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! Abstract!
 

Hyperpolarized 83Kr has previously demonstrated MRI contrast that 

is sensitive to the chemical composition of the surface in a porous model 

system. One-dimensional nuclear magnetic resonance spectroscopy of 

hyperpolarized 83Kr has also revealed distinctive longitudinal relaxation 

times from selected regions of an ex vivo rat lung originating from 

differences in surface to volume ratio. However, at the time, MRI using 

longitudinal relaxation for contrast was not attempted due to limited signal 

intensities.  

Methodological advances of the spin exchange optical pumping 

process have led to a substantial increase in the 83Kr hyperpolarization and 

the resulting signal intensity. This methodology originates from a below-

ambient pressure hyperpolarization technique explored and developed in 

this work. Using the improved methodology for spin exchange optical 

pumping of isotopically enriched 83Kr has resolved anatomical details of ex 

vivo rodent lungs using hyperpolarized 83Kr MRI for the first time. 

Different 83Kr longitudinal relaxation times were found between the main 

bronchi and the parenchymal regions of the lung. The T1 weighted 

hyperpolarized 83Kr MRI provided the first demonstration of surface 

quadrupolar relaxation pulmonary MRI contrast. 
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Novel hyperpolarization techniques of 129Xe have also been explored 

resulting a study into the combustion process of methane. Using 129Xe as a 

probe into the combustion process permitted the first in situ MRI of 

combustion and enabled spatial-velocity profiles.  
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! Chapter!1:!Introduction!!
1.1 Motivation*

There has been limited development in the diagnoses and treatment of 

pulmonary diseases in the past few decades. The lack of advancements can be 

seen in the prevalence of respiratory conditions, which in 2001 were found to 

be three of the top five causes of death in high-income countries [1]. 

Furthermore, respiratory related deaths are currently on the rise. For example, 

the prevalence of chronic obstructive pulmonary disease (COPD) has increased 

in the United Kingdom [2] and the United States of America [3], and is 

projected to become the third leading cause of death worldwide by 2020 [4].  

One reason that the prevalence of lung diseases is increasing stems 

from the delicate nature of the organ. The lung maintains a balance of 

maximizing the surface area, for gas exchange during respiration, while 

minimizing supporting tissue to efficiently utilize limited space [5]. Disruptions 

to this balance leads to a multitude of conditions that are known to affect the 

lungs, airways, and breathing processes making the organ prone to various 

diseases of numerous origins. Major contributing factors to lung diseases, 

including but not limited to COPD, are subject to environmental influences 

such as inhalation of tobacco smoke [6] which is increasing in many 

developing nations [7]. Additionally, the global decline of deaths related to 

infections has led to an increase in chronic diseases, such as COPD, which 

develop gradually and are increasingly prevalent in the aging world population 

[4, 8-10].  
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With the growing prevalence of lung related diseases, improved tools to 

diagnose and evaluate progression of the diseases are necessary. Unfortunately 

the most developed imaging techniques for evaluating lung function involve 

ionizing radiation in scintigraphy (and other techniques that require the use of a 

radionuclide such as single-photon emission computed tomography and 

positron emission tomography) or high-resolution X-ray computed 

tomography. The invasive natures of these imaging modalities prevent 

prolonged studies that can track disease progression. Therefore, diagnoses and 

treatment of respiratory diseases such as COPD, asthma, and pulmonary 

fibrosis could greatly benefit from the existence of an accurate biomarker that 

does not require harmful ionizing radiation to observe not only disease 

progression but also the legitimacy of drug administration. 

1.2 Lung*MRI*using*hyperpolarized*noble*gases*

1.2.1 Imaging!using!3He!and!129Xe!
Magnetic resonance imaging (MRI) is a possible non-invasive tool 

to explore pulmonary diseases. However, conventional MRI of the 

pulmonary system is challenging because low proton density in the lung 

[11]. Very short relaxation times caused by magnetic field variations at the 

air-tissue interface also strain common imaging techniques [12-14]. 

Continued effort to overcome the fast relaxation has greatly improved image 

quality [11, 15, 16], however, the fundamental problem comes from the fact 

that conventional proton MRI cannot image the airspaces in the lung [17]. 

An alternative method has been developed where a noble gas is inhaled into 

the lung and the gas itself is imaged; this requires hyperpolarization 

techniques that increase MRI signal intensity of the gas before inhalation. 

Hyperpolarized 3He [18] and hyperpolarized 129Xe [19] are possible contrast 
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agents that allow for resolved measurement of lung ventilation and function 

through various MRI protocols.  

The use of hyperpolarized noble gases for pulmonary MRI enables 

high-resolution ventilation images. Improvements in signal intensities are 

apparent in Figure 1.1 where the image of hyperpolarized 3He (Figure 1.1A) 

reveals significant lung structure and the conventional proton image has 

limited information of the region (Figure 1.1B).  

 

 

Figure 1.1. Comparison between (A) a hyperpolarized 3He image and (B) a 

conventional proton image. Figure courtesy of ref. [20].  

 

Ventilation images have helped with understanding lung structure 

and reveals ventilation defects in advanced stages of pulmonary diseases 

[21-23] but struggle to provide justification for wide spread implementation 

over commonly performed, much less expensive, spirometric tests for lung 

function. Therefore, the development of hyperpolarized noble gases is not 

solely the pursuit of higher signal intensities that lead to higher resolution 

ventilation images but also a search for techniques that acquire additional 

functional information from the lung. 
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 One method to extract functional information is to exploit the high 

diffusivity of 3He for contrast relating to abnormities in alveolar lung 

structure by observing the apparent diffusion coefficient (ADC) [24-27]. 

ADC measurements probe the distance that 3He can diffuse over the 

acquisition time by observing transverse relaxation that occurs from the 

movement of 3He in an externally applied (pulsed) magnetic field gradient. 

The root mean square distance that the atom may freely move along a single 

axis is determined by the diffusion coefficient (D) and the time allowed for 

diffusion (t) as shown by ΔX = 2Dt . In the case of restricted diffusion, 

where the characteristic length of the container (i.e. the size of the pore) is 

less than ΔX, collisions with the pore wall reduce the permitted diffusion 

thereby measuring the effective diffusivity (apparent diffusion). Human 

lungs are a system with restricted diffusion for 3He and ADC can probe the 

alveolar size and gain insight into the network of alveolar ducts [24]. This 

technique is useful for lung diseases such as emphysema where the altered 

alveoli architecture can be observed [24, 28, 29] and quantified [30]. A 

spin-tagging method [31] may be used to further increase the distance that 

can be probed by 3He allowing measurement of convection during 

inhalation and exhalation. 

In addition to ADC experiments, 3He can investigate lung function 

through partial pressure measurements of pulmonary oxygen [32-34]. These 

measurements are possible because longitudinal relaxation of 3He in the 

presence of O2 is well understood [35] and O2 is the principal cause for 3He 

relaxation in lung imaging experiments [36]. Spatially resolved 

determination of the 3He longitudinal relaxation rate can be used to generate 
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pO2 (partial pressure of O2) maps and subsequently determine the rate of O2 

uptake. The presence of paramagnetic O2 affects 3He spin relaxation more 

than that of any of the other noble gas isotopes making it the best candidate 

for O2 relaxation measurements. It is worthy to note that this technique is 

imperfect in patients with COPD because delayed ventilation in the 

seriously diseased regions during a breath hold causes unreliable results in 

these areas [37].  

Unfortunately 3He occurs naturally in trace quantities: only 1.38 

parts per million (0.000138%) of total natural helium. The primary source 

of 3He is currently its manufacture through tritium decay in nuclear fusion 

limiting its supply [38]. Furthermore, 3He has a number of useful 

applications beyond hyperpolarized noble gas imaging leading to a supply 

crisis that has been discussed in congressional hearings of the United States 

of America [39]. 

As a substitute for 3He, 129Xe has a natural abundance 26.4% of all 

xenon and is isolated using air liquefaction and isotopic enrichment. In fact 

the first demonstration of hyperpolarized noble gases for pulmonary 

imaging was completed using 129Xe [19]. However, 3He quickly became the 

isotope of choice because of greater inherent signal intensity and efficient 

hyperpolarization techniques developed more quickly. The supply crisis of 

3He has rejuvenated interest in hyperpolarized 129Xe for pulmonary imaging. 

Hersman and colleagues have recently developed a 129Xe hyperpolarizer that 

achieve spin-polarization levels and quantities comparable to 3He [40]; 

however, substantial monetary investment is required. Even with similar 

spin-polarization levels to 3He, there are a number of challenges and 
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potential opportunities using hyperpolarized 129Xe for pulmonary imaging 

due to the physics governing the behavior of the isotope.   

The first challenge to overcome is that 129Xe has a higher atomic 

mass than 3He limiting the diffusion of the atom, when present in dilute 

quantities within air, to about 1/6 of 3He [41] for ADC measurements. The 

limited diffusion hinders studies involving large diffusion distances such as 

the peripheral airways in severely emphysematous lungs [42]. However, it 

may be possible to investigate larger distances using a spin-tagging method 

as done with 3He [31]. Preclinical [43, 44] and recent clinical [45-47] 

studies have demonstrated the feasibility of 129Xe ADC measurements as 

research focus shifts from 3He to 129Xe [48].  

A second challenge is that xenon readily dissolves in the tissue of 

the lung and enters the blood steam behaving as an anesthetic and limiting 

the amount of xenon that can be administered to a patient during 

experiments. This challenge may lead to the greatest opportunity for 129Xe 

in pulmonary imaging because 129Xe possesses a large chemical shift range 

arising from strong interactions with the environment that can be exploited 

to distinguish between gas phase xenon, xenon dissolved in tissue, and 

xenon dissolved in blood [49]. Chemical shift selective techniques enable 

the measurement of gas perfusion through the parenchyma [50] and allows 

129Xe to probe lung function in diseases such as fibrosis where gas uptake is 

affected due to thickening of the alveolar walls [51].  

1.2.2 Hyperpolarized!83Kr!MRI!
A possible alternative to 3He and 129Xe to observe functional 

information of the lung may exist in using hyperpolarized noble gases that 
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have a nuclear electric quadrupole moment (i.e. 21Ne, 83Kr, 131Xe). The 

nuclear electric quadrupole moment serves as a probe for electric field 

gradients (EFGs) that are generated during brief collision and adsorption 

events between the noble gas atoms and the surrounding surfaces. These 

interactions result in longitudinal relaxation that can be detected in the gas 

phase. By probing the properties of the lung surface it may be possible to 

investigate the lung in a manner inaccessible to 3He and 129Xe (this will be 

discussed in greater detail in section 2.2.5 of Chapter 2). However, the 

nuclear electric quadrupole moment limits the hyperpolarization of these 

isotopes making high-resolution ventilation images unlikely.  

Previous studies have shown that the longitudinal relaxation of 83Kr 

demonstrates MRI contrast specific to the surface treatment in a porous 

model system [52] as shown in Figure 1.2. This particular study shows the 

dependence of the longitudinal relaxation on the surface coating of glass 

beads. A siliconizing agent that creates a hydrophobic surface on the beads 

results in a shortened longitudinal relaxation time (T1 = 9 seconds) when 

compared to untreated glass beads (T1 = 35 seconds). The difference in the 

relaxation times enables the MRI contrast shown in Figure 1.2B and C.   
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Figure 1.2. Demonstration of surface sensitive T1 contrast using hyperpolarized 
83Kr. (A) Photograph of the sample cell containing hydrophilic and hydrophobic 

coated beads. The solid white line shows the barrier between types of beads. The 

dotted red line indicates the outer edge of the sample container for MR 

experiments. MR images taken (B) 3 seconds and (C) 9 seconds after delivery of 

hyperpolarized 83Kr gas mixture revealing surface sensitive contrast. Surface 

sensitive contrast arises from the differences in longitudinal relaxation. Figure 

adapted from ref. [52].  

 

MRI distinguishes the difference between hydrophilic and 

hydrophobic surfaces because of the longitudinal relaxation in each 

environment allowing T1 weighting of the image to highlight the difference 

in the surface. Additional studies by Meersmann and co-workers 

demonstrate that 83Kr longitudinal relaxation is altered by the surface to 
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volume ratio (S/V), surface composition, surface temperature, and surface 

adsorption of molecules [52-54].  

A recent study using hyperpolarized 83Kr found that the longitudinal 

relaxation of 83Kr is sensitive to the different regions in ex vivo rat lungs as 

a consequence of the S/V ratio in those areas [55]. This study uses a series 

of constant small flip angle pulses for 1D NMR spectroscopy with results 

shown in Figure 1.3. Data acquisition starts prior to hyperpolarized gas 

inhalation, therefore the inhalation process is observed by the increase of the 

signal. After completion of inhalation, shown by the maximum signal, the 

T1 relaxation is determined from the decay of the signal amplitude. Various 

inhalation schemes directed the hyperpolarized 83Kr to the desired region of 

the lung. For example, the gas is directed to the airways, accomplished by 

inhaling only a small amount of hyperpolarized gas (6 mL) on top of 

already partially inflated lungs (6 ml pre-existing in lung before 

hyperpolarized 83Kr inhalation), results in a T1 of 1.57 ± 0.07 s. Inhaling a 6 

ml portion of hyperpolarized 83Kr followed by 6 ml of air directs the 

hyperpolarized gas into the alveolar regions and results in a T1 of 1.07 ± 

0.08 s. The difference in the T1 between inhalation schemes suggests that 

83Kr can determine surface to volume ratios in the lung. Therefore 83Kr 

relaxation measurements may be able to provide information 

complementary to 3He and 129Xe ADC measurements.  
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Figure 1.3. T1 determination of 83Kr in ex vivo rat lungs. (A) Signal intensity 

observed during inhalation and the decay due to longitudinal relaxation. (B) T1 is 

determined from a fitting of the linear portion of the semi-logarithmic plot of data 

in A. Figure provided courtesy of ref. [55].  

 

Unfortunately, quadrupolar relaxation also limits the hyperpolarized 

83Kr signal intensity and applications of hyperpolarized 83Kr pulmonary 

MRI are limited to low resolution images [52, 56] with little chance to 

provide data about internal structure or function of the lung as demonstrated 

in Figure 1.4. Separate batches of hyperpolarized 83Kr gas that acquire the 

16 phase encoding increments individually are combined for image 

reconstruction. Resolution of the non-slice selective image is 2.3 x 2.3 mm2. 
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Multiple batches of hyperpolarized gas are time consuming and also may 

cause artefacts in the image from slightly different inhalation quantities and 

signal intensities between experiments. The low resolution image shown in 

Figure 1.4 illustrates that improved hyperpolarization strategies are 

necessary for pulmonary 83Kr MRI. It is important to note that 

hyperpolarized 83Kr MRI will unlikely result in the current resolution of 3He 

and 129Xe ventilation images. However, the surface dependent quadrupolar 

relaxation may give complementary information of lung function or 

possibly provide information that cannot be acquired using an isotope 

without a nuclear electric quadrupole moment.  

 

 

Figure 1.4. Previously published hyperpolarized 83Kr transverse image of an ex 

vivo rat lung. Courtesy of ref. [56].  
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1.3 Aims*of*this*work*
Research presented in this document strives to improve the 

hyperpolarization of 83Kr to enable pulmonary 83Kr MRI. Appropriate 

theoretical background into the topic of magnetic resonance and 

hyperpolarized noble gases is provided in Chapter 2. A new 

hyperpolarization methodology is thoroughly investigated in Chapter 3 then 

extended and applied to pulmonary imaging in Chapter 4. Together 

Chapters 3 and 4 make the bulk of this thesis and the research for the 

purpose of this degree: developing new MRI contrast agents through spin 

exchange optical pumping of noble gases with a nuclear electric quadrupole 

moment. It is important to note that the hyperpolarization techniques 

proposed for 83Kr are also useful for the production of hyperpolarized 129Xe 

and have been used in published and on-going studies.  

In Chapter 5 the transverse relaxation of 129Xe and 83Kr is studied. 

Transverse relaxation is caused, in part, from diffusion of an atom in a 

magnetic field gradient. A firm understanding of transverse relaxation may 

eventually improve information of diffusion processes in the lung and 

provide a source of contrast in future pulmonary studies. Chapter 6 develops 

a technique to produce hyperpolarized 129Xe for use as a probe into 

combustion processes. The new SEOP method enables the first in situ MRI 

of combustion and permits characterization combustion process. The 

combustion experiments focuses on 129Xe as a proof of principle, but 

concepts from the combustion study will be expanded to isotopes with a 

nuclear electric quadrupole moment in the near future.  

!  
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! Chapter!2!Background!and!
theory!!

2.1 Purpose+of+chapter+
This chapter will provide basic concepts of nuclear magnetic 

resonance (NMR) to enable an understanding of the original research 

presented later in this work. NMR is a well-developed field that has several 

quality sources introducing the topic thoroughly; four particularly useful 

references were consulted extensively for the theoretical framework of 

magnetic resonance presented in this chapter [1-4]. The primary focus is to 

provide a limited background of magnetic resonance to understand the 

significance and the methods utilized for hyperpolarization of spin active 

nuclei, predominantly the concept spin-exchange optical pumping (SEOP) 

of noble gas nuclei. The relaxation behavior of quadrupolar nuclei with 

relevance to this work will also be discussed. Basic magnetic resonance 

imaging (MRI) techniques that are relevant to the research in this work will 

be presented. Detailed theoretical background for each individual 

experiment will be provided in the following chapters when necessary.  
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2.2 Introduction+to+Nuclear+Magnetic+Resonance+

2.2.1 Nuclear!spin!in!a!magnetic!field!
Nuclei that have an odd atomic number or odd atomic mass possess 

angular momentum and are identified as magnetic resonance active, 

meaning they can be observed and manipulated using electromagnetic 

radiation for nuclear magnetic resonance (NMR) spectroscopy or magnetic 

resonance imaging (MRI). The angular momentum, an intrinsic property 

termed spin, arises from the fermions that make up the neutrons and protons 

in the nucleus of the atom. The most commonly used isotope for NMR and 

MRI is 1H (a single proton), which has spin   I = 1 2 . The large natural 

occurrence of the isotope and the abundance of the atom, demonstrated by 

its presence in water and often found in organic molecules, make it very 

useful for both magnetic resonance spectroscopy and imaging. The original 

research in this work will focus on the alternative spin active noble gas 

isotopes shown in Table 2.1.  

A nucleus may have spin   I > 1 2  giving the nucleus a nuclear 

electric quadrupole moment (Q) and additional energy states are available. 

The inclusion of the nuclear electric quadrupole moment makes the system 

challenging but also rewarding in a number of cases as briefly mentioned in 

the introduction chapter and discussed in greater detail in section 2.2.5. The 

following discussion on nuclear magnetic resonance will concentrate on 

spin   I = 1 2  systems for the sake of simplicity.  
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Table 2.1. Properties of nuclear isotopes relevant to this work. Note that 1H is 

provided for comparison, the isotope is not used in the studies of this work. Values 

taken from reference [5].  

Isotope Spin Natural 
abundance

  

Gyromagnetic 
ratio 

 

Quadrupolar 
moment 
Q fm2  

Frequency 
ratio 

  
1H 1/2 99.9885 26.7522128 - 100.000000A 

3He 1/2 0.000137  -20.3801587 - 76.179437 
21Ne 3/2 0.27 -2.11308 10.155 7.894296 
83Kr 9/2 11.49 -1.03310 25.9 3.847600 

129Xe 1/2 26.44 -7.452103 - 27.810186 
131Xe 3/2 21.18 2.209076 -11.5 8.243921 

Table values taken from reference [5] 
ABy definition 

 

A nucleus that possesses angular momentum will have a magnetic 

moment, µ , that is described by:  

   µ = γ I   (2.1) 

where γ  is the gyromagnetic ratio specific to each nucleus,    is Plank’s 

constant  h   
6.626075×10−34  J s( )  divided by  2π ,  I  is the angular 

momentum operator of the nucleus. The orientation of the angular 

momentum vector, and therefore the magnetic field is often called the spin 

polarization axis [3] and will be referred to as such throughout this 

discussion.  

In the presence of a magnetic field the total energy operator (the 

Hamiltonian) of the nucleus is  H = −µ ⋅B . By defining the field to be 

along the z–axis and substituting in Eq. 2.1 the Hamiltonian becomes 

H = −γ B0Iz . The Hamiltonian can then be inserted into the time 

independent Schrödinger equation   EΨ = HΨ( )  to determine the energy of 

the system: 

  x %  γ 107  rad s−1T−1
  X %
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    E = −γ mB0   (2.2) 

where  m  are values ranging from   I ,  I −1,  ... ,  − I . For example 129Xe, 

which has spin   I = 1 2 , two energy states are available:   m = 1 2  and 

  m = −1 2  as depicted in Figure 2.1. 

 

 

Figure 2.1. Energy diagram for two 129Xe nuclei with and without the presence of 

an external magnetic field. The arrow in the nucleus represents the direction spin 

polarization axis.  

 

The spin polarization axis precesses around axis of the external 

magnetic field as illustrated in Figure 2.2. The frequency of the precession, 

namely the Larmor frequency, is dependent on the gyromagnetic and 

magnetic field strength by the relation ship: ω0 = −γ B0  where ω0  is the 

Larmor frequency in radians per second. The direction of precession 

depends on the sign of the gyromagnetic ratio. 
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Figure 2.2. Precession of the magnetic moment vector around an external magnetic 

field. The angle between spin polarization axis and B0 is exaggerated for this 

illustration adapted from ref. [3].  

 

When considering an ensemble of spins the net magnetic field 

produced by the angular momentum behave similarly to the spin 

polarization axis of individual spins that was previously discussed. Without 

an external magnetic field the random orientation of the nuclei results in no 

net magnetic field as illustrated in Figure 2.3A. However, when placed in an 

external magnetic field the spins orient themselves to the magnetic field 

creating a net magnetic field what is often referred to as the bulk magnetic 

field vector as illustrated in Figure 2.3B.  

 



! 22!

 

Figure 2.3. The behavior of the net magnetic field of an ensemble of spin (A) 

without and (B) with the presence of an external magnetic field. M0 is the 

magnetization of the nuclear spins. 

 

Applying a radio frequency pulse resonant to the Larmor frequency 

rotates the orientation of the bulk magnetic field vector from alignment with 

the external magnet field towards the transverse (x-y) plane as shown in 

Figure 2.4. This interaction forces the spins to be in a non-equilibrium state 

and over time the spins will return to equilibrium with its environment as 

discussed further in section 2.2.4. The amount of magnetization that is 

rotated or ‘tipped’ into the transverse plane can be controlled by the power 

and length of the radio frequency pulse. The maximum signal arises when 

all available magnetization tipped to the transverse plane by a rotation 90° 

from alignment with the external magnetic field. The angle of rotation is 

called the flip angle, using diverse flip angles is important in a number of 

magnetic resonance applications and is commonly employed in magnetic 

resonance of hyperpolarized systems. 
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Figure 2.4. Application of a 90° (πy/2) radio frequency pulse rotates the bulk 

magnetization vector from alignment with the external magnetic field (M0) into the 

transverse plane (M1). 

2.2.2 Signal!and!population!distribution!at!thermal!equilibrium!
The strength of the signal is determined, in part, by the polarization (

 P ) of the sample. In the spin I = 1/2 case, this is the difference in 

population between the two spin states as defined by:  

 
 
P =

N↑ − N↓

N↑ + N↓

  (2.3) 

where,  N↑  and  N↓  are the total number of nuclear spins in the   m = 1 2  and 

  m = −1 2  spin states. At thermal equilibrium the fraction of nuclei in each 

spin state can be defined by the Boltzmann equation: 

 
 
Ni =

e−Ei kT

z
  (2.4) 

where,  Ni  is the population in the spin state i,  Ei  is the energy of spin state 

i, k is the Boltzmann constant  
1.38066×10−23  J K( ) , T is temperature, and z 

is the partition function (state sum, sum of all energy levels) with value 
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e−E j kT

j
∑ . The energy from Eq. 2.2 can be substituted into Eq. 2.4 with the 

partition function to become: 

 

   

Ni =
eγ miB0 kT

eγ mjB0 kT

j
∑

  (2.5) 

Eq. 2.5 can then be substituted back into the polarization Eq. 2.3 for the spin 

I = 1/2 case to become:  

 
   
P = eγ miB0 2kT − e−γ miB0 2kT

eγ miB0 2kT + e−γ miB0 2kT  . (2.6) 

Eq. 2.6 can be simplified using the high temperature approximation where 

   γ B0 2kT 1:  

 
   
P ≈

γ B0

2kT
  (2.7) 

The approximation in Eq. 2.7 reveals the dependence of the 

polarization on the gyromagnetic ratio (γ) and magnetic field strength (B0). 

Eq. 2.7 indicates that, all else being equivalent, a nucleus with a small 

gyromagnetic ratio will result in less available magnetization than a nucleus 

with a large gyromagnetic ratio. This limitation in signal is one of a number 

of obstacles to overcome in 83Kr magnetic resonance. It is also important to 

mention that Eq. 2.7 also describes a direct dependence of the polarization 

on magnetic field. This indicates that magnetic resonance signal acquired in 

a 9.4 T magnet (common laboratory field strength) will have over three 

times the thermal polarization level than at 3.0 T (common medical MRI 

scanner field strength).  

 For a moment return to the origin of Eq. 2.7. If we consider Eq. 2.3 

it can be seen that the polarization, and therefore signal intensity, arise from 
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the difference of population between spin energy states and that the 

population is determined from the difference in energy. The difference in 

energy between nuclear spin states is very small compared to vibrational 

modes and electronic transitions, plaguing magnetic resonance with weak 

signal intensities when compared with either infrared of visible 

spectroscopy. However, the versatility of magnetic resonance make 

accepting and overcoming the limited signal intensity worthwhile. 

Furthermore, the polarization is not the only important parameter 

leading to signal intensity but also the amount, or density of spins therefore 

the total magnetization must be explored. The magnetization can be 

expressed by: 

   
M0 =

Nγ P
2

,                                            (2.8) 

where, N is the amount of nuclear spins. The polarization Eq. 2.7 can be 

substituted into Eq. 2.8 to have: 

   
M0 =

Nγ 22B0

4kbT
,                                          (2.9) 

which describes the magnetization of a sample at thermal equilibrium. The 

importance of looking at the magnetization opposed to the polarization is 

highlighted in conventional NMR spectroscopy of organic molecules 

dissolved in liquids where 1H signal is very strong, but 13C signal is very 

weak and many scans are required. The difference in signal goes beyond the 

polarization calculated in Eq. 2.7 due to the reduced gyromagnetic ratio but 

also the amount of each nucleus must be considered. The 13C isotope of 

carbon has a natural abundance of only 1.07% where as 1H has a natural 
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abundance of 99.9885% [5], making signal from a naturally abundant 

sample of hydrogen much greater that of carbon.  

Much of the work that will be presented in later chapters of this 

thesis will investigate magnetic resonance properties of gases. The density 

of atoms is much less for gases than for the molecules dissolved in liquids 

which means limitations of NMR signal intensities are exacerbated. To 

overcome the low signal intensity from the gas many signal averages are 

required. Alternatively, creating polarization beyond thermal equilibrium 

(i.e. hyperpolarization) is a method of overcoming signal limitations 

inherent to magnetic resonance.   

2.2.3 Hyperpolarization!through!spin!exchange!optical!pumping!
To overcome limited signal arising from the small population 

difference between energy levels a number of techniques have been 

developed that enhance the population difference and in turn the signal 

intensity as demonstrated in Figure 2.5. When looking at Eq. 2.7 the most 

straightforward method to increase the population difference is to increase 

the external magnetic field strength, however, instruments peak at 

approximately 23.5 T with substantial monetary investment needed. 

Additionally, there are health and safely concerns when using high magnetic 

fields with humans for MRI. 

On the other hand, the temperature of a sample may be reduced to 

increase the population difference. However, even at liquid helium 

temperature (4 K) the nuclear spin polarization of hydrogen is 

approximately 0.3% versus only 0.005% at room temperature (calculated 

using Eq. 2.7 in a 9.4 T magnetic field). Therefore, going to high magnetic 
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field strengths or cooling the sample may be impractical in many 

applications with limited reward.  

As an alternative to reducing the actual temperature of a sample, 

methods to reduce the spin temperature (i.e. changing the polarization by 

altering effective temperature of the spin system calculated using the 

Boltzmann equation) have been developed. The process of reducing spin 

temperature to increase spin polarization from what is dictated by the 

Boltzmann distribution at thermal equilibrium is called hyperpolarization. 

(for an example refer to Figure 2.5).  

!  
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Figure 2.5.  Thermally polarized sample compared to hyperpolarized sample of 
129Xe with diagram to demonstrate the signal enhancement achieved by 

hyperpolarization. (A) Diagram representing the small difference of populations 

between energy levels of nuclear spins at thermal equilibrium (~295 K) with 129Xe 

signal from a 400 kPa sample of xenon at thermal equilibrium (216 scans added, 

SNR �100). (B) Diagram representing the large difference of nuclear spin 

populations between energy levels of a hyperpolarized sample adjacent to 

hyperpolarized 129Xe signal from a 25 kPa sample of xenon (1 scan, SNR � 300). 

Notice the SNR in (B) is significantly greater than in (A) even though the thermal 

sample contains a much larger quantity of xenon and utilized signal averaging. 

Note that the resonance frequency is strongly dependent on the gas pressure and 

the radio frequency pulses were on resonance for both (A) and (B). Example 

spectra were collected for the purpose of this document. 

!  
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Dynamic nuclear polarization (DNP) is a technique that capitalizes 

on the much greater spin polarization of an electron (  γ e γ n > 657 ) by 

transferring the spin polarization from the electron to the nucleus using 

microwave radiation [6]. This technique uses the improved spin polarization 

of an electron, which approaches 25% near liquid helium temperature (~4 

K). Although originally proposed by Overhauser in 1953 [7], DNP has 

recently become of main stream interest because it has been recently 

demonstrated to hyperpolarize a sample for liquid state NMR [8] followed 

by usage for in vivo MRI applications [9, 10]. Alternatively to DNP, the 

studies presented in this work utilize a different hyperpolarization technique 

called spin exchange optical pumping (SEOP) for hyperpolarization.  

SEOP is a two-step process: (1) optical pumping of an alkali metal 

vapor to achieve high electronic spin polarization which is then (2) 

transferred to the nucleus of the isotope of interest via spin exchange. The 

transfer of polarization from optically pumped alkali metal to a noble gas 

nucleus was demonstrated by Bouchiat et al. [11]. High electronic spin 

polarization of the alkali metal vapor is achieved by optical pumping, that is 

irradiation of a glass cell containing the alkali metal vapor with circularly 

polarized (σ+) laser light resonant to the D1 transition. Originally rubidium 

metal (D1 = 794.7 nm) was utilised for this process [12] and is typically 

used for most studies today [13-15]. Additionally, work has been completed 

using cesium metal [16-18] and also mixtures of potassium - rubidium that 

capitalizes on availability of high power lasers tuned to the D1 transition of 

rubidium and reduced spin destruction rates of potassium during SEOP [19, 

20]. Only SEOP using rubidium will be discussed in this report. 
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When an external magnetic field is present along the SEOP cell 

parallel to the propagation of the laser beam angular momentum is 

transferred from the circularly polarized laser light to the rubidium electron. 

The transfer of angular momentum excites the valence electron from the 

  ms = −1/ 2  sublevel of the   
2S1 2  state to the 

  
mj = 1/ 2  sublevel of the 5   

2P1 2  

state following the   Δm = 1  selection rule as depicted in Figure 2.6. 

Populations in the 
  
mj = 1/ 2  and 

  
mj = −1/ 2  sublevels of the   

2P1 2  state are 

equalized through collisional mixing.  

The electron can then return to either sublevel of the ground state 

through spontaneous emission of a photon with its polarization dependent 

on the relaxation path or through non-radiative quenching (i.e. no emission 

of a photon) caused by a collision with a molecule such as nitrogen that 

transfers the energy into the vibrational mode. Non-radiative quenching is 

preferred because spontaneous emission of a randomly polarized photon is 

destructive to the optical pumping process since it is non-selective at 

pumping any further electron it excites [21]. Therefore a quenching gas, 

typically nitrogen, is included in SEOP gas mixtures. 
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Figure 2.6. Optical Pumping of the valence electron of rubidium metal vapor using 

σ(+) circularly polarized laser light tuned to the D1 transition. It is through the 

continuous depletion of the ms = -1/2 sublevel of many rubidium atoms in the 

ensemble that results in a large electronic polarization.  

