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Abstract 

Abstract 

This thesis details the synthesis of highly C02-soluble hydrocarbon stabilisers 

using reversible addition fragmentation chain transfer (RAFT) polymerisation 

techniques, and their application in the dispersion polymerisation of N-vinyl 

pyrrolidone (NVP) in supercritical carbon dioxide (scC02). 

Chapter 1 outlines the key themes explored throughout the thesis. This 

introductory chapter focuses on the RAFT polymerisation process, the use of 

scC02 as an alternative solvent for polymerisation, and the process of dispersion 

polymerisation, including the types of stabilisers employed in such reactions. 

In Chapter 2, the equipment and characterisation techniques are detailed. The high 

pressure vessels used extensively throughout the thesis are described, including 

the high pressure variable volume view cell and the 60 ml clamp-sealed autoclave. 

Polymer characterisation techniques such as scanning electron microscopy (SEM), 

nuclear magnetic resonance (NMR) and gel permeation chromatography (OPC) 

are also considered. 

Chapter 3 is the first of three research chapters, and investigates the synthesis of 

hydrocarbon stabilisers composed of the monomers of vinyl acetate (V Ac) and 

vinyl pivalate (VPi) using xanthate-mediated RAFT polymerisation. The phase 

behaviour of a range of stabilisers in scC02 is determined through cloud point 

measurements using a high pressure variable volume view cell. The impact of 

adjustments to parameters such as polymer composition and molecular weight on 

CO2-solubility are considered. 
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Abstract 

Chapter 4 details the application of the homopolymers and statistical copolymers 

of V Ac and VPi synthesised in the previous chapter. The polymers are employed 

as stabilisers in the dispersion polymerisation of NVP in SCC02. A range of 

stabilisers are considered and the resulting poly(vinyl pyrrolidone) (PNVP) 

products compared using NMR and SEM to gauge the effect on particle 

morphology. 

Chapter 5 describes the extension of the research to consider the impact of 

changes to the hydrocarbon stabiliser architecture. A series of block copolymer 

structures are prepared, and the phase behaviour and stabilising ability of these 

materials in scC02 is considered. Additionally, modification of the (l- and ill-end 

of the RAFT-terminated polymers is considered through use of a different 

xanthate-based RAFT agent, and modification of the polymer post-polymerisation 

via radical-induced reduction. 

Chapter 6 describes the overall conclusions obtained from the work presented in 

the thesis, and also details possible avenues for further research in this area. 
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Chapter I: Introduction 

Chapter 1: Introduction 

This chapter aims to provide a more in-depth background for the underlying 

themes present throughout this thesis. The chapter focuses on the fundamental 

aspects of polymer chemistry and the general synthetic procedures, including 

controlled polymerisation techniques, with a focus on RAFT/MADIX 

polymerisation. The chapter also examines the use of supercritical fluids, in 

relation to supercritical carbon dioxide, and the application of SCC02 as a clean, 

green alternative to conventional solvents in polymer synthesis. 
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Chapter 1: Introduction 

1.1 Polymer Chemistry 

1.1.1 Introduction to Polymers 

A polymer may be defined as a large macromolecule composed of repeating 

smaller structural units known as monomers, joined together by covalent chemical 

bonds. I The long chains of monomers that would usually constitute a polymer are 

arranged linearly, and thus tend to adopt long, flexible configurations. 

Polymers occur naturally in many forms; cellulose in the cell walls of plants, 

natural rubber obtained predominantly from the Hevea Brasiliensis tree, and 

deoxyribonucleic acid (DNA) are just a few well-known examples.2 In addition to 

natural polymers, the development of synthetic polymers such as poly( ethylene) 

and nylon have formed the basis of a massively expanding polymer industry. 3 

Such polymers exhibit a vast range of physical and chemical properties, making 

them versatile materials for widespread use in numerous applications.4 Polymers 

are employed as adhesives, coatings, lubricants and in packaging.5 Also, polymers 

have found a variety of uses in the medical industry, from implants to drug 

delivery devices.6
• 7 Subsequently, polymeric materials have become an essential 

component of modem day life. 

Polymers exist in a number of forms and the use of different combinations of 

monomers will result in a variation in the polymer structure produced. The 

distribution of the monomer repeat units in the polymer backbone is generally 

used to classify the type of copolymer structure. A variety of different copolymer 

structures exist (Figure 1.1).8 

-2-



Chapter I: Introduction 

a) 

b) 

c) 

d) 

e) 

Figure 1.1: Typical polymer structures adopted from the combination of two 

monomer units where monomer A = • and monomer B = • ; 

a) homopolymer; b) statistical copolymer; c) alternating copolymer; d) block 

copolymer; e) graft copolymer. 

A linear polymer is produced from the polymerisation of one single type of 

monomer and is referred to as a homopolymer (Figure 1.1 , a) . However, when a 

polymer is derived from more than one monomeric species, a copolymer structure 

is formed. 9 The type of copolymer produced will be dependent upon the 

concentration and reactivity ratios of each respective monomer employed. 10 A 

statistical copolymer involves a repeat unit distribution which obeys known 

statistical laws (Figure 1.1 , b). A random copolymer is a statistical copolymer 
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Chapter 1: Introduction 

which has a completely random distribution of monomer units in the polymer 

structure. Alternating copolymers have a structural backbone arrangement of 

alternating A and B monomer units (Figure 1.1, c). Block copolymers are formed 

via sequential polymerisation of one monomer, followed by the introduction of a 

second monomer (Figure 1.1, d). This results in a polymer composed of two or 

more chemically distinct homopolymer subunits which are covalently linked to 

one another. Finally, a graft copolymer is composed of a polymer backbone of 

monomer unit A, which has polymeric side chains attached to it composed of 

monomer B (Figure 1.1, e). Both block and graft copolymers will possess the 

characteristics of both components, whereas statistical, random and alternating 

structures will have intermediate properties of each of the monomer types. 

Polymeric materials may be produced using two main methods referred to as step 

growth polymerisation and chain growth polymerisation. 

Step growth polymerisation involves the stepwise intermolecular addition of 

functional monomer molecules to a growing polymer chain. Polymer chain 

growth most commonly involves an intermolecular condensation reaction 

between related functional groups (-OH, -COOH, -NH2, -NCO) in successive 

steps. I I This is usually accompanied by the elimination of a small molecule such 

as H20 for each addition of a monomer unit. 12 Monomers employed in step 

growth polymerisation also tend to have two reactive functional groups. The 

molecular weight will increase at a very slow rate until a high conversion is 

reached (typically >95%). \3 
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Chapter 1: Introduction 

Chain growth polymerisation, also known as addition polymerisation, involves 

the fonnation of a polymer chain through repeat addition reactions with the 

monomer unites). Typically chain growth polymerisation involves unsaturated 

vinyl monomers, generally in the fonn of a 1t double bond.13 These enable the 

generation of reactive centres, usually in the fonn of free radicals, but also 

anionic/cationic speCIes and organometallic complexes.2 Chain growth 

polymerisation involves three main steps; initiation, propagation and tennination. 

Free radical polymerisation is the most commonly employed chain polymerisation 

technique. 14 

1.1.2 Free Radical Polymerisation 

Free radical polymerisation is a widely employed technique, owing to its 

versatility and synthetic ease. This method of polymerisation is one of the most 

commonly adopted because it is tolerant to a broad range of monomers with a 

variety of functional groups. 14 The technique is suitable for different 

polymerisation conditions including bulk, solution, suspension and emulsion 

polymerisations. Polymerisations can also be conducted in a range of different 

solvents, such as aqueous media,15 organic solvents, ionic liquids l6 and 

supercritical fluids. 17 A tolerance to water and protic solvents is a key advantage 

of free radical polymerisation, allowing the development of emulsion and 

suspension techniques. 14 The process of free radical polymerisation consists of 

three key steps; initiation, propagation and tennination (Figure 1.2). 
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a) Initiation 
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b) Propagation 

-_ .. -_ .. -_ .. 

c) Termination by RecOmbinatiOn

0
i) 

• • 

d) Termination by Disproportionation 

0~H 

.~H 
~cf "_A __ A. 

o 00 0 
I I 

I 

I 

Figure 1.2: Typical free radical polymerisation of MMA.8 
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Chapter 1: Introduction 

Initiation involves the production of a free radical via an initiator, which will 

subsequently enable production of a monomer radical. For unsaturated monomers 

this involves the free radical opening the 1t bond to form a new radical. Upon 

activation of the double bond, the monomer opens up to form two single cr bonds 

(Figure 1.2, a). 

Initiators are essential for the generation of free radicals during the polymerisation 

process, ideally under mild conditions. Most initiators, such as peroxides, tend to 

possess weak bonds, with small bond dissociation energies, leading to facile 

dissociation and the production of radical species, able to promote radical 

reactions. Several methods of radical formation can be employed, although 

thermal decomposition is the most widely adopted. 14 There are a number of 

initiators available, such as azo and peroxide compounds which will readily 

undergo homolytic bond cleavage to form radicals. 

The time for the concentration of initiator to decrease to one half of its original 

concentration is called the initiator half-life (tId. The initiator species 2, 2'­

azobis(isobutyronitrile) (A IBN) is widely employed in this thesis as it will 

decompose at relatively low temperatures and has a half-life of 4.8 hours at 70°C 

(Figure 1.3).8, 18 The facile dissociation of azo compounds is not due to the 

presence of a weak bond as is the case for the peroxide compounds. The driving 

force for the dissociation of azo initiators, including AIBN, is the production of a 

highly stable nitrogen molecule in addition to the formation of two 

isobutyronitrile radicals.8 
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Chapter 1: Introduction 

Figure 1.3: Thermal decomposition of AIBN resulting in the formation of 

isobutyronitrile radicals for the initiation of a free radical polymerisation 

process. Decomposition occurs through homolytic cleavage and is driven by 

the production of N2• 

Propagation involves growth of the monomer radical via reaction with other 

monomers within the system, transferring the free radical to the end monomer 

unit and involving successive propagation of the reactive centre (Figure 1.2, b ).19 

The propagating radical can potentially attack either end of the vinyl double bond 

20 21 H d '1 dd" . h ~ of the monomer.' ea -to-tal a Ihon IS t e most lavourable arrangement, 

and involves the least substituted end. The head is defined as the most substituted 

end of the vinyl bond, or the end with the best radial stabilising substituent. Head-

to-head addition can also take place, and is defined as attack of the double bond at 

the most substituted end. Addition of the propagating radical to monomer 

molecules within the system is rapid, and high molecular weight polymer is 

usually attained at low conversions. Propagation continues until the active centre 

is destroyed through termination. 
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Termination involves the destruction of the radical speCIes, which leads to 

termination of chain growth. The two main termination steps are combination and 

disproportionation. Combination involves the linkage of two active polymer end 

groups, resulting in a dead polymer chain (Figure 1.2, c). Termination through 

disproportionation involves abstraction of a proton from one propagating chain 

end to another, leading to the production of two different polymer products 

(Figure 1.2, d).22 

Chain transfer is an additional type of termination process that can take place. 

Chain transfer reactions involve transfer of the active site from the propagating 

polymer chain to a new chain transfer agent species in the system. Such processes 

act to terminate the existing polymer chain, but transfer the radical to a new 

species that can continue to initiate polymerisation. The chain transfer agent can 

be a monomer, solvent or initiator within the system. Chain transfer agents can be 

utilised to control the molecular weight obtained during polymerisation. One such 

example is that of mercaptans (RSH), compounds that have a high affinity for 

hydrogen atom transfer. By employing a mercaptan in the polymerisation process, 

the radical is transferred from the polymer chain to the mercaptan, combined with 

the transfer of a proton from the mercaptan to the polymer.23-26 

One of the major disadvantages of free radical polymerisation is the difficulty in 

molecular weight control, and the high polydispersity of the chains being formed 

in the process. The method also allows for no real control over the molecular 

structure, as free radical polymerisations are susceptible to automatic termination 

and chain transfer processes. Controlled radical polymerisation is a technique 
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which has a number of advantages over traditional free radical polymerisations 

and can provide a means of combating these issues. 

1.1.3 Controlled Radical Polymerisation 

Controlled/living radical polymerisation can be used to combat the difficulties 

associated with free radical polymerisation. Controlled polymerisation techniques 

provide a route to accessing a vast range of polymers with precise molecular 

weight and tailored architectures. 

Living polymerisation is defined as a polymerisation reaction in which chain 

termination and chain transfer reactions are absent, and the rate of chain initiation 

greatly exceeds the rate of propagation. This leads to the production of very 

similar chain lengths, and thus a low polydispersity. However, truly living radical 

polymerisations cannot be achieved, as in a radical system bimolecular 

termination cannot be completely eliminated?7 Thus the term controlled radical 

polymerisation (CRP) has been employed to differentiate from a true living 

system in this thesis. 

Szwarc first defined living polymerisation as a chain growth process without 

chain breaking processes. Following this, in order for a polymerisation to be 

classed as 'living', certain criteria must be met: 14,21,27-30 
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• Irreversible chain transfer or termination reactions must be absent, or kept 

to a minimum within the polymerisation system. 

• The bond to the end group must be thermally or photochemically labile 

and able to undergo reversible homolytic reaction under the reaction 

conditions to regenerate a propagating radical which can continue 

polymerisation. Polymerisation proceeds until all monomer has been 

consumed. Further addition of monomer results In continued 

polymerisation. 

In addition to this, a well-controlled polymerisation will exhibit a number of key 

features: 21,31 

• The evolution of number average molecular weight (Mn) will follow a 

linear function of monomer conversion. This requires that all chains are 

initiated and grow uniformly. 

• The concentration of the active propagating species remains constant. A 

kinetic plot of (In([M ]/[MD vs. time should be linear if the reaction is o 

first-order with respect to the monomer. 

• A narrow molecular weight distribution will be obtained, providing all 

chains grow uniformly. The molecular weight distribution for the system 

will decrease with conversion, providing the rate of initiation is fast in 
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comparison to the rate of propagation, and there is slow exchange of the 

active species. This condition allows simultaneous growth of all the 

polymer chains. 

• Following monomer consumption, end-group functionality ofthe polymer 

will be preserved, and the active centre of the species retained. This 

feature enables the polymer chain ends to be reactivated with the 

introduction of additional monomer. Consequently access to architectures 

such as block, graft and star copolymers is possible. 

Overall, it is evident that there are a number of advantages in using controlled 

radical polymerisation techniques. It allows narrow molecular weight 

distributions to be achieved, providing a system by which all chains grow 

uniformly, and both the molecular weight and the architecture of the final 

polymer may be controlled. 

The general concept of controlled radical polymerisation is to avoid irreversible 

bimolecular termination reactions that occur as effectively as possible by 

decreasing the number of growing radical chains. In controlled radical 

polymerisation methods, an equilibrium exists between the active free radicals 

and the dormant species. This equilibrium allows the slow but simultaneous 

growth of all the polymer chains, whilst the radical concentration is still kept low 

enough to minimise termination steps.20, 32 The result is a slower reaction rate, but 

allows for control of the molecular mass. Radicals may either be reversibly 
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trapped in a deactivation/activation process, or they can be involved III a 

"reversible transfer", degenerative exchange process.33 

Four main types of controlled radical polymerisation have been developed; 

Nitroxide-Mediated stable free-radical Polymerisation (NMP),34 Atom Transfer 

Radical Polymerisation (ATRP),35 Reversible Addition-Fragmentation chain-

Transfer (RAFT) polymerisation36 and Macromolecular Design via the 

Interchange ofXanthates (MADIX).37 ATRP and NMP will be briefly outlined in 

the following sections. As RAFTIMADIX polymerisation is the technique 

employed throughout this thesis, the process will be discussed in greater detail in 

section 1.1.3.3. 

1.1.3.1 Nitroxide-Mediated Polymerisation (NMP) 

NMP involves the application of a stable nitroxide radical in a reversible 

d .. 34 38-40 N"d f'&!: • d' I eactIvatlOn process. ' ltroxi es are e llclent ra lca scavengers and will 

combine with carbon-centred radicals to form alkoxyamines. The mechanism of 

control exploits this feature of nitroxides and is achieved through dynamic 

equilibrium between the dormant alkoxyamine terminated chains and the actively 

propagating radicals/growing chains (Figure 1.4).33 
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/R 
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R' 

Figure 1.4: General mechanism of Nitroxide-Mediated Polymerisation. 

Activation of the dormant species occurs via thermally induced homolytic 

cleavage of the c-o bond of the alkoxyamine, leading to the reversible production 

of the active chains and the nitroxide radical species. 14 The equilibrium between 

dormant and active chains is designed to heavily favour the dormant state. The 

main disadvantages associated with NMP are the severe reaction temperatures 

required, and the limited range of monomers applicable to the process. 

1.1.3.2 Atom Transfer Radical Polymerisation (A TRP) 

ATRP is also based on a process of reversible deactivation, and has been widely 

studied by a number of groups.35, 41-44 ATRP employs a transition metal species 

(M), typically copper, coordinated to a suitable ligand (L), forming a transition 

metal complex (MLy) which can expand its coordination sphere and increase its 

oxidation state. In addition, the process requires an alkyl halide (R-X). The 

transition metal complex undergoes a reversible one electron oxidation step 
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involving the homolytic cleavage of the alkyl halogen bond, to form a metal 

halide complex and an organic radical (Figure 1.5). 

kact 
P -X n + Mtn/L .......... 

Figure 1.5: General mechanism of A TRP via the application of a metal-based 

catalyst. 

The radical will initiate polymerisation with monomer within the system. 

Propagation occurs until back-transfer of the halogen atom from the transition 

metal complex to the propagating radical takes place. This results in formation of 

a dormant species and is known as the deactivation step. A dynamic equilibrium 

is established in which reversible activation and deactivation reactions rapidly 

take place, allowing all of the polymer chains in the system to grow at a relatively 

uniform rate.45 
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1.1.4 RAFTIMADIX Polymerisation 

Reversible addition-fragmentation chain-transfer (RAFT) polymerisation is one 

of the most versatile and robust controlled radical polymerisation techniques. The 

main advantage of RAFT polymerisation is the wide range of both functional and 

non-functional monomers it can be used for,46 and the variety of architectures that 

can be accessed.47-53 It also allows polymerisation of monomers in aqueous media 

at relatively low temperature. 54-56 

Whilst NMP and A TRP are based upon a mechanism of reversible termination, 

both RAFT and MADIX polymerisation follow a reversible chain transfer 

mechanism through a stabilised intermediate (Figure 1.6).46 

P -5 5 my 
Z 

M M 

Figure 1.6: General mechanism for RAFT polymerisation, employing a chain 

transfer agent and involving a reversible chain transfer process. 

The mechanism ofRAFTIMADIX polymerisation involves initiation, propagation 

and termination steps as seen commonly in free radical polymerisation. In 

addition to these steps, there is an important chain transfer step, involving a chain 

transfer agent (eTA). RAFT and MAD IX polymerisation follow the same 
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mechanism but differ solely on the type of polymerisation mediator employed. 57 

MADIX polymerisation is limited to the use of a xanthate compound as a chain 

transfer agent (CT A), whilst RAFT polymerisation extends to the application of a 

number of thiocarbonylthio compounds. The term RAFT is often adopted to 

encompass the MADIX technique. 

The CTAs predominantly employed 111 RAFT processes are thiocarbonylthio 

species from four main families of compounds, which vary in terms of the Z 

group substituent; xanthates,58, 59 dithioesters,36 dithiocarbamates60, 61 and 

trithiocarbonates,62 the structures of which are shown in Figure l.7. 

5 

R'" )l / R 
o 5 

Xanthate 

Dithioester 

Dithiocarbamate 

Trithiocarbonate 

Figure 1.7: Chemical structure of the four main types of thiocarbonylthio 

RAFT chain transfer agents. 
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1.1.4.1 The Mechanism of RAFT 

In RAFT polymerisation, the activation-deactivation equilibria consist of chain 

transfer reactions. The full mechanism of RAFT polymerisation is detailed in 

Figure 1.8.46,63,64 Initiation occurs as with a typical free radical polymerisation. 

An external source of radicals is required to initiate and maintain polymerisation. 

The initiator species I- initiates the formation of a propagating radical, Pn- (Figure 

1.8, a). After a certain time, addition of the propagating radical to the highly 

reactive C=S bond of the thiocarbonylthio RAFT chain transfer agent takes place, 

resulting in the formation of a stabilised intermediate structure (2). Fragmentation 

of the labile intermediate radical occurs, leading to the production of a radical 

species R - derived from the RAFT agent leaving group, and a temporarily 

deactivated dormant thiocarbonylthio capped polymer (3). This is a chain transfer 

process (Figure 1.8, b). A second propagating polymeric radical Pm- is formed as 

the radical species R- reacts with the monomer(s) once again (Figure 1.8, c). 

The fundamental step in RAFT polymerisation is the establishment of an 

equilibrium between the active propagating species (Pm- and Pn-) and the dormant 

thiocarbonylthio compounds (Figure 1.8, d).65 The process of trapping the 

majority of the active polymer chains within this equilibrium acts to minimise the 

termination processes that occur. The rapid exchange between active and dormant 

chains ensures there is equal probability for all chains to grow, with minimal 

terminations, and so the process leads to the production of narrow molecular 

weight distributions. 
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p-S 5 
n'[ 

Z 

3 

+ R· 

p. 
n 

Figure 1.8: Detailed mechanism of RAFT polymerisation: a) Initiation, and 

the formation of a propagating polymeric radical from an initiator (I) and 

monomer (M) within the system; b) Chain transfer of the growing polymer 

chain to the RAFT agent leads to the thiocarbonylthio terminated species 

and the initiating species R-; c) Reinitiation of polymerisation; d) Chain 

equilibration between the propagating polymer chains and the dormant 

RAFT capped polymers, via the stabilised intermediate; e) Termination. 
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The polymer product will be end-capped by the thiocarbonylthio group of the 

RAFT agent. The R group of the RAFT agent will terminate the other end of the 

polymer for the majority of chains. Additionally, a small proportion of polymer 

chains will be capped by the initiator species, although this will typically be 

negligible as a result of the low concentration of initiator employed in comparison 

to the RAFT agent. 

As with all controlled polymerisation techniques, the RAFT polymerisation 

process is characterised by a linear increase of the molar mass with respect to 

monomer concentration. Therefore, the theoretical molecular weight (Mn,th) can 

be derived from Equation 1.1, assuming the concentration of the radical initiating 

species is negligible and the concentration of the RAFT agent and monomer is 

known.64 

[Mlo - [Ml t 
Mn,th ~ [RAFTl

o 
mM + mRAFT 

Equation 1.1: Prediction of theoretical molecular weight (Mn,th) of polymer 

synthesised in RAFT polymerisation where [MJo is the initial concentration of 

the monomer, [MJt is the concentration at time t, [RAFTJo is the initial 

concentration of the RAFT agent employed, mM is the molecular weight of 

the monomer and mRAFT is the molecular weight of the RAFT agent.64 
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In order to obtain a successful RAFT polymerisation that functions ideally, and 

with living characteristics, a number of conditions need to be met within the 

system. Initiation should be rapid with respect to propagation, so as to be close to 

an ideal system in which all chains are initiated simultaneously.3o Secondly, the 

number of monomer units added to the active polymeric chain during each 

active/dormant cycle should be low to allow for a similar rate of chain growth. 

Also, despite the need for a rapid dormant-active interchange, it is important for 

the thermodynamic equilibrium to favour the formation of chains in a dormant 

form. This ensures a low concentration of active propagating radicals is 

maintained, and helps to minimise bimolecular termination reactions taking 

place. 57 Additional termination reactions such as chain transfer should also be 

kept to a minimum. 

1.1.4.2 RAFT Agent Structure 

Perhaps one of the most important factors that will determine the success of any 

given RAFT polymerisation process is the choice of RAFT agent structure with 

respect to the monomer and polymerisation conditions being employed. 

The general structure of thiocarbonylthio compounds is S=C(Z)SR, where Z and 

R may be tailored depending on the properties required (Figure 1.9).63 When 

considering the overall structure of the RAFT agent, the key feature is a highly 

reactive C=S bond (high kadd) which is susceptible to radical attack, and is able to 

combine with the active species.64,66 Another important structural feature is the 
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presence of a weak S-R bond, able to undergo rapid fragmentation and favour the 

formation of R·, the leaving group radical (kp>k_add). Z is a group which acts to 

modify the RAFT agent activity, and R is the free radical leaving group with the 

ability to reinitiate polymerisation. The nature of the steric and electronic 

properties of Rand Z components within the structure will determine how 

effective the RAFT chain transfer agent is, and therefore must be considered 

carefully. 

R'. + S S- R 

/1 
Reactive Z 

double bond i 
Modifies activation and 

deactivation of C=S bond 

-
R'-S S - R 

1 \ -
Z Weak single 

R, R' are free radical leaving groups, 

which must also be able to 

reinitiate polymerisation 

bond 

Figure 1.9: Structural features of the RAFT CT A and the corresponding 

radical intermediate obtained following radical addition.67 The Rand Z 

group are important variables in the CTA structure and must be chosen with 

care. 

The Z group is known as the activating/stabilising group, and strongly influences 

the stability of the thiocarbonylthio radical intermediate.
46 

Generally, strong 
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stabilising groups will favour the fonnation of the intennediate and subsequently 

enhance the reactivity of the C=S bond towards radical addition.68, 69 However, if 

the intennediate radical is too stable, the fragmentation step will be unfavourable, 

and the reinitiating group R· will not be lost from the RAFT agent. This will 

result in a greater possibility of intennediate radicals within the system taking 

place in tennination reactions. Therefore, it is important to maintain sufficient 

fi . f h . d' d' I 68 70 71 ragmentatlOn rates 0 t e mtenne late ra lca s. ' , 

A higher rate of addition of radical species to the C=S bond will be observed 

when employing dithioesters composed of simple alkyl and aryl Z groups. A high 

rate of addition is also observed with a Z group containing a sulfur atom 

coordinated to a hydrocarbon chain, namely trithiocarbonates. A number of 

groups have investigated the effect of the Z group on the polymerisation of a 

range of monomers.60, 61, 68, 69, 72-74 Strongly stabilising groups (e.g. Ph) have been 

found to be effective for the polymerisation of monomers such as styrene and 

methacrylates, because of the high activation of the thiocarbonyl function by the 

phenyl group. 57 

The situation is rather different when the Z group is weakly stabilising, such as an 

oxygen or nitrogen atom, in the case of xanthates and dithiocarbamates 

respectively. In such cases, the non-bonded electron pair on the heteroatom is 

delocalised with the C=S bond (Figure 1.10).46,58 This will lower the double bond 

character of the C=S bond and consequently lowers the reactivity, making it less 

susceptible to radical addition (low kadd).75 As a result, the rate of addition to the 
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sulfur atom is decreased, particularly when usmg monomers such as bulky 

methacrylate radicals.63 This leads to poor control of the growing polymer chains. 

5 5° 

)l R __ 4 ---- " A /R 
"N 5/ ~N 5 

I wI 

Figure 1.10: Canonical forms of xanthate and dithiocarbonates. 

However, O-Alkyl xanthates and N,N-dialkyl dithiocarbamates are specifically 

suited for the polymerisation of fast propagating vinyl monomers such as V Ac 

and NVP, where the propagating radical is poorly stabilised, and are often 

employed for the controlled polymerisation of these monomers.37, 58, 76-79 In the 

case of such monomers, a C=S bond of lower reactivity is desirable, as it permits 

the addition of these poorly stabilised propagating radicals to the C=S bond, 

counterbalancing their instability, and giving some degree of control over the 

polymer molecular weight. 63 
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The R group must possess a good leaving group ability in comparison with the 

propagating polymer chain, in order to promote fragmentation of the RAFT agent. 

The R group will also contribute in part towards stabilisation of the radical 

intermediate, although this is much less significant than the Z group 

contribution.63,80 In addition to an R group substituent that will be a similar or 

better homolytic leaving group than the propagating radical, steric and electronic 

factors must also be considered. Sterically bulky R groups will generally be lost 

from the RAFT agent with greater ease. Electron-withdrawing groups that make 

the thiocarbonylthio sulfur more electrophilic will also enhance leaving group 

ability, as does the presence of a radical stabilising component. 80 As with the Z 

group, choice of R group must be tailored to suit the monomer, providing a 

balance between an effective homolytic leaving group and a suitable radical for 

reinitiation.64, 80-85 One such example is the benzyl group radical -CH2Ph, which 

is an effective leaving group for the polymerisation of acrylates and styrenics. 62, 80 

However, the benzyl R group is a poor leaving group with respect to propagating 

poly(methyl methacrylate) radicals, and as such, a benzyl R group within the 

RAFT agent structure is not suitable for MMA polymerisation.82 

One of the major issues to arise when employing RAFT polymerisation is rate 

retardation.63, 86, 87 In such cases, slower polymerisation kinetics are observed in 

comparison to a conventional free radical polymerisation. Retardation effects 

generally appear to be much more pronounced in the case of dithiobenzoates. 88-90 

Conversely, very little/no retardation has been observed when employing 

xanthates as chain transfer agents. 58 A number of reasons have been proposed to 
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explain the observation of rate retardation, including a slow fragmentation of the 

intennediate radical,73, 91-93 and side reactions involving tennination of the 

intennediate radical.94
-
96 Slow fragmentation occurs as a result of increased 

stability of the intennediate radicals. The increased stabilisation of 

dithiobenzoates can be related to the delocalisation of the radicals with the phenyl 

group, and potentially explains the retardation observed in these systems.96 

Inhibition is also observed in certain polymerisations, and is the process of slow 

fragmentation of the intennediate radical at the start of the polymerisation. The 

effect is enhanced for fast propagating monomers such as V Ac. The slow 

fragmentation arises from the poor homolytic leaving ability of the vinyl acetate 

radical and the resulting stability of the intennediate radical. 

It has been shown that the RAFT agent structure is crucial III obtaining a 

successful RAFT polymerisation. In view of this, a series of guidelines have been 

devised for appropriate RAFT agent selection, in order to optimise the RAFT 

process through the adjustment of the Rand Z group, depending on the monomer 

being polymerised (Figure 1.11).64,67 

Full lines indicate a good control over the RAFT polymerisation with the selected 

monomers, while dashed lines refer to monomer RAFT agent combinations in 

which only partial control may be achieved. In these cases, there may be broad 

molecular weight distributions, or substantial retardation/prolonged inhibition. 
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Z: Ph» SCH 3 - CH 3 - > OPh > OEt - N(Ph)(CH3) > N(Et)2 

4 MMA 4 VAc 

4 ty, MA, AM, ------ - - - --~ 

R: 

4 MMA ------~ 

4 Sty, MA, AM , AN 

.4--- - - - - - - - ---- V Ac - - - - - --- - - - - - - - - ~ 

Figure 1.11: Guidelines for RAFT agent selection for typical monomers, 

where MMA = methyl methacrylate, Sty = styrene, MA = methyl acrylate, 

AM = acrylamide, AN = acrylonitrile, VAc = vinyl acetate.64
, 67 For 'Z', 

addition rates and transfer constants decrease and fragmentation rates 

increase from left to right. For 'R', fragmentation rates decrease from left to 

right. A straight line indicates good control, while a dashed line denotes 

limited control. 

In this thesis, vinyl esters are predominantly used as the monomers for 

polyrnerisation. Therefore, xanthate-mediated RAFT polymerisation will 

predominantly be employed. 
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1.2 Polymerisation Techniques 

Polymerisation processes can be classified as either homogeneous or 

heterogeneous systems. In a homogeneous system, the reaction mixture exists as a 

single phase during the course of the polymerisation, and there is no precipitation 

of polymer i.e. bulk and solution polymerisations. Heterogeneous systems 

generally involve two phases that either coexist from the beginning of 

polymerisation, or form during the reaction as a result of phase separation of the 

growing polymer. The first phase is referred to as the continuous phase and is a 

non-solvent for the final polymer product. The polymer-based phase is known as 

the discrete phase. 

A range of these polymerisation techniques will be outlined in the following 

section. 

1.2.1 Bulk Polymerisation 

Bulk polymerisation involves an initial mixture of a pure monomer, a monomer­

soluble initiator, and possible chain transfer agents, leading to a pure polymer 

product. 8 In bulk polymerisation, no solvent is required because the monomer acts 

as the solvent system. 

The process appears to be a relatively straightforward technique when first 

considered, but problems regarding heat transfer make it difficult to control, and 

as such a number of issues exist. During the process, there is an increase in 
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viscosity as the polymerisation proceeds, which inhibits heat dissipation. This 

leads to heat transfer and product handling difficulties. Auto-acceleration can also 

occur, through a process known as the Trommsdorff-Norrish effect, and results in 

a reduction in the rate of termination, causing further heat production.97
, 98 

The risk of potentially explosive thermal runaway occurring makes bulk 

polymerisation difficult to carry out in practice. If the technique is used for 

strongly exothermic addition reactions, the risk of thermal runaway is greater, and 

so the reactions tend to be stopped at low conversion. This prevents any 

significant increase in viscosity, and allows the mixture to remain easy to stir. 

However, the problems associated with bulk polymerisation mean that when 

employed for controlled radical polymerisation techniques, a lack of control can 

be observed. 

As a result of these disadvantages, bulk polymerisation is not widely employed in 

industry. Poly(ethylene) and poly(styrene) are two of the few polymers produced 

via the bulk polymerisation technique.2 

1.2.2 Solution Polymerisation 

Solution polymerisation involves a medium in which the monomer is dissolved in 

a solvent. The presence of solvent ensures that many of the problems associated 

with bulk polymerisation may be overcome, as the heat and viscosity of the 

resulting mixture are more efficiently controlled by dilution. 14 
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Ideally, the chosen solvent reqUires low chain transfer activity III order to 

minimise any potential chain transfer reactions with the solvent molecules 

occurring.99 One of the main disadvantages associated with solution 

polymerisation is the difficulty in removing all traces of solvent from the final 

polymer product. Therefore, for commercial polymer production, the method only 

tends to be used if the polymer is required in solution (i.e. a lacquer or 

adhesive).lOo Additionally, the reaction temperature is limited to the boiling point 

of the solvent used, subsequently restricting the rate of reaction.2 Solution 

polymerisation is one of the principal methods used in the production of 

poly( acrylonitrile). 20 

1.2.3 Precipitation Polymerisation 

Precipitation polymerisation is based upon solution polymerisation, but occurs if 

the resulting polymer product is insoluble in the solvent. The polymerisation is 

initially homogeneous, but precipitation takes place as the polymer forms. The 

method allows for easy separation of the final polymer from the solvent, but often 

the resulting particles are irregular in shape. 14 

1.2.4 Suspension Polymerisation 

This polymerisation method involves the suspension of the monomerlinitiator 

reaction mixture as fine droplets in an inert solvent medium, often water. 2, 14 
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Water-soluble suspenSIOn agents are used as stabilisers, which attach to the 

surface of the monomer droplets and prevent coalescence. The mixture undergoes 

continuous controlled mechanical agitation to produce droplets of a relatively 

uniform size, which all effectively act individually as small scale bulk 

polymerisation systems. The technique works due to the large number of such 

micro-droplets undergoing bulk polymerisation, converting the monomer droplets 

into polymer beads. 

The degree of agitation will affect the size of the polymer beads produced. 101 The 

process allows for easy heat removal and control due to the large surface area of 

the droplets, and the resulting polymer may be isolated via spraying or filtration. 

However, for polymers which are very soluble in their own monomer, stirring 

must be extremely vigorous in order to prevent agglomeration. 

Suspension polymerisation is industrially employed for the synthesis of polymers 

such as poly(vinyl chloride). 101 

1.2.5 Emulsion Polymerisation 

Emulsion polymerisation is a development of suspension polymerisation, and one 

of the most widely used techniques. As with suspension polymerisation, the 

monomer is insoluble in the reaction medium and dispersed as a uniform 

emulsion.102 The initiator is soluble in the reaction medium rather than the 

monomer. 
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Droplets of the monomer are dispersed in an aqueous medium with the aid of an 

emulsifying agent, commonly an anionic surfactant (detergent), composed of a 

hydrophili c head and hydrophobic tail (Figure 1.12). 

Monomer Droplet 

~" . ~" ... ... ~ '- ''If\..8 . .. . '.. .... .... .... --... ....... .... -... ... .. .. .,..-~ .... ......... 
.-/ . , . ~ • •• '- ~icellisatio~n , •• Polymerisation 

, ..8 \. , . . . . .. .... -... ... • • , • • 
• Initiator Molecule __ Surfactant Molecule • Monomer Molecule 

Figure 1.12: Diagram representing a typical emulsion polymerisation. 

Inititor radicals migrate into stabilised monomer micelles where 

polymerisation can subsequently take place. Monomer droplets supply 

additional monomer through migration into the polymerisation medium. 
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Small detergent micelles are formed which contain a small quantity of the 

monomer in a solubilised form. In addition, larger droplets of monomer exist 

which are stabilised by the detergent. No significant polymerisation takes place 

within the monomer droplet as the initiator is not soluble within it, and the 

droplets act to feed the reaction medium with monomer. 

A significant amount of initiator is found in the hydrophobic surface layer of the 

micelles, which can initiate polymerisation in solution at the surface. The growing 

chain radicals may then diffuse into the micelles, where the majority of 

polymerisation can occur. 

The major advantage of emulsion polymerisation is the high molecular weight 

polymers attainable, despite fast rates of polymerisation. Easy heat control and 

removal is another advantage, due to the water phase of the reaction system. One 

of the key disadvantages however, is that remnants of emulsifying agent remain 

bound on the surface of the polymer produced. 

The process of emulsion polymerisation is a widely employed technique, and is 

responsible for producing the largest volume of paint binders for the coatings 

industry. 102 
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1.2.6 Dispersion Polymerisation 

A typical dispersion polymerisation is a modified verSIOn of precipitation 

polymerisation. Initially the system will consist of a homogeneous solution of 

monomer and initiator, although the overall polymerisation process is 

heterogeneous as the resulting polymer is insoluble and will precipitate out as a 

b 'l' d ll'd 1 d' . 103 104 sta lIse co 01 a IspersIOn. ' 

A stabiliser, also referred to as a surfactant, IS required in dispersion 

polymerisation techniques in order to form a colloidal dispersion. In the absence 

of the stabiliser, the polymeric dispersion will be unstable and coagulation of the 

precipitated polymer particles will occur. In dispersion polymerisation, the 

precipitated polymer particles are able to form a stable latex because of the 

presence of the stabiliser molecule, which is anchored onto the surface of the 

polymer particle and provides a steric stabilisation mechanism. 105 This is a result 

of the surfactant generating a repulsive force, which keeps the individual growing 

polymer chains sufficiently far apart, so that attractive Van der Waals interactions 

between the particles become too weak to allow aggregation to take place. The 

particles are then free to capture initiator, monomer and radical chains, allowing 

polymerisation to proceed in the continuous and particle phase. 

