sequential tunnelling in symmetric DBRTS with
heavily n-doped contacts. Within this formalism, left-hand, quantum
well, and right-hand subsystems are defined by suitably extending
the emitter and collector barrier potentials, as shown in Figure 1.3.
The LH and RH subsystems each contain potential steps, whereas the
well subsystem contains a single isolated quantum well, which is
assumed to support at least one bound state.

The rates of allowed transitions between each subsystem are
given by equation (3.25), where the subscripts i and r refer to the
initial and final states respectively. To account for the flnite
occupancy f(Ew) of the well states, which describes resonant space-
charge buildup, the transition rate (3.25) is multiplied by 1-f(Ew)
when considering transitions into the well, and by f(Ew) when
considering transitions from the well into the collector contact. The

value of f(Ew) is determined from the current continuity requirement
that the total number of transitions per second from all LH eigen-
states into the well equals that from the well into all RH eigen-
states. Since most of the applied voltage is dropped across the wide
well, TL/TR « 1, so that the transition rates from the LH contact
into the well are much lower than from the well into the RH contact.
Consequently f(Ew) : O. Within this approximation, the current
flowing through the device depends only on the tunnelling transition
rate from the emitter contact into the bound states of the well.



(a)

(b)

(c)

Ew

-- -
Ew-----------------------~-----------------------

VR(X) ---------

(d) Energy

Figure 7.3 (a) Conduction band profile Ec(x) of a symmetrical DBRTS
with heavily n-doped contacts. The effective lD
potential energy profiles of (b) the LH subsystem, (c)
the well subsystem and (d) the RH subsystem are also
shown.
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7.6 Calculation and Interpretation of the LH and Quantum Well

Eigenstates of the Wide-well Structures in the Presence

of a Transverse Magnetic Field

7.6.1 LHEigenstates

When a transverse magnetic field !? II ~ is applied, the

conduction band effective-mass Hamiltonian HT is given by equation

(3.2) in which Ec(x) is determined from equations (2.15), (7.2),

(7 •3) and (7.4).

From the definition (3.5), the LH subsystem comprises the

accumulation layer and emitter-barrier regions and is thus identical

to that of the single-barrier structures described in Section 4.2.

It follows that the LH eigenvalues are simply the perturbed 2DEG

levels (4.14).

7.6.2 Qualitative discussion of the quantum well states

Within the approxi mat ions of Sect ion 4.3.1, the x-dependent

wavefunction ~n(X) of the nth bound state in the well satisfies

(7.5 )
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x ~ 0 x ~ w

where m* (x) =

mL* (1 + a(En - Ec(x»); 0 < x < w ,

-b < x < w + b

x $ -b

EwCky, kz) is the total energy, and EnCky) that associated wi th

motion perpendicular to the magnetic field.

Equation C1.5) is similar to the effecti ve-mass equation

(4.22) for the RH subsystem of the single-barrier structures, except

that electron motion is further constrained by the collector barrier.

The energy level spectrum is also modified by the large electric

field in the well which, in contrast to the single-barrier

structures, gives rise to a spatially-varying effective mass.

Using equations C1.2) and <1.4) to determine Ec(x) In the

well and barrier regions, equation (7.5) may be written 1n the form

~2 d ( 1 ) d )[-'2 dx m*(x) ct; + Vex) IjJn(X)= En(ky) '4In(x) <1.6)



221

where the effective 1D potential energy is

B2e2(x - X')2 m*(x)F2
( ) - eFX I • U(x). 2B 22m* x -b < x < w • b

vex) = { V(-b.) x ~ -b

V( (w + b)_) x ;;: w + b

in which

X'(x) = _ ~ky + m*(x)F
Be eB2

and

x ;;: w x ~ 0

U(x) '"
-e~(O) o < x < w

Neglecting the x-dependence of the effective mass, the first
term in Vex) describes the potential energy of a simple harmonic
oscillator with orbit centre X' and angular frequency wc. The second
term is the electrostatic potential energy at the orbit centre. The
third term, U(x), describes the rectangular potential well formed by
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the conduction band discontinuity between the high-and low-gap

materials. The final term is the mean kinetic energy of an electron

in bulk GaAs associated with motion perpendicular to crossed electric

and magnetic fields (see Section 1.5).

Figure 1.4 illustrates Vex) for the case of parabolic bands,

so that the effective mass is independent of position within each

layer. If nonparabolicity is taken into account, the effective mass

varies continuously throughout the well region and Vex) is no longer

parabolic. In addition, En{ky) and Vex) are coupled through the

energy-dependent effective mass and must be calculated self-

consistently.

Distinct types of well state can, however, be classified

quite generally, irrespective of conduction band nonparabolicity. If

V{O.) < V{w-) for given ky, three kinds of bound state may exist,

labelled r, sand t in Figure 1.4. These states are distinguished by

the nature of their classical turning points and therefore correspond

to distinct types of classical trajectory.

Type r states for which En{ky) < V{O.) and En{ky) < V(w_),

correspond to classical bulk cycloidal trajectories (see Section

1.5), which are bounded by soft turning pOints and do not intersect

with either barrier. Within the WKB approximation, the energy levels

of these states depend only on the potential energy between the

turning points and are given by equation <1.24).
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Type s states for which V{O+) ~ En{ky} ~ V{w-) correspond to

classical skipping trajectories which intersect with the emitter

barrier only. These states are referred to as cycloidal skipping

states, since between collisions with the emitter barrier, the

electron executes cycloidal motion.

The classical trajectories corresponding to type t states for

which En(ky) ) V(O+) and En{ky) ) V{w-) extend throughout the well

region and are bounded by hard turning pOints at the barrier

interf aces. The electrons are repeatedly reflected from each

interface and execute classical traversing orbits. In zero magnetic

field all eigenstates of the quantum well subsystem correspond to

these traversing orbits.