 

The electronic polarization then transfers to the noble gas nuclei 

through spin exchange. Spin exchange is accomplished through two 

mechanisms: binary collisions (Figure 2.7A) and the formation of van der 

Waals complexes (Figure 2.7B). Binary collisions are the principal spin 

exchange mechanism for relatively small atoms such as 3He or 83Kr where 

the electron cloud has limited polarizability (i.e. ability of an electron cloud 

to become distorted). For larger atoms such as 129Xe or 131Xe spin exchange 

via a van der Waals complex increases because the greater polarizability in 

the electron cloud allows for the formation of the complex.  
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Figure 2.7. Spin exchange of spin polarization via (A) binary collisions and (B) van 

der Waals complexes.  

 

The theoretical framework underlying SEOP was investigated 

thoroughly by William Happer and colleagues [13, 21, 22], only a brief 

overview will be provided here. A simplified spin Hamiltonian to describe 

the spin exchange process is [22]: 

     H = AI ⋅S+αK ⋅S+ γ N ⋅S+ gsµBB ⋅I + gKµBB ⋅K +… .  (2.8) 

In equation (2.8),   AI ⋅S  is the interaction between the nuclear spin,  I , and 

the electron spin,  S , of the rubidium atom,  αK ⋅S  is the interaction 

between the nuclear spin of the noble gas  K  with  S ,  γ N ⋅S  is the 

interaction between the rotational angular momentum of the molecule  N  

with  S , while the remaining terms describe the coupling of  I ,  S  and  N  

with the magnetic field.  The terms  αK ⋅S  and  γ N ⋅S  are of particular 

importance because they describe the spin exchange from rubidium to the 

noble gas. 
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 The  αK ⋅S  term in equation (2.8) describes the transfer of spin 

between the rubidium electron and the noble gas nucleus through binary 

collisions. The magnetic dipole coupling constant, α , describes the 

probability of finding the rubidium electron and the noble gas atom in 

positions where spin transfer could occur. The  αK ⋅S  term can be expanded 

to show the transfer of spin polarization [23]: 

 
   
αK ⋅S = α

2
S + I − + S − I +⎡⎣ ⎤⎦ +αSz Iz   (2.9) 

Equation (2.9), commonly called the flip-flop interaction, shows that spin 

polarization is only transferred between an electron and nucleus with 

opposite spin.  

The experiments presented in the work do not investigate the 

quantum mechanics behind SEOP but attempt to optimize SEOP efficiency 

to produce high polarization and then proceed to use the hyperpolarized 

noble gas as a contrast agent in magnetic resonance studies. These processes 

will be discussed in later chapters when relevant.  

2.2.4 Relaxation!mechanisms!
The hyperpolarized spin state does not exist indefinitely; the spins 

are driven by relaxation mechanisms toward thermal equilibrium over time. 

Furthermore, in conventional magnetic resonance where spins start at 

thermal equilibrium and leave equilibrium after a radio frequency pulse are 

also driven back to equilibrium by the same mechanisms. The two 

relaxation mechanisms that drive a sample to thermal equilibrium are 

longitudinal relaxation and transverse relaxation as described by Bloch [24].   
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2.2.4.1 Longitudinal+Relaxation+

Longitudinal relaxation, also known as spin-lattice relaxation, is 

represented by the time constant T1. T1 is related to the rate of the spin 

system progressing towards thermal equilibrium with the surrounding spins 

known as the lattice. The relaxation arises from the interaction of the 

microscopic magnetic field of the nucleus of interest with the microscopic 

magnetic fields of nuclei in the lattice that cause small magnetic field 

fluctuations building a net magnetization aligned with applied magnetic 

field as discussed in section 2.2.1. Although small field variations and 

precession are always present for individual spins, after time an equilibrium 

is reached where the net magnetic field no longer changes as defined by 

[24]: 

 
  
dMz dt = − Mz − Meq( ) T1 .                              (2.10) 

In Eq. 2.10, Mz is the existing magnetization and Meq is the magnetization at 

thermal equilibrium indicating that when Mz is equal to Meq their rate of 

change of Mz is zero and equilibrium has been researched.  

The T1 inversion recovery experiment, commonly used in 

conventional (i.e. thermally polarized) systems, is a common method for 

determining the longitudinal relaxation constant T1. First the spin 

polarization of the system is inverted by applying a 180°x (πx) pulse that 

rotates the bulk magnetization around the x-axis. The magnetization is then 

sampled at different values of t, showing the return of the bulk 

magnetization vector to thermal equilibrium. T1 can be extrapolated from 

the resulting signal intensities using 
  
M (t) = Mt=∞ 1− 2e− t /T1( ) . To run 
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consecutive experiments it is required to wait at least 5 T1 for the 

magnetization to return almost completely to thermal equilibrium.  

For hyperpolarized systems the T1 inversion recovery experiment is 

not suitable because the hyperpolarized system trends toward thermal 

equilibrium and the increased magnetization generated through SEOP or 

other means is lost, therefore, there is no ‘recovery’ to be exploited. Instead 

a small flip angle may be used to measure a portion of the magnetization as 

demonstrated by Gao et al. [25]. The experiment uses a series of small flip 

angle (θ) excitation pulses, e.g. 12°, that each will rotate the bulk 

magnetization vector θ° around the x-axis tipping a small component of the 

magnetic field to the transverse plane to be measured by the receive coil. 

The series of θ° flip angle experiments will result in an exponential decay 

following the form   M t( ) = cos θ( )t /τ
exp −t T1( )  [25-27], where the cos(θ) 

term accounts for the magnetization consumed by each radio frequency 

pulse and τ is the time between pulses.  

2.2.4.2 Transverse+Relaxation+

When at thermal equilibrium the bulk nuclear magnetization is 

parallel to the external magnetic field denoted B0, defined as the z-axis. 

When the bulk magnetization is rotated to the transverse plane by a 90° 

(π/2) pulse the entire macroscopic nuclear magnetization precesses at the 

nuclear Larmor frequency as described previously in section 2.2.1. Slight 

variations in the precession of each nucleus are caused by small differences 

in magnetic field from the influence of surrounding spins causing 
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irreversible decay of the transverse magnetization, this decay is described by 

the time constant T2 as: 

  
dMx , y (t) dt = −Mx , y (t) T2                              (2.11) 

Which can be solved for each component as [3]:  

My
nuclear = −Meq

nuclear cos ω 0t( )exp −t /T2( )
Mx

nuclear = −Meq
nuclear sin ω 0t( )exp −t /T2( )

.                    (2.12) 

Field inhomogeneities across the detection region will also 

contribute to the apparent T2 (called T2
*) because the spins will precess at 

different frequencies due to the difference in magnetic field strength they 

experience. The total transverse relaxation constant is described by 

  1 T2
* = 1 T2 +1 T2

†  where   T2
†  is the transverse relaxation caused by field 

inhomogeneities.   T2
*  can be determined by from the linewidth (full width at 

half maximum) of a simple one-dimensional spectrum by   Δν = 1 πT2
* . 

Inhomogeneous transverse relaxation is a reversible process that can 

be removed from an experiment using a simple spin echo experiment [28]. 

A spin echo experiment is designed to investigate the homogeneous 

transverse relaxation by cancelling out field inhomogeneities. An example 

of a spin echo experiment is shown Figure 2.8. The experiment starts with a 

90°x radio frequency pulse that tips the magnetization onto the x-y plane. 

Once in the x-y plane the bulk magnetization precesses around the z-axis 

(B0). The magnetic field fluctuations cause the spins to precess at slightly 

different frequency producing a dephasing of the signal as seen in Figure 

2.8. Some of the field fluctuations are caused by spin-spin interactions 

others by field inhomogeneities. After time duration τ a 180°y pulse rotates 
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the magnetization around the y-axis and enables the transverse 

magnetization to refocus into an echo. In the experiment the spin dephasing 

caused by field inhomogeneities refocuses while spin-spin dephasing is 

irreversible, allowing for the determination of the   T2  and   T2
† . 

 

 

Figure 2.8. Schematic of the spin echo experiment. The bulk magnetization (orange 

arrow) starts aligned with the external magnetic field (B0), which is defined as the 

z-axis. The 90°y pulse rotates the bulk magnetization around the y-axis into the 

transverse plane. Once in the transverse plane the spins dephasing due to field 

inhomogeneities and natural transverse (spin-spin) relaxation. The 180°x pulse 

rotates the spins around the x-axis where they will refocus, resulting in the bulk 

magnetization being refocused along the x-axis as observed as a spin echo. 

Transverse relaxation due to field inhomogeneities is refocused but the natural 

spin-spin relaxation is irreversible. The echo from many experiments are acquired 

varying the time between the 90°y and 180°x pulses resulting in an exponential decay 

behavior of the spin echo. 

 

A second method to separate T2 from T2
* was proposed by Carr and 

Purcell [29] and modified by Meiboom and Gill [30] to make what is now 

called a CPMG sequence. The CPMG sequence builds off the spin echo 

concept, replacing the single echo experiment with a train of echoes made 

by subsequent 180° pulses that continually refocus the transverse dephasing. 
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This method can greatly increase the speed of the experiment since the train 

of echoes can be acquired in a single experiment if conditions are ideal (i.e. 

adequate signal intensity).  

With fluids, such as liquids or gases, diffusion will also be present. 

When diffusion in a magnetic field gradient exists during a CPMG sequence 

results in the echo amplitude decay following [29, 31]: 

S(t) = S0 exp −t T2( ) + − 1
3Dγ

2G2τ 2t( )⎡⎣ ⎤⎦,    (2.13) 

indicating that the apparent transverse relaxation time, T2 , is [31]:  

1 T2
CPMG =1/T2 + 1

3Dγ
2G2τ 2.    (2.14) 

In Eq. 2.14 D is diffusion, γ is the gyromagnetic ratio, G is the magnetic 

field gradient, τ is the time between 90 degree and 180 degree pulse (1/2 the 

time between 180 pulses on the echo train). Therefore CPMG can be used to 

probe diffusion in fluids from observing transverse relaxation. This process 

will be described in greater detail in Chapter 5. 

2.2.5 Systems!with!spin!>!1/2!!

As mentioned previously spin I > 1/2 denotes that the nucleus has a 

nuclear electric quadrupole moment (Q) that results from a non-spherical 

distribution of charge in the nucleus. NMR of quadrupolar nuclei is more 

challenging than spin I = 1/2 nuclei since there are both electric and 

magnetic influences on the reorientation of the nucleus in a magnetic field 

[3]. The nuclear electric quadrupole moment enables the nucleus to be 

sensitive to interactions with electric field gradients (EFGs).  

Many quadrupolar isotopes have been investigated as part of solids 

where rapid transverse relaxation results in very broad signal. In the gaseous 
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phase the linewidths are much more narrow due to reduced transverse 

relaxation rate. As gas or vapor EFGs are experienced at the nucleus from 

distortions of the electron cloud of the atom during collisions and adsorption 

events [32, 33] as illustrated in Figure 2.9. During the collision, alterations 

to the shape of the electron cloud and hence a net electric field is 

experienced by the nucleus, which will reorient itself accordingly. This  

reduces the longitudinal relaxation time (T1) that can be detected in the gas 

phase through rapid exchange. The dependence of the longitudinal 

relaxation time on the EFGs enables quadrupolar gases to ‘probe’ their 

surroundings. Unfortunately, the low density of spins requires either high 

pressures or many experiment repetitions to overcome small signal 

intensity, limiting the capabilities of this technique.  

 

 

Figure 2.9. Illustration of electric field gradients caused by collisions of 83Kr atoms 

with time period τc.  
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Hyperpolarization techniques have renewed the interest in gases and 

vapors of quadrupolar isotopes by overcoming the limited signal. The first 

investigation showed that the transverse relaxation of hyperpolarized 201Hg 

(I = 3/2) was dependent on the orientation of the NMR cell in the magnetic 

field [34]. Simpson found that an orientation with an angle of 55° from the 

magnetic field resulted in the longest T2 time (i.e. resulted in the greatest 

signal to noise due to the narrow peak) [34]. The sample orientation found 

by Simpson corresponds with the “magic angle” proposed by Andrew and 

colleagues [35] now defined as 
  
Θmagic = arctan 2 = 54.74o .  Many solid 

state NMR experiments are designed to rapidly spin a sample at the “magic 

angle” to average out anisotropic spin interactions (including first order 

quadrupolar couplings) [3].  

The benefits of using the “magic angle” were not observed for either 

gaseous 129Xe or 199Hg vapor (I = 1/2), therefore it was suggested that these 

angular effects seen in 201Hg and later in 83Kr result from interactions 

between EFGs and the nuclear quadrupole moment during collisions or 

adsorption (i.e. momentarily forming a van der Waals interaction) events 

with the NMR cell wall [32]. Volk and colleagues went on to formulate a 

theoretical framework for 131Xe to describe relaxation caused by quadrupole 

moment - EFG interactions [33].  

Hyperpolarized noble gas isotopes of 21Ne [36, 37], 83Kr [38-40], 

and 131Xe [39, 41] have all been used as probes for spectroscopy of 

materials. As mentioned previously, the EFGs from collision and adsorption 

events influence the longitudinal relaxation of the nucleus. The longitudinal 

relaxation rate of 83Kr has shown to be sensitive to the frequency and 
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duration of the collision and adsorption events that is dependent on by the 

surface to volume ratio [40], surface chemistry [38-40], and surface 

temperature [42].  

Of the stable quadrupolar noble gas isotopes, only 83Kr has been 

demonstrated for use in biomedical imaging [39, 43]. 131Xe relaxes more 

quickly than 83Kr because of the higher polarizibility (i.e. capability for 

electron cloud distortion) of the xenon atom due to the additional electron 

shell that allows for longer surface adsorption times. Mehring and 

coworkers used NMR spectroscopy to discover that the activation energy to 

overcome surface adsorption was 25% greater for 131Xe than for 83Kr as a 

result the stronger van der Waals interaction [44, 45]. The enhanced EFGs 

experienced by the nucleus results in shorter T1 times for 131Xe than 83Kr in 

porous media [40, 41]. The short T1 of 131Xe in porous media make it an 

unlikely candidate for pulmonary studies where surface to volume is 

exceptionally high.  

Conversely 21Ne presumably has slower T1 relaxation rates than 83Kr 

due to the smaller, less polarizable electron cloud that will limit surface 

adsorption. Furthermore, 21Ne has potential to achieve greater signal 

intensity than krypton based on the gyromagnetic ratio (

  γ Ne = −2.11308×107  rad s−1T−1  versus   γ Kr = −1.03310×107  rad s−1T−1  [5]).  

Unfortunately the natural abundance of 21Ne is very low (0.27%) leading to 

weak observed signal without isotopically enriching the gas. The usage of 

isotopically enriched 21Ne for biomedical imaging is promising and 

warrants future investigation.  
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2.3 Concepts+of+Magnetic+Resonance+Imaging+
Magnetic resonance imaging (MRI) is a tool that can non-invasively 

probe inside objects by observing spin active atoms. The most established 

use for MRI is to image inside the human body. The concept of magnetic 

field gradients to spatially resolve nuclear spins was pioneered by Sir Peter 

Mansfield and Paul Lauterbur who received the Nobel Prize in Medicine in 

2003 for their work [46]. The medical community has embraced the utility 

of MRI making it a common form of medical imaging that is available at 

many hospitals worldwide.  

2.3.1 Spatial!encoding!
Magnetic resonance imaging is possible because both the frequency 

and the phase of the nuclear spins can be encoded by magnetic field 

gradients allowing for the reconstruction of multi-dimensional images. The 

following description is limited to two-dimensional imaging because only 

two-dimensional techniques are used later in this work. To explain how an 

image is collected it is helpful to introduce k-space, which is the spatial-

frequency domain or more straightforwardly stated: the Fourier transform of 

the image space. Frequency encoding is achieved in the direct dimension of 

k-space by applying a read magnetic field gradient across the sample during 

signal acquisition that makes the magnetic field strength dependant on the 

location in space. For example, consider a linear magnetic field gradient in 

Bz along the x-axis of the sample described by Gx = dBz dx . As a result of 

the applied gradient, the resonance frequency of the nuclear spins is also 

dependent on the location in space following the relationship 

ω = −γ B0 + Bz (x)( ) , where B0 is the strength of the static magnetic field 
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(defined along the z-axis) and Bz(x) is the additional magnetic field from the 

applied gradient. Each signal acquisition composes a single line in the direct 

dimension of k-space. In the direct dimension the spatial resolution (1/Δx) 

frequency encoding with a linear gradient can be described by [47]: 

   (2.10) 

where, Gx is the magnetic field gradient of Bz along the x-axis, and Δν is the 

spread in Larmor frequencies.  

Phase encoding of the spins in the second dimension is achieved by 

applying a magnetic field gradient after the magnetization is rotated into the 

transverse plane but prior to signal acquisition. The phase encoding gradient 

causes a linear phase change of the magnetization of the spins depending on 

their location in space. Incremental steps of the applied gradient strength 

permit navigating through k-space in individual acquisitions. To generate 

the complete second dimension, multiple acquisitions are accumulated into 

a single matrix with each row describing a single line in k-space. The spatial 

resolution in the phase encoding dimension is determined by the number of 

phase encoding steps performed.  

2.3.2 GradientIecho!imaging!
Gradient echo imaging is a versatile technique that utilizes gradients 

to refocus an echo. This is in contrast to spin echo imaging that uses 180° 

pulses to refocus echoes. The major benefit of using a gradient echo image 

over a spin echo image is that a small flip angle may be used for excitation. 

The small flip angle allows shorter TR in conventional MRI where T1 

relaxation in required to return the signal to maximum as discussed in the 

  

1
Δx

=
γ Gx

2πΔν



! 44!

section 2.2.4. Gradient echo imaging is commonly used in hyperpolarized 

noble gas imaging because spin polarization must be conserved through the 

entire acquisition.  

 Gradient echo imaging can be optimized to generate T1, T2, and T2
* 

weighted images based off the selection of TR and TE in conventional 

imaging. A simple example of a slice selective gradient echo imaging 

sequence is provided in Figure 2.10. A sinc pulse is used for slice selective 

excitation of the spins with the slice selection gradients. The length of the 

sinc pulse determines the excitation bandwidth and subsequently the 

thickness of the slice. In all images presented later in this work the phase 

encoding gradient is linearly incremented from negative to positive values 

to acquire each line of k-space. Alternatively, k-space can be transversed 

centrically around the 0-gradient line, alternating between positive and 

negative gradient magnitudes.  

!  
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Figure 2.10. Schematic of a slice selective gradient echo imaging sequence. TE is 

the time between the radio frequency pulse and the center of the gradient echo. TR 

is the time for each phase-encoded increment. This schematic uses a sinc pulse for 

slice selection. The strength of the phase encoding gradient is incremented for each 

line of k-space. The read gradient controls the gradient echo that refocuses the 

magnetization in the transverse plane for acquisition. Gradient echo diagram is 

adapted from ref. [47]. 

2.3.3 NonIequilibrium!imaging!(variable!flip!angle)!

With growing applications of using hyperpolarized systems, Zhao et. 

al. proposed an imaging method that used a variable flip angle fast low 

angle shot (VFA FLASH) technique to maintain equal signal intensity 

throughout image acquisition and completely use all hyperpolarized spin 

polarization [48]. In the case where acquisition time is much less than T1 the 

flip angle θn is determined from the current experiment number n of N totals 

experiments by the relation [48]: 

θn = arctan
1
N − n

⎛
⎝⎜

⎞
⎠⎟

.    (2.11) 
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It is important to note that VFA FLASH is superior in concept to FLASH 

but can be difficult to implement. VFA FLASH proves effective in small 

probes that have homogeneous excitation [49]. However, slice selection 

using VFA FLASH has been shown to create slice profile artefacts [50] and 

large coils commonly used in MRI tend to have inhomogeneous excitation 

and that may become problematic without correction [51]. For the small coil 

sizes of this work these undesirable effects are minimal and VFA FLASH is 

extensively used.  

! !



! 47!

 

2.4 References+
    

[1] A. Abragam, The Principles of Nuclear Magnetism, Oxford University 
Press, Oxford, UK, 1961. 
[2] C.P. Slichter, Principles of Magnetic Resonance, 3rd ed., Heidelberg, 
1963. 
[3] M.H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, 
John Wiley & Sons, LTD, West Sussex, UK, 2001. 
[4] J. Keeler, Understanding NMR spectroscopy, Wiley, 2011. 
[5] R. Harris, NMR Nomenclature: Nuclear Spin Properties and 
Conventions for Chemical Shifts---IUPAC Recommendations, Journal of 
Magnetic Resonance, 156 (2002) 323-326. 
[6] R. Griffin, T. Prisner, High field dynamic nuclear polarization‚Äîthe 
renaissance, Phys. Chem. Chem. Phys., 12 (2010) 5737-5740. 
[7] A.W. Overhauser, Polarization of Nuclei in Metals, Phys. Rev., 92 
(1953) 411-415. 
[8] J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, 
M.H. Lerche, R. Servin, M. Thaning, K. Golman, Increase in signal-to-noise 
ratio of > 10,000 times in liquid-state NMR, Proceedings of the National 
Academy of Sciences of the United States of America, 100 (2003) 10158-
10163. 
[9] K. Golman, J.H. Ardenaer-Larsen, J.S. Petersson, S. Mansson, I. 
Leunbach, Molecular imaging with endogenous substances, Proceedings of 
the National Academy of Sciences of the United States of America, 100 
(2003) 10435-10439. 
[10] K. Golman, R. in't Zandt, M. Thaning, Real-time metabolic imaging, 
Proceedings of the National Academy of Sciences of the United States of 
America, 103 (2006) 11270-11275. 
[11] M.A. Bouchiat, T.R. Carver, C.M. Varnum, Nuclear polarization in 
He-3 gas induced by optical pumping and dipolar exchange, Phys. Rev. 
Lett., 5 (1960) 373-375. 
[12] B.C. Grover, Noble-Gas Nmr Detection through Noble-Gas-Rubidium 
Hyperfine Contact Interaction, Phys. Rev. Lett., 40 (1978) 391-392. 
[13] T.G. Walker, W. Happer, Spin-exchange optical pumping of noble-gas 
nuclei, Review of Modern Physics, 69 (1997) 629-642. 
[14] I.C. Ruset, S. Ketel, F.W. Hersman, Optical pumping system design for 
large production of hyperpolarized Xe-129, Phys. Rev. Lett., 96 (2006) 
053002-053004. 
[15] D.M.L. Lilburn, G.E. Pavlovskaya, T. Meersmann, Perspectives of 
hyperpolarized noble gas MRI beyond 3He, Journal of Magnetic 
Resonance, 229 (2013) 173-186. 
[16] J. Liran, J. Pietras, J. Camparo, W. Happer, Optical pumping of cesium 
atoms with second resonance light, Optics Communications, 31 (1979) 169-
173. 
[17] N. Bhaskar, J. Pietras, J. Camparo, W. Happer, J. Liran, Spin 
destruction in collisions between cesium atoms, Phys. Rev. Lett., 44 (1980) 
930-933. 



! 48!

[18] N. Whiting, N.A. Eschmann, B.M. Goodson, M.J. Barlow, (129)Xe-Cs 
(D(1), D(2)) versus (129)Xe-Rb (D(1)) spin-exchange optical pumping at 
high xenon densities using high-power laser diode arrays, Physical Review 
A, 83 (2011) 053428. 
[19] N.D. Bhaskar, M. Hou, M. Ligare, B. Suleman, W. Happer, Role of 
Na-Xe molecules in spin relaxation of optically pumped Na in Xe gas, 
Physical Review A, 22 (1980) 2710-2716. 
[20] E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L.W. Anderson, F.W. 
Hersman, T.G. Walker, Hybrid Spin-Exchange Optical Pumping of ^{3}He, 
Phys. Rev. Lett., 91 (2003) 123003. 
[21] W. Happer, Optical-Pumping, Reviews of Modern Physics, 44 (1972) 
169-249. 
[22] W. Happer, E. Miron, S. Schaefer, D. Schreiber, W.A. 
Vanwijngaarden, X. Zeng, Polarization of the Nuclear Spins of Noble-Gas 
Atoms by Spin Exchange with Optically Pumped Alkali-Metal Atoms, 
Physical Review A, 29 (1984) 3092-3110. 
[23] E. Brunner, Enhancement of surface and biological magnetic resonance 
using laser-polarized noble gases, Concepts in Magnetic Resonance, 11 
(1999) 313-335. 
[24] F. Bloch, Nuclear Induction, Physical Review, 70 (1946) 460-474. 
[25] J.H. Gao, L. Lemen, J.H. Xiong, B. Patyal, P.T. Fox, Magnetization 
and diffusion effects in NMR imaging of hyperpolarized substances, Magn. 
Reson. Med., 37 (1997) 153-158. 
[26] Z.I. Cleveland, G.E. Pavlovskaya, K.F. Stupic, J.B. Wooten, J.E. 
Repine, T. Meersmann, Detection of Tobacco Smoke Deposition by 
Hyperpolarized Krypton-83 MRI, Magnetic Resonance Imaging, 26 (2008) 
270-278. 
[27] K.F. Stupic, N.D. Elkins, G.E. Pavlovskaya, J.E. Repine, T. 
Meersmann, Effects of pulmonary inhalation on hyperpolarized krypton-83 
magnetic resonance T-1 relaxation, Physics in Medicine and Biology, 56 
(2011) 3731-3748. 
[28] E.L. Hahn, D.E. Maxwell, Spin Echo Measurements of Nuclear Spin 
Coupling in Molecules, Physical Review, 88 (1952) 1070-1084. 
[29] H.Y. Carr, E.M. Purcell, Effects of Diffusion on Free Precession in 
Nuclear Magnetic Resonance Experiments, Phys. Rev., 94 (1954) 630-638. 
[30] S. Meiboom, D. Gill, Modified Spin-Echo Method for Measuring 
Nuclear Relaxation Times, The Review of Scientific Instruments, 29 (1958) 
688-691. 
[31] H.C. Torrey, Bloch equations with diffusion terms, Physical Review, 
104 (1956) 563-565. 
[32] C.H. Volk, J.G. Mark, B.C. Grover, Spin Dephasing of Kr-83, Physical 
Review A, 20 (1979) 2381-2388. 
[33] T.M. Kwon, J.G. Mark, C.H. Volk, Quadrupole Nuclear-Spin 
Relaxation of Xe-131 in the Presence of Rubidium Vapor, Physical Review 
A, 24 (1981) 1894-1903. 
[34] J.H. Simpson, NMR Frequency Splitting of Hg-201 Signals Due to 
Collisions with a Fused Silica Surface, Bulletin of the American Physical 
Society, 23 (1978) 394-395. 



! 49!

[35] E.R. Andrew, A. Bradbury, R.G. Eades, Removal of Dipolar 
Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen 
Rotation, Nature, 183 (1959) 1802-1803. 
[36] T.E. Chupp, K.P. Coulter, Polarization of Ne-21 by Spin Exchange 
with Optically Pumped Rb Vapor, Phys. Rev. Lett., 55 (1985) 1074-1077. 
[37] R.K. Ghosh, Spin exchange optical pumping of neon and its 
applications, in:  Physics, Princeton University, Princeton, NJ, USA, 2009. 
[38] Z.I. Cleveland, K.F. Stupic, G.E. Pavlovskaya, J.E. Repine, J.B. 
Wooten, T. Meersmann, Hyperpolarized 83Kr and 129Xe NMR Relaxation 
Measurements of Hydrated Surfaces: Implications for Materials Science and 
Pulmonary Diagnostics, Journal of the American Chemical Society, 129 
(2007) 1784-1792. 
[39] G.E. Pavlovskaya, Z.I. Cleveland, K.F. Stupic, T. Meersmann, 
Hyperpolarized Krypton-83 as a New Contrast Agent for Magnetic 
Resonance Imaging, Proceedings of the National Academy of Sciences of 
the United States of America, 102 (2005) 18275-18279. 
[40] K.F. Stupic, Z.I. Cleveland, G.E. Pavlovskaya, T. Meersmann, 
Quadrupolar Relaxation of Hyperpolarized Krypton-83 as a Probe for 
Surfaces, Solid State Nuclear Magnetic Resonance, 29 (2006) 79-84. 
[41] K.F. Stupic, Z.I. Cleveland, G.E. Pavlovskaya, T. Meersmann, 
Hyperpolarized Xe-131 NMR spectroscopy, Journal of Magnetic 
Resonance, 208 (2011) 58-69. 
[42] Z.I. Cleveland, G.E. Pavlovskaya, K.F. Stupic, C.F. LeNoir, T. 
Meersmann, Exploring hyperpolarized 83Kr by remotely detected NMR 
relaxometry, Journal of Chemical Physics, 124 (2006) 044312. 
[43] Z.I. Cleveland, G.E. Pavlovskaya, N.D. Elkins, K.F. Stupic, J.E. 
Repine, T. Meersmann, Hyperpolarized Kr-83 MRI of lungs, Journal of 
Magnetic Resonance, 195 (2008) 232-237. 
[44] R. Butscher, G. Wäckerle, M. Mehring, Nuclear quadrupole interaction 
of highly polarized gas phase 131Xe with a glass surface, Journal of 
Chemical Physics, 100 (1994) 6923-6933. 
[45] R. Butscher, G. Wäckerle, M. Mehring, Nuclear quadrupole surface 
interaction of gas phase 83Kr: comparison with 131 Xe, Chemical Physics 
Letters, 249 (1996) 444-450. 
[46] The Nobel Prize in Physiology or Medicine 2003, 
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2003/,  
Nobleprize.org, 11 May 2013. 
[47] B. Blumich, NMR imaging of materials, Oxford University Press, 
2000. 
[48] L. Zhao, R. Mulkern, C.H. Tseng, D. Williamson, S. Patz, R. Kraft, 
R.L. Walsworth, F.A. Jolesz, M.S. Albert, Gradient-echo imaging 
considerations for hyperpolarized Xe-129 MR, Journal of Magnetic 
Resonance Series B, 113 (1996) 179-183. 
[49] G.E. Santyr, W.W. Lam, J.M. Parra-Robles, T.M. Taves, A.V. 
Ouriadov, Hyperpolarized noble gas magnetic resonance imaging of the 
animal lung: Approaches and applications, Journal of Applied Physics, 105 
(2009) 102004-102013. 
[50] M.H. Deppe, K. Teh, J. Parra-Robles, K.J. Lee, J.M. Wild, Slice profile 
effects in 2D slice-selective MRI of hyperpolarized nuclei, Journal of 
Magnetic Resonance, 202 (2010) 180-189. 



! 50!

[51] G.E. Santyr, W.W. Lam, A. Ouriadov, Rapid and efficient mapping of 
regional ventilation in the rat lung using hyperpolarized He-3 with Flip 
Angle Variation for Offset of RF and Relaxation (FAVOR), Magn. Reson. 
Med., 59 (2008) 1304-1310. 
 
 



! 51!

! Chapter!3:!Pathway!to!
cryogen2free!production!of!

hyperpolarized!83Kr!and!129Xe!!
 

Data presented in this chapter have been published in an article of PLoS 

One entitled Pathway to Cryogen Free Production of Hyperpolarized 

Krypton-83 and Xenon-129 by Joseph S. Six, Theodore Hughes-Riley, Karl 

F. Stupic, Galina E. Pavlovskaya, and Thomas Meersmann [1]. Mr. Six and 

Mr. Hughes-Riley performed the low pressure SEOP experiments that are 

presented in this chapter. Mr. Six and Dr. Pavlovskaya analyzed the data to 

extrapolate physical parameters. Dr. Stupic and Dr. Pavlovskaya designed 

and constructed the noble gas hyperpolarizer. Professor Meersmann and Mr. 

Six wrote the paper. 

3.1 Introduction-
Spin exchange optical pumping (SEOP) of 129Xe and 83Kr is typically 

completed in helium - nitrogen mixtures with low concentrations of the 

noble gas. In the case of 129Xe, the hyperpolarized xenon is separated from 

the other gasses after the SEOP process by a freeze-thawing cycle using a 

cold trap at 77 K [2-5]. This process is not viable for hyperpolarized 83Kr 

because of its rapid quadrupolar relaxation in the frozen state [6, 7]. 

Although cryogenic separation of hyperpolarized 129Xe is straightforward in 

a physics or chemistry laboratory with acceptable losses [5, 8], it would be 
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desirable to eliminate cryogen usage to facilitate hyperpolarized 129Xe MRI 

applications in typical clinical and pre-clinical settings.  

