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Abstract

Polymer distributed Bragg reflectors (DBRs) were prepared by spin-casting

alternating layers of polystyrene (PS) and poly(vinylpyrrolidone) (PVP) from

mutually exclusive (orthogonal) solvents. These all polymer photonic struc-

tures were prepared using a purpose built automated spin-coater system. Sam-

ples were prepared with targeted optical properties such as the wavelength

position, intensity and bandwidth of reflection peaks. The wavelength position

of the reflection peaks was controlled by the deposition spin-speed used during

sample preparation. Reflectance was controlled by the number of layers de-

posited onto the sample. The bandwidth was increased by chirping the layers

in the photonic structure.

Reflection bands were measured in the UV/visible region of the spectrum us-

ing two different (transmission and reflection mode) purpose built spectrometer

set-ups. Measured reflection bands had narrow bandwidths between 10nm and

20nm. Chirping these photonic structures broadened the peaks to bandwidths

of ∼ 50nm. A 100 layer PVP/PS DBR had a total reflectance of 93±1%. The

wavelength of the reflection peaks from flat DBR samples blue-shifted when

measured away from normal incidence. This was reduced when corrugating a

DBR by wrinkling the films with mechanical strain. The wavelength of the

reflection band from a corrugated DBR remained constant when the sample

was rotated. Thus improving the angular dependence of the structures.

Fourier transform infra-red spectroscopy was used to measure reflection

bands which were between wavelengths of 1600nm and 2700nm. These reflec-

tion bands had narrow bandwidths between ∼ 40nm and 60nm. The largest

reflectance measured within the infra-red spectra was 80± 1% from a 50 layer

PVP/PS DBR.

A modified optical transfer matrix method was used to model the optical

properties of the DBRs. Changes in the refractive index contrast (between

0.020 and 0.028 for 30 layer PVP/PS DBRs) were needed to fit the model to
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the measured UV/visible spectra. It was concluded that trapped solvent (from

sample preparation) was lowering the refractive indices of the layers.

The polymer-polymer interface widths of spin-cast polymer multi-layers

were measured using neutron reflectivity. Each polymer-polymer interface

width was less than 1nm throughout the DBR samples.

The polymer multi-layer samples were measured using time of flight sec-

ondary ion mass spectrometry (TOF-SIMS). An Ar2000
+ sputtering source was

used to etch through the multi-layer samples. It was concluded that the thick-

ness of spin-cast films did not change when preparing a multi-layer structure.

However, other techniques, such as ellipsometry, are more suitable for measur-

ing the thickness of films. The TOF-SIMS technique was unable to measure

polymer-polymer interface widths in multi-layer samples. This was due to the

sputtering beam roughening/mixing the polymers at the interfaces.

It was concluded that PVP/PS DBRs could be used as inexpensive nar-

rowband reflectors/filters. However, alternative polymer systems may be more

useful for other applications which require a greater reflectance. This includes

creating resonant cavities to improve the efficiency of optical devices (such as

LEDS and solar cells). The results and techniques from these experiments are

useful for further development in polymer photonic structures and polymer

multi-layer devices.
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Chapter 1

Motivation

Optical devices are becoming increasingly important as they are being used

in a growing number of applications. Improving our control of light could

lead towards better optical filters [1, 2], sensors [3], displays [4, 5], lasers [6,

7] and solar cells [8, 9]. Making these devices is often challenging as optical

devices require thoughtful design and are often difficult to make. The following

properties should be considered when building a photonic structure;

• Choice of materials : The pigmentation, refractive index and structural

arrangement of materials will change the optical properties of a device

[10, 11, 12]. For this research, the materials were required to be optically

transparent and have a sufficient refractive index contrast between lay-

ers (this is discussed further in chapters 2 and 3). Also, the materials

must be capable of being processed into a defect-free photonic struc-

ture. Depositing layers with poor homogeneity (non-uniform throughout

the layer) and topography (surface roughness) reduces the efficiency of a

photonic structure by scattering light [10,11].

• Design of the structure: Thoughtful design is needed to create an effi-

cient optical device. The spatial separation between materials (because

of differences in refractive indices) will change the optical properties of a

photonic device (this is discussed further in chapters 2 and 3) [10,13,14].

• High precision fabrication: UV/visible wavelength optical devices are sen-

sitive to changes on the nm scale. Fabrication techniques must be able

to prepare samples which have defect free and nano-scale features. Any

discrepancies in the structural arrangement and/or defects in the sample

will reduce the efficiency of the device [5, 7].
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Materials and techniques from the semi-conductor industry have contributed

significantly towards the development of man-made photonic devices. For ex-

ample, 1D photonic structures are frequently made using ultra high vacuum

(UHV) deposition of semiconductor materials, such as heavily doped Silicon

and/or Gallium [4, 15, 16]. However, this techniques is expensive and the ma-

terials used are environmentally unfriendly.

Polymers are significantly cheaper than the specialised inorganic materi-

als/techniques needed to make inorganic optical devices. Polymer processing

techniques do not require UHV deposition or high temperatures. Instead, they

can be solution processed at room temperature [17,18]. However, the thickness

of films, which are used to make multi-layer UV/visible photonic devices, need

to be within the µm → nm length scale [12]. Processing polymer structures

within these length scales is difficult, as using the wrong techniques will dam-

age a sample (discussed in section 4.3). Overcoming these challenges would

significantly reduce the cost of optical devices.

There have been previous attempts to make all polymer and composite

polymer/in-organic material devices [19, 20, 21]. However, the motivation for

this research was to prepare functioning optical mirrors which were ‘all poly-

mer’. These samples were prepared from cheap, readily available polymers,

which could be easily processed.

Distributed Bragg reflectors (DBRs) were prepared with reflection bands in

the UV/visible wavelength (between 450nm and 650nm) which are useful for

optical filters [1,2] (discussed in section 4.3 and chapters 5 and 6). Samples were

also prepared with reflection bands in the infra-red wavelength range which

is useful for telecommunications [10] (discussed in chapter 7). For example,

optical fibre telecommunication cables operate between wavelengths of 1.3µm

and 1.6µm [22]. The polymers used to prepare these samples (which is discussed

in section 4.3) were non-absorbing and did not degrade in either the UV/visible

or infra-red wavelengths tested. Although not yet tested, these DBRs could be

used to make new sensors by adding ‘functional’ components which change the

refractive indices and/or structure of the sample [3]. DBRs can also be used

to make resonant cavities which will improve the efficiency of displays [4, 5],

lasers [6, 7] and solar cells [8, 9] etc.

Applications would benefit from the ability to control the optical properties

of a device. The following are examples of optical properties which could be

controlled;
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• Magnitude of the reflectance (discussed in sections 5.4 and 7.3.2 and

chapter 6).

• Position of the reflection bands with respect to wave-length (discussed in

sections 5.2 and 7.3.1).

• Bandwidth of the reflection bands (discussed in section 5.6).

• Angular dependence of the reflection band wavelength (Discussed in sec-

tion 5.5 and chapter 10)

Analysis of nano-scale polymer structures is not limited to research for opti-

cal devices. Complex polymer nano-structures are currently being investigated

for making drug delivery systems [23, 24], chemical sensors [25] and polymer

electronics [5,26,27]. Hence, any investigation into measuring the properties of

polymer multi-layer structures is beneficial to these other emerging research ar-

eas. The polymer-polymer interface widths between deposited polymer layers

(using solution processing) were measured using neutron reflectivity (discussed

in chapter 8). Also, the multi-layer structure was investigated using time of

flight secondary ion mass spectrometry (TOF-SIMS) (discussed in chapter 9).

These results enabled the properties of the polymer samples to be measured,

discussed and compared with optical spectra which were measured from poly-

mer multi-layers.
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Chapter 2

Literature review

2.1 Introduction

A brief history, theory, examples and application of photonic structures are

discussed in this chapter. Photonic structures are being researched due to

their interesting optical properties, which could be used in applications such as

optical filters [1, 2], sensors [3], displays [4, 5], lasers [6, 7] and solar cells [8, 9].

The research in this thesis focused specifically on distributed Bragg reflectors

(DBRs) which are a type of photonic structure [10,12,13].

2.2 Structural colour and Bragg reflection

Interesting optical properties (for light of wavelength λ) occur when the refrac-

tive index of a material spatially varies on length scales which are of the order

of the wavelength of light λ. This is known as a photonic structure, as the op-

tical response of the sample is due to spatial variations of the refractive index

and not pigmentation [10,12,13]. There are many different types of structures

which produce different optical effects. These include [12];

• Reflection.

• Refraction.

• Light scattering.

• Diffraction.

• Thin film interference.
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Figure 2.1: The wide range of reflected colours in soap bubbles are due to thin
film interference [10, 12]. Patches of white are due to light being scattered by
the ‘foamy’ regions of the soap bubbles [10,12].
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Figure 2.2: A diagram of thin film interference where nAir = refractive index
of air, nFilm = refractive index of film (in this case nFilm > nAir), θi = angle of
incidence and reflection, θr = angle of refraction and θt = angle of transmission
(which in this case is equal to θi). The incident light is reflected off both the
top and bottom interfaces, which then undergo interference [28].
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• Photonic crystals.

This research focused mostly on photonic crystals (specifically DBRs). The

optical properties of these samples are best introduced by considering the sim-

plest example of structural colour, thin film interference. Some of the most

common examples of thin film interference are soap bubbles (shown in figure

2.1) and a oil film spread across water. Both examples are from materials which

have weak or no pigmentation, but display a variety of colours when reduced

to thin films [10,12]. Figure 2.2 is a diagram of reflected light undergoing thin

film interference. Incident light is reflected from both the top (air→film) and

bottom (film→air) interfaces of the thin film. The film preferentially reflects

wavelengths of light which constructively interfere. This is controlled by the

separation of the interfaces in the film [10,11]. The speed a light wave travelling

through a material is controlled by the refractive index of the material. Light

transmits slower through media with a higher refractive index [10],

vi = c/ni, (2.1)

Where v = velocity of light in medium i, c = speed of light in a vacuum and

ni = refractive index of medium i

The frequency of the light is unchanged, but the wavelength decreases if

the refractive index is greater [10],

λi = λ0/ni, (2.2)

Where λi = wavelength in medium i and λ0 = wavelength in a vacuum.

The optical path length of light travelling through a film is calculated by

[10],

OPL = dFilmnFilm/ cos(θFilm) (2.3)

Where, dFilm = film thickness, nFilm = refractive index of the film, θFilm =

angle of transmission through the film.

Decreasing the film thickness dFilm, or the refractive index nFilm will de-

crease the optical path length. Doing this to a thin film will blue-shift the

reflected spectra, since smaller wavelengths are required for the reflected waves

to constructively interference. The wavelength of light reflected by a Bragg

reflector, when measured at normal incidence, is calculated by [12];
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Figure 2.3: A ray diagram of a multi-layer structure with alternating refractive
indices n1 and n2 (where n1 > n2). An incident wave transmits through the ma-
terial and partially reflects off each interface where the refractive index changes.
Each interface always causes the light to partially reflect and transmit. This
includes any rays which have previously been partially transmitted/reflected
by a interface.

λM =
2

M
[d1n1(λ) + d2n2(λ)] , (2.4)

Where n1 and n2 are the refractive indices of media ‘1’ and ‘2’ respectively, d1

and d2 are thickness of alternating polymer layers ‘1’ and ‘2’ respectively and

M = 1, 2, 3, ..., etc.

Multiple reflection peaks may be reflected by the same sample. Reflection

peaks which correspond to the longest wavelength are calculated when M = 1.

Increasing M decreases the wavelength of the reflection peak being measured.

If the optical path length of the two alternating layers are the same (d1n1 =

d2n2), then some reflection peaks disappear because of de-constructive inter-

ference (which is discussed further in section 6.3). The wavelengths of the

reflection bands, when d1n1 = d2n2, are calculated by,

λM =
2

2M − 1
[d1n1(λ) + d2n2(λ)] , (2.5)

Where M = 1, 2, 3, ..., etc.
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Equations 2.4 and 2.5 cannot calculate the wavelength of a reflection peak

when the incident light is not normal to the sample surface (θi 6= 0). Instead,

the wavelength of the reflection peaks are calculated using a modified optical

transfer matrix method (see chapter 3).

Moving the incident beam away from the surface normal (θi 6= 0) results

in the wavelength of the reflected beam blue-shifting. This initially appears to

be counter-intuitive, as the optical path length of the beam within the sample

is increased when θi > 0. However, only wavelengths which constructively

interfere are reflected by the sample [10] (shown in figure 2.2). This is discussed

further in section 5.5. Both the variation in film thickness and the different

angles of incidence are why, examples such as, soap bubbles show a variety of

colours [11, 13].

The properties of light can be controlled further by using more complex

photonic structures than single layer films. This includes distributed Bragg

reflectors (DBRs), which were the main focus of the research in this thesis.

DBRs are prepared by depositing an alternating stack of thin films with dif-

fering refractive indices to make a multi-layer (shown in figure 2.3). This type

of structure leads to optical confinement in one dimension, which results in

the sample having interesting optical properties [10, 12] (discussed further in

chapter 3). There are many applications which would benefit from the use and

integration of DBRs (which is discussed in section 2.5).

Distributed Bragg reflectors inherited their name from Sir William Lawrence

Bragg [10, 11]. He developed x-ray crystallography, which measures the prop-

erties of atomic lattices by their diffraction properties [11]. The 1D photonic

structures in this thesis are similar to crystal lattices, but are made of al-

ternating layers with differing refractive induces (shown in figure 2.3) instead

of an atomic lattice. The separation between the interfaces is ∼ λ. This is

comparable to when x-rays are used to measure atomic lattice spacings [29].

There is an interface at the point where the refractive index changes between

two layers, which causes incident light to partially reflect or transmit [10, 11].

Figure 2.3 is a diagram of a DBR which is a multi-layer sample made by

routinely stacking two alternating materials of differing refractive indices. The

diagram shows an incident wave as it passes through the sample. At each

interface there is a partial reflection and transmission (which transmits through

to the next interface). Light which has previously transmitted or reflected will

also undergo the same process if it encounters another interface. This continues
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to occurs, at each interface, until it is reflected or transmitted out from the

entire sample [10, 11, 12, 13, 14]. Layers are deposited so the spacing between

interfaces is of the order the wavelength of the reflected light λ. However,

the photonic structure only reflects rays which constructively interfere. The

other wavelengths are not partially reflected, but instead transmit through the

sample. This creates a photonic band-gap, where only wavelengths within the

band-gap are reflected [10,11,12,13,14].

The magnitude of the partial reflection is greater when the contrast of

the refractive index between the two materials is larger [10,11,12,13]. Increas-

ing/decreasing the optical contrast between layers respectively increases/decreases

the total reflectance. This is because the total reflectance is due to the con-

structive interference of the partial reflections. Increasing the refractive index

contrast increases the magnitude of the partial reflections.

2.3 Structural colour in nature

Photonic structures which occur in nature are discussed in this section to pro-

vide historical context and insight into the development of man-made equiva-

lents. Nature has been using structural colour ever since the Cambrian explo-

sion. This period of time (approximately 515 million years ago) was when life

was at its most diverse [12]. Fish scales, peacock feathers, beetle shells and

butterfly wings are all examples of photonic structures in nature [12, 31]. The

bright colours from these examples are not due to pigmentation. Instead, they

are due to the structural arrangement of materials on the surface [12,31]. Pho-

tonic structures offer a wider range of capability to control light when compared

to pigmentation. Nature uses structural colour (from photonic structures) to

lure in prey, confuse predators, and/or attract a mate [12,31].

Structural colour was first discovered during the investigation of a peacock

feather by Hook [10, 31]. Another commonly studied and described examples

of structural colour in nature, specifically Bragg reflection, are butterfly wings

(shown in figure 2.4 caption [a]). Electron microscopy has enabled researchers

to study these types of samples with greater detail (such as Anderson and

Richards in 1942) [30,31,32]. The captions [b] and [c] in figure 2.4 respectively

show cross section images of Morpho rhetenor and Morpho didius butterfly

wings. These images where taken by Pete Vukusic and J. Roy Sambles at the

School of Physics, University of Exeter, UK. Both of the cross-section images
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Figure 2.4: This image was captured by Pete Vukusic and J. Roy Sambles at the
School of Physics, University of Exeter, UK [30]. It is reproduced in this thesis
with permission from the Nature publishing group. [a] A photographic image of
the intense blue colour reflected from a Morpho rhetenor butterfly wing. [b] A
transmission electron microscope (TEM) image of a Morpho rhetenor butterfly
wing cross section. The multi-layer ‘ridge’ features function as a distributed
Bragg reflector [30]. [c] A (TEM) image of a Morpho didius butterfly wing
cross section. The secondary layer of ridges diffract the light which diffuses the
reflected light [30]. The scale bars in figures [b] and [c] are 1.8µm and 1.3µm
respectively.
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were measured using transmission electron microscopy (TEM). They reveal the

multi-layer structures of the butterfly wings [30]. Both of the wings are covered

in fibrous structures, which have well defined spatially separated scales along

their length. The intense reflection of the butterfly wing is due to the separation

of the scales being comparable to the wavelength of blue light [12, 30]. The

multi-layer in figure 2.3 is an approximation of the butterfly wing structure. It

would be difficult to fabricate the same structure that Morpho butterflies use

for Bragg reflection in the UV/visible wavelengths. The closest attempt was by

3D printing the butterfly wing structure on the centimetre length scale. This

was shown to function as a Bragg reflector at microwave wavelengths [33].

In the early 20th century, Lord Rayleigh successfully modelled the properties

of multi-layer dielectric films using electromagnetic theory [12]. He supported

his argument by observing the iridescence (variation in reflected colour with

respect to angle of incidence) of natural examples of structural colour (beetle

shells and butterfly wings). These optical effects do not occur when colour is

caused by pigmentation. This clarified that the interesting optical properties

of the biological samples were due to the structural arrangement of material

(rather than pigmentation). Furthermore, the mathematical theory showed

that these properties could be replicated by processing dielectric materials into

similar multi-layer structures [12].

2.4 Man-made photonic structures

Photonic structures are usually made using inorganic materials (such as SiO2,

TiO2 and ZrO2 [15]) as it is possible to prepare DBRs with a large refractive

index contrast between layers (typically ∆n ≈ 0.5 [4]). A larger optical contrast

means that fewer layers are required to make a sample with a high reflectance

(this is discussed in chapter 3). Ultra high vacuum (UHV) deposition is com-

monly used to prepare multi-layer dielectric structures [4,15]. These multi-layer

structures are prepared by controlled deposition of each layer in sequence. This

is a well understood technique since it is used in a variety of other applications

such as micro-electronics [4,15]. However, the inorganic materials used in these

DBRs using UHV deposition are expensive. Furthermore, the materials need to

be carefully selected since each layer is a thin dielectric crystal. Mismatches in

the lattice spacing cause strain between the layers. The strain can be sufficient

to overcome the stability of the sample and cause defects/cracks to appear in
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Figure 2.5: Diagram of more complex photonic structures which could be used
for potential applications. The etched optical trap and etched micro-pillars
are fabricated from a 1D photonic crystal. Etched wave-guides are made by
milling a series of periodic holes into the multi-layer and/or nano-imprinting
[16,36]. The central hole is left intact to confine photons within a small region
of the structure. Etched wave-guides and micro-pillars are both examples of
2D photonic crystals. The 3D colloidal photonic crystal is a self assembled
structure which uses a high refractive index colloid and air as the alternating
materials [37,38].

the structure [34].

Recently, there have been advancements in making hybrid devices which

use a combination of both polymer and inorganic materials [35]. Using rel-

atively cheap polymers can reduce the cost these mirrors/devices. However,

the costs are not significantly reduced and the processing procedures are rela-

tively complex [35]. Recently, all-polymer DBRs have been attempted [6, 20].

Polymer materials and thin film polymer processing techniques are significantly

cheaper than their inorganic alternatives. However, processing polymer films

into multi-layers presents its own challenges. For example, the solvent which is

used to solution process one type of polymer may dissolve previously deposited

polymer films. The optical contrast between polymers is also significantly less

than what is available with in-organic materials. However, this can be compen-

sated for by adding more layers to the photonic structure (discussed in section

5.4). These challenges are outweighed by their significant reduction in cost.

There has been significant research into pattering multi-layer photonic struc-

tures to create 2D photonic crystals, wave-guides and optical traps [16] (dis-

cussed further in section 2.5 and illustrated in figure 2.5). The multi-layer is

etched using an ion beam and/or lithography [36]. Both techniques are well

established since they are extensively used in the semi-conductor industry. The

most common etching patterns used are micro-pillar or a lattice of holes, which

have well defined spatial distributions [16]. Etching these structures is often

time consuming and therefore expensive. These techniques are not suitable
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for large scale optical devices because of the patterning areas needed. Instead,

these techniques are only applied to small-scale integrated devices, such as

optical ‘lab on a chip’ sensors [39] and small telecommunications devices [16].

Fabrication of 3D photonic structures is significantly more challenging than

1D and 2D structures. Early investigations used large scale models (m → cm

length scales) which were analysed in the microwaves [40]. However, photonic

structures which have UV/visible optical properties must have features which

are tens of nano-metres in scale [12]. Research into these structures has been

limited because of the challenges associated with preparing samples on such a

small scale. The ‘woodpile’ array is one of the most common techniques pre-

viously used to prepare 3D optical structures. It uses stacks of equally spaced

strips, which are prepared by etching each layer deposited onto the sample [41].

This is impractical because of the lengthy preparation time. The most promis-

ing technique is by using self-assembly to created ordered structures (illustrated

in figure 2.5). Colloids are nano-scale particles which are suspended in a solu-

tion. These particles self assemble into 3D periodic structures when carefully

dried [37, 38]. The spatial separation of the interfaces is dependent upon the

size of the colloid particles. This offers limited control, as changing the optical

properties of a sample requires different materials to be used [16,37,38].

Only 1D photonic structures were prepared in this thesis. However, it is

worth keeping more complex photonic structures in mind for future develop-

ments and applications.

2.5 Optical devices which make use of pho-

tonic structure

Photonic structures have reflection peaks over a narrow range of wavelengths

(bandwidth). This is also known as the photonic band-gap as reflected light

is removed in the transmission spectra of the samples. The reflectance of the

sample depends on the thickness and refractive index contrast between the

layers. The materials used should be non-absorbing and non-scattering so that

it is possible to attain a reflectance greater than 99% [42, 43]. It is possible

to control the position of reflection bands and the bandwidth (with respect to

wavelength) by changing the film thickness and/or the refractive index of the

layers within the sample. These properties have enabled DBRs to be used as
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Figure 2.6: A diagram of a basic VSCEL laser design. An active/lasing material
is placed between a optical cavity using two high reflecting DBR mirrors. The
top mirror has a slightly lower reflectance for the laser light to emit through.

band-pass and band-stop filters for communication and sensors [1, 2].

Encapsulating a medium between two high reflecting DBRs results in a

photonic cavity [4]. Light within the cavity is continuously reflected in between

the DBR mirrors. Constructive interference occurs when the spacing between

the mirrors is multiples of λ/2. This creates a resonant cavity where the ‘active

layer’ of a optical device can be placed. The DBR mirrors are tuned to the

same wavelength which stimulates the active layer. This significantly reduces

the density of states for the active layer. Vertical cavity surface emission lasers

(VCSELs, which is shown in figure 2.6) depend on resonant cavities to function

by optically pumping the lasing medium [11, 43, 44]. The efficiency of other

optical devices can also be improved by placing them in a resonant cavity layer

(such as LEDs [4,45] and solar cells [8]).

Reducing the number of dimensions of a photonic structure further reduces

the number of energy states. This is because the propagation of the photon

is confined within a reduced number of dimensions. This can further improve

the efficiency of optical devices (such as displays, solar cells) [46]. The optical

properties of these devices are also more sensitive to changes in film thickness

and/or refractive index. This has lead towards research into using 2D photonic

crystals as chemical and biological sensors [39].
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2.6 Polymer multi-layer devices

Polymers are long molecules which are made from smaller molecular subunits

(monomers), which are linked together by covalent bonds. Biological structures

such as proteins and DNA are examples of polymers which occur in nature

[17, 18]. Polystyrene (PS) and Polyvinylpyrrolidone (PVP) are examples of

synthetic polymers [18, 47, 48]. Most polymers are based on long chains of

carbon. The simplest polymer structures have a main chain of carbon, which

have two covalently bonded hydrogen atoms per carbon atom. However, other

elements such as oxygen, nitrogen, fluorine and silicon can also be part of a

polymer structure. Furthermore, the arrangement of atoms can also include

smaller chains and/or loops of atoms which are side-groups to the backbone of

the monomer chain. Differences in the composition and arrangement of atoms

in a polymer will change its chemical properties [18, 47, 49]. Polymers can be

dissolved using solvents to make a solution. However, this depends on the

chemical properties of the polymer and the solvent [18, 47, 49]. For example,

polystyrene is hydrophobic (repels water) and will not dissolve in water. On

the other hand, polyvinylpyrrolidone is hydrophilic (attracted to water) and

does dissolve in water.

The physical properties of a polymers should also be considered when using

them in applications. There are many characteristics which are universal to

the physical properties of polymers. This is due to them being long, ‘string-

like’, molecular chains. For example, changes in the molecular length of a

polymer will change the level of entanglement in the sample. Entanglement

result in polymer solutions having viscoelastic properties (both viscous and

elastic characteristics) [18, 47]. Cross-linking (physically interconnecting long

polymer chains) a polymer melt (above its glass transition temperature Tg)

gives it ‘rubbery’ properties. The polymer chains in the rubber will unbundle

when the material is stretched. This lowers the entropy of the polymers in

the sample. However, the polymer chains will fluctuate back into a bundle (a

higher entropy state) if the force stretching the polymer is removed. This is

known as entropic elasticity. This entropic elasticity returns the rubber sample

back to its original shape [18,47].

Polymer materials are readily available and are therefore cheap. Further-

more, polymers can be readily processed. For example, solution processing

(handling solvents when they are suspended in a solvent) can be used to make
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thin films at room temperature [17]. There are a broad range of diverse prop-

erties from different polymers. The specific properties of a certain polymer can

be used to make useful materials and devices for applications [18,47]. Organic

materials are also relatively cheap and specialised molecules can often be mass

produced [27].

There is a growing demand to make devices which are easy to process, cheap

and efficient. Devices made from polymer materials are an emerging technol-

ogy and gaining research momentum [9, 17, 27]. This is because polymers are

cheap and can be processed without the need for UHV deposition and/or high

temperatures. Polymers can be processed using a variety of techniques such as

solution processing (spin-coating and dip-coating), spraying and printing [9].

Nano-structures are utilised to manipulate light (for example) at the small-

est length-scales possible. Interesting optical effects occur when you control

the nano-structure of a material [6,20]. Nature has already demonstrated how

efficient systems can be made from organic materials at the nano-scale [17,20].

There are many challenges which must be investigated and overcome to man-

ufacture devices which are made from nano-scale polymer structures.

Polymers nano-structures are also being used in other applications such as;

• Drug delivery systems : The permeability, solubility and structure of poly-

mer materials is being used for controlled drug release and prolong the

products shelf-life [23].

• Polymer electronics : Functional polymer materials are currently being

researched to create cheap, efficient and flexible devices. These devices

are prepared by depositing layers of different organic materials on top of

one another [26,27]. Polymer electronics and devices can also be stacked

multiple devices onto the same substrate to save space [50].

These devices are relevant to the research in this thesis, as they all used

layered deposition of polymer materials. Researching a relatively simple poly-

mer multi-layer (like the polymer DBRs) may contribute towards the analysis

of other devices which use structured polymer materials.
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Chapter 3

The physics of reflection from

films and multi-layers

3.1 Introduction

This chapter discusses the physics of reflection from films and multi-layers.

The optical properties of single layer and multi-layer samples were measured

throughout this thesis. A modified optical transfer matrix method was used

to model the reflection spectra in the UV/visible and infra-red wavelengths.

Ellipsometry data was also analysed using this technique (discussed in section

4.4). Measurements from neutron reflectivity were also modelled using transfer

matrix methods (discussed in section 4.7). The model uses a series of bound-

ary and transmission matrices, which describe the reflectance at interfaces and

transmission through the individual layers of the DBR [11, 51, 52]. This tech-

nique uses a series of different steps/calculations which are discussed within

this chapter.

3.2 Fresnel reflection and transmission coeffi-

cients

Figure 3.1 illustrates a light ray as it is incident on a sample with layers of

differing refractive indices. There is a interface between each layer because of

the changes in refractive index. This causes incident light to partially reflect

and transmit. The angle of incidence θi is equal the angle of reflection θr as the

reflection is specular. The angle of refraction is calculated according to Snell’s
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Figure 3.1: Light is partially reflected and transmitted by a dielectric interface,
which is created by a change refractive index between one medium (n1) and
another (n2). The angle of the reflected light θr is equal to the angle of incidence
θi (specular reflection) [10]. Snell’s law calculates the angle of refraction [10].

law of refraction [10].

The magnitude of the transmitted and reflected light is different for polari-

sations which are parallel to perpendicular (p and s respectively) to the plane

of incidence [10]. The electric field of the two polarisations is calculated sepa-

rately for both the partial reflection and transmission. The Fresnel coefficients

give the p and s reflection coefficients as [10];

rs =
n1 cos(θi)− n2 cos(θt)

n1 cos(θi) + n2 cos(θt)
, (3.1)

rp =
n2 cos(θi)− n1 cos(θt)

n1 cos(θt) + n2 cos(θi)
, (3.2)

ts =
2n1 cos(θi)

n1 cos(θi) + n2 cos(θt)
, (3.3)

tp =
2n1 cos(θi)

n1 cos(θt) + n2 cos(θi)
. (3.4)

Where rs and rp are the reflection coefficients for the s and p polarisations

respectively. Likewise, ts and tp are the transmission coefficients for the s and

p polarisations respectively. n1 and n2 are the refractive indices of the first and

second media respectively. θi = angle of incidence and θt = angle of refraction
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which were illustrated in figure 3.1.

The reflectance R and transmittance T are calculated by the fraction of the

beams reflected or transmitted power respectively. For a beam with polarisa-

tion s and passing through a single interface the reflectance and transmittance

are calculated respectively by [10];

Rs = |rs|2, (3.5)

and,

Ts = |ts|2
n2 cos(θt)

n1 cos(θi)
. (3.6)

Likewise, Rp = |rp|2 and Tp = |tp|2 n2 cos(θt)
n1 cos(θi)

calculate the reflectance and

transmittance of a single interface for p polarisation. n2 cos(θt)/n1 cos(θi) in

equation 3.6 was used to correct for when θi 6= θr 6= 0. Also, n2 changes the

speed of the transmitted light with respect to the incident light in n1. Both

change the flux [Jm−2s−1] of the transmitted beam and hence the transmittance

[10,11].

A DBR consists of many dielectric layers which are stacked to make multiple

dielectric interfaces. A partial reflection and transmission occurs from the first

interface as the beam passes through. The second interface partially reflects

and transmits light which was transmitted by the first interface. This process

repeats at each interface in the sample. All of the partially reflected light rays

from each interface interfere and contribute towards the total reflectance of

the sample. However, only light from select wavelengths are reflected by the

sample, whilst the remaining wavelengths are transmitted through the sample.

This is controlled by the spatial separation of the interfaces and the refractive

indices of the materials [10,11].

The optical properties of a multi-layer sample cannot be adequately mod-

elled by using only the Fresnel equations. This is due to the spatial separation

between the interfaces in the multi-layer. The medium and separation between

each interface must be considered because the phase of the the light changes

as it travels through the sample [11, 52].

A modified optical transfer matrix method was used to calculate the optical

properties of DBR samples [11, 12, 52]. Each interface was characterised by a

2 × 2 boundary matrix. Likewise, changes in the phase of the travelling light

between each interface was modelled by a 2 × 2 transmission matrix. Each
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Figure 3.2: This diagram is as a visual aid for the notation used in the optical
transfer matrix method.

matrix was multiplied together in a sequence to result in a final 2 × 2 matrix

which characterises the entire sample [13, 51]. This is derived in the following

sections.

3.3 Boundary matrix

Figure 3.2 is a visual aid to assist with the assumptions when modelling a

travelling wave. We consider light at two points z1 and z2. The properties of

the wave are with respect to only one dimension z. This model considers the

electric field of a wave when it is travelling in either positive +z or negative

−z direction at points z1 and z2 [13, 52, 53]. The magnitudes of the electric

fields E1+ and E2+ are for waves moving in the +z direction at points z1 and

z2 respectively. Likewise, E1− and E2− are the magnitudes of the electric fields

of waves moving in the −z direction at points z1 and z2 respectively [13,51].

The electric field of the waves in the z1 media with respect to the waves in

the z2 media are initially considered. E1− and E1+ are calculated separately

and it is assumed that their magnitudes are can be written in terms of E2+

and E2−. Hence [13,51],

E1+ = α11E2+ + α12E2−, (3.7)

and,

E1− = α21E2+ + α22E2−. (3.8)

Where α11, α12 ,α21 and α22 are coefficients which are determined later.

Equations 3.7 and 3.8 can be written in the following [13,51],
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Figure 3.3: The wave (represented by the magnitude of its electric field E1−)
is partially reflected by the interface between the two media z1 and z2. E2+ is
the magnitude of the electric field for the transmitted wave. E2− is not shown
as there is no interface for the transmitted wave to be reflect back. No light
travels in the −z direction in the z2 medium.

(
E1+

E1−

)
=

(
α11 α12

α21 α22

)(
E2+

E2−

)
= B12

(
E2+

E2−

)
. (3.9)

The boundary matrix B is calculated by assuming there is a interface be-

tween z1 and z2 (shown in figure 3.3). This creates a boundary for the light

to partially transmit and reflect. There are no other interfaces as both of the

media are semi-infinite. Furthermore, both of the media are assumed to be ho-

mogeneous and non-absorbing, so light does not scatter or get absorbed [13,51].

The light was initially considered to be propagating from the z1 medium

into the positive z-direction only. E1+ is the electric field of a wave propagating

towards medium z2. An electric field of a reflected wave E1− is created by

partially reflecting off the interface between z1 and z2. The wave is also partially

transmitted at the interface and has an electric field E2+. There is no wave

travelling in the −z direction in region z2 (E2− = 0). This is due to the semi-

infinite approximation which assumes there are no interfaces to reflect the light

from E2+ back. Equations 3.7 and 3.8 are reduced to [13,51];

E1+ = α11E2+, (3.10)

and,

E1− = α21E2+. (3.11)

The transmission and reflection coefficients of light respectively are [10];
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t =
Et
Ei
, (3.12)

and,

r =
Er
Ei
. (3.13)

Where Ei = electric field in the incident wave, Er = electric field in the reflected

wave and Et = electric field in the transmitted wave.

Equation 3.10 is compared with equation 3.12 to determine the coefficient

α11,

t12 =
E2+

E1+

=
1

α11

,

α11 =
1

t12

.

(3.14)

Where t12 = transmission coefficient for a boundary from medium 1→ 2.

The α21 coefficient is calculated by dividing 3.11 by 3.10 such that,

r21 =
E1−

E1+

= α21
E2+

E1+

=
α21

α11

= α21t21,

α21 =
r12

t12

.
(3.15)

Where r12 = reflection coefficient for a boundary from medium 1→ 2.

The α12 and α22 coefficients were calculated by reversing the problem.

Whereby, the incident light is from region z2 and propagates into the −z di-

rection. Hence, via a lengthy calculation;

α12 =
r12

t12

, (3.16)

and,

α22 =
1

t12

, (3.17)

Substituting these coefficients back into equation 3.9 results in the boundary

matrix. This 2× 2 matrix calculates the reflection/refraction properties of the

boundary at each interface [13, 51, 52]. The boundary matrix for the interface
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Figure 3.4: A light wave passes through the medium between z1 and z2 in the
positive +z direction. The wave is not passing through interfaces at z1 or z2

as this simplifies the calculation. The separation between the interfaces is dz.

12 is written as;

B12 =

(
1/t12 r12/t12

r12/t12 1/t12

)
. (3.18)

3.4 Transmission matrix

The speed and phase of the wave changes when it is transmitted in a medium

of differing refractive indices. Changing the thickness of the layer also changes

the phase difference introduced between interfaces [10,13,51]. The diagram in

figure 3.4 and the following steps are used to calculate the transmission matrix

for each layer.

A wave is considered as it propagates through space in the +z direction

[10,51],

E+(z) = E0e
i(ωt−kzz). (3.19)

Where kz is the magnitude of the wave-vector |kz| which is expanded as, [51],

kz = 2πn cos(θt)/λ. (3.20)

Where E0 = the maximum of the amplitude, n = refractive index of the ma-

terial, θt angle of refracted light as it is transmitted through the material and

λ = wavelength of the light.