If V{O+) > V(w-), a fourth type of bound state may exist

corresponding to cycloidal skipping motion along the collector

barrier. However, since transitions from the 2DEG into all well

states with soft LH turning pOints are forbidden (see Section 7.7),
these states are not considered in detail.
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7.6.3 Calculation of the traversing and cycloidal skipping state

dispersion relations

The WKB energy quanti sat ion condition (4.37) and effect ive-

mass wavefunctions (4.32) derived for interfaCial skipping states in

single-barrier structures are applicable, qui te generally, to all

bound eigenstates with hard LH and soft RH turning pot nt.s, In

particular, taking

1

an(x) = [2m*(x)(En(ky) - V(X)]2 /~ ,

1

~nl(X) = [2mS*(V(x) - En(ky»]2 /~ , (7.8)

and (7.9)

equations (4.37) and (4.32) give the cycloidal skipping state

dispersion relations and envelope wavefunctions.

Piecewise WKB solutions of equation (7.6) appropriate to

traversing states in the well are

_1 -Q(x)
Cn ~nf (x) e x $ 0 (a)

_1
Wn(X) = {On an2(x) sin[T(x) + on] o s x s w (b) (7.10)

_1

Gn ~nf (x)
-Z(x)

e x ~ w (c)
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where the integral functions Q(x), T(x) and Z(x) are defined in

equation (4.26). The traversing state energy quantisation condition,

obtained by imposing the matching conditions (1.39) and (1.40) at

each barrier interface is

(7.11)

;n-O,1, •••

where

Implicit expressions for the traversing and cycloidal skipping state

dispersion relations can be found from equations (4.37) and (7.11) by

evaluating the phase change integral.

n .. 0, " ••• , (7.12)

where a ..w for traversing states and, for the nth cycloidal skipping

state, equals the soft RH turning point wn•

Using the expressions for ~n(x) and Vex) given in equations

(7.6) and (7.7), equation (7.12) may be written in the form

(7.13)
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where

and a is the nonparabolicity parameter of the well material. The

form of this integral depends on the sign of B and consequently on

the relative magnitude of the electric and magnetic fields. However,

evaluation of (7.13) can be simplified using the following physical

argument which shows that liB> 0 for all B.

In the absence of confining barriers, an electron with energy

En( ky) associated with mot ion perpendi cular to the magnet ic field,

executes bulk cycloidal motion between the turning points

wn = X + R , (7.14)

and

Lwn = X - R (1.15)

where
1

R = (Y/6)2 is the orbital radius.
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In order that these turning points are real, the inequality

(liS) > 0 (7.16)

1

must always be satisfied. It follows that if B > (2mL*U)2F so that S
> 0, equation (7.13) may be written

(7.17)

where

1
u(x) = (S/y)2 (x - X) (7.18)
Uo = u(O)

and u1 = u(a)

The integral on the RHS of (7.17) is evaluated using the results of

Section 4.3.3, giving

(7.19)

where f(x) is defined in equation (4.42).

For cycloidal skipping states a = wn whence, combining

equations (7.14) and (7.18). Ut :c 1 so that, from equation (4.42).
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It follows from inequality (7.16) that if S < 0, equation

(7.13) may be written in the form

fao an(x) dx (7.20)

The integral on the RHS of this equation is easily evaluated giving

(7.21)

where

For cycloidal skipping states, u , '"' 1 so that g(u1) .. O. Provided
1

the field value B = (2mL*a)2 F is avoided in all simulations, it 15

not necessary to evaluate the phase change 1ntegral on the LHS of

equation (1.13) for the case B :I O.

Combining equations (4.31), (7.19) and (1.21), the cycloidal

skipping state energy levels En(ky) are implicit solutions of

(
_3...) ( ms* an(O+) )n + " - tan- 1

4 m*(O+) Vn1(0-)

:I { n - 0, 1, •••

(1.22)
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Similarly, from equations (7.11), (7.19) and (7.21), the traversing

state energy levels satisfy

B > 0

= n .. 0, 1, ••

B < 0

(7.23)

For parabolic bands in zero magnetic field, the (traversing state)

dispersion curves En(ky) form a set of parabolas in the E-ky plane,

with minima at ky = 0 equal to the bound state energies in the well.

Figure 7.5 shows the dispersion curves of traversing states
oin the 1200 A well GaAs/ (AlGa)As DBRTS, calculated from equation

(7.23) for V = 600 mV and B = 0.5 T. This comparatively small field

acts as a perturbation which distorts the zero-field parabolic

dispersion curves. The conduct ion band nonparaboli cit y fact or of

GaAs is taken to be 2 eV-1
• This is higher than the value Cl ;; 0.85

eV-1 predicted by ~.£theory and measured by Heiblum et al. (1987),

to account for increased nonparabolicity at the high-ly1ng levels (.

350 meV above the band-edge position at the centre of the well) into

which the 2DEG electrons are injected (Blakemore, 1982).
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The broken curve in Figure 1.5 shows the ky-dependence of the

effecti ve potential energy V(0+) close to the LHS of the quantum

well. Energy levels below this curve are not shown since they

correspond to eigenstates with soft LH turning points which are

inaccessible in tunnelling transitions from the 2DEG (see Section

1.1).

Figure 1.6 shows the dispersion curves En(ky} of well states

with hard LH turning pct nts, and of the occupied 2DEG states,

calculated for V = 600 mV and B = 5 T, taking a = 2 eV-l• The broken

curves show the effective potential energy Vex) at either side of the

quantum well, as a function of kyo Energy levels En(ky) < V(w-. ky)

in region s correspond to classical skipping trajectories along the

emitter barrier (inset right). Energy levels En(ky) > V(w-. ky} in

region t correspond to classical traversing orbi ts (inset left).