Dispersion polymerisation involves two main stages; particle nucleation and 

particle growth. 

Polymerisation is initiated in the homogeneous phase and free radicals react with 

monomer in solution to form oligomeric polymer radicals (Figure 1.13 , a). During 
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the polymerisation, the growing polymer chains reach a certain critica l chain 

length where they are no longer so luble in the continuous phase. 

a) . • b) • • .s • • .s • "" • . ., • • ., 
.r ., • • • • • • • "" • J 

• • .r 

"" • J. • 
c) • Monomer Molecule 

• Initiator Molecule 

.r Stabiliser Molecule 

Stabilised Polymer 

Particle 

Figure 1.13: Dispersion polymerisation process: a) Monomer, initiator and 

stabiliser are dissolved in continuous phase of the reaction medium; b) 

Radicals initiate polymerisation and at critical chain length (Jcrit) the 

primary particles precipitate out; c) Polymerisation proceeds with monomer-

swollen primary particles, with stabiliser adsorbing at surface via the anchor 

group, providing steric stabilisation and solubility in the reaction medium. 103 
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Aggregation of the polymer chains will occur as they precipitate from solution, 

leading to phase separation at an early stage and the formation of unstable 

nuclei.106 The resulting unstable nuclei will rapidly aggregate together, and 

stabiliser molecules will adsorb to the growing polymer particles. This process 

will take place until a sufficient surface coverage of stabiliser is reached to 

prevent further aggregation, and stable nuclei are formed. This is the particle 

nucleation stage, and results in the formation of primary particles (Figure 1.13, 

b). 107 

The second stage of dispersion polymerisation is defined as particle growth, 

which is a much less complex process (Figure 1.13, c). This is generally the more 

robust and lengthy of the two stages. The primary particles produced in the 

nucleation stage swell in the polymerisation medium, and particle growth will 

largely take place within these swollen particles, using the remaining monomer. 

This leads to the production of stabilised spherical particles, generally around 

0.1-10 flm in size. 

A wide range of monomers have been successfully polymerised using dispersion 

polymerisation, and the method has been adopted as an alternative to solution 

polymerisation of vinyl monomers for use in coating applications. 107 

Dispersion polymerisation will be the focus of a significant body of research 

within this thesis, and dispersion polymerisati()n in supercritical carbon dioxide 

(scC02) will be discussed in further detail in section 1.3.3 of this chapter. 
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1.3 Supercritical Fluids 

1.3.1 Introduction 

A supercritical fluid (SCF) may be defined as the phase of a substance above its 

critical temperature (Tc) and critical pressure (Pc). 108, 109 A phase diagram can be 

used to illustrate the various states of a substance and the conditions under which 

each phase exists. A phase diagram for a pure substance can be used to explain 

the phenomenon of supercritical fluids (Figure 1.14)."0 The state of the substance 

is most often described as a function of temperature and pressure, although the 

critical density can also be taken into account. 111 Lines on a phase diagram 

indicate the boundaries, at which point phase transitions occur. 

Pressure 

Critical 
Temperature Temperature 

Figure 1.14: Typical phase behaviour diagram for a pure substance, 

including the supercritical fluid region. 
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At the triple point, the temperature and pressure are such that the solid, liquid and 

vapour phases coexist and are in equilibrium with one another. At the critical 

point, the critical temperature and pressure are reached, and the phase boundary 

between liquid and vapour is no longer present. At this point, the substance 

becomes a single phase, defined as the supercritical phase, where the two existing 

h b . d" . h bl 112 P ases ecome m IstmgUls a e. 

Supercritical fluids have lower viscosities than conventional solvents, and they 

exhibit both gas-like and liquid-like properties, with overall property values lying 

between that of those expected for classical gases and liquids (Table 1.1 ).108 

Table 1.1: A comparison of the typical physical properties of gases, liquids 

and supercritical fluids. loS 

Property Gas SCF Liquid 

Density (glml) 10-3 0.3 1 

Diffusion Coefficient (cm2 /s) 0.1 10-3 5 x 10-6 

Viscosity (Pa s) 10-5 10-4 10-3 

The properties usually displayed by gases, such as high diffusivity, good 

miscibility with other gases and weak molecular association, are combined with 

the liquid-like density and ability to dissolve and transport organic compounds. III 
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Increasing the pressure (or decreasing the temperature) of a compound once it is 

in the supercritical state will result in a corresponding increase in the density of 

the supercritical fluid. 113 The density is particularly sensitive to small pressure 

changes near the critical point. Because of the dependence of density on both 

pressure and temperature, these parameters can be readily and precisely adjusted 

to tune properties such as the solvent strength of the SCF. 

A range of substances with varying critical parameters have been investigated as 

supercritical fluids (Table 1.2). Substances which possess strong intermolecular 

forces (e.g. water) will have a higher Te, as will substances with a higher molar 

mass. 114 The critical pressure and temperature will limit the applications of a 

particular SCF. Higher values of Te and Pc will be much more energy intensive 

and expensive. 108, 115 

Table 1.2: Critical parameters for common substances in the supercritical 

state. 116 

Critical Temperature Critical Pressure Critical 
Compound 

(Tc)! °C (Pc)! bar (psi) Densi!ll g 
cm 

Carbon dioxide 31.1 74 (1073) 0.47 

Ethane 32.8 49 (711) 0.22 

Propane 97.2 43 (624) 0.22 

Ammonia 132.5 113 (1639) 0.24 

Water 374.2 221 (3205) 0.32 
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1.3.2 Supercritical Carbon Dioxide (SCC02) 

Supercritical carbon dioxide (SCC02) is one of the most promising SCFs, and is 

continually attracting attention as a potentially viable 'green' solvent. It is 

relatively non-toxic, non-flammable and relatively inert towards reactive 

compounds. The environmentally benign properties of scC02 make it a potential 

green alternative to traditional organic solvents currently used in polymer 

synthesis. 117 Additionally, C02 has an easily attainable critical point (31.1 °C, 

73.8 bar) when compared to SCFs such as water (Table 1.2). Carbon dioxide is an 

inexpensive material, and can be recycled from other industrial processes where it 

is obtained as a by-product. In this manner, net emissions of CO2 into the 

atmosphere are not increased. 

As previously discussed, SCC02 also possesses a high diffusivity, low viscosity 

and tuneable solvating power, rendering it an effective alternative to conventional 

organic solvents. It has been extensively investigated by both industry and 

academia, and used in a number of reactions including hydroformylations, I 18 

Friedel-Crafts alkylations, 119 and as an extraction medium for caffeine. 12o 

Recently, scC02 has also found application as a medium for polymer synthesis 

and processing. 121-124 This is a result of a number of properties, in addition to the 

environmental benefits. Polymer is easily recovered from the reaction medium, 

as scC02 allows for simple product separation upon depressurisation, producing a 

material free of solvent residues. This is a desirable property for various 

applications, reducing the need for energy-intensive drying procedures. 125, 126 The 
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tuneable density of SCC02 can also be exploited to tune the solvating power of the 

reaction medium and separate specific polymer fractions individually. 127 

Also, the high diffusivity of SCC02 makes it possible for CO2 molecules to 

penetrate through polymer chains. This can cause depression of the glass 

transition temperature (T g) as the CO2 lowers the thermal energy required for 

chain movement. This effect is known as plasticisation. I28-131 Plasticisation has 

enabled techniques such as polymer foaming, blending and impregnation to be 

performed in SCC02, and could potentially also enhance the diffusion of monomer 

and initiator into the polymer phase in heterogeneous polymerisations.1 16, 132-134 

1.3.3 Dispersion Polymerisations in SCC02 

Dispersion polymerisations are highly suited to adaptation in scC02 because of 

the miscibility of the vast majority of monomers in the continuous phase at 

modest pressures, and the low solubility of most high molecular weight 

materials. Il7 With the aid of a stabiliser, dispersion polymerisation enables the 

production of free-flowing powder polymers with a high yield and uniform, 

spherical particles. Employing a suitable stabiliser for dispersion polymerisation 

in scC02 is crucial. This is achieved through the application of ionic or steric 

stabilisers. Ionic stabilisers are not effective in low/non-polar solvents such as 

scC02, and so steric stabilisation must be employed, using polymeric surfactants. 

As described in section 1.2.6, polymeric stabilisers are required in dispersion 
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polymerisations to produce a stable latex of growing polymer particles and allow 

solubilisation of these particles in the continuous phase. 

The function of a stabiliser is to provide a method of solvation for the 

macromolecules within the solvent system. Stabilisers often tend to be 

amphiphilic, composed of two components. The first is a polymer-philic 

anchoring group which will attach to the surface of the growing polymer particle 

via physical adsorption or chemical grafting, whilst the second component is 

tailored to possess an affinity for the continuous phase (C02-philic) and allows 

solubilisation of the polymers within the reaction medium as it partitions at the 

polymer/solvent interface. \03 

Stabilisers enable the dispersion of the polymer particles throughout the system 

by surrounding the surface of the individual polymer particles and allowing 

solubilisation in the continuous phase. In addition, the surfactants employ a steric 

stabilisation mechanism to prevent aggregation of the growing polymer particles. 

Steric stabilisation is a result of the increased stabiliser segment density 

experienced when two polymer particles approach and the polymer sheaths 

interpenetrate or are compressed (Figure 1.15).135 This region of increased 

stabiliser concentration generates an osmotic pressure, and diffusion of solvent 

into this region produces a repulsive force, pushing the polymer particles apart. 

The concentration of the solvated stabiliser layer needs to be strong enough to 

generate an osmotic pressure able to overcome attractive Van der Waals forces 

between particles, allowing repulsion to dominate and reSUlting in a stable system 

which remains in a dispersed state. 
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,l1li d ., 

Figure 1.15: The close approach of two polymer particles, and the resulting 

process of steric stabilisation. The stabiliser chains of the polymer particles 

interpenetrate, increasing the concentration of the stabiliser chains within 

the layer. Osmotic pressure is generated, and affects the migration of solvent 

molecules into this region, forcing the polymer particles apart, and 

preventing agglomeration. lOS () = thickness of stabiliser layer in solution; c = 

concentration of stabiliser; d = distance between particles. 

Selection of an effective stabiliser is critical to the producti on of a successful 

di spersion polymeri sation in SCC0 2. The stabiliser must possess a CO2-soluble 

component, and thi s is an issue when employing polymeri c surfactants, which are 

notoriously insoluble in C0 2. The limited solubility of most polymers is believed 

to be related to their polarity, and the fact that CO2 possesses a quadrupole, 

despite havi ng no permanent dipole.136 Fluorinated and silicone-based polymers 
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are the two classes of polymer which have been shown to have appreciable 

solubility in scC02. For this reason, a wide range of fluorine and silicone 

containing polymers have been adopted successfully as surfactants in the 

dispersion polymerisation of a range of monomers in scC02• These stabilisers will 

be considered fully in the following section. 

The significant solubility of fluorinated polymers has been attributed to the 

interaction of CO2 with the C-F bond. It has been suggested that CO2 either forms 

a weak complex or preferentially clusters near the fluorine atom of the C-F bond, 

which is more polar than corresponding C-H bonds, so that the fluorinated side 

chains effectively shield the hydrocarbon main chain from interaction. 116, 137-139 

Silicone polymers, although generally not as soluble as fluorinated polymers, are 

proposed to exhibit good CO2-solubility as a result of the low cohesive energy 

d . h' d h ~ f .. 140 ensIty, w Ich re uces t e lree energy 0 mIxmg. 

Stabilisers with homopolymer, block copolymer, graft copolymer and random 

copolymer architectures have all been investigated for use in polymerisations in 

scC02• In the following section, the structure and stabilising ability of a range of 

these materials will be considered. 
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1.3.3.1 Homopolymer Stabilisers 

DeSimone and coworkers were the first to develop a successfu l dispersion 

polymeri sation method for methyl methacrylate eMMA) using a fluorinated 

stabiliser, Poly(l , I-dihydroperfluorooctyl acrylate), PFOA. 17 The polymer 

consists of an acrylic backbone and a fluorinated side cha in (Figure 1.16, a) . 

a) b) 

0 0 Polymer-philic 

0 0 Group 

c) c) 
2\ 2\ 

CF2 CF2 
CF / CF / 

2\ 2\ CO 2-philic 
CF2 CF2 G roup 

CF/ CF / 
2\ 2\ 

CF2 CF2 
CF / CF/ 

3 3 

Figure 1.16: Structure of a) homopolymer stabiliser PFOA, with polymer­

philic backbone and fluorinated CO2-philic side chainst7 and b) methacrylate 

analogue, PFOMA. 141 
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The hydrocarbon backbone ofPFOA acts as the polymer-philic portion, whilst the 

CO2-philic fluorinated groups project into the continuous phase and enable steric 

stabilisation, preventing flocculation. The stabiliser was employed in the 

dispersion polymerisation of MMA, producing a free-flowing powder with high 

molecular weight and conversion. 142 Scanning electron microscopy (SEM) 

revealed a uniform, spherical morphology with particle size diameter of 1.2-

2.5 11m (Figure 1.17) . Following this work, successful dispersion polymerisations 

have been conducted using PFOA as a stabiliser for the synthesis of a number of 

I . d· N 143 SI41 d PV 144 po ymers, mclu mg P VP, P an Ac. 

Figure 1.17: Spherical particle morphology of PMMA products obtained 

using PFOA in dispersion polymerisation (1.2 wt % PFOA).142 

Poly(l,l-dihydroperfluorooctyl methacrylate), also known as PFOMA, is a 

methacrylate analogue of PFOA that has been developed (Figure 1.16, b). This 
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homopolymer stabiliser has also been used with success ill the dispersion 

polymerisation of PS, producing micron sized particles. 141 

Functionalised homopolymers are a second class of homopolymer stabilisers that 

have met with success in dispersion polymerisations in scC02 (Figure 1.18). 

a) 

b) 

c) 

CF
3 

0 

F~l~cfo~cF~O~ 
2 I 

CF3 

\ / 
~s;"-o--ks;~o 

o Polymerisable 
Anchor Group 

Figure 1.18: Functionalised homopolymer stabilisers: a) Krytox-157 FSL; 145 

b) Butyl ester capped PFPE; 146 c) PDMS-mMA. 147 
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Krytox-157 FSL is a commercially available acid terminated perfluoropolyether 

(PFPE), in which the polymer-philic head group consists of a carboxylic acid 

which is capable of hydrogen bonding (Figure 1.18, a). 

The successful polymerisation of MMA in scC02 using Krytox-157 FSL· was 

reported by Christian et al. and a high molecular weight PMMA product with 

high yield and spherical microparticle formation was observed. 145 FT -IR was also 

used to confirm a hydrogen bonding interaction between the carboxylic acid 

terminal group and the PMMA particles, which causes effective partitioning of 

the PFPE chains between the continuous and discrete phase. A key advantage of 

Krytox-157 FSL is the ability of the polymer to act as a stabiliser without being 

chemically incorporated into the final polymer structure. 

In addition to this, a butyl ester capped PFPE has also been employed in the 

dispersion polymerisation of MMA in scC02, leading to the production of 

spherical microparticles (Figure 1.18, b ).146 The mechanism of stabiliser 

anchoring to the growing polymer particles has been attributed to weak Van der 

Waals forces in the case ofPFPE, rather than a hydrogen bonding interaction. 

Further to this, the effect of different stabiliser architectures has been investigated, 

incorporating three different types of PMMA-philic terminal head groups and 

employing PFPE chains as the C02-philic component. 148 An alcohol, acetate and 

methacrylate head group were all considered,· and compared to the polymer 

product obtained in the absence of stabiliser. It was observed that in comparison 

to a PFPE-alcohol stabiliser, incorporation of a small anchor group such as an 
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acetate group, or a reactive methacrylate unit, had a significant impact on the 

dispersion polymerisation of MMA in scC02, leading to improvements in yield, 

molecular weight and morphology of the final product. PFPE-alcohol is likely to 

self-associate as a result of the hydroxyl group, preventing it from sufficiently 

anchoring to PMMA. Incorporation of an acetate group enables interaction with 

the growing PMMA particles through a weak Van der Waals interaction. Further 

to this, application of a methacrylate-capped PFPE dramatically enhanced the 

anchoring ability, as the stabiliser is able to covalently graft to the growing 

PMMA chains through this reactive end-group. This study highlights the 

importance of choosing an effective stabiliser anchor group in order to effectively 

support dispersion polymerisation in SCC02. 

Silicone polymers are also attractive as stabilisers, possessing favourable CO2-

solubility but being much less expensive than fluorinated materials. In 1996, 

Shaffer et at. reported the dispersion polymerisation of MMA in CO2 using a 

commercially available methacrylate-tenninated poly( dimethylsiloxane) 

macromonomer, PDMS-mMA (Figure 1.18, c). 147 The stabiliser possesses a 

reactive tenninal group, which allows chemical incorporation into the growing 

polymer particle. High molecular weight PMMA product with a good yield and 

unifonn, spherical particles were obtained, but increased stabiliser loadings were 

typically required for good control over particle morphology (3.5-16 wt %). It was 

also observed that only a fraction of the PDMS-mMA was grafted to the PMMA 

particles « 0.7 wt % PDMS-mMA). 
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Polymerisation in the presence of a PDMS homopolymer, which lacks the 

reactive methacrylate end-group, was not very effective in the dispersion 

polymerisation of MMA, highlighting the importance of the terminal group in 

stabilising ability. 147 In addition, polymerisation of V Ac in scC02 has been found 

to be unsuccessful, proving the weak anchoring ability of PDMS-mMA to be 

insufficient for stabilising the synthesis of PV Ac particles. 144 
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1.3.3.2 Block Copolymer Stabilisers 

Block copolymers have been found to act as successful stabilisers, being 

composed of a CO2-philic block and a polymer-philic/anchoring block. As a result, 

a number of block copolymer structures have been extensively employed as 

stabilisers for dispersion polymerisation in scC02 (Figure 1.19). 
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Figure 1.19: Key block copolymer stabiliser structures: a) PS-b-PFOA;149 

b) PVAc-b-PFOA;144 c) PMMA_b_ PFOMA ;ISO, ISI d) PS-b- PDMS ;IS2 e) PMA-

b-PDMS.IS3 
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Canelas et al. first showed that a stabiliser of PS-b-PFOA was effective for the 

dispersion polymerisation of styrene in scC02 (Figure 1.19, a).149 The stabiliser 

was used to produce spherical microparticles with high molecular weight, and the 

polymer product was observed to depend upon the molecular weight of the 

stabiliser employed. Increasing the length of both blocks led to a corresponding 

decrease in particle size distribution and diameter, with diameters ranging from 

0.24-0.4 J,lm. In addition, the effect of the anchor-to-soluble balance (ASB) of the 

stabiliser was considered, which corresponds to the relative lengths of the CO2-

philic segment and the CO2-phobic anchoring segment. 124 The ratio of the CO2-

soluble PFOA component was varied, although no discernible trend was 

observed. 149 The monomers hydroxyethyl methacrylate l54 and glycidyl 

methacrylate l55 have also been polymerised successfully in scC02 using PS-b-

PFOA. 

PV Ac-b-PFOA stabilisers were developed for use m the dispersion 

polymerisation ofVAc, and met with success (Figure 1.19, b). 144 The size of the 

PV Ac particles was found to be larger than usually observed for other polymer 

latexes prepared in scC02, and this was attributed to a decreased nucleation rate 

and fewer resulting nuclei. 

D" .. f h MMA I50 d d" lb 151 h IsperslOn polymensatlOns 0 t e monomers an lvmy enzene ave 

been investigated using stabilisers ofPMMA-b-PFOMA. The molecular weight of 

the polymeric stabiliser and the anchor-to-soluble balance were found to have a 

significant effect on the resulting yield and particle morphology in both cases. 

The length and C02-philicity of the stabiliser was successfully controlled through 
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variation of the fluorinated block. Higher molecular weight block copolymers and 

more highly fluorinated block copolymers were observed to be much more 

effective stabilisers. 

Canelas and DeSimone also studied the application of PS-b-PDMS block 

copolymers, using the PDMS block as the C02-philic group (Figure 1.19, d).152 

The authors observed an increase in particle size as the stabiliser loading was 

decreased, with particle size diameters ranging from 0.31-1.15 Ilm. CO2 density 

was also observed to have a significant impact on particle morphology, whilst the 

presence of heptane had a negative impact on the particle morphology. The ASB 

was also found to be crucial in producing a stable dispersion polymerisation. 

Yates et al. reported the synthesis of poly(methacrylic acid)-b-PDMS block 

copolymers, consisting of a C02-philic PDMS block and a hydrophilic PMA 

block (Figure 1.19, e).153 Uniform PMMA particles were successfully obtained. 

The unique property of this stabiliser is that it can be employed to form water­

dispersible PMMA powders. This is a result of the nature of the surfactant, which 

can provide stabilisation in both CO2 and water. 

- 53 -



Chapter I: Introduction 

1.3.3.3 Graft Copolymer Stabilisers 

Graft/comb-type stabiliser architectures have also found success in dispersion 

polymerisations in scC02, consisting of a polymer-philic backbone and CO2-

philic grafted polymer chains (Figure 1.20). 
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Figure 1.20: Graft copolymer stabilisers: a) (PMMA-co-HEMA)-g-PFPO; 156 

b) Poly(methyl vinyl ether-aft-maleic anhydride) derived graft structure. 157, 

158 
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Lepilleur and Beckman investigated a series of stabilisers based on a CO2-phobic 

poly(MMA-b-hydroxyethylmethacrylate) backbone, with varying percentages of 

a CO2-philic poly(perfluoropropylene oxide) graft (Figure 1.20, a).156 The 

stabiliser was found to be active in the dispersion polymerisation of MMA, 

leading to the production of micron-sized particles in good yields and with high 

molecular weight. 

Giles et al. investigated novel graft copolymer stabilisers synthesised from 

poly(methyl vinyl ether-alt-maleic anhydride) (Mn =79 800 glmol) (Figure 1.20, 

b).I57, 158 On thermal ring opening in the presence of a fluorinated alcohol, the 

polymer formed a grafted copolymer capable of supporting dispersion 

polymerisation (Figure 1.21). 

150 °C, 7 days 
• 

Figure 1.21: Thermal ring opening of poly(methyl vinyl ether-aft-maleic 

anhYdride).158 
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The surfactants were found to be effective in the stabilisation of dispersion 

polymerisations of MMA in scC02, stabilising through a hydrogen bonding 

interaction between the carbonyl group of methyl methacrylate and carboxylic 

acid groups on the stabiliser. Stabiliser activity was found to be independent of 

backbone chain length, whilst in contrast, the addition of pendant hydrocarbon 

moieties to the grafted chains had a significant impact. 157 
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1.3.3.4 Random Copolymer Stabilisers 

Random copolymers have also been reported as effective stabilisers, and a 

number of random copolymers have been employed successfully for dispersion 

polymerisations in scC02 (Figure 1.22). 
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Figure 1.22: Random copolymer stabilisers: a) PS-co-PFOMA;IS9 b) PPG-co­

PFOEMA ;160, 161 c) PDMAEMA-co-PFOMA ;162 d) PDMAEMA-co-PSiMA;163 

e) PDPAEMA-co_ PSiMA.163 
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Shiho et al. synthesised random copolymers of PS and PFOMA, which were 

subsequently applied In the dispersion polymerisation of styrene 

(Figure 1.22, a).I S9 It was found that the fluorinated random copolymers were 

highly effective stabilisers, generating micron-sized polystyrene particles at high 

yields. Particle size was observed to decrease with a corresponding increase in the 

proportion offluorinated acrylate within the stabiliser. 

Random copolymer stabilisers of poly(perfluorooctylethylene methacrylate) and 

poly(propylene glycol) (PFOEMA-co-PPG) have also been reported, and used in 

the dispersion polymerisation of MMA I60 and styrene l61 in SCC02 (Figure 1.22, b). 

Both monomers were successfully synthesised using these stabilisers, producing 

spherical microparticles (Figure] .23). 

Figure 1.23: PMMA particles synthesised with random copolymers 

stabilisers at 5 wt % loading and varying composition: a) 52 % FOEMA and 

b) 75 % FOEMA. 
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More recently, Yuvaraj et al. demonstrated the synthesis of random copolymer 

stabilisers ofPFOMA-co-PDMAEMA and their application in the synthesis ofPS 

particles (Figure 1.22, C).162 The DMAEMA units acted as the polymer-philic 

anchor group, allowing adsorption to the PS particles, and subsequent stabilisation. 

The same group also reported the synthesis of non-fluorous random copolymers 

through the copolymerisation of 3-[tris(trimethylsilyloxy)silyl]propyl 

methacrylate with DMAEMA and diisopropylaminoethyl methacrylate 

(DPAEMA), forming poly(SiMA-co-DMAEMA) and poly(SiMA-co-DPAEMA) 

(Figure 1.22, d_e).163 The stabilisers were prepared with different co-monomer 

compositions and employed in the dispersion polymerisation of styrene in scC02. 

Both composition and stabiliser concentration were found to affect the final 

polymer product. In addition, poly(SiMA-co-DPAEMA) provided better 

stabilisation in comparison to poly(SiMA-co-DMAEMA), which the authors 

proposed was a result of increased methyl branching in the DP AEMA pendant 

group. 
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1.3.3.5 Hydrocarbon Stabilisers 

The majority of surfactants discussed so far have been predominantly composed 

of fluorinated and silicone units, which provide enhanced CO2-solubility. 

However, these materials are expensive, and also potentially toxic, making them 

largely unsuitable for wide-scale industrial use. Economically viable alternatives 

are required if polymerisations in SCC02 are to become a possibility. 

Recently, considerable academic research has focused on the development of 

inexpensive hydrocarbon stabilisers. A number of polymers have already been 

identified as possessing promising C02-philicity, with the potential to act as 

effective stabilisers. 164-170 The phase behaviour and stabilising ability of 

hydrocarbon materials synthesised by a number of research groups will be 

considered in Chapter 3. The focus of this thesis is the study of potential new 

hydrocarbon stabilisers for application in SCC02 and will form the main body of 

this work. 
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1.4 Research Aims 

One of the continuing challenges in the application of SCC02 as a solvent for 

polymerisation is the design of CO2-soluble stabilisers which are inexpensive, 

non-toxic and efficient. The focus of this thesis is to address this issue and 

investigate the design of a range of novel hydrocarbon stabilisers for dispersion 

polymerisations in scC02. 

Chapter 3 presents the synthesis of hydrocarbon stabilisers of poly(vinyl acetate) 

(PVAc) and poly(vinyl pivalate) (PVPi) using the controlled technique of RAFT 

polymerisation. A series of stabiliser materials with defined molecular weight and 

low polydispersity are presented, with various molecular weights and monomer 

compositions. The phase behaviour of these stabilisers is investigated using a high 

pressure variable volume view cell, and the solubility of these materials in scC02 

is discussed. 

Chapter 4 aims to determine the efficacy of these previously synthesised materials 

as stabilisers in dispersion polymerisations in SCC02. A variety of stabilisers are 

tested, and the effect of stabiliser molecular weight and composition on the 

dispersion product is compared, along with additional parameters such as 

stabiliser loading. 

Finally, Chapter 5 examines a number of additional areas of research dealing with 

the architecture of the stabiliser. A series of block copolymers are compared and 

contrasted for solubility and stabilising ability in scC02. In addition, the impact of 

changes to the stabiliser end groups are considered. 
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Chapter 2: Experimental and Characterisation 

Techniques 

This chapter describes the experimental and characterisation techniques employed 

throughout the thesis. There are two main sections to this chapter. The first half of 

the chapter is concerned with experimental techniques employed, and in particular 

the high pressure equipment used to carry out dispersion polymerisations in 

scC02• For the majority of high pressure reactions, stainless steel clamp-sealed 

vessels were used and this section focuses on these high pressure vessels. 

The second half of the chapter details the characterisation techniques used to 

analyse the materials synthesised in this thesis. Stabilisers were fully 

characterised to determine their composition and molecular weights. The 

dispersion products obtained from polymerisation using scC02 were also analysed 

to determine conversion, molecular weight and particle morphology. 
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2.1 High Pressure Equipment 

2.1.1 General High Pressure Setup 

A typical high pressure system will consist of a means of supplying pressure to 

the system (C0 2 pump), a high pressure vessel for conducting reactions, and 

monitoring equipment necessary to monitor the pressure and temperature. A 

standard high pressure system des igned to conduct polymerisations in SCC02 IS 

outlined in schematic form (Figure 2. 1). 1-3 

HIP 

Non 
Return 

HIP 

HIP Non HIP 
Return 

1. PM-101 SFE Pump 
2. Compressor 
3. Overhead Stirrer 
4. Mk III Autoclave 
5. Heating Jacket 

I 

8 I 

I 
I 

-------- -, 
I 
I 

I 

8 

I.-T_r_ip--,I- - - -~ -- -- -- - : 

6a . Piezoelectric Transducer 
6b. Pressure Monitor 
7a. K-Type Thermocouple 
7b. Temperature Control Box 

Figure 2.1: Schematic diagram of high pressure rig setup. 
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The PM-101 SFE Pickel pump, supplied by New Ways of Analytics, was used as 

the means of delivering compressed CO2 to the reaction vessels. The pump 

possesses a gas input valve and a refrigerator unit for gas liquefaction. Output 

pressure is controlled by compressed air (6 bar), which compresses the liquefied 

CO2 by means of a high surface area ratio piston setup (111: 1). This is regulated via a 

regulator knob on the front of the pump. The pump draws gas from a supply 

cylinder, where it is condensed into liquid C02. The compressed air drives a large 

piston connected to a smaller piston, and the difference in surface area of the two 

pistons allows the relatively low air pressure to compress the liquid CO2 to the 

desired pressure, and the pressurised liquid is fed into the reaction vessel as 

required. 

Stainless steel piping supplied by Swagelok was used to transport liquefied CO2, 

with 1/16 " piping being used for delivery ofliquid C02 to the autoclave and 1/8 " 

piping for the direct delivery of CO2 into the autoclave head. HIP valves were 

employed to control the inlet and outlet of CO2 during reactions. The valves 

allowed for the controlled delivery of CO2 to the vessel as required, and the 

release of CO2 at the end of the reaction procedure. Non-return valves were also 

employed to prevent backflow of CO2. 

The high pressure vessel used for polymerisations consisted of a stainless steel 

autoclave which will be discussed in the following section. 
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2.1.2 MK III Clamp Sealed Autoclave 

All dispersion polymerisation reactions reported in this thesis employed a 60 mL, 

clamp-sealed Mk III autoclave made of stainless steel. The autoclave was 

designed in-house at the University of Nottingham and is detailed extensively 

elsewhere.4
, 5 The autoclave consists of a stainless steel base and a head 

attachment which make up the main autoclave high pressure reaction chamber. A 

photograph and schematic diagram of the Mk III autoclave and the safety 

key/clamp system are shown in Figure 2.2 and 2.3 respectively. 

There are two main components to the vessel; the autoclave head and the 

autoclave base. The head is attached to the base using a stainless steel clamp, 

safety key, and polymeric a-ring (Figure 2.4). 

The polymeric a-ring (EPDM) and clamp are used to seal the head of the 

autoclave to the body under high pressure. The use of a metal-rubber seal rather 

than a direct metal-metal seal prevents damage to the stainless steel autoclave 

through wear and tear to the stainless steel components. The a-ring sits in a 

grooved seal bed at the top of the autoclave body. The clamp is used to lock the 

two sections of the autoclave unit together, and utilises a hand-tightened screw 

mechanism to secure the clamp finnly in place. Use of the EPDM a-rings and 

stainless steel clamp mechanism for sealing the vessel makes the Mk III autoclave 

suitable for pressure up to 300 bar at 300°C. 
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Figure 2.2: Mk III autoclave and components consisting of (a) autoclave base; (b) 

autoclave head; (c) clamp; (d) safety valve; (e) inlet pipe; (I) outlet pipe; (g) 

thermocouple; (h) magnetically driven overhead stirrer. 

Safety valve 

O-ring 

I 
I 
I 
I 
I 
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I :( _ / 

I L _______ J 

Magnetically coupled stirrer 

Autoclave head 

Autoclave body 

Figure 2.3: Schematic diagram of the Mk III autoclave. 
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The head of the autoclave consists of five main ports. Three of these are used for 

the inlet tap, outlet tap and thermocouple. The inlet tap connects to a pressure 

transducer to allow constant monitoring of the pressure within the system. The 

outlet tap allows for easy removal of C02 from the reaction vessel. The remaining 

two ports are sealed with metal plugs which can be removed if additional features 

should need to be incorporated. 

Figure 2.4: Separate components of the Mk III autoclave. 

The autoclave head also possesses a safety valve. A safety needle is used to 

provide the final means of sealing the cell. The safety needle fits securely into the 

safety valve using the attached pinwheel. If the safety needle is loosened slightly 

Whilst the vessel is under pressure with CO2, a small hole opens in the autoclave 
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head via the safety valve, which allows the CO2 to escape gradually. This is a 

useful means of protection if there is residual gas trapped within the cell. The 

pinwheel and safety needle combine to form the safety key, which is unique to 

each autoclave and is the means by which the clamp is tightened into position 

during assembly (Figure 2.5). One of the design features of this component is that 

the safety key/valve must be loosened and removed before the clamp can be 

opened and the autoclave taken apart. This ensures all residual pressure is 

released before the vessel is fully opened. 

Figure 2.5: Unique safety key and clamp feature of Mk III autoclave. (a) Clamp and 

safety pinwheel with unique key design which specifically fits the partner clamp; (b) 

Example of pinwheel and safety needle being employed as the key for the clamp. 
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Piezoelectric transducers were used to monitor the reaction pressure. A 

piezoelectric transducer uses the piezoelectric effect to monitor the pressure input 

signal by converting it to an electrical output signal. The transducer is equipped 

with a quartz crystal which acts as the piezoelectric element. This crystal 

experiences proportional strain under pressure, which generates electrical output 

representative of the pressure of the system. A digital readout unit enables the 

output of the transducer, and subsequently the pressure of the system, to be 

effectively monitored. 

A custom-made heating jacket (Watlow) which fits around the exterior of the Mk 

III autoclave body provides excellent thermal contact for efficient heating during 

reactions. A K-type thermocouple extends into the autoclave cavity via one of the 

five main ports in the autoclave head and allows the internal temperature of the 

autoclave to be monitored. The thermocouple is connected to a digital heating 

controller (CAL Instruments 3300) and allows the temperature to be adjusted as 

required. 

A magnetically coupled overhead stirrer is built into the head of the autoclave and 

allows stirring of the reaction contents within the vessel to take place. The stirrer 

is screwed into the centre of the autoclave head and sealed with a small O-ring. 

The shaft of the stirrer extends downwards into the main body of the vessel, 

where a stirrer blade is attached. An overhead stirring motor (lKA Eurostar 

Digital) is magnetically connected to the autoclave stirrer shaft during the 

experimental procedure and enables rotation of the stirrer blade between 50-2000 

rpm to ensure efficient mixing during the polymerisation process. A trip switch is 
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incorporated into the final setup to ensure that if the pressure within the vessel 

reaches above a 345 bar limit, the power to the temperature controller and heating 

jacket will be automatically disabled. 

2.1.3 Procedure for Dispersion Polymerisation in scC02 

A standard polymerisation procedure was used for the dispersion polymerisation 

of I-vinyl-2-pyrollidone (NVP) and other monomers in SCC02. A schematic 

outline of this procedure can be seen in Figure 2.6. The procedure is as follows: 

1. Prior to use, the cell was connected to the inlet tap and terminal tap via 

Swagelok fittings, and the autoclave and connecting pipes were leak 

tested with nitrogen (to ~ 207 bar) to ensure all fittings were secured 

correctly and there were no leaks at the seals/joints. The inert gas was 

then vented from the terminal tap. After depressurisation, the autoclave 

body was charged with initiator V-70 (O.13g, 4.2 x 10-4 mol). Typically in 

the dispersion polymerisations described throughout this thesis, the ratio 

of monomer: stabiliser: initiator was 250: 1: 10. 

2. The autoclave head was attached to the cell body and clamp sealed, using 

the pressure release pinwheel to tighten the clamp to its final position. 

The cell was then flushed with C02 (~3 bar) for 15 minutes. 

3. The hydrocarbon stabiliser material (0.42g, 4.2 x 10-5 mol) being tested 

was dissolved in the monomer NVP (S.32g, 7.2 X 10-2 mol) and the 

solution was subjected to 3 freeze-pump-thaw cycles. The degassed 
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solution was withdrawn usmg a glass syringe and the mixture was 

injected into the cell through the safety valve. The pinwheel was placed 

back in the valve and tightened. 

4. The autoclave was filled to ~55 bar with CO2• The heater was then 

connected and set to the required temperature (35°C) and the 

magnetically driven overhead stirrer was positioned on the autoclave head 

and set at 300 rpm. 

5. Once the final temperature was attained and the system allowed to 

stabilise, the cell was gradually filled up to the final pressure (276 bar). 

The reaction proceeded for 48 h. 

6. After 48 h, the heater was switched off at the mains and the cell cooled. 

The cell was vented slowly through the terminal tap into the fume hood, 

until atmospheric pressure was reached. The clamp was removed and the 

autoclave opened. Following successful dispersion polymerisation, the 

product was retrieved from the autoclave base as a dry, free flowing, 

white powder. 
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Figure 2.6: Schematic diagram illustrating the stepwise procedure for a typical 

dispersion polymerisation conducted in sceoz• 
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2.1.4 High Pressure Variable Volume View Cell 

The determination of the phase behavior of materials in scC02 was carried out 

using a high pressure variable volume view cell , designed and developed at the 

University of Nottingham for the key purpose of observing phase transitions 

under high pressure.6 The apparatus has been fully detailed elsewhere.4
, 6, 7 Here 

the main points of operation in this work are clarified. The view cell consists of 

three main units (Figure 2.7): a high pressure variable volume view cell body, a 

hydraulic intensifier unit and an integrated electronic control box for efficient 

monitoring and adjustment of the internal temperature/pressure of the vessel. 

Figure 2.7: Photograph of the hydraulic variable volume view cell comprised of 

three key units. 
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The variable volume view cell adopts fundamental features present in the Mk III 

autoclave, with similar sealing, heating and stirring mechanisms. Six heating 

cartridges are slotted into cavities in the walls of the view cell body to deliver 

efficient heating to the cell. A magnetically coupled stirrer is positioned beneath 

the body of the view cell , which is used to rotate a magnetic flea inside the 

chamber. The main body has three main ports ; one at the left for the inlet (lnd 

outlet of CO2, one at the right for a K-type thermocouple which protrudes into the 

main chamber for monitoring the internal temperature, and a third at the top for 

the safety valve/key (Figure 2.8) . 

