
A Novel Approach to Handwritten Character Recognition

by Eddie Clarke, B.Sc.

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy.

September 1995.

BEST COpy
AVAILABLE

- ii -

Abstract

A number of new techniques and approaches for off-line handwritten character recognition

are presented which individually make significant advancements in the field.

First. an outline-based vectorization algorithm is descrihed which gives improved accuracy

in producing vector representations of the pen strokes used to draw characters. Later. vee-

torization and other types of preprocessing are criticized and an approach to recognition is

suggested which avoids separate preprocessing stages by incorporating them into later

stages. Apart from the increased speed of this approach. it allows more effective alteration

of the character images since more is known about them at the later stages. It also allows the

possibility of alterations being corrected if they are initially detrimental to recognition.

A new feature measurement. the Radial Distance/Sector Area feature. is presented which is

highly robust. tolerant to noise. distortion and style variation. and gives high accuracy results

when used for training and testing in a statistical or neural classifier. A very powerful

classifier is therefore obtained for recognizing correctly segmented characters. The segmen-

tation task is explored in a simple system of integrated over-segmentation. character

classification and approximate dictionary checking. This can be extended to a full system

for handprinted word recognition.

In addition to the advancements made by these methods. a powerful new approach to

handwritten character recognition is proposed as a direction for future research. This propo-

sal combines the ideas and techniques developed in this thesis in a hierarchical network of

classifier modules to achieve context-sensitive. off-line recognition of handwritten text. A

new type of "intelligent" feedback is used to direct the search to contextually sensible

clasSifications. A powerful adaptive segmentation system is proposed which. when used as

the bottom layer in the hierarchical network. allows initially incorrect segmentations to be

adjusted according to the hypotheses of the higher level context modules.

- iii -

Acknowledgements

I would like to thank my supervisors. I am indebted to Professor David Elliman for sharing

his endless stream of ideas with me. for his guidance. support and encouragement. and par-

ticularly for supporting me financially since my grant ran out. I am very grateful to Dr

Edmund Burke for stepping in when it appeared I was to be supervisorless, for his constant

nagging to write my ideas down (without which I would still be writing now) and for his

diligent proofreading.

My thanks are also owed to the members of the Machine Intelligence Group (MIG) both for

their intelligent discussion of ideas and for making the office an enjoyable and entertaining

place to work.

I would also like to express my gratitude to all the support staff at the Department of Com-

puter Science for sharing their invaluable time and technical expertise in helping me in my

role as MIG system administrator. In particular. I am indebted to William Armitage for

teaching me the ropes. rescuing me when I got out of my depth and. most importantly. for

giving me somewhere to live.

I am grateful to the Science and Engineering Research Council (now EPSRC) for its finan-

cial support which enabled me to undertake this research.

Finally. I would like to thank my family and friends for their constant assistance. support

and encouragement throughout my work.

- iv -

Contents

Chapter 1. Introduction 1

Chapter 2. OtT-Line Character Recognition 6
2.1. Summary.... 6

2.2. Outline of the Problem . 6

2.2.1. The Image.. 6

2.2.2. The Digital Representation 7

2.2.2.1. Bi-Tonal Representations 8

2.2.2.2. Greyscale Representations 9

2.2.2.3. Colour Representations 11

2.2.2.4. Outline Representations 12

2.2.3. Types of Character Recognition 15

2.3. Preprocessing 17

2.3.1. Thinning and Vectorization 17

2.3.1.1. Pixel Erosion Methods 22

2.3.1.2. Distance Transforms 28

2.3.1.3. Vectorization Methods 30

2.3.2. Polygonal Approximation 33

2.3.3. Filling and Joining 35

2.3.4. Smoothing 36

2.3.5. Normalization 37

2.4. Segmentation.. 44

2.5. Feature Extraction 47

2.5.1. Point Distribution Measurements 48

2.5.2. Global Transformations 50

2.5.3. Physical Measurements 54

2.5.4. Geometric and Topological Features 54

2.6. Databases for Character Recognition 56

2.6.1. NIST Special Database 3: Handwritten Segmented Characters 57

2.6.2. CEDAR CDR OM 1: Database of Handwritten Images 58

2.6.3. Other Standard Databases 60

2.7. Conclusions 61

- v -

2.8. Nomenclature 64

Chapter 3. A New Method for Vectorization of Outlines 65
3.1. Summary 65
3.2. Pavlidis's Run-Length-Based Vectorization Algorithm 66
3.3. Overview of the Method 67

3.4. Pixel Edge Matching 70

3.5. Match Quality 72

3.5.1. End Zones 74
3.5.2. Split Zones 78
3.5.3. Preserving Holes 82

3.6. Match Removal... 82
3.7. Bends 86

3.8. Junctions 88

3.8.1. Bow-Tie Removal 88
3.8.2. Methods of Dealing with the Odd Pixnode 90
3.8.3. Splice Quality 92

3.8.3.1. Approximating Entry Angle into Junctions 95

3.8.4. Three-Way Junctions 99

3.8.5. Four-Way Junctions 99
3.9. Additional Preprocessing 100

3.10. Conclusions 101

3.11. Nomenclature 105

Chapter 4. The Preprocessing Approach - An Appraisal 108
4.1. Summary 108

4.2. The Preprocessing Approach 108

4.3. Pros and Cons of Preprocessing 112

4.3.1. Thinning and Vectorization 113

4.3.2. Smoothing, Filling and Joining 116
4.3.3. Polygonal Approximation 118
4.3.4. Normalization 120

4.4. The Alternative - Minimal Preprocessing 124

4.5. Conclusions 128

Chapter 5. A Robust Feature for Outline Representation 129
5.1. Summary 129
5.2. Normalized Contour-Based Feature Strings 129
5.3. The Radial Distance/Sector Area Feature 130

- vi -

5.4. Extraction 134
5.5. Results 136

5.5.1. Normalization Factor 139
5.5.2. Reference Point 140
5.5.3. Sector Area 140
5.5.4. Angles Used 142
5.5.5. Practical Recognition Accuracy 143

5.5.6. Further Testing 146

5.6. Comparison of the Feature on Outlines and Vectors 147
5.7. Adaptive Segmentation 148
5.8. Extensions 153
5.9. Evaluation 154
5.10. Conclusions 156
5.11. Nomenclature 157

Chapter 6. Character Classification and Contextual Processing 158

6.1. Summary 158

6.2. Statistical Classification 158

6.2.1. Parametric Classification 159

6.2.2. Nonparametric Classification 162
6.2.3. Unsupervised Classification 168
6.2.4. Fuzzy Decision-Making Classification 170

6.3. Structural Classification 170
6.3.1. Template Matching 172

6.3.2. String Matching 173

6.3.3. Formal Grammars and Parsing 176

6.3.4. Relational Descriptions and Relational Graph Matching . 180

6.4. Neural Classification 184
6.4.1. Types of Neuron 184

6.4.2. Types of Network. 186
6.4.3. Types of Learning 189
6.4.4. Feedforward Networks 196
6.4.5. Feedback Networks 203

6.5. Remaining Problems - The Need for Context 207
6.6. Contextual Processing 209

6.6.1. Dictionary Methods 210
6.6.2. Markov Methods 214
6.6.3. Hybrid Methods 216
6.6.4. Higher Level Context 222

- vii -

6.7. Conclusions 223

6.8. Nomenclature 226

Chapter 7. Integration or Segmentation and Dictionary Matching 228
7.1. Summary............... 228
7.2. Integrated Approaches to Context Sensitive Segmentation 229

7.3. Over-Segmentation 232

7.4. Constructing Legal Character Segmentations 236

7.5. Approximate Dictionary Matching 241
7.6. Results 246
7.7. Choosing an Initial Character Segmentation 253
7.8. Conclusions 255
7.9. Nomenclature 257

Chapter 8. Future Work: Hierarchical Adaptive Contextual Classification 259
8.1. Summary.... 259
8.2. The Contextual Layering Approach 260

8.3. Intra-Layer Module Communication 263
8.4. Inter-Layer Module Communication 263

8.5. General Determination of Contextual Levels 264

8.6. Intelligent Feedback 266
8.7. Strategies for Fast, Accurate Classification 268

8.8. Desired Properties of Classifier Modules 270

8.9. Suitable Classifiers for Use as Classifier Modules 273

8.10. A Standard Model of a Classifier 276

8.11. Evaluation 277

8.12. Conclusions 279

Chapter 9. Conclusions and Recommendations 281
9.1. Summary 281
9.2. Conclusions 281

9.2.1. Outline-Based Vcctorization 281
9.2.2. Preprocessing 282
9.2.3. The Radial Distance/Sector Area Feature 283
9.2.4. Integrated Contextual Segmentation 284
9.2.5. Hierarchical Adaptive Contextual Classification 284

9.3. Suggestions for Future Work 285
9.3.1. Outline-Based Vectorization 286
9.3.2. Minimal Preprocessing ... 287

- viii -

9.3.3. The Radial Distance/Sector Area Feature 287
9.3.4. Integrated Contextual Segmentation 288
9.3.5. Hierarchical Adaptive Contextual Classification 289

References 291

- ix -

List of Figures

Chapter 2. OtT-Line Character Recognition
2.1. Example image and possible representations 10
2.2. Examples of preprocessing 18

Chapter 3. A New Method for Vectorization of Outlines
3.1. Vector representation of a vertical line image from short and long matches 68
3.2. Formation of the pixpts, cot:st. coi.cnt. row_SI and row_cnt arrays 73

3.3. Short matches along the edge of an outline that cause distortions and spurs. 75
3.4. Decrease in match width which should not signal the end of the end zone 76
3.5. Conditions for detection of end and split zones 77

3.6. Overlapping split zones which cause a large region to be cleared 79
3.7. Treatment of a junction as two three-way junctions 80

3.8. Better treatment of the junction a.1I a larger four-way junction 80
3.9. Arrangement of pixpts array before and after sorting 84

3.1O. Example of a 'bend' area 87

3.11. Vectorization of a stub 92
3.12. Angles considered during splice quality assessment 93

3.13. Typical actual entry lines of vector chains into junctions 95

3.14. A four-way junction where alternate splicing is inappropriate 100

3.15. Example vectorizations of an '8' using different preprocessing techniques .. 102

3.16. Example vectorizations from the NIST and CEDAR databases 103

Chapter S. A Robust Feature for Outline Representation
5.1. Example of Radial Distance/Sector Area feature measurements. 132
5.2. Division of the area of a triangle between sectors 136
5.3. Pair points for a segmentation point 151
5.4. Typical division of a cursive word into small sections 152

Chapter 6. Character Classification and Contextual Processing
6.1. Primitives extracted from a character and their structural relationships 171
6.2. Basic model of a neuron.. 185
6.3. Common forms of activation functions 187

- x -

6.4. Example oftrie memory represented as a binary tree 212

Chapter 7. Integration of Segmentation and Dictionary Matching
7.1. Example of over-segmentation method for broken handprinted characters 236
7.2. Example of segment group ordering 237
7.3. Example oflegal character segmentation ordering in the sequences array 241

7.4. Examples of correctly recognized word outlines 251

7.5. Examples of incorrectly recognized word outlines 251

7.6. Examples of initial character segmentations 255

Chapter 8. Future Work: Hierarchical Adaptive Contextual Classification
8.1. Example arrangement of classifier modules and windows 262

- xi -

List of Tables

Chapter 2. OtT-Line Character Recognition
2.1. Commonly used geometric and topological features 55

Chapter S. A Robust Feature for Outline Representation
5.1. Division of data sets into training and test sets 139
5.2. Results of varying the normalization factor 139
5.3. Results of varying the reference point for unvectorizcd data sets 141

5.4. Results of varying the reference point for vectorized data sets 141
5.5. Comparison of Radial Distance vs Radial DistancclSector Area 142
5.6. Results of varying the number of angles used for the NIST Lower data set .. 142

5.7. Accuracy of the quadratic discriminant and LVQ classifiers 144

5.8. "Top three" accuracy of the LVQ classifier 146

5.9. Comparison of the Radial Distance feature on vector and outline data 148

Chapter 7. Integration of Segmentation and Dictionary Matching

7.1. Comparison of the basic scoring methods and scoring strategies 248

7.2. "Top n" word recognition accuracy. for n equal to 1.2.3 and 5 250

7.3. Comparison of character certainty thresholds 252

Chapter 1

Introduction

This thesis addresses the difficult problem of identifying handwritten characters using a

computer. The characters are presented to the computer in an electronic representation, pro-

duced by an optical scanning device. This representation encodes the shape of characters

with no information as to the letters or numerals they represent. The characters are scanned

from a pre-drawn image so no information about how they were drawn is available, only the

final shape. Identifying such images is called off-line recognition.

The field of off-line character recognition is a large one. It has a great number of applica-

tions and its commercial potential is considerable. However, marketable products have so

far been limited to machine-printed character recognizers. While optical character recogni-

tion (OCR) software for machine-printed characters is commonly found in offices today, sys-

tems for recognizing handprinted characters have not quite reached the levels of accuracy

required for practical use. Systems for recognizing handwritten characters are even less

accurate. The difficulty of the problem is due to the enormous style variability of handwrit-

ten characters.

Character styles vary in many ways: relative size, aspect ratio, sharpness of angles, slant,

slope. ornamentation, and the number. ordering. position. direction and thickness of strokes.

Factors causing these variations have been shown to include the writer's age. health. handed-

ness. education. profession. nationality, and in specific cases the speed of writing, method of

presentation and motivation for writing. The writing implement used and quality of the

writing surface also causes style variation. (Kuklinski [Kuk84])

This thesis presents a range of work on various aspects of the off-line handwritten character

recognition problem. The main direction of the work is towards a novel approach for incor-

porating contextual sensibility throughout the recognition process. Attaining contextually

sensible recognition is the key to making off-line handwritten OCR accurate enough for

-2-

practical use.

Off-line character recognition has traditionally focused on the classification of isolated char-

acters. without considering the context in which those characters are found. Although it is

difficult to compare recognition results when different test data is used. the field appears to

have reached the stage where machine recognizers are very close to achieving the same level

of accuracy as humans on isolated handwritten characters.

Estimates for human error rates on handwritten characters without context range from 4% to

12%. and as high as 28% for cursive script [SSK77] [EUF90]. It is generally accepted that

human errors on the isolated character recognition task are mainly caused by ambiguous

characters. This ambiguity is caused either by corruption of the image by noise (e.g .• dirt or

poor scanning) or poor drawing (e.g .. bad ink How or an uneven writing surface). or is natur-

ally present (e.g., a vertical line image might he a 'I' or an '1'). The human error therefore

closely approximates the degree of overlap of character class boundaries at the underlying

image level (rather than at the feature level) which puts a practical limit on isolated character

recognition for both humans and machines.

A machine recognizer is therefore limited to roughly the same level of accuracy as humans,

for recognition without context. Despite approaching that level of accuracy, noncontextual

machine recognition of handwritten and cursive characters is still not accurate enough for

practical use. While research continues to improve features and classifiers for isolated

recognition, the benefits of these improvements become smaller as accuracy gets closer to

the practical limit. If character recognition is to progress to useful levels of accuracy it is

essential that contextual information be included in the classification. This idea has been the

motivation for the research presented in this thesis.

Attempts have been made to incorporate contextual information into character recognition.

However, these attempts have mainly been rather limited. application specific. feedforward

correction processes for dictionary checking. No general system for contextual processing

has appeared. Chapter 8 of this thesis proposes a flexible. modular. hierarchical network of

classifiers for general contextual classification. using feedback as well as feedforward com-

munication to produce contextually sensible results.

- 3 -

Although the proposed hierarchical system is intended to be general in nature. its develop-

ment requires testing on specific practical problems. The size of these problems and the

need for modifications and developments of existing methods for use in the contextual

hierarchy have limited the scope of this thesis to one specific task: character recognition.

Much of the work presented here is concerned with the development of character recognition

solutions which can be incorporated into the contextual hierarchy with a view to testing the

proposed system. At the same time. these solutions can be used outside of the hierarchical

system and represent significant developments in the field.

After reviewing the fields of character classification and contextual processing in chapter 6.

chapter 7 explores a method for contextual recognition of words based on classifications of

individual characters. To a large extent this method follows on from previous work on con-

textual word recognition. The aim of this was partly to develop a stand alone word recog-

nizer but mainly to test the possibility of integrating the contextual recognition with the prior

stages of segmentation and isolated character recognition. The method. as it stands. is not

robust enough for practical use but it demonstrates the potential of contextual information to

find the correct segmentation and produce correct classifications.

Work has also been carried out to improve the recognition of isolated characters. There are

two main approaches to the problem: structural and statistical (the neural approach can be

seen as a type of statistical approach) and improvements to both of these have been made.

Chapter 6 reviews the classification aspects of these approaches. while chapter 2 surveys the

earlier stages of processing the isolated characters.

The structural approach involves extracting shape primitives from images and basing

classification on the types of primitives and their relationships. The images are usually

thinned to a line or vector representation before extraction to simplify the process. 'The

weakness of this approach is that it relics heavily on accurate extraction of the primitives. It

is very prone to errors caused by noise and distortion. and also by errors introduced in the

thinning process. Chapter 3 presents an improved vectorization algorithm for producing

accurate vector representations of character images. This method. developed from a popular

existing method. includes significant improvements to the vectorization of "junctions" (areas

where pen strokes overlap) and produces vectorizations which arc much closer to whole

- 4-

strokes than those output by the previous algorithm.

The statistical approach to isolated character recognition is based on extracting vectors of

feature measurements from images. Classification is based on comparing these feature vec-

tors to statistical models of character classes. The main problem with existing feature

approaches is that they are not robust enough for practical use. A new feature is presented in

chapter 5 which is highly robust. tolerant to noise and distortion. and invariant to position

and size. and partially to rotation. The new feature gives high levels of accuracy and gen-

eralization on two of the most popular standard character databases. The accuracy and

robustness of this feature are essential for the isolated character recognition stage in the pro-

posed contextual hierarchy.

At the segmentation stage of character recognition. two methods are presented. One is a

simple algorithm intended only to test the integration of segmentation with contextual

classification in chapter 7. The other is a proposal for adaptive segmentation which forms

the bottom layer of the hierarchical system. Adaptive segmentation is a system where the

initial segmentation is modified during contextual processing to better fit the expected

classifications. This overcomes one of the main problems in character recognition - that

recognition is restricted by the accuracy of the initial division of the input data. It is sug-

gested that the new feature of chapter 5. can be used in conjunction with an adaptive seg-

mentation system.

The earlier preprocessing stages of character recognition are evaluated in chapter 4 and it is

concluded that several of them can be detrimental to recognition and that others can be per-

formed more efficiently and effectively by incorporating them into later stages. TIle

methods and approaches in this thesis attempt to avoid separate preprocessing stages wher-

ever possible.

Another aspect of the contextual hierarchy is a requirement for a reversal of the classification

process. Contextual corrections are to be verified by comparing inputs which represent the

output class with the actual inputs. This is done at each stage. allowing a novel feedback

mechanism to direct the search for the correct classification. This requirement is considered

for each stage of the recognition process and several methods presented here are designed to

- 5 -

be capable of producing such representatives. The new features can produce representatives

of the original character shape; the classifier used in chapters 5 and 7 can produce represen-

tative feature vectors for each class and the word recognizer can produce representative char-

acters for the output word.

This thesis therefore presents an accurate vectorization algorithm. a powerful and robust

feature for isolated character recognition and a word recognition approach using multiple

segmentations which are all significant improvements on existing methods. In addition. it

proposes a powerful new approach for further research into off-line handwritten character

recognition and lays the groundwork for its future testing and development. It is hoped that

a full implementation of the contextual hierarchical system. using the ideas and techniques

which have been developed here. will lead to a highly accurate recognition system which is

robust and powerful enough for practical application.

- 6 -

Chapter 2

Off-Line Character Recognition

2.1. Summary

This chapter reviews the research field of off-line character recognition. Section 2.2

describes the overall problem and the initial forms of the input data. Sections 2.3 to 2.5

review work on the typical early processing stages: preprocessing of the image representa-

tion to aid subsequent recognition, segmentation of text into isolated characters and extrac-

tion of features which exhibit the distinctive characteristics of character classes. Section 2.6

discusses character databases for recognition experiments. Conclusions on the current state

of this part of the research field are made in section 2.7. Section 2.8 describes the notation

and symbols used in this chapter.

A review of the actual recognition stage of off-line character recognition (classification and

contextual processing) is presented in chapter 6 as it seems a logical division and does not

concern the early chapters of this thesis. Note, however, that an ideal division, even within

the sections of this chapter, is impossible as the different stages of character recognition

often overlap, for example, normalization (which is usually considered to be a form of

preprocessing) is sometimes performed after feature extraction [DL90a], and segmentation

can be integrated with recursi ve contextual processing [TA91].

2.2. Outline of the Problem
In off-line character recognition, an image is scanned and a digital representation of the

image is stored. An attempt is then made to identify the text in thc representation, translat-

ing it into a machine-readable format, usually ASCII.

2.2.1. The Image

The image could be any document containing characters. Typical images are engineering

drawings, computer programs, accounts sheets, transaction statements, envelopes, forms,

cheques, mail, maps and airline tickets. The image is not necessarily a pure sample of

-7-

writing or print. Many images used in real world applications will have additional lines,

e.g., boxes on a form. or noise and obscurations, e.g., dirt, smudged ink. Drawings, pictures

and diagrams may also be present in an image. It may not be readily determinable which

areas of the image are text, to be recognised, and which are not. Even if found, the text may

not always be in the desired orientation for recognition.

The need for correction of the orientation of the digital representation of a document can be

aided, reduced and in some cases eliminated before scanning by using special marks on

forms. This may be by including distinctive, easily identified ink markings on the form or

by physically marking the form, e.g .. cutting off a comer. Physical marks may allow forms

to be correctly orientated mechanically for automated presentation to the scanning device.

The process of identifying where the writing lies within an image is called text segmenta-

tion. It is frequently the first step in character recognition applications. Many methods exist

for performing this segmentation, usually from a greyscale scan (see section 2.2.2.2), e.g.,

pixel classification (region growing and splitting) [PR78], brightness thresholding [WNR74j

[WR83] [HS88], edge detection [Dav75] [Per80] [TP86] [SB91]. relaxation [HZ83]. texture

analysis [CP79] [WWC82] and connected-component analysis [FK88].

This thesis is not concerned with the task of text segmentation and for the most part does not

deal with orientation correction. For the problems on which this work concentrates, it will

be assumed that text segmentation has already been performed. In reality, the images used

in this research contain only text. and the correct orientation is already known.

2.2.2. The Digital Representation

The image is optically scanned and digitized into a numerical representation suitable for

input to a digital computer. The numerical representation describes the positional distribu-

tion of optical brightness measurements. quantized into a grid of square elements, pixels

(also called image elements. picture elements or pels [GW77]). Square pixels are used

because rectangular ones complicate invariant feature extraction; rectangular pixel lengths of

part of a character will vary according to its orientation. The sean covers the whole docu-

ment by either moving a scan head over a stationary document or by moving the document

in front of the scan head using a rotating drum and stepped friction feed [PS80].

- 8 -

The optical brightness is a measurement of light reflected off the document. The most com-

mon types of scanning device measure this using either a Charged Coupled Device (CCD) or

a photomultiplier tube. The photomultiplier produces a digital output proportional to the

optical density of its input. The CCD produces a similar output in the form of a wave. with

voltage proportional to the illumination. which is then passed through an analogue-to-digital

converter. The photomultiplier is used in laser scanners; It records the brightness of a fine

laser beam reflected off the document. With CCD devices. the illuminated image is

presented to the CCD via a camera or a fibre optic pipe.

The exact format of the digital representation of the image depends on the software used

with the scanner. The following sections discuss commonly used formats.

2.2.2.1. Bi- Tonal Representations

A standard file format is the bitmap. where positions in the representation correspond to

positions in the image. and 'O's represent white pixels and 'I 's represent black pixels. The

bitmap is therefore only capable of storing a bi-tonal (black and white) representation of the

image. Figures 2.1a and 2.1b illustrate a simple image and its corresponding bitmap

representation.

The bitmap is an elementary format in the field of character recognition. Though many dif-

ferent formats exist. they consist of the same basic information. Variations exist where the

pixel value is encoded in a whole byte as ASCII decimal (more easily read by humans),

rather than in a single bit (much more compact). Other formats vary in the compression

method. or the header information. e.g .. height and width of the image. resolution and labels.

Despite the simplicity of the bitmap. there are a large number of variant formats. Platform-

specific. printer-specific and application-specific bitmap standards are abundant. e.g .• Epson,

HP Laser.let, Printronix. Macintosh MacPaint format. Sun icon format. the Atari ST Degas

.pi3 format. BBN BitGraph terminal Display Pixel Data (DPD). MGR. CMU window

manager, XIO. XII and Zinc. Fortunately. since all these black and white image representa-

tions contain essentially the same data. converting between formats is not a problem. How-

ever, for the purposes of designing a character recognition system. it is desirable to work

from a platform-independent bitmap standard. A popular choice is the Portable Bitmap For-

mat (PBM).

-9-

This research has used run-length format (also called chord encoding) as a simple, fairly

compact. standard for bitmap storage. Rather than record each pixel individually, the run-

length format records the length of runs of black or white pixels on a line. Since black and

white must alternate in a bitmap representation, there is no need to indicate the colour to

which the length refers, provided a convention exists to define the starting colour. Figure

2.te illustrates a run-length encoding of the bitmap in figure 2.tb.

Although bitmaps are commonly used, they have the weakness that images are not always

clearly black and white. Pixels which are not clearly one colour or the other may be desired

parts of the image. or may be unwanted noise. This is particularly problematic when light

inks or coloured paper are used. Many scanners produce output in the form of grey levels or

colour, thus providing more information on which to base recognition decisions.

2.2.2.2. Greyscale Representations

The next step up from bitmap representations are greyscale representations. also called grey-

maps. These give more information than a bitmap by encoding the colour of a pixel on a

scale of "greyness." '0' represents white and some maximum value represents black. As in

the bitmap format. the positions of these "grey level" numbers in the representation

correspond to positions in the scanned image. Figure 2.lc shows the greyscale representa-

tion of the image in figure 2.1a.

The greyscale information allows a more flexible handling of potentially noisy areas and is

an aid to segmentation. Greyscale is another elementary format. varying mainly in the

number of grey levels used. Equivalent standards include the Flexible Image Transport Sys-

tem (FITS). Usenix FaceSaver format, Lisp Machine multi-plane bitmaps and PostScript.

Portable Greymap Format (PGM) is a lowest common denominator greyscale file format in

the PBM family which is similarly popular as a platform-independent format.

Any greyscale format can be converted to a bitmap by thresholding the grey levels into black

or white. This reduces the size of the data and divides an image into a foreground and back-

ground. Several surveys of the variety of grey level thresholding techniques have been pub-

lished. A fairly recent one is by Sahoo et al. [SSW88j. The main strategies are globalthres-

holding. dynamic thresholding and edge detection.

a)

..
0:0:0:0:2:1 :0:0:0:0:·
o : 0 : 2 : 15 : 15: 15 : 15 : 1 : 0 : 0 :

• • • • t • .. • .. ,....•...
o l 0 : 15 : 15 : 13 : 15 : 15 : 4 : 0 : 0 :·
o l 1 : 16: 14: 1 : 3 : 16 : 16 : 0 : 0 1

• • • • • I , • • •................. ..•..........
o 1 2 :16: 9 : 0 : 1 :14 :16: 1 : 0 :·
o : 1 : 16: 7 : 0 : 0 : 14 : 16: 1 : 0 :

• • I • , • • • • •·oTi;·r·i6·r·sTo·r·i··r·is·ri·6·r·i··r·o·i
• • I • • • .. • • •................................ .

o : 0 : 4 : 12: 4 :10 : 16 :16: 1 : 0 :··oTo··r·i·r·i6Tit;r·i6Ti6TiTo·r·o·l· . . . ,
OlO :0: 1 l3:3:2 lo i o i o i

• I • • • • • • • ..
c)

10

343
253

22222
22222
22222
22222
31 123
343
10

12 - Number of coordinates

o - Loop level number

22 27 37 39 79 77

87 83 73 71 31 32
6 - Number of coordinates

1 - Loop level number

43 63 67 57 58 48

e) f)

- 10-

..
.~..L~.L9._L~..9 ~.L9..L~.L~.L~.
.~.L~.L9..U ! U.! ..L~.L~.L~.
.~..L~..U..U ! U.! ..L~.L~.L~.
.9..UU.! ..U ~ ~.U ..L.U.9..L9..
.~..L9..U..U 9 ~.L!..L.U.~.L~.
o t o t i r i i e t o l r t i t o t o.
0;0;llI001Illl010...
0;0;0;10111101010...
0:0:0:1 1:1:0:0:0.
0:0:0:00 0:0:0:0:0
....~.....~....~..•......... ~...•!....!....!....

b)

0.0 x

y

d)

*
2I

4 0
5 7

6

Definition of

direction numbers

o - Chain level number

2 2 - Starting coordinate

66667600021222324445
I - Chain level number

4 3 - Starting coordinate

1076665532222
g)

Figure 2.1 Example image and possible representations: a) image. b) bitmap. c) greymap, d)

outline. e) run-length encoding. f) outline coordinates. g) chain coding.

- 11 -

Global thresholding uses a single threshold grey level: all values below it become white and

all those above become black. In practice, local contrast variations mean there is not always

a clear grey level division between black and white pixels over the whole image. Dynamic

thresholding uses local properties of the image to compute the threshold level. An example

of this is Perez and Gonzales' method [PG87] which is based on a Taylor series expansion.

Weszka [Wes86] provides a good survey of dynamic thresholding methods.

Throughout the 19808 much research was carried out on edge detection methods. 1bese

attempt to determine where the borders between black and white are in the image. The sim-

plest method is to compute a gradient of image intensity; the Roberts and Sobel methods are

among the more common of this kind (see [Nev86]). Surface fitting techniques approximate

the image intensity profile with an analytical function and use the computed derivative to

determine the edges. For example, Hueckel [Hue73] used a Fourier transform to approxi-

mate the image surface; Haralick's facet model [Har84] used sets of masks on the image to

calculate a two-dimensional discrete orthogonal polynomial approximation. Surface fitting

methods are improved by the use of second-order derivatives, where edges are indicated by

zero crossings. White and Rohrer [WR83] used Laplacian gradient operators for this pur-

pose and Marr and Hildreth [MH80] used a Laplacian-Gaussian operator. An optimal clus-

tering method was used by Manohar [Man83]. Kay and Lemay [KL86], AssaI et al.

[AHF88], and Navatia and Babu [N080] all used linear model schemes. These are template

matching methods where a small array of pixels (e.g., 3x3 or 5x5) is passed over the image

representation to locally determine the presence of edges.

2.2.2.3. Colour Representations

File formats also exist for colour images, though colour is not essential for many character

recognition applications. It is sometimes useful for identifying particular pieces of text

within a document. For example, in map recognition, colour may often be used in the text

segmentation stage to distinguish words from lines (roads, contours, etc.).

Many colour formats are in use. some of the most common ones being Graphic Interchange

Format (GIF). Joint Photographic Experts Group (JPEG) and Tagged Image Format File

(TIFF), all of which are platform-independent. A variety of platform-specific formats are

widely used, such as Amiga's InterLeaved BitMap, Hold-And-Modify. DynaHAM and

- 12 -

Sliced HAM formats, IBM's PC Paintbrush (PCX), Macintosh's QuickDraw Picture (PICT),

and Atari' s Spectrum and Degas .pi1. As with bitmap and greyscale representations, there is

a lowest common denominator file format, Portable Pixmap format (PPM). Each pixel

colour is represented by three values indicating the red, green and blue content of the colour.

The allowed range of these values determines the accuracy of the colour storage. The other

colour formats can be accurately converted to PPM format if the colour range of the pixmap

is sufficient. PPM format is not generally as popular as PBM and PGM for platform-

independent colour representations; some compression, as used in GIF and JPEG for exam-

ple, is desirable given the larger space requirements of colour images.

Any colour format can be converted to a greyscale format by quantizing the colour spectrum

into grey levels. Formats capable or storing colour images are often just used for bitmaps or

greyscales - a bitmap being a colour representation with only two colours. One of the

scanners used for this research can only produce black and white scans hut it produces files

in TIFF format. This is because TIFF is a widely used standard and, presumably, because it

will make future upgrades to the scanner easier (the basic model could be improved to do

colour scans without having to change the output format). Some colour formats have

simplifications to enable them to more efficiently store just hitmaps or just greyscales.

2.2.2.4. Outline Representations

One format which is of particular relevance to character recognition is the outline format.

Many approaches to the problem find it useful to examine the outline of a character. (The

main alternative is to look at a skeleton of the character; this however requires alterations to

the raw image representation. This approach will he dealt with in later sections.)

Compressed bitmap formats, such as the run-length encoding used in this research. are not

well suited to measuring certain features such as the perimeter of a character. The run-

length is therefore translated to an outline description prior to processing. Various methods

of outline creation have heen proposed (Freeman [Fre61], Cederherg [Ced79], Danielsson

[Dan82], Kim et al. [KLK88], Dinstein et al. [DLG91]). This research prefers the method

of Elliman and Connor [EC90]. which uses the relative position of pixel runs on adjacent

lines to create nested outline loops in a single pass. Figure 2.1d shows an outline representa-

tion of the image in figure 2.1a which has been extracted from the bitmap in figure 2.1b

using Elliman and Connor's method.

- 13 -

The outline of a shape holds essentially the same information as a bitmap so the outline for-

mat can be regarded as a bitmap variant. It should be noted. however. that some approaches

will start with a pixmap or greyscale representation and use the higher level information to

estimate the edge of the shape. This is not exactly the same as quantizing the higher level

representation down to a bitmap and storing the outline of that bitmap. For the purposes of

this explanation it will be assumed that the outline is being taken from a bitmap.

Depending on the encoding used. the outline is either the line following the black/white

pixel boundary or a line joining the midpoints of the black edge pixels. It may be stored in a

number of ways. for example. a series of coordinates or a chain code. One compact format

suggested by Connor [Con89] is a series of orthogonal vectors indicating the length and

direction of the line in alternating horizontal and vertical directions. A related format is

chain coding [Fre61]. This uses the fact that pixels on a border are adjacent in one of eight

directions to produce a compact coding for the next pixel in sequence. Each of the eight

directions is assigned a number (usually 0 to 7). For each border pixel. the direction number

of the next pixel around the outline is written in order. The coding corresponds to a chain of

short vectors from one boundary pixel to the next. Chain codes are commonly used in char-

acter recognition as they are rotationally invariant. simple to extract certain features from

(e.g .• outline perimeter length) and can be used to detect certain structural characteristics

(e.g .• corners [Fre74] [Ced79]).

Figure 2.1f shows the outline encoding used in this research which consists of ordered.

nested loops (see below) and coordinate points. The encoding is of the outline in figure

2.1d. Figure 2.1g shows a chain coding of the black pixel edges of the bitmap in figure 2.1b.

These methods assume certain simplifications about the image that apply to bitmaps but not

necessarily to later stages of preprocessing. After smoothing. for example. the outline may

no longer be a sequence of horizontal and vertical lines. The points on the outline may no

longer be at integer coordinates and the outline may no longer follow the pixel boundary.

Sometimes. after preprocessing. the outline is not even represented by straight lines though

this is more common when dealing with diagrams and engineering drawings (where it is

desirable to recognize circles and ellipses) than with text. It is useful for the format to be

able to describe the image at later stages of processing in addition to the initial scanner

- 14 -

output. This research uses a less compact outline coding: a list of coordinate points

representing the ordered comers of the outline. This format has the capability to describe

outlines with floating point coordinates if required.

The only complication caused by the outline format is that, when extracted from the original

pixel boundary, the outline path for a given bitmap may depend on whether pixels are con-

sidered to be 4-connected or 8-connected. This causes differences in the number of outline

loops in the representation. Also, pixels belonging (or not belonging) to a character may be

incorrectly disconnected from (or connected to) the rest of that character outline. 'These

problems should not be considered to be errors. The assignment of outlines, or parts of out-

lines, to individual characters is a segmentation problem and not a requirement of the basic

representation.

The outline representation may not be determined until after preprocessing. or the determi-

nation may be combined with the preprocessing stages. It is. however, more common to

establish the outline representation at the outset as this frequently simplifies the preprocess-

ing (there are fewer points on an outline than in an equivalent bitmap).

Beyond simply storing the outline representation of the black/white pixel boundary. it is use-

ful at this stage to preserve relationships between the outline loops. Some outline loops will

be contained in other loops, i.e., they arc holes in the image. Such loops may contain loops

themselves, corresponding to shapes inside the holes. In character recognition, it is fre-

quently desirable to associate outline loops with those that contain them. A containing loop

is termed the parent; the contained loop is the child.

Throughout this work, the containment of a loop shall be represented by the convention of

labelling each loop with a level number. The outermost loops (not contained by any others)

are at level O. The loops immediately contained by level 0 loops (the first layer of holes) are

at level 1. The level number increments with each successive containment such that a loop

immediately contained by a loop at level n is at level n + 1. Furthermore. points or vectors

on even level loops are ordered anti-clockwise and odd level loops clockwise so that the

black pixel regions are always on the left of the line and white pixels always to the right.

- 15 -

The nesting of child loops in relation to their parents is represented through the ordering of

the loops. All child loops appear in the ordering after their parents and before any higher

level loops which are not their parents. For example. if loops A and B are level 0 loops and

loops C and D are immediate children of A. and loops E and F are immediate children of C.

then the order in which they are stored will be: A. C. E. F. D. B.

In this research. character data comes from a variety of sources and scanners. In each case

the data has been converted to a run-length encoding for storage and as the input format to

the vectorization process of chapter 3. It is also used as the initial format for outline conver-

sion using Elliman and Connor's method [EC90]. The nested loop outline format is also

used for storage at some stages and is the input format for the feature extraction process of

chapter 5 and the approximate dictionary matching of chapter 7.

2.2.3. Types of Character Recognition

The field of off-line character recognition can be further divided into a variety of sub-fields

devoted to the recognition of particular types of characters.

Early successes in the field were limited to the recognition of machine-printed documents.

Machine print is generally easier to distinguish than human-drawn characters as the same

characters will have approximately identical shape. Variations are caused only by scale

(point size). font. typeface and noise. This is still a difficult task but early systems achieved

useful results by limiting themselves to a single font and size. Modern systems recognize

multiple fonts and sizes. They are accurate enough in practical use to save time but still fall

short of 100% accuracy. 1be recognition output requires manual inspection to correct

errors.

Another area where high levels of accuracy have been reported is in handprinted numeral

recognition. Many experiments constrain the numerals in some way (e.g .• boxes on a form

[GUd76]. spacing on a page) to allow them to be simply segmented. The recognition of the

numerals is then a comparatively easy task as there are only ten classes to distinguish.

Correct classification rates of between 85 and 99.79% have been reported hut the differences

in test data and constraints prohibit a meaningful. direct comparison. The 99.79% result

reported by Masterson and Hirsch [MH62] used highly constrained data from trained writers

- 16 -

and does not reflect the accuracy attainable in real applications. In practical applications.

where noise is commonplace. the highest levels of accuracy claimed have not been achieved.

even where there are contextual constraints on the digits.

More general handprinted character recognition extends to upper case letters. sometimes

only the letters and sometimes mixed alphanumerics. A related area is the recognition of the

46 character Japanese Katakana set which has been the subject of much research effort in

Japan. Suen et al. [SBM80] give a good review of both these fields.

Cursive script is the most difficult field in character recognition. A full cursive script recog-

nition system must be able to discriminate upper and lower case letters as well as digits. TIle

main obstacle is the fact that characters are joined. One approach to the problem is to seg-

ment the word into its component characters. This is particularly difficult and virtually

impossible to achieve without any knowledge of what the characters are. The alternative is

to attempt to recognize whole words rather than individual characters. This is only practical

when the word can be constrained to a small lexicon.

Various other sub-fields of off-line recognition focus on particular applications or particular

languages/alphabets. The recognition of postcodes (or ZIP codes) is one of the most popular

applications (see Downton and Leedham [DL90bD. The main languages studied are

English. Japanese. Chinese. Indian and Arabic [GS90] but many others have also been

attempted, along with more unusual alphabets such as FORTRAN (e.g., Fujimoto et al.

[FKH76]) and Pitman shorthand (Leedham and Downton [LD87]). Govindan and

Shivaprasad [GS90] give a wide-ranging survey of applications and alphabets for which

character recognition has been used.

This research is predominantly concerned with the recognition of modem English handwrit-

ten characters. i.e .. Roman alphabet and Arabic numerals. Initial experiments on isolated

characters avoid the problem of segmentation through the use of pre-segmented character

databases (NIST and CEDAR. see section 2.6). Recognition of digits. and upper and lower

case character sets has been investigated. Later experiments address the problem of seg-

menting handprinted words.

- 17 -

2.3. Preprocessing
The standard approach to character recognition that forms a part of nearly every fully-

tledged system in the literature, is to preprocess the image representation in an attempt to

make it easier to recognize. Whether such preprocessing is beneficial is discussed in chapter

4. For now let us consider the typical stages of preprocessing.

The desired functions of preprocessing can be divided into four main types: simplification of

the character representation (by either thinning, vectorization, or line or curve fitting), filling

or repairing of breaks in the image, smoothing of the representation to eliminate noise, and

normalization to reduce differences between characters of the same class. Some, though not

necessarily all, are used in the majority of off-line character recognition systems.

Figure 2.2 illustrates the types of preprocessing described in this section. Figure 2.2a shows

the original image representation, in this case a bitmap of the letter 'b'. The image represen-

tations, b) to j), show the effect of different preprocessing operations on a). Note that the

representations in b) to j) arc not necessarily those that would be produced by any specific

algorithm. They simply illustrate the typical results of the operations.

Many methods of performing preprocessing have been used. The most common technique is

masking. This is a method applied to pixel-based representations and has been used not just

for preprocessing but also for edge detection and feature extraction. A pixel mask (also

called a template or window), usually 3x3 or 5x5 pixels in size. is moved over each pixel in

the pixel map. A function, computed from the (usually) binary values of the pixels covered

by the mask and fixed values associated with the positions in the mask, determines the new

value associated with the pixel under the centre of the mask. In preprocessing and edge

detection this new value will normally be a binary pixel value. In feature extraction the

value may describe other information such as line slant or the presence of a topological

feature.

2.3.1. Thinning and Vectorization

The most common attempt to transform the original image representation of characters into

human abstractions of those characters is to change the representation of lines by areas of

pixels (usually several pixels wide) to either unit-width pixel areas or zero-width lines. This

a) Original bitmap

c) Vectorized

e) Filled

- 18 -

b) Thinned

d) Polygonal approximation of outline

f) Smoothed

g) Size normalized to 20x20

i) Slant normalized by shearing

- 19 -

h) Position normalized by displacement

j) Line-width normalized by thickening

Figure 2.2 Examples of preprocessing. a) Original bitmap of a 'b'. b) Ideal thin-

ning to unit pixel width. c) Ideal vectorization. d) Straight line polygonal ap-

proximation of the outline of the original character. e) Filled version of the origi-

nal. f) Smoothed version of the original. g) Size normalized version of the origi-

nal by Giidesen's method [GUd76]. h) Position normalized version of the origi-

nal by Johnson et al. 's displacement method [JHL66]. I) Slant corrected version

of the original by shearing based on the slant of the ascender. j) Line-width nor-

malized version of the Original by Glidesen's downward thickening method

[GUd76].

- 20-

transformation goes by several names: vectorizatlon, thinning. skeletonization and stroke

extraction. These are often used interchangeably but I shall choose to make distinctions

between them.

This type of preprocessing can be divided into two strategies. The first. which I shall call

thinning or skeletonization, involves either the erosion of pixels from the edges of characters

or a distance transform. to produce lines only one pixel thick. The second strategy. which I

shall call vectorization or stroke extraction. attempts some structural analysis of the charac-

ter to identify line segments of the image and represent them as such. Where handwritten

characters are being processed the line segments are often connected to form the paths of the

pen strokes used in writing the character. The process may be extended further to attempt to

determine the time ordering and direction of strokes.

Figure 2.2b illustrates a typical skeleton that might be produced by a thinning algorithm.

The unit pixel width representation preserves the connectivity of the original. In this exam-

ple 8-connectivity is preserved. Preservation of connectivity means that where parts of the

original representation are connected. their corresponding pixels in the thinned representa-

tion are also connected. 8-connectivity means that pixels are considered to be connected if

they touch horizontally. vertically or diagonally. Other algorithms preserve 4-connectivity.

where pixels are only connected if they touch along a horizontal or vertical side. Figure 2.2c

illustrates an ideal vectorization of the original bitmap. The figure shows the desired output

from the vectorization approach but is not an actual output of any specific algorithm. Most

algorithms would require some smoothing of the initial vectorization to produce such an

ideal representation of the original shape.

The main aim of thinning is line-width normalization - producing the same skeletons from

characters which differ only in the thickness of lines. This is a typical approach in structural

character recognition as it aids in the detection of line crossings. endpoints and other struc-

tural features.

The aim of vectorization is in most cases to determine the path of the pen strokes making up

the character. with a view to extracting higher level features based on the way a character is

drawn. not just its final shape. This can be seen as an attempt to bring off-line character

- 21 -

recognition closer to the field of on-line character recognition where the exact path of the

pen is known. It is unrealistic. however. to expect to be able to accurately reconstruct pen

strokes from an off-line image. particularly when strokes double back on themselves or oth-

erwise overlap. The fields of on-line and off-line recognition remain distinct.

Thinned representations are often used as the first step towards determining the pen strokes.

Once the character has been transformed to a one pixel thick representation it appears

simpler to vectorize. The problem with the thinning first approach is that the local thinning

operations are prone to errors caused by noise. such as spurs. and unwanted splits and joins.

Distinguishing important features of the character from noise is not possible without the use

of a wider context. e.g .• the consideration of stroke width and line structure. The most

difficult areas to vectorize are those where the pen strokes overlap. such as at junctions.

Attempting a correct reconstruction of the strokes requires a structural examination of the

lines approaching the overlap area. Thinning overlap areas to a single line first produces

incorrect. distorted joins of the approaching lines which make subsequent correction difficult

and in some cases impossible. Pure vectorization methods have been developed in an

attempt to tolerate noise and correctly vectorize overlap areas. particularly junctions.

Thinned representation formats are often the same as the original format (bitmaps. run-

length. etc.). Vectorized representations require different file formats. usually storing either

a list of coordinate points or a list of vectors. Since the aim of thinning and vectorization is

to obtain a line-based representation of characters. preferably stroke-based. the formats are

often translated immediately to an alternative representation. This can be seen as a

classification of skeletons or vectors into higher level primitives. These primitives may be

represented in terms of stroke ends (position and connection of endpoints. junctions. corners.

etc.) or in terms of strokes (position. length. curvature, orientation of strokes, and their con-

nections to other strokes). Higher level primitives offer the possibility of higher level

features which may have more powerful diSCriminatory abilit Th di d ofy. e sa vantages
translating to stroke primitives are that strOke-based or stroke e d bed" I- n - as tormats may ose
precise shape information and that the chosen primitives may be incorrect. This form of
representation is closely related to geometric and topolo' I Ii

grca eature extraction (see section
2.5.4).

- 22-

The literature on thinning and vectorization is huge. This section aims to give an overview

of the important work in the field. More extensive surveys of thinning and vectorization

methods can be found in Tamura [Tam7S], Davis and Plummer [DPS1], Hilditch [HilS3],

Naccache and Shinghal [NS84], Smith [SrniS7] and most recently Lam et al. [LLS92].

2.3.1.1. Pixel Erosion Methods

The earliest method used for thinning was the pixel erosion method, or iterative method,

used on pixel-based image representations. Layers of pixels are successively removed from

the boundary until only a skeleton remains. The criterion for removing or keeping a black

boundary pixel, p, is based on its eight neighbouring pixels and is computed using a mask

centred on p. These masks are usually 3x3 but larger 4x4 (e.g., Holt et al. [HSeS7]), 5x5

(e.g., Favre and Keller [FK83]), kxk masks (k ~ 3) (O'Gorman [OGo90)) and non-square

masks (Sukuki and Abe [SAS7]) have been used. The early algorithms used averaging

operations or matching against specific mask patterns to determine the retention or deletion

of p. The approach has seen much development since its first use by Dinneen in 1955

[Din55].

A fundamental problem with the early algorithms was that the local analysis of pixel win-

dows did not account for connectivity in the image and consequently connected parts of the

image would become disconnected during the thinning process. Most differences in thin-

ning algorithms are caused by their differing methods of dealing with this problem and

whether they consider black pixels to be 4-connected or 8-connected. Three criteria for

determining connectedness have been used: crossing number, connectivity number and pixel

simplicity. The value of these measures can be used to determine whether removal of p

would alter the connectivity of the skeleton.

The crossing number was first proposed by Rutovitz [Rut66] as the number of transitions

from white to black or vice versa when the eight neighbours of p are traversed anticlockwise.

Hilditch [Hil69] proposed an alternative crossing number using a variant traversal of the

neighbouring pixels which cuts the comers between black neighbours which are horizontally

connected to p.

- 23-

Yokoi et al. [YTF73] proposed 8-connectivity and 4-connectivity numbers which are more

easily computable than the crossing numbers. The 8-connectivity number equals the number

of times p would be traversed in a contour-following algorithm for a connected component.

Pixels to be kept are those that are traversed twice and are called "multiple" pixels.

Deletable pixels are sometimes called "simple". Simple pixels have been defined based on

whether their removal would alter the connectivity of the whole image. Equivalently, Tsao

and Fu [1F81] defined them in terms of the genus of the image - the number of connected

components in the image minus the number of holes. The effect of removal of p on the

genus of the image can be determined solely from the eight neighbours of p, usually using a

look-up table. If the genus remains the same then p is simple. Rosenfeld and Davis [RD76]

implemented a parallel genus-preserving algorithm.

Further differences in thinning methods are due to the order and scope of their examination

of pixels. A raster scan (left to right, top to bottom) is commonly used. where all pixels in

the image are tested for deletion. Naccache and Shinghal's safe-poi nt-thinning algorithm

(SPTA) [NS84] used two raster scans per cycle. one horizontally (to find west and east

points for retention) and one vertically (to find north and south points for retention). A

popular alternative method is contour following. where only the border pixels of each com-

ponent are examined in each iteration. Contour following algorithms are faster as they visit

fewer pixels.

Another cause of differences in thinning algorithms is the mode of operation: either sequen-

tial or parallel. Sequential algorithms examine each pixel in a predetermined order in each

iteration. Each deletion within an iteration affects all subsequent examinations in that itera-

tion. In a parallel algorithm each pixel is examined independently based on the state of the

bitmap at the start of the iteration. thus deletions within an iteration have no effect until the

following one. Independent examination of pixels can be achieved in a sequential algorithm

by marking pixels for deletion rather than removing them immediately. At the end of each

iteration a second pass is made to remove aJl the marked pixels. However. there are advan-

tages to non-independent sequential deletions. Marking or parallel methods can remove

large areas in a single iteration and have trouble preserving connectivity as they do not gen-

erally take into account the effect of removing pixels adjacent to marked ones. Two-pixel-

- 24-

wide branches could be entirely deleted in a single iteration of these methods, whereas a

non-independent method would retain one-pixel-wide skeletons of the branches. To prevent

this occurrence many sequential methods use the condition, first proposed in a fundamental

thinning algorithm by Hilditch [Hil69], that at least one neighbour of p must be unmarked,

otherwise p cannot be removed.

Many sequential thinning algorithms have been used. Hilditch's algorithm [Hil69] used her

crossing number to preserve connectivity and two-pixel-wide lines. Many researchers have

implemented, extended and modified the Hilditch algorithm. For example, Riazanoff et al.

[RCC90] included a convexity measure in the deletion criteria and O'Gorman [OGo90]

extended Hilditch's criteria to kxk pixel masks.

Six 3x3 masks which detect break points (points whose removal would affect connectivity)

were used by Beun, Chu and Suen, and Pavlidis. Beun's original method [Seu73] identified

edge pixels and deleted them if they did not match any of the break point masks. Prior

smoothing was required to eliminate the many spurs, caused by incorrect edge pixel

identifications, that would otherwise have occurred using this algorithm. Chu and Suen's

algorithm [CS86] incorporated a smoothing cycle at each iteration which moved skeletal

pixels closer to one of their horizontal or vertical neighbours if the neighbour was further

from the background. This produced smoother skeletons whose pixels were closer to the

medial line of the image. A problem with these methods was that they could allow exces-

sive erosion and shortened branches. Pavlidis [Pav82a] solved the problem by combining a

four-subcycle parallel examination of the pixels with the method of marking pixels for dele-

tion as used in sequential algorithms (and not deleting them until the end of the iteration).

Skeletal pixels were also marked and retained throughout the process.

Several algorithms use the Rutovitz crossing number. Arcelli and Sanniti di Baja's deletion

conditions [AS7S] using this number preserve connectivity but can cause reduced comers

and incorrect end points. Additional criteria were suggested using a second crossing

number: the number of transitions between contour and noncontour pixels, where contour

pixels are defined as black pixels with at least one white neighbour among their surrounding

eight pixels. They developed their method further to preserve significant features of the

image [ASSO] [ASS1]. Protrusions were identified in the image, whose distance from the

- 25-

interior pixels exceeded a threshold. These protrusions were retained while thinning was

performed as in [AS78] and then thinned to one or two pixels thick by use of a labeling func-

tion. Pixels satisfying a maxima condition under the function were retained while the rest

were deleted.

Pavlidis [Pav80] proposed a sequential method based on retention of "multiple" pixels. A

multiple pixel is defined by Pavlidis as one which is traversed more than once in a contour

tracing or has no neighbours in the interior of the object or has at least one neighbour on the

same contour that does not come immediately before or after it in a contour tracing. Since

the multiple pixels alone do not necessarily preserve connectivity, Pavlidis constructed

skeletons by defining skeletal pixels. Skeletal pixels are either multiple pixels or pixels with

a neighbouring skeletal pixel from a previous iteration. The method has been implemented

using a masking technique [Pav82a). Ferreira and Ubeda [FU94] developed a fast parallel

contour tracking algorithm which they used to implement this method. The algorithm has

been shown to preserve connectivity, but it produces skeletons wider than unit pixel width.

Arcelli [Arc81) proposed an alternative algorithm, based on stripping non-multiple pixels

from the contour, to reduce the thickness of the skeletons. As in [AS80] and [AS81], the

algorithm attempted to preserve significant features (protrusions) and eliminate noise by

retaining some non-multiple pixels and removing some multiple ones. This was done via

analysis of the chain codes of the components.

An alternative to stripping pixels from contours is to generate successive new contours

inside the current one until no more can be generated and a skeleton is left. With this

approach it is much simpler to preserve two-pixel-wide lines and check connectivity. 1be

approach was introduced by Xia [Xia86] who generated contours by sequentially reducing

runs of three contour pixels to a single pixel - the one closest to the bisector of the angle

formed by the three pixels. Xu and Wang [XW87] generated contour edges in the north,

south, east and west directions individually, using 3x3 masks on edge pixels in each direc-

tion. Significant development of the method was made by Kwok [Kw088] who used the

identification of safe points (as in Naccachc and Shinghal's SPTA method [NS841) in com-

bination with chain codes to determine the new contours, and produced the chain codes for

the new contours at the same time. Kwok compared his algorithm favourably with [Pav80],

[NS84], [ZS84] and [XW87].

- 26-

Parallel algorithms prevent excessive pixel erosion by using multiple subcycles or subitera-

tions within each iteration. Commonly four subcycles are used, each subcycle deleting edge

pixels in one of four directions (north, east, south and west), e.g., Stefanelli and Rosenfeld

[SR71]. Deletions in each subcycle affect the subsequent subcycles within the iteration.

The directions have been combined to require only two iterations, e.g., north and east in one

and south and west in the other. Stefanelli and Rosenfeld [SR71] also used such a method.

They prevented the excessive deletion of edge pixels by storing all skeletal pixels (pixels

that are on one-pixel-wide lines) at the start of each subcycle and replacing them after the

edge pixels have been deleted. Another technique for preventing excessive erosion, called

border parallel operation, is to only delete pixels if they meet the deletion criteria in relation

to their neighbours, both as they are in the current subcycle and as they were at the start of

the iteration (Hilditch [Hil83]).

The seminal algorithm for parallel thinning was conceived by Rutovitz [Rut66]. This one-

subcycle algorithm used a 4x4 mask and Rutovitz's crossing number to preserve connec-

tivity. The algorithm has seen many developments and modifications. Deutsch [Deu69]

modified the algorithm to thin two-pixel-wide diagonal lines to one-pixel-wide. which does

not occur in the original method. Deutsch also rotated some of the deletion criteria to cen-

tralize the skeletons and reduce the necessary mask size to 3x3 [Deu72]. Zhang and Suen's

two-subcycle version of Deutsch's algorithm used a much simplified subset of the deletion

criteria [ZS84]. LU and Wang [LW86j modified Zhang and Suen's version to retain two-

pixel-wide diagonal lines; this was later extended by Wang et al. [WHF86] to thin those

areas to unit pixel width. The modified two-subcycle methods. which prevent the excessive

pixel erosion of the original algorithm. were reduced to one subcycle by Holt et al. [HSC87]

by returning to the larger context of a 4x4 mask to spot the vulnerable two-pixel-wide lines.

Recent work on parallel thinning has concentrated on one-subcycle algorithms on the

assumption that they will be faster than two-subcycle algorithms. Lam et al. [LLS92] sug-

gest that this is not necessarily the case as the one-subcycle algorithms require analysis of

larger pixel windows to preserve connectivity and hence each subcycle is slower than the

two-subcycle methods (which generally use 3x3 pixel windows). Nonetheless. several sin-

gle subcycle algorithms have been proposed.

- 27-

Favre and Keller [FK83] used a 5x5 window to label the pixels in the usual 3x3 window as

either core, interior, rim or skeleton, and applied deletion criteria based on these labelings.

Chin et al.'s one-subcyc1e algorithm [CWS87] used sixteen 3x3 templates (to detect borders,

corners and spurs) and two 4x 1 or 1x4 templates (to detect two-pixel-wide lines). Pixels

matching the 3x3 templates were deleted but only if they did not match the 4xl or lx4 tem-

plates. Chen and Hsu [CH89] used a 5x5 window with deletion criteria using the Hilditch

crossing number and tests for p being in a two-pixel-wide diagonal line and for the local

connectivity of p' s neighbours.

Many other pixel erosion methods have been used, varying in their connectivity measures, in

whether they are raster scanning or contour following, and in whether they are sequential or

parallel. These methods operate quickly, with computation time dependent on the maximum

width of the component. However. the potential increase in speed from parallel implementa-

tions is limited by the requirement for larger context and multiple subcyc1es to preserve con-

nectivity information.

The problem with pixel erosion methods. in general. is that they are sensitive to noise on the

edges of components and often produce spurious tails on the skeletons. Their local examina-

tion is insufficient to distinguish spurs that are caused by noise from spurs that are features.

Another problem is that the skeletons produced are not invariant under rotation because of

the order in which pixels are removed. i.e.• the order of examination in sequential algorithms

or the order of subcycles in parallel algorithms.

On clean images, local operations can preserve the connectivity and topology of an image,

but in many cases they do not preserve the geometry of characters [LLS92]. The accuracy of

skeletal representation is particularly poor at junctions and other areas of pen stroke overlap,

which require a consideration of the wider context of incoming pixel lines. Pixel erosion

techniques do not aim to produce an approximation of the path of the pen strokes used to

draw the character; they simply aim to find a medial line for the image. Their original use

was on machine-printed characters. where the concept of pen stroke has limited relevance.

but for handwritten characters the methods need to cater for pen strokes which cross. overlap

and double back on themselves. Simply thinning the characters is insufficient and a more

global examination is necessary.

- 28-

2.3.1.2. Distance Transforms

Another approach to thinning is to apply a transform to the image representation which con-

verts connected components to a skeletonized form based on the distances to their boun-

daries. This makes use of slightly more global infonnation than pixel erosion methods.

Transforms of this kind go by several names: medial axis transform (MAT). symmetric axis

transform (SAT) and grassfire (or prairie fire) transform.

The medial axis transform is commonly based on a variety of discrete distance transforms

(DTs). first used for this purpose by Blum [Blu67]. Each point in a discrete grid is assigned

a distance value. indicating the distance to the boundary of the object containing it. This is

often thought of as the radius of the largest circle that can be drawn. centred on the point.

within the confines of the boundary. One definition of the MAT is that if a point. x. has

more than one boundary point at the closest distance. rix), then x lies on the medial axis.

The set of all points on the medial axis forms the skeleton. By retaining the value of the

closest distance it is possible to reconstruct the original image from the medial axis. For

each point x on the medial axis. a disc. radius rix), is centred on x. The union of the discs

gives the original shape.

The distance map can be calculated using a variety of approximations to the true Euclidean

distance. varying in accuracy and ease of computation. Rosenfeld and Pfaltz [RP68] and

Arcelli and Sanniti di Baja [AS89] used the city block DT where distance between two

points is measured as the number of 4-connected (horizontal or vertical) steps between

squares on the grid. along the minimal path between the points. Arcelli and Sanniti di Baja

[AS85] also used the chessboard DT where distance is measured similarly to the city block

DT but steps between grid squares are 8-connected (horizontal. vertical or diagonal). A hex-

agonal DT on a hexagonal grid was used by Meyer [Mey88]. and Borgefors and Sanniti di

Baja [BS88]. Borgefors [Bor84] used a chamfer DT. where the difference in length between

diagonal steps and horizontal and vertical steps is simply approximated. e.g .. horizontal and

vertical steps are assigned the distance value 3 and diagonal steps are assigned the distance

value 4; other quasi-Euclidean DTs were used by Montanari [Mon68] and Dorst [Dor86].