It was assumed that the wave is only travelling in the +z direction. Fur-

thermore, z1 is considered to be the beginning of the material and the wave

is initially described by E1+. The thickness of the material is defined as dz
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which is where the medium ends at z2. The resulting wave at the end of the

material is described by E2+. This is illustrated in figure 3.4. This model

only considers the medium between the interfaces. The interaction between

the wave and the interfaces is not considered. No waves are reflected into the

negative z direction. Hence, E1− = E2− = 0 [13, 51, 52]. The wave-equation

shown in 3.19 is re-written for the medium between z1 and z2 as;

E1+(0) = E0e
iωt, (3.21)

and

E2+(dz) = E0e
iωte−ikzdz . (3.22)

Equation 3.22 is re-written as,

E2+(dz) = E1+e
−ikzdz . (3.23)

Like the boundary matrix problem, the transmission of the wave is consid-

ered as a 2× 2 matrix [13,51,52]. Hence,(
E1+

E1−

)
=

(
β11 β12

β21 β22

)(
E2+

E2−

)
. (3.24)

However, E1− = E2− = 0 as the light does not travel in the −z direction

[13,51]. Solving equation 3.24 results in;

E1+ = β11E2+ (3.25)

The coefficient β11 is re-written as,

β11 =
E1+

E2+

= e+ikzdz . (3.26)

The coefficient β21 is solved by;

0 = β21E2+,

β21 = 0.
(3.27)

Like the boundary matrix problem, this method was calculated for when

the wave is moving in the −z direction. This results in;
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β12 = 0, (3.28)

and,

β22 = e−ikzdz . (3.29)

The coefficients are substituted back into equation 3.24, which results in

the transmission matrix,

T(dz) =

(
eiδ 0

0 e−iδ

)
. (3.30)

where δ = 2πndz cos(θ)/λ.

Changing the thickness of a layer (dz) will change the phase of the light

at the end of the medium (d2) [13, 51, 52]. Only reflections which are in phase

will constructively interfere. Therefore, the transmission matrix contributes

towards calculating the wavelength which is reflected by the DBR.

3.5 The optical matrix method

The simplicity of a single film is considered before extending this approach to

model a multi-layer. Figure 3.5 illustrates a free standing thin film which has

2 interfaces (which are air-polymer and polymer-air) and a single medium for

transmission (which is the film). The free standing film ‘sample’ is modelled

by multiplying the boundary and transmission matrices in sequential order

[13,51,52]. This is from left to right in the diagram. For a single free standing

film [51],

M = B12T2(dz)B23 (3.31)

Which is expanded to;

M =

(
1/t12 r12/t12

r12/t12 1/t12

)(
eiδ 0

0 e−iδ

)(
1/t23 r23/t23

r23/t23 1/t23

)(
E1+

E1−

)

=

(
m11 m12

m21 m22

)(
E3+

E3−

) (3.32)
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Figure 3.5: A visual interpretation of the modified optical transfer matrix
method being used to model a free standing film. There are three mediums
(n1, n2 and n3), two interfaces (B12 and B23) and a transmission medium (T2)
which spans over layer thickness d2. The magnitude of the electric field for a
wave is considered for each medium.

Where M = the matrix which represents the optical properties of the sam-

ple, Bnm = the boundary matrix for the appropriate interface and Tm = the

transmission matrix for the appropriate medium.

Multiplying the matrices together results in a 2 × 2 matrix which has the

corresponding elements;

m11 =
r12r23e

−2iδ + 1

t12t23e−iδ
, (3.33)

m12 =
r12e

−2iδ + r23

t12t23e−iδ
, (3.34)

m21 =
r23e

−2iδ + r12

t12t23e−iδ
, (3.35)

and,

m22 =
e−2iδ + r12r23

t12t23e−iδ
. (3.36)

The total reflection and transmission coefficients of the whole sample are

calculated by considering the magnitude of the electric fields in the first and

final region after passing through the tri-layer [13, 51, 52]. B23 is the final

interface of the tri-layer and no light travels in the negative direction in the

final medium (E3− = 0). E1+ and E1− are solved using equation 3.31;
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E1+ = m11E3+, (3.37)

and,

E1− = m21E3+, (3.38)

The total reflection for the sample is calculated by substituting these two

equations into the reflection coefficient [10,13,51,52],

rTotal =
E1−

E1+

=
m21

m11

. (3.39)

Substituting in the coefficients from equations 3.33 and 3.35 results in,

rTotal =
r12 + r23e

−2iδ

1 + r12r23e−2iδ
. (3.40)

This is also a well known formula for the reflection coefficient of a free

standing thin film [10,13]. The total transmission coefficient tTotal of the sample

is calculated by considering it as the ratio of transmitted light with respect to

the incident light (E3+/E1+) [10, 13, 51, 52]. Comparing this with equation

3.37 and substituting in the coefficient from equation 3.33 results in;

tTotal =
E3+

E1+

=
1

m11

=
t12t23e

−iδ

1 + r12r23e−2iδ
.

(3.41)

3.6 Application to multi-layers

The modified matrix method technique can calculate the optical properties

of multi-layers, since the 2 × 2 matrix with ‘m’ coefficients in equation 3.31

can be extended [13, 51, 52]. More layers are included by multiplying more

boundary and transmission matrices in sequence. Hence, a sample of N layers

is calculated by;

37



MTotal = M1,2T2(d2)M2,3...TN(d[N+1])M[N+1],[N+2] =

(
m11 m12

m21 m22

)
. (3.42)

MTotal is a 2 × 2 matrix for any number of N layers [13, 51, 52]. Fur-

thermore, the total reflection and total transmission are still calculated by

rTotal = m21/m11 and tTotal = 1/m11 respectively [13,51,52].

The reflectance of the sample is calculated by [10,13,51],

R = |rTotal|2 = rTotalr
∗
Total. (3.43)

Where r∗Total is the complex conjugate of the total reflection coefficient rTotal.

Likewise, the transmittance is calculated by [10,13,51],

T = |tTotal|2 = tTotalt
∗
Total

n2 cos(θt)

n1 cos(θi)
. (3.44)

Where n2 cos(θt)/n1 cos(θi) corrects for the change in flux of transmitted light

when not at normal incidence. This was also shown in equation 3.6.

It is important to note that the matrix method should be calculated for

both s and p polarisations separately [13, 51]. The total reflectance Rs and

total transmittance Ts for s polarisation should be calculated using the reflec-

tion rs and transmission ts Fresnel coefficients (shown in equations 3.1 and 3.3

respectively). Likewise, the total reflectance Rp and total transmittance Tp

for p polarisation should be calculated using the reflection rp and transmission

tp Fresnel coefficients (shown in equations 3.2 and 3.4 respectively). This is

because the magnitude of the electric field will be different for the two polari-

sations when they are partially transmitted and reflected from the interfaces if

the angle of incidence θi 6= 0 [10,13,51]. The total reflectance of the sample is

the average of the total reflectance for the s and p waves [10,13,51],

R =
Rs +Rp

2
. (3.45)

This is also the case when calculating the transmittance [10].

T =
Ts + Tp

2
. (3.46)
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3.7 Modelling diffuse interfaces

UV/visible spectroscopic measurements (discussed in chapter 5) showed that

the reflectance of polymer DBR samples were not as large as those predicted

by the optical matrix method model. Broad polymer-polymer interface widths

were considered as an explanation for the loss in reflectance. Previously, the

model inaccurately assumed that the interfaces were sharp (the transition from

one medium to another is instantaneous) and broad interfacial widths were not

considered. However, polymer-polymer interfaces are likely to have intrinsic

roughness due to the interfacial mixing. The interface widths become diffuse

and broaden by polymer-polymer intermixing [18]. Each reflection coefficient

(shown in in equation 3.18) was modified by a factor such that [11,52,54],

rint = r exp

[
−8
(πσnN+1

λ

)2
]
. (3.47)

Where σ = width of polymer-polymer interface [m], nN+1 = refractive index

of the medium the light is passing in to.

Increasing the widths of the interfaces σ, decreases the magnitude of the

reflection coefficient r for the relevant interface [54]. This is discussed in

greater detail in section 5.3.1. Neutron reflectivity was later used to mea-

sure the polymer-polymer interface widths σ (discussed in chapter 8). All of

the polymer-polymer interfaces were less than 1nm.

3.8 Summary

The modified optical transfer matrix method is able to calculate the reflec-

tion properties of DBRs. Each interface is assigned a boundary matrix and

the medium in each layer is assigned a transmission matrix. Diffuse polymer-

polymer interface widths were also considered in these calculations. The re-

flection spectra of DBRs measured later in this thesis were modelled using this

technique.

Ellipsometry measurements were modelled using the total reflection coeffi-

cients of the s and p polarisations (see section 4.4). These results were used to

extract the refractive index and thickness of spin-cast films.

A similar transfer matrix method was also used to model the specular reflec-

tion of a neutron beam from multi-layer samples (see section 4.7). The internal

structure of a sample is measured by the interference between partially reflected
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neutron beams. This ‘optical method’ can be applied to neutron reflectivity

due to the particle-wave duality of neutrons [55].
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Chapter 4

Experimental techniques

4.1 Introduction

A brief overview of the most common experimental techniques used in this re-

search are discussed in this chapter. This includes preparation of single layer

and multi-layer samples. It also includes techniques used to measure the prop-

erties of the samples.

4.2 Spin-coating thin films

Spin-coating is a technique commonly used to cast polymer solutions into uni-

form thin films. The polymer solution is deposited onto a substrate which is

then quickly rotated to spread and dry the solution to make a thin film. This

technique is capable of producing uniform films which are ∼ 10nm to a few

microns in thickness [56, 57, 58]. Spin-coating was used to cast single layer

and also multi-layer polymer films during this research. The technique is rel-

atively quick, does not require a ultra-high vacuum environment and sample

preparation is also at room temperature.

Polymer solutions were deposited and then spin-cast onto substrates of ei-

ther freshly cleaved silicon wafers or glass slides. The glass slides were cleaned

prior to use by sonicating them in methanol for several hours. The spin-coating

process is illustrated in figure 4.1).

Spin-cast films may require annealing to remove any residual solvent. Films

are annealed by heating them above their glass transition temperature (Tg).

The solvent more readily leaves the polymer film during this rubber-like state

when it is heated above it’s Tg [18].
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Figure 4.1: The spin-coating process is illustrated in a series of steps; Step 1 -
secure a substrate to the spin-coater using a vacuum seal. Step 2 - thoroughly
wet the center of the substrate with deposited solution. Step 3 - wet the sample
with the polymer solution by rotating the substrate at a constant spin-speed.
Step 4 - excess solution is ejected off the substrate. Step 5 - the film thins
as the remaining solvent from the remaining solution is evaporated. Step 6 -
spinning is stopped when the film is dry and stable. The sample may require
annealing to remove any residual solvent in the film.
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There are several parameters which change the features and quality of a

spin-cast film. The following parameters were considered when casting polymer

films during this research;

• Spin speed : A faster spin-speed ejects more polymer solution off the

substrate during spin-casting. Less solution is left in contact with the

substrate, which results in less polymer remaining on the surface of the

substrate. Thinner films are prepared by rotating the sample at a faster

spin-speed [57,59].

• Viscosity : Solutions with a higher polymer concentration are usually

more viscous. This results in less solution being ejected off the substrate

during spin-coating. Depositing a solution with a higher polymer con-

centration will result in a thicker spin-cast film [57,59].

• Solvent selection: A solvent which evaporates too readily will result in

a rough film. The solvent on the surface of the liquid film evaporates

too quickly. This results in a solid ‘skin’ above a liquid film. The whole

of the film is prevented from drying uniformly and results in the surface

becoming roughened [60]. On the other hand, a non-volatile solvent may

take too long to dry. This results in a film which needs a longer spin-

coating duration and/or annealing to stabilise and dry.

• Interfaces : The solvent and/or polymer may not be able to sufficiently

bond to the substrate. A low adhesion energy between the substrate and

the polymer solution results in a film which has ‘streaks’ on its surface

(the Marangoni effect [61, 62]).

4.2.1 Polymer and solvent selection

Polymers were dissolved into solvents to prepare solutions for spin-coating.

Homogeneous films were needed to make efficient 1D Bragg reflectors as defects

will scatter reflected and transmitted light. These solutions must be capable

of being cast into homogeneous films of an appropriate thickness onto silicon,

glass and polymer substrates (to make multi-layers).

The solvent used to spin-cast a film must not dissolve and/or damage any

previously deposited polymer by swelling the film. Swelling previously de-

posited layers can cause them to strain and crack the sample. If a solvent was
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Figure 4.2: The chemical structures of the polymers and solvents used to make
spin-cast polymer multi-layer films. Each polymer is shown alongside the ap-
propriate solvent which was used to make the solutions. Polar and non-polar
chemicals were used so that the multi-layer could be prepared using an orthog-
onal solvent system. More detailed information about the polymers are shown
in table 4.1
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used to dissolve polymer ‘A’, it must not be allowed to dissolve the alternate

polymer ‘B ’ and vice-versa. This is known as a orthogonal solvent system and

was used to prepare polymer multi-layers. Previously deposited layers would

be damaged by depositing new layers if an orthogonal solvent system was not

used [15].

Using an orthogonal system significantly reduces the selection of polymers

and solvents which can be used for sample preparation. This problem was

solved by initially considering solvents which are orthogonal with respect to

one another. It is well known that polar and non-polar solvents do not mix

[63,64]. A molecule is polar when the distribution of electric charge is not evenly

distributed. This occurs when there is unequal sharing of electron pairs in

covalent bonds. The atoms in the molecule are in a non-symmetric arrangement

and the charge distribution is equivalent to a pair of separate and opposite

charges [49].

Polar and non-polar polymer materials were also considered and paired

with their appropriate solvents. Four different polymers and four different

solvents/mixtures were used to make solutions for sample preparation. The

polymers and their solvents which they were dissolved in are shown in table

4.1. The chemical structure of the polymers and solvents are illustrated in

figure 4.2.

Two different polymer/solvent systems were tested when making the multi-

layer samples. Most of the experiments were made by depositing alternating

layers of polyvinylpyrrolidone (PVP) and polystyrene (PS). These materials are

cheap, readily available and easy to process into solutions and spin-coated. The

contrast in refractive between the two polymers (∆n = 0.07) was sufficient for

reflection bands to be measured (which is discussed in chapter 5). The other

multi-layer technique used cellulose acetate (CA) and poly(9-vinylcarbazole)

(PVK), which is discussed in chapter 10.

Experiments showed that spin-casting PVP from either ethanol or ace-

tonitrile solution resulted in poor quality films. However, solutions using a

50:50 mixture of both solvents were known to produce good quality spin-cast

films [61]. PS was dissolved into toluene which spin-coated into homogeneous

films. Tests showed that each polymer was immiscible in the solvent used for

the alternate polymer layer.

46



4.3 Multi-layer sample preparation

The polymer distributed Bragg reflectors were prepared by spin-coating alter-

nate polymer films on top of one another. This section discusses the techniques

used to prepare PVP/PS multi-layers. Preparation of multi-layers made from

CA and PVK are discussed in section 10.3.2.

Initial attempts to make PVP/PS multi-layers resulted in poor quality/

cracked samples. Defects such as cracks would cause the samples to scatter

light and reduce their efficiency as DBRs. Cracking occurred when a PVP

layer was sandwiched between two PS films. Specifically, it is when a PS layer

is deposited on top of a PVP(top)→PS(bottom) bilayer. The toluene solvent

in the PS solution attempted to penetrate through the intermediate PVP layer.

This swells the underlying PS film which creates a strain and cracks the rigid

PVP film. The PVP layers were protected by swelling them with hydrochloric

acid (HCl) vapour. This prevented the toluene (from a freshly deposited PS

layer) penetrating through the PVP layer and damaging the sample. Using

this protective step enabled multi-layers of PVP/PS to be prepared without

cracks. Fourier transform infra-red (FTIR) spectroscopy was used to measure

any chemical changes when swelling the polymers with HCl vapour (this is

discussed in chapter 7). The results indicated that neither PVP or PS films

chemically reacted with HCl vapour. Furthermore, all of the HCl vapour was

removed from the multi-layers during annealing.

Preparation of the PVP/PS multi-layers is shown in the flow diagram in

figure 4.3. All of the polymer solutions were deposited at spin-speeds between

1.0krpm and 4.5krpm. Spin-speed which were slower than 1.0krpm resulted

in poor film uniformity. The vacuum pump was unable to keep the substrate

secured the sample were spun faster than 4.0krpm.

These samples were finished by annealing them for 5 hours at 110oC under

a ∼ 1mtorr vacuum. This is above the glass transition Tg temperature of

PS, but not PVP. The glass transition temperature of PS and PVP are 97oC

and 170oC respectively [65]. A polymer below its Tg is relatively rigid and

brittle. Whilst above the Tg, the polymer is more malleable and rubber-like [18].

Annealing releases residual spin-coating stresses and enables residual solvent

to more readily escape the polymer films [18,47]. Unfortunately, not all of the

solvent would have been released from the multi-layer samples due to annealing

below the Tg of PVP. The solvent from underlying PS layers may have also
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Figure 4.3: Flow diagram illustrating the preparation procedure for making
PVP/PS multilayer samples. The wavelength of the reflection peak was con-
trolled by changing the spin-speed. Adding or removing the number of layers
deposited changed the reflectance of the reflection peak. This process was later
automated using a computer control system.
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struggled to penetrate through the un-annealed PVP layers [66]. The possible

effects of trapped solvent discussed in chapter 5 as it was a likely cause for

reductions in the reflectance of the DBRs.

4.3.1 Automated sample preparation

Samples were initially prepared by hand and it typically took approximately

one hour to make a 50 layer sample. An automated system was developed so

samples could be prepared without the need for continuous attention. The com-

puter control system was later used to make chirped DBR samples (discussed in

section 5.6). Figure 4.4 shows a diagram of the automated spin-coater design.

A photograph of the system is shown in figure 4.5 and how the pre-existing

spin-coater (Dr James Sharp had built the spin-coater before this research had

begun) was modified. The automated system was designed and built by my-

self for controlled multi-layer sample preparation. Credit should also be given

to the University of Nottingham School of Physics and Astronomy workshop

team for manufacturing bespoke components for these modifications. The au-

tomated set-up consisted of many components which are listed below. Each

number in the list corresponds to the labelling numbers in figure 4.4;

1. Reservoirs of solutions and HCl : Large quantities of polymer solutions

were prepared so samples could be made without interruption. The solu-

tion bottles were sufficiently sealed to prevent evaporation. This would

otherwise lead to the concentration of the solutions changing during sam-

ple preparation. A bottle of HCl solution was used to syphon HCl vapour

onto the sample and swell PVP layers when needed.

2. Peristaltic pumps : The polymer solutions and HCl vapour were delivered

onto the sample by using peristaltic pumps and Viton tubing (both were

supplied by Williamson manufacturing company UK). The peristaltic

pumps enabled a controlled the flow of solution/vapour by applying a

voltage using a computer control card (National instruments USB DAQ

control card). The Viton tubing did not chemically react with any of the

solvents or vapour. Viton does swell in toluene, but this did not hinder

the preparation of samples.

3. Hypodermic needles : Both polymer solutions were deposited onto the cen-

ter of the substrate by using hypodermic needles. Capillary action/surface
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Figure 4.5: Photograph of the modified spin-coater for automated sample
preparation. The automated spin-coater modifications were designed and built
by myself and the workshop team at the School of Physics and Astronomy at the
University of Nottingham. The home-built spin-coater was made by Dr James
Sharp before my research in this thesis had begun. All of the modifications
were easily removed so the spin-coater could be used for other experiments.
The automated spin-coater was used to prepare samples without the need for
continuous user input. A computer control card and a self written Matlab
program were used to prepare multi-layer samples with specific film thickness
values. A schematic of the automated spin-coater was shown in figure 4.4.
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tension was sufficiently high to prevent the solutions from depositing onto

the samples when the peristaltic pumps were not in motion.

4. HCl delivery tube: A large metal tube was used to deliver and spray HCl

vapour onto the sample. This was positioned as close to the substrate as

possible to reduce the quantities of HCl needed to swell the PVP films.

5. Glass slide: A cleaned glass slide was placed into the spin-coater where it

remained until all of the layer depositions were complete. The system was

designed so the sample would not have to be removed out of the spin-

coating chamber during sample preparation. This also includes when

swelling each PVP film with HCl vapour.

6. Spin-coater : The home-built spin-coater was made by Dr James Sharp

and was used throughout this research. Spin-speed was increased/decreased

by raising/lowering the applied voltage respectively. The computer con-

trol card was able to change the voltage applied to the spin-coater to

control the spin-speed. Modifications used to automate sample prepara-

tion could be readily removed so the spin-coater could be used for other

experiments.

7. Vacuum pump: Substrates were secured to the rotation stage of the spin-

coater using a vacuum seal.

8. Nitrogen feed : A continuous flow of nitrogen gas was fed into the sample

chamber to purge the atmosphere of residual organic solvent and HCl

vapour. Too much residual vapour would reduce sample quality. This

was due to the films not adequately drying when surrounded by a solvent

atmosphere.

9. Computer control system: A Matlab program was written by myself to

control the sample preparation. The program allowed samples to be pre-

pared with tailored optical properties. This was achieved by controlling

the spin-speed (which changes the layer thickness and the wavelength

of the reflection peak) and number of layers deposited (which changes

the reflectance of the reflection peaks). Chirped samples were also pre-

pared by programming the spin-coater to incrementally change the layer

thickness during sample preparation (discussed in section 5.6).
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4.3.2 Multi-layer film thickness

DBR samples were prepared using the techniques discussed in sections 4.3.

The most efficient DBR structure is when the optical thickness of each layer is

λ/4 [12] (this is discussed further in chapters 6 and 7). However, attempts to

make PVP/PS DBRs with layers as thin as d ' λ/4n, resulted in cracked and

inhomogeneous samples. This occurred despite attempting various methods to

reduce cracking which included;

• Swelling deposited films using various solvents (including HCl vapour):

Swelling the PVP layer helps prevent the toluene in the PS solution from

penetrating through the PVP film. This would occur when depositing a

PS solution on top of a PVP film which had an underlying PS layer.

• Intermediate annealing to remove residual solvent and spin-coating stresses :

Lingering solvent is removed by annealing past the glassing temperature

Tg of polymer films. Residual stresses which occurred due to spin-coating

would have also been reduced during annealing.

• Depositing solutions while spinning the substrate: This reduces the con-

tact time of solvents onto the pre-deposited multi-layers.

Unfortunately, these experiments did not result in any significant improve-

ments in λ/4 sample preparation. Therefore, it was not possible to make λ/4

multi-layer PVP/PS samples. Hence, thicker films were used to make multi-

layer samples. However, it is worth noting that the PVP films still needed

protecting by swelling them with HCl vapour swelling (which was discussed in

section 4.3).

4.3.3 Annealing DBR samples

Figure 4.6 shows the UV/visible spectra of an early attempt at making a poly-

mer DBR. The reflection spectra was measured before and after annealing using

a UV/visible spectrometer. This sample was 40 layers of alternative 423±1nm

PVP and 426 ± 1nm PS (measured using comparable single layer films using

ellipsometry) and annealed for 5 hours at 110oC under ∼ 1mtorr atmosphere

after the initial measurement. Reflection spectra was remeasured after the

sample was annealed. The plot (in figure 4.6) indicates that the position of the

reflection band blue-shifted after annealing.
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Figure 4.6: UV/visible reflection spectra of a 40 layer DBR with dPV P =
423± 1nm and dPS = 426± 1nm. The green and blue curves are the reflection
spectra measured before and after the sample was annealed respectively. The
blue curve is the reflection spectra measured after the sample was annealed for
5 hours at 110oC under a 1mtorr vacuum. Annealing the sample de-swelled
the layers within the sample which blue-shifted the reflection peak.
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Solvent Refractive index

Toluene 1.496
Ethanol 1.362
Acetonitrile 1.344

Table 4.2: Refractive indices of the different solvents used to dissolve the poly-
mers for spin-casting. All values for the refractive indices were from the product
specification sheets from Sigma-Aldrich for the appropriate solvents.

A large proportion of the residual solvent was removed during annealing.

Residual solvent causes the layers to swell and increase their thickness. Solvents

within the polymer would also lower the refractive index of the film. This is

because the solvents have a much lower refractive index than the polymer

(refractive indices of the polymers are nPV P = 1.516 and nPS = 1.586). Table

4.2 shows the refractive indices of the solvents. The refractive index contrast of

the polymer layers in a DBR are reduced when swollen with solvent. Residual

solvent changes the wavelength and intensity of the reflection band because of

the following;

• Film thickness : The optical path length between each interface in the

sample changes with respect to layer thickness. Increasing the layer thick-

ness will also increase the optical path length (OPL = dfilmnfilm/ cos(θfilm)

[10]). Interference between the partially reflected waves is changed when

the separation between the interfaces is shifted. This changes the optical

properties of the sample, which includes reflectance (which is discussed

in section 5.3).

• Refractive index : The partial reflections within the photonic structure are

due to the optical contrast between the layers. Increasing/decreasing the

optical contrast increases/decreases the reflectance of the sample respec-

tively. Changing the refractive index of a layer also changes its optical

path length. The optical path length of a film will increase/decrease if

its refractive index is larger/smaller respectively [10].

4.4 Ellipsometry

The film thickness and refractive index of the polymer films were measured

using ellipsometry throughout this research. Ellipsometry is able to measure

the thickness of homogeneous films with a resolution of∼ 1Å [51]. Samples were
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Figure 4.7: [Left panel] Photograph of the ellipsometer set-up. [Right panel]
Schematic of the consisting parts of the ellipsometer.

prepared by spin-coating polymer solutions onto freshly cleaved silicon wafers.

The ellipsometer was used to measure film thickness changes with respect to

spin-speed and also solution concentration (discussed later in this section).

Measurements of film thickness and refractive index were used to model the

optical properties of DBRs using a modified optical transfer matrix method

(discussed in chapter 3). These results were used to refine the preparation

of the polymer photonic structures by controlling the thickness of deposited

layers.

Figure 4.7 shows an image of the home-built ellipsometer and an illustration

of it’s constituent parts and function. The Ellipsometer was built by Dr James

Sharp before I joined the Polymer Physics group. A light source (which was a

632.8nm HeNe laser) emits a collimated beam through a linear polariser. The

linearly polarised light then passes through quarter wave-plate which elliptically

polarises the laser light. Rotating the polariser also changes the orientation of

the ellipically polarised light. This falls incident onto a pre-prepared sample at

a fixed angle of incidence θi. The sample was a polymer film which was spin-cast

onto a freshly cleaved silicon (100) substrate. An Analyser (a linear polariser

which is rotated to change its orientation) was used to test the polarisation

of light reflected from the sample. A photodiode was used to measure the

intensity of light which has passed through the analyser [51,67].

The polarisation of the reflected light is changed by the optical properties

of the sample. This is illustrated in figure 4.8, which shows how incident

light is partially reflected from the top and bottom interfaces of a single layer

film. Interference between the partially reflected rays contribute towards the

reflectance of the sample. The polarisation of the partially reflected waves
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Figure 4.8: Thin film interference is utilised by an ellipsometer to measure
the thickness of the films. The incident light is reflected by interfaces at the
top and the bottom of the film. Interference between the two rays changes
the amplitude of the reflectance. The interface changes the magnitude of the
rays electric field components which are parallel and perpendicular (p and s
respectively) to the surface. Reflected light from a thin film can have a different
polarisation (when compared to the incident light) because changes in the p
and s electric field magnitudes.

electric fields should also be considered, as their magnitudes change when light

is not perpendicular to the sample surface (θi 6= 0) [51, 67]. Component waves

which have electric fields polarised normal and parallel the sample surface are

represented by the s and p notations respectively. The total reflectance of

the s and p polarisations (Rs and Rp) is calculated by the square of their

corresponding Fresnel reflection coefficients (rs and rp). This is shown in the

following equations [10,51,67];

Rs = rs
2 =

[
n1 cos(θi)− n2 cos(θt)

n1 cos(θi) + n2 cos(θt)

]2

, (4.1)

and

Rp = rp
2 =

[
n2 cos(θi)− n1 cos(θt)

n1 cos(θt) + n2 cos(θi)

]2

. (4.2)

Where Rs = reflectance of the wave with respect to the s polarisation, Rp

= reflectance of the wave with respect to the p polarisation, rs = reflection

coefficient for the s polarisation, rp = reflection coefficient for the p polarisation,
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Figure 4.9: Incident light is reflected by a sample which consists of a polymer
film on top of a silicon substrate. The oxide layer on top of the silicon substrate
should be considered in modelling calculations as it contributes towards the
optical properties of the sample. Changing the angle of incidence, refractive
index of the layers and/or thickness of the films will change the properties of
the light reflected by the sample.

n1 = refractive index of the incident and reflected medium, n2 = incident of

the medium for the transmitted wave, θi = angle of incidence [degrees] and θt

= angle of reflectance [degrees].

The quarter wave plate combination (shown in figure 4.7) elliptically po-

larises the light before it is incident on the sample. The orientation of the

elliptically polarised light is controlled by the angle of the polariser. Under

specific conditions, the sample can change the polarisation state of the ellipti-

cally polarised light into linearly polarised light [51, 67]. The photodiode does

not detect any light when the analyser is orientated perpendicular to the polar-

isation of the linearly polarised light reflected from the sample. This is known

as ‘nulling’ and it only occurs when the polariser P and analyser A accurately

aligned for each sample [51, 67]. The optical properties of the samples are cal-

culated by measuring P , A and θi. A model of samples optical properties is

used to extract the film thickness and refractive index of the polymer film from

the measurements of P , A and θi.

It is not possible to calculate the optical properties of these samples using

only the Fresnel equations. This is due to the spatial separation of the interfaces

and the refractive index of each layer. Changing these variables will change

the optical path length of each layer and how the partial reflections interfere.
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Figure 4.10: This diagram illustrates the structure used to model the optical
properties of samples measured using ellipsometry. The reflection from each
interface are characterised by a 2 × 2 boundary matrix. The effects of the
spatial separation and media between interfaces are characterised by a 2 × 2
transmission matrix. These matrices are used to calculate the optical properties
of the entire sample.

This is illustrated in figure 4.9 where the angle of incidence, film thickness and

refractive index of the layers can vary the interference of the partially reflected

waves. The optical path length is calculated by [10],

OPL =
nd

cos(θ)
, (4.3)

Where OPL = optical path length [m], n = refractive index, d = thickness of

film [m] and θ = angle with respect to the surface normal [degrees].

A modified optical transfer matrix model was used to calculate the optical

properties of the sample (this was more thoroughly discussed in chapter 3).

Each interface is represented by a 2× 2 boundary matrix and each medium is

represented by a 2 × 2 transmission matrix (illustrated in figure 4.10). The

boundary (B) and transmission (T) matrices are multiplied in sequence and

results in a 2 × 2 matrix which represents the optical properties of the whole

sample [10, 13,51]. Hence;

MTotal = BAir−FilmTFilmBFilm−Oxide.TOxideBOxide−Silicon. (4.4)

Where B = boundary matrix and T[N+1] = transmission matrix.

Reflection coefficients for s and p polarisations (rs and rp) can be extracted

from the matrix MTotal in equation 4.4 (this was more thoroughly discussed in

chapter 3) [10, 13, 51]. These reflection coefficients are used to calculated the
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reflectance ratio,

ρ =
rp
rs
. (4.5)

ρ was used to determine psi ψ and delta ∆ which are parameters used in

ellipsometry calculations. ψ and ∆ are calculated by [51];

ψ = tan−1(|ρ|), (4.6)

ρ = tan(ψ)ei∆, (4.7)

∆ = tan−1

(
Im(ρ)

Re(ρ)

)
. (4.8)

The orientations of the polariser P and analyser A are related to ψ and ∆

by the following equations;

P =
ψ

2
− 45o. (4.9)

A = 90o −∆. (4.10)

Figure 4.11 is a plot of P vs A of modelled (solid line) and measured

(data-points) ellipsometry data for spin-cast PVP films. Each data-point cor-

responded to a sample with a different film thickness d. A range of modelled

P and A values were calculated for films with refractive index n, but differ-

ent values of d. Plotting these values (over a wide range of different d values)

resulted in a ‘loop’ which increased/decreased in size when the modelled re-

fractive index n was larger/smaller respectively. The least squares method was

used to fit the size of the loop to the measured data-points. This was used to

extract the refractive index of the samples.

The film thickness of samples were extracted by comparing measurements

to modelled data. P and A were modelled for samples which had refractive

index n. The modelled film thickness d was varied to calculate a range of

corresponding P and A values. These modelled values were compared with

measurements to extract the film thickness of the samples.

Each sample was measured five times and an average value was used as the

final result. The standard deviation of these measurements was calculated and
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Figure 4.11: The refractive index of PVP (nPV P = 1.516±0.001) was measured
using ellipsometry. Each data-point corresponds to P and A measurements of
samples with a different PVP layer thickness. The grey ‘loop’ corresponds to
modelled P and A values for a film with refractive index n.
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used as the error.

4.4.1 Film thickness calibration

Ellipsometry was used to measure the thickness of polymer films which were

spin-cast at different spin-speeds and solution concentrations. Figure 4.12

shows that the film thickness decreased as the deposition spin-speed increased.

The film thickness also decreased if the solution concentration was reduced.

Samples were initially prepared from solutions of 4.0% wt PVP and 4.0%

wt PS. DBRs were prepared with reflection bands between 450nm and 650nm

by depositing films between 1.0krpm and 4.5krpm (this is discussed further in

chapter 3.7). Sample preparation was later improved by reducing the concen-

tration of the PVP solution to 3.2% (this is discussed further in chapter 6). The

concentration of the polymer solutions were kept constant and spin-speed was

used to control layer thickness during sample preparation. Figure 4.12 was used

to calculate the film thickness of spin-cast films within the multi-layer struc-

ture (by recording the spin-speed used during preparation). This data was also

used to prepare samples with a specific structure/spectra by controlling the

thickness of deposited films.

Ellipsometry was also used to measure the film thickness of bi-layers. Specif-

ically, it was used to test if film thickness was the same whenever spin-coating

onto both polymer and silicon substrates. Film thickness measurements were

used to model the reflection spectra of DBR samples. The modelled spectra

would be inaccurate if there were large errors in the film thickness measure-

ments. Two sets of single layer samples were prepared, which were 265± 1nm

PVP and 221± 1nm. PS layers were then spin-cast on top of the single layer

PVP films to make bi-layer samples. Likewise, PVP films were also spin-cast

on top of the single-layer PS films. These bi-layer samples were prepared with

a variety of different top layer film thickness. Figure 4.13 is a diagram of a

polymer bi-layer which has been prepared on a silicon substrate. The ellipsom-

etry model was extended to include the bottom polymer film in the bi-layer

as part of the substrate structure (polymer film → oxide → silicon). This was

because the thickness of the bottom layer was kept constant for all samples.

The bi-layer samples were measured using ellipsometry and the film thickness

of the top layer was calculated using the extended model.

Figures 4.14 and 4.15 show the thickness of the top film in a bi-layer sample

when cast at different spin-speeds. The film thickness of single layer samples is
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Figure 4.12: Ellipsometry film thickness measurements of PVP (top panel) and
PS (bottom panel) films which were spin-cast at different spin-speeds and con-
centrations. The curves are free-hand plotted and the errors in the data-points
were calculated using the standard deviation of five repeat measurements.
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Figure 4.13: This diagram represents a polymer bi-layers which was spin-cast
on to a silicon substrate. The thickness of the top layer d1 was calculated by
carefully measuring the thickness and refractive indices of all the other layers.

Figure 4.14: Comparison of the PVP layer thickness when spin-cast on top of
silicon (blue data-points) and PS substrates (black data-points). The curves are
free hand plotted and the errors were calculated using the standard deviation
from 5 repeat measurements.
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Figure 4.15: Comparison of the PS layer thickness when spin-cast on top of sil-
icon (red data-points) and PVP substrates (black data-points). The curves are
free hand plotted and the errors were calculated using the standard deviation
from 5 repeat measurements.
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also shown for comparison. These results showed that the thickness of PVP and

PS did not significantly change when spin-cast on top of the alternate polymer

layer. Therefore, the samples could be modelled using thickness values obtained

from ellipsometry measurements of single layer PVP and PS films.

4.4.2 Spectroscopic ellipsometry

The home-built-ellipsometer could only measure the refractive index of samples

at the wavelength of its laser light (λ = 633nm). However, the refractive index

of a sample is not the same for all wavelengths. There is no general equation to

model the dispersion of the refractive index with respect to wavelength for an

arbitrary material [11]. A J. A. Woolman Alpha-SE spectroscopic ellipsometer

(shown in figure 4.16) was used to measure the dispersion of the refractive

index for spin cast polymer films and glass slide substrates.

The spectroscopic ellipsometer measures the optical properties of samples

at various wavelengths of light. Psi Ψ and Delta ∆ (which were discussed in

section 4.4) were measured between wavelengths of 350nm and 900nm for each

sample . The CompleteEASE software on the spectroscopic ellipsometer was

used to model the optical properties of the samples. The number of layers, film

thickness, refractive index and angle of incidence are parameters which could

be fitted or constrained in the software. A variable is more accurately fitted

when the error/uncertainty in the other variables are small. Independent mea-

surements (the home-built ellipsometer was used to measure layer thickness)

and accepted literature values (refractive indices of silicon and its native oxide

layer [68]) were used to reduced the number of free-parameters when fitting

data.

Figure 4.17 illustrates the modelled sample structure of the single layer

polymer samples. Accepted literature values were used to model the wave-

length dispersion of the refractive indices for the silicon dioxide nSiO2(λ) and

silicon substrate nSi(λ) [68]. The film thickness of the silicon dioxide layer

dSiO2 was measured with the home-built ellipsometer. Furthermore, the film

thickness dFilm and refractive index (at 633nm) of the polymer film were also

measured using the home-built ellipsometer. Only the wavelength dispersion

of the refractive index of the polymer nFilm(λ) film was unknown.