Figure 2.8: Photograph of front of view cell, which allows direct observation of 

phase transitions. (a) Safety valve; (b) CO2 inlet; (c) CO2 outlet; (d) Clamp; (e) 

Sapphire window (f) Internal thermocouple; (g) Magnetically coupled stirrer; 

(h) CO2 bomb for delivery of gas to view cell. 
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The main body of the view cell is constructed of stainless steel and has a static 

sapphire window at the front, allowing for visualization of the phase behaviour 

(Figure 2.9). 
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1. Static sapphire window 5. Rear clamp 9. Teflon Seat 
2. Rear sapphire piston 6. Safety valve 10. External thermocouple 
3. Hollow hydraulic ram 7. Window 11. Heating cartridges 
4. Front clamp 8. Spacer 12. Stirrer 

Figure 2.9: Schematic of hydraulic variable volume view cell, allowing the internal 

volume of the cell to be increased/decreased through the hydraulic unit, 

Subsequently adjusting pressure. Cell is lighted from behind to allow for visual 

observation. 
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The sapphire window sits on a Teflon seat in a stainless steel holder against an 

EPDM O-ring. Upon pressurising the cell, the sapphire window is forced against 

both the seat and the O-ring, creating an effective seal. A stainless steel spacer is 

also used in the window holder to adjust the volume of the vessel. 

At the rear of the cell body a hollow hydraulic ram is fitted with a second sapphire 

window, which fonns the piston. The rear sapphire piston is fitted with a 

hydraulic type seal made of PTFE, energised with a sprung stainless steel band. A 

PEEK backup ring is incorporated to prevent the hydraulic type seal from 

creeping in the sapphire groove. Finally, two PTFE rings are placed around the 

sapphire piston to aid movement throughout the main cell body as the piston 

slides backward and forward (Figure 2.10). An LED light is also positioned at the 

rear of the view cell so that the contents of the vessel can be visualised clearly and 

with accuracy. 

Figure 2.10: Sapphire piston and associated high pressure seals. (1) Image of rear 

sapphire window sealing system highlighting (a) stainless steel energised PTFE seal; 

(b) PEEK backup ring; (c) PTFE rings. (2) Overhead view of sprung stainless steel 

PTFE seal. 

- 87 -



Chapter 2: Experimental and Characterisation Techniques 

The piston is controlled by the hydraulics intensifier unit, which is able to deliver 

a smooth flow of hydraulic fluid int%ut of the hollow ram. The hydraulic fluid 

displaces the position of the ram and in tum, the sapphire piston. This allows the 

internal volume of the cell to be increased and decreased via movement of the 

sapphire piston, resulting in a corresponding change in the internal pressure of the 

cell. Two switches are incorporated into the electronic control box to adjust 

hydraulic pressure as required. 

2.1.5 Procedure for Determination of Phase Behaviour in SCC02 

The hydraulic variable volume view cell was employed for determination of 

phase behavior data for various synthesised stabiliser materials throughout this 

thesis.4,6 

Cloud point experiments were typically carried out using 15 wt % of monomer 

with respect to CO2, and 5 wt % stabiliser w.r.t monomer. These quantities were 

used in order to mimic the initial conditions of a typical high pressure 

polymerisation in a 60 mL autoclave. A C02 loading of ~ 20 g was used in all 

phase behaviour studies. CO2 was added to the view cell using a stainless steel 

CO2 cylinder, which was weighed both prior to and after use to determine the 

weight of C02 in each experiment. 

The procedure for a typical view cell experiment IS shown schematically 

(Figure 2.11), and can be described as follows: 
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I. The stabiliser was dissolved in a specific amount of monomer and injected 

into the view cell through the safety needle valve port. C02 was added to 

the view cell through the inlet via a stainless steel bomb. The bomb was 

gently heated to aid C02 transfer. The bomb was disconnected once the 

cell was half filled with C02 (corresponding to ~ 20g). The exact weight of 

CO2 added was calculated by weighing the bomb before and after 

addition. 

2. The contents of the view cell were then stirred and the temperature was 

allowed to rise to the desired value (e.g 35°C). The system was then 

allowed to equilibrate for 10 minutes. The sapphire piston was pushed 

forwards via the hydraulic system in order to increase the pressure by 

decreasing the internal volume. Once a sufficiently high pressure is 

reached, the stabiliser/monomer mixture will be completely dissolved and 

the light at the back of the cell will be completely visible. 

3. The piston was then slowly moved back to decrease the internal pressure, 

and at a particular pressure the stabiliser started to precipitate out. This 

allows accurate recording of the pressure at which the polymer precipitates 

out of the continuous phase at a given termperature. This point can be 

defined as the cloud point. Cloud point measurements were taken from 35-

75°C and used to produce pressure-temperature phase diagrams. 
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Figure 2.1 J: Schematic procedure for the high pressure variable volume view cell. 

(1) View cell is filled with scC02 and polymer as two separate phases. (2) The rear 

piston is moved forwards and cell volume decreases, increasing pressure and 

solubilising the polymer in the continuous phase. (3) The piston is moved backwards 

and the pressure is lowered until the cloud point pressure is reached. 
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The cloud point pressure was measured as the point at which the LED lamp at the 

rear of the view cell was completely obscured by precipitated polymer 

(Figure 2.12). 

Figure 2.12: [mages of a typical CO2/Polymer/Monomer mixture. (1) A 

homogeneous mixture with the polymer completely dissolved in CO2 and the 

backlight and magnetic stirrer bar completely visible; (2) A typical cloud point, with 

a heterogeneous mixture of precipitated polymer in CO2• 

All cloud point pressures in this thesis were taken three times and an average of 

these measurements was used, accurate to ±O.5-1.0 bar. Temperature of the 

system was controlled with a K-type thermocouple accurate to ±O.3 0c. The 

maximum safe working pressure of the view cell is 414 bar, so if a sample is 

insoluble below this pressure, no reading can be obtained. 
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2.2 Characterisation Techniques 

2.2.1 Gel Permeation Chromatography (GPC) 

Molecular weight and its distribution are key parameters in the characterisation of 

polymers. The molecular weight and polydispersity will affect the physical 

properties of a polymer. Gel permeation chromatography, or size exclusion 

chromatography, is a fundamental technique for polymer analysis, which allows 

both molecular weight and the polydispersity of a sample to be determined. 8-10 

Molecular weight and polydispersity of the hydrocarbon stabiliser samples within 

this thesis were determined using Gel Permeation Chromatography (PL-GPC 120, 

Polymer Labs) with differential refractometer detection. THF was employed as an 

eluent, with 2 columns (30 cm, PolarGel-M) in series calibrated against 

-1 

polystyrene standards and a flow rate of 1 mL min . A PL-GPC 50 was employed 

for characterisation ofpoly(vinyl pyrrolidone) (PNVP) samples, using chloroform 

with 5 % triethylamine as the eluent, and calibration against PS standards. 

2.2.2 Nuclear Magnetic Resonance (NMR) 

IH NMR is a technique widely applied in the chemical, structural and electronic 

study of molecules. NMR studies the magnetic nuclei of molecules by the 

alignment of the nuclei with a constant applied magnetic field, and the alignment 

is perturbed using an alternating external magnetic field. NMR allows a spectrum 

of resonance frequencies of the molecule to be generated which gives information 
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about the chemical structure. I I. 12 NMR is used throughout this work to probe the 

structure, composition ratio, conversion and molecular weight of polymers. 

All IH NMR spectra were obtained using a Bruker DPX-300 (300 MHz) 

spectrometer, with CDCh as the solvent. Analysis was carried out using 

MestRe-C software. 

2.2.3 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) is primarily used to study the surface 

topology of solid samples. The method uses a focused high energy beam of 

electrons which illuminates the sample and scans line by line over its surface 

whilst held in a high vacuum. 13
-
15 In this thesis, SEM will be used extensively to 

characterise the polymer products obtained during dispersion polymerisation. 

All SEM analysis was carried out using a JEOL 6060L V Variable pressure 

scanning electron microscope. Image analysis was performed with JEOL analysis 

software (version 6.57). Samples were prepared by placing the polymer sample on 

the surface of adhesive carbon tabs. These were attached to aluminium stubs, 

which were sputter coated with gold using a Balzers SCD 030 gold sputter coater. 

Mean particle diameter (Dn, /lm) of the samples was determined by measuring 

-100 particles from SEM data using ImageJ analysis software, and calculating a 

mean value from these results. 
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2.2.4 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) is a thermal analysis technique in which 

the difference in heat flow rate between a sample and a reference material is 

monitored whilst both are subjected to a controlled temperature programme. 16-18 

DSC is a useful analytical tool in the study of polymers, as it allows a number of 

properties to be obtained, such as melting temperature and glass transition 

temperature. The technique is used throughout this thesis to obtain information on 

the T g of the synthesised stabiliser materials. 

TA- Q2000 DSC (TA instruments) was employed for thermal analysis of the 

hydrocarbon stabilisers within this thesis. The DSC was calibrated with an indium 

standard and a heating/cooling rate of 10°C/min was applied for all sample runs, 

with a nitrogen flow rate of 50 mLiminute, and a temperature range between 0 °C 

and 100°C. Aluminum sample pans were employed with a sample mass of 

approximately 5 mg. The T g was determined as the midpoint of the change in heat 

capacity during the second and third heating run for a given sample, and an 

average value from the two runs was taken. 
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Chapter 3: Synthesis and Solubility of PVPi-based 

Stabilisers for scC02 

This chapter describes the design and synthesis of hydrocarbon stabilisers using 

the monomer vinyl pivalate via RAFTIMADIX polymerisation. The chapter deals 

with the synthesis and characterisation of these materials, including detailed phase 

behaviour studies in scC02 using the high pressure variable volume view cell. 

The statistical copolymer stabilisers were synthesised from poly(vinyl acetate) 

(PVAc) and poly(vinyl pivalate) (PVPi) monomer units using RAFT/MADIX 

polymerisation. 

A variety of stabilisers were synthesised and tested with different monomer ratios 

and molecular weights. In addition, the effect of PDI, co-monomer weight 

percentage, and the use of alternative monomers to V Ac is briefly considered. 

RAFT terminated PVPi-X homopolymer and PVAc-s-PVPi-X statistical 

copolymer stabilisers were tested for solubility in scC02 using the high pressure 

variable volume view cell and fully characterised using NMR, OPC and DSC. 
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3.1 Introduction 

There have been a wide range of stabilisers designed for use in SCC02. However, 

as described in Chapter 1, these stabilisers are predominantly fluorinated and 

siloxane based polymers. Bearing this is mind, there is a need for polymers with 

the ability to act as alternatives to the costly and potentially toxic stabilisers 

currently available. The work presented in this section aims to prepare a series of 

hydrocarbon polymers with significant C02-solubility and the design of these 

materials forms the foundation of the work presented in this thesis. 

3.1.1 Stabilisers for scC02 

Supercritical carbon dioxide (SCC02) is an attractive alternative to conventional 

solvents for dispersion polymerisation because it is environmentally acceptable, 

inexpensive and leaves no solvent residues. I
-
3 However, a perceived major 

drawback to the use of scC02 is the poor solubility of high molecular weight 

materials.4
-
8 But this can be a distinct advantage for heterogeneous 

polymerisations, such as dispersion polymerisations. The major hurdle to 

overcome for any heterogeneous processing is the need for highly soluble 

dispersants or stabilisers that are commercially viable and environmentally 

acceptable. 

Dispersion polymerisation employs a stabiliser material which will anchor to the 

surface of the growing polymer particles in the reaction medium. Polymeric 

stabilisers are required in dispersion polymerisations to produce a stable latex of 

- 98 -



Chapter 3: Synthesis and Solubility ofPVPi-based Stabilisers for scC02 

growmg polymer particles and allow solubilisation of these particles in the 

continuous phase. I , 9 The stabilisers surround the surface of the individual 

polymer particles and in doing so provide a method of solvation for the 

macromolecules within the solvent system. Stabilisers tend to be amphiphilic and 

consist of two components; a polymer-philic anchor group and a CO2-philic tail. 

CO2-philic 
Segment 

Polymer-philic 
~ ... ---- Segment 

Particle 

Figure 3.1: Schematic of a growing polymer particle in scCOz, with 

surfactant molecules surrounding the surface and providing stabilisation. 

A number of materials have been used successfully as steric stabilisers in scC02 

based free radical polymerisation systems. However, many stabilisers are 

designed for organic or aqueous continuous phases and have limited solubility in 

CO2 because of the properties of carbon dioxide as a solvent.4 As previously 
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mentioned, carbon dioxide is a weak solvent for the majority of high molecular 

weight compounds. Supercritical CO2 can be described as a non-polar, 

hydrophobic solvent, comparable to n-hexane, but actually closer to that of 

fluorocarbon solvents. 1O The main difference between CO2 and hexane solvation 

strength involves the Lewis acid/base properties. CO2 is non-polar with no 

permanent dipole, but possesses a large quadrupole moment, which results in a 

small polarity and plays a significant role in determining its solvent properties.6 

This may be one of the factors attributed to the lack of solubility of polymers in 

CO2, as it is a weak solvent for many non-polar polymers. I I 

There are a limited number of polymers that are C02-soluble, predominantly 

amorphous fluorinated and silicone based polymers, exhibiting relatively high 

solubility in scC02 as a result of their strong interactions with the continuous 

phase. For this reason, fluorocarbon and silicone polymers have previously been 

adopted most commonly as the CO2-philic component of amphiphilic stabilisers. 

As described in Chapter 1, over the last two decades a range of fluorinated 

stabilisers, such as Krytox 157-FSL and poly(1, I-dihydroperfluorooctyl acrylate) 

(PFOA), have been successfully used in dispersion polymerisations in SCC02.12-15 

More recently silicones such as poly(dimethylsiloxane) (PDMS), have also shown 

promise as successful stabilisers for methyl methacrylate (MMA) polymerisations 

in SCC02.16, 17 To date a range of fluorinated and silicone homopolymer, block 

copolymer and graft copolymer structures have been employed in dispersion 

polymerisations.3
, IS, 18-22 However, the need to develop an alternative, 
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hydrocarbon-based stabiliser to replace these materials is becoming a key issue in 

polymer synthesis in CO2. 

3.1.2 Solubility of Non-Fluorous Polymers in CO2 

The use of fluorocarbons and silicones in CO2 has disadvantages, namely their 

potential toxicity and high cost. In addition, such stabilisers are often retained in 

the final product and adhere to the surface, affecting the properties of the material. 

The lack of inexpensive, alternative stabilisers is perhaps one of the key reasons 

why SCC02 processes have not been widely commercially adopted. Recently there 

has been an increasing drive to discover new C02 soluble hydrocarbon materials 

for use in scC02, which are free of silicone and fluorine containing components. 

This has led to a development in the understanding of the phase behaviour of 

hydrocarbon polymers in CO2. 

Significant research has focused on identifying polymers which are soluble in 

CO2 at moderate temperatures and pressures. Bray et al. recently reported the 

development of polyester libraries to aid in the understanding of structure­

solubility relationships between polymers and CO2?3 Whilst the linear alkyl 

polyesters were not significantly soluble in SCC02, branching in the diacid or diol 

moiety imparted a significant increase in solubility, and branching with acyl 

chains strongly enhanced solubility. This led to the conclusion that further 

development of highly branched polyesters could potentially provide polymers 

with high C02-philicity. 
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Beckman and coworkers reported the development of poly( ether-carbonate) (PEC) 

copolymers synthesised from propylene oxide (PO) and CO2, which were able to 

act as efficient, non-fluorous C02-philes and readily dissolved at low C02 

pressures (Figure 3.2).24 A PO/C02 copolymer of 250 repeat units with 15.4 % 

carbonate was found to be significantly more soluble than a comparable 

fluoroether. In addition, a PO homopolymer of equivalent chain length was found 

to be insoluble within the limits of the system (500 bar). The favourable solubility 

of the PEC materials was attributed to the main chain carbonate linkage, which 

acted to improve the enthalpy of mixing through the presence of a carbonyl group, 

increasing the degree of flexibility, and consequently the entropy of mixing. The 

authors proposed that the miscibility pressures of a copolymer exhibiting the 

optimal content of two monomers will be more soluble than either of the 

corresponding homopolymers. To demonstrate this, a series of polymers with a 

chain length of 25 repeat units was compared, and a 100 % carbonate polymer 

was found to be insoluble. However, a 40 % PEC copolymer exhibited lower 

cloud point pressures than a 100 % PO homopolymer, confirming the improved 

solubility of a copolymer structure. 

Figure 3.2: Poly(ether carbonate) developed by Beckman and coworkers.24 
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Cooper and coworkers also produced PEC and PEE copolymers as potential 

inexpensive hydrocarbon materials, using the method of step growth 

polymerisation?5 The polymers were found to be soluble in C02, but only at 

modest molecular weights of <10 kg/mol. Drohmann and Beckman also carried 

out research on a series of polymers including poly( ethylene glycol)s, 

poly(propylene glycol)s, copolymers of ethylene oxide and propylene oxide, and 

poly(ethyl vinyl ether).26 It was identified that the presence of an accessible ether 

oxygen enhanced C02-solubility through Lewis base-Lewis acid interactions. The 

solubility of these materials was found to be influenced by a range of factors 

including molecular weight and end-group of the polymer. Sugar acetate 

structures have also been proposed by Wallen et al. as potential C02-philes, with 

the incorporation of acetate groups within the peracylated sugar structure 

providing a route to carbohydrates with significant miscibility pressures in CO2.
27 

Recently, much attention has been given to the observed high solubility of 

hydrocarbon polymers such as poly(vinyl acetate) (PVAc) which contain carbonyl 

and acetate groupS.25, 28-31 These materials have been recognised as having 

appreciable solubility in CO2 when compared to other hydrocarbon polymers. The 

carbonyl group of PV Ac is proposed to be involved in favourable interactions 

with CO2; the electron-donating oxygen group of the carbonyl promoting Lewis 

acid-base interactions with the carbon of C02.32 Carbon dioxide is a weak Lewis 

acid and as such it has the potential to interact with functional groups such as 

ethers, esters and acetates (Lewis bases). Kazarian and coworkers confirmed this 

interaction using FT-IR spectroscopic studies to investigate the splitting of the 
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CO2 bending mode (lJ2).33 Further to this, Raveendran et al. carried out research 

involving a comprehensive spectroscopic study of CO2-carbonyl complexes, 

verifying this Lewis acid-base interaction. In addition, NMR and vibrational 

spectra gave evidence to suggest that there is an additional weak, cooperative 

intermolecular interaction between the -CH of the hydrogen atom attached to the 

carbonyl group, and the oxygen of the CO2.
34 
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Figure 3.3: Lewis acid-base interaction between PVAc and CO2• 

It is the interaction of the acetate functionality with CO2, and the accessibility of 

these groups, which results in the significant solubility of PV Ac. 

Poly(methacrylate) (PMA) has a very similar structure to PVAc, yet is much less 

soluble. PMA was observed by Shen et al. to have much lower solubility than 

PV Ac, with a cloud point pressure of 2250 and 640 bar respectively, despite the 
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fact that the repeat unit is comprised of the same functional groups, in slightly 

different positions.3o This distinct shift in solubility is probably related to the fact 

that the carbonyl group is positioned closer to the backbone of the polymer in 

PMA, and so is restricted in terms of rotational freedom. Conversely, PV Ac has 

an ether linkage separating the acetate group from the backbone, and the acetate 

group can rotate freely about this bond, making it more accessible for interaction 

with C02. 

PVAc PMA 

~~ 
Ether linkage - L " J n 

provides flexibility --.~ 0 
o==( Restricted 

CH3 
carbonyl group 

Figure 3.4: The structures of PVAc and PMA respectively. The ether linkage 

of PV Ac provides a means by which the acetate group can freely rotate to 

interact with C02. 

The highly CO2-philic nature of PV Ac compared to other hydrocarbon polymers 

has led to an increased interest in the design of PV Ac-based materials which have 

improved solubility. Howdle and coworkers reported the synthesis of a series of 

poly(vinyl alkanoate) copolymers using xanthate mediated RAFT polymerisation 
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to control the molecular weight and PDI. Both homopolymers and copolymers of 

vinyl acetate, vinyl butyrate and vinyl octanoate monomers were synthesised.35 

Vinyl acetate 

o 

HC~O~CH 
2 3 

Vinyl butyrate 

CH Vinyl octanoate 
3 

Figure 3.5: Vinyl monomers V Ac, VBu and VOc used for the synthesis of 

poly(vinyl alkanoate) stabilisers. 

The results suggested that solubility was improved by increasing the side chain 

length of the polymeric stabiliser via addition of VBu, to incorporate additional 

flexibility and increased free volume. However, as the alkyl chain was increased 

further, and copolymers of V Ac and VOc were synthesised, interactions between 

CO2 and the hydrocarbon chains became less favourable. It was proposed that the 

octanoate tail enhances the flexibility of the side chain, and also increases the free 
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volume, which improves solubility of the polymer in C02, but this increased 

flexibility cannot overcome the unfavourable energetics of the interactions 

between the alkyl chain and CO2• 

These results confirm previous observations from similar studies investigating the 

impact of alkyl chain length in SCC02.
36

, 37 McHugh et al., for example, observed 

for a series of poly(acrylates) with varying side chain lengths that the polymers 

with longer side chains were less soluble.36 At the temperatures employed in the 

study, polar interactions were proposed to have a significant impact. As the alkyl 

tail of the poly( acrylate) was increased, the effective polarity of the polymer also 

decreased, which resulted in reduced polymer solubility. This led to poorer 

solubility compared to the poly(acrylates) of smaller hydrocarbon side chain 

lengths. Increased solubility was observed if the chain was at least partially 

fluorinated, and had partial polarity. 

The synthesis of a range of CO2-soluble hydrocarbon alternating copolymers of 

vinyl acetate and dibutyl maleate has also been reported. 38 Phase behaviour 

measurements of the PV Ac-alt-PDBM polymers showed promising solubility, 

much higher than that of PV Ac homopolymer and approaching that of PFPE and 

PDMS-mMA, which was attributed to the increase in free volume of the polymer 

upon incorporation of the highly branched DBM monomer. 
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Figure 3.6: CO2-philic PV Ac-alt-PDBM copolymers.38 

All of these materials highlight routes to new hydrocarbon surfactants via the 

design of polymers with improved solubility in C02. However, currently there are 

only a limited number of polymers which have been found to possess significant 

CO2-solubility, and there is still a need to design C02-philic polymers for 

application in synthesis and processing, which approach the solubility of fluorine 

and silicone containing analogues. 
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3.1.3 Design of Hydrocarbon Stabilisers 

The design of novel, highly CO2-soluble stabilisers that overcome the current 

limitation requiring use of fluorinated or siloxane based materials for synthesis 

and processing is a key challenge for dispersion polymerisation in scC02. In light 

of this, and based upon previous observations, Beckman et af. developed a series 

of heuristics outlining the requirements a material must meet to act as a C02-

soluble stabiliser. 39 

Copolymer Stabiliser 

I 
I 

Monomer A Monomer B 

I I I 
High Flexibility High Free Volume Specific Interactions 

(Low Tg) (Low Steric Parameter) with Carbon Dioxide 

I I 
Side Chain Main Chain 

Weak Solute/Solute Interaction I I 
(Low Cohesive Energy Density) 

C=O from C=O from 

Acetate Carbonate 

Figure 3.7: Stabiliser design parameters proposed by Beckman et al. for 

synthesis of CO2-soluble hydrocarbon material.39 
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The results suggest that a hydrocarbon stabiliser should possess: 

(1) High flexibility e.g. ether oxygen linkages. The incorporation of 

increasing flexibility through the use of longer side chains or flexible 

linkages will act to increase the free volume of the polymer, often 

resulting in a subsequent decrease in the glass transition temperature and 

enhanced entropy of mixing, improving solubility. 

(2) High free volume e.g. highly branched structures. Increasing the free 

volume of a polymer via the incorporation of highly branched or flexible 

groups will act to increase the free volume and improve C02-solubility. 

Eastoe et al. demonstrated that the introduction of a high degree of 

branching through chain tip methylation of a series of hydrocarbon 

~ I d" d I b'l' 40 41 surlactants resu te In Improve so u I Ity. ' 

Figure 3.8: Anionic surfactant TC 4, triple chain analogue of AOT 

surfactant for use in sCCOZ•
4I 
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(3) Functional groups available to interact with carbon dioxide e.g. 

carbonyl/acetate groups. The presence of oxygen containing functional 

groups such as carbonyls will provide a specific interaction with C02. 

Such groups will also adjust the acidity of neighbouring protons, and will 

not significantly strengthen the self interactions ofthe solute.42 

(4) Weak solute/solute interactions. The material should have a weak self­

interaction and possess a low cohesive energy density, which results in 

low surface tension and a smaller barrier to dissolution. O'Neill et al. have 

proposed that the key characteristic a material should possess to exhibit 

C02-philicity is a weak self-interaction, as known interactions between 

C02 and many CO2-soluble polymer materials are relatively weak 

themselves.5 Weak self-interaction is an attribute of fluorinated and 

silicone polymers and contributes to their high solubility in scC02. 

Additionally, research on CO2-philic materials has also highlighted potentially 

unfavourable features which, when incorporated into a material, will have a 

negative impact on solubility in CO2. Enick et al. reported the development of a 

series of seven hydrocarbon polymers containing tertiary amine groups in either 

the backbone or the side chain.43 
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Poly(propylethyleneimine) 
(PPEI) 

~ 
o r-

}N~ 

~o 
o 
\ 

Poly(propylmethylacrylate 
ethyleneimine) (PPMAEI) 

Poly(2-ethyl-2-oxazoline) 
(PEOX) 

~ 
N 

(4 
N 

Poly(N,N-dimethyl 
acrylamide) (PDMAA) 

Poly(2-vinyl pyridine) 
(P2VP) 

Poly(4-vinyl pyridine) 
(P4VP) 

Poly(N-vinyl imidazole) 
(PVIZ) 

Figure 3.9: Structures of the nitrogen-containing hydrocarbon polymers 

tested by Enick et al. 43 

All of these polymers were found to be insoluble in CO2, despite the CO2-philic 

nature of the amine component. Ab initio calculations suggested that self 

interactions between the amine groups were energetically more favourable than 

CO2-amine interactions, resulting in this reduced solubility. Allyl containing 

polymers, which possess a -CH2- spacer between the backbone and pendant 

group, have also been found to decrease solubility.28 

As can be seen from the proposed guidelines in Figure 3.7, ideally a C02-philic 

polymer should be comprised of a copolymer of monomers MJ and M2. MJ 
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should generally contribute a high free volume, flexibility and weak self­

interaction between the solute, often resulting in a low Tg and steric parameter (a). 

The steric parameter gives an indication of chain flexibility and is a measure of 

the chain extension of the polymer in solution relative to the freely rotating chain. 

A lower a indicates greater flexibility and entropy of mixing, thus improved 

solubility. M2 should incorporate a means of interacting directly with CO2, to 

provide specific solute/solvent interactions, in the form of Lewis bases such as 

carbonyls and acetates. 

Interactions between MI and M2 should be enthalpically unfavourable to promote 

dissolution in CO2. The polymer should also be a copolymer structure, as a 

homopolymer of either MI or M2 will only optimise part of the free energy. It is 

also important to find a suitable balance between the two monomers, optimising 

both the enthalpy of mixing and the entropy of mixing. 

Despite extensive research and findings on designing C02-soluble hydrocarbon 

materials, it remains difficult to predict the solubility of a material in CO2, and 

characteristics such as a low T g or the presence of carbonyl groups will not always 

have as significant an impact on the solubility as expected. One example is that of 

poly(methylene acetate), which has a very high melting point and is reported to be 

insoluble in CO2, despite having a higher degree of acetylation than PV Ac. 31 

However, such guidelines serve as a basis for identifying materials with potential 

CO2-solubility, by designing polymeric materials which combine all of these 

basic requirements and optimise dissolution in CO2. 
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3.2 Experimental 

3.2.1 Materials 

Deuterated chlorofonn, potassium ethyl xanthate, ethyl 2-bromopropionate, 

magnesium sulfate, aluminium oxide, and HPLC grade tetrahydrofuran were 

acquired from Sigma Aldrich and were used as received. Monomers vinyl acetate 

(VAc) (99%) and vinyl pivalate (VPi) (99 %) were purchased from Sigma Aldrich. 

All monomers were stored at 3-4 DC and purified prior to use by passing through a 

column of activated aluminium oxide, and subsequently degassing via three 

freeze-pump-thaw cycles. The initiator 2, 2' -azobis(isobutyronitrile) (AIBN) was 

obtained from Acros and purified by recrystallisation twice from cold methanol. 

-\ 
Poly( dimethyl siloxane mono methyl methacrylate) (10000 g mol ) was 

purchased from Itochu Chemicals Ltd. and used without further purification. Dry 

CO2 (99.99%) and Nitrogen (99.99 %) were purchased from BOC. 

3.2.2 Polymer Characterisation 

Molecular weight and polydispersity of the hydrocarbon stabiliser samples were 

detennined using Gel Penneation Chromatography (PL-GPC 120, Polymer Labs) 

with differential refractometer detection. THF was employed as an eluent, with 2 

columns (30 cm, PolarGel-M) in series calibrated against polystyrene standards. 

Differential Scanning Calorimetry (DSC) analysis was obtained using a DSC 

Q2000 for thennal analysis. Measurements were run at 10 DC/min with a nitrogen 
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flow rate of 50 mLimin, and a temperature range between 0 DC and 100 DC. 

Determination of the composition ratios for the statistical copolymers, and the 

monomer conversion for all polymers, was calculated from the relevant peaks of 

the IH NMR spectra recorded using a Bruker DPX-300 Spectrometer in CDCh. 

3.2.3 Synthesis and Polymerisations 

3.2.3.1 Xanthate Xl Synthesis 

All stabilisers synthesised throughout this thesis were prepared in a controlled 

manner via RAFT polymerisation. The synthesis of the xanthate O-ethyl-s-(1-

ethoxycarbonylJethyl dithiocarbonate employed in the RAFT/MADIX 

polymerisation reactions is outlined in Figure 3.10 and adopted from the 

literature.44 

Br~ 
o 

+ 

Ethanol 

24h 
/'ols~o'-./ 

o 

Xanthate X1 

Figure 3.10: Xanthate Xl synthesis. 
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Xanthate Xl Synthesis: Ethyl 2-bromopropionate (11.12 g, 0.06 mol) was 

dissolved in ethanol (100 mL) in a 250 mL round bottomed flask. Potassium ethyl 

xanthate (10.86 g, 0.07 mol) was added to the solution over a period of 0.5 h. The 

solution was then degassed thoroughly with nitrogen and stirred at room 

temperature for 24 h. The resultant mixture was then filtered and the solution 

collected. The solvent was removed under reduced pressure to give a yellow 

liquid. The product was extracted in dichloromethane (100 mL) and washed with 

water (3 x 75 mL) using a separating funnel, dried with MgS04 and filtered. The 

solvent was then evaporated under reduced pressure and vacuum dried at room 

temperature for 24 h. The product obtained was a clear, yellow liquid. Yield= 

(87%). 'H NMR (CDCb): 0 = 4.65 (q, 2H), 4.39 (q , IH), 4.22, (q, 2H), 1.58 (d, 

3H), 1.42 (t, 3H), 1.28 (t, 3H). I3C NMR (CDCb): 0 = 212.0, 171.3, 70.2, 61.8, 

47.2, 16.9, 14.1, 13.7. 

f 

d a 

e 
b 

~" Y~----------------------------------------~ 
.! 

~ i,.. i f I I f I , • I l ':l ' i , I I i I I I ,;!'r; ' , , I I • I , , ~ic j , Iii I I , i . j: ' . , . ii' . 

Figure 3.11: IH NMR of xanthate O-ethyl-s-(l-ethoxycarbonyl) ethyl 

dithiocarbonate (Xl). 
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3.2.3.2 Homopolymer Synthesis 

Homopolymers of the vinyl alkanoates were synthesised via a free radical 

RAFT/MADIX polymerisation method. The polymerisations were carried out in 

bulk using the xanthate Xl as a RAFT agent. A typical homopolymer synthesis is 

described in Figure 3.12. 

s 

o 

H'C~O~ 
Vinyl Pivalate 

+ 

~O ir C ~ J s)(o~ 
--------2-4-h------.. ~ r-H20~ ]n 

65°C ~ 

AIBN 

~o~sJlo~ 
o 

Xanthate 

Poly (Vinyl Pivalate) 

Figure 3.12: Typical homopolymer synthesis. 

Typical homopolymer synthesis: Vinyl pivalate (10.00 g, 0.08 mol), AIBN 

(0.02 g, 1.3 x 10-4 mol) and xanthate Xl (0.29 g, 1.3 x 10-3 mol) were added to a 

50 mL round bottomed flask equipped with stirrer bar and three-way stop cock. 

The flask contents were subjected to three freeze-pump-thaw cycles on the 

Schlenk line and charged with an inert gas. The reaction flask was immersed in an 

oil bath at 65°C for 24 h. The poly(vinyl pivalate) polymer product was purified 
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via precipitation into a mixture of ice cold methanol: water (4: 1). The final 

product was filtered, dried overnight on the vacuum line, and collected as a white 

powder. Typical Mn: 10.0 kg/mol, PDI: 1.33, Conversion: 85% (Table 3.1, entry 

3). 

Theoretical molecular weights and subsequently the ratio of monomer, initiator 

and AIBN to be used were determined using equation 3.1.45 

[Mlo - [Ml t 
Mn.th = [RAFTl o mM + mRAFT 

Equation 3.1: Prediction of theoretical molecular weight (Mn,th) of polymer 

synthesised in RAFT polymerisation where [M]o is the initial concentration of 

the monomer, [M). is the concentration at time t, [RAFT]o is the initial 

concentration of the RAFT agent employed, mM is the molecular weight of 

the monomer and mRAFT is the molecular weight of the RAFT agent. 
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3.2.3.3 Statistical Copolymer Synthesis 

Statistical copolymers were also synthesised using the RAFT polymerisation 

technique. 

Typical statistical copolymer synthesis: Vinyl acetate (3.73 g, 0.036 mol), vinyl 

pivalate (4.67 g, 3.6 x 10-2 mol ), xanthate (0.13 g, 5.7 x 10-4 mol), AIBN 

(0.009 g, 5.7 x 10-5 mol) and dry toluene (5 mL) were added to a 50 mL round 

bottomed flask equipped with stirrer bar and three-way stop cock. The flask was 

then thoroughly degassed using three freeze-pump-thaw cycles. The flask was 

immersed in an oil bath at 65°C for 48 h. The polymer product was purified via 

precipitation into a mixture of ice cold methanol: water (4: 1). The mixture was 

filtered and the solid product dried in the oven. Typical Mn: 10.3 kg/mol, PDI: 

1.44, Ratio: 24:76, Conversion: 63% (Table 3.2, entry 3). 

3.2.3.Free Radical Copolymerisation 

Free radical copolymers of V Ac and VPi were synthesised to yield a PVPi-based 

copolymer with no xanthate functionality present. The proportion of AIBN was 

varied (2-6 wt %) in order to afford some control over the molecular weight of the 

final polymer product. 
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Typical Free Radical Copolymerisation: Vinyl pivalate (6.0 g, 4.5 x 10-2 mol), 

vinyl acetate (4.0 g, 4.5 X 10-2 mol), and AIBN (0.4 g, 2.4 x 10-3 mol) in toluene 

(5 mL) were added to a 50 mL round bottomed flask equipped with stirrer bar and 

the vessel sealed. The flask contents were degassed for - 30 mins and charged 

with an inert gas. The reaction flask was immersed in an oil bath at 65°C for 

24 h. The polymer product was purified via precipitation into methanol: water 

(4: 1). The final product was filtered and vacuum dried. Typical Mn: 10.0 kg/mol, 

PDI: 2.05, Ratio: 29:71 Conversion: 86% (Table 3.8, entry 2). 

3.2.4 Phase Behaviour Measurements 

Phase behaviour measurements for both the homopolymers and statistical 

copolymers were determined using the high pressure variable volume view cell 

procedure as outlined in Chapter 2, section 2.2.2.46
, 47 All cloud point 

measurements were determined in a C02INVP mixture. Once the desired 

quantities of C02, monomer and stabiliser were added, the volume of the cell was 

decreased to a point where a one phase mixture was obtained. The volume was 

then gradually increased, decreasing the pressure and density of the CO2 phase, 

until the cloud point pressure was reached and the stabiliser precipitated out. All 

cloud points were repeated three times and an average of these values taken. 

Cloud point measurements were recorded from 35-75 0c. 
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3.3 Results and Discussion 

3.3.1 Hydrocarbon Stabiliser Synthesis 

The aim of this chapter was to identify a series of C02-soluble polymer materials 

which could find application as surfactants in dispersion polymerisations in SCC02. 

Research in this area has previously been carried out in the group, and poly (vinyl 

alkanoate) random copolymers were identified as being particularly successful as 

hydrocarbon materials for dispersion polymerisations in SCC02.35
, 38 

Vinyl pivalate (VPi) was identified as a potential monomer for incorporation as it 

has a structure similar to that of V Ac, but possesses a tertiary butyl group in place 

of the methyl group of vinyl acetate. VPi has the potential to act favourably as a 

hydrocarbon stabiliser and have good solubility in SCC02 due to the presence of 

this tertiary butyl group (Figure 3.13). 

Figure 3.13: Vinyl pivalate monomer structure. 

The presence of a bulky substituent in polymer systems will disrupt the regularity 

in the chain packing of polymers and results in increased spacing/free volume 

between the chains. This lowers the solubility parameter and increases solubility 
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in the reaction medium. In the case of VPi, the additional tertiary butyl group 

should in theory act to increase the solubility of the stabiliser material, compared 

to that ofVAc. 

Following the guidelines proposed by Beckman et al. (Figure 3.7), a copolymer of 

V Ac and VPi has the potential to satisfy all the requirements for a CO2-soluble 

material. Both VPi and V Ac will impart a means of direct interaction with C02, in 

the form of a carbonyl group. The VPi units will act to provide an increased free 

volume between the polymer chains, and finally V Ac will incorporate flexibility 

into the structure. 

The molecular weight of a polymer will have an impact on the solubility and 

stabilising ability of the material in SCC02. RAFT polymerisation has previously 

been employed as a means of both controlling the molecular weight of the 

polymeric surfactants, and providing a polymer end group suitable for acting as 

the polymer-philic segment/anchor group of the stabiliser. RAFT/MADIX 

polymerisation was also adopted for the synthesis of the stabiliser materials 

within this chapter, because of these reasons. 

The synthesis of a range of stabilisers incorporating the monomer VPi, and the 

subsequent solubility measurements involving these materials, is detailed herein.48 
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3.3.1.1 Synthesis of Homopolymer Stabilisers 

Poly(vinyl pivalate) (PVPi) stabilisers of varying targeted molecular weight were 

synthesised as described using the xanthate RAFT agent (Table 3.1). 

Table 3.1: Poly(vinyl pivalate) Homopolymers of Varying Molecular Weight. 