A high noble gas concentration in the SEOP gas mixtures would reduce 

the need for gas separation and could open up the pathway for cryogen free 

production of hyperpolarized noble gas MRI. Unfortunately, a high noble 

gas density, [NG], adversely affects the obtained noble gas spin 

polarization, PNG, because it reduces the alkali metal electron spin 

polarization in the SEOP process. The adverse effect of [NG] on PNG is 

further exacerbated by the diminishing effect of [NG] upon the spin 

exchange rate, γ SE  [2, 9-12]. If cryogenic separation is omitted, a trade off 

between noble gas concentration and obtained spin polarization exists. For 

example, a spin polarization of approximately 1% was generated in a 

previously reported 83Kr SEOP experiments using a mixture of 95% krypton 

with 5% nitrogen. Reducing the noble gas concentration to 25% krypton led 

to four fold higher spin polarization but the MR signal did not improve 

because polarization increase was offset by the noble gas dilution [13]. 

A potential solution for the conundrum to generate high PNG at high 

noble gas concentrations is to reduce [NG] through decreasing the total 

pressure of the gas mixture containing a high percentage of the respective 

noble gas. Optical pumping far below ambient pressure had been the 

method of choice in many of the pioneering SEOP studies [14-18], but low 

pressure SEOP was largely abandoned with the advent of high power solid 

state lasers that provide better polarization at elevated gas pressures due to 

pressure broadening of the rubidium D1 transition. However, line narrowed 

high power diode array lasers have become available [10, 17, 19] that make 
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pressure broadening less beneficial. Even non-narrowed (typically 2 nm 

linewidth) solid state lasers benefit from 129Xe SEOP being at a gas pressure 

below ambient, as previously demonstrated by Imai et al. [20]. 

Unfortunately high spin polarization >12% was obtained (at 15 kPa 

pressure) only for mixtures with low xenon concentration leaving cryogenic 

separation as a remaining desirable step. However, the work by Imai et al. 

also demonstrated that recompression of hyperpolarized 129Xe to ambient 

pressure after SEOP is feasible without significant losses in spin 

polarization. Recompression of the hyperpolarized noble gas to ambient 

pressure would be a crucial step for intended low pressure SEOP usage for 

in vivo MRI applications.  

In this work, ‘stopped flow’ (batch mode) SEOP [18] was utilized. In 

contrast to ‘continuous flow’ SEOP [2-5, 21-24] that is technically more 

demanding [3, 5, 24], ‘stopped flow’ SEOP is applied to a stagnant gas 

mixture until the steady state polarization has been reached. The 

hyperpolarized noble gas is then shuttled through pressure equalization into 

a pre-evacuated chamber for high field MR detection without re-

pressurization. The advantage of ‘stopped flow’ 129Xe SEOP was noted 

previously [25] and remarkably high 129Xe spin polarization were reported 

recently [10]. With the noticeable exception of the work by Fujiwara and 

co-workers [26, 27], pulmonary MRI typically uses hyperpolarized gas in 

batched volumes. Therefore stopped flow SEOP may be of interest for 

pulmonary hyperpolarized 129Xe MRI applications, in particular if it 

provides some advantages beyond current continuous flow methods.  
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To date, stopped flow SEOP is the only viable technique for 

hyperpolarizing noble gases with nuclear electric quadrupolar moment such 

as 83Kr [28, 29]. In this study, stopped-flow SEOP was investigated with 

mixtures containing 5 - 78% of either krypton or xenon at total gas 

pressures ranging from 5 kPa to 200 kPa and above. Current theory was 

applied to attempt a qualitative interpretation of the experimental data. 

3.2 Experimental-

3.2.1 Stopped!flow!spin!exchange!optical!pumping!
The experimental setup is sketched in Figure 3.1. Mixtures 

containing various concentrations of 129Xe and 83Kr were hyperpolarized in 

borosilicate glass SEOP cells (length = 120 mm, inner diameter = 28 mm) 

containing ~1 g rubidium (99.75%; Alfa Aesar, Heysham, England, UK). 

The SEOP cell was housed in an aluminum oven with quartz windows and 

temperature controlled using heated air. The fringe field of a 9.4 T 

superconducting magnet provided the magnetic field of   B0 ≈ 0.05 T  for the 

SEOP process. Unless otherwise specified, a line narrowed diode-array laser 

system (30 W, 0.25 nm linewidth Comet Module, Spectral Physics, Santa 

Clara, CA, USA) tuned to the D1 transition of rubidium (794.7 nm) was 

used to irradiate the SEOP cell with collimated, circularly polarized light of 

23.3 W power (incident at SEOP cell). 
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Figure 3.1. The experimental setup used for stopped flow SEOP. (A) Transfer of 

hyperpolarized gas to NMR magnet for high-field detection. The hyperpolarized 

mixture is transferred to the detection cell by pressure equalization after the noble 

gas mixtures are hyperpolarized in the SEOP cell for a time period of td by the 

stopped flow SEOP method. (B) Outline of the optical elements used in Figure 

3.1A. The elements λ/2 plate and second beam splitter were used to control the 

laser irradiation (B4) to the SEOP cell (i.e. adjustment of the B4/B3 ratio - for 

details of power dependent measurements see section 3.2.2).  

 

Steady state, nuclear spin polarization was reached after 6 minutes 

for 129Xe SEOP and after approximately 18 minutes for 83Kr SEOP. 

However, due to time restraints 83Kr SEOP times of only 8 minutes were 

used resulting to 80% completion of the built up, as verified by 

measurements at both high and low SEOP pressure. During SEOP, the gas 

mixture was contained within the SEOP cell with valve 2 closed (see Figure 

3.1A). Valve 1 was kept open initially to allow for pressure monitoring but 
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was closed approximately 2 minutes before delivery. The borosilicate 

detection cell and PFA transfer tubing were evacuated (valve 3 open) during 

the SEOP duration. After SEOP completion, valve 3 was closed and valve 2 

opened. Pressure equalization caused rapid hyperpolarized gas transfer via 

1.5 mm (inner diameter) PFA tubing into the 15 mm borosilicate detection 

cell.  The detection cell located within a 9.4 T superconducting magnet and 

a Magritek Kea 2 spectrometer (Wellington, NZ) with custom-built probes 

tuned to the resonance frequencies of 129Xe (110.5 MHz) and 83Kr (15.4 

MHz) where used for detection. 

3.2.2 Laser!power!adjustment!and!optical!measurements!
In addition to the line narrowed Comet laser, two broadband 30 W 

Coherent (Santa Clara, CA, USA) fiber array packaged (FAP) lasers were 

also used as a non-narrowed laser system (2 nm linewidth) for SEOP 

efficiency comparison with the line narrowed Comet laser. Due to the 

experimental setting only 15.6 W of FAP laser power was used to irradiate 

the SEOP cell. To have a proper comparison between the narrowed and 

broadband laser systems the laser power of the narrowed laser was reduced 

to approximately match the power of the broadband system. Figure 3.1B 

displays the optical elements used to reduce the power of the Comet laser. 

The first beam splitter in the path of the laser light was present in all 

experiments in this work and ensured that only a single plane of linearly 

polarized light would continue toward the SEOP cell. It was found that B2 = 

19 B1 for the highly linear polarized Comet system and B2 = B1 for the FAP 

system (i.e. no linear polarization remaining due to passage through the long 

fibre optic cable of the FAP system). Laser power control was obtained 
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through a λ/2 wave plate followed by a second beam splitter. By rotating the 

λ/2 wave plate the laser rejection (B3) was controlled, thus enabling the 

power control for the laser irradiation (B4) of the SEOP cell without changes 

in the irradiation profile (i.e. wavelength and spatial distribution). The 

incident laser power was measured at the SEOP cell using a Coherent 

PM150-50C water-cooled power meter. The same power adjustment 

procedure was also used for the power dependent measurements described 

in section 3.4.9. 

The rubidium absorption linewidth in the presence of pure krypton, 

xenon, nitrogen, and a xenon - nitrogen mixture was measured through 

absorption experiments similar to those by Driehuys and co-workers [30]. 

An incandescent light source with a consistent emission over the observed 

wavelengths irradiated the SEOP cell in place of the laser. A fibre optic 

cable leading to the optical spectrometer, HR2000+ Ocean Optics (Dunedin, 

Fl, USA) with a spectral resolution of 0.04 nm was placed at the rear of the 

SEOP cell to measure the D1 absorption line width at 794.72 – 795.15 nm. 

3.2.3 Temperature!control!
The temperature of the SEOP cell inside the oven was maintained by 

an inflow of heated air near the back of the cell. Two thermocouples 

attached to the SEOP cell were used to measure the cell temperature. The 

first thermocouple was placed at the frontal region of the cell (i.e. in 

approximately 10 mm distance from the laser illuminated window) where it 

was carefully shielded from infrared radiation, while the second 

thermocouple was positioned near the back region of the cell. The data from 

the two thermocouples were fed into a temperature controller. With this 
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setup, the temperature controlled incoming air provided sufficiently stable 

temperature conditions, although the actual temperature inside the cell could 

not be determined. The temperature was measured on the surface of the 

SEOP cell at the thermocouple locations during ramping and steady-state 

processes. Typical temperature difference across the cell was less than 10 K 

after the steady–state conditions were reached. 

3.2.4 Gas!mixtures!
Research grade xenon (99.995% pure; natural abundance, 26.4% 

129Xe; Airgas, Rednor, PA, USA), krypton (99.995% pure; natural 

abundance, 11.5% 83Kr; Airgas, Rednor, PA, USA), and nitrogen (99.999% 

pure, Air Liquide, Coleshill, UK) were used to prepare the gas mixtures 

used in this study. The mixtures with varying noble gas contents were 

prepared prior to the SEOP experiments using a custom built gas mixing 

system. The ‘standard mixture’ described in section 3.2.6 required the use of 

research grade helium (99.999% pure, Air Liquide, Coleshill, UK) in 

addition to other gases. 

3.2.5 Determination!of!obtained!polarization!values!
For the determination of the actual polarization value, the integrated 

signal intensities of the hyperpolarized noble gases were compared to the 

integrated signal intensity of a thermally polarized sample of the respective 

gas. For the thermal 83Kr NMR measurement, a 15 mm borosilicate sample 

tube was pressurized to 560 kPa of natural abundance krypton gas leading to 

  T1 ≈ 65 s  at 298 K [31]. Data were averaged from 360 acquisitions with a 

360 s recycle delay time between pulses. Similarly, for the 129Xe thermal 

measurement, a sample tube was pressurized to 500 kPa containing 4 
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amagat of natural abundance xenon gas and approximately 1 amagat of O2 

in order to reduce the longitudinal relaxation time to   T1 < 5 s  (  T1 ≈ 2.6 s  at 

4.7 T [32]).  Data were averaged from 120 acquisitions with 120 s recycle 

delay time between pulses. Taking into account the differences in 

concentration, pressure, and number of scans the integrated intensities from 

the thermal samples were compared with the integrated intensity of the 

hyperpolarized samples to obtain the polarization enhancement over the 

thermal spin polarization.  

For nuclei with arbitrary spin I the spin polarization P in a thermal 

equilibrium is given [29]: 

   
P =

γ B0

3kBT
I +1( )             (3.1) 

with γ  as the gyromagnetic ratio,  kB  as the Boltzmann constant, and 

    = h 2π  as the Planck constant. Eq. 3.1 assumes Boltzmann population 

distribution at high temperatures where 
   
T >> γ B0 / kB , a condition that is 

fulfilled for the thermally polarized samples described above. Note that the 

thermal samples and the ‘standard mixture’ (described in section 3.2.6) were 

rerecorded with a second NMR system (Bruker, Avance III at 9.4 T) in 

order to confirm the obtained hyperpolarization values with the Kea 2 

spectrometer.  

3.2.6 Accuracy!of!polarization!measurements!
The SEOP generated polarization can be measured with high precision 

through high field NMR spectroscopy. However, the polarization values 

will scatter due to fluctuations in the SEOP cell. For example, the cell 
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surface will ‘cure’ after reloading with rubidium metal, probably due to 

redistribution of surface condensed rubidium, and the obtained 

hyperpolarization will increase initially for up to a few hours for cells newly 

loaded with rubidium. Further, contamination with oxygen, carbon dioxide, 

or water will lead to a slow decrease in the obtainable hyperpolarization. 

Some of the cells that appear to be nearly identical lead to slightly different 

hyperpolarization values. Because of the many factors that may influence 

these measurements data sampling was randomized during parts of the 

experiment. To characterize experimental variation in cell performance over 

time a polarization value was obtained for a standard mixture (5% xenon, 

5% nitrogen, 90% helium at 230 ± 20 kPa and 373 K). This polarization 

value, averaged over a few experiments, was measured to be 44.0 ± 5.4% 

and was further used for the ‘quality control’ test of a given SEOP cell. 

Three different SEOP cells that consistently achieved polarization values in 

this range were used during the course of the experiments. If the achievable 

polarization of a cell fell outside this range, it was cleaned and refilled with 

rubidium. Errors reported for the polarization measurements are based on 

the ± 5.4% error of the standard mixture and scaled accordingly.  

3.2.7 Data!analysis!

Data analysis was performed using Igor Pro Version 6.2 from 

Wavemetrics (Lake Oswego, OR, USA). Fitting parameters for spin-

exchange optical pumping were extracted using built-in non-linear least 

squares fitting algorithms.  
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3.3 Background-to-the-83Kr-and-129Xe-SEOP-experiments-
The unit ‘amagat’ for the number density [Mi] of gas phase atoms or 

molecules is often used for convenience. In this work an amagat is defined 

as the density of an ideal gas at standard pressure and temperature of 

101.325 kPa and 273.15 K and therefore  1 amagat = 2.6868 ×1025  m−3 . 

Note that the amagat was historically defined as the density of the specific 

gas at standard pressure and temperature resulting to the slightly different 

value for instance for xenon with  2.7048 ×1025  m−3  [33]. The small 

difference of less than 1% between the two definitions indicates almost 

ideal gas behavior for xenon at this condition.  

3.3.1 Expected!pressure!dependence!
The increase of the noble gas spin polarization as a function of the 

total pressure decrease is expected from [2, 34]: 

  

PNG =
γ SE

γ SE + Γ
⋅

γ op

γ op + γ trap + γ vdW + κ sd
i Mi
⎡⎣ ⎤⎦

i
∑

1− e− γ SE +Γ( )tp( ),       (3.2) 

where 
 
γ op  is the optical pumping rate caused by laser irradiation of the 

alkali metal atoms (i.e. by irradiation of rubidium (Rb) atoms with circular 

polarized light at the D1 transition at 794.7 nm for all experiments described 

in this work). In principle, the rate 
  
γ op (z)  is a function of position within 

the pump cell due to the weakening of the laser in the optically thick 

medium [23, 35], however for the purpose of this work an averaged value 

γ op  is assumed for simplicity, noting also the presence of significant gas 

convection in the SEOP cell [36]. The rate constant  γ SE  describes the spin 

exchange rate and Γ  is the longitudinal relaxation rate of the noble gas 
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atoms. The polarization, PNG , increases with increasing SEOP time, tp, until 

the contribution from the exponential term in Eq. 3.2 becomes negligible 

and the steady state value of polarization PNG has been reached. The 

rubidium electron spin polarization 

  
PRb = γ op ⋅ γ op + γ trap + γ vdW + κ sd

i Mi
⎡⎣ ⎤⎦

i
∑⎛

⎝⎜
⎞
⎠⎟

−1

 is limited by spin depolarizing 

collisions with inert gas atoms described by the gas (Mi) specific rate 

constants  κ sd
i  multiplied by the number density of the corresponding gas, 

 
Mi⎡⎣ ⎤⎦ . A further limitation is through radiation trapping described by the 

rate constant  
γ trap  [12] that is further discussed below (see section 3.3.3) 

and by the rate constant  γ vdW  that is caused by spin rotation interactions (i.e. 

interaction of the rubidium 5s electron spin with rubidium-Mi molecular 

rotation - see section 3.3.4). A major contribution to the rubidium 

depolarization in the gas phase at SEOP pressures ptot > 20 − 50 kPa  is 

caused by binary atomic collision. The rate constants caused by these 

interactions are directly dependent on the density of the respective atoms 

[15]. The rate constant of xenon is   κ sd
Xe = 5.2 ×10−21  m3s−1  and is about 500 

times larger than that of molecular nitrogen and more than 3 order of 

magnitude larger than that of helium (see Table 3.1). Similarly, the rate 

constant of krypton,   κ sd
Kr = 1.1×10−21  m3s−1 , is a factor of 100 higher than 

that of molecular nitrogen.  Therefore, even in the 95% nitrogen and 5% 

krypton gas mixture the contribution of molecular nitrogen to the overall 

rubidium electron spin relaxation is only about 14% of the total gas phase 

relaxation caused by binary collisions. Moreover, in all other mixtures used 
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in this work the nitrogen contribution to rubidium 5s electron spin 

depolarization through binary collisions is assumed to be below 4%. 

 

Table 3.1. 83Kr and 129Xe literature rate constants used in Eq. 3.2.  

Collision 
pair 

Rubidium spin 
depolarization 
rate constants 

  κ sd
m3 s−1  

Spin exchange rate 
of van der Waals 
complexesC 

  γ RbNG
s−1  

Binary spin 
exchange: 

 σv m
3

s
−1  

Characteristic 
pressure 

  b = p
0

NG( ) p
0

N
2

( )
 

Rb-Xe 
 5.2 × 10−21 A 

39.7 10≈ × D 

 ≈ 2.8 × 103  E 

211.0 10−×  D 
222.2 10−×  G 

 3.7 × 10−22  E 

 

Rb-Kr 211.1 10−≈ ×  A 6.0≈
F  2.1× 10−24 F  

Rb-N2 249.4 10−≈ ×  B    

Rb-He 242.3 10−≈ ×  B    

Rb-Rb 198.1 10−≈ ×  A    

Xe-N2    0.275 E 
Kr-N2    1.90 F 
AFrom ref. [15] measured at 300 K 
BFrom ref. [35] 
CUsing   γ RbNG

= γ
M
ζ( )

RbNG
, where ζ = 0.095 (assuming PRb close to 100%) 

DFrom ref. [37] 
EFrom ref. [9], values from this reference were used in calculations where multiple values have been 
reported 
FAt 363 K from ref. [38] 
GFrom ref. [39] for T = 373 K and B0 = 0 T 
 

3.3.2 Contribution!of!rubidium2rubidium!collisions!
Unlike typical experiments at high SEOP pressure, depolarization of 

the rubidium electron spin due to rubidium-rubidium atom collisions may 

contribute significantly to rubidium depolarization in the gas phase at low 

SEOP gas densities. The fairly large corresponding rate constant 

  κ sd
Rb−Rb ≈ 8.1×10−19  m3s−1

 indicates that electron magnetic dipole – dipole 

interactions are responsible for the relaxation mechanism [35]. 

Depolarization due to rubidium-rubidium collisions depends on the 

rubidium number density [Rb] and is therefore a function of the SEOP cell 

temperature. An empirical equation (replacing an older, similar equation by 
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Killian [40])  for [Rb] in m-3 as a function of temperature T in Kelvin is [41, 

42]: 

  
Rb⎡⎣ ⎤⎦

T
=

10
32.18− 4040

T

T
.     (3.3) 

Using Eq. 3.3 one obtains that Rb[ ]373K = 6.0 ×1018  m−3  at 373 K. However 

Eq. 3.3 should be used with caution for rubidium concentration calculations 

as uncertainties arise from the difficulty of proper temperature monitoring 

inside the SEOP cell during on-resonance irradiation with a high-powered 

laser as explained further in the text (see section 3.4.3 for discussion of the 

correction factor, cRb, to [Rb]).  

The potential uncertainty in temperature is quite inconsequential for 

the rubidium depolarization in 129Xe SEOP since the rubidium density at a 

temperature of 373 K leads to a relaxation rate of   [Rb]373K ⋅κ sd
Rb−Rb = 4.8 s−1  

that contributes less than 2% to the rubidium gas phase relaxation at the 

lowest pressure (5 kPa) and the lowest xenon concentration (5.0%) used. 

The significance of rubidium-rubidium collisions to the rubidium 

depolarization decreases further as the total gas pressure and the xenon 

concentration increase. However, the situation is quite different in 83Kr 

SEOP. Firstly, the rate constant  κ sd
Kr  is about 5 times smaller than  κ sd

Xe , thus 

increasing the relative importance of  κ sd
Rb−Rb  for the rubidium depolarization.  

Secondly, 83Kr SEOP produces the highest nuclear spin polarization at 433 

K and, according to Eq. 3.3, 
  

Rb⎡⎣ ⎤⎦
433K

= 1.6 ×1020  m−3 . This translates into 

27 fold increase in rubidium concentration as compared to 
  

Rb⎡⎣ ⎤⎦
373K

 and 

rubidium-rubidium collisions contribute therefore significantly to the 
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rubidium depolarization, in particular at low SEOP pressures. For example, 

at 30 kPa total gas pressure the contribution of 
  

Rb⎡⎣ ⎤⎦
433K

⋅κ sd
Rb−Rb  to the 

rubidium gas phase depolarization ranges from approximately 2% (for the 

74% krypton mixture) to 5% (for the 25% krypton mixture) to about 20% 

for the leanest (5%) krypton mixture. Therefore uncertainties in SEOP 

temperature (and therefore [Rb]) can affect the second term in Eq. 3.2 for 

83Kr SEOP. 

3.3.3 Radiation!trapping!
Molecular nitrogen is an important component of an SEOP gas 

mixture because it can, unlike mono-atomic noble gasses, dissipate energy 

from excited rubidium electronic states into vibrational modes [14, 43]. This 

non-radiative relaxation pathway reduces rubidium fluorescence, depending 

on the nitrogen number density [12]. In SEOP mixtures with high rubidium 

density [Rb], fluorescence may be detrimental to the rubidium spin 

polarization because it can lead to radiation trapping where a single incident 

circularly polarized photon gives rise to multiple scattered photons that are 

arbitrarily polarized. Wagshul and Chupp [43] have reported a formula 

based on earlier experimental work [44] that quantifies the extent of 

quenching through molecular nitrogen. A slight modification of this 

formula, i.e. multiplication with the 
  
γ trap

N2⎡⎣ ⎤⎦=0  term from SEOP in the absence 

nitrogen, leads to an expression similar to the one reported by Brunner and 

co-workers [36]: 

  
γ trap = γ trap

N2⎡⎣ ⎤⎦=0 ⋅
1

1+1.0 ×10−23m3 ⋅ N2⎡⎣ ⎤⎦  
 (3.4) 
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where γ trap
N2
!" #$=0

= 3.3×104  s−1  was obtained in an earlier 129Xe SEOP 

measurement [12]. Unfortunately, the effect of laser power, cell 

temperature, [Rb], and cell geometry on 
  
γ trap

N2⎡⎣ ⎤⎦=0  are little explored to date. 

For this work γ trap
N2
!" #$=0

= 3.3×104  s−1  is assumed to provide a good 

approximation for 129Xe SEOP at 373 K but 
  
γ trap

N2⎡⎣ ⎤⎦=0  is expected to be 

significantly higher for 83Kr SEOP at 433 K due to the strongly increased 

rubidium density. Radiation trapping can be important at low pressure SEOP 

and is therefore included in Eq. 3.2. 

3.3.4 Rubidium!depolarization!caused!by!spin2rotation!interactions!
At lower pressures with correspondingly longer lifetimes of the 

rubidium-xenon van der Waals complexes, a significant rubidium 

polarization loss is induced by spin rotation interaction [45]. In Eq. 3.2 this 

effect is represented by the rate  γ vdW . The functional dependence of  γ vdW  

on SEOP gas pressure and composition is difficult to quantify. For an SEOP 

gas mixture with fixed concentration in the long-lifetime pressure regime 

(i.e. at very low pressures), the relaxation rate  γ vdW  will increase with the 

pressure increase due to the intensified complex formation. At sufficiently 

high pressure the short molecular lifetime regime is reached and the further 

increase of complex formation with increasing pressure will be offset by 

higher breakup rates, thus resulting in pressure independent  γ vdW . In this 

regime, the rubidium nuclear-electron hyperfine interaction limits the 

influence of spin-rotation relaxation. At further pressure increase however, 

the very short lifetime regime is reached with a diminished hyperfine 
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interaction and therefore,  γ vdW  starts to increase again with increasing 

pressure until the hyperfine interaction has become completely negligible. 

For a 1% xenon, 1% nitrogen, and 98% helium SEOP mixture, a rate of 

  γ vdW ≈ 2 ×103  s−1  at 423 K (and an approximately 60% higher value at 353 

K) has been reported for the short lifetime limit [45]. This value is 

comparable to that of   
κ sd

Xe Xe⎡⎣ ⎤⎦ ≈ 2 ×103  s−1  caused by binary collisions in 

129Xe SEOP at 40 kPa and 373 K in the 5% xenon - 95% nitrogen mixture. 

The relaxation rate  γ vdW  is however mixture dependent. For instance 

completely replacing helium by nitrogen should considerably reduce  γ vdW  

[46] as nitrogen facilitates the break-up of the rubidium-noble gas van der 

Waals dimer better than helium. Unfortunately literature data of  γ vdW  for 

the mixtures used in this work are not available. SEOP conditions in the 

current work are likely to create short to very short lived rubidium-noble gas 

van der Waals complexes. Therefore, to a first approximation and within the 

scope of this work,  γ vdW  will be considered as pressure independent because 

of its general pressure independence in the short lifetime limit and because 

of its relatively small pressure dependence compared to binary relaxation, 

 
κ sd

NG NG⎡⎣ ⎤⎦  in the very short lifetime limit. In the lower pressure regime, 

where  γ vdW  actually dominates rubidium depolarization rate this crude 

approximation is destined to fail, therefore experimental data fitting with 

Eq.  3.2 (or modifications thereof) was not attempted in this pressure limit. 
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3.3.5 Spin!exchange!rate!

The spin exchange rate  γ SE  results from the added contributions of 

(1) spin exchange in rubidium - noble gas van der Waals complexes that is 

characterized by the rate constant,  γ RbNG  and (2) from spin exchange caused 

by binary collisions quantified by the velocity averaged binary spin-

exchange cross section  
σv . Literature values of  γ RbNG  and  

σv  for 83Kr 

and 129Xe are listed in Table 3.1 [9, 37-39], while Eq. 3.5 shows the 

contribution of both rates to  γ SE  [9]: 

γ SE = Rb⎡⎣ ⎤⎦
γ RbNG
NG⎡⎣ ⎤⎦

1
1+ br

⎛
⎝⎜

⎞
⎠⎟
+ σv

⎛

⎝
⎜

⎞

⎠
⎟ .      (3.5)  

The rates 
  
γ RbNG ⋅ Kr⎡⎣ ⎤⎦

−1
 and 

  
γ RbNG ⋅ Xe⎡⎣ ⎤⎦

−1
 are comparable to their 

corresponding  
σv  rates at a densities of 0.25 amagat and 0.4 amagat 

respectively (in the absence of nitrogen). In this density range, van der 

Waals dimers (mediated through three-body collisions) and binary collisions 

contribute about equally to the spin exchange. However, binary collisions 

will eventually dominate in the spin exchange process as the contributions 

from van der Waals complexes is expected to decline with the increase of 

the noble gas concentration and therefore its density [NG].  

The nitrogen molecules in the SEOP mixture also contribute to the 

rubidium-noble gas dimer break up. This contribution is quantified by the 

characteristic pressure ratio   
b = p0 NG( ) p0 N2( )  listed in Table 3.1 with 

the specific values for xenon and krypton [9, 38, 47]. The parameter r in Eq. 

3.5 is the partial pressure ratio   
p N2( ) p NG( )  (or   

N2⎡⎣ ⎤⎦ NG⎡⎣ ⎤⎦  density 
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ratio) in a mixture. The ratio b shows that a dilution of xenon in nitrogen 

can be beneficial to  γ SE . However, a dilution of krypton in nitrogen can be 

detrimental to  γ SE  because the break up of van der Waals complexes is 

facilitated by nitrogen more than by krypton. Note however, that nitrogen is 

still beneficial for 83Kr SEOP because of its radiation quenching effect 

(section 3.3.3) and because   κ sd
Kr ≈ 100 ⋅κ sd

N2  (section 3.3.1). 

3.4 Results-and-discussion-

3.4.1 Noble!gas!polarization!as!a!function!of!SEOP!gas!pressure!
Steady state, or near steady state spin polarization was obtained for 

the 129Xe mixtures after about 6 min of SEOP at 373 K and a near steady 

state (approximately 80%) was reached after 8 min of SEOP for 83Kr 

mixtures at 433 K. The steady state polarization P is shown as a function of 

the total SEOP pressure ptot  in Figures 3.2 and 3.3 for hyperpolarized 83Kr 

and hyperpolarized 129Xe respectively. The noble gas polarization P of both 

isotopes in all mixtures increased as the total gas pressure was decreased 

from 350 kPa to below ambient in all studied mixtures. The maximum 

steady state polarization   P
max  for hyperpolarized 83Kr was obtained at a 

total gas pressure ptot , in the range of 35 - 50 kPa, depending on the krypton 

concentration used. Similarly, a polarization maximum was observed for 

hyperpolarized 129Xe, however at a lower total pressure range of 

  ptot = 20 − 30 kPa . Reducing the pressure below these values resulted to a 

rapid drop in the steady state polarization of the noble gases. In order to 

facilitate the following discussions, the SEOP pressure that resulted to the 
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highest observed steady state polarization   P
max , will be labelled as   p

P max . 

Table 3.2 lists   P
max for various mixtures, the corresponding total SEOP 

pressure   ptot
P max , and the corresponding SEOP partial pressure   pNG

P max . 

 

Figure 3.2. 83Kr spin polarization, P, as a function of SEOP pressure. 83Kr spin 

polarization as a function of SEOP cell pressure and combined number density 

([Kr] + [N2]) at 433 K for four different gas mixtures. See the legend in the figure 

for symbol explanation. Polarization data are detailed in Table 3.2. Data analysis 

using Eq. 3.13 with 
 
γ op  and 

  
γ trap

N2⎡⎣ ⎤⎦=0  as fitting parameters is shown in solid lines 

and resulting values are reported in Table 3.3. Fitting of the data was also not 

attempted for values much lower than   ptot < pP max
tot ; the dotted lines are 

extrapolations to pressure ranges outside the fitting region.  
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Figure 3.3. 129Xe spin polarization, P, as a function of SEOP pressure.  129Xe spin 

polarization as a function of the SEOP cell pressure and combined number density 

([Xe] + [N2]) at 373 K for four different gas mixtures. Please refer to the legend in 

the figure for symbol explanation. Polarization data are detailed in Table 3.2.  (A) 

Solid lines represent data analysis with Eq. 5.13. Extrapolation of these theoretical 

curves to pressure ranges outside the fitted region are shown by dotted lines. (B) 

Same experimental data as in (A) but the solid lines represent now the data analysis 

using Eq. 5.13 with the pressure dependence of the rubidium D1 absorption taken 

into account through Eq. 5.14. Extrapolation to pressure ranges outside the fitted 

region are shown by dotted lines. Fitting parameters for (A) and (B) are reported in 

Table 3.4A and 3.4B, respectively. 
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Table 3.2. Maximum noble gas polarization   P
max , maximum apparent noble gas 

polarization 
  
Papp

max , and corresponding gas pressures extracted from data of Figures 

3.2 and 3.3.  

Mixture 
com-
position 

Maximum 
polarization

  P
max %  

Apparent 
maximum 
polarizationA 

  Papp

max %   

SEOP cell 
pressure and 
total gas density 
at maximum 
polarization  

  ptot
P max 100 kPa

 

 density amagat( )  

Noble gas 
partial pressure 
and noble gas 
density, [NG], at 
maximum 
polarization  
pNG
Pmax 100 kPa

 

NG⎡⎣ ⎤⎦ amagat( )  

SEOP time 
and 
temperature 
 

5.0 Kr; 
95.0 N

2
 

26.5 ±  3.3 1.3 ±  0.2 0.54 (0.34) 0.03 (0.02) 

8 minutes 
 

433 K 

25.0 Kr; 
75.0 N

2
 

17.7 ±  2.2 4.4 ±  0.5 0.42 (0.26) 0.11 (0.07) 

49.5 Kr; 
50.5 N

2
 

8.6 ±  1.1 4.3 ±  0.5 0.41 (0.26) 0.20 (0.13) 

74.1 Kr; 
25.9 N

2
 

4.3 ±  0.5 3.2 ±  0.4 0.30 (0.19) 0.22 (0.14) 

5.0 Xe; 
95.0 N

2
 

64.7 ±  8.0 3.2 ±  0.4 0.46 (0.33) 0.02 (0.01) 

6 minutes 
 

373 K 

24.5 Xe; 
75.5 N

2
 

45.2 ±  5.6 11.1 ±  1.4 0.28 (0.20) 0.07 (0.05) 

40.3 Xe; 
59.7 N

2
 

32.6 ±  4.0 13.1 ±  1.6 0.22 (0.16) 0.09 (0.07) 

50.0 Xe; 
50.0 N

2
 

30.9 ±  3.8 15.5 ±  1.9 0.22 (0.16) 0.11 (0.08) 

78.2 Xe; 
21.8 N

2
 

13.1 ±  1.6 10.2 ±  1.3 0.37 (0.27) 0.29 (0.21) 

A 

  
Papp

max = Pmax ⋅
pNG

ptot  
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Table 3.3. Values for 
 
γ op  and  

γ trap  from fitting experimental data of 83Kr spin 

polarization as a function of SEOP cell pressure in Figure 3.2 using Eq. 3.13.A 

Mixture 
  

γ op

103s−1  

  

γ trap
N2⎡⎣ ⎤⎦=0

103s−1  

  5.0% Kr; 95.0% N2 4.3 ± 0.4 125 ± 20 

25.0% Kr; 75.0% N2 3.1 ± 0.1 100 ± 13 

49.5% Kr; 50.5% N2 2.37 ± 0.04 164 ± 6 

74.1% Kr; 25.9% N2 1.49 ± 0.09 139 ± 15 

AA rubidium correction factor of   cRb = 4  was used for the fittings of data in Figure 3.2 with Eq. 