Measurements of Ψ and ∆ were compared with the optical model of the

sample to calculate nFilm(λ) for each wavelength measured. The dispersion

curve of nFilm(λ) was modelled using a Cauchy function (2nd order approxima-
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Figure 4.16: The J. A. Woolman Alpha-SE spectroscopic ellipsometer. A white
light source was incident on the spin-cast polymer sample which was then
measured using the detector. It is capable of measuring changes in refractive
index with respect to wavelength for polymer samples.

Figure 4.17: A diagram of sample structure and a table of properties val-
ues/modelling assumptions used to calculate the refractive indices of the poly-
mers. The thickness of the polymer films were measured using the home-
built ellipsometer. ‘Reference data’ from well established literature were used
to model the refractive indices of the silicon substrate and its native oxide
layer [68].
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tion) [10],

nFilm(λ) = A+
B

λ2
+
C

λ4
+ ... (4.11)

Where n = wavelength dispersion of the refractive index for the polymer film, λ

= wavelength of light, A, B and C = coefficients which are material dependent.

Unfortunately, measurements of Ψ and ∆ for the polymer films were not re-

producible when using the spectroscopic ellipsometer. There were large errors

when attempting to fit nFilm(λ). Sample quality was tested by remeasuring

the film thickness at 6 different sections of each sample using the homebuilt

ellipsometer. Each measurement had an error of ±1nm and the standard devi-

ation of the measurements was ±2nm for all samples. This indicated that the

films were relatively flat over the sample surface.

The refractive index of the polymer films were previously measured at

λ = 633nm using the home-built ellipsometer. These refractive index mea-

surements were comparable with literature values [65] and should have also

been consistent with the spectroscopic ellipsometer measurements. The spec-

troscopic ellipsometry data was re-fitted so the refractive index was equal to

the home-built ellipsometer measurement at λ = 633nm. Increasing/decreasing

the modelled film thickness respectively decreased/increased the calculated re-

fractive index of the polymer film. This was used to fit the spectroscopic

ellipsometer model to the home-built ellipsometer measurements of the refrac-

tive index at λ = 633nm. The film thickness error was increased to ±10nm

to fit the refractive index at λ = 633nm. This was despite the home-built

ellipsometer measuring the error in film thickness to be ±2nm over the entire

sample. The reason for the large increase in film thickness error needed to fit

the refractive indices of the polymer was not completely understood. However,

the technique improve the quality of the measured refractive index data.

Each sample was measured 10 times (repositioning the sample after each

measurement) and fitted at λ = 633nm by changing the modelled film thick-

ness. An average was calculated to reduce the occurrence of any errors from

the measurements. Two different thickness films were prepared and measured

for all of the polymer materials tested. Figure 4.18 is a plot of the refractive

index for two PVP samples with respect to wavelength. These samples were

analysed using the techniques which were previously discussed. The results

showed that these measurements were reproducible, despite the overestimated

error when modelling the film thickness.
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Figure 4.18: Comparison of the dispersion for two PVP films of thickness
343.5 ± 1nm and 308.3 ± 1nm (film thickness was measured using the home-
built ellipsometer). Both curves are an average of ten measurements whereby
the sample was repositioned in between each measurement using the spectro-
scopic ellipsometer. Comparing the curves demonstrates that the results are
reproducible. This is despite inaccuracies in the sample alignment and the
modelled film thickness adjustments when calculating the dispersion.
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Figure 4.19: The dispersion PVP, PS and glass. These samples were measured
using the spectroscopic ellipsometer. Two different samples (with different
thickness films) were prepared for each polymer. Each sample was measured ten
times and repositioned after each measurement. The dispersion curve for the
polymers is an average of twenty measurements, because two different samples
were prepared for each polymer.
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The wavelength dispersion of the refractive index for PS, PVP and a glass

slide are shown in figure 4.19. The analysis of the glass slide only had a single

interface (the substrate was a semi-infinite medium). Black tape was attached

to the underside of the glass slide to reduce secondary reflections from the bot-

tom interface (glass→ air). The secondary reflections would otherwise interfere

with the reflections from the top interface and change the measurements (air

→ glass) [10].

4.5 UV/visible spectrometry

UV/visible spectrometry was used to measure the optical properties of polymer

films and DBR samples. This technique can be used to measure the optical

absorption, transmission and reflection of a sample. The materials used in this

research needed to be non-absorbing in the UV/visible spectrum. Absorption

bands would reduce the reflectance of a DBR reflection peak (if the refection

peak and absorption bands overlapped). This equipment was also used to

measure the UV/visible reflection bands of DBR samples.

A white light source emitting in the UV/visible wavelengths and a Ocean

Optics RedTide USB650 spectrometer were integrated into two different optical

set-ups. The optical spectra were recorded and analysed on a computer.

A transmission spectrometer was built to measure samples prepared on top

of transparent glass slide substrates. A reflection spectrometer set-up (a.k.a.

reflectometer) was also built and used to measure samples which were prepared

on opaque substrates. The set-ups were aligned so the beam from the light

source reflected off the sample and into the spectrometer. A high reflectance

silver mirror was used to align the beam for the reflectometer. A background

was recorded before the optical properties of the samples were measured. The

sample was then placed into the spectrometer set-up (replacing the silver mirror

in the reflectometer) and the spectra was measured. Reflectance and transmit-

tance were measured by calculating the ratio of the intensities obtained in the

sample and the background spectra.

4.5.1 UV/visible spectra measured in transmission

The optical spectra of samples which were spin-cast onto glass slide substrates

could be measured in transmission. Spectroscopic measurements of thick poly-
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Figure 4.20: Optical arrangement for the transmission set-up spectrometer.
This was used to measure the UV/visible transmission of samples which had
transparent substrates. The beam from a white light source was passed through
and collimating lens via an optical cable. This was transmitted through the
sample and another collimating lens focused the light into the spectrometer.
The spectra was recorded using a computer.

mer films, cast onto glass-slide substrates, were used to measure any absorp-

tion in the spectra of the samples in the UV/visible wavelengths. These results

showed that the polymer films were non-absorbing between 350nm → 900nm

wavelengths. Optical microscopy, ellipsometry and atomic force microscopy

(AFM) showed that the films were uniform, homogeneous and defect free. Ab-

sorption and scattering losses were negligible, so light was either transmitted or

reflected by the sample. The following approximation was used to calculate the

reflectance of a sample when measuring it with the transmission spectrometer

set-up [10],

R = 100%− T. (4.12)

Where R = reflectance [%] and T = transmittance of the sample [%].

Figure 4.20 shows the transmission UV/visible spectrometer set-up. White

light was passed through a collimating lens via an optical fibre. The intensity

of the light beam was attenuated using a neutral density filter to prevent the

spectrometer from saturating. A sample was secured onto a rotation mounting

stage (for angular measurements which are discussed more thoroughly in section

5.5). The transmitted light was collected using another collimating lens. Light
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Figure 4.21: The reflectometer optical set-up. This used various components
which were mounted onto a goniometer. The beam from a white light source
was passed through two pinholes to align and collimate the beam. A sample was
placed onto a sample stage which intercepted the incident light. The sampled
was aligned by adjusting the translation stages which were built into the sample
stage. Reflected light was passed through two aligning pin-holes and into the
spectrometer. The orientation of the light source, sample stage and detector
could be changed and measured by using the goniometer.

was then passed to the spectrometer via an optical fibre. Spectra Suite (Ocean

Optics) software was used to analyse the spectrometer data.

The equipment was designed so that it would be possible for angular mea-

surements of the sample. Rotating the sample stage changes the angle of inci-

dence. This also changes the angle of refraction for light propagating through

the sample (Snell’s law of refraction n1 sin(θ1) = n2 sin(θ2) [10]). The path of

the beam was diverged slightly as the sample was rotated away from normal

incidence. The path of the transmitted light id deviated/shifted. A large col-

lection lens was used to collect all of the transmitted light. This included when

the transmitted beam path was deviated by rotating the sample.

4.5.2 UV/visible spectra measured in reflection

Some samples could not be measured in transmission because their substrates

were opaque. The optical spectra of these samples had to be measured in

reflection. A purpose built reflectomer was constructed (figure 4.21). The

white light source illuminated the sample with a collimated beam. This set-
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Figure 4.22: [Left panel] The Digilab FTS4000 FTIR spectrometer which was
used to measure the infra-red properties of polymer DBR samples. [Right
panel] Schematic of the infra-red beam path in a FTIR set-up [69].

up used 3 translation and 2 rotation stages were used to adjust the position

of the sample and align the path of the beam. The reflected light was then

measured using the Ocean Optics RedTide USB650 spectrometer. All of the

components were mounted onto a goniometer. This enabled the light source

and the spectrometer to be rotated about the sample which was positioned at

the centre of rotation. Pin-holes were used to collimate and align the beam

so the samples reflectance could be measured at different angles of incidence

and/or reflection. This is discussed in greater detail in chapter 10.

4.6 Fourier transform infra-red spectroscopy

Fourier transform infra-red (FTIR) spectrometers are used for measuring the

chemical composition of samples [69]. Most FTIR spectrometers consist of a

broadband infra-red light source, Michelson interferometer, sample stage and

detector (illustrated in the right panel in figure 4.22). The measured spectra

is analysed using a computer [69, 70]. A Digilab FTS4000 spectrometer was

used to measure the samples described in this thesis (shown in the left panel

in figure 4.22).

The right panel in figure 4.22 illustrates the FTIR spectrometer set-up. A

beam from a broadband infra-red light source is transmitted into a Michelson

interferometer [69, 70]. For simplicity, a mono-chromatic infra-red light source

with a well defined wavelength λ is initially considered. The two reflected

beams in the interferometer undergo recombination and constructively inter-

fere when the path difference between the beam splitter and both mirrors is
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Figure 4.23: [Left panel] Representation of the intensity of a monochromatic
beam as it is being modulated by the movable mirror changing position. [Right
panel] A representation of a broadband beam which has been modulated by
varying the position of the movable mirror.

equal to one another. However, if the movable mirror were displaced by λ/4,

the optical path difference would change by λ/2. This is due to the beam trav-

elling twice the spatial distance. De-constructive interference occurs when the

optical path difference between the two beams is δ = λ/2. The two beams will

constructively interfere when the mirror is moved by a distance of nλ/2 (where

n = 0, 1, 2, etc), which results in the optical path difference between the two

beams becoming δ = nλ [70]. Moving the mirror in a constant direction causes

the intensity of the measured beam to oscillate sinusoidally (illustrated in figure

4.23 [left]). The same process occurs for broadband sources, but moving the

mirror would cause the intensity of each wavelength to modulate (figure 4.23

[right]). Therefore, the interferogram (measured intensity signal) of the beam

incident onto the sample is changed by varying the mirror position in the inter-

ferometer [69]. FTIR measures the intensity at all wavelengths with respect to

mirror position. This data is analysed using a Fourier transform to calculate

the intensity of the spectra with respect to wavelength [70]. Measurements of

samples must be ratioed to background measurements before being analysed

with the Fourier transform. This is so only the properties of the sample are

analysed and effects due to instrumentation and optics are removed. Equa-

tions 4.13 and 4.14 are calculations for the intensity of the beam incident on

the detector (I(δ)) and the spectral power density for a particular wave-number

(B(ν̄)) respectively [70];

I(δ) =

∫ +∞

−∞
B(ν̄)cos(2πν̄δ)dν̄ (4.13)
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and

B(ν̄) =

∫ +∞

−∞
I(δ)cos(2πν̄δ)dδ (4.14)

Where I(δ) = intensity of the beam incident on the detector [%], B(ν̄) =

intensity of the beam with respect to wave-number [%], ν̄ = wave-number of

the wavelength being analysed [cm−1] and δ = optical path difference between

the reconstructed beams from the interferometer [cm].

The wave-number ν̄ is the inverse of the wavelength and conventionally

written in units of cm−1 [70]. However, the results in this thesis are plotted

with respect to wavelength instead of wave-number. This is so the FTIR data

is easier to compare with the UV/visible data. The wavelength was calculated

by;

λ = 1/ν̄ = c/ν (4.15)

where c = speed of light [cm/s], ν = frequency of the wave [s] and the wave-

length is written in units of cm.

FTIR can be used to measure the infra-red absorption bands of molecules

to help identify its chemical composition and structure. The incident infra-red

energy excites the molecule from its ground state into a vibrational and/or

bending mode. These discrete absorption states correspond to the ‘missing’

absorption bands measured in the transmission spectra [69,70]. Changing any

of the following will also change the absorption spectra of a molecule;

• Mass of the atoms : Like a mass on a spring, more energy would be needed

to drive a system with larger massed bodies than one consisting of smaller

masses [70].

• Strength of the bond between atoms : More energy is required to drive

a system which has a stronger bond between two atoms [70]. This is

equivalent to trying to oscillate two masses coupled with a spring of high

spring constant.

• Geometry of the molecule: A polar molecule has more rotational degrees

of freedom than a linear molecule. More degrees of rotation results in

higher orders of vibrational modes [69].

The components of a molecule (like O− H in water) have their own absorp-

tion bands due to rotational and vibrational energy modes. Literature values
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and FTIR measurements can be cross-compared to determine the chemical

composition of a sample [69, 70].

The absorption spectra of a sample is different when there has been a chemi-

cal change. For example, swelling will introduce a new chemical into the sample

and new absorption bands will appear. Likewise, de-swelling will remove abor-

tion bands as the chemical has been removed. The absorption spectra also

changes if there has been a chemical reaction. This is due to the chemical

structure of the sample being changed by the chemical reaction [69,70].

The O− H bond in water is a strong infra-red absorber. Its presence can

dominate the spectra and prevent more discrete absorption peaks from being

detected (such as C− H). Removal of water was needed to measure smaller

peaks. The FTIR sample chamber was continuously purged with dry air to

improve the quality of results [69]. This was necessary for the PVP/PS DBRs

because PVP swells with water.

4.7 Neutron reflectivity

Neutron reflectometry is used to measure the properties of thin films which

may be difficult to measure with other techniques such as x-ray reflectome-

try. X-rays are easier to produce, focus, filter and are readily available [55].

However, despite having a wavelength comparable to atomic spacing (∼ 1Å),

x-ray reflectivity experiments are not able to resolve smaller atoms such as hy-

drogen. Polymer samples are also difficult to measure as, like hydrogen, they

only weakly scatter x-rays because of their low electron density. Large doses

of x-ray radiation are needed to measure polymer samples. This can burn and

damage the samples while they are being measured. Furthermore, the contrast

between different polymer samples is very low as they have similar chemical

structures and composition. Hence, x-ray reflectometry is not a suitable tech-

nique for measuring the structure of multi-component polymer samples [55,71].

Neutron reflectivity is a better technique for investigating polymer structures.

Using deuterated polymer adds contrast between polymer samples (which is

discussed in greater detail later in this section). Soft matter samples, such as

polymers, can be scanned without being burnt.

A typical neutron reflectomer set-up is shown in figure 4.24. The polymer

samples were measured using the Inter reflectometer at the ISIS facility in Ox-

fordshire, UK. Neutrons are produced at that facility by bombarding a tungsten
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Figure 4.24: This diagram represents a typical neutron reflectometer set-up
[71]. Measurements from this type of set-up were used to measure the polymer-
polymer interface widths within polymer multi-layers.

target which accelerated protons. The production of neutrons was pulsed so

that the high velocity neutrons can be removed by using a ‘chopper’. Neu-

trons allowed past the chopper were slowed using a beryllium filter. Beryllium

has a large scattering cross section which inelastically scatters the neutrons for

them to lose a sufficient proportion of their energy. The beam passed through

coarse and variable slits to focus it onto the sample. Slow moving neutrons

were removed by passing the beam through frame overlap mirrors. Without

these mirrors, the slow neutrons would fall incident onto the sample in between

pulses. This would add unnecessary background noise to the measurements.

The remaining neutrons were reflected from the sample and measured with the

detector [71].

Neutrons have a de Broglie wavelength which is comparable to atomic spac-

ing (∼ 1Å) and a high penetration depth [55,71]. The wavelength of a neutron

is calculated by [71],

λNeutron =
h

mnv
. (4.16)

Where mn = mass of a neutron [1.675 × 10−27kg] and v = neutron velocity

[ms−1].
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Neutrons have no electric charge and are not scattered by electrons. In-

stead, the reflection of neutrons is by inelastic scattering with the nuclei of

the sample [55]. Incident neutrons collide with, but do not penetrate into the

nuclei of samples. The neutron scattering properties of nuclei are not the same

for different isotopes of the same element. This is because of the differences in

the atomic mass [55]. Polymer molecules are predominantly made from carbon

and hydrogen atoms. It would be difficult for neutron reflectivity experiments

to differentiate between different polymers because they share similar chemi-

cal composition and structures. However, the hydrogen atoms in a polymer

molecule can be replaced with its heavier isotope deuterium. Deuterating the

polymer does not change its chemical properties as deuterium is a isotope of

hydrogen. Samples made from a deuterated polymer can be prepared using

the same techniques as their non-deuterated equivalent. Neutron reflectivity

is able to measure the difference in scattering properties between deuterated

and non-deuterated polymers [55, 71]. The structure of the multi-layer poly-

mer samples was measured using neutron reflectivity by replacing the PS layers

with a fully deuterated equivalent (this is discussed more thoroughly in section

4.7.1).

Neutrons have a magnetic moment of µ = −1.913µN (where the nuclear

magneton µN = 5.051× 10−27JT−1), which is due to it’s quantum mechanical

spin S = 1/2 [55]. Magnetic fields are used to control the path direction and

focus a neutron beam. However, the magnetic moment of the samples nuclei

is not strong enough to significantly scatter the neutron beam. The neutron

beam is scattered by elastically colliding with the nuclei within a sample. This

enables the neutron beam to penetrate deep into the sample, as only a fraction

of the space within a sample is occupied by its nuclei [55].

Elastic neutron scattering occurs when a slow moving electron is scattered

by a collision with a nucleus and no/little energy is lost (shown in figure 4.25).

The magnitude of the incident wave-vector is equal to the scattered/final wave-

vector [71];

k = |ki| = |kf | =
2π

λ
. (4.17)

Where |ki|= initial neutron wave-vector [m−1], |kf |= final neutron wave-vector

[m−1] and λ = wavelength of neutron [m].

For intuitive simplicity, it is easier to approach the problem as if it were

an optical system with multiple interfaces and differing refractive indices. This
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Figure 4.25: Diagram of an incident beam of neutrons which are scattered by
the nuclei of the sample. ki and kf are the initial and final neutron beam
wave-vectors respectively. λ is the wavelength of the neutron beam. ∆λ is
the phase difference between scattered beam which undergo interference. The
beam is scattered by 2θ since the x-axis of the reference frame is parallel to the
path of the incident neutron beam.

approach makes it easier to calculate the properties of multi-layer samples

and it is also comparable to the modified optical transfer matrix method used

throughout this research (which is discussed in chapter 3). Figure 4.26 is a

diagram of a neutron beam as it is reflected by multiple interfaces. The ‘re-

fractive index ’ of the media are calculated by the wave-vector of the neutron

beam as it passes through air (k0) and the polymer layer (kj, where j = 1, 2,

3,..., etc). Therefore, the ‘refractive index’ of a neutron beam in air is n0 = 1.

The ‘refractive index’ for a neutron beam passing through a media j is [55],

nj =
kj
k0

. (4.18)

This is also written as [72],

n = 1− λ2A+ iλB. (4.19)

Where [72];

A =
Nb

2π
, (4.20)
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Figure 4.26: Diagram of an incident neutron beam which is partially reflected
and transmitted by multi-layer interfaces. This occurs for whenever the beam
encounters an interface (only beams which have been partially reflected once
are shown in the diagram). Partial reflections from each interface constructively
interfere to contribute towards the total reflection. Unlike optics, the angle of
the incident and refracted beams was measured with respect to the surface and
not the surface normal.
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and

B =
Nσa
4π

. (4.21)

Where N = atomic number density [m−3], b = bound coherent scattering length

[m], σa = absorption cross-section [m2] and λ = neutron wavelength [m].

The absorption cross-section σa is often ignored (B = 0) unless the sample

is a strong neutron absorber (B 6= 0). Equation 4.19 can be extended to

include magnetic scattering. However, this is also unnecessary for the analysis

of polymer samples [72].

Fresnel’s law of refraction predicts the existence of a critical angle θc which

results in total internal reflection when the angle of incidence θ > θc. This

occurs when the incident light is not refracted into the second medium and is

only reflected from the interface [10]. There is an equivalent critical glancing

angle for neutron reflectivity and it is conventionally measured with respect

to the sample surface [71] (whereas optical measurements are conventionally

measured with respect to the surface normal). The critical glancing angle θc is

calculated by assuming that the initial interface is air-polymer [72];

n1 sin(θ1) = n2 sin(θ2),

n1 sin(π − π/2) = 1× sin(π − θc),

n1 cos(π/2) = 1× cos(θc),

n1 = cos(θc).

(4.22)

It is assumed that the small angle approximation cos(θ) = 1 − (θ2/2) is

suitable for θc [72]. Hence,

1− θ2
c

2
= 1− λ2Nb

2π
,

θc = λ

√
Nb

π
.

(4.23)

Neutron reflectivity measures the sample at an angle which is close to but

not smaller than θc. Measuring at smaller angles of incidence increases the

resolution of the experiment [55, 71]. However, the neutron beam is totally

internally reflected if the sample is measured at an angle below θc. This results

82



in non of the internal structure of the sample being measured. Samples are

measured at a grazing angle of incidence which is slightly greater than θc [55,71].

Solid surfaces are typically measured at 0.5o and above with respect to the

surface [71].

The reflectance for a single interface of two bulk media is equivalent to the

reflectance obtained from Fresnel’s equations [10,72],

R01 =

∣∣∣∣n0sin(θ0)− n1sin(θ1)

n0sin(θ0) + n1sin(θ1)

∣∣∣∣2 . (4.24)

Samples consisting of more than a few layers are better calculated using

the modified optical matrix method (which is discussed further in chapter 3).

Each layer is calculated as [72],

Mj =

[
cos(βj) −(i/pj)sin(βj)

−(ipj)sin(βj) cos(βj)

]
. (4.25)

where,

pj = njsin(θj), (4.26)

and

βj =

(
2π

λ

)
njdjsin(θj) (4.27)

Where dj = the thickness of the layer j which the neutron beam is propagating

through, β = optical path length of layer j.

The entire multi-layer sample is calculated by multiplying all of the matrix

components of equation 4.25. Hence,

Mtotal = M1M2M3...Mn (4.28)

The total reflectance is calculated by the components of the matrix [55,72],

R =

∣∣∣∣(M11 +M12ps)pa − (M21 +M22)ps
(M11 +M12ps)pa + (M21 +M22)ps

∣∣∣∣2 . (4.29)

Where pa and ps correspond to equation 4.26 to include the initial air and final

substrate interfaces respectfully.

However, the matrix method used thus far has assumed that interfaces are

have no roughness and are sharp. The intensity of a reflected beam from a
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single interface is calculated as [72];

I(λ) = I0(λ)e−q0q1〈σ〉
2

, (4.30)

Where,

qj = 2kjsin(θj). (4.31)

Where I0 = reflection intensity without roughness [counts], 〈σ〉 = root mean

square roughness of the interface [m2].

It was assumed that the roughness of an interface could be suitably modelled

by a Gaussian curve (shown in equation 4.30). The following equation is a single

interface Fresnel coefficient which has been modified using equation 4.30,

rij =

(
pi − pj
pi + pj

)
e−0.5q0q1〈σ〉2 . (4.32)

Where pi & pj are given in equation 4.26.

This is comparable to the diffuse interface approximations which were dis-

cussed for optical calculations (See section 3.7). However, it is difficult to

substitute equation 4.32 into equation 4.29. This method does not calculate

the reflectance using a series of single reflectance coefficients. Instead, a similar

matrix technique known as Abeles method is used [72],

Cm =

[
eiβm−1 rme

iβm−1

rme
−iβm−1 e−iβm−1

]
. (4.33)

Each layer m is defined by a 2×2 matrix Cm. Multiplying all of the matrices

together results in a 2 × 2 matrix which characterises the entire sample (as

was shown in equation 4.28). The reflectance was calculated by taking the

ratio of the appropriate components and multiplying them by their complex

conjugate [10,72],

R =
M21M

∗
21

M11M∗
11

. (4.34)

Finally, it is conventional to measure neutron reflectivity data with respect

to the scattering-vector Q [55],

Q = kf − ki. (4.35)

The magnitude of the wave-vector for inelastic scattering (|kf | = |ki|) is
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calculated by;

Q2 = |Q|2 = (kf − ki)
2

= |kf |2 + |ki|2 − 2kfki

= |kf |2 + |ki|2 − 2|kfki| cos(2θ)

= 2k2 − k2 cos(2θ)

= 2k2 [1− cos(2θ)]

= 2k2
[
2 sin2(θ)

]
= 4k2 sin2(θ).

(4.36)

Note that the wave was scattered by an angle of 2θ since the x-axis is parallel

to the direction of the incident wave (see figure 4.25). Also, the trigonometric

relation cos(2θ) = 1− 2 sin2(θ) [73] was used to solve the previous equation.

Hence,

Q = 2k sin(θ)

=
4π

λ
sin(θ).

(4.37)

The reflectance of the sample was measured with respect to changes in

the neutron wave-vector. Q is a dispersive function, which is dependent upon

the neutron wave-length λ. The dispersion is measured by varying the angle

of incidence θ, or energy of the scattered neutrons (which can also calculate

λ) [55].

The equations provided in this section can be used to build a computer

model of the sample. The properties of the sample were calculated by fitting

variables in the model. A fitting program was used (Motofit [74]) to analyse

the measured neutron data for different polymer samples.

4.7.1 Preparation of neutron reflectivity samples

Single layer and multi-layer polymer samples were prepared for neutron reflec-

tivity experiments. The polymer-polymer interfaces between spin-cast polymer

layers were measured using the samples discussed in this section. PS was re-

placed with fully deuterated PS (dPS) to increase the contrast in neutron scat-

tering length density between PVP/PS layers. The only difference between
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the two molecules is the hydrogen atoms being a heavier isotope. Therefore,

deuterated PS has the same chemical and optical (refractive index) properties

as non-deuterated PS.

The thickness of layers within the neutron reflectivity samples were thinner

(reduced to between 140nm and 200nm) than previously prepared PVP/PS

multi-layers (typically between 200nm → 530nm). This was because thinner

films were needed to measure Kiessig fringes for single and multi layer films

(which are shown in section 8.2). Kiessig fringes occur from the interference

between partial reflections from interfaces and are useful for measuring the film

thickness [55].

Unfortunately, changes to sample preparation (compared with the PVP/PS

multilayer preparation discussed in section 4.3) were needed to make the PVP/dPS

multi-layer samples. The deuterated PS was a close, but not an exact, approx-

imate to the non-deuterated PS polymer. For example, the molecular weight

of the non-deuterate polystyrene was ∼ 192, 000, whereas the molecular weight

of the deuterate polystyrene was ∼ 190, 000. However, PS and dPS are chemi-

cally the same so the two materials were comparable. It was more challenging

to prepare defect free multi-layer samples which were made from thinner spin-

cast polymer layers. The sample preparation technique was modified slightly

to improve sample quality (which is discussed later in this section). How-

ever, the preparation of PVP/dPS multi-layers was not significantly different

from when PVP/PS multi-layers which were previously prepared. UV/visible

spectroscopy measurements of a PVP/dPS DBR showed that it had similar

optical properties to a PVP/PS DBR. This indicated that the properties of

the polymer multi-layer were not significantly changed by the modified sample

preparation technique.

The spin-cast films were made thinner by reducing the concentration of

the polymer solutions to 2.9% PVP and 3.0% dPS which were dissolved into

a mixture of 50:50 ethanol:acetonitrile and toluene respectively. Using the

same preparation technique which was used to make the PVP/PS multi-layers

resulted in inhomogeneous cracked multi-layers. This was due to the previously

deposited films being swollen by solvent when depositing new layers. The

sample was protected by reducing its exposure to large quantities of solvent.

This was achieved by depositing the solution while the sample was being rotated

at 4.0krpm. Most of the solution was ejected off the substrate during the first

few moments of exposure to the sample. The sample was spun for 30 seconds
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after deposition to ensure that the film was dry. In comparison, the PVP/PS

multi-layers were prepared by depositing solutions onto the substrate when it

was stationary. HCl vapour was used to swell/protect the PVP layers during

both PVP/PS and PVP/dPS multi-layer preparation techniques. The samples

were also annealed for 5 hours at 110oC under a ∼ 1mtorr vacuum after all of

the layers were deposited.

Six samples were prepared, but only three could be measured using neutron

reflectivity. This was because experimental time was lost when the neutron

beam went down. We were informed that an error had occurred during routine

maintenance. The beam was switched off to enable repairs. However, three

samples were measured and their analysis lead towards useful results.

The following samples were prepared and measured using neutron reflectiv-

ity. The purpose for each measurement is provided after each sample name;

• Single deuterated PS layer : The film thickness and surface roughness

of the deuterated polystyrene was measured using neutron reflectivity.

These results were later compared with ellipsometery and AFM mea-

surements.

• PVP (top)→dPS (bottom) bi-layer : This sample was prepared to measure

the PVP→dPS interface. The width of the PVP→dPS interface may not

have been the same as the dPS→PVP interface due to how the samples

were prepared using solution processing.

• 10 layer PVP/dPS structure: A multi-layer sample was prepared to test if

the interfacial width changes with respect to the number of layers within

the structure. For example, does adding more layers increase the interface

widths? Does topographical roughening and/or residual solvent broaden

the interfacial widths?

The following samples were also prepared, but were not measured using

neutron reflectivity. A more complete set of data would have been gathered if

the samples were measured because of the following reasons;

• Uncoated silicon substrate: The silicon substrate has a native oxide layer

which is measurable when using neutron reflectivity. The same type of

silicon wafer were used as substrates for the polymer layer samples. This

substrate should have be measured independently so the polymer samples

could have been more accurately modelled and measured.
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• Single PVP layer : The film thickness of the PVP films were measured

using ellipsometry. The surface roughness of the PVP film was also mea-

sured using an AFM. Neutron reflectivity would have been used to com-

plement the previous measurements.

• dPS (top) →PVP (bottom) bi-layer : This sample was prepared to mea-

sure the dPS→PVP interface. The interfacial width of dPS→PVP may

not be the same as PVP→dPS because of the sample being solution pro-

cessed.

4.8 Time of flight secondary ion mass spec-

trometry

Time of flight secondary ion mass spectrometry (TOF-SIMS) was used to mea-

sure the internal structure of the DBR multi-layers. This included the film

thickness of layers and polymer-polymer interface widths. The multi-layer

samples were also ideal for testing a new TOF-SIMS sputtering source. It

was concluded that TOF-SIMS was useful for measuring complex structures,

despite having a poor resolution (when compared with ellipsometry and neu-

tron reflectivity for example). Unfortunately, it could not accurately measure

the polymer-polymer interface widths. This is discussed further in chapter 9.

Samples are depth profiled by controlled etching using electrons, ions, neu-

tral particles or high energy photon beams. The research in this thesis used

clustered beams of ionised atoms (Ar2000
+) to sputter neutral and ionised atoms

away from the sample surface (illustrated in figure 4.27). These experiments

must be done in a high vacuum so the ionised particles ejected from the sample

can be measured [75]. TOF-SIMS usually uses two different etching beams.

The sputter source was used to etch through the sample with high precision,

but it does not yield a large quantity of ionised particles which are detectable.

The analysis beam was used to produce a large yield of ionised particles, but

the sample etch rate was not easily controlled [75]. Alternating between the

two beams enables controlled etching and analysis. Both beams raster over the

surface (100µm × 100µm area), etching through the sample and scanning its

freshly sputtered surface. The secondary ions produced by the analysis beam

were measured using an ion detector (illustrated in figure 4.28) and recorded

onto a computer.
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Figure 4.27: An incident ion beam (blue) strikes the surface of a sample (pur-
ple). This ejects a mixture of neutral (purple) and charged/secondary ions
(red) and electrons (yellow) off the sample. The charged ions are then detected
using a mass spectrometer. Analysis was used to measure which ionised molec-
ular fragments had been sputtered off the surface by the ion beam. This was
used to determine which chemicals are in the sample and where.

The analysis beam used bismuth as an ion since it produces some of the best

ionised atoms/molecules for organic materials [76]. An Argon cluster Ar2000
+

beam was used to etch through the samples. The beam fires a cluster of atoms

which is approximately 2000 argon atoms per ion. This was an improvement

over the popular C60
n+ sputter beam, which is unable to etch through materi-

als such as polyethylene, polystyrene and conjugated polymers (which will be

referred to as ‘challenging polymers’ in this thesis) [77, 78, 79]. However, it is

capable of etching through other polymers like PVP. The inability of ion beams,

like C60
n+, to etch through challenging polymers is because the beam breaks

molecular bonds within the polymer sample whilst etching. The radical poly-

mer chains have unstable electron structures (due to unpaired valence electrons

or an electron shell which has not been filled) which causes them to be highly

reactive [49]. The radical chains chemically react with the other polymer chains

in the sample which causes them to ‘cross-link’. These intermolecular polymer

bonds increase the rigidity and integrity of the polymer sample. Cross-linking

of challenging polymers decreases the etching rate of ion beams, like C60
n+, to

near negligible. Ar2000
+ overcomes this problem by significantly reducing the

number of radical polymer chains created during etching [78, 79]. This is due
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Figure 4.28: [Left panel] A controlled cluster of ions is fired from the ion gun at
the surface of the sample. Secondary ions are ejected off the sample and passed
through filters. The remaining ions are measured using an ion detector. The
ion beam etches in pulses as it rasters over the surface of the sample. [Right
panel] Photograph of the TOF-SIMS set-up used at NPL for measuring the
polymer DBRs.
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to the ion cluster mass/charge ratio being larger.

Experiments had already shown that Ar2000
+ has a relatively constant sput-

ter yields and excellent resolution [80, 81]. This made the beam an ideal tech-

nique to measure the structure of layered polymer samples. The polymer DBRs

which were previously made are also simple multi-layer 1D polymer structures.

The film thickness of the polymer layers was previously measured using ellip-

sometry. UV/visible spectroscopy of these samples showed that the thickness

of the polymer films within the multi-layers were well defined. These samples

were used to test the depth profiling capabilities and accuracy of the Ar2000
+

sputter source through a multi-layer polymer sample.

Analysis of TOF-SIMS data is often lengthy and requires several processes.

Therefore, each process is discussed in the following subsections;

4.8.1 Chemical analysis of mass spectra

TOF-SIMS can be used to chemically profile a sample while etching through

it. The mass spectrometer detected the secondary ions which were sputtered

off the sample during etching. Each ionised atom and molecule has it’s own

distinct peak with respect to the detected mass of the ionised molecular com-

ponent. It was possible to determine which chemicals are in a sample by the

constituent parts of the mass spectrometer peaks [82]. The spectra shown in

figure 4.29 is the mass spectrometry of a PVP/PS multi-layer (shown in the

ION-TOF software used to analyse the TOF-SIMS measured data). These

peaks represent some of the detected ions throughout the experiment over a

100µm × 100µm sputtered sample surface area. A significant number of the

peaks will be shared between the two polymers, since they are both predomi-

nantly hydrocarbon structures. However, there are distinct chemical differences

between the two polymers which are each represented by their own mass peaks.

The best chemical peak markers for PVP and PS were C5H10N3
+ and C7H7

+

respectively. Furthermore, the Si+ peak was also considered so that the sub-

strate could be detected during measurements. The intensity of the C5H10N3
+,

C7H7
+ and Si+ peaks were measured while the sputter beams raster and etched

through the samples. A large C5H10N3
+ peak and a low C7H7

+ peak would

indicate that the sputter beams were etching through a PVP layer. Likewise,

large C7H7
+ peak and a low C5H10N3

+ peak would indicate that the sputter

beams were etching through a PS layer. A large Si+ would indicate that the

sputter beams had etched through all of the polymer layers and was in contact
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with the substrate. It is important to note that the magnitude of the peak

(ion counts with respect to ion mass) does not necessarily indicate that more

material is being sputtered from the sample. For example, it does not mean

that there is twice as much of material ‘A’ when compared with material ‘B’, if

the measurement for peak ‘A’ were twice as large as peak ‘B’. Material ‘A’ may

more readily ionise than material ‘B’, which results in a stronger signal for ‘A’

being measured [82]. The ‘etch rate’ (sputtered sample ion count with respect

to incident ion beam dose) is a more important measurement, as it calculates

how quickly the ion beam etches through a material. This is discussed later in

this thesis.

4.8.2 Selecting regions of interest

There were problems with the experimental set-up of TOF-SIMS which caused

the depth profile to be misinterpreted. Careful analysis was used to improve

the quality of results by understanding the limitations of the TOF-SIMS ex-

perimental technique. Unfortunately the TOF-SIMS ion beam was not able to

independently measure lateral variation in the topography of a surface. This

caused errors in how depth profiling data was analysed. It assumed that any

measured samples had a flat surface [82]. Previous measurements of PVP/PS

spin-cast multi-layer samples showed that there was a surface roughness be-

tween 1nm → 4nm. These samples were measured over a 40µm × 40µm sur-

face area using the AFM (which is comparable to the 100µm× 100µm surface

area measured using TOF-SIMS). All of the samples were spin-cast onto silicon

wafers which had a surface roughness less than 1nm. Therefore, the samples

were not perfectly flat and there is a measurable roughness on their surface.

However, TOF-SIMS measured the underlying films as being rough, instead of

the surface (illustrate in figure 4.30).