Entry M:R:I Mn.th Mn.expt PDI8 Db Conv. Tg(OC)d 
~kg/mol} ~kwmolt p ~%t 

38:1:0.1 4.0 5.0 1.35 37 80 58.9 

2 60:1:0.1 6.7 7.8 1.39 59 85 63.3 

3 77:1:0.1 8.5 10.0 1.33 76 85 66.7 

4 109:1:0.1 11.3 14.3 1.41 110 79 69.7 

5 139: 1 :0.1 15.1 17.5 1.46 135 83 71.3 

6 160: 1 :0.1 18.7 20.5 1.49 159 90 73.9 

Polymerisation conditions: Bulk polymerisation at 65°C for 24 hours with AIBN initiator. 

"Experimental Mn and POI obtained from GPC-RI detector using PS standards. bDegree of 

polymerisation (Dp) determined using equation 3.1. cConversion determined from I H NMR in 

CDCI3. dGlass transition temperature (T g) values obtained using DSC analysis. 

All xanthate terminated homopolymers were purified after polymerisation and 

were obtained as a white, powder product. The polymer product was dried under 

vacuum to remove all residual solvent/monomer, as trace solvent impurities can 

have a significant impact on the solubility in scC02• If residual monomer/solvent 

is present it can potentially act as a co-solvent, and improve solubility in CO2. 

This will result in a decreased cloud point pressure and compromise the accuracy 

of the phase behaviour measurements.49 
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The degree of polymerisation (Dp) is defined as the average number of structural 

units per polymer chain and is calculated using equation 3.2, taking into account 

the RAFT agent end group that will be incorporated into the final structure. 50 The 

Dp for the PVPi-X homopolymers shows the way in which the average length of 

the polymer chain varies, ranging from ~37 monomer units to 159 units. 

Mw Polymer - Mw RAFT agent 
D = ------------

P Mw Monomer Unit 

Equation 3.2: Degree of polymerisation calculation, taking the total 

molecular weight of the polymer and subtracting the molecular weight of the 

RAFT agent, then dividing by the molecular weight of the monomer/s to give 

the number of monomer units in a polymer chain. 

Monomer conversion was calculated from comparison of monomer and polymer 

peaks of the IH NMR at 4.5-4.6 and 4.8-5.0 ppm respectively (Figure 3.11). 

Xanthate signals were also detected in the IH NMR of the PVPi-X homopolymer, 

confirming reaction with the xanthate and growth of the polymer chain, with the 

two components of the RAFTIMADIX agent capping the homopolymer. A 

broadening of the xanthate signals was observed, characteristic of radical 

polymerisation procedures. 

All signals remained at a similar chemical shift to the xanthate signals prior to 

polymerisation, with an exception in the case of the methylene group proton in the 
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xanthate leaving group, denoted as group c, which shifted from 4.39 ppm (Figure 

3.9) to 2.37 ppm (Figure 3.14). After polymerisation this methylene group proton 

experiences a change in chemical environment. The proton is no longer in close 

proximity to the electronegative sulfur atom of the xanthate, and is no longer 

deshielded, resulting in the observation of the signal at lower shift. 
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Figure 3.14: Typical IH NMR of PVPi-X homopolymer in CDCI3• Monomer 

conversion determined from comparison of integrals of monomer (4.5-4.6 

ppm) and polymer (4.8-5.0 ppm) peaks. 
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Figure 3.15: GPC trace overlay of PVPi homopolymers of varying molecular 

weight. Corresponding Mn of homopolymers is shown, as obtained from GPC 

with PS standards in THF. 

PDI values were acceptable «1.5), indicating a controlled polymerisation, 

proving xanthate Xl to be effective in the homopolymerisation of PVPi. Overall , 

PDI appeared to increase with increasing molecular weight, and high conversions 

Were achieved in all polymerisations. 
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Analysis by DSC also shows T g values display a slight increase in value as the 

molecular weight of the sample increased. This is to be expected, as the glass 

transition temperature has a significant dependence on the molecular weight of 

linear polymers. Assuming the polymer is linear, each polymer chain will possess 

two chain ends, and it follows that these chains ends will have improved mobility 

compared to the more restricted inner repeat monomer units.51 A higher 

proportion of chain ends exist within the sample at lower molecular weight, and 

so the overall mobility of the polymer chains is increased, resulting in a reduction 

in the T g value. 

3.3.1.2 Synthesis of Statistical Copolymer Stabilisers 

Statistical copolymers of vinyl pivalate and vinyl acetate were synthesised via 

RAFT polymerisation using the xanthate O-ethyl-s-(1-ethoxycarbonylJethyl 

dithiocarbonate. Copolymerisations were carried out in the same manner as vinyl 

pivalate homopolymerisations to yield PVAc-s-PVPi-X of varying composition 

and molecular weight (Table 3.2). 

The monomer conversion and copolymer composition was determined from IH 

NMR. Composition of the two monomers within the polymer was determined by 

comparing the relative integrals of the methyl and tertiary butyl groups of V Ac 

and VPi respectively (Figure 3.16). The final copolymer composition varied little 

from the initial monomer feed ratio, an observation which is attributed in part to 

the extended reaction time. 
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Table 3.2: PVAc-s-PVPi-X Copolymers of Varying Composition. 

Entry M:R:I Mn,th Mn,expt PDI8 Feed Expt. Cony. 
{kg/molt {kg/molt Ratio Ratiob {%t 

1 143: 1 :0.1 9.2 8.8 1.60 75:25 72:28 66 

2 129: 1 :0.1 9.1 9.4 1.50 50:50 44:56 65 

3 117: 1 :0.1 8.8 10.3 1.44 25:75 24:76 63 

4 117:1:0.1 11.9 10.1 1.59 25:75 24:76 85 

5 127:1:0.1 13.6 10.6 1.49 10:90 16:84 85 

6 118:1:0.1 12.3 8.9 1.53 8:92 10:90 82 

7 117:1:0.1 13.5 9.6 1.45 5:95 6:94 90 

8 56:1:0.1 4.5 4.7 1.29 60:40 48:52 74 

9 76:1:0.1 5.5 5.7 1.35 60:40 46:54 69 

10 151:1:0.1 14.9 13.8 1.50 50:50 48:52 90 

11 192:1:0.1 12.4 15.6 1.43 50:50 47:53 62 

12 216:1:0.1 16.7 20.6 1.38 60:40 48:52 74 

13 260:1:0.1 17.6 21.8 1.47 60:40 48:52 65 

14 338: 1 :0.1 25.9 29.4 1.42 60:40 50:50 74 

15 38:1:0.1 3.2 4.5 1.22 15:85 10:90 63 

16 60:1:0.1 6.9 7.4 1.42 15:85 10:90 92 

17 167:1:0.1 17.4 12.8 1.56 8:92 8:92 83 

18 214:1:0.1 15.4 16.5 1.49 8:92 8:92 57 

Polymerisation conditions: solution polymerisation in dry toluene (5 mL) at 65°C for 48 hours, or 

bulk polymerisation for -4 hours. Ratios correspond to PV Ac:PVPi composition. "Experimental 

Mn and PDI obtained from GPC-RI detector using PS standards. bConversion and PV Ac:PVPi 

ratio determined from IH NMR in CDCI3. cTg values obtained using DSC analysis. 
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Figure 3.16: IH NMR of PV Ac-s-PVPi-X copolymers. Monomer conversion 

determined from comparison of integrals of monomer (4.5-4.6 ppm) and 

polymer (4.8-5.0 ppm) peaks. 

Molar ratio of PV Ac:PVPi is calculated via integration of peaks c and d, 

relating to the CH3 of PV Ac units within the polymer structure, and the tBu 

of PVPi respectively. 

For example: Ratio of PV Ac : PVPi = (c/3) : (d/9) = 1.2/3 : 5.0/9 = 42 : 58. 

When shorter reaction times were employed in a bulk reaction medium, it was 

necessary to adjust the monomer feed ratio slightly and increase the proportion of 

V Ac to obtain the desired composition. Bulk polymerisations carried out for ~4 h 

with a 60:40 ratio of V Ac and VPi in the monomer feed resulted in a copolymer 

with ~50 : 50 final ratio. 

The reactivity ratio of the two monomers will have an impact as this detennines 
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the final copolymer composition. Reactivity ratio, r, is the ratio of the rate at 

which a propagating radical adds to its own type of monomer (MI) to the rate at 

which it adds to the other monomer (M2) within the copolymerisation. 

When rl = r2 = I, each of the monomers will show equal reactivity towards the 

propagating species, and in this case Bernoullian statistics will govern and a 

random copolymer will be produced. If the ratios are both close to unity, but 

different, the radical chain ends will still have similar reactivity with both 

monomers, and a statistical copolymer will form.52, 53 Reactivity ratios greater 

than one result in consecutive homopolymerisation as both monomers will 

preferentially add to monomer M 1•
54 Finally, reactivity ratios close to zero tend to 

result in alternating copolymer segments. 55 

Reported values for the reactivity ratios of VAc (rl = 0.79) and VPi (rl = 0.96) 

show that the two monomers do not have the same reactivity ratio, but both are 

close to unity.56 Therefore the resulting PVAc-s-PVPi-X copolymer will have a 

statistical sequence of monomer units. The presence of the tertiary butyl group 

enhances the reactivity of the VPi monomer towards radical attack, which is why 

an increased proportion of V Ac is required to obtain the desired ratio. 

Copolymers with both a range of molecular weights and ratios were targeted in 

order to study the effects on C02-solubility. Final molecular weights in some 

cases were higher than that of the theoretical molecular weight at the 

corresponding conversion, attributed to overestimation via the GPC through the 

use of PS standards. Overall, target molecular weights could be manipulated 
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successfully to obtain the desired Mn product (Figure 3.17). All statistical 

copolymers with varying monomer composition exhibited similar molecular 

weight di stributions, indicating the samples were suitable for comparison of 

composition. 
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Figure 3.17: GPC trace overlay of PV Ac-s-PVPi-X copolymers of similar 

molecular weight and varying PV Ac: PVPi ratio. Legend corresponds to: Mo, 

PDI, PV Ac:PVPi ratio. The GPC traces demonstrate the reproducibility of 

the synthetic procedure and the similarity of the Mo and PDI of the polymers 

being compared. 
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V Ac is known to be difficult to polymerise; molecular weights are difficult to 

predict and the PDI of V Ac products tends to be high as V Ac lacks a conjugating 

substituent, making its propagating radical less stable and encouraging chain 

transfer and termination. PDI values were <1.5 in the majority of cases, indicating 

controlled polymerisation. The broadest PDI (1.56) was exhibited by the 

copolymer with the largest proportion of V Ac moieties in the structure (entry 1). 

Although relatively broad, the PDI values obtained are not uncommon for 

MAD IX polymerisation. 

Stenzel et al. have previously highlighted the requirements for an effective RAFT 

agent for V Ac polymerisations.57 The RAFT agent employed in this work was 

selected to provide an intermediate radical which would fragment quickly due to a 

relative instability, provided by an increased electron density at the radical centre, 

leading to an effective reversible addition fragmentation reaction of V Ac. 

It is also important to note there will be some error in the PDI because results are 

calibrated against PS standards and there is a difference in the hydrodynamic 

volumes of PVPiIPV Ac and PS. Absolute molecular weights were also estimated 

from comparison of the polymer backbone protons and those of the terminal 

xanthate in the IH NMR. Molecular weights determined via IH NMR correlated 

well with the results from GPC analysis (Table 3.3). 
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Table 3.3 Molecular Weights of Key PVAc-s-PVPi-X Copolymer Stabilisers 

as determined by IH NMR and GPC-RJ. 

Polymer 
Ratio Mn.cxpt (NMR) Mn.cxpt (GPC) PDIb 

(PV Ac: PVPit (kg/molt (kg/molt 
~ 8.8 1.6 

·H'i() C)() 9.4 1.5 

PYAc-s-PYPi-X 24 ' II) I (l () 10.3 1.4 

I 6: 'i-l \Ill' 10.6 1.5 

I () 90 l) () 8.9 1.5 

)-l II) 9.6 1.5 

aRatio and Mn determined from IH NMR in CDCI), with the assumption of one xanthate per 

polymer chain. Analysis via comparison of tertiary butyl group of PVPi (1.18 ppm), methyl group 

of PV Ac (2.00 ppm), and CH2 group of xanthate (4.11 ppm). bExperimental Mn and PDI obtained 

from GPC-RJ detector using PS standards. 

Differential sCaJming calorimetry (DSC) was used to understand the effect of the 

PV Ac:PVPi composition on the thermal properties of the copolymers (Table 3.4). 

The glass transition temperature (T g) was detennined by analysis of the large 

endothermic transition in the second and third heating/cooling cycle. PV Ac and 

PVPi homopolymers are reported to have Tg values of 29 °C and 86 °C 

respectively. 58 The Fox equation was applied to obtain theoretical glass transition 

temperatures for comparison with those obtained experimentally. 59 

- 133 -



Chapter 3: Synthesis and Solubility ofPYPi-based Stabilisers for scC02 

Equation 3.2: Fox equation for determination of the theoretical T g. T g = 

copolymer glass transition temperature, Tg,a = homopolymer 'a' glass 

transition temperature, Tg,b= homopolymer 'b' glass transition temperature, 

Wa = weight fraction of monomer 'a', Wb = weight fraction of monomer 'b' .59 

Table 3.4: Glass Transition Temperatures of PV Ac-s-PVPi-X Stabilisers. 

Entry Mn,expt PDI8 Expt. Ratiob 
Tg,thr 

c 
Tg,expt 

d 

{k2/molt 
8.8 1.60 72:28 35.6 32.0 

2 9.4 1.50 44:56 46.1 47.4 

3 10.3 1.44 24:76 58.4 52.3 

4 10.6 1.49 16:84 65.4 57.8 

5 8.9 1.53 10:90 71.9 64.6 

6 9.6 1.45 6:94 77.0 65.6 

7 4.7 1.29 48:52 44.2 46.4 

8 5.7 1.35 46:54 45.2 46.7 

9 13.8 1.50 48:52 44.2 53.5 

10 15.6 1.43 47:53 44.7 56.3 

14 4.5 1.22 10:90 71.9 54.0 

15 7.4 1.42 10:90 71.9 60.8 

16 12.8 1.56 8:92 74.1 66.9 

"Experimental Mn and PDI obtained from GPC-RI detector using PS standards. bpy Ac:PYPi ratio 

determined from IH NMR in CDCh. cTheoretical Tg obtained using Fox equation. dTg values 

obtained using DSC analysis. 
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This equation does not take into account adjustments due to molecular weight, 

and this should be taken in consideration when comparing the results (Table 3.4). 

An additional equation which can be applied for correlation of the T g with 

molecular weight is the Flory-Fox equation.6o 

For example, entries 14 and 15 have the same compostion and theoretical Tg, but 

possess different molecular weights of 4.5K and 7.4K respectively. As a result, a 

variation in the experimental T g is observed. The reasons for this are explained in 

section 3.3.1.1, and attributed to a decreased overall mobility of the polymer 

chains at higher molecular weights, leading to increased T g. 

As expected, when analysing the copolymers, those with a larger proportion of 

VPi had a T g closer to that of PVPi homopolymer, reflecting the decreased 

flexibility conferred by VPi (Figure 3.18). Some positive and negative deviation 

from the theoretical T g was observed, as the Fox equation does not take into 

account the intermolecular interactions between the polymer components. 
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Figure 3.18: DSC curves showing the second cooling cycle for PV Ac-s-PVPi-

X stabilisers of varying composition. Curves exhibit a decrease in T g value as 

the proportion of VPi is decreased, owing to the increased flexibility 

imparted on the material upon incorporation of additional V Ac units. 

3.3.1.3 Synthesis of VPi-based stabilisers incorporating new monomers 

Although the majority of stabilisers synthesised involved VPi and V Ac moieties , 

two other monomers were investigated to determine if using different structures 

combined with vinyl pivalate had any positive effect on phase behaviour in 
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The two monomers considered were isopropenyl acetate (IP Ac) and vinyl 

propionate (VPr). Both possess a structure similar to vinyl acetate; IPAc has an 

additional methyl group on the backbone, whilst VPr has an additional methyl 

group on the alkyl chain (Figure 3.19). 

Isopropenyl Acetate Vinyl Propionate 

o 

H C-::0--0~ 
2 

Figure 3.19: Structure of the monomers IPAc and VPr. 

IP Ac was targeted as a potential co-monomer following the reasoning that the 

addition of a methyl group to the backbone could further increase free volume and 

improve solubility. VPr was of interest because previous work by Lee et al. has 

proven extension of the alkanoate chain can have favourable effects on solubility, 

and it was thought the introduction of VPr to the poly(vinyl pivalate) stabilisers 

might further improve the CO2-solubility.35 

The monomer IP Ac is difficult to homopolymerise, usually yielding low 

molecular weight, low melting point polymers. The monomer possesses a large 

chain transfer constant when compared to monomers such as vinyl acetate and 

methyl methacrylate. Kuwae et al. attribute the problems with 
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homopolymerisation of this monomer to a high chain transfer to monomer 

constant (em), and the presence of two stable radical conformations, which lead to 

the two propagating chain ends interchanging at room temperature, resulting in a 

high rate of chain transfer to the monomer (Figure 3.20).61 

H3C-+-~f--+- OCOCH3 

H 

H 

Figure 3.20: Stable radical conformations of propagating radical chain ends 

of poly(isopropenyl acetate). At room temperature there is an interchange of 

the p-methylene protons, caused by interconversion of the propagating ends 

between the two conformations. As a result, the monomer free-radical has 

little tendency to initiate a new polymer chain. 

The high pressure polymerisation of IP Ac was recently reported, with some 

success.62 The polymerisation was conducted at 10 000 bar (l GPa) in a high 

pressure reaction vessel, in which the monomer and initiator were hydrostatically 
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pressured in silicone oil at 70 cC. It was observed that the use of high pressure 

favours the linkage of unsaturated monomer into saturated polymer, speeding the 

polymerisation process and increasing molecular weight significantly, to yield 

high molecular weight PIP Ac. Attempts to homopolymerise IP Ac via 

conventional solution polymerisation methods in this study were largely 

unsuccessful, as expected. Copolymerisation proved slightly more successful, and 

thus copolymers with ~25:75 feed ratios were targeted for synthesis (Table 3.5). 

Table 3.5: Statistical Copolymers of PVPi Incorporating IPAc and VPr. 

Copolymer Mn,thr Mn,expt PDI8 Ratiob Cony. 
{k2lmol~ {kg/molt {%t 

PVPr-PVPi-X 10.7 9.9 1.68 25:75 89 

PIPAc-PVPi-X 11.2 10.8 1.33 17:83 68 

PIPAc-PVPi-X 9.3 8.3 1.45 20:80 62 

Polymerisation conditions: Bulk polymerisation at 65°C for 24 hours, with a feed ratio of 25:75 

IPAcNPr:VPi. a Experimental Mn and PDI obtained from GPC-RI Detector. b Conversion and 

ratio determined from 'H NMR in CDCh. 

Copolymerisation of the two monomers IP Ac and VPr with VPi was successful, 

and polymer products were obtained. For IPAc copolymerisation, it was difficult 

to obtain a 25:75 ratio, whilst in the case of VPr the feed ratio and experimental 

ratio were identical. The PDI difference is also significantly higher, and the PVPr 

copolymer appears to exhibit less control during polymerisation. Whilst reasons 

for this are unclear, improved control over the PDI could be obtained by 

terminating the reaction earlier, before such a high conversion is reached. 
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3.3.2 Phase Behaviour in scCOz 

The solubility of the poly(vinyl alkanoate) stabilisers was measured usmg a 

hydraulic variable volume view cell, to obtain cloud point measurements and a 

pressure-temperature phase diagram for each of the stabiliser materials. 

The results of a series of studies on polymer solubility in SCC02 are presented and 

discussed in this chapter. A full description of the variable volume view cell is 

available in Chapter 2. 

3.3.2.1 Homopolymer Molecular Weight in scCOz + 15 wt% NVP 

A series of phase behaviour studies were carried out over a range of molecular 

weights to determine the solubility properties of the PVPi materials described in 

Table 3.1. Phase behaviour measurements were determined in SCC02 with 

15 wt % NVP monomer with respect to C02. The monomer is present to mimic 

initial dispersion polymerisation reaction conditions. 

All cloud point pressures in this thesis were taken three times and an average of 

these measurements was used, precise to ±0.5-1.0 bar. Temperature of the system 

was precise to ±0.3 dc. 

The monomer acts as a co-solvent, promoting solubility of the hydrocarbon 

surfactants and enabling phase behaviour to be studied. Without the presence of 

NVP, the cloud point pressures are much higher and could not all be measured 

within the pressure constraints of the view cell. The homopolymers behaved as 

expected with an increase in molecular weight and subsequent chain length 
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leading to a corresponding decrease in solubility and a higher cloud point pressure 

(Figure 3.2 1). 
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Figure 3.21: Cloud point curves of PVPi-X homopolymers in CO2 (Table 3.1, 

entries 1-6). Measurements taken with 15 wt % NVP w.r.t CO2 and 5 wt % 

homopolymer w.r.t monomer and clearly show the increase of cloud point 

pressure with molecular weight. Cloud point pressures were measured three 

times and an average was used, precise to ±O.5-1.0 bar. Temperature of the 

system was precise to ±O.3 cC. Error bars are not indicated on the phase 

behaviour curves as the error is too small to be distinguishable. 

These results are in line with observations by O'Neill and coworkers, who 

compared hydroxy-tenninated poly(propylene oxide) of different molecular masses 

and found the cloud point increased with increas ing molecular mass .5 The effect of 
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molecular weight can be related to the entropy of mixing. The lower mobility of the 

the higher molecular weight chains will lead to a reduction in the number of spatial 

arrangements, restricting the opportunities for CO
2 

molecules to interact with the 

polymer.63 A higher cloud point is observed because a higher pressure will increase 

the density of the supercritical fluid and subsequently increase the number of CO
2 

molecules available to interact with the polymer. 

Furthermore, at 5.0K and 7.8K the cloud points are significantly lower and there 

is a marked shift to the IO.OK stabiliser, whilst the difference between other 

higher molecular weight stabilisers is less marked. Solubility is clearly an 

important factor when designing polymers for use as stabilisers, but must also be 

balanced against the requirement for a sufficient chain length to provide suitable 

steric stabilisation in dispersion polymerisations. 

3.3.2.2 Copolymer Solubility in scC02 + 15 wt % NVP 

Phase behaviour of the statistical copolymers was carried out to compare the 

effect of varying composition whilst maintaining a molecular weight of 

-10 kg/mol to provide a suitable balance between solubility and stabilising ability 

(Table 3.6). 

The hydrocarbon copolymers were found to possess enhanced solubility with 

respect to both PV Ac and PVPi homopolymers. As might be expected, increasing 

the proportion of PVPi in the copolymer resulted in a lowering of the cloud point 

values, and an increased solubility (Figure 3.22). 
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Table 3.6: Key PVPi-based Stabilisers. 

Polymer Mn,expt PDI8 Ratio DC Cloud Point Te 
{kg/molt {PV Ac:PVPit p {bart {OCr 

PVAc-X 9.6 1.39 109 229 22.9 

PVPi-X 10.0 1.33 76 174.8 66.7 

14.3 1.41 110 181.0 69.7 

8.8 1.60 72:28 88 167.0 32.0 

9.4 1.50 44:56 84 154.2 47.4 

PVAc-s-PVPi-X 10.3 1.44 24:76 75 144.8 52.3 

10.6 1.49 16:84 85 136.4 57.8 

8.9 1.53 10:90 70 133.9 64.6 

9.6 1.45 6:94 75 142.1 65.6 

"Experimental Mn and POI obtained from GPC-RI detector using PS standards. bRatio determined 

from IH NMR in CDCh. CDegree of polymer is at ion calculated using Mn and ratio. dCloud point at 

35°C determined using variable volume view cell (100 bar = 1450 psi). eTg values determined 

from DSC analysis. 

Surprisingly, a small proportion of PVAc within the polymer significantly 

enhances the solubility compared to that of the PVPi homopolymer alone. Whilst 

VPi units improve solubility through a larger free volume and decreased polymer-

polymer interactions, it is also clear that a small proportion of V Ac within the 

structure introduces a certain degree of flexibility to the otherwise rigid polymer. 

This flexibility is postulated to further improve solubility by enabling the 

polymers to interact more freely with C02, enhancing the entropy of mixing in the 

solvent. Both residues also possess acetate groups favourable for interaction with 

CO2. Somewhat counter-intuitively this means that the PVPi copolymers with a 

higher T g actually have greater solubility in scC02 than those with a low T g. 
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Figure 3.22: Cloud point curves of PVAc-s-PVPi-X copolymers Mn~10K in CO2, with 15 wt % NVP w.r.t CO2 and 5 wt % 

homopolymer w.r.t monomer. The data clearly indicate addition of VPi enhances solubility, as the phase behaviour curve is 

shifted to increasingly lower pressures. 
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PVPi was also found to be significantly more soluble than the corresponding 

PVAc homopolymer of the same molecular weight (Figure 3.22). The difference 

of ~55 bar indicates that the tertiary butyl group of the VPi moiety strongly 

influences solubility. It is also true that the chain lengths will be shorter in a 

PVPi-X stabiliser of the same molecular weight. However, ifhomopolymers with 

similar degree of polymerisation (Dp) are compared, it is observed that PVPi-X 

homopolymer with Dp of 110 (Mn = 14.3K) has a cloud point that is still ~ 49 bar 

lower than the corresponding PVAc-X of the same backbone length (Dp = 110, Mn 

= 9.6K) (Table 3.4 compare entries 1,2,3). 

3.3.2.3 Effect of Copolymer Molecular Weight on Solubility in scC02+NVP 

It has been established that both PV Ac and PVPi homopolymers and copolymers 

of a similar Mn are highly CO2-soluble, and the effect of composition has been 

demonstrated. The impact of molecular weight, and subsequently the chain length 

of the stabiliser, can also be significant, and is a particularly important parameter 

when considering polymers as stabiliser materials. Sufficient chain length is 

necessary to provide steric stabilisation, and a stabiliser which is able to impart 

both COrsolubility and steric stabilisation is crucial. Therefore, the effect of 

varying molecular weight of the PV Ac-s-PVPi-X copolymers on the phase 

behaviour in scC02 + NVP co-solvent was investigated. (Table 3.7). 

Higher and lower molecular weight copolymers with both 50:50 and 10:90 feed 

ratio were targeted and tested (Table 3.7, entries 1-8 and 9-13 respectively). 
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Table 3.7 Key Copolymer Stabilisers of Varying Molecular Weight and at 

Two Distinct Compositions. 

Entry Mn,expt PDr 
Ratio DC Cloud Point 

{k2lmolt {PV Ac:PVPit p {bart 
1 4.7 1.29 48:52 43 106.3 

2 5.7 1.35 46:54 52 131.9 

3 9.4 1.50 44:56 89 154.2 

4 13.8 1.50 48:52 131 179.6 

5 15.6 1.43 47:53 150 193.2 

6 20.6 1.38 48:52 197 206.1 

7 21.8 1.47 48:52 208 213.7 

8 29.4 1.42 50:50 282 233.4 

9 4.5 1.22 10:90 35 101.2 

10 7.4 1.42 10:90 58 117.4 

11 8.9 1.53 10:90 71 133.9 

12 12.8 1.56 8:92 102 169.1 

13 16.5 1.49 8:92 130 194.6 

aExperimental Mn and PDI obtained from GPC-RI detector using PS standards. bRatio determined 

from IH NMR in CDCh. CDegree of polymer is at ion calculated using Mn and ratio. dCloud point at 

35°C determined using variable volume view cell. 

As expected, the molecular weight trend is the same as observed for the PVPi 

homopolymers. As molecular weight increases, the solubility in SCC02 decreases, 

reflected by an increase in the cloud point pressure for each of the stabilisers. As 

the chain length is shortened, dissolution of the stabilisers in scC02 occurs more 

easily (Figure 3.23 and 3.24). This highlights the significant effect molecular 

weight of the stabiliser will exert on phase behaviour in SCC02. The same cloud 

point trend for molecular weight was observed for both ratios of PV Ac:PVPi. 
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Figure 3.23: Cloud Point curves of copolymers of varying molecular weight 

with feed ratio of 10:90 and comparable PDI (Table 3.7, entries 1-8). 
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Figure 3.24: Cloud Point curves of copolymers of varying molecular weight 

with feed ratio of 50:50 and comparable PDI (Table 3.7, entries 9-13). 
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The relationship between molecular weight and cloud point pressure at a 

particular temperature is shown (Figure 3.25). The results confirm that the 

molecular weight relationship is not linear, with larger differences in pressure for 

shorter stabiliser chain lengths. This indicates that the cloud point pressure is very 

sensitive to changes in molecular weight at lower molecular weights, and this 

dependence becomes less significant as higher molecular weights are employed. 
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Figure 3.25: Cloud Point pressure at 35°C for PV Ac-s-PVPi-X copolymers 

of varying molecular weight with feed ratio of ~50:50 (Table 3.7, entries 9-

13). 
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Overall, the molecular weight of the stabiliser, and the subsequent Dp of the 

polymer, is observed to have a distinct impact. A higher Dp will result in 

decreased solubility. However, a sufficient chain length will be required if the 

poymer is to act as a suitable material for steric stabilisation in dispersion 

polymerisation,. Therefore, a balance between these two parameters must be 

achieved. The effect of the stabiliser chain length in dispersion polymerisations 

will be discussed in Chapter 4. 

3.3.2.4 Effect of Copolymer PDI on Solubility in scC02 + NVP 

Two copolymers of comparable molecular weight and composition ratio were 

synthesised and investigated to consider the effect of PDI difference (Table 3.2, 

entries 3-4). The two stabilisers have a PDI difference of -0.15 and the phase 

behaviour of the two can be observed (Figure 3.26). 

The two copolymers have a cloud point difference of -15 bar, a discrepancy 

which is clearly a result of the PDI difference. Higher PDI results in a broad 

molecular weight distribution, and polymers with a higher PDI contain higher 

molecular weight chains, which are less soluble in scC02• These therefore affect 

the overall dissolution of the polymer chains in CO2 compared to the low PDI 

equivalent, thus reducing solubility. 
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Figure 3.26: Phase behaviour of copolymers with varying PDI and 

comparable Mn and PDI. Copolymer stabiliser data obtained from Table 3.2, 

entries 3-4. 

In the case of the more polydisperse sample, the higher molecular weight 

fractions dominate the phase behaviour, and cause the overall cloud point pressure 

to increase, resulting in decreased solubility of PVAc-s-PVPi-X (lO.IK, 1.59, 

24:76) compared to PVAc-s-PVPi-X (1 O.3K, 1.44,24:76). 

3.3.2.5 Variation of Copolymer Units 

Copolymers of VPi were synthesised usmg co-monomers IP Ac and VPr 

(Table 3.5). The phase behaviour of the resulting copolymers was considered 

(Figure 3.27). 
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Figure 3.27: Phase Behaviour of copolymers containing VPr and IPAc 

residues, and comparison with an equivalent PV Ac-s-PVPi-X copolymer 

(Table 3.5). 

The PVPr-s-PVPi-X copolymer has poor solubility compared to the V Ac 

equivalent. The cloud point at 35 °C is 181 bar, compared to 158 bar for PIP Ac-s-

PVPi-X (1 O.3K, 1.44, 24:76). This may be due in part to the broad PDI of the VPr 

copolymer when compared to the other copolymers. 

PIPAc-s-PVPi-X copolymers have solubility approaching that of the VAc/VPi 

copolymers, with an average cloud point of 158 bar (1O.8K) at 35 °C, compared 

to 145 bar for lO.3K PVAc-s-PVPi-X. The methyl group on the backbone appears 

to reduce solubility to some extent, and this can be attributed to the reduced 

flexibility the polymer backbone will possess. Whilst addition of both VPi and 
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IP Ac to the surfactant will increase the free volume of the polymer in solution, 

this appears to confer too much rigidity on the overall structure. Incorporating a 

small proportion of V Ac in the polymer allows some flexibility to be maintained, 

enabling facile interaction with CO2 for improved dissolution. IP Ac on the other 

hand, will reduce this flexibility slightly. 

Overall, the solubility of copolymers of VPi with IP Ac and VPr respectively 

indicates that addition of a methyl group to the backbone of the PVPi based 

hydrocarbon stabilisers results in no real improvement of solubility in SCC02, 

whilst incorporation of an extended side chain alkyl group in place of V Ac has a 

negative effect on CO2-solubility. 

3.3.2.6 Variation of NVP Co-Solvent Concentration 

A co-solvent will often improve the solubility of materials in CO2. Co-solvents 

act by providing specific interactions to solubilise a compound in CO2. 

Examples of this have been reported by McHugh et. aI, who described the study 

of ternary mixtures of poly(butyl acrylate)-C02-butyl acrylate (BA) and 

poly(ethyl hexyl acrylate)-C02-ethyl hexyl acrylate (EHA).64,65 The addition of 

BA or EHA to the respective polymer-solvent mixtures was found to decrease the 

cloud-point pressures by up to 1000 bar, attributed to BA and EHA providing 

favourable polar interactions with the acrylate groups in the backbone of the 

polymer. This example highlights the positive impact a co-solvent can have on the 
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dissolution of a polymer in CO2• However, depending on the toxicity, addition of 

a co-solvent can often counteract the benefits of using CO2. 

In the case of the polymerisations that will be discussed 10 this thesis, the 

monomer employed in polymerisations will also act as a co-solvent, improving 

solubility whilst avoiding any toxicity issues that might arise from using 

additional components, since it will be consumed during the polymerisation. The 

effect of this co-solvent concentration on the solubility of the stabilisers has been 

considered (Figure 3.28-3.29). 

There is a clear reduction in solubility as the concentration of NVP is reduced. 

This is as expected, as there is less co-solvent available to enhance the solubility 

of the hydrocarbon stabilisers. The effect is quite dramatic, as reducing the 

proportion of NVP from 15 wt% to 2.5 wt% leads to a cloud point curve which 

has now more than doubled in pressure. A similar overall trend is observed for the 

copolymer with 10:90 ratio. 
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Figure 3.28: PV Ac-s-PVPi-X (10.3K, 1.44, 24:76) at varying NVP 

concentration and 5 wt % stabiliser w.r.t C02. As the concentration of NVP 

decreases, the cloud point pressures rises. 
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Figure 3.29: PV Ac-s-PVPi-X (8.9K, 1.53, 10:90) at varying NVP 

concentration and 5 wt % stabiliser w.r.t C02. 
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These results are quite significant, as they provide a crude representation of how 

the solubility of the stabiliser will vary as a reaction proceeds, and the monomer is 

consumed. An alternative means of analysing this is to consider the cloud point at 

35 °C over a range of co-solvent loadings (Figure 3.30). 
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Figure 3.30: Comparison of cloud points at 35 DC for stabilisers with 10:90 

and 24:76 ratio of PV Ac:PVPi at varying NVP weight percentages. 

Again, it can be observed that the cloud points of both stabilisers decrease steadily 

as the NVP wt % is increased, marking improved solubility with additional co-

solvent. Furthermore, the 10:90 PVAc-s-PVPi-X clearly exhibits a sharper cloud 

point curve, and solubility at lower wt % of NVP is much reduced when 

compared to the 24:76 copolymer equivalent. 
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These findings could potentially have an effect when the materials are employed 

as stabilisers. According to the results, as the reaction proceeds and monomer is 

consumed, PVAc-s-PVPi-X (10:90) will become increasingly less soluble in C02 

compared to PVAc-s-PVPi-X (24:76) at corresponding low loadings of NVP. 

This could have an impact on the ability of the polymer to act as a stabiliser, and 

the final product obtained during dispersion reactions. The effect of copolymer 

composition on polymerisations in SCC02 will be discussed further in Chapter 4. 

3.3.2.7 Variation of Co-solvent Monomer 

In order to assess the influence of different monomers and their co-solvent effect 

on stabiliser solubility, two additional monomers were employed in the phase 

behaviour tests in SCC02 (Figure 3.31). 

AroMe 
o 

o 

d'0~ 

Figure 3.31: Monomers MMA, NVP and VBz, employed as co-solvents in 

phase behaviour studies in scC02• 

Each monomer varies in structure, and is likely to exhibit differences in solubility 

in relation to one another. Vinyl benzoate (VBz) contains an aromatic ring, which 
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will have an impact. Since the aromatic ring of the monomer VBz possesses a 

quadrupole, this will interact with the quadrupole of CO2 and increase polarity of 

the scC02 reaction medium. 29 

The phase behaviour results using different co-solvents show that there is some 

impact on overall solubility, and the ring-containing monomers act slightly less 

effectively, increasing the cloud point pressure to some degree (Figure 3.32). 
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Figure 3.32: Effect of employing monomers NVP, MMA and VBz as co-

solvents in phase behaviour studies in scCOz using PV Ac-s-PVPi-X (9.0K, 

1.43,54:46). 
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VBz has the most significant negative impact, which is most likely attributable to 

the increased polarity, which will make dissolution of the non-polar stabiliser 

material more difficult. MMA on the other hand, exhibits improved solubility 

compared to NVP, and appears to interact favourably with the CO2/polymer 

system. 

However, each monomer is still able to act as a co-solvent and vastly improve the 

CO2-solubility of the polymer in question. The variation in solubility between 

each of the polymer/co-solvent systems is not too drastic. This indicates that 

theoretically, the use of different monomers with PVAc-s-PVPi-X stabilisers to 

synthesise different polymers in SCC02 should not be an issue when considering 

CO2-solubility at the start of the polymerisation process. In terms of solubility, the 

stabilisation of dispersion polymerisations of a range of monomers in SCC02 is 

within the capabilities of this stabiliser. 

3.3.2.8 Phase Behaviour of Stabilisers in pure scC02 

Previously, all stabiliser phase behaviour studies have been carried out in C02 in 

the presence of the monomer NVP as a co-solvent, to mimic initial high pressure 

reaction conditions. One reason for carrying out the solubility measurements in 

these conditions is because hydrocarbon stabilisers have limited solubility in 

scC02. As the stabilisers synthesised in this study have significant CO2-solubility, 

a selection of the stabilisers were also tested for solubility in pure CO2. The cloud 

point curves can be compared (Figure 3.33). 
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Figure 3.33: Phase behaviour of key stabilisers in pure scC02 at 35 °C, at 

varying stabiliser weight percentages. Vertical error bars estimated from 

experimental results as ± 5 bar. 

The phase behaviour in pure CO2 gave limited information. The cloud points were 

indistinct and it was difficult to distinguish an accurate pressure owing to the wide 

pressure window in which the polymer began to precipitate out of C02 and 

become insoluble. The cloud point became more defined as the stabiliser weight 

percentage was increased, but this also resulted in higher pressures. It is important 

to note that only very low stabiliser weight percentages of up to 1 wt % were 
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employed in this study, in comparison to 5 wt % used in the experiments in the 

presence of NVP. 