The true Euclidean DT was used by Daniclsson [Dan80]. Yamada [Yam84]. Ho and Dyer

[HD86]. and Klein and Kubler [KK87].

- 29-

The skeleton is extracted from the distance map using a range of techniques. Montanari

[Mon68] observed that each point in the map has a minimal path to the boundary and medial

axis points are those that are not on the minimal path from any other point. The problem of

skeleton extraction was therefore converted to one of finding a minimal cost path through a

graph. A more commonly used approach is Blum's original method [Blu67] which uses the

analogy of a grassfire. Each point in the distance map corresponds to a blade of grass. The

boundary of the object is the source of a fire, producing wave fronts (or fire fronts) which

propagate across the distance map according to some rule. The skeleton is defined as the

locus of meeting wavefronts (called quench points). Another common method is ridge fol-

lowing, where maximum and saddle points are found on the surface of the map. An example

of this was presented by Dorst [Dor86].

The city block and chessboard DTs based on connectivity are simple to compute and can

easily preserve the connectedness of the object. However, they are variant under rotation

and are not as accurate as the quasi-Euclidean and Euclidean DTs. Ridge following extrac-

tion must be used on hexagonal, quasi-Euclidean and Euclidean DTs. The skeletons are

more accurate and smoother but it is harder to preserve connectivity. Broken skeletons must

be rejoined using growing procedures along the maximum gradient directions on the map

[Dan80] [Dor86] [HD86] [KK871.

The advantages of distance transforms over iterative thinning methods are that they contain

symmetry information, are generally faster, and the true Euclidean DTs produce invariant

skeleton topology under rotation, translation and scaling. However, distance transforms

have several flaws. Medial axis transforms are extremely sensitive to noise; even a single

pixel can cause large changes in the shape and structure of the medial axis. Commonly,

small amounts of noise on the contour cause many spurs, making the skeletons unsuitable

for character recognition where the aim is not to preserve every small anomaly but to extract

the essential shape of like characters in a simple and similar form. An approach to overcom-

ing this problem, called the multi-resolution symmetric axis transform, was proposed by

Pizer et al. [POB87]. This involves producing a hierarchical tree structure of medial axis

components at different scales corresponding to the conventional MAT for different degrees

of outline smoothing. While this approach gives a complete and robust shape description at

each scale, there remain problems in producing similar multi-resolution SATs for similar

shapes [Mar89].

- 30-

Further problems with distance transforms are that they do not correctly represent the shape

of concave portions of the boundary and do not produce correct skeletonizations of junctions

(since they pay no attention to stroke directions) or endpoints (which generally appear as Y-

shaped skeletons). Nonetheless. the relative simplicity of their definition and implementa-

tion, and the speed of their operation makes these methods popular with some researchers.

2.3.1.3. Vectorization Methods

To overcome the problems of spurs and the incorrect treatment of overlapping pen strokes.

particularly at junctions where an accurate reconstruction should be possible. an alternative

to the pixel erosion and distance transform approaches has emerged. This approach. gen-

erally referred to as vectorization, considers a larger area than those usually examined by

mask-based techniques and hence can use a wider context in determining the correct path of

strokes in a character.

A very simple vectorization method is to construct a skeleton by joining the midpoints of

adjacent. overlapping black run-lengths. In its basic form. this method considers little global

information but it is the forerunner of a more useful vectorization algorithm. The basic

method itself is very fast but is unsuitable for character recognition as it only works effec-

tively when strokes run roughly perpendicular to the scan lines.

The problem of vectorizing characters with this method was addressed in a number of papers

by Pavlidis. The run-length representations were represented by a line adjacency graph

(LAG) [Pav78] where each black run-length is a node. Arcs between nodes indicate that the

associated run-lengths are on adjacent scan lines and overlap (in other words they indicate

that the run-lengths are touching). In one algorithm [Pav82c], he performed sequential pixel

erosion first and then constructed the LAG. which he then vectorized by line and curve

fitting. This thinning first approach suffers the noise and overlap problems of the initial

iterative thinning; however. analysis of the LAG provided a wider context which allowed

some of the noise problems to be corrected.

To limit the problems caused by the sequential pixel erosion. Pavlidis identified groups of

similar length black pixel runs that were adjacent. overlapping and formed lines in a direc-

tion approximately perpendicular to the scan lines [Pav84]. These could be simply

- 31 -

vectorized by the basic run-length method mentioned above. The remaining areas were

thinned by a sequential pixel erosion.

In 1986 Pavlidis avoided pixel erosion thinning completely using a variant of the LAG

[Pav86]. Sets of adjacent, overlapping black run-lengths of approximately the same length

are grouped to form a single node in his compressed line adjacency graph (c-LAG). The

arcs of the c-LAG indicate the connections between groups. The c-LAG is created by

transforming the original LAG to a graph that is homeomorphic to it but has the minimum

number of nodes. Groups with only one overlapping group, either above or below, are

called path nodes and are vectorized as either a horizontal line or a line joining the mid-

points of the top and bottom run-lengths in the group, according to a height to width com-

parison. Groups with more than one overlapping group above or below are called junction

nodes. The path of vectors across the junctions is determined by "compound vectorization"

rules, based on the angles at which the possible vectors would cross the junction. This algo-

rithm has been developed in this thesis and is discussed in more detail in section 3.2.

Pavlidis's 1986 algorithm is fast because it works from run-lengths but is still hampered by

the one-directional treatment of characters. Much of the complexity of the algorithm could

be avoided through the consideration of vertical pixel runs as well as horizontal run-lengths.

This was the basis for the new vectorization method of chapter 3. Another approach to this

problem was proposed by Sinha [Sin84) [Sin87a) who labeled boundary pixels as either hor-

izontal, vertical, left-going diagonal, right-going diagonal or "don't care", based on a local

analysis of the boundary. Pixels with the same label on opposite sides of the boundary indi-

cate a matched pair. The midpoints of these pairs indicate potential skeleton points. Primi-

tives representing lines in specific directions are searched for by finding pairs with the same

label occurring in roughly distinct groups in the image. Where strokes vary in direction, and

particularly where they do not run close to the horizontal. vertical or 450 diagonals, the

method has trouble detecting primitives as the labels vary greatly within groups of neigh-

bouring pairs. The method is not considered sufficiently robust for general applications

[LLS92].

Another approach to vectorization is contour tracking. Opposite edges of the image are

tracked simultaneously; the midpoint of the two edge trackers is added to the vector at each

- 32-

stage. Dessimoz [Des80] used this method. keeping minimal distance between the edge

trackers to keep them synchronized as they move round the outlines. This minimal distance

method was prone to errors where line thickness varied suddenly and where close lines ran

parallel. Determining a tracking criterion which gives accurate vectorization in all cir-

cumstances has proved very difficult.

By treating the image representation as a many-sided polygon. Shapiro et al. [SPS81]

tracked contours with a series of trapezoids. again using minimum distance as the criterion

for keeping the trackers synchronized around bends. The midpoints of the trapezoid sides

indicated points on the vectors. This method was applied to ribbon-like objects. such as

DNA molecules. which consist of a backbone object with small branches along the length.

The method was not generally applicable and was unsuitable for character recognition as it

behaved poorly on junctions and did not allow for further sub-branches from the branches.

Baruch [BarS8] used a similarly limited algorithm. using rectangular windows of variable

dimensions to follow elongated objects and vectorizing them by joining the centres of the

rectangles.

Martinez-Perez et al. [MJN87] used a contour tracking method that stepped around the ver-

tices of the image representation. A midpoint was only added to the vector chain when cer-

tain projecting lines from the vertex intersected the opposite line segment within a threshold

distance. For convex contour points the projecting line is the bisector of the interior angle at

the point; for concave contour points. two projecting lines are tested. the normal lines of the

two line segments forming the vertex (called pseudonormals).

Contour tracking methods are prone to errors caused by the problem of keeping trackers

approximately synchronized as they move round the contour. They also require some thres-

holding to prevent incorrectly creating vector points in the middle of thick areas. Martinez-

Perez et al.'s algorithm is rather more complicated and computationally expensive than the

run-length-based methods where pairing of edge points is simplistically but uniformly

achieved and distance thresholding is implicitly performed in the identification of horizontal

or vertical line segments.

- 33 -

Contour tracking methods have not commonly been applied to the vectorization of overlap-

ping pen stroke areas. though they are well suited to the handling of junctions. The presence

of junctions could be simply indicated where the distance between trackers exceeds a thres-

hold. Accurate vectorizations of these junctions could be determined based on the vectors of

the surrounding non-junction areas (lines). This approach can similarly be applied to run-

length-based methods (as has been done in chapter 3).

Priestnall's contour tracking method [Pri94] addresses these issues. The line segments of a

smoothed contour are tracked and pair segments are found on the opposite side of the con-

tour by matching the lines with certain criteria: degree of overlap. average distance and

angle between the lines. This is more computationally expensive than the previous tracking

methods but takes more care in keeping the edge pairs synchronized and limiting their

separation. The pairs form trapezoids which are vectorized along their medial lines. TIle

unpaired areas are classified as either junctions. endpoints or comers and this information is

used to guide their vectorization. which is based on the incoming vectors from the adjoining

paired areas. This gives much better vectorization of stroke crossings than the previous

methods.

For character recognition the vectorization approach appears generally superior to the pixel

erosion and distance transform approaches. It is more tolerant to noise and allows for much

improved vectorization of junctions. It should be remembered. however. that the evaluation

of correctness of skeletonized forms is largely a subjective one and varies considerably

between researchers and applications. Research continues on each of the

thinninglvectorization approaches.

2.3.2. Polygonal Approximation

Polygonal approximation. also called piecewise approximation and line or curve fitting. is an

encoding of outlines as a much smaller number of line segments that preserves the original

shape or minimizes the error between the data points and the fitted lines. The line segments

are usually straight but higher-order approximations may also be used. An example of the

representation which might be produced by a straight line polygonal approximation is shown

in figure 2.2d.

- 34-

Polygonal approximation is in one sense a preprocessing operation that simplifies and

smooths character outlines to aid subsequent geometric and topological feature extraction.

However it may also be viewed as a feature extraction process itself, with each of the

approximated line segments forming features, e.g., position, angle and length of line. 1llese

features are usually concatenated into a string and classified using a string-based template

matchtng technique (see sections 2.5.4 and 6.3.2). Polygonal approximation is also used as a

preprocessing stage for outline-based thinning and vectorization methods.

Most techniques for polygonal approximation perform interval splitting or merging, or a

combination of the two. Interval merging involves splitting the outline into many small sec-

tions, e.g., straight lines, and iteratively merging adjacent sections to create larger sections

which still fit the outline. Splitting starts with a single section approximation of the outline.

If the approximation does not fit sufficiently well, the poorly approximated portion of the

outline (in the initial case, the whole outline) is split in two and approximations are made to

the two new portions. The process is repeated until the whole outline has been sufficiently

approximated. Ramer [Ram72] used a splitting method for straight line approximation that

split the outline portion at the furthest point from the approximating line.

Neither splitting nor merging are sufficient on their own. Splitting can produce adjacent

approximations which could be merged within the parameters of the fit. Merging leads to

poorly placed interval boundaries. Where error is tolerated by the fitting criterion the

merged regions can extend round corners before the error limit is reached. A combination of

splitting and merging is required for accurate polygonal approximation.

Pavlidis [Pav77] gives a comprehensive discussion of polygonal approximation techniques

up to 1977, including his own split-and-merge technique [Pav76]. Many new methods have

been published since then to improve the accuracy of approximations and to preserve impor-

tant points such as corners. Liao [Lia81] applied a second-pass to Ramer's method to fit

conic arcs in addition to straight lines. Pavlidis [Pav82b] formulated curve fitting as a pat-

tern recognition problem and used features, such as ratio of curve length over endpoint dis-

tance and number of sign changes of the error function. to improve the accuracy of approxi-

mation acceptance. Abe et al. [AAH91] detect dominant points to aid the approximation.

To optimize the choice of approximations. strategies such as minimizing the perimeter

- 35-

formed by the approximation (Sklansky et al. [Sk170] [SCH72]) and matching the area of the

approximation as closely as possible to the original outline area (WU et al. [WDR8t]) have

been used.

Many more techniques for polygonal approximation have been published but few are

directly concerned with character recognition - the reason being that there is little similar-

ity between approximations of similar characters so approximation strings are unlikely to

make good features (see section 2.5.4).

2.3.3. Filling and Joining

Filling is the elimination of small white pixel regions in black pixel areas, and vice versa.

These small areas are probably noise. An example of a filled image is shown in figure 2.2e.

In this example the original bitmap of figure 2.2a is considered to be 4-connected for the

purpose of filling. Any white pixels whose 4-neighbours are all black have been changed to

black, and any black pixels whose 4-neighbours are all white have been changed to white.

(The 4-neighbours of a pixel are those pixels which are 4-connected to it.)

Filling is almost always performed using a masking technique. Various sizes of masks have

been used; 3x3 pixels is the most common size, e.g., Gudesen's 24 filling masks [Gl\d76],

but masks as large as 8x6 pixels have been used to fill larger spots of noise [SM83]. The

operation is often regarded as a form of smoothing. The two are closely related; masks for

filling may easily be combined with masks for smoothing so the two preprocessing stages

can be performed in essentially the same operation.

Another related technique is the repairing of breaks in the image by joining the components

on either side. These breaks are generally much larger than the small pixel regions removed

by mask-based filling. Systems using feature extraction methods which can only operate on

one connected component at a time often use this technique to merge multi-part and broken

images into a single connected component.

Banks [Ban91] identified components to be joined by finding their endpoints from a vector-

ized representation and measuring the distance from a component's endpoints to points on

the other components. If this distance fell below a certain threshold, with the additional

- 36-

criterion that there was some vertical overlap of the components. then the components were

joined with a line extending from the endpoint to the other component. in a direction perpen-

dicular to the closest line on the other component.

This method is reasonably intuitive for vectorized images but the joining methods for out-

lines and bitmaps are less obvious. Although many researchers have used joining to repair

breaks in images, the method is difficult to generalize into a solid theory and consequently

little has been published on this form of preprocessing.

2.3.4. Smoothing

The appearance of many character representations is unsatisfying to human eyes. Pixel-

based representations may have unsightly bumps around their edges. Outlines may have

jagged, step-like orthogonal edges and bumps of noise. Vectors may have spurs or may have

too sharp angles on lines which should be smoothly curved. These may be caused by noise

in the original image or may be products of the sampling characteristics. One of the most

common forms of preprocessing. therefore. is to "smooth" the representation to a more

aesthetically pleasing form.

Aesthetics are not the only aim however. The reasoning behind smoothing of outlines and

vectors is that it reduces the data required to store the characters and produces a simpler

representation, hopefully preserving the original shape but without the small distortions and

noise. This should reduce the differences between characters of the same class. Removing

small distortions from the representation can be seen as an attempt at style normalization.

Figure 2.2f shows an ideal smoothing of a bitmap. Note that most smoothing techniques

would alter the same pixels as filling would (sec section 2.3.3). These pixels have deli-

berately been left unchanged in the figure to highlight the different aims of smoothing.

Smoothing of pixel-based representations is performed using mask methods. It is closely

related to pixel erosion thinning methods: thinning in this manner can be seen as heavy,

repetitive smoothing. As with pixel erosion methods. mask-based thinning involves chang-

ing the value of pixels according to the values of their surrounding eight neighbours. This

may be by comparison to particular template patterns or by more general rules. Many

- 37-

variants exist. For example. Stentiford and Mortimer [SM83] smoothed spurs from bitmaps

by eliminating all black pixels with less than three black neighbours and with Yokoi et al.'s

8-connectivity number (see section 2.3.1.1) equal to one. Bozinovic and Srihari [BS89] reg-

ularized contour smoothness by making a pixel black if and only if the number of neighbour-

ing black pixels exceeded a threshold.

Outline smoothing via polygonal approximation has been discussed above (section 2.3.2). A

simpler type of outline smoothing. which can also be applied to vectorized representations.

is performed by examining sequences of three points on the outline or vector. The middle

point is removed if its perpendicular distance to the line joining the other two points falls

within a smoothing threshold. This suffers from similar problems to polygonal approxima-

tion; important points such as comers can be removed when other points are close to them.

This can be countered by detecting and preserving points at sharp angles. Another problem

with this approach is that it will typically remove too many points from smooth curves.

A variant method of outline smoothing. by Ho and Dyer [HD86]. works not on the boundary

but on the medial axis transform (see section 2.3.1.2). The MAT is pruned based on the

relative prominence of its associated boundary segment. Each point on the MAT is associ-

ated with its two closest points on the boundary. The relative prominence is a measure of

the maximum deviation of the boundary segment between these two points from the circular

arc (centred on the MAT point) joining these two points. An elimination process. based on

thresholding the relative prominence of all MAT points. gives a scale-independent means of

distinguishing noise from important features. After noise is removed. a smoothed outline

can be recovered from the MAT.

2.3.5. Normalization

Normalization is commonly applied to reduce certain forms of variation between like char-

acters. This reduces the sizes of the training sets required to learn character classes. Some

forms of normalization do not alter the essential shape of characters while others can pro-

duce significant differences from the original shape.

The most common of these preprocessing types is size normalization. Characters are scaled

or otherwise converted to a normalized width or height (or both). In systems where size

- 38-

invariance is not achieved by the method of feature extraction or by the classification

method, this normalization is a useful and popular technique for providing such invariance.

Strategies for size normalization vary only Slightly. Characters are either elongated from a

point of origin or are fitted to a fixed size bounding box. Some methods scale the height and

width by an equal factor. The factors for both directions are found and the smaller one is

used to scale both dimensions. Other methods scale the height and width independently to

fit the bounding box. The former method preserves the aspect ratio of the Original shape,

whereas the latter method can introduce large distortions in cases where the height and width

are very different.

Size normalization of outlines and skeletons is simple and intuitive if the coordinates are

allowed to be non-integer. Where integer coordinates must be preserved, such as for bitmap

representations, the normalization is more complicated as one has to take rounding effects

into account.

Hussain et al. [HTDn] performed size normalization on character bitmaps, provided their

height-width ratio exceeded a threshold. This was to prevent tall thin characters such as 'I'

being expanded to fill the whole bounding box. GUdesen [GUd76] used a size normalization

technique which scaled bitmaps to a normal window size. The height and width of a charac-

ter are scaled independently to fit the window. The scaling of a row of a character with

width w to a normalized width, W, is performed by first expanding the row to a binary vector

of size wxW. The w pixels in the character translate to w consecutive runs of W pixels in the

binary vector; the colour of each run matches the corresponding pixel in the character. The

expanded vector is then sampled in W blocks of w pixels. each block corresponding to a

position in the normalized row. The number of black pixels in each block is counted. The

pixel in the normalized row is set to 1 if the count exceeds a threshold value and to 0 other-

wise. This conversion is applied to each row, and then each column is scaled to a normal-

ized height by the same method. Figure 2.2g shows the original bitmap of figure 2.2a size

normalized to a 20x20 pixel hounding hox by GUdesen's method.

GUdesen reduced the error rate in his handprinted character recognition experiments by a

factor of six using this technique. His analysis of preprocessing techniques concludes that

- 39-

normalization of character dimensions is by far the most effective method of improving

recognition accuracy.

A common problem with feature extraction methods is that measurements from similar

shapes sometimes vary because different starting points or reference points have been used

by the extraction process. Some types of feature are invariant to the position of the charac-

ter; others allow for simple relocation of the reference point. Many however. particularly

those that operate on pixel-based representations. are reliant on characters falling in analo-

gous positions in the original presentation of the input frame. These methods can benefit

from a preprocessing stage. called position normalization, which aims to shift the original

characters so that they are always presented to the feature extractor or classifier in analogous

positions,

There are essentially two strategies for this. One is to centre the character according to its

centre of mass or the centre of its dimensions. The other is to displace the character so that

its sides align with a reference frame. e.g .• the character is moved towards a corner of the

image field so that it touches both of the two limiting lines of the right angle.

Johnson et al. [JHL66] displaced characters by left-justifying them. An example of position

normalization by Johnson et al.'s displacement method is shown in figure 2.2h. Glidesen

[Glid76] experimented with the technique and found that classification results were best

when characters were displaced towards the upper right-hand corner. He also applied a

centering method to the same data. Characters were centred on the bitmap input frame

according to their centre of gravity (determined by analysis of their moments). He found

this to be slightly better than displacing. though the centering method allowed parts of the

character to be shifted out of the input frame in some cases. Other examples of centering

methods are Fu et al. [FCC67]. who centred characters within a circular reference frame. and

Highleyman [Hig62].

Slant correction (or de-skewing) attempts to normalize characters to a uniform obliquity.

Most writers produce some natural slant in their writing; the range of possible slants makes

the task of recognizing characters more difficult. Segmentation of characters by vertical

lines is also particularly difficult when writing is slanted. To simplify these tasks. slant

- 40-

normalization tries to adjust all characters to a uniform angle of inclination. normally verti-

cal. There are two ways to do this: by rotating the character or by shearing it

Rotating methods must first determine the angle of inclination of the Original figure. Banks

[Ban91] suggested that upright handwriting should have predominantly horizontal and verti-

cal lines. He detected peaks in the histogram of line segment angles and used the deviation

of these peaks from the vertical as an indication of the character's slant. Glklesen [GUd76]

claims the best way to determine inclination is to calculate the moments of inertia of the

character and from these determine the inclination of the principal axes of inertia. The rota-

tion required for slant correction is that which is needed to make the axis that has minimum

moment become vertical.

Once the required rotation has been calculated. the character can be rotated using a simple

transformation. Problems arise if the character is placed on a discrete grid such as a bitmap.

Rounding errors in the new positions of black pixels can be considerable. causing breaks in

the character and substantial structural changes [GUd76]. Gudesen found that the

classification error rate increased by a factor of four in his experiments with rotation normal-

ization on bitmaps. For character representations with continuous coordinates. such as out-

lines. these quantization effects do not occur and rotation is therefore a reasonable alterna-

tive to the more popular shearing technique.

Shearing is a less computationally expensive way of correcting slant that performs a simple

transformation of character coordinates in one direction. usually the x direction. Figure 2.2i

gives an example of slant correction by shearing. In this example the required correction is

estimated from the ascender of the character. This results in the ascender in the upper half of

the bitmap becoming precisely vertical. Note however that the equal but opposite shearing

of rows in the lower half causes some undesirable distortion in this example.

The amount of shearing is usually determined by some form of moment computation. as

with rotation. Moments may be used to estimate the angle change required; the shear

transformation is then determined based on this angle. Alternatively. the moments them-

selves are used as part of the transformation matrix. the clements of the matrix being set so

that the operation will zeroize certain moments (see section 2.5.1 for a definition of

- 4) -

moments). The latter method was first proposed by Balds et al. [BHN68] for zeroizing the

m(1,!) moment. It has since been used by several other researchers, e.g., Naylor [Nay7)]. A

variant of the former method was used by Bozinovic and Srihari [BS89]. They determined

the slant of words by averaging the slopes of the connecting lines between the centres of

gravity of the upper and lower halves of specific portions of the image. They do not state

how they calculated the centre of gravity but moments are a common method for determin-

ing this point. The specific portions of the image used were the line parts of the image (as

opposed to junction parts which are not good indicators of slant). A complicated, though

reasonably effective. series of operations was used to remove certain pixel rows from con-

sideration, such as those rows with long runs of black pixels. Afterwards, only the thin line

parts of the image remain. A shearing of x coordinates was then applied to correct the aver-

age slant of the word. The limitation of their method is that it requires examination of the

whole word to determine an accurate estimate of inclination. It is most effective on words

with consistent character slants.

Other methods of slant correction have been used. Dutta [Dut74] based skew normalization

on the ratio of "multiple" to "non-multiple" pixel columns. Multiple columns of a bitmap

are defined as those where the run of pixel colour changes more than twice, e.g.,

00(11001)000 is multiple as it has four changes of pixel colour. Non-multiple columns are

those with two or fewer colour changes. Dutta tried twenty-four different inclinations of

words and selected the one with the greatest number of non-multiple columns (based on the

assumption that this is the inclination where the most lines run vertically). This criterion

was effective on Dutta's data which was very clean but it would be highly susceptible to

noise in a practical application. Another weakness of this method is that the use of twenty-

four different transformations is computationally expensive compared to methods which

estimate the desired change in slant prior to transformation.

Casey [Cas70] corrected slant with a moment normalizing transform similar to that of Balds

et al. but shearing both the x and y coordinates. The m(1.1) moment (see section 2.5.1) was

zeroizcd as in Balds et aI's method and also the m(O.2) and m(2.0) moments were equalized

to an arbitrary constant. Nagy and Tuong [NTIO] used an alternative technique to normalize

slant in both the x and y directions. From the convex hull of a character they determined

four points called fiducial marks. These arc the four points where the slope of the sides of

the convex hull tum through the intercardinal directions (45°, 135°, 225° and :115°). TIle

- 42-

quadrilateral formed by the fiducial marks is spread so that it encloses the character. This

quadrilateral is transformed to a square (or rectangle) using a geometric projection. This

involves projecting the quadrilateral from a focal point onto a plane; any quadrilateral can be

transformed to a square in this way. This method produced large distortions in character

where two fiducial marks occur close together. such as in '7's and some '4·s. Nagy and

Tuong dealt with these characters by enclosing them in triangles instead of quadrilaterals

and then enclosing the triangles in parallelograms. upon which the projection was per-

formed.

Words in a document that do not run horizontally present a problem to segmentation (partic-

ularly to simple vertical line segmentation) and increase the variability of character slant. so

it is desirable to align all words horizontally. One strategy for this is to shear or project

correct individual characters in the y direction as well as the x direction using methods such

as Casey's and Nagy and Tuong's. The other is a normalization technique. known as slope

correction. which re-orientates whole words or text lines so that they run horizontally. This

may be done by estimating the baseline of each word (or text line), finding the difference in

angle between the baseline and the horizontal and performing a rotation to re-orientate the

word. Slope correction is less commonly used than slant correction because in most applica-

tions a careful presentation of the document to the scanner will keep line slope deviation to a

minimum.

line-width normalization is a term for methods which adjust the thicknesses of strokes.

Strictly speaking, thinning characters to unit pixel width. as described in sections 2.3.1.1 and

2.3.1.2, is such a method; however. the term is generally only used to refer to methods which

normalize lines to something other than unit pixel width.

Line-width normalization is a rarely used approach that arose as an early reaction to thinning

techniques. The early use of thinning was not intended to facilitate higher level feature

extraction but simply to make similar characters more alike. thereby aiding the relatively

simple classification methods that had previously been applied to unthinncd characters. TIle

features used were generally pixel-based rather than stroke-based and so did not benefit from

the thinned representations other than from the uniform thicknesses of lines.

- 43-

Many of the early researchers found. however. that the unit-width lines actually had an

adverse effect on recognition accuracy. Analysis of the statistical parameters of the features

showed that thinning of the characters decreased the distance between the mean feature vec-

tors of character classes and greatly increased the variances of those classes [Gfi.d76].

Discrimination of thinned images is therefore much more difficult if based solely on their

pixel distributions. The loss of accuracy was also associated with the reduction in the

number of black pixels in the bitmap. The reaction to this was a type of line-width normali-

zation that preserved or increased the number of black pixels in the image. rather than reduc-

ing it.

Gudesen [GUd76] used a thickening technique that transposed the bitmap representation onto

an identical copy of itself but shifted one pixel in one of four directions. This did not truly

"normalize" the line thicknesses. it merely increased them by one pixel width. While this

smearing of the characters risks destroying some detail. such as small holes or concavities. it

was found that transposing in the downward direction reduced the error rate by approxi-

mately 30%. An example of this technique is shown in figure 2.2j.

Genchi et al. [GMW68] used another kind of line-width normalization on numeral data

taken from envelopes. They found that stroke width varied from 0.2mm (for scratchy

ballpoint pens) to 1.0mm (for worn felt-tips). Using a scanner resolution of 5 pixels per mil-

limetre gave them strokes between one and five pixels thick. After vertical scaling (size nor-

malization) they used a 3x4 mask for iterative thinning. However. rather than repeatedly

apply the pixel erosion until a complete skeleton remained. they applied only one erosion

pass. Provided the original width was not more than five pixels. this single pass was

sufficient to thin the strokes to at most two pixels thick (a criterion required by their feature

extraction process).

Line-width alteration is one of the most distorting normalization techniques. Neither of the

above systems have a precise definition of what the normalized line width should be and so

cannot truly be called "normalization." In fact. it is theoretically possible that the process

could cause a character's stroke widths to vary more than they did originally. Although

Giidesen showed that smearing could improve classification based on pixel distributions. it

seems likely that it would eliminate detail required by other types of features such as

- 44-

outline-based transforms, geometric and topological features. Semi-thinning algorithms

such as Genchi et al.'s have limited usefulness: normally systems either require that a char-

acter be completely thinned or require no thinning at all. These techniques are therefore

rarely ever used.

2.4. Segmentation
Segmentation, the task of separating text into its component characters, is one of the most

difficult and fundamental problems in character recognition. While a reasonably high degree

of success has been attained on machine-printed characters, an effective algorithm for seg-

menting handwritten characters, even simply connected ones, has yet to appear.

Segmentation of text into words or numeral strings can be performed with reasonable accu-

racy. Long horizontal runs of white pixels indicate divisions between lines: stretches of

vertical runs of white pixels within lines indicate gaps between words. There are still com-

plications when words touch but research has focused on the more difficult problem of seg-

menting characters within words (the idea being that, if successful, techniques for character

segmentation will also be applicable to word segmentation).

The difficulty arises from the overlapping, touching and splitting of characters. Rules for

deciding when and how to divide a connected component (a black pixel region) between

multiple characters and when to group multiple components into a single character are

extremely difficult, if not impossible, to generalize.

An alternative approach is to treat words as entities and attempt to recognize them, without

segmentation, from the relative positioning of identifiable features, usually ascenders, des-

cenders and holes, within the word, e.g., HuH and Srihari [H586], O'Hair and Kabrisky

[0K91]. This approach is limited to applications where only a small lexicon of words needs

to be learned by the recognizer. In a large lexicon, such as a whole dictionary, the number

of possible word shapes requires huge sets of exemplar samples for classifier training; such

techniques are generally limited to template matching classification. Even then, there are

many words with very similar shapes, e.g., "chewing", "drawing", "droning", "shaming",

"sharing", "shaving", "shoring", "shoving" and "showing". For shorter words the similarity

is even greater. It is also difficult to see how this approach would work for numeral strings.

- 45 -

Many approaches attempt a single-pass character segmentation. For example. Tsuji and

Asai [TA84] formulated segmentation of machine-printed characters as two problems: pitch

estimation and character sectioning decision. They used a statistical analysis method based

on least square error to estimate pitch and a dynamic programming method with minimal

variance criterion to select vertical character sectioning lines from a candidate set. Pervez

and Suen [PS82] used a simple piton-based method to segment. with high accuracy. a data-

base of 1030 unconstrained handwritten, binarized, numeric ZIP codes. Their method relied

on knowing the precise number of digits in the ZIP code. Hull et al. [HSC88] used a similar

approach. Shridhar and Badreldin [SB86] [SB87) analysed pixel profiles to group well-

spaced but broken handwritten numerals and used a "Hit and Deflect Strategy" to perform

nonlinear segmentation of simply connected numerals. Hypotheses about the connectivity

of numeral strings (whether the string is an isolated character. two overlapping but not

touching characters. or two merged characters) were tested using a decision tree before seg-

mentation and recognition were attempted. They also required to know the exact number of

numerals in the strings. Kimura and Shridhar used a slant splitting algorithm based on

discriminant analysis instead of the "Hit and Deflect Strategy" [KS91] and extended the pre-

vious work to split strings of any length [KS92].

Single-pass methods that attempt to select the correct segmentation with no information as

to what the character is do not work sufficiently well even on numeral strings. Recognition

of the characters and contextual consideration of the strings is essential to accurate segmen-

tation.

Shlien and Kubota [SK86] represented a line's pixel columns as vectors and quantized them

into one of eighty possible encodings (called prototype codes). String matching recognition

was applied to the sequence of prototype codes to pick out possible characters and their posi-

tions. Sequences of characters in compatible positions were then dictionary checked to find

a contextually sensible sequence. Segmentation is only by vertical divisions and relies on

being able to recognize characters from the prototype encodings. These encodings were

effective for machine-print (though the overall method was not particularly successful) but

are unlikely to tolerate the huge style variation of handwritten characters.

- 46-

Kahan et al. [BKP86] [KPBS7] identified merged machine-printed characters based on

recognition by a probabilistic character classifier. If, for each character, the classifier's pro-

bability of the target being that character is less than the a priori probability of it being that

character, then the target is considered to be merged. A vertical segmentation line is found

from the maximum peak in the ratio of the second difference of the pixel projection to the

pixel projection itself (this ratio was used, rather than just the second difference, to bias the

segmentation line towards thin areas of the target). The method performs well on lightly

touching characters but failed to segment heavily touching characters, particularly those

where the pixel projections vary gradually due to a lack of vertical strokes near the merge;

for example, "00", "oa", "od" and "oe".

In 1982 Casey and Nagy [CN82] proposed the principle of recursively segmenting and clas-

sifying characters. Where the initial segmentation yields a low certainty character

classification, the line is re-segmented and reclassified. The process iterates until an accept-

able certainty factor is achieved. Using vertical line segmentation, Casey and Nagy success-

fully resolved approximately 85% of merged characters in a small set of variable-pitch

machine-printed characters.

Leedham and Friday [LF] used a recursive approach to segmenting handwritten upper case

characters. They noted that the commonly used vertical line segmentation cannot easily iso-

late certain upper case characters: 'A', 'J', 'S', 'T', 'V', 'X', 'Y' and 'Z'. Therefore, rather

than using the usual vertical pixel projections, angular pixel projections were used instead.

80% correct segmentation was achieved on 128 samples from the Essex database of address

images (see section 2.6.3).

Tsujimoto and Asada [TA9l] segmented machine-printed text using recursive segmentation

and recognition to construct a decision tree of candidates for break points and their resultant

acceptable character candidates. Linguistic context was used to select the correct characters

and break points. Knowledge about omni-fonts was used to determine when a character can-

didate is to be accepted, rejected or when it should be accepted hut remains ambiguous (e.g,

an 'I' may be accepted but could also be an '1', '1' or 'i'). Knowledge about character com-

position (e.g., an 'm' is like an 'r' next to an 'n') was used to aid the recursive segmentation

and recognition. The method performed well although their vertical line segmentation

- 47-

produced some failures on the machine-printed text; it is likely that handwritten text would

produce many more. Incorporating more complex splitting would increase the size of the

decision tree, possibly making it too slow for practical use.

Liang et al. [LSA94] implemented a method for recursive vertical line splitting or merging

of machine-printed text, directed by classification acceptance at each stage. Their method is

much faster than Tsujimoto and Asada's. Vertical line break points are determined by

discriminant functions based on the pixel and profile projections (the use of profile projec-

tion is to overcome the problems with Kahan et al.'s method). Knowledge of a character's

ascenders and descenders is used to correct errors in classification. Knowledge of character

composition aids the merging process. Spell checking is used to confirm recognition and

remove ambiguity. A correct recognition rate of 99.65% was achieved on 54,000 characters

segmented from a reasonable quality machine-printed document; only 185 segmentation

errors occurred.

Little work has been published on segmentation of cursive script. The main work on the

subject is by Bozinovic and Srihari [OS89]. They segment using vertical lines at potential

segmentation points determined by detecting local minima along the lower edges of the

word outlines and areas with low vertical profiles. This vertical segmentation is aided by

slant correcting the words prior to segmentation, but they note that there are still problems

such as large loops or strokes overshadowing adjacent letters, and t-slashes connecting

through letters. Letter classification and dictionary checking is used to determine the correct

segmentation points.

2.5. Feature Extraction

Of primary importance to the recognition of characters is the extraction of features which

capture the distinctive characteristics of character classes. These features form the inputs to

the classifiers which must recognize the characters. Finding suitable features has been the

subject of much research in the field.

An ideal feature should be able to:

• distinguish each class from all the others (accuracy)

- 48-

• capture the distinctive characteristics of each class (generalization)

• reduce the dimensionality of the data

• be quickly extracted

• be invariant to size. position and rotation of the character

• tolerate noise. distortion. and style variation

• tolerate broken or multi-part images

• be translated back to the shape of the original character

• be calculated incrementally as part of an adaptive segmentation system (see section

5.8)

A feature which can achieve all these goals satisfactorily has yet to appear and new features

continue to be developed. The vast number of features in the literature prohibits description

of them all; however. they can be grouped into a smaller number of paradigms. Representa-

tive features from each paradigm are reviewed below.

Suen [Sue82a) divides feature detection schemes for character recognition into two families:

global analysis and structural analysis. Global analysis techniques include point distribution

measurements. global transforms and physical measurements. Structural analysis produces

geometric and topological features.

2.5.1. Point Distribution Measurements

Point distribution methods generally work from pixel-based representations. The most basic

form is simply the bitmap representation itself. passed to a template matching classification

system (see section 6.3.1). Such an approach has been used by Shimura [Shi73) and Milos-

lavskaya and Polyakov [MP69a). A hardware template matching correlator was imple-

mented by Kozlay [Koz71]. This approach is extremely slow since it does not reduce

dimensionality; neither does it achieve high levels of accuracy. Point distribution methods

have been extended to produce real features in several ways: n-tuple methods. zoning.

moments. characteristic loci. crossings and distances.

Rather than using all the points in a bitmap. n-tuple methods take a subset of points and use

their binary states (black or white pixel values) as features. The point subset may be single

- 49-

pixels, pairs, triplets or groups of 11 pixels. These are then matched against a template set.

This method was proposed by Bledsoe and Browning [BB59] in 1959 and has since been

used by several other researchers, e.g .. Bakis et al. [BHN68]. Ullmann [U1l69j and Kwan et

al. [KPS79]. Austin [Aus88] extended the method to greyscale II-tuples.

Zoning is the division of an image into several regions, possibly overlapping, and recording

the black pixel density in each region as a feature. Pixel density provides useful information

such as centre of gravity and symmetry of a character. Hussain et al. [HTD72] divided char-

acter frames into a 5x5 grid and used the density of each of the 25 squares as features.

Breuer and Vajta, Jr [BV75j measured point distrihution projections in horizontal and verti-

cal zones.

A widely used feature is a set of moments. Moments, developed for character recognition by

Hu [Hu62], are formed by summing the distances from each black pixel to a reference point

or line. Hu also presented moment invariants (later corrected by Reiss [Rci91)) which are

functions of the moments that are invariant under certain transformations of the image: rota-

tion, scale and skew. The standard two-dimensional moments of an image function. !(x.y)

are defined to he

M N
m(p.q) = L L !(x.y)xPyq

.r e l v e l

where MxN is the size of the image. x and y are the row and column coordinate in the pixel

matrix. and p+q is the order of the moment. Position invariant moments can he formed

using the centroid. (X.n. of the character image as the reference point:

M N
m(p.q) = L L !(x.y)(x-x)P(y-y)q

.<=))"=1

Moments up to order five were used hy Spanjershcrg [Spa74]; Kwan et al. [KPS79] used up

to sixth order moments. An alternative to taking moments from the whole pixel matrix is to

take them only from the boundary pixels of a character. This approach was compared

favourably with the former. silhouette-based moments. by Belkasim et al. [BSA9Ij. Sar-

dana [Sar93] developed the boundary-based moments and applied his Edge Standard

Moment and Edge Moment Invariant features to a wide variety of image recognition prob-

lems including handwritten character recognition.

- 50-

A feature system called characteristic loci was used by Knoll [Kn069] and Glucksman

[Glu71]. Each white pixel in a character bitmap generates a four digit code. Each digit in

the code counts the number of crossings of black pixel regions made by a vector extended

from the white pixel in one of four directions (up, down, left and right). TIle number of

crossings counted was limited to two to limit the dimensionality of the features. These

codes are compared to those of a template set. Similar crossing counting methods were used

by Kwon and Lai [KL76] and by Calvert [Cal70], who only used horizontal crossings. Suen

[Sue82b] extended the characteristic loci method to multidirectional vectors.

Crossing methods have been extended to include distance to the crossing (Doyle [Doy60])

and length of the crossing (Ni et al. [NDG80]). Some methods use only the distance meas-

urements, e.g., Troxel's variation on characteristic loci [Tr076]. Distance measurements

from fixed points on the character frame have also been used. Marill and Green [MG60] and

Chen [Che65] placed characters on a square grid and measured the closest distance of a point

on the character to eight reference points on the edge of the grid (the four comers and the

four midpoints of each side), along a line through the centre of the square. The measure-

ments were taken manually by counting squares on the grid. Fu et al. [FCC67] used the

same method but used a circular frame and measured distances precisely.

Point distribution methods are generally fast and simple, and achieve some tolerance to

noise, distortion and style variation [SBM80]. Characteristic loci, crossing and distance

methods show some ability to capture the characteristics of a class's shape. However, exist-

ing methods have not been invariant to size, position and rotation.

2.5.2. Global Transformations

Global transformations of character image representations reduce the dimensionality of the

data and at the same time can provide invariance to certain global deformations such as posi-

tion, size and rotation. These transfonnations convert the character representation to a

series, spectrum or vector. The transformations may operate on pixel level representations

or may be applied to closed curve boundaries (outlines). Outline-based transforms have so

far been limited to only one closed loop. This limits their effectiveness at discriminating

multi-outline characters such as 'i' and 'j', and broken characters. such as typically occur in

practical, noisy applications. The most common types of global transform features are the

- 51 -

Karhunen-Loeve expansion. Hough transform and Fourier and Walsh descriptors.

As it is applied to character recognition. the Karhunen-Loeve expansion [Wat65]. also

known as the principal component or Hotelling transform. is based on diagonalization, by

extraction of eigenvectors. of the covariance matrix of the binary character representation.

This series expansion has been used in many experiments including Krause et al. [KSP74].

Ott [On74]. Gudesen [GUd76] and Niemann [Nie77].

Fourier descriptors [Cos60] use the Fourier series expansion to encode a single character

outline as an infinite sum of sine and cosine terms of different frequencies. phases and

amplitudes. The coefficients of the frequency-ordered terms give the encoding of the char-

acter (the feature values). 1bere are other ways of interpreting the series but intuitively the

sine and cosine interpretation is probably the simplest. Extraction of Fourier coefficients is

usually performed using Cooley and Tukey's improved algorithm. the Fast Fourier

Transform [CT65].

Fourier descriptors make use of the similarity of Fourier power spectra between closed

curves which vary only in size. orientation and position to give features for shape discrimi-

nation which are invariant under these transformations [ZRn] [LS81]. However. the

Fourier power spectra alone are often not sufficiently unique for accurate character discrimi-

nation [CL88]. Tests on the CEDAR upper case character data. using the first 20 Fourier

amplitude coefficients. showed very poor discriminatory ability on the handwritten charac-

ters (correct classification rate was only 44.16% on the training set and 36.52% on the test

set). Persoon and Fu [PF77] suggest that Fourier descriptors are useful for shape recognition

problems where "classes can be described by a few fixed prototypes that may be rotated.

translated. scaled. and that can possess some (random) noise on the boundaries." However.

handwritten character recognition requires far more than a few fixed prototypes. Despite

this. Fourier descriptors have been popular in the field and have been used by many

researchers. e.g .. Granlund [Gran]. Zahn and Roskies [ZR72]. and Krzyzak et al. [KLS89].

Other work has aimed at improving results by combining Fourier descriptors with other

features. Lai and Suen [LS8l] used a combination of 10 Fourier descriptors and 42 boun-

dary encoding features to achieve high recognition accuracy on a small. highly constrained.

handwritten character set. Shridhar and Badreldin [SB84] used topological features in

- 52 -

addition to Fourier descriptors.

Walsh descriptors are the coefficients of a similar series expansion to the Fourier transform

but based on the normal orthogonal functions of Walsh [Wal23]. It has been used on polyg-

onal curves. e.g .• Sarvarayudu and Sethi [SS83]. and on pixel-based character representa-

tions. e.g .• Huang and Chung [HC87]. and Rajavelu er al. [RMS89]. While good recognition

rates have been achieved on machine-printed characters. the Walsh transform has not proved

any more effective on handwritten characters than the Fourier transform.

Other similar transforms that have been used for character recognition (often in combination

with the standard Fourier transform) are the Mellin transform (Casasent and Psaltis [CP76]).

Hadamard series expansion (Wendling and Stamon [WS76]). Haar expansion (Wendling and

Gagneaux [WG77]). projection transform (Li and Cheng [LC83]) chain-code transform

(Cheng and Leung [CL85]). Hartley transform (see [Low91)) and Gabor wavelets [Shu94].

There are several problems with global transforms based on series expansions. While the

full. infinite series expansions may contain all the information in the image. the finite subset

of the first n terms may not. Valuable information may be lost in the uncalculated terms.

Although it may be possible to recreate the original character image very accurately from an

expansion. it is difficult to relate the coefficients of a series to distinctive characteristics of a

class. The series expansions arc encodings of the character but are not. strictly speaking.

features. While the transforms can be shown to be invariant to properties such as scale. rota-

tion and translation. there is no reason to believe they are tolerant to variations in style. In

fact. these types of global transformations have only proved to be successful features for

machine-printed characters. whose styles vary much less than handwritten characters. and

for characters handwritten by trained authors. according to standard models [LS81].

Another problem common to most series expansions is the difficulty in determining an

analogous starting point for each case. Small variations in starting point can produce very

large differences in the coefficients. Finally. the calculations needed to extract global

transforms are often computationally expensive.

One type of global transform that is not based on a series expansion was patented in 1962 by

Hough [Hou62]. The Hough transform is an efficient template matching method for

- 53-

detecting curves in noisy digital images. Duda and Hart [OH72] extended it beyond its ini-

tial two-dimensional form to function in three-dimensional space. In a landmark paper in

1981 Ballard [Bal81] developed Merlin and Farber's early attempt at generalization [MF75]

to detect arbitrary shapes at any orientation or scale. Davis [Dav82] extended the general-

ized Hough transform further to the matching of hierarchically organized point patterns and

the matching of geometric objects (line segments, circular arcs, etc.) rather than points. The

Hough transform exploits the duality of points on a curve and the parameters of that curve

[Bal81]. It maps a pixel-based image representation to a parameter space and detects curves

by examining the clustering in that space. The difficult global detection task is transformed

to a much simpler local peak detection in parameter space. The advantages of the transform

are that it is invariant to rotation, position and size, it can be computed in parallel, it can

recognize partial or occluded shapes and it is very robust to noise. The main disadvantage is

that each new shape to be recognized requires a specific Hough transform to detect that par-

ticular Shape. Images consisting of different shapes therefore require several successive

transforms. Another disadvantage is that the storage and computation requirements are

large; however, much work has focused on improving the transform's efficiency.

The Hough transform has been used extensively in the general field of image analysis.

Illingworth and Kittler give a comprehensive review [IK88J. Its use in character recognition

has been less common though it is rapidly growing in popularity. Kushnir et al. [KAM83]

[KAM85] used the peaks in a Hough transform line detection parameter space as features in

a Hebrew character recognizer. Hebrew characters consist almost entirely of linear strokes

so the line detection Hough transform was well suited to the task; a recognition rate of

86.9% was reported on handprinted characters. Oulamara and Duvemoy [0088] used

Hough transform features in the recognition of Berber characters. More recent work has

been in producing a probabilistic Hough transform [KEB91] [Stc91] which is more useful in

character recognition where probability-based candidate sets are commonly required as out-

put (to be subsequently input to a contextual postprocessor),

The Radon transform (Radon [Radl7]. see also Deans [Dea83]). of which the Hough

transform is a special case [Dea81]. has also been used for character recognition. The

advantage of the Radon transform over the Hough transform is that it can detect any analyti-

cally defined shapes. without requiring separate instances of the transform for each shape;

different shapes' distributions in the transform space are "relatively transparent" to each

- 54-

other [LB8?]. Leavers and Sandler [LS88b] developed an efficient Radon transform using

methods from Ballard's generalization of the Hough transform [Bal8I] and table-lookup to

speed computation. This was applied to character recognition by Leavers [Lea90].

2.S.3. Physical Measurements

Physical measurements in Suen's taxonomy are predominantly the height and width of a

character. These are commonly used when size nonnalizing characters (see section 2.3.5)

prior to further feature extraction. Other physical measurements have also been used, not-

ably the height and width of specific areas of characters to distinguish ambiguous characters.

Duda [Dud?O] measured the maximum widths of the top and bottom halves of characters

and used their ratio to distinguish the characters '8' and 'B'. Suen and Shillman [SS77] used

physical measurements such as width ratio of the left and right "limbs" of characters to dis-

tinguish 'U' and 'V'. Shridhar and Badreldin [SB86] used height-width ratio and character

widths on each scan line as physical features. Other physical measurements that have been

used are counts of the number of connected components in a character and number of inte-

rior holes. These features are not sufficient to discriminate large character sets on their own

and must be used in conjunction with another type of feature.

2.5.4. Geometric and Topological Features

TIle most popular type of features are those which aim to detect significant geometric or

topological properties of characters. These provide a description of the makeup of charac-

ters which is more comprehensible to human researchers and can more easily be related to

human abstractions of the distinctive features of characters. If such features can be accu-

rately detected and characters match the human abstractions, this method should exhibit high

tolerance to style variation and distortion. It has therefore been the focus of much investiga-

tion.

Geometric and topological features are extracted from a line-based representation of the

character such as the outline or centre line (produced by thinning or vectorization). Pixel-

based formats are sometimes converted to a line-based form by edge detection, which

assigns each edge pixel a direction of slope (usually by a masking technique, e.g .. Genchi et

al. [GMW68]). This is to preserve detail of the slope of lines which is not readily accessible

in the usual orthogonal outline representation. Thinned or vectorized representations are

- 55 -

clearly the most suitable for this type of extraction. particularly when represented in stroke-

based or stroke-end-based forms.

Once a line representation has been obtained the geometric and topological features are

extracted. These are usually related to position in the character so they may be compared

with other cases. though simpler strategies have been used such as simply counting the

number of occurrences of particular features. e.g .• Huang and Chuang [HC86]. Kittler

[Kit80]. Common features used are listed in table 2.1.

Feature Related Measurements Example References

Lines (strokes) orientation. length. [OMW68] [T072] [AP77] [KPS79]

curvature [MH83) [Bai88] [BK88] [Sh188]

Bays (concavities. convexities. orientation. area. [BHN68] [TOn] [AP77] [KPS79]

arcs,hooks,cusps,be~) curvature, depth [ND080] [YM80] [Bai88] [M089]

Corners angles [MHS3j [BKSS]

Endpoints (line tips, terminals) approach angle. [Kuh 63] [Hos72] [FKH76]

width [HLNSO] [MHS3] [BaiSS] [BKSS]

Junctions (intersections. forks, number of branches [OMW68] [KPS79] [YM80] [Kit80]

branches,nodes) [HLN80] [MH83] [BaiSS] [BK88]

Loops (holes. lakes, islands) area, radius, [Spa74] [AP77] [KPS79] [MH83]

perimeter [YM80j [Bai88]

Splits (junction boundaries) [Hos72]

Spikes (protrusions. intrusions. orientation [Kuh63] [AP77]

sharp angles)

Points of Inflexion [TD70] [YM78]

Table 2.1 Commonly used geometric and topological features.

Some research has used polygonal approximations (sec seetion 2.3.2) to simplify geometric

- 56-

and topological feature extraction from outlines, e.g., Mantas and Heaton [MH83]. In some

cases the approximations themselves have been used as feature strings. Tsai and Yu [TY85],

Tsay and Tsai (TT89], and Maes [Mac91] have all applied string matching techniques to

feature strings constructed from linear polygonal approximations (straight lines), but their

techniques have so far been limited to recognizing relatively simple shapes. These tech-

niques are discussed in more detail in section 6.3.2. Accurate recognition of character

shapes using this approach seems an unlikely prospect.

As with series expansions (see section 2.5.2), polygonal approximations are an encoding of

the characters but do not obviously detect the distinctive characteristics of character classes.

Although they are more likely to capture these characteristics than series expansions, the

huge style variation of handwritten characters means that line segments in corresponding

positions in the approximations of similar characters may bear little or no relation. They are

also hampered by noise and, particularly, breaks in outlines. Polygonal approximation

strings can only describe a single connected component so broken and multi-outline charac-

ters cannot be easily handled. Similar problems affect other types of geometric and topolog-

ical features.

For machine-printed characters, geometric and topological features can be fairly tolerant to

style variation, rotation and translation, as the characters will usually conform to the

expected topology. Handwritten characters, however, do not obey strict rules of geometrical

grammars in practice. Strokes which are expected to cross may stop short so that junctions

will not be formed. In cursive script, lines may not terminate at expected endpoints but may

continue on to join the next character, crossing the target character on the way and producing

unexpected junctions. This makes certain features difficult to detect accurately. Topological

features are therefore highly variable for similar handwritten characters. Geometric features

are also very prone to noise. Noise may cause spurs (which become incorrectly detected as

endpoints), joins (incorrect junctions). breaks (causing features to go undetected) or more

general distortions in the detected line sections.

2.6. Databases for Character Recognition
A major difficulty in character recognition research is the comparison of methods. The

diversity of testing procedures is one cause of this but the main reason is the use of different

- 57-

test data by different researchers. A standard database is required for testing if a meaningful

comparison of techniques is to be made.

In addition to allowing comparison of data, the availability of large character databases

saves a great deal of time for researchers who would otherwise have to gather data them-

selves. In particular. segmentation of words into characters by hand is a common require-

ment (where segmentation is not a research aim) and a very time consuming process. Pre-

segmented databases are therefore of great value.

TIle only disadvantages to standard databases are that certain assumptions may be made in

the gathering. scanning and storing of data which may not be shared by the researcher. It

may also be difficult to replicate these assumptions if a researcher wishes to gather new data.

Furthermore. the hand processing and pre-segmenting of data may be drawing researchers'

attention away from these early stages of recognition which are perhaps the most important

areas on which to concentrate. Many published approaches overlook the need for recogni-

tion techniques to be integrated with a recursive segmentation system: the availability of

data in a pre-segmented form has led people to believe that segmentation is an independent

process.

Despite the availability of large databases and the advantages of standardization. some

researchers still prefer to create their own. The problem of comparison of results remains.

However. the best research generally makes use of recognized. standard test databases to

demonstrate the credibility of its results. Such databases are steadily growing in popularity

and new databases continue to appear. to keep up with advancements in scanner technology

and recognition performance.

Many different databases have been made available to researchers in the field. The follow-

ing two sections describe in detail the databases used in this research. and the third outlines

other standard databases.

2.6.1. NIST Special Database 3: Handwritten Segmented Characters

The National Institute of Standards and Technology (NISn Special Database 3 [GW92j

contains binary images of handwritten alphanumeric characters. 2100 form images. scanned

- 58 -

at 12 pixels per millimetre. are included along with the characters contained in those forms.

The characters have been segmented and stored individually in 128x128 pixel images. TIle

segmentation was manually checked and NIST report a less than 0.1% error rate between the

segmented character files and the associated character class. Characters are divided into sec-

tions of 223125 digits. 44951 upper case and 45313 lower case.

The NIST images are in a bitmap variant format. binary raster stream format (a left to right.

top to bottom list of the binary pixel values). A header is included which stores additional

information such as height. width and offset of the image. These are then stored in a Multi-

ple Image Set (MIS) file format which stacks several character images of the same dimen-

sions in a single file to reduce directory sizes, The files are two-dimensionally compressed

using CCITf Group 4 compression [CCI84]. A suite of programs are provided for the

extraction of images from the database.

Each character class is well represented in the database with approximately equal numbers

of each class within each section (digit. upper and lower case). There are roughly 22000

samples of each digit. and 1700 of each upper and lower case character. The quality of the

images is fair with low levels of noise. A wide variety of styles. pen thicknesses. slopes and

slants are present though, making this database a difficult challenge for character recogni-

tion.

2.6.2. CEDAR CDROM 1: Database of Handwritten Images

The Center of Excellence for Document Analysis and Recognition (CEDAR) CDROM 1

database [HuI94] is an image database of alphanumeric characters from handwritten mail-

pieces (envelopes). TIle images were gathered from real mail addresses at the main post

office in Buffalo, New York, as part of a research project sponsored by the United States

Postal Services (USPS) Office of Advanced Technology. A high quality flat bed digitizer.

the Eikonix EC850 4096x4096 CCD. was used to scan the addresses in 8-bit greyscale at

300 pixels per inch (approximately 12 pixels per millimetre).

The database stores roughly 5000 city names. 5000 state names and 10000 ZIP codes. In

addition. approximately 50000 alphanumeric characters are segmented and stored individu-

ally in both the original greyscale and in bi-tonal form (obtained by thresholding the

- 59-

corresponding greyscale image). The bi-tonal images are divided into a training and a test

set, with roughly 90% of the characters forming the training set and 10% forming the test

set. Each set is further divided into an alphanumeric set and a numeric only set.

The character images are stored, one per file, in HIPS format [LCS84]: a printable ASCII

header containing descriptive information such as image height and width, followed by a

header terminator sequence (Carriage Return, '.', Carriage Return), followed by a one byte

per pixel raster stream of either the greyscale or bi-tonal data. TIle bi-tonal images are bit-

packed to one bit per pixel. The HIPS file is then compressed using 'delta' compression - a

public domain difference coding technique for lossless compression. C source code is pro-

vided for the extraction of images to HIPS format and conversion to PBM format.

The pre-definition of training and test sets is a sensible move to reduce the difficulty of com-

paring the results of different researchers, who commonly use different test data despite

using the same databases. The use of real life data, unconstrained by author, writing style or

writing implement, makes this data set of great use for evaluating practical performance of

recognition systems. Laboratory generated character images are biased in that the authors

are aware their writing will be used for recognition purposes and may give abnormally neat

or abnormally sloppy samples in an attempt to either achieve high recognition results or to

"fool the computer."

The main weakness of the database is the small number of alphabetic characters. In particu-

lar, the infrequently occurring characters 'Q', 'Z', 'I'. 'q' and 'z' are very poorly represented

(there is only one 'j' in the training set). This makes learning of the full set of upper or

lower case characters impractical; much larger sample sets are required. Another problem

with the segmented characters is that only the largest connected component has been stored

(by the human segmenter) for each character. In the case of 'i's and 'j's the dot is left out.

This may suit the many recognition systems which cannot handle multi-part images but it

distorts the data. It also makes it impossible to distinguish between 'I' and '1'. No broken

images are present in the database so a recognition system's tolerance to such breaks cannot

be tested. The quality of images is fair. There is some noise on the edge of the characters

but the extraction of only a single component eliminates background noise.

- 60-

2.6.3. Other Standard Databases

Traditionally the most widely used databases in the field have been those of Highleyman,

Munson and Suen et al., made available by the IEEE.

Munson's database [Mun68] consisted of 12760 samples of the basic characters of the FOR-

TRAN II alphabet (46 characters). 6762 samples were collected from 49 authors who each

wrote three sets of the alphabet on standard general-purpose coding sheets using an HB

thin-lead mechanical pencil. The remainder came from a single author or from actual coding

sheets. The authors were instructed to write 'Z's and 'O's with slashes and put crossbars on

the 'I's. The coding sheets were scanned at constant viewing distance with a vidicon televi-

sion camera using a close-up lens. The generated waveform was quantized to a bi-tonal

image with a Schmidt trigger. The 120x120 point raster scan was then scanned for charac-

ters, which were isolated and transferred to a 24x24 raster format. The character isolation

process allowed for multi-part characters.

The single author and multiple author files were divided into training and test sets. Human

isolated character recognition error rates on the test sets averaged 0.7% on the single author

set and 4.5% on the multiple author set. A machine recognition rate of 92.98% has been

achieved on the numerals in Munson's data. Munson himself reported 97.0% accuracy on

the single author data and 85.0% on the multiple author set. Suen et al. achieved 84.52% on

a small subset of the database.

Highleyman [Hig61] gathered 500 numerals and 1800 upper case letters from 50 authors

who were requested to write neatly. Resolution of the data is low and high recognition rates

were never achieved on the set. The data does not reflect the resolution obtainable with

modem scanner technology and so is unlikely to be used in future research.

Suen et al.'s database [SSS76] contained over 100000 alphanumeric characters obtained

from 30 authors. The authors were asked to write quickly and carefully in boxes on an OCR

form,using a thin-lead mechanical pencil. They were asked to write according to 174 model

characters. Character models to guide authors have also been used by other researchers

including Krause and Bleichrodt [KB73], Caskey and Coates, Jr [CC73] and Mori et al.

[MMY75].

- 61 -

Of these three main databases. Munson's was the most popular set as it was generally con-

sidered to be the most difficult. unconstrained set to recognize [Man86]. The databases

have. however. become dated. Modern scanners are capable of greater resolution. The

vastly increased size and access speed of affordable disk space means larger image represen-

tations can be stored and processed. As a result. higher resolution databases. often in greys-

cale format. with higher quality scans are now becoming available. Recognition techniques

and classifier design have advanced to a stage where tackling real-world problems is an

ambitious. but not unreasonable. goal. Modem character databases are therefore much less

constrained. Many contain the original. unsegmented document and word images to aid

research into segmentation.

Among those likely to be widely used in future research are the NIST databases. The third

of these is described in section 2.6.1 but this is only one of many databases for character

recognition provided by NIST. The data is unconstrained and presents a realistic challenge

to recognition which should make it a popular target.