Controlled etching was used to measure the structure of a sample when

using TOF-SIMS. However, the etch rate of the ion beam can be disturbed

by inhomogeneity in density of the film and/or contaminants from unwanted

chemicals. This may also include the chemical composition of the film not

being uniform, such as trapped solvent within the layers. These defects would

change the etch rate through the sample and result in the film thickness being

incorrectly measured [82, 83]. The quality of results also degraded during the

experiment, as the surface of the sample was continuously roughened by the

sputter beams [82]. Anomalies in results are often difficult to correct since the
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Figure 4.30: [Left panel] An illustration of a rough film which was cast on top
of a silicon substrate when viewed as a cross section. The image is a cross-
section of the hypothetical sample. [Right panel] The TOF-SIMS depth profile
representation of the same hypothetical sample which was illustrated in the left
panel. TOF-SIMS is unable to measure the initial topography of the sample’s
surface. It assumes that the top of the sample is flat and any roughness at
the surface is not measured. The ion beam etches through the sample and
inadvertently measured the flat interface (film→substrate) as being rough.

proportions of the depth profile are misaligned for subsequent measurements

[82]. Any disruption in depth profiling are carried through with the rest of the

experiment as it is being etched (illustrated in figure 4.30).

‘Regions of interest’ were selected to reduce the effects of poor depth profile

homogeneity. It was assumed that the top and the bottom of the polymer

multi-layers were relatively flat (using the results from previous AFM mea-

surements). A cross section of the silicon-polymer interface was analysed after

measuring the sample by depth profiling through it (shown in figure 4.31). To-

pographically flat regions were selected and are represented in figure 4.31 as

‘islands’ of continuous ‘hue’. Five large (and non-square) regions of interest

were selected and each were between 10%→ 20% of the total scanned surface

area for each sample. These large areas were analysed to minimise experimen-

tal noise and repeats were used to improve the quality of results. The depth

profile was re-calculated so that each region of interest was re-analysed as if it

were an independent sample.

4.8.3 Depth profiling and calibration of sputter rate

The intensity of the mass spectra for PVP (C5H10N3
+), PS (C7H7

+) and silicon

(Si+) for each region of interest were plotted with respect to sputter dose of

the ion beam. The sputter dose is the number of incident ions (Ar2000
+) per

square meter which were fired onto the surface of the sample. The dose of

the incident Ar2000
+ etching beam increases with respect to time. Figure 4.32
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Figure 4.31: This is a cross section of the PVP→silicon interface for a single
layer PVP films. TOF-SIMS had measured topographical roughness in the
PVP→silicon interface. However, AFM measured a low surface roughness for
the silicon substrate and the single layer PVP film. The TOF-SIMS measured
roughness of the PVP→silicon interface is a defect in the sputtering technique.
Results were improved by measuring five different regions of interest (repre-
sented by the coloured outlines in the figure) and calculating the average. Re-
gions were selected by their homogeneity, as it was known the the PVP→silicon
interface should have been flat. Each region was between 10% → 20% of the
total surface area scanned (100µm× 100µm).

Material Ellipsometry:
Thickness
(nm)

Depth pro-
file: Thick-
ness (dose
×1018)

Depth
profile:
Inter-
face (dose
×1018)

Etch rate
(×10−18

nm/dose)

Film
thickness
(nm)

Interface
width
(nm)

PVP 206.3± 1.0 17.67±0.12 0.58± 0.03 11.66 206.0 ±
1.4

6.8± 0.4

PS 218.7± 1.0 14.83±0.17 0.30± 0.06 14.77 219.0 ±
5.3

9.3± 2.0

Table 4.3: TOF-SIMS dose calibration of PVP and PS spin cast films. The
thickness of the films were measured using ellipsometry and were used to cal-
culate the etch rate of the polymers with respect to incident Ar2000

+ ion dose.
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Figure 4.32: [Top panel] TOF-SIMS depth profiling of a single layer PVP film
(green data-points). [Bottom panel] Depth profile of a single layer PS film
(purple data-points). Both samples were measured over a 100µm × 100µm
surface area. The polymer→silicon interfaces were fitted with a error function
to calculate (red curve) its position (with respect to sputter dose) and inter-
face width. The widths of these depth profile curves are proportional to the
thickness of the polymer films. These depth profile measurements were com-
pared with ellipsometry measurements of the same samples. This was used to
calculate the etch rate of the incident Ar2000

+ ion dose for both polymer films.
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shows the depth profile for single layer PVP and PS films. It was assumed

that the Ar2000
+ sputter beam was capable of etching through both PVP and

PS at a constant rate. The widths of each curve correspond to when the

relevant material was being sputtered off the sample by the Ar2000
+ etching

beam. However, the transition from one medium to another is not immediate

(which is discussed in greater detail later in this section). Instead, there is an

interface width which was modelled by a error function (represented by the red

curves in figure 4.32) [73],

f(x) =
1

2

[
1 + erf

(
x− µ
σS.D.

√
2

)]
. (4.38)

Where µ = mean of the error function and σS.D. = standard deviation of error

function.

Equation 4.38 was modified to consider the analysis of TOF-SIMS,

f(d) =
A

2

[
1 + erf

(√
2(d− µ)

σInt

)]
+ C. (4.39)

Where A = amplitude of depth profile curve [sputtered ion counts ], d = dose

of Ar2000
+ ions, [ion beam counts ], µ = dose of Ar2000

+ needed to etch through

layer [ion beam counts ], 2σS.D. ≡ σInt = width of interface between layers [ion

beam counts ] and C = baseline of the depth profile [sputtered ion counts ].

The mid-point of an interface µ is the transition point where one material

changes to another. Equation 4.39 was always calculated with respect to the

bottom of a film (which corresponds to the intensity of the curve reducing).

The separation between the interfaces µ was used to measure the thickness of

the films. It was assumed that any intermixing of the two polymers would not

significantly change the etch rate.

The sharp peak at the bottom of the PS film (at the PS→Si interface,

shown in figure 4.32) was not due to the quantity of PS rapidly increasing.

Instead, the sputtered material is more readily ionised when it is closer to the

silicon interface. The peak was due to an increase in the number of ions being

detected [82]. The inflection was ignored when fitting the Gaussian function

since it is a error in the measurement system.

The widths of the depth profile curves (shown in figure 4.32) from five dif-

97



ferent regions of interest each were compared with ellipsometry measurements

of the same PVP and PS samples. This was used to calculate the etch rates for

each of the polymers. The etch rate of PVP was 11.66 × 10−18 nm/dose and

PS was 14.77× 10−18 nm/dose (shown in table 4.3). This was used to measure

the film thickness of polymer layers from TOF-SIMS depth profile data. This

calculation was also used to measure the widths of interfaces, using TOF-SIMS.
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Chapter 5

UV/visible properties of

PVP/PS DBRs

5.1 Introduction

PVP/PS DBRs were prepared using the techniques discussed in section 4.3.

The optical properties of the samples were measured in the UV/visible spec-

trum using the transmission spectrometer described in section 4.5.1. Samples

with different numbers of layers and different layer thickness values were pre-

pared, measured and analysed. These experiments were used to measure and

control the reflection properties of polymer DBR samples [84].

5.2 Controlling the wavelength of the reflec-

tion bands

The graph at the top of figure 5.1 shows the UV/visible reflectance spectrum

of a 30 layer DBR. Each layer was spin-cast from 4.0% w.t. PVP in 50:50

ethanol:actonitrile and 4.0% w.t. PS in toluene, using the preparation tech-

niques which were discussed in chapter 4.3. Single layer samples were also

prepared by spin-casting the films onto silicon substrates. These samples were

prepared using the same solution concentrations and spin-speeds as the multi-

layer samples for comparison. The thickness of the single layer films were
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Figure 5.1: [Top panel] The UV/visible spectrum of a 30 DBR made from lay-
ers of 439± 1nm PVP and 271± 1nm PS. The position of the reflection band
can be controlled by keeping the solution concentrations constant and chang-
ing the deposition spin-speed. Despositing thinner/thicker layers will blue-
shifted/red-shifted the wavelength of the reflection peak respectively. [Bottom
panel] Wavelength of the reflection peak plotted with respect to deposition
spin speed. The data points represent sample measurements. Each sample was
measured five times and the standard deviation was used as the error. The
curve was free-hand drawn.
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dPV P = 459 ± 1nm and dPS = 271 ± 1nm, which were measured using ellip-

sometry (discussed in section 4.4). These results were used as a measurement of

the corresponding thickness of layers in the DBR sample. The 30 layer polymer

DBR at the top of figure 5.1 had a reflection peak at 550nm (when measured

at normal incidence). A series of other 30 layer samples were also prepared

using the same techniques and polymer solution concentrations. However, the

deposition spin-speed was changed to make the layers thicker or thinner.

The graph at the bottom of figure 5.1 is the wavelength of the peak reflection

band with respect to the deposition spin-speed. The thickness of the spin-cast

PVP layers were between ∼ 360nm and ∼ 530nm. Likewise, the thickness of

the PS layers were between ∼ 210 and ∼ 320. Each data-point (in the plot at

the bottom of figure 5.1) corresponds to a different 30 layer DBR sample which

was prepared using a different spin-speed. Layer thickness increased/decreased

when then deposition spin-speed was faster/slower respectively.

The following equation is used to calculate the position of the reflection

peak with respect to wavelength. However, this equation only applies for when

the sample is being measured at normal incidence. The wavelength position of

the reflection peak is calculated by [10],

λ =
2

N
(n1d1 + n2d2) , (5.1)

Where n1 = refractive index of alternating layer 1, n2 = refractive index of

alternating layer 2, d1 = film thickness of alternating layer 1, d2 = film thickness

of alternating layer 2 and N = reflection peak number 1, 2, 3, ..., etc. The

reflection peak with the largest possible reflection peak wavelength is when

N = 1.

A DBR sample which has thinner/thicker layers would respectively blue-

shift/red-shift the wavelength of the reflection peak. Samples were prepared

with reflection band wavelengths between 450nm → 650nm by depositing so-

lutions at spin-speeds between 1.0krpm → 4.0krpm. The calibration curve

in the bottom plot in figure 5.1 was used to prepare samples with targeted

peak reflection band wavelengths. This was controlled by keeping the solution

concentrations constant and changing the deposition spin-speed for different

wavelength reflection bands.
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Figure 5.2: Three different samples were prepared using the calibration curve
in figure 5.1. ‘Blue’ [top panel], ‘Green’ [middle panel] and ‘Red’ [bottom
panel] were prepared with reflection peaks positioned at wavelengths ∼ 450nm,
∼ 550nm and ∼ 650nm respectively. The black data-points correspond to
the spectroscopic measurements of three different 30 layer samples. The solid
lines represent spectra which was modelled using the modified optical transfer
matrix method (which was discussed in chapter 3). Calculations which include
estimates for polymer-polymer interface widths (discussed in section 3.7) are
represented by the dashed lines.
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Three 30 layer samples were prepared with targeted reflection peak wave-

lengths at 450nm, 550nm and 650nm (which are respectively labelled as ‘Blue’,

‘Green’ and ‘Red’ DBRs throughout this thesis). The UV/visible reflection

spectra of these three samples are shown in figure 5.2. Spectroscopic measure-

ments of the reflectance from each sample are represented by the data-points.

The solid curves represent spectra which were modelled using the modified

optical transfer matrix method (discussed in chapter 3). Those calculations

assumed perfectly sharp interfaces (σ = 0). Models which did include polymer-

polymer interface width estimates σ were calculated separately. The spectra

from these calculations are represented by the dashed curves in figure 5.2.

Polymer-polymer interface width estimates are discussed more thoroughly in

section 5.3.1.

The modified optical transfer matrix method used film thickness (figure

4.12) and dispersion of the refractive index measurements (figure 4.19) to cal-

culate the reflection properties of the DBRs. However, the film thickness mea-

surements were adjusted to fit the modelled spectra with spectroscopic mea-

surements of the DBR samples. It was not possible to determine the thickness

corrections needed for each individual layer in the DBR sample. Instead, the

film thickness corrections were applied equally to all of the modelled layers.

The layer thickness measurements and corrections used to improve the fit of

the model are shown in table 5.1.

The small difference between the modelled and measured refection band

(when using the ellipsometry measurement of single layer films) could be caused

by a number of different factors;

• Errors in ellipsometry measurements : Typically, errors in ellipsometry

measurements of the film thickness of single layer polymers were between

1nm and 4nm. Measuring the thickness of the top layer film in a bi-

layer is more difficult than measuring a single layer film. The optical

properties of these samples are sensitive to small changes. Film thickness

of the bottom layer and the refractive index of all the layers in the bi-

layer sample must be accurately measured. Inaccurate measurements of

these parameters/quantities would increase the top layer film thickness

error when measuring the bi-layer sample. Comparisons between polymer

layers which were spin-cast on top of silicon or polymer substrates were
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discussed in section 4.4.1. Figures 4.14 and 4.15 showed that there was a

small change in film thickness when spin-coating onto silicon or polymer

substrates. Although, these changes could have contributed towards the

film thickness errors used in the calculations.

• Wavelength dependence of refractive index : The error of the film thick-

ness was overestimated to fit the dispersion measurements 4.4.2. This

suggests that there could be errors within the dispersion measurements.

The dispersion measurements were used to model the UV/visible spec-

trum of the DBR samples. A layer would need to thicker/thinner if the

refractive index was under/over estimate respectively to maintain the

same optical path length OPLFilm = dFilmnFilm of the layers [10].

• Residual solvent : All samples were annealed at 110oC for 5 hours under

vacuum. This is above the glass transition temperature of PS (Tg ' 100oC

[65]) but not the Tg of PVP (Tg ' 150− 180oC [65]). Solvent would not

as readily diffuse out of the PVP layers as it would have for the PS

layers. Furthermore, the multi-layer structure may restrict the toluene

diffusing out of the sample. Residual solvent within the polymer layers

would swell the polymers (increasing the layer thickness) and reduce their

refractive index (decreasing their optical path length). This would change

the optical properties of the photonic structure, such as the wavelength

of the reflection peak.

5.3 Inefficiencies and defects which reduce DBR

peak reflectance

The measured reflectance of the DBR reflection peak was not as large as the

modified optical transfer matrix method had calculated (spectra shown in fig-

ure 5.2). This indicated that there were other properties of the DBR samples

which should be considered. For example, the polymer-polymer interfaces be-

ing broad instead of sharp (discussed in section 5.3.1), lower refractive index

contrast between layers (discussed in section 5.3.2) and disorder in the photonic

structure (discussed in section 5.3.3).
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5.3.1 Polymer-polymer interfaces

The modified optical transfer matrix model previously assumed that the polymer-

polymer interfaces between layers were sharp. However, the layers are made

from polymer films which were spin-cast on top of polymer substrates (which

are also previously deposited layers). Previous experiments have measured

broad polymer-polymer interface widths, which were ∼ 10nm, for similar spin-

cast polymer layered samples [85]. Interfaces between spin-cast polymer layers

should be considered when modelling the optical properties of DBR samples.

The following points are different types of interfaces which also correspond to

the illustration in figure 5.3;

• Sharp interfaces : The two materials are not intermixed and the surfaces

between the two layers are perfectly flat.

• Diffuse interfaces : This is a intermixed blend of both of the materials at

the interface. The transition from one material to another is gradual and

can be modelled using an error function [86]. Polymer chains can intermix

and broaden the interface. Solution processing swells the surface polymer

chains and increases their mobility [18, 86]. Furthermore, the polymer

chains between two separate polymers will tend to intermix when they

are swollen by residual solvent.

• Roughened interfaces : The topography of the sample is not flat and the

surfaces of the polymers at the interface are naturally rough. This causes

the two materials to penetrate into one another. Solvent evaporation

during spin-coating will cause roughening on the surface of a spin-coated

film [62, 85]. Spin-coating a film on top of rough films will not remove

the roughness at the newly formed interface.

• Diffuse and roughened interfaces (combined): The polymer-polymer in-

terfaces are likely to be a combination of both the diffuse and roughened

interface [18,86].

AFM was used to measure the surface roughness of multi-layer polymer

films. The root mean square surface roughness measurements were between

∼ 1.2± 0.4nm and 4.1± 0.3nm. Unfortunately, AFM is only able to measure

the surface of a sample. The internal polymer-polymer interfaces would have
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Figure 5.3: These diagram represent the different types of interfaces which
should be considered for spin-coated polymer multi-layers. Sharp interfaces
are when the transition from one medium to another is well defined. Diffuse
interfaces are caused by the two materials intermixing. Rough interfaces are
caused by the topography of the interfaces penetrating into both materials.
The interface of the polymer films is likely to be a combination of both diffuse
and roughened interfaces.

Figure 5.4: The reflectance of the reflection peak from a modelled 30 layer
‘Green’ ∼ 550nm (dPV P = 450 ± 9nm and dPS = 262 ± 9nm) DBR was
plotted with respect to changing polymer-polymer interface width. Increasing
the modelled polymer-polymer interface width reduces the total reflectance of
the modelled reflection peak.
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to be measured using other techniques such as neutron reflectivity (see chapter

8) and TOF-SIMS (see chapter 9). Measuring the surface roughness after each

film deposition would not be an accurate technique to measure the interface

widths between layers. The polymer films could swell and intermixing (at small

length scales) during sample preparation. Polymer chains on the surface of a

sample can still be mobile when in an orthogonal solvent [18, 87]. Hence, the

two different polymer materials could have mixed when depositing layers.

The surface roughness of the spin-cast films were two orders of magnitude

less than the wavelength of incident light. Reflected light was considered to

be specular as the quantity of scattered light was negligible because of the

relatively small surface roughness [54]. In this case, the optical properties of

topographical roughness are indistinguishable and significantly less than the

optical effects of diffuse interfaces. The calculations for polymer-polymer in-

terface widths were simplified by treating the roughening and diffuse interface

as a single problem. A single approximation for diffuse interfaces, which cor-

rects the reflection coefficient r, was used to model the combined effects of

diffusion between layers and roughening (which was also discussed in section

3.7),

rint = r exp

[
−8
(πσnN+1

λ

)2
]
. (5.2)

Increasing the interface width σ results in the magnitude of the reflection

coefficient at a given interface being reduced. This reduces the total reflectance

of the reflection peak. Figure 5.4 illustrates the reduction in the reflectance of

a modelled reflection peak of a 30 layer ‘Green’ DBR sample as σ increases.

The widths of all the interfaces were assumed to be the same throughout the

sample. This would not necessarily be the case for real samples. For example,

depositing a PVP film on top of a PS layer could result in a broader interface

than when depositing a PS film on top of a PVP layer (or vice versa). This

is because one polymer may be more or less orthogonal to the solvent used to

dissolve the alternate polymer [18, 86]. The difference of the two cannot be

measured by modelling optical spectra, so neutron reflectivity or TOF-SIMS

measurements must be used instead.

The dashed lines shown in figure 5.2 are modelled curves which include esti-

mates for polymer-polymer interfaces widths. These calculations were used to
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improve the modelled fit with respect to the UV/visible spectrometry measure-

ments. Changing the widths of the interfaces does not change the wavelength

position of the reflection bands. This is because the average/effective film

thickness and refractive index of the layers are unchanged. Values for the in-

terface widths estimates used to fit the measurements in figure 5.2 are shown

in table 5.1. The polymer-polymer interface widths were estimated to be be-

tween 20nm→ 30nm. These estimated interface widths were larger than those

measured from comparable polymer layered samples [85].

The polymer-polymer interface widths of the PVP/PS multi-layer samples

were later measured using neutron reflectivity (discussed in chapter 8). The

interface width of PS(top)→PVP(bottom) interfaces were 0.61±1nm. Whereas

the PVP(top)→PS(bottom) interfaces were 0.96± 1nm. These measurements

are significantly smaller than the estimates calculated by fitting the modelled

spectra to UV/visible measurements. The samples were remodelled using the

measured interface widths. However, there is negligible difference between the

remodelled spectra (using neutron reflectivity measurements) and modelled

spectra which assumed the sample had sharp interfaces.

The reduction in the reflectance of the measured DBR reflection band (when

compared with modelled spectra) was not due to large polymer-polymer inter-

face widths. Instead, the reduction in reflectance could be due lingering solvent

left over from sample preparation. This is discussed further in the next sub-

section.

5.3.2 Reduction of refractive index contrast

Neutron reflectivity measured the polymer-polymer interfaces to be small (all of

the measured interfaces were less than 1nm wide). The measured reflectance of

the reflection bands were lower than what the modelled spectra had estimated.

This could have been due to trapped solvent reducing the refractive index

contrast between layers. Solvent may have lingered within the polymer layers

during sample preparation. It was later discovered that the reflectance of the

DBRs increased towards the modelled reflectance (see section 6.2). This could

have been due to the lingering solvent diffusing out of the sample over time.

The refractive indices of ethanol (n = 1.363), acetonitrile (n = 1.344) and
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toluene (n = 1.496) are smaller than the refractive indices of PVP (n = 1.516)

and PS (n = 1.586). Trapped solvent would have lowered the refractive in-

dex of the polymer films. This could also reduce the refractive index contrast

between the polymer materials. Figure 5.5 shows the reflectance spectra of

the ‘Blue’, ‘Green’ and ‘Red’ 30 layer DBRs with reflection peaks at wave-

lengths ∼ 450nm, ∼ 550nm and ∼ 650nm respectively (which are the same

samples shown previously in figure 5.2). The data-points represent the mea-

sured UV/visible reflection spectra of the DBR samples. The dashed lines are

modelled spectra with the refractive index contrast between the polymer layers

∆n reduced.

The modelled spectra in figure 5.5 were fitted by decreasing the contrast of

the refractive index between the layers (∆n = nPS − nPV P ) by a value δ(∆n),

using the following equations;

[nPV P (λ)]Corrected = [nPV P (λ)]Measured + δ(∆n)/2, (5.3)

and,

[nPS(λ)]Corrected = [nPS(λ)]Measured − δ(∆n)/2. (5.4)

Where δ(∆n) = change in the refractive index contrast between layers, [nPV P (λ)]Measured

and [nPS(λ)]Measured is the measured wavelength dispersion of the refractive in-

dex for PVP and PS respectively.

These ‘corrected’ refractive index values are approximations for changes

in the refractive index of the polymer layers. It was not possible to measure

the refractive index of the solvent swelled polymer layers within the sample.

Instead, these calculations were only used to model the effects of a smaller

optical contrast between layers ∆n. The refractive index of PVP decreases

when it is swelled with 50:50 ethanol:acetonitrile. However, it was simpler to

increase the modelled refractive index of PVP to reduce ∆n. Likewise, the

modelled refractive index of PS was reduced to lower ∆n. The magnitude of

δ(∆n) was applied equally to the measured refractive index of PVP and PS.

Table 5.2 shows the film thickness and refractive index contrast changes used

to model the spectra. The thickness of the layers had to be increased to keep

the position of the reflection peak constant. This was due to the optical path
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Figure 5.5: The UV/visible reflectance measurements (data-points) of the
‘Blue’ [top panel], ‘Green’ [middle panel] and ‘Red’ [bottom panel] were re-
modelled using the modified optical transfer matrix method (dashed curves).
This included estimates for reductions in the refractive index contrast ∆n be-
tween the polymer layers. Changes in the refractive index contrast as large
as δ(∆n) = 0.028 ± 1 were needed to reduce the modelled reflectance to fit
measured spectra. The reduction in contrast may have been due to residual
solvent trapped in the multi-layers.
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length (OPLFilm = nFilmdFilm) of the polymer layer reducing as the refractive

index decreased [10].

Reductions of ∆n between 0.020 and 0.028 were needed to fit the modelled

spectra with UV/visible spectrometry measurements. The following Lorentz-

Lorenz equation was used to calculate the refractive index of a polymer/solvent

mixture [88];

n2
Mix − 1

n2
Mix + 2

= φPoly
n2
Poly − 1

n2
Poly + 2

+ φSolv
n2
Solv − 1

n2
Solv + 2

. (5.5)

Where nMix, nPoly and nSolv are the refractive indices of the polymer/solvent

mixture, polymer and solvent respectively. φPoly and φSolv are the volume

fractions of the polymer and solvent components in the mixture.

Up to 20% of the volume in a spin-cast PS film can consist of residual

toluene [89]. A literature refractive index value for toluene and the ellipsomtry

measurement of PS were used to calculate the refractive index of a swelled PS

film [65]. The calculated reduction in refractive index for a swelled PS film was

∆nPS = 0.018. This is slightly lower than the δ(∆n) which was used to fit the

optical transfer matrix method to measured spectra. However, residual solvent

in the PVP films would reduce the refractive index contrast between the layers.

The Lorentz-Lorenz equation indicates that the reduction in reflectance could

be due to trapped solvent. Therefore, more experiments are needed to measure

the refractive index and film thickness of the swelled PVP and PS layers in the

DBR samples. This would help model and understand the optical properties

of the DBR samples further.

5.3.3 Effects of disorder in layer thickness

All of the DBR modelling data previously assumed that the thickness of the

PVP (dPV P ) and PS (dPS) remain constant. However, the film thickness of

the deposited layers may change throughout the DBR. This could be due to an

increased error when spin-coating on of polymer layers, differences in swelling

from residual solvent, or warping because of residual stresses [86]. Disorder

in the layer thickness would change the photonic structure and shape of the

reflection peak (which is similar to the chirped reflection spectra shown in
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Figure 5.6: The reflectance of modelled reflection peaks are reduced as the
thickness of the modelled DBR layers become disordered. Each modelled layer
was modified by randomly changing the thickness within a range of error
δdError. This plot models disorder in a hypothetical 30 layer ‘Green’ DBR
(dPV P = 410nm and dPS = 262nm when δdError = 0nm). Each data-point
was the average of reflectance from ten modelled samples with random layer
thickness disorder applied. Standard deviation was used to calculate the errors.
The curve is a quadratic polynomial fit. UV/visible measurements of a 30 layer
‘Green’ DBR (data-points) and the modelled spectra when δdError = 10nm
(green curve) are shown in the inserted panel.
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section 5.6). A 30 layer ‘Green’ DBR sample was remodelled with included

layer thickness disorder. Each layer thickness was modified by;

dModified = dInitial ±
δdError

2
. (5.6)

Where dModified = layer film thickness after being adjusted by applying a small

error, dInitial = original single layer film measurement and δdError = size of the

random film thickness error.

The initial film thickness of the layers were consistent with the modelled

‘Green’ DBR sample shown in table 5.1. Each film thickness was modified

slight by adding or subtracting a random error within a pre-determined range

δdError. For example, the thickness of each film would be changed by a random

error within −1nm and +1nm if δdError = 2nm. The reflectance of a 30 layer

550nm ‘Green’ DBR (with sharp interfaces) was modelled for different ranges

of δdError. Each test of δdError was modelled 10 times. The average and

standard deviation were calculated to demonstrate the variation in results.

Figure 5.6 shows that the reflectance decreased when δdError had increased.

The reflectance only decreased by ∼ 1% when δdError = 10nm. Irregularities

in the modelled reflection spectra start to occur when δdError is increased as the

model diverges away from the shape of the measured spectra. This is illustrated

by the caption in figure 5.6 which is a model of a 30 layer ‘Green’ DBR which has

a random film thickness error range of δdError = 10nm. The modelled spectra

(solid line) does not fit the shape or reflectance of the measured spectra (data-

points). Hence, the reduction in reflection between measured and modelled

data is unlikely to be entirely due to random variations in film thickness.

5.3.4 Asymmetry in the layer thickness

The single layer ellipsometry measurements were used to model the reflection

band of 30 layer DBRs (shown in figure 5.2). Slight corrections to the film

thickness measurements (shown in table 5.1) were needed to improve the fit

of the modelled spectra with respect to measured spectra. Corrections to film

thickness were applied equally to both PVP and PS layers. However, any vari-

ation between modelled and actual film thickness may not have been equal for

all the polymer layers. The film thickness correction for one of the polymer
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Figure 5.7: The modelled reflectance of a 30 ‘Green’ DBR (originally dPV P =
410nm and dPS = 262nm) was calculated for small changes in layer thickness.
Reflectance of the reflection peak was calculated for different layer thickness
values, which were within error of the calculations. However, equal and opposite
changes were needed to keep the wavelength of the modelled reflection band
consistent with the measurements. Changes in the film thickness (within error)
were not large enough to significantly reduce the modelled reflectance, to fit
the measured data.
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layers may have needed to be larger than the alternate polymer layers. For

example, the PVP or PS layers may be swollen by trapped solvent. A hypo-

thetical 30 layer ‘Green’ DBR was modelled for this experiment. Layers with

thickness dPV P = 440nm and dPS = 262nm from table 5.1 were used to model

the reflection spectra. Asymmetry was then introduced adding or subtracting

incremental changes in layer thickness δd. The position of the reflection band

was kept within 550±1nm by decreasing the layer thickness of PVP/PS by δd,

when the layer thickness of PS/PVP was increased by δd respectively. Hence,

the total film thickness of each PVP/PS bi-layer was kept constant. However,

the ratio between the PVP and PS film thickness was changed.

Figure 5.7 is a plot of the modelled reflectance of a ‘Green’ 30 layer DBR

reflection band with respect to changes in the film thickness of PVP and PS.

The reflectance changed as the asymmetry between dPV P and dPS was varied.

However, corrections as large as δd = ±10nm were needed to significantly

change the reflectance of the DBR reflection peak by ∼ 1.3%. Large changes

in the film thickness may have occurred if the films were swollen with residual

solvent. Although, the refractive index of the polymer layers would have also

reduced. Therefore, the optical path length should be considered OPLFilm =

nFilmdFilm/ cos(θFilm) as it would change the optical properties of the sample

[10]. A combination of changing film thickness and refractive index, by residual

solvent, may have reduced the reflectance of the DBR reflection peaks.

These results also demonstrated that more efficient photonic structures can

be prepared by tuning the thickness of layers. This is discussed further in

section 6.3.

5.4 Controlling the reflectance

Increasing the number of layers in a sample also increases the number of inter-

faces. This also increases the number of partial reflections which contribute to

the total reflectance of the sample. Therefore, the magnitude of the reflection

peak is increased by adding more layers to the sample. Figure 5.8 shows the re-

flectance of the reflection peaks for ‘Red’, ‘Green’ and ‘Blue’ DBRs, which were

each prepared with different numbers of deposited layers (10, 20, 30, 40 and

50). Each data-point represents the reflectance of a measured reflection peak
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Figure 5.8: The reflectances of ‘Blue’, ‘Green’ and ‘Red’ DBRs (coloured ap-
propriated in this figure) with reflection bands at ∼ 450nm, ∼ 550nm and
∼ 650nm respectively, are plotted with respect to the number of layers de-
posited. UV/visible spectrometry measurements are represented by the data-
points. Result is an average of five measurements and the errors are their
standard deviations. The solid lines represent the reflectance of modelled sam-
ples which have sharp interfaces. The dashed lines represent modelled spectra
which have had refractive index contrast between layers reduced (using the
values in table 5.2.
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from a DBR sample. All of the samples were modelled using the modified opti-

cal transfer matrix method. Values from table 5.1 were used to model samples

which had sharp interface widths (represented by the solid curves in figure 5.8).

Likewise, the values in table 5.2 were used to model any possible reduction in

refractive index contrast between the layers ∆n. Lingering solvent within the

samples would have lowered the refractive indices of the polymer layers (see

section 5.3.2). Reducing the refractive index contrast of the polymer layers

by δ∆n had improved fitting the modelled spectra to sample measurements

(represented by the dashed curves in figure 5.8).

All of the measurements and modelled data in figure 5.8 show that the

reflectance of the reflection peak increases when more layers are added to the

sample. However, the sharp interface model overestimates the reflectance of the

DBR reflection peaks. This worsens as the number of layers increases because of

additional properties which are not being modelled. Adding more layers could

reduce the reflectance decrease by, trapping more solvent and adding defects

(such as contaminants). Furthermore, the thickness of the sample is increasing,

which approaches above the coherence length of the reflected light [10,11,14].

The modelled data which included reduced refractive index contrast δ∆n

had improved fitting with measured results. However, this model underesti-

mated the reflectance of the DBR peaks when the number of layers is less than

30. It also over estimated the reflectance of the DBR peaks when the number

of layers is greater than 30. This was due to all of the curves being calculated

using the 30 layer spectra fit. Hence, the reduction of the refractive index

between layers may be smaller/larger for less/more than 30 layers deposited

during sample preparation respectively. It is more difficult for residual solvent

to diffuse out of the sample when there are more layers [66].

The reflectance of the DBR can be controlled by changing the number

of layers deposited (shown in figure 5.8). However, there were no significant

gains in reflectance for samples of more than 50 layers, when using this sample

preparation technique. This was most likely due to trapped solvent within the

layers of the DBR (discussed in chapters 6 and 8). The total reflectance of the

DBRs was later improved by periodically annealing during sample preparation.

This allowed more layers to be added to the sample and increased the total

reflectance possible (this is discussed further in section 6.4).
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5.5 Angular dependence of DBR spectra

Changing the angle of incident light will change the wavelength of a reflec-

tion peak from a DBR sample. This is known as iridescence [10, 12]. The

transmission UV/visible spectrometer shown in figure 4.20 was built to include

variable angle measurements. Rotating the sample changes the angle of inci-

dence with respect to the sample surface. This would cause the beam path of

the transmitted light to slightly deviate away from the centre of the collection

lens (due to the initial air→polymer and final glass→air interfaces being dif-

ferent). However, the collection lens was large enough for this problem to be

neglected.

The reflection spectra of the 30 layer ‘Blue’, ‘Green’ and ‘Red’ DBRs were

measured at different angles of incidence. These samples were also modelled

using the modified optical transfer matrix method. This included modelling

samples with sharp interfaces (values were provided in table 5.1) and reduc-

ing the refractive index contrast between the polymer layers ∆n (values were

provided in table 5.2). Reducing the refractive index contrast between the

layers improved the fit of the modelled spectra to the corresponding reflection

measurements.

Figure 5.9 shows the wavelength of the reflection peak for the 30 layer ‘Red’,

‘Green’ and ‘Blue’ samples with respect to the angle of incident light. All of

the measurements showed the reflection peaks blue-shift when the angle of

incident light deviated/increased away from the normal of the sample surface

(data-points). Only the modelled spectra for samples with sharp interfaces are

shown in figure 5.9 (solid curves). Modelled spectra for samples with reduced

refractive index contrast ∆n were also calculated. However, there was negligible

difference between the two different types of modelled samples. The data from

both models had accurately calculated the wavelength dependence/iridescence

of reflection spectra measured from DBR samples.

Blue-shifting of the reflection peaks would appear to be counter intuitive

as the optical path length between interfaces increases as the light moves away

from normal incidence (OPLFilm = nFilmdFilm/ cos(θFilm) [10]). Figure 5.10

illustrates that the optical path length of the transmitted light increases when

the angle of refraction θr is raised. However, this causes a phase difference

δ between the rays reflected from the top and bottom of the film. Only rays
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Figure 5.9: The wavelength of measured reflection bands for the 30 layer ‘Red’,
‘Green’ and ‘Blue’ DBRs (represented by data-points and coloured appropri-
ately in the figure) plotted with respect to the angle of incident light. The
modified optical transfer matrix method was used to model the measured data
(solid curves). Only modelled results for sharp interfaces are shown. Modelled
samples which had a reduced refractive index contrast were also calculated.
However, the difference, when compared to the sharp interface model, was
negligible. All of the results showed the wavelength of the reflection band
blue-shifting as the incidence increased.
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Figure 5.10: Changes in the reflected colour (irridescence) are discussed for a
single layer thin film for simplicity. However, these same principles would apply
for a multi-layer sample. Moving the light source away from normal incidence
(θi) changes the optical path length of transmitted light in the film and also the
angle of refraction (θr). The top and bottom reflected waves interfere, but only
rays which constructively interfere are reflected by the sample. The reflected
wave is blue-shifted to maintain constructive interference.
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Figure 5.11: This diagram illustrates the phase difference between the top and
bottom reflected waves when changing the angle of incidence. The increased op-
tical path length A→B does not red-shift the reflected light. Instead, the path
length A→D causes a phase difference between the two reflected rays. Only
waves which constructively interfere are reflected by the thin film. Therefore,
the reflection band is blue-shifted to compensate for the changes in phase.

which constructively interfere are reflected by the DBR samples. A given wave-

length of light which was previously reflected at normal incidence would not

constructively interfere when θi 6= 0. However, a smaller wavelength would

constructively interfere and is reflected by the DBR sample.

The iridescent properties of photonic structures can be explained using sim-

ple geometrical arguements. A single thin film is considered for simplicity, but

the effect of iridescence would be the same for a multi-layer. However, the

modified optical transfer matrix method should be used when calculating the

angular properties of reflection spectra of a multi-layer sample. Figure 5.11 is

provided as a visual aid for calculating the iridescence of a single layer film.

Consider the two rays coming out of the film and have the magnitude E1r and

E2r. For simplicity, we consider the two rays to be emitted from a light source

which is beneath the thin film. The optical path difference Λ between the two

reflected beams is given by [10];
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Λ = nFilm[
(
AB
)

+
(
BC
)
]− nAir

(
AD
)
. (5.7)

Where nFilm = refractive index of the film and nAir = refractive index of air.

This is expanded by,

(
AB
)

=
(
BC
)

=
dFilm

cos(θr)
. (5.8)

Where dFilm = thickness of film and θr = angle of refraction

Hence, equation 5.7 becomes,

Λ =
2dFilmnFilm

cos(θr)
− nAir

(
AD
)
. (5.9)

The magnitude of
(
AD
)

is also re-written as,

(
AD
)

=
(
AC
)

sin(θi). (5.10)

Where θi = angle of incidence.