For the most part, the stabilisers in pure CO2 follow a pattern similar to that 

observed in the CO2 + NVP system; PV Ac has the lowest solubility, whilst PVPi 

homopolymer has a cloud point ~55 bar lower. The copolymers tested also appear 

to have improved solubility compared to either homopolymer stabiliser. Also, as 

expected, without the presence of NVP monomer acting as co-solvent, the cloud 

point pressures are significantly raised, and much lower stabiliser weight 

percentages are tolerated. 

3.3.2.9 Stabilisers Synthesised by Free Radical Polymerisation 

RAFT polymerisation has been used extensively within this thesis to produce 

hydrocarbon polymers with an incorporated RAFT end-group and a narrow 

molecular weight distribution. In order to confirm the importance of employing 

RAFT polymerisation to synthesise the hydrocarbon stabilisers, a series of free 

radical polymerisations were carried out to produce polymers for comparison with 

the RAFT synthesised equivalents. The results of the synthesis and phase 

behaviour of a typical free radical copolymer are detailed (Table 3.8, Figure 3.34). 

A copolymer synthesised by RAFT polymerisation is included for comparison. 
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Table 3.8: Free Radical Copolymer Synthesis. 

Polymer Mn,expt PO]" Ratio Ope Cloud Point 
(kg/mol)" (PVAc:PVPi)b (bar)d 

PV Ac-s-PVPi 10.0 2.05 29:71 86 252.1 

PVAc-s-PVPi-X 10.3 1.44 24:76 85 144.8 

aExperimental Mn and POI obtained from GPC-RJ detector using PS standards. bRatio determined 

from IH NMR in CDCI3. CDegree of polymer is at ion calculated using Mil and ratio. dC loud point at 

35 °C determined using variable volume view cell. 
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Figure 3.34: Phase behaviour data for PV Ac-s-PVPi and comparison with 

xanthate terminated PV Ac-s-PVPi-X of the same composition and molecular 

weight. 
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Phase behaviour data for the stabiliser was determined, and the cloud point values 

indicated a drastic decrease in polymer solubility for the free radical copolymer 

(Figure 3.34). The reduction in solubility was much more significant than 

observed when previously comparing stabilisers of different PDIs that had both 

been synthesised via RAFT polymerisation. The statistical copolymer synthesised 

by free radical polymerisation has a much broader PDI than that of all RAFT 

synthesised polymers in this chapter. This is expected, as there is no CTA present 

during this reaction to control polymer chain growth. Therefore, solubility 

differences were also anticipated as a result. 

As highlighted in section 3.3.2.4, an increased PDI corresponds to a broader range 

of polymer chain lengths within the sample, and both high and low molecular 

weight polymer chains will exist. The higher molecular weight chains will hinder 

dissolution in scC02 and result in a higher cloud point pressure, as observed. 

Overall, in terms of solubility, these results confirm that RAFT polymerisation is 

required to produce a polymer which is highly soluble in scC02• In addition to 

producing polymers with targeted Mn and a narrow molecular weight distribution, 

the process creates RAFT -terminated polymers. The effect of the absence of a 

RAFT end-group incorporated in the stabiliser is a key issue in terms of 

stabilising ability, and will be discussed fully in Chapter 4. 
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3.4 Conclusions 

This chapter has demonstrated that poly (vinyl alkanoate) based stabilisers with 

high solubility can be successfully synthesised using xanthate mediated 

RAFTIMADIX polymerisation. Phase behaviour studies have highlighted the 

significantly improved solubility of both PVPi homopolymers and 

PVAc-s-PVPi-X copolymers as stabilisers. The materials all exhibited a strong 

dependence between composition and CO2-solubility. Copolymers comprised of 

V Ac and VPi moieties are significantly more soluble, and increased VPi gives 

improved solubility. Counter-intuitively, the copolymers with higher T g are more 

soluble in scC02, which can be related to the increased free volume of the 

stabilisers with a higher proportion of PVPi, and therefore higher T g. 

In addition, the effect of molecular weight, PDI, co-solvent weight percentage and 

use of monomer alternatives to V Ac were assessed. It was established that, as 

expected, increasing molecular weight significantly affected solubility. PDI had 

some impact on the polymer solubility; polymers with a broader PDI were 

solubilised at higher pressure due to the presence of higher molecular weight 

chains within the distribution compared to the lower PDI equivalent. The 

monomers VPr and IP Ac were found to provide little, if any improvement on the 

VPi-based copolymer stabilisers. Also, employing different co-solvents had a 

slight effect on solubility, whilst lowering the percentage of co-solvent employed 

resulted in a much more dramatic reduction in solubility. 

The impact of the RAFT agent attached to the polymer was also considered 
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through comparison of a polymer synthesised by a typical free radical 

polymerisation, and a RAFT -synthesised equivalent. It was evident that the RAFT 

polymerisation technique had a significant effect, and the solubility was vastly 

improved. This can be easily attributed to the differences in molecular weight 

distribution leading to decreased solubility in CO2 as a result of the presence of 

higher molecular weight chains. The ability to target polymers of specific 

molecular weight and optimum chain length for improved CO2-solubility using 

the RAFT polymerisation technique is a key advantage. 

The work presented in this chapter has established that poly (vinyl alkanoate) 

based stabilisers with high solubility can be successfully synthesised using 

xanthate mediated RAFT/MADIX polymerisation. Phase behaviour studies have 

shown the PVAc-s-PVPi-X materials are C02-philic in nature, and these materials 

have the potential to be adapted in dispersion polymerisations in C02, as an 

alternative to fluorinated or silicone based surfactants. These solubility studies 

show great promise and represent a significant step towards inexpensive and 

effective hydrocarbon stabilisers for application in scC02. 
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Chapter 4: Dispersion Polymerisation Using 

Hydrocarbon Stabilisers 

This chapter builds upon the research in Chapter 3, and details the use of the 

novel PVPi-based hydrocarbon stabilisers in scC02• 

High pressure polymerisations of N-vinyl pyrrolidone using PVPi homopolymer 

and copolymer stabilisers are compared for their stabilising ability in scC02• The 

PNVP products of the high pressure polymerisations are characterised 

predominantly using SEM to compare particle morphology and lH NMR to 

determine conversion. 
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4.1 Introduction 

4.1.1 Poly (Vinyl Pyrrolidone) 

Poly(vinyl pyrrolidone), also referred to as PNVP, is a water soluble polymer 

synthesised from the monomer N-vinyl pyrrolidone (NVP). Reppe was the first to 

synthesise PNVP, as part of his research into acetylene chemistry, and the first 

chemical synthesis of this material was patented in 1939. 1 

NVP PNVP 

Figure 4.1: The chemical structure of N-vinyl pyrrolidone monomer, and the 

corresponding polymer, poly(vinyl pyrrolidone). 

PNVP has remarkable properties. The backbone consists of a carbon chain which 

possesses a non-polar character, whilst the amide functionality of the pyrrolidone 

ring repeating unit is highly polar, and capable of forming hydrogen bonds.2 

Because of this, PNVP possesses solubility in water and other polar solvents.3 As 

a result of both hydrophilic and hydrophobic functional groups, PNVP has 

amphiphilic properties which have been exploited in the use of the polymer as a 

surfactant for heterogeneous systems and their stabilisation.4 PNVP, in the form 
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of both a homopolymer and block copolymer, has also been employed in the 

stabilisation of metal nanoparticles such as gold and silver, coordinating to the 

metal through the nitrogen and oxygen lone pair electrons of the PNVP chains.5
-
9 

Although the monomer is very toxic, the polymer is a stable, biocompatible 

material which displays good chemical and biological inertness and low toxicity. 

It has found widespread use in a variety of industries, particularly in 

pharmaceutical and cosmetic applications, because of these properties. 10 PNVP is 

marketed for many uses at different molecular weights, ranging from 2,500 g/mol 

to 1,200,000 g/mol, and the properties vary in accordance with the molecular 

weights. I I The polymer is typically assigned a K-value, and this value is related to 

the weight average of the molecular weight (e.g. PNVP K-15 = 6,000-

15,000 g/mol) and is obtained from viscosimetric measurements.3 The glass 

transition temperature of PNVP will also vary with molecular weight, reaching a 

plateau of about 175°C at 100,000 g/mol. l2 At lower molecular weight the T g will 

fall to about 100°C. 

PNVP is a hygroscopic substance, and will readily absorb water from the 

surroundings to appreciably soften. 13 The polymer has found use as a binder and 

coating aid in pharmaceutical tablets, the hygroscopic character of PNVP being of 

great importance and playing a role in the binding properties. 10 

The chemical structure of the polymer and the presence of the amide functionality 

allows PNVP to form a variety of complexes with other chemical compounds 

including pharmacological actives. One widely used complex is that of PNVP-
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Iodine, which is commonly employed as a disinfectant. The solubility of iodine in 

water is poor, but PNVP will complex iodine and dissolve it in water. The use of 

PNVP allows a very low level of free iodine to be maintained, leading to effective 

disinfectants which have very low toxicity. 14, 15 

Copolymerisation of NVP with different monomers can be used to produce 

polymers of PNVP with varying properties. Copolymerisation with vinyl acetate, 

which is water-insoluble, reduces the hygroscopicity of the polymer and produces 

a more hydrophobic material. I6 There are also a range of examples of the 

synthesis of amphiphilic block copolymers of PNVP, capable of self-assembling 

into polymeric micelles and representing a promising route for the delivery of 

drug molecules in biotechnological applications. 17-22 

PNVP can be synthesised via bulk, solution or suspension polymerisation. 

Industrially, the polymer is most commonly synthesised by free radical 

polymerisation in aqueous solution or in an organic solvent such as 2-propanol, 

using a peroxide as an initiator. 16 Employing such methods, the polymer is 

obtained in solution form. As powder products are preferred for pharmaceutical 

applications, extensive drying processes such as spray drying are often required to 

isolate the polymer as a solid. Such techniques are often very energy intensive, 

resulting in them also being rather costly. II 
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4.1.2 Dispersion Polymerisation of PNVP in scC02 

One such technique with the possibly of overcoming the energy intensive drying 

processes required in conventional PNVP synthesis is the use of· scC02 as a 

polymerisation medium. Conventional techniques have both economical and 

ecological disadvantages because of the hazardous organic waste obtained from 

the reaction in the form of waste solvent, monomer and initiator. As previously 

mentioned, energy intensive steps are required to dry the polymer at the end of the 

solution process. 

The use of SCC02 as a reaction medium is a highly attractive alternative. It is 

environmentally benign, non-flammable and also inert towards free radical 

reactions, making it a suitable medium for polymerisation. The use of SCC02 also 

allows for simple depressurisation of the reaction mixture upon completion. This 

allows extraction of all residual monomer and solvents, resulting in the recovery 

of a pure polymer at the end of the reaction.23, 24 

PNVP has been successfully synthesised using scC02 as a reaction medium, via 

dispersion polymerisation employing polymeric surfactants. DeSimone et al. first 

reported the polymerisation of N-vinyl pyrrolidone in CO2?5 A low molecular 

weight PFOA stabiliser was employed and the effect of the stabiliser 

concentration, monomer concentration and CO2 pressure on the polymerisation 

was considered. 
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Figure 4.2: PNVP microspheres synthesised using 6 wt % PFOA stabiliser 

and AIBN initiator at 65°C and 340 bar.25 

The use of a PFOA stabiliser yielded micrometer-sized spheres with a relatively 

narrow size distribution. It was found that increasing the concentration of the 

stabi li ser from 0.5 to 6.0 wt % decreased the particle size diameter, and increasing 

the monomer concentration increased the particle size. Polymerisations conducted 

at different pressures were found to have no significant impact on the morphology 

of the PNVP microparticles. 

At the same time, Berger et al. also reported the synthesis of PNVP via dispersion 

polymerisation.26 In this case, the stabi li ser employed was a PS-b-PDMS diblock 

copolymer. It was reported that without stabi liser present, a hard, glassy PNVP 

product was obtained (Figure 5.3, a). In contrast, employing the PS-b-PDMS 

diblock copolymer led to effective stabilisation and the synthesis of uniform, 

spherical microparticles (Figure 5.3 , b). 
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Figure 4.3: SEM micrographs of PNVP particles produced (a) in the absence 

of stabiliser; (b) in the presence of 1.1 wt % stabiliser.26 

The reaction parameters were found to have an effect on the PNVP product, and 

the concentration of the stabiliser had a significant impact. As the stabiliser 

loading was increased from 0 to 5.1 wt %, a corresponding reduction in particle 

size was observed as a result of increased surface coverage of the growing 

polymer particles. A broad molecular weight distribution was also observed, when 

compared to polymerisation of PNVP under conventional reaction conditions in 

solution. This was interpreted as a surface plasticisation of the growing particles 

leading to inhomogeneous polymerisation conditions?6 

Very recently, Kwon et af. reported the preparation of PNVP particles using two 

stabilisers, siloxane-based polymers Monasil PCA and KF-60l7, both of which 

possess favourable C02-solubility and are commercially available.27 To eliminate 

flocculation of the resulting PNVP particles and to vary particle size, non-reactive 

organic co-solvents were added to the polymerisation. The organic solvents were 
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removed from the PNVP particles with scC02 extraction. PNVP microparticles 

were obtained using both Monasil PCA and KF -6017. 

a) Monasil PCA 

b) KF-6017 

I I I I 
-~i-o+s-O-t.t-~i-o-+.n~I-

? PE = (CH2)3-0-(C2H40)x-(C3H60)y-H 
PE 

Figure 4.4: Molecular structures of siloxane-based surfactants (a) MonasH 

PCA; (b) KF_6017.27 

Particle size of PNVP increased with additional monomer loading (2.0 g to 5.0 g) 

to the dispersion polymerisation in the case of Monasil PCA, with diameters 

ranging from 0.41-0.74 /lm. No obvious variation was observed with KF-6017 as 
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a stabiliser and a consistent particle size diameter of 1.02 I..lm was obtained. The 

addition of an organic solvent had a particular impact, affecting the solubility of 

the reaction mixture. Particle size was found to increase significantly (> 2.0 I..lm) 

when employing isopropanol as a co-solvent, compared to the dispersion 

polymerisations in the absence of co-solvent (0.23 I..lm) and also employing 

hexane (0.20 I..lm) and cyclohexane (0.25 I..lm). The morphology of the PNVP 

product was also affected, and irregular spheres were observed. In contrast, the 

particle size diameter was reduced using cyclohexane as a solvent. Finally, the 

authors used a C02 extraction process to remove residual monomer, solvent and 

surfactant from the PNVP. The silicone level was measured both before and after 

extraction to determine the presence of siloxane-based stabiliser, and it was 

observed that the level of silicone after extraction was very low. However, some 

silicone was still present, indicating that a small proportion of surfactant was 

strongly adsorbed to the polymer particles and could not be completely removed. 

Galia et al. also investigated the free radical polymerisation of PNVP in SCC02, 

using a PDMS-mMA surfactant.28 The concentration of stabiliser, monomer and 

initiator were considered, in addition to the density of the fluid phase on the 

polymerisation. An increase in both stabiliser and AIBN initiator concentration 

led to a decrease in the particle size of the PNVP product, as did an increase in 

CO2 density. The authors concluded that particle size can be controlled by correct 

selection of the initial surfactant concentration and of the density of the 

polymerisation system, so that submicron to micron-sized spherical particles can 

be produced, ranging in diameter from 0.16-5.94I..lm. Recently, this research has 
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been extended to the application of PNVP for controlled drug delivery systems. 

The synthesis of PNVP was conducted in the presence of two model drugs, 

ibuprofen and Piroxicam, a drug with low water solubility.29, 30 

Bae et al. determined phase behaviour measurements for the ternary system of 

PNVP + NVP + CO2 using a variable volume view cell as a function of molecular 

weight and NVP content at temperatures up to 450K and pressures up to 

2200 bar.3) 
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Figure 4.5: Phase behaviour measurements of PNVP (Mw = 2,500 glmol) + 

NVP + C02 ternary system. As the NVP concentration was increased, the 

phase behaviour curve shifted to lower pressures, corresponding to an 

improvement in C02-solubility.31 
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It was observed that as the proportion of NVP was increased, the phase behaviour 

curve was lowered, owing to the increased solubility from the presence of the 

NVP co-solvent. 

In 20 I 0, Kim et al. also reported the use of comb-like fluorinated surfactants with 

different structures for the stabilisation of dispersions of N-vinyl pyrrolidone, 

methyl methacrylate and N-vinyl caprolactam in scC02 (Figure 4.6). 32 

a) PA-Rf b) PEO-Rf 

o~ 

0 

0 5 

< < (CF2h (CF2h 
CF/ CF/ 

3 3 

Figure 4.6: SEM images of PNVP products obtained using (a) a stabiliser 

with non-polar character and (b) a stabiliser with a polar backbone region.32 
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The polarity of the stabiliser was found to determine the dispersion ability; the 

stabiliser containing a polar oxyethylene in the backbone region (PEO-Rr) acted 

as an effective surfactant for the polar monomer NVP, producing discrete 

microparticles, whilst the use of stabilisers with non-polar groups in the backbone 

region (PA-Rr) resulted in agglomerated structures (Figure 4.6 , a-b). It was 

concluded that PEO-Rf with a more polar backbone can only disperse polar 

polymer particles (PNVP), whereas PA-Rf can support dispersion of less polar 

polymer particles (PMMA and PVCL). 

Finally, Bowdle et al. reported the design of new vinyl ester copolymers (PV Ac-

PVBu-X and PVAc-PVOc-X) via RAFT polymerisation, for use as stabilisers for 

dispersion polymerisation of PNVP in scC02 (Figure 4.7). 33,34 

a) 

PVAc PVBu 

b) 

~O}l-~2 1 In [ 
o ~ 

o 
PVAc P\ (k 

Figure 4.7: Stabilisers of a) PVAc-s-PVBu-X and b) PVAc-s-PVOc-X used 

for dispersion polymerisation of NVP in SCC02•
33

,34 
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All of the RAFT functionalised vinyl ester copolymers showed an ability to 

stabilise the growing polymer particles and produce free-flowing powders. 

Copolymers were determined to possess enhanced CO2-solubility compared to the 

corresponding homopolymers of equivalent molecular weight, and thus were able 

to support dispersion polymerisations in scC02 more effectively. Depending on 

the copolymer composition, different particle size, homogeneity and distribution 

were observed. It was observed that there was a decrease in the size of particles 

(1.6-1.1 /lm) as the proportion of PVBu within PV Ac-PVBu-X copolymer 

stabilisers was increased from 25 to 75 %. The particle size distribution was 

relatively consistent for all of the stabilisers employed. Conversely, the particle 

size increased (2.4-4.5 /lm) when the PVOc content in PVAc-PVOc-X stabilisers 

was increased from 25 to 75 %. Overall, the PVAc-PVBu copolymers were 

effective stabilisers for the production of PNVP polymer particles, giving PNVP 

particle formation at all compositions, and exhibiting improved solubility 

compared to a PV Ac homopolymer of comparable molecular weight. 

The studies highlighted above have shown that the polymerisation of PNVP in 

scC02 is viable, and the CO2 reaction medium can be employed successfully to 

produce microparticles of PNVP free of solvent residues. In the majority of cases, 

such polymerisations have been conducted using fluorinated or siloxane-based 

stabilisers, which are costly and pose an issue to the environment. 
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Previously in Chapter 3, it was demonstrated that PVPi-based stabilisers 

possessed enhanced solubility compared to PV Ac homopolymers and copolymers 

of PV Ac and PVBulPVOc. The following chapter investigates the dispersing 

ability of these CO2-soluble hydrocarbon stabilisers synthesised in Chapter 3. 

These polymeric surfactants will be tested in the dispersion polymerisation of 

PNVP in SCC02, with the aim of identifying viable alternatives to the stabilisers 

currently employed in such polymerisation reactions. 
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4.2 Experimental 

4.2.1 Materials 

N-vinyl pyrrolidone (NVP) (97%, 0.001 % N, N'-di-sec-butyl-p-phenylenediamine 

inhibitor) was obtained from Fluka. Vinyl acetate (VAc) (99%) and vinyl pivalate 

(VPi) (99 %) were purchased from Sigma Aldrich. The monomers were stored at 

3-4 DC and purified prior to use to remove the inhibitor by passing through a 

column of activated aluminium oxide, and subsequently degassing via three 

freeze-pump-thaw cycles. The initiator 2,2'-azobis (4-methoxy-2,4-

dimethylvaleronitrile) (V-70) (WAKO, 95 %) was used as received. Dry C02 

(99.99%) and Nitrogen (99.99 %) were purchased from BOC. 

4.2.2 Polymer Characterisation 

Molecular weight and polydispersity of the PNVP samples were determined using 

Gel Permeation Chromatography (PL-GPC 50, Polymer Labs) with differential 

refractometer detection. Chloroform with 5 % triethylamine was employed as the 

eluent, with two columns (30 cm, PolarGel-M) in series calibrated against PS 

standards. Yield of the samples was determined gravimetrically. Monomer 

conversion for all polymers were calculated from the relevant peaks of the IH 

NMR spectra recorded using a Bruker DPX-300 Spectrometer in CDCh. SEM 

analysis of PNVP products was carried out using a JEOL 6060L V variable 

pressure scanning electron microscope. Samples were prepared using a Balzers 

SCD 030 gold sputter coater. Mean particle diameter (Dn, /lm) of the samples was 
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detennined by measuring -100 particles from SEM data using ImageJ analysis 

software, and calculating a mean value from these results. The coefficient of 

variance (Cy ) is a statistical measure of the dispersion of the data points in a series 

around the mean, and was detennined using the equation Cy = ((JIDn) x 100, where 

(J corresponds to the standard deviation of the particle diameter (urn). Cy can be 

employed to consider the particle size distribution in a typical SEM sample. A 

sample in which all polymer particles are identical in size would have a Cy of O. 
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4.2.3 Synthesis and Polymerisations 

4.2.3.1 Polymerisation of NVP in scC02 

The stabilising ability of the polymeric surfactants was detennined by employing 

the materials in dispersion polymerisations in scC02 to produce poly(vinyl 

pyrrolidone) (PNVP). 

NVP 
N-vinyl pyrrolidone 

V -70 Initiator 
scCOz, 48 h 

PNVP 
Poly(vinyl pyrrolidone) 

Figure 4.8: Polymerisation of NVP using PVPi-based hydrocarbon stabilisers 

and V -70 initiator. 

A detailed description of the high pressure polymerisation procedure is outlined in 

Chapter 2, section 2.2.1. The low temperature initiator 2,2'-Azobis-(2,4-dimethyl-

4-methoxyvaleronitrile) (V -70) was employed (Figure 4.9). V -70 is an effective 
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radical initiator at low temperatures compared to AIBN, and has a half life of 10 h 

at 30°C. 

Figure 4.9: The structure of the low temperature initiator V -70. 

The initiator was added to a 60 ml Mk III autoclave. Hydrocarbon stabiliser (2.5-

15 wt %) was dissolved in NVP monomer (8 ml) and injected through the safety 

valve into the autoclave. The vessel was filled with C02 (~55 bar) and heated to 

35°C, which resulted in an observed increase in pressure to ~ 83 bar. At this 

point, the cell was topped up to ~276 bar and the reaction proceeded for 48 h with 

stirring. The autoclave was then cooled to room temperature and the C02 vented 

from the vessel to yield the polymeric product. 

4.2.3.2 Hydrocarbon Stabiliser Synthesis in SCC02 

In addition to the synthesis of PNVP in high pressure polymerisations in SCC02, 

attempts were made to produce the hydrocarbon stabilisers themselves in the 

same reaction medium. The procedure was similar to that of a typical 

polymerisation in SCC02, but no stabiliser was required as the resulting PVPi 
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polymer should be soluble in the reaction medium, and the polymerisation was 

effectively a homogeneous solution polymerisation mechanism. In this case AIBN 

initiator was employed. 

AIBN initiator was added to a 60 ml Mk III autoclave. The VPi monomer (8 ml, 

0.06 mol) and xanthate Xl (0.17 g, 7.9 x 10-4 mol) were thoroughly degassed and 

then injected into the autoclave via the safety valve. The vessel was filled with 

CO2 (~55 bar) and heated to 65°C, whilst stirring at 300 rpm. Once at the desired 

temperature, the cell was topped up to ~276 bar and the reaction proceeded for 

48 h with stirring. The autoclave was then cooled to room temperature and the 

CO2 vented from the vessel to yield the polymeric product. 
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4.3 Results and Discussion 

4.3.1 Dispersion Polymerisation of NVP 

Dispersion polymerisations in SCC02 were carried out using the NVP monomer in 

order to understand the stabilising ability of the synthesised poly (vinyl alkanoate) 

materials. Chapter 3 detailed the synthesis of novel hydrocarbon stabilisers which 

were found to possess favourable C02-solubility at various molecular weights and 

compositions. In addition, the incorporation of a xanthate end-group functionality 

through the application of RAFT polymerisation provides a potentially effective 

anchor to the growing PNVP chain which should enable the polymers to act as 

successful stabilisers. 

It is hypothesised that for all RAFT synthesised PVPi -based stabilisers detailed 

within this thesis that anchoring will occur via the RAFT functionality 

incorporated into the end-group of the polymer (Figure 4.10, a). In this scenario, it 

is expected that the xanthate functionality acts as a typical RAFT agent, forming a 

chemical bond with the growing PNVP chains. This will lead to the formation of 

a block copolymer consisting of the hydrocarbon stabiliser grafted to the PNVP 

chain, and terminated with the RAFT agent. The xanthate terminated growing 

PNVP chains will associate and form primary particles. Additional polymerisation 

will continue within the monomer-swollen particles, leading to high molecular 

weight PNVP products. As the RAFT agent concentration is very low, no control 

over the polymerisation is exerted, and the xanthate group will simply provide a 

means of anchoring to the growing PNVP particle. 
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a) b) 

~ = PVPi-X Stabiliser 

= Growing PNVP Chain 

Figure 4.10: Possible modes of anchoring via the PVPi-based stabilisers: a) 

Chemical anchor mechanism involving RAFT polymerisation of the growing 

PNVP chains and b) Physical anchor mechanism in which the stabiliser 

physically adsorbs to the surface of the growing polymer particle. 

However, the RAFT exchange mechanism may lead to very low levels of 

dispersant being loaded at the particle surface. Thus an alternative explanation 

would be that instead it is anchoring through a physical adsorption mechanism, 

such as weaker Van der Waals interactions (Figure 4.10, b). This mechanism 

would involve the formation of primary particles of growing PNVP chains, which 

are stabilised via adsorption of the stabiliser at the surface of the PNVP particle. 

In this case, the stabiliser would not be chemically bound to the PNVP product 
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but would still be physically entrained. Further work on the presence of the 

xanthate end-group and the potential to act as an anchor are discussed in Chapter 

5, but for the work detailed in this chapter, it is assumed that the RAFT agent is 

the main component required for successful anchoring to the growing polymer 

chain. 

The following section investigates the ability of the PVPi-based polymers to act 

as stabilisers. Polymerisation reactions were all carried out as described 

previously. The results of the key polymer products obtained are summarised 

(Table 4.1 and 4.2). 

OPC analysis of the PNVP samples obtained from the polymerisations in SCC02 

showed molecular weights in the range of 162 to 240 kg/mol. No distinct trends 

were observed for the molecular weights obtained, and at this loading of stabiliser 

(5.0 wt %) it was not anticipated that there would be any control of molecular 

weight ofthe PNVP by the RAFT functionality. A high initiator loading was used 

in the majority of cases (stabiliser to intiator ratio of 1: 10). An excess of initiator 

was chosen in order to control the polymerisation at the start, and allow the 

polymer chains to grow to a sufficiently long length before the RAFT agent 

incorporated into the stabiliser interferes with the reaction. The RAFT -terminated 

portion of the stabiliser can then graft to the polymer chains, allowing 

stabilisation of the dispersion polymerisation. Also, as a consequence of the 

initiator loading, the concentration of the xanthate group will be too low to exert 

any control over the radical polymerisation. 
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Table 4.1: NVP Polymerisations in SCC02. 

Stabiliser PNVP Dispersion Product 

Entry Composition M n, PDI, RatioR Cloud Point 
PDIc Dn(J'm)d Cv(%)e 

Yield Cony. 
Jbar)b MwLk~/molt (%)f (%)g 

1 PVPi-X IOK,1.33 174.8 233 4.1 2.2 41.2 94 99 

2 14.3K, 1.41 181.0 234 4.7 1.9 26.3 88 >99 

3 9.6K, 1.46,6:94 142.1 240 6.1 2.8 26.9 84 99 

4 1O.6K, 1.49, 16:84 136.4 236 5.1 2.4 22.6 86 99 

5 PV Ac-s-PVPi-X IO.3K, 1.44, 24:76 144.8 219 4.7 1.7 28.0 90 98 

6 9.4K, 1.50,44:56 154.2 162 4.2 1.4 30.2 86 >99 

7 8.8K, 1.60, 72:28 167.0 186 4.4 1.3 31.3 82 99 

Polymerisation conditions: scCOz polymerisation at 35°C for 48 hours with V -70 initiator and 5 wt % of stabiliser. 'Stabiliser Mn and PDI determined via GPC-

RI with THF eluent and PS standards, Ratio determined from 'H NMR. bStabiliser cloud point determined using variable volume view cell. cExperimental Mw 

and PDI obtained from GPC-RI detector in chloroform with 5 % triethylamine using PS standards. dMean particle diameter as determined from sampling of -1 00 

particles of a typical SEM image. eCoefficient of variance as determined by equation Cv = (aiDn) x 100. [Yield determined gravimetrically, recording the weight 

of the final polymer product. gConversion determined from comparison of monomer and polymer peaks in 'H NMR spectra using CDCI3. 
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Table 4.2: NVP Polymerisations in scCOz using PVAc-s-PVPi-X Copolymer Stabilisers of Varying Molecular Weight. 

Stabiliser PNVP Product 

Entry M n, PDI, Ratioa Cloud Point (bart D n (Ilmt Cv(%)d Yield (%t Conv. (%)f Appearance 

1 4.7K, 1.29,48:52 106.3 58 97 Hard, Tacky Solid 

2 5.7K, 1.35,46:54 131.9 3.1 20.8 74 96 Powder 

3 9.4K, 1.50,44:56 154.2 1.4 30.2 86 >99 Powder 

4 13.8K, 1.50,48:52 179.6 2.5 23.2 91 97 Powder 

5 15.6K, 1.43,47:53 193.2 2.5 31.0 91 >99 Powder 

6 20.6K, 1.38,48:52 206.1 2.6 23.0 93 94 Powder 

7 21.8K, 1.47,48:52 213.7 3.1 24.6 83 >99 Powder 

8 29.4K, 1.42,50:50 233.4 57 98 Hard, Tacky Solid 

9 4.5K, 1.22, 10:90 101.2 82 89 Powder 

10 7.4K, 1.42, 10:90 117.4 3.0 48.7 87 >99 Powder 

11 8.9K, 1.53, 10:90 133.9 2.0 28.6 84 >99 Powder 

12 12.8K, 1.56, 8:92 160.1 10.1 41.4 71 94 Powder 

13 16.5K, 1.49,8:92 169.1 78 95 Powder 

Polymerisation conditions: scC02 polymerisation at 35°C for 48 hours with V -70 initiator and 5 wt % of stabiliser. aStabiliser Mn and PDI determined via GPC-

RI with THF eluent and PS standards, Ratio determined from 'H NMR. bStabiliser cloud point determined using variable volume view cell. cMean particle 

diameter as determined from sampling of~lOO particles ofa typical SEM image. dCoefficient of variance as determined by equation Cv = (a/Dn) x 100. 'Yield 

determined gravimetrically. fConversion determined from 'H NMR in CDCh. 
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In addition, DeSimone et al. showed that the rate of decomposition of AIBN in 

SCC02 was 2.5 times lower than in the equivalent reactions in benzene. 35 

Therefore, employing a relatively high initiator loading during the 

polymerisations in scC02 also aims to combat this and ensure reasonable radical 

generation, and sufficient initiation of all growing polymer chains at the start of 

the reaction. 

As expected, the PNVP products appear to be polydisperse with relatively high 

molecular weights. The observed PDI was broad for a typical free radical 

polymerisation (4.1-6.1), but these results are consistent with those of PNVP 

dispersions in scC02 by Berger et aI., where Mw = 250 kg/mol and PDI = 9.7.26 

The unusually high polydispersity was attributed by these authors to 

inhomogeneous, non-stationary reaction conditions, and a high radical transfer 

rate to monomer. 

The conversion of the polymers was obtained from IH NMR of the final product 

to establish the presence of remaining monomer within the sample (Figure 4.11). 

Yield was determined gravimetrically, weighing the polymer product obtained 

after drying overnight in a vacuum. 
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Figure 4.11: IH NMR of polymer + monomer from PNVP dispersion 

polymerisation in scC02• Conversion determined from comparison of 

integrals of monomer peak b with corresponding polymer peak B. 

All of the polymerisations using the PVPi-based stabilisers exhibited high yield 

and conversion. It is important to note that venting of the CO2 from the reaction 

vessel ultimately results in loss of the monomer, and as a result all conversions 

will typically appear high. To account for any inaccuracies in the determination of 

conversion as a result of the venting process, the yield will be considered for 

comparison of the polymerisation products rather than conversion. 
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In all successful dispersion cases the PNVP sample was obtained as a white, free­

flowing powder after venting of the CO2. Conversely, polymerisations conducted 

in the absence of stabiliser resulted in a tacky solid saturated in residual monomer, 

with a poor yield and conversion of monomer to polymer (Figure 4.] 2). 

Figure 4.12: PNVP products obtained from polymerisation in sceoz. (a) 

Product of unsuccessful dispersion gives a tacky solid/monomer mixture with 

no defined particle morphology; (b) PNVP product obtained from successful 

dispersion in the form of a fine, white, free-flowing powder; 

Stabilising ability can be compared in more depth upon analysis and comparison 

of the SEM images and considering in detail the particle morphology and particle 

size diameter of the products obtained. 
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4.3.1.1 Variation of Homopolymer Stabiliser Molecular Weight 

Initially the PVPi homopolymers were applied in the polymerisation in NVP in 

scC02. The results of the polymerisation were characterised via SEM (Figure 

4.13). 

Figure 4.13: Variation of PNVP particle morphology with homopolymer 

stabiliser molecular weight. (a) 6.6K; (b) 10.0K; (c) 14.3K; (d) 17.SK. 

When employing the PVPi homopolymer stabilisers in dispersion polymerisation 

(Table 4.] ; entries 1 and 2) a white, powder product with high yield was obtained. 
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At low molecular weight of 6.6K, particle morphology was ill-defined and 

irregular, although there was some indication of the formation of spherical 

microparticles (Figure 4.13, a). This observation can be attributed to the 

insufficient length of the stabiliser at this molecular weight, resulting in poor 

steric stabilisation and a poorly stabilised dispersion polymerisation. A 10.0K 

stabiliser resulted in PNVP product with some spherical particle formation, 

although the spheres were ill-defined and highly agglomerated (Figure 4.13, b). 

As the molecular weight of the stabiliser was increased to 14.3K, distinct, 

spherical particle morphology was observed, indicating the increasing molecular 

weight gave sufficient length to provide adequate steric stabilisation (Figure 4.13, 

c). In Chapter 3, stabilisers with shorter chain length and a lower DP were 

determined to be more soluble in CO2 (Chapter 3, Figure 4.4, a). However, these 

stabilisers were not as effective in subsequent dispersion polymerisations, 

presumably because they do not possess a sufficient chain length to provide 

adequate steric stabilisation. With too short a chain length, the polymeric 

surfactant will be unable to generate sufficient repulsive force to keep the 

individual growing polymer particles apart. The attractive Van der Waals 

interactions between the particles will dominate and this will allow aggregation to 

take place.36
-
38 

However, as the molecular weight was increased further, to 17.SK, there appeared 

to be no control over particle morphology, resulting in an agglomerated mass 

(Figure 4.13, d). This suggests that at this molecular weight, the stabiliser 

possesses a sufficiently long backbone to force steric stabilisation and aid in 
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dispersion polymerisation to produce a high yielding powder product, but as a 

result of this chain length, the stabiliser is not soluble enough in SCC02 to allow 

for an effective dispersion polymerisation, leading to a poorer particle 

morphology in such cases. Additionally, employing the same weight percentage 

of a higher molecular weight stabiliser will ultimately result in fewer chains in the 

polymerisation medium. Therefore, there is also a lower concentration of xanthate 

chain ends present. Consequently, if it is assumed that the xanthate end-group is 

required to adhere and anchor to the growing PNVP particle, fewer anchor points 

are available to graft to the growing polymer chain in scC02, leading to poorer 

surface coverage and insufficient stabilisation. 

4.3.1.2 Variation of Copolymer Stabiliser Composition 

Following the successful polymerisations in scC02 using the homopolymers, a 

series of the PV Ac-s-PVPi-X copolymers (~1O kg/mol) were employed in high 

pressure reactions using NVP as the monomer (Table 4.1; entries 3-7). 

All polymerisations resulted in a free-flowing powder product and high yield. 

SEM images again indicated the production of distinct particles, with variation in 

the average particle diameter. All particles exhibited some agglomeration, which 

can be ascribed to plasticisation of the PNVP shells in SCC02.26 

In comparison to the PVPi homopolymer stabilisers, the PNVP product obtained 

from dispersion using copolymer stabilisers exhibited a marked improvement 

(Figure 4.14). 
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Figure 4.14: SEM analysis of effect on particle morphology with variation of 

copolymer composition at 5 wt % stabiliser loading w.r.t monomer: (a) PVPi 

10.0K; (b) PVPi 14.3K; (c) PVAc-s-PVPi 6:94; (d) PVAc-s-PVPi 16:84; (e) 

PV Ac-s-PVPi 24:76; (f) PV Ac-s-PVPi 44:56. Note there is a clear decrease in 

particle size at increased V Ac ratio (Table 4.1; entries 3-7). PVPi 

homopolymers are shown for direct comparison. 
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Further, variation in the copolymer composition was observed to have an effect 

on the particle morphology. Stabilisers with a very low proportion of V Ac 

residues (6:94 and 16:84) resulted in spherical particle morphology (Figure 4.14, 

c-d). When the composition was adjusted, and 44:56 PV Ac:PVPi stabiliser was 

employed, a decrease in the size of the particles was observed (Figure 4.14, f). 

It appears that particles are smaller and more spherical as the PV Ac content 

incorporated into the stabiliser is increased. The mean particle diameter highlights 

the differences between the stabilisers with varying compositions, in which as the 

proportion of V Ac increases the particle size is reduced (Table 4.1, entries 3-7, 

column 7). The particle size distribution remains largely similar for the range of 

compositions, although is observed to be broader for PVPi-X equivalents (IO.OK). 