Another database which has recently achieved popularity among British researchers is the

Essex University database of 1549 address block images. scanned from live mail in a British

Post Office sorting office [DL90b]. The scanner section of existing AEG OCR equipment

was used to generate binary image representations. The mailpieces were constrained by the

scanner configuration to be 9" x 4.5" or smaller. with address blocks only in the lower two-

thirds of the envelope. Address recognition has useful applications and involves contextual

constraints which could potentially produce high levels of accuracy in a practical solution.

It is therefore a popular problem with researchers. Much research has focused on the recog-

nition of the postcodes from this database.

2.7. Conclusions
Off-line character recognition is a large. popular and useful research field. It has achieved a

level of success sufficient for practical. commercial application on machine-printed docu-

ments. but has had only limited success on the more difficult problem of recognizing

handwritten characters. Handwritten character recognition has applications in many wide-

ranging areas and its enormous potential usefulness and profitability ensures that it will

remain an active research field for the foreseeable future.

- 62-

This chapter has reviewed the current state of the field up to the point where the actual text

classification begins. The standard approaches have been described, tracing the commonly

used processes from the initial scanning of a document, through its digital representation,

preprocessing to a more easily classifiable form and segmentation into individual characters,

to the extraction of feature values for presentation to the classifier. In addition, the use of

standard databases for training of classifiers and evaluation of system performance has been

discussed and popular databases have been reviewed.

At each of the processing stages a wide variety of techniques have been used. Each stage

involves some degree of compromise between the requirements of accuracy, robustness,

speed and data storage. Different techniques often favour different requirements, hence the

diverse nature of approaches. This diversity is also due in part to the lack of a clear winner.

Comparison of recognition experiments conducted under different conditions or using dif-

ferent test data is usually meaningless. This difficulty of comparison, and the fact that no

approach has yet led to an accurate, robust handwritten character recognition system suitable

for general practical use, makes it very difficult to prove the superiority of one technique

over another.

The different forms of digital representation provide starting points for different approaches

to the character recognition problem. The most common forms are bitmaps, greymaps and

outlines. Colour representations are not usually necessary. There is a large diversity in file

formats, though they all hold essentially the same information. The field would benefit from

greater standardization of these formats.

The effectiveness and worth of preprocessing is discussed in chapter 4. For the moment we

can draw a few initial conclusions. Pixel erosion and distance transform techniques for thin-

ning are very sensitive to noise and fail to accurately represent overlapping pen strokes. TIle

vectorization methods, which examine the context of a wider area of the image, can over-

come these problems to an extent and therefore appear superior to the former methods.

Research, however, continues on each of these approaches. Polygonal approximation is

potentially useful for smoothing outlines but is unlikely to prove effective as a pure feature

string. The most effective normalization techniques are size normalization and slant correc-

tion. Line-width normalization is rarely useful or effective. and thinning can be detrimental

- 63 -

if classification is based only on pixel distributions, rather than on higher-level features of

the skeletons.

Segmentation of text into individual characters remains a fundamental problem in character

recognition. Methods which aim to segment strings correctly on the first attempt are

insufficiently accurate as some knowledge about the characters is required. Recursive seg-

mentation and classification is the most promising strategy for the task. Segmentation by

vertical lines may be aided by slant normalization but problems still remain with large loops

or strokes overshadowing adjacent characters and horizontal strokes extending through

neighbouring characters. More flexible divisions between characters will be necessary in a

practical system.

A wide variety of features have been proposed for the representation of characters to the

classifier. None of the existing features satisfy all the requirements of an ideal feature that

were listed in section 2.5. Point distribution methods are fast, simple and show some toler-

ance to noise, distortion and style. Some types can capture the characteristics of classes to

an extent. However, these features have not generally been invariant to size, position or

orientation. Invariance to these factors can be achieved with global transformations. These

features are merely encodings of characters which reduce the dimensionality of the data

needed to store them but do not obviously measure any distinctive qualities of character

classes. They are therefore poor features for recognizing characters with a high degree of

style variation; they have been effective for machine-printed characters but not handwritten

ones. Also global transforms based on series expansions lose information by storing only a

finite number of the series coefficients. Physical measurements can be used to discriminate

certain characters but must be used in conjunction with another type of feature. Geometric

and topological features are partially invariant to position and orientation but the high

incidence of gaps between strokes that are expected to touch, or joins of strokes that are

expected to be separate, can make some of these features difficult to detect accurately. As

with global transforms, the success of geometric and topological features has so far been

limited to machine-printed characters. They have yet to achieve high levels of recognition

accuracy on the many different styles of handwritten characters.

- 64-

The main failing of features has been an inability to capture the distinctive characteristics of

classes and an inability to tolerate broken or multi-part images. Failure to meet the other

requirements of section 2.5 can be partially compensated for by preprocessing or by training

the classifier on a large data set. but these two requirements are fundamental to the feature

extraction. A new feature will be described in chapter 5 which satisfies almost all of the

requirements. and in particular these two important ones.

Standard databases for training and testing of character' recognition algorithms are essential

if meaningful comparisons of results are to be made. They also save a great deal of time. A

number of standard databases are available. two of which have been selected for use in this

research.

There is clearly much scope for further research and development in this field. The follow-

ing three chapters describe advancements made in this area of the character recognition

problem and an evaluation of some of the approaches used.

2.8. Nomenclature

n

Two-dimensional moments of an image function.

Level of outline loop.

Black boundary pixel for possible deletion in pixel erosion thinning.

Original and normalized pixel widths in Giidesen's size normalization.

m(p.q)

p

w.w

- 65-

Chapter 3

A New Method for Vectorization of Outlines

3.1. Summary
In this chapter a new method for the vectorization of character images is described which

aims to produce an approximation of the pen strokes used in writing the characters. Vectori-

zation is a commonly used preprocessing technique for skeletonization which offers the pos-

sibility of improved character representation over the iterative thinning and distance

transform methods (see section 2.3.1). A method proposed in 1986 by Theo Pavlidis

[Pav86] (and later developed by Elliman [E1I93]) has been adapted and developed to pro-

duce a more accurate vectorization of line segments and a better approximation of pen

strokes across junction areas.

Section 3.2 describes the run-length-based vectorization algorithm of Pavlidis and a varia-

tion of his approach by Elliman from which the new method was developed. Section 3.3

gives an overview of the method. The determination of pixel edge matches is presented in

section 3.4. and section 3.5 explains the rules used in assigning quality scores to these

matches. Next. the poor quality matches are removed and line segments are vectorized.

Details of this process are given in section 3.6. Afterwards. the special cases of bend and

junction areas will remain. The vectorization of these areas is described in sections 3.7 and

3.8. Section 3.9 describes the application of further preprocessing techniques to the vector-

ized representation such as smoothing and filling. Conclusions are presented in section 3.10

and section 3.11 describes the notation and symbols used in this chapter.

Note that for the handwritten characters on which this research has concentrated. the lines

making up a character are pen strokes. but for machine-printed characters the lines are not

actually strokes but idealized versions of the conventional strokes used to draw characters.

The new method can be used on both types of characters but for ease of description these

lines will be referred to in this chapter as pen strokes regardless of whether the image is

handwritten or machine-printed.

- 66-

3.2. Pavlidis's Run-Length-Based Vectorization Algorithm

As discussed in sections 2.3.1.1 and 2.3.1.2. pixel erosion and distance transform methods

for skeletonization are prone to noise and do not usefully skeletonize junctions. While they

have been successfully applied in some applications. useful feature extraction in character

recognition requires that they preserve the structure and shape of characters. Errors caused

by noise and an inability to capture structural information when pen strokes overlap has lim-

ited their effectiveness in this application. Methods utilizing more global information have

arisen to address these problems (see section 2.3.1.3). Most prominent among these vectori-

zation methods is an algorithm proposed in 1986 by Theo Pavlidis, who has previously

developed many skelctonization methods.

Pavlidis's run-length-based vectorization algorithm [Pav86] detects groups of similar length

run-lengths on adjacent scan lines. which overlap. Some local (height/width ratio) and glo-

bal rules determine whether the group represents a horizontal or vertical line segment. or a

junction area where lines cross each other. Vertical line segments are vectorized by a

straight line joining the midpoints of their top and bottom run-lengths. Horizontal line seg-

ments are vectorized with a straight line along the bottom of their middle run-length. More

complex vectorizations are required for junction areas. These are vectorized according to a

local analysis of the angle at which possible vectors cross the junction area. This algorithm

has been applied to the recognition of characters in several investigations (Baird et al.

[BKP86]. Kahan et al. [KPB871. Baird [Bai88]. and Bose and Kuo [BK94]).

Pavlidis's algorithm produces a vectorization in the form of stick-like segments. A con-

nected vectorization which represents the strokes of characters would be significantly more

useful. The vertical line vectorizations lose much of the detail of strokes as they use a single

straight line across the section. Detail could be preserved by using a chain of vectors joining

the midpoints of each run-length in the segment. The horizontal line vectorizations lose

even more detail as they are always perfectly horizontal. In many cases. run-length groups

representing diagonal lines are identified as being horizontal; the angle of these lines is lost

in the vectorization. The junction vectorizations do not consider the angles of line segments

approaching the junction area and so are in many cases incorrect. A more complicated

analysis of the approaching lines is required to determine the correct path of strokes.

- 67-

The algorithm only considers pixel runs in the horizontal direction. It therefore requires

some very complicated analysis of width changes and colinearity of the run-length centres to

determine the allocation of run-lengths to line segment groups or junction groups. It is par-

ticularly difficult to distinguish horizontal lines from junction areas. Pavlidis's merging of

vectors in non-adjacent groups and "compound vectorization" of junctions are similarly

complicated by the unidirectional perspective of his approach.

Elliman [E1l93] proposed a variation on Pavlidis's method based on outlines which looks at

pixel runs in the vertical direction as well as horizontal run-lengths. This greatly improves

the accuracy of horizontal line vectorizations and removes some of the complications of dis-

tinguishing lines from junctions. Elliman used his method successfully to vectorize

engineering drawings. The method was developed further by Cripps [Cri94] and Stockley

[St094]. They modified certain match qualities (see section 3.3) to suit the requirements of

engineering drawings, which consist mainly of long, straight lines and arcs. Their

modifications are unsuitable for vectorizing handwritten characters where strokes are gen-

erally much shorter and more detail must be preserved. New strategies for modifying match

quality are needed to tailor the vectorization method to the character recognition problem.

This chapter presents a significant development of Elliman's variation on Pavlidis's method.

The outline-based vectorization has been modified and extended to address the problems in

Pavlidis's approach. The basic principles of the method - assignment of match quality

based on width of pixel runs, removal of matches crossed by shorter ones and vectorization

of the simple line segments - are taken from Elliman's method. Original work presented

here includes an improved version of Elliman's match removal algorithm, a strategy (suited

to character vectorization) for the modification of match quality scores for special cir-

cumstances and identification of bend and junction areas, a fast algorithm for approximating

approach angles to junctions and methods of junction vectorization based on those angles.

The new methods of quality assignment and junction vectorization give considerable

improvements over the previous approaches.

3.3. Overview of the Method
The overall strategy of the method is to find the opposite sides of each pen stroke in the

given image. Points on opposing sides are paired; we call the line joining a pair a 'match'.

- 68-

Vectors are formed by joining the midpoints of matches. The main task of the method is to

determine which matches provide the best representation of the strokes. and which should be

ignored.

Each match is assigned a quality score. This indicates how suitable its midpoint is as a can-

didate for inclusion in the vectorized image. This quality measure is based on the width of

the match. Short matches are generally better than long ones. as illustrated by the Simple

example in figure 3.1. Assignment of quality scores also depends on the position of the

match in the image. This will be explained in section 3.5.

Midpo
of mat

Match

Pix on
outline

int

~ -:---

<, -
~ --
- -

Short horizontal
matches

Resultant vector Resultant vectorLong vertical
matches

Figure 3.1 A vertical line image and its vector representation from short and

long matches.

All the matches will be crossed by others: each horizontal match will be crossed by at least

one vertical match and vice versa. It is now required to remove the matches which cross the

best quality ones. Low quality scores are best so the matches are worked through in ascend-

ing quality order (Le.• lowest score first). removing all crossing matches at each stage. When

this process is complete there will be no crossing matches and only the lowest scoring

matches will remain.

- 69-

Where adjacent matches - adjacent in the sense of being next to each other around the out-

line - are in the same direction, a vector can be created by joining the midpoints of those

matches. (This preserves more detail than Pavlidis's method of using a single straight line

across sections of adjacent matches.) However, where adjacent matches are in different

directions (i.e., one is vertical, the other is horizontal) simply joining the midpoints is not

always accurate. These sections of the image are termed 'bends' although they do not neces-

sarily correspond to bends in a stroke.

Another situation where joining the match midpoints is not always the best option is at junc-

tions of strokes. Where two or more pen strokes cross an area. it is desirable to determine

the correct path of all strokes through the junction. Joining the match midpoints will only

produce a single line and can cause 'bow-ties' (see figure 3.7 for an example). Bow-tie vee-

torizations (>-<) are considered undesirable as they are rarely the correct paths of the pen

strokes which form these junctions. Matches within junction areas must be removed so that

an alternative method, based on the vectors leading into the junctions, can be used.

The problem of bends and junctions is addressed by identifying the matches which surround

the bend or junction areas and removing matches within those areas. Special nodes, called

'pixnodes' are created at the surrounding matches. Sections of parallel adjacent matches

between pixnodes, and outside the junctions and bends, are vectorized by joining their mid-

points. The remaining task is to decide how to join the pixnodes across the bend or junction

areas. This is analogous to Pavlidis's compressed line adjacency graphs which consist of

path nodes and junction nodes. The path nodes represent the easily vectorized sections and

the junction nodes represent areas which require more complicated vectorizing. In the new

method, sections of adjacent matches correspond to path nodes, and bends and junctions

correspond to the arcs connected to junction nodes.

While the method can be used to create vectors with floating point components, a useful

simplification is to round all points on the vector chain to integer coordinates. The loss of

accuracy is very minimal (even with floating point the fractional parts of match midpoint

coordinates would only be either 0 or 0.5) and the method is faster, simpler and produces

vector chains with fewer points.

- 70-

3.4. Pixel Edge Matching

It is assumed that the images are initially represented in outline form and are available to the

vectorization process as linked structures of outline loops: chains of outer loops, each with

subchains of any associated inner loops. The vectorization process operates on each outer

loop (along with its inner loops) in tum.

The first stage in the process is to create a structure representing the edges of pixels along

the outline. The outer loop and any inner loops it contains are traversed. Small outlines

whose area is less than a constant, DOT_SIZE, may be ignored as noise. A doubly-linked

list of structures, termed 'pixes', is created, with one 'pix' for every pixel edge traversed.

The pix structure stores the (x,y) coordinates of the pix, pointers to the next and previous

pixes in the list (next and prev), and a binary variable to indicate whether the pix is on a hor-

izontal or vertical section of the outline (d), in addition to other information detailed later.

The coordinates of the pix are taken to be the coordinates of the midpoint of the pixel edge,

with any fractional part rounded down to an integer. We wish to restrict coordinates to

integers for speed of computation. However, this results in some horizontal and vertical

pixes being mapped to the same point so a slightly complicated translation is required to

keep all pixes at separate coordinates. We add 1 to the x coordinate of any pixes on horizon-

tal sections of the outline, and add 1 to the y coordinate of any pixes on vertical sections of

the outline.

Next, for the purpose of assigning array sizes, the following values are determined: the total

number of pix structures created (edge_cnt), the minimum x and y coordinates of the outer

loop (x_min,y_min), the width and height of the outer loop twthhgt).

An array, pixptsiedge jcnt], of pointers to pixes is created. Each pix structure is pointed to

by one element of pixpts. pixpts elements are indexed by the x.y coordinates of the pix using

four other arrays:

colcntiwtn} - element n counts the number of horizontal pixes whose x coordinate is

n + x.min + 1

- 71 -

row cntlhgt] - element n counts the number of vertical pixes whose y coordinate is

n + y_min + 1

- element n stores the total number of horizontal pixes whose x coordinate

is less than n + x_min + 1

- element n stores the total number of horizontal pixes plus the total

number of vertical pixes whose y coordinate is less than n + y_min + 1

colstlwth]

rowjstihgt]

Note that the '+l' s are necessitated by the shift in coordinates going from outline to pix

coordinates, described above.

These arrays are initially filled with zeroes. As illustrated in figure 3.2. the arrays col_SI and

row_SI will provide indices to sections of the pixpts array corresponding to pixes in the same

column or row of the outline.

Each pix indexes either the color row arrays according to the relative coordinates of the pix

to (x_min, y_min):

Index to col_cnt and cotst = pix-s-x - x_min - 1

Index to rowcnt and rOW_SI= pix->» - y_min - 1

Initially the col_cm and rowcnt elements indexed by each pix are incremented as the pixes

are created. Once the counts are complete these two arrays are used to calculate the values

of col_sI and rowst.

The next stage is to step through the linked list of pixes and store a pointer to each pix in the

pixpts array. Note that the values in colst and roW_SI only indicate the starting index into

pixpts of sections of pixes in the same column or row. Within each of those sections, a

count must be kept of how many pix pointers have already been stored. in order to determine

the exact index at which to store the next one. We reuse cot.snt and row_enl for this pur-

pose, after first resetting them all to zeroes again. Therefore. as the list of pixes is stepped

through, the index at which to store a pointer to the pix in pixpts is determined as follows:

- 72-

If the pix is on a horizontal section of the outline then the index to pixpts is found by

summing the elements of colst and col_cnt indexed by the pix. The col_cnt element

is incremented.

If the pix is on a vertical section of the outline then the index to pixpts is found by

summing the elements of row_st and rowcnt indexed by the pix. The row_cnt ele-

ment is incremented.

Figure 3.2 illustrates the array formation for a simple outline. After pixpts is constructed the

sub-divisions of pointers to horizontal pixes with the same x coordinate are sorted. within

their sub-division, by their y coordinate. Similarly the pointers to vertical pixes with the

same y coordinate are sorted by their x position. Matching pairs of pixes will now be adja-

cent to each other in the array.

Each pix structure contains a pointer (match) to its matching pix structure. These pointers

are now set by stepping along pixpts two elements at a time. matching each adjacent pair of

pix structures. Once all the pix structures have been paired. the matching process is com-

pleted. The task remaining is to decide which matches to keep for the purpose of forming

vectors.

3.5. Match Quality

The basic quality score for a match is the width of that match in pixels. In certain cases the

basic qualities will cause unsuitable matches to be kept or important matches to be deleted.

e.g .• on noisy edges. at splits and around holes in the image. Where these matches can be

detected. the problems can be avoided by reducing or increasing the basic score.

In certain cases. described below. it is necessary to delete matches. This is most easily done

by assigning the unwanted matches a high quality score which will guarantee their being

removed at the match removal phase. Some maximum quality score must be determined for

this purpose. For a given application. this is best determined from the maximum size of

image producible by the scanner.

- 73-

2 2 2 4 4 4 2

o 2 4

hgt

1
1---1·- wth ------I-I

Pointers to horizontal pix structures

col_cnt[1

col_st[1

row_st[1 row_cnt[1

o Vertical edge pix structure

• Horizontal edge pix structure

Pointers to vertical pix structures

o 2 4 6 10 14 18 20 22 24 28 30 32

pixpts[1 I 1 I
J. ·1· .,. .,. ·1- II· -I· II· -I· II· ·1· ·1- .1- .1

t t
These sub-divisions of the array each
contain pointers to horizontal pixes
with the same x coordinate

These sub-divisions of the array each
contain pointers to vertical pixes
with the same y coordinate

Figure 3.2 Formation of the pixpts, col st, colcnt, rowst and row_cnt arrays

for a simple outline.

The quality score for a match is assigned to the quality elements (q) of the pixes at both ends

of the match. This is done in two passes. one for the horizontal pixes and one for the vertical

ones. For each outer loop. the first horizontal pix at the start of the linked list is recorded. A

roving pix pointer. rov, then steps through the horizontal pixes in the list until it comes back

to the start. Each pair of pixes (rov. rov->match) is assigned a quality score. The process is

- 74-

then repeated for the vertical pixes.

End zones and split zones. described below in sections 3.5.1 and 3.5.2. present special

cases. To detect when these special cases occur a second pix pointer (called vor) is required.

vor is set equal to rov-o-match. It is then advanced in the opposite direction to rov. i.e .•

when rov is advanced to rov-e-next. vor is advanced to vor-oprev, Since we only wish to

consider pixes in one direction. horizontal say. two more pix pointers are used: probe. to find

the next horizontal pix forward from roy. and eborp, to find the previous horizontal pix

backward from vor. (If we are working vertically then the pointers are to vertical pixes.)

The following C code indicates how probe and eborp are advanced:

for (probe = rov-e-next: probe-i-d != dir; probe =probe-s-next};

for (eborp = vor-oprev; eborp-s-d l= dir; eborp = eborp->prev);

where dir is the direction under consideration.

The following sections describe the special cases of quality assignment and how the second

pix pointer is used to determine when they should be applied.

3.5.1. End Zones

Short matches frequently occur on the edge of images, due to noise or spurs or simply the

way a curved line is outlined. These matches would result in small spurs on the vectorized

image running perpendicular to the true direction of the line. Also these short matches cause

the correct ones which cross them to be deleted. This is illustrated in figure 3.3.

It is extremely rare for matches at the very edge of an outline to form part of the correct vee-

torization. Since they are at best useless and at worse erroneous. these matches should be

removed. The question that remains is how deep in from the edges we should delete

matches?

One method for removing edge matches, proposed by Cripps [Cri94] is to specify an end

zone in which all matches will be deleted. The end zone starts at the match along the edge

of the outline and works back from that edge through the adjacent co-directional matches

until the criteria for zone membership is no longer met.

- 75-

Midpoint of match

~ Pix on edge of outline........~

Actual

These short matches at
\-'-':U-I"1? the edge cause better

matches to be deleted
Desired

Deleted matches which
should have been kept

Spur

Figure 3.3 Short matches along the edge of an outline can cause distortions and

spurs in the vectorization.

Cripps' criteria is based on the width of matches in relation to their pixel distance from the

edge. The match belongs to the end zone if:

i) The match width is greater than or equal to the previous match width (working away

from the edge)

ii) The match width is greater than or equal to some constant factor, Q_END_FACTOR,

of the pixel distance to the edge match

This method. which was designed for vectorization of lines on engineering drawings. proved

unsuitable for character recognition. The long, thin lines of an engineering diagram are

likely to cause the end zone to stop a short pixel distance from the edge. For the smaller,

more detailed characters the zone can extend much further than desired. causing valuable

matches to be deleted. Increasing the Q_END_FACTOR for character vectorization will

improve the end zone specification. However. in many cases the match width increases in

proportion to the distance for long stretches and the zone will still extend beyond what is

necessary.

- 76-

To prevent this, an additional criterion for end zone membership is required. An upper limit

on the pixel distance from the edge is the simplest method; however, this limit will depend

on the resolution and size of the image, and the amount of noise expected.

Distortion in vector
caused by short match
at edge

Match width reduces
here (going away from_-~-Ithe edge) so match is
not deleted. It causes
a spur

Noise is often
the cause of the _--r-r--
problem

Figure 3.4 A decrease in match width which should not signal the end of the end

zone.

Another problem with Cripps' method is that a decrease in match width does not always

indicate that it is safe to keep matches. Noise can cause situations where short matches close

to the edge are not removed, resulting in distortions in the vectors, as shown in figure 3.4.

For character recognition, the Cripps' criteria for end zone definition are more complex than

is really necessary. A simple removal of edge matches to a fixed depth limit is sufficient to

eliminate the unwanted pairings. The precise depth limit will depend on the resolution, size

and noise of the image representation and this dependency has not been explored in detail.

However, it is typically much smaller than that allowed by Cripps' second criterion and is

not difficult to determine by experimentation for a specific application. For the 32 x 32 pixel

and 128 x 128 pixel, 300 pixels per inch character images used in this research, depths of

- 77-

between one and four pixels were tested. A depth of one pixel was insufficient as short edge

matches occurred to a depth of two pixels in many cases. Depths of three and four pixels

removed the short edge matches but were observed to remove useful matches in a number of

cases. A fixed depth of two pixels very rarely allowed any undesirable short edge matches

or deleted useful matches. It was therefore used as the standard end zone depth for the sub-

sequent testing and usage of the vectorization method.

Arrows indicate direction of next pix pointer

eborp rov
"'-./

probe-, rov
/

probe

1
~

I
->match

~

r-

/\
probe vor

/
eborp

\ vor

End zone: probe == vor Split zone: eborp 1= probe->match

Figure 3.5 Conditions for detection of end and split zones. The diagram shows

the positions of the pix pointers when leaving the split zone. The split zone con-

dition is also true on entering the zone so an additional test is needed to deter-

mine whether the match (rov to vor) is inside or outside the zone.

The first match of an end zone is detected when probe = vor, as illustrated in figure 3.5.

Subsequent matches in the same direction are also considered to be in the end zone. A count

is maintained of the number of matches encountered so far in the zone. When the count

exceeds the allowed depth, the zone has been left and subsequent matches are assigned qual-

ity normally (i.e., quality = match width).

- 78 -

3.5.2. Split Zones

Another case where matches cause problems are at splits in the outline. These are points on

the outline where two or more image lines fork. As described in section 3.3, accurate junc-

tion vectorization requires the removal of matches from within junctions, and the

identification of the matches which border those areas. Forks in the image occur near, or at,

the borders of junction areas so quality assignment at these points must ensure the require-

ments for accurate junction vectorization are met.

Stockley [St094) proposes a similar method to Cripps' end zone specification but for split

zones instead. A split zone is defined around the fork and all matches within the split zone

are removed. The zone is intended to cover the desired junction area. However, as with

Cripps' end zones, the split zones extend further than is necessary and valuable matches. are

deleted.

The start of a split zone is detected at a fork in the image when eborp != probe-s-match, as

illustrated in figure 3.5. This condition is true when we are about to enter the zone as well as

when we are exiting it, i.e., if we imagine rov is where eborp is indicated on the diagram,

then probe would enter the zone, advancing to where vor is, and eborp would advance to

where probe->match is indicated. Note that in this case eborp and probe-s-matcli have dif-

ferent x coordinates (when leaving the zone the x coordinates are the same). It is therefore

simple to determine whether the match is inside or outside the split zone by checking

whether or not the x coordinates of eborp and probe-s-match are equal for matches between

horizontal pixes (for vertical pixes the y coordinates are checked).

Working round the outline, the split zone extends (and matches are removed) until one of the

following conditions is met:

i) The pixel distance travelled from the start of the split zone exceeds a limit,

Q_SPLIT _LIMIT

ii) The current match width is less than half the previous match width

iii) The match width has not decreased for a pixel distance of more than 2/3 of the current

width

- 79-

iv) A fork in the image has been reached

This can result in large areas being cleared of useful matches, particularly where, as is com-

mon, two or more split zones overlap. Consider the example presented in figure 3.6.

A split: where the image forks.
The split zone extends to the right
until Q_SPLIT_LIMIT is reached

Matches deleted as a result
of being in a split zone

First split zone

Second split zone starts Second split zone
here, extending upwards

II Overlap of split zones

Figure 3.6 The overlapping split zones cause a large region to be cleared of

matches in both the vertical and horizontal directions. No matches are left to

help the vectorization of the region.

Stockley's method will remove the short line on the right of the image. The method is

designed for engineering drawing recognition where such short lines are regarded as spurs

and are to be removed. In character recognition the line is an important detail which should

be kept It is therefore necessary to use a different approach which reduces the deletion of

matches.

There is however a good reason for attempting to delete such large areas of matches. This is

the problem of 'bow-ties.' The occurrence of these is a common problem with junction

- 80-

vectorization. Where matches are left in the middle of a large junction they effectively

divide it into two or more smaller junctions. Vectorizing the smaller junctions separately is

inferior to vectorizing them as a single large junction. A bow-tie-shaped (>-<) vectoriza-

tion is produced as in figure 3.7. Figure 3.8 shows the desired vectorization. where the junc-

tion is treated as a Single large junction.

Figure 3.7 This junction is better treated as a four-way junction rather than two

three-way junctions. The figure shows the best vectorization possible with the

latter treatment.

If the central matches can be removed the vectorization
will give a better i,entation of the junction

Figure 3.8 Without the central matches the junction can be treated as a larger

four-way junction. The vectorization is a better representation of the pen strokes.

It might therefore seem beneficial to remove as many matches as possible until we find

another fork. Notice that in figure 3.8 the edges of the large junction are all at or near the

- 81 -

forks. (If the match at the fork is crossed by a shorter one outside the junction then the junc-

tion boundary will be further along the fork, but at this stage it is not known which matches

will remain so the match at the fork is the best available approximation of the desired junc-

tion boundary.) However, not every junction is such a large junction and forks are not the

only desirable junction boundaries. Occasionally a bow-tie vectorization is correct (where

the middle section is long or the angles of the forks are large) and the matches which make

the middle bar should remain.

So although we wish to remove some matches at splits, we can't always remove them all.

An effective alternative is to deal with bow-ties at a later stage (after match removal). This

allows us to keep the depth of the split zone small. as it is no longer trying to cover the

whole junction area. In fact. it can now be observed that most matches within junctions are

deleted at the match removal phase (when the best matches are determined and those cross-

ing them are removed). If it is assumed that bow-tie problems caused by the remaining

matches can be dealt with later. then all that is really necessary is to ensure that junction

boundaries are formed at the first shortest match along the forks. Often. as is the case in the

above example. a line out of a junction in the image will cause forks in both the horizontal

and vertical directions. There are effectively two boundaries to be created for the line. one

for each direction. However. since the matches along the forks cross. only one shortest

match will remain after match removal.

A simple fixed depth match removal. starting just inside the junction and working away

from the fork, proves sufficient to form these junction boundaries. All that is needed is to

remove the matches which are immediately adjacent to the ones we wish to keep and are

inside the junction. In other words. a fixed split zone depth of one pixel is sufficient.

As it turns out. it is indeed easier to deal with bow-ties at a later stage. when we have a

better idea of where the junctions are. We also have more idea of the bearings of lines enter-

ing the junctions. The simple method of deleting matches which immediately precede forks

is therefore more appealing as it preserves the most stroke width information. It should also

be noted that in tests on the NIST and CEDAR character data. described in sections 2.6.1

and 2.6.2, it was observed that Stockley's method did not always succeed in deleting

matches across large junctions and an additional bow-tie removal process was required

- 82-

anyway.

3.5.3. Preserving Holes

One other case has been encountered in which match width does not work well as a measure

of match quality. This is around inner loops in outlines, such as the holes in the character

'8'. In some cases the holes are noise and should be ignored, but in many cases they are part

of the character and the vectorization should circumscribe the hole. Using match width as

match quality around these holes often fails to produce the desired vectorization.

The inner loops are small compared to the outer ones and have fewer matches around them

to define their shape. Care must therefore be taken not to delete too many of the surrounding

matches. If all the matches touching an inner loop on one side are deleted then there

remains no accurate information about that side of the hole.

To help preserve the holes it is required to keep at least one of the matches from each of the

four compass point-facing sides of the inner loop, unless it crosses a much better match. We

cannot insist that these matches should always be kept as they may cross other such matches

from different inner loops.

The proposed method is to find the longest match on each edge (north, south, east and west)

of the inner loop. If it were the case that all but one match should be deleted from a side of

the inner loop, then this match is generally the one that will provide the best definition of the

hole. The quality of this match is set to half its width. This significantly reduces its chance

of being deleted, without insisting that it will always be kept. TIle method is found to be

extremely effective at ensuring that vectors are correctly drawn around holes.

3.6. Match Removal
Once quality has been set, it remains to sort the matches into ascending quality order and

delete those which cross matches with lower quality scores. Profiling shows that this is the

most time consuming process in the vectorization method [EI193]. The ordering of matches

in the pixpts array allows a binary chop to be used for speed.

- 83 -

Initially the pixpts array is ordered as in figure 3.9(a), with adjacent elements being matched

together. From this arrangement, two orderings are produced within the array: the original

ordering (horizontal pixes sorted in ascending x coordinate order, those at the same x coordi-

nate further sorted by y coordinate; followed by vertical pixes in ascending y coordinate

order, those at the same y coordinate further sorted by x coordinate); and ascending quality

score order.

Since matched, adjacent pixes have the same quality and are linked by their match pointers

to each other. all the original ordering information can be preserved using only one pix out

of each pair. The first step in match removal is therefore to rearrange the pixpts array as fol-

lows:

Let half equal half the length of the pixpts array;

The odd numbered elements of pixpts are copied into a temporary array:

temp[i] = pixpts[2i+I], 'V i: i E {D.1.2.3, ...• half-I};

The even numbered elements of pixpts are copied into the element at half their index:

pixpts[i1 = pixpts[2i]. 'V i: i E {D. I. 2. 3•...• half-I};

The temporary array elements are then copied back into the consecutive pixpts ele-

ments starting from halfway into the array:

pixpts[i+haIJ] = lemp[i1. 'V i: i E {D. 1. 2, 3•...• half-I}.

The first half of the array now contains the first pix of each pair, preserved in the original

order. The col cnt. col_st. row _cnt and row _st arrays (which contain the indices in pixpts at

which pixes, at given x or y coordinates. are stored) are adjusted for the new arrangement by

Simply dividing all their elements by two. The array is now ordered as in figure 3.9(b).

Next. the second half of the array is quicksorted [Hoa62] into ascending quality score order.

The pixpts array has now been rearranged as illustrated by figure 3.9(c).

Next. the quality sorted matches in the second half of pixpts are worked through from the

best (lowest scoring) to the worst (highest scoring). For each match (if it has not already

been marked as deleted) it is required to find all matches which cross it and mark them as

- 84-

(a)
Initial array. Matches

pixpts = 1~1~1~1~lslsl~I~I~I~1 are alto ~, blto bt etc.

quality = 5 5 6 6 5 5 2 2 7 7 where ai' az b r etc.

2 are pointers to pixes

(b) I~ I bl I clldllell ~ I b21c21d21e21
Array separated into

pixpts = first and second halves
quality = 5 6 5 2 7 5 6 5 2 7 of matches

(c)
pixpts =
quality =

I~Ibd cddl lei I~Ia21c21bd e21
5652725567

Second half sorted by
match quality score

Figure 3.9 Arrangement of pixpts array before and after sorting, for a simple, ten

element, example.

deleted. Note that there will be no crossing matches with lower quality scores as they will

have been dealt with previously. Let pp denote the pix pointed to by the current pixpts ele-

ment. The match, from pp to pp- »match, is called the target match.

First the direction of the target match is determined. Vertical matches are indicated when

pp-s-d (the direction of the pix at the end of the match) is horizontal; horizontal matches

when pp-i-d is vertical. We wi11look at the algorithm for vertical matches. For horizontal

matches the algorithm is the same, except that we have simply swapped x for y and row for

column.

First recall the translation used to convert between outline coordinates and pix coordinates:

for horizontal pixes, add one to the x coordinate; for vertical pixes, add one to the y coordi-

nate (see section 3.4). This complicates the algorithm slightly as some of the coordinates

used will not have been translated in the same direction as the values to which they will be

compared.

Assuming a vertical target match, the only matches which might cross it are horizontal and

are indexed in the first half of pixpts by row_st and row_cnt. The first step is to determine

which rows to check, i.e., find the indices into row_st and row_cnt which correspond to the

- 85 -

rows that need checking. The first and last indices are calculated as follows:

start = pp->y - ymin;

stop = pp-omatch->» - ymin;

Note that these are 1 greater than normal as pp's y coordinates haven't previously been

translated. start should be less than stop so their values are checked and swapped if neces-

sary.

The x coordinate of the target match is set:

target_coord = pp->x - J;

This is decremented as it has previously been translated but it will be compared to pixes with

untranslated x coordinates.

Now the row_st and rowcnt arrays are stepped through between the start and stop indices

inclusive. The variables 10 and hi are set to the indices in pixpts corresponding to the first

and last pixes in the current row:

10 = row.nu):

hi = 10 + rowcntli] - J;

where i is the index of the row being checked.

A binary search is used to move 10 to the index of the pix with x coordinate closest to

target_coord but not exceeding it:

while (10 < hi)

(

mid = (10 + hi + J) 12; 1* mid = average of 10 and hi. rounded IIp */

iftpixptsimid]->» <= targetcoord)

10 = mid;

else

hi = mid - J;

J

The pixes in the first half of pixpts are always at the left (or upper) end of their match, so any

such pix whose x coordinate exceeds target_coord cannot cross it. Since matches on a

- 86-

single row cannot overlap. any such pixes with x coordinates preceding 10 cannot cross it

either. It simply remains to check the match addressed by pixptsllo] and mark it as deleted

if it crosses the target:

if(pixpts[lo]->match!= NULL && 1* If the match hasn't been deleted *1

pixpts[lo]->x <= target_coord && 1* and its ends are on either *1

pixptsllol-o-matcn-»:x >= target_coord) 1* side of targetcoord *1

pixptsllol-omatch-onuucb = pixpts[lo]->match = NULL; 1*Delete it *1

This completes the processing for the row.

Once the match removal phase is complete. no matches will cross and only the ones with

lowest scoring quality will remain. Matches which are only one pixel apart. and in the same

direction, can now have their midpoints joined to form the correct vectorization of that part

of the image. Where adjacent matches are more than one pixel apart or run in different

directions. bend and junction areas result.

At the end of each of the initial vector chains, a special node called a 'pixnode' is created.

Pixnodes mark end points and the borders of bends and junctions. Each pixnode is a struc-

ture storing a pointer to its associated vector chain. Other data is stored which is used to aid

the bend and junction vectorization processes. including a state flag (to mark it as deleted,

spliced, an end point. a junction point, etc.), the angle of the chain into a junction, the arity

of the junction, and pointers to the other end of the vector chain. other pixnodes around the

same junction and any other pixnode to which it must be spliced.

The remaining task is to determine a vectorization between pixnodes, across the junctions

and bends, which best represent the image. Methods of vectorizing these more complicated

areas are described in sections 3.7 and 3.8.

3.7. Bends
'Bends' are places where. after crossing matches are removed. two adjacent matches run in

different directions. Figure 3.10 illustrates such an occurrence. Bends are so termed

because they usually occur at bends in the image. however they can also occur on straight.

sloping lines where the image does not actually bend (such as in the figure). A bend area is

defined to be an unvectorized area (after the joining of adjacent match midpoints) which has

- 87-

exactly two bordering pixnodes.

Bend area

of match

midpoints of matches

Figure 3.10 Example of a 'bend' area. In this case, simply joining pixnode A to

pixnode B gives a reasonable approximation of the image line. In more general

cases it is better to interpolate through the bend to give a more accurate vectori-

zation.

Simply joining the midpoints of the matches which border the bend area does not always

provide an accurate representation, particularly when the bend area is large. Instead it is

preferable to interpolate the vector round the bend.

Interpolating round the bends is a simple matter of working along the edge pixes on either

side of the bend simultaneously (sides are the outline borders of the bend area) from one

bordering match to the other. This is similar to the methods used by contour tracking vee-

torization algorithms (see section 2.3.1.3). For each pix pair, a new vertex of the vector

chain is added at the midpoint of the line between the pair. The process stops when the

bordering match is reached on both sides. If the match is reached on one side before it is

reached on the other the process continues but only the second pix is advanced. The vector

chain around the bend is linked to the vector chains entering and leaving the bend at the

appropriate points.

- 88 -

This rather crude method leaves many points on the chain. However, by rounding the mid-

points to integer coordinates and deleting any duplicates the number of vectors can be kept

to a minimum. If the vector chain is smoothed even fewer points will be necessary to

describe bends.

3.8. Junctions
This section describes the method developed for junction vectorization and bow-tie removaJ.

Like bends, junction areas occur where matches do not run paraJlel and immediately adja-

cent to their neighbours, leaving areas of the image representation unvectorized. A junction

is defined to be an unvectorized area (after the joining of adjacent match midpoints) which

has three or more bordering pixnodes. The number of branches of a junction is termed its

'arity' and is defined to be the number of pixnodes bordering the junction.

The finaJ stage of the vectorization process is to determine a vectorization between the pix-

nodes, across the junction area, which best represents the image. Just what constitutes the

best representation of a junction in an image depends on what is expected of the vectorized

image. Some researchers lean towards making the vectorization an ideaJized abstraction of

the image; others prefer the vectorization to represent the pen strokes made in drawing the

character. This affects the way in which junctions are treated.

3.8.1. Bow-Tie Removal

Before junctions are vectorized the process of removing 'bow-ties' takes place. As dis-

cussed in section 3.5.2, bow-tie vectorizations occur where two three-way junctions occur

close together. The short section of matches between the two junctions creates a short line

joining them which is frequently unwanted. The junction should more properly be treated as

a single, larger, four-way junction. UsuaJly the pen strokes cross the junction and an 'X'-

shaped vectorization should result. Occasionally, as described later in section 3.8.5, the pen

strokes do not cross and an extra crossbar must be added (an 'H' -shaped vectorization). This

crossbar does not necessarily run in the same direction as the bar of the bow-tie, however, so

it is still better to remove the bow-tie. Note that the process is referred to as bow-tie removal

but is more properly a bow-tie prevention process as only the crossbar is actually removed;

the bow-tie itself is never allowed to form.

- 89-

Section 3.5.2 described how matches immediately next to forks were removed so that junc-

tion boundaries would always occur at the forks. This ensured the four correct boundaries

for the anticipated four-way junctions would be found. However, the process of removing

other boundary matches within the junction (which cause bow-ties) was left to a later stage.

That stage has now arrived.

The situation (after bends have been vectorized) is that only junction areas remain unvector-

ized. TIle rest of the image is now represented by vector chains. At each match bordering a

junction there is a pixnode. From each pixnode a vector chain leads away from the junction.

either to a dead end or to another pix node at a junction boundary.

Bow-ties are avoided by removing short vector chains between three-way junctions. It is

easier to do it at this stage as the vector chains between junctions allow a simple measure of

the distance between them. Such a measure was not easily calculable before bends were

processed. In addition to removing the chains, the matches which caused them must also be

deleted to leave the desired larger junction. The larger junction can then be vectorized

correctly.

A limit (called the BOW _TIE_LIMIT) on the length of connecting chains is set. Each pix-

node is then stepped through in turn. The pixnode's vector chain, leading away from the

junction, is stepped along and its length is incrementally calculated, Slopping when one of

the following is true:

i) Another pixnode is reached

ii) The end of the vector chain is reached

iii) The length exceeds BOW _TIE_LIMIT

If a pixnode is reached and borders a junction of arity three. and the length does not exceed

BOW _TIE_LIMIT then the vector chain is stepped along once again. The matches

corresponding to the points on the chain are removed. Finally the pixnodes on either end of

the chain are marked for deletion. (They are not deleted until all the pixnodes in the image

have been checked for bow-ties. This is so that the arity of junctions is preserved during

checklng.) After all the pixnodes have been tested. the marked ones are removed.

- 90-

After this process, larger, four-way junctions should remain where desired. If two or more

bow-ties are identified at a single three-way junction then the arity of the larger junction may

be higher than four. Occasionally this can lead to larger junctions than intended. The prob-

lem then is to ensure the junction splicing method can vectorize these large junctions

correctly. The subsequent sections detail the splicing process.

3.8.2. Methods of Dealing with the Odd Pixnode

In character recognition applications it can be safely assumed that the areas we have

identified as junctions correspond to junctions of pen strokes, provided that short edge

matches which might cause erroneous junctions have been removed (as described in section

3.5.1). Each pixnode of a junction will therefore be either an entrance or an exit of the pen

stroke and the vectorization will pair up one entrance with one exit. Where a junction has

odd arity there will be one pixnode left over.

If the vectorization is to be an idealized version of the character then this odd pixnode will

usually be joined to a vector which crosses the junction. If it is to represent the pen strokes

then it will be considered part of a stroke which terminates within the junction area. It will

not be joined to crossing vectors but will be extended some distance into the junction and

stop.

It will be seen later (in section 3.8.3.1) that the angle at which a stroke enters or leaves a

junction can be roughly determined. One possibility for the extension of odd pixnodes is to

extend the stroke from the pixnode at the angle of entry into the junction. This may be until

it reaches the edge of the junction area, until it gets halfway across the junction, until it

touches a crossing vector (in which case it may be joined to the crossing vector if so

desired), or until some other distance is covered. Another alternative preferred by this

research is to join the odd pixnode to the centre of gravity of the junction area. This

attempts to accurately cover the junction area while approximating the pen stroke.

When the pen stroke terminates within a junction there is little information to indicate its

precise path. The crossing pen strokes obscure it and the angle into the junction is only a

rough approximation. Any of the suggested methods are therefore acceptable as none is gen-

erally more accurate than the rest.

- 91 -

In the specific case of three-way junctions. where two pixnodes have been joined and one is

left. a more complicated method of dealing with the odd node is used. A common cause of

three-way junctions is a reversal of pen direction which overlaps the preceding stroke. The

pen goes back on itself causing a three-way junction where one pixnode is both an entrance

and an exit and should be joined to both of the other two pixnodes.

The length of the vector chain leading away from the odd pixnode is measured. If the chain

terminates at a junction it is ignored. If it ends at a dead end and its length is shorter than a

constant (called STUB_LENGTII) it is termed the 'stub' and is considered to be the result of

overlap. STUB_LENGTIllimits the allowed overlap.

The vectorization is then determined as illustrated in figure 3.11. The pixnodes A (the pix-

node preceding the stub). B (the stub pixnode) and C (the pixnode succeeding the stub) are

identified. The order of A and C is not important at this stage. The point, D. at the end of

the stub is also found.

The existing splice across the junction (from A to C) is removed. New vectors are then

added to the incoming chains. A is joined to B. The chain from B to 0 is followed, then an

identical but reversed chain is added to lead back from 0 to B. B is joined to C.

The method is used after the rule of thumb for three-way junctions (section 3.8.4) has been

applied but before quality-based splicing (section 3.8.3) is attempted. At this stage it is pos-

sible that no splice has been made across the junction. In this case the shortest vector chain

which leads to a dead end and is shorter than STUB_LENGTII is taken to be the stub. The

new vectors are then added as above. This is effective at vectorizing 'V' shapes. A three-

way junction occurs at the bottom of the 'V' which most thinning and vectorization algo-

rithms convert to a 'Y' -like shape. However. with the stub vectorization method. the dupli-

cate vector chains of the stub will run down the point of the 'V', each joined on to one of the

single chains leading up the prongs. After smoothing. it is likely that the duplicate chains

will separate, moving into line with the prongs, thereby eliminating the 'Y' -like vectoriza-

tion and giving the much more desirable 'V' shape.

- 92-

Arrows indicate
the direction of

Stub (vector chain is
duplicated along here)

Figure 3.11 Vectorization of a stub, where a pen stroke has gone back on itself

causing a three-way junction.

Note that this is the only situation in which the method handles pen strokes going back on

themselves. The inability of vectorization and thinning methods to deal with more compli-

cated stroke overlaps has so far distinguished off-line handwritten character recognition

from on-line recognition.

3.8.3. Splice Quality

A system has been devised for assigning a quality score to each of the possible pairings of

pixnodes across a junction. The best quality pairings are joined, or spliced, by adding a vec-

tor from one to the other, joined on to the incoming vectors. The direction of some of the

vectors along the stroke may need reversing so they are all in sequence. While there are two

or more unspliced pixnodes, the joining continues based on the best splice quality of the

remaining possible pairings.

A number of methods of assigning splice quality scores to pixnode pairings have been

tested. Each pixnode is on the end of a vector chain which leads up to the junction. The

splice qualities are all based on the angle at which these chains enter the junction.

Incoming
vector _____

- 93 -

Matches bordering
junction area

~Outline

Junction area

--
Line of potential splice
between B and D

Figure 3.12 Angles considered during splice quality assessment for a potential

splice between pixnodes Band D.

Figure 3.12 illustrates the angles used in determining splice quality for a specific potential

pairing.· Angle c, the angle between the two estimated lines of vector entry into the junc-

tion, ranging from 0 to 1t, is a good measure of how suitable a pixnode pairing is: the smaller

the angle the better the splice. This is not always sufficient however. The angle alone con-

tains no information about the position of the pixnodes relative to each other. Many pairings

may have small values of nwhile the angles into the junction point away from the opposite

pixnode.

The line directly between the two pixnodes, which is the line a potential splice would fol-

low, serves as a guide to how closely the angles into the junctions point at the opposite pix-

node. The angles ~ and 'Y (which are the angles between the estimated entry line into the

junction and the potential splice line) are an additional indication of splice quality.

After observation of the splicing of test characters it was concluded that basing splice quality

on angle a produced the desired result more often than the ~ and 'Yangles. The failure cases

tended to be where ~ or 'Y was very large (greater than Tt/2). The poor performance of ~ and

- 94-

'Y was due to the combination of both these angles for the splice quality. Where both angles

are roughly the same they provide a reasonable measure of quality. However, where one is

small (i.e., pointing straight at the opposite pixnode) and the other is large (i.e., pointing

away from the opposite pixnode) the combined quality does not reflect the poorly matched

large angle well enough. On the test characters this often caused the splice to be selected

over a better pairing where neither angle deviated so far from the splice line.

Instead of using P and 'Y as part of the quality value, an effective alternative is to use them

simply to limit the allowed deviation from the splice line. In the implemented system,

potential splices are eliminated if either p or yexceed Tt/2. If both are less than Tt/2the splice

quality is assigned based on c.

A further consideration is the distance across which the splice is to be made. Generally

longer splices are preferred if they ClU} be expected to be accurate, since short splices cover

less of the junction. However, for long splices, the angle out of each pixnode points further

away from the opposite pixnode than it would for shorter splices. Even for small values of

Cl, a long match may be inferior to a shorter splice with a larger n angle.

One method attempted was to base the splice quality on the perpendicular distance from the

entry line into the junction to the opposite pixnode. However. this distance measure does

not account for the direction and degree of colinearity of entry lines and so quickly proved

unsuitable. A simpler and more effective method is to use the distance between the two pix-

nodes (the length of the potential splice line). marked in figure 3.12 by O. to scale the splice

quality. This allows close pixnodes to be spliced more easily but will usually favour long

splices where the intersection of the opposing entry lines is close to head-on.

The final choice for splice quality calculation used in this research therefore, is to eliminate

splices from consideration if p or y exceeds Tt!2. and otherwise to set quality to 00. Low

scores indicate better quality. On a sample of two hundred images requiring splices. taken

from the NIST and CEDAR segmented character databases. the desired splices were

obtained in 96% of the cases. (This includes the special cases of three-way and four-way

junction splicing described in sections 3.8.4 and 3.8.5.)

- 95-

3.8.3.1. Approximating Entry Angle into Junctions

Since integer coordinates are envisaged for use with this method, the actual angle of entry

into the junctions of the vector chain is not a useful measure. Consider figure 3.13. Typi-

cally the entry path will be either A, B or C, in this case giving entry angles of 1rI4, 0 or -1rI4

respectively. Since the approximation of pen stroke entry is vital to the success of the splic-

ing method, much greater accuracy is required. It is therefore necessary to find a point

further back along the incoming vector chain. The line from this point through the actual

entry point (the midpoint of the match bordering the junction) is then taken to be an estimate

of the true line of entry of the pen stroke, illustrated by line D in the diagram.

Actual lines of entry

into junction ~

Better estimate of
entry line

C ~ Typical position of points
preceding a junction border
point (assuming integer
coordinates)

Figure 3.13 Typical actual entry lines of vector chains into junctions (assuming

integer coordinates are used). The line from point D is a better estimate of the

true path of the pen stroke.

(Note that the terms 'incoming' and 'entry' are used to refer to a vector chain leading to or

from a junction. These terms have no relation to the actual directions of the vectors, which

at this stage are meaningless.)

One method is to work back a fixed distance along the incoming vector. This however does

not take into account the possible turning of the vector along the fixed distance. Often the

vector will bend around considerably and the resulting angle is very different from the true

- 96-

angle of entry.

Determining a fixed distance which would be long enough to give a good approximation of

entry angle, while being short enough not to go around bends, proved an impossible

compromise. A similar method which works back a fixed number of points on the vector

chain has the same problem. It is necessary to consider the change in angle as we work back

and use this to indicate when to stop.

We have developed a method which works back along the incoming vector. provided it

doesn't tum outside of a certain tolerance. or change the direction of its turning. An approx-

imation of the turning is used, which makes use of the nature of the vector chains along line

sections to limit the method to integer arithmetic, while remaining acceptably accurate.

The process starts at the point on the vector chain corresponding to the pixnode at the edge

of the junction. The vector chain leading up to that point is worked along away from the

junction. This happens after bends have been dealt with. so each point on the chain is either

the midpoint of one of the matches along a line or an interpolated point around a bend. TIle

chain leads either to a dead end or another junction.

At each point a simple indicator of the direction of the line is determined. Initially the direc-

tion is represented by 0 (the null direction). As we work along the chain, the current direc-

tion is determined by the coordinate change from the previous point on the chain. Let

(XC,ye) be the coordinates of the current point and (xp.yp) be those of the previous point.

The direction indicator is set as follows:

When we are working up or down a vertical section of the chain:

if (xc >xp) 1* current point is to the right of the previous point *1

direction indicator = l ;

else if(xc<xp) 1*current point is to the left of the previous point *1

direction indicator = -L;

else if(xc xp)

direction indicator = 0;

- 97-

When we are working left or right along a horizontal section of the chain:

1* current point is below the previous point *1

direction indicator = 1;

else if(yc<yp) /* current point is above the previous point *1

direction indicator = -1;

else i!(yc=Yp)

direction indicator = 0;

By the direction. horizontal or vertical. of the section of the vector chain we mean the direc-

tion of that chain at the edge of the junction - the opposite direction to that of the match

bordering the junction.

This provides a rough indication of the direction of the line. which can be used to identify

when the direction of turning changes. Two direction indicators are kept. one for the current

point and one for the overall direction of the chain section along which we will work back.

The latter (termed the overall direction indicator) is initially 0 and can only be set to 1 or -1

once. This happens the first time the current direction indicator is set to a non-zero value.

Once set. the overall direction indicator becomes the fixed direction of the line into the junc-

tion.

Note that the approximation works because the incoming chain cannot tum too sharply. even

in the direction of the overall indicator. without going round a bend. As explained below.

the process always stops if it reaches a pixnode point. Such points occur at the bordering

matches of bends so the method will stop before any sharp turns are traversed.

The vector chain is stepped along. point by point. starting at the edge of the junction and

working away from it. A count is kept of the number of points traversed. The process stops

if one of the following conditions is met:

i) The overall direction indicator is still 0 (unset) after a fixed number of vector points.

FIRST _NULL_LIMIT;

ii) A pixnode is reached. other than the one at which we started;

iii) The current direction indicator is different from the overall direction indicator except

where either:

- 98-

a) The overall direction indicator is 0 in which case it is set equal to the current

indicator;

b) The current direction indicator is 0 and no more than a fixed limit of vector

points, SECOND_NULL_LIMIT, have been traversed.

If, after the process stops, the current and overall direction indicators are different then we

have gone one point too far, so we back up one point along the chain. In some cases the

current point finishes up at the same coordinates as the point at the edge of the junction (they

may actually be the same point). 'This frequently happens when a bend occurs immediately

adjacent to a junction (the process stops after the first step round the bend and backs up to

where it started). In this case we move the current point along the chain until it reaches a

pixnode other than the one at the edge of the junction - this will be the pixnode at the other

side of the bend. (Note that it is acceptable to traverse a bend which occurs immediately

adjacent to the junction as it is our only indication of the incoming path; otherwise we

should stop at the near edge of the bend to avoid sharp turns.) Occasionally, however, this

occurs when there is only one match along the stroke leading into the junction, the match

that borders it, and so the current point can never progress further than the start point.

At this stage, the line between the current point and the point at the edge of the junction

gives the approximation of the line into the junction. The bearing of this line is recorded as

the entry angle into the junction for that incoming vector. In the cases where the current

point is still at the start point, the line into the junction is assumed to be perpendicular to the

match at the junction edge. The angle into the junction is determined accordingly.

The constants, ARST_NULL_LIMIT and SECOND_NULL_LIMIT, will depend on the size

of the image representation. For the NIST and CEDAR alphanumeric characters the values

4 and 5 were used respectively.

'This method gives a fair approximation of the entry angle and is clearly less error-prone than

the blind, fixed-distance backtracking method which was first attempted. In combination

with the splicing algorithm, highly accurate splicing results have been produced (see section

3.8.3).

- 99-

3.8.4. Three-Way Junctions

It was observed that for three-way junctions where, of the three bordering matches, two were

horizontal and one was vertical, or vice versa. the correct splicing was (in the large majority

of cases) to join the vector chains of the two co-directional matches. This simple heuristic is

used whenever possible. In cases where all the bordering matches are in the same direction,

the normal splice selection method is used.

After this rule of thumb has been applied but before the normal splicing method is used, the

stub vectorization process described in section 3.8.2 is used.

3.8.5. Four-Way Junctions

A special case is also made for four-way junctions. We simplify the pairing possibilities by

assuming that each of the two incoming strokes must lead to separate outgoing strokes. This

is true in almost all cases.

Initially a simple rule of splicing pixnodes alternately was tried. This is roughly equivalent

to Pavlidis' compound vectorization where a junction node is bordered by four intervals.

This was found to produce imperfect results in many cases, particularly after bow-tie remo-

val (see section 3.8.1), where the pen strokes at the junction have not actually crossed. In

these cases two pen strokes have passed between adjacent pixnodes (adjacent round the junc-

tion). Usually a further pen stroke forms a crossbar between the other two strokes; no evi-

dence remains of this, it having been incorrectly removed during bow-tie removal.

Consider a capital 'H'. Three-way junctions occur at either side of the crossbar, joined by a

short vector chain representing the bar. As described in section 3.8.1, the bow-tie removal

process will sometimes (incorrectly) remove the chain representing the bar to leave a larger,

four-way junction where the crossbar should be. A similar character is shown in figure 3.14.

In this case splicing pixnodes alternately (joining pixnodes A to C and B to D). producing an

'X' -like crossing of the junction, is incorrect.

Splicing of adjacent pixnodes (A to B and C to D) should therefore be allowed but an addi-

tional vector chain. forming the crossbar. must also be created in these cases. This crossbar

vector can be interpolated between the two splices in a similar way to that in which bend

- 100-

points are interpolated. We step along the edge pixes on either side of the junction from the

ends of one splice to the ends of the next; at each step we add the midpoint of the line join-

ing the two pixes to the vector chain. More simply it can be a single straight line joining the

midpoints of the two splices (as shown by the dotted line in figure 3.14).

-----.---. Correct splicing of junction

.................... Additional cross bar vector

Figure 3.14 A four-way junction where alternate splicing of pixnodes (A-C and

B-D) is inappropriate. Adjacent splicing (A-B and C-D) is correct but an addi-

tional crossbar vector is needed to accurately represent the junction.

As for higher arity junctions. splice quality measures are used to determine which pixnodes

to splice. However. since making one splice automatically determines the second splice

(e.g .• if the first splice is A-B the second must be C-D) greater accuracy is achieved by

adding the qualities of the two splices to produce an overall quality for each possible splice

combination. (Multiplying the qualities was also tried but adding was found to work best.)

This is a significant improvement which helps avoid choosing combinations where the first

splice has very good quality but the second is poor.

In theory this quality combination could. at greater computational expense. be extended to

six. eight or higher arity junctions.

3.9. Additional Preprocessing
Additional preprocessing may be applied to vectors to obtain a smoother form, to mend

breaks in the image or to further normalize the vector representation.

- 101 -

Smoothing is achieved by analysis of each run of three consecutive coordinate points on the

vector chain. The perpendicular distance of the second point to the line joining the first and

third point is calculated. If it falls within a fixed tolerance the second point and the two vec-

tors joining it are deleted and a new vector is created from the first point to the third point.

This removes a large number of excess points. in particular duplicate points that may be

created in the bend vectorization.

Breaks in the outline are repaired after vectorization by joining the ends of vector chains

which fall within a fixed distance. The ends are joined by adding a new vector from one end

to the other and reversing the direction of one of the initial chains if necessary.

Other forms of preprocessing. such as skew and size normalization. can be applied using

similar methods to those for pixel or outline image representations. Figure 3.15 illustrates

the effectiveness of smoothing in reducing the number of points on the vector chains and

improving the appearance of the strokes. The ability to repair breaks in images by vector

chain end point joining is also demonstrated.

3.10. Conclusions

A vectorization method has been adapted and developed from the algorithms of Pavlidis and

Elliman. While it is slower than Pavlidis's method. it gives a much more accurate represen-

tation of characters. particularly at junctions where pen strokes cross. The basics of the

method have already been proved to be effective on engineering drawings [Cri94] [Sto94].

In this chapter it has been improved. developed and extended to suit the vectorization

requirements of handwritten characters. Although it is difficult to compare different vectori-

zation methods. the ability of this method to preserve character shape and accurately vector-

ize crossing pen strokes can be seen from figure 3.16.

The encoding of strokes as vector chains provides a more compact representation of charac-

ters and may allow high level features to be extracted for improved accuracy (the use of

strokes as primitives might be effective. provided that strokes can be accurately extracted in

the presence of noise and breaks). Future developments of the method would aim at more

detailed detection and vectorization of overlapping pen strokes. and at determining the time

ordering and direction of strokes. with a view to applying on-line recognition techniques to

a)

c)

-102 -

b)

d)

Figure 3.15 Example vectorizations of an '8' using different preprocessing techniques: a)

with no preprocessing; b) with smoothing within a tolerance of 1.0 pixel widths; c) with end

point joining within 8.0 pixel widths; d) with both smoothing (within a tolerance of 1.0 pixel

widths) and end point joining (within 8.0 pixels). The thin lines are the outlines; the thick

lines are the corresponding vector chains.