Energy levels in regions rand q correspond to bulk cycloidal

trajectories and cycloidal skipping orbits which intersect with the

collector barrier only.

To avoid discontinuities in the WKB dispersion curves at the

boundary between regions sand t, the constant phase factor of unity

on the LHS of the traversing state quantisat ion condl tion (1.23) is

replaced by 3/4. This approximat ion avoi ds probl ems otherwl se

encountered when evaluating the tunnel current. due to gaps 1n the

energy spectrum, and is reasonably accurate for the high-index

traversing states (n ~ 10) which are accessed in transitions from the

2DEG.
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Neglecting the increase in effecti ve mass which occurs as

electrons are injected into the well region, the requirements that

both the total energy and the transverse wavevector be conserved in

tunnelling transitions may be expressed in the single equation (5.8).

As for the single-barrier case, this condition can be interpreted by

looking for intercepts in the E-ky plane between the 2DEG and

well-state dispersion curves. For V = 600 mV and B = 5 T, each

intercept is marked by an open circle in Figure 7.6, and corresponds

to a group of 2DEG electrons which makes allowed transitions into

either traversing states, or cycloidal skipping states which interact

with the emitter barrier only. In the next section, transitions into

all other types of well state are shown to be forbidden.

7.7 ±kF Transitions into Well States with Soft LH Turning Points

Do Not Occur

Transitions into bulk cycloidal states or cycloidal sKipping

states which interact with the collector barrier, occur only if the

soft LH turning point (7.15) lies to the right of the emitter

barrier. This is equivalent to the requirement

x > R , (7.24 )

that the distance from the emitter barrier to the orbi t centre

exceeds the classical orbital radius. Using the forms of X and R

given in equations (7.13) and (7.15) appropriate to parabolic bands,

inequality (7.24) becomes
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2mL IIFflkY )~
IBe ,

B

(1.25)

where the RHS refers to the positive square root. This inequality is

only satisfied provided

(1.26a)

and then, squaring both sides. only if

(1.26b)

For 2DEG electrons with ky = ko ± kF. En(ky) = eV + EFR so that, as

shown in Figure 7.1, the RHS of inequality (1.26b) is the

potential energy eF(b + 3ao) dropped across the accumulation layer

and emitter barrier. It follows that for ±kF transitions,

inequalities (7.26a) and (1.26b) may be written

(1.21 a)

and

(1.21b)
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where k , .. Be(b + 3ao)/11 and F nse/EoErL is the electric field in

the well.

For -kF transitions, if kF > ko•

so that inequality (7.27b) cannot be satisfied. From Appendix 2, if

kF < ko• inequality (7.27a) is satisfied for -kF transitions only if

Consequently, inequalities (7.27a) and (1.21b) cannot both be

satisfied and -kF transitions into well states with soft LH turning

points do not occur for any voltages or fields.

It follows directly from inequality (A2.3) of Appendix 2 that

(7.27a) is satisfied for +kF transitions only if



234

Thus, conditions (7.27a) and (7.27b) are both satisfied for +KF

transitions only if

or, substituting for El and E2, only if

p , - Pz < 1 (7.28)

where P 1 ... 1

EF[l + 2Fe(b + 3ao)/EF)2

and

For V ,. 600 mV, PI • 1.95 and pz - 0.24 so that inequality

(7.28) is violated and +KF transitions into well states with soft LH

turning points do not occur for any field values.

Similar conclusions are reached when nonparabolicity 1n the

well region is taken into account by using the appropriate forms of

X and R in inequality (7.24).
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1.8 Derivation and Interpretation of the Matrix Elements IMn(ky)12
for Transitions into Traversing and Cycloidal Skipping States

in the Well

To calculate the transi tion matrix elements from equations

(3.25) and (3.31), the well state wavefunctions ~n(x) must be

normalised.

Neglecting penetration into the classically forbidden regions
and assuming, as in Section 5.8, that (In(x) varies slowly over one
local wavelength 2n/(ln(x), normalisation of the WKB traversing and
cycloidal skipping state wavefunctions (4.32) and (7.10b) requires

2
(7.29)

where

a '" wand Kn '" Dn (defined in equation (7.1Ob )) for traversing
1states, and, for cycloidal skipping states, a - wn and Kn - Gn(6/n)l,

where Gn is defined in equation (4.32). Using equation (7.7) for
(In(X), Zn may be written in the form
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where u(x) is defined in equation (7.18).

Evaluation of the integrals in equation (7.30) is straight-

forward and gives

s > 0

(7.31)

_1
211 (-s) [Ln

1

( 2
_

1)
2

Ut

Uo +
1

( 2 1 ) 2
Uo -

) e < 0

where u1 = 1 for cycloidal skipping states.

Expressed in terms of Zn, the WKB cycloidal skipping state
wavefunctions (4.32) and first derivatives are, in the limit x + 0+,
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and

d~n(O+) = (2an(O+))~
dx Zn

where T(x) is defined in equation (4.26).

Similarly, the traversing state wavefunctions (7.10b) and derivatives

satisfy

(7.34)

and

(7.35)

Using the energy quantisation conditions (7.22) and (7.23) to obtain
expressions for the sine and cosine terms in equations (7.32),
(7.33), (7.34) and (7.35), the wavefunctions and derivatives of both
traversing and cycloidal skipping states may be written, in the limit

= (2an(O+))~ (_-'_)_n_m.:;;.B_* _
Zn 1

[an2(O+)mB*2 + Un12(O_)m*(O+)2]2
, (7.36)
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and

Using the matching conditions <1.39) and <1.40) to determine

~n(O-) and d~n(O-)/dx, and using these expressions together with the

modified Fang-Howard wavefunction (5.25) and derivative (5.26) in

equation (3.37) gives

o2 -2Lb ~n'(x) dx['6 mB* ~n(O+) ~n1(0-) k(-b-) e 1
IDL*m*(O+) ~n1(-b+)[(an(0+)mB*/m*(O+»2 + ~n12(0-~

Following the discussion of Section 5.8, the first bracketed

term on the RHS of equation (7.38) is approximately equal to the

frequency of the semiclassical collisions between each 2DEG electron

and the emitter barri er, and the final bracketed term is the WKB

emitter-barrier transmission coefficient (1.53).