3.13. The rate constant  γ vdW
 typically resulted to values close to zero but with large error values. 

Within its error margins  γ vdW
 had little influence on the other fitting parameters and was set to 

  γ vdW
= 0  for the fittings reported in this table. 

 

Table 3.4. Values for 
  
γ op ,    

γ op
* , and  γ vdW  rates obtained from the fitting of 

experimental data of 129Xe spin polarization as a function of SEOP cell pressure 

(Figure 3.3) using Eq. 3.13.A  

Mixture A. Data fitting using Eq. 3.13 
(Figure 3.3A)  

B. Data fitting using Eqs. 3.13 and 
3.14 (Figure 3.3B) 

  
γ op ρ( ) ≈ γ op

* ⋅
Xe⎡⎣ ⎤⎦

2.6868 ×1025  m−3

⎛

⎝
⎜

⎞

⎠
⎟

1 3
 

  γ op
103  s−1    γ vdW

103  s−1

 
  γ op

* 103  s−1

   γ vdW
103  s−1

 

  5.0% Xe; 95.0% N2 44 ± 4 15 ± 2 19.1 ± 1.0 3.2 ± 0.4 
24.5% Xe; 75.5% N2 27 ± 2 19 ± 3 17.9 ± 1.0 3.9 ± 1.0 
50.0% Xe; 50.0% N2 34 ± 1 50 ± 3 20.6 ± 0.5 10.6 ± 1.1 
78.2% Xe; 21.8% N2 25 ± 2 10 ± 20 13.0 ± 0.6 22 ± 3 
AFittings of data in Figure 3.3 using Eq. 3.13 used the following parameters: f =1, 

  γ trap
= 33000 s−1 ,  c

Rb = 1.3  and  Γ = 0.0009 s−1 . 
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As can be seen from Table 3.2, the maximum 83Kr polarization of 

  P
max = 26.5%  was reached for the 5% krypton - 95% nitrogen mixture at an 

SEOP pressure of 54 kPa. This is a remarkably high spin polarization for a 

quadrupolar spin system observed at ambient temperature. 129Xe SEOP at a 

pressure of 46 kPa using a 5% xenon mixture resulted to   P
max ≈ 65%  spin 

polarization. Both results were obtained with a 23.3 W laser irradiation that 

resulted in a power density of 2.6 W/cm2 at the SEOP cell front window.  

Since hyperpolarized noble gasses remain diluted without cryogenic 

separation process, the obtained polarization does not enable easy 

comparison with experiments that utilize cryogenic separation. It is 

therefore useful to define an apparent polarization, Papp, scaled to the 

polarization, P, in the pure hyperpolarized noble gas that would result to the 

same MRI signal. 

Papp = P ⋅
NG⎡⎣ ⎤⎦
Mi⎡⎣ ⎤⎦

i
∑

≈ P ⋅
pNG
ptot    (3.6) 

The apparent polarization, Papp, provides a measure of the ‘usable’ 

spin polarization in MR experiments if the hyperpolarized noble gas is not 

separated from the nitrogen after SEOP. Table 3.2 also lists the apparent 

maximum steady state polarization 
  
Papp

max . The highest 
  
Papp

max  was obtained 

for krypton with the 25% and 50% krypton mixtures leading in both cases to 

  
Papp

max ≈ 4.4% . Mixtures with 40% and 50% of xenon lead to the highest 

values with 
  
Papp

max ≈ 15.5% . In cases where similar 
  
Papp

max values are obtained 
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for different SEOP mixtures, economical considerations will prefer the 

mixture with lower noble gas concentration, in particular when expensive 

isotopically enriched gases are used.  

Note the maximum polarizations listed in Table 3.2 were generated 

every 6 minutes for hyperpolarized 129Xe and every 8 minutes for 

hyperpolarized 83Kr (and with slightly increasing values for PKr at SEOP 

times up to 18 min). The ideal pumping time for MRI applications however 

may be shorter than these values if polarization can be compromised in 

favor for faster experimental repetition. 

3.4.2 Spin!exchange!optical!pumping!temperature!

The three-body spin exchange rate  γ RbNG  and the binary cross 

section  
σv  are both more than two orders of magnitude smaller for the 

rubidium-83Kr system than for the rubidium-129Xe system. The resulting 

small  γ SE  rate has two adverse consequences for 83Kr SEOP as predicted by 

Eq. 3.2. Firstly, a smaller  γ SE  in the presence of a higher relaxation rate Γ  

leads to a reduced steady state polarization P for 83Kr compared to that for 

129Xe under otherwise identical SEOP conditions. Secondly, smaller  γ SE  

values further result in slower 83Kr SEOP polarization build up as compared 

to 129Xe SEOP, thus increasing the batch dispense interval in MRI 

applications. In order to, at least partially, offset this effect [Rb] needs to be 

raised through elevated 83Kr SEOP temperatures. In addition to the 

increased [Rb], a further advantage of elevated 83Kr SEOP temperatures 

comes from reduced quadrupolar relaxation of 83Kr on the cell surface 

(discussed further in section 3.4.3). It was found that up to a temperature of 
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433 K the benefit from the increased spin exchange rate  γ SE  for 83Kr SEOP 

outweighs other detrimental effects arising from elevated temperatures. In 

contrast, a temperature of 373 K was found to produce the highest 129Xe 

spin polarization in this work. Examples of adverse effects at higher 

temperatures are increased rubidium-rubidium collision rates, as discussed 

in section 3.3.2, and increased laser absorption in the rising optical density 

of the rubidium vapor phase.  

3.4.3 Results!from!inversion!recovery!83Kr!SEOP!experiments!

The noble gas self-relaxation rate Γ  is difficult to obtain from 

published data as it is specific to some SEOP conditions, for example SEOP 

cell dimensions and its surface temperature. However, the combined rate 

constants  B = γ SE + Γ  can be extracted from the time dependence of the 

polarization obtained in SEOP experiments. In principle, build up curves 

can be measured directly inside the SEOP cell [10, 37, 48]. However, in this 

work the SEOP time dependence is determined through remotely detected 

NMR experiments (i.e. after hyperpolarized gas transfer into the high field 

magnet) as no further experimental modification was required for the 

existing instrumentation. The drawback of this procedure was that the 

measurement of the build up curves required time-consuming point-by-point 

experiments. 

The time dependence of the polarization, PNG, was measure in point 

by point experiments using batch mode SEOP for an incremented time 

period, t p ,  followed by shuttling of the polarized gas mixture into the 

superconducting magnet for the high field detection. However, the rubidium 

concentration [Rb] has to be regenerated after each shuttling event and the 
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time dependence of this regenerative process needs to be eliminated from 

the data. Since pressure equalization is used for the shuttling of the 

hyperpolarized gas, a further source of systematic error arises from 

incomplete gas transfer that leaves hyperpolarized gas in the SEOP cell and 

thus influences the outcome of the following experiment. The unwanted 

contributions of these two time dependent processes were previously 

avoided by maintaining SEOP like conditions for temperature, pressure, and 

illumination either in the absence of a magnetic field or by switching from 

circular polarized to linear polarized laser light during a 5 – 10 minutes 

recovery period. SEOP for the incremented tp duration is then started by 

either returning the magnetic field or by reinstating the circular polarization 

of the irradiation [29]. This type of experiment is reminiscent of ‘saturation 

recovery’ type of NMR relaxation measurements. An increased precision 

may be obtained in an ‘inversion recovery’ type of experiment where either 

the magnetic field is inverted or the circular polarization is reversed during a 

constant, precisely timed recovery period. In this work, circular polarized 

light was switched through rotation of the  λ 4  plate instead of a faster 

magnetic field switch as SEOP was performed in the fringe field of the 

superconducting magnet that could not be altered straightforwardly. After 

returning the original circular polarization for the incremented time tp , the 

built up of PNG was fitted to: 

PNG tp( ) =C + A 1− 2e−Btp( )   (3.7) 

with fitting parameter  B = γ SE + Γ  as the combined rate constant. The 

fitting parameters C normalizes the polarization 
  
PNG tp = ∞( ) ≡ 1 . In the 
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interest of time, the recovery (or ‘inversion’) period was kept to 12 min for 

83Kr and 8 min for 129Xe, therefore the fitting parameter A was needed to 

account for incomplete inversion but also to correct for imperfections in the 

relative orientation of the  λ 4  plate. Rotation of the  λ 4  plate was 

accomplished manually, a process that took approximately 4-5 s. The 

switching time was acceptable for the slow build up rates in the experiments 

and automation of this process was not pursued. The data from inversion 

recovery 83Kr SEOP experiments are shown in Figure 3.4A and the rate 

constants,  B = γ SE + Γ , obtained from fitting with Eq. 3.7 are listed in Table 

3.3.  

The spin exchange rates  γ SE
calc  listed in Table 3.3 were calculated 

using Eq. 3.5 with the relevant literature values reported in Table 3.1. 

However, the experimental value   B ≈ 3.7 ×10−3  s−1  obtained from the 

inversion recovery experiments for 83Kr SEOP below 200 kPa presents a 

problem when combined with the calculated spin exchange rate values 

 γ SE
calc in order to determine the first fraction in Eq. 3.2,   γ SE (γ SE + Γ) . Using 

 γ SE
calc B , Eq. 3.2 predicts an upper limit for the 83Kr polarization of 

  P
max ≈ 11−14% . In reality, any experimentally measured value for PKr 

would be further reduced because of PRb < 1 and due to incomplete 

(approximately 80%) polarization at t p = 8  min in SEOP.  In remarkable 

disagreement, the experimental data show polarization values of up to 

  P
max = 26.5%  and   P

max = 17.7%  for the 5% krypton and 25% krypton 

mixtures, respectively (see Figure 3.2 and Table 3.2).  
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Figure 3.4. Inversion recovery 83Kr and 129Xe SEOP. (A) Inversion recovery of 83Kr 

polarization after SEOP time, tp, for two krypton-nitrogen gas mixtures at different 

SEOP pressures. Please refer to the legend in the figure for symbol explanation. 

(B) Inversion recovery of 129Xe polarization after SEOP time, tp, for two xenon-

nitrogen gas mixtures at different SEOP pressures. The inversion recovery data 

from both (A) and (B) were analyzed using Eq. 3.7. Polarization data were 

normalized to their values at 
 
tp = 2040 s  for 83Kr and 

 
tp = 1200 s  for 129Xe to 

compare the rate differences of the mixtures and pressures. The obtained rate 

constants from fitting of both (A) and (B) are reported in Table 3.5.  
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Table 3.5. 83Kr and 129Xe values for  B = γ SE + Γ  obtained from fitting of 

inversion recovery build up data (see Figure 3.4) with Eq. 3.7.A  

Mixture  SEOP cell pressure 
(kPa)   

B
10−3s−1

 
  

γ SE
calc

10−3s−1  
  

Γ
10−3s−1

B

 

5.0% Kr; 
95.0% N2 

50 3.5 ± 0.1 0.41 1.8 ± 0.1 
180 3.9 ± 0.1 0.36 2.5 ± 0.1 
310 5.0 ± 0.1 0.36 3.6 ± 0.1 

50.4% Kr; 
49.6% N2 

50 3.5 ± 0.1 0.43 1.8 ± 0.1 
180 4.0 ± 0.1 0.37 2.5 ± 0.1 
310 5.5 ± 0.1 0.36 4.1 ± 0.1 

5.0% Xe; 
95.0% N2 

50 7.8 ± 0.2 7.8 ~0 
180 6.0 ± 0.2 3.7 1.2 ± 0.2 
300 5.2 ± 0.1 3.2 1.0 ± 0.1 

49.7% Xe; 
50.3% N2 

50 9.4 ± 0.3 5.0 2.9 ± 0.3 
180 4.7 ± 0.2 3.0 0.8 ± 0.2 
300 4.0 ± 0.1 2.7 0.5 ± 0.1 

AThe value of  γ SE

calc

 was calculated from Eq. 3.5 using literature values reported in Table 3.1. In the 
case of multiple literature values, ref. [9] values were used. 
BRubidium correction factors   cRb = 4  for 83Kr and   c

Rb = 1.3  for 129Xe were used in the 

calculation of  Γ = B − cRb ⋅ γ
SE

calc . 

 

The discrepancy between predicted maximum possible polarization 

and observed polarization may be due to incorrect literature data in Table 

3.1 used for determining  γ SE
calc . Note that the literature data was obtained at 

temperature conditions different from the ones used in this work.  Another 

potential culprit is a wrong value of [Rb] obtained from Eq. 3.3 based on 

temperature measurements outside the cell. The temperature inside the cell 

under high power laser irradiation in the presence of the liquid rubidium 

metal is unknown. Wagshul and Chupp [35] noted a discrepancy of a factor 

of two or more in [Rb] under 129Xe SEOP conditions from the prediction by 

the equilibrium vapor equation. Further doubt about [Rb] determination 

through external temperature measurements arises from Raman 

spectroscopical experiments by Happer and co-workers that provide access 

to the in situ temperature distribution within the SEOP cell by measuring the 
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rotational - vibrational nitrogen temperature [49]. The internal temperatures 

were found to substantially exceed those measured externally at the cell 

outside surface. Finally, a numerical simulation study [36] also draws a very 

complex picture about a non-uniform temperature distribution within a 

static SEOP cell with significantly elevated internal temperatures. The 

same, perhaps amplified problem may occur for 83Kr SEOP experiments 

that are run at the cell outside temperature of 433 K. A correction factor cRb 

for the rubidium concentration from Eq. 3.3 is therefore introduced for this 

work. It follows from the discrepancy between observed and calculated 

  Pmax  described above, that cRb > 2. An upper limit for the correction factor 

cRb < 8 is obtained from the fact that Γ  can not be negative. Further, the 

upper limit can be reduced to cRb < 6 if one assumes that relaxation rate Γ  

of 83Kr is not significantly lower than typical rates found for 129Xe under 

SEOP conditions. Further determination of cRb for 83Kr SEOP was not 

possible from the data in this work, however the qualitative outcome of the 

fittings in Figure 3.2 is not strongly affected within the range 2 < cRb < 6.  

The correction factor was set to   cRb = 4  for further data analysis in Figure 

3.2. 

The similarity in the  γ SE
calc  values in Table 3.3 for 83Kr SEOP is 

caused by the [Kr] independent rate constant  
σv  that dominates over the 

  
γ RbNG ⋅ Kr⎡⎣ ⎤⎦

−1
term even at the low pressures of   ptot

P max  for all krypton 

mixtures. As pressure   ptot > ptot
P max , the van der Waals contributions will be 

even further marginalized. As a consequence, the inversion recovery 83Kr 

SEOP curves in Figure 3.4A all display similar time dependence at SEOP 
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pressures below 200 kPa. At 310 kPa, the combined rate constant is 

increased due to the increased relaxation rate constant Γ .  

In the case of 83Kr the factors affecting the Γ  rates are worth further 

discussion since the surprisingly slow relaxation of this nuclear electric 

quadrupole isotope is of crucial importance. Due to the nuclear electric 

quadrupole moment Γ  should possess a pressure dependence that needs to 

be accounted for in the data analysis and fitting of the build up curve with 

Eq. 3.7. Figure 3.5 shows the pressure dependence of the 83Kr relaxation 

rate constant, Γ , listed in Table 3.3 and displays the gas composition 

independence of Γ . Note that the corresponding longitudinal relaxation 

times range between   T1 = 244 − 555 s  in this work. 

 

Figure 3.5. 83Kr relaxation rate under SEOP conditions. Dependence of Γ  on 

SEOP cell pressure for two different krypton mixtures as described in the legend. 

Γ  was calculated from the expression   Γ = B − cRb ⋅ γ SE
calc;  where B  was 

determined experimentally fitting Eq. 3.7 with the inversion recovery data of 83Kr 

in Figure 3.4A. The value for  γ SE was calculated from Eq. 3.5 using literature 

values displayed in Table 3.1, including the rubidium correction factor   c
Rb = 4. 

The combined data from both mixtures was fitted assuming linear pressure 

dependence of Γ  (solid line) with the result summarized in Eq. 3.10. 
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 Three events may contribute to the quadrupolar driven relaxation 

rate constant Γ ; (i) binary collisions, (ii) krypton- krypton van der Waals 

formation, and (iii) surface adsorption: 

  
Γ =

1
T1

binary +
1

T1
vdW +

1
T1

surface    (3.8) 

(i) The rate constant for relaxation caused by binary krypton-krypton or 

krypton-nitrogen gas phase collisions is [50]: 

  

  

1
T1

binary =
1

T1ρKr

⎛

⎝⎜
⎞

⎠⎟ Kr

+
1

T1ρN2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

N2

⋅ r
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
ρKr   (3.9) 

with  ρKr  and 
  
ρN2

 as the density of the respective gases in amagat and 

  
r = ρKr ρN2

. The density independent constants at ambient temperature are 

  
1 T1ρKr( )298K

Kr
≈ 1.6 ×10−3  amagat−1s−1  and 

  
1 T1ρN2
( )298K

N2

≈ 2.3×10−3  amagat−1s−1  

[50]. Although the corresponding values for 433 K are not known, a linear 

dependence of   1 T1
binary

 on gas pressure (and therefore on  ρKr ) can be 

assumed. Due to the similarity of the two rate constants, the resulting rate 

  1 T1
binary  is unlikely to be strongly affected by the gas composition. The 

limited amount of data shown Figure 3.5 does not indicate a significant 

composition dependence of Γ . Linear fitting of the data leads to: 

  
Γ433K ρtot( ) = 1.3×10−3  s−1 +1.2 ⋅10−3  amagat-1s-1 ⋅ ρtot ,  (3.10) 

where the total gas density 
  
ρtot = ρKr + ρN2

 was used making the 

simplifying assumption of an equal contribution from the two gases to the 
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binary collision induced relaxation. The contribution 

  
1 T1ρtot( )433K

Kr ,N2

≈ 1.2 ×10−3  amagat−1s−1  in Eq. 3.10 is in reasonable agreement 

with the literature data [50]. However, the interpolated zero pressure value 

  
Γ ρtot → 0( ) = 1.3 ⋅10−3  s−1  cannot arise from binary gas phase collision. 

Two further relaxation mechanisms, described below, may contribute to this 

rate. Rewriting Eq. 3.10 as a function of the krypton number density and 

using   
r = N2⎡⎣ ⎤⎦ Kr⎡⎣ ⎤⎦ leads to: 

 
  
Γ [Kr]( ) = 1.3×10−3  s−1 + 4.6 ×10−29  s−1[Kr] 1+

1
r

⎛
⎝⎜

⎞
⎠⎟

. (3.11) 

 (ii) The rate constant for relaxation caused by 83Kr- krypton van der 

Waals dimers in the gas phase becomes independent of the gas density if the 

extreme narrowing condition is fulfilled [51]. This is the case for all 

experiments reported in this work. Further [31]: 

1
T1
vdW ∝ K

kKr + rkN2( )        (3.12) 

where K is the equilibrium constant of the 83Kr- krypton complex formation 

and kKr  and kN2  are the breakup rate constants due to collisions with 

krypton atoms and nitrogen molecules respectively. Eq. 3.12 and previous 

measurements at ambient temperature predict a decreasing relaxation rate 

1 T1
vdW  with increasing nitrogen concentration [31]. Figure 3.5 does not 

reflect such behavior and suggest therefore that 1 T1
vdW

 does not contribute 

significantly under SEOP conditions at 433 K. A more thorough 

experimental study would be required to prove this since the small amount 
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of data in Figure 3.5 does not allow for a thorough analysis. However, a 

marginal contribution from van der Waals complexes to the overall 

relaxation is not completely unexpected due to the temperature dependence 

of the equilibrium constant K of dimer formation. At high temperature, the 

equilibrium will be shifted strongly towards the dissociated atoms. 

Therefore, van der Waals complexes are not the likely cause for the 

interpolated zero density Γ  rate in Eq. 3.10. 

(iii) Another possible contribution to Γ  is caused by relaxation processes on 

the surface of the SEOP cell. The corresponding rate,   1 T1
surface , is 

independent of the gas composition (assuming no dramatic surface 

adsorption enthalpies differences between the gas components) and 

independent of gas pressure (assuming low surface coverage in the Henry 

isotherm limit). However,   1 T1
surface  has been demonstrated to depend on the 

surface to volume ratio [52] and is strongly accelerated by the treatment of 

model surfaces with silanizing agents [29, 52-54]. In order to keep Γ  small, 

the SEOP cells used in this work have not been treated with silanizing or 

siliconizing agents. Increasing the temperature clearly helps with reducing 

the longitudinal 83Kr relaxation. Previously, a temperature dependent 

decrease of 83Kr longitudinal relaxation rates from   1 T1 = 1.2 ×10−2  s−1  at 

297 K to   1 T1 = 4.5×10−3  s−1 at 433 K was demonstrated for a SEOP cell 

shaped container, similar to the one used in this work, but without laser 

irradiation and alkali metal present [28]. The 433 K value was obtained with 

a gas mixture of 95% krypton and 5% nitrogen at a density of approximately 

1 amagat. Using 1.2 ×10−3  amagat-1s-1 ⋅ ρtot  from Eq. 3.10, one finds a zero 
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pressure intercept value of Γ ρtot → 0( ) = 1 T1
surface = 3.3×10−3  s−1  and 

therefore a 2.5 fold faster surface relaxation than the one found in this work 

under SEOP conditions (i.e. laser irradiation and in the presence of 

rubidium metal). The reduced relaxation under SEOP conditions may be 

caused by a cell temperature that is significantly higher internally than the 

externally measured value. Alternatively, the presence of rubidium itself 

may reduce   1 T1
surface

 through competitive co-adsorption [13]. In any case, 

  1 T1
surface  can be further reduced through the use of larger SEOP cells with 

decreased surface to volume ratios, thus leading to improved polarization 

values for 83Kr SEOP. 

3.4.4 83Kr!polarization!as!a!function!of!SEOP!pressure!
The pressure dependence of the 83Kr polarization, shown in Figure 

3.2, should be described in principle by Eq. 3.2 for SEOP pressures above 

  ptot
P max . Most of the relevant parameters are listed either in Table 3.1 or 

described by Eqs. 3.3, 3.4, 3.5, and 3.11. The equation used for fitting of the 

data in Figure 3.2 is: 

 

P = f ⋅
cRb ⋅ γ SE

calc

cRb ⋅ γ SE
calc + Γ p( ) ⋅

γ op

γ op + γ trap + γ vdW + κ sd
i Mi
⎡⎣ ⎤⎦ +κ sd

Rb ⋅ cRb Rb⎡⎣ ⎤⎦
i≠Rb
∑

    

(3.13)

 
where 

 
γ op and 

  
γ trap

N2⎡⎣ ⎤⎦=0  (in Eq. 3.4) were used as fitting parameters. The 

correction factor   cRb = 4  was used for [Rb], as described in section 3.4.3. A 

functional form of  
Γ p( )  is given by Eq. 3.11 (also based on   cRb = 4 ). The 

scaling factor f = 0.8 in Eq. 3.13 accounts for the limited SEOP duration of 
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8 min that caused the polarization build up to be approximately 80% 

completed. The rubidium electron spin relaxation due to spin-rotation 

interaction in van der Waals complexes is represented by the rate  γ vdW  that 

is assumed to be constant under the SEOP conditions used in this work (see 

section 3.3.4). When used as a third fitting parameter,  γ vdW  consistently 

emerged with negative or near zero values with little influence on the other 

fitting parameters, indicating small to negligible spin-rotation interactions 

for 83Kr. It was therefore set to zero and the results for 
 
γ op  

and 
  
γ trap

N2⎡⎣ ⎤⎦=0  are 

listed in Table 3.5. 

At a first glance, the fitting result in Figure 3.2 (solid lines) appear to 

demonstrate that Eq. 3.13 qualitatively describes the dependence of the 83Kr 

SEOP polarization on [Kr] at pressures above   ptot
P max . The obtained function 

describes the experimental observation reasonably well beyond the fitting 

range (see dashed line). The resulting 
  
γ trap

N2⎡⎣ ⎤⎦=0  rate constants are fairly 

consistent but are about three fold increased compared to previously 

reported 129Xe SEOP data [12]. These values are quite high but an increase 

in 
  
γ trap

N2⎡⎣ ⎤⎦=0  with increasing rubidium density is expected. The 
 
γ op  

rates listed 

in Table 3.5 are low and indicate low pumping rates as it would be expected 

for an optically thick medium with high [Rb]. The 2.8 fold decrease of 
 
γ op  

with increasing krypton concentration is further discussed in section 3.4.8. 

3.4.5 Result!from!inversion!recovery!129Xe!SEOP!experiments!
In contrast to 83Kr SEOP, the time behavior of the 129Xe SEOP 

polarization shown in Figure 3.4B depends strongly on total pressure and 
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gas composition (see Table 3.3). This observation is in agreement with 

previous work [10] and was expected since  γ RbNG , i.e. the van der Waals 

contribution to the spin exchange rate caused by three-body collisions, plays 

a more dominant role for 129Xe SEOP than for 83Kr SEOP. An increased 

 γ RbNG  relative to the rate  
σv  caused by two body collisions will result in 

a stronger noble gas density dependency for  γ SE  in Eq. 3.5. Furthermore, 

the time scale of the inversion recovery is accelerated at low xenon density 

compared to that of 83Kr (Figure 3.4A). However, at high [Xe],  γ SE  is 

reduced and the 129Xe SEOP time dependence (i.e. the rate constant 

 B = γ SE + Γ ) becomes similar to that of 83Kr SEOP at high [Kr].  The 

reason for the similar B values at high noble gas densities are of course 

different for the two isotopes: The dominating term in 129Xe SEOP is  γ SE  

that decreases with [Xe], whereas Γ  is assumed to be pressure independent. 

The 83Kr SEOP time dependence, on the other hand is controlled through Γ  

that increases with [Kr] while  γ SE  rate of 83Kr is mostly pressure 

independent. 

The combined rate constants  B = γ SE + Γ  and the rates  γ SE
calc  for 

129Xe, as listed in Table 3.3, imply that the correction factor for [Rb], if 

needed at all, must be   c
Rb < 1.6  because of the requirement  Γ ≥ 0 . Once 

again,  cRb  cannot be further determined and the average   c
Rb = 1.3 of the 

range is taken. Furthermore, the assumption is made that Γ  is caused 

mainly by interactions with the surface and is therefore pressure and gas 

composition independent. This seems to be indeed the case with the 
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exception of the data taken at 50 kPa that scatter widely. However, for 129Xe 

SEOP at this pressure the values for Γ  are relatively small compared to B 

and a significant error is not unlikely. Excluding 50 kPa data and averaging 

the 180 kPa and 300 kPa data one obtains  Γ = 9 ×10−4  s−1
 using   c

Rb = 1.3 . 

Note, for   cRb = 1 it follows that  Γ = 1.9 ×10−3  s−1
 in better agreement with 

data by Goodson et al. [10] who previously determined  Γ = 1.7 ×10−3  s−1  in 

a coated SEOP cell. However, as will be discussed in the following section, 

the exact value is not very important for the description of 129Xe SEOP in 

this work. 

3.4.6 129Xe!polarization!as!a!function!of!SEOP!pressure!
A qualitative analysis of the data shown in Figure 3.3A was 

attempted with Eq. 3.13 derived from Eq. 3.2 with the inclusion of the 

correction factor for the rubidium density,  cRb . During the fitting procedure 

the rates 
 
γ op  

and  γ vdW  
were used as the fitting parameter with the correction 

factor set to   c
Rb = 1.3 and the nuclear relaxation term to  Γ = 9 ×10−4  s−1 . 

Unlike for 83Kr SEOP that is run at a temperature of 433 K, the radiation 

trapping term for 129Xe SEOP could be taken from literature data with 

  
γ trap = 33000 s−1  [12]. Furthermore, the SEOP duration was long enough to 

reach the steady state polarization value and therefore one could set f = 1. 

The rest of the constants used in the fitting procedure were taken from Table 

3.1, in the case of the multiple choices of the literature data the constants 

from reference [9] were used. The resulting fits over the pressure range from 

45 to 240 kPa are displayed (solid lines) in Figure 3.3A (see also Table 3.5A 

for the relevant fitting parameters). The theoretical curves were further 
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extended over the entire pressure range using the values for 
 
γ op  and  γ vdW  

obtained from fitting (dotted lines). Although, fitting curves using Eq. 3.13 

seem to qualitatively describe the experimental behavior in Figure 3.3A, the 

results listed in Table 3.5A are not within the expected range. The optical 

pumping rate constants are quite high and, the rate constant  γ vdW  
values are 

about one order of magnitude higher than a previous literature value for a 

1% xenon, 1% nitrogen, and 98% helium SEOP mixture with 

  γ vdW ≈ 3.2 ×103   s−1  at 353 K [45] (see section 3.3.4). Furthermore, 

increasing [Xe] and decreasing [N2] should lead to increasing  γ vdW , 

however the value for the mixture 78.2% xenon drops below  γ vdW  
for all 

other mixtures and exhibits an unacceptably high error. 

Note that the general appearance of the overall shape of the fitting 

curves is not dramatically affected by  cRb  (at least within the range 

  1≤ cRb < 1.6 ), nor do the resulting values for the fitting parameters change 

significantly. Generally, the larger  γ SE Γ  ratio makes the first term in Eq. 

3.13 less important for 129Xe SEOP compared to 83Kr SEOP. However, the 

unsatisfactory results of the data fitting with Eq. 3.13 will need some further 

considerations. The rubidium D1 absorption linewidth may hold important 

information for the second term in Eq. 3.13 and may provide a better 

understanding of the experimental data. The effect of the D1 linewidth is 

discussed in the following section. 
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3.4.7 Non2linear!pressure!broadening!of!the!rubidium!D1!
absorption!linewidth!
Figure 3.6A shows infrared absorption spectra of rubidium within 

the SEOP cell when illuminated by an incandescent light source. Spectra 

were acquired at 433 K with pure krypton for three pressures: 9 kPa, 68 kPa 

and 434 kPa. Only the D1 transition (i.e. the   
1S1/ 2 →

1P1 2  
transition at 794.7 

nm) and its linewidth are relevant for the SEOP studied in the present work. 

The pressure behavior of the D1 linewidth is depicted in Figure 3.6B. 

Further theoretical analysis suggests that a [Xe]1/3, [Kr]1/3, and [N2]1/3 

functional form provides a reasonably good description of the absorption 

linewidth behavior over the studied pressure range. The non-linear rubidium 

D1 line dependence on gas density dependence is in contrast to the linear 

gas density dependence usually found for alkali metal D1 or D2 transitions 

(see for instance [30, 55]). The cause for this unexpected behavior was not 

further investigated and the exact functional description would benefit from 

refinement in future research. 
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Figure 3.6. Rubidium infrared absorption linewidth as a function of gas pressure. 

(A) Infrared absorption spectrum of rubidium in the SEOP cell containing pure 

krypton gas at 433 K at three different pressures as detailed in the figure legend. 