- 103-

Figure 3.16 Example vectorizations from the NIST and CEDAR databases. Smoothing and

end point joining have been used. The thin lines are the outlines; the thick lines are the

corresponding vector chains.

- 104-

Figure 3.16 continued. Note the difficulty of vectorizing cursive script where pen strokes

frequently overlap.

- lOS -

off-line characters.

The stroke-based representation can also simplify the segmentation of characters. from both

handprinted and cursive words. The number of possible segmentation points is reduced if

segmenting only occurs at coordinate points on the vector chains. It is also simpler to detect

geometric features of words which are sometimes used to suggest appropriate segmentation

points, such as cusps and changes of direction.

Despite the apparent accuracy of vectorizations produced by this method. it is still unclear

that vectorization is a suitable approach to character recognition. The detail used in human

perception of characters may well be contained in the outline rather than in a thinned

representation. Pavlidis concludes [Pav86. p.12S] that "strict vectorization is not sufficient

for a practical character recognition system" and goes on to say he is investigating the use of

outlines for discriminating characters. This issue is discussed in more detail in the next

chapter. Chapter S includes recognition results (section S.6) which show the loss of discrim-

inatory detail or the introduction of errors through the use of vectorization. in comparison to

an outline representation.

'The future usefulness of the vectorization approach is likely to depend on it being able to

produce higher level features or primitives for recognition by being able to completely

recreate the path of the pen. most importantly where it overlaps, so that on-line techniques

may be used. This task appears to be almost impossible and it is likely that the fields of on-

line and off-line character recognition will remain distinct. Vectorization and thinning con-

tinue to be popular approaches however, and simplification of the image offers many advan-

tages in the development of methods. Hybrid vector/outline approaches also offer interest-

ing possibilities, e.g., using vectors to facilitate segmentation and then using their associated

outlines for recognition.

3.11. Nomenclature

For all.

e Element of.

(X

5

BOW _TIE_LIMIT

col_cnt

cotst

d

dir

DOT_SIZE

eborp

edge_cm

FIRST_NULL-

_LIMIT

half

hi

hgt

10

match

pixpts

pp

probe

q

Q_END_FACfOR

Q_SPLIT _LIMIT

roy

rowcm

row:»

- 106-

Angle between two estimated lines of vector entry into a junction.

Angles between the estimated lines of vector entry into a junction and

the potential splice line.

Length of a potential splice line.

Constant which limits the length of the crossbar of a bow-tie.

Array of number of horizontal pixes with a given x coordinate.

Array of total number of horizontal pixes left of a given x coordinate.

Horizontal or vertical direction indicator in pix structure.

Direction (horizontaVvertical) of pixes currently under consideration.

Constant area below which outlines are considered noise.

Variable pointer to a pix structure that stays one step behind vor.

Total number of pix structures created.

Constant which limits the backtracking along a vertical or horizontal

vector when estimating entry angles into junctions.

Half the length of the pixpts array.

Index into pixpts array of the last pix in the current row.

Height of the outer loop.

Index into pixpts array of the first pix in the current row.

Pointer from pix structure to its matching pix structure.

Array of pointers to each pix structure of a character.

Pix pointed to by the current pixpts element.

Variable pointer to a pix structure that stays one step ahead of rov.

Element of pix structure that stores the associated match quality.

Constant which limits the size of an end zone.

Constant which limits the size of a split zone.

Variable pointer to a pix that moves forwards through linked list.

Array of number of vertical pixes with a given y coordinate.

Array of total number of vertical pixes above a given y coordinate.

- 107-

SECOND_NULL- Constant which limits the backtracking along a vector in the same

_LIMIT direction as the overall direction indicator or in the null direction

when estimating entry angles into junctions.

start Index into st and cnt arrays.

stop Index into st and cm arrays.

STUB_LENGTH Constant which limits the length of stub chains.

target_coord Coordinate of target match.

vor Variable pointer to a pix that moves backwards through linked list.

wth Width of the outer loop.

x_min Minimum x coordinate of outer loop.

y_min Minimum y coordinate of outer loop.

- 108 -

Chapter 4

The Preprocessing Approach - An Appraisal

4.1. Summary
This chapter discusses the traditional approach to character recognition, which performs a

number of preprocessing operations on character images before feature extraction and

ctassmcanon. Section 4.3 examines the usage and effectiveness of the various preprocessing

techniques. Section 4.4 presents an alternative approach to the problem which attempts to

avoid preprocessing as much as possible. The main reasons for questioning the use of

preprocessing are introduced in section 4.2 and the specific problems of particular tech-

niques are discussed in more detail in section 4.3.

The purpose of this chapter is to explain the minimal preprocessing approach which has been

taken in the remainder of the work presented in this thesis. It suggests that some preprocess-

ing techniques are detrimental to the accuracy and generalization of recognition. It also sug-

gests that many of the useful strategies can be implemented in more effective and efficient

ways during the later stages of recognition. However, a few techniques, such as slant correc-

tion, are still best performed as preprocessing operations.

The large number of different preprocessing methods makes a quantitative comparison

beyond the scope of this thesis. This chapter is simply a qualitative discussion of the

approaches.

4.2. The Preprocessing Approach
Preprocessing, as referred to in this chapter, is the processing of an image representation

prior to presentation to the feature extraction stage of character recognition (or prior to the

classification stage in systems which do not have a conventional feature extraction stage).

This processing is a complete alteration of the image representation, by which it is meant

that an operation is performed on the entire original representation to produce an entirely

new representation (usually in the same format) to replace the Original.

- 109-

Preprocessing is almost universal in character recognition. It has become the standard

approach, to scan the document, perform a selection of preprocessing operations on it and

then to extract features and classify characters. Some variants of this approach exist. For

example, recursion may be introduced to perform corrections of earlier stages, or the feature

extraction stage may be bypassed, leaving the classifier to recognize the image representa-

tion directly. However, almost all systems perform some form of preprocessing on the raw

image representation.

1be various types of preprocessing techniques used have been surveyed in section 2.3.

Briefly, these are thinning and vectorization, polygonal approximation, smoothing, filling

and joining, and normalization. The purpose of this chapter is to examine the usage and

effectiveness of these preprocessing techniques and to discuss their validity in the context of

the whole recognition system. Chapter 3 has already raised doubts about the worth of thin-

ning and vectorization. This questioning is now continued and extended to other types of

preprocessing.

1be purpose of this chapter is only to discuss preprocessing. It does not attempt to present

quantitative results or prove the validity or otherwise of this approach and is included in this

thesis mainly to represent the author's thoughts on the matter of preprocessing and serve as

an explanation for the alternative approach taken in future chapters. Nonetheless, it does

present some qualitative observations of the weaknesses and limitations of certain prepro-

cessing techniques that suggest they are unsuitable for use in a character recognition system.

1be intention of preprocessing is to make characters of the same class more alike by elim-

inating differences between them that are not relevant to their recognition. The main reason

for doubting the efficacy of preprocessing techniques is that almost all researchers approach

the problem with preconceived ideas about what characteristics are or are not relevant to

recognition. The development of preprocessing techniques has generally stemmed from a

desire to make characters fit a human abstraction of how they should look. The assumption

is that if characters all conform to a human ideal then recognition will be easier and more

accurate. However there is no clear reason to believe this assumption is true. Neither is it

clear what the human ideals should be. Many of them appear to be little more than aesthetic

forms with no real link to the distinctive features that make them recognizable by the

- lto-

classifier. The preprocessing approach has not yet led to the near perfect accuracy that might

be expected if an idealized character representation was obtained. It is therefore possible

that either the assumption is incorrect or that preprocessing techniques may be unable to pro-

duce this idealized form.

It is my belief that both of these statements are true and therefore abstracting a human

researcher's intuitive knowledge into a recognition system may not be the best approach.

The variation in human handwriting styles is immense; compacting this into a simple, gen-

eral set of rules is extremely difficult. A computer. basing its simplifications on a large set

of exemplar data. may be a much more reliable judge than a human, basing abstractions on

preconceived ideals. The computer will produce rules based on what characters actually

look like, whereas humans tend to base rules on what they think the characters should look

like. These human assumptions are prone to misconception and oversimplification. In addi-

tion. some of the human rules that have appeared are based on abstractions of how humans

form characters rather than on how they recognize them. The two are not necessarily the

same.

Another reason for questioning the application of these techniques to character recognition is

that many of them were originally developed for use on other types of images, for example,

engineering drawings and maps. While they have proved useful in some of these applica-

tions, where the emphasis is often on reduction of data rather than on recognition, it does not

necessarily follow that they are suitable for character recognition. where preservation of dis-

tinguishing detail is the primary concern. There is always a risk, when altering the initial

image data. that information will be lost or errors will be introduced. Once preprocessing

has been performed. it is generally not possible to retrieve lost information or correct errors.

There is therefore good cause to question the use of preprocessing techniques which lose

information.

Another reason to question their use is that the effects of some preprocessing techniques are

achieved in other ways at different stages of character recognition systems, for example, dur-

ing feature extraction or classification. We must therefore question the need for an addi-

tional stage which may simply be duplicating the effort.

- 111 -

In evaluating preprocessing techniques, the primary factor to be considered is the effect on

classifier recognition rates using the subsequently extracted features. The recognition rate is

influenced by several possible effects of the preprocessing: the clustering of similar charac-

ters, the introduction of errors and the loss of information. Another important factor is their

suitability for use in a real application, in particular their extension to larger character sets

and noisier data. Other factors considered here include the reduction of data needed to store

the characters, the computational cost involved in the process and the possibilities for

achieving the same effect using alternative methods.

While many papers have been published on preprocessing techniques, few have questioned

their application to the character recognition problem or compared them to alternatives. One

paper which has is GUdesen's [GUd76] which shall be referred to several times in this

chapter.

Gndesen compared a range of preprocessing techniques on simply segmented 9xl4 pixel bit-

maps of handprinted characters. He extracted the first 30 coefficients of the Karhunen-

Loeve expansion (sec section 2.5.2) as a feature vector. Classification was by a parametric

Bayesian quadratic discriminant assuming a multivariate Gaussian distribution (see section

6.2.1). The test data was obtained from 200 writers who were trained to print 15 rows of

model characters. A set of 560 examples of each digit (0-9) was divided in two - half for

training the classifier and half for testing it. GUdesen claimed that a larger set of digits and

upper case characters, with 3000 examples of each, gave only slight differences from the

results on the smaller set. With no preprocessing the digit set gave an error rate of 1.7%

with no rejection.

In considering Gudesen's results and conclusions we must take note of several features of

his experiments. Firstly the error rate with no preprocessing is very low. This is due to the

high quality of Glidesen's data. The use of special forms for writing on and a clean environ-

ment allows noise to be kept to a minimum. The use of model characters to copy consider-

ably reduces the style, size, position and slant variability of the data. Given that the inten-

tion of Gudesen's experiment was to compare techniques which are intended to reduce this

variability, the use of such constrained data was perhaps not ideal. However, the choice of

data reflected the capabilities of handprinted character recognition at the time. It should also

- 112 -

be noted that only digits were evaluated in the full test and the preprocessing methods may

perform differently on more difficult character sets such as lower case letters.

The type of feature is also a significant factor in Gtidesen's experiment. Karhunen-Loeve

expansions are used in statistical classification whereas some of the preprocessing tech-

niques (thinning and polygonal approximation) are generally intended for structural recogni-

tion. It is difficult, however, to quantitatively compare techniques using different classifiers.

Gudesen based his evaluation of techniques almost entirely on the statistical classification

error; his results were therefore biased against some techniques.

4.3. Pros and Cons of Preprocessing

One of the general advantages of preprocessing is that in many cases it reduces the amount

of data needed to represent characters. This can, in some cases, reduce the computational

cost of the subsequent feature extraction or classification processes. However, this advan-

tage must be weighed against the additional cost of the processing itself. Preprocessing

operations involve at least one pass through the original character data. Some operations

(the ones that produce the greatest reduction in data) can require multiple passes. If the

feature extraction process only requires a single pass, which several of them do, then there is

no cost benefit in simplifying the representation.

If preprocessing succeeded in its aim of making characters fit idealized abstract forms then it

would essentially perform a perfect classification. The problem, however, is that most tech-

niques encounter problems where preprocessing should produce one result in the context of

one character and a different result in another character. The problem cannot be accurately

resolved without knowing what the character is. In other words, although perfect prepro-

cessing would produce perfect classification. it isn't possible to perform perfect preprocess-

ing without already knowing the classification.

While most researchers would agree that perfect idealization of characters is not an achiev-

able goal, preprocessing should. to an extent, aid the clustering of character classes and pro-

duce better classification results. In practice. this does not always happen. There are two

reasons why preprocessing can fail to produce better results. Firstly, irreversible errors and

distortion can be introduced into the characters which cause them to be mis-classified.

- 113 -

Secondly, preprocessing strategies tend to be designed with the aim of making characters of

the same class more similar. What they should really be aiming for is the separation of

classes. The simplification resulting from preprocessing tends to make all characters more

alike. Thus the fact that characters of the same class are more alike does not necessarily

mean they are easier to distinguish from other classes. In some cases the opposite can hap-

pen: simplification causes more class overlap than before, making classification more

difficult

Now let us consider the benefits and weaknesses of specific preprocessing techniques.

4.3.1. Thinning and Vectorization

Thinning and vectorization (see section 2.3.1) are perhaps the most obvious attempts at mak-

ing characters fit human abstract forms. Based on the assumption that characters are best

recognized from a widthless representation, thinning and vectorization aim to reduce a char-

acter to either a unit-width pixel skeleton or a zero-width line (vector) skeleton.

This assumption is difficult to justify. It has not been proven that biological thinning is used

by the human brain. While it can be shown that certain neurons in the human visual cortex

detect lines at specific orientations, in the first instance these will be edges (contours) of

objects, detected along contrast borders in the eye's receptive field. It does not necessarily

follow that these edge-based image representations are subsequently thinned. Indeed it is

possible that human recognition is based on the actual shape outlines that are seen, rather

than abstract thinned forms. Outlines would seem a more robust basis for visual recognition

since they can represent images other than characters, and shapes that do not have a useful

thinned equivalent, such as circles and ellipses. It is probable that characters are processed

differently to other images. after being initially identified as text, but there is still no evi-

dence that thinned representations are used.

While it can be argued that humans write using strokes rather than outlines, it does not

necessarily follow that the way we write and the way we recognize characters are the same.

In fact, the human brain uses different cortical structures for these two tasks, as evidenced by

people with certain neurological disorders. Some patients are able to read but not write

(pure agraphia) (e.g., [RAB89]), while others can write but not read (pure alexia) (e.g .•

- 114-

[QG92]). The use of different parts of the brain suggests that different processes may be

involved for recognition of characters and drawing of characters.

In the absence of biological plausibility we must look to machine recognition for a

justification of the assumption. However. examination of the thinninglvectorizing approach

suggests that these processes have a detrimental effect on recognition accuracy. As dis-

cussed in section 2.3.1. the main problems with thinning and vectorization techniques are

their loss of geometric information. their sensitivity to noise and the difficulty of correct

skeletonization in areas of overlapping pen strokes.

Although skeletal representations have been used for conventional. feature-based. statistical

character classification they do not give high accuracy results when used in this way. This is

because they do not accurately preserve the geometry of characters, preferring to rely mainly

on structure [LLS92]. The medial lines formed by the process are only approximations of

the pen strokes. They essentially average the outlines on either side so they are only really

accurate when the outlines are precisely parallel. It is common to smooth the vectors. which

removes more of the detail.

For statistical classification. using the types of features described in sections 2.5.1 - 2.5.3,

the geometric detail of the shape is essential for accurate recognition. Section 5.6 compares

the performance of such a feature extracted from outlines and their vectorized forms. and

shows that the vectors preserve less of the discriminatory detail. The Karhunen-Loeve

features used by GUdesen (see section 4.2) also had problems with thinned characters. This

was partly due to the loss of geometric information but also due to another major problem

with skeletons. previously mentioned in section 2.3.5. While the aim of early thinning

methods was to make similar characters more alike by unifying their line thicknesses. it

actually made all characters more alike. GUdesen observed that from a statistical viewpoint

thinning brings the class means closer together while at the same time making the class vari-

ances greater. Statistical discrimination of classes using these types of feature becomes

much more difficult as a result of thinning and vectorization.

The loss of geometric information is not regarded as a problem by most researchers as the

skeletal representations are intended to be used for structural classification rather than

- 115 -

statistical. Skeletons facilitate the extraction of higher level features or primitives, such as

lines and curves or other types of stroke, and their structural relationships. The effectiveness

of thinning and vectorization should not therefore be judged by their unsuitability for statist-

ieal classification. Rather it depends on the accuracy of their primitive extraction.

Noise frequently produces spurs on the skeleton which should not be present. This creates

problems for the feature extractor and classifier, more so than noise in outline-based image

representations. Large spurs can be caused by very small outcroppings of noise, particularly

with distance transform methods. Components of an image which should be separate may

be joined by noise. The preservation of connectivity, which is the focus of most thinning

techniques, will mean these components are treated as a single component in the skeletal

representation; strokes may therefore become merged.

In addition to affecting the geometry of characters. these spurs and joins introduce

significant errors into higher level feature approaches. Geometric and topological features

(see section 2.5.4) are already very error-prone; introducing new difficulties through thin-

ning and vectorization means the reliability of detecting lines, curves, comers, junctions, etc.

is undesirably low. Similarly the extraction of primitives for higher level structural

classification (see section 6.3) is subject to a large degree of error. Unwanted spurs will

probably be extracted as individual primitives. Unwanted joins can merge primitives

together. Although most structural classifiers have some degree of tolerance to primitive

extraction errors, they are still highly undesirable. By allowing for error tolerance the

classifiers also allow greater structural flexibility in correctly represented characters. This

degree of flexibility creates greater amounts of class overlap within the classifier and there-

fore increases the classification error due to ambiguity. The simplified primitives used in

structural character classification make classes very similar even without the error tolerance;

with it. the degree of overlap is often so great as to make disambiguation by contextual vali-

dation extremely difficult.

It seems unlikely that the errors in extraction via pixel erosion or distance transform tech-

niques can be reduced. Vectorization techniques offer the possibility of more accurate prim-

itive extraction but some errors must be expected. The difficulty of accurate structural

representation of characters remalns a fundamental problem with thinning and vectorization,

- 116-

and the structural recognition approach. It should be noted that while structural character

recognition has been investigated for many years, it has produced few results comparable to

those achieved by statistical classifiers, or, in recent years, by neural classifiers. The compu-

tational cost of structural methods (which are template matching procedures) is also a major

handicap of the approach. Feature-based statistical or neural classification are much better

suited to practical character recognition applications. Chapter 6 compares these

classification approaches in more detail.

A further problem with the thinning/vectorization approach is the inability to accurately thin

or vectorize areas where pen strokes overlap. Areas where strokes double back on them-

selves or cross other strokes are extremely difficult to vectorize as they are often indistin-

guishable from single pen strokes. The correct path of strokes across junctions is often

ambiguous and depends on the class of the character being vectorized. It is therefore almost

impossible to correctly thin or vectorize these areas without knowing in advance what the

character is. Although some progress has been made in improving the vectorization of junc-

tions (see section 3.8) no existing vectorization algorithm has attempted to vectorize large

areas where strokes double back over themselves (except where they form junctions, in

which case the vectorizations are nearly always wrong). The only practical strategy is to

treat them as Single strokes. Stroke-based representation of these characters is therefore

inherently inaccurate.

As mentioned in the previous chapter, Pavlidis states that "strict vectorization is not

sufficient for a practical character recognition system" [Pav86]. The loss of shape detail

makes the approach unsuitable for feature-based recognition. The inaccuracies in represen-

tation and the difficulties they introduce into structural classification make accurate

Structure-based recognition improbable also. If these techniques are to be successful then

significant improvements must be made to enable preservation of detail and severe restric-

tion of the number of extraction errors. A hybrid classification approach would appear to be

necessary.

4.3.2. Smoothing, Filling and Joining

Smoothing (see section 2.3.4), and the related techniques of filling and joining (section

2.3.3), are commonly applied to all forms of image representation. 1be techniques are in

- 117 -

some cases different but achieve similar results. Their aim is to remove noise and distor-

tions from character images. thereby making characters of the same class more similar.

Approaches to smoothing often stem from a desire to make the characters more aesthetically

pleasing to humans by removing bumps or jagged edges, and simplifying the representation.

Reduction of the data required to store characters is a desirable. though not essential. quality

of smoothing processes, provided important detail is not lost. The removal of noise from a

representation is also desirable as it is likely to reduce errors in feature extraction and

classification. provided. again. that important detail is not removed along with the noise. In

practice, however, smoothing cannot distinguish between noise and detail. so these provi-

sions are not met.

The levels of noise in real character recognition applications are sufficiently high that they

prohibit a size-based distinction between noise and detail. Although the most powerful

methods can be tailored to form a precise size-based division between bumps to be removed

and bumps to be kept (e.g., Ho and Dyer's medial axis-based smoothing [HD86]) there is no

perfect cut-off point. Smoothing methods based on the size of protrusions or intrusions in a

character have to make a compromise between the amount of noise they aim to remove and

the amount of incorrect removal of detail they will allow. Any loss of detail at this stage is

detrimental to the classification rate. Even small protrusions from a shape can indicate the

difference between two character classes, e.g., a small tail at the bottom left of a circle might

indicate the character is an 'a' rather than an '0'. On other characters, a similar sized pro-

trusion might easily be considered to be noise.

Shape-based smoothing methods (i.e.. methods which look for particular patterns of protru-

sions and intrusions) are also incapable of distinguishing detail from noise for the same rea-

son. There is no way to tell whether a protrusion is noise or detail without knowing in

advance what the character is. Filling and joining techniques face the same problem. A

small black dot is usually to be removed as noise by the filling process. but if it is the dot of

an 'i' or 'j' then it is a vital piece of distinguishing detail. Joining techniques which merge

all of a character's components into a single component are also fundamentally unsound for

processing lower case "i's and 'j's. Merging the dot of the 'i' with its stalk renders it indis-

tinguishable from an '1'. But in other circumstances. the joining of components is

- 118 -

appropriate and beneficial. Banks [Ban911, whose joining method was described in section

2.3.3, concludes that there is no perfect definition of when two components should be joined

because identical components should be merged in one context and not in another.

All these techniques perform acceptably when the character image meets their expectations.

However, no algorithm can cater for every situation without prior knowledge of the

character's class. Since this knowledge is unavailable at the preprocessing stage. the deci-

sions about what to treat as noise and what to treat as detail, and when to join components

and when to leave them separate, should be left to a later stage when we have some idea of

what the classification is.

4.3.3. Polygonal Approximation

Polygonal approximation (see section 2.3.2), when considered as a preprocessing stage

rather than a feature extraction, aims to produce a smoothed outline form. It suffers from the

same problems as other types of smoothing. There is no clear division between noise and

detail. Polygonal approximation loses more information than most other smoothing

methods because it does not just remove noise; it simplifies the character's shape to a small

set of lines. It therefore faces the additional problem of deciding which portions of the out-

line should be preserved in detail and which should be simplified. As with the noise prob-

lem. there is no general way to decide this without prior knowledge of the character's class.

The polygonal approximation technique is more commonly used in applications where the

objects are larger, such as the representation of maps or engineering drawings. In these

applications, the technique is appropriate because the fine detail is less important;

Simplification and removal of noise is the main concern. Polygonal approximation performs

well at these tasks in these applications because the objects often have long sections of

roughly straight or smoothly curving lines. The smaller objects that are typical in character

recognition do not benefit greatly from this kind of smoothing. Their outlines generally vary

much more over short distances and therefore require a large number of approximating line

sections to accurately represent them.

In character recognition, polygonal approximation is not commonly used for smoothing

alone. Other smoothing techniques, that concentrate only on removing small, local pieces of

- 119 -

noise. are generally preferred as they risk less distortion of the characters. Approximations

are best at smoothing when the images are clean and smooth initially. In these cases. the

only benefit is a simpler representation. but this rarely justifies the computational cost of the

procedure.

Polygonal approximations are more commonly used as structural feature detectors or primi-

tive extractors (see section 6.3.2). Although their use as features has been discussed in other

sections. we shall consider these primitives here from a preprocessing viewpoint. Polygonal

approximation primitives are less prone to errors than stroke-based primitives taken from

thinned or vectorized characters. However. they have had no success as pure structural

primitives and so have mainly been used in hybrid statistical/structural methods. such as

attributed string matching. where the primitives have associated features (e.g .• position.

angle. length). Attributed string matching with polygonal approximations has had some suc-

cess on simple shapes and handwritten digits but is unlikely to be useful for more general

character recognition. This is because there is little similarity between characters of the

same class.

The vertices of the polygons. and hence the lengths and angles of line sections. are highly

variable between similar shapes. During the split and merge procedure (see section 2.3.2).

vertices often become stuck in small local distortions (bumps and notches) on the outlines

where they would not normally occur. Though they are actually a way of smoothing noise.

they are themselves affected by it. Even without these local distortions. the number of ways

of apprOximating curved line sections is very large and the approximation algorithms cannot

guarantee that the same vertex points will be found for every character. They cannot even

guarantee that the same number of vertex points will be used for a particular curve of a char-

acter.

The total number of approximating lines used has a significant effect on the variability of

apprOximations. 1bere are two options for choosing how many lines to use (equivalently

how many vertices to use):

1) take the same number for all characters;

2) take a variable number according to the needs of the approximation algorithm.

- 120-

Using the same number for each character presents difficulties. The number of lines must be

sufficient to represent characters with complex outlines, such as's' or 'm'. Approximating

much simpler characters, such as 'I' or '1', with this many lines gives a much greater accu-

racy of representation than intended and allows much greater variability between simple

characters. To overco~e this it is important to consider the length of line primitives when

evaluating the cost of edit operations during matching. This is why pure structural methods

have failed and attributed primitives are required.

Using variable numbers of lines means that the number of primitives will vary between char-

acters of the same class. Insertion and deletion of primitives must therefore be tolerated at

reasonably low costs. This causes the same problems as error tolerance in stroke-based

primitives. In practice it is extremely difficult to find costs for edit operations that allow

flexibility within a class but do not allow overlap with other classes. This is why the

approach has only been successful with simple shapes and small sets of classes. The degree

of variability and the tolerance requirements cause too much class overlap when used on

wider recognition problems such as upper and lower case letters.

Another fundamental problem with the use of polygonal approximations as structural primi-

tives is that they represent outline structure by their ordering. This works for single outlines

but there is no obvious way to represent characters consisting of multiple outlines. There is

no Simple ordering that will allow multiple outline approximations to be compared with

their corresponding approximations in a template. Broken characters in particular are very

difficult to match to an unbroken character template of the same class.

Approximation-based primitive extraction also faces the same problem of the structural

approach that was described in section 4.3.1 (and also in chapter 6), namely, the high com-

putational cost of structural classification methods.

4.3.4. Normalization

Normalization techniques (see section 2.3.5) can loosely be divided into two types: deform-

ing (lme-width normalization. and slant and slope correction by shearing) and non-

deforming (size and position normalization. and slant and slope correction by rotation). By

deforming we mean that the shape of a character is changed by the normalization process.

- 121 -

In the same way that smoothing, filling and joining present problems to the recognition task,

deforming normalization also has undesirable effects. Non-deforming normalization, on the

other hand, is generally beneficial.

Scaling the character whilst precisely preserving its shape does not normally have any nega-

tive effect on the discriminatory detail of the image representation. Many of the feature sys-

tems used in character recognition are intentionally size independent. It is one of the funda-

mental assumptions of the field that characters should be able to be recognized regardless of

their size.

Long-term problems do arise however if all characters are pre-scaled to a uniform size.

When the class alphabet includes both upper and lower case characters we find that the upper

and lower case forms of some letters are very similar, even identical, in shape and differ only

in their height and width, e.g., 'C' and 'c', '0' and '0', 'S' and's', and 'V' and 'v', A com-

mon feature that is often used in conjunction with size-independent features measures the

Original height and width of the character. This information is useful in distinguishing these

similar upper and lower case characters. The problem with size normalization therefore, is

that the original height and width information is lost if the character is scaled prior to feature

extraction. Preserving the scale factors used in size normalizing each character, and storing

these to be passed on to the feature extractor, is one way of circumventing this problem.

Another problem with size normalization is that in some representation formats the scaling

may not precisely preserve the original shape. Quantization errors occur when bitmaps are

scaled on a discrete grid unless the scale factor is an integer. The actual scale factors

required for practical size normalization are almost always non-integers so some distortion is

inevitable. In this case the size normalization is not truly non-deforming. GUdesen (see sec-

tion 4.2) was as precise as possible in his size normalization. His method, described in sec-

tion 2.3.5, calculates the amount by which scaled pixels overlap squares on the bitmap grid,

and thresholds this amount to determine whether the squares should be black or white in the

new representation. This still introduces quantization error however. Despite this, Gtidesen

reduced his original error rate by a factor of six using this normalization process, clearly

showing that the improved classification accuracy resulting from the standardization of char-

acter size far outweighs the errors introduced by imprecise scaling.

- 122 -

Position nonnalization (centering or displacing) is another (generally) non-deforming nor-

malization process, whose sole purpose is to aid the feature extraction process. By aligning

characters in analogous positions within a reference frame the process overcomes the prob-

lems of some feature systems. Several of the feature systems in early usage were not invari-

ant to the position of characters within the reference frames in which they were presented

(usually bitmaps). This is less of a problem with modem systems. most of which use more

flexible formats that are not related to individual frames for each character but are related

instead to the frame of the entire document, e.g .• outlines and vectors. Rather than having

them predetermined by the fonn of presentation. these feature systems generally determine

their own reference points. e.g .• centre of gravity. or uppermost left-hand point on an outline.

For feature systems which are still limited by individual character reference frames some

form of position normalization is desirable to provide a degree of position invariance. Dis-

placement is a suitable technique for this. Centering is suitable provided it is a non-

deforming process. The centering transformation should translate by integer amounts if a

discrete representation is being used. Non-integer translations on a discrete grid introduce

the same kind of quantization errors as size normalization. and these should be avoided.

GUdesen noted that his centering techniques sometimes translated parts of the character out-

side the reference frame. This should also be avoided as it is these outermost parts of char-

acters that are likely to hold the important shape details necessary for identification.

Skew correction by rotation is a non-deforming operation, provided the character is

translated to continuous coordinates. Rotation to discrete (integer) coordinates introduces a

large number of quantization errors. GUdesen used a discrete coordinate grid and found that

these errors could "tear a character apart and give rise to substantial structural changes."

1be overall classification error increased by a factor of 4 in Gudesen's experiment. He sug-

gests that the use of larger grids would reduce the error but the real problem is the size of the

characters. To reduce quantization error, the characters must appear larger on the grid. This

requires higher resolution scans. The use of continuous (floating point) coordinates is a far

better solution.

This form of correction can be achieved in an alternative way. however, by using rotation

invariant features, e.g., global transforms (see section 2.5.2), geometric and topological

- 123-

features (see section 2.5.4).

Slant correction by shearing is deforming but is generally the most effective of these types of

operation. Few feature or classification methods can achieve exactly the same effect (they

can correct slant by rotation but not by shearing). Although it is not possible to estimate the

angle of slant with 100% accuracy, shearing can still produce approximately upright charac-

ters. Results on handwritten digit recognition using the Radial Distance/Sector Area features

were improved by the addition of shearing slant correction (see section 5.5.6). This suggests

that the benefits of the sheared forms outweighed the distortion effect of the process.

Ghdesen was less impressed with shearing. He regarded it as computationally expensive

and, although he reduced his error rate by shearing in the x direction, he thought the calcula-

tion effort barely justified the improvement. Gudesen also found that additionally shearing

in the y direction was ineffective. The errors introduced by the distortion cancelled out the

advantages of slant removal and the error rate stayed the same as it was without any slant

correction. However, the distortion in GUdesen's experiments was panty due to quantization

errors caused by his use of discrete coordinates. With continuous coordinates the distortion

would not be as great. although shape can still be deformed significantly in heavily slanted

characters.

There are long term problems with slant correction because some characters are naturally

slanted. e.g., '\', '/', '7'. These characters will become harder to distinguish if this natural

slant is removed, particularly the forward and backward slashes which become indistinguish-

able from some 'I's and '1' s. This problem could be dealt with by storing the amount of the

original slant as a feature. Another way is to use classes which represent all these possible

characters ('\', '/', '1' and '1') and disambiguate them later according to the context in which

they are found. This is not a great problem as such a strategy will probably be required any-

way to disambiguate 'l's and 'I's. However, it is hard to see how forward and backward

slashes can be distinguished by context. A third approach is not to shear the characters but

instead to learn the range of slant for each character through the use of a large, representative

training set.

Shearing of whole words is perhaps the most effective strategy. If a reasonably accurate

measure of slant can be determined for the whole word, then individual characters with no

- 124-

natural slant may be sheared upright, while the other characters in the word retain their

natural slant. Shearing of words can also aid their segmentation by vertical lines. The

difficulty is in determining the correct amount of shearing required. Bozinovic and Srihari's

method [BS89] of shearing cursive script is reasonably effective but performs best when

characters have consistent slant within each word. Words with variable character slant can-

not be appropriately sheared by a global operation. The variably slanted characters must be

sheared individually after segmentation.

Line-width normalization is rarely used as it can produce too much distortion and loss of

detail in characters. While the specific methods described in section 2.3.5 have had some

practical use in their particular systems, they are not suitable for general application.

4.4. The Alternative - Minimal Preprocessing
The underlying assumption of the traditional preprocessing approach is that there is some-

thing "wrong" with input characters that do not conform to a small set of idealized class

models. A recognizable character should exhibit no distortion, noise. slant. style variation or

variability of line thickness. This section suggests that an alternative philosophy, which

rejects that assumption, may be equally effective, if not more so. The minimal preprocess-

ing approach assumes that any input character which can be recognized by a human is a

valid representation of its class. The approach attempts to avoid the time consuming and

potentially distorting preprocessing stages and leave any normalization or smoothing to the

later stages of recognition.

Early character recognition used simple features and classifiers. Some preprocessing of the

input was required to achieve worthwhile results. However, as feature extraction and

classification techniques developed they became more tolerant to noise, distortion and varia-

tion in characters. This resulted in a standard model of character recognition where this

tolerance was being attempted at all stages of the process. The fundamental idea behind the

minimal preprocessing approach is that this kind of tolerance is simpler, more effective and

less error-prone when performed at the later stages of recognition. A parallel can be seen

with Casey and Nagy's approach to segmentation [CN82]. where a blind, single-pass attempt

is rejected in favour of a recursive system, linked to the later stages of classification and con-

textual processing.

- 125 -

We shall now see how preprocessing can be avoided by using alternative approaches. There

are four main functions of preprocessing: the facilitation of structural primitive extraction;

Simplification of the character representation; removal of noise and distortion; and normali-

zation.

Although the use of thinning. vectorization and polygonal approximation to facilitate primi-

tive extraction can introduce errors. it is unlikely that alternative. outline or bitmap-based.

extraction techniques would be less error-prone. The difficulty of tolerating extraction

errors. without allowing large amounts of class overlap. is a fundamental problem in struc-

tural classification. Rather than attempt to address this problem. the minimal preprocessing

approach favours a statistical or neural classification. using the types of feature described in

section 2.5. These classification paradigms are much faster and therefore far more practical

than Structural recognition. Error tolerance causes much less class overlap in feature-based

clasSification and these approaches are generally more accurate than structural methods.

Thinning, vectorization and polygonal approximation can still be used to simplify the image

representation for presentation to statistical and neural classifiers. However. this

information-losing and error-prone simplification is not well suited to feature extraction.

where preservation of detail is essential. These preprocessing operations. and their associ-

ated errors, can be avoided by using the original outline or bitmap image representations as

they are. Although they are not simplified like skeletons and approximations. this is not a

major factor in modem character recognition. Modem computers do not have the same res-

trictions on memory and speed that made simplification desirable in early OCR Research.

Many features have been suggested for use on outlines and bitmaps (see section 2.5).

Several of these features have certain invariant properties that can obviate the need for other

types of preprocessing (smoothing and normalization). This makes them ideally suited to

the minimal preprocessing approach.

SmOOthing(including the smoothing of outlines by polygonal approximation) is intended to

remove noise and reduce distortion of the characters. The alternative approach is to tolerate

noise and distortion in the later stages. Many types of feature have been developed with

noise tolerance in mind. Character classifiers generally exhibit some degree of noise and

- 126-

distortion tolerance; many of them are capable of performing correct classification in reason-

ably noisy environments. The combination of noise tolerant features with noise and distor-

tion tolerant classifiers provides an effective alternative to smoothing.

The difficulty of removing noise without removing important detail suggests that it is better

to leave the image as it is and allow the later recognition stages to decide which is which.

Smoothing processes remove protrusions and intrusions uniformly over the image, with no

regard to their positions on the character. 1bese positions can often indicate whether the

objects are detail or noise. A significant advantage of tolerating noise at the feature and

classifier level is that the classifier's attention focuses on the areas of the image which typi-

cally contain the distinguishing detail for specific classes. They therefore emphasize detail if

it is in the right place and de-emphasize noise in the wrong place. While it is possible that a

noisy protrusion in a character occurs in the position where a distinguishing protrusion is

expected in a character of a different class, this is less common. Most of the time the

minimal preprocessing approach will be more effective than smoothing.

Filling and joining are considered detrimental to recognition as they introduce too many

errors. The minimal preprocessing approach favours the use of noise tolerant features and

classifiers to achieve the same effect as filling. Noise tolerance at these later stages is less

error-prone and more efficient for the same reasons as for smoothing. Joining requirements

can be avoided by using features which can operate on broken and multi-part characters.

Thls is an important capability for most systems because accurate joining is impossible

Without knowing what the character is. Many features do not have this capability so devis-

ing such a feature is an important aim of the minimal preprocessing approach.

Features have been developed which can provide alternative methods of normalizing charac-

ters. The main advantages of using invariant or normalizing features are that they are usu-

ally faster and do not require storage of the normalized image representation. Other advan-

tages may also arise for specific types of normalization.

Size normalization can be achieved at the feature extraction stage. Since many of the more

successful feature systems are naturally size independent, the normalization process of scal-

ing and storing the image representation is unnecessary. In addition. the advantage of

- 127 -

leaving size invariance to the feature extractor is that the original height and width informa-

tion is still available at the extraction stage, without requiring it to be specifically preserved.

Thus no preprocessing size normalization is required if a suitable feature system is used.

Further advantages may occur where the original image representation uses integer coordi-

nates, e.g., an unpreprocessed outline. A precise preservation of the character's shape will

very often require scaling these integers to ftoating point coordinates. This increases the

computation time of the feature extraction. The altemati ve strategy might allow the feature

extractor to operate on integers and hence be faster.

Position normalization can also be achieved at the feature extraction stage. By using a more

ftexible representation format than bitmaps the need for alignment of each character within

an individual reference frame is eliminated. Many feature systems can determine their own

reference point for producing position invariant features. The translation and storage of a

new representation of each character is therefore a redundant process. Again, the choice of a

Suitable position invariant feature system obviates the need for this kind of preprocessing.

Slant correction by shearing is not easy to perform during feature extraction, however the

similar rotational correction can be achieved using rotation invariant features. Since features

are usually continuous-valued, they can cater for rotation without introducing quantization

errors, such as can occur with preprocessing rotation in discrete coordinates. As with the

previous forms of normalization, the use of rotation invariant features is more efficient than

preprocessing because the correction is implicit, rather than requiring an explicit translation

and storage of each character.

While some forms of character variability can be tolerated by the use of appropriate features,

other types of variation, such as style and slant (shear), must be dealt with by the later

classification stages. The minimal preprocessing approach therefore requires that a large

training set is used which represents the range of variability. Although the required set is

large, databases such as the NIST set (see section 2.6.1) exist which give an acceptable

representation of the natural variation in real handwriting. Not every conceivable variation

may be included, but a system trained for general recognition from such a set will learn the

most common ranges of variation. It is likely that practical character recognizers will have

- 128 -

to be able to learn new users' handwriting. either while they are in use or from new training

samples taken from individual writers. Assuming that a system can be tailored to learn an

individual user's writing, it is not necessary for the initial training set to include every possi-

ble variation.

The minimal preprocessing approach has been adopted in the remaining work in this thesis.

Slant correction is the only preprocessing operation which has not been entirely avoided.

Unprocessed outlines are used rather than thinned or vectorized representations. Chapter 5

contributes a new feature to this approach which fulfills the requirements mentioned above.

The large NIST and CEDAR databases are used to teach classifiers the wide ranges of char-

acter variability without simplification or abstraction by preprocessing. The results obtained

using this approach suggest it is a viable alternative to traditional preprocessing.

4.5. Conclusions

The traditional approach to character recognition, involving one or more one-way prepro-

cessing stages, has been discussed. Problems with the approach have been described and an

alternative, minimal preprocessing approach has been proposed which aims to avoid these

problems.

A statistical or neural, feature-based classification is favoured over structural methods. An

outline or bitmap image representation is used. rather than performing a thinning or vectoriz-

ing preprocessing operation. Features must be selected which are tolerant to noise and varia-

tions in orientation, size and position. Some tolerance to distortion and style variation, and

an ability to operate on broken or multi-part characters, is also desirable. This avoids the

need for the preprocessing stages of smoothing. filling, joining and normalization.

Classifiers should also be tolerant to noise and distortion. The use of large, representative

training sets is required, to cope with the wide range of character styles.

There are too many different preprocessing methods to allow a quantitative comparison of

all of them and no such evaluation has been attempted. While no conclusion can be reached

about which approach is better, it is suggested that minimal preprocessing avoids many

problems, is computationally less expensive and has the potential to be at least as effective

as the preprocessing strategy.

- 129-

Chapter 5

A Robust Feature for Outline Representation

5.1. Summary
Following the discussion in chapter 4. this chapter proposes a new outline-based feature for

off-line character recognition. designed with the minimal preprocessing approach in mind.

Reasonable invariance and noise tolerance are attained without preprocessing. though the

feature can also be extracted from preprocessed outlines. The main quality of the feature is

its ability to cope with broken outlines and multi-outline characters, which many outline-

based features cannot.

Section 5.2 outlines the problem and the work on which the new feature is based. Section

5.3 describes the feature and section 5.4 expands on its extraction from outlines. Some

results on the NIST and CEDAR segmented character databases are reported in sections 5.5

and 5.6, the latter comparing classification accuracy on preprocessed and non-preprocessed

characters. The possibility of adaptive segmentation through the use of these features is

explored in section 5.7. Extensions to the feature extraction and adaptive segmentation

methods are proposed in section 5.8. The success. usefulness and potential of the feature is

evaluated in section 5.9, and section 5. IO summarizes what has been achieved. Section 5.11

describes the notation and symbols used in this chapter.

5.2. Normalized Contour-Based Feature Strings
As described in section 2.5.2. numerous features have been proposed for the representation

of outlines to a character recognition system. In section 2.5 several abilities of ideal features

were listed. In practice. not all of these are achieved by anyone feature. In 1990 Dinstein

and Landau [DL90a) proposed a feature for object recognition. the normalized contour-

based feature string. which had many of the desired properties.

The normalized contour-based feature string is a list of distances from the centre of gravity

of an outline to a point on the outline, taken at fixed intervals along the contour. The fixed

- 130-

distance is either a function of the maximum centre-of-gravity-to-outline distance for the

contour, or it is a factor of the total length of the outline. The second method is preferred as

it gives a constant number of feature points for each character. With the first method the

number of intervals varies, with longer perimeters producing longer feature strings; this

complicates matching. 1be distances are normalized using the maximum distance as the

normalization factor.

lbis feature is invariant to position, size and rotation (assuming an analogous starting point

can be determined for each character). Dinstein et al. [DLG91] deseribe how it can be com-

puted in parallel and how an approximation of the original outline can be reconstructed from

the feature strings. The main quality this feature lacks is the ability to handle multi-outline

characters (e.g., 'I') and broken images which can be caused by binarization thresholding

errors, pens with poor ink flow, hasty writing and other factors.

A variation on the Dinstein and Landau approach is proposed which maintains the properties

of the feature and in addition is tolerant to breaks in outlines and can easily operate on

multi-outline characters. It is therefore more robust and provides a solid basis for character

recognition applications. It has also been extended to reduce the loss of detail between the

sampled intervals, thereby increasing the accuracy of the representation.

5.3. The Radial Distance/Sector Area Feature

The Radial Distance/Sector Area (RD/SA) feature is a composite of two closely related

features. The Radial Distance feature and Sector Area feature are (normally) equal length,

sealed, floating point vectors. The first is a simplified geometric representation of the outer

edge of an outline and the latter is a measure of the distribution of the character's area.

Although the two measures could be used separately, they are intended to be combined as a

Single feature vector.

The Radial Distance feature takes measurements from a set of nested outline loops (see sec-

tion 2.1.3), representing the pixel boundaries in a text segment. Positional invariance is

achieved by basing measurements on a central reference point for each segment. Feature

measurements will then be independent of where the character segment occurs in the image.

Two methods have been tested for determining the centre point.

- 131 -

The greatest invariance of centre point was achieved using the centre of gravity method.

The centre point is simply the centre of gravity of the segment. All even level outline loops

in the segment are considered. remembering that odd level child loops subtract from the area

of the even level parent loop. Uniform weight per unit area of the outline is assumed, except

in situations where the segment has been vectorized and area information has been lost, in

which case uniform weight per unit length of the vector is assumed.

Note that other forms of preprocessing, such as smoothing and line width normalization, can

result in outline loops with zero area. In the context of other loops with non-zero area this

causes a problem. Such loops must be taken to have zero weight which means they are

ignored for the purposes of determining the reference point. By avoiding these forms of

preprocessing, it can be ensured that all outline loops have a non-zero area.

The second method, called the centre of segment method, is to find the maximum range of x

and y coordinates covered by the outlines in the segment. TIle midpoints of these two ranges

give the coordinates of the centre point This method is inferior to the centre of gravity

method when the original outline area information is available, but proved far more effective

on vectorized characters. The centre of segment varies more between similar characters than

the centre of gravity but is less likely to fall on a vector. This is beneficial to the method, as

will be explained later.

The Radial Distance feature is an array whose elements are the furthest Euclidean distance

from the centre point to a point on an outline loop, along a radial line extending from the

centre point at a particular angle from the vertical. The array elements are ordered by the

size of the angles, which encompass the range 0 to 21t in equal steps. The Euclidean dis-

tances are scaled for normalization so that the largest distance becomes 1.0. (Scaling so that

the average distance becomes 1.0 was less effective.) This gives a size invariant feature vec-

tor. The representation of the outline increases in accuracy with the number of angles.

Although the detail of the inner loops is lost, most of a character's shape information is

present in the outermost outlines. However. information about the outlines in between the

radial lines is also lost. It would be possible to include this information by averaging the

centre-to-outermost-outline distances over the whole range of angles in the sectors between

- 132 -

o

S7.693~

47.235~

p = One pixel width ~ 41t
5

Radial distances 14.625 16.029 12.010 10.958 19.005 10.375 14.594 15.328 14.277 13.133

Sector areas 43.170 57.693 30.787 67.208 36.205 40.751 49.396 47.235 37.296 38.260

Normalized RD 0.770 0.843 0.632 0.577 1.000 0.546 0.768 0.807 0.751 0.691

Normalized SA 0.642 0.858 0.458 1.000 0.539 0.606 0.735 0.703 0.555 0.569

Figure 5.1 Example of Radial Distance/Sector Area feature measurements. Ten angles in

steps of 1tI5 have been used and the centre of gravity has been used as the reference point.

The shaded region indicates the area of the image contained within the first sector. The

measurements are distances in pixel widths (P) and areas in square pixel widths (p2). The

corresponding normalized feature values are shown in the table.

\

- 133 -

adjacent radial lines. rather than measuring only along the radial lines themselves. This

averaging will result in a smoothing of detail in the sectors and so is not ideal. If greater

detail is required in the Radial Distance measurements it is best achieved by increasing the

number of radial lines.

An alternative method for preserving some of the lost information without increasing the

number of angles used is the Sector Area feature. This feature attempts to preserve informa-

tion about both the outermost outline and the inner loops. It is recommended that the Sector

Area feature be used in conjunction with Radial Distance.

The Sector Area feature is an array of the areas contained by the outlines within each of the

sectors between the radial lines. These areas are also scaled for normalization so that the

largest becomes 1.0. Figure 5.1 illustrates the sector area measurements for an example

character and the resulting normalized feature vector. The area contained by the outermost

loop is directly proportional to the square of the average centre-to-outermost-outline distance

mentioned above. Inner loop information is preserved as these loops subtract from the area,

giving some indication of their size.

The shape is described not only by the distances and areas but by their position in the respec-

tive arrays. By cyclically shifting the elements of the distance and area parts of the array,

the character can be recognised regardless of its orientation. Rotational invariance can there-

fore be achieved at the expense of increased classification time. The original orientation can

be preserved, to distinguish characters such as 'n' and 'u' which may be rotations of each

other. The method is not truly rotationally invariant since the radial lines. will only faIl on

exactly the same points on the outline if the rotational angle is a multiple of 27r1number of

angles used. An approximately rotationally invariant feature vector is possible however,

with invariancy increasing with the number of angles.

The method depends on radial lines intersecting with the image. With unvectorized outlines

this is not a problem as even if the reference point is in a line section of the image there will

still be an intersection with the outline of that section. With vectorized outlines, problems

OCCur when the reference point falls on a vector: there is no meaningful intersection distance

between the reference point and the vector. It was found that the reference point fell on a

- 134-

vector less often using the centre of segment. rather than the centre of gravity. as the refer-

ence point.

S.4. Extraction
The feature extraction process operates on a set of top level parent outline loops. together

with all their child loops. This set generally represents a single segmented character and is

referred to as a segment. The first step is to determine a central reference point for the seg-

ment using one of the two methods described in section 5.3.

Let angles be the number of intervals at which feature measurements are to be taken. This

can similarly be thought of as the number of radial lines used. Then step is the size of the

step taken between each feature measurement. more precisely it is the size of the angle at the

reference point between each pair of adjacent radial lines. Let C be the reference point and

P and Q be points on an outline in the segment. Let distance and area be arrays of size

angles. Each element i of distance stores the current greatest distance from C to an outline

at bearing i x step (the bearing of the ith radial line). Each element i of area stores the

current total area of the segment between radial lines with bearings i x step and i x (step +

1). i.e., the current total area of the ith sector. Both arrays are initially zeroized. Note that

bearings greater than or equal to 21twill exceed the array boundaries and so the correct array

index corresponding to angle 9 is 9/step % angles. where % is the modulus operator.

The algorithm is as follows:

1. While unexamined outlines of the segment exist. select one. Let sign equal +1 if it is

an even level loop and -1 if it is an odd level loop.

2. Set P to the first point on the outline and Q to the next point around the outline.

Record this initial position of Q.

3. The following measurements are taken:

9p - Bearing of P from C

9Q - Bearing of Q from C

dp - Euclidean distance from Pto C

dQ - Euclidean distance from Q to C

- 135 -

4. If P = C goto step 10.

5. If Q = C and Op is a multiple of step and dp is greater than distance[Oplstep % angles],

set distance[Oplstep % angles] equal to dp.

6. Using Op and OQ' determine the range of indices into distance and area corresponding

to radial lines crossed in going from Pto Q. Let the first of this range be start and the

last be stop. Determine the direction of movement in going from P to Q. Set the vari-

able dir to +1 if the movement is clockwise and to -1 if anticlockwise. This value indi-

cates if the area enclosed by the triangle CPQ, ignoring any loops inside the current

outline, is inside (dir = +1) or outside (dir = -1) the current loop. In combination with

sign it indicates if the enclosed area is positive or negative (black or white pixels).

7. If start = stop, a radial line has not been crossed. Add sign x dir x (area of triangle

CPQ) to area[start % angles]. Goto step 10.

8. Let the index i step through start to stop-Y. Let R be a point on the outline where the

ith radial line intersects, dR be the distance from C to R, and OR be the bearing of R

from C (the bearing of the ith radial line). As the indices are stepped through, the posi-

tion of R moves along PQ. The example in figure 5.2 shows the positions, R I and R2,

of R as it moves from P to Q. The previous position of R is remembered at each stage

by advancing either P or Q to that position. Before moving Q its starting position is

recorded For each stage, i, perform steps Sa to Sd:

8a. If Op = OQ' set dR equal to dQ. Goto step 8d.

Sb, Set OR equal to (i % angles) x step. Find the point R where the radial line with

bearing OR intersects the line PQ. Calculate dR'

8c. If dir = +1, the crossed radial lines are being stepped through from Pto Q. Add

sign x dir x (area of triangle CPR) to area[i % angles]. Advance P to R: set Op

equal to OR. If dir = -1, the crossed radials are being stepped through from Q to

P. Add sign x dir x (area of triangle CQR) to area[i % angles], advance Q to R

and set OQequal to OR'

8d. If dR > distanceii % angles], set distanceii % angles] equal to dR.

9. Add sign x dir x (area of triangle CPQ) to area[stop % angles]. Return Q to its start-

ing point recorded in step 8.

10. Advance P to the current position of Q. Advance Q to the next point around the out-

line from its current position. If Q is not at its initial position (recorded in step 2) goto

- 136-

step 3, else goto step I.

o•
~x

// 5
/

/...., __ Intersection between first
radial line crossed and line PQ

Intersection between second
/ radial line crossed and line PQ

/.."1JJ
-~ 5

QC

Figure 5.2 Division of the area of triangle CPQ between sectors. The areas of

triangles CPR1, CR1R2 and CR2Q are added to area[l), area[2] and area[3]

respectively.

The combined RD/SA feature is simply the concatenation of the distance and area arrays.

The speed of extraction might be increased by pre-calculating sine and tangent values (used

in the computation of triangle area and in determining the point R in step 8b) for the radial

line angles so they may be quickly found by the algorithm using a lookup table. The algo-

rithm is also much faster if outline coordinates are restricted to integer coordinates, as is the

usual form after outlining a binary image. Preprocessing, however, often produces floating

point coordinates.

5.5. Results

The RD/SA feature has been tested using the NIST Special Database 3: Handwritten Seg-

mented Characters and the CEDAR CDROM Image Database 1. described in section 2.6.

The following data sets have been used:

NIST Digits - a subset of 3469 pre-segmented handwritten digits (0-9) taken from

the NIST database;

NIST Lower-

NIST Upper-

CEDAR Digits -

CEDAR Lower -

CEDAR Upper -

- 137 -

the complete set of 45313 pre-segmented handwritten lower case

characters (a-z) from the NIST database;

the complete set of 44951 pre-segmented handwritten upper case

characters (A-Z) from the NIST database;

the complete set of 27688 pre-segmented handwritten digits (0-9)

from the combined bi-tonal image training and test sets of the

CEDAR database;

the complete set of 8508 pre-segmented handwritten lower case

characters (a-z) from the bi-tonal image training and test sets of the

CEDAR database;

the complete set of 12820 pre-segmented handwritten upper case

characters (A-Z) from the bi-tonal image training and test sets of

the CEDAR database;

Two types of tests have been conducted, the first to compare the feature's ability to discrim-

inate character classes using different extraction parameters, and the second to evaluate its

practical recognition accuracy and ability to generalize to unseen data.

Many statistical measures have been suggested for evaluation of features and their ability to

distinguish classes, e.g., discriminant functions [Fuk72] [DH73], Fisher's Criterion [Fis36],

probabilistic distance and dependence measures (Bhattacharyya [Bha43], Partick-Fisher

[PF69], Chernoff [Che52], Matusita [Mat55], Mahalanobis [Mah36], divergence [NF77D,

entropy measures (Vajda, Shannon, Bayesian quadratic, Bayesian cubic) and interclass dis-

tance measures (City block, Euclidean, Chebyshev, quadratic, nonlinear). A good overview

is given in [Kit86]. Of these, Bayesian quadratic discriminant functions, which assume a

normal distribution of the feature measurements, have been chosen for evaluating the

RD/SA feature's performance on the character databases. These discriminant functions are

applied using a parametric Bayesian quadratic classifier (see section 6.2.1).

The quadratic discriminant gives a probabilistic measure of the ability of the features to

diSCriminate the data sets based on the means and covariance matrices of the sample classes.

The error rate of the discriminant is an indication of the amount of overlap of class distribu-

tions. In practice the Bayesian classifiers' assumptions about the distribution, means and

- 138 -

covariance matrices of the classes are imprecise since they are based on finite sample sets.

However, the quadratic classifier's error rate is close to the true Bayes error rate, which is a

common measure for evaluating features [SS88].

The quadratic classifier error rate (or alternatively the correct classification rate) is therefore

a useful measure for comparing the various methods used in the feature extraction. In the

initial tests the quadratic classifier is used in self tests on the complete data sets to evaluate

the effectiveness of different normalization factors and reference centres, and to confirm that

the addition of the sector area feature and the use of greater numbers of angles will improve

the features' performance. Note that the initial self tests are not intended to be an indication

of recognition accuracy or generalization ability.

With a view to adaptive segmentation and class-representative feature feedback (see section

5.7 and Chapter 8) the learning vector quantization (LVQ) classifier, developed by Kohonen

[Koh90a] [Koh90b] [Koh9Oc], is envisaged for use in the overall system. Since Kohonen

compares the accuracy of LVQ with parametric Bayesian classification [Koh90b] they were

a logical choice for testing the performance of the feature. In all cases it was found that an

LVQ-trained classifier achieved accuracy approximating that of the quadratic classifier. The

Bayesian quadratic discriminant therefore provides both a benchmark to compare features

and an indication of the potential practical performance using LVQ.

The second set of tests investigates the practical recognition accuracy and generalization

ability of the feature. Generalization is the more relevant quality here. Classifier accuracy

on the training set is simply a reflection of the ability of the particular type of classifier to

learn a data set. The accuracy on unseen data reflects the ability of the feature to capture the

distinctive characteristics of the class. Generalization is also, to an extent, dependent on the

type of classifier used. However, most classification techniques rely for their generalization

on the classes forming clusters in the sample space. Good accuracy on the unseen data

therefore indicates good clustering of the classes, which in tum indicates good representation

of the distinctive characteristics of the classes.

For the purposes of testing generalization the data sets are divided into a training set, A, and

a test set, B. For the NIST data sets the first two-thirds of each class are assigned to set A

- 139-

Data Set Samples in Training Set A Samples in Test Set B

NISTLower 30203 15110

NISTUpper 29960 14991

NISTDigits 2310 1159

CEDAR Lower 7692 816

CEDAR Upper 11453 1367

CEDAR Digits 24270 3418

Table 5.1 Division of data sets into training and test sets.

and the remaining third to set B. The division of the CEDAR data sets into training and tests

sets has already been performed by the providers of the database. 1be exact number of sam-

ples in each set is indicated in table 5.1.

5.5.1. Normalization Factor

Data Angles Feature Reference Accuracy with normalization factor:

used centre Average value Maximum value

NISTLower 10 RD only Segment 68.245% 69.132%

NISTLower 10 RD only Gravity 72.730% 74.232%

NISTLower 10 RD/SA Segment 77.448% 78.986%

NISTLower 10 RD/SA Gravity 81.617% 82.533%

NIST Digits 10 RDonly Gravity 87.187% 89.478%

Table 5.2 Results of varying the normalization factor (scaling the feature vectors

so that either the average or the maximum distance/area becomes 1.0).

- 140-

Two normalization factors were tested for sealing each half of the feature vector: the max-

imum radial distance (or sector area) for the segment and the average radial distance (or sec-

tor area) for the segment. The former factor performed from 1 to 3% better in each of the

test cases. Table 5.2 summarizes the recorded accuracy (correct classification rate) on the

self tests of the NIST Digits and NIST Lower sets.

After these early experiments it was concluded that the maximum measurement provided the

more stable reference value over large data sets. The average value was abandoned as a nor-

malization factor and the maximum value was used in all future testing.

5.5.2. Reference Point

Two methods of selecting a central reference point for the features have been proposed, as

described in section 5.3. The centre of gravity and centre of segment methods have been

tested on a variety of test data. Results are summarized in tables 5.3 and 5.4.

On unvectorized data sets the centre of gravity method gave greater accuracy in all the test

cases. On the combined RD/SA feature the correct classification rate was between 2 and 6%

higher than that achieved with the centre of segment method. On the Radial Distance feature

alone, a more pronounced difference in accuracy was recorded for the upper and lower case

sets, with the centre of gravity rate 6 to 8% higher. This suggests that its position varies less

for similar characters than the centre of segment and it therefore provides the more stable,

analogous reference point for feature extraction. It is suggested that this method be used

when processing unvectorized characters.

On vectorized data, however, the centre of gravity performed very poorly as a reference

point for reasons diseussed in section 5.3. TIle centre of segment was much more effective

by comparison and is therefore recommended as the standard choice of centre point for

feature extraction from vectorized characters.