Owing to the high electric field, the effective mass varies

with x throughout the well region. Thus, by contrast to the slngle-

barrier case, the semiclassical collision frequency
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2 fa m*(x) dx
o (In(x)

< 7 • 39 )

of an electron in the well with the emitter barrier, is not exactly
equal to the second bracketed term on the RHS of equation (7.38).

However, provided the nonparabolicity parameter (l is small, the
difference between this term and Fn Is also small, and can be
neglected when interpreting the experimental data.

7.9 A Model for the Tunnel Current

Figure 7.6 shows that the 2DEG parabola makes only one
intercept with each En<ky) curve. Thus, taking the occupancy of each
well state to be zero as discussed in Section 7.5, the tunnel current
In(V, B) due to allowed transitions from the 2DEG into the nth bound
state of the well, is calculated as described 1n Section 5.4 for the
single-barrier structures.

However it should be noted from Figure 7.13 that for V - 600
mV and B - 0 T, the top of the collector barrier lies below the bound
state energy of the 2DEG. Consequently 1n zero field, transitions
into bound eigenstates of the well subsystem do not occur. The
tunnel current 1s thus only calculated for magnetic fields B ~ 1.5 T
which raise the top of the collector barrier above the Fermi level 1n

the LH contact, thereby ensuring that all 2DEG electrons tunnel into
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bound states in the well, with WKB dispersion relations given by

equations (1.22) and (1.23).

The total current flowing through the DBRTS 1s then given by
equation (5.11), in which En(ky) is the nth bound state dispersion
relation, and IMn(ky)12 is the squared matrix element (1.38) for
transitions into traversing states if En(ky(n» > V(w_, I<y). or

cycloidal skipping states if En(ky(n» < V(w_, Ky)'

Electrons which occupy cycloidal skipping states are
magnetically confined close to the emitter barrier. Current

continuity is therefore maintained by scattering processes 1n the
well which enable the electrons to diffuse between localised states
with different orbit centres. These scattering processes are assumed
to be sufficiently fast that the total transition rate from the well
into the RH contact greatly exceeds that from the 2DEG into the well.
Only if this condition is satisfied can the occupancy of the well
states be taken as zero when a field is applied.

Changing the applied voltage or field causes intercepts with

the well state dispersion curves En(ky) to be gained or lost from
each extremity of the 2DEG parabola. Just as for the s t ngLe+bar rIe r
structures, equation (A.2) of Appendix 1 predicts maxima (minima) in

dr/dB whenever Ky'(n) • + kF(-kF)' However, by contrast, four

distinct series of oscillations are expected for the DBRTS

originating from ±kF transitions into traversing states at low
fields, and cycloidal sKipping states at higher fields.
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1.10 Simulation of the I(B) Characteristics and Derivatives

Figure 1.1 shows the current-field characteristics of the

GaAsl (AlGa)As DBRTS calculated for V = 600 mV, tak ing the non-

parabolici ty factor of GaAs to be Cl = 2 er:>, The shape of the

calculated 1(B) curve is in reasonable agreement wi th the measured

curve shown in Figure 1.2, although the calculated current is

quenched when B = Bo- = 10.5 T, which is considerably lower than the

measured value = 15 T. This discrepancy is not surprising however,

since only qualitative accuracy is expected of the n - 0 WKB

dispersion curve, and consequently the predicted value of Bo-' The

inclusion of nonparabolicity in the well region improves the

agreement with experiment by lowering the energy levels En(ky) for

each nand ky, thereby raising the predicted value of 80-,

Figure 1.8 shows the averaged <cU/dB> curve calculated for V

= 600 mV, following the procedure of Section 5.11.2, taking ~B - 0.2

T. The individual current contributions In(B), n - 0, 1, ••• 24 are

also shown. The corresponding second deri vati ve <d 21/ dB 2> is shown

i n F i gur e 1. 9 •

The t+, t- and s- series of oscillations, are clearly

revealed in both the measured and simulated derivatives, and are

distinguished by horizontal brackets in Figures 1.2, 1.8 and 7.9. The

field-dependence of the observed oscillatory structure (Figure 7.2)

is clearly reproduced in both simulated derivatives. In partIcular,

the s- series of oscillations grows stronger with increasing field,
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whereas the t+ and t- series both wea~en. However, by contrast with
the measured d2I/d82 curve, s+ oscillatory structure is rev8aled in
the simulated derivatives over the field range 4 T ~ B S 6.5 T

separating the t- and s- series. This structure t s indicated by
arrows in Figures 7.8 and 7.9. Reasons for the experimental absence
of s+ oscillations are given in Section 7.11.

The generally good qualitative agreement between the measured
and simulated derivatives suggests that the observed oscillatory
structure is indeed associated with the process of tunnelling through
the emitter barrier. The absence of structure originating from
transitions through the collector barrier indicates that the tunnel
current is controlled by the emitter barrier, which dominates the
resistance of the device. This in turn provides a posteriori
justification for the assumption that tunnelling transition rates out
of the well greatly exceed those into the well, and consequently that
the occupancy of each well state is close to zero.