This is changed by substituting sin(θi) into Snell’s law [10],

(
AD
)

=
(
AC
) nFilm
nAir

sin(θr). (5.11)

Using figure 5.11, the magnitude of
(
AC
)

is also calculated by,

(
AC
)

= 2dFilm tan(θr). (5.12)

Substituting this into equation 5.11 results in,

(
AD
)

=
2dFilmnFilm

nAir
tan(θr) sin(θr). (5.13)

Which is substituted into equation 5.9
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Λ =
2dFilmnFilm

cos(θr)
− nAir

(
AD
)

=
2dFilmnFilm

cos(θr)
− nAir

[
2dFilmnFilm

nAir
tan(θr) sin(θr)

]
=

2dFilmnFilm
cos(θr)

[
1− sin2(θr)

]
=

2dFilmnFilm
cos(θr)

[
cos2(θr)

]
= 2dFilmnFilm cos(θr).

(5.14)

The phase difference of the optical path length δ is calculated by multiplying

the wave-vector of the ray when it is reflected into the air medium kAir with

the optical path length difference Λ. The wave-vector in air is;

kAir =
2π

λAir
. (5.15)

Where λAir = wavelength of the light in air.

Furthermore, waves will undergo a phase shift of ±π radians when reflected

from an interface if the incident medium has a lower refractive index than the

transmitted medium [10]. Therefore, for a thin film suspended in air, there is

a relatively phase shift of ±π radians. Hence, the phase difference between the

two reflected beams is;

δ = k0Λ± π

=

[
2π

λAir

]
[2dFilmnFilm cos(θr)]± π

=
4πdFilmnFilm

λAir
cos(θr)± π,

(5.16)

The two rays constructively interfere when the phase difference is δ = 2mπ

(where N = 0, 1, 2, 3...etc). Furthermore, the ±π is simplified to −π since

there is no difference in which sign π it takes. Hence,

δ = 2mπ =
4πnFilm
λAir

dFilm cos(θr)− π, (5.17)
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Hence,

4πnFilm
λAir

dFilm cos(θr)− π = 2mπ,

2nFilm
λAir

dFilm cos(θr)− 1 = m,

dFilm cos(θr) = (m+ 1)
λAir

2nFilm
,

(5.18)

This shows what the wavelength of reflected light (λAir) decreases with re-

spect to increasing angle of refraction θr (which decreases cos(θr)). Interference

such as this is why the curve in figure 5.9 is a maximum at θi = 0 and decreases

in wavelength when θi > 0.

Figure 5.12 is a plot of the measured and modelled reflectance for 30 layer

‘Blue’, ‘Green’ and ‘Red’ DBR reflection peaks with respect to angle of incident

light. Reflectance of the measured sample reflection peaks (data-points) started

to decay as θi increased. This was most likely due to imperfections in the sample

which reduced the reflectance of the DBR. Moving the incident light towards

a grazing angle illuminates a larger area of the sample. Therefore, unwanted

imperfections may have been measured by mistake. Modelled data with sharp

interfaces (represented by solid lines) were relatively constant as θi increased.

However, the modelled data which had the refractive index contrast between

layers reduced (dashed lines), increased as the incident light deviated away

from the normal of the sample surface. It was difficult to model the reflectance

of the DBR samples which are swelled with residual solvent. This thickness of

the layers increases and the refractive index decreases. Hence, the optical path

length of the layers is changed OPL = nFilmdFilm cos(θFilm). This changes

how the partially reflected waves constructively interfere. The reflectance will

increase if the constructive interference of the partially reflected light is more

efficient. This is comparable to tuning the layers of the DBR sample into a

more efficient structure, which was discussed in section 5.3.4.
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Figure 5.12: Reflectance of 30 layer ‘Red’, ‘Green’ and ‘Blue’ DBR reflection
peaks were measured with respect to angle of incidence. Measurements of
DBR samples are represented by the data-points. The average of five repeat
measurements were used. Errors were calculated using the standard deviation.
The modelled data with sharp interfaces is represented by the solid line. Both
results showed the reflectance of the DBR staying relatively constant as they
were rotated. The measured ‘Blue’ sample did drop in reflectance, but this
could be due to the incident beam measuring a surface defect. Results were also
calculated for modelled samples which have a reduced refractive index contrast
(dashed lines). The reflectance from these samples was increased when the
angle of incidence was larger. This is probably due to the optical path length
of the layers being changed by modifying the value of the refractive indices.
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Figure 5.13: A representation of the incremental increase in the bi-layer film
thickness of chirped structures. The thickness of each bi-layer increases slightly
by ∆d after each bi-layer deposition. This was achieved during sample prepa-
ration by decreasing the deposition speed when spin-casting a film. Changes
in the spin-speed were controlled using a self written Matlab program and the
automated spin-cater set up.

5.6 Chirping the photonic structure

Sample preparation was modified by designing and building an automated spin-

coater (which was discussed in section 4.3.1). The data in figures 4.12 and 4.19

were used to calibrate the automated system. This technique was extended

to make chirped samples. The narrow reflection bands of the polymer DBRs

may be of benefit to some applications such as optical filters [1, 2]. However,

some applications which may require a broader reflection bands. This can be

achieved by chirping the photonic structure. Chirping is when there are small

incremental changes in the thickness of the multi-layer films are added while

they are being prepared (illustrated in figure 5.13). This results in a broader

reflection band which is composited of discrete reflection peaks.

A chirped sample was prepared for the purpose of optical measurements
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Initial PVP
layer thick-
ness dPV P
(nm)

Initial PS
layer thick-
ness dPS
(nm)

Chirp per bi-
layer δd (nm)

Fitted change in
refractive index
contrast δ(∆n)

250± 1 250± 1 +1± 1 18± 1

Table 5.3: The variables used to model the chirped DBR sample (UV/visible
spectra of the sample is shown in figure 5.14). The refractive index contrast
was reduced to improve the fit of the DBR model.

and modelling. This sample was made by initially depositing a bi-layer with

dPV P = 250± 1nm and dPS = 250± 1nm thickness layers. More bi-layers were

deposited onto the sample as it was being prepared. However, each bi-layer

deposition was increased by δd = +1 ± 1nm until 25 bi-layers (50 layers in

total) were deposited. The sample was annealed for 5 hours at 110oC under a

∼ 1mtorr vacuum.

A UV/visible spectrum measured from the chirped DBR sample (data-

points) is shown in figure 5.14. The reflection properties of the sample were

modelled using the optical transfer matrix method (discussed in section 3),

which was modified to include the incremental changes in film thickness. A

chirped sample with sharp interfaces was modelled and is represented in figure

5.14 by the solid grey curve. Another model was calculated to improve the

reflectance fit by changing the refractive index contrast between the polymers

(represented by the dashed black curve). The variables used to model the data

are shown in table 5.3.

The measured and modelled spectra showed how chirping the structure

broadens the reflection band. Non-chirped samples had reflection bands which

were ∼ 15nm wide (FWHM), whereas the chirped samples had reflection

bands which were ∼ 40nm wide. The discrete peaks of the chirped reflection

band were not accurately modelled using the modified optical transfer matrix

method. This was likely due to be limited by the film thickness resolution

obtained during spin-coating (which is typically ±1nm). The samples were

chirped by adding +1 ± 1nm to each bi-layer during sample preparation. It

was not possible to model the spectra of the chirped sample with high precision

because of the errors in spin-cast film thickness.

The reflectance of the chirped DBR sample (∼ 32.7%) was significantly less

than a comparable non-chirped 50 layer sample (∼ 52%). All of the partial re-
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Figure 5.14: UV/visible reflection spectra of a chirped DBR. This is a 50 layer
sample whereby, the initial thickness of the PVP and PS layers were both 250±
1nm. The thickness of both layers increased by 1±1nm per bi-layer deposited.
This broadens the reflection band. The data-points and interconnecting green
curve are the UV/visible spectroscopic measurements of the sample. The solid
grey curve are the results for a modelled sample with sharp interfaces. The
dashed black curve is spectra which was modelled for a sample with reduced
refractive index contrast between layers.

130



flections are contributing towards a single wavelength in a non-chirped sample.

Whereas, the partial reflections in a chirped sample are contributing towards

a broader range of wavelengths.

5.7 Summary

Polymer DBR samples were successfully prepared by spin-coating PVP and PS

films into a multi-layer structure. The wavelength of the reflection band could

be controlled by varying the thickness of the polymer layers. This was possible

by controlling the spin-speed when depositing layers. Thinner/thicker films

were prepared by spin-coating at a faster/slower spin-speed respectively. Mak-

ing the DBR layers thicker/thinner would red-shift/blue-shift the wavelength

position of the reflection peak respectively.

The reflectance of the DBR was controlled by the number of layers deposited

onto the sample. Increasing the number of layers also increases the number of

interfaces. More partial reflections occur when there are more interfaces. These

partial reflections contribute towards the total reflectance of the DBR sample.

A total reflectance of ∼ 55% was possible with a 50 layer sample. Adding

more than 50 layers did not increase the reflectance when using this technique.

However, this was later improved by changing the sample preparation technique

(which is discussed in the next chapter).

There was a large difference between the reflectance of measured and mod-

elled reflection peaks. Various possible explanations were investigated to de-

termine why the reflectance of the samples were reduced. This included large

polymer-polymer interface widths, disorder in the layer thickness and dispro-

portionate layer thickness. However, it was concluded that residual solvent

(left over from sample preparation) was the most likely cause of the problem.

The angular dependence of the DBRs was measured by using the rotation

stage in the transmission set-up spectrometer (see section 4.5.1). Diverging the

incident light away from the surface normal of the sample had blue-shifted the

wavelengths of the reflection peak. The measurements showed the reflectance of

the DBRs staying constant when the angle of incidence was changed. However,

this was difficult to model because of the refractive index being changed by

the residual solvent in the DBRs layers. These values were different from the
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spectroscopic ellipsometry measurements which were used in the calculations.

Attempting to correct for changes in the refractive index (by reducing ∆n)

resulted in the model misrepresenting the reflectance of the measured spectrum

when changing the angle of incidence.

The bandwidth of the reflection peak was increased by chirping the multi-

layer structure. This technique used the automated spin-coater set-up to in-

crementally increase the layer thickness per bi-layer deposition. The width of

the reflection band was increased from ∼ 15nm to ∼ 40nm wide.
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Chapter 6

Improving the preparation and

reflectance of PVP/PS DBRs

6.1 Introduction

The optical measurements in chapter 5 showed that the PVP/PS DBRs had

a lower reflectance than what was predicted by the model. Those samples

were prepared using techniques discussed in section 4.3. A total reflectance

of ∼ 55% was possible with a 50 layer DBR. However, adding more than

50 layers did not increase the reflectance, when using the same preparation

technique. A larger reflectance would be needed before integrating these DBRs

into devices [4]. This chapter discusses preparation techniques used to increase

the reflectance of PVP/PS DBR samples. The total reflectance of PVP/PS

DBRs was increased to ∼ 93% (with a 100 layer DBR) by modifying the sample

preparation procedure.

6.2 DBR samples after ageing

The DBR samples in sections 5.2 and 5.4 were remeasured approximately one

year after their preparation. It was discovered that the reflectance of the sam-

ples reflection peaks had increased over time. The wavelength of the samples

reflection peaks had also slightly red-shifted after ageing. Figure 6.1 shows the

UV/visible spectra of a ‘Green’ 30 layer (top caption) and 50 layer (bottom
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Figure 6.1: The reflection spectra of the 30 layer [top panel] and 50 layer
[bottom panel] ‘Green’ DBR samples were remeasured approximately one year
after their preparation (red data-points and curves). These measurements were
compared with the original results (green data-points and curves) for compar-
ison. The wavelength of the reflection bands had red-shifted and their re-
flectances had increased. Results for a modelled DBR with sharp interfaces
(grey curves) were calculated for the remeasured spectra. Likewise, a modelled
DBR with reduced refractive index contrast (grey curves) were calculated for
the remeasured spectra. There was only a small change in refractive indices
(δ(∆n) = 0.006 ± 0.001 for the 30 layer sample and δ∆n = 0.007 ± 0.001 for
the 50 layer sample). This suggested that trapped solvent was diffusing out of
the samples as they aged.
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Spectra
measured

Modelling
technique

PVP layer
thickness
values used
dPV P (nm)

PS layer
thickness
values used
dPS (nm)

Reduction in
refractive in-
dex contrast
δ(∆n)

‘Old’
Sharp inter-
faces

450± 9 262± 9 NA

Reduced ∆n 450± 9 262± 9 0.022± 0.001

‘New’
Sharp inter-
faces

466± 7 278± 7 NA

Reduced ∆n 466± 7 278± 7 0.006± 0.001

Figure 6.2: Values used to model the 30 layer ‘Green’ DBR samples for their
‘original’/‘old’ and ‘remeasured’/‘new’ reflectance measurements. The thick-
ness of the modelled layers had increased and the change in refractive index
contrast δ(∆) had decreased.

Spectra
measured

Modelling
technique

PVP layer
thickness
values used
dPV P (nm)

PS layer
thickness
values used
dPS (nm)

Reduction in
refractive in-
dex contrast
δ(∆n)

‘Old’
Sharp inter-
faces

447± 12 259± 12 NA

Reduced ∆n 446± 13 258± 13 0.031± 0.001

‘New’
Sharp inter-
faces

472± 13 284± 13 NA

Reduced ∆n 472± 13 284± 13 0.007± 0.001

Figure 6.3: Values used to model the 50 layer ‘Green’ DBR samples for their
‘original’/‘old’ and ‘remeasured’/‘new’ reflectance measurements. The thick-
ness of the modelled layers had increased and the change in refractive index
contrast δ(∆) had decreased.
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caption) DBR. The original/old spectrometry measurements are represented

by the green data-points and interconnecting solid green curves. The remea-

sured/new spectra are represented by the red data-points and interconnecting

solid red curves. Both samples were modelled using the modified optical trans-

fer matrix method. The values used to fit the model to the measured spectra

of the 30 and 50 layer samples are shown in tables 6.2 and 6.3 respectively.

However, only the models for the remeasured/new spectra are shown in fig-

ure 6.1. The solid grey curves represent modelled DBR samples with sharp

interfaces. The dashed black curves are modelled spectra which were fitted to

measured spectra by reducing the refractive index contrast between the poly-

mers by δ(∆n) (shown in tables 6.2 and 6.3).

The reflection spectra of both the 30 and 50 layer samples were measured

shortly after their preparation. The calibration curve from figure 4.12 was

used to calculate the film thickness of the polymer layers in the DBR samples.

These layer thickness values were corrected (up to ±12nm) to improve the fit

of the modelled reflection peak. The measured reflectance, of the reflection

peak, for the 30 layer DBR sample was 38 ± 1%. This reflectance was 15 ±
1% less than the modelled reflection peak for a 30 layer DBR sample with

sharp interfaces (53±1%). The reflectance of the modelled reflection peak was

improved/decreased by reducing the refractive index contrast of the polymer

layers by δ(∆n) = 0.022. Likewise, the measured reflectance of the reflection

band for the 50 layer sample was 52± 1%. This was 28± 1% smaller than the

reflection peak of a modelled 50 layer sample with sharp interfaces (80± 1%).

The agreement between the measured and modelled reflectance of the reflection

peaks was improved by reducing the refractive index contrast of the polymers

by δ(∆n) = 0.031. A larger value of δ(∆n) was needed to fit the reflectance of

the 50 layer sample, compared to the value of δ(∆n) needed to fit the 30 layer

sample. It would be more difficult for solvent to diffuse out of a sample which

has more layers/interfaces. There was proportionally more trapped solvent in

the 50 layer sample than the 30 layer sample.

The reflection peaks of both the 30 and the 50 layer ‘Green’ DBR samples

had red-shifted after ageing. The wavelength of the 30 layer DBR reflection

peak had red-shifted by 23 ± 1nm. Likewise, the wavelength of the 50 layer

DBR reflection peak had red-shifted by 38± 1nm. The refractive index of the

polymer layers would have increased when residual solvent diffused out of the
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sample as it aged. However, the layers would have also de-swelled and their

thickness would have decreased. However, the optical path length of the layers

(OPLFilm = nFilmdFilm/ cos(θFilm) [10]) would have increased if the change in

refractive index was proportionally greater than the change in film thickness.

Furthermore, changes in the refractive index could have increased the refractive

index contrast between the layers. This would have increased the reflectance

of the reflection peaks.

The remeasured spectra were re-modelled using the modified optical transfer

matrix method. Tables 6.2 and 6.3 show a comparison of the values for film

thickness (dPV P and dPS) and change in refractive index contrast (δ(∆n)) for

modelled spectra of ‘Old’ and ‘New’ measurements. The thickness of the layers

for the modelled 30 layer DBR had increased by 16nm when recalculated for the

remeasured spectra. Likewise, the layer thickness of the modelled 50 layer DBR

had increased by 25nm. There was a greater change in the optical properties

of the 50 layer DBR than the 30 layer DBR over time. This was due to more

solvent lingering in the 50 layer sample after preparation.

The peak reflectance value for the 30 and 50 layer samples had increased

after ageing. Furthermore, the difference between the reflectance of the reflec-

tion peaks for the measured and modelled (with sharp interfaces) DBRs were

reduced after ageing. The measured and modelled reflectance of the 30 layer

DBR were 49± 1% and 53± 1% respectively after ageing. A reduction in the

refractive index contrast of δ(∆n) = 0.006± 0.001 was needed to improve the

modelled reflectance (shown in figure 6.1). Likewise, the measured and mod-

elled reflectance of the reflection peak for the 50 layer sample were 73±1% and

79± 1% respectively after ageing. A reduction in the refractive index contrast

of δ(∆n) = 0.007±0.001 was needed to improve the modelled reflectance. This

could be due to trapped solvent still lingering in the sample and/or errors in the

ellipsometry measurements of refractive index and layer thickness. These mag-

nitude of changes in refractive index contrast were much smaller than those

previously calculated for the 30 layer (δ(∆n) = 0.022 ± 0.001) and 50 layer

(δ(∆n) = 0.031 ± 0.001) modelled reflection spectra. The refractive index of

the polymer layers had increased because of residual solvent diffusing out of

the sample as it aged. The refractive indices of the layers in the DBRs (after

ageing) were more comparable with the previous measurements of single layer

films (discussed in section 4.4.2).
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The calculated thickness of layers used to model the remeasured DBR spec-

tra were larger than the original single layer measurements. An increase of 7nm,

compared to the single layer measurement, was needed to fit the model to the

remeasured spectra of the 30 layer sample. Likewise, an increase of 13nm was

needed to fit the model to the remeasured spectra of the 50 layer sample. This

may be due to increases in the film thickness and/or refractive index, as both

increase the optical path length of the layer. There are several explanations

which could cause changes in thickness and/or refractive index of the polymer

layers;

• Removal of residual solvent : The solvents used to process the polymer so-

lutions have a much lower refractive index than their respective polymers

(ntoluene = 1.496, nethanol = 1.360 and nAcetonitrile = 1.344). Both the sin-

gle layer and the multi-layer samples were annealed at 110oC for 5 hours

under a 1mtorr vacuum. This is above the glass transition temperature of

PS (Tg of PS = 97oC [65]), but not PVP (Tg of PVP = 170oC [65]). Some

of the solvent could have been trapped within the multi-layer sample as

PVP remained in a glassy state [18]. It would have been more difficult

for solvent to diffuse out of/through the PVP layers. Most of the solvent

should have diffused out of the PS single layer films as they were not

caped with layers of PVP. However, there may have been residual solvent

in the PVP layers during ellipsometry measurements. Residual solvent

would have changed the optical path length of the films. This would

have also changed film thickness and refractive index measurements of

the PVP films. Unfortunately, a series of aged PVP samples were not

able to be remeasured using ellipsometry.

• Swelled by water vapour : PVP is known to readily swell in the presence

of water vapour, which includes room humidity [90]. The multi-layer

structure may have had the water removed during annealing. However,

the water may have then diffused back into the structure from the sur-

rounding humidity of the air. This would swell the PVP layers, reduce

its refractive index and increase the optical contrast between polymer

layers. However, all of the DBR samples were capped with a layer of PS

which is also hydrophobic. This would repel and water trying to pene-

trate into the sample [18]. The PS layers were also relatively thick, so

it would be very difficult for water to penetrate through the layers and
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swell the PVP films. Although, experiments did show the positions of the

reflection bands red-shift when the sample was swelled in water vapour

(results are not shown). The reflection bands also blue-shifted when the

sample was placed in a dry air atmosphere. However, the reflection band

relaxed into it’s original reflection band wavelength within a few minutes

after each experiment. This demonstrated that water vapour is able to

penetrate through the multi-layer sample.

6.3 Asymmetry and symmetry of film thick-

ness

The samples which were discussed previously in chapter 5 were prepared by

spin casting solutions of 4.0% wt PVP in 50:50 ethanol:acetonitrile and 4.0% wt

PS in toluene. All of the films were spin-cast at spin-speeds between 1.0krpm

and 4.5krpm. The DBR samples from these experiments partially reflected

light from each interface, which constructively interfered and resulted in the

reflection peak. Each bi-layer within the DBR samples had an optical path

length which was double the wavelength of light (2λ). There are also reflection

peaks at other wavelengths which are calculated by,

λM =
2

M
[d1n1(λ) + d2n2(λ)] , (6.1)

Where n1 and n2 are the refractive indices of media ‘1’ and ‘2’ respectively, d1

and d2 are thickness of alternating polymer layers ‘1’ and ‘2’ respectively and

M = 1, 2, 3, ...,etc.

The reflection peaks which occur from even values of ‘M ’ disappear when

d1n1 = d2n2. DBRs which have d1n1 = d2n2 structures are referred to ‘sym-

metric samples’ in this thesis. Likewise, samples which have a d1n1 6= d2n2 are

referred to as asymmetric samples. The wavelength position of reflection peaks

from a symmetric DBRs are calculated by,

λM =
2

2M − 1
[d1n1(λ) + d2n2(λ)] , (6.2)

DBR samples were prepared with a layer thickness of dFilm = 3λ/4nFilm.
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Figure 6.4: Film thickness of spin-cast polymer films with respect to polymer
concentration. This experiment was used to select the best concentration for
sample preparation. Specifically, when the thickness of the layer is d = 3λ/4n
for reflection peaks that are between wavelengths of 450nm and 650nm. This
is within a layer thickness between 223nm to 322nm for PVP and 213nm to
307nm for PS (which are shown by the dashed lines on both plots). The curved
lines are free hand drawn.
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It was not possible to make samples with a layer thickness of dFilm = λ/4nFilm

without cracks forming during sample preparation. However, DBR samples

should be prepared with the smallest layer thickness as possible. Thicker films

deviate away from the coherence length of light, which reduces the efficiency of

the DBR [12, 14]. The coherence length of light reflected by the DBR sample

is calculated using the following equation [11],

`C =
2 ln 2

πnFilm

λ

∆λ
, (6.3)

Where `C = coherence length, nFilm = refractive index of film, λ = wave-

length of reflection peak and ∆λ = full width half maximum of reflection peak.

Equation 6.3 was used to calculate the coherence length of light reflected

by a 30 layer ‘green’ DBR (shown in figure 5.2). The coherence length was

10µm, which is much larger than layers which are 3λ/4nFilm thick.

Layers with optical path length of 3λ/4 could not be prepared by spin-

casting from solution concentrations of 4.0% wt PVP and 4.0% wt PS. Re-

ducing the film thickness further would have required spin-speeds greater than

4.5krpm. This was not possible as the vacuum seal on the spin-coater could

not keep the sample secure at faster spin-speeds. Instead, the concentration of

the polymer solutions were reduced to decrease the layer thickness.

Figure 6.4 shows different thickness of films which were spin-cast from dif-

ferent concentrations of PVP and PS solutions. The red curves correspond to

samples which were spin-cast at the lower spin-speed limit (1.0krpm). The

green curves correspond to samples which were spin-cast at the upper spin-

speed limit (4.5krpm). A film of thickness d can be prepared by any of the

solutions within the red and green curves. Figure 6.4 was used to calculate

the best concentration to prepare films with an optical path length of 3λ/4

when measured at normal incidence. The thickness of a film with a optical

path length of 3λ/4 at normal incidence for reflected light of wavelength λ is

calculated by,

dFilm =
3λ

4nFilm
(6.4)

DBRs were prepared with reflection peaks at wavelengths between 450nm
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and 650nm. Equation 6.4 was used to calculate the thickness of the PVP and

PS layers needed to make DBRs with reflection peaks at wavelengths between

450nm and 650nm. The lower (DBRs with reflection bands at λ = 450nm)

and upper (DBRs with reflection bands at λ = 650nm) are indicated by the

guidelines in figure 6.4. The blue coloured regions indicate the film thickness

and solution concentration ranges needed make a DBR with a reflection peak

between wavelengths of 450nm and 650nm. The PS concentration was kept at

4.0% wt. However, the PVP concentration was reduced to 3.2% wt. The film

thickness with respect to spin-speed calibration curve for films spin-cast from

a 3.2% wt PVP solution was shown in figure 4.12.

The dispersion of the refractive index (shown previously in figure 4.19),

layer thickness with respect to spin-speed (shown previously in figure 4.12)

and equation 6.4 were used to calculate the spin-speed used to prepare a layer

with optical path length 3λ/4 at normal incidence. This was written into a

computer program which was used to control the automated spin-coater. The

thickness of each deposited layer was controlled by changing the spin-speed.

Samples with the same optical path length for ever layer could be prepared

using this technique.

Figure 6.5 shows the UV/visible reflection spectra of two different DBR

samples. The red curve represents the reflection spectra from a 50 layer ‘Green’

DBR. It had a bi-layer optical path length of 2λ and the optical path length

of each layer were not all equal (dPV PnPV P 6= dPSnPS). This was named as a

asymmetric sample. The grey curve represents a 50 layer DBR sample which

has a bi-layer optical path length of 3λ/2. All of the layers have same optical

path length (dPV PnPV P = dPSnPS) and this was named as a symmetric DBR

sample.

The reflectance of the asymmetric 50 layer DBR reflection peak was 52 ±
1%. This was only 2% smaller than the reflectance of the symmetric DBR

reflection peak (which is within error of the two spectrometer measurements).

The symmetric DBR structure did not significantly increase the reflectance of

the DBR samples. All of the layers are swelled with trapped solvent, which

changes their optical path lengths. The symmetric sample is not likely to have

the intended dPV PnPV P = dPSnPS structure, unless the solvent has diffused out

of the sample. However, the photonic structure is distinctively different from

the asymmetric sample. This was demonstrated by the symmetric sample not
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Figure 6.5: Comparison of two samples which are tuned close to 550nm. The
red curve the reflection spectra from a 50 layer DBR with layers of thickness
nPV PdPV P 6= nPSdPS, where dPV P = 360 ± 16nm and dPV P = 214 ± 16nm
(optical thickness asymmetry). The black curve spectra is 50 layer DBR where
the optical thickness of the layers is closer to nPV PdPV P = nPSdPS, where
dPV P = 272 ± 1nm and dPV P = 259 ± 1nm (optical thickness symmetry).
Furthermore, the DBR structure was changed by reducing the optical thickness
of the bi-layer from λ (red curve) to 3λ/4 (black curve). Both changes improve
the reflectance of the DBR spectra slightly.
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having a reflection peak at 722 ± 1nm. Changing the photonic structure and

removing unwanted ‘secondary’ reflection peaks could be useful for applications

such as notch filters [1, 2].

6.4 Periodically annealing during sample prepa-

ration

It was discussed in section 5.4 that the reflectance from PVP/PS DBRs could

not be increased by adding more than 50 layers. There was also a large dif-

ference between reflectance of the reflection peaks for measured and modelled

DBRs. This worsened as the number of layers increased (which was illustrated

in figure 5.8). The reflectance of the reflection peaks increased as the sam-

ples aged. Trapped solvent from sample preparation may have slowly diffused

out of the sample as it aged (which was discussed in section 6.2). Waiting a

year for the reflectance of the reflection bands to increase is impractical. Fur-

thermore, the wavelength of the reflection peaks would red-shift as the sample

ages. Annealing the samples above the glass transition temperature of PVP

(Tg = 170oC) was attempted. However, the samples would burn despite being

annealed in a ∼ 1mtorr vacuum.

The DBR samples in chapter 5 were prepared by depositing all of the layers

onto the substrate and then annealing the whole sample at once. This resulted

in lingering solvent being trapped in the DBR sample. Trapped solvent would

more readily diffuse out of samples which have less layers deposited. This is

because the solvent would not have to penetrate through as many layers to

diffuse out of the sample. The preparation technique was changed by periodi-

cally annealing the sample after approximately every 20 layers deposited. All

annealing stages were at 110oC for 5 hours under a ∼ 1mtorr vacuum. This

allowed the solvent from freshly deposited layers to diffuse out of the sample

during annealing.

Initial experiments demonstrated that the top layer would always have to

be PVP when depositing more layers after annealing. The sample would crack

if more layers were added to an annealed multi-layer which was capped with

a PS film. This was due to top PS film being de-swollen after annealing.

The un-swollen layer was unprotected when depositing the PVP solution on
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Figure 6.6: Reflection spectra from the 100 layer PVP/PS DBR. This samples
was made by annealing at 110oC for 5 hours under a ∼ 1mtorr vacuum every
20 layers (approximately). Periodically annealing the sample during prepara-
tion helps to removed more residual solvent within the DBR. This improved the
reflectance of the sample and allowed more than 50 layer (the previous limita-
tion) to be added. ∼ 93% (shown here) was the highest reflectance measured.
A 150 layer DBR sample did not increase the reflectance any further.

top. Solvent from the PVP solution would attempt to penetrate through the

unprotected PS layer and swell the underlying PVP films. This would strain

the PS film and crack the sample. However, an annealed PVP layer could

still be protected by swelling the film with HCl vapour. The samples were

always capped with a PVP layer for annealing steps before the end of sample

preparation. A final layer of PS was used to cap the sample at the end of its

preparation. This PS capping layer was used to protected the underlying PVP

layers from being swollen by air humidity.

Annealing periodically during sample preparation improved the reflectance

of DBR reflection peaks. Furthermore, it enabled more layers to be deposited

onto the sample. This increased the total reflectance possible with PVP/PS
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DBRs. Figure 6.6 show the UV/visible reflection spectra of a 100 layer PVP/PS

DBR. All of the layers were tuned to have the same optical thickness n1d1 =

n2d2 = 3λ/4. The total reflectance of the reflection peak was ∼ 93±1%. A 150

layer sample (data not shown) was also prepared, but it did not increase the

reflectance beyond ∼ 93±1%. Adding more than 50 layers did not increase the

reflectance of the reflection peaks when using the previous sample preparation

technique (discussed in section 4.3). The number of layers which contributed to

the reflectance was increased by periodically annealing during sample prepara-

tion. A maximum of 100 ‘useful’ layers can be prepared using the preparation

technique discussed in this section. However, adding more than 100 layers (us-

ing this preparation technique) did not increase the reflectance of the DBR

reflection peaks. This could be due the quality of the sample degrading as each

new layer is added. Specifically defects are carried through to any new layers

which are deposited on top of the sample. It become increasingly more difficult

to add more layers to a sample whilst also improving its reflectance.

6.5 Summary

Both the reflectance and wavelength position of the DBR reflection peaks was

shown to increase as the PVP/PS DBR samples aged. This was due to residual

solvent diffusing out of the DBRs over time. Removal of the solvent de-swells

the polymer layers and increases their refractive index. The increase in re-

fractive index had also increased the optical path length of the layers. This

red-shifted the position of the reflection peaks. The refractive index contrast

between the layers had also increased when the solvent diffused out of the sam-

ple. This increased the reflectance of the DBR reflection peaks. Changes in the

reflection peak wavelength, for example, may be a problem when using these

devices in applications, such as band-stop mirrors. Ideally, there would have

been no residual solvent trapped in the DBR layers during sample preparation.

The reflectance was only slightly improved when the optical path length

of the bi-layer was reduced to 3λ/4, instead of 2λ. However, the number

of reflection peaks in the UV/visible spectrum was reduced because of the

differences in photonic structure. This may be useful in applications such as

band-stop mirrors, which may only want a single wavelength removed from a

spectrum.
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The reflectance of the DBR reflection peak was increased by periodically

annealing the sample during preparation. A total reflectance of ∼ 93% was

measured from a 100 layer sample which was prepared using this technique.

Periodically annealing helped remove residual solvent during sample prepara-

tion. Less solvent was left lingering in the sample after preparation. However,

there were only a small number of experiments which tested this preparation

technique. This could be investigated further to determine why periodically an-

nealing the sample enables more ‘useful’ layers (which increase the reflectance

of the sample) to be deposited onto the sample.
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Chapter 7

Infra-red measurements and

properties of polymer DBRs

7.1 Introduction

The RGB DBR samples in figure 5.2 were designed to function as UV/visible

reflectors. Light was partially reflected by the interfaces in the DBR sam-

ple. Each bi-layer in the structure had an optical path length of nPV PdPV P +

nPSdPS = 2λ (where λ is the wavelength of UV/visible light). However, other

wavelengths of light can also be reflected by the DBR. The largest wavelength

which can be reflected by a DBR is when nPV PdPV P +nPSdPS = λ/2 [12]. This

corresponds to a wavelength which is twice the optical path length of the re-

peating bi-layer in the DBR. The RGB DBRs were able to reflect wavelengths

which were in the infra-red. A Fourier transform infra-red (FTIR) spectrometer

was used to measure the infra-red reflection peaks of the DBRs [91].

FTIR spectrometry was also used to measure the chemical composition of

the DBR samples. Specifically, to determine if the polymer films underwent

chemical changes when swelled with HCl vapour [91].
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7.2 Measuring the effects of HCl swelling

The PVP layers were swollen with HCl to protect the films during sample

preparation (which was discussed in section 4.3). FTIR was used to measure

any chemical changes which could have occurred when swelling the samples

with HCl vapour. Thick (∼ 500nm) films of PVP and PS were spin-cast onto

calcium fluoride optical windows (CaF2). The CaF2 substrate is often used in

FTIR studies since it is non-absorbing in the Infra-red spectrum. Each of the

samples were placed into the FTIR and their infra-red absorption spectra were

separately measured. The samples were then taken out of the FTIR sample

chamber and swelled using a large reservoir of HCl vapour. DBRs which were

swollen with HCl vapour (which were previously made for the experiments in

chapter 5) had a different reflection colour from samples which were not swollen

with HCl vapour. This was due to the film thickness and refractive indices of

the layers changing after being swollen with HCl vapour. The reflection colour

did not change any further after a few seconds of exposure. This was because

the polymer layers were saturated with HCl vapour. It was assumed that a few

seconds of HCl vapour exposure was an adequate length of time to saturate

thick single layer polymer films. The samples were placed back into the FTIR

spectrometer and the absorption spectra were remeasured. Each sample was

remeasured at different time intervals to measure the effects of swelling PVP

with HCl vapour over time.

Carboxyclic acid (such as Acyl chloride) are used to cross-link polymers [49].

HCl is a highly reactive acid which may have cross-linked, degraded and/or

chemically reacted with the polymers. Any of these examples would have

changed the chemical structure of the polymers. FTIR was used to measure

changes in the absorption spectra of the polymer films before and after being

swollen with HCl vapour. Chemical reactions (such as cross linking and/or

degradation) would have changed the intensity of the absorption bands, be-

cause the chemical structure of the sample would have changed. New absorp-

tion peaks would indicate that there are new chemical structures in the sample.

This could be due to a chemical reaction, or a new chemical being introduced

into the sample [69,70].

Results showed that the PS film was unaffected by its exposure to HCl

vapour (results not shown). The polymer did not undergo a chemical reac-

149



Figure 7.1: FTIR spectra of a PVP film measured under different conditions.
The peaks at ∼ 1280cm−1 and ∼ 1420cm−1 correspond to the C− N and C− H
vibration bonds respectively. Likewise, the large peak at ∼ 1670cm−1 is due
to the C = O carbonyl group [92,93].
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tion, retain any HCl vapour, or swell in HCl vapour at all. FTIR absorbance

measurements did show changes in the PVP film when it was exposed to HCl

vapour. However, this was not due to any chemical reactions. The changes in

absorption spectra were due to lingering HCl vapour within the polymer film.

Figure 7.1 shows the FTIR absorbance spectra of the PVP sample measured

at different time intervals after HCl vapour exposure.

There were 3 distinctive peaks which were measured in the FTIR absorbance

spectra of the the PVP film (shown in figure 7.1). Each peak corresponded to an

absorption from different chemical bonds in the PVP molecule. The chemical

formula for PVP is (C6H9NO)n and the chemical structure was shown in figure

4.2. The first FTIR absorption bands were at ∼ 1280cm−1 and ∼ 1420cm−1

which correspond to the accepted C− N and C− H vibrations respectively [70].

The final peak was measured at ∼ 1670cm−1, which corresponds with vibra-

tions from carbonyl groups within the polymer [70].

Swelling the PVP film with HCl vapour caused the absorption peaks to

broaden and decrease in absorbance. This also occurred when measuring the

FTIR spectra of as cast PVP films, which were not annealed before FTIR mea-

surements. These samples were swollen with residual 50:50 ethanol:acetonitrile

solvent in the PVP film. The intensity of the absorption peaks increased and

also their widths decreased when residual 50:50 ethanol:acetonitrile solvent dif-

fused out of the PVP film by annealing the sample. This also occurred when

the HCl vapour diffused out of the PVP film when the sample was annealed.