The findings described in this section can be summarised as follows: 

1. Statistical copolymer structures are more successful at supporting 

dispersion polymerisations in SCC02, possessing improved solubility and 

particle morphology control in dispersion polymerisations relative to the 

homopolymers. 

2. A larger proportion of VPi/smaller proportion of V Ac in the copolymer 

stabiliser structure will result in improved CO2-solubility as a result of 

increased free volume. 

3. Conversely, a larger proportion of VAc in the copolymer structure 

produces smaller PNVP particles in dispersion polymerisations. 
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These observations show that, coupled with the improved solubility of 

copolymers in comparison to homopolymers highlighted in the phase behaviour 

studies in Chapter 3, it is evident that copolymers are more suitable as stabilisers 

for PNVP. Particle morphology trends observed from the SEM micrographs 

suggest that although stabilisers with a lower V Ac content in their composition 

are most soluble in C02, these stabilisers also result in increased particle size. 

There are a number of explanations for this. Whilst VPi affords a stabiliser with a 

high free volume, and therefore reduced polymer-polymer interactions, a certain 

proportion of V Ac is clearly required to provide increased flexibility to the 

polymer, improving dissolution in SCC02 further. 

As there appears to be a relationship between particle size and copolymer 

composition, it is also possible that if the stabilisers are anchoring via a physical 

mechanism (Figure 4.10, b) and one of the monomers (e.g. V Ac) could potentially 

possess a better affinity for anchoring to the stabiliser. If this is the case, then it 

would be expected that a particular amount of this monomer within the stabiliser 

will be required to afford sufficient anchoring to the polymer particle surface and 

to achieve subsequent stabilisation. 

The differences in particle size with stabiliser composition may also be explained 

by alterations in the partitioning of the stabiliser at the particle surface. With too 

high a proportion of VPi, the stabiliser will be much more soluble in the 

continuous phase, and show a decreased affinity for the growing PNVP polymer 

particl~. 
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Overall, these findings suggest that solubility is not the sole factor to consider 

when determining the most suitable surfactant for dispersions, and phase 

behaviour measurements alone are not enough to determine the stabilising ability 

of a material. 

4.3.1.3 Effect of Copolymer Molecular Weight 

A molecular weight study of stabiliser materials was carried out. Both ~50:50 and 

10:90 PVAc:PVPi ratios were studied (Table 4.2; entries 1-8 and 9-13 

respectively). 

Initially the 50:50 PV Ac:PVPi ratio was considered, with molecular weights 

ranging from 4.7K to 29.4K (Figure 4.15, a-t)o 

In the case of the 50:50 ratio, no spherical particle formation was observed using 

a 4.7K stabiliser, and a hard solid was obtained, indicating dispersion 

polymerisation was unsuccessful in this case (Figure 4.15, a). Another low 

molecular weight stabiliser of 5. 7K led to the production of PNVP powder in high 

yield, but the chain length is insufficient to force sufficient steric stabilisation and 

control the particle morphology to any great extent. Thus, the resulting particles 

are ill-defined and highly agglomerated. 

As the molecular weight of the stabiliser is increased, PNVP particles of 

increasing particle diameter are produced and at 21.8K, the size of the particles of 

PNVP are significantly larger (Figure 4.15, b-e). There also appears to be a limit 
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at ~29K where powder product is no longer produced and control over particle 

morphology is lost (Figure 4.15, f). 

Figure 4.1S: Variation of particle morphology with different molecular 

weight stabilisers of SO:SO ratio (Table 4.2; entries 1-3, S-6): (a) Mn= 4.7K; 

(b) Mn= 9.4K; (c) Mn= IS.6K; (d) Mn= 20.6K; (e) Mn= 21.8K; (f) Mn=29.4K. 
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Studies on stabiliser molecular weight by DeSimone et al. led to the conclusion 

that increasing the molecular weight of the stabiliser resulted in larger particles. 39 

Such observations have been confirmed in our studies using the PVPi-based 

stabilisers, as the average particle size diameter increases with increasing 

molecular weight and backbone length of the stabiliser (Table 4.2, entries 1-8, 

column 4). As in the case of the PVPi-X homopolymer stabilisers, this can be 

attributed to the presence of fewer molecules at higher molecular weight, and 

therefore a decreased proportion of xanthate chain ends for grafting to the PNVP 

particles, leading to decreased surface coverage and subsequently larger particles. 

In addition, the increased backbone length will reduce the solubility of the 

stabiliser in SCC02. 

Polymerisation using a set of 10:90 ratio stabilisers have also been characterised, 

and the range of molecular weights at which these stabilisers can be employed is 

much more restricted (Table 4.2, entries 9-13). 

The low molecular weight limits of the 10:90 stabilisers appear to be similar to 

those of the 50:50 stabilisers. In both cases, a stabiliser of - 10.0K is required for 

well-defined, spherical particle formation (Figure 4.15, b and Figure 4.16, c). 

However, the upper molecular weight limit is much lower, with control of 

spherical particle morphology being lost at 12.8K (Figure 4.16, d), in comparison 

to the 50:50 stabilisers, which still produce spherical particles at 21.8K (Figure 

4.15, e). 
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Figure 4.16: Variation of particle morphology with different molecular 

weight copolymer stabilisers of 10:90 ratio (Table 4.2; entries 9-12): (a) Mn= 

4.5K; (b) Mn= 7.4K (c) Mn= 8.9K; (d) Mn= 12.8K; (e) Mn=15.6K. 

It is clear from these results that in addition to producing smaller particles and a 

more spherical morphology, the stabilisers with a greater proportion of PVPi also 

have a wider molecular weight range at which they can operate successfully. 

Despite the stabilisers with a higher proportion of PVPi being more soluble in 
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CO2, overall they appear to be less successful at stabilising dispersion 

polymerisations of NVP. A sufficient proportion of PV Ac within the copolymer 

structure is required. This correlates with the observations made in section 4.3. l.2 . 

One reason for this could be the additional flexibility conferred by incorporating 

V Ac within the structure, allowing for improved interaction with scC02, 

optimising the activity of the stabilisers. 

4.3.1.4 PDI Effect 

Previously, it was noted that an increase in PDI of ~O.15 for the stabiliser resulted 

in decreased solubility and a cloud point increase of ~ IS bar (see Chapter 3, 

section 3.2.3). The products obtained from dispersion polymerisation of NVP 

using these stabilisers were also compared via SEM and the corresponding 

particle sizing data to determine the effect of the PDI of the stabilisers (Figure 

4.17). 

Figure 4.17: Effect of particle morphology with varying stabiliserPDI. 

(a) PDI = 1.44 (b) PDI = 1.59. 
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All PVP products were obtained in the form of free flowing, powder products. 

The SEM images show that despite the PDI difference, spherical particle 

morphology is obtained in both cases. There does appear to be some variation, 

with an increase in the average particle size for the case of the higher PDI 

equivalent. Particle sizing indicates that a PDI of 1.44 gives a mean particle 

diameter of 1.9 )lm, whilst a broader PDI of 1.59 gives a larger mean particle 

diameter of 3.3 )lm (Table 4.4). The distribution of particle size diameters, as 

evidenced by the Cv, appears to be very similar, indicating that the PDI had no 

appreciable effect on this parameter. 

Table 4.4: Variation of PDI of PVAc-s-PVPi-X stabiliser. 

Stabiliser PVP Product 

Details Cloud 
PDIb Mw(kg/mol)b Do (Jimt Cv (%)d Yield (%)e 

(Mo, PDI, ratio) Point (psi)& 

10.3K, 1.44,24:76 144.8 219 4.7 1.9 28.0 90 

10.IK, 1.59,24:76 159.0. 216 6.1 3.3 30.1 85 

Polymerisation conditions: scC02 polymerisation at 35 DC for 48 hours with V -70 initiator. "Cloud 

point pressure determined at 35 ·C using variable volume view cell. bExperimental Mw and PDI 

obtained from GPC-RI detector in chloroform with 5 % triethylamine using PS standards. cMean 

particle diameter as determined from sampling of -100 particles of a typical SEM image. 

dCoefficient of variance as determined by equation Cv = (alDn) x 100. ·Yield determined 

gravimetrically. 
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Overall, results of the PDI comparison indicate that a broad PDI polymer will 

produce larger particles (Figure 4.17, a-b and Table 4.4). The fraction of polymer 

chains within the sample which are optimum molecular weight for stabilisation 

will be decreased when an increasingly polydisperse surfactant is employed. This 

could be the reason for the larger particles produced with broader stabiliser PDI, 

as the effective steric stabilisation is reduced. The surface coverage of the 

growing PNVP particles will be less effective, and as less surface area is 

stabilised, larger particles are produced. Ideally, a narrow PDI is required for 

successful stabilisation using the PVAc-s-PVPi-X stabilisers, which is achieved 

successfully using the RAFT polymerisation technique. 

4.3.1.5 Variation of Stabiliser Concentration 

A study on the effect of the weight percentage of stabiliser employed in scC02 

reactions was carried out to determine the effect of stabiliser loading on the 

product of polymerisation (Figure 4.18). The stabiliser used for this study was 

PV Ac-s-PVPi-X (9.4K, 1.50, 44:56), which we have established to stabilise 

successfully at 5 wt % (figure 4.18, b). 

Three additional stabiliser loadings were used, and SEM micrographs were 

obtained for all PNVP products. All weight percentages of stabiliser gave a white, 

free flowing powder at high yield, but the SEM data showed some variation in the 

particle morphology. At a very low level of 2.0 wt %, only highly distorted near­

spherical structures of>1O /lm were produced (Figure 4.18, a). 
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Figure 4.18: Variation of weight percentage of stabiliser: (a) 2.0 wt %; 

(b) 5 wt %; (c) 7.5 wt % at 2000 magnification (d) 7.5 wt % at 5000 

magnification (e) 15.0 wt % at 2000 magnification and (f) 15.0 wt % at 5000 

magnification. Particles are well defined and spherical at 5 wt %, and there 

is a reduction in particle size as wt % is increased. Data obtained from Table 

4.5, entries 1-4. 
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The effect of using such a low proportion of surfactant material indicates there is 

insufficient stabiliser present to obtain well defined particle morphology. At 

higher levels, spherical particles were obtained up to 15.0 wt % with average 

diameter < 1 J..Lm in size (Figures 4.18; b-fand Table 4.5). 

Table 4.5: Variation ofStabiliser Weight Percentage. 

PNVPCv PNVPYield PNVP 
Stabiliser wt % PNVP DB (,..,mt 

(%)b (%)C Appearance 

2.0 4.2 28.9 83 Powder 

5.0 1.4 30.2 86 Powder 

7.5 1.3 27.0 85 Powder 

15.0 0.7 29.0 79 Powder 

Polymerisation conditions: scC02 polymerisation at 35°C for 48 hours with V -70 initiator. "Mean 

particle diameter as determined from sampling of -100 particles of a typical SEM image. 

bCoefficient of variance as determined by equation Cv = (aIDn) x 100. cYield determined 

gravimetrically. 

The particle sizing data show a clear reduction in particle size diameter as the 

percentage stabiliser is increased (Table 4.5). As observed in similar studies of 

surfactant concentration in dispersion systems, increasing concentrations of 

stabiliser result in a greater surface area of polymer potentially being coordinated 

to stabiliser molecules, which leads to a reduction in the particle size of the final 

product. 37, 40-43 During the nucleation period, nuclei are formed and as the 

particles precipitate, are captured and supported by the stabiliser chains, allowing 
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for particle growth. As the concentration of stabiliser is increased, a larger number 

of nuclei are produced, and smaller particles obtained. 

As mentioned, numerous groups have considered the effect . of stabiliser 

concentration on dispersion polymerisation. Canelas et al. reported the dispersion 

polymerisation of styrene in scC02 using a PS-b-PDMS stabiliser. As the 

stabiliser was varied from 2.0 to 15.0 wt %, the particle size decreased from 1.15 

to 0.31 /lm.42 Similarly, in dispersion polymerisations of PNVP carried out in the 

DeSimone group using PFOA as a surfactant, as the concentration of the stabiliser 

employed was increased from 0.25 to 6.0 wt %, the average particle size was 

again observed to decrease, in agreement with other studies.zs This was also 

observed for MMA polymerisations, in which the concentration of PFOA was 

varied from 0 to 16.0 wt %, and the corresponding particle size diameter ranged 

from 2.86 to 1.55 /lm (Figure 4.19).41 

Figure 4.19: SEM micrographs of PMMA latex particles synthesised by 

DeSimone et al. using PFOA surfactant at a) 2.3 wt % and b) 16 wt %.41 
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Similar effects have also been observed in conventional organic solvents. For 

example, Shen et al. carried out a study of the dispersion polymerisation of MMA 

in methanol, and clearly demonstrated a decrease in particle size as the 

concentration of the stabiliser was increased.43 

The "gold standard" for stabilisers or dispersants in SCC02 has always been highly 

soluble fluorinated stabilisers such as Krytox 157-FSL and PFOA. These 

stabilisers allow for the synthesis of highly spherical, micron-sized particles with 

high conversion of monomer to polymer, and have been reported to stabilise 

dispersion polymerisations of PMMA and enable the formation of discrete 

particles at stabiliser concentrations as low as 1.0 wt % and 0.24 wt% 

respectively. 

However, when converted to molar concentrations it becomes clear that the 

poly(vinyl alkanoates) are performing at a promising level. For example at 5 wt % 

(4.5 x 10-5 mol) the poly(vinyl alkanoates) are approaching equivalence with the 

fluorinated Krytox-157 FSL (1 wt %; 4.0 X 10-5 mol), though they do not quite 

match the extremely low concentrations reported for PFOA.41 Moreover, the 

poly(vinyl alkanoates) are performing as effectively as the more common 

methacrylate terminated silicone (10 kg/mol) (5 wt %; 4.0 x 10-5 mol).44 

Despite the differences in wt % employed for all of these stabilisers, the molar 

concentrations of PV Ac-s-PVPi-X, Krytox and PDMS-mMA are all very similar. 

This could indicate that sufficient surface coverage of the stabiliser is required to 
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function effectively, and although different stabiliser loadings in terms of wt % 

are employed, there is suitable surface coverage in all cases. 

Clearly these findings demonstrate that inexpensive and environmentally 

acceptable hydrocarbon stabilisers for use in scC02 are now within reach using 

PVPi-based stabilisers (typically, Krytox 157-FSL = £827/Kg as supplied by 

DuPont, and PVPi = ~£58IKg). Hydrocarbon stabilisers with high solubility will 

potentially allow polymerisations to be conducted at lower pressures, reducing the 

overall compression costs required. The use of less toxic alternatives to 

fluorinated materials as stabilisers could also be appealing in industrial 

applications. These materials could potentially overcome the reliance upon 

fluorinated or silicone containing polymers that have proven to be one of the 

major barriers to wider commercialisation. 
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4.3.1.6 Variation of Reaction Parameters 

In order to assess how robust the stabilising ability of the polymers were to 

changes to the reaction conditions, a series of additional experiments were 

undertaken. The effect of reaction pressure, initiator loading, and reaction time 

was considered. 

Polymerisation Reaction Pressure 

The reaction pressure of the vessel, and therefore the density of C02 within the 

reaction, was adjusted in a set of 3 polymerisations. The same polymeric stabiliser 

(PVAc-s-PVPi-X; 12.1K, 1.46,24:76) was employed in all cases and all other 

reaction parameters were also kept constant. The cloud point pressure at 35°C for 

the stabiliser employed is 154 bar. Three polymerisation pressures were studied 

between 207 and 276 bar (Table 4.6). 

The effect of pressure was considered using SEM. In all polymerisations, the 

stabiliser was soluble at the reaction pressures used. The effect of pressure 

appears to have little effect on the PNVP product obtained. Polymerisations at 

276 and 241 bar both result in spherical microparticle formation and a high yield 

(Figure 4.20, a-b). The particle size diameter, Dn, was observed to increase 

slightly at the two lower pressure conditions. The coefficient of variance was 

calculated as ~20 to 30 % in all cases, indicating the distribution of particle sizes 

within the sample is relatively the same for all pressures tested. 
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Table 4.6: Polymerisation of NP at Varying Pressure. 

Pressure Mw 
Dn (Jim)b 

Yield 
PDIa Cv(%t Appearance 

(bar) (kg/mol)a (%)d 

276 223 4.3 2.1 23.2 89 Powder 

241 270 5.2 2.5 19.8 83 Powder 

207 282 5.2 2.5 27.2 93 Powder 

Polymerisation conditions: scC02 polymerisation at 35 DC for 48 hours with V -70 initiator. 

aExperimental Mw and PDl obtained from GPC-RI detector in chloroform with 5 % triethylamine 

using PS standards. bMean particle diameter as determined from sampling of ~ 100 particles of a 

typical SEM image. cCoefficient of variance as determined by equation Cv = «(llDn) x 100. dYie ld 

determined gravimetrically. 

Figure 4.20: SEM micrographs obtained from PNVP polymerisation at 

varying reaction pressure using PV Ac-s-PVPi-X stabiliser at 5 wt %. (a) 276 

bar; (b) 241 bar; (c) 207 bar. 
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At 207 bar (Figure 4.20, c), despite the reduction in pressure and therefore 

reduced solvating power, the stabiliser is still able to successfully support a 

dispersion polymerisation, resulting in powder products with spherical particle 

morphology. It is important to note that these particles do appear to be slightly 

more agglomerated at 207 bar compared to those at higher pressure, although this 

is a visual, not quantitative, observation. 

The results appear to agree with the findings of previous studies. Polymerisations 

of MMA with PFOA stabiliser were found to be insensitive to changes in pressure 

between 145 to 331 bar, producing latex particles of a similar diameter, molecular 

weight and yield.41 Johnston et al. also found that particle size had no significant 

dependence on pressure above 3000 psi in a study using PDMS-mMA stabiliser in 

the polymerisation of MMA in CO2•
45 The authors noted a threshold pressure 

existed below which there was a significant change in the polymerisation, 

evidenced by increased particle coagulation. Whilst this was not observed in the 

limited pressure studies carried out in this thesis, it is likely that this threshold 

would be reached upon reducing the pressure further. 

Initiator Ratio 

In all the polymerisation reactions described previously in this chapter, a 

stabiliser: initiator ratio of [1]:[10] was employed. In order to determine if there 

was any appreciable effect on particle morphology of the PNVP samples 
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synthesised from dispersion polymerisation, additional experiments were 

conducted with reduced initiator concentrations (Table 4.7). 

Table 4.7: Adjustment of Initiator Ratio. 

Mw 
PDI8 Do (p.1m)b Cv(%t Yield (%)d [S]: [I] Appearance 

(kg/molt 

1:10 223 4.3 2.1 23.2 89 Powder 

1:1 301 4.1 3.3 22.3 87 Powder 

2:1 167 3.0 78 Hard, Tacky Solid 

Polymerisation conditions: scC02 polymerisation at 35 °C for 48 hours with V -70 initiator. 

"Experimental Mw and PDI obtained from GPC-RI detector in chloroform with 5 % triethylamine 

using PS standards. bMean particle diameter as determined from sampling of -100 particles of a 

typical SEM image. cCoefficient of variance as determined by equation Cv = (alDn) x 100. dYield 

determined gravimetrically. 

The PNVP products synthesised from the polymerisation reactions were obtained 

in a free-flowing powder form, with the exception of the reaction employing the 

lowest concentration of initiator, which resulted in a hard solid. The overall yield 

was also slightly reduced for this reaction. Increasing the initiator concentration in 

a polymerisation will generally lead to a decreased molecular weight because of a 

higher number of radicals within the system, and this is highlighted by the lower 

molecular weights obtained when employing increased initiator concentrations 

(Table 4.7, column 2). The unexpectedly low molecular weight of the PNVP 

product obtained at 2: 1 stabiliser:initiator loading is attributed to the insolubility 
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of the very high molecular weight material, which was difficult to dissolve and 

filter during characterisation via Ope. 

The SEM micrographs were compared to gauge the effect on particle morphology 

(Figure 4.21). 

Figure 4.21: PNVP particle morphology obtained from polymerisation using 

different stabiliser to initiator loadings. (a) S:I = (1):[10); (b) S:I = [1):[1); 

(c) S:I = (1):[0.5). 

In the case of this study, the particle morphology was clearly affected, with the 

two higher initiator concentrations producing spherical particles, whilst the low 

level of initiator gave highly agglomerated structures which were very ill -defined, 
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showing some sign of spherical microparticle formation. Overall, an increase in 

Dn was observed as the initiator loading was decreased. 

Typically, increasing the initiator concentration in a polymerisatiort will lead to a 

decreased particle size because more nucleation sites are formed and there are an 

increased number of primary particles growing simultaneously, but the same 

amount of monomer available in the polymerisation. This results in reduced 

growth of the individual primary particles.37 Previous studies by Galia et al. 

looking at the effect of initiator concentration on the particle morphology of 

PNVP polymers synthesised via dispersion polymerisation in SCC02 suggested a 

similar relationship.28 This has also been observed in conventional organic 

solvents. Horak et al. found that a smaller particle morphology was observed with 

increasing initiator concentrations in the polymerisation of HEMA.46 This was 

also observed by Capek et al. in the dispersion polymerisation of 

poly( oxyethylene methacrylate) with styrene.47 A smaller particle size was indeed 

observed at higher initiator concentrations in this study, confirming this theory. 

However, increased initiator concentration has also been observed to result in 

increased particle sizes in dispersion polymerisations. Studies have observed this 

trend, showing an increase in particle size as the initiator concentration was 

increased.48, 49 This has been attributed to an increase in the free radical 

production rate, producing a greater instantaneous concentration of oligomeric 

radicals, which will in tum increase the association rate of the oligomers and the 

coagulation rate of the unstable nuclei. Ultimately this will result in the formation 

of larger particle nuclei. 50, 51 The impact of initiator concentration on the particle 
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SIze is assumed to be dependent on both the polymerisation system and the 

monomer employed. 

Overall, based upon the limited experiments considered in this section, it appears 

that dispersion polymerisation of PNVP in scC02 with PVPi-based hydrocarbon 

stabilisers results in a decreased particle size as the initiator concentration is 

increased. Moreover, it is apparent that the initiator ratio can be successfully 

lowered to some extent, which is advantageous as less initiator material would be 

consumed in each reaction. However, too Iowa level of initiator leads to loss of 

control over the particle morphology and the appearance of the polymer. 

Polymerisation Reaction Time 

Previously, all high pressure polymerisation reactions were carried out over a 

period of 48 h. In order to determine if the reaction time could potentially be 

reduced, a polymerisation at 24 h was conducted. The PNVP product was 

analysed to determine if this reduction in polymerisation time had a significant 

effect on yield and particle morphology (Figure 4.22 and Table 4.8). 

A free-flowing, powder product was obtained upon venting of the CO2 and upon 

analysis of the SEM micrographs the particle morphology also appeared to be 

largely unaffected by the shorter reaction time, giving comparable spherical 

microparticles. The particle diameter remained largely unaffected despite 

reducing the reaction time by half. The Cv values were also similar, indicating no 
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distinct changes in particle size distribution. There was also no appreciable impact 

on the final yield or the overall molecular weight of the obtained PNVP product. 

Table 4.8: Effect of Polymerisation Reaction Time. 

On (J1m)b 
Cv Yield 

Time (h) Mw (kg/mol)3 PDla Appearance 
(%)C (%)d 

48 223 4.3 2.1 23.2 89 Powder 

24 209 4.8 2.2 25.9 84 Powder 

Polymerisation conditions: scC02 polymerisation at 35 °C for 48 hours with V -70 initiator. 

aExperimental Mw and PDl obtained from GPC-RI detector in chloroform with 5 % triethylamine 

using PS standards. bMean particle diameter as determined from sampling of - 100 particles of a 

typical SEM image. cCoefficient of variance as determined by equation Cv = (aiD,,) x 100. dYield 

determined gravimetrically. 

Figure 4.22: SEM micrographs of PNVP product from polymerisation at (a) 

48 h and (b) 24 h. 
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These results demonstrate that the reaction time of the NVP polymerisations in 

scC02 can be minimised without any detrimental impact to the polymer product, 

in terms of both yield and particle size. Therefore, future polymerisations of 

PNVP in scC02 could successfully be carried out over a shorter period, 

potentially minimising the timescale of experiments and consequent energy costs 

of the reactions. 

4.3.1.7 Investigation of New Monomer Alternatives 

Monomers IP Ac and VPr were polymerised with VPi usmg the RAFT 

polymerisation technique to produce statistical copolymer stabilisers. These 

stabilisers were then used for the polymerisation ofNVP in scC02 (Figure 4.23). 

Figure 4.23: PNVP products using VPr and IPAc-based stabilisers. (a) PVPr­

s-PVPi-X: 9.9K, 1.68,25:75; (b) PIPAc-s-PVPi-X: 10.8K, 1.33, 17:83. 
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PVPr-s-PVPi-X used as a stabiliser gave PNVP products which indicated some 

form of spherical particle formation, but these particles are highly irregular. The 

PVPr-s-PVPi-X copolymer had poorer solubility than the PVAc-s-PVPi-X 

equivalent, so this is likely one of the reasons for the ill-defined particles. The 

PDI was also likely to have affected the particle morphology to some extent, 

being quite high when compared to the PIP Ac equivalent (PDI = 1.68). 

The PIPAc-s-PVPi-X copolymer gave much improved spherical particle 

formation, comparable to the PVAc-s-PVPi-X equivalent. PIPAc incorporated 

into the PVPi copolymer stabiliser was also found to have very similar solubility 

to the stabilisers produced when using V Ac as a co-monomer. Therefore it is 

expected that the PNVP product would also be comparable. Overall however, this 

indicates there are no real advantages to employing IP Ac as a co-monomer to 

replace V Ac; solubility and product particle morphology is very similar, but 

polymerisation of IPAc is limited to copolymers with low proportions of IPAc as 

a result of the difficulty in polymerising the monomer. In addition, IP Ac is much 

more expensive to purchase (lP Ac = £ 120/Kg and V Ac = £18/Kg as obtained 

from Sigma Aldrich chemical suppliers). 

In conclusion, although IP Ac and VPr were interesting alternatives to consider as 

co-monomers, both have no clear advantages compared to V Ac. 
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4.3.1.8 Free Radical Copolymers as Stabilisers 

To determine the requirement for RAFT polymerisation in the development of the 

PVPi-based hydrocarbon stabilisers, a copolymer stabiliser was synthesised via 

free radical polymerisation (Chapter 3). Following phase behaviour studies, 

dispersion polymerisations in SCC02 using NVP monomer were conducted to 

compare the activity of the two stabilisers (Table 4.9 and Figure 4.24). 

The free radical copolymer, PVAc-s-PVPi, was unsuccessful in producing a 

dispersion polymerisation, and upon venting of the high pressure vessel a hard, 

tacky solid was obtained with low PNVP yield. SEM micrographs also confirm 

this, and a highly agglomerated, irregular mass of PNVP is produced using the 

free radical stabiliser. This is a distinct contrast to the polymerisation employing 

the RAFT synthesised copolymer, in which a high yielding PNVP powder with 

spherical micropartic1e formation is obtained. 

Table 4.9: Dispersion Polymerisation using Free Radical Copolymer 

Stabiliser. 

Stabiliser Details 
Cloud Point 

PNVP PNVP 
Stabiliser 

(Mn' PDI, ratio) (bart Yield (%)b Appearance 

PV Ac-s-PVPi-FRP 10.0K, 2.05, 29:71 252.1 53 Hard Solid 

PV Ac-s-PVPi-X 10.3K, 1.44,24:76 144.8 86 Powder 

Polymerisation conditions: scC02 polymerisation at 35°C for 48 hours with V -70 initiator. "Cloud 

point pressure determined at 35 ·C using variable volume view cell. bYield determined 

gravimetrically. 
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Figure 4.24: Comparison of PNVP products obtained from dispersion 

polymerisation using PV Ac-s-PVPi-FRP copolymer synthesised by free 

radical polymerisation and PVAc-s-PVPi-X copolymer synthesised by RAFT 

polymerisation. (a) PVAc-s-PVPi 10.0K, 2.05, 29:71; (b) PVAc-s-PVPi-X 

10.3K, 1.44, 24:76. 

There are two key reasons why the free radical copolymer is potentially unable to 

act as an efficient stabiliser: 

Firstly, a polymer-philic anchor group is a necessity for successful polymerisation 

of NVP in scC02. Without the presence of the stabiliser end-groups provided by 

the RAFT polymerisation mechanism, it is likely that dispersion polymerisation 

using the free radical synthesised stabiliser is unsuccessful as there is no way in 

which the stabiliser can graft to the growing PNVP particles in SCC02. RAFT 

polymerisation is required in this case to provide a suitable anchor group, and 

without the presence of the xanthate chain the PVPi-based polymers cannot graft 
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and are unable to support the dispersion polymerisation In scC02• This 

requirement is investigated further in this thesis in Chapter 5. 

Secondly, the free radical polymer has a much broader molecular weight 

distribution, and as such, will possess a range of molecular weights within the 

sample. Consequently, only a small proportion of the stabiliser material is likely 

to be of sufficient length to act as an adequate stabiliser and provide suitable 

stabilisation. Decreased steric stabilisation, reduced solubility and inadequate 

surface coverage as a result of this broad molecular weight distribution will all 

contribute to an ineffective stabilisation. 

Comparison of PVAc-s-PVPi and PVAc-s-PVPi-X has demonstrated that 

controlled methods, such as RAFT polymerisation, provide a means of improving 

the solubility of stabilisers by accessing polymers with a narrow PDI, and enable 

a xanthate functionality to be incorporated into the structure with the potential to 

act as a polymer-philic anchor group. These factors have been proven to have a 

significant impact on the stabilising ability and are crucial in providing a 

successful dispersion polymerisation system. Further studies on the effect of 

stabiliser anchor group will be discussed in Chapter 5. 
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4.3.2 Hydrocarbon Stabiliser Synthesis in scC02 

Following the successful synthesis and application of PVPi-X homopolymer and 

copolymer hydrocarbon stabilisers in the dispersion polymerisation of NVP in 

scC02, and the CO2-solubility of these materials in the reaction medium, it was 

assumed that such stabiliser materials could potentially also be produced in 

scC02• Such an alternative approach for hydrocarbon stabiliser synthesis would 

remove the need for potentially environmentally unfriendly solvents used in the 

polymerisation/purification processes. With this in mind, a series of experiments 

were conducted to determine the applicability of this approach. 

Initially, copolymer stabilisers with a feed ratio of 50:50 VAc:VPi were targeted 

for synthesis, followed by attempts to synthesise PVPi-X homopolymers. The 

results of the high pressure polymerisations are highlighted (Table 4.10). 

PV Ac-s-PVPi-X copolymer synthesis met with only moderate success (Table 

4.10; entries 1-2). After 48 h, a 4.4K copolymer was produced, but the proportion 

of PV Ac within the material was negligible. Extending the reaction time further 

somewhat improved results, and a higher conversion was obtained, but the 

product was in the form of a tacky solid swollen with residual monomer, and 

there was only slight improvement in terms of the experimental monomer ratio. 

Homopolymer synthesis of PVPi-X was also attempted (Table 4.10; entries 3-6). 

As with the copolymer synthesis, the molecular weight did not meet the targeted 

molecular weight. PDI was narrow in all cases, confirming controlled 

polymerisation via use of the xanthate RAFT agent. The reaction time and the 

- 227 -



Chapter 4: Dispersion Polymerisation Using Hydrocarbon Stabilisers 

amount of initiator employed were adjusted to determine if this had an impact. 

Molecular weight and conversion both increased as the initiator 

concentration/reaction time were increased, indicating such adjustments did go 

some way to improving the polymer produced. However, the product obtained 

remained a mixture of solid and monomer in most cases. Also, molecular weights 

obtained agreed reasonably well when comparing the conversion and the targeted 

molecular weight, correlating with the observed data. 

Table 4.10: Synthesis of hydrocarbon stabilisers in scC02• 

Entry Monomers 

2 

3 

4 

5 

6 

PVAc/PVPi 

PVPi 

Mn,expt PDI8 

(kg/molt 
Ratiob Conv. 

(%t 
4.4 1.52 6:94 44 

5.5 1.33 12:88 75 

3.6 

5.8 

5.3 

6.6 

1.38 

1.30 

1.37 

1.32 

63 

69 

69 

79 

[R):[I) 

2:1 

1:1 

2:1 

1:1 

1:2 

1:1 

Time 
(b) 

48 

72 

48 

Appearance 

Viscous Liquid 

Tacky Solid 

Solid/Monomer 

48 SolidIMonomer 

48 Solid/Monomer 

72 Powder 

Polymerisation conditions: scC02 polymerisation at 65°C with AIBN initiator. Theoretical 

molecular weight (Mn,th) of 10 kg/mol and feed ratio of 50:50 PV Ac:PVPi targeted in all 

polymerisations. 'Stabiliser Mn and PDI determined via GPC-RI with THF eluent and PS 

standards. bRatio and conversion of monomer to polymer determined from IH NMR. 

The main exception appeared to be in the case of the synthesis carried out with 

[R]:[I] of 1: 1 and a polymerisation time of 72 h. The product obtained from this 

reaction was a white, powder product with reasonable molecular weight and PDI. 
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However, the conversion still did not meet the typical homopolymer conversions 

obtained from conventional PVPi synthesis, and monomer residue was still 

present in the final material. However, with further extraction using scC02, the 

monomer could be removed. 

The key issue with synthesising hydrocarbon stabilisers in this manner seems to 

arise from the rate of polymerisation. The reaction is unable to reach targeted 

molecular weights, despite some of the polymerisations being carried out for up to 

72 h. If the reaction were to be prolonged further, it is possible a higher 

conversion and molecular weight could likely be attained, but this does not seem 

practical when conventional polymerisations may be carried out for only a few 

hours to yield a PVPi-X homopolymer with high conversion and experimental Mn 

close to that of the target Mn (see Chapter 3). 

One possible alternative would be to carry out the synthesis of the hydrocarbon 

stabilisers in SCC02 at much higher monomer concentrations, thus reducing the 

effects of dilution within the reaction medium and improving the rate of reaction. 

This would effectively be a CO2-expanded phase reaction, in which the polymer 

is obtained from large quantities of the liquid monomer expanded with dense 

C02. This could potentially result in much higher conversions, and therefore no 

monomer residue in the final product, in addition to molecular weights much 

closer to target molecular weight. The polymerisation reaction time would also be 

significantly reduced using this method. 

- 229-



Chapter 4: Dispersion Polymerisation Using Hydrocarbon Stabilisers 

Overall however, the results so far regarding hydrocarbon stabiliser synthesis 

have met with insufficient success. In all cases, conversions have not been 

particularly high, and monomer residue has been retained within the final sample, 

meaning purification steps will still be required post-polymerisation. This 

suggests that the conventional means of synthesising these materials in 

bulk/solution polymerisation, followed by precipitation in an anti-solvent for 

purification is the most suitable method, despite the need for solvents for the 

purification steps. 
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4.4 Conclusions 

The main aim of this work was to demonstrate the effectiveness of stabilisers 

composed of PV Ac and PVPi in supporting dispersion polymerisation of NVP in 

scC02. One of the key issues in the development of hydrocarbon stabilisers is the 

synthesis of materials which are sufficiently CO2-soluble and provide adequate 

steric stabilisation. 

Previously in Chapter 3, CO2-philic polymers composed of VAc and VPi were 

identified with the potential to act as stabilisers in dispersion polymerisations in 

scC02. In this chapter, it has been established that the PVPi-based hydrocarbon 

stabilisers are indeed effective for NVP polymerisations, being both highly C02-

soluble and possessing sufficient stabilising activity to produce fine, powder 

products with high yield and controlled particle morphology. The efficacy of 

these stabilisers can be attributed to the favourable structure, incorporating a high 

free volume, increased flexibility and the presence of carbonyl groups for specific 

interaction with C02. The method of synthesis also leads to the presence of a 

RAFT end-group capable of acting as a polymer-philic anchor group. 

This chapter has also identified that copolymers possess improved stabiliser 

activity compared to PVPi homopolymers, most likely because such polymers 

optimise the free energy requirements for a CO2-soluble material, as described by 

Beckman et al.52 Stabilisers of ~ 10 kg/mol were typically observed to be of 

sufficient length to impart steric stabilisation, whilst being of suitably low . 

molecular weight to maintain good CO2-solubility. Moreover, it has been shown 
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that adjustment of the composition ratio of the stabiliser results in variations of 

particle morphology, with micron-sized spherical particles. Whilst these 

variations are small, it appears there is a compromise between C02-solubility and 

steric stabilising ability, with -25:75 to 50:50 ratio of PVAc-s-PVPi-X stabilisers 

providing a suitable balance, and allowing optimum polymerisation results to be 

achieved. 

Stabiliser loading also has an impact on the polymerisation, and the copolymer 

stabilisers were found to operate successfully even at low loading. Increasing the 

loading was also found to have a significant impact on the final particle size 

obtained, in agreement with the observations from the literature. 37, 40-43 Whilst 

alternative co-monomers for polymerisation with VPi were considered, the PV Ac­

s-PVPi-X copolymer still proved the most successful. 

These results highlight a route to novel hydrocarbon stabilisers that are 

inexpensive, highly CO2-soluble and may be applied very successfully in 

dispersion polymerisations. Solubility in CO2 and subsequent stabilisation of the 

growing polymer particles are crucial factors in dispersion polymerisation, and 

these hydrocarbon materials are able to provide a solution to both issues by 

incorporating VPi into the structure. In addition, the RAFT functionality provides 

a means of anchoring to the PVP particles effectively. 

Whilst the stabilisers presented in this section do not currently match the 

stabilising activity and versatility of fluorinated stabilisers, these PVPi-based 

materials mark a significant step towards the development of hydrocarbon 
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alternatives. Future work will exploit these PVPi-based stabilisers, and expand 

their use in dispersion polymerisation in scC02 to other monomer systems, and in 

the development of other surfactant applications. 
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Chapter 5: Investigation of Poly(vinyl pivalate) 

Copolymer Architecture 

This chapter focuses on further investigation of the PVPi-based hydrocarbon 

stabilisers, looking in more detail at changes to the stabiliser architecture. The 

first section involves the development of block copolymer stabilisers composed of 

PV Ac and PVPi, and the comparison of these structures with statistical copolymer 

equivalents in terms of both their solubility in the variable volume view cell, and 

the stabilising ability of these polymers in high pressure polymerisations to 

produce PNVP particles. 

The second part of the chapter begins to consider the effect of stabiliser end­

groups; in particular looking at radical-induced reduction for removal of the sulfur 

moiety and the incorporation of different end-groups via variation of the R group 

in the xanthate employed. Each of these end-group changes were studied to gain a 

greater understanding of the significance of the xanthate in the final stabiliser 

structure, and whether this component plays a key role in anchoring to the 

growing polymer particles in scC02• 
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5.1 Introduction 

RAFT polymerisation is one of the most successful controlled polymerisation 

techniques, as it has been applied to a wide range of monomers, is tolerant to a 

variety of reaction conditions and functional groups, and is relatively simple and 

inexpensive to implement. 1
-
4 Throughout this thesis, the method of RAFT 

polymerisation has been adapted for the synthesis of hydrocarbon stabilisers. The 

mechanism and key features of RAFT polymerisation are detailed in Chapter 1. 