7.11 ExplanatIon for the Origin of the Oscillatory Structure

Figure 7.6 shows that for V • 600 mV and B • 5 T, the
intercepts between the 2DEG and well state dispersion curves lie in
regions sand t, so that tunnelling transitions into both traversIng
and cycloidal skipping states are allowed. The changeover from

resonances due to 2DEG electrons with ky'(n) • tkf'tunnelling into

traversing states, to resonances due to tkF transitions into
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cycloidal sk Ipp Ing states occurs as the 2DEG parabola passes from

region t to region s of Figure 7.6, over the field range 4 T ~ B ~ 6

T. This transition region is characterised by diminished current

contributions In(B), as shown in Figure 7.8.

It is clear from Figure 7.8 that the t+ series of oscillatory

maxima originates from the opening of tunnelling channels, as the +KF

extremity of the 2DEGparabola intersects with lower-index traversing

state dispersion curves. Closure of these channels gives rise to the

t- minima, visible for B ~ 2.5 T.

The s- minima occur for B ~ 6.5 T as intercepts with the

cycloidal skipping state dispersion curves are lost from the -kF

extremity of the 2DEGparabola.

Eaves et a l , (1988) showed that each s- resonant field
,

Bn- varies with voltage according to (Bn-)2 • CnV where {Cn} are
,

constants. This linear variation of (8n-)2 with V was explained using

the WKBcycloidal skipping state dispersion relation (7.22), in t.ne

limit of an infinitely high emitter barrier, and neglecting non-

parabolicity in the well region. Within these approximations, the

predicted and measured values of Cn agree to wi thin 1')1, fur t.ncr

support ing the interpretat ion of the a- 05c111 atory s t ruct.ur-e in

terms of -kF transitions into cycloida1 sk1pping well states.

By contrast with the measured derivative shown 1n Figure 7.2,

s+ osc1l1atory structure orig1nating from +kF transitions into

cycloidal skipping states is revealed in the simulated derivatives,
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indicated by arro~s in Figures 7.8 and 7.9. The averaging procedure

removes all other oscillatory structure associated ~ith the rapid

opening and closure of tunnelling channels over the field range

separating the t- and s- series. This rapid opening and closure of

tunnelling channels originates from the small separation bet~een

adjacent energy levels EnCky) in the transition region, ~hich is, in

part, due to conduction band nonparabol1city of the well material.

Raising the nonparabolici ty parameter of GaAs from Cl - 2 eV-1 to • 4

eV-1 further reduces the separation between adjacent energy levels in

the well. This in turn reduces the separation between adjacent

resonant fields sufficiently that the ~eak s+ oscillations are

totally removed by the averaging process.

increases the effective mass in the

Semiclassically, raising Cl

well, thereby reducing the

collision frequency Fn, which leads to diminished oscillatory

structure as fewer tunnelling electrons complete whole orbits before

scattering. Thus, the presence of s+ oscillatory structure in the

simulated derivatives which is not observed experimentally, i3

possibly due to underestimating the electronic efrective mass at high

injection energies.

Ben Amor et al. C1990) have reported the observat 10n of 5+

oscillatory structure in similar (InGa)As/(AlIn)As wide-well DBHT~~.

Such structure is more likely to be seen in these samples, owing to

the lighter mass of the (InGa)As well material (m' • 0.041 mo

compared with 0.061 mo for GaAs), which increases the separation and

resolution of adjacent energy levels, and resonant fields.
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7.12 Explanation for the Field-Dependence of the Factors N~

Dn(B), Wn(B), Tn(B) and Fn(B)

7.12.1 Introduction

Equation (5.55) predicts that provided thc separation between

adjacent resonant fields greatly exceeds the averaging bin width tB •

0.2 T (which is the case for B ~ 3 T and B ~ 1 T), the oscillatory

extrema <dI/dB>n± are directly proportional to the corresponding mean

current values In± defined in equation (5.54). This predicted

correlation is clearly revealed in Figure 1.8, with both scts of

values attaining a minimum in the transition region between the t-

and s- series. The origin of this field-dependence can be understood

by considering the factors

1
Nn(B) = (kF2 - ky' (n)2)2 (7.40 )

dky
k 'Y - ky' (n)

and

in turn. which are shown for V - 600 mV 1n Figures 7.10 and 7.11.

The normalised transition rate Wn(B) 15 proportional to the proouct
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of the emitter-barrier transmission coefficient Tn(B) and the

approximate collision frequency Fn(B) - 1'i/(2m*(0+)Zn) between an

electron in the well and the emitter barrier. Both of these factors

are shown for V = 600 mV in Figure 7.12.

7.12.2 The density of states factors Dn(B)

The field-dependence of the factors Nn(B) shown in Figure

7.10a is identical to that explained in Section 5.10.2 for the

single-barrier structures. By contrast. compari son of Figures 5. 9b

and 7.10b shows that the field-dependence of the density of states

factors Dn(B) is markedly different for the DSRTS. The values of

Dn(S) decrease rapidly with B for the traversing states. but increase

with B for the cycloidal skipping states.

The values of Dn(Bn±) appropriate to ±kF transitions are

inversely proportional to the absolute difference flvn between the

mean y-component of velocity of the initial and final states. In

zero field. this mean velocity component is conserved so that Dn(Bnt)

-+ (I). With increas ing field. the traversing traj ectories are fur tn er

deflected by the Lorentz force so that flvn increases. and the va l ue a

of 0n(Bn±) decrease. as shown in Figure 7.10b.

Without detailed algebraic analysis. the variat ion of the

density of states terms Dn(Bn!) for ±kF transitions Into cycloldal

skipping states can only be explained by a plausibility argument.
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Figure 7.6 shows that for B = 5 T, the gradi ent of the

cycloidal ski pping state dispersion curves (region s) exceeds

~2kF/ffiL*. Consequently, from equation (7.41)

= (dEn + ~2kF)-1
dky mL*

(7.43)

The gradient of each cycloidal skipping state dispersion

curve must match smoothly to that of the bulk cycloidal states in

region r of the E-ky diagram which, from equation (1.26) equals 'fIF/B.