Comparison of the pre-swollen and annealed (which was previously swollen)

spectra showed that the intensity of the absorption peaks were unchanged.

New peaks in the PVP absorbance spectra did not appear after HCl vapour

exposure. No chemical reactions had occurred (including cross-linking) in the

PVP film during/after HCl vapour exposure. The HCl vapour only swelled the

PVP layers during sample preparation.

The FTIR experiments showed that the HCl vapour slowly diffused out of

the PVP film over time without annealing. A single layer PVP film should take

a few hours to de-swell HCl vapour after exposure. It takes ∼ 30 seconds to

spin-cast a new polymer layer during sample preparation. A 50 layer sample

took approximately an hour to prepare. The multi-layer would have retained a

lot of HCl vapour and also residual organic solvent (50:50 ethanol:acetonitrile
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and toluene) during sample preparation. UV/visible reflectance of the reflec-

tion peaks from DBR samples did not increased when adding more than 50

layers (which was discussed in section 5.4). However, more layers could be

added, which increased the reflectance of the DBR, by annealing the sample

after approximately every 20 layers were deposited (which was discussed in

section 6.4). Residual solvent more readily diffused out of the DBR when it

was periodically annealed during sample preparation. Therefore, too much

lingering solvent may reduce the quality of samples during their preparation.

7.3 DBR reflection bands in FTIR spectra

Figure 7.2 shows the FTIR measurements for 50 layer ‘Red’, ‘Green’ and ‘Blue’

PVP/PS DBR samples. They are the same samples which were measured using

UV/visible spectroscopy. Measurements of single layer PVP and PS showed

that there are no chemical absorption bands for those materials between 1.6µm

and 2.7µm in these samples (data not shown). The FTIR spectra measured

between 1.6µm and 2.7µm are DBR reflection bands. These results are shown

with respect to wavelength instead of wave-number. Wavelength was used so

that the results could be compared with UV/visible measurements. Note that

the samples were measured with respect to transmittance. However, the follow-

ing figures show the results with respect to reflectance, which were calculated

by using the following equation,

R = 100%− T − A, (7.1)

Where R = reflectance and A = absorbance of the sample.

There were no absorption bands within the 1.6µm and 2.7µm wavelengths,

so A = 0.

7.3.1 Position of the reflection bands

The infra-red spectra of the 50 layer ‘Blue’, ‘Green’ and ‘Red’ DBRs are

shown in figure 7.2. The data-points represent data which was measured us-

ing the FTIR spectrometer. Like the UV/visible spectra, the infra-red reflec-
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Figure 7.2: The 50 layer ‘Blue’ [top panel], ‘Green’ [middle panel], and ‘Red’
[bottom panel] DBRs were measured using FTIR (data-points). They are the
same samples which were measured in UV/visible spectroscopy experiments.
FTIR measurements of single layer polymers and the glass substrate showed
that there were no absorption bands between 1.6µm and 2.7µm. Therefore, the
curves in the figure are reflection bands from the DBR structure and controlled
by the film thickness of the samples. All of the spectra was modelled using the
optical transfer matrix method (solid curves). The ‘noisy’ spectra near 2.6µm
in the ‘Blue’ and ‘Green’ samples were due to absorption from residual water.
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tion bands are ‘blue-shifted’/‘red-shifted’ when the thickness of the layers in

the DBR are made thinner/thicker respectively. The thickness of the layers

were controlled by the rotation speed during spin-coating. Spin-cast films are

made thinner/thicker by increasing/decreasing the deposition spin-speed re-

spectively. The ability to control the position of narrow (∼ 0.15µm) reflection

bands within 1.6µm and 2.7µm may be useful to telecommunications using fi-

bre optics [10,22]. These reflection bands could be used as notch filters in fibre

optics to select or remove signals at specific wavelengths and remove noise.

The widths of the reflection peaks were between 120nm and 180nm when

measured in the infra-red spectrum. This is much larger then the widths mea-

sured in the UV/visible spectrum, which were between 10nm and 17nm. The

increase in bandwidth is due to an increase in coherence length, which is dis-

cussed more thoroughly in the next section.

Infra-red spectrometry measurements were modelled using the modified op-

tical transfer matrix method (which was discussed in chapter 3). Ellipsome-

try film thickness measurements and modelling film thickness adjustments are

shown in table 7.1. The film thickness corrections used to improve the fit be-

tween the measured and modelled spectra (shown in table 7.1), are not the same

as those used for the UV/visible spectrum calculations (shown in table 5.1).

Residual solvent in the DBR samples would have changed the refractive index,

layer thickness (due to swelling) and optical path length (OPL = nd/ cos(θ))

of the polymer layers. The optical path length in the UV/visible is not the

same as in the infra-red wavelengths, because of differences in the refractive

index values. This was compensated by adjusting the thickness of the layers.

Only spectra for modelled DBRs with sharp polymer-polymer interface

widths are shown in the figures (represented by the solid curves in figure 7.2).

Modelled spectra which included possible changes in the refractive index con-

trast (δ(∆n)) were not calculated. This was because of uncertainly in the

refractive indices when modelling infra-red spectra of the samples. The refrac-

tive index of the polymers (and contrast between layers) would have changed

because of lingering solvent. There are also errors in the infra-red refractive

index calculations, which are discussed further in section 7.4.1.
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7.3.2 Controlling the reflectance of infra-red DBRs

The infra-red reflectance of the PVP/PS DBR samples (shown in figure 7.2)

increased by adding more layers to the DBR structure. Adding more layers adds

more interfaces, which increases the reflectance of the DBR reflection peaks.

Therefore, the magnitude of the reflectance can be controlled by increasing or

decreasing the number of layers deposited.

The reflectance of the reflection peaks in the infra-red (shown in figure 7.3)

are much larger than the reflectance of the UV/visible reflection peaks (shown

in figure 5.4). The largest reflectance measured in the infra-red was ∼ 80%

from the 50 layer ‘Red’ DBR sample. Whereas ∼ 55% was the largest reflection

peak measured in the UV/visible from the 50 layer ‘Blue’ DBR sample. The

reflectance would have increased if the refractive index contrast ∆n between

the layers was larger. However, the refractive index contrast in the infra-red

∆n ∼ 0.062) was smaller than the contrast in the UV/visible (∆n =∼ 0.075).

The increase in reflectance is not entirely due to the refractive index of the layers

changing. Instead, it is due to the properties of how the partially reflected light

interferes from each interface.

Constructive interference occurs when two ‘light sources’ are emitting light

which are coherent with respect to one another. This is comparable to reflec-

tions from two separate interfaces in a DBR sample. Constructive interference

is more prominent when the separation between the interfaces is much less

than the coherence length [10, 13]. The coherence length of infra-red is larger

in these DBR samples (with respect to UV/visible light) because of a longer

wavelength and smaller refractive index (see equation 6.3). This leads to the in-

terference of reflected infra-red light being more prominent than the UV/visible

reflections [10,13].

The reflectance was modelled using the optical transfer matrix method

(which was discussed in section 3). This is represented in figure 7.3 by the

solid lines. The model suggested that there should only be a small difference in

the reflectance of the 50 layer ‘Blue’ (R = 67±1%), ‘Green’ (R = 69±1%) and

‘Red’ (R = 67 ± 1%) reflection peaks. However, there were large differences

between the measured reflectance of the reflection peaks of the 50 layer ‘Blue’

(R = 52± 1%), ‘Green’ (R = 68± 1%) and ‘Red’ (R = 81± 1%) DBRs. Dif-

ferences between the measured and modelled spectra could have been due to
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Figure 7.3: Reflectance of the ‘Blue’, ‘Green’ and ‘Red’ DBR samples were
measured in the infra-red (data-points) with respect to the number of layers
deposited. Each sample ‘colour’ is appropriately labelled in the plot. All of the
curves were free hand drawn. The reflectance of the samples were also modelled
for a sample with sharp interfaces (solid lines). Increasing the number of layers
also increases the reflectance of the DBR. The differences between the measured
and modelled data are due to errors in the values used to model the reflectance.
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residual solvent in the DBR layers, which changes their refractive indices. This

would have also changed refractive index contrast between the polymer layers.

Reducing/raising the refractive index contrast would have increased/decreased

the reflectance of the reflection peaks respectively. Section 7.4.1 discusses the

method used to calculate the refractive index of the polymer in the infra-red

spectrum. These calculations were used to model the DBR infra-red spectrum.

Errors in the refractive index calculations would have inaccurately modelled

the reflectance of the infra-red reflection spectra.

7.4 Modelling infra-red DBR spectra

The modified optical transfer matrix method was used to model the infra-

red spectra of PVP/PS DBRs. The film thickness and refractive index of the

polymer layers were measured for use in the calculations. Film thickness was

measured by spin-casting single layer polymer films were onto silicon wafers

and using ellipsometry. The film thickness were corrected slightly to improve

modelled data fit (shown in table 7.1). These values were slightly different from

the corrections used to model the reflection peaks in the UV/visible measure-

ments. This was because the refractive indices of the films are not the same

for different wavelengths. The optical path length of the DBRs layers, when

transmitting infra-red light, is not the same as when transmitting UV/visible

light through the layers (OPLFilm = dFilmn(λ)Film at normal incidence [10]).

7.4.1 Wavelength dependence of refractive index

Unfortunately, it was not possible to get access to equipment which is an infra-

red analogue of a spectroscopic ellipsometer. Instead, alternative methods

were used to determine the refractive indices of the polymer films at infra-red

wavelengths.

A free-standing PS film was prepared in an effort to calculate the refractive

index of the polymer in the infra-red. The infra-red reflection spectra of the

free-standing PS film was measured using the FTIR spectrometer. A duplicate

of the free-standing PS film was spin-cast on a silicon substrate and the film

thickness was measured using ellipsometry. The infra-red reflection spectra of
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the free-standing polymer was modelled using the modified optical transfer ma-

trix method. This model could be used to calculate the refractive index values

of PS as it was the only unknown variable. However, the FTIR measurements

of the free-standing film were not reproducible. It was not possible to measure

the refractive index values of PS in the infra-red spectrum using the equipment

available.

The spectroscopic ellipsometer (which was discussed in section 4.4.2) mea-

sured the dispersion of the refractive index from the UV/visible to the near

infra-red (0.9µm). Refractive index measurements from the spectroscopic el-

lipsometer were fitted using a Cauchy function. The data was re-analysed

for wavelengths measured in the µm instead of the nm length scale. Ideally,

the measurements would have been in the infra-red wavelengths. However, it

was assumed that the dispersion functions for both UV/visible and infra-red

wavelengths are the same. The following equations are the Cauchy fits for PS,

PVP and glass calculated to the 3rd order approximation with respect to µm

wavelengths;

nPS(λ) = 1.568 +
6.270× 10−3

λ2
+

0.428× 10−3

λ4
,

nPV P (λ) = 1.507 +
2.702× 10−3

λ2
+

0.315× 10−3

λ4
,

nglass(λ) = 1.425 +
4.563× 10−3

λ2
+

0.201× 10−3

λ4
.

(7.2)

The second and third terms become very small when λ is large. Therefore,

the refractive index is nearly constant when extrapolating the refractive index

values into the infra-red. Hence, these extended dispersion curves were used to

model the refractive index of the materials in the infra-red.

These assumptions are supported by previous studies which measured the

refractive index of various polymer (polystyrene, Polycarbonate and Poly(methyl

methacrylate)) within wavelengths of 0.4µm and 1.6mu using a purpose built

interferometer. Their results demonstrated that the refractive indices were

approaching a constant magnitude in the near infra-red (1.6mu). The data

was also analysed using a Cauchy fit to calculate refractive index values of the

polymers [94].
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The refractive index calculations were used with the optical transfer ma-

trix method to calculate the reflection spectra of the DBRs in the infra-red.

Figure 7.2 showed that the model could calculate the wavelength position of

the reflection peaks. However, more thorough measurements of the refractive

indices in the polymers should be used to accurately model the reflectance of

the reflection peaks.

7.5 Summary

DBR reflection peaks were measured between 1.6µm and 2.7µm in the infra-

red spectrum. The wavelength position of the reflection peaks were controlled

by changing the layer thickness of the films in the DBR samples. This was

controlled by the deposition spin-speed when preparing samples.

The infra-red reflectance of the DBR samples was controlled by changing

the number of layers deposited onto the sample. Adding more layers increases

the reflectance of the reflection peak, because more interfaces are added to the

DBR structure. A total reflectance of ∼ 81% was measured in the infra-red

spectra from a 50 layer sample. The 100 layer sample which was discussed in

section 6.4 was not measured using FTIR spectroscopy. It may have had a

greater reflectance than the 50 layer sample when measured in the infra-red

spectrum.

The wavelength of the reflection peaks were successfully modelled using

the modified optical transfer matrix method. However, the reflectance of the

infra-red reflection peaks could not be adequately modelled. This was due to

errors in how the refractive indices of the polymer layers were calculated. Un-

fortunately, it was not possible to measure the refractive indices of the polymer

layers in the infra-red wavelengths at the time of these experiments. Measuring

the refractive indices (rather than extracting values form extended UV/visible

wavelength measurements and equations) would be more accurate when mod-

elling the reflection spectrum of the DBRs in the infra-red spectrum.

The chemical absorption bands of the polymers were measured using FTIR

spectrometry. Exposing the samples to HCl vapour (during sample prepara-

tion) did not cross-link or degrade the polymer layers. Only the PVP layers

were swollen by the HCl vapour during sample preparation.
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Chapter 8

Neutron reflectivity

measurements of polymer

multi-layers

8.1 Introduction

Neutron reflectivity was used to measure the polymer-polymer interfaces in

PVP-PS bi-layers and multi-layers. The wavelength of neutrons is much smaller

than visible light and fine-scale structures (like polymer-polymer interface widths)

can be measured. Neutrons are able to penetrate into a sample to measure its

internal structure [55, 71].

Diffuse polymer-polymer interfaces σ were suggested as a possible explana-

tion as to why the measured reflectance was lower than predicted in chapter

5. Estimates for σ were calculated by fitting the modelled spectra to mea-

surements. The polymer-polymer interfaces widths of 30 layer PVP/PS DBRs

were estimated as between 21nm and 28nm. These values were larger than ex-

periments measuring the polymer-polymer interfaces widths of similar polymer

samples [85].
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8.2 Measuring and modelling polymer samples

Unfortunately, only 3 out of the 6 prepared samples could be measured (which

was discussed in section 4.7.1). However, the samples which were measured

were analysed and some useful information was extracted.

8.2.1 Deuterated PS

The properties of the single deuterated PS (dPS) sample were measured using

neutron reflectivity and analysed using the Motofit fitting program [74]. Ellip-

sometry was used to measure the film thickness of the silicon oxide layer and

polymer films. AFM was used to measure the surface roughness of the substrate

and spin-cast polymer films. Literature values were used for variables such as

the interface roughness between silicon and its native oxide layer [95]. The

Scattering length density calculator within the MotoFit program [74] was used

to calculate the neutron scattering length density ρ of all materials. Hence,

as many variables as possible were measured or calculated before fitting the

modelled spectra in the MotoFit program. The input and fitted variables are

shown in table 8.1.

Specular neutron reflectivity cannot discern between rough and diffuse in-

terfaces as the entire sample surface is measured simultaneously [71]. Off spec-

ular reflection spectra was not measured during these experiments. There is

no diffuse interface between the SiO2 and the polymer film, as the two mate-

rials cannot intermix. The surface roughness of the SiO2 layer was measured

using AFM. This was used to calculate the roughness between SiO2 and the

polymer film σSi−dPS and was kept constant during data fitting. Likewise, the

dPS-Air interface was measured using an AFM, but this was fitted during

modelling. This was to test the quality of the fit by comparing it with the

AFM measurements.

The film thickness of the SiO2 layer (measured using ellipsometry) was kept

constant during modelling. Ellipsometry was used to measure the film thickness

of the dPS layer. The thickness value of dPS was used as an initial guess in the

fitting program. Its thickness was allowed to vary slightly to improve the quality

of the fit with respect to neutron reflectivity measurements. Variations in film

thickness, as small as 1nm, can dramatically change the modelled reflection
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Figure 8.1: Neutron reflectivity measurements (data-points) and fitted model
(red curve) for a single layer of deuterated PS which was spin-cast onto a sili-
con substrate. Keeping all of the variables were kept constant except for ddPS
and σdPS when fitting the model to the measurement. The neutron reflectivity
and AFM measurement of σdPS were the same. The film thickness was modi-
fied slightly when fitting the data, but it was within error of the ellipsometry
measurement.
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spectra.

Figure 8.1 shows the neutron reflectivity measurements (data-points) and

the fitted model using Motofit (red curve). The fitted data is within good

agreement of the neutron reflectivity measurements. Surface roughness mea-

surements of the dPS film were unchanged during fitting. Furthermore, the

thickness of the dPS film only changed by ∼ 1nm which was within error of

the ellipsometry measurements. Therefore, the measurements and assumptions

of the Si and SiO2 layers were a good approximation for the substrate.

8.2.2 PVP (top) → dPS (bottom) bi-layer

Unfortunately, only one of the bi-layer samples was measured, which was the

PVP (top) → dPS (bottom) bi-layer. The input film thickness of each layer

was measured using ellipsometry. A single layer dPS film was used to measure

the film thickness of the bottom layer in the sample. Whereas, the thickness of

the PVP (top layer) was measured using Ellipsometry measurements of the bi-

layer were used to calculate the thickness of the PVP (top) layer. The surface

roughness of the bi-layer was measured using AFM and was kept constant

during fitting. The surface roughness of a single layer dPS was measured using

AFM. This was used as an initial guess for the interface width of σPV P→dPS.

The initial film thickness and interface width variables are shown in table 8.2.

Figure 8.2 shows the neutron reflectivity measurements (data-points) and

model (green curve) of the PVP(top)→PS(bottom) bi-layer sample. The data

was modelled by varying the thickness of the polymer films dPV P and ddPS and

polymer-polymer interface width σPV P→dPS (shown in table 8.2 as the ‘Fitted

- Roughness’ for dPS) with respect to the neutron reflectivity measurements.

Both the neutron reflectivity measurements of the film thickness dPV P and

ddPS were thinner than the ellipsometry measurements. The difference in dPV P

thickness was within error of ellipsometry. However, the change in the thickness

of dPS (bottom layer) was from 147.0± 2.0nm (measured using ellipsometry)

to 142.9 ± 0.1nm (measured using neutron reflectivity). The change in layer

thickness was slightly larger than the ellipsometry measurement error. Fur-

thermore, the neutron reflectivity measurement of dPS in this experiment was

slightly less (by 3nm) than the neutron reflectivity measurement from section

8.2.1. Preparing the sample by depositing the solution while the substrate is
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Figure 8.2: Neutron reflectivity measurements (data-points) and modelled data
(green curve) of a PVP(top)→dPS(bottom) bi-layer. The modelled data was
within good agreement of the neutron reflectivity measurements. Variables
used to fit the data are shown in table 8.2. The film thickness of ddPS and
dPV P were reduced to fit the measured data. Results showed that the inter-
face width of σPV P→dPS increased slightly from the surface roughness of dPS.
This suggested that a small increase in interface width did occur from diffuse
polymer-polymer mixing at the interface.
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spinning (discussed in section 4.7.1) may results in film thickness changes. This

is when compared to depositing the solution onto a stationary substrate and

then spin-casting.

The polymer-polymer interface width σPV P→dPS was slightly larger than the

surface roughness σdPS measured in section 8.2.1. This shows that polymer-

polymer diffuse intermixing is occurring when preparing the DBR multi-layers.

However, neutron reflectivity measured the polymer interface widths as σPV P→dPS =

0.61 ± 0.01nm which is two orders of magnitude less than the initial diffuse

interface estimates (which were approximately ∼ 25nm) obtained from opti-

cal methods. Neutron reflectivity spectra were calculated for larger interface

widths, but the data was a poor fit of the measurements. Therefore, previ-

ous polymer-polymer interface width calculations using the DBR optical spec-

troscopy data are a huge over-estimate of the actual polymer-polymer interface

widths. The low reflectivity of the DBR samples when compared to the model

is likely due to other properties, such as lingering solvent in the polymer lay-

ers. This would change the refractive index contrast in the samples. A lower

refractive index contrast would reduce the reflectance of the DBR reflection

peaks.

8.2.3 10 layer PVP/dPS structure

The dPS(top)→PVP(bottom) bi-layer sample was not able to be measured due

to time restrictions. However, the 10 layer PVP/dPS sample was measured

which should allow the dPS→PVP interface σdPS→PV P to be estimated from

the neutron data fit.

The sample was made from alternating layers of PVP and dPS which were

spin-cast on top of a silicon substrate. PVP was the first polymer layer to

be deposited and PS was the last. It was assumed that any small differences

between each layer are negligible since it would not be possible to model each

layer independently. The surface roughness of the 10 layer sample was 0.47±
0.08nm, measured over a 40µm × 40µm surface area using AFM. This was

only 0.21nm smaller than the PVP(top)→dPS interface σPV P→dPS (which was

measured in section 8.2.2). The model was simplified by periodically stacking

5 dPS(top)→PVP(bottom) bi-layers on top of a silicon substrate to make the

multi-layer. This replaced the modelled surface roughness of the sample with
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Figure 8.3: Neutron reflectivity measurements (data-points) and modelled
spectra (blue curve) of a 10 layer PVP/dPS structure. The thickness of the
polymer layers (dPV P and dPS) and the dPS→PVP interface (sigmadPS→PV P )
were fitted whilst all other variables were kept constant. Table 8.3 shows the
input and fitted values used to measure the film thickness and polymer-polymer
interface widths. These results measured the dPS(top)→PVP interface as
σdPS→PV P = 0.96 ± 0.01. This was slightly smaller, but just under the er-
ror, of the surface roughness a dPS film which was measured using AFM.
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a PVP→dPS polymer-polymer interface width for simplicity. However, the

difference between the surface roughness and PVP(top)→dPS interface was

considered to be negligible.

Figure 8.3 shows the neutron reflectivity measurements (data-points) and

model (blue curve) of the 10 layer sample PVP/dPS sample. Table 8.3 shows

the input and fitted values used to model the neutron reflectivity measurements.

Ellipsometry measurements were used as the input film thickness values in the

model (shown under ‘Fitted - Film thickness’ in table 8.3). Specifically, the

thickness of the top layer in bi-layer samples were measured and used in the

calculations. Hence, the measurements were of films which were spin-cast on

top of polymer substrates.

Neutron reflectivity was previously used to measure the σPV P→dPS in a

PVP(top)→PS(bottom) bi-layer (see section 8.2.2). This interface was equiva-

lent to any σPV P→dPS interfaces in the multi-layer. The value of this interface

was kept constant when modelling the neutron reflectivity measurements of the

10 layer sample.

The σdPS→PV P interface width was the only unknown variable for the 10

layer neutron reflectivity measurement. AFM was used to measure the sur-

face roughness of a PVP(top)→PS(bottom) bi-layer. This was used as an

initial approximation for the σdPS→PV P interface width. The neutron reflectiv-

ity model was fitted by varying the thickness of the layers (dPV P and dPS) and

the σdPS→PV P interface width.

The extracted neutron reflectivity measurement of dPV P was within error

of the ellipsometry measurement. However, the extracted neutron reflectivity

measurement of ddPS was 0.7nm larger than the error of the ellipsometry mea-

surement. The sample preparation technique was changed when making these

samples (the solution was deposited while the substrate was spinning). This

technique may not be as reproducible as when depositing the solution onto a

stationary substrate. However, more investigation would be needed to confirm

this.

The extracted neutron reflectivity measurement of the σdPS→PV P interface

was slightly smaller than the surface roughness of the PVP(top)→PS(bottom)

bi-layer. This change was within error of the AFM measurement, so the in-

terface width may not have necessarily shrank. The results suggests that non
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of the polymer-polymer interfaces do not broaden by solution processing the

PVP/PS DBR samples.

Samples with larger interface widths of σdPS→PV P were simulated using the

Motofit program. However, the neutron reflectivity calculations would not ade-

quately fit to the measured reflection spectra. Therefore, the low reflectance of

the PVP/PS DBRs (when compared with the modelled sharp interface spec-

tra) was not due to polymer-polymer interface widths or surface roughness.

The neutron reflectivity results support the argument that residual solvent is

altering the reflection properties of the DBR samples.

8.3 Comparison with UV/visible spectra

A 50 layer DBR was prepared using the same techniques and polymer solutions

(which was discussed in section 4.7.1) as those used to make the samples for

neutron reflectivity measurements. However, the sample was prepared on a

glass slide substrate. The reflection spectra of the 50 layer ‘neutron sample’

DBR was measured using the UV/visible spectrometer. Any significant changes

in the UV/visible reflection spectra would indicate that the neutron reflectivity

samples were not the same as the DBR samples from chapter 5. For example,

the polymer-polymer interfaces could be different because of the slight change

in sample preparation technique.

The layer thickness of the neutron reflectivity films/samples were reduced

so that Kiessig fringes could be measured during neutron reflectivity measure-

ments [55]. Unfortunately, this does not result in a large reflectance peak in the

visible region of the EM spectrum (see figure 8.4). The measured peak was at

the near infra-red (λ = 986± 1nm), which was close to the cut-off wavelength

of the UV/visible spectrometer. This resulted in some of the reflection peaks

being cut-off from the spectra.

Table 8.4 shows the ellipsometry measurements used to model the reflection

band using the modified optical transfer matrix method. This was the same

technique used to model the spectra of PVP/PS samples in chapter 5. The

film thickness of the PVP and dPS films were both reduced by 5nm to improve

the modelled fit with the measured spectra. This is comparable with the film

thickness corrections needed to fit the modelled data with spectra measured
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Figure 8.4: UV/NIR reflection spectra of a 50 layer DBR made from PVP and
dPS which was spin-cast onto a glass slide substrate. The sample was prepared
using the same techniques as those made for neutron reflectivity experiments
(discussed in section 4.7.1). The reflection band is in the near infra-red and
was measured using the transmission set-up spectrometer (data-points). Mod-
elled spectra (using the modified optical transfer matrix method) with sharp
interfaces is represented by the blue solid line. Spectra which assumed interface
widths of ∼ 1nm were indistinguishable from modelled data with sharp inter-
faces (not shown). The dashed red curve represents modelled spectra which
was fitted using large interface width approximations σ = 25±1nm. Therefore,
the overestimation of large interface widths would have also been calculated for
the 1neutron reflectivity’ samples. A reduction in refractive index contrast of
δ(∆n) = 0.008±1 was needed to fit the model to the measured spectra (shown
by the green curve in the caption).
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from PVP/PS DBRs (see table 5.1).

The modelled data initially assumed that the interfaces were sharp (shown

by the blue curve in figure 8.4). However, the reflectance of the modelled spec-

tra was larger than the measured spectra (represented by data-points in figure

8.4). 1nm interface widths were included in the calculations to measure the

change in modelled reflectance. This was used as a comparison to the interface

widths which were measured using neutron reflectivity experiments. Changes

in the modelled spectra with respect to 1nm and sharp interface widths were

negligible. Therefore, the lower reflectance, when comparing measurements to

the predicted spectra, are not due to the finite interface widths.

The reflectance of the PVP/dPS DBR reflection peak (within the UV/visible

wavelengths) was modelled with diffuse interface width approximations in-

cluded (represented by the dashed red curve in figure 8.4). A polymer-polymer

interface width of σ = 25± 1nm was needed to fit the model to the measured

UV/visible reflection peak from the PVP/dPS DBR. This was comparable

to the polymer-polymer interface width estimates which were calculated for

PVP/PS DBRs (see table 5.1).

The UV/visible reflection spectra of the PVP/dPS DBR was also remod-

elled with reduced refractive index contrast δ(∆n) approximations (shown in

the caption in figure 8.4). A reduction of δ(∆n) = 0.008 ± 1 was needed to

model to the measured reflectance of the PVP/dPS DBR reflection peak. The

reduction in refractive index contrast δ(∆n) required to fit the reflectance of the

PVP/PS DBRs were between 0.020 and 0.030. Less of a change in δ(∆n) was

needed when modelling the PVP/dPS DBR (when compared to the PVP/PS

DBRs). This implies that there was less residual solvent in the PVP/dPS DBR

sample. The thickness of the PVP/dPS layers were thinner than the layers in

the PVP/PS DBRs. Thinner layers may have enabled the residual solvent to

more readily diffused out of the PVP/dPS DBR during annealing.

The Bragg peak in figure 8.4 (R = 66 ± 1%) was larger than the 50 layer

PVP/PS DBRs (R ∼ 55%) shown in chapter 5. This was due to the optical

path length of each layer being ∼ λ/4. A similar increase in the reflectance was

observed when measuring the RGB DBRs in the infra-red (which was discussed

in chapter 7).

The modified preparation technique for the PVP/dPS DBRs (see section
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4.7.1) did not change the underlying problem which caused the reflectance

to be lower than expected. Hence, the neutron reflectivity measurements are

relevant to the PVP/PS DBRs discussed in chapter 5. The measurements also

proved that the interface widths were significantly smaller than the previous

diffuse interface width estimations. Trapped solvent was most likely the cause

for losses in reflectance.

8.4 Summary

Not all of the samples which were prepared for neutron reflectivity experiments

could be measured. This was due to experimental time being lost when the

neutron beam was taken off-line. Measuring all of the samples would have

lead to a more complete data-set. However, It was still possible to analyse the

neutron reflectivity spectrum from the samples which were measured.

The polymer-polymer interface widths were not between 20nm to 30nm,

which were previously estimated by fitting modelled spectra to UV/visible mea-

surements (see section 5.3.1). Instead, neutron reflectivity measured the all of

the polymer-polymer interface widths to be less than 1nm. It was not possible

to fit the neutron reflectivity data with polymer-polymer interface widths that

were between 20nm and 30nm. Hence, the reduction in measured reflectance

of the reflection peaks (when compared with the model), were definitely not

due to large polymer-polymer interface widths.

A DBR sample was prepared using the same materials and preparation tech-

niques as the deuterated (PVP/dPS) DBR samples. The reflection properties

of the PVP/dPS sample was measured using the UV/visible spectrometer. Its

optical properties were similar to the PVP/PS DBR samples prepared in chap-

ters 5 and 6. Hence, variables which change the optical properties of a DBR

(such as polymer-polymer interface widths) were comparable between the two

samples.
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Chapter 9

Using polymer multi-layers to

calibrate TOF-SIMS

experiments

9.1 Introduction

Time of flight secondary ion mass spectrometry (TOF-SIMS) is an analysis tool

used to measure the chemical composition of a sample surface or thin film. It

is often referred to as a surface science technique. Initially, TOF-SIMS was de-

veloped to measure the outer surface layers of materials [82]. This is important

since surface atoms/molecules often contribute towards the properties of a bulk

material, despite their low number compared with the rest of the sample [83].

Further work on depth profiling techniques extended it to be used to measure

mono-layers, multi-layers and 3D structures. Samples are typically measured

on the µm and nm length-scale.

TOF-SIMS is currently being used to research drug delivery systems [23,24],

polymer electronics [26] and ink-jet printing [96]. These examples are made

from nm length scale composite polymer structures. It is difficult to distin-

guish between different types of polymer in these structured sample. This

is because polymers are predominantly hydrocarbon structures. TOF-SIMS

etches through polymer samples with a resolution on the nm length scale. It

is able to distinguish different polymers by measuring ions which are sput-
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tered away from the sample surface during scanning [82]. However, there are

a number of polymers that are used in applications (and are therefore are of

interest to investigate) that are challenging to etch through. This includes PS,

as the polymer is susceptible to cross-linking during etching [77]. Several dif-

ferent types of etching beam and techniques have been previously developed to

overcome these challenges in an effort to measure a broader range of materials.

In this chapter a new Ar2000
+ etching beam source was used to depth profile

through PVP/PS multi-layer structures. Depth profiling enabled the spatial

structure of the DBR and individual layers to be measured. TOF-SIMS was

also used to try and measure the polymer-polymer interface widths between

layers.

9.2 Bi-layers

Bi-layers of PVP and PS were prepared using the spin-coating techniques dis-

cussed in section 4.3. This includes swelling the PVP layers with HCl vapour.

These samples were prepared to test if there were differences in layer thick-

ness when spin-cast onto a silicon or polymer substrates. Three samples were

prepared;

• PVP(top)→PS(bottom): PVP was spin-cast on top of a previously spin-

cast PS film.

• PS(top)→PVP(bottom): PS was spin-cast on top of a previously spin-

cast PVP film.

• Floated PS(top)→PVP(bottom): A free-standing PS film was deposited

onto a PVP substrate to make a bi-layer.

The floated PS(top)→PVP(bottom) sample was prepared by spin-coating

a single layer PS film onto a glass slide substrate. A water bath was used to

float the PS film off the glass slide. The PS film was lifted from the water bath

using a ‘cradle’ (metal sheet with a ∼ 2cm hole at the center) and then left

to dry. This free-standing PS film was transferred/deposited on top of a single

layer spin-cast PVP film (illustrated in figure 9.1). Interfacial tension pulled

the free-standing PS film flat onto the PVP film [97]. The bi-layer sample was
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Figure 9.1: A free-standing film which is being held using a metal cradle. The
free-standing film was lowered onto a single layer spin-cast film. Interfacial
tension pulls the free-standing film flat onto the single layer film. This technique
was used to prepared a bi-layer sample which did not involve the second/top
layer being deposited by solution processing techniques.

annealed for 5 hours at 110oC under a ∼ 1mtorr vacuum. This experiment was

used to measure any polymer-polymer interface width changes when solution

processing was not used to deposit films onto polymer substrates.

TOF-SIMS was used to measure the thickness of the polymer layers as well

as polymer-polymer interface widths. Depth profile measurements of single

layer films were used to calibrate the etch rate of the Ar2000
+ sputter beam

(discussed in section 4.8.3). The etch rate of the two polymers were PVP=

(11.66± 0.10)× 10−18nm/dose and PS= (14.77± 0.18)× 10−18nm/dose. These

values were used to extract the film thickness measured using TOF-SIMS. The

depth profile width (which corresponds to layer thickness) was measured by

calculating the dose of the sputtering beam between each interface. This value

was multiplied by the etch rate to calculate the thickness of the layer.

The etch rate of the ion beam would change as it passed through an in-

terface. This was due to the interface being a gradual blend of two differ-

ent materials. However, it was not possible to measure the changes in the

etch rate as it passed through the interface. This was especially true for the

last polymer→silicon interface, as the ion beam was not able to properly etch

through silicon and cannot be calibrated. Instead, the width of the inter-
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Figure 9.2: Illustration of a bilayer sample where each layer has a film thickness
and is separated by an interface. The layers are numbered from top to bottom
and the interface number are named from the previous medium.

face (with respect to dose) was multiplied by the sputter rate of the previous

layer [78]. There was a 26.7% difference between the etch rate of PVP and PS,

which would modify the measurement of the interface widths. This is discussed

in more detail later in this chapter.

The sputtering beam etches from the top to the bottom of a sample. This

corresponds to the last deposited layer being measured first, and the silicon

interface being measured last. Each different layer was counted from the top

down (illustrated in figure 9.2). The interfaces between each layer was num-

bered after the previous layer. For example, ‘interface 1’ is between layers 1

and 2. TOF-SIMS is unable to measure the surface topography of the sample,

so the top air-polymer interface was assumed to be sharp (which is why it was

ignored in analysis).

Results from the ellipsometry and TOF-SIMS measurements of the PVP(top)

→ PS(bottom), PS(top)→ PVP(bottom) and floated PS(top)→ PVP(bottom)

bi-layers are shown in tables 9.1, 9.2 and 9.3 respectively. Most of the TOF-

SIMS depth profiling measurements were within good agreement with the el-

lipsometry measurements. However, the TOF-SIMS thickness measurement

of the lower PS layer in the PVP(top)→PS(bottom) bi-layer, was 7nm larger

than the ellipsometry measurement. This may have been due to the sharp in-

crease in measured ions at the PS→silicon interface (see figure 9.3). The error

function, which was used to measure interface position and width, was fitted

to the shape of the depth profile (see figure 9.3). Changes in the depth profile
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Layer (top
→ bottom)

Polymer Ellipsometry: Film
thickness (nm)

Depth profile:
Thickness (nm)

Interface width
(nm)

1 PVP 206.3± 1.0 207.5± 1.9 12.6± 0.7
2 PS 218.7± 1.0 225.6± 2.9 7.4± 0.9

Table 9.1: Each layer thickness of the the films in the PVP(top)→PS(bottom)
bilayer were measured using ellipsometry. These errors were calculated using
the standard deviation of five repeat measurements. The film thickness and
interface widths were remeasured using TOF-SIMS depth profiling. Each inter-
face was labelled with respect to the previous layer (illustrated in figure 9.2). In
this case, interface 1 is between PVP and PS. Likewise, interface 2 is between
PS and the silicon substrate. The TOF-SIMS measurements of the PS layer
thickness was larger than ellipsometry measurement. This may have been due
to the sharp increase in the measured PS ions at the PS→silicon interface.