The absorption lines experience a pressure broadening and, to a lesser extent, a 

shift to higher wavelengths with increasing pressure. (B) Rubidium D1 absorption 

linewidth as a function of SEOP cell pressure at 433 K for pure krypton (solid red 

triangles), for pure nitrogen at 433 K (solid green squares), for pure xenon at 373 K 

(solid black circles). The pressure dependence of the absorption linewidth can be 

approximately described by   ν1/ 2 ∝ p1/3  (dashed lines). Eq. 3.14 was concluded 

from the observed linewidth dependence. The linewidth of the narrowed laser and 

the broadband laser are 0.25 nm and 2.0 nm respectively, and are indicated in the 

figure by horizontal dotted lines. 
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Figure 3.6B shows that the linewidth in the presence of either 

krypton or nitrogen at 433 K is much broader than that in the presence of 

xenon at 373 K. The rubidium absorption linewidth with nitrogen at 373 K 

was too close the resolution limit of the optical spectrometer used (i.e. 0.04 

nm). The data demonstrates that all krypton-nitrogen mixtures at 433 K 

should lead to a D1 broadening that is much larger than the laser linewidth 

(0.25 nm – dashed line in Figure 3.6B) at all pressures above   ptot
max .  

However, a different situation occurs for xenon at 373 K, in 

particular in mixtures with nitrogen. In these cases the laser linewidth may 

exceed the D1 linewidth and thus not all of the laser power will be absorbed. 

The effect of the linewidth is difficult to quantify, in particular since exact 

on-resonance irradiation can be disadvantageous as explored in detail by 

Wagshul and Chupp [35] and recently observed for high power irradiation 

by Wild and co-workers [56] and by Goodson and co-workers [57]. 

However, for this work the simple assumption is made that laser irradiation 

with a wider linewidth than the D1 linewidth will lead to a pressure 

dependent pumping rate that follows the same dependence as the D1 

linewidth itself: 

  
γ op ρ( ) ≈ γ op

* ⋅
Xe⎡⎣ ⎤⎦

2.6868 ×1025  m−3

⎛

⎝
⎜

⎞

⎠
⎟

1 3

      (3.14) 

with   
γ op

*

 as the optical pumping rate at 1 amagat total gas density. The 

density dependent rate constant 
 
γ op ρ( )  as defined in Eq. 3.14 replaces 

 
γ op  

in Eq. 3.13. Using   
γ op

*  and  γ vdW  as fitting parameters with all other 

parameters kept identical to the ones used in section 3.4.6, fitting with Eq. 
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3.13 leads to the solid lines depicted in Figure 3.3B with the values for rate 

constants listed in Table 3.5B. Once again, the theoretical curves were 

further extended over the entire pressure range using the values for   
γ op

*  and 

 γ vdW  obtained from fitting (dotted lines). The results for   
γ op

*  listed in Table 

3.5B are similar to previous literature values [12] obtained under similar 

conditions and seem to be constant for different gas compositions except for 

the highest xenon concentration where a clear drop in   
γ op

*  results. The value 

for   γ vdW = 3.2 ×10−3  s−1  at 373 K for the mixture with 5% in Table 3.5 is 

identical to the literature value   γ vdW = 3.2 ×103  s−1
 for a 1% xenon, 1% 

nitrogen, and 98% He SEOP mixture at 353 K [45]. Further, with increasing 

[Xe] the values for  γ vdW  show a monotone increase. Overall, the 

consideration of the pressure dependence of the rubidium D1 (Eq. 3.14) in 

Eq. 3.13 appears to result to more realistic values for   
γ op

*  and  γ vdW . While 

there is little effect on the qualitative appearance between the fitted curves 

in Figures 3.3A and 3.3B, the extended curve (dotted line) in Figure 3.3B 

provides a better description of the observed data compared to the one in 

Figure 3.3A. 

 It should be noted again that Eq. 3.14 should be handled with care 

since it is based on a number of simplifying assumptions. Firstly, neither the 

line shape of the pressure broadened rubidium D1 transition nor the 

emission line shape of the frequency narrowed diode-array laser are 

Lorentzian or otherwise straightforwardly defined. Further, at high xenon 

concentration and pressure, the adsorption linewidth starts to exceed the 
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laser linewidth causing the validity of the underlying concept in Eq. 3.14 to 

end. This may be the case in particular at high SEOP pressures for the 

mixture containing 78.2% xenon. Another factor, not considered here, is the 

pressure dependent shift of the D1 transition. For 129Xe SEOP at 373 K this 

shift is small with 0.13 nm over the used pressure range for pure xenon. 

Although the shift is larger at 433 K with 0.43 nm over the used pressure 

range for krypton (see Fig 5A) it is still small compared to the D1 line 

broadening.  Despite the limitation of Eq. 3.14, requiring more refinement 

in future research, the current work suggests that the effect of pressure 

broadening needs to be considered for a correct description of variable 

pressure 129Xe SEOP with narrowed lasers.  

3.4.8 Non2linear!pressure!broadening!of!the!rubidium!D1!

absorption!linewith!

The 
 
γ op  values for 83Kr SEOP listed in Table 3.5 change by a factor of 

approximately 2.8 between the gas mixtures used. The   
γ op

*

 
rates found in 

129Xe SEOP summarized in Table 3.5B are less affected by [Xe] except for 

the mixture containing 78.2% xenon where the rate drops significantly. 

However, nothing in the general theory outlined in section 3.3 gives rise to 

the expectation that 
 
γ op  is affected by the noble gas-nitrogen ratio of the 

various mixtures. Nevertheless, at the same time it has been noted that the 

temperature gradient between the front and the back of the SEOP cell 

changed when SEOP mixture was altered.  

The mixture dependent changes in the temperature gradient across 

the SEOP cell may have been induced by the different thermal conductivity 

of the used gas mixtures. Under the experimental SEOP conditions, nitrogen 
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has an approximate 2.5 times larger thermal conductivity than krypton (and 

4.5 times larger than xenon) [58]. Therefore, as the krypton or xenon 

concentration in the SEOP cell is increased, the decreasing thermal 

conductivity allows for higher temperature difference between the laser-

illuminated front of the SEOP cell and its back. The consequences of this 

temperature gradient are unknown but changes in local rubidium 

concentration, thermal convection, and laser penetration are likely to lead to 

different convection patterns within the cell [36, 59]. Note also, that the heat 

capacity,   CV ,  of nitrogen is more than 5/3 larger than that of a mono-atomic 

noble gas. Therefore, the corresponding changes between the gas mixtures 

may potentially have a profound impact on quantitative SEOP 

measurements and comparison of data between different noble gas mixtures 

needs to be handled with great caution. Due to the higher temperature, 83Kr 

SEOP may be stronger affected than 129Xe SEOP.  

Thermal conductivity and heat capacity effects may explain the 

mixture dependent 
 
γ op  values but would of course also require mixture 

dependent  cRb  values. Unfortunately, the limited data in this work does not 

make the use a further fitting parameter reasonable in particular since the 

differences between the 
 
γ op  

values are not too excessive. 

However, a serious concern for the fitting of the experimental data 

would be SEOP gas pressure on the temperature, 
 
γ op , and  cRb . Fortunately, 

no effect on the pump cell temperature gradient with pressure changes has 

been noted. Moreover, the well-known equation for the thermal 

conductance, κ , of an ideal gas is  
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κ =

1
3

cλ ⋅CV ,m ⋅ M⎡⎣ ⎤⎦ ⋅ N A
−1

   (3.15) 

where  c  is the mean average velocity of the gas molecules, λ  is the mean 

free path, 
  
CV ,m  is the molar heat capacity at constant volume, [M] the 

density of the gas, and NA is Avogadro’s number. The thermal conductivity 

of an ideal gas is pressure independent because the gas density is directly 

proportional to the pressure, whereas   λ ∝ p−1  and  c  is also pressure 

independent. 

3.4.9 Effect!of!laser!power!and!laser!linewidth!
The effects of laser power on the polarization curves are shown in 

Figure 3.7. The power of the laser irradiation was adjusted in the linear 

polarized part of the laser beam rotating the  λ 2  plate positioned in front of 

a beam splitter (see section 3.2.2 or Figure 3.1B). This procedure allowed 

for the control of the laser irradiation power (incident at the SEOP cell) 

without changing the linewidth, the line shape, and irradiation pattern (i.e. 

beam shape). Fitting of the data was performed using Eq. 3.13 in the same 

fashion as in section 3.4.7 using 
 
γ op ρ( )  as defined in Eq. 3.14. The 

parameter 
  
γ trap

N2⎡⎣ ⎤⎦=0 = 33000 s−1  at 23.3 W power was taken from literature 

[12] and was scaled linearly with the relative decrease of laser power. 
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Figure 3.7. 129Xe polarization, P, dependence on laser power. 129Xe spin 

polarization as a function of SEOP cell pressure for two different gas mixtures at 

four different SEOP laser power levels. Please refer to the figure legend for symbol 

explanation. The laser power was measured in the front of the SEOP cell. Data 

were analyzed using Eq. 3.13 (utilizing Eq. 3.14) within the fitting region (solid 

lines). Extrapolations to pressure ranges outside the fitted region are shown by 

dotted lines.  The fitting procedure is discussed in section 3.4.9 and the results of 

the data analysis are listed in Table 3.6. 
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Table 3.6. Values of   
γ op

*  rates from fitting of the 129Xe spin polarization data for 

different laser powers and laser linewidths in Figures 3.7 and 3.8 using Eq. 3.13.A  

Laser source Mixture Power (W)   
γ op

* 103  s−1  

Narrowed laser 
(0.25 nm linewidth) 

5.0% Xe; 95.0% N2 23.3 17.7 ± 0.2 
17.3 12.8 ± 0.2 
11.6 11.0 ± 0.2 
5.7 6.9 ± 0.3 

50.0% Xe; 50.0% N2 23.3 18.6 ± 0.3 
17.3 14.8 ± 0.3 
11.6 10.8 ± 0.3 
5.7 6.3 ± 0.3 

Broadband laser 
(2 nm linewidth) 

5.0% Xe; 95.0% N2 15.6 2.0 ± 0.1 
50.3% Xe; 49.7% N2 15.6 1.6 ± 0.1 

AThe rubidium correction factor was set to   c
Rb = 1.3 . The values of   γ vdW

= 3200 s−1  from Figure 

3.3B (Table 3.5B) for the 5% xenon mixture and   γ vdW
= 10600 s−1

 
for the ~ 50% xenon mixture 

were used. The parameter   γ trap

N
2[ ]= 0 = 33000 s−1  at 23 W power was taken from literature [12] and 

scaled linearly for all other powers with the relative decrease of laser power. 
 
!

Measurements at 23.3 W power were performed redundantly under 

the same pumping conditions as the ones used for 5% and 50% xenon 

mixtures displayed Figure 3.3. The resulting rates,   
γ op

* , are listed in Table 

3.6 for the two mixtures at various laser power levels.  

The increase in   
γ op

*  as the laser power is raised from 5.7 W to 23.3 

W is 3.0 fold for the 50% mixture and is 2.6 fold for the 5% xenon mixture.  

However, the dependence of   PXe
max

 on laser power (see Figure 3.7) is more 

pronounced for the 50% mixture (approximately 2.0 fold increase in the 

polarization   PXe
max  between 5.7 W to 23.3 W) compared to the 5% xenon gas 

mixture (1.3 fold increase). The increasing importance of laser power for 

SEOP with higher noble gas concentration is due to the second fraction in 

Eq. 3.13 that makes the   
γ op

*  (or 
 
γ op ) values more relevant for the obtained 

polarization,   PXe
max , if the destructive rates  

κ sd
NG NG⎡⎣ ⎤⎦  are high. Therefore 
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higher laser power is particularly beneficial for higher noble gas 

concentration SEOP. This is an important observation for the concept of 

cryogen-free SEOP. 

Figure 3.8 depicts a comparison of SEOP results obtained with a line 

narrowed (0.25 nm) Comet laser module using reduced laser power (17.3 

W) and with a similar power (15.6 W) but using much larger linewidth 

(Coherent FAP, approximately 2 nm line width). Data were analyzed with 

Eq. 3.13 in identical fashion as above and the resulting   
γ op

*  for broadband 

laser 129Xe SEOP are listed in Table 3.6. Clearly, laser line narrowing is 

beneficial for SEOP as it leads to a 9.3 fold increase of 
 
γ op  

for the 50% 

xenon mixture and to the 6.4 fold increase for the 5% xenon mixture. 

Similar to the laser power trend, the resulting improvement of   PXe
max

 through 

line narrowing is particularly strong for SEOP with high xenon 

concentration. A 4.7 fold increase of   PXe
max

 is observed in Figure 3.8 for the 

50% xenon mixture as compared to the 2.7 fold increase for the 5% xenon 

mixture.  
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Figure 3.8. 129Xe polarization, P, dependence on laser linewidth. 129Xe spin 

polarization as a function of SEOP cell pressure with the line narrowed (0.25 nm 

linewidth, 17.3 W) and FAP laser irradiation (2 nm linewidth, 15.6 W). Data were 

analyzed using Eqs. 3.13 and 3.14 for fitting region indicated by the solid lines as 

discussed in section 3.4.9. Extrapolation using the obtained values of the fitting 

coefficients to pressure ranges outside the fitting range are shown by dotted lines. 

Results of this data analysis are listed in Table 3.6. 

 

3.4.10 Rapid!decrease!of!polarization!with!decreasing!pressure!
below!Pmax!

When the SEOP pressure was reduced below   ptot
P max

 (i.e. 

  ptot
P max = 20 − 35 kPa  for 129Kr SEOP and   ptot

P max = 30 − 50 kPa  for 83Kr 

SEOP) a sharp decrease in polarization was observed. Note, that data fitting 

was limited to pressures above   ptot
max , however simple extrapolation of the 

(high-pressure) fitting curves into the lower pressure region are shown as 

dotted lines in Figures 3.2 and 3.3. These extensions seem to provide a 

remarkably good description of the low-pressure behavior. This result 

should however not be over-interpreted, in particular since the assumption 
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of a constant  γ vdW  will fail in the low-pressure regions (see section 3.3.4).  

The rate  γ vdW , caused by spin-rotation interaction, will lead to significant 

depolarization at lower pressure but its effect is overestimated in this work 

because its absolute value will decrease with decreasing pressure.    

There are further effects that contribute to the rapid polarization drop 

below   ptot
max . Radiation trapping, discussed in section 3.3.3, reduces the 

rubidium electron spin polarization. Radiation trapping will increase with 

lower  ptot  values, in particular in mixtures with high noble gas 

concentration (i.e. low nitrogen concentration) as described by Eq. 3.4. 

A contribution to the polarization drop at pressures below   ptot
max , that 

is not accounted for in Eq. 3.13, may be caused by an optically dense 

boundary layer of rubidium at the cell window that is illuminated by the 

laser. This layer will reduce the resonant laser light penetrating the SEOP 

cell at any pressure. As demonstrated by Wagshul and Chupp [35] its effect 

is particularly detrimental at low pressures when the resonant absorption 

cross section of the rubidium is very high, leading to an almost complete 

absorption of the resonant laser light. The situation can be alleviated by 

detuning the laser to (slight) off-resonant illumination [56] (not attempted in 

this work) and by the usage of very high laser power densities [35]. This 

effect was not investigated in this work. 

  Furthermore, the sudden drop in PNG with decreasing SEOP pressure 

may be caused by a dramatic increase in rubidium relaxation due to the 

combination of increased diffusion and wall relaxation [15, 35]. The 

contribution of diffusion modes on the rubidium relaxation in pure nitrogen 
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becomes dominant and increases dramatically at pressures below 50 kPa of 

nitrogen [35], i.e. at a pressure slightly above   ptot
max  in the current work. This 

effect was also not further investigated in this work. 

3.5 Conclusions-
Cryogen free production of hyperpolarized 83Kr and hyperpolarized 

129Xe for practical MRI applications is possible through stopped flow SEOP 

with high noble gas concentrations at low total gas pressures. Without 

cryogenic separation the apparent polarization (as defined in Eq. 3.6) was 

Papp =15.5%  for hyperpolarized 129Xe at a production rate of 1.8 cm3/min 

hyperpolarized gas (volume at 298 K). Respectively, an apparent 

polarization of Papp = 4.4%  at a rate of 2 cm3/min was produced for 

hyperpolarized 83Kr. These results were obtained using 23.3 W of laser 

power (incident at the SEOP cell) and a laser linewidth of 0.25 nm. 

Recompression of the hyperpolarized gases after SEOP is a necessary step 

with this technique and preliminary work resulted to Papp =12.4%  (for 

129Xe) and Papp = 2.6%  (for 83Kr) after recompression. 

Current theory (Eq. 3.2) appears to provide a reasonable qualitative 

description of the SEOP gas pressure dependence of the polarization 

although several simplifications were used in this work. Overall, the 

practical application of current theory would benefit if more studies and 

published data were available. For instance, little is known about the actual 

spin-rotation parameter for various gas mixtures. Further, an experimental 

procedure to measure the temperature distribution within the SEOP cell 

would be very useful. In this work, a corrected value for the rubidium 
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density [Rb] was used for 83Kr SEOP analysis (Eq. 3.13) that is 4 times 

higher than its predicted equilibrium value at the (externally) measured 

SEOP cell temperatures. A correction factor of 1.3 was used for 129Xe SEOP 

analysis, although correction proved to be less important compared to 83Kr 

SEOP. The rubidium density (and the pumping rate 
 
γ op  due to associated 

changes in laser penetration) also appeared to be dependent on the SEOP 

mixture, an effect attributed to different thermal conductivity of the various 

gas mixtures. Furthermore, the rubidium D1 absorption linewidth 

dependence upon the SEOP gas pressure at 373 K was taken into account 

for the hyperpolarized 129Xe data fitting (Eq. 3.14). The pressure 

dependence of the rubidium D1 transition appeared not to be relevant for 

83Kr SEOP because the D1 linewidth at 433 K is much wider than that of the 

narrowed diode array laser. However, a non-linear pressure broadening of 

the rubidium D1 linewidth was observed in all cases and this unexpected 

behavior warrants further study. 

High SEOP temperature is needed for 83Kr in order to increase the spin 

exchange rate  γ SE  for 83Kr and to decrease the 83Kr relaxation rate Γ . The 

results from 83Kr SEOP inversion recovery experiments suggest that surface 

relaxation is a strong contributor to Γ  at SEOP below 200 kPa. Therefore, 

higher 83Kr spin polarization may be obtained through a reduction in surface 

to volume ratio using larger SEOP cells that reduce Γ  and thus increase the 

ratio  
γ SE γ SE + Γ( )  in Eq. 3.2.  

The technique would benefit from future development focusing on 

practical hyperpolarized gas extraction-recompression units, in particular for 
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hyperpolarized 83Kr, and on larger SEOP cell volumes to produce larger 

quantities of hyperpolarized noble gas within a given time interval. Larger 

SEOP cells, that may also improve the polarization in 83Kr SEOP, will 

require increased laser power. Further increased laser power density at 

narrow laser line widths may be particularly advantageous for SEOP with 

high noble gas concentrations, as demonstrated in this work. Laser line 

narrowing to approximately 0.25 nm provides a crucial increase in 129Xe 

polarization compared to SEOP with a 2 nm laser and further narrowing 

would likely be helpful for 129Xe SEOP at low pressures. Finally, the 

general concepts of cryogen free hyperpolarized noble gas production are by 

no means restricted to SEOP with rubidium. SEOP with cesium vapor [46, 

60, 61] has recently been shown to increase the 129Xe polarization 

significantly compared to SEOP with rubidium [11]. The benefits of cesium 

vapor SEOP at low gas pressures, in particular with 83Kr, are still 

unexplored. 
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! Chapter!4:!Pulmonary!MRI!
contrast!using!surface!

quadrupolar!relaxation!of!
hyperpolarized!83Kr!!

 

Data presented in this chapter have been published in an article of 

Magnetic Resonance Imaging entitled Pulmonary MRI contrast using 

Surface Quadrupolar Relaxation (SQUARE) of hyperpolarized 83Kr by 

Joseph S. Six, Theodore Hughes-Riley, David M.L. Lilburn, Alan C. 

Dorkes, Karl F. Stupic, Dominick E. Shaw, Peter G. Morris, Ian P. Hall, 

Galina E. Pavlovskaya, and Thomas Meersmann [1]. Mr. Six, Mr. Hughes-

Riley and Dr. Lilburn performed the experiments. Dr. Lilburn handled the 

animals and completed the lung extraction process. Mr. Hughes-Riley and 

Mr. Dorkes designed the extraction unit fabricated by Mr. Dorkes. Mr. Six, 

Mr. Hughes-Riley, Dr. Lilburn and Dr. Pavlovskaya analyzed the data. Dr. 

Stupic and Dr. Pavlovskaya designed and constructed the noble gas 

hyperpolarizer. Dr. Shaw, Prof. Morris, and Prof. Hall were greatly 

consulted on the design of the experiment.  Prof. Meersmann conceived the 

experiment. Mr. Six and Prof. Meersmann wrote the paper. 
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4.1 Introduction-
Pulmonary MRI with hyperpolarized 129Xe [2] and hyperpolarized 

3He [3] are emerging techniques for spatially resolved measurement of lung 

function that cannot be obtained by alternative non-invasive methods as 

described in the introduction to this thesis in Chapter 1. Both isotopes have 

a nuclear spin I = 1/2 that can be hyperpolarized through laser-based 

methods [4, 5] to obtain sufficient MRI signal intensity for high resolution 

imaging of the lung. Various MRI protocols can be used to generate 

complementary contrast from the two isotopes. For example, because of its 

high diffusivity, 3He is thus far preferred for contrast relating to changes in 

alveolar lung structure (i.e. ADC contrast) [6-9]. The 3He spin relaxation is 

more affected by the presence of paramagnetic O2 than that of any other 

noble gas isotope and the 3He T1 relaxation can therefore be used for partial 

pressure measurement of pulmonary oxygen [10-12]. In regards to 129Xe, 

the large chemical shift range leads to distinguishable MR signals between 

tissue dissolved and gas phase xenon [13] thus enabling the visualization of 

gas transport through the parenchyma [14]. 

Using a third noble gas isotope, namely 83Kr, longitudinal (T1) 

relaxation weighted MRI contrast was previously shown to be indicative of 

the specific surface treatment in a porous model system [15]. Unlike 3He 

and 129Xe, the 83Kr nucleus possesses a nuclear spin I = 9/2 and thus a non-

vanishing electric quadrupole moment that serves as a probe for electric 

field gradients (EFGs). The EFGs are predominantly generated during brief 

collision and adsorption events of the noble gas atoms with the surrounding 

surfaces, resulting in rapid T1 relaxation that is detected in the gas phase. 
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The 83Kr surface quadrupolar relaxation (SQUARE) MRI contrast is 

affected by the surface to volume ratio (S/V), surface composition, surface 

temperature, and surface adsorption of molecules [15-17]. 

In 2011 Stupic et al. demonstrated the effects of surface quadrupolar 

relaxation (SQUARE) in ex vivo rat lungs using one-dimensional 

spectroscopy where they attempted to determine relaxation behavior in 

selected regions of the lung (bronchi, bronchioles, alveoli) through various 

inhalation schemes [18]. Due to the limitations of the equipment and 

available signal intensity the determination spatial resolved 83Kr relaxation 

times using MRI was not attempted. To date, applications of hyperpolarized 

83Kr pulmonary MRI are limited to low resolution images [15, 19] that 

reveal little internal structure or function of the lung. The lack of signal 

intensity and polarization losses in the 83Kr delivery contributed to the 

limited signal in earlier studies. This work strives to overcome the limited 

signal intensity by improved hyperpolarization methodology to acquire 

spatially resolved SQUARE contrast in an ex vivo rat lung.  

In Chapter 3 (and ref. [20]), spin exchange optical pumping (SEOP) 

of a mixture of 5% krypton with 95% nitrogen achieved a 83Kr spin 

polarization of P = 26%, corresponding to a 59,000 fold signal increase 

compared to the thermal equilibrium 83Kr signal at 9.4 T field strength. 

SEOP at low krypton concentration was used because high krypton density 

[Kr] adversely affects SEOP but, unfortunately, fast quadrupolar driven 83Kr 

T1 relaxation in the condensed state generally prevents the cryogenic 

separation of hyperpolarized krypton from the gas mixture [21, 22]. 

Therefore, the high gas dilution caused a 20 fold reduction of the MRI 
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signal and the ‘apparent polarization’, that takes the dilution into account, 

was only Papp = 1.3%. 

As an alternative to dilution, the density [Kr] can be lowered in 

concentrated krypton mixtures by reducing the SEOP gas pressure and 

described in Chapter 3 and ref. [20]. In the current work, this method is 

modified to extract below ambient pressure hyperpolarized gas mixture 

from the SEOP cell followed by compression to ambient pressure for 

pulmonary imaging. Hyperpolarized 83Kr produced with this method is now 

utilized to study the concept of SQUARE MRI contrast in an excised rat 

lung.  

4.2 Materials-and-methods-

4.2.1 83Kr!spin!exchange!optical!pumping!
Spin exchange optical pumping (SEOP) produced hyperpolarized 

83Kr via batch mode in a temperature controlled (433 K) cylindrical 

borosilicate glass cell (inner diameter = 28 mm, volume ≈  74 cm3) 

containing approximately 1 g of rubidium (99.75% purity, Alfa Aesar, 

Heysham, England, UK). A line narrowed diode-array laser system (0.25 

nm output linewidth, Comet Module, Spectral Physics, Santa Clara, CA, 

USA) tuned to the D1 transition of rubidium (794.7 nm) passed through 

telescoping lenses and polarizing optical elements to deliver 30 W of 

circularly polarized light in a 28 mm diameter beam to the SEOP cell. The 

SEOP cell was located within a 0.007 T static magnetic field that was 

oriented parallel with the propagation of the laser beam. Spin polarization 

measurements used natural abundance krypton gas (99.995% purity; 11.5% 

83Kr; Airgas, Rednor, PA, USA), whereas the magnetic resonance images 
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presented in this publication utilized enriched 83Kr (99.925% 83Kr, 

CHEMGAS, Boulogne, France) for improved signal intensity. A 25% 

krypton - 75% nitrogen (99.999% purity, Air Liquide, Coleshill, UK) 

mixture was used for SEOP because it was previously proven in Chapter 3 

(and ref. [20]) to lead to high hyperpolarized 83Kr signal intensities and 

allowed for economical usage of the expensive isotopically enriched 83Kr 

gas.  

Spin polarization measurements were acquired using a Magritek Kea 

2 spectrometer (Wellington, New Zealand) with a custom-built probe tuned 

to the resonance frequency of 15.4 MHz for 83Kr at 9.4 T. Spin polarization 

was determined by comparison of the hyperpolarized gas signal with that 

from a thermally polarized krypton gas as described in Section 3.2.5 in 

Chapter 3 and ref. [20]. In baseline polarization measurements the 

hyperpolarized gas was transferred by gas expansion directly into a pre-

evacuated borosilicate glass cell located in the r.f. detection coil without 

usage of the extraction unit.  

Spin polarization measurements were acquired after 8 minutes of 

SEOP and images were acquired after 12 minutes SEOP corresponding to 

~80% and ~92% of the steady state polarization (reached after 18 minutes 

[20]) respectively. Allowing 18 minutes for SEOP to reach steady state 

polarization would further improve spin polarization and subsequently the 

signal intensity of the images, however the reduction in spin polarization 

was considered acceptable in the interest of time. 
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4.2.2 Hyperpolarized!gas!extraction,!compression!and!transfer!
To utilize the enhanced 83Kr spin polarization of below ambient 

pressure SEOP an extraction unit was designed and built that extracted the 

hyperpolarized gas from the SEOP cell and then delivered the gas for 

pulmonary imaging in a single expansion–compression cycle. The transfer 

of hyperpolarized gas from the low pressure SEOP cell was accomplished 

by expansion into a volume (Vextract) of a collapsible container in a purpose-

built extraction unit. Volume Vextract needed to be substantially larger than 

the SEOP cell (VSEOP) to allow for a rapid transfer of a large portion of the 

hyperpolarized gas. Forced reduction in the volume of Vextract pressurized 

the gas mixture to ambient. 

The extraction unit underwent a number of iterations before a 

suitable design and technique was chosen and used in this study. Initially a 

simple device was designed using a latex balloon as the volume for Vextract. 

Although extremely simple this extraction unit was very effective at the 

extraction and compression of hyperpolarized 129Xe gas mixtures as 

demonstrated elsewhere [23, 24]. Unfortunately the large surface to volume 

ratio of the latex balloon and the fast 83Kr quadrupolar relaxation on the 

latex surface made the simple extraction unit unsuitable for 83Kr.  

An advanced extraction unit that aimed to minimize the surface to 

volume ratio was designed for 83Kr and used in this study. The body of the 

extraction unit was made from an acrylic tube with acrylic screw caps that 

were fitted with an O-ring to seal the device. The volume Vextract (790 cm3) 

of the extraction unit was evacuated to prepare for hyperpolarized gas 
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extraction via pressure equalization. The extraction and delivery process is 

depicted in Figure 4.1.  

To reduce spin polarization losses during gas transfer, the delivery 

time was restricted to a few seconds resulting in approximately 6 kPa of 

hyperpolarized gas mixture in Vextract. The near equalization of pressure 

transferred approximately 75% of the hyperpolarized gas mixture from the 

SEOP cell to the extraction unit. After hyperpolarized gas extraction the 

SEOP cell closed and nitrogen gas pressurizes the back chamber thus 

driving the piston to compress the hyperpolarized gas to ambient pressure 

(Figure 4.1B). Additional nitrogen pressure in the back chamber then 

‘injected’ the hyperpolarized gas mixture into the storage volume VB for 

pulmonary MR imaging as shown in Figure 4.1C. At 90 – 100 kPa SEOP 

cell pressure this method produced approximately 35 - 40 cm3 of 

hyperpolarized gas mixture every 12 minutes for lung imaging. 

Alternatively, in the spin polarization measurements the hyperpolarized gas 

was injected into an NMR detection cell to measure the 83Kr spin 

polarization after the compression process. 

!  
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Figure 4.1. Hyperpolarized krypton extraction and transfer from the SEOP cell, 

operating at 90 – 100 kPa, to the lungs at ambient pressure. (A) A pre-evacuated 

volume Vextract = 790 cm3 in the extraction unit (i) was filled to approximately 6 

kPa during hyperpolarized gas extraction (ii). (B) The extraction unit was moved to 

the MRI scanner and the nitrogen gas operated piston pressurized the 

hyperpolarized gas mixtures to a pressure slightly above ambient. The 

hyperpolarized gas was then pushed through connecting tubing into a storage 

container (VB). The lung was located upside down in glucose solution within the 

breathing apparatus with the trachea connected to VB. (C) A slight suction on the 

breathing apparatus (substituting for the pleural cavity) caused the lung to expand 

and to inhale the hyperpolarized gas.  

!  
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4.2.3 Hyperpolarized!gas!inhalation.!
A ventilation chamber was designed to substitute for the pleural 

cavity for the excised rat lung and allow inhalation of the hyperpolarized 

gas. The lung suspended in a 5% glucose solution (weight/volume) (Baxter 

Healthcare Ltd, Thetford, UK) within the ventilation chamber with the 

trachea pointed downward. The ventilation chamber containing the 

suspended lungs was placed inside the superconducting magnetic resonance 

magnet and kept at a constant temperature of 295 K. Active inhalation of the 

lung was achieved by applying a small negative pressure above the glucose 

solution from pulling a ventilation syringe to 10 cm3 as shown in Figure 

4.1C (see further explanation in ref. [18]). The expansion of the lungs 

caused them to uptake the hyperpolarized noble gas residing in VB. The 

corresponding inhaled volume of 8 cm3 was measured through exhalation 

causing water displacement in a water bell. This method allowed for 

measurement of the actual inhaled gas volume while the lungs were 

confined inside the magnetic resonance magnet.  

4.2.4 MRI!protocol!
MRI experiments were performed using a vertical bore 9.4 T Bruker 

Avance III microimaging system (Bruker Corporation, Billerica, 

Massachusetts, USA). Imaging experiments utilized a Bruker 30 mm double 

saddle probe tuned to 15.4002 MHz corresponding to the resonance 

frequency of 83Kr gas in the lung. Images were acquired by means of 32 

linear phase encoding gradient increments using a variable flip angle (VFA) 

FLASH protocol (TE = 4.2 ms, TR = 19.2 ms) that neglected T1 decay; flip 

angle of the ith increment (θi) was calculated by θi ≈ tan
−1 1 32− i( )  

[25]. 
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The imaging protocol had a total acquisition time 0.615 s limiting the T1 

decay during acquisition.  

Coronal images were acquired into 64 × 32 matrices resulting in a 

field of view (FOV) of 50.9 mm in the longitudinal (frequency encoding) 

and 40.7 mm in the transverse (phase encoding) directions, respectively. To 

acquire a non-slice selective image, 0.3 ms rectangular hard pulses of 

variable power levels were used for excitation. The slice selective images 

utilized 2 ms sinc-shaped radio frequency pulses of variable power to 

selectively excite a 3 mm central coronal slice of the lung, resulting in a 

nominal resolution of 0.80 × 1.27 × 3 mm3.  