Since each cycloidal skipping state dispersion curve is almost

linear, dEn/dky = ~F/B throughout region s, so that equation (7.43)
predicts

(7.44)

Consequently, the values of Dn<Bn±) descr i bl ng trans! t t ons

into cycloidal skipping states are expected to increase with Bnt as

shown in Figure 7.1 Ob.
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7.12.3 The Transmission Coefficients Tn(B)

Figure 1.12b shows the emitter-barrier transmission

coefficients T nCB) n = 0, 1, ••• 24 calculated for V '"600 mV. Over

the illustrated field range B2 .. + ::;B ::;Bo-, the ±kF transmission

coefficients Tn(Bn±) decrease with increasing Bn±. This Is due to

the increasing contribution of the magnetic potential to the

effective barrier height, explained in Section 5.10.4 for the single-

barrier structures.

For given n, Tn(B) increases monotonically as B is raised

from Bn+ to Bn- for the following reason. Figure 7.13 shows for the

case n = 21, that as B increases from Bn+ to Bn-, the orbit centre

moves from X+ to X-, thereby reducing the mean magnetic potential in

the barrier region, which causes the calculated increase in T n(B).

Figure 7.13 also shows that owing to the presence of the wide well,

very little voltage is dropped across the emitter barrier.

Consequently, the reduction in mean magnetic potential in the barrier

region produces only a small percentage reduction in the total

effective barrier height, resulting in sUghtly increased

transmission.

This is in contrast to the dramatic field-dependence of the

GaAs/(A1Ga)As single-barrier transmission coefficients Tn(B) shown in

Figure 6.6b. Since about half the applied voltage is dropped across

the single (A1Ga)As barrier, the total effective barrier height and

transmission coefficient of these structures are very sens t tlve to
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changes in the mean magnetic potential in the barrier region (see

Section 6.4.3).

Comparison of Figures 6.6b and 7.12b reveals that the

transmission coefficient ratio Tm(Bm-) IT n(Bn+), for ±kF transitions
occuring at adjacent resonant fields Bn+ = Bm-, is much lower for the
DBRTS than for the GaAs/(AIGa)As single-barrier structures. It

follows from equation (5.59) that this difference is partly due to
o 0the thinner barriers of the DBRTS (56 A compared with 230 A). and

partly because most of the applied voltage is dropped across the wide

well so that the emitter barrier remains high (Eo = t.Ec). This
reduces the percentage contribution of the magnetic potential to the
total barrier height.

7.12.4 The Semiclassical collision frequencies FnCB) and transition
rates Wn(B)

Figure 7.12a shows that the semiclassical col11sion
frequencies FnCBn±) corresponding to traversing (cycloldal skipping)

states accessed by 2DEG electrons with ky' Cn) - tkF decrease
(increase) with increas ing Bn±. Thus. the changeover fran occupled
traversing states to cycloidal skipping states 1n the well 19

characterised by diminished values of Fn{Bn!). Negl ect 1ng non-
parabolicity. the magnetic potential energy describing the effect of

the Lorentz force on the motion of ±kF electrons in the well region

is
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(7.45 )

3.3 T for V = 600 mV), EMAG±(x) increases throughout the well region.

Classically, this corresponds to an increase in the local y-component
1

of velocity vy±(x) = (2EMAG±(x)/mL*) ~ as the electron trajectory is

fur ther def lected by the act ion of the Lorentz force (see Sect ion

1.5). Since the total energy eV + EFR of ±kF electrons and the local

electrostatic potential energy -e$(x) are unchanged by the magnetic

field, 50 too is the total local kinetic energy. It follows that the

increase in vy±(x) with increasing field corresponds to a reduction

in the longi tudinal veloci ty component vx±(x) throughout the well

region. Since ±kF traversing electrons still travel the same

distance 2w in the x-direction between successive collisions with the

emi tter barrier, the traversing state coll ision frequenc tes Fn(Bn±')

decrease with increasing field as shown in Figure 7.12a. The lowest

collision frequencies are attained in the field range corresponding

to the changeover from traversing to cycloidal skipping states in the

well. In this trans ition region, the electron traj ectori ea are

deflected by the Lorentz force to be of grazing incidence on the

collector barrier, and the distance travelled bewteen successive

collisions reaches a maximum (; 4000 ~).

Once the magnetic field reaches the threshold required for

±kF transitions into cycloidal skipping states with soft RH turning

points wn, the distance 2wn travelled in the x-direction between
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successive collisions with the emitter barrier decreases with
increasing field, as the electrons are magnetically bound to the

emitter barrier. With increasing Bn±, the shorter path lengths
travelled in the x-direction more than compensate for the reduction
in the local longitudinal velocity component vx1(x), so that the ±kF
cycloidal state skipping frequencies Fn(Bn±) increase as shown in

Figure 7.12a.

Figure 7.13 illustrates for the case n • 21 that the
collision frequency Fn(B) of each traversing or skipping state
increases with field because the associated shift in the orbit centre

position from X+ to X_ reduces the magnetic potential throughout most
of the well region, thereby increasing the local x-component of
velocity vx(x).