5.5.3. Sector Area

Initial experiments using only the Radial Distance feature vector suggested that improved

classification rates might be achieved if some of the interior outline information could be

preserved. This led to the development of the Sector Area feature. Table 5.5 shows how

- 141 -

Data Angles Feature Nonnalization Accuracy with reference point at:

used factor Centre of Segment Centre of Gravity

NISTLower 10 RDooly Average 68.245% 72.730%

NISTLower 10 RDooly Maximum 69.132% 74.232%

NISTLower 10 RD/SA Average 77.448% 81.617%

NISTLower 10 RD/SA Maximum 78.986% 82.533%

ICEDARUpper A 10 RD/SA Maximum 86.044% 87.886%

NISTUpper 10 RD/SA Maximum 88.232% 90.180%

NISTDigits 10 RDonly Maximum 89.132% 89.478%

NIST Digits 10 RD/SA Maximum 95.244% 96.397%

Table 5.3 Results of varying the reference point for unvectorized data sets. Ac-

curacy is the correct classification rate of the quadratic discriminant classifier on

the self test of the data set.

Data Angles Feature Normalization Accuracy with reference point at:

used factor Centre of Segment Centre of Gravity

NIST Digits 10 RDooly Maximum 81.781% 58.943%

ICEDARDigits B 10 RDooly Maximum 75.834% 51.726%

Table 5.4 Results of varying the reference point for vectorized data sets.

combining the Sector Area feature with the original Radial Distance vector gave rise to a

significant increase in self test accuracy (an improvement of between 8 and 15% on the data

sets tested).

- 142 -

Data Angles Normalization Reference Accuracy with feature:

used factor centre RD only RD/SA

NISTLower 10 Average Segment 68.245% 77.448%

NISTLower 10 Maximum Segment 69.132% 78.986%

NISTLower 10 Average Gravity 72.730% 81.617%

NISTLower 10 Maximum Gravity 74.232% 82.533%

NISTDigits 10 Maximum Segment 89.132% 95.244%

NISTDigits 10 Maximum Gravity 89.478% 96.397%

Table 5.5 Comparison of using the Radial Distance feature alone and using the

combined Radial Distance/Sector Area feature.

Introducing the Sector Area feature involves a slight decrease in speed but no change to the

order of complexity of the algorithm. The increase in computation time is negligible com-

pared to the increase in accuracy.

5.5.4. Angles Used

Data Feature Normalization Reference Angles Accuracy

factor centre used

NISTLower RD/SA Maximum Gravity 8 80.939%

NISTLower RD/SA Maximum Gravity 10 82.533%

NISTLower RD/SA Maximum Gravity 15 83.713%

NISTLower RD/SA Maximum Gravity 30 84.742%

Table 5.6 Results of varying the number of angles (radial lines) used for the

NIST Lower data set. Accuracy is the correct classification rate of the quadratic

discriminant classifier on the self test of the data set.

- 143 -

Ten angles were used for the majority of tests. It was found that this number of radial lines

and sectors was quick to compute and provided reasonable accuracy for use in the develop-

ment of a test recognition system. It was expected that increasing the number of angles

would increase recognition accuracy at the expense of speed. Determining an acceptable

number for a practical system was not an objective of this research. However, a brief com-

parison was made of classification rates on the unvectorized NIST Lower data set for a selec-

tion of vector sizes.

Clearly the greater the number of angles used the greater the accuracy. The size of feature

vectors slows processing both at the feature extraction stage and at the subsequent

ctasstncauon, learning or reconstruction stages. The feature extraction may be computed in

parallel. Speed restrictions on the practical sizes of feature vectors are therefore more likely

to result from the limitations of the subsequent classification processes.

5.5.5. Practical Recognition Accuracy

Practical tests of the RD/SA feature's recognition accuracy and generalization ability have

been conducted using the quadratic discriminant classifier and the learning vector quantiza-

tion (LVQ) classifier. For reasons discussed in later chapters, LVQ has properties desirable

in the envisaged hierarchical classification system. It should be noted however, that greater

accuracy on both the training and test sets might be achieved using more powerful classifiers

that were deemed unsuitable for the hierarchical system, e.g., multilayer perceptrons. The

quadratic classifier is used in these tests as it provides a good guide to the feature's generali-

zation ability. As pointed out by Kwan et al. [KPS79], the use of a simple classification

scheme emphasizes the features over the classifier.

The implemented system is designed to aid future testing of the mechanisms for

classification, contextual processing and feedback in the hierarchical character recognizer

proposed in chapter 8. It places speed above accuracy as this will facilitate fast testing of

those mechanisms. Therefore only a small number of angles - ten - are used for feature

measurement. In a fully working system more angles could be used, and as a result more

time spent in training, to provide greater accuracy. It is found, however, that ten angles give

very reasonable accuracy and generalization on the data sets.

- 144-

Training Data Test Data Classifier Accuracy on:

Training Data Test Data

NISTLower CEDAR Lower Q.D. 82.53% 70.31%

NISTUpper CEDAR Upper Q.D. 90.18% 79.09%

NISTDigits CEDAR Digits Q.D. 96.40% 87.07%

NISTLower CEDAR Lower LVQ (364) 80.39% 71.06%

NISTUpper CEDAR Upper LVQ (364) 91.20% 76.84%

NISTDigits CEDAR Digits LVQ (77) 97.20% 86.48%

CEDAR Lower A CEDAR Lower B Q.D. 87.69% 84.79%

CEDAR Upper A CEDAR Upper B Q.D. 87.89% 85.79%

CEDAR Digits A CEDAR Digits B Q.D. 92.55% 90.11%

NISTLowerA NISTLower B Q.D. 81.98% 83.49%

NISTUpper A NISTUpper B Q.D. 90.11% 90.37%

NIST Digits A NIST Digits B Q.D. 96.88% 92.24%

NISTLower A NISTLower B LVQ (364) 84.32% 87.76%

NISTUpper A NIST Upper B LVQ (364) 93.45% 89.81%

NISTDigits A NIST Digits B LVQ(77) 98.01% 89.47%

Table 5.7 Accuracy of the quadratic discriminant and learning vector quantiza-

tion (LVQ) classifiers on the NIST and CEDAR data sets. The number in

parentheses in the Classifier column indicates the number of codebook vectors

used by the LVQ classifier.

As a result of the initial tests in sections 5.5.1-5.5.4 it was decided that the maximum dis-

tance or area measurement would be used as the normalization factor and that the reference

point used would be the centre of gravity. except when processing vectorized images in

- 145 -

which case the centre of segment is used. The Sector Area feature would be used in each

case. except for vectorized images where its use is precluded.

Generalization results on the CEDAR data using classifiers trained on the NIST data are

markedly poorer than the results using the same data source for both training and testing.

This is mainly because the CEDAR characters have been edited to only consist of one con-

nected component. They are therefore often lacking parts of characters. such as the dots on

"i's and 'j's. which are present in the NIST characters. This makes the generalization task

much more difficult. The tests using the same source for training and test data provide a

fairer indication of the feature's generalization ability in a practical application, where it is

likely that the same data gathering procedure will be used in both training and actual use.

Accuracy and generalization using the same source for testing and training are encouraging.

The LVQ results approximate those of the quadratic discriminant classifier. The generaliza-

tion on the NIST data in the implemented LVQ-based system is in the high eighties for each

category of characters. This is as good as can be expected for recognition of upper and

lower case letters in the absence of context. In the case of digits. where context is less likely

to be able to correct errors. the generalization would need to be improved for use in a practi-

cal application. More angles must be used on the feature extraction.

In the implemented system the LVQ classifier is modified to produce a candidate set of most

likely classes rather than a winner-take-all result. Table 5.8 gives an indication of the per-

centage of cases where the correct class will be included in the candidate set. It records the

percentage of cases where the correct class appears in the top three closest classes to code-

book vectors. l.e .• the three most likely classes predicted by the LVQ classifier.

The "top three" results on upper and lower case letters suggest that contextual processing of

the candidate sets could potentially produce high levels of recognition accuracy using only a

small number of angles in the feature extraction. Although the results on digits are high.

there may be less potential for contextual disambiguation of digits in the particular applica-

tion. The "top three" results might therefore be overly optimistic for general digit recogni-

tion; such high results could only be expected in form processing where numerals on forms

could be matched against other data, e.g., courtesy amounts on cheques could be matched

- 146-

Training Data Test Data Classifier Top lbree Accuracy on:

Training Data Test Data

NISTLower CEDAR Lower LVQ (364) 91.04% 88.66%

NISTUpper CEDAR Upper LVQ (364) 96.51% 90.54%

NIST Digits CEDAR Digits LVQ (77) 99.11% 96.50%

NISTLower A NIST Lower B LVQ (364) 92.69% 93.61%

NISTUpper A NIST Upper B LVQ (364) 96.66% 96.88%

NIST Digits A NIST Digits B LVQ (77) 99.05% 97.58%

Table 5.8 "Top three" accuracy of the learning vector quantization (LVQ)

classifier on the NIST and CEDAR data sets. Accuracy results are the percentage

of cases where the correct class is in the top three most likely classes calculated

by the classifier.

against the legal amounts.

5.5.6. Further Testing

The RD/SA feature has been tested commercially by See1, a company developing an

automated form reader for SKY Television applications. Seel used a database of 20,000

training samples (isolated handwritten digits) and 2,500 test samples, taken from real appli-

cation forms. The numerals were slant normalized before the RD/SA features were

extracted.

Rather than learning vector quantization, a more powerful back-propagation classifier was

used for training and testing (see section 6.4.3). The classifier produced a certainty measure

for candidate output classes. Where the difference in certainty between the two most likely

candidates fell under a certain threshold the case was rejected, otherwise the first most likely

candidate was output as the classification. The incorporation of rejection into the

classification aims to reduce the error rate by detecting and avoiding potentially ambiguous

- 147-

cases. It is common in practical applications for rejection to be preferred to error - rejected

cases can easily be processed by hand.

Seel reported that the RD/SA-based system performed comparably to the best of the com-

mercially available OCR packages currently used by the company, equaling the lowest rejec-

tion rate within 0.5%. This result clearly shows accuracy of the RD/SA feature and its

robustness when dealing with real-world data.

5.6. Comparison of the Feature on Outlines and Vectors

It has been argued in chapter 4 that preprocessing images in an attempt to make them fit

human abstractions of character shape can often lead to increased errors in the data set and

loss of detail. The Radial Distance feature has been used to compare unpreprocessed out-

lines with their preprocessed (vectorized and smoothed) counterparts. The stroke-based vee-

torization method described in chapter 3 has been used for this purpose.

This comparison is, in effect, a test of the vectorization method's ability to preserve

geometric information from the outline. In addition it is a test of the RD feature's effective-

ness on vectorized characters. However, the vectorization is intended to approximate the

outlines at a slightly higher level of abstraction, using strokes, or parts of strokes, as primi-

tives for structural classification. In this classification approach, the structural relationships

of the character are considered more important than the detail of the shape. Section 4.3.1

discusses the use of vectorization for structural primitive extraction and section 6.3 describes

structural classincation. In this section it should be noted that the potential usefulness of this

structural representation is not taken into account by the RD feature so this experiment does

not fairly compare the worth of minimal preprocessing with the traditional preprocessing

approach. However. it does show that the vectorization method used either loses informa-

tion about the basic geometric shape of the outlines or introduces new errors, or both.

Three data sets were compared in both unvectorized and vectorized forms. Ten angles were

used and only the Radial Distance feature was measured (it is assumed that area information

is lost in the vectorized representation). As shown in section 5.5.2 the centre of gravity

method of selecting a reference centre was ineffective and so the centre of segment is used

instead on vectorized characters. This method is therefore also used on the outlines for the

- 148-

Training Data Test Data Accuracy on Train Set Accuracy on Test Set

Outlines Vectors Outlines Vectors

NISTLower CEDAR Lower 69.69% 60.88% 58.69% 49.07%

NISTLower A NISTLowerB 68.10% 59.97% 70.07% 62.06%

CEDAR Lower A CEDAR Lower B 74.23% 63.88% 74.38% 62.32%

CEDAR Upper A CEDAR Upper B 71.50% 65.90% 70.26% 63.97%

NISTDigits CEDAR Digits 89.13% 81.78% 78.64% 72.61%

NIST Digits A NIST Digits B 89.52% 83.33% 86.63% 77.83%

CEDAR Digits A CEDAR Digits B 83.30% 78.40% 81.89% 75.92%

Table 5.9 Comparison of the Radial Distance feature on vectorized and unvec-

torized (outline) data sets.

purpose of comparison, although the centre of gravity is generally more accurate. The max-

imum distance measured is used as the normalization factor. All tests use the quadratic

dlserimlnant classifier.

The results show that the vectorization and preprocessing employed causes a drop in test set

accuracy of between 7 and 16% from the unvectorized data sets. Clearly some of the distin-

gulshing geometric detail of the characters has been lost in the process, or alternatively

errors have been introduced into the shape.

5.7. Adaptive Segmentation
As described in section 2.4, a recursive approach to segmentation has been employed by

several researchers. These attempts, used predominantly on machine-printed text, perform

iterative segmentation followed by classification. When the certainty of classification falls

below an acceptance level, segmentation is corrected by selecting a new, predetermined,

point at which to split the characters, usually using a vertical straight line. The classifier out-

put is not used except to indicate acceptance or rejection of the classification.

- 149 -

A more powerful approach is proposed for cursive script segmentation. Since accurate seg-

mentation of characters is impossible without some knowledge of what they are, an adaptive

approach is proposed which uses feedback from the classification and contextual processes

to direct changes in segmentation, based on expectation of what the characters are.

After an initial blind segmentation, followed by a first attempt at classification. the system

may have the beginnings of a picture of the image at a higher level of abstraction than the

raw outlines and feature vectors. 1be initial results of the classification, in particular the cer-

tainty of individual character classifications. are a refiection of the accuracy of the segmenta-

tion and are used accordingly to correct that segmentation. Small adjustments may be made

to the segment boundaries where the certainty of classification is high. to make those boun-

daries more precise. Where the certainty is poor. larger adjustments might be made on the

assumption that the initial segmentation is completely wrong.

This classification and adaptation process iterates until all character classifications are at a

reasonable certainty or such a certainty seems unattainable. Chapter 8 discusses in more

depth the possibilities of using classifier feedback to enhance recognition. Let us now con-

sider how the RD/SA features can be used to direct the adaptation of segmentation.

It is assumed that the classifier. in conjunction with contextual processes, can provide a

feature vector representing the expected class of a segment. i.e .• after passing a feature vec-

tor to the classifier it is expected that the classifier will decide on a class for that vector and

pass back a feature vector representative of that class. The use of feedback from contextual

classifiers to decide on contextually valid character classes is discussed in much greater

detail in chapter 8. The geometric correspondence of the first part of the feature vector to the

outline it represents allows the actual outline of the segment to be compared geometrically

to the expected outline of the character (assuming the classification is correct).

A system of over-segmentation of cursive script has been devised which divides the outline

into many small sections. A word then consists of a number of segments, each of which

consists of several of these small sections. Where the expected character outline differs

from the actual outline of the target segment, that segment can be adjusted by moving small

sections either to or from the adjacent segments. The difference in the expected and actual

- 150-

Radial Distance feature value in a given direction gives an approximation of the change

required in the segmentation.

The small sections in that direction, in both the target segment and its adjacent segment. are

identified and their sizes determined. TIle difference in feature value, scaled according to

the largest radial distance (to account for the normalization), indicates the size of re-

segmentation required. One or more small sections are moved accordingly, from one seg-

ment to the other, so that the new feature value in that direction will approximate the

expected value. Note that it can only be an approximation as the shift of sections will affect

the central reference point. The Sector Area feature might also be used to judge the required

movement of small sections: the difference in expected and actual areas of the sectors either

side of the radial line could be used to limit the addition or subtraction of sections from a

segment.

Once each direction has been checked and any desired segmentation adjustments have been

made all feature vectors will need to be recalculated. The feedforward and feedback

classification processes are then repeated until, through a process of relaxation, the segmen-

tation settles on a solution where, ideally, no further adjustments are required.

Testing of the adaptive segmentation proposal requires an implementation of the contextual

feedback architecture of chapter 8 which is beyond the time constraints of this work. Prel-

iminary work has developed a method for dividing cursive script into small sections. It is

found that a large number of divisions are required to cover all possible segmentations.

It is assumed that the orientation of the cursive word is known. Segmentation into small

sections is based on finding pairs of possible segmentation points on the top and bottom

edges of the outline and splitting the outline along the line joining the points. Possible seg-

mentation points are placed at peaks and troughs on the outline; specifically, at local minima

on the top edge and local maxima on the bottom edge. (Minima and maxima at the very end

of an outline are ignored.) This applies only to outermost (level 0) outlines and large out-

lines immediately inside them (level I loops) whose area exceeds some constant,

DOT_AREA. Anything smaller is ignored. Note that for level 1 loops, what appear to be

top edge points (on the top edge of the loop) are termed bottom edge points, and vice versa,

- 151 -

since they are on the bottom of the black pixel region.

For each possible segmentation point. between one and three pairs are found. For a top edge

segmentation point. A. on a level 0 loop. the pair points are:

B - a point on the bottom edge directly below the first point (i.e .. the segmentation is by a

vertical line);

C - the first possible segmentation point on the bottom edge of the level 0 loop. immedi-

ately to the left of B;

D - the first possible segmentation point on the bottom edge of the level 0 loop. immedi-

ately to the right of B.

C and D may not always exist. For a bottom edge segmentation point. the pairs are the same

but are on the top edge. For level 1 loops only point B is used.

• Segmentation point

o Vertical split point
B

Figure 5.3 Pair points for segmentation point A.

To reduce the number of segmentation points the vertical (A-B) splits are tested before any

segmentation takes place to determine the area of the two sections that would result if the

split was made. If either of these areas is less than or equal to DOT_AREA the segmenta-

tion point is removed on the assumption that that area is too small to be a character. Note

that if A is on a level 0 loop and B is on a level 1 loop. or vice versa, there will be no divi-

sion of the area as a result of the split. In this case the segmentation point is always kept.

- 152-

Where the line between a pair is entirely contained within the outline (the black pixel area),

and the top edge point is above the bottom edge point, the outline is divided along that line.

Where segmentation lines for different pairs cross, the diagonal splits, A-C and A-D, have

priority over the vertical splits. After the diagonal splits have been made, the vertical ones

are recalculated if necessary, so that B now falls directly below A on the line of the diagonal

split.

Figure 5.4 Typical division of a cursive word, "neural," into small sections. In-

teger coordinates and orthogonal edges have been preserved through the use of

Bresenham's line drawing algorithm.

Once this division is complete many small sections remain. Figure 5.4 illustrates a typical

division of a cursive word. To retain integer coordinates and orthogonal edges for the small

outlines, Bresenham's line drawing algorithm [Bre65] has been used to produce the coordi-

nates of points along the diagonal splits.

Future work must develop a method for the initial assignment of small sections to character

segments. Clearly there are a large number of combinations of possible assignments and

more work needs to be done to try to reduce the number of sections involved. Fast, parallel

feature extraction and subsequent classification is essential to the adaptive segmentation

problem. An exhaustive search of all the combinations would be prohibitively time consum-

ing; direction of the search by intelligent feedback is necessary to make the system fast

enough for practical use (see chapter 8).

- 153 -

s.s. Extensions
Several possibilities have been considered for future work on developing the RD/SA feature.

Improvements to the basic feature might look at more accurately measuring the inner loops

or interior points on the outer loop. When a contour bends back on itself only the outer edge

is measured by the feature. Points on the inside edge, closer to the reference centre, might

also be of importance to the discrimination of character classes. An additional vector might

therefore be added which measures the second furthest outline point from the reference cen-

tre for each radial line. Inner loops would also be considered by this feature. The feature

might be extended still further to incorporate vectors of the third furthest distances, or the

fourth, and so on. It is unlikely that measurements beyond the third furthest distances would

be worthwhile; such features would be zero vectors for most characters, i.e., the outlines do

not cross the radial lines more than three times.

The main desirable quality of the feature that has not been explored in this research is the

speed of computation. While improvements might be made to the basic extraction algorithm

(removing floating point arithmetic from the process wherever possible) the current method

is reasonably efficient. However, in a system using the suggested method of adaptive seg-

mentation, the possibility exists for a significant reduction in extraction time.

In the segmentation system described in section 5.7, feature extraction may be performed

many times before a character outline Is segmented correctly. However, much of the seg-

ment will be the same each time. A highly desirable property for a feature would be the

ability to recalculate it rapidly from its previous value. i.e., calculate the change in the

feature from the change in segmentation.

The RDISA feature does not have this property. It cannot be calculated in an incremental

way, as small sections are added to or subtracted from the previous segment, because a slight

change in area changes the position of the reference centre. The feature needs to be com-

pletely recalculated every time. Future development of the feature must explore other forms

of reference points, and corresponding feature measurements, that can be recalculated

directly from the change in segmentation.

- 154-

One possibility is to use a vertical line through the centre of a character segment as a refer-

ence line. Feature measurements would be the horizontal distances from the line to the

furthest point on the outline. measured at a variable number of equidistant points along the

reference line. The area of the image between adjacent horiwntal lines could be measured

as an equivalent to the Sector Area feature. These measurements might be facilitated by

using a run-length representation of the image rather than its outline. Segmentation would

be by simple vertical lines; re-segmentation would shift vertical strips from one segment to

the next. The change in position of the reference line could be determined from the change

in strips in each segment. Where strips are added to a segment. the change in features could

be calculated using only the added strips. The difficulty of this development is that size nor-

malization could not be handled as easily. Accuracy is likely to be comparable to that of the

RD/SA feature. The limitations of this variation are that simple vertical segmentation may

not be sufficient for correct division of characters. and that the property of rotational invari-

anceislost.

5.9. Evaluation

'The use of a central reference point. feature normalization and the possibility of cyclic shift-

ing of the feature vectors makes the RD/SA feature invariant to position. size and rotation

respectively. Its accuracy can be adjusted by varying the number of angles used in the

extraction. The results of sections 5.5 and 5.6 show that high rates of correct classification

can be achieved on handwritten digit and character data using only a small number of

angles. and using relatively simple classification methods. both on the training samples and

on unseen test data. This demonstrates the ability of the feature to capture the characteristics

of classes from their outermost outlines.

The main advantage of the RD/SA feature is its ability to cope with broken outlines or

multi-outline characters. Its measurements are not limited to a single closed loop and so

recognition does not have to be based on the largest outline in a segment. or rely on struc-

tural rules to relate. for example. the dot of an 'I' with its stalk. This robustness is an essen-

tial properly for any practical character recognition application and a significant improve-

ment over many other features.

- 155 -

Feature extraction is reasonably fast and the independent nature of the measurements makes

the process suitable for a very fast parallel implementation.

The feature vector is of fixed length, making it practical for matching against other feature

vectors. Since it is, in part, a geometric description of the outline, it is possible, to an extent,

to reconstruct the original outline from the feature vector. This is a useful capability for a

recognition system envisaged to use contextual feedback (see chapter 8) and adaptive seg-

mentation (section 5.7), and was a primary consideration in developing the RD/SA feature.

The RD/SA feature Is inherently more tolerant to noise than most other outline-based

features. Unlike contour following descriptors, such as Dinstein's features, polygonal

approximations and, to a lesser extent, outline-based series expansions, each of the RD/SA

feature elements is entirely independent. Thus noise in one sector, or along one radial line,

will only affect one element of the feature vector. Additionally, the effect of noise is usually

minimal.

Small distortions in the outline, which can produce large variations in outline following

features, may cause no variation at all in the Radial Distance feature if no radial line inter-

sects the distortion. In cases where a radial line does pass through a small noisy area, the

proportional change in measurement should not, in most cases, be large enough to affect the

overall characterization of the shape. Areas of noise along a radial line that are separate

from the actual character outline may cause large changes in that Radial Distance. It is

expected that accurate grey level thresholding can remove very small spots of background

noise so only the much rarer, large noise components will remain to cause these large

changes. However, removing such large areas from consideration is a task for the segmenta-

tion process, not the feature extractor. The only major corruption of Radial Distance

features occurs when a radial line passes cleanly through a break in an outline. The likeli-

hood of this occurrence increases with the number of radial lines used and hence the accu-

racy of the representation. It is hoped that the increased accuracy will compensate for some

of the occasional false measurements.

The Sector Area features are only intended as a rough guide to area distribution which

enhances the Radial Distance features, rather than being highly accurate discriminant

- 156-

features themselves. The characterization of shape by the combined RD/SA feature is there-

fore unlikely to be affected by small changes in Sector Area, such as spurs on outlines and

spots of background noise. Large changes in area may be caused by large noise components

(a segmentation problem) or broken outlines.

The RD/SA feature is therefore highly tolerant to noise, though occasionally susceptible to

breaks in outlines. Breaks due to hasty writing commonly occur at similar points on the

characters so this problem may be partly addressed by using a large training set whlch

reflects these common break points. Style variation must also be learned using a large sam-

ple set. The results show that classification systems exhibiting high tolerance to style, slant,

noise and breaks can be built using the RD/SA feature in combination with representative

training databases.

5.10. Conclusions

A robust feature for outline representation has been developed which is invariant to position

and size and approximately invariant to rotation. It is fast to extract and is highly tolerant to

noise compared to other outline-based features. Broken and multi-part images are easily

handled by the RD/SA feature.

Original outlines may be partially reconstructed from the feature. An adaptive recursive seg-

mentation strategy has been proposed which uses this property to direct more powerful seg-

mentation of text. Future work on the adaptive segmentation problem must aim to integrate

the segmentation and feature extraction processes. The measurement approach taken by the

RD/SA feature might be developed to facilitate this integration.

It has been shown that the Radial Distance/Sector Area feature captures the distinctive

characteristics of character classes from the outer edges of outlines; it is accurate and gen-

eralizes well when trained on representative sample sets. High recognition rates have been

achieved at reasonable speeds on several character databases.

- 157 -

5.11. Nomenclature

area

C

dp

dQ

dR

dir

distance

DOT_AREA

P

P

Q

R

sign

start

step

stop

Modulus operator.

Bearing of P from C.

Bearing of Q from C.

Bearing of R from C.

Number of intervals in which feature measurments are taken.

Array of sector area measurements.

Central reference point.

Euclidean distance from P to C.

Euclidean distance from Q to C.

Euclidean distance from R to C.

Direction of movement around outline (clockwise/anticlockwise).

Array of radial distance measurements.

Lower limit on area of outlines to be considered for segmentation.

Unit pixel width.

Starting point of the current section of outline.

Stoping point of the current section of outline.

Point on outline where a radial line intersects PQ.

Indicates even or odd level outline loop.

First potential index into feature arrays for line from P to Q.

Size of angle step between each feature measurement.

Last potential index into feature arrays for line from P to Q.

- 158 -

Chapter 6

Character Classification and Contextual Processing

6.1. Summary

Classification is the process by which a set of input variables are mapped to a set of output

categories or classes. In the case of character classification, the input variables are usually

feature strings, vectors or sets of the kind described in section 2.5, and the output classes are

characters, e.g., '0', '1' ,..., '9', 'a', ob',..., 'z'. The process is slightly more complicated if we

wish to output a candidate set of possible classes, rather than a single winner-take-all

classification.

This chapter reviews the field of classification. as it applies to character recognition. Char-

acter classification techniques can be broadly divided into statistical. structural (including

syntactic) and neural approaches [Sch92]. Sections 6.2 to 6.4 describe these three

approaches and examples of those types of classifiers.

An important research area very closely related to classification is that of contextual process-

ing. This is another large field. concerned with the use of external knowledge to correct or

disambiguate classifications and to provide a higher level of understanding of the input. It is

particularly relevant to character recognition where characters cannot be accurately or unam-

biguously classified in isolation and require an examination of a wide context and a greater

understanding of the text. Section 6.5 discusses the need for contextual processing and sec-

tion 6.6 surveys the methods that have been applied to character recognition. Conclusions

are made in section 6.7 and section 6.8 describes the notation and symbols used in this

chapter.

6.2. Statistical Classification
Statistical (or decision theoretic) character classification is a feature matching technique.

Feature measurements (see section 2.5) form a vector in the feature space. The goal of the

statistical classifier is to determine which class a feature vector belongs to. This is

- 159 -

essentially a task of finding decision boundaries (or class boundaries) in the feature space

which delimit the regions corresponding to each class.

This category of classifier has a finn basis in statistical theory. This theory, as it applies to

statistical pattern recognition. is covered in detail in many textbooks, e.g, Duda and Hart

[OH73], Bow [Bow84] and Schalkoff [Sch92].

'There are four main types of statistical classifiers: parametric, nonparametric, unsupervised

and fuzzy decision-making. The following four sections describe each type of statistical

classifier as it relates to off-line character recognition.

6.2.1. Parametric Classification

Parametric classifiers can be used when the parametric probability distributions of the

classes and the a priori probabilities of those classes are known. These parameter values

allow decision functions to be designed which perform classification according to Bayesian

decision theory. Each class has an associated discriminant function (introduced by Fisher

[Fis36]) which is computed for each input vector. The decision function determines the out-

put class to which the input vector is assigned according to these discriminant functions.

The output class is the one associated with the discriminant function producing the max-

imum (or alternatively the minimum) value.

Bayesian classifiers use Bayes' rule as a basis for their decision functions. A vector of input

measurements, x, can be taken from any given object, and that object can be assigned to the

class With the highest conditional probability (the probability of the class given x) according

to Bayes' rule:

P(x I Cj)P(Cj)
P(Cj I x) = l:P(x I Cj)P(Cj)

all j

where C, is class i. It is also possible to calculate the risk involved for each value of x (the

probability of assigning the object to the wrong class) and the Bayes error (the minimum

achievable error), which is the expectation of the risk function over the whole feature space.

It can be shown (see Duda and Hart [OH73]) that the Bayes decision rule minimizes the

Bayes error,

- 160-

TIle difficulty with the practical application of this method is that the class conditional densi-

ties (P(x I Cj» or the a priori class probabilities (P(Cj» may not be known. This is the

case for most classification problems including character recognition. TIle design of

parametric classifiers requires estimation of these probabilities and density functions.

In cases where the functional forms of the class conditional probability density functions are

known, the task is to estimate the parameters of the particular form of function. The two

most popular forms of parametric classifier are the linear and quadratic classifiers. These

both assume a Gaussian (also called normal) distribution of the class conditional densities

and are designed by estimating the parameters of the Gaussian functions. Gaussian density

functions are popular because they can be completely defined by a relatively small number

of parameters, are continuous and defined over the whole feature space and produce simple

decision functions (at most quadratic functions of x) [KD). Also, variables in real life prob-

lems are very often normally distributed. For these reasons, the quadratic classifiers which

arise from the Gaussian distribution assumption are commonly used even when the density

function is not known to be Gaussian [Fuk86a).

Assuming a Gaussian distribution of the variables making up x, the form of the class condi-

tional probability density function is:

where J.i.; is the mean vector of class i and rj is the covariance matrix of class i. The means

and covariance matrices are the parameters that must be estimated.

Substituting this function into Bayes' rule leads to the decision rule:

Assign to class i if

dj(x) -In(P(Cj)) < dlx) -In(P(Cj)) 'V} ~ i

where dj(x) is the discriminant function for class i:

d;(x) = In IT, I + (x - Jl;)'r;-1(x - Jlj)

James [Jam85] gives a good explanation of the derivation of this decision function.

- 161 -

The parametric quadratic classifier (sometimes called quadratic discriminant classifier) is

comparatively powerful as it forms quadratic decision boundaries. The feature space is par-

titioned by hyperquadric decision surfaces which can take any of the general forms (hyper-

planes, hyperspheres, hyperellipsoids, hyperparaboloids or hyperhyperboloids). The much

simpler parametric linear classifier results when the covariance matrices of the classes are

identical. The additional assumption that these matrices are identical is sometimes made in

order to simplify the decision rules. The discriminant functions of the linear classifier per-

form linear divisions of the sample space (division by hyperplanes). The basic idea is that

points on one side of the division are assigned to one class and those on the other side are

asSigned to another, although in practice it is slightly more complicated.

For character recognition the simple decision boundaries of the linear classifier are unlikely

to be able to discriminate character classes. A linear classifier was tested on the Radial

Distance/Sector Area features of chapter 5 and gave a very high error rate, even on the self

test. The quadratic classifier performed with much greater accuracy (see the results in sec-

tions 5.5 and 5.6).

The parameters of the classifiers' class conditional density functions are estimated from a

sample set of the population, usually called a training set, where each sample has a label

indicating the class to which the sample belongs. The training set is taken to be representa-

tive of the whole population. The parameters of the training set density function can be

detennined and then these are taken to be the parameters of the actual density function.

There are three main strategies for parameter estimation: point, interval and Bayesian esti-

mation. In point estimation the parameter vector is taken to be an unknown constant. The

constant is determined from a function of the parameter vector and the training set. For

example, the maximum-likelihood estimation uses a dummy parameter vector and computes

the probability of sampling the training set given that vector; the dummy vector that pro-

duces the greatest probability is selected as the parameter estimation. Interval estimation

determines a range within which the true parameter vector falls and a confidence factor for

that range. Bayesian estimation assumes the parameter vector is a random variable with a

known a priori probability density function of its own. The a posteriori density function of

the parameter vector can be detennined by examination of the training set. A sharp peak in

- 162 -

the function is taken to indicate the true value of the parameter vector. Detailed descriptions

of these estimation techniques can be found in most statistics textbooks; comprehensive

expositions can be found in Beaumont [Bea80] and Therrien [The89]. Point and Bayesian

estimation are generally preferred over interval estimation as they require fewer training

samples to reliably represent the population [KD].

The practical difficulty with parametric classifiers, and with statistical classification in gen-

eral, is that for real world problems with many feature variables, the number of samples

required to accurately estimate the density function is very large. Often the required training

set is too large to be collected and the parameters have to be estimated from an insufficient

number of samples. TIle resulting inaccuracy in the parameter estimation causes inaccuracy

in the classification. However, sample size is not as much of a problem for parametric

classifiers as it is for nonparametric ones. Accurate parametric classifiers are easier to design

and so they are preferred over nonparametric classifiers whenever they are applicable.

6.2.2. Nonparametric Classification

Where the form of the underlying class conditional probability density function cannot be

assumed, parametric classification cannot be applied. There are two approaches to non-

parametric classification. The first is to estimate the density function from a training set

without simplifying the function to a set of parameters. The second is to avoid the determi-

nation of the class conditional density functions altogether and produce a classifier directly

from a labelled training set.

Nonparametric estimation of the density function of a class is achieved by representing the

function at each point in feature space as the sum of contributions from all the training sam-

ples belonging to that class. Each sample contributes to the function according to a density

kernel function, for example, a rectangular function, truncated squared-cosine function. or a

potential function (Bashkirov et al. [BBM64]) where the sample is treated as a charged parti-

cle causing an electrical potential in the feature space. Therrien [The89] gives a comprehen-

sive survey of these techniques. Nonparametric density estimation requires a large number

of samples to reliably represent the true density function. It is preferable to use parametric

estimation wherever possible.

- 163 -

The most common methods of nonparametric classification. without estimation of the class

conditional densities. are the k-nearest-neighbour, nonparametric linear and piecewise

linear classifiers (also called linear machines). 1bere are also nonparametric quadratic and

piecewise quadratic classifiers though these are less commonly used.

The nearest neighbour classifier (Cover and Hart [CH67]) stores the set of labelled training

samples and classifies a test sample by assigning it to the class of the closest training sample

in feature space. Closeness is determined by a distance metric. usually the Euclidean dis-

tance. though for well clustered data the Mahalanobis distance is often more effective

[But93). The k-nearest-neighbour classifier is an extension of this which finds the classes of

the k closest training samples and assigns the test sample to the class which occurs most fre-

quently. The accuracy of the nearest-neighbour increases with the number of training sam-

ples, but more samples also increase the computation time.

It can be proven that the error rate of the nearest-neighbour classifier is bounded by twice the

Bayes error rate (see Duda and Hart [DH73]). However. in many applications parametric

classifiers can be found which produce lower error rates [Fuk86a). Nearest-neighbour

classifiers are slow in operation as they must compare the test sample to all the training sam-

ples. For a practical application the number of training samples needed for accurate

representation of the classes will be very large and hence the classifiers will be extremely

slow. Nearest-neighbour classifiers are therefore rarely useful for practical problems such as

character recognition. Two strategies have been attempted to increase the speed of

clasSification. One is to reduce the computation time of the search algorithm. for example,

by using search trees (Bentley and Friedman [BF19]). The second is to reduce the number

of training samples required. Methods for this include taking out training samples which are

mis-classified by the rest of the set (Devijver and Kittler [DK82]). and storing only the train-

ing samples at the boundaries of classes (Hart [Har68]). A more effective sample reduction

method is vector quantization which will be described later in section 6.4.4.

Whereas parametric linear and quadratic classifiers assume the forms of the underlying pro-

bability distributions and use the sample set to estimate the parameters of those distributions.

nonparametric linear and quadratic classifiers assume the forms of their discriminant func-

tions and use the sample set to estimate the parameters of those functions.

- 164-

The simple linear and quadratic classifiers have only one discriminant function and so can

only discriminate two classes. Multi-class problems can be tackled using multiple instances

of the two-class classifiers. This is a common approach but it can allow areas of the input

space for which the classification is undefined [DH73]. A better approach is to use the more

powerful piecewise classifiers. The piecewise versions are the general forms which have one

discriminant function for each class and select the one producing the maximum value. They

are more complicated to design than the two-class versions but do not leave undefined

regions. Note that the distinction between simple and piecewise discriminants is not usually

made for parametric classifiers. This is because it is much easier to design the piecewise

versions in the parametric case, so they are nearly always piecewise.

Nonparametric quadratic classifiers (and indeed cubic and higher order classifiers) are rarely

used as their discriminant functions have a large number of terms and consequently require

extremely large training sets and computation times [DH73]. We shall review only the

linear classifiers.

A wide range of techniques have been used to design linear discriminants. The statistical

techniques overlap with neural network training techniques. This is because the conven-

tional model of a Single neuron (with a threshold activation function (see section 6.4.1» per-

forms identically to the linear discriminant.

The linear discriminant function of the input vector for the two-class case is usually

represented as follows:

d(x) = w'x + Wo

where w is the weight vector and Wo is the threshold weight (sometimes called the bias in

neural network terminology). The decision function assigns x to class Cl if d (x) > 0 and to

class C 2 if d (x) < O. TIle case where d (x) = 0 represents the decision surface; the result of

the decision function in this case is implementation dependent. As stated earlier, the deci-

sion surface is a hyperplane in the input space. The weight vector is normal to the hyper-

plane and therefore determines the orientation of the decision surface. The threshold weight

determines the position of the decision surface (its distance to the origin is wo/I x I).

- 165 -

From a neural network perspective, the weights correspond to the weights on a perceptron's

inputs. The decision function corresponds to the output function of the perceptron. Most

methods of linking perceptrons together (to form a neural network) use layers of these units,

where one layer's outputs become inputs to the next layer's units. A layer ofperceptrons, all

taking the same inputs, corresponds to the use of multiple discriminant functions in a piece-

wise classifier and results in similar performance. 1be use of multiple layers in the neural

approach adds additional discriminatory ability which has generally distinguished the statist-

ical and neural approaches in recent years.

The process of designing a linear discriminant or training a perceptron involves determining

the weight vector and threshold weight. Strategies for this depend on whether the training

set is linearly separable or not. A data set is said to be linearly separable if the classes can

be correctly separated in the sample space by a single linear division.

When the two classes are linearly separable the general strategy is to divide them by solving

a set of linear inequalities [KO]. These inequalities correspond to the decision functions of

each training sample. The functions are usually simplified by including Wo as the first ele-

ment in the weight vector and making the corresponding element in the input vector 'I' in

each case so that woxl is always added. It is also convenient to reverse the sign of the train-

ing vectors in class C 2 so that the decision functions in all cases during training give the

correct classification if d (x) > O. The task is then to solve the set of linear inequalities:

w'x > 0 Tlx E training set

When there is a wide separation between classes many solution vectors will exist. It is desir-

able to choose one in the middle of the range and not one close to a class border. One stra-

tegy for achieving this is to define a positive margin. b. and keep the decision surface away

from the class borders by requiring that:

W'x ~ b > 0 Tlx E training set

1be standard approach to solving these inequalities is to define a criterion function which is

minimized if w is a solution vector [OH73]. The problem Is thereby transformed to a search

for the minimum value of the criterion function which can be found by gradient descent.

- 166-

Several different methods exist for solving the inequalities. using different criterion func-

tions and different descent procedures. A common and effective criterion function is the

perceptron criterion function which sums the error of the discriminant functions (the amount

by which they are below zero for mis-classified samples). Methods for gradient descent in

the linearly separable case include the fixed-increment rule (Rosenblatt [Ros62]). variable-

increment rule and relaxation (Agmon [Agm54]. Motzkin and Schoenberg [MS54j). Duda

and Hart [DH73] give clear descriptions of these methods and proof that they converge to a

solution.

These methods are called error-correction learning procedures as they only alter the weights

if a classification error occurs. The methods work when the classes are linearly separable

but in practice this is rarely the case due to the large number of training samples. In non-

linearly separable cases the above methods may endlessly fluctuate the weights as there will

always be errors to correct. It is difficult to determine which of the fluctuating weight values

to choose.

A variety of other techniques are used to determine the weights when the classes are known

to be nonlinearly separable. These methods generally make a compromise between the abil-

ity to produce a linearly separating division in the linearly separable case and the ability to

produce an acceptable division in the nonlinearly separable case. The methods are similar to

those for linearly separable solutions but rather than solving inequalities where the discrim-

inant functions are greater than zero. they usually try to solve linear equalities where the

diSCriminant functions equal a constant margin value. The margin value may be different for

each training sample. If the training set is not linearly separable then the equalities cannot

be solved so the methods aim instead to find a weight vector that minimizes the error over

the whole training set.

The most common form of this aim is to minimize the sum-of-squared-error criterion func-

tion. producing the minimum-squared-error (MSE) solution. Methods which produce this

solution are called MSE procedures. The disadvantage of the MSE solution is that although

it can be found in both the linearly separable and nonlinearly separable cases, it is not neces-

sarily a linearly separating solution in the linearly separable case.

- 167 -

The pseudoinverse method (Ho and Kashyap [HK65]) is a non-iterative MSE procedure

which places all the training samples in a matrix and computes the solution by solving a

matrix equation. This involves use of the Moore-Penrose pseudo matrix inverse [Pen55]

[Pen56]. Most other methods are iterative procedures using gradient descent. The Widrow-

Hoff rule (or Least Mean Square rule) [WH60] is an iterative MSE procedure for minimiz-

ing the sum-of-squared-error criterion function.

Stochastic approximation is an area of statistical theory concerned with random sequences.

A full description of stochastic approximation theory can be found in Wasan [Was69]. 1be

theory can be applied to nonparametric classification to create an alternative iterative MSE

procedure which takes samples from the training set at random according to a probabilistic

law. A class C, is chosen according to the probability P(Cj) and then a sample vector x is

chosen according to P (x ICj). The criterion function used is the expectation of the squared

error between the actual class of x (represented by + I if it is class Cl and -I if it is class C2)

and the value of the discriminant function d (x). This form of function is called a regression

function and the iterative techniques used to solve it are called stochastic approximation

procedures. Stochastic approximation procedures have been applied to pattern classification

by several researchers, e.g., Fu [Fu68], and Yau and Schumpert [YS68].

The Ho-Kashyap algorithm [HK65] [HK66] is an iterative modification of MSE procedures

which allows the margin values to vary. This means that in the linearly separable case the

minimum value of the sum-of-squared-error criterion function is zero, and the weight vector

corresponding to this zero value is a linearly separating one. TIlls method therefore has an

advantage over the previous methods as it can guarantee a linearly separating solution if one

is possible. Linear programming solutions apply classical linear programming techniques to

the problem (see Smith [Smi68]). It is also possible to apply the techniques for linearly

separable training sets to nonlinearly separable cases, e.g., the fixed-increment rule (Minksy

and Papert [MP69b], Block and Levin [BL70]).

Duda and Hart [OH73] give a more detailed description of all these methods and also their

extension to piecewise forms. They conclude that none of them is universally superior to

any of the others and which is best depends on the specific requirements of the classification

problem. Consequently, all these methods are commonly used.

- 168 -

6.2.3. Unsupervised Classification

Where the classes of the training set samples are unknown, unsupervised classification tech-

niques are required. Unsupervised classifiers are designed to reflect the grouping of samples,

treating each group as a class. Since the classes of the samples are unknown, no meaningful

class labels can be assigned (they will simply be "class 1," "class 2." etc.). It is up to the

user to assign meaning to the classifier output.

There are two main techniques for designing unsupervised statistical classifiers: unsuper-

vised learning and clustering. Unsupervised classification is not commonly applied to char-

acter recognition as it is usual for character training samples to be labelled when they are

collected. Supervised techniques are therefore much more appropriate. The review of unsu-

pervised classifiers shall therefore be kept very brief. More detailed descriptions can be

found in Duda and Hart [DH73]. Jain [Jai86] and Schalkoff [Sch92].

Unsupervised learning takes the same approach as supervised parametric learning (see sec-

tion 6.2.1). The functional forms of the underlying class conditional density functions are

assumed and their parameters are estimated based on the sample set. A popular estimation

method is Bayesian estimation which. like supervised Bayesian estimation (see section

6.2.1), assumes the parameter vectors are random variables with a known a priori distribu-

tion. The sample set is used to determine the a posteriori density function. A sharp peak in

this function indicates the most probable value for the parameter vector, and this value is

selected for use in the classifier.

Although unsupervised learning methods are very similar to those for supervised learning,

the lack of class labels on the samples complicates the parameter learning and makes these

methods computationally expensive. This has led to the alternative strategy of clustering,

which aims to be computationally simpler [DH73].

Clustering techniques attempt to identify classes based on the grouping of their feature vec-

tors. on the assumption that characters with similar features will belong to the same class.

The unlabelled samples are grouped into sets (called clusters) by one of two clustering tech-

niques: hierarchical (or iterative) or partitional.

- 169 -

Hierarchical clustering produces a hierarchical sequence of partitions of the samples. Sam-

ples in the same partition at one level will be in the same partition in all the subsequent lev-

els; thus a tree-like structure of clusters is formed (called a dendrogram). At the root of the

tree is a single cluster containing all the samples, and at the top of the tree there are as many

clusters as there are samples. The way in which the clusters divide up in the middle of the

tree is determined by the degree of similarity of the samples in those clusters. There are two

strategies for this type of clustering: agglomerative and divisive. Agglomerative strategies

(also called clumping) start at the top of the tree and build the rest of the tree by successively

merging similar samples together to form larger clusters. Divisive (or splitting) strategies

start at the bottom of the tree and successively divide clusters into smaller ones.

Partitional clustering performs only one partioning of the sample set. The most common

form of this partitioning assigns samples to clusters according to some criteria of how simi-

lar the samples are to other samples in the same cluster, and how different they are to sam-

ples in different clusters.

The criteria used in determining the splitting or clumping of samples in hierarchical methods

and in determining the partitioning of samples in partitional methods are similar. The most

common criteria is that the total sum of the squared distances from members of a cluster to

its mean vector is minimized. Another criterion used in clustering is the ratio of the sum of

the intracluster squared distances (squared distances between members of a cluster and its

mean vector) to the sum of the intercluster squared distances (squared distances between

each cluster's mean vector and the mean of all the other cluster means) [KO]. Other cluster-

ing criteria are the related minimum variance criteria and scattering criteria (trace, deter-

minant and invariant criteria) (see [DH73]).

Other forms of partitional clustering are density estimators (which attempt to find cluster

centroids by finding their modal values), graph theoretic methods (which link similar sam-

ples in a graph and produce clusters in the form of minimal spanning trees), and the k-means

algorithm. In the k-means algorithm [BH67] (also called the c-means or Isodata algorithm)

the cluster means are initially assigned at random. The samples are classified according to

these means (usually by nearest-neighbour classification) and the means are then recalcu-

lated from the classification results. This procedure is repeated until a self-consistent set of

- 170-

cluster means is found.

The difficulty with clustering techniques is in determining the validity of the clusters. Clus-

tering algorithms will always produce clusters even when they are not present in the data. A

few quantitative measures are possible to evaluate the degree of natural clustering in the data

and the validity of the chosen clusters, usually by making assumptions about the probability

distributions of the classes and testing how well the clusters fit them. Ripley [Rip81] and

Jain [Jai86] give good overviews of the measures used. Valid clusters can also be evaluated

in terms of how "good" they are using measures of "compactness" and "isolation" [Jai86].

In addition to its use in unsupervised classification, clustering has also been used to reduce

the dimensionality of data and to reduce the size of training sets (by representing compact

clusters by their mean vector) [DH73].

6.2.4. Fuzzy Decision-Making Classification

Where no a priori knowledge is available it can be advantageous to use fuzzy decision-

making classifiers for unsupervised classification. These were presented by Bezdek [Bez8t]

and Kandel [Kan82] as alternatives to the probabilistic statistical classifiers. The classifiers

adopt the fuzzy set concept of Zadeh [Zad65] which allows an input pattern to belong to all

the possible classes with varying degrees of membership. This is very useful when it is

desired to output a candidate set of classes rather than a winner-take-all classification.

Bezdek [Bez81] proposed a fuzzy version of the k-means algorithm (see section 6.2.3) to

produce classes encompassing spherical clusters of the training samples. The algorithm was

later developed to produce line and surface clusters (Bezdek et al. [BeG8t]) and clusters

with variable shape (Gath and Geva [GG89]). Man and Gath [MG94] presented a variant

called the fuzzy k-rings algorithm which forms ring-shaped clusters and can characterize

both ring-shaped and compact spheroid classes.

6.3. Structural Classification

Structural pattern recognition focuses on the structural relationships within entities rather

than the features of those entities. This approach assumes that the relationships can be

quantified in some way. For many applications this is possible and provides a useful means

- 171 -

of classifying patterns using higher level representations. In structural character recognition,

the characters are broken down into easily extracted primitives, such as straight lines and

curves. Figure 6.1 gives a Simple example of horizontal and vertical line primitives. 111e

primitives are presented to the structural classifier in an interconnected form (usually a

string, graph or tree) which represents the relationships between them (relative positions and

joins),

a) Character image

+

=

b) Primitives and their structural relationships

Figure 6.1 Example of primitives extracted from a character and their structural

relationships.

The most simple form of structural representation is a string, which can be matched against a

library using basic string matching techniques. Much more powerful structural representa-

tions can be achieved with formal grammars and relational descriptions. Classification by

matching formal grammars is done by parsing; the equivalent technique for relational

descriptions is called relational graph matching.

Hybrid techniques, sometimes called relational models. combine the relational representa-

tion of primitives with features, or attributes, of those primitives. to aid in disambiguation

when a structure matches more than one class. The hybrid techniques are generally called

attributed versions of the standard techniques.

- 172 -

The following sections describe each of these techniques as they relate to the work presented

in this thesis. First though. we shall consider the most elementary form of structural

classification, template matching.

6.3.1. Template Matching

Template matching, also known as prototype matching or correlation. was one of the first

types of classification applied to character recognition and is still in common usage today. It

involves storing a set of character templates. each representing a particular character class.

The target character is then compared directly to each of the stored templates and the closest

match is selected as the output character class. The templates can take a variety of forms.

Pure bitmaps have often been used. but some form of reduction or simplification of the pixel

data is useful. Typically the character is encoded into a vector. signal. string or set format

[Sch92].

Template matching is considered here as a structural classification technique although some

statistical classifiers reduce to a template matching procedure for certain probability density

functions and certain simplified assumptions about the parameters (see Duda and Hart

[DH73. p.26]). In the statistical case the templates are likely to be feature vectors. rather

than Structural encodings of the characters. but the operation of the template matcher

remains the same.

The first problem in template matching is usually to determine the correct relative position

in which to compare the template with the target. (This is not always necessary. particularly

not in feature matching since features are often position invariant.) The template is shifted

over the target to all possible positions. In each position a matching metric. called a correla-

tion function, is computed and the best correlation is recorded for each class. The highest

scoring class over all the positions is selected as the output. Commonly used correlation

functions include Hamming distance. Levenshtein distance. Euclidean distance. sum-of-

squared-error and weighted inner product. Some of these are specific to the format of the

template.

A variant of the standard correlation approach. flexible template matching. was implemented

by Lanitis and Taylor for character recognition [LT93]. Each character template had

- 173 -

accompanying parameters (e.g., horizontal and vertical scaling parameters) which were

varied, within certain constraints, to "fit" the target, allowing a wider range of slants and

sizes to be contained in the template set.

Template matching is unlikely to provide useful solutions in character classification. There

is no training stage so all the computation is performed when the system is in use. This

makes matching very slow, even against fairly small sets. It would be impractical for match-

ing against the large sets necessary to correctly represent all the varieties of character styles,

even assuming such a set could be constructed. Template matching techniques are sensitive

to the noise and distortions that occur often in real applications [OS90]. High levels of

recognition accuracy have not been achieved on real data.

6.3.2. String Matching

String matching is a technique that has several applications in character recognition, not just

in Structural classification. One common use is in contextual processing, to match words

against a dictionary. This application will be described later in section 6.6.1.

From a structural classification perspective, string matching is a specific form of template

matching which can be applied to string representations of primitives. A library or diction-

ary of template structure strings is used to represent the structures of each class. An input

string is classified by matching it against the dictionary.

This is an obvious, though impractical, approach to formal grammar matching. The string

matching approach is to form a library or dictionary of all the possible strings in a

grammar's language and then match the input against the dictionary. Unfortunately the

languages are often very large, or even infinite, and matching is too slow for real use. A fas-

ter, and much more practical solution to matching formal grammars is parsing which will be

described in the next section.

String matching suffers from the same problems as other forms of template matching. It is

slow and requires very large template sets to adequately represent handwritten character

classes. However, it remains an interesting approach to problems where the dictionary is

small. The hybrid method of attributed string matching, which combines the structural

- 174-

relations of primitives with feature measurements from those primitives. is also worthy of

consideration here.

'The most basic form of string matching is exact matching. where two strings are compared.

element by element. and a match is indicated if and only If all the corresponding elements

are equal. This is a very limited form and is rarely used in character recognition as errors

and variability are expected in both the stored strings and the input. Some measure of string

dissimilarity is necessary so that input strings which are 'close' to the template strings can

be recognized. This is a common extension to the basic technique. called approximate

string matching or error correcting parsing.

'The matching metric in approximate string matching is usually a form of edit distance. TIle

edit distance between two strings is based on the operations (usually insertion. deletion and

substitution of an element) required to transform one string into the other. A basic edit dis-

tance is the Levenshtein distance [Lev66] which is simply the minimum number of edit

functions required for the transformation.

More complicated edit distances are used in attributed string matching where primitives in

the string have associated features. Attributed strings have been used by several researchers

for matching polygonal approximations. e.g .• Tsai and Yu [TY851. Fan [Fan87] and Maes

[Mae91]. Polygonal approximation (see section 2.3.2) is a common encoding of shape that

can be represented in string form. The edit distances used for matching attributed strings are

essentially weighted Levenshtein distances. The edit operations are weighted by a cost func-

tion on the primitive's features which provides a better measure of their dissimilarity.

The cost of edit operations depends on the encoding of the character. For example. Maes

[Mae91] used feature strings of (length. angle from previous line) pairs with cost functions

based on the difference between the angles and a weighted difference between line lengths

for substitution operations. A simple modulus of the angle or weighted modulus of the

length was used for insertions and deletions. Tsai and Yu [TY85] represented polygons as

strings of (length. angle from a starting line on the polygon) and defined cost functions as a

sum of angle change and a measure of proportional change in length.

- 175 -

It is common in polygonal approximation for two, roughly identical, line segments to be

represented by differing numbers of boundary primitives. To overcome this problem, Tsai

and Yu [TS85] added an extra edit function, called "merge," which combines any number of

consecutive string elements into a single element (i.e., a single boundary primitive) for

matching against a template.

Matching records the edit distances between the input and all the strings in the template set.

The template string with minimum edit distance is selected as the output class. This can be

seen as a variant of nearest neighbour classification which operates on strings rather than

feature vectors [Sch92].

The possible ways of matching two strings in terms of the edit operations required can be

visualized as a graph. Each vertex represents a state of the match and has three arcs leading

to other states, one arc for each of the possible edit operations. The problem of finding the

closest match becomes one of finding the shortest path from the start state to the finish state.

Macs [Mae90] [Mae91] extended conventional linear string matching to cyclic strings.

Cyclically shifting the strings provides rotational invariance of recognition and eliminates

the problem in linear matching of determining an analogous starting point on the polygonal

approximations of different characters. By eliminating parts of the match graph that need

not be searched, Maes reduced the complexity of the cyclic matching algorithm from O(n 3)

to O(n 2 log n) for strings of length n. The time could be reduced further by assuming the

correct orientation is approximately known and only testing a few orientations close to the

vertical.

Another approach to string matching is matching with k differences. This is faster but pro-

vides less information to disambiguate different closely matching templates than edit dis-

tance matching.

String matching, in general, is very slow. It suffers from the same problem as nearest neigh-

bour classification - matching against large sets makes the matching too slow for practical

use. Large sets are inevitable in character recognition as the templates must cater for the

wide variation in character styles. The applications of attributed string matching to

- 176 -

polygonal approximations have only proved effective for recognizing simple shapes where

the template sets are small. The speed problem, coupled with the other deficiencies of

polygonal approximations (see section 2.3.2), make this an unlikely solution to isolated

character classification. Marzal and Vidal [MV93] used a string matching technique on a

small set of handwritten digit chain-codes and achieved reasonable results (over 90%) but

again this is unlikely to be as accurate or practical on a large data set. The techniques used

are interesting, however, as they are also used in certain contextual processing approaches.

This is discussed further in section 6.6.1.

6.3.3.Formal Grammars and Parsing

Formal grammars and parsing make up a type of structural pattern recognition sometimes

referred to as syntactic, grammatical or linguistic pattern recognition due to its basis in for-

mal language theory (see Hopcroft and Ullman [HU79]). Formal grammars originated in the

work of Chomsky [Ch057] and have been the subject of much interest since then. Their

application in structural pattern recognition is described in detail by Gonzalez and Thoma-

son [GT78], Fu [Fu82], Mielet [Mic86] and Schalkoff [Sch92].

Formal grammars describe the allowable patterns, called sentences, in a language. Although

they are often used to model spoken and written languages, such as English, the terms

language and sentence, as they apply to grammars, have a much wider scope. In the case of

character recognition, the language means the whole range of structures belonging to a par-

ticular class or subclass of character. A sentence is an instance of a language's structure.

Grammars consist of symbols and productions (also called production rules and rewriting

rules). There are three types of symbols: a starting (or root) symbol from which the genera-

tion of a sentence starts; terminal symbols (or primitives) which make up the final sentence;

and non-terminal symbols (or variables) which are always rewritten during the generation so

that only terminal symbols remain in the final generated sentence. The terminal symbols

correspond to structural primitives; the non-terminals correspond to more complex subpar-

terns which are successively constructed from primitives. The productions are substitution

rules which are applied to the starting symbol (and subsequently to any non-terminals) in a

hierarchical fashion to generate sentences.

- 177 -

The most common types of grammar are string grammars where primitives and their rela-

tions are written in a string. Chomsky [Ch057) proposed four types of string grammar, each

with different constraints on the allowable productions. The four types are, in order of

increasing constraints, unrestricted (or free), context-sensitive, context-free and finite-state

(or regular). Unrestricted grammars have no constraints. Context-sensitive grammars may

substitute symbol strings in the context of the symbol strings on either side. Context-free

grammars are constrained to only substitute for single non-terminal symbols (the non-

terminals are replaced independently of their context). Finite-state grammars may only have

one non-terminal symbol on either side of a production rule, Character recognition applica-

tions usually use context-free grammars, which have reasonable descriptive capability and

can be efficiently parsed. Occasionally the more powerful but more complex context-

sensitive grammars are used, e.g., Stringa [Str90).

As well as generating the sentences of a language, grammars may also be used to determine

the syntactic structure of a given sentence and whether it belongs to a language. This is gen-

erally how grammars are used in classification. An input structure is classified by determin-

ing which class's language it belongs to. This analytic use of a grammar is achieved by

parsing (also called syntactic analysis).

Parsing can be either top-down or bottom-up. Top-down parsing starts with the start symbol

and performs productions from the grammar to try to generate the input sentence. Bottom-

up parsing starts with the input pattern and applies the production rules backwards to try to

reduce the sentence to the start symbol. A successful parsing of a grammar indicates that the

sentence belongs to the associated class. The productions used in the correct parsing of a

sentence indicate its syntax and provide a descriptive understanding of the input.

Among the main techniques for parsing string grammars are the Cocke- Younger-Kasami

algorithm (see Schalkoff [Sch92]), Earley's algorithm (see Aho and Ullman [AU72]), transi-

tion networks and augmented transition networks (Woods [Woo70))).

Representing the relationships of primitives by concatenating them in a string is limited in

that it only describes one dimension of positional relation. Shaw [Sha70) allowed greater

descriptive ability in his Picture Description Language using mathematical operators to

- 178 -

indicate the direction of picture primitives (using the negation operator to indicate reversal

of the primitive's head and tail) and the various types of joins (tail to head, tail to tail, head

to head and tail to tail). This is still a restricted representation for two-dimensional character

images as it cannot represent some topological relations involving three or more primitives.

More complex, higher order grammars are required.

1bemost common higher-dimensional grammars used for two-dimensional character recog-

nition are tree grammars (see Gonzalez and Thomason [GT78], Fu [Fu86] and Schalkoff

[Sch92]). These use trees to represent structure. A tree is a directed, acyclic graph whose

nodes represent the primitives and whose arcs represent their relationships. Multiple arcs

from a node may correspond to relationships (joins) at different points on the primitive. TIle

simplest type of productions for tree grammars start with a whole tree structure whose nodes

contain non-terminal symbols. The non-terminals may be replaced as for string grammars

but no new arcs or nodes may be added. This eventually produces a tree with the same

structure but containing only terminal symbols. More powerful rules are expansive produc-

tion forms which allow non-terminals to be replaced by new arcs and nodes so that the trees

can be grown from a single root node. Parsing is performed using tree automata.