One of the most appealing characteristics of RAFT polymerisation is the ability to 

access a wide range of architectures using the technique. This controlled radical 

polymerisation process has been applied in the synthesis of well-defined 

structures such as gradient, star, block, comb and hyperbranched polymers. In 

addition to this, the RAFT process enables a range of techniques to be utilised 

post-polymerisation to manipulate the functionality of the polymer and transform 

the thiocarbonylthio end-group. In the next section, the application of RAFT 

polymerisation for the synthesis of block copolymer structures, and the 

transformation of the incorporated RAFT end-groups of polymers will be 

considered in more detail. 
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5.1.1 Block copolymers via RAFT Polymerisation 

The facile synthesis of block copolymers is one of the key advantages of RAFT 

polymerisation, resulting in the formation of polymers with thiocarbonylthio end­

groups, also known as macro-RAFT agents.! This feature gives the resulting 

polymers the ability to chain extend and form block copolymer architectures.5 

There are two methods of block copolymer synthesis via RAFT polymerisation: I 

1) Chain extension of the macro-RAFT agent using a second monomer. 

2) Attachment of a RAFT agent to a polymer with a functional end-group, 

allowing the combination of polymers via two polymerisation techniques. 

Chain extension using a macro-RAFT agent is similar to homopolymerisation via 

the RAFT process. Initially, a macro-RAFT agent is generated from monomer MI. 

In the second step, a radical initiator and a second monomer (M2) are introduced. 

Polymerisation of monomer M2 takes place, resulting in formation of the second 

block, through chain transfer with the macro-RAFT agent synthesised during 

RAFT polymerisation of the initial monomer, MI (Figure 5.1). 

The choice of Rand Z group of the RAFT agent for block copolymer synthesis is 

important. The Z group should be chosen to facilitate controlled polymerisation of 

both monomers. The choice of R group is crucial in that the polymer M I 

generated in the first step needs to act as the leaving group, and so must have 

comparable or better leaving group ability to polymer M2, or block 

copolymerisation will be unsuccessful. 5 In other words, the monomer with a 
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higher chain transfer rate to the RAFT agent must be po lymerised first. This 

prevents inefficient blocking and allows the achievement of high conversIOns 

when chain extension with a second monomer takes place. 5
, 6 

RAFT Agent 

Polymerisation 

Monomer M l = 

Block Copolymer via 

Chain Extension 

Macro-RAFT Agent 

Polymerisation 

Monomer Mz =. 

Figure 5.1: Mechanism of block copolymer synthesis via method 1. A macro-

RAFT agent is formed from monomer M" and chain extension of the 

polymer with monomer M2 takes place. 

Chain extension is the most commonly employed method of block copolymer 

fo rmation and there have been a number of examples of successful synthesis via 
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the chain extension of a macro-RAFT agent. 6-8 One such example IS the 

successful synthesis of block copolymers of PV Ac and PVPi via RAFT 

polymerisation, using a xanthate as the chain transfer agent, demonstrated 

recently by Lipscomb et al.8 The authors carried out a series of chain extension 

reactions from xanthate-terminated vinyl ester homopolymers with V Ac, VPi, and 

VBz with variable efficiency to afford block copolymers that were found to 

exhibit microphase separation. 

The second method of block copolymer synthesis using RAFT polymerisation is 

typically employed when block copolymerisation of a less activated monomer 

(LAM) and a more activated monomer (MAM) is required. In this situation, chain 

extension is not viable because of the lack of a RAFT agent suitable for use with 

both monomer types and a different method is required to access block copolymer 

architectures. This generally requires a combination of polymerisation techniques. 

In 2008, Matyjaszewski et al. reported the synthesis of block copolymers of 

PVAc by a successive RAFT and ATRP route.9 This method afforded block 

copolymers with a combination of LAMs and MAMs, such as PV Ac-b-PMMA, 

which would not have been accessible using chain extension via a macro-RAFT 

agent. Research by groups such as Stenzel et al. have also demonstrated the 

ability to access block copolymers of disparate reactivities through a combination 

of RAFT and click chemistry.lO This type of block copolymer synthesis involves 

the use of click chemistry to circumvent the problems posed by conventional 

RAFT agents. Homopolymers are synthesised by RAFT polymerisation, and then 

'clicked' together without further modification. 
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Thang et al. recently reported an interesting development utilising ' pH switchable' 

RAFT agents (Figure 5.2)." 

1. R=CH 2CN 

2. R=CH(CH 3)C02CH3 

3. R=C(CH3hCN 

O"N+-<:~R 'N-I<S RAFT 

\ ..... E-----l ..... ~ S-R Controls VAc, NV;' NVC 

N // ~ J Less Activated Monomers 

1-H+ R=CH 2CN 

2-H+ R=CH(CH3)C02CH3 

3-H+ R=C(CH 3hCN 

H 

"N-I<S 

O S-R 
\ + // Controls MMA, MA, Sty 

/ N More Activated Monomers 

RAFT 

Figure 5.2: Synthesis of block copolymers using a class of switch able RAFT 

agents, N-(4-pyridinyl)-N-methyldithiocarbamates, and their pH responsive 

t
. 11 proper les. 
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A class of switchable RAFT agents, N-( 4-pyridinyl)-N-methyl dithiocarbamates, 

were used to provide control over the polymerisation of less activated monomers 

and, after addition of a protic or Lewis acid, became effective in also controlling 

polymerisation of more activated monomers. This approach is the first to employ 

a 'universal' RAFT agent and could overcome some of the difficulties associated 

with block copolymer synthesis of LAMs and MAMs in the future. 

Block copolymer synthesis using chain extension of a macro-RAFT agent will be 

employed within this chapter. The use of this method to synthesise PVAc-b-PVPi­

X block copolymers has already been demonstrated in the literature to be suitable 

for use with V Ac and VPi, as both monomers are less active and can be controlled 

using a xanthate-based RAFT agent. 

5.1.2 Variation of End-groups using RAFT Polymerisation 

As mentioned previously, one of the key properties of RAFT polymerisation is 

the retention of the thiocarbonylthio group in the final polymer structure. RAFT 

polymerisation results in the incorporation of the Rand Z group onto the a- and 

co-end of the polymer respectively. This end-group retention can provide a means 

of functionalising the polymer through the selection of appropriate Rand Z 

groups of the initial RAFT agent. The R group in particular can be utilised to 

introduce specific functionality to the a-end of the polymer with little difficulty. 

This method is an efficient way of introducing terminal functionality by simply 
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tailoring the RAFT agent for the purpose, and examples of this have been reported 

in the literature. 12
-
17 

In addition to functionalisation at the a-end of the polymer through the 

employment of tailored RAFT agents, modifications to the thiocarbonylthio end-

group at the ro-end are often desired. A range of processes for end-group 

transformation have been developed, and are highlighted in Figure 5.3. 1
, 18, 19 