Layer (top
→ bottom)

Polymer Ellipsometry: Film
thickness (nm)

Depth profile:
Thickness (nm)

Interface width
(nm)

1 PS 218.7± 1.0 220.8± 0.6 6.9± 0.5
2 PVP 206.3± 1.0 205.3± 1.0 6.8± 0.3

Table 9.2: Each layer thickness of the films in the PS(top)→PVP(bottom)
bilayer were measured using ellipsometry. The film thickness and interface
widths were also measured using TOF-SIMS depth profiling. Each interface
was labelled with respect to the previous layer (illustrated in figure 9.2). In
this case, interface 1 is between PS and PVP. Likewise, interface 2 is between
PVP and the silicon substrate. The TOF-SIMS and ellipsometry film thickness
measurements are within agreement of one another.

Layer (top
→ bottom)

Polymer Ellipsometry: Film
thickness (nm)

Depth profile:
Thickness (nm)

Interface width
(nm)

1 floated
PS

218.7± 1.0 225.1± 0.8 6.7± 0.5

2 PVP 206.3± 1.0 203.2± 2.4 6.4± 1.0

Table 9.3: Floated PS(top)→PVP(bottom) bilayer was prepared and measured
using ellipsometry and TOF-SIMS. The thickness of the PS layer was larger
than the ellipsometry measurement. However, the film thickness would have
been the same for a single layer film as it was not spun-cast on top of a poly-
mer film. This indicates that there may be inaccuracies in the TOF-SIMS
measurements.
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would have also changed the error function and the extracted position of the

interface.

The TOF-SIMS layer thickness measurement of the floated PS(top) →
PVP(bottom) also showed some disagreement with the ellipsometry model.

TOF-SIMS had measured the top PS layer to be ∼ 6nm less than the ellip-

sometry measurement. The thickness of the floated PS layer should have been

the same as a single layer PS film. This was due to the floated film being origi-

nally spin-cast as a single layer, which was then transferred onto the PVP film.

TOF-SIMS may not be able to etch through the polymer layers at a constant

rate. This could be due to small imperfections in the film, such as inhomo-

geneity in the polymer density or film thickness. It could also be due to PS

being a ‘challenging polymer’ [78]. However, there was only a ∼ 3% difference

between the TOF-SIMS and ellipsometry film thickness measurements of the

floated PS film. TOF-SIMS is able to measure the distribution of layers in a

sample, but more specialised equipment (such as ellipsometry) should be used

for film thickness measurements.

The interface widths in TOF-SIMS measurements are much larger than the

neutron reflectivity results (see section 8.2). Specifically, the polymer→silicon

interface width. TOF-SIMS measured the polymer→silicon interface width as

being between 6.4nm and 7.4nm. However, the interface between polymer and

silicon was known to be sharp (∼ 1nm). The region of interest selection (which

was discussed in section 4.8.2) was used to remove large sputtering anomalies

and anything which would smear the measurement of the interface (such as

tilting and sample orientation). Errors in the interface width calculations may

be due to the TOF-SIMS experimental method. There are several properties

which can decrease depth profile resolution;

• Sputter rate: The sputtering beam etches in pulses over the sample sur-

face. Each pulse may etch several nm deep into the sample [82]. PS had

a larger etch rate than PVP, which would increase the length measured

per sputtering dose. This suggests that the sputter rate can reduce the

depth resolution of TOF-SIMS.

• Roughening : The sputter beam can cause the surface to roughen as

it etches through the sample. This causes the sputtering resolution to

worsen as the sample is being measured [82].
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Figure 9.3: Depth profile of polymer bilayers. [Top panel] Depth profile of
a PVP(top)→PS(bottom) bi-layer sample which was spin-cast onto a silicon
substrate. [Bottom panel] Depth profile of a PS(top)→PVP(bottom) bi-layer
sample which was spin-cast onto a silicon substrate. The red curves are the er-
ror functions which were fitted to measure the interface positions and interface
widths with respect to ion dose.
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• Mixing : The energy of the sputtering beam can penetrate through both

materials and force them to mix. Secondary ions are detected from both

materials due to them mixing. This causes the measured interfaces to

widen [82].

• Alignment : Changes in the alignment of the substrate or any inhomoge-

neous layers should broaden the interface widths.

The interface widths measurements between polymer-polymer (including

the floated PS sample) and polymer-silicon were all between 7nm and 13nm.

These measurements were less than the polymer-polymer interface width es-

timates (between 20nm to 30nm) which were extracted from the UV/visible

spectrometry measurements (see section 5.3.1). The reduction in measured

reflectance (when compared to the model) were not due to polymer-polymer

interfaces as wide as 20nm to 30nm. However, the TOF-SIMS interface mea-

surements were much larger than the neutron reflectivity measurements. This

is due to TOF-SIMS not being able to resolve sharp interfaces. For example,

this technique had measured the polymer-silicon interface between 6.4nm and

7.4nm, when it was known to be closer to ∼ 1nm. Correcting for changes in

sputter rate through an interface would not significantly improve the TOF-

SIMS results. The interfaces would still be too large, even if the etch rate of

PVP (which was smaller than PS) was used to calibrate all of the interface

widths in the sample.

9.3 Asymmetric multi-layers

The etch rate of the Ar2000
+ sputter beam may not stay constant during depth

profile measurements. Roughening, contamination variations in layer thickness

and inhomogeneity in density will change the sputter rate of the etching beam

through a sample [82,83]. Two thick 10 layer samples (with a total thickness of

∼ 1.25µm) were prepared using the sample preparation techniques discussed in

section 4.3. However, the PS layer was disproportionally smaller than the PVP

layers. The thickness of the PS layers were between 40nm and 60nm, whereas

the PVP layers were between 180nm and 220nm. These samples have been

named as ‘asymmetric samples’, because of the large differences in PVP and PS

layer thickness. The ratio between the thickness of the PVP and PS layers are
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Figure 9.4: Illustration of multilayer samples with a large difference in the
thickness between layers of PVP (green) and PS (purple). These samples were
used to test the depth profiling accuracy when measuring the thickness of
polymer composite samples.
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not comparable with the previously prepared DBRs (see chapter 5). The thin

PS layers in the asymmetric samples were used as ‘chemical markers’, which

were used to measure different points in the sample during etching. These

experiments were comparable to TOF-SIMS measurement by A. G. Shard [81].

He also used a Ar2000
+ cluster beam to depth profile through a multi-layer

polymer sample (made by vacuum deposition of alternating Irganox 1010 and

Irganox 3114 layers [81]). The samples in this chapter were spin-coated and

had PS layers which are ‘challenging’ to etch through when a Ar2000
+ sputter

source is not being used [77,78].

The first polymer sample was prepared by spin-casting alternating layers

with 200nm PVP and 50nm PS film thickness. This is called the ‘non-chirped

sample’ as the thickness of PVP and PS layers were kept constant. The thick-

ness of the PVP and PS layers were not kept constant when preparing the

second polymer sample. This sample was used to test if TOF-SIMS could

measure small changes in layer thickness. PVP was initially deposited with a

layer thickness of 180 ± 1nm, which increased by 10 ± 1nm after each PVP

layer was deposited. The final PVP layer was deposited with a film thickness

of 220 ± 1nm. Likewise, the initial PS layer thickness was 60 ± 1nm, which

decreased by 5 ± 1nm after each PS layer was deposited. The final PS layer

was deposited with a film thickness of 40± 1nm. This was called the ‘chirped

sample’ as the thickness of PVP and PS change throughout the multi-layer

structure. The structure of both non-chirped and chirped structures are illus-

trated in figure 9.4.

9.3.1 Non-chirped samples

The TOF-SIMS depth profile results for the non-chirped sample are shown in

figure 9.5. The periodicity of PVP and PS layers are clearly visible in the

depth profile curves. Note that the PVP and PS layers have a different layer

thickness. However, the magnitude of the PS depth profile bands (blue data-

points in figure 9.5) were diminishing slightly as the sample was being etched.

Reduction in ion count of the PS layers when depth profiling was due to them

being too thin. This was due to the resolution of the system reducing while the

ion beam was etching through the sample. This could have been caused by the

etching beam roughening the surface of the sample, encountering a contaminant

186



Figure 9.5: Depth profile of non-chirped 10 layer PVP/PS sample. These
results are of the whole 100µm×100µm depth profiled area. PVP and PS films
were spin-cast with a film thickness of 200 ± 1nm and 50 ± 1nm respectively.
The intensity of the PS film decreases as the Ar2000

+ beam continues to etch
through the sample. An error in the sputtering measurement (possibly due to
contamination) roughened the surface while the ion beam was etching. The PS
layers were too thin for the reduced resolution of the ion beam to adequately
measure.
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Figure 9.6: Film thickness measurements of 10 layer asymmetric PVP/PS non-
chirped films using TOF-SIMS. The data points correspond to the average
value measured from five regions of interest. The error was calculated using
the standard deviation. Ellipsometry results from comparable single layer mea-
surements are represented by the dashed lines.
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Figure 9.7: Widths of polymer-polymer and polymer-silicon interfaces for 10
layer asymmetric PVP/PS non-chirped sample. The first interface is PS→PVP
and the second interface is PVP→PS. This alternates until the final tenth inter-
face which is PVP→Si. Each data point represents an average of measurements
from five regions of interest. Errors were calculated using the standard devia-
tion. There is a large increase in measured width at the fourth interface. This
may be due to a contamination and/or film thickness irregularity in the layer
between the third and fourth interface.
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and/or poor layer thickness uniformity [82,83].

The widths of the depth profile bands (shown in figure 9.5) were used to

calculate the thickness of the layers (see section 4.8.3). Figure 9.6 shows the

calculated TOF-SIMS film thickness (data-points), with the ellipsometry film

thickness estimates (dashed lines). Both sets of results were in close agreement

with one another. The thickness of the polymer films were constant during

sample preparation.

The errors in the film thickness measurements had increased as the ion

beam continued to etch through the sample. This is most likely a defect from

data analysis. TOF-SIMS is unable to measure the surface topography of a

sample and it was falsely assumed that it was flat. Any imperfections would

continue to be measured as the beam etched through the sample. For example,

consider a flat substrate which has a rough polymer film on top. TOF-SIMS

would inadvertently measure the top of the polymer film as being flat and the

substrate as being rough [82]. The same problem could be occurring for the

layer thickness measurements in figure 9.6. Any variations in layer thickness

would become more noticeable in depth profile measurements as the beam

continued to etch through the sample.

Figure 9.7 is a plot of the extracted TOF-SIMS measurements of the inter-

face widths with respect to the interface number. The interfaces are labelled

from the top of the sample through to the bottom. This is interpreted with

respect to the leading material. The polymer→air interface was not considered,

because TOF-SIMS measures the layer as being flat. Therefore, PS→PVP and

PVP→PS are the first and second interface respectively. The two interfaces

alternative until the final/10th PVP→silicon interface.

The interface width measurements (shown in figure 9.7) were 8nm to 10nm

for the first three interfaces measured. However, the interfaces had increased

to widths between 15nm and 20nm after the third interface. This must have

been due to a disruption in the interface width measurements between the

third and fourth interface (which is the fourth layer from the top to bottom of

the sample). Something in the sample changed the topography of the surface

as it was being sputtered. This could have been contamination, or poor film

thickness uniformity [82,83]. The profile of the roughness would have remained

in the depth profile as the sputter through the rest of the sample. This is a

190



problem when measuring thick samples, as defects in the top layers are still

visible when measuring the bottom layers.

9.3.2 Chirped

A chirped multi-layer sample was prepared to test the Ar2000
+ sputter source’s

ability to measure a sample with varying film thickness. The depth profile of

the chirped sample structure is shown in figure 9.8. The intensity of the PS

(C4H10N3
+) secondary ions did not diminish. This was despite some of the PS

layers in the chirped sample (figure 9.8) being thinner than the non-chirped

sample (figure 9.5). The surface of the chirped sample did not roughen as

much as the non-chirped sample during etching. This may have been due to

the chirped sample having fewer defects than the non-chirped sample. However,

this would need to be investigated further for a more thorough conclusion.

Figure 9.9 shows the measured thickness of films using TOF-SIMS (data-

points) and ellipsometry measurements (dashed-lines) with respect to layer

number. The greatest difference between layer thickness measurements were

approximately ∼ 20nm for the PVP layers. Layer thickness corrections which

were needed to improve the fit of modelled data to UV/visible spectrometry

measurements were not as large as ∼ 20nm (see chapter 5). The differences

between the TOF-SIMS and ellipsometry measurements may have been due

to small changes in the TOF-SIMS etch rate and/or calibration. Despite this,

the general trend of the changing layer thickness (PVP increasing and PS de-

creasing from top to bottom of the sample) was observed. TOF-SIMS was

able to measure the structure of the sample, but more suitable techniques (like

ellipsometry) should be used for measuring film thickness.

Figure 9.10 shows the measured TOF-SIMS interface widths in the chirped

sample. The first interface is PS(top)→ PVP(bottom) and the last is PVP(top)

→ silicon(bottom). Interface widths for the chirped sample stayed relatively

constant (between 8nm and 12nm). These interfaces widths were narrower and

less diverse than the interface widths from the non-chirped sample (between

15nm and 20nm). The Ar2000
+ beam may not have roughened the surface

of the chirped sample as much as the non-chirped sample during etching. A

rough surface would broaden the interface width. Although, the TOF-SIMS

measurement of the polymer-silicon interface was broad (10 ± 1nm). The in-
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Figure 9.8: Depth profile of a chirped 10 layer PVP/PS sample. These re-
sults are of the whole 100µm × 100µm depth profiled area. PVP and PS
layers were spin-cast films with an initial thickness (bottom to top of sample)
dPV P = 220 ± 1nm and dPS = 40 ± 1nm. The PVP film was changed thick-
ness by −10± 1nm per bi-layer deposited. Likewise, the PS film thickness was
changed by +5± 1nm per bi-layer deposited. The thickness of the final layers
deposited were dPV P = 180±1nm and dPS = 60±1nm. Note that TOF-SIMS
measures top→bottom, so the measurement of the layer thickness is inverted
when compared to the order of layers deposited..
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Figure 9.9: Film thickness measurements of a 10 layer asymmetric chirped
PVP/PS sample structure. The data-points are an average of measurements
from five regions of interest. Errors were calculated using the standard devi-
ation. Single layer ellipsometry measurements are represented by the dashed
lines. The largest difference in the film thickness measurements was ∼ 20nm.
However, the progressive changes in the film thickness of the chirped layers can
be seen.
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Figure 9.10: Widths of polymer-polymer and polymer-silicon interfaces for 10
layer asymmetric PVP/PS chirped sample. The first interface is PS→PVP
and the second interface is PVP→PS. This alternates until the final 10th in-
terface which is PVP→Si. Each data-point is an average of five measurements
from different regions of interest. Errors were calculated using the standard
deviation. The measurements of the interface widths were relatively constant
at ∼ 10nm. This data suggests that the etching beam did not significantly
roughen the surface of the sample.
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terface should have been measured as sharp (< 1nm), which TOF-SIMS was

unable to resolve.

9.4 Multi-layers of thicker films

Multi-layer samples were prepared with films of a larger thickness (all films

where approximately between ∼ 200nm and ∼ 380nm). Three different six

layer samples were prepared with differing thickness films. All of these samples

were prepared using the same techniques as the polymer DBRs (discussed in

section 4.3). The thickness of the layers in these TOF-SIMS sample were

comparable to the layers in the polymer DBR samples (PVP layers between

360nm and 530nm, PS layers between 210nm and 320nm). These samples

were used to test for variations in layer thickness in the DBR samples.

Figure 9.11 illustrates the depth profile for one of the samples. The Ar2000
+

beam was able to etch through the thicker PS layers without degradation in the

secondary ion count. This would not be possible with pre-existing sputter beam

types such as C60
+ [78]. Those beams could have been halted by cross-linking.

Figure 9.12 shows a comparison of film thickness measurements using TOF-

SIMS (data-points) and ellipsometry (dashed lines) for all 3 samples. The

TOF-SIMS measurements of the film thickness are relatively constant for all

samples. However, all of the TOF-SIMS measurements are larger (∼ 25nm)

than the ellipsometry measurement of the PS layer thickness. This may be

due to the etch rate of PS changing, or not being properly calibrated (PS=

(14.77± 0.18)× 10−18nm/dose). However, the thickness of the layers remained

constant, which indicated that spatial separation between the layers was well

defined. The reduction in DBR reflectance was not due to the thickness of the

layers being disordered.

The polymer-polymer interface widths were measured for all 3 samples us-

ing TOF-SIMS. Figure 9.13 illustrates that the polymer interface widths are

still relatively large (∼ 10nm), which also included the PVP→silicon interface.

Hence, TOF-SIMS was unable to measure sharp (< 1nm) interface widths. Al-

though, the TOF-SIMS measured interface widths were less than the polymer-

polymer interface widths which were estimated when modelling UV/visible re-

flectivity measurements (see section 5.3.1). The original estimates were wrong
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Figure 9.11: Depth profile measurement of a 6 layer PVP/PS over 100µm ×
100µm surface area. The thickness of the PVP layers are dPV P = 297.4±2.2nm
and dPS = 239.0± 1.3nm respectively. This sample is more comparable to the
DBR samples which were measured in chapters 5 and 7. The ion count of PS
remains constant despite PS being known as a ‘challenging polymer’ because it
is susceptible to cross-linking when etched. The Ar2000

+ etching beam is more
capable of etching through PS than other etching beams like C60 [78].
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Figure 9.14: The layer thickness difference between the ellipsometry and TOF-
SIMS results were calculated for all measurements. A Gaussian distribution
(grey curve) was fitted using the measured data (data points) shown in this
histogram. The most common difference between the two measurements were
between 5nm and 10nm.

and the reduction in reflectance was not due to large polymer-polymer interface

widths.

9.5 Analysis of errors in TOF-SIMS measure-

ments

The difference between the ellipsometry and TOF-SIMS layer thickness results

were calculated for all measurements. Figure 9.14 shows a histogram of the

difference between the two sets of measurements. The fitted Gaussian curve

showed that the most frequent differences between ellipsometry and TOF-SIMS

measurements were between 5nm and 10nm. This indicates that the original

calibration of the PVP and PS etch rates need improving. A more accurate

measurement of the etch rates would improve results, such as using an aver-

age of several calibration samples/measurements. Although, the difference be-
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tween the ellipsometry and TOF-SIMS measurements were shown to be large

as 30nm. The broad range between these measurements demonstrates that

TOF-SIMS is not a good technique for accurately measuring film thickness.

9.6 Summary

The Ar2000
+ ion beam was able to etch through the PS layers without the

measurements degrading. This enabled the multi-layer structure of PVP/PS

samples to be measured. However, the etch rate of the ion beam may have

changed while the samples were measured. Only small changes were needed to

off-set film thickness measurements. TOF-SIMS measurements of layer thick-

ness were not always within error of the ellipsometry measurements. TOF-

SIMS is capable of measuring the structure of multi-layer samples. However,

more specialised/reliable techniques, like ellipsometry, should be used when

measuring the thickness of films.

The TOF-SIMS measurements of layer thickness did not varying signifi-

cantly with respect to one another. This demonstrated that the thickness of

the spin-cast layers did not change significantly throughout the structure. Re-

ductions in the measured sample reflectance were not due to disorder in the

polymer layers.

Measurements of the interface widths was attempted by using TOF-SIMS.

However, sharp interface widths, like the polymer-silicon interface, could not

be resolved. The interface width measurements were typically ∼ 10nm, when

they should have been closer to 1nm. Roughening of the sample surface (by

contamination and/or inhomogeneity) had broadened the measured interface

widths further. However, these measurements were smaller than the polymer-

polymer interface width measurements which where extracted from UV/visible

reflection measurements, which were between 20nm and 30nm wide (see section

5.3.1).

The measured reduction in DBR peak reflectance (when compared to the

transfer matrix model) was not solely due to large polymer-polymer interface

widths, or disorder in the structure. Other properties, such as trapped resid-

ual solvent, are more likely to be changing the optical properties of the DBR

samples.
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Chapter 10

Improving the angular

dependence by corrugating DBR

films

10.1 Introduction

It was shown in section 5.5 that flat DBR surfaces are susceptible to iridescence.

This occurs when the reflection band blue-shifts due to changes in the angle

of incidence. Iridescence can be a problem for various devices such as optical

filters [1, 2], sensors [3], displays [4, 5] and solar cells [8, 9]. For example, the

efficiency of LED’s can be improved by encapsulating them within a photonic

cavity using a Bragg reflector [4]. However, the Bragg reflector is susceptible

to iridescence and the colour of the LED is only clearly seen when viewed at

normal incidence.

One way to avoid this effect is to add curvature to the DBR. Ideally, the

structure would be designed in such as way that incident light is always prop-

agating parallel to the surface normal of the DBR. Other research groups have

previously prepared curved DBR surfaces using various techniques. This in-

cludes rolling polymer bi-layers around a cylinder [21], spin-casting films onto

a corrugated/blazed surface [98], blowing an elastomer multi-layer into a bub-

ble [99] and swelling films to be moulded or patterned while being pressed

with a pre-patterned PDMS stamp [100]. However, these techniques do not
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Figure 10.1: A curved DBR will reflect incident light into a wide range of
directions. The wavelength of the reflections will blue-shift if the angle between
the incident and reflected light is increased. Rotating the sample will not
change the wavelength of the reflected light in the direction it is being measured.
The curved DBR offers surfaces which are orientated over a wide broad of angles
and this property is not lost when the sample is rotated.

have controlled film deposition over large surface areas. Applications, such

as LED displays, would benefit from being prepared over large surface areas.

Some of the previously mentioned techniques require the substrate to be pre-

patterned [98,100], which is a lengthy process.

10.2 Optical properties of curved DBRs

Figure 10.1 shows diagram of a curved DBR reflecting light. The spot size of

the incident light covers the entire curvature of the sample. A curved DBR

offers a broad range of angles of incidence on the sample surface. Likewise,

the sample also offers a broad range of reflection angles. This is illustrated in

the figure 10.1 by the DBR reflecting ‘red’, ‘green’ and ‘blue’ wavelength light.

‘Red’ is longest wavelength reflected by this example (this curved DBR would

reflect ‘red’ light if it were made flat and measured at normal incidence). The

longest wavelength is only measured when the angle of incidence and reflection
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Figure 10.2: The wavelength of the reflected light is longest when the incident
beam is normal to the curvature of the surface. However, the wavelength
of the reflected beam is blue-shifted when the incident beam is not normal
to the curvature of the surface. The angle between incident and reflected is
θi + θr = ∆θ. This is used to calculate the wavelength of the reflection peak,
by using the modified optical transfer matrix method.

are both perpendicular to the curved surface of the sample. This is comparable

to when the DBR is flat and measured at normal incidence. The ‘green’ and

‘blue’ light are DBR reflections which have shorter wavelength reflection peaks

because their angle of incidence is not normal to the curved surface. Different

wavelengths of light are reflected at different angles of reflection.

Figure 10.2 is a diagram of a small section of a curved DBR film being illu-

minated at the angle of incidence θi. Light with wavelength λ is preferentially

reflected at the angle of reflection θr by the DBR. The angle between θi and θr

is calculated by,

∆θ = |θr + θi|, (10.1)

Where ∆θ = angle between incident and reflected light [degrees ], θi = angle

of incidence [degrees ] and θr = angle of reflection [degrees ]. Note that by

convention θi and θr are usually on opposite sides of the surface normal. The

magnitude of either θi or θr is negative if they are both on the same side of the
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surface normal.

The wavelength of the reflected light is blue-shifted when increasing the

magnitude of ∆θ. Reflections from an infinitely small section of the surface

are approximately specular. This infinitely small section of the surface can

be approximated as a flat DBR. The modified optical transfer matrix method

(discussed in chapter 3) was used to calculate the wavelength of light reflected

from a small section of a curved DBR. Replacing the modelled angle of incidence

with ∆θ/2 calculates the wavelength of the reflection peak λ from a curved

DBR.

A curved DBR offers surfaces which enable a broad range of angles of inci-

dence and reflection (unlike a flat DBR which has a single angle of incidence).

This property is not lost when rotating a curved DBR. The wavelength depen-

dence of the reflection peaks are unaffected when rotating the sample because

of the curvature of its surface.

10.3 Corrugating thin films

Continuously curving the DBR’s surface would provide a broad distribution of

angled reflection surfaces. Making the sample flat over large surface areas (like

on a chip) would be more practical for devices such as LEDs and solar cells.

Corrugating the DBR films is a possible solution, as it adds curvature to a film

over a flat area.

Previous experiments have corrugated unstrained thin films by using spon-

taneous pattern formation techniques [100,101]. A rigid film is deposited/bonded

onto a pre-strained rubber substrate (illustrated by the diagram in figure 10.3).

The rubber substrate attempts to return back to its original shape (due to

entropic elasticity) when the pre-strain has been removed [18]. This adds a

in-plane compressive stress to the previously unstrained thin film. The film

attempts to resolve these stresses by bending. However, the substrate is much

thicker (∼ mm thick) than the thin film (between µm and nm thick) and

it remains flat. This results in the film corrugating across the surface of the

substrate as a result of the compressive stress [100, 101]. The spatial separa-

tion between each corrugation wrinkle is periodic. Previous experiments, using

this technique, have measured corrugation wavelengths `c between µm and nm
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Figure 10.3: Diagram of a thin film being corrugated. Strain is applied to a
rubber substrate by stretching it. An un-strained thin film is deposited onto
the substrate. The substrate returns back to its original shape/size when the
applied strain is removed. This applies a compressive stress to the thin film
which causes it to corrugate.

length scales [101]. It was possible to corrugate a DBR (which is a multi-

layer thin film) using this technique over a large surface area (approximately

1cm× 1cm).

10.3.1 Preparing the elastomer substrate

An elastomer was used as the rubbery substrate in this experiment. Elastomers

consist of long molecular chains which are randomly cross-linked. These ma-

terials have a low Young’s modulus (they are ‘rubbery’), high strain failure

(it is difficult to deform them permanently) and capable of storing strain en-

ergy [18, 49]. The elastomer will returned back to its original shape when the

strain is removed.

Figure 10.4 shows the preparation procedure for the elastomer substrate.

The elastomer was made from polyisoprene which was cross-linked by curing it

with dicumyl peroxide in toluene. These substrates were placed into a purpose

built ‘strain-rig’ (shown in figure 10.5). The in-built micrometer on the strain

rig was used to apply a controlled strain to the elastomer substrate. A pre-

strain of εpre = 0.025±0.001 was used to prepared the corrugated sample which

is discussed later in this chapter.

10.3.2 Preparing the CA/PVK DBR

Thicker films are more difficult to corrugate when compressing them with a pre-

strained rubber substrate [100, 101, 102]. The PVP/PS DBRs were too thick

(total thickness of ∼ 14µm for a 50 layer sample) to corrugated when using this
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Figure 10.4: Flow diagram illustrating the sample preparation procedure of
a cross-linked polyisoprene elastomer. The elastomer was transferred onto a
strain-rig and stretched. This was used as the ‘pre-strain’ substrate for the
corrugated DBR.
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Figure 10.5: Photograph of the ‘strain rig’ which was used to apply strain to
an elastomer substrate. The elastomer was placed into the sample stage. This
is made from two sections which are interconnected by rails. A micrometer was
used to push the opposing section away. Therefore, the sample stage separates
outward. This stretched and strained the sample as it was ‘opened out’. Fur-
thermore, the scale on the micrometer was used to calculate and control the
applied strain. Turning the micrometer back into its original position enabled
the sample stage to recede back into its unstrained position. This photograph
also shows a DBR which had been corrugated using the strain-rig.

technique. Attempts to corrugate a 50 layer PVP/PS sample resulted in the

films de-laminating from the substrate. A different polymer multi-layer system

had to be used instead.

A DBR was prepared by spin-casting alternating layers of cellulose acetate

(CA) and poly(9-vinylcarbazole) (PVK) [20,103]. The refractive index contrast

between CA and PVK (∆nCA/PV K = 0.201 ± 0.001) was greater than the

refractive index contrast between PVP and PS (∆nPV P/PS = 0.070 ± 0.001).

Fewer layers were needed to prepare a CA/PVK DBR with a reflectance which

was equal to a PVP/PS DBR. The layer thickness of the CA/PVK DBR layers

were approximately four times thinner than the comparable PVP/PS DBR

layers. Each layer in the CA/PVK DBRs had an optical path length of ∼ λ/4,

whereas the optical path length in each PVP/PS layer was ∼ λ.

Figure 10.6 shows a comparison between a PVP/PS DBR and a CA/PVK

DBR reflection spectra. The CA/PVK DBR has a much larger reflection peak

when compared to the PVP/PS DBR. This is due to the CA/PVK sample

having a larger refractive index contrast and the thickness of the layers (dCA =

107 ± 6nm and dPV K = 66 ± 6nm) being much smaller than the coherence

length of reflected light. Decreasing the layer thickness with respect to the
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Figure 10.6: UV/visible reflection spectra of a 50 layer PVP/PS DBR and a
20 layer CA/PVK DBR. The CA/PVK DBR has a much larger reflection peak
due to the layers being thinner and having a larger refractive index contrast.
The increase in band-width is due to the thickness of each layer being much
smaller than the coherence length of the reflected light.
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Figure 10.8: Flow diagram illustrating the DBR being deposited onto the elas-
tomer substrate. The DBR film was bonded to the substrate by heating the
sample for a short duration. Corrugations were created when the strain was
removed from the elastomer substrate. The sample was transferred onto a glass
slide so it could be easily handled during experiments.
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coherence length also increases the bandwidth.

The benefits of using PVP/PS DBRs instead of the CA/PVK DBRs is that

the sample preparation procedure is simpler (discussed later) and the solvents

used are not as damaging to the environment. For example, chlorobenzene is

less environmentally friendly than toluene [104, 105]. Another advantage may

be the narrower reflection band of the PVP/PS DBRs, which may be useful

for narrow-band filtering.

Figure 10.7 shows the sample preparation procedure for CA/PVK DBRs.

Diacetone alcohol was used to dissolve CA into a solution and chlorobenzene

was used to dissolve PVK. A 30 layer CA/PVK sample was prepared for the

experiments discussed later in this chapter. The thickness of the CA and PVK

layers used in the sample were dCA = 123.0± 2.0nm and dPV K = 73.4± 2nm

respectively.

10.3.3 Corrugating the CA/PVK DBR

Figure 10.8 shows a flow diagram of the preparation procedure used to corrugate

the DBR film. A water bath was used to lower the CA/DBR film onto the pre-

strained elastomer substrate. This was then left to dry before heating the

sample for 3 minutes at 110oC to bond the film to the substrate. The sample

was then released from the strain rig. Corrugations in the DBR film emerged

as the elastomer relaxed back to its original shape.

10.4 Physical properties of the corrugated DBR

Figure 10.9 shows a optical microscope image of the corrugated DBR. Each

bright fringe is either a maxima or a minima of the corrugated film. This

micrograph image shows that the corrugations are equally spaced and parallel.

A profileometer was used to measure surface topography of the corrugated

DBR. Measurements were along its path of corrugation (see figure 10.9). The

data-points in figure 10.10 represent the profileometer measurements. The

red sinusoidal curve is an approximation used to calculate the amplitude AC

and corrugation wavelength `C of the sample. These results showed that the

211



Figure 10.9: A ×5 magnification optical microscope image of a 30 layer
CA/PVK DBR which has been corrugated by a pre-strained polyisoprene elas-
tomer. The bright fringes are reflections which are from surfaces orientated
perpendicular to the incident light. Each bright fringe is from the alternate
top and bottom peaks of the corrugated surface. The path of corrugation is
label to clarify that it is in the direction of varying amplitude. This is also
perpendicular to the direction of constant amplitude.
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Figure 10.10: Profilometer measurement of a corrugated CA/PVK DBR (black
data-points). The red curve is a cosine approximation used to determine the
corrugation wavelength (`C = 220± 5µm) and average amplitude (AC = 10±
3µm). The wavelength of the corrugation was relatively periodic. However,
the amplitude of the sample was shown to vary over the surface.
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corrugations are periodic and have a corrugation wavelength of wavelength

`C = 220± 5µm. This is much larger than the wavelength of visible light. The

optical properties discussed later in this chapter are not due to diffraction from

the corrugated surface [10].

The average amplitude of the corrugations was AC = 10±3µm. This was 22

times smaller than `C . The corrugations are very shallow, but are still visible

in the micrograph image (shown in figure 10.9).

10.5 UV/visible properties of corrugated DBRs

The UV/visible reflection properties of two CA/PVK DBR samples (deposited

onto elastomer substrates) were measured and compared with each another.

One of the samples was corrugated and the other sample was not. Both of the

samples were made from 30 layer CA/PVK. The thickness of the CA layers

where dCA = 123.0± 2.0nm and the PVK layers where dPV K = 73.4± 2.0nm.

The reflection spectrum from these samples were measured using the re-

fractometer (discussed in section 4.5.2). The angle of incidence θi is the angle

of the incident light. Likewise, the angle of reflection θr is the angle of the

detector. Both measurements are with respect to the surface normal of the

substrate (not the curvature of the corrugations).

Various experiments were used to measure the optical properties of the

samples. This included;

• Specular reflection: The optical properties of the samples were measured

when the angle of incidence θi and angle of reflection θr were equal.

• Changing measured angle of reflection θr: Off specular measurements of

the corrugated DBR were measured at different angle of reflection θr.

• Changing angle of incidence θi: The reflection properties of the corru-

gated DBR samples were measured when changing the angle of incidence

θi.

• Rotating the sample: The corrugated DBR samples were rotated, which

changed both the angle of incidence θi and reflection θr with respect to the
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Figure 10.11: Reflectance of a 30 layer CA/PVK DBR which was deposited
onto a un-strained elastomer substrate. The sample was measured at θi = θr =
20 ± 1o. UV/visible reflectance spectra was measured (red data-points) using
the reflectometer. Reflectance spectra was also modelled using the modified
optical transfer matrix method (grey curve). The optical properties of the
CA/PVK DBR were not lost when depositing the CA/PVK DBR onto a un-
strained elastomer substrate.

normal of the substrate. However, the angle between θi and θr remained

constant.

The reflectance of the corrugated DBR was also discussed towards the end

of this chapter.

10.5.1 Specular reflection measurements

Figure 10.11 shows the UV/visible reflection spectrum from the flat DBR when

θi = 20 ± 1o (this is a specular reflection measurement so θi = θr = 20 ± 1o).

It was not possible to measure light at normal incidence (θi = 0) as the light

source and spectrometer cannot occupy the same space on the reflectometer
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Figure 10.12: Illustration of the experimental set-up for measuring flat [left
panel] and corrugated [right panel] DBRs. The experiment in this section
measured the specular reflection (θi = θr) from the DBR samples . Results
were measured with respect to the angle of incidence θi.

set-up. This CA/PVK DBR had a larger reflectance (∼ 80%) and broader re-

flection band (∼ 75nm) then the PVP/PS DBRs. The modified optical trans-

fer matrix method was able to model the wavelength position of the reflection

peak by using ellipsometry measurements (data not shown). This experiment

demonstrated that the CA/PVK could be transferred to an elastomer substrate

without significant degradation in reflectance.

The flat PVP/PS DBRs showed iridescence when their angular dependence

was measured in section 5.5. All of the reflections from the flat DBR were

specular and can only be measured when θi = θr. Changing either θi or θr will

misalign the reflected beam and nothing will be measured by the spectrometer.

Figure 10.12 is a diagram of the experimental procedure/set-up. The left

panel is the collimated specular reflection of the flat DBR. The right panel is

reflected light which is scattered over a broad range of different wavelengths.

Both θi and θr are always with respect to the normal of the substrate. Reflection

spectra was measured from both samples for different angles of incidence θi

(between 20o and 70o). The measured angle of reflection θr was also changed

so θi = θr during this experiment.

The specular reflection measurements of the flat CA/PVK DBR (red data-

pints) and corrugated DBR (blue data-pints) are shown in figure 10.13. Both

results showed the wavelength of their reflection peaks blue-shift when θi had

diverged away from the surface normal of the substrate. The angular depen-

dence of both samples (wavelength of the reflection peak) were comparable.
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Figure 10.13: Comparison of the specular reflection measurements (when
θi = θr) of the reflection peak wavelength from a flat CA/PVK DBR (red
data-points) and corrugated DBR (blue data-points). The wavelength of the
reflection band from both samples had blue-shifted when the angle of incidence
diverged away from the normal to the substrate. These two results are com-
parable and were modelled using the modified optical transfer matrix method
(grey curve).
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This was modelled using the modified optical transfer matrix method (grey

line). The model predicted that the longest wavelength of the reflection peak

would have been λ ≈ 610nm. This would occur in both samples if they were

measured at normal incidence θi = 0.

The flat CA/PVK DBR showed the same angular dependence as the PVP/PS

DBRs discussed in section 5.5. Angular dependence was also measured in the

corrugated DBR during specular reflection measurements. All of the measured

spectra in this experiment would have been from the maxima and minima sec-

tions of the corrugated DBR. The surfaces of these small maxima and minima

sections are parallel to the surface plane of the substrate. Hence, the wave-

length properties of these reflection peaks are approximately the same as a

flat DBR. The angular dependence of specular reflections was not improved by

corrugating the DBR.

10.5.2 Changing measured angle of reflection θr

Figure 10.14 shows a diagram of a flat DBR being measured with a reflectome-

ter. The reflection from the sample is specular and can only be measured when

θi = θr. Changing the measured angle of reflection θr, misaligns the set-up and

no reflection spectrum is measured.

Figure 10.15 shows a diagram of a corrugated DBR being measured with

the refractometer. The reflected light was scattered (off specular reflection)

along the direction of corrugation. Reflection spectra was still measured when

changing the measured angle of reflection θr. However, the wavelength of the

measured reflection peak changed.