The other main types of higher order grammars are plex grammars (see Gonzales and Tho-

mason [GT78] and Fu [Fu82]), web grammars (Pfaltz and Rosenfeld [PR69]), graph gram-

mars (pavlidis [Pav72]), multidimensional array grammars (Rosenfeld [Ros73], Wang

[Wan80]) and mosaic grammars (Ota [Ota75]).

The practical difficulty with syntactic character recognition is in determining grammars to

accurately represent the huge variety of style in character classes. Grammars are often

defined by a human designer but there are techniques, called grammatical inference pro-

cedures, which automatically construct a grammar to represent a training set. Grammatical

(or structural) inference is the equivalent of learning in a statistical or neural classifier.

Among the proposed methods for string grammars are grammatical inference using lattice

structures, structural information sequences and inductive inference (see Fu [Fu82], and Fu

and Booth [FB86]). Learning of tree grammars has been attempted by Brayer and Fu

[BF77] and Levine [Lev81]. Winston [Win70] proposed a grammatical inference method

for web grammars.

- 179 -

The problems faced by both human designers and grammatical inference procedures are

caused by three main factors. Firstly, a class language may be generated by many different

grammars. There is therefore a choice to be made about which of the possible grammars is

best. Secondly, grammars will often generate sentences that do not belong to the intended

language, so the next problem is to restrict these unwanted sentences. The third problem

with the grammars we have considered so far is that they produce a simple yes/no result - a

sentence (character) either fits the grammar (class) or it doesn't. For this reason, it is usually

desired that class languages are disjoint so that only one will be matched for any given sen-

tence.

Grammatical inference methods (and possibly human methods too) address the first problem

by restricting the grammar to a standard type, e.g, context-free, or normal form. Other con-

straints are also used such as requiring the grammar to be of minimal complexity [Sch92].

The problem of unwanted sentences is addressed in part. by including negative exemplars in

the training set. l.e., sentences that do not belong to the language. The inference methods

then produce grammars that match the positive exemplars but not the negative ones.

The third problem is the most difficult to overcome for character recognition and is the main

weakness of the syntactic approach. The difficulty is that handwritten character classes are

not disjoint. particularly when represented structurally by discretized stroke primitives. Tbe

simpler the set of primitives the greater the amount of overlap. This means that a non-

overlapping division by grammars is a matter of compromise, for which no solid theory

exists. Statistical classifiers provide a much more practical and theoretically sound solution

to the problem. Another weakness of most syntactic pattern recognition techniques is that

they consider character structures to be pure forms, obeying fairly rigid rules. This is not the

case for real world applications where distorted and noisy images are commonplace. In

addition, syntactic recognition does not consider the possibility of errors in the primitive

extraction process. Extraction errors often occur. especially when processing noisy images.

Formal grammar approaches have therefore had limited success in character recognition as

they are not powerful enough to cope with these problems in real data.

One development of formal grammars that addresses these practical problems, however. is

stochastic grammar (Booth and Thompson [BD3]). Stochastic grammars allow class

- 180-

languages to overlap but incorporate probabilities into their production rules and choice of

starting symbol. Sentences generated by stochastic grammars have an associated probabil-

ity. derived from the probabilities of the productions used in their generation, which serves

as a certainty measure of how well the sentence belongs to the class. This provides a useful

measure to aid in the disambiguation of sentences which match more than one class's gram-

mar. Stochastic grammars have also been extended to trees (Fu [Fu80]. Thomason [111086]).

Another hybrid extension is attributed grammar (Knuth [Knu68], Sebesta [Seb89]) where

symbols have associated features or attributes. These attributes also influence the production

rules. This allows more powerful descriptions of characters. such as are achieved by con-

ventional feature-based approaches. Ali and Pavlidis [AP77] applied attributed grammars to

the classification of 840 handwritten digits. encoded by polygonal approximations (see sec-

tion 2.3.2), and achieved a correct recognition rate of 92.98%. Their method is limited.

however. in that the polygonal approximation can only represent one component of a charac-

ter. On a larger data set, including broken characters, a high (about 30%) error rate occurred.

6.3.4. Relational Descriptions and Relational Graph Matching

In cases where the number of training samples is too small to accurately infer class gram-

mars, or where individual patterns can be considered to be representative templates (or pro-

totypes) of their classes. relational descriptions are often a better alternative to formal gram-

mars [Sch92]. Relational descriptions are classified by template matching rather than pars-

ing. Forms of template matching for classifying simple structural representations, such as

strings. have already been discussed in sections 6.3.1 and 6.3.2. As mentioned in section

6.3.3, higher-dimensional representations are useful for describing the full range of relation-

ships in two-dimensional character images. This section briefly reviews the matching

methods for higher-dimensional relational descriptions. The main types of higher order

descriptors are trees and graphs. but since trees are a subclass of graphs we shall only con-

sider graphs in this section.

Relational description using graphs is an extension of higher-dimensional grammars

[Sch92]. Structural patterns are represented by a specific type of semantic net called a rela-

tional graph. A semantic net is a labelled. directed graph which describes relationships and

properties of entities. In the relational graph. nodes represent subpanerns or structural

- 181 -

primitives, and the directed arcs of the graph represent the structural relationships between

nodes.

A template set is used to represent character classes. Relational graph matching determines

which class's template best matches the input graph. The simplest form of matching is exact

matching where graphs must be isomorphic for a match to occur. An isomorphic map

preserves the structure of the graph. In other words all nodes and arcs of the graphs are

identical, except possibly for their labels.

Isomorphism is usually determined using the adjacency matrices of the two graphs. An

adjacency matrix is an encoding of the graph with one row and column for each node. The

matrix contains '0' s or 'I' s to indicate whether or not the row and column nodes are related.

The corresponding elements of each matrix are compared; if they are all identical then the

graphs are isomorphic. For one matrix this can be achieved in 0 (n 2), where n is the number

of nodes, but each ordering of the nodes must be tested, making the complexity of the whole

process O(n2.n I). This degree of computational complexity is the main problem with the

relational graph approach. One attempt to reduce the complexity involves determining if

two graphs are not isomorphic, by looking for invariant properties of isomorphic graphs

(number of nodes, number of incoming and outgoing arcs from nodes, closed paths) that are

not met by the target graphs.

In practice, character structures do not always match a template graph so precisely. Noise

and distortion cause local and structural deformations of the input graphs. Some measure of

similarity must be used to allow inexact matching of noisy structures.

Sanfeliu and Fu [SF83] review the two main methods for introducing similarity to graph

matching. The first is to extract features from the graphs and match them using statistical

classification. This relies on the extraction of good features, but the types of features used

for this purpose are generally simple counts of particular substructures, e.g., number of

nodes, number of nodes with n arcs, number of triangles. The simplicity of the countable

features limits the power of the structural representation so these methods are not greatly dif-

ferent from conventional, feature-based, statistical classification techniques. The second

method uses the graphical equivalent of Levenshtein distance, i.e., the minimum number of

- 182 -

edit operations to transform one graph into the other, where operations are, for example,

node insertion, deletion, splitting and merging, and arc insertion and deletion. It has been

shown that this method has polynomial time complexity for trees [Lu79], but for graphs is,

in the worst case, exponential [SF83].

The weakness of relational graph matching is the same as for other types of structural char-

acter classification; structure alone is frequently insufficient to discriminate characters. As

with the other forms of structural representation there are hybrid versions of relational

graphs which include features of the nodes (primitives) to aid in disambiguation of classes

with similar structures. These are called attributed graphs.

Similarity measures between graphs are naturally extended to attributed graphs by weighting

the cost of edit operations according to the attributes of the transformed nodes. This is simi-

lar to the weighting of operations for attributed string matching (see section 6.3.2). How-

ever, attributed graph matching is more complicated than attributed string matching because

in addition to comparing nodes' attributes it is also necessary to determine the best pairings

of nodes for comparison.

Good candidates for pairing may be found using the maximal clique method. A clique of a

graph is a totally connected subgraph. Totally connected means that there is a direct path

between any two nodes in the subgraph. A maximal clique is one which is not contained in

any other clique. The method starts by producing a match graph between the input and tem-

plate graphs. The nodes of the match graph represent possible pairings of input graph nodes

with template graph nodes. Nodes in the match graph are linked with an arc if the pairings

they represent are compatible. Maximal cliques in the match graph indicate good candidate

pairings for matching the input to the template. Again, this method is very computationally

expensive. Davies [Dav90] reports that maximal clique is NP-complete.

An alternative approach is probabilistic relaxation, also cal1ed continuous relaxation

(Rosenfeld et al. [RHZ76]). Relaxation is an iterative procedure where matches between

input and template nodes are assigned probabilities of their correctness. (A discrete version

of relaxation is also possible where matches are assigned a simple yes/no value rather than a

probability.) The probabilities are initially based on similarity measures between the

- 183 -

attributes of the nodes. They are then iteratively modified according to the context of their

adjoining nodes. Suppose we have a potential match between a node, i, in the input graph

and a node t in the template graph. If a node linked to i in the input graph has a high match

probability with the corresponding node linked to t in the template graph, then the match

probability between i and t is increased. Similarly, if the match probability between

corresponding linked nodes is low, the match probability between i and t is reduced. After a

number of iterations the high probability matches should indicate the best pairings. Many

relaxation techniques have been proposed. Kittler and lllingworth [KI85] give a comprehen-

sive survey of techniques and applications.

Sanfeliu and Fu [SF83] applied attributed graph matching to a small set of 25 handwritten

lower case 'b's, 'd's, 'h's and 'k's with good results. The computational complexity would

limit its application to large template sets however, and the small scale of the test prohibits

meaningful comparison with other systems.

Yamamoto and Rosenfeld [YR82] used probabilistic relaxation to match attributed graphs

for handprinted Kanji characters and Lam and Suen [LS88a] developed the method for

application to handwritten digit recognition. They used a set of heuristic rules to simply

classify characters consisting of only one or two primitives. This reduced the number of

characters required to be matched by relaxation and hence improved the speed of the overall

recognition system. A set of 5000 samples, taken from real data, was used to train the sim-

ple classifier and aid in construction of the templates for graph matching. The combined

classifiers achieved high recognition rates (between 93 and 96% depending on the rejection

threshold used) on 2000 unseen test samples.

Lu et al. [LRS91] used branch attributed graphs to represent the structure of branches of

Chinese characters. They ordered the vertices of the branch attributed graphs and then

organized them hierarchically to facilitate a search procedure. This organization helped

reduce the complexity of matching. They applied this relational graph method (which

included attributes for both nodes and arcs) to handwritten Chinese character recognition and

achieved a 90.45% correct recognition rate on a sizeable test using good quality data.

- 184-

6.4. Neural Classification

Neural classification is an emerging field of classification research which has become

extremely popular in recent years. Artificial neural networks, also known as connectionist

models, neuromorphic systems and parallel distributed processing models, are much more

powerful classifiers than the conventional statistical and structural approaches. It is still not

clear, however, that neural classification is an entirely separate paradigm as many neural

methods are closely related to statistical and structural ones.

Since 1943, when McCulloch and Pitts first proposed their model of a neuron [MP43], many

different neural classifiers have been proposed. Neural classification techniques were

applied to pattern recognition problems very early in their development. Most, if not all, of

the methods described here have been applied to character classification at some point.

Artificial neural networks model the function of real neural networks in the human brain.

They comprise units. called neurons, connected together in a network topology. The func-

tion of the neurons, and in some cases the structure of the networks, can be trained to learn

sets of patterns. Individual artificial neurons model the function of biological neurons which

is reasonably well understood in the field of neuroscience. The network structures and the

training methods are also generally intended to model their equivalents in the brain, though

these are less well understood.

Artificial neural networks (hereafter referred to simply as neural networks) take a wide

variety of forms but certain generic structures have dominated the field. The following sec-

tions review the different models of neuron function, the types of network structures and the

training algorithms used. Finally some specific neural classifiers which have been used for

character recognition are surveyed.

6.4.1. Types of Neuron

The basic model of a neuron is as shown in figure 6.2. The neuron has a number of inputs

(l, ... ,n) and a single output. The values of the inputs (XI Xn) and output (0) are called

activations. Each input has an associated weighting factor (w I....,wn), called simply a

weight. The weighted sum of the input activations (net) gives the equivalent of the soma

potential of a biological neuron. This is passed through an activation function (f (net)) to

- 185 -

obtain the output activation.

+1

Wo (bias)
xl 0

N U
X2P • T

ftnet) 0

U P

T Uw
n

S xn • T

Figure 6.2 Basic model of a neuron.

The neurons that have been used in pattern classification vary in several ways. Firstly the

input and output activations may be either discrete or continuous. The activations are usu-

ally restricted to the range 0 to 1 (or in some cases -1 to 1). Thus the discrete case usually

means the activations are binary (either 0 or 1). Discrete activations can simplify the train-

ing and operation of neural networks but are less powerful from a classification point of

view as they can't be used with real-valued features.

Weight values may also be either discrete or continuous, though continuous weights are by

far the most common. Early neuron models did not actually have weights; the soma poten-

tial was simply the sum of the inputs. In the neuron model in the figure, this corresponds to

all the weights having the value 1. Note that in addition to the weights on the inputs, most

neurons also have a threshold weight (wo). often called a bias or offset. This is effectively

an additional input whose activation is always +1. This bias is essential as it effectively

determines the position of the neuron's decision surface relative to the origin of the feature

space. Without it the surface would always have to pass through the origin which greatly

restricts its discriminant ability.

The last way in which neurons vary within the standard model is in their activation func-

tions. The most common forms of activation functions are linear, threshold (also called

- 186 -

binary or step), threshold-linear (also called ramp) and general sigmoid (also called logistic

or squashing), as illustrated in figure 6.3. The type of function which can be used may be

limited by the type of activation allowed (discrete or continuous).

Neurons with threshold activation functions are equivalent to linear discriminants. The

other types of function are usually more useful in character classification as they produce a

continuous score representing how well the input matches the output class. This can be

treated as a confidence factor, or in some cases a probability, and aids in selecting the overall

classification from the set of neuron outputs (usually there will be one neuron for each out-

put class). The sigmoid function is more commonly used than the threshold-linear function

as the popular back-propagation learning algorithm requires the activation function to be dif-

ferentiable. Sigmoids with A. = 1 (see figure 6.3) have a simple derivative, 0(1 - 0). Also, it

has been found that the average output activation of a biological neuron is a sigmoidal func-

tion of its soma potential, giving a degree of validity to this choice of function.

The main variant of the standard neuron model uses radial basis activation functions

(Broomhead and Lowe [BL88], Moody and Darken [MD89]), also called localized receptive

fields, locally tuned processing units and potential functions. These produce a maximum

value at zero and approach zero at infinity. Rather than multiplying the inputs by the

weights, these activation functions take as their input the distance between the input vector

and the weight vector. The neurons therefore produce a measure of how close the input is to

the learned weight vector. Radial basis function networks are discussed further in section

6.4.4.

6.4.2. Types or Network

A single neuron is not a particularly powerful processing unit but when many of them are

connected together (by linking one's outputs to another's inputs) they can form extremely

effective systems, the most powerful of which is the human brain. Neural networks, as they

are used in character recognition and other pattern recognition applications, take the form of

pattern associators (PAs). Each PA takes an input pattern (feature vector) and produces an

output pattern or class. There are essentially four forms the output may take:

net

a) Linear.

0=A.net

o

Tl T2 net

c) Threshold-linear

omax net >= T2

o ={omax -Omin(net -Tt) +omin
T2-Tl T'I <= net < T2

°min net < T'I

- 187 -

o

T net

b) Threshold

0={ ~
net >= T

net <T

A.__'OO A.>1

A.=1
___ A.<1

I----~",..----A.::O

net

d) Sigmoidal

1
0=-----

1+ e -A. net

Figure 6.3 Common forms of activation functions.

1) a single numeric output with different values corresponding to different classes;

2) multiple numeric outputs (one for each possible class) with only one producing a non-

zero response for any given input pattern;

- 188 -

3) multiple numeric outputs which when taken together form an encoding of a class;

4) a single pattern vector.

All these are types of content addressable memories (CAMs). CAMs are memory architec-

tures which are addressed by their content rather than by an index. The fourth variant is a

particularly useful type of CAM called a CAM associator.

Pattern associators have two main mapping mechanisms. The autocorrelator (or autoasso-

ciative structure) stores a set of single patterns. These are used mainly for simple recall or

correction of patterns, and completion of partial patterns. The heterocorrelator (or heteroas-

sociative structure) stores pattern pairs, each pair consisting of an input (or stimulus) pattern

and the correct response pattern. Heterocorrelators are commonly used in classification as

the response patterns can be classes, which means that the heterocorrelator maps input pat-

terns (usually feature vectors) to classes.

There are two main forms of recall. Nearest-neighbour recall finds the stored stimulus pat-

tern 'closest' to the input and returns the corresponding response pattern. (This assumes a

heteroassociative recall; autoassociative recall simply returns the 'closest' stored pattern.)

Some associators perform an interpolative recall where the output is interpolated over all the

stored patterns, rather than just the closest one. Note that 'closeness' may be measured in a

variety of ways (though the Euclidean and Hamming distances are the norm).

NeuraI networks have been used to implement all these types of pattern assoclator. Network

structures faIl into two categories:feedforward andfeedback (also called recurrent).

Feedforward structures consist of ordered layers of neurons, with the outputs of each layer

only connected to inputs of neurons in the following layer. The first layer is simply a

storage layer to hold the input values to the network. Neurons in the other layers perform

the standard neuron functions as described in section 6.4.1. TIle final layer produces the net-

work outputs. The middle layers, if any, are called hidden layers and the neurons they con-

tain are termed hidden units. Processing in these networks is directed from the inputs

throUgh the hidden layers to the outputs and is therefore called feedforward.

- 189-

Feedback networks are similar but allow the output of any neuron to be fed to the input of

any other neuron. Feeding inputs back to previous neurons allows recursion (loops) in the

processing sequence of the network. Neuron activations in the feedback network may

fluctuate as a result of these loops, so one of the main concerns in their development is

whether or not the activations converge to a stable state.

Neural networks have been formulated in many different ways but one common formulation

uses matrices to store the connection weights. Generally the weight in the ith column and

jth row of the matrix is the weight of the connection between the ith neuron's output and the

jth neuron's input. The value zero generally indicates no connection, although some train-

ing algorithms can cause connected neurons to have a connection weight of zero. Using this

formulation. computation of the soma potential is performed in a simple matrix multiplica-

tion of the input activations by the weight matrix. The matrix formulation is particularly

useful in networks which use linear activation functions as the whole mapping from input to

output can be performed with matrix operations. It also allows linear algebra methods to be

applied to the operation and training of linear networks.

The following section describes some of the main network structures in relation to their

learning algorithms. Other types of neural network are described in sections 6.4.4 and 6.4.5.

6.4.3. Types of Learning

Learning in neural networks can be divided into supervised and unsupervised in the same

way as for other classifiers. Supervised learning can be further divided into structural learn-

ing and temporal learning. Structural learning simply trains the network weights so that

they learn a sample set of mappings. Temporal learning teaches the network a sequence of

patterns and is less commonly used in character recognition, although it could be useful for

learning sequences of letters which make up valid words. This review will concentrate on

structural learning techniques.

The main supervised learning procedures are error-correction learning, reinforcement learn-

ing and stochastic learning. The main unsupervised procedures are Hebbion learning, and

CO"l.petitiveand cooperative learning. These are described below. The learning procedures

are in some cases linked to specific network structures so several networks are also described

- 190-

in this section.

The most popular supervised learning techniques are types of error-correction learning.

These have an interesting history.

In 1962, Rosenblatt [Ros62] proposed the use of back-coupled error correction to adapt the

weights of a type of neural network called a "perceptron" [Ros58]. (The original use of the

term referred to the whole network but it is now commonly used to refer to a single unit or

neuron.) An error measure is determined by subtracting the output vector of the neural net-

work from a target vector. This error is fed back to the network's weights which are

modified according to the error vector and some probabilistic law. This is often called "per-

ceptron learning."

Note that perceptron learning is the same as the fixed-increment rule for determining the

weight vector in a nonparametric statistical classifier. As explained in section 6.2.2, the per-

ceptron is functionally identical to a linear discriminant function, excepting the nonlinear

activation functions. Consequently, many of the neural network learning rules have similari-

ties to the nonparametric statisticalleaming rules. Further comparisons of neural and statist-

ical classification can be found in Cheng and Titterington [CT84], Michie et al. [MST94]

and Sarle [Sar94]. Neural network researchers are often criticized by statisticians for rein-

venting statistical models, and for training and using neural networks with no regard for the

underlying assumptions made about probability distributions.

Another method which was mentioned in section 6.2.2 is the Widrow-Hoff rule. Widrow

and Hoff [WH60] modified Rosenblatt's back-coupled error correction to make it minimize

the mean squared error over all inputs. This method was used to train their Adaline and

Madaline systems [WW88]. An Adaline is a type of two-layer perceptron network where

there is only one neuron in the second layer; a Madaline has multiple neurons in the second

layer. The Least Mean Square (LMS) algorithm is basically the same as perceptron learning

but is suitable for continuous activations of the neurons whereas perceptron learning is for

neurons with discrete binary activations. The error term is the difference between the soma

potential and the target output rather than the actual output and the target output.

- 191 -

Multilayering of networks using sufficient hidden layers enables perceptrons to form arbi-

trarily complex decision boundaries. Palm [Pal79] showed that a single layer of hidden units

is sufficient for a network to perform nonlinearly separable functions. However, in 1969 the

field of neural networks went into a temporary decline as a result of Minsky and Papert's

book [MP69b] which pointed out the perceptron's apparent inability to learn these non-

linearly separable functions. The problem, known as the credit assignment problem, was

that at the time there was no method for computing the error of the hidden units and there-

fore no way to train them. Interest has grown again in recent years as ways have been found

to solve the problem. A little known fact is that a mathematical solution to the credit assign-

ment problem was published prior to Minsky and Papert's book by Amari [Ama67] but went

unnoticed.

Back-propagation, also called the generalized delta rule, is a development of back-coupled

error correction, first discovered by Werbos [Wer74]. This went unnoticed as well. It com-

bines the least mean squared error correction of Widrow with a derivative term to keep

weights within certain bounds. The derivative of the output function is used so this function

must be differentiable; a sigmoid function is the usual choice. In addition to this error

correction, a "weight transport" system is used where errors are propagated back to lower

layers of the MLP. The hidden units of the MLP have no obvious semantics. For these neu-

rons there can be no known target output on which to base an error measure. Instead errors

are propagated back from higher layer neurons in proportion to the weight from the hidden

cell to the higher layer neuron, relative to the higher layer neuron's other inputs. Back-

propagation is described in more detail in the classic reference, Rumelhart and McClelland

[RM86].

While back-propagation is the most popular neural network training algorithm, it is very

slow. It also is prone to becoming stuck in local minima of the associated energy surface

rather than finding the global minimum.

The energy surface [Den86] [HT86] is a way of understanding learning in the network. It is

the surface of an energy function, or cost function, whose domain is the state space of the

network, a hypercube; it represents "computational energy." The most common cost func-

tion is the squared error - the squared difference between the desired and actual outputs.

- 192 -

Linear error (Alstyne [Als88]) and higher powers of the error (Hanson and Burr [HB88])

have also been used. Another common energy function is an information theoretic cross-

entropy measure (Ackley et al. [AHS85], Baum and Wilczek [BW88], Wright [Wri89]).

1be role of learning is to minimize the cost function. This is achieved by a gradient descent

down the energy surface to a minima. 1be best solution is found at the global minimum so

it is undesirable to become stuck in local minima when training.

An important research aim is to make back-propagation faster. Tollenaere [Tol90] proposed

SuperSAB, an algorithm for adaptive acceleration of the gradient descent. Fahlman [Fah88]

proposed an algorithm called quickprop which attempted to solve many of the learning prob-

lems of back-propagation. Second-order error derivatives are used in addition to the first-

order ones to give an indication of how fast the energy surface can be descended.

Fahlman used quickprop in his cascade-correlation networks [FL90] [Fah91] [HF92]

although these are very different from standard MLPs as they do not back-propagate errors

to the hidden layers. Hidden layer cells have fixed input weights, determined by training a

cache of cells and choosing the one with the greatest correlation between its value and the

error at the output. This is similar to the method used by Gallant in his connectionist expert

systems [GS87] [Gal88]. A recurrent version of cascade-correlation networks has also been

developed [Fah91].

There has been much research into back-propagation for MLP networks and they have been

used to achieve high accuracy results on character recognition by many researchers, e.g.,

Burr [Bur86], Pawlicki et al. [PLH88], Khotanzad and Lu [KL88], Rajavelu et al. [RMS89],

and Sabourin and Mitiche [SM92]. However, the fact that they learn very slowly, particu-

larly for the large networks that are required for real world problems like character recogni-

tion, still poses a problem. Speed of adaptation is an important consideration in a character

recognition system. which may be expected to regularly learn new users' handwriting.

Parallel algorithms are desirable for practical use of back-propagation.

There are some interesting possibilities though, such as Wright's probabilistic neural net-

works based on MLPs with a back-propagation-like training algorithm [Wri89]. These

could enable the classifier to select from a range of high probability outputs. Learning is

- 193 -

performed by a gradient descent to minimize an information theoretic cross-entropy meas-

ure. The activation function is chosen to form a Markov model (see section 6.2.2) of the

network's layers. This simplifies the learning condition and gives a learning rule very simi-

lar to the generalized delta rule for training back-propagation networks.

Reinforcement learning (Widrow et al. [WGM73], Williams [Wil87]) is similar to error-

correction learning but uses only one value to indicate the output layer's error rather than

one error value for each neuron. The change in each weight is proportional to the difference

between the output layer's scalar error value and a reinforcement threshold which is specific

to each output neuron. The weight change is also scaled by the canonical eligibility of the

weight. The canonical eligibility is a probabilistic measure of whether the computed output

equals the target output. This is in contrast to error-correction learning where the difference

between computed and target outputs is determined exactly.

Stochastic learning (Ackley et al. [AHS85]) uses random processes to change the network

weights. The energy function of the network is evaluated to see if the weight change has

caused a decrease in energy (i.e., an improvement in performance). The weight change is

accepted if the energy decreases. If it increases, the weight change is accepted or rejected

according to some probability. Although this allows acceptance of changes which give

worse performance, it is useful because it enables the learning process to escape local

minima in the energy surface. This is called simulated annealing (Kirkpatrick et al.

[KGV83], Laarhoven and Aarts [LA87]). The acceptance probability is slowly reduced to

enable the process to settle at the global energy minimum.

Hardwired learning, where the designers set the network weights themselves, is also a form

of supervised learning. This is a difficult task and not commonly used although a few

researchers have hardwired networks to learn language semantics which may have some use-

fulness in character recognition (Cottrell and Small [CS83] [CS84], Fanty [Fan86]).

Hebbian learning is a common approach, main1y used in unsupervised learning. Hebb's

scheme [Heb49] increases a connection weight where there is a positive correlation between

its corresponding input and output activations (in neurological terms, where there is a corre-

lation between presynaptic and postsynaptic activity). In other words, if the input and output

- 194-

activations are both positive or both negative then the weight is increased. This is called

simple Hebbian learning. The problem with this method is that if the weight is only ever

increased. "synaptic strength" saturation can occur - the weights reach their maximum

value.

Many variants of Hebbian learning exist which allow negative modification of the weights

and correlate different values. Sejnowsld [Sej77a] [Sej77b] correlated the covariance of the

input and output activations. Sutton and Barto [SB81] correlated the variance of the output

with the mean of the input. Klopf's drive-reinforcement learning [Kl086] correlates the

changes in input and output. These are all discrete time methods. Continuous time methods

include a decay term and calculate the derivative of the weight with respect to time. rather

than a discrete weight change. Grossberg [Gro68] used a continuous time method which

performs a nonlinear threshold function on the activations before correlating them. This is

called the signal Hebbian learning law or the passive decay associative law. Kosko's dif-

ferential Hebbian learning [Kos86] correlated the derivatives of the nonlinear threshold

functions. Tesauro [Tes86] gives a more detailed description of the Hebbian variants.

Hebbian learning computes modifications of the weights using only the input activation.

soma potential and existing weight value. It is therefore simpler to perform than back-

coupled error correction which requires computation of a non-local term to determine the

weight modifications.

Competitive learning (Grossberg [Gron] [Gro76a] [Gro87]. von der Malsburg [MaI73].

Rumelhart and Zipser [RZ85]) is a mechanism for unsupervised training of networks such as

the additive Grossberg [Gro68] and shunting Grossberg (also called multiplicative

Grossberg) [Gro73]. Networks for this type of learning are usually either single-layer or

two-layer. Neurons in the output layer of these networks have recurrent self-excitatory con-

nections. which increase their own activations. and inhibitory connections to each of their

neighbours. Excitatory connections send positive signals; inhibitory connections send nega-

tive signals. This arrangement is sometimes called on-centrelof!-surround. On-centre refers

to the self-excitatory connections and off-surround refers to the neighbour-inhibiting connec-

tions.

- 195 -

The usual operation of competitive learning involves an initial recall mechanism. A training

sample is input to the network. In the two-layer case this input feeds forward, via weighted

connections, to the output layer. The output layer then sends signals via its self-excitatory

and neighbour-inhibitory connections producing a competition between the neurons. After

this recursive competition, the network will settle to a state where only one output-layer neu-

ron remains active. The training sample is then considered to belong to the class of the

winner in the output layer. The weights to this winner are then modified by the gated decay

long term memory equation

where a; is the activation of the ith input-layer neuron, bj is the activation of the jth output-

layer winner, Wij is the weight from the ith input-layer neuron to the jth output-layer winner,

and SO is a sigmoid function [Sim90]. Note that single-layer networks are usually sym-

metric (w;j = Wj;) so both weights are modified together. In two-layer networks, only the

feedforward connections to bj are changed. This can be seen as contrast enhancement

[Gro76a].

Cooperative learning is an extension of competitive learning where neighbours can be

excited as well as inhibited. It was introduced by Grossberg [Gro73] [Gro82]. His shunting

networks have separate excitatory (positive) and inhibitory (negative) inputs to each neuron.

The learning procedure is very similar to competitive learning but the dynamics of recall are

changed by the distinction between positive and negative inputs. Gain control is incor-

porated into the recall, which amplifies signal and nullifies noise. Grossberg's further

development of competitive-cooperative networks (see section 6.4.5) also includes this gain

control.

The advantages of this form of competitive (or competitive-cooperative) learning are that it

is unsupervised and allows on-line training (learning while the system is in use) so a priori

exemplars are not required. The difficulties are that storage capacity is limited and new

exemplars can overwrite previously learned ones. Grossberg called this the stability-

plasticity dilemma but he overcame it in his adaptive resonance theory networks (see section

6.4.5). A number of other forms of competitive learning have been used for unsupervised

training, e.g., Fukushima [Fuk75] [Fuk80], Kohonen [Koh82] and Amari [Ama83]. The

term is used to describe any method where outputs compete for an input before weight

- 196-

modification.

6.4.4. Feedforward Networks

Several types of feedforward network (perceptrons, Adalines, Madalines, multilayer percep-

trons and cascade correlation networks) were described in the previous section. This section

reviews some of the other feedforward network structures that are suitable for character

recognition.

Kohonen's learning vector quantization (LVQ) [Koh90a] [Koh90b] [Koh9Oc] is a nearest-

neighbour classifier similar to the statistical nearest-neighbour classifiers (see section 6.2.2).

Input vectors are matched to one of a set of exemplar vectors according to a distance metric

(usually the shortest Euclidean distance between vectors). The difference with the LVQ

classifier is that it uses a clustering procedure to reduce the number of exemplar vectors

(called codebook vectors) required to represent the classes. This is very useful in real appli-

cations like character recognition where the large training sets required make nearest-

neighbour matching too slow for practical use.

Vector quantization (sometimes known as block quantization or pauem-matching quantiza-

tion) is a vector reduction technique which has previously been applied to many data

compression applications, such as image compression (Gersho and Ramamurthi [GR82])

and speech Coding (Makhoul et al. [MRG85]). A comprehensive survey of these applica-

tions can be found in Gray [Gra84]. In recent years, adaptive vector quantization has been

formulated as a neural network (where the values of the vectors form the network weights)

by Kohonen and has become a popular neural paradigm.

Training the classifier involves an initial determination of how many codebook vectors are

to be used and how they are to be distributed among the classes. Kohonen recommends that

approximately the same number of codebook vectors are assigned to each class. The total

number of codebook vectors is limited by the required recognition speed and therefore by

the computational power of the specific system. The initial values of the codebook vectors

are selected from the training set by finding samples of the intended classes, They are first

checked with a tentative k-nearest-neighbour classification using the other training samples

to ensure that they lie roughly within their respective class boundaries. Only samples which

- 197 -

are correctly classified on this way are accepted.

The learning rules are iterative error-correcting procedures. They cycle through each sample

in the training set and shift the positions of the closest codebook vectors towards or away

from the sample according to whether they classify it correctly or not. Kohonen describes

several LVQ training procedures in his 1992 LVQ Program Package [KKL92]. Learning

usually begins with an optimized-learning-rate LVQ [KKL92), where each codebook vector

has an individual associated learning rate. Optimal values for the learning rates can be

determined which allow the classifier to rapidly converge to its asymptotic recognition accu-

racy. Improvements to the accuracy can be achieved by fine tuning the classifier with alter-

native LVQ rules [Koh9Oa] [Koh90b] [Koh9Oc]. 1be aim of learning with these algorithms

is not to approximate the class density functions (as in Makhoul et al. [MRG85]) but to

directly define the class boundaries under nearest-neighbour classification [KKL92).

An alternative to the iterative training strategy is a batch training procedure. Batch cluster-

ing algorithms are sometimes applied though they have a tendency to become stuck in local

minima of the classifier's energy function. The most common of these procedures is the

Linde-Buzo-Gray algorithm [LBG80] which is equivalent to the k-means algorithm (see sec-

tion 6.2.3).

LVQ is simple and powerful, giving greater accuracy than a parametric Bayesian classifier

(see section 6.2.1) [Koh90b). Its main drawback is its long training time. Fine tuning is a

very lengthy process but the improvement in accuracy is worthwhile. The speed of the

nearest-neighbour operation is also a limiting factor but the vector reduction makes LVQ

much faster than a conventional nearest-neighbour classifier. The standard LVQ classifier

does not produce any certainty or confidence factor of its output. A confidence measure can

be obtained by formulating them as radial basis functions, as has been done in chapter 7.

Radial basis function networks (RBFs) (Broomhead and Lowe [BL88], Moody and Darken

[MD89]) are formulated as single-layer perceptron networks, but rather than multiplying the

inputs by the weights. the distance (usually Euclidean) is taken between the input vector and

the weight vector. This Is then passed through a radial basis activation function which pro-

duces a maximum at zero and approaches zero at infinity. The neuron with the closest stored

- 198 -

weight vector to the input scores highest. RBFs therefore perform a nearest-neighbour

classification. As in LVQ. a reduced set of stored vectors is trained to represent a larger

sample set by a clustering procedure. Methods of training RBF classifiers are described in

detail by Musavi et al [MAC92].

Some RBFs include additional weights on the vectors so that a weighted nearest-neighbour

classification is obtained. Whereas codebook vectors in LVQ classifiers represent hypers-

pherical distributions of the training vectors. in RBF classifiers they can represent hyperel-

lipsoidal distributions. A further extension assumes a Gaussian distribution of the classes

and models this by estimating the covariance matrices for each codebook. The more power-

ful decision regions that can be formed with the hyperellipsoidal representations offer the

possibility of improved accuracy over learning vector quantization. However. the increased

complexity of the classification also increases the required training time.

Albus's cerebellar model articulation controller (CMAC) [Alb75a] [Alb75b] is a feedfor-

ward model of neuronal structure based on the cerebellum which controls motor processes in

the brain. The original method has been developed by a number of researchers. among them

Forsyth [For90] who applied hashing functions to reduce the CMAC's large memory

requirements and Cornforth [Cor93] who added probabilistic class output.

Continuous inputs are grouped together by quantizing bands of hashing functions which

divide the input space into hypercubes. The bands. and therefore the hypercubes. overlap.

The hashing functions address a lookup table which contains real-valued numbers that are

set during training. Because the hypercubes overlap. each input lies in the range of several

hashing functions and therefore generates several addresses in the table. Addressed values

in the lookup table are added to give the output value of the classifier. Different output

classes are represented by points on a scalar range. Whichever class is closest to the output

value is taken to be the classification. This can be seen as a discrete variant of a radial basis

function [Sar94].

To give a measure of the probability of a classification. the distance to the output point from

each class point can be used. This is a limited solution. however. and a better method is to

use a different lookup table for each output class [Cor93]. The output value then becomes a

- 199-

vector. with one axis for each class. and the magnitude along each axis indicates the proba-

bility of the associated class. This increases the. already large. memory requirements con-

siderably.

The use of lookup tables rather than the solution of equations makes the CMAC very fast in

operation. Learning is also fast compared to many other neural classifiers. although Albus's

original algorithm was sometimes slow to converge. Methods have been developed to speed

up CMAC learning. e.g .• Parks and Militzer [PM89] and Cornforth [Cor93]. who proposed a

single-pass training algorithm. The class boundaries formed are arbitrarily complex and so

CMAC can learn nonlinearly separable classifications. Its main disadvantage is the large

amount of memory that must be addressed by the hypercubes. Although the use of hashing

reduces this memory requirement [For90] it is still probably the largest of any classification

technique.

CMAC was developed for robot control but has gained popularity as an alternative to back-

propagation in several other applications. Miller et al. [MGK90] used CMAC in a simple

character recognition experiment The application to real character recognition is limited by

the huge memory requirements when large sets of classes are involved.

Yair and Gersho [YG90a] developed a deterministic. feedforward version of the Boltzmann

machine (see section 6.4.5) which they called the Boltzmann perceptron network due to its

multilayer perceptron-like structure. It is still a probabilistic model - there is an underlying

stochastic network from which it computes statistical averages of the outputs.

No simulated annealing is required and learning is similar to back-propagation. A method

called partial conjugate gradient search (Luenberger [Lue84]) is used in minimizing the

network's energy cost function. Learning is faster than in a Boltzmann machine.

The Boltzmann perceptron network (BPN) evaluates a posteriori class probabilities as do

Bayesian classifiers (see section 6.3.1) but without making assumptions about the underlying

probability distribution (Yair and Gersho [YG90b]). Yair and Gcrsho's results show that

performance of the BPN is comparable to a Bayesian classifier.

- 200-

While the BPN is simpler than the Boltzmann machine it is still quite complex. Despite this

complexity it does not seem to give any real advantage over Wright's probabilistic neural

networks [Wri89] (see section 6.4.3).

Hecht-Nielsen's Avalanche Matched Filter (AMF) [Hec82] [Hec87a] learns spatiotemporal

patterns of continuous activation functions using Hebbian learning. Two weight matrices

are trained; one learns the spatial patterns and the other learns the temporal relationships.

These networks are fast and can learn arbitrary continuous spatiotemporal patterns relatively

easily. The main disadvantage of AMFs is that a separate network is required for each

sequence to be learned. AMFs are suitable for recognition tasks where patterns are tern-

porallyordered. They can be used for certain aspects of character recognition. such as word

recognition where the transition probabilities between characters could be assigned to the

temporal weight matrix. A similar approach was used for speech recognition by Lippman

and Gold [LG87] in an extension of the AMF which they called a Viterbi Net.

There are many other feedforward networks which can be trained by supervised learning

procedures but not all of them have been applied to character recognition. Simpson [Sim90]

gives good descriptions of most of the main alternatives and discusses the applications for

which they are suitable.

Unsupervised learning in feedforward networks mainly uses matrix formulations of linear

associative memories. Linear associative memory (LAM) (Anderson [And68]) stores pat-

tern pairs, (a(P), b(P»). in a correlation weight matrix:

The attraction of LAMs is that if the stimulus vectors are mutually orthogonal then recall is

perfect. otherwise there will be some crosstalk from other memorized response vectors in

addition to the associated response [WZ89]. They also learn quickly as examples do not

have to be presented iteratively.

Wee [Wee68] trained LAMs using the Moore-Penrose pseudo matrix inverse [Pen55]

[Pen56] to optimize the Least Mean Square error. Kohonen and Ruohonen [KR73] indepen-

dently produced the same solution. using Greville's algorithm [Gre60] to construct the

- 201 -

pseudoinverse incrementally in an efficient and simple manner. This solution is known as

the optimal linear associative memory (OLAM). OLAMs have been applied to character

recognition by Wee [Wee70], and Chieuh and Goodman [COSS].

Steinbuch's learning matrix [Ste61] was an early unsupervised feedforward network model.

AIthough it is rarely used today, it has historical significance as it was the precursor of com-

petitive learning. AIl these neural memory models can be formulated as Hebbian learning

systems [CarS9].

Fukushima's neocognitron [FukSO] [FukSS) [Fuk89] is a hierarchical neural network

designed for character recognition. It does not require prior feature extraction, instead it

takes a bitmap as input. Unsupervised training of the neocognitron is performed by a com-

petitive, self-organizing mechanism during which the network's neurons learn to detect

features of the inputs. The network is based on the human visual system and as such is

hierarchical in nature. Low levels of the system detect simple features and higher levels

extract more complicated ones from the lower levels.

The competitive learning procedure adapts weights by a variant of Hebbian correction. 1be

highest responding neuron in a layer, called the seed cell, has its incoming connection from

an input reinforced if the input is also responding (non-zero). Input connections to the seed

cell's neighbouring neurons are also modified so that they learn to detect the same feature.

The neighbouring neurons correspond to slightly different locations in the preceding layer so

this modification results in regions of layers which detect identical features in different posi-

tions. This architecture is intended to make the recognition invariant to shifts in position of

the target image. Fukushima's earlier cognitron network [Fuk75] had promising pattern

recognition ability but could only recognize patterns in the position in which they were

learned. The redundancy of feature detectors also aims to make the recognition invariant to

size and partially invariant to deformation.

Barnard and Casasent [BC90] have shown that the neocognitron is not intrinsically invariant

to positional changes and that its shift invariance capability depends on the choice of certain

parameters. They also provide equations for selecting these parameters so as to give approx-

imate shift invariance. There is a trade off, however, between the neocognitron's sensitivity

- 202-

to differences in its inputs and its tolerance to shifts in image location.

A size and translation invariant recognizer for character bitmaps is potentially a very useful

classifier. However, the neocognitron requires a huge number of neurons. There is a large

degree of redundancy as most of the neurons are involved solely in trying to achieve shift

invariance. Also, real problems require a large number of layers. This makes the network

impractically slow. Fukushima [FukSO] [FukSS] has demonstrated the neocognitron's abil-

ity to learn small sets of good quality, 16x16 pixel, digit bitmaps but it seems unlikely that

the network will be practical for a full system (digits and letters) with realistic levels of

noise.

An interesting development of the neocognitron includes feedback connections and operates

as a position and deformation invariant associative memory. Fukushima [FukS6b] used this

to recognize pairs of digits by a variant of recursive segmentation-classification. The net-

work was able to accurately separate and recognize a number of examples.

Other feedforward network models for unsupervised learning that have been used for charac-

ter recognition include self-organizing maps and counterpropagation networks.

Kohonen's self-organizing maps [KohS2] [KohS4] [Koh90b], also called topology-

preserving maps, are the unsupervised forms of learning vector quantization (see above).

The self-organizing map uses a competitive learning mechanism to distribute a set of unla-

beled codebook vectors such that they cover the area spanned by the set of training vectors.

Classification of input vectors is then performed by nearest-neighbour matching of the code-

book. Kohonen showed that after self-organization is complete, each codebook vector is at

the centre of a decision region [KohS6]. The decision regions form a Voronoi tessellation, a

tiling of the input space where the decision boundaries are perpendicular to the lines joining

the centroids. A number of alternative competitive learning algorithms for unsupervised

vector quantization are described and compared in Ahalt et al. [AKC90]. Counterpropaga-
tion networks (Hecht-Nielsen [HecS7bD, are an extension of self-organizing maps with an

additional layer which allows them to encode a response vector as well as the stimulus vec-

tor, i.e. they are heteroassociative models rather than autoassociative.

- 203-

Unsupervised learning is less common in character recognition applications as the classes of

training sample characters are usually known. Simpler and more accurate supervised learn-

ing is generally preferred.

6.4.5. Feedback Networks

One of the most popular feedback networks for character recognition is the Hopfield net

(Hopfield [Hop82], Hopfield and Tank [HT85]). This is a single-layer feedback network that

is fully connected, i.e .• each neuron is connected to every other neuron. Hopfield nets can be

used as autoassociative memories or to solve optimization problems. 'There are both discrete

(binary) and continuous (analogue) versions. The discrete version is also known as the

discrete autocorrelator.

Discrete Hopfield nets are trained by an unsupervised Hebbian learning method. A correla-

tion weight matrix is generated, as for linear associative memories (see section 6.4.4).

Correlating one exemplar with another gives a first order encoding which can only perform

linearly separable mappings. Higher order encodings are obtained by correlating each exem-

plar with pairs of other exemplars. This enables the net to learn nonlinearly separable func-

tions. Continuous Hopfield nets cannot be encoded in such a simple way and are trained by

alternative techniques such as competitive learning or signal Hebbian learning.

Recall operates by placing the input values on the network's outputs and then repeatedly

updating the neuron outputs. The new neuron outputs are calculated as in the standard neu-

ron model. The discrete Hopfield net uses a threshold activation function; the continuous

net uses a sigmoid function. Updating is usually by a random or sequential, iterative

sequence, but can also be a batch process where all the new neuron activations are calculated

before any of the outputs are updated. Continuous nets use the iterative method and are

highly asynchronous as they can also allow propagation delays between neurons. The updat-

ing causes the output neuron values to change but they eventually settle at stable values.

When all the neuron values stop changing. they are output from the net.

The main question concerning feedback networks is whether or not they will converge to a

stable state for all inputs. Hopfield nets are symmetric: the weight from neuron i to neuron j

is equal to the weight from neuron j to neuron i. Hopfield [Hop82] showed that in discrete

- 204-

symmetric networks the system will always converge to a minima of the network's energy

function, though not necessarily the global minimum. He also gave evidence for symmetric

networks occurring in nature. Similar convergence properties can be proved for continuous

Hopfield nets [Sim90].

Hopfield nets are particularly useful because they are able to recreate patterns from partial

inputs and are tolerant to noise. Their main limitation is the comparatively small number of

exemplars that can be accurately stored. Amari and Maginu [AM88] showed that the

discrete Hopfield net can perfectly recall up to n/(2ln n + lnlnn) exemplars, where n is the

number of neurons in the net. Therefore as n increases the relative increase in the number of

perfectly stored exemplars decreases.

Hopfield nets have been studied and modified by many researchers. A comprehensive listing

of this work can be found in Simpson [Sim90]. Hopfield nets have been applied to the

recognition of bitmap characters by several researchers, e.g., Chieuh and Goodman [CGSS],

Pawlicki et al. [PLH88], and Schalkoff [Sch89].

A heteroassociative version of Hopfield nets was introduced by Soffer et al. [S0086]

[SM086] and refined by Kosko [Kos88] as the bidirectional associative memory (BAM).

Two layers are used, with the neurons in one layer corresponding to the stimulus pattern and

those of the other layer corresponding to the response pattern. Unsupervised learning and

recall operates in the same way as for Hopfield nets and similar convergence properties have

been proved (Kosko [Kos88]). There are both discrete and continuous versions (the continu-

ous version is known as adaptive bidirectional associative memory (ABAM) (Kosko

[Kos87])). A version of ABAM which uses competitive learning is called the competitive

ABAM.

The BAM and its variants have very limited storage capacity and are unlikely to have practi-

cal applications in character recognition. However, they have very good noise tolerance

abilities and may be useful in a limited way.

The main paradigm for supervised learning in feedback networks is the Boltzmann machine

(Hinton et al. [HAS84D. The Boltzmann machine is a symmetric network similar to the one

- 205 -

developed by Hopfield. It uses stochastic neurons, instead of the deterministic neurons of

Hopfield nets, which introduce a probabilistic element into the system.

Boltzmann machines use a combination of Hebbian and stochastic learning. There are two

stages to learning: a training phase and a testing phase. Weights are modified by Hebbian

learning during the training phase and by an anti-Hebbian rule (negative modification) dur-

ing testing [Sej88]. The stochastic part of the learning process is as described in section

6.4.3. The non-improving weight changes are accepted probabilistically according to the

Boltzmann distribution, from which the classifier gets its name. The learning procedure

minimizes a cross-entropy cost function called the asymmetric divergence - the divergence

between the actual and desired conditional probability distributions of the output neurons.

The Boltzmann machine has performed well on some difficult problems, e.g., learning sym-

metry [SKH86), and has been shown to form useful internal representations of its inputs

[AHS85]. Unfortunately, learning is extremely slow because probabilities have to be

estimated. It is also limited in that it uses discrete binary activations of its neurons. Its appli-

cation to character recognition has been minimal, although digit recognition has been

attempted (pawlicki et al. [PLH88]). Kuner [Kun89) developed a method for matching

attributed and non-attributed relational graphs using Boltzmann machines. This could be

used for structural character recognition.

A similar classifier is the Cauchy machine (Szu [Szu86]) which replaces the Boltzmann dis-

tribution with the Cauchy distribution to allow a faster simulated annealing process.

Another feedback paradigm for unsupervised learning is Grossberg's adaptive resonance

theory (ART) [Gro76b). This is a development of the earlier additive and shunting

Grossberg networks that were described in section 6.4.3 and is based directly on neurophy-

siology. There are two main forms of ART, a binary adaptive resonance theory, known as

ARTl, and analogue adaptive resonance theory, known as ARTI.

ARTI (Carpenter and Grossberg [CG87a)) is a two-layer competitive learning model similar

to that described in section 6.4.3. Recall is by on-centreloff-surround competition. using the

shunting Grossberg method with gain control to amplify signal and suppress noise (see

- 206-

section 6.4.3). The important feature of the ARTl network is its feedback connections from

the second layer to the first layer. After a second-layer winner is chosen by the competitive

recall. it sends a signal back to the first layer via these feedback connections. This allows

the original input activations to be compared to the feedback pattern.

The difference between the input and the feedback is compared to a threshold vigilance

parameter. If the difference is less than the vigilance parameter then the input and the stored

pattern of the winner neuron are said to resonate. The weights to the winner neuron are then

modified. If they do not resonate then the input is considered to be too far from the stored

pattern of the winner neuron. Instead of modifying the weights to the winner. the input is

encoded onto an uncommitted second-layer neuron. The vigilance parameter therefore

determines the degree of separability of the classes. Lippman [Lip87] pointed out that

ARTllearning is basically a clustering method. very similar to Hartigan's sequential leader

clustering algorithm [Har75].

Weight modification and encoding of inputs onto output neurons is achieved by either 'slow'

or 'fast' learning. The 'slow' learning methods are variants of the gated delay long term

memory equation (see section 6.4.3). 'Fast' learning is a much quicker but less statistically

representative encoding of the input. based on the correlation between the original input and

the feedback. The details of these learning methods are described in [CG87a] and [Sim90].

The type and rate of learning relates to the stability-plasticity dilemma of Grossberg's earlier

networks. If the learning is too slow. then it is not adaptable enough to learn new patterns (it

is too 'stable'). If learning is too fast it can cause previously learned patterns to be overwrit-

ten (it is overly 'plastic'). Carpenter and Grossberg designed the ART network to allow the

dilemma to be resolved [Car89]. The use of the feedback and vigilance parameter enables

the previously learned patterns to influence learning. thereby allowing a reasonable degree of

plasticity whilst keeping a check on the stability of old patterns.

The main limitation of ART! is that it only has binary inputs and outputs. While this is

sufficient for the recognition of bitmaps. continuous-valued inputs and outputs allow more

general application to pattern recognition problems. Another problem is that learning tends

to generate too many clusters. If the vigilance parameter is set too low. it can rapidly use up

- 207-

all the second-layer neurons. Carpenter and Grossberg [CG87b) developed the analogue

version. ARTI. to tackle these problems. ARTI operates and learns in essentially the same

way as ARTl but has continuous-valued inputs and outputs. Each input-layer neuron con-

tains a complicated three-layer feedback system which is used to normalize the inputs. This

normalization helps reduce the number of clusters created. Another way of reducing the

cluster proliferation is to adapt the vigilance parameter during learning to control the cluster

sizes [CG87a).

1be strengths of the ART networks are their large storage capacity and ability to encode pat-

terns in clusters of varying complexity. ART is a powerful classification paradigm for real-

world problems with large numbers of complex classes. Tbe on-line learning mechanism is

also useful for character recognition as it allows the network to learn new users' handwriting

while the system is in use.

ART networks have been applied to character recognition in several experiments. For exam-

ple. Gan and Lua [GL92) used them to classify a database of 3755 Chinese characters with

high accuracy. Sulaiman and Evans [SE95) used character recognition experiments to com-

pare ART with multilayer perceptrons, counterpropagation networks and self-organizing

maps. Srinivasa and Jouaneh [SJ92) used Widrow's Madaline networks [WW88) to perform

size, position. orientation and slant normalization of character bitmaps and then classified

the normalized characters using an ARTt network. They later merged the normalization

process into the ART! architecture by adding an additional layer [SJ93).

6.S. Remaining Problems - The Need for Context

We have seen how classifier design has advanced to the stage where classifiers can be

trained to learn arbitrary decision boundaries. Whilst these classifiers perform with very

high accuracy on the training sets, their error rates on unseen data are still too high for use in

a practical character recognition system. While much research continues to develop

classifiers in the hope of reducing this error rate. it is unlikely that any great improvement in

generalization can be made. The problem with most classification tasks being attempted is

not that the basic classifier is essentially poor, but that the classifier does not receive enough

information to disambiguate its failure cases.

- 208 -

In almost all classification problems the addition of contextual information will improve the

correct classification rate. Machine classification has yet to rival human experts because of

the wide range of high-level knowledge available to the human brain [RM86]. Incorporating

this knowledge should be a major aim of artificial intelligence research, particularly so in the

area of character recognition.

The usual cause of generalization errors is that the attempted classification is based on input

data from an isolated occurrence of the problem but the input data alone is not sufficient to

disambiguate cases. Much research has been carried out on selecting features which reduce

this occurrence [SS98] but no choice of features is likely to be perfect. Class boundaries for

real world problems generally overlap. While the specific class memberships of the training

set can be learned. this does not overcome the problem that, in the general case, the class of

some inputs may be ambiguous. Regardless of how good the feature set may be, a classifier

cannot distinguish the classes using only the features of a single case. This is certainly the

case in handwritten character recognition. In most examples of handwritten script. different

characters are often identical in Shape, '5's and 'S's for example, or '2's and 'z's. What

might be an 'r' in one person's writing might look like a 'v' in someone else's. It is there-

fore impossible to correctly identify the characters in isolation.

Human performance at isolated character recognition corroborates this. Edelman et al.

[EUF90] report that. in the absence of context, humans correctly recognize:

"96.8% of handprinted characters [Neisser and Weene 1960], 95.6% of discre-

tiled handwriting [Suen 1983] and about 72% of cursive strings (see [Edelman

1988] appendix 1)."

Suen [SSK77] additionally reports a 4% human error rate on handprinted characters without

context. It is generally accepted that these human errors are almost entirely caused by ambi-

guous characters. This ambiguity is caused either by corruption of the image by noise, or by

natural class overlap. TIle human error therefore closely approximates the amount of charac-

ter class overlap in real applications at the underlying image level (rather than at the feature

level), which puts a practical limit on noncontextual generalization accuracy for both

humans and machines.

- 209-

To overcome this limit therefore requires more information to disambiguate cases in over-

lapping class regions. This often means looking at other cases in the input, usually those

immediately preceding and/or succeeding the original case. In character recognition these

surrounding cases, when grouped together, form words or sentences. By looking for contex-

tual sensibility across groups of cases it is usually possible to disambiguate the original tar-

get.

1be following section reviews methods for contextual processing of characters.

6.6. Contextual Processing
Approaches to contextual processing in character recognition are almost all based on word

level checking of spelling. Higher level grammatical and semantic context has rarely been

applied. Several of the contextual techniques applied to character recognition were origi-

nally developed for speech recognition, which is very similar to cursive script recognition at

the higher level stages. Reviews of contextual processing for character recognition have

been published by Toussaint [Tou78], and Elliman and Lancaster [EL90].

Processing takes one of two forms. In one case the context is used for verification of the bot-

tom level classification. Isolated character classes are assembled into words or sentences

and the contextual processing determines whether or not they are valid. Invalid words or

sentences may be rejected. In the second case, the processing is used to correct recognition

and spelling errors. Words or sentences are matched against legal patterns and the most

probable ones are output, often with an associated confidence measure. The second

approach is much more useful and more common.

Contextual mechanisms rely on useful representations of contextual information, e.g., valid

words and grammatical models. These are established in advance, usually by obtaining a

machine-readable dictionary or by analysing sample texts from the language. Some systems

can also learn new words from the source text while they are in use.

Good representations are difficult to obtain. There are few machine-readable dictionaries

available and most of them are limited in that they only list the simplest form of each word.

For example, the word "camp" may be present in the dictionary but "camps," "camped" and

- 210-

"camping" are not. The various endings must be generated by linguistic rules. Most dic-

tionaries do not rate words according to their frequency so representations of many rare

words can result. It is even harder to represent grammatical models of language which cover

every legal sentence.

Where character recognition is to be used for a particular application, it is preferable to take

a smaller, application-specific dictionary [Sue79]. These have the advantage of being much

faster to search with dictionary matching methods, and give a more accurate representation

of the desired context. However, for a general character recognizer, the problems of obtaIn-

ing good context representations from large dictionaries must still be overcome.

6.6.1. Dictionary Methods

The simplest and most obvious application of contextual processing to character recognition

is the matching of words against a dictionary (sometimes called a lexicon). This is basically

a string matching operation. String matching for isolated character classification has previ-

ously been discussed in section 6.3.2. The methods for string matching of dictionaries are

generally the same.

The most common approaches determine similarity of strings according to the Levenshtein

distance [Lev66] or edit distance (see section 6.3.2), e.g., Okuda et al [OTK76]. Almost all

methods use approximate string matching where substitution, insertion and deletion errors

are allowed. This is far better than exact matching since incorrect character classifications

are to be expected. Allowing for insertions and deletions can compensate for segmentation

errors where a character is split into more than one segment or multiple characters are

merged into a single segment.

Takahashi et al. [TIA90] applied a strategy for spelling correction to character recognition

which selected a reduced candidate set from a dictionary by looking for words containing the

rarest letters in the input word. The dictionary was ordered so that the least frequent letters

of each word occur first. 'They suggested several string similarity measures for choosing the

correct word from the reduced candidate set including Levenshtcin distance and Hunt and

Szymanski's Longest Common Subsequence (the longest subsequence of letters which

OCCursin both strings) [HS77]. They suggested that most errors in the recognition of

- 211 -

machine-printed characters are caused by incorrect classification rather than segmentation.

To simplify the comparison they allow insertions or deletions, but not both. TIley achieved

high word recognition rates (=90%) on reasonable quality printed text but it is unlikely that

their method would work as well on handwritten characters where segmentation errors are a

much greater factor in character mis-classification.

Another method of string matching is probabilistic matching (Hall and Dowling [HD80],

Kashyap and Oommen [K084]). This formulates the problem of determining string similar-

ity in terms of the probability, P (X, Y). that a string. Y, is the correct string when X is the

observed string. String matching becomes a task of finding the maximum value of P (X, Y)

over all X. The task is broken down in a similar way to edit distance matching. Probabilities

are determined for single character substitution, insertion and deletion operations which turn

one string into the other. 'The product of the individual probabilities gives the total probabil-

ity, P (X, y), for the whole string.

Kashyap and Oommen [K084] applied their algorithm to text correction. They claim that

the probabilistic approach performs better than the distance-based approach, which is more

prone to error on short words. Bozinovic and Srihari [BS82] applied a probabilistic string

matching method to the contextual postprocessing of cursive script. TIley tested the method

on strings with simulated segmentation and recognition errors. It performed well on long

words, but unlike Kashyap and Oommen they found that errors increased on shorter words.

The fact that shorter words present a smaller context suggests that both the probabilistic and

distance-based approaches will be less accurate on them.

An important factor in string matching of large dictionaries is the way in which the diction-

ary is stored. A simple list of words is very slow to search. If the word is not present then

the process has to check every word in the dictionary and never finds a match. Fredkin

[Fre60] proposed trie memory which takes advantage of the redundancies (common subse-

quences of letters) in dictionaries. Trie memory can be searched much faster than lists, most

importantly when the target word is not present in the dictionary. Its main disadvantage is

its inefficient storage of small dictionaries but this inefficiency reduces for large stores. A

detailed analysis of the efficiency of trie storage in relation to the size of dictionary is given

by Sinha [Sin87b].

- 212 -

Figure 6.4 Example of trie memory represented as a binary tree, after Knuth

[Knu73]

Fredman's trie was originally represented in a table of registers. It is more intuitively dep-

icted as a linked list or binary tree structure (Knuth [Knu73]). Figure 6.4 shows a simple

binary tree representation of a trie for the words HAD, HAVE, HE, HER and HIS. The trie

is searched by following the right hand branches until a match is found with the symbol at a

node. then the left hand branch is followed. .1 indicates the end of a word. Tries have been

used for text correction by several researchers, e.g., Muth and Tharp [MT77], Hull et al.