To obtain T1-weighted images and demonstrate SQUARE 

pulmonary MRI contrast the acquisition was triggered following a time 

delay (td) of 0.0 s, 0.5 s, 1.0 s or 1.5 s after lung inhalation. Each image was 

acquired from a single inhalation cycle and subsequent VFA FLASH 

acquisition (NEX = 1) with no signal averaging. Slice selective images 

demonstrating SQUARE MRI contrast and the resulting T1 map were 

acquired using a single animal. 

4.2.5 Image!reconstruction!and!analysis!
Images were processed and reconstructed in Prospa (v. 3.06, 

Magritek, Wellington, New Zealand) by applying a sine-bell squared 

window function to the raw data before two-dimensional Fourier 

transformation. The two dimensional image data were exported for further 

analysis using IGOR Pro (v. 6.01, Wavemetrics, Lake Oswego, OR, USA).  

To construct the T1 map the image data were combined into a three 

dimensional matrix having two spatial dimensions (the slice selective 
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images) and one time dimension (the delay before acquisition). Data were 

then converted into a half logarithmic scale for linear regression analysis of 

signal intensity as a function of time that resulted in spatially resolved T1 

values. T1 values calculated outside the lung region were composed solely 

of background noise and consequently insignificant. Therefore, these data 

were removed by applying a threshold set to 15.4% of the maximum signal 

intensity on the lung image for td = 0 s and then applying the resulting mask 

to the T1 map. It is important to note that noise far removed from the lung 

remaining after the mask were also removed. The final T1 map was then 

overlaid onto the lung at delay time td = 0 s for clarity of presentation.  

4.2.6 Animal!care!and!preparation!
Male Sprague-Dawley rats (350 - 400 g, Charles River UK Ltd, 

Margate, UK) were euthanized by overdose of pentobarbital (Sigma-Aldrich 

Ltd, Gillingham, UK) in accordance with local animal welfare guidelines 

and A(SP)A 1986 (Animals for Scientific Procedures Act 1986). 

Immediately after confirmation of death, a catheter was inserted into the 

caudal vena cava to allow flushing of the pulmonary circulation with 20 – 

30 cm3 heparin 100 IU/cm3 (Wockhardt UK Ltd, Wrexham, UK) in 0.9% 

saline solution (Baxter Healthcare Ltd, Thetford, UK) followed with 

phosphate buffer solution (PBS, Sigma-Aldrich Ltd, Gillingham, UK) in 

order to remove residual blood from the pulmonary circulation.  

The heart and lungs were removed en masse. A polytetrafluorethylene 

(PTFE) adapter tube was inserted 5 - 10 mm above the carina and sutured 

into place. The heart and lungs were suspended in 5% glucose solution 

(weight/volume) with the trachea pointing downwards in a custom-built 
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acrylic ventilation chamber, as detailed in Figure 4.1. The ex vivo lungs 

were repeatedly inflated with 8 - 10 cm3 of room air to check for leakage 

either from the suture around the trachea or the lungs themselves. For the 

presented work the lung harvesting procedure was completed with 100% 

success of removing the lungs intact. Normally with a skilled operator the 

ex vivo technique results in over 90% of lungs being suitable for imaging. 

The lungs were chilled to 278 K for transportation to the imaging facility. 

4.3 Results-and-Discussion.-
This work required the construction of a device that is able to 

complete hyperpolarized gas extraction in a single expansion–compression 

cycle. The transfers of hyperpolarized gas mixture from the low pressure 

SEOP cell was accomplished by expansion into a pre-evacuated large 

volume of a collapsible container by pressure equalization. The volume Vext 

of the respective gas expansion chamber was required to be much larger 

than that of the SEOP cell (VSEOP) to allow for a rapid transfer of a large 

portion of the hyperpolarized gas. The extraction container was then 

collapsed and its contents were pressurized to ambient by the application of 

external gas pressure. The pure gas phase relaxation time of 83Kr is 

sufficiently long with T1 times of several minutes at ambient pressure [17] 

to permit hyperpolarized gas extraction and transfer. However, as the 83Kr 

relaxation is accelerated by the presence of surfaces, the contact of the 

hyperpolarized gas with any material during this process needs to be 

minimized. Pumps, that are used for extraction and compression of 3He after 

metastable exchange optical pumping (MEOP) [26], typically require many 

compression cycles to transfer the entire hyperpolarized gas volume [26-
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29]. For the extraction and compression of the quadrupolar 83Kr a 

pneumatically operated piston within a large volume cylinder was designed 

that used a single extraction – compression cycle as shown in Figure 4.1. 

This design is conceptually similar to the gas pressure driven ‘syringe’ 

using a Teflon piston as applied previously by Rosen et al. [30] for the 

transfer of hyperpolarized 129Xe following cryogenic gas separation. 

However, the extraction unit in this work needs to attain vacuum conditions 

of less than 0.2 kPa prior to hyperpolarized gas extraction from the SEOP 

cell and, following extraction, is required to compress the hyperpolarized 

gas to ambient pressure. 

Therefore, this unit operates at a high pressure differential and an O-

ring seal equipped acrylic piston provides gas tight isolation of the two 

compartments of the extraction unit. The setup allows for the extraction of 

about 3/4 of the hyperpolarized gas volume from the SEOP cell in a single 

expansion - compression cycle. The losses in polarization caused by 

compression, shown in Figure 4.2, are negligible at SEOP pressures above 

75 kPa and are still acceptable down to 50 kPa. Using a 25% krypton - 75% 

nitrogen mixture at a pressure of 50 kPa for a SEOP duration of 8 minutes, a 

maximum apparent spin polarization Papp = 2.9% is found after extraction 

and transfer of the hyperpolarized gas into a sample cell as seen in Figure 

4.2.  
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Figure 4.2. The apparent 83Kr spin polarization Papp as a function of SEOP cell 

pressure using the extraction unit for compression (open circles) and baseline data 

without the extraction unit (filled circles). The arrow indicates the pressure used for 

imaging experiments. Curve fitting was adapted from ref. [20].  

 

For the MRI, an above optimal SEOP cell pressure of 90 – 100 kPa is 

used, even though the attained apparent polarization is only about 2/3 the 

maximum value (Papp = 2.0%). The higher SEOP pressure ensures that the 

quantity of the produced hyperpolarized gas (i.e. ambient pressure volume 

of 40 cm3 instead of 20 cm3, determined from SEOP cell pressures of 100 

kPa and 50 kPa respectively) is sufficient to match the actual inhaled 

volume and the dead volume in the gas transfer system. In particular the 

complete expulsion of non-hyperpolarized gas from the storage volume 

(VB) in the delivery system needs to be ensured.  Reducing the losses of 

hyperpolarized gas in the delivery system or increasing SEOP cell size 

would allow for improved polarization by permitting a decrease in pressure 

to 50 kPa.  

After SEOP with isotopically enriched 83Kr followed by extraction, 

compression, and delivery of the gas mixture into the (ambient pressure) 

storage chamber (VB) located underneath the breathing apparatus, 8 cm3 of 
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the hyperpolarized gas are inhaled by the excised lungs using the breathing 

apparatus shown in Figure 4.1B and 4.1C (see also ref. [18]). The signal 

intensity is sufficient to provide anatomical details using a variable flip 

angle (VFA) FLASH MRI protocol [25] without slice selection but also 

without signal averaging as shown in Figure 4.3.   

 

 

Figure 4.3. Variable flip angle (VFA) FLASH hyperpolarized 83Kr MRI of an 

excised rat lungs at 9.4 T without signal averaging (NEX =1, no slice selection, 

SNR = 51) using isotopically enriched 83Kr (99.925%). 

 

The hyperpolarized 83Kr presented in image shown in Figure 4.3 is a 

substantial improvement in resolution, SNR, and time required for 

acquisition when compared to previously published 83Kr MRI of the lung 

[15, 19]. These improvements originate from a number of sources including 

the use of a higher power laser and utilizing the low pressure SEOP 

technique explored in Chapter 3 has help increase polarization values. 

Additionally, extraction unit developed for this work has reduced losses of 

polarization during delivery of the hyperpolarized gas to VB for inhalation 

into the lung. Isotopically enriched 83Kr in place of natural abundance has 

also substantially improved signal.  
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After the addition of 3 mm slice selection to the VFA FLASH MRI 

protocol, the major airways can clearly be recognized in a single acquisition 

(i.e. NEX = 1) as show in Figure 4.4A. Furthermore, the obtained signal 

intensity is sufficient to permit the proof of principle study of surface 

sensitive contrast in lungs. Figure 4.4B – 4.4D show the same 3 mm slice 

selective hyperpolarized 83Kr images as Figure 4.4A, but with a delay 

period td between inhalation and start of the image acquisition ranging from 

0.5 s – 1.5 s. As a clear trend observed directly in these four images (Figure 

4.4A – 4.4D), the signal originating from the major airways is less affected 

by the delay time than the rest of the lung. The cause for the slower 

relaxation is the smaller surface to volume (S/V) ratio in the airways as 

opposed to the alveolar space.  

Smaller airways are not resolved but contribute to the contrast 

observed in the MR images. Figure 4.4E shows a T1 relaxation time map 

obtained from the td dependent signal decay of each volume element in 

Figure 4.4A – 4.4D. The longitudinal relaxation time for the trachea is T1 = 

5.3±1.9 s and T1 = 3.0±0.9 s for the main stem bronchus. The relaxation 

times measured in lung parenchyma adjacent to the major airways and in the 

periphery of the lung are T1 = 1.1±0.2 s and T1 = 0.9±0.1 s respectively. The 

observed T1 data are in reasonable agreement with previous, spatially 

unresolved bulk measurements of 83Kr T1 relaxation in excised rat lungs that 

also demonstrated that the addition of up to 40% of O2 did not significantly 

alter the T1 times [18].  
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Figure 4.4. Series of hyperpolarized 83Kr MRI demonstrating SQUARE contrast. A 

new delivery of hyperpolarized 83Kr was provided for each image shown. (A) VFA 

FLASH MRI as in Figure 4.2B but with 3 mm slice selection. (B – D) MRI as in 

(A) with a relaxation delay, td, between hyperpolarized gas inhalation and 

acquisition as indicated in the figure. The major airways are visibly less affected 

than the alveolar space by increasing td values. (E) Graphical representation of the 

T1 values calculated from the signal decay in (A – D) for each volume element.  

 

As Figures 4.2 - 4.4 demonstrate, the extraction technique from low 

pressure (90 – 100 kPa) SEOP cells works well, generating reproducibly 

Papp = 2.0% with a 30 W line narrowed laser. This result is an approximately 

10 fold increase in magnetic resonance signal intensity as compared to the 

previously published results on hyperpolarized 83Kr MRI in excised rat 

lungs [19]. An additional factor of 8.7 improvement in signal to noise ratio 

is achieved by using isotopically enriched to 99.925% 83Kr gas. Not 

surprisingly for a spin system with Papp = 2%, the obtained resolution falls 

short compared to ventilation hyperpolarized 129Xe MRI. However, the 83Kr 

signal intensity is strong enough to allow for surface sensitive contrast in 

excised lungs while retaining structural resolution. The resolution obtained 

with hyperpolarized 83Kr MRI is similar to dissolved phase 129Xe pulmonary 

MRI that uses the small fraction (typically 1 – 2%) of inhaled xenon 

dissolved in tissue and blood.  
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Signal averaging will improve the signal intensity of the 

hyperpolarized 83Kr MRI for in vivo applications but will also contribute to 

artifacts due to inhalation variations during breathing. Furthermore, the 

applied laser power of 30 W can be increased significantly due to recent 

advances in solid state laser technology and may thus improve the quantity 

of the produced hyperpolarized gas and its spin polarization. Larger volume 

SEOP cells could be used to produce larger quantities of hyperpolarized gas 

volumes at lower pressures if the power density of the laser irradiation is 

maintained across the larger cross section. Alternatively, the volume of 

hyperpolarized gas can also be increased if several SEOP units of the 

current cell size and laser power operate in parallel. The amount of 

hyperpolarized gas needed per inhalation cycle may additionally be reduced 

by optimizing the ambient pressure storage container (VB), consequently 

allowing for lower SEOP cell pressures that result in higher spin 

polarization with the current setup.  

A potential drawback of the presented methodology is that the lungs 

may become contaminated by rubidium vapors during the rapid delivery of 

hyperpolarized gas from the SEOP cell. Therefore, the extraction unit, that 

serves for temporal storage of hyperpolarized 83Kr before delivery to the 

lungs, is tested for rubidium contamination by brushing the inside of the 

transfer chamber with a cotton swab. After adding a few drops of water no 

increase in the pH value is found for the swab using a simple (ColorpHast) 

pH indicator strip. Although more elaborate testing is required than this 

relatively crude method, the presence of substantial quantities of rubidium 

in the extraction unit can be ruled out and it appears that most of the 
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rubidium tends to condense in the tubing located before the extraction unit. 

The use of simple filter may improve the situation further but was not 

explored. 

4.4 Conclusion-
The cryogen free production of hyperpolarized 83Kr discussed in 

Chapter 3 allowed for the high 83Kr polarization reported here. A purpose 

built extraction unit transferred the hyperpolarized noble gas from the SEOP 

to the excise rat lung with small losses in the polarization. Further 

improvements to the extraction unit may be possible but not attempted in 

this study. The 83Kr relaxation may be reduced if the extraction unit was 

fabricated from borosilicate glass, which minimizes longitudinal relaxation, 

in place of acrylic tubing.   

The improved magnetization and consequent signal intensity 

permitted the demonstration of pulmonary SQUARE MRI contrast. This 

technique confirmed previously acquired measurements [18] between 

airways and alveolar regions by spatially resolved relaxation measurements 

in the lung. Lung pathology related contrast was not attempted as animal 

models of pulmonary disease were beyond the scope of this proof of 

concept study. However, the produced signal intensity will be sufficient to 

attempt disease specific contrast in pathophysiology and to explore whether 

hyperpolarized 83Kr is of supplemental diagnostic value to hyperpolarized 

3He and hyperpolarized 129Xe MRI.  

The potential usage of hyperpolarized 83Kr as a novel contrast agent 

should be investigated for disorders such as emphysema where the lung 

surface to volume ratio (S/V) is reduced [31, 32]. Currently there is a study 
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[33] being conducted by the Translational Imaging Research Group under 

the supervision of Thomas Meersmann in collaboration with Mark Birrell 

and Maria Belvisi from Imperial College London investigating the 

relaxation of 83Kr in lungs affected by the elastase model of emphysema 

[34] where there is destruction of alveoli architecture. Preliminary results 

using SQUARE MRI with hyperpolarized 83Kr are shown by a histogram in 

Figure 4.5. 

Initial data suggests that hyperpolarized 83Kr is a potential tool to 

distinguish healthy and elastase disease model lungs. A larger sample size is 

required to conclusively determine the utility of the method. The disease 

model shows a shift to longer T1 times arising from the decrease in S/V 

caused by the elastase model of emphysema. There also appears to be a 

wider distribution of T1 values for the disease model data; possibly 

indicating inhomogeous distribution of the disease. 

!  
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Figure 4.5. Histogram of the T1 values taken from T1 relaxation maps (not shown) 

for control and diseased lungs. See legend for color explanation. The T1 map was 

generated using the technique describe in this chapter. The histogram displays the 

frequency of occurrence for each T1 value, normalized for the amount of voxels in 

the lung region. Please note that the data presented in Figure 4.5 is from a pilot 

study currently underway [33] and the method of evaluating the data is in 

development.  

 

In addition to disorders effecting S/V, SQUARE 83Kr MRI may also 

be beneficial for the broad spectrum of diseases which exhibit significant 

changes in lung surface chemistry, for example acute lung injury (ALI), 

acute respiratory syndrome (ARDS) [35] and cystic fibrosis (CF) [36]. Two 

final notes with regard to practicalities of hyperpolarized 83Kr MRI: (1) 

krypton gas (natural abundance of 12.4% 83Kr) is a renewable resource 

generated as a by-product of air liquefaction, available at approximately € 1 

per liter (at ambient pressure). Unfortunately, isotopically enriched 83Kr is 

costly (approximately € 4000/L) at the current low demand for production. 

(2) There are little toxicological concerns for future clinical applications as 

krypton is chemically inert and does not exhibit anesthetic properties at 

ambient gas pressure [37, 38]. 
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! Chapter!5:!Diffusion!of!129Xe!
and!83Kr!through!internal!
magnetic!field!gradients!

5.1 Introduction-
Signal attenuation of spin echoes originating from diffusion through 

magnetic field gradients has been of interest since the early days of NMR 

when researchers found that the self-diffusion coefficient could be 

determined from spin echoes [1] or spin echo trains [2]. Torrey then used an 

analytical approach to theoretically explain the signal attenuation by adding 

diffusion terms into the Bloch equations [3]; finding an equation that agreed 

with the prior experimental results. Though the initial experiments were 

relatively straightforward, diffusion caused transverse relaxation is 

challenging to generalize [4] and consequently warrants research interest to 

this date (refer to recent conference proceedings for examples of current 

studies: [5-8]).  

The majority of studies have investigated diffusion of liquids in 

porous material. Particular attention, motivated by the petroleum industry, 

has concentrated on restricted diffusion in porous rock [9, 10] to the 

determine of oil and water content in the pores [11-13]. The relatively slow 

movement of atoms in the liquid state limits the diffusion length thereby 

restricting the size of pores that can be investigated. As an alternative, gases 

can be used in place of liquids in systems with large pores [14, 15] because 



! 136!

the diffusion of a gas is much greater than that of a liquid on the same time 

scale. Gases require either high gas pressure, a large number of acquisitions, 

or enhanced signal intensity through hyperpolarization techniques to have 

satisfactory magnetic resonance signal intensity due to low density of spins.  

Most studies involving restricted diffusion use pulsed gradient spin 

echo (PGSE) experiments [16] that have an externally applied gradient to 

observe time-dependent diffusion. The principles of PGSE experiments 

have enabled the spatially resolved measurement of the apparent diffusion 

coefficient (ADC) for 3He and 129Xe in lungs [17]. As an alternative internal 

magnetic field gradients, inherent and unique to a sample, also contain 

information such as pore size and surface-to-volume ratio [18].  

This work investigated the transverse relaxation of gaseous 

hyperpolarized 129Xe and 83Kr caused by diffusion through internal 

magnetic field gradients. Systems of both free diffusion and restricted 

diffusion in porous media were used to understand the behavior of the gas. 

Information may prove useful in hyperpolarized noble gas pulmonary 

imaging where a fundamental understanding of the diffusion of the gas will 

be helpful in data interpretation and may help improve imaging strategies. 

For example, manipulation of the transverse relaxation to maximize T2, to 

the extent possible under experimental conditions, will help improve signal 

intensity by reducing relaxation during gradient echo imaging techniques 

commonly used.  

5.2 Background-
CPMG sequences are built around the single spin echo concept but 

acquire a train of spin echoes made by subsequent π (180°) pulses that 
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continually refocus the transverse magnetization (refer to Figure 2.8 and 

discussion in Chapter 2 for further explanation of the CPMG sequence). 

Because the train of echoes is acquired in a single experiment, CPMG is 

more efficient than an individual spin echo method where each time 

increment requires a separate experiment with a new ‘batch’ of 

hyperpolarized gas delivery. It is important to note that the result is 

dependent on the CPMG parameters and will be denoted as T2
CPMG  and 

CPMG parameters must be considered during data interpretation.  

To describe signal attenuation caused by diffusion during a train of 

spin echoes, Carr and Purcell [2] treated diffusion as a random walk of 

discrete steps to a new location. At each location the nucleus would precess 

at the Larmor frequency according to the strength of the external magnetic 

field. Therefore, the phase shift from the different precession frequencies 

serves to store information of not only current location but also a memory of 

past locations. Culminating all the spins, the signal attenuation of the 

ensemble during a CPMG sequence follows [2, 3]: 

M (t) = M0 exp − t T2( )+ − 1
3Dγ

2G2τ 2t( )⎡⎣ ⎤⎦,        (5.1) 

which can be expressed as: 

ln M (t)
M0

⎛
⎝⎜

⎞
⎠⎟
= −1 T2 + − 1

3Dγ
2G2τ 2( )t = −1 T2

CPMG( )t.       (5.2) 

From Eq. 5.2 it can be concluded that the CPMG transverse relaxation time, 

T2
CPMG , is calculated as the sum of the intrinsic transverse relaxation and 

transverse relaxation caused from diffusion [3]:  

1 T2
CPMG =1/T2 + 1

3Dγ
2G2τ 2.     (5.3) 
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In Eqs. 5.1-5.3, D is the diffusion coefficient, γ is the gyromagnetic ratio, G 

is the magnetic field gradient, and τ is the time between π/2 and first π pulse 

(1/2 the time between subsequent π pulses). The magnetic field gradient can 

be from either an externally applied gradient or the internal gradients of the 

sample.  

In the following experiments the composition of the gas mixture and 

gas pressure in the sample cell during the CPMG sequence are individually 

adjusted to investigate the diffusion behavior. The dependence of 1 T2
CPMG  

(described using Eq. 5.3) on the gas pressure during the experiment may be 

explained by the kinetic gas theory where diffusion is defined as the product 

of the mean free path (λ) and the mean thermal speed ( c ) divided by the 

dimension of the considered space, D = 1
3 λ ⋅c( ) . The mean free path is the 

distance travelled by an atom before a collision with a second body. 

Assuming that the atoms or molecules are hard spheres that have no 

interactions the mean free path is described by: 

λ = 1
2πσ 2Nv

         (5.4) 

where: σ is the collisional cross-section and Nv is the number of atoms per 

unit volume. In the case of an ideal gas where pressure, P = NvkBT  the 

mean free path is:  

λ =
kbT
2πσ 2P

       (5.5) 

where, σ is the collisional diameter, P is the pressure, kb is Boltzmann’s 

constant, T is the temperature. The mean thermal speed of atoms with molar 
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mass m, if assumed to follow Maxwell’s distribution of an ideal gas, is 

determined by: 

c =
8kbT
πm

⎛
⎝⎜

⎞
⎠⎟

1/2

.          (5.6) 

Substituting Eqs. 5.5 and 5.6 into the definition of diffusion and 

assuming the case of self-diffusion of an ideal gas determines the diffusion 

coefficient as: 

D = 2
3σ 2P

kb
3T 3

π 3m
⎛
⎝⎜

⎞
⎠⎟

1
2

.            (5.7) 

The simplicity of Eq. 5.7 helped to qualitatively described diffusion and 

helped in designing the experiments of this work. However, Eq. 5.7 is 

inadequate in quantifying the diffusion in the following discussions.  

There are two major shortcomings in using Eq. 5.7 for calculations: 

(1) intermolecular (or interatomic in the case of a noble gas) interactions 

make the gases behave non-ideally and (2) this work uses gas mixtures 

containing buffer gases that require inclusion in the calculation. These 

buffer gases were necessary for efficient hyperpolarization of 129Xe and 83Kr 

(as discussed previously in Chapter 3). It is important to consider alterations 

to the diffusion coefficient caused by the mixture of gases.  

To account for intermolecular interactions and buffer gases a more 

rigorous description of diffusion is necessary. Hirschfelder, Curtiss, and 

Bird describe a method using the work of Chapman and Enskog that 

estimates intermolecular interactions between non-polar gases by a 

Lennard-Jones 6-12 potential [19, 20] and approximates diffusion 

coefficients with strong agreement to experimental data [21]. For a binary 
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mixture the first approximation of the coefficient of mutual diffusion (D1,2) 

can be calculated using [20]: 

D1,2 = 266.28
T 3 M1 +M2( ) 2M1M2

Pσ1,2
2 Ω1,2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
.   (5.8) 

In Eq. 5.8, D1,2 is the mutual diffusion coefficient (in cm2/s) of a mixture 

containing gases 1 and 2, P is the pressure (in Pa), T is the temperature (in 

K), M1 and M2 are the molar masses (in g/mol) of the species in the binary 

mixture. The collisional diameter of the binary mixture is σ1,2 = 1
2 σ1 +σ 2( )  

(in Å). Ω1,2  is the interaction potential that is a function of the reduced 

temperature T1,2
*  where T1,2

* = kbT ε1,2 . The term ε defines the strength of the 

intermolecular interaction (i.e. the depth of the potential well in the 

Lennard-Jones 6-12 potential) and in the cases of a binary mixture 

ε1,2 = ε1ε2 . Literature values for σ and ε are provided in Table 5.1. This 

work utilized the values for Ω1,2 corresponding to a Lennard-Jones 6-12 

potential which are tabulated in the appendix of ref. [22]. A second order 

correction may be included into Eq. 5.8 to account for composition of the 

binary mixture, however, with the parameters of this work the correction is 

less than 1% [23] and considered trivial in calculations. Therefore the first 

order approximation of the diffusion coefficient, D1,2, described in Eq. 5.8 

was used to analyse the data collected for this study.  
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Table 5.1. Literature values of required for the calculations of the diffusion 

coefficient of the relevant gases.  

Gas ε/kb (K) � (Å) 

He 10.22 2.58 
N2 91.5 3.68 
Kr 190 3.61 
Xe 229 4.06 
Values taken from the appendix of ref. [22].  

 

The behavior of gas diffusion is not only dependent on the property 

of the gas but is also dependent on the sample. In porous media the gas may 

collide or interact with the surfaces of the pore altering the observed 

relaxation. In porous media, there are three distinct diffusion regimes: free 

diffusion, localization, and motional averaging (see sketch in Figure 5.1). 

Free diffusion occurs when there is no interaction between the atom of 

interest and boundaries of the pore. Localization results when the atom of 

interest diffuses through only a small portion of the pore during the relevant 

time scale; for example, when the atom only experiences the region near the 

pore boundary. Motional averaging occurs when the atom of interest 

experiences the entirety of pore, perhaps multiple times, averaging out the 

overall gradient it experiences.  

The regime is determined by the shortest of the three characteristic 

length scales which are defined as: (1) the diffusion length, lD = D1,2t , (2) 

the dephasing length, lG = D1,2 γG3
 (where G is the local, or internal, field 

gradient), and (3) the size of the pore, ls [24]. A cleverly chosen model 

system may attempt to probe a single regime. However, in realistic systems 

more than one, if not all, regimes may exist due to variation in the sample 
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and deconvolution of the relaxation from each regime may not be 

straightforward.  

 

 

Figure 5.1. Sketch of the three diffusion regimes and their dependence on length 

scales lD, lG, and ls. The shortest characteristic length scale determines the regime. 

Figure adapted from Refs. [24, 25]. 

5.3 Transverse-relaxation-of-129Xe-in-single-pore-

5.3.1 Materials!and!methods!

5.3.1.1 129Xe-spin-exchange-optical-pumping-

 Spin exchange optical pumping (SEOP) produced hyperpolarized 

129Xe using a batch mode technique similar to what was extensively 

described in section 3.2 of Chapter 3. The primary difference to the earlier 

experiment was that this work used an SEOP time of 3 minutes resulting in 

reduced spin polarization compared to the 6 minutes required for steady 

state polarization. However, reduced SEOP time produced ample signal for 
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the single pore (empty glass cell) CPMG experiments while increasing data 

collection rate.  

5.3.1.2 CPMG-experiments-

The transverse relaxation of 129Xe was measured in a 9.4 T 

superconducting magnet by means of a CPMG sequence on a Kea 2 

spectrometer (Magritek, NZ). A single pore for gas diffusion was created by 

an empty 12 mm inner diameter (14 mm outer diameter) borosilicate glass 

detection cell and kept at a temperature of 290-292 K during experiments. 

Hyperpolarized 129Xe mixture was transferred into an evacuated detection 

cell via pressure equalization and allowed to pressure and temperature 

equilibrate in the cell for 30 seconds before the triggering the CPMG pulse 

sequence. This work studied the gradients inherent in the sample (i.e. no 

gradients applied by an external mechanism). Example data from a CPMG 

sequence is shown in Figure 5.2. At each pressure, a simple one-pulse 

experiment acquired a one-dimensional spectrum to set the 129Xe resonance 

frequency at that pressure and also to determine T2
* from the FWHM (ν) 

using the relation ν =1 πT2
* . Additional experimental details such as the 

inter-echo spacing and CPMG train length are provided for each individual 

CPMG experiment in the Results and Discussion section. Two separate 

superconducting magnets were used for these experiments: (1) a 9.4 T 

superconducting magnet (Oxford Instruments) where only superconducting 

shims are used resulting in a substantial magnetic field gradient over the 

sample and subsequently a broad linewidth (T2
* = 3.06 ± 0.08 ms for the 

free 129Xe gas) and (2) a second 9.4 T superconducting magnet (Bruker 

Corporation) that employs room temperature shims to improve magnetic 
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field homogeneity and results in a narrow linewidth (T2
* = 83.9 ± 0.7 ms for 

the free 129Xe gas). 

5.3.1.3 Data-analysis-

The signal of the echo train, measured by the integrated peak area of 

each echo, revealed that the relaxation behavior followed a bi-exponential 

decay as apparent in the natural logarithm of the data in Figure 5.2 (filled 

black circles). The T2
CPMG

 values were extrapolated from the decay curve 

using: 

I / I0 t( ) = 1− A( ) ⋅exp −t /T2a( )+ A ⋅exp −t /T2b( )          (5.9) 

where T2a and T2b are the two components of the overall T2
CPMG  value. All 

data were fit to the point where the normalized integral (I) was 0.1 of initial 

value (I0).  

 

 

Figure 5.2. Example data from a CPMG experiment of hyperpolarized 129Xe in an 

empty glass detection cell containing no porous medium at 287.5 kPa of a 25% 

xenon – 75% nitrogen gas mixture and τ = 5.0 ms. Normalized integrals (I/I0) and 

the natural logarithm of these values are shown by open red circles and filled black 

circles respectively. Note the bi-exponential behavior of the decay shown by the 

two distinct slope regimes in the ln(I/I0) representation of these data.  

!
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5.3.2 Results!and!discussion!
Initial experiments investigated the transverse relaxation of 129Xe in 

a single pore with a 12 mm pore length created by the inner diameter of the 

glass cell. A benefit of the gaseous experiments was that changing the gas 

pressure alters the diffusion coefficient of the gas permitting a 

straightforward probe into the diffusion behavior. Data showing the 

functional relationship between the transverse relaxation and the pressure is 

presented in Figure 5.3 using a mixture of 25% xenon - 75% nitrogen with τ 

= 5.0 ms, 6.0 ms, and 8.0 ms in the broad linewidth system. At least four 

data points were taken at each pressure for all τ times. Note that the data 

was not averaged and all data points are shown but generally overlay one 

another indicating the exceptional reproducibility of this experiment. 

 

 

Figure 5.3. Transverse relaxation time T2
CPMG( )  of 129Xe as a function of detection 

cell pressure in the empty glass detection cell that acted as a single pore for 

diffusion. Data collected using a 25% xenon – 75% nitrogen mixture for τ = 5.0, 

6.0 and 8.0 ms in the broad linewidth system. T2a and T2b were extrapolated from 

the integral of the CPMG echoes using Eq. 5.9. Parameters from the linear fit of 

these data are presented in Table 5.2.  
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In Figure 5.3 it was observed that both T2a and T2b had near linear 

behavior on the investigated pressure range (~140 - 490 kPa) as highlighted 

by the linear regression analysis of the data (refer to Table 5.2 for values). 

The linear dependence on pressure suggested that the intrinsic transverse 

relaxation was small compared to the transverse relaxation caused from 

diffusion in the external magnetic field gradient as described in Eq. 5.3. T2a 

was strongly dependent on the pressure of the gas during the CPMG 

acquisition having a slope 8-10 times larger than the corresponding T2b.  

A possible reason for the bi-exponential behavior was that two 

different regimes were being probed during the experiment. The shortest 

characteristic length determines diffusion regime as discussed in the section 

5.2 and shown in Figure 5.1. The first regime was possibly the free diffusion 

of the gas. The diffusion coefficient was calculated using Eq. 5.8 for a 

binary mixture of xenon and molecular nitrogen and then inserted into the 

equation lD = D0t  to determine diffusion length. Using the τ = 5 ms data as 

an example, at the highest pressure lD was 0.16 mm between echoes (2τ) and 

2.0 mm over the course of the measurements (164 echoes separated by 2τ), 

while at the lowest pressure lD was 0.29 mm between echoes and 3.8 mm 

over the course of the CPMG sequence. If the entire glass cell was 

considered the pore in this system then ls = 12 mm (inner diameter of the 

glass cell) indicating that the system was not in the motional averaging 

regime since lD < ls. To determine the dephasing length, lG, the gradient can 

be calculated using the relation 1 T2
* =1 T2 +1 T2

t  where the transverse 

relaxation rate due to magnetic field inhomogeneities 1 T2
t( )  can be 
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described by γΔB  assuming the lineshape is Lorentzian [26]. To calculate 

ΔB the intrinsic transverse relaxation time, T2, was approximated as T2 = 

T2
CPMG  at the highest-pressure value where diffusion was the most restricted 

due to collisions with surrounding molecules. If it is assumed that the 

gradient across the sample is linear along the length of the pore, ls = 12 mm 

then is approximated by ΔB/ls = 58 ± 2 µT/m. Consequently the dephasing 

length, lG, is 0.45 mm using the relation lG = D1,2 γG3  making lD/lG equal 

to 0.36 and 0.64 at high and low pressure respectively, when using the 

length the gas diffuses between successive echoes. The characteristic length 

scales indicated that the system was predominately in the free diffusion 

regime. However, it is possible that because lD and lG are close in value that 

localization makes a significant contribution to the overall behavior.  