~ 
R T L T In i H 

y y y 

Hydrogen Donor [H] / 
Initiator / 

~~~ 
R T L r In is z 

y y y 

~ 
R T L TJn i R 

y y y 

x X 
R~X 

Y Y Y 

X X X 

R~SH 
Y Y Y 

Figure 5.3: Summary of some of the key methods of thiocarbonylthio end-

group modification post- RAFT polymerisation. From top to bottom: a) 

Radical-induced reduction; b) Thermolysis; c) Reaction with nucleophiles; d) 

Addition-fragmentation coupling. 
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Thiocarbonylthio groups of a RAFT -terminated polymer will undergo reaction 

with nucleophiles such as amines2o-22 and hydroxides,23, 24 and also with ionic 

reducing agents such as boron hydrides.2o, 25, 26 These transformations lead to the 

production of a polymer with a thiol end-group (Figure 5.4). Problems associated 

with this type of reaction involve the formation of polymeric disulfides of twice 

the molecular weight of the original polymer. However, cleaner methods of thiol 

end-group generation can also be employed, using reducing agents such as 

sodium bisulfite, which are employed to supress such side reactions.22,27 It is also 

important to note that the resulting -SH end-group is sensitive to oxidation. 

5) 55 + 5 

pn-s)z Pn-~Z 
H xJlz 

• • 
X 

+ 
X- = Nucleophile 

X p-5H n 

Figure 5.4: Production of thiol end-group via reaction of RAFT -terminated 

polymer with nucleophiles e.g aminolysis.19 

Thiol-terminated polymers can be used in a number of applications, and also as 

precursors to other polymer end-group functionalities and architectures. Thiol-ene 

processes have been extensively employed to trap the thiol by the addition of an . 

activated alkene (Michael acceptor).28-31 The thiol end-group can also be 
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employed in thiol-ene reactions to introduce specific functionalities into the 

polymer such as fluorescently labelled groups for drug delivery applications.32 

Thiol-terminated polymers can also be biofunctionalised through conjugation of 

biomolecules to the polymer which can often lead to improved stability and 

pharmokinetics, and demonstrates the potential of RAFT synthesised polymers in 

biological applications.33-36 Oxidative coupling of polymers with thiol end-groups 

can also be utilised to produce multiblock copolymers.37-39 

Complete desulfurisation of the thiocarbonylthio-terminated polymer can also be 

obtained via thermolysis.40-42 The process involves thermal elimination, requiring 

no additional reagents and resulting in the production of a polymer with an 

unsaturated chain end. However, the process also requires that any functionality 

within the polymer must be stable to the thermolysis conditions, in particular high 

temperatures (~120 to 200°C) or degradation of the polymer can occur. The 

technique has been used for a wide range of polymers, including the thermolysis 

of xanthate-terminated polymers. The mechanism of end-group loss has been 

found to be dependent upon both the type of polymer and the RAFT end-group. 19 

Whilst thermolysis of S-polystyrene O-isobutyl xanthate at 180°C resulted in 

selective elimination to provide 2-butene and the production of a polymer with a 

thiol end-group is observed,43 a similar study using S-poly(vinyl acetate) O-ethyl 

xanthate suggests a different mechanism involving initial C-S bond homolysis 

triggering degradation, followed by backbiting and p-scission to form a 

macromonomer with an exo-methylene double bond (Figure 5.5).44 
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11 "/'1]- _SyO~ 
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Figure 5.5: Mechanism of thermolysis of S-poly(vinyl acetate) O-ethyl 

xanthate. 

Radical-induced end-group removal involves the use of free radicals to modify 

the ro-end of the RAFT -terminated polymer, using a radical species to add to the 

reactive C=S bond and forming an intermediate radical, which can fragment or 

react with a trapping group and terminate. l Addition-fragmentation coupling 

employs an excess of initiator and high temperatures to promote loss of the RAFT 

agent through radical-induced ester exchange. This has been demonstrated by 

groups such as Perrier et al. in the removal of the dithiobenzoate end-group using 

AIBN in a 20-fold excess. l2 The RAFT equilibrium is displaced towards the 

formation of the polymeric chain radical, irreversibly combining with the excess 

AIBN radicals, leading to a polymer terminated with a cyano isopropyl group. 

This mechanism can also be adapted using a hydrogen atom donor source, leading· 

to radical-induced reduction, and the conversion of the thiocarbonylthio end-
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group to a H-atom. Radical-induced reduction is based upon the Barton-

McCombie reaction for deoxygenation of secondary alcohols, in which the 

xanthate O-alkyl is a good homolytic leaving group (Figure 5.6).45-48 This method 

is well known for the reduction of low molecular weight thiocarbonylthio 

compounds. 

S 

CI)lR1 S 

R, Jl1 Bu3SnH 
R-OH ~ o R ~ R-H 

·HCI 
AIBN 

Figure 5.6: Barton-McCombie reaction for the deoxygenation of secondary 

alcohols. 

An effective hydrogen donor transfer agent is required for a successful reduction. 

Stannanes are some of the most efficient hydrogen atom donors available, and 

compounds such as tributylstannane have previously been used with success, but 

with such donors there are issues with toxicity and by-product remova1.42 

Tris(trimethylsilyl)silane has also been considered as an alternative hydrogen 

donor atom source but a reduced efficiency and bimolecular terminations were 

observed.42 Hypophosphate salts such as N-ethylpiperidine hypophosphite (EPHP) 

have recently attracted attention as alternatives to tin hydrides, being much less 

toxic and also being water soluble, allowing for a simple work-up after reaction 

(Figure 5.7). 
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Recently, Thang et al. demonstrated the application of EPHP in the synthesis of 

H-terminated polymers through the reduction of the RAFT end-group.49 The 

mechanism of radical-induced reduction using EPHP is described in section 

5.3.2.2 of this chapter. 

Figure 5.7: The structure of the hypophosphate salt, EPHP. 

This introductory section highlights that RAFT polymerisation allows a variety of 

architectures and end-group functionalities to be accessed through a number of 

simple and effective processes. The aim of this chapter is to investigate the 

application of some of these techniques, first considering the effect of block 

copolymer architectures in comparison to statistical copolymers as stabilisers, and 

also looking at the impact of a few typical end group transformations on the 

solubility and stabilising ability of polymers in scC02• 
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5.2 Experimental 

5.2.1 Materials 

2-bromopropionic acid (99 %) was obtained from Alfa Aesar and sodium 

carbonate (99 %) was supplied by Fischer Scientific. N-ethylpiperidine 

hypophosphite (EPHP) (95 %) and sodium hydroxide (99 %), and monomers 

vinyl acetate (V Ac) (99 %) and vinyl pivalate (VPi) (99 %) were purchased from 

Sigma Aldrich. N-vinyl pyrrolidone (NVP) (97 %, 0.001 % N,N'-di-sec-butyl-p­

phenylenediamine inhibitor) was obtained from Fluka. All monomers were stored 

at 3-4 °C and purified prior to use by passing through a column of activated 

aluminium oxide, and subsequently degassing via three freeze-pump-thaw cycles. 

The initiator 2, 2' -azobis(isobutyronitrile) (AIBN) was obtained from Acros and 

purified by recrystallisation twice from cold methanol. Initiator 2,2'-azobis (4-

methoxy-2,4-dimethylvaleronitrile) (V -70) (W AKO, 95 %) was used as received. 

Dry C02 (99.99 %) and nitrogen (99.99 %) were purchased from BOC. 

5.2.2 Synthesis and Polymerisations 

5.2.2.1 Xanthate X2 Synthesis 

An additional RAFTIMADIX agent with a -COOH R group was employed in this 

chapter to investigate the effect of incorporating different end-group functionality 

in the stabiliser architecture. The synthesis of xanthate X2 propanoic acid O-ethyl 

xanthate employed in this chapter is adopted from the literature. 50, 51 
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Synthesis of Xanthate X2: Potassium O-ethyl xanthate (15.12 g, 9.37 x 10-2 mol) 

was dissolved in distilled water (45 mL). 3.3 M NaOH (22 mL) was added while 

stirring. The mixture was then cooled in an ice bath and 2-bromopropionic acid 

(11.4 g, 7.5 x 10-2 mol) was added dropwise to the reaction mixture. The reaction 

was left to proceed for 16 h at room temperature. The pH of the solution (pH = 7 

at the end of the reaction) was adjusted with 2 M HCl to pH = 1. The product was 

initially extracted with diethyl ether (2 x 200 mL) and then extracted from the 

ethereal phase with aqueous sodium carbonate (25 gin 250 mL water, 2 x 50 mL). 

The pH was readjusted to pH = 3 with 1 M HCl. The product was extracted with 

diethyl ether (200 mL), the ethereal phase dried over anhydrous magnesium 

sulfate and the solvent evaporated under reduced pressure. A pale yellow solid 

crystallised during evaporation. The product was recrystallised from hexane and 

dried overnight in the vacuum. Yield: 61%. 'H NMR (CDCh): 8 = 11.14, (br, s, 

IH), 4.67 (2 xq, 2H, b), 4.44 (q, IH, c), 1.63 (d, 3H, d), 1.44 (t, 3H, a). 

Xanthate X2 
d 

d a 

~ Jt 1 OH 
a 0 S/cy 

b c o 

ll __ ~" -.-JIIL ..... ,.'-

io 

Figure 5.8: IH NMR of propionic acid O-ethyl xanthate (X2). 
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5.2.2.2 Block Copolymer Synthesis 

Block copolymer synthesis was carried out by first producing one homopolymer 

chain (e.g PVAc-X) via the xanthate Xl. This was then employed in a second 

polymerisation reaction in which the homopolymer acted as the RAFT/MADIX 

agent, as the xanthate end-groups were incorporated in the final polymer produced 

in the first step and able to reinitiate RAFT polymerisation. A schematic of a 

typical block copolymer synthesis is shown (Figure 5.9). 

o 

~o~ + 

Vinyl Acetate 

Xanthate 

X1 

PVAc-b-PVPi-X 

+ 
o 

AIBN 

65°C 

~o~ 
Vinyl pivalate 

S 
H H)l 
I ] [ C--'t'l--S O~ 
~ n H~ 

o 0"/7<-

Figure 5.9: Typical Block copolymer synthesis employing xanthate Xl, and 

carrying out successive polymerisation of V Ac, followed by VPi. 
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Typical Block copolymer synthesis: Vinyl pivalate (5.00 g, 3.9 x 10-2 mol), 

AIBN (0.02 g, 1.0 x 10-4 mol) and xanthate Xl (0.23 g, 1.0 x 10-3 mol) were 

added to a 50 mL round bottomed flask equipped with stirrer bar and three-way 

stop cock. The flask contents were subjected to three freeze-pump-thaw cycles on 

the Schlenk line and charged with an inert gas. The reaction flask was immersed 

in an oil bath at 65°C for 24 h. The polymer product was purified via 

precipitation into a mixture of ice cold methanol: water (4: 1). The final product 

was filtered and dried in the oven. Mn : 4.5 kg/mol, PDI: 1.24, Conversion: 63%. 

In the second stage, VAc ( 5.00 g, 5.8 X 10-2 mol), poly(vinyl pivalate) macro­

xanthate polymer (3.74 g, 8.3 x 10-4 mol), AIBN (0.014 g, 8.3 x 10-5 mol) and dry 

toluene (5 mL) were added to a 50 mL round bottomed flask with stirrer bar and 

three-way stop cock. The flask was degassed using three freeze-pump-thaw 

cycles. The flask was immersed in an oil bath at 65°C for 24 h. The product was 

precipitated into a mixture of ice cold methanol: water and vacuum dried 

overnight. Mn: 10.2 kg/mol, PDI: 1.45, Ratio: 51:49, Conversion: 75% (Table 5.1, 

entry 8). 

5.2.2.3 Radical-induced Reduction 

Radical-induced reduction allows the thiocarbonylthio group of RAFT­

synthesised polymers to be replaced with a hydrogen atom. The process involves 

thiocarbonylthio compounds undergoing facile reaction with radicals by addition­

fragmentation. In this chapter, both Xl and X2-terminated polymers were reduced 
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using N-ethylpiperidine hypophosphite (EPHP).49 EPHP was employed in a 20-

fold excess W.r.t polymer, and 0.5 equivalents of AIBN were used, resulting in 

[Polymer]:[EPHP]:[I] of 1:20:0.5. 

Typical Radical-induced Reduction: PVAc-s-PVPi-X polymer (9400 g/mo1, 

2.50 g, 2.66 x 10-4 mol), N-ethylpiperidine hypophosphite (0.95 g, 5.32 x 10-3 mol) 

and AIBN (0.02 g, 1.33 x 10-4 mol) were dissolved in toluene (5 mL) in a sealed 

50 mL round-bottomed flask. The vessel was subjected to three freeze-pump-thaw 

cycles and backfilled with nitrogen. The reaction flask was heated at 80°C for 

~6 h. After reaction completion, a distinct colour change from a clear solution to 

deep yellow was observed, indicating the presence of sulfur by-products. The 

reaction was quenched and cooled in an ice bath. The solution was washed with 

water (3 x 50 mL) and the toluene removed under reduced pressure. The polymer 

product was dissolved in THF, precipitated into a mixture of ice cold methanol: 

water (4:1) and vacuum dried overnight. 
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5.3 Results and Discussion 

5.3.1 Block Copolymer Architectures 

In Chapters 3 and 4, both the solubility and the stabilising ability of statistical 

copolymers of V Ac and VPi were studied in detail. Often, the polymer 

architecture can be a significant factor in the ability of a polymer to act as a 

stabiliser material. In order to understand this relationship further, statistical and 

block copolymers were targeted for comparison. 

5.3.1.1 Block Copolymer Synthesis 

A series of block copolymers of V Ac and VPi were synthesised and both the 

solubility and stabilising ability of these materials was determined in order to 

compare the effectiveness of the two types of stabiliser architecture. Further to 

this, a range of block copolymers of varying molecular weight and comparable 

composition were produced. The results of the block copolymerisations are shown 

in Table 5.1. 

Both block and statistical copolymers exhibited narrow PDI of 1.31-1.54 and 

molecular weights close to those targeted. In the case of the block copolymers, 

molecular weights were slightly higher than theoretical value in the majority of 

cases. High conversions were also obtained and experimental ratios were close to 

those of the feed ratios for the most part. 
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Table 5.1: Block Copolymer Stabilisers of Varying Ratio and Molecular Weight. 

Entry Polymer M:R:la Block A Mo.,th Mn,eXPt PDr 
Feed Expt. Conv. 

Tg(OCt (Mo.,PDlt (Kg/mol) (Kg/molt Ratio Ratiob (%)b 

1 109:1:0.1 11.6 12.1 1.46 25:75 24:76 89 40.7 

2 PV Ac-s-PVPi-X 124: 1 :0.1 11.1 11.6 1.40 60:40 51:49 85 50.2 

3 140:1:0.1 12.7 11.7 1.38 80:20 74:26 94 61.7 

4 69:1:0.1 2.2K,I.20 9.1 12.3 1.54 25:75 27:73 83 36.2,70.3 

5 53: 1 :0.1 4.2K,I.27 8.3 11.9 1.45 50:50 46:54 75 39.8,66.1 

6 PV Ac-b-PVPi-X 33:1:0.1 7.7K,1.33 9.8 11.8 1.52 75:25 70:30 82 41.6,67.5 

7 25:1:0.1 2.2K, l.20 4.8 6.7 1.31 50:50 46:54 79 37.0,53.4 

8 47:1:0.1 4.5K,I.24 7.9 10.2 1.45 50:50 51:49 75 39.3,64.1 

9 78: 1 :0.1 7.0K,1.25 12.6 15.8 1.52 50:50 47:53 74 41.0, 72.5 

Polymerisation conditions: Statistical copolymers synthesised via bulk polymerisation at 65°C for -4 h, and block copolymers synthesised via solution 

polymerisation in dry toluene (5 mL) at 65°C for 24 h. "Experimental Mn and PDI obtained from GPC-RI detector using THF eluent and PS standards. 

bConversion and PV Ac:PVPi ratio detennined from IH NMR in CDCh. Ratios correspond to PVAc:PVPi composition. cT g obtained from DSC analysis. 
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Glass transition temperatures were also as expected. In the case of the block 

copolymer structures, two T g values were obtained, in comparison to the single T g 

characteristic ofa PVAc-s-PVPi-X statistical copolymer (Table 5.1 ; entries 4-11). 

This is evidence of block copolymer formation . Whilst the statistical copolymers 

possess a T g which varies smoothly with composition between the T g values of 

the two homopolymers, the block copolymers exhibit two Tg values (Figure 5.10). 
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Figure 5.10: Comparison of Tg for a typical set of statistical and block 

copolymer equivalents with 50:50 ratio (Table 5.1, entries 1 and 8 

respectively). 
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These are close to the values for the component homopolymers; the first T g 

corresponding to the PV Ac block, and a higher T g for the PVPi block within the 

structure. As the two types of monomer unit exist as distinct and separate blocks 

within the structures, the T g values are also much more defined and therefore a 

value is observed for each monomer. The observation of two T g'S is evidence of 

segregation of different types of units into different regions of the material, and 

suggests a block copolymer structure. 52 

The GPC traces of the block copolymers can also be considered. A typical block 

copolymer trace is shown (Figure 5.11). 
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Figure 5.11: Characteristic block copolymer GPC trace, showing initial 

PVAc-X block, followed by chain extension to yield PVAc-b-PVPi-X block 

copolymer structure. GPC trace obtained using data from Table 5.1; entry 7. 
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The initial PVAc-X starting block of 27 VAc units is extended by 32 units ofVPi 

upon block copolymerisation. This distinct shift to higher molecular weight is 

evidence of chain end growth and indicates block copolymer formation is taking 

place. There is also no distinct peak corresponding to a PV Ac-X homopolymer 

signal within the block copolymer sample trace, confirming there is no significant 

residual homopolymer present in the sample, which would affect both solubility 

and stabilising ability using the material. 

5.3.1.2 Phase Behaviour of Block Copolymers in scC02 

Following the successful synthesis of the block copolymer stabiliser materials, 

their relative solubility in a CO2 + NVP mixture was determined. As described 

previously, the experimental conditions employed 15 wt % NVP monomer w.r.t 

C02, and a stabiliser loading of 5 wt % as standard to mimic typical 

polymerisation conditions. Stabilisers of molecular weight ~ 12 kg/mol and with 

varying monomer ratios were initially tested. The results are summarised in 

Table 5.2. 

The phase behaviour measurements at 35°C show quite clearly the impact the 

stabiliser architecture has on the CO2-solubility of the materials (Table 5.2, 

column 7). The phase behaviour of the blocks was determined, and as with the 

statistical copolymers, an improvement in solubility is observed as the proportion 

of PVPi is increased within the sample. This follows the same trend exhibited by 

the statistical copolymers in Chapter 3 when comparing PV Ac: PVPi ratio. 
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Table 5.2: Solubility of Key Block and Statistical Copolymers in scCOz. 

Entry Polymer Mn,expt PDr 
Ratio Dpc Cloud Point 

!K2!molt !PV Ac:PVPit !bart 
12.1 1.46 24:76 101 153.9 

2 PV Ac-s-PVPi-X 11.6 1.40 51:49 107 170.1 

3 11.7 1.38 74:26 118 194.4 

4 12.3 1.54 27:73 102 171.2 

5 PV Ac-b-PVPi-X 11.9 1.45 46:54 106 182.8 

6 11.8 1.52 70:30 134 214.9 

"Experimental Mn and PDI obtained from GPC-RI detector using THF eluent and PS standards. 

bRatio determined from 1 H NMR in CDCh. CDegree of polymerisation calculated using Mn and 

ratio. dCloud point at 35°C determined using variable volume view cell. 

However, upon comparison of the block copolymer with the equivalent statistical 

copolymer of a similar ratio, it can be seen that the statistical copolymers are 

more soluble (Figure 5.12). The PV Ac-b-PVPi-X block copolymer shows slightly 

reduced affinity for CO2, and for all block copolymers of varying composition at 

~ 12 kg/mol, there is ~ 1 0 to 20 bar increase in the cloud point values. This is also 

expected to some extent, as the more soluble PVPi component is concentrated at 

one end of the chain in the block copolymers, rather than statistically arranged 

throughout the structure. This segregation of the two monomer types will result in 

decreased solubility overall, as only the PVPi portion of the block will have 

improved CO2-solubility, whilst in the case of the statistical copolymer, the VPi 

units are statistically interspersed throughout the structure and will aid dissolution· 

of the whole polymer chain. 
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Figure 5.12: Phase behaviour curve of PVPi-based copolymers of comparable 

molecular weight and composition, with different stabiIiser architectures 

(Table 5.2, entries 2 and 5). Statistical copolymer structure exhibits lowest 

cloud point values, and therefore is the most C02-soluble architecture. 
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5.3.1.3 Dispersion Polymerisation using Block Copolymer Stabilisers 

Chapter 4 dealt with the dispersion polymerisation of NVP in scC02 using the 

RAFT synthesised hydrocarbon stabilisers. In this section, the results of 

dispersion polymerisation using block copolymer stabilisers are investigated and 

compared. The results of the high pressure polymerisations are highlighted in 

Table 5.3. 

All PNVP polymers produced usmg the block copolymer stabilisers were 

obtained in the form of a free-flowing, polymer powder, with high conversion. 

These results are indicative of successful stabilisation and dispersing ability, and 

comparable to PNVP products obtained using a statistical copolymer stabiliser. 

Comparable molecular weights and PDI values were also obtained using both 

types of stabiliser architecture (Table 5.3, column 5 and 6). 

However, whilst stabilisation using the block copolymers was successful, it is 

clear that the block copolymer architecture is less effective in dispersion 

polymerisation ofNVP when compared to a statistical copolymer. It was observed 

that the resulting particle size diameter was larger using a block copolymer 

stabiliser compared to the statistical copolymer equivalent of similar ratio and 

molecular weight. A broader range of particle sizes was also observed, 

highlighted by the increased Cy value obtained for all of the block copolymer 

stabilisers (Table 5.3, column 8). 
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Table 5.3: PNVP Polymerisations in scC02 using Block Copolymer Stabilisers. 

Stabiliser Details 

Cloud 
Entry Polymer Mo, PDI, Ratioa Point 

bar b 

1 12.1K, 1.46,24:76 153.9 

2 PV Ac-s-PVPi-X 11.6K, 1.40, 5 i :49 170.1 

3 11.7K, 1.38, 74:26 194.4 

4 12.3K, 1.54, 27:73 171.2 

5 11.9K, 1.45,46:54 182.8 

6 11.8K, 1.52, 70:30 214.9 

7 PV Ac-b-PVPi-X 6.7K, 1.31,46:54 126.9 

8 10.2K, 1.45,51:49 158.2 

9 15.7K, 1.52,47:53 207.2 

Mw 
PDr 

. (kg/molY 

223 4.3 

231 5.3 

259 5.9 

260 5.3 

261 5.2 

223 4.8 

325 5.8 

250 6.5 

306 6.1 

PNVP Product 

Do 
(Jlm)d Cv(%t 

2.4 25.2 

2.1 23.0 

1.9 20.7 

3.5 40.7 

3.2 41.2 

3.5 41.0 

2.8 38.9 

7.4 29.0 

Yield (%l Morphology 

89 Powder 

83 Powder 

84 Powder 

74 Powder 

82 Powder 

89 Powder 

91 Powder 

92 Powder 

97 Powder 

Polymerisation conditions: scC02 polymerisation at 35°C for 48 hours with V -70 initiator and 5 wt % of stabiliser. 'Stabiliser Mn and PDI determined via GPC-

RI with THF eluent and PS standards, Ratio determined from IH NMR. bStabiliser cloud point determined using variable volume view celL cExperimental Mw 

and PDI obtained from GPC-RI detector in chloroform with 5 % triethylamine using PS standards. dMean particle diameter as determined from sampling of ~ 1 00 

particles ofa typical SEM image. ·Coefficient of variance as determined by equation Cv = (alDn) x 100. fYield determined gravimetrically. 
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Comparison of Block and Statistical Copolymer Stabilisers 

The extent of the differences in particle morphology and size di stribution using 

the two stabiliser types can be observed in the corresponding SEM micrographs 

(F igure 5.13). 

Statistical Block 

Figure 5.13: Comparison of PNVP products using block and statistical 

copolymer stabilisers of - 12 kg/mol and varying composition. (a) PVAc-s­

PVPi-X 24:76; (b) PVAc-b-PVPi-X 27:73; (c) PVAc-s-PVPi-X 51:49; (d) 

PVAc-b-PVPi-X 46:54; (e) PVAc-s-PVPi-X 74:26; (f) PVAc-b-PVPi-X 70:30. 
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Whilst the difference in size between block and statistical copolymer equivalents 

is evident, there is also a clear difference in the shape of the PNVP particles. All 

of the stabilisers allow for spherical particle formation, but when employing block 

copolymer stabilisers, the surface of the resulting particles is less well-defined, 

with an apparent increase of the proportion of distorted spherical particles. 

The size distribution effects can also be illustrated more clearly by plotting a 

histogram of particle size diameter (Figure 5.14). 

The histograms give a clear graphical representation of the probability distribution 

of the particle size diameter (Dn) of the PNVP product. The comparison of these 

two graphs highlights the conclusions drawn when considering the SEM images 

and the Dn and Cv data. Whilst the statistical copolymers result in PNVP 

microspheres with a relatively tight distribution of particle sizes, the block 

copolymer stabilisers exhibit less control over the morphology, and a much 

broader particle size distribution is produced. As a result, the mean particle size 

diameter is also larger for the block copolymer sample. Although only the 50:50 

PVAc:PVPi stabiliser composition is shown, 25:75 and 75:25 PVAc:PVPi 

compositions were observed to follow a similar trend, with a much broader range 

of particle sizes for the block copolymer equivalents. 
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a) PVAc-s-PVPi-X (51:49) 
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Figure 5.14: Histogram of particle diameters for block and statistical 

copolymers of comparable molecular weight (-12.0 K) and 50:50 PVAc:PVPi 

composition, comparing -100 particles from SEM images. Results obtained 

from data in Table 5.3, entries 2 and 5. 
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The statistical copolymer exhibits a range of particle sizes from ~ 1.0 to 3.5 Ilm, 

whilst the block copolymer stabiliser produces PNVP particle diameters ranging 

from 1.0 to 6.0 Ilm; a distinct increase. It is interesting to note that while both 

stabilisers produce particles starting at ~ 1 Ilm, the largest observed particle sizes 

are almost doubled when employing a block copolymer stabiliser. The block 

copolymer stabiliser in fact appears to produce a bimodal particle size distribution. 

This effect is also seen in other polymerisations using the PVAc-b-PVPi-X 

stabilisers, and will be discussed further in the following section. Overall, the 

information obtained from the particle size distributions demonstrates clearly that 

the statistical copolymers of PV Ac and PVPi are able to stabilise dispersion 

polymerisations of NVP in scC02 more effectively than the corresponding block 

copolymers, leading to better control of the particle size distribution and more 

uniform, monodisperse particles. 

There has been limited research on the direct comparison of other block versus 

statistical copolymer stabilisers in the literature. In 2008, Lim et al. reported the 

design of both block and statistical stabilisers composed of IH,IH,2H,2H­

perfluorooctyl methacrylate (FOMA), oligo( ethylene glycol) methacrylate 

(OEGMA), dimethyl amino ethyl methacrylate (DMAEMA), and ethylene oxide 

(EO).53 These polymers were employed in the dispersion polymerisation of 2-

hydroxyethyl methacrylate (HEMA) in scC02• In all cases, dispersion was 

successful and a free-flowing powder obtained. It was noted that while the 

statistical copolymers produced micron-sized particles, the block copolymeric 

stabilisers resulted in the formation of particles <500 nm in diameter. The authors 
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suggested that the block copolymers could be adsorbing more strongly, leading to 

the difference in particle size obtained using the two different architectures. 

Shiho et al. reported the application of statistical copolymer stabilisers 

poly(FOMA)-s-(Sty) and poly(FOMA)-s-(SiMA) in the dispersion polymerisation 

of styrene in SCC02.54 The statistical copolymer stabilisers were found to function 

effectively, allowing for the successful dispersion polymerisation of styrene, 

generating micron-sized PS colloids. The authors noted this was in contrast to the 

submicron particles obtained using block copolymers of PFOA and PS as a 

stabiliser. 

Comparisons have also been made in conventional organic solvents. Holder et al. 

reported the synthesis of three statistical and three block copolymers of MMA and 

octadecyl acrylate (ODA) by ATRP. 55 These copolymers were assessed for their 

application as stabilisers in the one step non-aqueous dispersion polymerisation of 

MMA in a non-polar solvent mixture of hexane and dodecane. In all cases stable 

spherical micro-particle colloidal dispersions were formed with particle diameters 

in the range of 0.4 to 2.7 Jlm. The statistical copolymers were synthesised for 

direct comparison with the assumption that they would not be effective. However, 

both types of stabiliser functioned successfully. This surprising observation was 

attributed to the synthesis of the stabilisers in which the reactivity ratios of the 

monomers were sufficiently different that compositional drift occured during the 

polymerisation, leading to gradient copolymers with very long segments of ODA 

sufficient for steric stabilisation. 
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To summarise, the study of block vs. statistical copolymers in the dispersion 

polymerisation of NVP in scC02 has shown that the statistical copolymers act as 

more efficient stabilisers, and produce smaller particles than the block copolymer 

equivalents. This is in contrast to the findings from the literature, which generally 

show block copolymers give smaller particle size diameters, and often tend to 

function more effectively than statistical copolymers. However, it is difficult to 

compare the stabilising ability of other block copolymer stabilisers with the 

PVAc-b-PVPi-X block copolymer stabilisers described in this thesis. Typically, 

block copolymer stabilisers employed in other studies utilise one of the blocks as 

the anchor group. 

However, in this work, it is assumed that it is the RAFT agent that provides the 

anchor portion, and this is the same in each case, whether block or statistical. 

Therefore, both PV Ac and PVPi blocks are likely to contribute to the CO2-philic 

component of the surfactant, and a statistical copolymer arrangement will simply 

provide better solubility for the CO2-philic portion of the statistical copolymer 

stabiliser. This will result in improved overall effectiveness of the statistical 

copolymer stabilisers compared to the block copolymer stabilisers. 
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Variation of Block Copolymer Molecular Weight 

Next, block copolymers of varying molecular weight were synthesised in order to 

determine whether the chain length of the block copolymer stabilisers has any 

impact on the PNVP products of dispersion polymerisation in SCC02. 

As shown in Table 5.3, block copolymer stabilisers of different molecular weights 

and a composition of ~50:50 PV Ac:PVPi were produced. The solubility of these 

materials was as expected, and reduced solubility and higher cloud point pressures 

are observed as the molecular weight, and the chain length, of the stabiliser is 

increased (Table 5.3, entries 5, 7, 8, 9). This follows the same trend as observed in 

Chapter 3, in which the PVAc-s-PVPi-X stabilisers were found to have reduced 

solubility at higher molecular weights. 

Determination of the stabilising ability of different molecular weight block 

copolymers in the dispersion ofPNVP was determined using SEM (Figure 5.15). 

The SEM micrographs show that the II.9K stabiliser appears to give the most 

well-defined microsphere production. At 6.7K, although there is some evidence of 

particle formation, the overall product is a highly agglomerated structure. This is 

likely a result of an insufficient polymer chain length to ensure steric stabilisation 

and to prevent agglomeration. Again, this follows previous trends observed in 

Chapter 4, in which a 4.7K statistical copolymer stabiliser of 50:50 ratio was 

insufficient to produce well-defined spherical microparticles. 
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Figure 5.15: Comparison of PNVP products using block copolymer 

stabilisers of varying molecular weight. (a) 6.7K; (b) 10.2K; (c) 1l.9K; (d) 

15.7K. Data taken from Table 5.3, entries 5, 7, 8, 9. 

Particle sizing data (Table 5.3, entries 5, 7, 8, 9) show that the average particle 

diameter (Dn) increases as the stabiliser molecular weight is increased. This is 

most likely a result of the decreasing number of individual polymer chains being 

employed within the dispersion as the stabiliser molecular weight is increased. 

Although 5 wt % of stabiliser is consistently employed for all reactions, as the 

molecular weight of the stabiliser is increased, the molar concentration within the 
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system will decrease. This means there are fewer stabiliser molecules (but of a 

higher molecular weight) which are available for interaction. This in tum means a 

decreased surface coverage as a result of fewer anchor points, and subsequently 

fewer growing PNVP particles will be stabilised, leading to the production of 

larger particles. 

In all cases, the SEM micrographs show a broad distribution of particle sizes, and 

the Cy results confirm that the block copolymers at varying molecular weight 

continue to produce a wider range of PNVP microparticle diameters (Table 5.3, 

entries 5, 7-9 and columns 7-8). This indicates that compared to the statistical 

copolymers, the block copolymers result in less uniform particles. The results are 

similar to those obtained in the previous section when varying the composition of 

the block copolymer stabilisers. Also, it must be noted that the statistical 

copolymers do not exhibit the same trend, with particles of a similar diameter 

being obtained, leading to a narrow particle size distribution. As such this leads to 

the conclusion that this broader particle size distribution is related to the 

difference in stabiliser architecture. 

Indeed, this broader particle size distribution can be explained when comparing 

the SEM images, which show a 'second crop' of particles, as mentioned in the 

previous section. This is particularly evident in the case of the IO.2K and 11.9K 

block copolymer stabilisers (Figure 5.15, b and c). The second crop of particles 

observed using the PVAc-b-PVPi-X block copolymer stabilisers accounts for the 

broader size distribution, and increased overall particle size diameter, as two 

crops of particles will affect the overall results. 
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Secondary particle generation can often occur in dispersion polymerisations. For 

example, Tseng et al. described the dispersion polymerisation of styrene in 

ethyl alchol. 56 The use of PNVP as a stabiliser in combination with an anionic 

surfactant Aerosol OT, a nonionic surfactant, Triton N-57, or cetyl alcohol as a 

co-stabiliser, resulted in a stable dispersion with narrow particle-size distribution 

(2.5-4.0 Jlm). However, without a co-stabiliser, dispersion with bimodal particle 

size distribution was obtained, and in addition to the main population of 3.2 Jlm in 

diameter, a population of larger particle sizes (4 to 15 Jlm) was found. These 

larger particles were presumed to form by coalescence of smaller particles during 

the particle growth stage. 

Evidence of a second crop of polymer particles has also been observed in 

previous studies of dispersion polymerisations in scC02. Cane las et al. noted a 

similar effect in the SEM micrographs of PS particles synthesised via dispersion 

in SCC02 utilising block copolymer stabilisers of PS and PFOA.57
, 58 In this case, 

the presence of a second, smaller crop of particles was attributed to a secondary 

nucleation process towards the end of the reaction. DeSimone et al. also reported 

evidence of a secondary particle formation when higher PFOA stabiliser 

concentrations were employed in the dispersion polymerisation of MMA.59 This 

observation was attributed to excess stabiliser being able to support a second crop 

of smaller particles growing in the solution, but not yet captured by the larger 

particles. Conversely, Shaffer et al. noted a bimodal particle size distribution in 

the dispersion polymerisation ofMMA using low weight percentages ( <3.5 wt %) 
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of PDMS-mMA stabiliser, which was attributed to an agglomeration mechanism 

operating in the absence of sufficient stabiliser to protect the particle surface. 60, 61 

The bimodal particle size distribution observed when employing block copolymer 

stabiliser could be a result of insufficient stabilisation. The statistical copolymers 

clearly have an advantage over the block copolymers in this respect, as bimodal 

distributions are not observed. In addition, statistical copolymers are much more 

easily prepared than block copolymers, leading to the conclusion that statistical 

copolymers of PV Ac and PVPi remain the most suitable for dispersion 

polymerisations ofNVP in scC02• 
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5.3.2 Variation of Stabiliser End-group 

Small variations in the end-group functionality of surfactant materials have been 

known to effect changes in both scC02 solubility and stabilising ability.62-64 

Hydrocarbon stabilisers with different end-groups were synthesised and studied in 

order to determine the effect on solubility and the importance of the end-group in 

acting as the polymeric anchoring functionality. This section details some initial 

studies, and probes the effect of anchor group on both phase behaviour and 

dispersion polymerisation in scC02. 

5.3.2.1 Variation of Xanthate R Group 

The R group of the RAFT agent is known as the leaving group. This group must 

be capable of leaving the polymer by undergoing homolytic scission, and should 

also be able to reinitiate polymerisation. 1 In this section, two stabilisers were 

initially synthesised using xanthates with slightly different R groups. This enabled 

incorporation of different functionality into the a-end of the polymeric stabiliser. 

While it is assumed that the Z group of the stabiliser is the portion which acts as 

the anchoring group of the material, it is still of interest to determine how, if at all, 

this difference in the R group will affect the stabiliser. 

Xanthates Xl and X2 were both employed in the RAFT polymerisation of VAc 

and VPi to obtain statistical copolymers for comparison (Figure 5.16). 
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Figure 5.16: Structures of polymers synthesised using Xanthate Xl and X2. 

The two resulting polymers chosen for comparison were of similar composition 

and molecular weight, and consequentl y had relatively similar polymer chain 

lengths (Table 5.4). 

Table 5.4: Polymer synthesised using xanthate Xl and X2. 

Polymer End-Group 

R = CH(CH3)C0 2Et (X 1) 

R = CH(CH3)COOH (X2) 

MO .• ' PI 

(kg/mol)" 

9.4 

10.5 

Ratio 
(PV A C:PVPi)b 

1.45 54:46 

1.50 54:46 

83 

89 

Cloud Point 
(bar)d 

163 

185.2 

aExperimenta l Mn and POI obtained fro m G PC-Rl detector using THF eluent and PS standards . 

bRati o determined fro m IH NMR in CDCl). CDegree of polymerisation ca lculated using Mn and 

ratio. dC loud point at 35 °C determined using variable volume view cell. 
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Phase behaviour measurements for the two polymers were also detennined to 

compare the solubility in scC02 (Figure 5.17). 
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Figure 5.17: Phase behaviour of copolymer stabilisers with varying a-end-

group as a result of adjusting the initial xanthate employed (Table 5.4, 

entries 1-2). Cloud point pressures were measured three times and an 

average was used, accurate to ±O.5-1.0 bar. 

The phase behaviour curves of the two stabilisers show that the Xl capped 

polymer has improved solubility compared to that of the polymer synthesised 

using X2. The data show that incorporation of different end-groups result in a 

stabiliser which is significantly less soluble, despite the change in end-group only 
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being a very small change to the structure. This variation in solubility is too 

significant to be attributed to experimental error alone, and must be a result of the 

differences in polymer end-group. 

Typically end-group changes have a negligible effect on phase behaviour for 

polymers with a molecular weight of> 100, 000 g/mo1.65 However, at lower 

molecular weights, end-groups can have a significant impact. This is because low 

molecular weight polymers have a relatively high ratio of end groups that are 

chemically different from the rest of the chain. Therefore different physical 

properties are expected when compared to high molecular weight polymers, with 

small end-group changes having an impact on properties such as solubility.66.68 

The stabilisers discussed in this thesis are of a relatively low molecular weight, 

and therefore, such end-group changes could have an appreciable effect. 

Comparison of PVAc-s-PVPi-Xl and PVAc-s-PVPi-X2, shows that X2 solubility 

is significantly decreased and there is a large discrepancy in the cloud points of 

the two materials, indicating that the presence of the -COOH moiety must be 

causing this effect. 

This is likely related to the fact that xanthate X2 incorporates a polar -COOH 

group into the polymer structure. Polarity is known to reduce solubility in scC02 

and the introduction of polarity by the carboxylic acid group has a negative 

impact on the C02-solubility.64,69 The opportunity for inter- and intra-molecular 

hydrogen bonding is increased as a result of the introduction ofa polar end-group, 

and as a result the dissolution of the polymer in CO2 is hindered, and the observed 

- 278-



Chapter 5: Investigation of Poly (Vinyl Pivalate) Copolymer Architecture 

cloud point pressures are higher. A similar effect has been observed by Drohmann 

et at., who observed that the solubility of poly(alkylene glycol)s in CO2 was 

improved by the end-capping of one or both of the hydroxyl end-groups by alkyl 

groups. 64 

Following the measurement of phase behaviour for the two stabilisers, the 

stabilising ability of the materials was tested in dispersion polymerisations In 

SCC02 using NVP monomer and 5 wt % stabiliser (Table 5.5). 

Table 5.5: Dispersion Polymerisations in scC02• 

Stabiliser PNVP Product 

Cloud Point Mw 
PDlb Do Cv Yield 

Polymer End-gr:oup (bar)& (kglmol)b (",mt (%)d (%)e 

R = CH(CH3)C02Et (Xl) 163.0 231 5.4 2.4 25.2 89 

R = CH(CH3)COOH (X2) 185.2 225 5.1 2.2 37.9 83 

Polymerisation conditions: scC02 polymerisation at 35°C for 48 hours with V -70 initiator and 5 

wt % of stabiliser. 'Stabiliser cloud point detennined at 35 ·C using variable volume view cell. 

bExperimental Mw and PDI obtained from GPC-RI detector in chlorofonn with 5 % triethylamine 

using PS standards. cMean particle diameter as detennined from sampling of ~ 100 particles of a 

typical SEM image. dCoefficient of variance as detennined by equation Cv = (alDo) x 100. eYield 

detennined gravimetrically. 

- 279-



Chapter 5: Investigation of Poly (Vinyl Pivalate) Copolymer Architecture 

High pressure polymerisations resulted in high molecular weight powder products 

for each of the stabilisers employed. Analysis of morphology through comparison 

of the SEM micrographs shows the effect of the reduced solubility of PV Ac-s­

PVPi-X2, as the stabilising ability appears to be reduced to some extent (Figure 

5.18). 

Figure 5.18: Effect of employing two different xanthates for stabiliser 

synthesis, resulting in variation of the a-end-group on PNVP product. (a) 

PVAc-s-PVPi-Xl with R = CH(CH3)C02Et; (b) PVAc-s-PVPi-X2 with R = 

CH(CH3)COOH. 

Fewer well-defined, spherical particles are formed and increased agglomeration 

and distortion is observed in the case of the PV Ac-s-PVPi-X2 stabiliser (Figure 

5.18, b). In addition, particle sizing indicates that the Cy is higher for PV Ac-s­

PVPi-X2 surfactant, showing that a broader range of diameters are present within 

the sample. Overall , the introduction of the - COOH end-group does appear to 
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make some difference to both the stabilising ability and solubility, although this 

difference is not so significant as to completely hinder the dispersion 

polymerisation, and high conversion with spherical particle morphology is still 

obtained. 
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5.3.2.2 Radical-induced Reduction of Polymers 

In this section, radical-induced reduction has been targeted as a means of cleaving 

the xanthate end-group functionality from the hydrocarbon polymer stabiliser. 

The removal of this group from the stabiliser structure is of interest, in order to 

determine the impact of the RAFT end-group, and consequently the anchor group 

of the stabiliser, on the dispersing ability in scC02• 

Radical-induced reduction allows the thiocarbonylthio group of RAFT­

synthesised polymers to be replaced with a hydrogen atom. The process involves 

thiocarbonylthio compounds undergoing facile reaction with radicals by addition­

fragmentation. 

The mechanism of radical-induced reduction involves the production of a radical 

species (X-), which then adds to the thiocarbonyl group of the macro-RAFT agent. 

This species then fragments to provide a propagating radical and a new 

thiocarbonylthio compound. Reaction of the propagating radical with a hydrogen 

atom donor (H-X) then gives the desired product in which the thiocarbonylthio 

group has been replaced with hydrogen. This process is a radical chain reaction 

and is catalytic in X_.18, 19, 49 Both PVAc-s-PVPi-XI and PVAc-s-PVPi-X2 

terminated polymers were reduced using N-ethylpiperidine hypophosphite 

(EPHP), the mechanism of which is outlined in Figure 5.19. 
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Figure 5.19: Mechanism of radical-induced reduction. Overall the RAFT functionality of polymer A is reduced by a hydride 

terminating group to form polymer B. 
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One block and two statistical copolymer stabilisers were transformed via radical-

induced reduction. Removal of the sulfur group on the G)-end of the polymer was 

confirmed using both IH NMR and GPC-UV analysis. 

IH NMR was employed to assess whether end-group removal had been successful. 

Samples were run both prior to and after reduction had taken place. Signals 

corresponding to the xanthate incorporated into the polymeric stabiliser are 

characteristically observed in the IH NMR (see Chapter 3, section 3.2.3.1). 

Initially, a signal was observed at 4.65 ppm corresponding to the protons from the 

ethyl group of the xanthate, denoted as region b . This confinns the presence of the 

RAFT agent attached to the polymer. 

Upon reduction, the signal at ~ 4.65 ppm was no longer observed in the NMR 

spectrum. This is in agreement with the reduction process, in which the sulfur 

end-group has been completely cleaved from the polymer, resulting in removal of 

proton regions a and b from the I H NMR. 
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Figure 5.20: IH NMR of stabiliser (a) prior to and (b) after reduction. Peaks 

corresponding to xanthate end-group are completely removed after 

reduction. 
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The thiocarbonylthio group of PV Ac-s-PVPi-X is a chromophore, and therefore 

will absorb strongly in the UV -Vis region. This property allows for a 

straightforward method for end-group analysis. 7o 

GPC-UV analysis was also employed for determination of the removal of the 

xanthate group from the polymer. After reduction, the characteristic 

thiocarbonylthio absorbance IS diminished, evidence that the reduction was 

successful (Figure 5.21). This method has also recently been employed by 

Destarac et al. during the investigation of the structure-property relationships of 

PVAc-based copolymers in CO2.
71 
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Figure 5.21: Characteristic sulfur absorbance present at 254 nrn prior to 

reduction and absent in trace after radical-induced reduction. 
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The phase behaviour and stabilising ability of both the initial and reduced forms 

of the stabilisers was determined and compared (Table 5.6). 

Table 5.6: Comparison of Initial and Reduced Forms of PVPi-based 

Stabilisers. 

Stabiliser PNVP Product 

Polymer Mo, PDI, Ratio 
Cloud Point Do Cv(%)C 

Yield 
(bart {Jlm)b (%)d 

PVAc-s-PVPi-XI 9AK, 1045,54:46 163.0 204 25.2 89 

PVAc-s-PVPi-HI 8.8K, lAO, 54:46 148.l 3.7 42.9 84 

PVAc-s-PVPi-X2 10.5K, 1.50, 54:46 185.2 2.2 37.9 83 

PV Ac-s-PVPi-H2 lOAK, 1.53, 54:46 176.l 2.7 42.6 79 

PVAc-b-PVPi-XI 11.9K, 1.45, 46:54 182.8 3.2 41.2 82 

PVAc-b-PVPi-HI 11.9K, 1044, 46:54 173.7 9.3 23.2 87 

Polymerisation conditions: scC02 polymerisation at 35°C for 48 hours with V -70 initiator and 5 

wt % of stabiliser. 'Stabiliser cloud point determined at 35 ·C using variable volume view cell. 

bMean particle diameter as determined from sampling of ~ 1 00 particles of a typical SEM image. 

cCoefficient of variance as determined by equation Cv = (alDn) x 100. dYield determined 

gravimetrically. 

Phase behaviour measurements demonstrated the reduced forms of the stabilisers 

to be more soluble in scC02, by ~ 10-20 bar (Figure 5.22). This was expected, 

because of the removal of the polar sulfur component, which subsequently 

improved solubility of the polymer. This is in contrast to the work of Destarac et 

at., in which solubility experiments were carried out, comparing PV AC3.8K-Xa 
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and a xanthate-free equivalent, PY AC4.2K- H, obtained by a radical-induced 

reduction of the xanthate group. No substantial differences in the solubility in 

scC02 were observed and the polymers were found to be respectively soluble in 

proportions of 0.89 wt% and 0.87 wt% at 35 MPa. 71 
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Figure 5.22: Phase behaviour of PV Ac-s-PVPi-X stabiliser and the reduced 

form PVAc-s-PVPi-H (Table 5.6, entries 1-2). Cloud point pressures were 

measured three times and an average was used, accurate to ±O.5-1.0 bar. 

Each of the H-terminated polymers were employed in the polymerisation of NVP 

in scC02. It was expected that PV Ac-s-PVPi-X 1, once reduced to the hydrogen 
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form, would be unsuccessful in all polymerisations, because of the lack of an 

anchor group. In the case of PVAc-s-PVPi-X2, the reduced form of the stabiliser 

resembles a hydrocarbon version of the Krytox -157 FSL structure (Figure 5.23). 

Therefore, it might also be possible that the -COOH a.-end of the polymer could 

potentially act as an anchor in a similar manner to that of Krytox-157 FSL, and 

stabilise either NVP or MMA polymerisations in scC02• Krytox-157 FSL is 

known to anchor via the carboxylic acid group through hydrogen bonding 

interactions, and is not chemically incorporated into the final polymer (see 

Chapter 1). 

Krytox 157- FSL 

PV Ac-s-PVPi-H2 

Figure 5.23: Structure of Krytox stabiliser, and the reduced form of PV Ac-s-

PVPi-X2. Both structures are similar, and are soluble in SCC02. 
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These results indicated that a range of stabilisers with no xanthate end-group 

present were all able to support dispersion polymerisation to the extent that a free 

flowing powder product with high conversion was obtained. However, the defined 

spherical microparticle structure characteristic of the RAFT synthesised stabilisers 

was not present when using a stabiliser with a reduced end-group. This suggests 

that the xanthate component of the stabiliser does play a significant role in 

successfully anchoring to the growing polymer particle. Some form of 

stabilisation is clearly present with the reduced polymers, as observed by the 

production of high yielding powder products, but there are likely to be differences 

in the mechanism by which the stabiliser anchors to the PNVP particles, leading 

to differences in the control over particle morphology. 

Whilst PVAc-s-PVPi-X stabilisers appear to be anchoring by chemically 

interacting with the PNVP particles, as a result of the compatible xanthate RAFT 

agent attached to the stabiliser, PVAc-s-PVPi-H does not possess this group and 

therefore must interact in another way. The presence of the -COOH group at the 

a-end of the polymer also does not appear to be sufficient to provide stabilisation 

equivalent to Krytox-157 FSL, leading to ill-defined particle morphology 

(Figure 5.24, c). This suggests that a hydrogen bonding mechanism of anchoring 

to the growing PNVP particles through the -COOH group is unsuccessful for the 

hydrocarbon stabilisers. The differences between Krytox -157 FSL and the PV Ac­

s-PVPi-H2 equivalent are likely a result of the differences in polarity, and the lack 

of fluorinated groups, which has a significant impact on the stabilising ability. 
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Polymerisation of NVP in scC02 

The polymerisation of NVP in scC02 was conducted using the reduced stabilisers 

and compared with the polymerisation results using the initial forms of the 

polymers (Table 5.6, column 4-6). All polymerisations resulted in a free-flowing 

powder product and comparable conversions. SEM analysis showed that discrete 

microparticle formation was not observed using the reduced stabilisers (Figure 

5.24, b-d) in comparison to the RAFT-terminated stabiliser (Figure 5.24, a). 

Figure 5.24: SEM micrographs of PNVP microparticles synthesised using 

PVAc-s-PVPi-H stabilisers: a) PVAc-s-PVPi-X1; b) PVAc-s-PVPi-H1; 

c) PV Ac-s-PVPi-H2; d) PV Ac-b-PVPi-Hl. Data obtained from Table 5.6; 

entries 1, 2, 4 and 6 respectively. 
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It is also important to note the reduced forms of the polymers are still an 

improvement on the use of stabilisers synthesised by a typical free radical 

polymerisation method, which are unable to support dispersion polymerisation of 

NVP in scC02 to any extent (see Chapter 4). Therefore, the RAFT polymerisation 

process remains a key technique for synthesising successful PVPi -based 

hydrocarbon stabilisers which are able to aid dispersion polymerisations in scC02. 

Although little control over particle morphology is observed using the reduced 

stabilisers, PNVP is still obtained as a free-flowing powder product with a high 

yield in all cases, despite the lack of the RAFT end-group. These results suggest 

that some degree of stabilisation is still taking place. 

PFOA is an amphipathic polymeric stabiliser that contains an acrylic-like 

backbone, which is C02-phobic. 59, 72, 73 In the case of this type of stabiliser, it is 

the backbone of the stabiliser material which physically or chemically anchors to 

the growing polymer particle. Particle flocculation is prevented by the fluoralkyl 

side chains, which project into the continuous phase and provide steric 

stabilisation. It is possible that although the copolymer stabilisers described in this 

section do not possess a xanthate-based anchor group, some form of stabilisation 

could be provided through a weak physical adsorption via the backbone of the 

stabiliser (Chapter 4, Figure 4.1 0, b). This could account for the differences 

observed in the dispersion polymerisations when employing the two types of 

stabiliser end-groups, as two different anchor mechanisms are involved. It would 

also explain the reason for free-flowing, powder polymers being obtained in the 

case of the cleaved stabilisers, where there is no RAFT -terminated polymer to act 

- 292-



Chapter 5: Investigation of Poly (Vinyl Pivalate) Copolymer Architecture 

as the anchor group. However, further investigation of the anchor group theory 

and the results obtained in this section is still required before a definitive 

conclusion can be drawn. It is also possible that the RAFT -terminated stabilisers 

do not even act as anchors as is hypothesised (Chapter 4, Figure 4.10, a) and this 

is also something that needs to be considered more carefully. 

One possibility for additional research on the anchor group could involve a series 

of experiments to determine whether the PVPi-based stabilisers are chemically 

grafted onto the PNVP polymers. This could be carried out via scC02 extraction 

of the PNVP sample, with the aim of removing any stabiliser which is not 

chemically bound to the polymer particles. Comparison of NMR before and after 

extraction should give an indication of whether the stabiliser is still retained, and 

therefore grafted to the PNVP. This method could be applied to both the xanthate­

capped and cleaved versions of the stabiliser, to determine if they are any 

differences in the proportion of stabiliser chemically bound to the PNVP. Soxhlet 

extractions could also provide useful in the determination of whether the stabiliser 

is anchoring via the RAFT agent. The use of analytical techniques to probe the 

interaction of the stabilisers with the surfaces of the growing PNVP particles in 

scC02 would also provide key information about these systems. 
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Polymerisation of MMA in scC02 

In addition, attempts to polymerise MMA in scC02 using both the reduced and 

xanthate terminated stabilisers were considered. These polymerisations were 

largely unsuccessful, resulting in low conversion. 

For the xanthate terminated stabilisers, such observations are attributed to the fact 

that V Ac, a less activated monomer, is a poor leaving group in comparison to 

MMA, a more activated monomer. I As a result, the initiated MMA will leave the 

RAFT agent in preference to V Ac, and chain extension of MMA via the stabiliser 

cannot take place. Therefore, only precipitation polymerisation of MMA will 

occur. 

However, following cleavage of the xanthate end-group, polymerisations 

continued to be unsuccessful. This indicates that the stabilisers cannot anchor to 

the growing PMMA particles sufficiently, with or without the xanthate end-group, 

and so cannot produce a dispersion system for MMA in scC02• A different RAFT 

end-group would be a possible solution to this barrier, where manipulation of the 

anchor group could potentially favour increased reactivity towards subsequent 

propagation of MMA, whilst still incorporating a RAFT functionality capable of 

acting as the anchor. This is an aspect of research that is currently being 

considered to extend the applications of the hydrocarbon stabilisers. 

- 294-



Chapter 5: Investigation of Poly (Vinyl Pivalate) Copolymer Architecture 

5.4 Conclusions 

The work presented in this chapter has shown that a range of stabiliser 

architectures can be synthesised, and that these polymeric materials will stabilise 

polymerisations in SCC02 to varying extents. 

The first section of the chapter dealt with the synthesis of block copolymers of 

PV Ac and PVPi via the RAFT polymerisation technique. A range of block 

copolymers of varying composition and molecular weight were produced, and 

their solubility determined. Block copolymer architectures were observed to be 

less soluble than comparable statistical copolymer stabilisers, which was 

attributed to the segregated arrangement of the V Ac and VPi components. 

Application of the block copolymers in the polymerisation of NVP in scC02 

resulted in successful polymerisations with high conversion. In addition, 

characterisation using SEM analysis revealed the production of discrete, spherical 

microparticles. However, it was also observed that these particles were larger in 

diameter than those obtained using statistical copolymer stabilisers, and also 

possessed a broader particle size distribution. 

The second section of the chapter involved end-group transformations of the 

polymeric stabiliser. Incorporation of a polar a-end-group into the structure led to 

decreased solubility and less uniform polymer particles. Radical-induced 

reduction of a selection of stabilisers was also carried out, leading to the 

production of polymers free of the RAFT end-group. All of the subsequent H­

capped polymers were found to be slightly more soluble than the polymers 
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retaining the xanthate end-group. Further to this, the H-capped stabilisers were 

employed in polymerisations ofNVP in scC02 and found able to stabilise to some 

extent. Upon SEM analysis, it was observed that the resulting particle 

morphology was ill-defined and irregular. This demonstrated that although 

polymers without the xanthate group will function as stabilisers to some degree, 

and stabilise the growing PNVP particle in scC02, the polymers clearly do so to a 

much lesser extent. 

Whilst this chapter has sought to identify the means by which the architecture can 

be varied, there is much additional work to be completed in this area. Variation of 

the end-group functionality, and understanding the way in which the anchoring 

group of the PVPi-based polymers work could be the key to extending the range 

of monomers suitable for use with these stabilisers. Application of these materials 

to the polymerisation of other monomers in SCC02, such as styrene and MMA, is 

the next challenge which must be addressed ifPVAc-PVPi-X stabilisers, are to be 

considered as commercially viable hydrocarbon stabilisers. 
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Chapter 6: Conclusions and Future Research 

The final chapter of this thesis outlines the overall conclusions obtained from the 

research presented, and summarises the potential of this class of PVPi-based 

polymers to act as CO2-soluble hydrocarbon stabilisers. 

The chapter also discusses possible aspects of investigation for the continuation of 

the work, if research on PVPi hydrocarbon stabiliser synthesis were to be 

continued. 
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6.1 Conclusions 

Throughout the course of this thesis, the development of COz-soluble polymers 

composed primarily of hydrocarbon substituents has been investigated. The 

synthesis of these materials has been undertaken by exploiting the RAFT 

polymerisation technique to produce well-defined polymers with a controlled 

molecular weight and specific architecture. The ability of these polymers as 

stabilisers for dispersion polymerisation in SCC02 has been considered and 

evaluated. 

6.1.1 Synthesis and Solubility of PVPi-based Stabilisers for SCC02 

In Chapter 3, a series of homopolymer and statistical copolymer stabilisers 

composed of the monomers V Ac and VPi were synthesised. The polymers were 

produced using xanthate-based RAFT polymerisation, affording controlled 

molecular weight polymers with a reasonable PDI. A series of polymers with both 

a range of molecular weights and compositions were targeted and fully 

characterised. 

The VPi-based polymeric materials were subsequently evaluated for solubility in 

SCC02, using a high pressure variable volume view cell. In all cases, it was 

observed that the VPi moiety provided a high degree of CO2-solubility. For the 

VPi homopolymers, solubility was observed to decrease with increasing Dp, and. 

subsequent chain length. Statistical copolymers of V Ac and VPi units were found 

to be significantly more soluble than the corresponding homopolymers of similar 

- 303 -



Chapter 6: Conclusions and Future Research 

chain length, and an increased VPi content led to improved solubility. In addition, 

the effect of PDI, co-solvent and use of monomer alternatives to V Ac were 

assessed. PDI was shown to have some impact on the solubility of the polymer, 

and co-solvent had a significant effect on improving CO2-solubility. The 

monomers VPr and IP Ac were found to provide little improvement on the PV Ac­

s-PVPi-X copolymer stabilisers. 

Finally, a copolymer of PVAc and PVPi was also synthesised using free radical 

polymerisation in the absence of a RAFT agent, to determine whether RAFT 

polymerisation was indeed required to obtain effective stabilisers. The cloud point 

was dramatically reduced when compared to a RAFT synthesised copolymer, as a 

result of the significant increase in PDI. RAFT polymerisation was observed to be 

an effective technique for targeting stabilisers of controlled molecular weight and 

narrow PDI, able to provide enhanced C02-solubility. 

Overall, polymers composed of PV Ac and PVPi were successfully synthesised 

using RAFT polymerisation, producing stabilisers with a RAFT end-group. These 

polymers were determined to be highly C02-soluble, with potential for 

application as stabilisers in SCC02. 

6.1.2 Dispersion Polymerisation using Hydrocarbon Stabilisers 

Chapter 4 described the application of the hydrocarbon polymers synthesised and 

characterised in the previous chapter as stabilisers in scC02. The polymers were 

emplo~ed in the dispersion polymerisation of NVP in SCC02, and their stabilising 
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ability was compared by contrasting product yield, appearance and particle 

morphology. The PVPi-based stabilisers were observed to act as highly efficient 

stabilisers, enabling the production of a polymer powder of high yield with 

relatively uniform, spherical microparticles, which varied to some extent as the 

composition was adjusted. Increasing the proportion of PV Ac in the statistical 

copolymers was found to lower C02-solubility, whilst also producing smaller 

particles. Molecular weight of the stabiliser was also found to affect the 

dispersion polymerisation, attributed to the lack of steric stabilisation imparted 

when the Dp, and subsequent chain length, of the stabiliser was lowered. Stabiliser 

loading was also observed to have an impact, and the polymers functioned 

successfully as stabilisers even at modest values. However, a reduced particle size 

and improved morphology were observed when increased stabiliser loadings were 

employed. 

A free radical copolymer was also compared with a RAFT synthesised equivalent, 

and found to be unsuccessful for supporting dispersion polymerisation, leading to 

low yielding PNVP product with no distinct particle morphology. This was 

determined to be a result of both the lack of anchor group in the stabiliser 

structure, and also the impact of the broad molecular weight distribution. 

Therefore, it was concluded that RAFT polymerisation is crucial for obtaining 

targeted, narrow molecular weight distributions with a specific anchor group in 

the form of the sulfur end-group incorporated during the process of the RAFT 

polymerisation mechanism. 
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Additionally, the synthesis of PVPi-based stabilisers in scC02 was attempted, in 

order to determine whether the use of organic solvents could be completely 

eliminated in the preparation of such materials. Success was limited, and 

attributed in part to the polymerisation conditions, and the length of the reaction. 

6.1.3 Investigation of Poly(vinyl pivalate) Copolymer Architecture 

Finally, Chapter 5 dealt with the synthesis, characterisation and application of 

stabilisers with different architectures. This section can be classified into two 

main parts. 

The first part dealt with the synthesis and characterisation of block copolymers of 

PV Ac and PVPi. A comparison of the phase behaviour and stabilising ability of 

block and statistical copolymers was investigated. Block copolymer architectures 

were observed to possess decreased solubility in SCC02 compared to random 

copolymer equivalents. This was proposed to be an effect of the segregation of the 

PV Ac and PVPi segments, resulting in the favourable properties of the two 

monomers not being fully exploited throughout the length of the stabiliser 

structure. 

The second section explored the effect of the stabiliser end-group on phase 

behaviour and dispersion activity in scC02. This was first investigated through a 

few adjustments to both the (l- and (I)-end of the polymeric stabiliser. 
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Initially, incorporation of a more polar a-end-group into the polymer was 

investigated, and synthesised through adjustment of the xanthate-based CT A 

employed in the RAFT polymerisation. The increased polarity was observed to 

have a negative impact on both phase behaviour and stabilising ability, leading to 

higher cloud point pressures and ill-defined PNVP polymer particles following 

their application in dispersion polymerisation. 

The sulfur moiety of the hydrocarbon stabiliser was completely removed using 

radical-induced reduction, and the effect of H-capping the stabiliser was 

considered. 1 Removal of the sulfur end-group from the stabiliser led to a small 

improvement in the CO2-solubility. Whilst the stabilising ability was found to be 

limited and ill-defined PNVP particle morphology obtained, it was interesting that 

any stabilisation was observed at all despite the absence of the portion of the 

stabiliser previously assumed to be the polymer-philic anchor group. The 

observation of some degree of stabilisation using H-capped stabilisers has not 

been fully considered in this work, but could be a result of weak physical 

adsorption of the polymeric stabiliser to the growing polymer particles, as 

observed using other stabilisers.2 
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6.2 Future Research 

This section aims to identify avenues of research which would continue to further 

the knowledge built upon thus far in this thesis. A few key aspects of potential 

future work are highlighted, which were not able to be considered fully in this 

thesis due to time limitations, but could provide exciting areas for future research. 

6.2.1 Further Investigation of Vinyl Pivalate Stabilisers 

Although the work detailed within this thesis has demonstrated the potential of 

stabilisers composed of VPi, there are still a number of areas which need to be 

considered further. A mechanistic understanding of the interaction of the 

hydrocarbon stabilisers with PNVP is crucial in furthering the research using 

these materials. It is important to determine whether the RAFT end-group is 

necessary for a successful dispersion, and if it is chemically involved in anchoring 

to the growing particles, and further to this, whether it is possible to stabilise 

dispersion polymerisations without the anchor group. A number of techniques 

could be applied in the future to probe the mechanism of anchoring, some of 

which have already been discussed in Chapter 5. 

Use of alternative polymerisation techniques such as Catalytic Chain Transfer 

(CCT) could also be a possible method for synthesising statistical copolymer 

stabilisers with the potential to act as stabilisers, and this would also test whether 

the incorporated RAFT group is required, while also affording some degree of 

molecular weight control. 
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6.2.2 New C02-soluble Monomers for Hydrocarbon Stabiliser Design 

Whilst the PVAc-s-PVPi-X hydrocarbon stabilisers synthesised in this thesis 

show improved solubility in scCOz compared to other hydrocarbon polymers to 

date, there still exists potential for further improvement. Testing the phase 

behaviour of other, new hydrocarbon polymers might reveal other potential 

stabiliser materials, and also improves the understanding of the properties 

required to impart favourable COz-solubility on a material. 

Polymers composed of VPi have been identified as highly COz-philic, reSUlting 

from the increased steric bulk of this monomer when compared to the less 

sterically hindered equivalent, VAc.3 Another possible monomer to consider for 

copolymerisation with V Ac is that of vinyl neodecanoate (VnDc) (Figure 6.1). 

This monomer is even more sterically hindered than VPi, and because of this 

could further increase the free volume of the polymer in scCOz, minimising 

interactions between the individual polymer chains. 

o 

HC~O 
2 

Figure 6.1: Structure of the monomer vinyl neodecanoate, VnDc. 
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Beyond poly (vinyl alkanoates) as stabilisers, it is likely there are other 

hydrocarbon polymers which could easily be adapted for use as stabilisers for 

dispersion polymerisations in scC02. A limited amount of research has already 

been carried out with computational chemist Prof. Jonathan Hirst and co-workers 

at the University of Nottingham, using quantitative structure-activity relationship 

(QSAR) models to deduce more information about the PVPi-based polymers in 

C02. It is possible that future work in this area will improve the understanding of 

the interactions between these stabilisers and CO2 and lead to further knowledge 

of the type of stabilisers that should be targeted next. 

Further identification of highly CO2-philic polymers is required for the 

advancement of commercial application of C02 as a medium for dispersion 

polymerisation, and generating a library of soluble hydrocarbon stabilisers for 

future use will aid in the realisation of this avenue of research. 

6.2.2 Extension to Other Monomer Systems in SCC02 

Throughout this thesis, the PVPi-based stabilisers employed m dispersion 

polymerisation in scC02 have only found success usmg the monomer NVP. 

Attempts to stabilise dispersion polymerisations of monomers such as MMA have 

proven unsuccessful using the xanthate-capped stabilisers. This observation can 

be related to the anchor group of the stabiliser. In order for stabilisation to be 

successful, a stabiliser must possess a reactive or strongly polymer-philic end­

group .. The xanthate employed in this thesis actively controls monomers such as 
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N-vinyl pyrrolidone and vinyl acetate, which are vinyl monomers containing an 

alpha heteroatom. The lack of success with monomers such as MMA is attributed 

to a poor interaction between the xanthate end-group, which is an unsuitable 

RAFT agent for MMA, and the growing polymer particles. 

Therefore, a crucial requirement for extending the viability of these hydrocarbon 

stabilisers is to improve their activity in other dispersion polymerisation systems 

in SCC02. This could involve a number of potential approaches. 

One such approach is to employ click chemistry to provide a reactive end-group 

functionality more suitable for the stabilisation of other monomers.4
-
7 Research to 

this effect is currently being studied within the Howdle group, with as yet 

unpublished results. Such a method would involve incorporating a terminal group 

able to act as a CTA for more activated monomers such as MMA (e.g dithioester). 

Alternatively a 'universal RAFT agent' could provide a solution, and such a 

RAFT agent has already been reported by Benaglia et al.8 This particular RAFT 

agent functions by using a 'pH-switch' to shift the activity of the RAFT agent 

from LAMs (e.g VAc) to MAMs (e.g MMA). Future efforts could potentially 

identify a universal RAFT agent suitable for incorporation in hydrocarbon 

stabilisers and able to function as the reactive end-group III dispersion 

polymerisation of various monomers III SCC02, through use of a suitable 

switching mechanism. 

Another potential method of developing an MMA-active stabiliser is the 

incorporation of a strongly polymer-philic anchoring group, which has a high 
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affinity for the polymer-rich phase. For MMA, this could include a short chain of 

PMMA attached to the end of the PVAc-s-PVPi hydrocarbon stabiliser. 

In addition to dispersion polymerisations, it is possible that the PVAc-b-PVPi-X 

stabilisers could find application in emulsion polymerisations utilising water and 

CO2. Steric stabilisers are required in these systems to adsorb at the CO2-aqueous 

interface. A number of groups have reported successful emulsion polymerisation 

processes in C02 using a range of surfactants, including the use of PV Ac-based 

stabilisers.9
-
14 This is an area which could prove interesting to consider further, as 

these stabilisers appear ideally suited to emulsion polymerisation in C02. 

Overall, the development of a stabiliser which can be applied to a broad range of 

polymerisations in scC02 is crucial if dispersion polymerisations in this medium 

are to find large-scale application. Also, it is important that synthesis of 

hydrocarbon stabilisers remains relatively inexpensive and uncomplicated, which 

can be a problem when faced with additional synthetic transformations. However, 

further investigation of the stabiliser anchor group and the corresponding effect 

on dispersion polymerisation of other monomers in SCC02 will undoubtedly lead 

to solutions to these issues. 
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