[HSC83] [SHC83], and Downton and Tregidgo [DT91].

Another strategy for dictionary storage with fast access is to order words by frequency so

that commonly occurring words are compared first. The classical method for this is the fre-

quency ordered binary search tree (see Knuth [Knu73]). This arranges the tree so that each

node's branches partition its descendants on either side of the node's lexical (alphabetical)

- 213 -

value. Although the nodes are frequency ordered, this can produce uneven trees which are

not optimal for searching. Sheil [She78] presented the median split tree which partitions

each node's branches on either side of the median lexical value of the node's descendents.

This gives a much more balanced tree and faster search times.

Kohonen and Rehkala [KR78] used redundant hash addressing to find indices to the diction-

ary. "Features" of the target words are extracted. 1bese are n-grams, strings of n consecu-

tive letters. The n-grams are then encoded by a hashing function to produce an address into

a table of pointers to words in the dictionary. The addressed pointers should indicate words

which have similar "features" to the target word. Matching is therefore speeded up by

beginning the search with words which closely match the input. Hashing was also used by

Doster [Dos77].

A less effective but quite common strategy is to divide the dictionary to be searched into

several subdictionaries according to the length of word, e.g., Bledsoe and Browning [BB59],

Shinghal and Toussaint [ST79bl, Burr [Bur87]. A target word need only be matched against

the list of words with the same length. Although this gives an improvement in speed, it does

not allow for approximate string matching with deletions and insertions.

String matching methods have been shown to perform well on long words but are less accu-

rate on short words [EL90]. Short words often have greater similarities and are less easy to

disambiguate. Verification methods are limited to simple applications where high accuracy

recognition of the isolated characters is possible. In real applications it is very likely that

errors will occur, which means that many words will not be validated. Methods which

correct approximately matched words are more appropriate and have been more successful.

The main problem with dictionary matching methods is their computational complexity.

Searching large dictionaries, even with special memory structures such as tries, is too slow

for a practical system. At current processor speeds, dictionary methods are only suitable for

applications where small dictionaries can be used to store contextual domain knowledge.

- 214-

6.6.2. Markov Methods

For general applications. where words may come from large vocabularies. an alternative to

dictionary matching is popular. Rather than attempting to match entire words. the language

is modeled as a Markov process. Markov models. also called Markov sequences or Markov

chains. represent letters in the words as an ordered set of states. The transitions from one

state to the next are probabilistically dependent on one or more of the preceding states.

These processes are represented by assigning transition probabilities to n-grams (sequences

of n letters). Usually bigrams (pairs of letters). sometimes called digrams. or trigrams (tri-

ples) are used (e.g .• Raviv [Rav67]. Donaldson and Toussaint [DTIO], Neuhoff [Neu75] and

Shinghal et al. [SRTI8]) but the more computationally expensive quadgrams have also been

considered (e.g .• Carlson [Car66]). Shinghal et al. [SRT78] extended the transition probabil-

ities to depend also on the position the n-grams occur in the word. These probabilities are

usually estimated from a large sample of text. known as a corpus.

The recognizer produces candidate sets of letters for each position in the word. along with

confidence factors. Matching of the input word involves finding the most probable sequence

of candidate letters (states) according to the a priori probabilities and confidences of the

letters. Note that the a priori probabilities of words are determined by the Markov model

and are not related to their frequency of use. There are several methods for maximizing the

probability of a word. The main ones are the modified viterbi algorithm. recursive Bayes

algorithm and probabilistic relaxation.

Viterbi's original algorithm [Vit67] was developed for use in cryptanalysis to find maximum

likelihood estimations of sequences. This was extended by Forney [For73] to estimate max-

imum a posteriori probabilities of words for use as a contextual postprocessor in character

recognition. The basic Viterbi algorithm considers all of the possible states (usually 26

states, one for each letter of the alphabet) as candidates for each position in the word. This

exhaustive procedure is computationally expensive and a faster modification was presented

by Shinghal and Toussaint [ST79a] which uses a reduced candidate set for each position,

consisting of the first d most probable characters indicated by the classifier. Shinghal et al.
[SRTI8] suggest that the optimal value of d is five. The Viterbi algorithm and its

modification are simple and accurate and have become the most popular methods for

sequence estimation in Markov models of text. They have been applied to character

- 215 -

recognition by many other researchers, including Neuhoff [Neu75], Hull and Srihari [HS82],

Sinha et al. [SPH93], and Kopec and Chou [KC94].

Raviv [Rav67] proposed the recursive Bayes algorithm as an optimal method for compound

decision making in Markov sequences. Raviv applied the method to contextual postprocess-

ing of machine-printed characters. The algorithm is accurate but is quite slow due to its

complexity and recursive nature. Shingal et al. [SRTI8] showed that a heuristic approxima-

tion to the recursive Bayes algorithm achieved comparable results to the complete algorithm

at much faster speeds. Similar applications of compound decision theory to character

classification in Markov models were described by Abend [Abe68] and Duda and Hart

[DH68].

Goshtasby and Ehrich [GE88] applied the relaxation process of Rosenfeld et al. [RHZ76]

(see section 6.3.4) to contextual processing of characters. The probabilistic relaxation label-

ing process iteratively modifies the probabilities of characters according to the states of their

neighbours and the transition probabilities between them. It operates both left to right and

right to left, whereas a conventional Markov process only propagates information from left

to right. The iterative process eventually converges to a state where only one character for

each position has a probability of 1.0. Goshtasby and Ehrich used the method for contextual

POstprocesSingof low resolution, lower case, machine-printed characters.

The advantage of n-gram techniques are that they do not need to store entire large dic-

tionaries. However, the number of different letter combinations occurring in a corpus grows

rapidly as n increases. Suen [Sue79] conducted an extensive study of n-grams of the English

language. He found that for n ~ 4 the number of combinations occurring in a reasonable

sized corpus is so large that it requires more memory to store the n-grams than to store the

words from which they are derived. In any case, the number of letter combinations for

which transition probabilities must be stored (including those that do not occur in the

corpus) is very large. Assuming the states are the 26 letters of the alphabet, there are 676

bigrams, 17576 trigrams and 456976 quadgrams. Quadgrams and higher order Markov

dependenCies are therefore rarely used.

- 216-

Markov methods are good at correcting local errors but their lack of global knowledge

makes them less effective than dictionary look-up techniques. Although they are flexible

enough to recognize or correct words which do not appear in a standard dictionary but fol-

low the underlying model of the language. they often produce such words in place of stan-

dard dictionary words. Also they only correct substitution errors. whereas dictionary

methods can generally correct insertion and deletion errors as well.

Vossler and Branston [VB64] compared dictionary look-up with a bigram technique. Using

a 3M-word dictionary they found the dictionary method was far superior, with a correction

rate of 93%. compared to only 45% for the bigram method. Hanson et al. [HRF76] also

found that bigram and trigram techniques had limited effect on the word error rate and could

actually increase the character error rate by creating long runs of erroneous characters. The

reason for this is that once an error occurs it effects the following character. which in tum

effects the next one. and so on. so that further errors are more likely. They conclude that

"this is an ineffective use of contextual information We do not believe that simple and

efficient techniques under assumptions of Markov dependence will result in highly

significant reductions in the error rate."

6.6.3. Hybrid Methods

A number of methods have attempted to combine the more accurate dictionary methods with

the faster Markov approaches in order to gain the benefits of both. The Markov (statistical)

methods are sometimes called bottom-up or data driven approaches. The dictionary match-

ing methods are called top-down or concept driven approaches. The hybrid methods are

therefore also known as bottom-up and top-down methods [ST79b].

An early hybrid method was devised by Riseman and Ehrich [RE71] to address one of the

main problems with dictionary matching. namely that even with only a few candidate char-

acters for each position. there are a great number of candidate sequences. Duda and Hart

[DH68] pointed out that for a ten-letter word with four possibilities in each position there are

over a million different combinations. Matching each of these against a dictionary is very

slow. Riseman and Ehrich proposed a variant bigram technique to rapidly remove illegal

combinations from consideration. This was generalized to n-grams by Riseman and Hanson

[RH74].

- 217-

Their approach starts by considerably reducing the storage requirements of n-gram tech-

niques. Rather than store transition probabilities for each n-tuple of letters, their binary n-

grams store either 0 or 1 according to whether the transition probability is 0 or nonzero,

respectively. This reduction of storage requirements allows them to store much more infor-

mation about n-tuples in the underlying language model. TIley store positional binary n-

grams. For simplicity of explanation let us assume they are binary digrams. One binary

digram is stored for each possible pair of letter positions in a word. The positional binary

digram Djj is a 26x26 binary matrix indicating the allowable (value 1) and illegal (value 0)

pairings of letters in positions i and j in a word. where 1 ~ i ~ j ~n, and n is the length of

the word. The pairings of letters do not have to be contiguous as in the standard Markov

model; therefore a word of length n requires [~] binary digrams. By checking candidate

letter sequences against this model, sequences with pairs of letters in illegal positions are

quickly rejected. The remaining allowable candidate sequences are then checked against the

dictionary. The method greatly reduces the number of candidate sequences that have to be

matched. Binary n-grams have also been used by Hull and Srihari [HS82].

Another early hybrid method is known as the Predictor-Corrector algorithm. Shinghal and

Toussaint [ST79b] divided a dictionary into portions containing words of the same length.

A score was calculated for each word in the dictionary from the product of the transition pro-

babilities between individual letters. This gives a probabilistic measure for the word based

on a first order (bigram) Markov model. Words in each portion of the dictionary are then

arranged in descending score order. Input words are first processed by the modified Viterbi

algorithm (see section 6.6.2) to predict an output word. Although the modified Viterbi algo-

rithm may produce a set of possible words, only the highest scoring one is used. The output

word is then searched for in the appropriate length portion of the dictionary and the closest

match, called a "mate", is found. If the mate is an exact match then it is output as the correct

word. If the match is not exact then a dictionary method is used which finds the scores of

words in the neighbourhood of the mate. The word with the maximum score is selected as

the correct word. The algorithm gives similar accuracy to a pure dictionary method but is

apprOximately twice as fast.

Shingal [Shi83] extended this algorithm so that a number, d~ 1, of the most likely candidate

words output by the modified Viterbi algorithm are searched for in the dictionary, not just

- 218 -

the highest scoring one. This variation also searches all the dictionary words of the desired

length, rather than just those in the neighbourhood of the mate. Shinghal claimed this algo-

rithm reduced the complexity of a dictionary search by three-quarters.

The Predictor-Corrector is known as a hybrid-cascaded algorithm because the bottom-up

(modified Viterbi) and top-down (dictionary) methods are performed sequentially. Hull et

al. [HSC83] proposed a hybrid-integrated algorithm which fully integrates the bottom-up

and top-down processes.

The integrated algorithm. called the Dictionary- Viterbi algorithm, performs a Viterbi algo-

rithm but at each stage of generating a word from the transition probabilities it verifies the

generated sequence by checking that it occurs in the dictionary. The verification is facili-

tated by maintaining a vector of pointers into the trie structure in which the dictionary is

stored. This allows the algorithm to rapidly check that the sequence of letters matches the

start of at least one word in the dictionary. With bigram probabilities an 87% correction rate

was achieved on a simulation of errors in machine-printed text, in comparison to 83% using

the dictionary method alone and 39% with the Viterbi algorithm only [HSC83]. Trigram

probabilities gave no improvement over the bigram probabilities when used in conjunction

with the dictionary Verification.

The Dictionary- Viterbi algorithm should have lower computation and storage needs than the

Predictor-Corrector [SHC83]. Tests on simulated data suggest that it also gives slightly

greater accuracy. This is because it integrates the bottom-up and top-down information,

whereas the Predictor-Corrector simply uses the bottom-up transition probabilities to speed

up the top-down dictionary search. The Predictor-Correct is therefore only as accurate as a

pure dictionary search, while the Dictionary- Viterbi is slightly more accurate.

Sinha and Prasada [SP88] presented a hybrid method which, in addition to top-down and

bottom-up information. also uses the probabilities that letters are corruptions of other letters.

These probabilities are called channel characteristics or confusion probabilities. The algo-

rithm starts by using the channel characteristics to substitute letters of the input word for the

letters with which they are most frequently confused. e.g.. 'g' and 'q' are confused with high

frequency. This substitution process generates several alternative strings called aliases.

- 219-

These aliases are then matched against a partial dictionary (a reduced set of the most fre-

quently occurring words from a complete dictionary). Aliases which are found in the partial

dictionary are graded according to the confusion probabilities which created them. If no

aliases are found in the dictionary then the correct word is estimated using the modified

Viterbi algorithm on the input word. The method has been applied to machine-printed char-

acter recognition in a two-pass system. The first pass finds aliases which are in the partial

dictionary and modifies the confusion probabilities according to the substitutions in those

aliases. This is intended to bias the second pass towards the dominant font in the document.

They achieved 98% correct recognition on a variety of fonts.

Sinha et al. [SPH93] used a variant of this method which uses the modified Viterbi algo-

rithm to find aliases. It also uses a string matching algorithm which finds words with com-

mon trigrams that are similar to the input word. This creates even more aliases. The collec-

tion of aliases are then costed and the lowest cost word is selected as the correct word. 'The

complex cost is based on the transition probabilities, string edit distance, the letters' charac-

teristics in relation to the expected characteristics for those letters (height and width, length

of their chain codes) and confusion probabilities. Again, the initial classifications are used

to bias the confusion probabilities towards the dominant font. Reliable initial classifications

which form words are also used to create a transient dictionary which supplements the stan-

dard dictionary. The aim of this is to identify non-dictionary words which occur several

times in the particular document. The method also uses some heuristics to handle words

containing numerals and punctuation, and touching characters. However, these heuristics

are simplistic and rely on high accuracy identification of the numerals and punctuation. The

segmentation of touching characters is based solely on their combined width and so could

not detect, for example, touching pairs of 'l's and 'i's, whose total width is often no greater

than that of a 'w' or 'rn'. The method generally relies on well separated characters. It is

designed for use on good quality machine-printed text. and it is well suited to such docu-

ments. However, it is not robust enough for extension to handwritten text. The lower accu-

racy initial recognition would cause the heuristics to fail and segmentation problems would

not be adequately resolved.

Channel characteristics were also used by Baird et al. [BKP86] [KPB87] in their experi-

ments on words vectorized by Pavlidis's vectorization algorithm [Pav86] (see section 3.2).

First they attempted to verify input words using the Unix 'spell' program. If an input word

- 220-

is rejected, then a list of variant spellings is generated, costed according to the confusion

probabilities between letters of the variant word and letters of the input word. The variants

are taken in ascending cost order and checked with 'spell'. If they are still invalid, further

variants are generated from the rejected variant. The process continues until a valid variant

spelling is found or the cost exceeds a limit and the word is rejected as unrecognizable. TIle

method is slower than the previous hybrid methods but accuracy is high on good quality

machine-printed text

Although hybrid methods have achieved high accuracy on machine-printed text, the authors

have not attempted to correct handprinted or cursive text. This is because segmentation is

much more difficult on these types of text. TIle same levels of accuracy cannot be expected

on handwritten words unless accurate segmentation can also be attained.

Recently, methods have been developed which use Markov models of the formation of char-

acters. Characters are over-segmented into subcharacter segments. Whole characters are

modeled as sequences of subcharacter transitions in a similar way to which words are

modeled as sequences of character transitions in the above contextual methods. In some

cases these character models have also been combined with contextual word models.

Bose and Kuo [BK94] used Pavlidis's vectorization (see section 3.2) and over-segmented

words with vertical line segmentation. They then attempted to extract structural primitives

from the vectors in each subcharacter segment. This approach suffers from the same prob-

lems as other structural methods (see sections 4.3.1 and 6.3), namely that too many errors

OCCurin primitive extraction from noisy or degraded images. The method was reasonably

accurate on a small test on machine-printed text with simulated blurring and overlap but

would not be robust enough for handwritten, or even handprinted, text in a real environment.

The greater levels of degradation. noise and style variation would severely hamper the prim-

itive extraction and Significantly complicate the Markov model of characters.

Chen et al. [CKZ94] also used a single pass vertical over-segmentation to produce subchar-

acter segments. They extracted moments. pixel distribution measurements, geometric and

topological features from each segment and attempted to recognize them based on subchar-

acter transition probabilities. Each character was assumed to be segmented into no more

- 221 -

than three subcharacters. The subcharacter segments were therefore recognized individually

as being the left part, middle part or right part of one of the possible characters. TIle

modified Viterbi algorithm is used to find the most likely selection of the candidate

classffications, according to both a model of the subcharacter transitions and a Markov

model of a small lexicon. Using a 3D-nearest-neighbour classifier they achieved a 72.3%

recognition rate by approximately matching the 20 best strings generated by the modified

Viterbi algorithm to a 271-word lexicon. Although this result is one of the best published

for cursive script recognition it is still too low for practical use. Also it is a very restricted

experiment (only 94 words were tested) and the data comes from an unsegmented version of

the CEDAR database (see section 2.6.2) and is much cleaner and less degraded than other

databases such as NIST or the airline tickets used in chapter 7. The method cannot be

expected to perform as well in larger tests using noisy data

The problem with Chen et al.'s method is similar to that with Bose and Kuo's method. TIle

individual subcharacters cannot be accurately identified in a noisy environment. They may

actually be more difficult to recognize than the whole characters. There are three times as

many classes of subcharacter as there are classes of character. Also, the segmentation will

not always split characters into the same portions, so the amount of a character which is con-

sidered to be its left part (or alternatively middle or right part) varies for each case. In noisy

and degraded images some subcharacter segments contain small blobs which represent a

major part of the whole character but on their own could be part of almost any character.

Alternatively the blobs could be trivial parts of a character (such as ligatures) which are rela-

tively insignificant when viewed as part of the whole but seem much more important

because they are in a segment on their own. Although the method aims to identify these

blobs based on the surrounding subcharacters, this is very difficult when the surrounding

segments may also contain indistinguishable blobs. It is much easier to recognize whole

characters than these subparts.

Chapter 7 presents a similar over-segmentation method which recognizes whole characters

in the first instance rather than trying to identify small subcharacters. It is suggested that the

most effective strategy for segmentation is adaptive segmentation, as described in section

5.7, based on contextual correction from higher levels. An architecture for this contextual

correction and adaptive segmentation is presented in chapter 8.

- 222-

6.6.4. Higher Level Context

The application of higher level context (grammatical and semantic) to character recognition

has been very limited. This is partly due to the difficulty of such a task and partly because

there are still many improvements that can be made to the speed, accuracy and scope of

word level lexical context.

Grammatical (or syntactic or linguistic) models of language are difficult to generate from

examples. Complete models of major languages do not exist and even obtaining grammars

for restricted subsets of languages is extremely difficult. The lack of available data from

which such grammars can be derived is one of the main obstacles to grammatical context

mechanisms. The field of computational lexicology (see Amsler [Ams82]) has arisen to

address this problem but it is still in its infancy.

Similarly, data for determining semantic context is scarce. The use of machine-readable dic-

tionaries with definitions is possible. Semantic consistency between words in a sentence can

be found by matching words in their definitions [Eve93]. For example, the definitions of

'bank' and 'deposit' may both contain the word 'money'. This is a very limited approach,

however, and is prone to making erroneous matches. Designing a semantic context checker

for a general language is an extremely ambitious goal. Applications of semantic context to

character recognition are currently limited to very small domains.

Srihari and Bozinovic [SB83] extended a hybrid contextual word recognizer to include a

stage which selects the most grammatically appropriate word from a candidate set. Rejec-

tion or acceptance of words was determined by a string grammar, parsed by an augmented

transition network (Woods [Woo70)). This was not sufficiently effective because the sen-

tence level context did not take into account the confidence factors of words. A more com-

plex grammar, which can cater for words with a degree of uncertainty, is required.

Stringa [Str80] presented a recognition system which included both grammatical and seman-

tic context in a restricted application: Italian postal address recognition. Addresses generally

conform to a small set of rules which can be encoded in a grammar. and have semantic con-

nections between different portions of the address. For example. postcodes have a strict for-

mat, and elements of the post code are semantically related to the name of the city and name

- 223-

of the province. Stringa's system. called SARI (Sistema Automatico Riconoscimento Indir-

izzi), is only concerned with sorting mail with respect to city so only the postcode. city and

province are considered. However, given a database of postal addresses, further contextual

verification could be applied to other parts of the address block. SARI uses a feedforward

method which computes similarity measures between the input and possible matches at each

stage. No decision is made until the top level so that the loss of information. caused by deci-

sion making, is minimized. The method is accurate enough for practical use on machine-

printed addresses, but it does not tackle the problem of segmentation. It relies on characters

being sufficiently separated for easy segmentation. Application of the method to hand-

printed or handwritten addresses would require considerable extensions of the basic

approach to handle segmentation.

Little more work has been done to apply syntax and semantics to character recognition.

However, the large field of linguistics (see Fromkin and Rodman [FR88] for a good intro-

ducuon) has for many years been developing grammars and semantic models for other appli-

cations. It is likely that these will be used in contextual character recognition in the future.

6.7. Conclusions

Statistical classification has a well established mathematical basis in statistical theory. Sta-

tistical classification methods are well suited to character recognition because they are gen-

erally tolerant to noise and distortion. The methods are based on modelling the underlying

class probability distributions. These are either modeled exactly. estimated or represented

directly from training samples using one of the many techniques which apply to different

circumstances. Unsupervised techniques are also applicable, though these are less common

in character recognition. Modelling the distributions of training samples is sometimes slow

but acceptable for practical use. The main difficulty in learning is that to accurately

represent the distributions a large number of samples are required. Obtaining a sufficient

quantity of samples is not always possible and compromises have to be made. Although

using larger numbers of samples increases the training time, this is preferable because accu-

racy is the main concern. Once learning is complete. the operation of the classifiers, in most

cases, no longer depends on the size of the training set. Statistical classifiers are usually

much faster in operation than structural methods.

- 224-

Neural classifiers are mostly replications of statistical classifiers and share the same advan-

tages in speed of operation. However, they have become more popular because of their

similarity to brain mechanisms and because they are much easier to use. Although many

neural networks do make assumptions about the underlying class distributions, the users do

not have to concern themselves with them. While some statisticians argue that this is

unwise, it is very convenient to be able to simply present a neural learning mechanism with

a set of training exemplars and have it learn them with high accuracy. Several neural

classifiers are capable of forming arbitrarily complex decision boundaries, giving very high

accuracy on self tests of the training set. This is sufficient to satisfy most pattern recognition

researchers. even though the network's generalization to unseen data may not be as good as

a properly designed statistical equivalent.

As the networks get more powerful, their statistical equivalents become more complicated.

Neural networks provide more intuitive ways of understanding the training and operation of

these classification models. Some, such as multilayer perceptrons, are extremely flexible

representations which cover a range of parametric and nonparametric statistical models

[Sar94]. A further advantage of some neural networks is that they can be trained on-line,

i.e., they can learn from unstored examples while in use. Statistical classifiers require all

exemplars to be stored so that they are always accessible during learning.

The main weakness of statistical and neural classifiers is that they rely on the extracted

features to provide sufficient information to discriminate classes. However, many powerful

features have been developed for character recognition (see section 2.5 and chapter 5) so the

classifiers generally perform well in this application. The main limitations of features for

Statistical and neural character classification are that they do not represent structural relation-

ships in the characters and character patterns cannot usually be generated from the features.

The latter is not always true as some features can be used to reconstruct, or partially recon-

struct, characters. e.g., Fourier descriptors and the RD/SA features of chapter 5. However, it

is generally true that these features represent shape rather than structure. This limitation is

addressed by structural classification.

Structural classification aims to classify characters based on extracted primitives and the

relationships between them. The difficulty with this approach is that it relies on accurate

- 225 -

extraction of the primitives. In practice. noise and distortion in the image cause errors in the

extraction. Primitives may be incorrectly identified, which can be very detrimental as some

techniques are highly sensitive to the type of primitive; the distinction between a straight

line and a curve can be crucial. Primitives may also be missed altogether by the extraction

process. Unwanted primitives may be created by noise or the idiosyncrasies of thinning and

vectorization algorithms. Structural methods are generally very sensitive to noise and varia-

tion in character styles. Although the most complicated methods have achieved high accu-

racy on handwritten digits. they have yet to prove robust enough for the more difficult prob-

lem of upper and lower case letter recognition in a real (noisy) environment.

Structural character recognition has also been limited so far by its computational complex-

ity. The size of template sets required to represent character classes makes structural match-

ing too slow for practical applications. Learning of structural relationships is very compli-

cated and also very slow. Statistical and neural classification techniques offer faster. more

practical alternatives and are generally comparable or better in their accuracy. Structural

methods have useful applications in contextual processing. however. where their implemen-

tation for higher level structural matching. such as dictionary checking. is simpler and more

intuitive than statistical or neural alternatives.

Contextual processing of isolated characters is essential to remove ambiguity and correct

errors. Most of these techniques use structural methods. mainly string matching and formal

grammars, to check the spelling of input words. This is done either by a direct comparison

to dictionary words or by comparison to a Markov model of legal transitions between letters.

Most methods score legal candidate strings and select the highest scoring one as the correct

word.

Dictionary matching methods are accurate but slow, whereas Markov methods are fast but

less accurate. Hybrid methods attempt to combine the two approaches to gain the benefits of

both. This is usually done by using one method to restrict the search space of the other.

Some methods. such as the Dictionary-Viterbi algorithm [HSC83]. use information from

both models and can improve on the performance of a pure dictionary method. Most of

these techniques have been applied only to machine-printed text. Contextual processing of

handwritten text requires a consideration of segmentation.

- 226-

As discussed in section 2.4. accurate segmentation requires that the process be integrated

with classification. The segmentation which gives the highest confidence output is selected

as the correct one. A logical extension of this is to further integrate the segmentation with

the contextual mechanisms. Attempts to integrate segmentation in this manner have used

Markov models of words combined with Markov models of characters (probabilistic models

of the transitions between subcharacters). TIle problem with this approach is that subcharac-

ters are more difficult to accurately recognize than whole characters, particularly in noisy

environments. Chapter 7 will present an approach which performs multiple segmentations

integrated with a recognition of whole characters and an approximate dictionary matching

contextual mechanism. Chapter 8 extends the idea further to integrate higher level context

with the adaptive segmentation approach described in section 5.7.

Higher level syntactic and semantic context has rarely been successfully applied to character

recognition because of the difficulty of producing effective models of these complex areas of

knowledge. A few methods have used such context in very limited domains. It is likely that

this area will develop significantly in future research.

The following chapters present models for contextual processing of handprinted and

handwritten text. Segmentation is a key issue. as is ensuring contextual sensibility over all

the applicable knowledge domains.

6.S. Nomenclature

'V For all.

E Element of.

Combinations of m elements chosen from n.

IMI Matrix determinant or vector modulus.

M' Matrix (or vector) transpose.

Probability of X.

Probability of X given Y.

Probability that Y is correct when X is observed.

P(X)

P(XI Y)

P(X.y)

a,~

A

Ilj

C-I

dO

10
net

0, 0max, 0mio

SO
T,n,1'2
w

Wo

x

- 227-

Learning rates.

End of word.

Mean vector of class i.

Covariance matrix for class i.

Pattern pair p.

Margin.

Class i.

Discriminant function.

Binary digram for pairings of the ith and jth letter of a word.

Activation function.

Weighted sum of inputs.

Output activation, maximum and minimum values.

Sigmoid function.

Threshold values.

Weight vector.

lllreshold weight.

Weight from neuron i to neuron j.

Vector of input (feature) measurements.

- 228-

Chapter 7

Integration of Segmentation and Dictionary Matching

7.1. Summary

In chapter 2. techniques for segmentation of words into individual characters were reviewed

and it was concluded that segmentation must be combined with classification if the correct

division is to be found. Casey and Nagy's original proposal [CN82] was for a recursive

combination of segmentation and classification to try segmentation alternatives until a high

confidence classification was found. In chapter 5. this idea was extended to an adaptive seg-

mentation which searches for the correct separation of each character directed by

hypothesized features for a hypothesized character class. In chapter 6. it was concluded that

accurate classification of isolated characters requires an integration of the classification

mechanism with contextual mechanisms.

This chapter and chapter 8 extend these concepts further. Chapter 8 will propose a hierarchi-

cal network architecture which integrates segmentation with both classification and contex-

tual processing. This chapter explores the same idea but in a much simpler architecture.

Section 7.2 discusses approaches to the integration of segmentation with contextual process-

ing. Section 7.3 describes a simple over-segmentation method used to break words into

characters or parts of characters. A single character may be contained in one or more of

these segments so they must be grouped together to form characters. Section 7.4 explains

how the segment groups are then assembled into multiple possible sequences of characters

which make up the whole word. Each possible sequence has its segment groups classified; a

small candidate set of characters is produced for each group. Section 7.5 describes a method

for approximately matching these sequences of character candidates against a dictionary and

SCOring matched words to determine their relative certainty. Experimental results are

recorded in section 7.6. Section 7.7 discusses a method for choosing a good initial segmen-

tation for use in an alternative adaptive segmentation. Section 7.8 draws conclusions about

the approach and section 7.9 describes the notation and symbols used in this chapter.

- 229-

7.2. Integrated Approaches to Context Sensitive Segmentation
Segmentation of characters cannot be accurately performed in a single pass and must be

integrated with the classification stages of character recognition. In section 2.4. Casey and

Nagy's proposal of recursive segmentation and classification was discussed [CN82]. This

involves performing an initial segmentation. classifying the segments into character classes

with a measure of confidence. and re-segmenting and reclassifying if the confidence is too

low. One of the conclusions of chapter 6 was that segmentation should be further integrated

with contextual processing to obtain more accurate results.

Existing approaches to the integration of segmentation and contextual processing (Bose and

Kuo [BK94]. Chen et al. [CKZ94]) have used Markov models of word level context (see

section 6.6.2) combined with similar Markov models of over-segmented characters (see sec-

tion 6.6.3).

One of the problems with single-pass segmentation is that algorithms which attempt to seg-

ment words precisely into characters often fail to detect all the cases where characters are

merged together. One approach to ensuring that all the correct divisions of characters are

found is to over-segment the words. Rather than attempting to segment a word precisely

into its component characters. over-segmentation uses more segments than are required.

Some characters will be divided into more than one segment. but it is hoped that all the

merged characters will be separated in the process. Over-segmentation does not guarantee

that all joins between merged characters will be detected but it does greatly increase the

incidence of finding them.

Having over-segmented the words. Bose and Kuo's and Chen et al.'s approaches to context

integration attempt to recognize each segment individually. Since characters may lie across

more than one segment. the contents of individual segments are treated as sub-parts of char-

acters (subcharacters). The probabilistic transitions between possible subcharacters are

modeled as a Markov process and this is used as the basis for recognition of whole charac-

ters. Sequences of non-overlapping groupings of subcharacters into whole characters. which

use all the available segments. are called character segmentations. The goal of the

integrated methods is to find the character segmentation whose character classifications form

the highest confidence word.

- 230-

The problem with this approach is that it is very difficult to accurately identify the subchar-

acters for reasons discussed in section 6.6.3. Briefly, there are four main reasons why sub-

characters are harder to identify than whole characters. Firstly (at least in Chen et al.'s

method) there are many more classes for subcharacters than whole characters so much

greater discriminatory detail is needed to distinguish them. Secondly, subcharacters are

smaller and contain less discriminatory information; many subcharacter blobs could be part

of almost any character. Thirdly, the initial over-segmentation of characters cannot always

divide characters of the same class into the same sub-parts each time so many different

models of characters are needed to represent every possibility. Finally, trivial sub-parts of

characters may be given too much significance because they are in a segment on their own.

Another problem with the existing approaches is that Markov models of legal character tran-

sitions are less accurate than dictionary matching methods of contextual correction. A pure

dictionary method or hybrid method would be more effective (see section 6.3.3).

One other approach to the recognition of over-segmented words was used by Bozinovic and

Srihari [BS89]. Rather than attempting to identify the individual segments as subcharacters,

they grouped the subcharacter segments together and attempted to recognize them as whole

characters. This made the isolated character level recognition more accurate. They also

used a dictionary matching method to perform the contextual checking of words.

Bozinovic and Srihari tested their method on cursive script. Although their results are

among the best reported for off-line cursive script, their test data was of very high quality.

Their best result of 78% was on words deliberately written with no slant, and although the

letters were joined to each other by connecting strokes there was virtually no horizontal

overlap between characters. They also required that the lower contour of each word be con-

tinuous. This meant that using local minima of the lower contour as a guide, it was very

easy to find a set of vertical divisions which contained all the desired segmentation lines for

the word. Given the ease of segmentation and the quality of the characters, this data can be

considered comparable to handprinted text. It should also be noted that the 78% result was

obtained after a retraining phase which relearned the parameters of the isolated character

recognition based on an initial recognition of the test data. The best results without this

retraining were 77% using a 7l0-word dictionary and 48% with a 7800-word dictionary.

- 231 -

Bozinovic and Srihari' s dictionary matching algorithm starts at the beginning of the word

and looks for the highest certainty character classification from the first segment. the first

segment pair and the first segment triple. The highest certainty character is selected as the

first character in the word and the algorithm advances the length of the corresponding seg-

ment group, Le.• if the highest certainty character was found in the classification of the seg-

ment pair then the algorithm advances two segments. 'The method then repeats from the new

starting position to determine the second character and so on. At each stage the contextual

validity of the partial word is determined by matching the prefix against a trie-structured dic-

tionary. If the prefix does not exist in the trie then it is rejected and the algorithm backtracks

to a less certain alternative.

Not every possible character segmentation is checked so the method is biased by the order-

ing of the search. Although some backtracking is allowed. the method will tend to find

words which fit the high certainty character classifications amongst their first few letters.

even if these classifications are incorrect. Another problem is that since the algorithm only

classifies segment groups which start at the end of previously accepted groups. some seg-

ment groups may be missed out. Many high certainty characters will therefore not be found

because they are in the unclassified groups.

A better method would allow high certainty character classifications to be found regardless

of where they occur in the word. It would also use these high certainty characters as the

basis for the dictionary matching. rather than always basing it on the first letters of the word.

This is the approach taken by the adaptive segmentation approach. described in section 5.7

and intended to be used in the contextual system of chapter 8. TIle simpler method

presented in this chapter achieves these objectives by considering every possible character

segmentation.

On one hand this chapter presents an alternative method for integrating segmentation with

word level context checking. On the other. it is a step towards building an independent word

level contextual module for use in the larger system proposed in chapter 8. A scoring sys-

tem is developed for assigning classification certainties to matched words. The matching

and SCOringmethods can be used to form a word level context module which classifies

sequences of character candidate outputs and can be used in the proposed hierarchical

- 232-

network. This chapter also presents a simple over-segmentation system for handprinted text

and an algorithm for constructing legal character segmentations.

7.3. Over-Segmentation

Firstly, it is assumed that we are dealing with individual words. This is not an unreasonable

assumption because existing methods for identifying text regions and dividing them into

lines of text are sufficiently accurate at performing this task. Although words on a text line

will sometimes touch, most words can be segmented by an analysis of the gaps between

areas of black pixels. A totally unconstrained recognizer will require a more advanced

method of text line segmentation. probably involving an integrated over-segmentation and

contextual recognition of sentences. similar to this chapter's approach to word segmentation.

This chapter will assume that a gap-based segmentation into words has been used and the

input to the method is a representation of a word image. The particular representation used

in this research is the outline format. described in section 2.2.2.4. which was also used in

chapter 5.

The initial over-segmentation used in this method is a single-pass operation. An adaptive

system would have to select an initial sequence from this over-segmentation which

represents a good first guess at the true character segmentation. This selection is avoided for

the moment by considering all the possible character segmentations which can be made from

the over-segmentation. A method for choosing a good initial segmentation is discussed in

section 7.7.

The aim of over-segmentation is to find a compromise between too much and too little seg-

mentation. The method must find all the correct divisions of the word and as few as possible

incorrect ones. Most methods which use over-segmentation assume that after the process

each character will lie in not more than a fixed number of segments. Three is the usual

number. To simplify the tests in this chapter it is assumed that each character is contained in

at most two segments; however. the integrated recognition method can easily be modified

for the case where they are contained in three.

Common methods for segmenting use vertical lines to divide the word. This is reasonably

effective on machine-printed text and most handprinted text. For cursive script a more

- 233 -

complicated division is required as much greater overlap occurs. Section 5.7 proposed a

more powerful cursive word segmentation. This chapter will limit itself to handprinted text

where only vertical segmentations are required. This greatly simplifies the construction of

character segmentations because it can be safely assumed that segments can only be joined

to their immediate left or right neighbours. Non-vertical segmentation introduces another

dimension and the number of possible character segmentations increases accordingly.

Segmentation methods have had most success on machine-printed text. These methods

detect possible segmentation points based on pixel and profile projections. These are verti-

cal histograms of either the number of black pixels in a column (pixel projection) or the

lowest and/or highest black pixel in a column (profile projection). The pixel projection

method assumes that columns where characters are lightly touching or separated will contain

few black pixels, whereas columns in the middle of characters will contain many, e.g.,

Kahan et al. [BKP86] KPBS7]. This works on machine-printed text which is lightly touch-

ing. For handprinted text where more overlap can occur the profile projection is a better

approach. Possible segmentation points are detected at local minima and maxima of the

upper and lower profile projections (or alternatively the upper and lower edges of the word

outlines), e.g., Liang et al. [LSA94].

While these methods focus on splitting merged characters. the method used in this chapter is

more concerned with broken characters. The method was intended to be used in a system to

automatically read airline tickets. These tickets are roughly 75% machine-printed and 25%

handprinted. Examination of a sample of handprinted tickets showed that the main segmen-

tation problem with them was broken characters. Letters rarely touched and the low quality

of the data caused many characters to fragment.

The over-segmentation method tested here allows characters to vertically overlap their

neighbours provided they do not merge together. It assumes that there are no merged char-

acters. This is an oversimplification of the problem which is reasonably effective for the air-

line ticket data but not for general use. The reason for this oversimplification is that it

allows the method to make the further assumption that whole characters will be contained in

at most two segments. Testing of the approach is therefore much easier and much less com-

putationally expensive on a serial machine.

- 234-

A full segmentation system for handprinted characters will require segmentation of merged

characters. probably using profile projections. Algorithms for this have been proposed by

several researchers. e.g .• Shridhar and Badrelin [SB86] [SB87]. Kimura and Shridhar [KS9t]

[KS92]. Bozinovic and Srihari [BS89]. and Leedham and Friday [LF] (see section 2.4).

Bozinovic and Srihari then assume that characters are contained in at most three segments.

This seems to be a reasonable number of segments for over-segmentation performed by

these algorithms. The method presented in this chapter can be extended to a full system

with the assumption of three-segment characters. However. it was decided that the

simplified version of the problem was sufficient for testing the basic approach.

The method for over-segmentation of non-merged handprinted or machine-printed charac-

ters works from the outlines of words. Each connected component of the word is

represented by a single outer level outline loop. possibly with inner loops (see section

2.2.2.4). These loops are arranged in left to right order. based on the x coordinate of their

leftmost point. Vertical segmentations are performed at the left-hand edge of outer level

loops. The placings of segmentation points are chosen according to the horizontal distance

from their left-hand edge to the previous loop's right-hand edge. This distance must exceed

a threshold for a segmentation to be performed.

Two different thresholds are used. LOOP GAPt and LOOP_GAP2. When an image is

badly broken up into small loops it is preferable to use a large gap in order to prevent the

creation of too many small segments. For larger loops it is safe to use smaller (actually

negative) gaps to allow some horizontal overlap of characters. The area of the box contain-

ing each loop is compared to a constant. DOT_SIZE. Areas above DOT_SIZE use

LOOP_GAPt and those smaller or equal to DOT_SIZE use the smaller threshold.

LOOP_GAP2.

Furthermore. the gap between the left-hand edge and the previous segmentation position

must also exceed a threshold so as to avoid making divisions too close together. Again. two

different thresholds. SEG_GAPI and SEG_GAP2. are used according to the size of the loop.

Pseudo C code for the assignment of new segments is as follows:

- 235 -

set leftmost jn equal to a large positive number

set rightmost pt and prev _seg_J)osn equal to large negative numbers

while there are more outlines to read

read the next outline loop into outline

set level equal to the level number of outline

set left and right equal to the leftmost and rightmost x coordinate of outline respectively

set height and width equal to the height and width of outline respectively

if (level == 0 && '* if it is an outer level loop and *'
(left < leftmost pt II '* (we have started a new line or *'
(height * width> DOT_AREA && '* (it's a 'large' loop and *'
left - rightmost pt >= LOOP_GAP! && 1* it's not too close to previous loop and *1

left - prev_seg_J)osn >= SEG_GAPI) II

(height * width <= DOT_AREA &&

left - rightmost pt >= LOOP_GAP2 &&

left - prev.ses posn >= SEG_GAP2»)

start a new segment and add outline to it

leftmost pi = left;

prev _seg_J)osn = left;

if (right> rgtmostpti

rightmostpt = right;

else

add outline to the current segment

If (level == 0)

leftmost_J)t = left;

if (level == 0 &&

right> rgtmost pty

rightmost pt = right;

1* not too close to previous segmentation) or *1

1* (it's a 'small' loop and *1

1* it's not too close to previous loop and *1

1* not too close to previous segmentation» *1

1* reset leftmost point of previous loop *1

1* set position of previous segmentation *1

'* if the loop extends past rightmost pt *1

1* reset rightmost_pt *1

1* do not segment at this point *1

1* if it is an outer levelloop*1

1* reset leftmost point of previous loop *1

1* if it's an outer level loop and it *1

'* extends past rightmost pt *1

1* reset rightmost pt *1

- 236-

All that is required DOW is to determine suitable values for DOT_SIZE, LOOP_GAPl,

LOOP_GAP2, SEG_GAPI and SEG_GAP2 which separate whole characters but avoid

separating broken parts of characters if possible. For the aIrline tickets a range of values

were tested and the assignments DOT_SIZE = 8, LooP_GAPl = -3, LOOP_GAP2 = 1,

SEG_GAPI = 5 and SEG_GAP2 = 3 were chosen. lbis was found to be the most effective,

allowing for the separation of most overlapping (but not merged) whole characters with

minimal separation of broken characters. Note that these values apply to characters scanned

at 300 pixels per inch. Higher resolutions (or significantly larger or smaller characters at the

same resolution) will require re-evaluation of these assignments.

Figure 7.1 Example of the over-segmentation method for broken handprinted

characters.

Figure 7.1 gives an example of the over-segmentation of an airport name, "DUBLIN,"

scanned from a real ticket. The vertical lines indicate the divisions of the word made by the

algorithm. Some characters fall into two segments while others are contained in one. Note

that not every component in the image causes a segmentation. The two outlines in the mid-

dle of the '0', for example. These are both too far left of the previous rightmost point (the

rightmost point of the curved section of the '0'). Also the curved section of the '0' and the

smalt section at the top of the 'B' would create segmentations too close to the previous ones.

7.4. Constructing Legal Character Segmentations
Once the segmentation has been performed, the next task is to group the segments into

POtential characters. Since it is assumed that a character is contained in no more than two

segments, this means constructing groups of either single segments or segment pairs. Each

segment grouping is represented by a structure which stores all the relevant infonnation

(mainly pointers to the individual segments, the feature vector for the group, the candidate

character classifications and their associated certainty measures). The ordering of segment

- 237-

groupings is chosen to aid the method for producing legal (non-overlapping) character seg-

mentations.

Vertical segmentations

r-:

~WfF~
Ordering: A - AB - B - BC - C - CD -

O-OE-E-EF-F-FG-G

Figure 7.2 Example of segment group ordering. Segment groups are either sin-

gle segments (e.g .. A) or pairs (e.g .• AB). The correct character segmentation is

A - BC - 0 - E - FG. However. many other incorrect. but legal. segmentations

are possible.

The ordering of segment groupings is a simple list. Let A be the current segment and B be

the next segment if it exists. Initially. A is the first single segment. The ordering starts with

segment A. Then. while there are more single segments. the segment pair formed by A and

B is added to the list followed by the single segment B. and then A is advanced to B and B is

advanced to the next Single segment. Figure 7.2 illustrates this ordering for a simple exam-

ple.

Next. features are extracted from each segment group (treating segment pairs as if they were

large Single segments) and stored in the segment group structure. The features are classified

by an isolated character recognizer and a candidate set of possible characters. and their asso-

ciated certainties. are stored for each segment group.

In the experiments in this chapter. the features extracted are the RD/SA features of chapter 5

and the isolated character recognizer is a radial basis function (RBF) network trained by

learning vector quantization (LVQ) (see section 6.4.4). This is essentially the same as the

LVQ classifier used in chapter 5 but the distance to the codebook vectors is passed through a

radial basis activation function which produces a maximum value at zero and approaches

zero as it approaches infinity. This inversion of the distance is used as a certainty measure

for the class represented by the codebook vector. The certainty measures are normalized

- 238-

over all the classes so that the total certainty is 1.0. The certainty is then treated as a pseudo

probability. The RBF classifier therefore outputs a candidate set of the most likely charac-

ters along with their associated pseudo probabilities. The particular set of codebook vectors

used for recognizing the upper case letters in these experiments is the one produced by train-

ing on the NIST Upper A data set, which gave 89.81% correct recognition on the previously

unseen NIST Upper B test set using LVQ classification (see table 5.7).

The next step is to form the legal character segmentations. For s single segments there are

fib (s) legal character segmentations, where fib (s) is the sth element of the Fibonacci series

(1,2,3,5,8.13 •...). e.g .. fib (5) = 8. (Note that some people may include additional elements at

the start of the series, e.g., 0.1.1.2.3.5.8 •..., but for ease of implementation we shall assume

the ordering given previously.) All of these will be generated and tested to determine which

forms the most probable word.

The legal character segmentations are stored in a fib (s) x s array of pointers to segment

group structures, where s is the number of single segments making up the word. The legal

sequences are constructed by adding segment groups to the fib (s) sequences which should

contain them. The ordering of the constructed sequences is based on adding single segment

groups or their immediately following pair groups in Fibonacci ratio between consecutive

rows of partial sequences which end at the same point in the segmentation. For fib(k) rows.

the Fibonacci ratio is defined to be fib (k -l):fib (k -2).

Let totalgroups be the total number of segment group structures for the word and let these

structures be numbered from 0 to totalgroups-A. Let p be the number of the current struc-

ture, which is initially 0 and advances in steps of two so it is always an odd number. Then

while there are at least two group structures left (p and p +1) we add, in Fibonacci ratio,

either the current or next structure to the end of any partial sequence which currently ends in

structure p-3. We do the same for any partial sequence currently ending in structure p -2.

In cases where there is only one group structure left (p = total_groups-l) we add it to any

Partial sequence currently ending in structure p -3 or p -2.

The following pseudo C code gives the full algorithm:

- 239-

set s equal to the number of single segments making up the word

set total_groups equal to the total number of segment group structures

set group to the start of the linked list of segment groups

int no_seqs = fib(s); '* number oflegal sequences *'

struct segment_group *sequence[no_seqs][s); '* array oflegal sequences *'

int "'position; '''' index of next available position in a sequence ""

int *last_group;

int p, q;

int set. set_size;

int ratio, count,

'*last segment group added to a sequence ""

'* group counter, sequence counter *'

'* size of set indicator, actual size of set *'

'* Fibonacci ratio cutoff, set counter *'

allocate memory for position and last_group so that each array has no_seqs elements

for (q = 0; q < no_seqs; q++) '* for each sequence *'

for (p = 0; p < s; p++)

sequence[q][p) = NULL;

position[q) = 0;

last_group[q) = -2;

}

'''' initialize sequence array "

'* sequences start at index 0 ""

'''' ensures groups will be added when q == 0 *'

for (p = 0; p < total_groups;)
{

'''' fib(set) is the size of the set of rows ""

'* with the same last group *'

'* step through each segment group *'

set = s;

if (group-o-next) '* there are at least two more groups to be added*'

set_size = fib(set);

ratio = fib(set-l);

count = 0;

for (q = 0; q < no_seqs; q++)

'* total number of sequences in each set *'

'* cut off point for first group *'

'''' start counting through the set *'

'* step through all sequences *'

if (last_group[q] == p-3 II

last_group[q] == p-2)

'* iflast group was p-3 or p-2 *'

- 240-

if (count % set_size < ratio)

sequencer q][position[q]++] = group;

last__group[q]= p;

else

sequence[q][position[q]++] = group-o-next:

last_group[q] = p+ I ;

}

count++;

}

}

set--;

group = groupc-next-c-nexr:
p+=2;

else

for (q = 0; q < no.seqs: q++)

if (last_group[q) == p-3 II

last__group[q]== p-2)

sequence[q][position[q]++] = group;

last_group[q] = p;

}

group = group-e-next:

p++;

1* if before the cutoff point *1

1* add group p at next position *1

1* in sequence q *1

1* record last group added *1

1* if after the cutoff point *1

1* add group p+ 1 at next position *1

1* in sequence q *1

1* record last group added *1

1* advance set counter *1

1* size of set decreases each time *1

1* advance to group p+2 *1

1* advance p *1

1* only one segment group remains *1

1* step through all sequences *1

1* if last group was p-3 or p-2 *1

1* add group p at next position *1

1* in sequence q *1

1* record last group added *1

1* this should advance to NULL *1

1* advance p *1

The ordering of legal character segmentations by this algorithm is illustrated in figure 7.3.

Notice how single segments and segment pairs are distributed in Fibonacci ratio after their

preCeding groups. For example, after the set of partial sequences ending at group 'A'

- 241 -

(sequences 0 to 4) there are three instances of group 'B' and two of group 'BC'. The ratio

3:2 is a Fibonacci ratio.

A DB c

'sequences' array of legal character segmentations:
o 1 234

o
1

2

3

4

5

6

7

A B C 0 E
A B C DE -
A B CD E -
A BC 0 E -
A BC DE - -
AB C 0 E -
AB C DE - -
AB CD E - -

E

5 single segments

8 legal segmentations
(fib(5) = 8)

Figure 7.3 Example of legal character segmentation ordering in the sequences

array. In this case there are five single segments and therefore eight legal se-

quences of segment groupings. The letters in the array indicate the segment

grouping pointed to by that element. '-' indicates a null segment grouping.

Legal character segmentations can now be extracted from the array and passed to the context

cheCking procedure.

These methods can easily be extended to handle the ordering and sequencing of three-

segment groups. This will be necessary if the over-segmentation method is developed for

segmenting merged characters.

7.5. Approximate Dictionary Matching
Initial attempts at approximate string matching used a program called agrep, written by Sun

Wu and Udi Manber. It uses their own approximate string matching algorithm [WM91]

developed from the exact string matching method of Baeza-Yates and Gonnet [BG89].

- 242-

Agrep is similar to the grep family of string matching programs found on UNIX, but it

allows matching of arbitrary regular expressions with insertion, deletion and substitution

errors. This is extremely powerful and fast for searching large text files for approximately

matched patterns. The use of regular expressions allows candidate sets of characters to be

matched in a particular position, e.g.,

agrep ,A [WXYZ] [STUV] [MNOPQR] [IJKL] [CDEFG] [ABH]$' airports

would exactly match any six-letter word in the file called "airports" with 'W', 'X', 'Y' or 'Z'

in its first position, 'S', 'T', 'U' or 'V' in its second position, and so on, e.g., "ZURICH".

Agrep is also capable of counting the total number of insertion, deletion and substitution

errors occurring in an approximate match and outputing the best match found, i.e., the match

with the least errors. This facility was used for the initial experiments on airport names

extracted from scans of real airline tickets.

A pattern string was constructed for each legal character segmentation by taking a set of can-

didate characters for each of its segment groups, enclosing them in square brackets and con-

catenating them to form a string similar to that in the above example. The ,A, (start of line)

and'S' (end of line) symbols are also added to constrain the pattern to completely match

whole lines of the dictionary. The dictionary contains one word per line so this means that

patterns must match whole words.

The set of candidate characters is selected so as to contain all potential character

clasSifications (produced by the RBF classifier described in section 7.4) whose certainty is

above a threshold value. This use of candidate sets reduces the search space of the match.

However, the certainties of characters which are left out of a candidate set are retained so

that they may be used later when scoring words. If no characters have certainties above the

threshold then the segment group is treated as a "wild card" - all characters are allowed in

the candidate set so no errors occur when it is matched.

Agrep is called for each character segmentation and the best match is found in each case.

The best matches are each given a score according to the certainties of their characters in the

matched positions within their character segmentations. Often the same word is matched

more than once. In this case only the highest score for that word is stored. The words are

- 243 -

sorted into score order and are outputed, together with their scores. The highest scoring

words can be extracted as a candidate set for input to further contextual processes. or the

highest scoring word can be selected as the final classification.

It soon became obvious that there were problems with this initial approach. Because agrep

allows deletions and insertions of characters. many words were matched which did not pre-

cisely fit the segmentation. Deletions and insertions are very useful if the segmentation is

incorrect as it can match words when more than one character is contained in a segment

group, or when one character is spread across more than one segment group. However. since

we are checking all possible segmentations we can reasonably expect that one of these seg-

mentations is the correct one. To allow matching with deletions and insertions is therefore

counterproductive. Matching of words which do not precisely fit a segmentation is undesir-

able as it causes matching of too many words.

The output below shows the set of 44 candidate airport names matched using agrep for the

word "DUBLIN" shown in figure 7.1. The score next to each word is the average character

certainty for the matched characters in the word.

DUBLIN 15.938 SANJUAN 6.674 STANSTED 4.109
HELSINKI 15.260 LINCOLN 6.484 BARBADOS 4.004

ZURICH 10.524 STLUCIA 6.279 BORDEAUX 3.869
GLASGOW 9.259 GATWICK 6.103 VERONA 3.817

AUCKLAND 8.720 KENNEDY 5.889 VIENNA 3.801
NAPLES 8.421 GENEVA 5.804 GENOA 3.720

ANTIGUA 8.396 MOSCOW 5.413 MARSEILLE 3.639
TOULOUSE 8.309 SIDNEY 5.353 AMSTERDAM 3.589

LUTON 8.190 PRAGUE 5.041 VANCOUVER 3.526
BALTIMORE 7.403 MALAGA 5.010 CORFU 3.515

ATLANTA 7.263 BERMUDA 4.828 MADRID 3.459
BRUSSELS 7.067 KINGSTON 4.754 MALTA 2.402
TENERIFE 6.920 EDMONTON 4.662 PARIS 2.344

EDINBURGH 6.851 HEATHROW 4.296 STOCKHOLM 1.397
FRANKFURT 6.768 NANTES 4.129

Although in this case the highest scoring word is the correct one. it is often desirable to

- 244-

output a candidate set for further contextual processing as the correct word will sometimes

come a close second or third. The size of this candidate set is clearly far too great. It con-

tains almost the entire dictionary (which in this case consisted of 55 airport names). The

other tested examples produced similar sized word sets.

EXamination of the pattern strings and matched words showed that a large number of the

incorrect words were being matched with insertions and deletions, while the match of the

correct word contained only substitution errors or none at all. The next logical step is there-

fore to disallow insertion and deletion errors in the approximate match.

Unfortunately, this is not easy to accomplish using agrep. Agrep does not have a facility for

completely eliminating particular types of errors. Instead one can individually set the cost of

these operations so that, for example, deletions and insertions cost 3 while substitutions only

cost 1. However, the way in which agrep handles costed errors limits the allowable cost

values to small integers. One cannot therefore set deletions and insertions to a very high

cost so they are never accepted. One has to use lower values which means that words con-

taining these errors can sometimes still have a lower cost than a word with several substitu-

tion errors.

It is possible to reduce the incidence of accepted insertions and deletions by rejecting any

matched word which is not the same length as the character segmentation. However, by this

time the advantages of using agrep are minimal. Little of the functionality of agrep is actu-

ally being used and the system is inefficient as it is having to perform matching with inser-

tion and deletion errors and then having to try to reject them later. Also, from a practical

point of view, the agrep code proved to be very difficult to integrate into the rest of the sys-

tem as it is almost entirely free of comments.

At this point in the research it was decided to switch to a simpler system of checking the

sequence of candidate character sets against dictionary words of the same length and count-

ing the number of substitution errors. Any words which have a number of substitution errors

less than or equal to half the length of the character segmentation are accepted as word can-

didates.

- 245 -

The new output set, shown below, is under half the size using this new method. There are

still a large number of candidates though. Also the correct word, "DUBLIN," has slipped

down to second place.

HELSINKI 15.593 PRAGUE 5.930 ANTIGUA 5.167
DUBLIN 14.945 NEWQUAY 5.822 BELFAST 5.008

GLASGOW 9.675 SIDNEY 5.561 MALAGA 4.838
LINCOLN 9.146 GATWICK 5.491 EDMONTON 4.724

TENERIFE 7.450 PLYMOUTH 5.359 KENNEDY 4.674
SANJUAN 6.436 MADRID 5.346 AUCKLAND 4.673
MOSCOW 5.962 STLUCIA 5.286 NAPLES 3.755

Development of the method now has two goals. One is to further reduce the number of

matched words so that only very closely matching words are considered. The other is to

improve the accuracy of the method.

Accuracy can be improved by altering the way in which words are scored. Several varia-

tions have been tried. In the above experiments the score was determined by summing the

certainties of the characters which make up the word and dividing by n, where n is the

Dumber of characters in the word. An alternative is to multiply the certainties. Using the

product as it is or dividing it by n will heavily bias the score towards short words. To obtain

a consistent score, the nth root of the product is taken.

Another strategy for improving the scoring is to divide the initial score by certain values.

TIle values tested were:

1) the total number of substitution errors between the pattern string and the matched word;

2) the absolute difference between the length of the word and the number of single seg-

ments in the over-segmented word;

3) the average absolute difference between the segment group width and the average seg-

ment group width.

The first biases the results towards words with few errors. The second assumes the over-

segmentation is close to the correct segmentation and so biases the results towards words

which have few characters in segment pairs. These two strategies proved to be undesirahle

- 246-

because of their assumption that the segmentation or classification is initially correct.

Although this is often the case, the purpose of the integrated algorithm is to find the correct

segmentation and classification in all cases, particularly those where the initial decisions are

incorrect.

The third strategy is based on the assumption that the correct character segmentation will

have segment groups which are of approximately the same width. We therefore divide by

the average absolute difference from the average width. Other values considered were the

total absolute difference from the average width across all the segment groups, and the max-

imum absolute difference. These were found to be less effective than the average absolute

difference. The total absolute difference biases the results towards shorter words, while the

maximum absolute difference places too much emphasis on one segment group. Dividing

by the average absolute difference proved to be the most effective scoring system.

The number of candidate words can be reduced by increasing the certainty threshold of char-

acters which are allowed in the character candidate sets. Limiting the number of character

candidates will limit the number of word candidates. This can be detrimental to accuracy,

however, because correct letters may be left out of the character candidate sets.

7.6. Results

The data used for testing was a set of 100 handprinted airport names. This data was initially

obtained from real airline tickets: however, the number of handprinted ticket scans available

was limited so further data was collected. The additional test data came from six writers,

using either biros or fine felt pens, who were instructed to write between ten and twenty air-

port names which they selected arbitrarily from a dictionary of 112 airports.

The ticket data was converted to a bi-tonal representation from a greyscale scan. The addi-

tional data was binarized directly by the scanner. Both scans were at a resolution of 300 pix-

els per inch. The word images were stored as TIFF files and then converted to outline for-

mat (see section 2.2.2.4).

The greylevel thresholding used in the binarization of these images was a simple global divi-

sion between black and white (see section 2.2.2.2) which left a large amount of background

- 247-

noise that would not occur with more sophisticated thresholding. It was desirable in this

case to perform a preprocessing filling operation on the images to remove the many small

spots of background noise. The minimal preprocessing approach (see chapter 4) would

ideally avoid the need for this through the use of a better thresholding algorithm. The filling

used was a very simple removal of outline loops which represented single pixels.

Although the simple segmentation method is not intended to separate merged characters,

some mergings were allowed in the test data. The integrated method was able to cope with

small numbers of unseparable characters. but fair testing of the method required words with

many merged letters to be removed for the test set. Nineteen of the words collected from the

tickets and additional samples were removed for this reason. Recognition of these words

will require a more complex over-segmentation and an extension of the character segmenta-

tion COnstruction method to allow three-segment characters (see section 7.3 and 7.4).

Three dictionaries were used. One contained 112 airport names including all the words in

the test set. The second was a small dictionary of 710 common words randomly chosen

from Roger Mitton's CUV2 computer-usable dictionary. This dictionary is based on the

Oxford Advanced Learner's Dictionary of Current English and includes information on the

frequency of words which allowed the more common words to be selected. The 710 words

also include the 112 airports names. The third dictionary consisted of 7827 words randomly

selected from the CUV2 dictionary with no regard to frequency, and including the 112 air-

port names.

Table 7.1 shows the results obtained in tests using the different scoring strategies, described

in section 7.5. The first column indicates which scoring strategy is used. It is either none, 1

(dividing the basic score by the number of substitution errors in the match), 2 (dividing by

the difference between the length of the word and the number of single segments in the

over-segmented word). 1 & 2 (dividing by both values) or 3 (dividing by the average abso-

lute difference between the segment group width and the average segment group width). For

strategies 1 and 2. note that to avoid dividing by zero. and to distinguish between words with

one error (or one difference in length) and those with none. we actually divide by the value

plus one. The dictionary column indicates the size of dictionary used (lI2. 710 or 7827

words). The final two columns show the number of correct word classifications out of the

- 248 -

Scoring
Correct Words (%) with Basic Score:

Dictionary

Strategy Size Mean Certainty Root of Product

none 112 77 91

none 710 51 76

none 7827 29 56

1 112 76 86

1 710 58 62

1 7827 20 36

2 112 74 85

2 710 56 69

2 7827 34 39

1&2 112 86 93

1&2 710 73 76

1&2 7827 53 56

3 112 91 95

3 710 78 85

3 7827 61 77

Table 7.1 Comparison of the basic scoring methods and scoring strategies.