In the localization regime, edge effects often reduce transverse 

relaxation nearer to the walls due to a partial restriction to the diffusion [27]. 

However, the pore boundary may also produce internal magnetic field 

gradients increasing transverse relaxation in close proximity to the 

boundary. The fitting parameter A in Eq. 5.9 helped determined the origins 

of the diffusion caused transverse relaxation in the bi-exponential CPMG 

results. In the case where diffusion of the gas was kept to a minimum (i.e. 

high pressure and short τ) the fitting parameter A showed that the 

contribution of T2b was the least. As greater diffusion distances were present 

(i.e. lower pressure and longer τ times) the contribution of T2b increased 

suggesting that larger proportion of gas experienced the pore boundary.  

!  
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Table 5.2. Results from the linear regression analysis of T2
CPMG  in a single pore as 

a function of pressure. Data extrapolated from Figure 5.3 – 5.5. 

Mixture τ 
(ms)  

Range of A T2a T2b 
Intercept 

(ms) 
Slope 

(ms/100 kPa) 
Intercept 

(ms) 
Slope 

(ms/100 kPa) 
ABroad linewidth system     
25% Xe - 
75% N2

 
5 0.33C,D 162 ± 8 362 ± 4 65 ± 3 44 ± 1 
6 0.36C-0.35D 128 ± 5 301 ± 4 59 ± 2 38 ± 1 
8 0.50C-0.38D 147 ± 9 202 ± 12 88 ± 8 21 ± 2 

T2
* = 3.05 ± 0.08 ms E    

     
25% Xe - 
10% N2 - 
65% He 

5 0.34C-0.33D 98 ± 3 248 ± 4 58 ± 2 29 ± 2 

T2
* = 3.06 ± 0.08 ms E 

   

       
BNarrow linewidth system     
25% Xe - 
75% N2  

8 0.25 517 ± 13 1016 ± 8 78 ± 6 89 ± 3 
10 0.25C-0.26D 396 ± 13 973 ± 9 105 ± 3 71 ± 2 

 T2
*= 83.9 ± 0.7 ms E  

ABroad linewidth data were collected with the sample without room temperature shimming.  
BNarrow linewidth data were collected with room temperature shimming that improved magnet field 
homogeneity.  
CA at lowest pressure.  
DA at highest pressure.  

ET2
* was determined from the full width at half maximum of the one-dimensional spectrum. No 

pressure dependence of T2
* was observed. 

 

The qualitative trend of the T2a dependence on τ appeared logical 

when considering Eq. 5.3 where longer τ results in greater diffusion that 

therefore reduced T2
CPMG  time. However, the actual dependence on the echo 

time appeared not to follow the τ2 behavior suggested in Eq. 5.3. This 

possibly occurred because of the regime changes along with the τ change or 

due to localized magnetic field differences [28].  

Data presented in Figure 5.4 were collected using room temperature 

shimming to improve magnetic field inhomogeneities and facilitate a 

narrow peak linewidth. The improved homogeneity in the magnetic field 

greatly increased the T2
* time by approximately a factor of thirty over the 

broad peak system. The greater T2a times were clearly from the reduced 

gradient, G, because the diffusion coefficient is maintained between data in 

Figures 5.3 and 5.4. Interestingly, although T2a increased drastically with the 
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improved shimming while T2b was only slightly changed. This outcome 

supported the argument that T2b was caused from internal magnet field 

gradients at the glass cell wall because these were inherent to the sample.  

 

 

Figure 5.4. 129Xe transverse relaxation time T2
CPMG( )  as a function of detection cell 

pressure during the CPMG sequence with room temperature shimming to make a 

narrow peak linewidth. T2a and T2b were extrapolated from the integral of the 

CPMG echoes using Eq. 5.9. Parameters extrapolated from the linear fit of these 

data are presented in Table 5.2. 

 

Figure 5.5 compares the binary xenon - nitrogen mixture (25% 

xenon – 75% nitrogen) to one composed primarily of helium (25% xenon - 

11% nitrogen - 64% helium). It was observed that T2
CPMG  was shorter for the 

helium containing mixture because helium has a smaller mass, reduced 

collisional diameter and less interatomic attraction than the diatomic 

nitrogen it replaced (mHe mN2 = 0.14 , σ He σ N2
= 0.70 , ε He ε N2 = 0.11 ), 

resulting in greater xenon diffusion in agreement with Eq. 5.3. In 

calculations the ternary mixture was treated as a binary mixture of xenon 

and helium for simplicity and assumed that the small percentage of nitrogen 
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did not drastically alter diffusion. At the highest pressure lD of this mixture 

was calculated as 0.33 mm between echoes (2τ) and 4.3 mm over the course 

of the measurements (164 echoes separated by 2τ) approximately twice the 

diffusion length for the binary xenon and nitrogen mixture. For transverse 

relaxation studies in the lung, the pressure is not an adjustable variable (i.e. 

must remain ambient pressure); however, the alterations to the partial 

pressures of gases in the mixture effect the overall transverse relaxation. 

Future experiments can be tailored to some degree for specific diffusion 

lengths as necessary.  

 

 

Figure 5.5. 129Xe transverse relaxation time T2
CPMG( )  as a function of detection cell 

pressure during the CPMG sequence for binary (25% xenon – 75% nitrogen) and 

ternary (25% xenon - 11% nitrogen – 64% helium) gas mixtures with τ = 5.0 ms in 

the broad linewidth system. T2a and T2b were extrapolated from the integrals of the 

CPMG echoes using Eq. 5.9. Parameters extrapolated from the linear fit of these 

data are presented in Table 5.2. 

 

The design of the experiments permitted the determination of 

internal gradients using Eq. 5.3 by substituting Eq. 5.8 for the diffusion of 

the sample, making 1 T2
CPMG  behave linearly with 1 P  (the inverse of the 

pressure) following: 
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1 T2
CPMG =1 T2 + 88.76

T 3 M1 +M2( )
2M1M2

γ 2G2τ 2

σ1,2
2 Ω1,2

⋅ 1
P
.        (5.10) 

Figure 5.6 compares the 1 T2
CPMG  the τ = 5.0 ms of the broad linewidth data 

from Figure 5.3 with the τ = 8.0 ms data from the narrow linewidth system 

from Figure 5.4. Results from the linear regression analysis are presented in 

Table 5.3.  

 

 

Figure 5.6. 129Xe CPMG transverse relaxation rate 1 T2
CPMG( )  as a function of 1/P 

for the 25% xenon – 75% nitrogen mixture. Comparison between the broad 

linewidth system with τ = 5.0 ms and the narrow linewidth system with τ = 8.0 ms. 

Parameters from the linear regression analysis of these data and the corresponding 

magnetic field gradients are presented in Table 5.3. 

 

Determination of the magnetic field gradient found that, in the broad 

linewidth system, both T2a and T2b had a magnetic field gradient three times 

larger than the narrow linewidth system (refer to Table 5.3 for values). The 

gradient calculated from the slope from the linear regression analysis of 

Figure 5.6 was larger than the value calculated using T2
* by nearly an order 

of magnitude. The disagreement possibly originated from a complication in 

the treatment of τ. As discussed earlier in this section the data did not 
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possesses a quadratic dependence on τ contrary to the equation of Torrey 

presented in Eq. 5.3. The discrepancy may contribute to errors in the 

calculation of the gradient. Previous work observed a linear, not quadratic, 

dependence on τ due to the local inhomogeneities in the magnetic field [28]. 

In Eq. 5.10, if τ in place of τ2 squared were used in the calculation of the 

gradient from the slope, resulting value would decrease. The uncertainty in 

the τ dependence warrants additional investigation in future studies.  

 

Table 5.3. Determination of internal magnetic field gradients in a single pore. Data 

extracted from Figure 5.6 using linear regression analysis of the relaxation rate 

1 T2
CPMG( )  as a function of 1/P.  

MR 
system 

τ (ms) T2
* 

(ms) 
1/T2a 
Slope 

(ms-1/Pa-1) 

1/T2b 
Slope 

(ms-1/Pa-1) 

G (µT/m)  
From T2

* C From T2a From T2b 

ANarrow 
linewidth 

8.0 83.9±0.7  56.1±0.2 434±20 2.1±0.1 51±1 140±10 

BBroad 
linewidth 

5.0 3.05±0.08 198±1 896±10 58±2 152±2  430±10 

ANarrow linewidth data were collected incorporating room temperature shimming that improved 
magnet homogeneity. The linear regression analysis results in intercepts of 1.11±0.02 × 10-4 ms-1 and 
17.5±1.4 × 10-4 ms-1 for 1/T2a and 1/T2b respectively.  
BBroad linewidth data were collected without room temperature shimming. The linear regression 
analysis results in intercepts of 1.28±0.05 × 10-4 ms-1 and 19.6±0.4 × 10-4 ms-1 for 1/T2a and 1/T2b 
respectively. 
CThe gradient over the length of the pore ls = 12 mm calculated from the relation: 

1 T
2
* = 1 T

2
+ 1 T

2
t , where 1 T

2
≈ 1 T

2
CPMG  and 1 T

2
t = γΔB .  

 

5.4 Transverse-relaxation-of-129Xe-and-83Kr-in-porous-media-

5.4.1 Materials!and!methods!

5.4.1.1 129Xe-spin-exchange-optical-pumping-

Spin exchange optical pumping (SEOP) of 129Xe and 83Kr was 

completed as described in Chapter 3. Steady state polarization of 129Xe (6 

minute SEOP time) was used to overcome the limited signal due to gas 

displacement by the glass beads. For 83Kr a near steady state polarization 
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SEOP time of 8 minutes produced sufficient signal intensity while 

maintaining an acceptable data collection rate. 

5.4.1.2 Preparation-of-glass-beads-

 Model porous systems of spherical glass beads (BioSpec Products 

Inc.; Bartlesville, OK, USA) with diameters of 0.5 mm and 1.0 mm were 

used to investigate transverse relaxation with restricted diffusion. An acrylic 

detection cell (14.1 mm ID) with a screw cap to enable removal and 

addition of beads was constructed for the sample container. It was assumed 

that when inserted into the acrylic detection cell the beads arranged into the 

closest packing of spheres with the resulting tetrahedral and octahedral 

holes, of radii 22.3% and 41.4% of the radius of the glass beads, as the 

pores for restricted diffusion. The cell reached above and below the 

detection region of the NMR probe to aid with the homogenous packing of 

the beads through the detection entire region.  

Untreated beads (‘fresh’ beads directly from suppliers) were 

prepared for the CPMG experiments by placing into the acrylic detection 

cell and put under vacuum conditions (pressure < 0.1 kPa) for a minimum of 

30 minutes before running experiments. In addition to the untreated beads, 

quantities of both sized glass beads were siloxane treated to coat the surface 

of the beads to determine the effect of surface chemistry on the transverse 

relaxation.  

Preparation of the siloxane treated beads required washing using 

potassium hydroxide dissolved in ethanol (pH > 13) for 24 hours to 

thoroughly clean the surface of the glass. The beads were then rinsed with 

distilled water until pH equilibration indicated complete removal of the 
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basic solution. A vacuum oven dried the beads at 110°C for over 20 hours to 

dehydrate the surface. The beads were then washed in a 1:10 solution of 

SurfaSilTM (Thermo Fisher Scientific Inc. Waltham, MA, USA) in toluene 

and rinsed with ethanol. After a second drying in the vacuum oven, the 

beads were stored in a gas tight container with 200 kPa dry nitrogen until 

used in experiments.  

5.4.1.3 Animal-care-and-preparation-

To assist with the design of future experiments, this work 

investigated the transverse relaxation in ex vivo lungs to measure T2
CPMG . 

Healthy male Sprague-Dawley rats (350 - 400 g, Charles River UK Ltd, 

Margate, UK) were euthanized by an overdose of pentobarbital (Sigma-

Aldrich Ltd, Gillingham, UK) in accordance with local animal welfare 

guidelines and A(SP)A 1986 (Animals for Scientific Procedures Act 1986). 

After death a catheter was inserted into the caudal vena cava and blood was 

flushed from the heart and pulmonary system with 20 – 30 cm3 heparin 100 

IU/cm3 (Wockhardt UK Ltd, Wrexham, UK) in 0.9% saline solution (Baxter 

Healthcare Ltd, Thetford, UK) followed by phosphate buffer solution (PBS, 

Sigma-Aldrich Ltd, Gillingham, UK). A PTFE adapter tube was inserted 5 - 

10 mm above the carina and sutured into place. The heart and lungs were 

removed from the animal and suspended trachea downward in an acrylic 

ventilation chamber in a 5% glucose solution (weight/volume). For 

additional details refer to the description and diagrams in Chapter 4 and ref. 

[29].  
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5.4.1.4 CPMG-experiments-

The transverse relaxation of 129Xe and 83Kr was measured in a 9.4 T 

superconducting magnet by means of a CPMG sequence on a Kea 2 

spectrometer. In the glass bead experiments, the acrylic sample cell 

containing the beads was kept at 290 – 292 K while situated in the 

superconducting magnet. Hyperpolarized noble gas mixture was transferred 

into a pre-evacuated detection cell via pressure equalization and allowed to 

pressure and temperature to equilibrate in the cell for a few seconds before 

triggering the CPMG pulse sequence. At various pressures, a simple one-

pulse experiment acquired a one-dimensional spectrum to determine T2
* 

from the FWHM. An example result from a CPMG sequence is shown in 

Figure 5.7. Relaxation measurements taken in the ex vivo rat lungs used a 

modified CPMG sequence on a Bruker Avance III system using the 

hyperpolarized 83Kr and 129Xe delivery technique described in Chapter 4.  

5.4.1.5 Data-analysis-

Contrary to the single pore data the relaxation in the beads did not 

show substantial bi-exponential behavior. The CPMG decay of 129Xe signal 

from a τ = 0.375 ms, 1865 kPa in the 0.5 mm glass beads is displayed in 

Figure 5.7. Since no bi-exponential behavior was observed the T2
CPMG  value 

was extrapolated using: 

I I0 = int+ A ⋅exp −t T2
CPMG( ) .         (5.11) 
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Figure 5.7. Example CPMG result in 0.5 mm untreated glass beads collected using 

186.5 kPa of a 25% xenon – 10% nitrogen – 65% helium mixture with τ = 0.375 

ms. Normalized integrals (I/I0) of the echo train are shown by open red circles. The 

natural logarithm of the normalized integrals (ln(I/I0)) are shown by filled black 

circles. Note the bi-exponential behavior observed in the empty glass cell was not 

apparent in the beads as shown by the single slope in the ln(I/I0) representation of 

these data. 

5.4.2 Results!and!discussion!

5.4.2.1 Transverse-relaxation-of-129Xe-in-glass-beads-

The experiments in this section investigated the transverse relaxation 

of 129Xe arising from diffusion of the gas in a model porous system of 

spherical glass beads with the intention of determining the internal magnetic 

field gradients in the sample. To probe the diffusion behavior of 129Xe in the 

porous system, data were collected investigating the relationship between 

the measured T2
CPMG  value and the pressure of the gas mixture in an acrylic 

cell containing the glass beads. These experiments were modelled after the 

single pore experiments described in section 5.3.2.  was extrapolated 

from individual CPMG experiments using Eq. 5.11. Figure 5.8 displays 

T2
CPMG  of 129Xe in 1.0 mm glass beads at various gas pressures in the sample 

cell during detection. Data from pressures greater than 50 kPa showed a 

T2
CPMG
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linear dependence of T2
CPMG  on the gas pressure, similar to the result from 

the single pore.  

 

 

Figure 5.8. T2
CPMG  of 129Xe as a function of the gas pressure in the acrylic detection 

cell containing 1.0 mm glass beads using a 25% xenon – 10% nitrogen – 65% 

helium gas mixture. Plotted lines are included solely to highlight linearity of data.  

 

The results were particularly interesting for pressures less than 50 

kPa where the T2
CPMG  time increased. The complete change in behavior 

indicated a change of the diffusion regime that may be explained by 

characteristic length scales. At 25 kPa the diffusion length, lD, was 0.6 mm 

(2τ) between echoes and 4.5 mm over the entire experiment (64 echoes 

space by 2τ). It was likely that the system was in the motional averaging 

regime since the 1.0 mm beads contained pores of only 0.22 mm and 0.41 

mm, for tetrahedral and octahedral holes respectively (see Preparation of 

glass beads in section 5.4.1). As the pressure was reduced further from this 

point an increase in motional averaging occurred and the gradient that the 

gas experienced was averaged out whereby increasing T2
CPMG . 
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To test this theory, the transverse relaxation of 129Xe in 0.5 mm 

diameter glass beads was measured with results presented in Figure 5.9. 

Theoretically the smaller beads should make motional averaging more 

prevalent because the reduction in pore size. Tetrahedral pores are 0.11 and 

the octahedral pores 0.21 mm in the 0.5 mm beads, while the diffusion 

length remained the same as the experiments for the 1 mm beads. In Figure 

5.9 it is apparent that the minimum T2
CPMG  value occurs at a higher pressure 

than the 1.0 mm glass beads in agreement with the proposed explanation. At 

low pressures the increase in T2
CPMG  was more substantial for the 0.5 mm 

beads than the 1.0 mm beads. Data revealed insignificant differences 

between surface treatments of the glass beads indicating that the magnetic 

field gradients were not affected by the surface coating. In future studies 

these results may have importance in using pulmonary magnetic resonance 

imaging where the small pore size of alveoli would result in the motional 

averaging regime. This means that using a mixture containing substantial 

amounts of helium may be beneficial because it actually increases T2
CPMG  

due to greater motional average from the increased diffusion length.  
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Figure 5.9. T2
CPMG  of 129Xe as a function of the gas pressure in the acrylic detection 

cell containing 0.5 mm glass beads using a 25% xenon – 10% nitrogen – 65% 

helium gas mixture.  

 

To demonstrate the robust nature and reproducibility of the 

transverse relaxation measurements, the glass beads were removed from the 

acrylic sample cell and re-inserted into the cell at a later date for repeated 

CPMG experiments (see Figure 5.10 for repeated data). The siloxane treated 

beads were removed then replaced into the acrylic cell while a completely 

different sample untreated beads of like dimensions were used for repeated 

experiments. The repeated data for both treated and untreated glass beads 

show strong agreement to original data.  
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Figure 5.10. Repeat data for T2
CPMG  of 129Xe as a function of the gas pressure in the 

acrylic detection cell containing 1.0 mm glass beads using a 25% xenon – 10% 

nitrogen – 65% helium gas mixture. The repeats (filled icons) showed that the 

experiments were very robust and reproducible. Lines are included solely to 

highlight linearity of data. 

 

Internal gradients in the glass beads were determined following the 

method described for the single pore (empty glass cell) experiment. In the 

case of the 1.0 mm beads and τ = 0.75 ms data for the 25% xenon – 10% 

nitrogen – 65% helium mixture (from Figure 5.10), the transverse relaxation 

rate as a function of 1/P revealed linear behavior at pressures greater than 

100 kPa as shown in Figure 5.11. Using the slope from the linear regression 

analysis the internal gradient was calculated as 950±20 µT/m and 920±30 

µT/m, for the siloxane treaded and untreated beads respectively, supporting 

the hypothesis that the surface coating did not alter the internal gradients in 

the pore. Therefore the transverse relaxation significantly depended on pore 

size and was predominately insensitive to the surface chemistry of the pore. 
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This observation was interesting since it contradicted the typically behavior 

for longitudinal relaxation where chemistry of a surface substantially affects 

the relaxation [30, 31], for example, relaxation from paramagnetic materials 

in the surface [32]. The line broadening due to internal magnetic field 

gradients caused by the glass beads resulted in a very short T2
* time and a 

large gradient of 13000 ± 300 µT/m using a pore length of ls = 0.22 mm. 

Unlike the case of the single pore the calculation of the gradient from T2
* is 

substantially larger than the value gradient calculated using the data in 

Figure 5.11. A possible cause for the difference was that the broadening of 

the peak in the glass beads may have resulted in a non-Lorentzian lineshape 

whereby making the assumption that ν =1 πT2
*  invalid. Unfortunately, the 

ambiguity in the τ dependence makes the origins of this of the difference 

uncertain (refer to section 5.3.2 for discussion on τ dependence).  

!  
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Figure 5.11. 1 T2
CPMG  of 129Xe as a function of the 1/P in the acrylic detection cell 

containing 1.0 mm glass beads using a 25% xenon – 10% nitrogen – 65% helium 

gas mixture. Linear regression analysis was performed only on for pressures over 

100 kPa (i.e. 1/P <10-5 Pa-1) which was the linear regime of the data. The fitted 

region is indicated by the solid line while the dashed line is an extension of the 

linear fitting provided to guide the eye the full length of the graph. Note that data 

from less than 70 kPa in Figure 5.10 are not included.  

 

Using a gradient of 935 µT/m (average between two surface 

treatments), the dephasing length (lG) at 150 kPa for this mixture is 0.43 mm 

while the diffusion length (lD) at this pressure was calculated as 0.23 mm 

between echoes (2τ) making the diffusion length on the order of the size of 

the pore (0.22 mm and 0.41 mm, for tetrahedral and octahedral pores 

respectively). However at 15 kPa, where the increase in  was 

observed, the dephasing length (lG) was 0.93 mm, assuming that the 

magnitude of the internal gradient is unchanged at low pressure, while the 

diffusion length (lD) is 0.73 mm between echoes (2τ) and the pore size 

remained 0.22 and 0.41 mm in tetrahedral and octahedral respectively; 

suggesting motional averaging behavior.  

T2
CPMG



! 163!

5.4.2.2 Transverse-relaxation-of-83Kr-in-glass-beads-

The insensitivity of 129Xe transverse relaxation to the surface coating 

may have significant implications for future experiments, particularly for 

work using hyperpolarized 83Kr. 83Kr has shown T1 contrast to both surface 

chemistry [33-35] and surface to volume ratio [34] and isolation of the 

particular origins of the longitudinal relaxation may be difficult. The 

transverse relaxation on the other hand appears to depend only on pore size 

and not surface chemistry and may provide a pathway to identify the origin 

of the longitudinal relaxation. 

Experiments investigating the transverse relaxation of 83Kr were 

completed by Mathieu Baudin while he was an intern at the University of 

Nottingham. Mr. Baudin determined the transverse relaxation of 83Kr in 1.0 

mm untreated glass beads with results shown in Figure 5.12. The T2
CPMG  

times were significantly longer for 83Kr than 129Xe. This can be explained 

by the significantly reduced gyromagnetic ratio γ 83Kr
γ 129Xe

= 0.139( )  that 

reduces the transverse relaxation rate as described by Eq. 5.3. The increased 

T2
CPMG  permitted a relatively long τ = 5.0 ms in the glass beads.  

!  
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Figure 5.12. T2
CPMG  of 83Kr as a function of the gas pressure in the acrylic 

detection cell containing 1.0 mm glass beads using a 25% krypton – 5% nitrogen – 

70% helium gas mixture. Data collected by Mathieu Baudin.  

 

Data for 83Kr in 1.0 mm beads were more similar to the 0.5 mm bead 

data than the 1.0 mm bead data of 129Xe (i.e. the minimum T2
CPMG  value was 

at a higher pressure). The diffusion coefficient unlikely caused the change in 

the pressure of the minimum T2
CPMG  value between the two isotopes. For 

instance, at a pressure of 25 kPa the diffusion length for 83Kr was 1.58 mm 

between echoes (2τ) while the diffusion length for 129Xe was 1.46 mm on 

the same time scale. More significantly, however, is the fact that 83Kr was 

much less affected by diffusion through magnetic field gradients than 129Xe, 

due to the reduced gyromagnetic ratio. The reduction in gyromagnetic ratio 

allowed the CPMG sequence to use longer τ times and therefore probe 

larger diffusion lengths. For example, at 25 kPa, the diffusion length (lD) for 

83Kr was 1.58 mm between echoes (2τ = 10.0 ms) while the diffusion length 

(lD) was 0.56 mm between echoes (2τ = 1.5 ms) for 129Xe with the 

parameters described in Figure 5.10.  



! 165!

Assuming that the magnetic field gradient in the untreated 1.0 mm glass 

bead sample was 920±30 µT/m (determined from l29Xe experiments) the 

dephasing length (lG) was calculated for 83Kr and subsequently the diffusion 

regime was determined. At 150 kPa of krypton in a mixture with helium and 

diffusion time of 2τ = 10.0 ms, the characteristic length scales were lD = 

0.62 mm, lG = 0.88 mm, and ls = 0.22 mm and 0.41 mm, in the tetrahedral 

and octahedral pores, respectively; indicating that the system was in the 

motional averaging regime even at the relative high pressure. Lower 

pressures increased both diffusion length (lD) and the dephasing length (lG) 

while the pore size (ls) remained the same increasing the motional averaging 

in the system and subsequently T2
CPMG .  

5.4.2.3 Transverse-relaxation-of-129Xe-and-83Kr-in-ex!vivo-rat-lungs-

The model porous system of glass beads was chosen with the purpose 

of approximating the alveolar dimensions of lungs since a single human 

alveolus has an average diameter of 0.200 mm [36]. In this work the 

transverse relaxation time of 129Xe and 83Kr was measured in ex vivo rat 

lungs taken from healthy animals using the CPMG experiment. The average 

Sprague-Dawley rat alveolus diameter is approximately 0.100 mm with a 

inhalation volume similar to that used in this work [37]. Inhaling 5 ml of a 

25% xenon – 75% nitrogen mixture with τ = 5.0 ms resulted in a 129Xe 

T2
CPMG  of 32.9 ± 0.5 ms (see Figure 5.13 blue icons). Inhaling 8 ml of a 25% 

krypton – 75% molecular nitrogen mixture and using τ = 5.0 ms resulted in 

an 83Kr T2
CPMG  of 166 ± 11 ms (see Figure 5.13 green icon). Corresponding 

T2
* in the ex vivo rat lungs conditions were 1.77±0.37 ms and 13.1±0.8 ms 

for 129Xe and 83Kr respectively.  



! 166!

 

 

Figure 5.13. Semi-logarithmic plot of I/I0 of the CPMG echoes for both 129Xe and 
83Kr in ex vivo rat lungs. A 25% xenon – 75% nitrogen mixture and τ = 5 ms 

resulted in a T2
CPMG  of 32.9 ± 0.5 ms for 129Xe (blue triangles). A 25% krypton – 

75% nitrogen mixture and τ = 5.0 ms resulted in a T2
CPMG  of 166 ± 11 ms for 83Kr 

(green circles).  

5.5 Conclusions-
This study investigated the transverse relaxation of gaseous 129Xe and 

83Kr caused by diffusion through internally generated magnetic field 

gradients. A single pore was probed using an empty glass cell having 12 

mm inner diameter. Two definite cases of relaxation were seen in the single 

pore system as observed by bi-exponential signal attenuation during the 

CPMG sequence. One component of the bi-exponential decay came from 

the free diffusion of the gas near the center of the glass cell while the second 

component likely came from the gas localized in close proximity to the 

boundary of the pore where internal magnetic field gradients caused 

increased relaxation. A linear dependence of T2
CPMG  on the gas pressure 

during the CPMG sequence signified that the intrinsic transverse relaxation 

was small compared to the transverse relaxation caused by diffusion.  
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A model porous system of glass beads enabled restricted diffusion of 

the gas in the tetrahedral and octahedral pores formed from the closest 

packing of spheres. Mono-exponential decay of the signal intensity was 

observed in contrast to the bi-exponential result in the empty glass cell. This 

was likely because all the gas was in close proximity to the glass surface 

and experienced similar internal magnetic field gradients opposed to the 

mixture of localization and free diffusion regimes observed in the single 

pore. The data revealed a linear dependence of T2
CPMG  at relatively high 

pressures; however, the behavior at sufficiently low pressure deviated from 

the linear relationship. Data suggests that the deviation from linearity was 

caused from a transition to the motional averaging regime as observed by an 

increase in the T2
CPMG  time continually lower pressures.  

Transverse relaxation measurements of 83Kr resulted in 5 – 7 times 

longer T2
CPMG  and T2

* times than for 129Xe in comparable experiments 

caused by the reduced gyromagnetic ratio of the isotope. As with 129Xe, 83Kr 

also showed the increase in T2
CPMG  in the case of restricted diffusion when 

pressure was reduced. In fact the increase was more pronounced for 83Kr, 

occurring at higher pressures than for 129Xe, primarily because longer 

diffusion lengths were probed using increased τ times. Long τ times were 

permitted by the low gyromagnetic ratio that made 83Kr relatively 

insensitive to magnetic field gradients.  

Internal magnetic field gradients were quantified exploiting the linear 

behavior of the transverse relaxation rate as a function of the inverse of the 

pressure. In the single pore system (section 5.3.2) the internal magnetic field 

gradients calculated from T2
* were smaller than the values from the linear 
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relationship of the CPMG transverse relaxation rate with the inverse of the 

pressure. In the glass bead sample (section 5.4.2), the calculated magnetic 

field gradient was drastically different between the value calculated from 

T2
* and from the linear regression analysis of the CPMG transverse 

relaxation rate as a function of inverse pressure, possibly as a result of non-

Lorenzian line broadening. Siloxane treated and untreated 1.0 mm glass 

beads generated internal magnetic field gradients of 950±20 µT/m and 

920±30 µT/m, respectively, the pores indicating the surface treatment did 

not alter the internal gradients of the sample. The insensitivity of transverse 

relaxation on the surface coating may provide a pathway to determine 

whether the longitudinal relaxation of 83Kr arises from surface chemistry or 

pore size.  

Unfortunately, the described method only determines internal magnetic 

field gradients in systems where large changes to the pressure are possible. 

It may prove beneficial to use the stimulated echo experiment proposed by 

Song et al. [38] where the diffusion length acts as the independent variable 

to investigate characteristic of the pore. Future studies of the transverse 

relaxation of gaseous 129Xe and 83Kr may use the information presented in 

this work in conjunction with the method of Song and colleagues to quantify 

the internal magnetic field gradients for isobaric experiments such as studies 

of the pulmonary system.  

As a final remark the long T2 time of 83Kr due to the low gyromagnetic 

ratio and subsequently considerable motional averaging of the gradient in 

the duration of τ for the small pores in ex vivo rat lungs (approximately 

0.100 mm in the experimental conditions of this work) may have particular 
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importance by permitting imaging sequences such as echo planar imaging 

(EPI). EPI may help in future hyperpolarized 83Kr SQUARE MRI where 

fast T1 relaxation constrains the fast low-angle shot (FLASH) or variable 

flip angle (VFA) FLASH techniques that acquire one line of k-space per 

radio frequency pulse. EPI has the possibility of also increasing the signal 

intensity by approximately a factor of five since a full π/2 (90°) pulse can be 

used to initiate the EPI train in place of the small percentage of 

magnetization per line of k-space in the VFA FLASH protocol discussed in 

Chapter 4.  

!  
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! Chapter!6:!In#situ!MRI!of!
combustion!!

 

The method of producing hyperpolarized noble gases presented in 

Chapter 3 has led to a number of experiments that use hyperpolarized noble 

gas for purposes other than pulmonary imaging. One such set of 

experiments has resulted in a peer reviewed publication in the Royal Society 

of Chemistry journal: Physical Chemistry Chemical Physics entitled 

Combustion resistance of the 129Xe hyperpolarized nuclear spin state [1]. 

This work was completed by Karl F. Stupic, Joseph S. Six, Michael D. 

Olsen, Galina E. Pavlovskaya, and Thomas Meersmann. Dr. Stupic 

performed the initial experiments assessing the feasibility of SEOP with 

methane fuel that preceded the experiments presented in this work. Dr. 

Stupic and Mr. Olsen designed and fabricated the combustion probe insert 

that enabled combustion inside the micro-imaging system. Dr. Pavlovskaya 

programmed the imaging sequences and also helped edit the paper. Mr. Six 

conducted the experiments presented in the paper and wrote the paper with 

Prof. Meersmann. 