The corrugated DBR sample was measured at different angles of reflection

θr, with respect to the surface normal of the substrate. Incident light was kept

at a fixed angle of θi = 40o (also with respect to the surface normal of the

substrate) during this experiment. Figure 10.16 shows the measured reflection

spectrum from the corrugated DBR. The top, middle and bottom panels show

the measured reflection spectrum at 60o, 40o and 20o angles of reflection θr

respectively. These results showed the wavelength of the reflection peak red-

shifting when moving the angle of reflection θr closer to the angle to incidence

θi. This is also illustrated in figure 10.17, which is a plot of the wavelength

218



Figure 10.14: [Left panel] An incident collimated light beam at θi reflects off
the sample at an angle of reflection θr. [Right panel] The spectrometer is
moved to a new value of θr. No reflection spectrum is measured as the set-up
is misaligned.

dependence of the corrugated DBR reflection peaks with respect to measured

angle of reflection θr. The measurements are represented by the purple data-

points. This data was also modelled using the modified optical transfer matrix

method (grey curve). The modelled wavelength of the reflection peak was

extracted by substituting the angle of incidence with the following correction,

θModel =
∆θ

2
=
|θr + θi|

2
, (10.2)

Where θModel = angle of incidence used in the model (which should not to be

confused with the angle of incidence with respect to the surface normal of the

substrate θi) and ∆θ = difference between angle of incidence θi and reflection

θr.

The corrugated DBR offers a broad range of angles of incidence with respect

to the curvature of the surface. This curved surface reflects light over a broad

range of angles and at different wavelengths. The measured beam of light,

during the experiment, is reflected from a small section of the corrugated DBR’s

surface. This small section orientated perpendicular to the angle between θi and

θr (shown previously in figure 10.1). The wavelength of the measured reflection

peak was blue-shifted when the angle between θi and θr (∆θ) had increased.

Deviating θr away from θi increases ∆θ, which results in the wavelength of the

measured reflection peak blue-shifting. The model predicted that the longest

wavelength would have occurred if the angle incidence were parallel to the

219



Figure 10.15: [Left panel] A collimated light beam illuminating a corrugated
DBR at θi. A small sample of the reflected light is being measured with the
spectrometer. [Right panel] The wavelength of the measured reflection peak
is red-shifted when the detector θr is moved towards the angle of the incident
light θi.

angle of reflection (∆θ = 0). This would have also been the same wavelength

of the reflection peak (λ ≈ 610nm) if the corrugated DBR were made flat and

measured at normal incidence.

No reflection spectrum was measured from the flat DBR when θi 6= θr (off-

specular). The corrugated DBR was able to reflect light over a broad range of

reflection angles. However, the wavelength of the reflection peak changed with

respect to θr. This is unique to the corrugated DBR, as the same optical prop-

erties were not possible with the flat DBR. Although, there was still angular

dependence in the wavelength of reflection peaks during in this experiment.

10.5.3 Changing angle of incidence θi

Figure 10.18 is a diagram showing incident light reflecting off a flat DBR sam-

ple. The wavelength of the reflected light will red-shift when the light source

approaches normal incidence. However, the reflection is specular, so the beam

path is misaligned by moving the light source. No reflection spectrum is mea-

sured when θi 6= θr.

Figure 10.19 is a diagram of light being reflected by a corrugated DBR.

Reflection spectra was still measured when changing the angle of incidence θi

as the corrugated DBR reflects light over a broad range of angles. However,

changing the angle of incidence also changes the the angle between θi and θr
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Figure 10.16: UV/visible spectrum measured from a corrugated DBR at dif-
ferent angles of reflection θr, which were 60o [top panel], 40o [middle panel]
and 20o [bottom panel]. The angle of incidence was fixed at 40o with respect
to the surface normal of the substrate (see figure 10.15). Moving the angle of
reflection θr closer to the angle of incidence θi red shifts the measured reflection
peak.
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Figure 10.17: The wavelength of the reflection peak was measured with respect
to the angle of reflection θr. Reflection measurements from the corrugated DBR
are represented by the purple data-points. Error bars were determined by the
resolution of the spectrometer. Moving the angle of reflection θr closer to the
angle of incidence θi red-shifted the measured reflection peak (see figure 10.15).
This angular dependence was modelled using the modified optical transfer ma-
trix method (grey curve). The model predicted that the longest wavelength
(λ ≈ 610nm) would have been measured if there were not separation between
the angle of incidence and reflection (∆θ = |θr + θi| = 0).
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Figure 10.18: [Left Panel] The angle of incidence equals the angle of reflection
for a flat DBR (θi = θr). [Right panel] The set-up is misaligned by changing
the angle of incidence θi, but not reflection θr.

Figure 10.19: [Left panel] A corrugated DBR reflecting incident light into a
broad range of angles and wavelengths. [Right panel] The measured reflection
peak is red-shifted when the incident beam θi is moved toward the angle of the
detector θr.
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Figure 10.20: The measured reflection spectrum from a corrugated DBR when
the angle of reflection was kept constant (θr = 40± 1o), while different angles
of incidence θi were tested. The top, middle and bottom captions are plots of
reflection spectrum which were measured at 60o, 40o and 20o angles of incidence
respectively. Moving the angle of incidence θi closer to the angle of reflection
θr red-shifted the wavelength of the reflection peak.
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Figure 10.21: The wavelength of the reflection peak from the corrugated DBR
was plotted with respect to the angle of incidence θi. Measurements are repre-
sented by the blue data-points. Error bars were determined by the resolution of
the spectrometer. The angular dependence was modelled by the modified opti-
cal transfer matrix method (represented by the grey curve). Moving the angle
of incidence θi closer to the angle of reflection θr red-shifted the wavelength of
the reflection peak. This was due to the corrugated DBR offering a wide range
of surfaces to reflect the incident light. The wavelength is its longest when the
two beams are parallel (θi + θr = 0).
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(because θr is constant in this experiment). Section 10.5.2 showed the wave-

length of the reflection peak blue-shift when the angle between and θi and θr

was greater. The experiment in this section tested the optical properties of

the corrugated DBR sample when angle of incidence θi varied and the angle

of reflection was kept fixed θr = 40o. Both θi and θr are with respect to the

surface normal of the substrate (not the curvature of the corrugations).

Figure 10.20 shows the reflection spectrum of the corrugated DBR when the

angle of incidence was 60o (top caption), 40o (middle caption) and 20o (bottom

caption). Moving the angle of incidence θi closer to the angle of reflection θr red-

shifted the wavelength of the reflection peak. This is also shown in figure 10.21,

which is a plot of the wavelength of the reflection peak with respect to angle of

incidence θi. Reflection measurements of the corrugated DBR are represented

by the blue data-points. The angle between θi and θr (∆θ = |θi + θr|) was

used to extract the wavelength of the reflection peak from the modified optical

transfer matrix model (represented by the grey curve in figure 10.21).

Unlike the flat DBR, the reflection spectrum from the corrugated DBR can

still be measured during off specular measurements (when θi 6= θr). However,

the wavelength of the reflection peak changed with respect to θi. This experi-

ment confirmed that increasing angle between θi and θr (∆θ = |θi+θr|) changes

the wavelength of the measured reflection peak. Hence, the wavelength of the

reflection peak from a corrugated DBR is angular dependent when changing

θi.

10.5.4 Rotating the corrugated sample

Figure 10.22 is a diagram of a flat DBR which is being measured as the sample is

being rotated. The angle of incidence θi and the measured angle of reflection θr

are with respect to the surface normal of the substrate. Sample rotation θs was

measured with respect to the original position of the substrate surface plain.

This was when θi = θr with respect to the surface normal of the substrate.

Rotating the sample changes the angles of both θi and θr. Rotating the sample

away from its original position (when θi = θr) misaligns the beam path (θi 6=
θr). The reflected beam diverges away from the spectrometer and the reflection

spectrum is not measured.
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Figure 10.22: [Left panel] A flat DBR reflecting a beam of light. [Right panel]
The flat DBR is rotated, which changes the angle of incidence and reflection.
Changing the angle of incidence also changes the wavelength of the reflected
beam, which cannot be detected since the set-up is misaligned.

Figure 10.23: [Left panel] A corrugated DBR reflecting light over a broad
range of angles and wavelengths. [Right panel] The distribution of the reflected
wavelengths remains unchanged. Therefore, changing the orientation of the
sample does change the wavelength of the reflection band measured at θr.
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Figure 10.24: The measured spectra when the sample was rotated. The orienta-
tion of the sample θs is with respect to its original position when θi = θr = 40o.
Rotating the sample changes the magnitude of θi and θr with respect to the sur-
face normal of the substrate. However, the angle between θi and θr remained
constant at ∆θ = 80o. Reflection spectrum was measured when the sample
was rotated −20o (top caption), 0o (middle caption) and 20o (bottom caption)
from its original position. The wavelength of the reflection band did not change
when the sample was rotated. Angular dependence of the corrugated DBR was
removed during this experiment.
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Figure 10.25: Wavelength of the reflection peak with respect to the sample
rotation angle θs. The angle between the incident and the reflected light was
kept constant at ∆θ = 80o. The sample was at its original position when θi =
θr = 20o. Measurements are represented by the red data-points. Errors were
determined by the resolution of the UV/visible spectrometer. The grey line
represents the modelled data. Rotating the sample did not significantly change
the wavelength of reflection peak. This demonstrates that the wavelength of
the reflection peak from a corrugated DBR is not angular dependent when it
is rotated.
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Figure 10.23 is a diagram of a corrugated being measured as it is being

rotated. Unlike the flat DBR, reflection spectra from the corrugated DBR can

still be measured when the sample is rotated. This is due to the broad range of

reflections from the curvature of the corrugations. Previous experiments (see

sections 10.5.2 and 10.5.3) showed that the wavelength of the reflection peaks

had blue-shifted when θr deviated away from θi and vice versa. However, the

angle between the incident and reflected light is constant when only the orien-

tation/angle of the sample is rotated (∆θ = |θr − θi| = constant). Although,

the angles of both θi and θr are changed with respect to the surface normal of

the substrate when the sample is rotated (see figure 10.23).

Figure 10.24 shows three plots of the measured reflection spectrum from

the corrugated DBR when it was being rotated. The angle between the inci-

dent and reflected light were ∆θ = |θr − θi| = 80o during these measurements.

The reflection spectrum was measured when the sample was rotated −20o (top

panel), 0o (middle panel) and 20o(bottom panel). The wavelength of the re-

flection peak stayed constant λ = 557 ± 2nm during this experiment. Figure

10.25 showed the same result for more measurements (red data-points) of the

same experiment. The grey curve is the modelled wavelength with respect to

the orientation of the sample. All of the modelled data remained constant as

the angle between θi and θr was constant.

The beam path from a flat DBR is misaligned when it is rotated, where

as the curvature of the DBR reduces misalignment. A corrugated DBR has

a broad distribution of angled reflection surfaces due to its curvature. This

curvature is not lost when the sample is rotated. There are surfaces which

reflect incident light θi at a reflection angle of θr, even when the sample is

rotated. Furthermore, the wavelength of the reflection band from a corrugated

DBR remains constant when the sample is rotated. The angular dependence of

the reflection band wavelength was reduced when rotating a corrugated DBR.

10.6 Reflectance of the corrugated DBR

The reflectance of the corrugated DBRs were significantly less than the flat

DBRs. Both the flat and the corrugated DBRs were made from 30 alter-

nating layers of CA/PVK. Reflectance of the the reflection peaks from the flat
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Figure 10.26: Change in the reflectance of a corrugated DBR when it is rotated.
The angle between the incident was reflected light was kept constant during this
experiment (∆θ = 40o). The sample was in its ‘original position’ (θs = 0) when
the angle of incidence and reflection were both θi = θr = 20o with respect to the
surface normal of the substrate. Measurements are represented by the data-
points and the errors were determined by the resolution of the spectrometer.
The grey curve is a quadratic polynomial fit. Rotating the corrugated DBR
away from its original position θs 6= 0 reduced the reflectance of the measured
reflection peak.
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DBR (when deposited onto an elastomer substrate) were approximately ∼ 80%.

However, the reflectance of the reflection peaks form the corrugated DBR were

approximately ∼ 5.5% for similar experiments. Furthermore, the reflectance of

the corrugated DBR’s reflection peak decreased when off specular reflections

were being measured.

Figure 10.26 is a plot of the measured reflectance from the corrugated DBR

with respect to the sample rotation angle θs. The angular separation between

the angle of incidence and reflection was constant (∆θ = 40o) during this

experiment. However, the angle of incidence and reflection were not equal

θi 6= θr (with respect to the surface normal of the substrate) when the sample

was rotated (θs 6= 0). The measurements were off-specular and the reflectance

reduced when θs 6= 0.

A corrugated DBR is approximately flat when the amplitude of the corruga-

tions approach zero (Ac → 0) and the wavelength tends to infinity (`c → ∞).

All of the incident light remains collimated when it is reflected. Whereas a

corrugated DBR reflects light over a wider area. The intensity (power per unit

area) is reduced as the light is measured further away from the sample (so

energy is conserved [10].

The reflectance in figure 10.26 was its largest when the measured reflection

was specular. This was due to the DBR being relatively shallow (Ac � `c),

which keeps specular reflection intensity high and scattered intensity low. In-

creasing the curvature in the sample (Ac ≈ `c) would most likely reduce/increase

the intensity of the specular/non-specular reflections respectively. However,

this was not tested and more experiments would be needed to make a thor-

ough conclusion.

10.7 Summary

The reflection from a flat DBR is specular and can only be measured when

θi = θr. A corrugated DBR reflects incident light over a wide distribution of

angles. However, angular dependence was still present in the corrugated DBR

when ∆θ = |θr+θi| had changed. Although, these optical properties are unique

to the corrugated DBR as there are no off-specular reflections from a flat DBR.
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The angular dependence when rotating a DBR was reduced by corrugating

the multi-layer film. Wavelength of the reflection peak remained constant when

the sample was being rotated. This was due to the curvature of the corrugated

surface, offering a broad range of angles of incidence and reflection. Rotating

the sample does not change this property of the corrugated DBR surface. Mea-

suring the reflection spectrum from a flat DBR is only possible when θi = θr.

Rotating a flat DBR would misalign the beam path (θi 6= θr) and no reflectance

would be measured.

The corrugated DBR could be useful in optical devices such as light emitting

displays [4] and solar cells [8]. Although, placing the corrugated DBR on top

of a flat device may not be very useful. This is discussed by using an LED as

an example. The angular dependence of the corrugated DBR would only be

removed when the angle between LED (light source) and the observer (detector)

is constant. This is not practical as someone may not want to be directly in

front of the display. However, corrugating a flexible organic LED with the DBR

may be a better solution. The LED would be encapsulated within a resonant

cavity over a wide range of angles. A more thorough investigation would be

needed to test if this technique would work.
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Chapter 11

Conclusion and future work

Distributed Bragg reflectors were made by routinely spin-coating alternating

polymer layers. Reflection bands were measured in both the UV/visible [84]

and the infra-red [91] wavelengths. The wavelength positions of the reflection

bands were easily changed by controlling the rotation speed of the spin-coater

during sample preparation. Reflectance of the reflection bands was controlled

by the number of layers deposited. Broadening of the reflection band was also

possible by periodically increasing the thickness of layers (chirping) during sam-

ple preparation. All of these variables were controlled when preparing samples

with a self-built automated spin-coater [84]. Furthermore, the polymers and

solvents used to prepare samples are commonly available and cheap.

The benefits of this system are that the optical properties of the samples

can be readily changed. Preparation of other polymer photonic structures,

such as using block-copolymers or colloids [19, 37, 38], do not have the high

level of control for all of the variables discussed throughout this thesis. This

is due to the specific properties of the block-copolymers or colloids restricting

the variation possible when preparing samples. It is difficult to change the

bandwidth of the reflection peak, for example, since all of the units making the

photonic structure are of a fixed size.

There are already pre-existing all-polymer Bragg reflectors, such as the

CA/PVK DBRs [20, 103]. However, the PVP/PS DBR samples in this thesis

are cheap and require less harmful solvents for sample preparation (toluene is

less harmful to the environment than chlorobenzene [104, 105]). The PVP/PS

DBRs were also shown to have controllable reflection bands in the infra-red [91],
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which could be useful for applications such as telecommunications [10,22].

Neutron reflectivity and the remeasured UV/visible spectra from old sam-

ples, had shown that there was trapped solvent the PVP/PS DBR samples

from their preparation. This was also determined when modelling the opti-

cal properties of the DBR, using a modified optical transfer matrix method.

The modelled reflection spectrum was compared to the measurements and im-

proved by lowering the refractive index contrast between the polymer layers.

However, it was not possible to measure the quantity of solvent lingering in the

multi-layer. I would suggest focusing on improving sample preparation, rather

than researching techniques to improve the model. Spending time modelling

the optical properties of defective samples wouldn’t lead to results which would

progress this research further. The residual solvent was an unwanted problem

which should have been removed. Annealing the DBRs above the glass transi-

tion temperature of PVP (Tg = 170oC) burned the samples. Other techniques

should be investigated further (like periodically annealing the sample).

Sample quality was improved by annealing the DBR periodically during its

preparation (approximately after every 20 layers were deposited). More layers

which contributed to the total reflectance could be added to the sample. The

exact reasons for why more layers could be added to the sample are not yet

thoroughly understood. Testing the limits of large multi-layered structures may

be useful for other applications such as polymer electronics, sensors, organic

LEDs and organic solar cells are currently being prepared using multi-layered

structures [5,27,106]. These devices could be integrated on top of one another

to save space [50]. Understanding the limits of stacked multi-layer polymer

structures may help make more complex all polymer integrated devices.

Other sample preparation techniques may be more useful for large scale

multi-layer production than spin-coating. For example, melt processing [44],

roll to roll processing [64] and screen printing [107] are alternative techniques

which can produce thin film structures over a large scale. Any mass production

of these DBR should be tested using these manufacturing techniques to reduce

costs further. However, sample quality should be maintained and tested by us-

ing techniques such as ellipsometry, AFM, TOF-SIMS and neutron reflectivity.

Corrugating the Bragg reflectors did improve their angular dependence.

However, this was only the case when rotating the sample. Angular dependence
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was still measured when changing the separation between the angle of incidence

and/or reflection. More experiments would be needed to see if corrugated DBRs

would be useful for applications such as displays and solar cells.

TOF-SIMS measurements showed that the thickness of the layers in the

PVP/PS multi-layer were reproducible and could be controlled. The resolu-

tion of the TOF-SIMS set-up did have errors as large as ∼ 20nm. However,

the Ar2000
+ etching beam was shown to be far superior then other systems.

Especially since the beam was etching through a ‘challenging polymer’ which

is susceptible to cross-linking [78]. The PVP/PS DBRs could be used to test

the Ar2000
+ sputter beam further. For example, do you get a better resolution

when the ion beam is fired with less energy?

The multi-layer PVP/PS samples could also be used to calibrate other

sputtering analysis techniques, such as Plasma Assisted Desorption Ionisation

(PADI) [108]. This technique functions by etching the surface of a sample

with plasma (which is created in ambient atmosphere). Ionised particles are

sputtered off the sample and measured using a mass spectrometer.

The multi-layer structure of polymer DBRs could also be used as gigahertz

acoustic devices. Changes in the density of the polymer layers would create

an interface. The multi-layer structure would reflect phonon, which is compa-

rable to when the Bragg reflector reflects photons. These acoustic multi-layer

structures could be used as gigahertz acoustic mirrors [109,110].

Further development of the DBR samples could be investigated by inte-

grating them into optical devices. This includes creating photonic cavities to

improve the efficiency of displays [4, 5], lasers [6, 7] and solar cells [8, 9]. It

also includes etching all-polymer optical devices into 2D photonic structures to

improve their efficiency [16]. However, the reflectance of the Bragg reflectors

would need to be greater than 99% [43]. This would be achieved by improving

sample preparation further, or replacing one of the polymers with an alterna-

tive. The replacement polymer should increase the refractive index contrast of

the polymer layers. Another alternative may be preparing samples with layers

of thickness λ/4, which may require a different polymer system or preparation

technique. Switching to a different polymer system, like the CA/PVK DBRs,

may be a better solution when integrating polymer DBRs into devices.

236



Bibliography

[1] Mitsuteru Kimura et. al. Tunable multilayer-film distributed-bragg-

reflector filter. Journal of Applied Physics, 50(3):1222–1225, 1976.

[2] Richard Lytel et. al. Narrowband electrooptic tunable notch filter. Ap-

plied Optics, 25(21):3889–3895, 1986.

[3] V. Mullonia et. al. Porous silicon microcavities as optical chemical sen-

sors. Applied Physics Letters, 76(18):2523, 2525 2000.

[4] Ali M. Adawi et. al. Improving the light extraction efficiency of red-

emitting conjugated polymer light emitting diodes. Journal of Applied

Physics, 99, 2006.

[5] Franky So, editor. Organic Electronics: Materials, Processing, Devices

and Applications. CRC Press, 2010.

[6] H. Takeuchi et. al. Single mode lasing in polymeric distributed-feedback

structure formed on inorganic distributed bragg reflector. Laser Physics

Letters, 5(1):41–44, 2007.

[7] Simon Hooker and Colin Webb. Laser Physics. Oxford master series in

atomic, optical, and laser physics. Oxford University Press, 2010.

[8] Silvia Colodrero et. al. Porous one-dimensional photonic crystals improve

the power-conversion efficiency of dye-sensitized solar cells. Advanced

Materials, 21:764–770, 2009.

[9] Frederik C. Krebs. Fabrication and processing of polymer solar cells: A

review of printing and coating techniques. Solar Energy Materials and

Solar Cells, 93:394–412, 2009.

[10] Eugene Hecht. Optics. Addison Wesley, 4th (international) edition, 2002.

237



[11] Terry A. King F. Graham Smith and Dan Wilkins. Optics and Photonics

An Introduction. Wiley & Sons, 2007.

[12] S Kinoshita et. al. Physics of structural colors. Rep. Prog. Phys., (71),

2008.

[13] Geoffrey Brooker. Modern Classical Optics. Oxford University Press,

2002.

[14] Lukas Novokny and Bert Hecht. Principles of nano-optics. Cambridge

University Press, 2006.

[15] A.L. Álvarez et. al. Polymeric multilayers for integration into photonic

devices. Thin Solid Films, 443:277–280, 2003.

[16] Thomas F. Krauss et. al. Photonic crystals in the optical regime * past,

present and future. Progress in Quantum Electronics, 23:51–96, 1999.

[17] Richard A. L. Jones. Soft Machines - Nanotechnology and life. 1. Oxford

University Press, 2007.

[18] Richard A. L. Jones. Soft Condensed Matter. Oxford Master Series in

Condensed Matter Physics. Oxford University Press, 1 edition, 2002.

[19] Andrew J. Parnell et. al. Continuously tuneable optical filters from self-

assembled block copolymer blends. Soft Matter, 9:3721–3725, 2011.

[20] Toshiyuki Komikado et. al. Surface-emitting distributed-feedback dye

laser of a polymeric multilayer fabricated by spin coating. Applied Physics

Letters, 89(061123), 2006.

[21] Mathias Kolle et. al. Bio-inspired band-gap tunable elastic optical mul-

tilayer fibers. Adv. Mater, 25:2239–2245, 2013.

[22] Hamid Esmaeilzadeh et. al. A broadband optical fiber based inline polar-

izer for telecom wavelength range. Sensors and Actuators A, 185:59–65,

2012.

[23] Anna M. Belu et. al. Tof-sims characterization and imaging of controlled-

release drug delivery systems. Analytical Chemistry, 72(22):5625–5638,

2000.

238



[24] Gregory L. Fisher et. al. Three-dimensional time-of-flight secondary ion

mass spectrometry imaging of a pharmaceutical in a coronary stent coat-

ing as a function of elution time. Analytical Chemistry, 81(24):9930–9940,

2009.

[25] Basudam Adhikari et. al. Polymers in sensor applications. Progress in

Polymer Science, 29:699–766, 2004.

[26] Jeroen K. J. van Duren et. al. Relating the morphology of poly(p-

phenylene vinylene)/mathanofullerene blends of solar-cell performance.

Advanced Functional Materials, 14(5):425–434, 2004.

[27] Mark Geoghegan and Georges Hadziioannou. Polymer Electronics. Ox-

ford Mater Series in Condensed Matter Physics. Oxford University Press,

2013.

[28] Greg Haugstad. Atomic Force Microscopy : Understanding Basic Modes

and Advanced Applications. Wiley, 2012.

[29] J. R. Hook & H. E. Hall. Solid State Physics. Wiley & Sons, 2nd edition

edition, 2006.

[30] Pete Vukusic et. al. Photonic structures in biology. Nature, 424:852–655,

2003.

[31] Andrew Richard Parker. 515 million years of structural colour. Journal

of Optics A, 2:R15–R28, 2000.

[32] P. Vukusic et. al. Quantified interference and diffraction in single morpho

butterfly scales. Proceedings of the Royal Society B, 266:1403–1411, 1999.

[33] P. Vukusic et. al. Physical methods for investigating structural colours in

biological systems. Journal of the Royal Society Interface, 6:S133–S148,

2009.

[34] Chinkyo Kim et. al. Critical thickness of gan thin films on sapphire

(0001). Applied Physics Letters, 69(16):2358–2360, 1996.

[35] Jongseung Yoon. Defect-mode mirrorless lasing in dye-doped or-

ganic/inorganic hybrid one-dimensional photonic crystal. Applied Physics

Letters, 88(091102), 2006.

239



[36] Thomas Krauss et. al. Two dimensional photonic-bandgap structures

operating in near-infrared wavelengths. Nature, 383:699–702, 1996.

[37] Alvaro Blanco et. al. Large-scale synthesis of a silicon photonic crystal

with a complete three-dimensional bandgap near 1.5 micrometres. Na-

ture, 405:437–440, 2000.

[38] Toshimitsu Kanai et. al. New route to produce dry colloidal crystals

without cracks. Langmuir, 25(23):13315–13317, 2009.

[39] Mark G. Scullion et. al. Slotted photonic crystal sensors. Sensors,

13:3675–3710, 2013.

[40] E. Yablonovitch et. al. Photonic band structure: The face-centered-cubic

case employing nonspherical atoms. Physical review letters, 67(17):2295–

2298, 1991.

[41] Kanna Aoki et. al. Three-dimensional photonic crystals for optical

wavelengths assembled by micromanipulation. Applied Physics Letters,

81(17):3122–3124, 2002.

[42] Pater Bermel et. al. Improving thin-film crystalline silicon solar cell effi-

ciencies with photonic crystals. Optics express, 15(25), 2007.

[43] H. Sakata et. al. Green-emitting organic vertical-cavity laser pumped by

ingan-based laser diode. Electronics Letters, 43(25), December 2007.

[44] Kenneth D. Singer. Melt-processed all-polymer distributed bragg reflec-

tor laser. Optics Express, 19(16), 2011.

[45] Y S Zhao et. al. Efficiency enhancement of ingan/gan light-emitting

diodes with a back-surface distributed bragg reflector. Journal of Elec-

tronic Materials, 32(12), 2003.

[46] Ali M. Adawi et. al. Spontaneous emission control in micropillar cavities

containing a fluorescent molecular dye. Advanced Materials, 18:742–747,

2006.

[47] Gert Strobl. The Physics of Polymers. Springer, 3rd edition, 2007.

[48] F. Haaf et. al. Polymers of n-vinylpyrrolidone: Synthesis, characterization

and uses. Polymer Journal, 17(1):143–152, 1985.

240



[49] Michael Clugston and Rosalind Flemming. Advanced Chemistry. Oxford

University Press, 2000.

[50] David Voss. Cheap and cheerful circuits. Nature, 407:442–444, Sept 2000.

[51] R.M.A. Azzam and N.M. Bashara. Ellipsometry and polarized light. El-

sevier Science, 3rd edition, 1996.

[52] Charalambos C. Katsidis et. al. General transfer-matrix method for opti-

cal multilayer systems with coherent, partially coherent, and incoherent

interference. Applied Optics, 41(19):3978–3987, 2002.

[53] Klaus Halbach. Matrix representation of gaussian optics. American Jour-

nal of Physics, 32(90), 1964.

[54] H.E. Bennett et. al. Relation between surface roughness and specular re-

flectance at normal incidence. Journal of the Optical Society of America,

1961.

[55] Michihiro Furusaka & Naoya Torikai Toyoko Imae, Toshiji Kanaya, edi-

tor. Neutrons in Soft Matter. Wiley & Sons, 1 edition, 2001.

[56] Multilayer Thin Films. Wiley-VCH, 1 edition, 2003.

[57] K. Norrman et. al. 6 studies of spin-coated polymer films. Annu. Rep.

Prog. Chem., Sect. C,, 101:174–201, 2005.

[58] Jinhan Cho et. al. Fabrication of highly ordered multilayer films using a

spin self-assembly method. Advanced Materials, 13(14):1706–1708, July

2001.

[59] D. E. Bomside et. al. Spin coating: One-dimensional model. Journal of

Applied Physics, 66(11):8158–5193, 1989.

[60] Andreas M’́unch et. al. Spin coating of an evaporating polymer solution.

Physics of Fluids, 23(102101), 2011.

[61] Marco Maccarini. Surface and Interface Properties of Industrially Rele-

vant Polymers. PhD thesis, University of Sheffield, Department of Physics

and Astronomy, 2002.

241



[62] Kenneth E. Strawhecker et. al. The critical role of solvent evaporation on

the roughness of spin-cast polymer films. Macromolecules, 34(14):4669–

4672, 2001.

[63] Alexander A. Zakhidov et. al. Hydrofluoroethers as orthogonal solvents

for the chemical processing of organic electronic materials. Advanced

Materials, 20:3481–3484, 2008.

[64] Roar Sondergaard et. al. Roll-to-roll fabrication of polymer solar cells.

Materials Today, 15(1-2):36–49, 2012.

[65] E.A. Grulke J. Brandrup, E.H. Immergut, editor. Polymer Handbook.

Wiley Press, 1999.

[66] Soney C. George et. al. Transport phenomena through polymeric systems.

Progress in Polymer Science, 26:1985–1017, 2001.

[67] Harland G. Tompkins and William A. McGahan. Spectroscopic Ellipsom-

etry and Reflectometry. Wiley-Interscience, 1999.

[68] C. M. Herzinger et. al. Ellipsometric determination of optical con-

stants for silicon and thermally grown silicon dioxide via a multi-sample,

multi-wavelength, multi-angle investigation. Journal of applied physics,

83(6):3323–3336, March 1998.

[69] Peter R. Griffiths & James A. de Haseth. Fourier transfor infrared spec-

trometry, volume 83. Wiley interscience, 1986.

[70] Barbara Stuart. Infrared Spectroscopy : Fundamentals and Application.

Wiley, 1 edition, 2004.

[71] B. T. M. Willis & C. J. Carlile. Experimental neutron scattering. Oxford

University press, 1 edition, 2009.

[72] J Penfold et. al. The application of the specular reflection of neutrons to

the study of surfaces and interfaces. J. Phys., Condens. Matter, 2:1369–

1412, 1990.

[73] Arfken Weber. Mathematical Methods for Physicists. Elsevier Academic

Press, 6 edition, 2005.

242



[74] Andrew Nelson. Co-refinement of multiple-contrast neutron/X-ray re-

flectivity data using MOTOFIT. Journal of Applied Crystallography,

39(2):273–276, April 2006.

[75] John C. Vickerman. Surface Analysis: The principal tehniques. John

Wiley & Sons, 2003.

[76] Kakan Nygren et. al. Bioimaging tof-sims: High resolution 3d imaging

of single cells. Microscopy Research and Technique, 70:969–974, 2007.

[77] Christine M. Mahoney et. al. Temperature-controlled depth profiling

in polymeric materials using cluster secondary ion mass spectrometry

(sims). Applied Surface Science, 252:6502–6505, 2006.

[78] Rasmus Havelund et. al. Improving secondary ion mass spectrometry c60

n+ sputter depth profiling of challenging polymers with nitric oxide gas

dosing. American Chemical Society, 2013.

[79] Ian S. Gilmore. Sims of organics:advances in 2d and 3d imaging and

future outlook. Journal of Vacuum Science and Technology: A, 31(5),

2013.

[80] J. L. S. Lee et. al. Organic depth profiling of a nanostructured delta layer

reference material using large argon cluster ions. Analytical Chemistry,

82(1):98–105, 2010.

[81] Alexander G. Shard et. al. Argon cluster ion beams for organic depth pro-

filing: Results from a vamas interlaboratory study. Analytical Chemistry,

84:7865–7873, 2012.

[82] John C. Vickerman and David Briggs. TOF-SIMS Surface Analaysis By

Mass Spectrometry. IM Publications, 2001.

[83] V. T. Cherepin. Secondary Ion Mass Spectroscopy of Solid Surfaces. VNU

Science Press BV, 1987.

[84] James Bailey et. al. Thin film polymer photonics: Spin cast distributed

bragg reflectors and chirped polymer structures. European Physical Jour-

nal E, 33:41–49, 2010.

243



[85] David Ennis et. al. Direct spincasting of polystyrene thin films onto

poly(methyl methacrylate). J Polym Sci Part B: Polym Phys, 44:3234–

3244, August 2006.

[86] Richard A. L. Jones. Polymers at surfaces and interfaces. Cambridge

University Press, 1999.

[87] J.M.H.M. Scheutjens T. Cosgrove G. J. Fleer, M. A. Cohen Stuart and

B. Vincent. Polymers at Interfaces. Chapman and Hall, 1st edition, 1993.

[88] Rita Mehra. Application of refractive index mixing rules in binary sys-

tems of hexadecane and heptadecane with n-alkanols at different tem-

peratures. Proc. Indian Acad. Sci. (Chem. Sci.), 115(2):147154, April

2003.

[89] J Perlich et. al. Solvent content in thin spin-coated polystyrene homopoly-

mer films. Macromolecules, 42(1):337–344, 2009.

[90] Andrii Buvailo at. al. Thin polymer film based rapid surface acoustic

wave humidity sensors. Sensors and Actuators B: Chemical, (156):444–

449, 2011.

[91] James Bailey et. al. Infrared dielectric mirrors based on thin film multilay-

ers of polystyrene and polyvinylpyrrolidone. Journal of Polymer Science

Part B: Polymer Physics, 49:732–739, 2011.

[92] Yuri Borodko et. al. Probing the interaction of poly(vinylpyrrolidone)

with platinum nanocrystals by uv-raman and ftir. Journal of Physical

Chemistry B, 110:23052–23059, 2006.

[93] Gerald Oster et. al. Ultraviolet and infrared spectral studies of

polyvinylpyrrolidone. Journal of American Chemical Society, 76(5):1393–

1396, 1954.

[94] Sarah E. Caudill et. al. Interferometric measurements of refractive index

dispersion in polymers over the visible and near-infrared spectral range.

Journal of Applied Polymer Science, 100:65–72, 2006.

[95] Olivier Félix et. al. Are sprayed lbl-films stratified? a first assessment of

the nanostructure of spray-assembled multilayers by neutron refectome-

try. C. R. Chimie, 12:225–234, 2009.

244



[96] R. N. S. Sodhi et. al. Analysis of ink/coating penetration on paper sur-

faces by time-of-flight secondary ion mass spectrometry (tof-sims) in con-

junction with principal component analysis (pca). The Journal of Adhe-

sion, 84(3):277–292, 2008.

[97] James Sharp et. al. Mechanically driven wrinkling instability in thin film

polymer bilayers. Physical review E, 75(011601), 2007.

[98] N. Gibbons et. al. Corrugated metallodielectric superlattices via release-

rollup assembly. Optical Society of America, 19(16), 2011.

[99] Gen Kamita et. al. Multilayer mirrored bubbles with spatially-chirped

and elastically-tuneable optical bandgaps. Optics express, 20(6):4430–

4434, 2012.

[100] Chi-Mon Chen et. al. Wrinkling instabilities in polymer films and their

applications. Society of Chemical Industry, 61:1041–1047, March 2012.

[101] Kevin R. Langley et. al. Microtextured surfaces with gradient wetting

properties. Langmuir, 26(23):18349–18356, 2010.

[102] J. Song et. al. International journal of solids and structures. Buckling of

a stiff thin film on a compliant substrate in large deformation, 45:3107–

3121, 2008.

[103] Multi layered mirrors fabricated by spin-coating organic polymers.

Toshiyuki komikado. Thin Solid Films, 2007.

[104] Sigma Alrich Materials Safety Data Sheet. Toluene (hplc grade). Revision

date: 04.02.2013.

[105] Sigma Alrich Materials Safety Data Sheet. Chlorobenzene (hplc grade).

Revision date: 04.12.2012.

[106] Stephen R. Forrest. The path to ubiquitous and low-cost organic elec-

tronic appliances on plastic. Nature, 428:911–918, 2004.

[107] Anke Teichler et. al. Inkjet printing of organic electronics comparison

of deposition techniques and state-of-the-art developments. Journal of

Materials Chemistry C, 1:19101925, 2013.

245



[108] A. Boweld et. al. Surface analysis using a new plasma assisted desorp-

tion/ionisation source for mass spectrometry in ambient air. Review of

scientific instruments, 2012.

[109] David J. Farmer et. al. Quantized phonon modes in loaded polymer films.

Journal of applied physics, 113(033516), 2013.

[110] P. M. Walker et. al. Coherent elastic waves in a one-dimensional polymer

hypersonic crystal. Aplied Physics letters, 97(073106), 2011.

246