The magnetic potential energy variation experienced by ±kF
electrons tunnelling at adjacent resonant fields B1.+ ; 821- • 4 T is
shown in Figure 7.14. Since X+ < X_, the magnetic potential energy,
or classical y-component of veloci ty, of the +kF electrons exceeds
that of the -kF electrons throughout the well region (corresponding
to increased Lorentz deflection of the +kF electrons). Since both
±kF electrons have the same total kinetic energy for given x, it
follows that the -kF electrons have a higher longitudlnal veloc1ty
component throughout the well region and consequently Fm(Bm- - Bn+) )
Fn(Bn+) as shown in Figure 7.12a.
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The field-dependence of the normalised transition rates ~n(B)

Cl: Fn(B) Tn(B) shown in rigure 1.11 is dominated by the more rapidly-

varying collision frequencies Fn(B). Quantum-mechanically. the ±kF

transition rates Wn(Bn±) increase following the changeover from

traversing to cycloidal skipping states in the well, as increased

magnetic confinement of the magneto-quantised wavefunctions, raises

the amplitudes ¢n(O+) at the RHS of the emitter barrier and thus,

from equations (3.25) and (3.31), the tunnelling transition rate

(Fromhold et al., 1990).

1.13 Physical Interpretation of the Field-Dependence of the

Oscillatory Structure observed in <dI/dB) and <d2I/dB2)

1.13.1 Introduction

Figure 1.10a shows that the mean values Nn± defined In

equation (5.55) depend only weakly on n , Thi s equat ion therefore

predicts direct proportionality between the extremal values of

<dl/dB) and the factors Dn(8), Tn(8) and Fn(8) appropriate to ikF

transitions into the nth bound state in the well.
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1.13.2 Field-dependence of the t+ series

The first (n :: 24) t+ maximum revealed in the simulated

derivative 1.8, is of large amplitude primarily because the density

of states factor D2 .. (B2It+) shown in Figure 1.10b is also large. As

explained in Section 1.12.2, the values of Dn(B) are generally high

at low fields because the action of Lorentz force produces 11ttle

change in the mean y-component of velocity of the tunnelling

electrons. The low-field t+ oscillations are further enhanced by the

high collision frequencies and transmission coefficients, shown in

Figure 1.12, which ensure high tunnelling transition rates.

The t+ oscillatory amplitudes decrease with increasing field

because increased Lorentz deflect ion of the travers ing trajectori es

reduces the density of states and collision frequency factors Dn(Bn+)

and Fn(Bn+), as shown in Figures 1.10b and 1.12a.

In addition, the increasing magnetic potential in the barrier

region reduces the +kF transmission coefficients which, from equation

(5.55), also contributes to the diminished t+ oscillatory amplItudes.

1.13.3 Field-dependence of the t- series

From Figure 7.8, the minimum field required for -kF

transitions into traversing states in the well is B2 ..- _ 3 T. Figures

1.10b and 1.12 show that for ±kF transitions into traversing states
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occurring at adjacent resonant fields Bn+ ;; Bm- ) Ba .. -, Dm(Bm-) ;;

0.66 Dn(Bn+), Fm(Bm-) ;; 1.5 Fn(Bn+) and Tm(Bm-) ~ 1.5 Tn(Bn+).

Owing to these disparities, which are explained in physical

terms in Section 7.12, equation (5.55) predicts that for B ~ Ba .. -,

the t- minima in <dI/dB) will dominate the t+ maxima. This dominance

is clearly revealed in Figure 7.8; for B > 3 T, the smoothing

procedure described in Section 5.11.2 removes all trace of the

weaKened t+ series. By contrast, this averaging procedure has little

effect on the t- oscillatory structure because of the comparatively

high separation B-n+l - Bn- between adjacent -kF resonant fields.

Thi s, in turn, originates from the lower energy densi ty of states

close to the -kF extremity of the 2DEG parabola which, for large n,

corresponds to the higher -kF traversing frequencies Fm(Bm- - Bn+) >
Fn(Bn+) shown in Figure 7.12a. Since the discrete energy levels

En(ky) are more easily resolved close to the -kF extremity or the

2DEG parabola, the t- series is expected to dominate the oscillatory

structure as, semiclassically, a higher percentage of the -kF

electrons complete whole traversing orbits before scattering. Thus,

in removing the closely-spaced t+ series, the averaging procedure

simulates the physical effect of broadening on energy level

resolution.



2S5

7.13.4 Explanation for the absence of oscillatory structure in the

transition region from traversing to cycloidal

skipping states

Oscillatory structure associated with tunnelling Into

quantised energy levels in the well is only r cs ol vcd pr ov l drc t ho

level separation greatly exceeds the li fet lme bro.i,j(~ni ng , This

condition is equivalent to the semiclassical r cqui r emcnt (5.:'8) trlat

the frequency Fn(B) of colliSions between an electron in the well and

the emitter barrier greatly exceeds the total scattering rate divid0d

by 2n.

In undoped III-V compounds at 4.2 K the dominant aca t t i-r f ng

mechanism of hot electrons is LO phonon emission, which 0~cur5 at a

rate WLO- 101' S-l (Levi et a l , , 1987, Becker- et al., 1988, H;}ye:3et

al., 1988),

Figure 7.12a shows that the fIdel range i1 T :. B :. b T

corresponding to the transition from traversing to c y c l oId.i l :~idpplnl1.

states In the well, is characterised by low c')111s10n rr,'quNlde~,

Fn(S). This has two implications for the oac t l Lat cr y .:.1mpl1tU(k:).

Firstly, equation (5.55) predicts that the low co l l t s Ion rrl.'qul'ndl'~

and tunnelling transition rates will give r t so to weak o:H;11101tory

structure.

Secondly, the collision frequencies In tho transition rORlon

are comparable with the LO phonon emlss10n rate, indicated by ttw
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broken line in Figure 7.12a. Thus, the already ....eak s t ruct ure t s

expected to be poorly resolved due to the effects of level

broadening.

The averaging routine used to calculate the derivative curves

simulates level broadening in the sense that hign-Tr-c qucncy

oscillatory structure resulting from closely-spaced energy levels is

removed. Thus, the t- and s- series of oscillations are separated In

the measured (simulated) derivatives by a range of f1eld,

corresponding to the changeover from traversing to cycloidal Skipping

states in the well, where no (weak) OSCillatory structure is

revealed.