6.1 Introduction#
To date, in situ magnetic resonance imaging (MRI) of combustion 

processes reported in literature is limited to work by Glover et al. [2] 

although on-going research was recently presented by Pines and co-workers 
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with focus on demanding hyperpolarized 129Xe flow field measurements [3]. 

The difficulties of in situ MRI of combustion are caused to some extent by 

the thermal effects on magnetic resonance hardware, however sufficient 

cooling can usually be applied to study high temperature processes safely 

[2, 4-6]. More fundamental challenges lie in the very short relaxation times 

associated with the combustion process due to radical reaction mechanisms, 

the low spin density in the combustion zone, and the unfavorable Boltzmann 

equilibrium spin population at the high temperatures of approximately 1700 

K for premixed methane - air combustion [7]. These problems were 

demonstrated by Glover et al. [2] whose 1H magnetic resonance images 

show the methane entering the combustion zone but not in the combustion 

region itself despite the employment of SPRITE [8], an MRI technique that 

allows for the study of media with short T1 or T2
* times and enables 

magnetic resonance study of fast and turbulent flowing systems. 

Alternatively, it is possible to use condensation products of combustion for 

1H MRI as reported by Axelson and Wooten [9] and Dufour et al. [10] 

recently demonstrated in situ NMR spectroscopy of pyrolysis products. 

Although the fuel entering the reaction zone and the combustion exhaust 

can be observed through the 1H MRI, the combustion zone itself remains 

elusive.  

The fast relaxation within the combustion processes may also render 

hyperpolarized molecules useless for these studies, unless a system is 

chosen that does not radicalize in the combustion process. Using SEOP to 

generate hyperpolarized 129Xe [11], Anala et al. demonstrated that the 

hyperpolarized mixture can be added to fuel for usage as a ‘spy’ in 2D 



! 175!

EXCSY NMR spectroscopy of methane combustion [6]. However, it 

remained to be shown whether the hyperpolarized state is sustainable 

throughout the entire combustion process. Since combustion in a stable 

flame takes place under steady state conditions where ‘location in space’ is 

closely associated with ‘point in time’ of the reaction, hyperpolarized 129Xe 

MRI may provide the answer.  

6.2 SEOP#of#fuel7xenon#mixtures#
It is crucial for the MRI experiments that an uninterrupted constant flow 

of the fuel - hyperpolarized 129Xe mixture is provided. Continuous flow 

SEOP is often performed using dilute xenon mixtures containing nitrogen 

and helium. A high xenon containing mixture can be used in continuous 

flow but a reduction in polarization results, limiting the benefits of 

increasing the xenon concentration [12]. Unfortunately, an additional 

dilution of the hyperpolarized 129Xe occurs when the fuel is added, 

exacerbating the problem [6]. To reduce the inert gas content the 

hyperpolarized 129Xe can be accumulated using cryogenic separation [13]. 

However, the separation process interrupts the supply of gas effectively 

making a ‘batch mode’ experiment. In this work, instead of adding 

hyperpolarized 129Xe to a fuel after SEOP, direct SEOP of the fuel-xenon 

mixture was explored, leading to the batch mode results in Figure 6.1. 
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Figure 6.1. 129Xe polarization as a function of SEOP cell pressure for three 

different gas mixtures (detailed in the legend) in batch mode SEOP. Reproduced 

from Phys. Chem. Chem. Phys., 15, 2013, 94-7 with permission of the Royal 

Society of Chemistry.  

 

The very reactive vapor phase rubidium in the SEOP process will 

not readily react with saturated hydrocarbons such as methane [14]. Figure 

6.1 demonstrates the feasibility of batch mode SEOP [15] with a 5% xenon - 

95% methane mixture, but the generated spin polarization P stays below 

15% and falls short compared to P > 40% obtained in batch mode SEOP 

with a xenon – nitrogen – helium mixture. The low polarization and the 

SEOP pressure dependence of the polarization [15] may be explained by 

methane’s insufficient capability to quench radiation trapping [14, 16], a 

spin depolarizing process during SEOP [17]. Unlike methane, molecular 

nitrogen can effectively quench the fluorescence through energy transfer 

into its vibrational mode [17]. Therefore, the situation can be improved by 

using a ternary SEOP gas mixture of xenon, methane, and nitrogen. The 

results with 5% xenon - 10% nitrogen  - 85% methane are shown in Figure 

6.1 and are nearly identical to the counterpart mixture with helium, 
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suggesting that methane can replace helium as an SEOP buffer gas, if 

required. 

To gain further insight into the SEOP process the D2 fluorescence of 

the rubidium vapor (~780 nm) may be monitored. Measurement of the D2 

fluorescence provides an approximation for the D1 fluorescence which 

cannot be measured straight forwardly due to the irradiation of the laser 

light at that wavelength [12]. An optical spectrometer (Ocean Optics 

HR2000+) measured the D2 fluorescence at the front of the SEOP cell 

where laser power density is the greatest as shown in the batch mode 

apparatus sketched in Figure 6.2. 

 

 

Figure 6.2. Experimental apparatus for batch mode SEOP experiments. The fringe 

field of the 9.4 T superconducting magnetic used for NMR detection provides the 

magnetic field parallel to the SEOP cell and circularly polarized laser beam. The 

optical spectrometer measures the D2 fluorescence (~780 nm) at the front of the 

SEOP cell via a fiber optic cable.  

 

Hyperpolarization of 129Xe was completed in a borosilicate glass 

SEOP cell (length = 120 mm, inner diameter = 28 mm) containing ~1 g of 

rubidium. The fringe field of a 9.4 T superconducting magnet supplied a 

0.05 T magnetic field (B0) along the axis of the SEOP cell. The SEOP cell 
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was positioned in a temperature controlled oven maintaining a measured 

temperature of 378 ± 6 K at the front of the SEOP cell. It is important to 

note that although the thermocouples measured the temperature of the glass 

surface of the SEOP cell the actual temperature conditions inside the cell are 

unknown. Methods have been developed to determine the actual 

temperature in the SEOP cell using Raman scattering from the nitrogen 

quenching gas [18]. To quantitatively describe the behavior of the 

fluorescence an accurate determination of the SEOP cell temperature is 

necessary to determine the amount of rubidium in the vapor phase. For this 

qualitative study of the fluorescence maintaining consistent SEOP cell 

temperature was sufficient.  

A line narrowed (0.25 nm) diode array laser (Comet Module, 

Spectral Physics, Santa Clara, CA, USA) with polarizing optics provided 23 

W of circularly polarized photons resonant with the D1 transition of 

rubidium (794.7 nm) for the SEOP process. The propagation of the laser 

beam was aligned parallel to the external magnetic field B0. Polarization 

measurements utilized 6 minutes of SEOP before shuttling hyperpolarized 

gas to an evacuated borosilicate detection cell in a 9.4 T superconducting 

magnet via pressure equalization. NMR experiments were performed using 

a Magritek Kea 2 spectrometer with custom-built probe tuned to the 

resonance frequency of 129Xe at 9.4 T (110.56 MHz). Polarization was 

determined by comparison of the signal enhancement over a thermally 

polarized sample of xenon at room temperature (~295 K) as described 

elsewhere [19].  
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Fluorescence measurements were acquired after 3 minutes at each 

SEOP cell pressure. Data points consist of four averaged measurements 

presented with the standard deviation. To account for variations in position 

of the fiber optic between SEOP cells the fluorescence was normalized to 

the fluorescence observed under SEOP with a 5% xenon – 10% nitrogen – 

85% helium standard mixture at 50 kPa.  

To circumvent the need for nitrogen in the SEOP mixture, the use of 

a fuel that quenches radiation trapping would be beneficial. Hydrogen could 

be used as an alternative to methane in binary SEOP mixture for combustion 

studies. The use of hydrogen has been proposed to quench radiation 

trapping in hyperpolarized noble gas experiments [20], however, data 

confirming the feasibility of using hydrogen as a radiation quenching agent 

for SEOP of noble gases are limited to studies by Volk et al. [21] early in 

the field of hyperpolarized noble gases. The achievable polarization of 129Xe 

using current polarization techniques remains unknown.  

Hydrogen has a larger quenching cross section than methane making 

it significantly more efficient at quenching radiation trapping when 

compared to methane [14]. Therefore, using hydrogen to quench radiation 

trapping during SEOP achieves improves spin polarization when replacing 

methane in binary mixtures as seen in Figure 6.3.  
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Figure 6.3. 129Xe spin polarization as a function SEOP cell pressure for three 

mixtures containing different gases to quench radiation trapping. See legend for 

icon explanation of gas mixtures. (A) Spin polarization data taken from ref. [19]. 

Note that the polarization found when using hydrogen to quench radiation trapping 

is similar to nitrogen data from a similar experiment.  

 

In Figure 6.3 the data of the hydrogen – xenon mixture are compared 

to mixtures containing nitrogen (taken from ref. [19]) or methane to quench 

radiation trapping. When compared to the methane – xenon mixture it is 

evident that the 129Xe spin polarization is much improved when using 

hydrogen to quench radiation trapping. The achieved polarizations using the 

hydrogen – xenon were remarkably high reaching values similar to the 

nitrogen – xenon mixture at SEOP cell pressure greater than 100 kPa. The 

degree of the similarity was not anticipated since the spin exchange cross 

section for collisions between the rubidium and hydrogen atoms are 

efficient at depolarizing the electronic polarized rubidium [22]. It is 

important to note that the spin polarization values have small variations 

between different SEOP cells [19] and the resemblance between the two 

curves should not be over interpreted. Nevertheless, the 60% 129Xe spin 
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polarization that is attained using batch mode SEOP with hydrogen to 

quench radiation trapping is desirable. 

An explanation for the deviation between the nitrogen – xenon 

mixture and hydrogen – xenon mixture below 100 kPa SEOP cell pressure 

is seen in the effective cross-section to quench radiation trapping of 58 ± 12 

Å2 for nitrogen and 6 ± 2 Å2 for hydrogen while <1 Å2 for methane [14].  

 

 

Figure. 6.4. D2 fluorescence as a function of SEOP cell pressure for the mixtures 

detailed in the legend. (A) The full pressure range of curves, and (B) an expansion 

of the lower pressure and lower intensity regime. The fluorescence was normalized 

to the experimental value of the 5% xenon – 10% nitrogen – 85% helium mixture 

at 50 kPa.  
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Figure 6.4A displays the fluorescence corresponding to the spin 

polarization versus SEOP pressure curves shown in Figure 6.4. The 

fluorescence of the 5% xenon – 10% nitrogen – 85% helium standard 

mixture is included for comparison. As observed in Figure 6.4A, methane 

does not efficiently quench fluorescence contributing to the low polarization 

values seen in Figure 6.1 (also shown in Figure 6.3). Hydrogen, however, is 

a superior quenching agent as observed by the measured fluorescence. The 

hydrogen – xenon mixture displayed substantially less D2 fluorescence for 

the mixture than the methane – xenon mixture. From the expansion of the 

data shown in Figure 6.4B the hydrogen – xenon mixture behaves similarly 

to the standard mixture that contains 10% molecular nitrogen.  

The hydrogen – xenon system has been studied thoroughly as a 

function of mixture composition with results presented in Figure 6.5. In 

Figure 6.5A it is evident the increased xenon concentration reduces the 

overall polarization as seen previously with mixtures containing nitrogen in 

Chapter 3 (and ref. [19]). This reduction is caused by the increased 

relaxation due to the increased quantity of xenon at a given pressure.  

In contrast to nitrogen – xenon data that reported an increase in spin 

polarization when pressure was reduced, the hydrogen – xenon mixtures did 

not exhibit this benefit. Although the spin polarization observed at 200 kPa 

is similar between the two mixtures, substantial differences occur at lower 

pressure. The likely reason is the increase in radiation trapping as observed 

by the D2 fluorescence. Figure 6.5B shows the D2 fluorescence for each 

mixture. The increase in radiation trapping limits the benefits of going to 

reduce pressure for SEOP of hydrogen – xenon mixtures.   
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Figure 6.5. (A) 129Xe spin polarization of three hydrogen – xenon mixtures (for 

details of mixture composition see legend) as a function of SEOP cell pressure. (B) 

Corresponding D2 fluorescence as a function of SEOP cell pressure. The 

fluorescence data were normalized to the experimental value of the 5% xenon – 

10% nitrogen – 85% helium mixture at 50 kPa.  

 

6.3 In#situ#MRI#of#combustion#
To permit combustion studies, continuous flow SEOP provided an 

uninterrupted source of hyperpolarized fuel-xenon mixtures. Continuous 

flow SEOP of the fuel – hyperpolarized xenon mixture negates cumbersome 

post SEOP mixing of the gases. For the continuous flow production in this 
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work, an SEOP pressure slightly above ambient was chosen to allow for the 

least demanding experimental conditions. As shown in Figure 6.1, ambient 

pressure SEOP of 5% xenon - 10% nitrogen - 85% methane obtains 

reasonable results at this pressure and this mixture was used for all MRI 

experiments in this work. SEOP at higher pressure would allow for the 

nitrogen concentration to be reduced further. Note that only xenon gas with 

natural abundance of 26.4% 129Xe was used in this work. 

Due to shorter residence time in the SEOP cell, the spin 

polarizations generated under continuous flow conditions are typically 

reduced compared to that obtained in batch mode SEOP shown in Figure 

6.1. The reduction in spin polarization was amplified because the flow rates 

used in the experiments were optimized for combustion and not for the 

SEOP process. The polarization produced through the setup sketched in 

Figure 6.6 achieved a 129Xe spin polarization of P = 7% for a flow rate of 40 

mL/min  and P = 6% for a flow rate of 15 mL/min.  

 

 

Figure 6.6. (A) Experimental setup for continuous flow SEOP. (B) Sketch of the 

combustion probe insert made of Pyrex and quartz. Reproduced from Phys. Chem. 

Chem. Phys., 15, 2013, 94-7 with permission of the Royal Society of Chemistry. 
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The continuous flow setup, shown in Figure 6.6A, supplied an 

uninterrupted source of methane for combustion that contained 

hyperpolarized 129Xe probe for MRI detection. The flow rates of the fuel 

mixture were regulated by a needle valve before the SEOP cell. In the SEOP 

cell hyperpolarization of 129Xe is obtained via spin-exchange with laser 

pumped rubidium vapor as described in the previous section. The 

hyperpolarized  129Xe  gas mixture continuously exits the SEOP cell and the 

flow rate is measured before the mixture goes into the combustion probe 

placed in a 9.4 T superconducting magnet. The location of the flow meter at 

the exit of the SEOP cell was chosen in the interest of keeping cell 

contamination at a minimum. Losses in spin polarization due to the flow 

meter were deemed acceptable and are included in the polarization values 

reported in this work.  

The combustion probe insert outlined in Figure 6.6B (15 mm outer 

diameter) was placed into a custom built bird-cage resonator probe head 

tuned to 110.69 MHz corresponding to the NMR frequency of 129Xe at 9.4 

T. The combustion probe insert was made of Pyrex except for the heat 

resistant quartz end piece of the hyperpolarized fuel delivery line. Air as an 

oxidation agent was delivered through a secondary tube surrounding the 

hyperpolarized fuel line. Cooling air, supplied by a third tube that enclosed 

both inner tubes, reduced the maximum wall temperatures of the insert to 

313 K. Additional temperature insulation was provided by the spacing 

between the 15 mm outer diameter of the insert and the 25 mm inner 

diameter of the custom made micro-imaging probe. After passing the 
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magnetic resonance detection region, the hot combustion products were 

mixed with the cooling air and were exhausted through the vertical room 

temperature bore of the 9.4 T superconducting magnet (Bruker Avance III, 

MICRO 2.5) without any obstruction. Images were acquired with 90 degree 

pulses using 32 linearly ordered increments (maximum gradient 0.126 T/m) 

for a standard gradient echo imaging sequence with a read gradient of 0.084 

T/m to form the gradient echo. For each increment 128 scans were collected 

resulting in a total image acquisition time of approximately 20 minutes.  

Two different flame profiles were imaged: (1) a ‘large’ flame with a 

hyperpolarized mixture flow rate of 40 mL/min and an air flow rate of 600 

mL/min; and (2) a ‘small’ flame with a hyperpolarized gas mixture flow rate 

of 15 mL/min and an air flow rate 400 mL/min. The resulting in situ 

hyperpolarized 129Xe MRI of the hyperpolarized fuel mixtures after ignition 

are shown in Figures 6.7B and 6.7E (i.e. high and low flow respectively); 

for comparison, Figures 6.7A and 6.7D (i.e. high and low flow respectively) 

show in situ hyperpolarized 129Xe MRI of the same flow rates but without 

ignition. Figures 6.7C and 6.7F show photographs of the respective flames. 

The hyperpolarized 129Xe is seen strongly in the central channel where its 

density is the greatest before entering the combustion zone where the signal 

then diminishes as the hyperpolarized gas mixes with a high flow of air.  

Although there is a decrease in the observed 129Xe signal with 

ignition, it is apparent that the hyperpolarized state survived the harsh and 

reactive conditions of combustion. Furthermore, the reduction of the signal 

is partially caused by a decrease in gas density at the high combustion 

temperatures (i.e. > 1000 K, as opposed to 290 K without ignition). 
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Even with the reduction in density, substantial signal is observed in 

the flame and exhaust regions. To further verify the combustion resistance 

of the hyperpolarized nuclear spin state, the exhaust of the hyperpolarized 

fuel was collected after combustion through a glass syringe (i.e. with the 

combustor insert removed from the magnet for this purpose), injected into a 

sample container, and a one-dimensional NMR spectrum was taken that 

revealed considerable hyperpolarized 129Xe polarization remained.  

!  
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Figure 6.3. Hyperpolarized 129Xe MRI of combustion using natural abundance 

xenon in methane. The upper portion displays images using the flow rates of the 

large flame (hyperpolarized fuel at 40 mL/min, air at 600 mL/min). (A) MRI of 

hyperpolarized 129Xe mixture without ignition, (B) MRI of hyperpolarized 129Xe 

with ignition, and (C) photograph of combustion in probe insert. The lower portion 

displays MR images using the flow rates of the small flame (hyperpolarized fuel at 

15 mL/min, air at 400 mL/min). (D) MRI of hyperpolarized 129Xe mixture without 

ignition, (E) MRI of hyperpolarized 129Xe with ignition, and (F) photograph of 

combustion. An overlay of the approximate position of the combustion probe insert 

is provided in the MR images. Reproduced from Phys. Chem. Chem. Phys., 15, 

2013, 94-7 with permission of the Royal Society of Chemistry. 
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The combustion resistance of the hyperpolarized state of the 129Xe 

nuclear spins enables spatial-velocity measurements throughout the 

combustor. As a proof of principle, this work investigated velocities using 

the flow rates of the large flame in Figure 6.7. The methodology of 

acquiring spatial-velocity profiles of hyperpolarized 129Xe was similar to 

that described in detail by Kaiser et al. [23] where the displacement of the 

gas was encoded. The sequence utilized 16 linearly incremented flow 

encoding gradients with δ = 0.3 ms, and Δ = 1 ms. The displacement 

encoding gradient was applied parallel to the spatial encoding gradient and 

the bulk flow gas (i.e. +z direction) in order to observe the substantial 

velocity increase of the gas due to combustion. The velocity in the +z 

direction was calculated from the displacement of the gas over time period 

Δ = 1 ms. The gradient was chosen to correspond to a maximum velocity of 

60 cm/s (determined during calibration experiments). Additional 

information about the combustion process can be extrapolated from the 

dispersion of gas perpendicular to the flow by changing the direction of the 

displacement encoding gradient; however, this was not attempted in this 

study. Unlike previous work [23], a stimulated echo was not employed 

because signal lost from transverse relaxation was acceptable in the short 

duration of Δ. 

 Figure 6.8 shows the velocity of 129Xe in the z-axis (Vz, movement 

parallel to the direction of the bulk flow), as a function of z position. The 

relatively simple Vz(z) profiles (i.e one spatial and one velocity dimension) 

demonstrate the drastic changes in velocity between non-ignited flow and 

combustion (see Figures 6.8A and 6.8B respectively).  
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Figure 6.8. Hyperpolarized 129Xe spatial-velocity profile displaying velocity Vz as a 

function of z position (A) without ignition and (B) with ignition. The pre-

combustion, combustion, and exhaust regions are approximated. Reproduced from 

Phys. Chem. Chem. Phys., 15, 2013, 94-7 with permission of the Royal Society of 

Chemistry. 

 

Figure 6.8A displays Vz(z) without ignition of the hyperpolarized 

mixture. A maximum velocity of 18 cm/s is observed in the pre-combustion 

region. After mixing with the air the maximum velocity increases to 23 cm/s 

and then remains constant for the remainder of the detection region. 

Conversely, with ignition the velocity profile changes dramatically as seen 

in Figure 6.8B. The inlet region is nearly identical to the profile acquired 

without ignition. However, the maximum velocity near the combustion 

region is greatly increased to 53 cm/s. The maximum velocity then reduces 

with distanced from the combustion zone. The greater distributions of 

velocities contribute to the apparent decrease in signal intensity. The gap of 
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observed signal at -13 cm is possibly an artefact arising from the migration 

of spins between flow encoding and spatial encoding, thus creating an error 

in the observed position. The Vz(z) profile took less than 20 min to record 

and it should be possible to extend the measurement to complete flow field 

images. The MRI may be improved by utilization of fast imaging techniques 

such as SPRITE [8]. 

In conclusion, these data show the first in situ MRI of combustion 

by using hyperpolarized 129Xe as a probe into the combustion process. 

These experiments were possible because of a novel approach to dope the 

fuel with hyperpolarized 129Xe. Stopped flow experiments demonstrated that 

hyperpolarized of 129Xe was possible with methane present in the SEOP cell 

and generally high spin polarization can be obtained by the use of a ternary 

mixture that included molecular nitrogen. Additionally, hyperpolarization of 

129Xe in binary hydrogen – xenon mixtures resulted in high spin polarization 

values comparable with nitrogen – xenon mixtures. The ability to perform 

continuous flow SEOP with the fuel in the mixture simplifies the delivery of 

the hyperpolarized 129Xe for prolonged MRI data acquisition.  

The combustion resistance of the hyperpolarized 129Xe nuclear spin 

state found in this work permits the collection of images that cover not only 

the pre-combustion region but also the combustion region and the exhaust. 

This work also demonstrated the feasibility of simple Vz(z) spatial-velocity 

profiles covering the pre-combustion, combustion, and exhaust regions.  

The preservation of the hyperpolarized nuclear spin state through the 

combustion process may allow for MRI to be used as an effective tool for 

investigating the fluid dynamics of combustion processes. Since the reaction 
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conditions in low temperature catalyzed reactions are milder than the open 

combustion used in this work, hyperpolarized 129Xe MRI should be 

extendable to study heterogeneously catalyzed combustion [7]. Catalyzed 

combustion is used to avoid the build up of nitrogen oxides in gas powered 

turbines [24], allows for micro combustors [25], and can be used for 

example for the generation of synthetic fuels and selective partial 

combustion reactions [26]. Hyperpolarized 129Xe MRI may be used for the 

study of flow fields within catalytic combustors and provide a better 

understanding of gas exchange with their porous surfaces [27]. Finally, as a 

cautionary note, the non-invasive nature of MRI for combustion within high 

magnetic fields remains unproven, in particular when fast moving ions are 

being generated.  

!  
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! Chapter!7:!Conclusions!!
 

Techniques were developed for the production of hyperpolarized noble 

gases that have a nuclear electric quadrupolar moment. Nuclear isotopes 

possessing a nuclear electric quadrupolar moment cannot be easily separated 

from spin exchange optical pumping (SEOP) buffer gases using cryogenic 

accumulation, a process commonly performed for 129Xe, due to rapid 

relaxation of the hyperpolarized spin state in the solid phase. This work 

developed a method that uses high noble gas concentration mixtures to 

decrease the need for cryogenic separation. These methods have also been 

found useful at producing hyperpolarized 129Xe with great efficiency. 

Low (below ambient) pressure SEOP of 83Kr in a 5% krypton – 95% 

nitrogen mixture produced a maximum polarization of P = 26.5% at 54 kPa 

SEOP cell pressure using 23 W of laser power. The low partial pressure of 

krypton in the SEOP mixture resulted in an apparent polarization (i.e. the 

polarization accounting for dilution of buffer gases) of only 1.3%. A 25% 

krypton – 75% nitrogen mixture produced a lower maximum 83Kr 

polarization of P = 17.7% but resulted in a higher apparent polarization of 

Papp = 4.4% because less dilution from nitrogen gas. Polarization values 

achieved in this work are currently the highest reported in literature for 83Kr. 

Hyperpolarized 83Kr with the maximum apparent polarization was produced 

at a rate of 2 cm3/min. Low pressure spin exchange optical pumping 
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improved the hyperpolarization of 83Kr in high krypton containing mixtures 

by reducing quadrupolar driven relaxation during the SEOP process. 83Kr 

was the only quadrupolar isotope investigated in this work; however, the 

principles discussed in this thesis should benefit the production of 

hyperpolarized 21Ne and 131Xe. 

In the case of 129Xe, low pressure SEOP of a 5% xenon – 95% nitrogen 

mixture produced a maximum of P = 64.7% polarization at 46 kPa SEOP 

cell pressure using 23 W of laser power. A 50% xenon – 50% nitrogen 

mixture achieved the highest apparent polarization of Papp = 15.5% at 22 

kPa SEOP pressure with production rate of 1.8 cm3/min.   

Current theory provided a qualitative understanding of the SEOP 

dependence of polarization on the gas pressure in the SEOP cell. Several 

simplifications and assumptions were required because of limited data in 

literature. The field would benefit from further systematic studies that 

determine physical parameters of the SEOP process. This work explored a 

new method to increase precision in extracting spin exchange optical 

pumping rates from build up curves by using an inversion recovery type of 

experiment where the circular polarization was reversed for a precisely 

timed recovery period. 

The low pressure technique described in Chapter 3 (and ref. [1]) 

required development of hyperpolarized gas extraction-compression units to 

extract the below ambient pressure hyperpolarized gas in the SEOP cell and 

then compress this gas back to ambient pressure for use in pulmonary 

imaging. Development of extraction-compression strategies is detailed in 

ref. [2] and implemented to produce the first spatially resolved 
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demonstration of surface quadrupolar relaxation of 83Kr in Chapter 4 (and 

ref. [3]). This methodology is also used to validate functional MRI of ex 

vivo rodent lungs using hyperpolarized 129Xe published elsewhere [4] and a 

number of other studies currently in progress [5, 6]. The noble gas 

community as a whole may benefit from the proposed strategies, 

particularly the hyperpolarization of 129Xe. To date, research into 

hyperpolarized 83Kr is limited to the Translational Imaging Group of 

Thomas Meersmann at the University of Nottingham. However, the signal 

enhancement achieved by the low pressure 83Kr SEOP technique permitted 

the first demonstration of surface quadrupolar relaxation pulmonary MRI 

which may cultivate further interest in this new contrast agent.  

There are a number of future improvements that will benefit this low 

pressure technique. For example, an improved extraction unit made of glass 

instead of acrylic may help reduce longitudinal relaxation of 83Kr during 

extraction and allow longer residence times in the unit, lessening the speed 

requirements for the transfer of gas. The delivery technique will also profit 

from computer automation that can help reduce variations between 

experiments, simplify image acquisition, and reduce the personnel required 

during experiments. Automation of the delivery process is in the early 

stages with preliminary programs written using LabVIEW (National 

Instruments, Austin, TX, USA). 

Furthermore, the low pressure method produced only limited quantities 

of hyperpolarized gas suitable for the small inhalation volumes of ex vivo rat 

lungs. Greater quantities of hyperpolarized gas are needed for studies 

involving larger animal lungs. Increasing the SEOP cell size requires greater 
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laser power to maintain the current power density but this should not be a 

problem since 23 – 30 W were used in this work and much higher power 

lasers are readily available. Alternatively, multiple units can be run in 

parallel combining the gas in the extraction unit during the extraction 

process.  

Optimised imaging strategies will improve the images using the current 

equipment and hyperpolarization methods described previously. An imaging 

sequence that uses compressed sensing has the potential to increase the 

image resolution keeping the current acquisition time or reduce acquisition 

time while maintaining current image resolution [7]. Compressed sensing 

may be useful for 83Kr where imaging speed is imperative because of the 

short T1 times in the lung. Compressed sensing may also improve SNR 

since fewer phase encoding steps uses a larger initial flip angle in the 

variable flip angle fast low angle shot (VFA FLASH) imaging sequence. 

Alternatively, the long T2 time of 83Kr in ex vivo rat lungs values may 

permit imaging sequences based on echo planar imaging (EPI). EPI has the 

potential to increase the signal intensity by approximately a factor of five 

over the VFA FLASH since a full π/2 (90°) pulse is used for the EPI train in 

place of a small flip angle. Recent advancements in EPI strategies [8, 9] 

may further the potential of this technique by reducing commonly observed 

artefacts associated with EPI.   

Future work involving 83Kr will also benefit from the construction of an 

improved imaging coil. The double saddle coil used in the imaging 

experiments presented in this has poor sensitivity in the center of the coil 

(i.e. where the lung is placed during experiments). A quality built birdcage 
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coil or Litz coil [10] will improve the signal intensity and the quality of 

future 83Kr images. However, size constraints in the 9.4 T vertical bore 

magnet may limit the feasibility of these options. Ideally a quality dual 

tuned coil would allow acquisition of high-resolution images of 129Xe that 

then can be overlaid by an 83Kr surface sensitive relaxation T1 map that will 

register the 83Kr data with the exact anatomical location without the need to 

change the coil.  

The next experimental phase is to investigate the surface quadrupolar 

relaxation of 83Kr pulmonary MRI in a diseased model of rat lungs. The first 

disease to examine is a model of emphysema where the surface to volume 

ratio inside the lungs is decreased from destruction to the alveoli 

architecture [11]. 83Kr surface quadrupolar relaxation may observe the 

changes in surface to volume ratio in the lung caused by the diseased due to 

less interaction with the surface. A pilot study is currently underway [12] in 

collaboration with Mark Birrell and Maria Belvisi from Imperial College 

London using an elastase model [13] of emphysema.  

A necessary advancement will be to demonstrate surface quadrupolar 

relaxation of hyperpolarized 83Kr pulmonary MRI in vivo. The initial steps 

towards this experiment have begun with the construction of a new noble 

gas hyperpolarizer that will be installed in the Brain and Body Centre at the 

University of Nottingham in the near future. This hyperpolarizer was 

designed by Karl F. Stupic, David M.L. Lilburn and Joseph S. Six and 

assembled by David M.L. Lilburn and Joseph S. Six. University of 

Nottingham machinist Alan Dorkes has fabricated many of the components 

for the hyperpolarizer.  
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A method was developed to determine internal magnetic field gradients 

in model systems from diffusion dependent transverse relaxation of 129Xe. 

Unfortunately the method must allow for large changes in pressure and is 

not suitable experiments that require isobaric conditions such as pulmonary 

NMR spectroscopy or imaging. In the model porous system the transverse 

relaxation was strongly dependent on the pore size. Additionally, internal 

magnetic field gradients were found unchanged by surface chemistry of 

glass beads. The insensitivity of transverse relaxation on the surface coating 

may provide a pathway to determine origins of 83Kr longitudinal relaxation.  

Overall the work presented in this document has shown a large step 

towards developing hyperpolarized 83Kr as an MRI contrast agent for 

pulmonary studies. Hyperpolarized 83Kr MRI is unlikely to match the signal 

intensity, and therefore resolution, of current 3He and 129Xe images because 

of quadrupolar relaxation limits the achievable polarization. However, with 

the signal enhancement achieved in this work, hyperpolarized 83Kr may 

serve as a contrast agent that can investigate the surfaces of the lung in a 

manner unavailable for 3He and 129Xe because of the potential for surface 

quadrupolar relaxation MRI.  

An SEOP technique was also developed that hyperpolarized 129Xe as 

part of fuel mixture and permitted the first in situ MRI of combustion. 129Xe 

was hyperpolarized in a fuel mixture containing either methane or hydrogen 

providing a continuous source of hyperpolarized fuel for combustion. It was 

found that the hyperpolarized spin state of 129Xe survived the combustion 

zone enabling the acquisition of spatial-velocity profiles to characterize the 

flame. This technique may be extended to study flow in catalytic 
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combustors. The combustion experiments focused on 129Xe, but of the 

concepts from the combustion study will be expanded to isotopes with a 

nuclear electric quadrupole moment in the near future. 

! !
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