7.13.5 Field-dependence of the s- Series

Above 6 T, oscillatory structure due to -kf transition5 into

cycloidal skipping states is observed. As predicted by equ at Lon

(5.55), these oscillations grow stronger as the density of :\t~lt(>:l

factors Dn(Bn-) and skipping frequencies fn(Bn-) t ncr eas e ....ith f1elllo

Transitions into higher-frequency cycloidal skipping St3t~9 glvo ri~l'

to more pronounced oscillatory structure since the transIt10n r~tc~

Wn(Bn-), and the fraction of -kF electrons which comp lete ....no lo

cycloidal skipping orbits before scattering, are both higher.
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1.1~ Summary

When a bias voltage of several hundred millivolts is applied

to a DBRTS containing a wide quantum well, the transmission

coefficient of the emitter barrier is low compared with that of the

collector barrier. Consequently, the tunnel current is controlled by

transitions from the 2DEG into the quantum well.

Owing to the low Fermi energy of the 2DEG, transitions in the

presence of a transverse magnetic field only occur into bound states

in the well with hard LH turning pOints. These states correspond to

classical traversing orbits at low fields or, at higher fields, to

cycloidal skipping trajectories along the emitter barrier.

In the transverse field geometry, the requirements of total

energy and

oscillatory

transverse wavevector conservation give rise to

structure in the current-voltage and current-field

characteristics of the DBRTS as intercepts wi th the well s tate

dispersion curves En(ky) are gained or lost from the extremltle~ of

the 2DEG parabola.

Four series of oscillations can in principle be ob aerved ,

associated with ±kF transitions into traversing (cycloldal skipping)

states at low (high) fields.

The extremal values <dI/dB)n± of the averaged derivative of

the magneto-current are proportional to the factors Dn(Bn1)Tn(Bn1)
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Fn(Bn±) appropriate to ±kF transitions into the nth bound state in

the well.

Since only a small fraction of the applied voltage is dropped
across the emitter barrier, the total effective barrier height and
barrier transmission coefficients Tn(B) are only weakly f1eld-
dependent. The field-dependence of the oscillatory ampli tudes in
(dI/dB> and (d2I/dB2) is therefore primarily determined by the

density of states factors Dn(Bn±) and collision frequencies Fn(Bn±),
which both attain minimum values in the transition region between
traversing and cycloidal skipping states in the well. This minimum
collision frequency coincides with the longest classical trajectory

o(; 4000 A), as electrons in the well are deflected by the Lorentz
force to be of grazing incidence on the collector barrier. As the
collision frequencies fall, so too do the tunnelling trans ition
rates, and the fraction of tunnelling electrons which complete whole
orbits before scattering. Both of these effects contribute to the
diminished oscillatory ampli tudes characteristic of the changeover
from electric to magnetic quantisation of the well states.

The presence of weak 5+ oscillatory structure in t.ne
simulated derivatives, which is not revealed in the measured d2l1dB2
curve, is probably due to underesti mat Ing the electronic effect iv e
mass at injection energies far above the conduction band edge in the

well. Using a higher nonparabol1ci ty parameter a prevents resolut ion

of the closely-spaced energy levels 1n the transition region, thereby
suppressing the e+ series, in agreement with experiment.
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The re-emergence of s- oscillatory structure at high fields

confirms the assertion of Chapters 5 and 6 that the effect of the

transverse magnetic field on the effective barrier height and on the

degree of confinement of the final state wavefunctions (or.

equivalently the semiclassical collision frequencies). must both be

considered in order to interpret the oscillatory structure revealed

in the magneto-current and derivatives of single-barrier structures

and DBRTS containing a wide quantum well.

By contrast. for DBRTS containing a narrow quantum well (of

width much less than the cyclotron radi us) a transverse magneti c

field has little effect on the well state wavefunctlons and

influences the tunnel current simply by changing the emitter barrier

height and transmission coefficient (Ancilotto. 1988).
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APPENDIX'

DIVERGENCE OF dI/dB AT THE RESONANT FIELDS

The tunnel current is given by

I - L In
n

(A .1)

where the sum is restricted to those levels for which Iky'(n)1 ~ kF.

Since In depends on B parametrically through the dependence of the

intersection point ky'(n) on B, we have dIn/dB • (dln/dky')(dky'/dB),

and, as ky'(n) + ±kF,

dIn
-+
dk 'y

1Mnl2
1 ]

k ' - k "(n )y y
(A.2)

This expression clearly

diverges at the extremal paints ky'(n) • ±kF and, since dky'(n)/dB <

0, (see Section 5.5), it follows that

dI dIn
-- ; --- + ± ~ as B + Bn±
dB dB
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Substituting ko - Be Lb + 3ao)/1\, the requirement (7.27a) th.lt

the orbit centre X lies to the right of the emitter barrier fur ~KF

transitions into well states with soft left-hand turning polnt9 may

be written

(A2.1)

The non-negative roots of G±(B) are

(A2.':)

Since G±(S) + - as B + 1-, (A2.1) is only ea t ie r iec fur B :..!lf~ or,

equivalently

I
fe(b + 3ao)ll')lp
2

(A:'.3)

For -kF electrons, (A2.3) 1s sat1sfied only if

(A,,'.II)
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From equations (2.12) and (2.20), the potential cr,ergy d1fft:r(~~1CC

across the accumulation layer is 3aoer • Er • Eto, where Ef and fbO

are the 2DEG Fermi energy and bound state energy. U3ing this

relation, if kF < ko, squaring both sides of inequality (A2.4) gives,

~2(ko - kF)2 < ~ (~2kF2) • Fe(b • 330)
2rnL * 4 2rnL I 2

(A2.5 )
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