100 test samples (or equivalently the percentage of correct word classifications) for experi-

ments using different basic scores. The two types of basic score are the mean certainty of

characters in the word. and the nth root of the product of the n characters in the word (see

section 7.5). The certainty threshold for including characters in the character candidate sets

is set at 0.075 in all of these tests.

- 249-

Clearly the 'root of product' basic score gives much better results than the 'mean certainty'.

The strategies of dividing by the number of substitution errors (Plus one) and the difference

in length from the expected segmentation (Plus one) are individually detrimental when using

the smallest dictionary but together give slightly greater accuracy than the basic score alone.

On the 71O-word dictionary the strategies are both effective using the 'mean certainty' basic

score, but do not improve on the 'root of product' basic score. Similarly, on the 7827-word

dictionary, the combined strategies improve on the 'mean certainty' but not on the 'root of

product'.

As noted in section 7.5, these two strategies work well in cases where the initial over-

segmentation and classification are close to perfect. but are biased against cases where they

are not. 'This is undesirable as we want the scoring to work in all cases, particularly those

where errors have been made. Also, the overall result seems to balance out and no improve-

ment can be made on the 'root of product' basic score.

The third strategy was much better and gave considerable improvement on the larger dic-

tionaries. Clearly, biasing the scoring towards words whose character segments have

approximately the same width is a very effective strategy.

Ifwe consider Bozinovic and Srihari's high quality cursive word data [BS891 to be compar-

able to this handprinted data, as suggested in section 7.2. then this method has significantly

improved on their results, at least for words with no merged characters. It is interesting to

note that whereas this method does not handle words with merged characters, Bozinovic and

Srihari's method does not handle words with non-merged characters. Their best results,

Without retraining on the test data. were 77% correct on a 71O-word dictionary and 48%

correct on a 7800-word dictionary. Note that the dictionaries used in this chapter were

chosen to be comparable in size to Bozinovic and Srihari's.

They also state that the correct word occurs in the top two candidates in 81% of cases with

the 710-word dictionary and 64% of cases with the 7800-word dictionary. (Elsewhere they

state that these figures are for the correct word occurring in the top four candidates. It is not

clear which number is correct.) Table 7.2 indicates the incidence of the correct word occur-

ring in the top n word candidates, where n equals one. two, three or five, for the method

- 250-

presented here. These experiments use the 'root of product' basic score, the third scoring

strategy and a character candidate certainty threshold of 0.075.

Dictionary Size Top One Top Two Top Three Top Five

Accuracy Accuracy Accuracy Accuracy

112 95 97 97 97

710 85 89 94 94

7827 77 81 81 86

Table 7.2 "Top n" word recognition accuracy for n equal to 1,2, 3 and 5. Accu-

racy is the number (or equivalently the percentage) of test words which are

correctly placed in the top n word candidates by the matching method.

These experiments clearly indicate that the method presented in this chapter is significantly

more accurate than Bozinovic and Srihari's technique. However, a precise comparison is

difficult because the test data used is very different. Further testing of both methods on a

larger, standard handwritten word database would be desirable. Figure 7.4 shows examples

of words which are correctly recognized by the method and figure 7.5 gives examples of

incorrectly recognized words.

The main causes of inaccuracy in these examples are degradation of the characters (e.g., in

"BRUSSELS" and "ZURICH") and too much or too little over-segmentation (e.g., the 'W'

in "GLASGOW" and the 'M' in "MALAGA" are spread across three segments, and the last

'0' in "MADRID" and the 'E' in "PRAGUE" are not separated from their preceding charac-

ters). Degradation causes greater ambiguity in the character classifications which causes

further ambiguity in the word matching. Errors in over-segmentation mean that the desired

character segmentation is not constructed, so it cannot be matched. Other problems are due

to merged letters (e.g .• the 'LA' of "MALAGA" and the 'RO' of "VERONA") which the

over-segmentation method is not designed to separate. Some improvement could be attained

by fine tuning the over-segmentation or extending it for the processing of merged letters.

However, degradation of the images cannot be avoided. Some ambiguity of classification is

- 251 -

~ ~f!J~~r~~~~~~~l~
~~m kf ~T ~ ~ ~8~~

fE~~r rnlf~~~~~J.~r~WtM~
l F<i b~ ltr~~~r~ F~rb

Figure 7.4 Examples of correctly recognized word outlines using the 'root of

product' basic score, the third scoring strategy, character candidate certainty

threshold 0.075 and the 7827-word dictionary. The vertical lines indicate the

over-segmentation of the words.

~ ~ F.. rb f1c~~e ~~~P~wH-lf
l1-~~~b~ M~~~

~ E~lNJ~ ~ll~.r-~
Figure 7.5 Examples of incorrectly recognized word outlines, using the same

parameters as in figure 7.4.

therefore inevitable. Further contextual processing will be needed to select the correct word

candidates.

The next set of tests investigates the number of word candidates produced by the method in

relation to the character candidate certainty threshold. In the early experiments with agrep a

- 252 -

low certainty threshold was used for the character candidate sets. Any character with a cer-

tainty (pseudo probability) greater than 0.05 was included in the candidate set for its seg-

ment group. In the later experiments this threshold was increased to 0.075 to reduce the

number of character candidates and in tum reduce the size of the word candidate sets. 1be

results in table 7.3 show the effect of varying this threshold on the average number of word

candidates generated for each word and the recognition accuracy. All these tests use the

'root of product' basic score and the third scoring strategy.

Certainty Average Number of Word Correct Words (%)

Candidates for Dictionary Size: for Dictionary Size:
Threshold

112 710 7827 112 710 7827

0.050 28.81 166.19 1713.41 93 84 73

0.055 22.30 129.95 1331.53 93 84 73

0.060 16.76 99.21 1013.43 93 85 74

0.065 12.85 76.64 774.65 94 85 74

0.070 9.82 59.44 594.28 95 85 76

0.075 7.67 45.83 436.07 95 85 77

0.080 6.92 40.27 374.88 96 85 74

0.085 6.66 37.99 367.72 93 87 75

0.090 7.19 42.68 411.39 88 83 71

0.095 8.09 48.73 475.37 88 83 72

0.100 9.35 57.42 556.14 86 80 68

Table 7.3 Comparison of character certainty thresholds.

Note that as the threshold increases the accuracy remains roughly the same up to a certain

point and then starts to decline. This is because the correct character classifications are

- 253 -

being left out of the character candidate sets. Also note that increasing the threshold initially

reduces the size of candidate sets but after a certain point the size begins to increase again.

This is because more "wild cards" occur with larger thresholds. It is more likely that there

will be no characters of sufficient certainty so all characters are allowed. "Wild cards"

increase the chances of finding matches in the dictionary and hence increase the number of

word candidates.

Values of around 0.080 offer the best results with the fewest candidates. The best accuracy

on the 7827-word dictionary is achieved with a threshold of 0.075. However, the number of

word candidates is still very high for large dictionaries.

Chapter 8 proposes a method for providing contextual feedback to an adaptive segmentation

system (see section 5.7) which should be able to produce similar accuracy with far fewer

candidates. The adaptive segmentation must initially be provided with a reasonably accurate

"first guess" character segmentation. The next section suggests a method for producing that

first attempt, based on the over-segmentation and character segmentation construction

approaches of sections 7.3 and 7.4.

7.7. Choosing an Initial Character Segmentation

Section 7.4 described the construction of all possible legal character segmentations for the

over-segmented words. An initial character segmentation, from which to start an adaptive

segmentation process, can be selected from this set of legal possibilities by scoring each of

them and choosing the one with the highest score. Section 7.5 suggested three strategies for

scoring matched words. The best strategy involved taking the nth root of the product of the

n character certainties and dividing by the average absolute difference between the segment

group widths and the average segment group width. A similar strategy can be used to select

a character segmentation. without actually matching the character sequences against a dic-

tionary.

For each segment group, the certainty of the most certain character candidate is selected to

represent the overall certainty of that segment group. Each legal character segmentation is

then scored by taking the nth root of the n overall segment group certainties. and then divid-

ing by the average absolute difference between the segment group widths and the average

- 254-

segment group width. Thus a score is determined in the same way as for matched words. but

with the assumption that the highest certainty character candidate in each segment group is

the correct one.

This strategy selects character segmentations which are close to the desired ones. but obvi-

ously cannot be certain of choosing the correct one in every case. Because the initial charac-

ter segmentation may be inaccurate. and also because fewer character segmentations wilI be

matched with this approach. it is likely that the dictionary matching wilI have to allow for

the possibility of inserted and deleted characters. This will in tum require the word scoring

method to be extended. to take insertions and deletions into account.

The effectiveness of the strategy at selecting initial character segmentations which are close

to the desired ones has been tested using agrep (see section 7.5) to approximately match the

initial character candidate sequences. This use of agrep allows insertions and deletions in

the match, as well as substitutions. For each of the 100 test outlines, the number of substitu-

tion, insertion and deletion errors occurring in an approximate match between the initial

character candidate sequence and the correct word was recorded.

In the word matching algorithm used to obtain the results in section 7.6, a word was

accepted as a candidate if it was matched with a number of errors less than or equal to half

the number of characters in the character segmentation. Note that only substitution errors

were allowed in this algorithm. Using the same criterion for the approximately matched ini-

tial segmentation it was found that the correct word was accepted as a candidate in 66% of

cases. By allowing one additional error (because we must expect more errors when inser-

tions and deletions are allowed) this was increased to 82%. In other words, the initial seg-

mentations were accurate enough for the correct word to be approximately matched in 82%

of cases.

Figure 7.5 shows examples of some initial character segmentations obtained using this stra-

tegy. The original over-segmentation lines which are not included in the initial selection are

indicated by dashed lines. It is clear from these examples. and from the above results, that

the strategy is highly effective at choosing a good "first guess" segmentation in the cases

which are suitably over-segmented. The cases where the correct words are not accepted as

- 255 -

re~~~~~~~~~~J.~~~~~H~~
~~~wm RHbeES t:rt~~1E-1f
~~~~~~r.:l~~~~~m ~~~~~
~ll~t~ 1- Llr.b kJ ~~~w~
(:bp~NH~~~N (~~T~~~~~8~~t

Figure 7.5 Examples of initial character segmentations. The solid vertical lines

show the selected divisions. The dashed lines show the remaining over-

segmentation lines which are not used in the initial character segmentation.

candidates are mainly due to inaccuracies in the over-segmentation, caused by degradation

of the image or merged characters. Despite the effectiveness of the "first guess", the adap-

tive segmentation is still necessary because even with suitably over-segmented words,

incorrect guesses are occasionally made.

7.S. Conclusions

A simple vertical segmentation system for non-merged handprinted characters has been

presented which divides characters into either one or two segments (and very occasionally

more than two). A method for grouping these segments to form characters and generating

every possible sequence of these segment groups has been described. Each segment group is

classified to a candidate set of characters using the new feature presented in chapter 5. Tech-

niques for approximately matching pattern strings of these candidate sets against dictionaries

have been tested. A simple but effective matching and scoring system has been developed

which achieves good handprinted word recognition rates on a lOO-word test set.

- 256-

The main drawback of the method is that it is very slow. Although it could be made faster

using a more complicated matching algorithm, it will still be slow because it searches every

possible character segmentation. One way to reduce the search time is to reduce the number

of legal character segmentations by improving the vertical segmentation system. Many of

the divisions made by the system are incorrect (they occur in the middle of a character). If a

way can be found to remove some of these incorrect divisions, without also removing the

correct ones, then there will be fewer segments and hence fewer character segmentations.

This is particularly important if the approach is extended to segment merged characters and

allow them to fall across three segments, rather than the current two. Allowing for three-

segment characters will cause an increase in the number of character segmentations which

must be matched.

The number of legal character segmentations might also be reduced by using the character

height and width information to eliminate patterns, rather than just to scale the scores of

words matched by those patterns. Itwas noted in section 7.5 that, for handprinted words, the

character widths in a character segmentation should be roughly equal. This led to the third

scoring strategy which was very effective at finding the correct word. Instead of scaling

down the scores of words with uneven character widths, a range of allowable deviation from

the average width could be determined. Character segmentations with segment group widths

outside this range could be removed from consideration. Height constraints might also be

used, to prevent two characters being grouped as one.

Another way to improve the speed of the method is to implement the matching of each pos-

sible segmentation in parallel. A much faster serial approach would be the adaptive segmen-

tation strategy (see section 5.7 and chapter 8) which starts with one legal character segmen-

tation and is directed towards the correct segmentation by the higher level context. This will

considerably reduce the number of patterns to be matched. Combined with a faster matching

algorithm, this should give comparable results in a reasonable time. A method for selecting

an initial character segmentation, from which to start an adaptive segmentation process, has

been presented. This method is based on the scoring system for matched words but selects a

good "first guess" character segmentation without performing any dictionary matching.

Adaptive segmentation will probably require the word matching method to allow insertions

and deletions of characters, as well as substitutions. It will then be necessary to extend the

scoring system to cater for these insertions and deletions.

- 257 -

A further problem with the method is that it finds too many incorrect words and produces

very large candidate word sets when a large dictionary is used. Again, this is because too

many patterns are being generated. Improvements to the vertical segmentation or elimina-

tion of some character segmentations would reduce the number of patterns, as would the use

of the adaptive segmentation strategy. It is probable, however, that several candidates will

remain, and also that incorrect candidates will sometimes have higher certainties than the

correct word. It must be concluded, therefore, that consideration of further contextual infor-

mation is necessary to select the correct word from the candidate set

In the airline ticket recognition problem, this further contextual information would come

from other fields on the ticket, such as the airport identification code, the flight number and

time, which could be individually recognized and matched against a database of flight infor-

mation. Inconsistent candidates in each field would be eliminated until, hopefully, only one

consistent match remains. Other applications may have similar fields which must all be con-

sistent, e.g., in cheque recognition the amount in words must match the numerical amount.

In general applications, additional context would come from a grammatical and semantic

analysis of the surrounding text. Chapter 8 proposes a new classifier architecture for general

contextual processing which can combine the adaptive segmentation, isolated character

recognition and word recognition approaches along with higher level grammatical and

semantic context.

7.9. Nomenclature

s
DOT_SIZE

jib(n)

LOOP_GAPl,

LOOP_GAP2

Start of line indicator.

End of line indicator.

Outline size threshold. Placement of segmentation lines uses the

thresholds LOOP_GAP! and SEG_GAPl. or LOOP _GAP2 and

SEG_GAP2, depending on whether the outline area is above or below

this threshold.

nth element of the Fibonacci series.

Threshold distances between left -hand edge of an outline and the

right-hand edge of the previous outline which determines whether or

not a segmentation can be made.

n

p

s

SEG_GAPI.

SEG_GAP2

sequences

totalgroups

- 258 -

Number of characters in a matched word.

Number of the current segment group structure.

Number of single segments in an over-segmented word.

Threshold distances between left-hand edge of an outline and the

previous segmentation line which determines whether or not a seg-

mentation can be made.

fib (s) x s array of pointers to segment group structures. The fib (s)

rows store the legal character segmentations.

Total number of segment group structures for an over-segmented

word.

- 259-

Chapter 8

Future Work: Hierarchical Adaptive Contextual Classification

8.1. Summary

This chapter presents a proposal for a general contextual classification system, towards

which this thesis has been working. Although the implementation is beyond the time con-

straints of this project, earlier chapters have presented character recognition solutions

designed both for use in this system and for the testing of it.

111e proposed system uses a hierarchical network of modular classifiers, each concerned with

a different area of contextual knowledge. 1lte hierarchical layering approach to contextual

sensibility is described in sections 8.2 to 8.4 and guidelines for breaking a problem down

into contextual layers are given in section 8.5.

Section 8.6 presents a new feedback strategy for inter-layer communication in the hierarchi-

cal network, based on "intelligent" suggestion of alternative inputs. Section 8.7 suggests

strategies for using this feedback effectively in the hierarchical network.

The system makes greater requirements of classifiers than usual. Section 8.8 discusses these

requirements and section 8.9 considers which specific classifiers are suitable. Section 8.10

presents a standard model of classifier modules which facilitates the use of different

classification paradigms within the network.

Section 8.11 evaluates the proposed system in terms of the expected classification improve-

ments and the difficulties of the approach and section 8.12 presents conclusions about the

proposal.

- 260-

8.2. The Contextual Layering Approach
Despite the obvious benefits to be gained from contextual information surprisingly little

work has been published on a general theory of its use by classifiers. Most uses have been

very application specific. Although the contextual information itself is application specific,

the way it is used need not be. An approach to context-sensitive classification is proposed

which aims to be general in nature, although certain restrictions are imposed on the

classification paradigms which can be used.

In many classification problems, separate contextual levels can be easily identified. Each

level becomes a classification problem on its own. At the lowest level is a noncontextual

classification of each item of input data. Higher levels of context may be viewed as

classifications of accumulated data from the lower levels. The proposed system is based on

this notion of contextual levels. It provides a modular architecture which performs a com-

plete contextual classification across the levels and allows each such problem to be tackled

independently.

As an example of such a breakdown of context, let us return to the character recognition

problem. The initial attempt might be to classify characters by their shape. The next level

(the first real contextual level) might be a word recognizer which classifies ordered groups of

characters as either valid or invalid words. Another layer might take ordered groups of

words and determine whether they make syntactically valid sentences. Further layers might

check for semantic context, possibly tailored for a specific domain (see section 6.6.4).

(Another approach might start with subcharacter shapes which are initially classified into

structural primitives; then groups of primitives are classified into characters. Other

approaches might start with whole word shapes.) It would be beneficial if each of these lev-

els could be dealt with separately, rather than trying to train a single classifier to learn them

all.

Contextual sensitivity can be achieved through the use of a hierarchical network of

classifiers. The problem is broken up into different context levels. Each level is handled by

a suitable classifier. The original classification problem is then resolved by recombining the

resulting classifiers in a hierarchical network. The different contextual layers of the problem

feed into each other. Feedback from the higher-level classifiers is used to correct or adjust

- 261 -

the lower levels to produce contextually sensible output.

Each level is modular in nature, can be trained separately and is independent of the rest of

the hierarchy. Context modules can be added or removed at any time without the need to

retrain the whole network.

Where the other input cases are independent of the target case, additional inputs must be

obtained from another source. This chapter does not consider the problem of when and

where to acquire this additional data but concentrates instead on problems where it is

sufficient to base classifications on the context of the surrounding cases. For these problems

the input may be treated as a stream and sampled through a sliding window. The current tar-

get case will usually be at the centre of the window. Classifications can now be based on the

preceding and succeeding input cases as well as the target case. Note that this assumes a

sequential ordering of the surrounding context. For non-sequentially ordered context, alter-

native windowing strategies can be used to group a target with its contextual neighbours.

Looking at several cases at once means using several instances of the lowest level classifier

module, one for each input case in the window. There may also be multiple instances of the

same classifier at the higher levels. However, each module performs most of its functions

independently and so is highly suitable for a parallel implementation. This is fortunate as

the more context we wish to consider the larger the window required at the input level. In

the character recognition example, if we want to look at syntactic or semantic sensibility of

sentences then we must have a window large enough to hold a whole sentence (made up of

individual characters) at once.

The context to be considered may not fill the entire sliding window. In some applications

that context may be delimited by context markers. Only the portion of the window between

the context markers need be considered. An equivalent arrangement would be to use the

context markers to resize the window of context which is considered. It is useful for the

context markers to be treated as dummy input cases. This makes them simple to add, delete

or move if their initial placement is incorrect. Also it is the simplest way to keep track of

where they are: the markers get passed up and down the hierarchy along with the other input

cases. This method fits logically into many applications; the breakup of context frequently

- 262-

corresponds to temporal or spatial gaps in the input stream.

In the character recognition example we may have a large window at the word recognition

level, in order to handle long words. If the target input character is in a short word then the

ends of that word must be indicated to the word level. Context markers are placed to

represent the gaps between words. Note that this is merely an illustrative example; for char-

acter recognition it would actually be simpler to use the alternative method of resizing the

window to exactly fit the context markers.

Output

Second contextual level

First real contextual level

Partitioned input level (first
noncontextual classification)

Raw input data
/

Context markers delimit the context to be considered

Figure 8.1 Example arrangement of classifier modules and windows.

Figure 8.1 illustrates the arrangement for a very simple problem with two real contextual

levels. A real system would probably have more levels and much larger context windows.

In this case the context markers have been used to scale the windows to exactly fit the

expected partitioning. The upwards arrows indicate the passing of ctasstncauons up the

hierarchy. The downwards arrows indicate feedback which either alters the lower level

classification or corrects the lowest level partitioning (see section 8.6).

To better understand the diagram we might consider it as if it were a real application, e.g., a

character recognizer. Imagine that the lowest level elements are the over-segmented sub-

characters (see section 7.3). The partitions are then the divisions of the legal character seg-

mentation and the partitioned input elements are the isolated character classifications of

- 263 -

segment groupings. TIle first real contextual level is a word recognizer module and the top

level is a semantic sentence module.

The next two sections discuss the communication between classifier modules when they are

in the same layer (intra-layer communication) and when they are in different layers (inter-

layer communication).

8.3. Intra-Layer Module Communication

It may be logical and convenient to divide a level into yet more modules. Each module

would deal with different aspects of the same contextual level but they would all take the

same inputs and produce output of the same form. In a character recognition system there

could be different modules within. say. the word recognition level that recognized words of

different languages. e.g .• one for English. another for German. These modules may be inter-

changeable or may both be required in cases where both languages are present in the input.

When operating on a document containing both English and German text the modules must

interact within their context level to determine which has priority.

Most interactions within a context level are likely to be simple choices between the outputs

of different modules. For example. choose either the English module output or the German

module output. Another strategy would be to form the inputs to the next level by con-

catenating the outputs of the multiple modules. More complicated combinations of

classifiers may also be desired. Ho et al. [HHS9O] take candidate output sets from multiple

classifiers and form a subset of these which hopefully contains the correct class. The classes

in the subset are then re-ranked according to a group consensus.

This chapter assumes intra-layer interactions can be reasonably easily resolved and for now

only considers the interaction between levels. Each level is treated as containing only one

type of module.

8.4. Inter-Layer Module Communication
It is theoretically possible for each classifier module to pass a probability for each possible

output class to the next level. The higher level would then have all the information the

lower level could provide about likely alternatives. 'There would be no need for feedback.

- 264-

However. this is frequently impractical. except for very limited problems. In the character

recognition example it would be unreasonable to output a probability for every possible

word. or every possible sentence. A practical solution might be to pass only a small set of

the most probable output classes. or to pass only one class at a time.

If a small set of outputs is passed to the next level then it becomes tempting to assume the

correct output belongs to that set. The system could then ignore feedback. There will. how-

ever. be cases where the set does not contain the correct output and this approach will fail.

A system where one class is passed at a time. and feedback is used to test alternatives. is not

limited in the range of classes it can consider. A third possibility is a combination of the two

methods: pass a small set of the most probable outputs and also use feedback to test alterna-

tives that are not in the set. 'This is in essence the same as the one-at-a-time approach but

aims to give an increase in speed by reducing the amount of feedback required.

A further consideration is the modularity of the context modules. It is not natural for a

module to take a set of probabilities as its input. Rather it should take a representation of the

input at the appropriate level of abstraction. For example. a word recognition module should

ideally take a set of characters as its input. not a set of sets of probabilities of characters.

The hierarchical classifier would therefore convert its input representation to a higher level

of contextual abstraction at each stage. providing a more natural breakdown into modules.

However. an associated confidence measure for each input is useful.

In the proposed system each classifier outputs one class at a time. along with a measure of its

confidence. 'This measure is computed from the input values and other contextual

knowledge. and may be based on probability theory. certainty theory. fuzzy logic. edit dis-

tance or whatever is logical for the particular type of classifier. Such a system must use a

feedback mechanism to ensure contextual sensibility.

8.5. General Determination of Contextual Levels
The breakdown of contextual information Into modules for the character recognition prob-

lem has been discussed above. The problem of contextual breakdown for general domains Is

largely intuitive. which is fortunate given the variety of forms which contextual information

can take. The human brain processes contextual information from a vast number of its

- 265 -

specialized areas and the many available sensory inputs. Abstracting these to a set of gen-

eral rules is not yet possible; however, general guidelines can be given.

Wherever input to a classification problem comes from more than one separate source, one

should consider passing each source's input to a separate context module before the informa-

tion is combined at a higher context level. As an example, consider a robot guidance prob-

lem where information comes from both a visual source (camera focussed on the object) and

an auditory source (microphones). It is logical for information from the two sources to pass

through separate context modules, to obtain compatible representations and to identify

classes strongly represented by either source in isolation, before attempting to combine the

information. (In the human brain the sources would be processed initially by the visual and

auditory cortices respectively before higher functions combine the input.) This is not always

necessary and is sometimes more a modularization consideration than a contextual one.

When input cases are temporally or spatially ordered each case should be fed first to an

instance of the bottom level context module. The outputs of these modules are grouped, and

ordered context processing is performed by higher level context modules. For example, in

speech recognition each lowest level primitive (usually a Fourier descriptor of the sampled

sound segment) should be fed to a separate instance of the bottom level module (most prob-

ably a phoneme recognizer). The phonemes are then grouped together and the higher level

context modules attempt to recognize higher forms, e.g., syllables, then words and then sen-

tences (Bronkhurst et al. [BBS93]).

Once the first context level has been determined, further levels are best decided upon by

identifying different levels of abstraction in the representation of thc system output. Each

such abstraction becomes the output from one contextual level, and the input to the next.

The abstract representations should be ordered such that at each progressive level the

amount of data required to store the representation decreases. Since the higher levels pro-

cess a wider portion of the input, it is desirable to reduce the amount of data presented to

these levels. Also it is almost always the logical order of abstraction.

There may be more than one contextual level between each adjacent pair of the abstract

representations. For example, in character recognition there are at least two levels (syntactic

- 266 -

context and semantic context) between the abstract representations, word and sentence.

Determining the order in which to place these levels is problem specific.

These guidelines are not rigid and the breakdown is best detennined by the needs of the

problem. By keeping the required properties of the context module as simple as possible

(see section 8.9), a large degree of flexibility is allowed in the detennination and structuring

of the contextual levels.

8.6. Intelligent Feedback
In cases where an initial classification attempt is contextually invalid it is necessary for

higher level classifier modules to communicate the failure to the lower levels so that they

might try again.

A brute force approach to this feedback would have each level take its set of inputs from the

preceding level and compute its output and an associated confidence factor. If the

confidence factor does not reach an acceptance threshold value then the next most probable

set of output classes from the preceding level is selected instead, and the classification recal-

culated. The process would stop when the acceptance threshold was reached at each level,

or when the initial confidence of a level's classification falls below a rejection threshold at

which point the classifier concludes the input is unrecognizable and gives up. 'This approach

would be very slow and a more intelligent feedback mechanism is required.

Rather than relying on the lower levels to suggest alternative classifications an intelligent

feedback system would use the higher levels (which make use of wider context) to suggest

contextually sensible alternatives. The higher levels direct the classification process towards

a sensible result with much greater speed than an exhaustive search of the possible lower

level classifications.

It is important, however, that the higher levels do not simply override the lower level results.

Most approaches to contextual sensitivity so far have been a one-directional process, where

each level passes on a contextually valid output to the next with no facility for verifying

changes to the lower level classifications. These methods obtain a quick result but the final

classification tends to be based on only a portion of the input data, the remaining portion

- 267-

having been rejected along the way. Just as the initial classification can give errors, so can

the contextual checks. Mis-classifications inevitably occur and a system which can verify its

contextual corrections, rather than just discarding contextually invalid input, would be more

accurate.

Even when a higher level confirms the results from the lower levels it may not do so with a

desirable level of confidence. A worthwhile aim of the hierarchical classifier is therefore not

just to guess the correct output but to maximize the confidence of the classification. For

some applications, the ones with which we are primarily concerned, the confidence could be

improved by resampling some or all of the lowest level inputs. For example, in character

recognition it might be improved by adjusting the segmentation of characters at the lowest

level (a mechanism for such an adaptive segmentation process is described in section 5.7).

Young and Matessa [YM92] used a similar approach for improving speech recognition.

In order for higher level hypotheses to be verified by the lower levels, and in order to pro-

pagate desired changes to the lowest level, it is necessary for each lower level's

classification process to be reversed Each level must be able to take a new output, fed back

from the higher level, and work back to a representative input vector for that output. (The

representative input should be such that when classified it will produce the new output with a

high confidence.) This representative input vector can be compared to the actual input or

can be fed back to the preceding level where the reversal process continues. Eventually this

reversal process reaches the lowest level where the input data is resampled, this time with a

better idea of what it is supposed to be. This resampling will usually involve a more accu-

rate repartitioning of the raw input data which effects the neighbouring cases as well as the

target case. The resulting improvement in lowest level accuracy propagates upwards to the

uncertain classifications which can hopefully then be resolved.

In many cases there will be a conflict between what the lower level says the input is and

what the higher levels say it ought to be. Most contextual approaches give priority to the

higher level but it is desirable to verify such changes and in some cases keep the lower level

classification.

- 268 -

In the hierarchical system neither level has priority unless the confidence of its output

exceeds some threshold. If neither level is sufficiently confident then each level will main-

tain its classification, either until the surrounding contextual cases confirm one level as being

correct (l.e., cause the other level's classification to change), or until all the contextual infor-

mation has been considered and a decision must be made. If both levels produce an output

confidence in excess of the acceptance threshold, but do not agree on the classification, or if

neither level can satisfy the acceptance threshold and all the contextual information has been

considered, then the classification with the highest confidence has precedence. In the event

of a tie, priority is given to the higher level.

It is also desirable to use feedback to improve the confidence of a classification which is con-

sistent with the next higher level's classification, but where neither level's output confidence

exceeds the acceptance threshold. The mechanism for this is the same as for corrective feed-

back but rather than the higher level classifier suggesting an alternative input it suggests the

same input. This is then passed back to the lower level as its output. The lower level con-

verts it to a representative input vector (which would give a higher confidence classification

at both levels). This target input propagates down to the bottom level which attempts to

repartition, or otherwise adjust, the raw input data to better fit the target. The input is

reclassified and the classification then propagates up the hierarchy again. If the feedback

was successful, the confidence of the original result will improve.

8.7. Strategies for Fast, Accurate Classification

The individual classifiers are specified and then trained separately. The hierarchical network

is formed by specifying connections between classifier modules. This involves choosing the

sizes of Sliding windows and ensuring that where two modules are connected the output of

the lower module is of the same type as the input to the higher module (see section 8.10).

This gives us a large network of classifiers with those dealing with the highest level of con-

textual abstraction at the top and those dealing with the raw data at the bottom.

Once the hierarchy has been defined, the problem is to find an order of classification, l.e., an

order to use the modules and their functions, which is both fast and accurate. As ever, there

is a trade off between speed and accuracy.

- 269 -

Since the top level provides the highest level of abstraction and has the widest view of the

available context. the sooner that level is reached. the sooner the classification can be com-

pleted. Once the top level is satisfied. the lower levels will follow in due course. However.

if the order of classification proceeds directly up the hierarchy. with no corrective feedback

until it reaches the top, then the accumulated error will be greatest at that top level. The top

level may then suggest a contextually valid solution based on erroneous classifications from

the lower levels. The rest of the hierarchy will work towards the top level hypothesis which

may lead them to enhance the previous errors. Classification will be fast but at the expense

of accuracy.

The other extreme is to perform feedhack at every opportunity to ensure that a high

confidence, contextually valid classification is passed on at each stage. Even though these

classifications are valid at one level, they may be found to be invalid at the next level of con-

textual abstraction, despite having a high confidence. The process must then be repeated

between the lower levels. The relative lack of communication between the levels makes this

method extremely slow, although it may eventually produce the most accurate classification.

A compromise is to proceed directly up the hierarchy to an intermediate level before intro-

ducing feedback. How far up this level should be depends on the expected error rate for

each level. This error rate is problem specific so a general rule cannot be applied.

A fourth alternative is to introduce s feedback threshold for each level. After each attempted

classification the feedback mechanism is used if the confidence measure is lower than the

feedback threshold but greater than the rejection threshold. Thus if the initial confidence is

high it is passed on to the next level without the system slowing down to check it, but if it is

initially low (but not too low) the system tries to improve it hefore passing it on.

The feedback threshold would initially be somewhere between the acceptance and rejection

thresholds but would increase with time and eventually equal the acceptance threshold. In

the early stages the hierarchy quickly passes on high confidence classifications at each level

and in the later stages it slows down (uses more feedback) to ensure the accuracy of its solu-

tion.

- 270-

There is also the question of propagating high confidence results back to the lower levels

(enforcing corrections or improving the lower level confidences if they agree with the higher

level). This might be done the first time a classification confidence exceeds the classifier's

acceptance threshold. Alternatively the system may wait until a conflict arises in the hierar-

chy and then back-propagate high confidence results in the vicinity of the conflict. Again

there is a choice between accuracy and speed: the first method gives greater accuracy but is

slow, and the second is fast but less accurate.

When considering speed limitations it should be borne in mind that all these strategies will

benefit greatly from a parallel implementation.

8.8. Desired Properties of Classifier Modules

The hierarchical classification approach makes several demands of the classifier modules

which make some classifiers unsuitable. Some others will require extensions to their abili-

ties if they are to be used. This may seem to be a limitation of the hierarchical system but

given the need for such a system it is really the classifiers that are limited, not the system.

Classifier design hac; concentrated on the process of mapping the inputs to the output classes

but not the feedback processes involved in context checking. An important area of research

is the enhancement of classifiers for use in contextual environments.

The most significant criteria for determining whether or not a classifier is suitable for use

within the hierarchical structure are speed, accuracy. generalization. ability to produce a

confidence measure for the output and ability to produce a set of representative input vectors

for each output class.

Speed of classification is essential because of the larger number of classifiers used. particu-

larly at the lower levels. and the repetition of classification required by the feedback

processes. A parallel implementation will make the system faster but each classifier will be

used much more than in a one-directional system so fast classification and feedback are

essential.

Accuracy and generalization arc obvious criteria for any classifier but particularly in the con-

textual system. A high correct classification rate for the initial noncontextual classificatlon

- 271 -

will prevent the system from producing too many contextually valid but incorrect results.

Contextual sensibility will be based on the initial classifications which have the highest

confidence. Inaccurate results at this stage might have disastrous effects on correct but less

confident results in the surrounding context.

The classifier must be able to produce some form of confidence measure (preferably a proba-

bility) of how well the output class represents the input in relation to other possibilities.

Classifiers which can only produce a winner-lakes-all result must be adapted. if possible, for

this purpose, otherwise they are unsuitable. However, many such classifiers produce real-

valued scores for each possible output class first before selecting the highest scoring possi-

bility as the winner-takes-all output. For example, Bayesian statistical classifiers (see sec-

tion 6.2) produce probabilities for each output class before choosing the most probable one.

These values may easily be used as a confidence measure.

The most important property of suitable classifiers is their ability to produce intelligent feed-

back. When a higher level context module finds its input to be contextually invalid (when

the output confidence does not exceed an acceptance threshold) the input is tentatively

rejected by the classifier. Rather than simply informing the previous layer that it is

incorrect, the classifier should suggest an alternative set of inputs which would produce a

more confident (contextually valid) output. The preceding level receives this alternative

input as a possibility for its output. In order to decide whether or not it is acceptable, this

preceding level must he able to compare its real input vector with an input vector which is

representative of the suggested output. This comparison will usually involve taking the

Euclidean distance between the two vectors and comparing it to a threshold of acceptable

similarity.

The key to the intelligent feedback mechanism is the conversion of a suggested output vec-

tor to a representative input vector. While other methods might be used to check suggested

alternative outputs, the method of converting output to input is also required to propagate

contextual corrections and adjustments down the hierarchy. It cannot therefore he avoided.

Classifiers which are incapable of this conversion are unsuitable.

- 272-

While many classifiers have the potential to operate in reverse, this ability is rarely ever

used. Classification processes are almost always many-to-one functions from the inputs to

the output. Mapping in the other direction would make a classifier much more powerful but

a one-to-many mapping is not practical. It is required to find a one-to-one mapping from the

set of output vectors to the set of input vectors such that the corresponding input vector is

representative of the output class. For some problems this is extremely difficult to find but

for most real world problems the input vectors form class-specifiC clusters in the input space

and a vector from somewhere near the centre of a cluster might be an acceptable representa-

tive of the class. Where there are several clusters corresponding to the same class a central

vector can be found for each and the one closest to the current input vector chosen.

Class representative vectors can be extracted from classifiers in two ways. Certain types of

classifier (most statistical and some neural ones) explicitly represent the central vectors of

clusters, e.g., as a mean vector for a class, or as a codebook vector in nearest-neighbour-

based neural classifiers. Class representative vectors can be simply extracted from the

parameters of these classifiers. The second, more complicated way can sometimes be used

for classifiers which do not represent cluster centres explicitly but instead explicitly

represent their decision boundaries. Since they (hopefully) form their decision boundaries

around the clusters, the task of finding the centres of clusters becomes one of finding the

centres of decision regions. However, finding the centre by examining the boundaries is

extremely difficult, particularly for piecewise or multi-layered classifiers.

It may be desirable to find not just one vector in a decision region but a small set of vectors

distributed across the region. A central vector gives no information about the decision boun-

daries which may be quite complex. While representing the boundaries exactly would

require too many vectors a smaller number might be able to approximate them. A uniform

distribution of the vectors across all classes would also give a better representation of the

region.

In cases where it is not practical to extract vectors from the classifier itself there are two

alternative approaches to determining class representative vectors. One is to pre-define a set

of template vectors which are associated with the outputs. This requires the application to

have a clearly defined set of "perfect" inputs. In practice this is rarely the case. The other

- 273 -

approach is to determine the representative input vectors from the set of exemplar vectors

used in training the classifier (but without referring to the classifier itself), Again, this

involves finding class-specific clusters in the input space and selecting one or more vectors

from each cluster. These vectors may simply be central vectors from the clusters or may be

uniformly distributed across them.

8.9. Suitable Classifiers for Use as Classifier Modules

Many classifiers reviewed in chapter 6 have the qualities described above; however. some

are unsuitable. This section discusses which specific classifiers may be used. The primary

concern when selecting a suitable classifier is the ability to map outputs to representative

input vectors.

Firstly. any classifier may be used if a set of "perfect" input templates can be assigned by

hand or if class representative vectors are determined by clustering the training samples.

Ideally though. we would like the classifier to determine the representative input vectors

itself.

Parametric statistical classifiers usually include mean vectors for classes among their param-

eters. Nonparametric classifiers and statistical unsupervised learning methods which esti-

mate the class conditional probability density functions will also usually estimate a mean

vector for the class distributions. These mean vectors can be used as class representatives

although we will normally require more than one representative per class. Piecewise

classifiers are therefore most appropriate as means can be extracted for each cluster of a class

represented by a discriminant function.

Clustering methods are generally very suitable as they encode multiple clusters of each class

and (for well clustered data) should be accurate and have good generalization. It is assumed

that we are dealing with data which naturally falls into clusters (otherwise it is unlikely that

the feedback system will be effective). Cluster-based classifiers generally represent the clus-

ter centres explicitly in their parameters so these can be easily extracted as class representa-

tive vectors. These types of classifier include the unsupervised statistical clustering

classifiers and the competitive-cooperative neural learning models (additive and shunting

networks. ART networks. learning vector quantization networks. radial basis function

- 274-

networks. self-organizing maps. counterpropagation networks). Although learning can be

slow. these classifiers are usually fast in operation. Some of these methods do not produce

confidence measures in their normal operation. However. they can usually be modified to

produce measures based on the distances from the input vector to the cluster centres for each

class.

Nonparametric statistical methods based on estimating discriminant functions are similar to

the perceptron family of neural networks which learn by error-correction learning. This

group of neural networks includes perceptrons. Adalines. Madalines. multilayer perceptrons,

cascade correlation networks and Boltzmann perceptron networks. All these classifiers have

similar problems in producing class representatives. Tbe most powerful of these. the mul-

tilayer perceptron. is accurate and fast but provides no simple way to determine class

representatives. Each neuron divides the input space with a simple hyperplane but decision

regions are formed by combining the output of several neurons (using several hyperplanes to

fence off the region). Finding the centre of such a region would be possible but the problem

is further complicated by the use of hidden layers which allow for the creation of arbitrarily

complex decision boundaries. Further investigation is needed to overcome these difficulties

but for the moment it must be concluded that classifiers which encode decision boundaries

are considerably less suitable for use in the hierarchical system than those which encode

cluster centres.

Hebbian learning models (Hopfield nets. linear associative memories. bidirectional associa-

tive memories. learning machines and neocognitrons), and also those which combine Heb-

bian learning with stochastic learning (Boltzmann and Cauchy machines). face the same

difficulties as error-correction learning networks. TIle weights do not directly encode any

value which could usefully be used as representative input vectors. Some of these models

only give a winner-take-all output and there is not always a logical way to produce

confidence measures for other possible outputs. Another problem is that they generally have

limited storage capacity which makes them unsuitable for representing large contextual

domains.

Of the other neural networks described in chapter 6. the CMAC is a potentially useful

classifier module. It is relatively easy to estimate the mean values of the inputs from the

- 275 -

outputs which should enable class representatives to be determined. The CMAC learns arbi-

trarily complex mappings very quickly which is a useful, though not essential, quality for the

hierarchical system. Its main disadvantage is its large memory requirement.

Structural classifiers are generally less accurate and much slower than statistical and neural

classifiers but it is usually possible to determine confidence measures for each possible out-

put class. Most structural representations, particularly the attributed variety. have matching

(classifying) methods based on edit distances between inputs and templates. These edit dis-

tances are ideally suited to producing confidence measures for the outputs.

The simpler structural methods are also reasonably well suited to producing class representa-

tive input templates. Template matching and the basic string, tree and graph matching

approaches use template libraries to store exemplars of classes. These may be used directly

as representative inputs or might be reduced using vector quantization if there are too many

of them.

The more complicated structural methods which use grammars to represent classes are not

always suited to use in the hierarchical system. Although the grammars may be used to gen-

erate classes as well as match them, it is not easy to determine an "average" example of a

class for use as a representative input. Most grammars consider each word in their language

to be equally valid. An additional, external weighting of examples would be necessary if

such a classifier was to produce contextual hypotheses as feedback. Stochastic grammars

offer the possibility of weighting words so that "average" words for a class grammar can be

extracted. Despite the difficulty of determining class representatives, structural grammars

are potentially very useful for representing contextual domains.

Clearly there are many classifiers which might be used In the hierarchical network. To facil-

itate the use of all these different types within the hierarchical structure the next section pro-

poses a standard model of a classifier module. If implementations of classifiers are tailored

to fit this standard model then testing and usage of the hierarchical network will be much

easier.

- 276-

8.10. A Standard Model of a Classifier
Previous networks of classifiers have used the same classification paradigm for each

classifier, e.g., Waibel et al. [WSS89], Green and Noakes [GN91] and Boyan [Boy92]. It is

desirable to allow many different types of classifier to be used in the hierarchical framework;

individual classifiers could then be chosen for their suitability to the particular task of their

module.

In order for different classification paradigms to be used within the envisaged hierarchical

network there must be a standard model which covers all classifiers (all those that can be

used within this system). Each module should appear to the rest of the network as a "black

box" where only the types of the inputs and outputs differ. All modules should operate in

the same manner; a standard set of functions perform mappings between the inputs and out-

puts. The underlying paradigm and implementation should not affect the rest of the hierar-

chy.

Modules of the hierarchical classifier are defined to have an input vector and an output class

with an associated confidence measure. (This definition can be stretched to allow the "out-

put class" to be a set of classes, a vector or some other representation of the input data,

appropriate to that module's level of contextual abstraction.) Usually a group of classifier

outputs from a lower level are linked to the input vector of a single classifier at the next

level. Each lower level output becomes an element of the higher level's input vector. Any

classifier modules can be connected in this way provided the number of outputs matches the

size of the input vector and the type of the output class is the same as the type of the input

elements. This may require the addition of a simple non-classifying module to convert the

output of one module into a suitable form for input to the next. Such non-classifying

modules must be able to perform the same functions as other modules.

Each module has a function,feedforward, which maps its input vector to its output class, and

another function, feedback, which maps from the output to the input. The feedforward func-

tion is the usual process of classifying the input and the feedback function is the internal

feedback operation which maps output classes to representative input vectors.

- 277-

Each module also has three thresholds specified. These thresholds are for comparison with

the output confidence of the module's classification. A module must have an acceptance

threshold above which a classification is accepted as correct at that level, a rejection thres-

hold below which the classification attempt is abandoned until higher level contextual feed-

back can provide a sensible possibility (in other words the initial confidence is too low to be

worth trying to improve), and s feedback threshold below which feedback is used to try to

correct or improve the confidence of the result.

8.11. Evaluation
Future work on the hierarchical adaptive contextual classifier should be able to produce a

system that will give greater overall accuracy than existing contextual processing tech-

niques. The existing approaches have no equivalent to the inter-layer feedback of the

hierarchical classifier. Since their methods can be formulated to fit the standard classifier

model with little difficulty, the feedforward stage of the hierarchical classifier will be able to

achieve exactly the same results as any other contextual system. It is expected that the addi-

tion of inter-layer contextual feedback will substantially improve on the feedforward results.

The intelligent feedback should allow more powerful searches to be conducted and should

significantly increase classification accuracy above the levels attainable with feedforward-

only systems. A flexible approach to the order of classification and feedback will allow the

system to quickly find contextually valid classifications. and to verify them by re-evaluating

their confidences. By directing the search for contextually valid solutions it will give greater

speed than existing exhaustive search methods. The feedback will however increase the

order of time complexity for the classification process over that of feedforward-only sys-

tems. The degree of increase will depend on the order of classification chosen.

Intelligent feedback should also allow incorrect but contextually valid solutions to be

rejected if later classifications cause higher context levels to find the initial classification

unacceptable. In feedforward-only systems this could only be done by overwriting the

incorrect solution, with no facility for verifying the new solution, and with no information

from the new solution contributing to the final top level result. The intelligent feedback sys-

tem can both verify the correction and use it in the remainder of the classification process. It

should therefore give much greater accuracy and confidence of results in cases where the

- 278-

early contextual stages are initially incorrect.

The verification of conclusions and the bottom level resampling of input data is expected to

allow the system to produce results with greater confidence than existing context checking

systems. Greater confidence at the lower levels also allows more sensible contextual choices

to be made at the higher levels, giving a general improvement in system accuracy.

1be general applicability and the modular nature of the hierarchical classifier should provide

greater flexibility than existing systems, which are almost exclusively application specific.

It should make alterations and extensions to the contextual information relatively simple to

incorporate into an application; non-modular systems would be likcly to require complete

retraining.

In addition to the improved flexibility resulting from modularization, the standardization of

classifier input/output and functionality is an important consideration for future designs.

Classifier research has reached the stage where accuracy is comparable to human perfor-

mance where no contextual information is available. Progress now requires advances in

general contextual processing. Such processing need not be specific to either the application

or the classifiers involved, but cannot be easily developed or tested without examples of

them. This, at the moment, is the main handicap to the modular system: many existing

classifiers need alterations before they fit the proposed standard model. Standardization of

classifier design would therefore greatly facilitate research in this field.

The main cause of inaccuracy in the hierarchical network is expected to be false corrections

to the early context levels. The introduction of some new errors is inevitable but it is

believed that the number of accurate corrections will outweigh the false ones and so an

overall increase in accuracy will be achieved. The incidence of new errors will depend on

the emphasis placed on the contextual information in relation to the first non-contextual

classification. This emphasis is determined by the acceptance and rejection thresholds for

each context module. Errors are most likely to occur when there is little available context,

e.g., in character recognition, when words (or sentences) are short. Such errors might be

reduced by scaling the thresholds at each level according to the amount of context available

(l.e., the number of elements in the input vector between the context markers).

- 279-

The main weaknesses of the system are that it requires classifier modules to be capable of an

approximate reverse classification. The proposed methods for this rely on classes forming a

relatively small number of clusters in the input space. This is generally the case but there

are some problems where this is not so and the intelligent feedback mechanism would not be

suitable. The basic modularity and feedforward stages of the system would still be appropri-

ate.

The hierarchical classifier is generally suitable for problems where contextual information is

available and can be easily broken down into contextual levels. It is clearly unsuitable for

domains where contextual information is limited or not available, e.g., fingerprint

identification. The current model deals only with temporally and spatially ordered context

in the initial input set and has not yet been extended for situations where contextual informa-

tion, specific to the input case, must be gathered from additional sources. However, it is

suitable for problems where the additional context can be learned independently in advance,

t.e., when it applies to general cases rather than specific ones. The context of language is the

most obvious example.

8.12. Conclusions

This chapter has proposed a hierarchical adaptive contextual classifier network for general

contextual sensibility in classification. Contextual sensibility is essential if improvements

are to be made in classifier accuracy; however. little work has been published on the general

use of context in classifiers. beyond the inclusion of a priori probabilities. The ideas in this

chapter therefore provide a very important direction for future research.

There is frequently a logical conceptual breakdown of context into different levels. A con-

textual layering approach is a valuable strategy for including a range of contextual informa-

tion in a convenient and simple fashion. Windowing the layers' inputs allows sequentially

ordered spatial and temporal context to be considered.

The proposed hierarchical classifier network is based on the contextual layering approach

and can be used for a number of real world classification tasks such as character and speech

recognition.

- 280-

The hierarchical network's intelligent feedhack mechanism requires its classifier modules to

be able to reverse their classification process, i.e., map from an output class to a representa-

tive input. This method relies on the classes forming clusters in the input space but it is

believed that this is true for most real problems. It has been shown that there are many

classifiers which can do this easily. A future goal is to find reverse classification methods

for other classifiers.

Strategies for ordering the system's consideration of the context have been devised. Further

studies should evaluate the comparative effectiveness of these strategies and compare the

generalized system to existing context-sensitive classification systems.

There is clearly much more work waiting to be done in this area. In particular, extensions to

the feedback mechanisms should be explored. Currently when contextual corrections are

verified they are enforced either by overwriting the results or by adjusting the bottom level

segmentation. The overwriting enforcement technique is dangerous. More research is

required to determine how confidence measures should best be increased to avoid creating

over-confident classifications which may later be resistant to further correction from higher

levels.

- 281 -

Chapter 9

Conclusions and Recommendations

9.1. Summary

This chapter reviews tqe original work presented in this thesis. Final concluding remarks are

made about what what has been achieved and suggestions are made for future development

of this work.

9.2. Conclusions

This thesis has presented several new developments in different areas of character recogni-

tion and proposed more efficient and accurate strategies for building full recognition sys-

tems. The most significant developments are a much improved vectorization algorithm. a

highly robust feature for outline representation and an approximate dictionary matching

method for recognizing over-segmented words. The strategies of minimal preprocessing and

hierarchical adaptive contextual classification are also very significant new approaches for

future character recognition research.

9.2.1. Outline-Based Vectorization

An outline-based vectorization method has been developed from Pavlidis's popular run-

length-based algorithm. specifically for the vectorization of handwritten characters.

Although slower than Pavlidis's method. it gives improved accuracy by considering lines

made up of adjacent. vertical runs of black pixels as well as horizontal runs. Also several

algorithms have been created to greatly improve the vectorization of junction areas. These

include methods for identifying junction borders. removing "bow-tic" effects. estimating the

direction of vector chains which lead up to the junctions. and determining the best choice of

lines to join up the incoming vector chains.

The complete method has proved effective at producing accurate representations of the pen

strokes used to draw characters. except where strokes overlap for long distances. Complete

chains are used to represent strokes rather than the multiple. stick-like sections produced by

- 282 -

Pavlidis's method. Complete chains are much more useful for structural primitive extraction

and are also closer to the kind of character representation used by on-line character recogniz-

ers. The possibility of using on-line recognition techniques on off-line images is very

appealing because they are a great deal more accurate. However. the difficulty of determin-

ing the correct path of pen strokes through areas of overlap will probably prohibit a complete

reconstruction and therefore keep the fields of on-line and off-line recognition distinct.

The weakness of vectorization, in general. is that it loses the geometric detail of character

shape. This detail is essential for accurate recognition by statistical or neural classifiers.

The results of comparing statistical classification of vectorizcd characters with their unvec-

tori zed outlines have shown that vectorizalion loses distinguishing detail or introduces

errors. or both. A drop in generalization accuracy of between 7 and 16% occurred as a result

of vectorization. The future usefulness of vectorization depends on accurate structural

classification methods being developed. or on the successful application of on-line tech-

niques to the vector chains.

9.2.2. Preprocessing

The difficulty in structural classification is in accurately extracting primitives on which to

base the recognition. This was discussed. along with other preprocessing techniques. in

chapter 4 and it was concluded that errors in extraction were inevitable. Correct

classification therefore requires a substantial amount of error tolerance which causes too

much class overlap and ambiguity in structural representations of characters. Similar prob-

lems occur with the extraction of polygonal approximations as primitives and it was con-

cluded that a statistical or neural. feature-based classification is more appropriate for charac-

ter recognition.

Of the other preprocessing techniques. it was found that smoothing. filling and joining lose

important shape detail in many characters because they cannot distinguish between detail

and the noise and distortion which they are intended to remove. These operations are detri-

mental to recognition in many cases and a better approach is to incorporate tolerance to

noise and distortion in the later classification stages.

- 283 -

Line-width normalization. and slant and slope correction by shearing can deform the original

characters and adversely effect recognition. Slant correction is still useful as an aid to verti-

cal line segmentation but it can over-correct characters which are naturally slanted. e.g.• '/'

or '7'. It is most effective when applied to whole words rather than individual characters as

this usually preserves natural slant. Slant and slope correction by rotation. and size and posi-

tion normalization are non-deforming provided they do not transform to discrete coordi-

nates. These techniques are beneficial to recognition but their effects can often be achieved

more efficiently by later processing stages such as feature extraction. For example, it is pos-

sible to extract features which are invariant to size and position; separate stages for size and

position normalization are therefore unnecessary.

A minimal preprocessing approach has been proposed which uses statistical or neural,

feature-based classification in preference to structural classifiers and intends to find features

which achieve the effects of the useful normalization operations. All stages should be

tolerant to noise and distortion, and large training sets should be used to represent the variety

of character styles.

9.2.3. The Radial Distance/Sector Area Feature

In the area of feature-based classification. the new Radial Distance/Sector Area feature has

been presented for the representation of outlines to the classifier. This is invariant to size

and position, approximately invariant to rotation, is fast to extract and is significantly more

tolerant to noise than other outline-based features. Its most important quality is its robust-

ness. It can operate on multi-part and broken character images which other outline-based

features cannot. Excellent recognition rates have been achieved on isolated characters of the

NIST and CEDAR databases.

The nature of the feature makes it possible to partially reconstruct the original shape from

the feature values. This property can be used to correct the initial segmentation based on

expected values of the features. The difference in values between the actual and expected

features of a character can be related to differences in the actual and expected shape of the

image representation. The segmentation of a character can therefore be adjusted to fit the

expected shape. This adaptive segmentation has great potential for use in future develop-

ment of the proposed hierarchical classification network. where expected feature values are

- 284-

determined according to contextual sensibility.

9.2.4. Integrated Contextual Segmentation

An approach to the integration of segmentation with contextual processing has been

explored. A simple vertical over-segmentation system for non-merged handprinted charac-

ters has been developed and an algorithm for constructing legal sequences of possible char-

acter candidates has been presented. Techniques for approximately matching these

sequencesagainst dictionaries have been tested. A simple but effective matching and scor-

ing system has been developed which achieves good handprinted word recognition rates on a

lOO-word test set.

The scoring system, based on character candidate certainties, is highly effective at selecting

the correct word from large candidate sets. It is believed that by using an adaptive segmen-

tation approach the search space can be considerably reduced without losing the correct

word. thus accuracy can be preserved at greater speed. A method has been developed for

finding a good initial segmentation from which to start an adaptive segmentation process.

Although the method achieves high accuracy results on small dictionaries, it is inevitable

that as the size of dictionary increases, incorrect words will be matched which score higher

than the correct word. The correct word will still rank in the top few word candidates but

further contextual processing is required to select it from the candidate set. Generally, this

additional context should come from consideration of the syntax and semantics of the sur-

rounding text.

9.2.5. Hierarchical Adaptive Contextual Classification

A powerful new approach has been proposed for solving general contextual classification

problems. Its implementation is beyond the time constraints of this research; however, the

groundwork has been laid for building and developing the system and testing it on the char-

acter recognition problem. It is believed that hierarchical adaptive contextual classifiers will

produce high accuracy classifications on a range of contextual problems, such as speech,

map and engineering drawing recognition. and in particular off-line handwritten character

recognition.

- 285 -

The most powerful innovation in the hierarchical network is the use of intelligent feedback

to direct the search to the correct classification. A directed search is advantageous in practi-

cal applications where a blind, exhaustive search is usually too time consuming. The feed-

back also allows verification of contextual hypotheses and correction of the lower

classification levels, including the lowest level sampling of the input (adaptive segmenta-

tion). This overcomes the limitation on almost all character recognition methods that they

are restricted by the initial division of the input data. It also retains lower level information

throughout the classification. This information is usually overwritten in other contextual

approaches so that the final classification is based on only a portion of the data. Preservation

of this information should allow greater accuracy and confidence of correctness in the

hierarchical network's classifications.

The intelligent feedback requires each classifier to be able to reverse its classification and

produce representative input vectors for hypothesized classes. It has been shown that many

types of classifier can be relatively easily modified to extract these representatives from their

internal parameters, provided the classes form clusters in the input space. It is believed that

this is the case for most real world problems.

Further advantages of the proposed system are its modularity and flexibility. Classifiers are

treated as black boxes and so a mixture of classifier types may be combined easily in the net-

work. Classifier modules can be developed independently so alterations, extensions and

retraining can be easily achieved without affecting the rest of the hierarchy. Non-modular

systems would probably require complete retraining of the whole system.

Modularity requires standardization and there is currently very little standardization in the

field. This means that existing classifiers require alterations to their input and output for-

mats, and sometimes their operation, in order to fit the standard model. It is hoped that

future research into general contextual processing systems will encourage the development

of standards in character recognition and other domains.

9.3. Suggestions for Future Work
The handwritten character recognition problem is a long way from an effective solution and

there is a great deal of scope for further developing the ideas presented here. This section

- 286-

discusses possible directions for improvement and extension of the methods and approaches

presented in this thesis.

9.3.1. Outline-Based Vectorization

'The outline-based vectorization method still suffers from the usual problem of thinning and

vectorization algorithms. It is extremely difficult to accurately determine the paths of pen

strokes where they overlap. 'The methods developed so far are effective for crossings of

strokes (junctions) and short stubs where strokes double back on themselves. For long sec-

tions where strokes double back there is still much room for improvement. Currently the

overlapped area is only likely to be crossed once by the vector representation. The width of

the area may make it seemingly indistinguishable from that produced by a single, non-

overlapping stroke. One approach to identifying and correcting these misrepresentations

might arise through tackling another potential development.

Useful Information might be obtained if the correct ordering and direction of the strokes can

be determined. This is a particularly difficult task but if successful it could allow the more

accurate on-line recognition techniques to be applied to off-line images. 'The aim is to

recreate the sequence of pen movements and pen-up, pen-down actions used in drawing the

characters, such as would be obtained by an on-line handwriting input device.

Few clues are available in an off-line image but certain heuristics can be applied which can

help the detennination of stroke direction. There is a general left -to-rlght trend in English

cursive script. If only one stroke crosses a vertical pixel column it can be assumed that it

crosses from left to right. Occasionally this assumption is false, for example, when the des-

cender of a 'g' or 'y' extends out to the left. The method must be able to correct these

choices later if they are wrong. Let us call these points on the vectorizations direction mark-
ers.

Since the outline-based vectorization method produces complete vector chains of strokes, it

should now be possible to determine the direction of most strokes by following the chains

and choosing the direction which is consistent with the direction markers. There will inevit-

ably be some chains left over which are inconsistent. There are two possible reasons for

this. One is that an incorrect assumption has been made about the direction of the stroke at

- 287-

the markers. This will usually occur when an ascender or descender is protruding out from

the edge of an outline in a leftwards direction. Such cases should be relatively simple to

identify and correct by reversing the direction of the marker. TIle other reasons is that the

path of the pen in the original vectorization has been incorrectly determined. In most cases,

this will be a result of the misrepresentation of overlapping strokes. This could therefore

provide a means of identifying these regions, which could then be re-vectorized with the

assumption that a stroke overlap has occurred.

These developments will not be easy to accomplish. It seems likely that both problems must

be tackled in order to solve either one. There are still many remaining difficulties in recov-

ering the on-line information. The time ordering of strokes can only be guessed at and there

will probably be strokes which do not join onto any markers and so their directions must be

guessed too. However, if these problems could be solved with high accuracy it would be a

very significant step forward for character recognition.

9.3.2. Minimal Preprocessing

The minimal preprocessing approach requires little development. The main form of prepro-

cessing which is beneficial and cannot be achieved in other ways is slant correction. It is

advantageous to perform correction on whole words because it then aids their segmentation

(assuming a vertical line segmentation). Correction based on the average slant of a word

rather than the slant of a single character is also less prone to error. Development of a

character-based feature which is invariant to slant is therefore not advisable. There is. how-

ever, room for improvement in word slant correction methods, particularly in accurately

determining the angle of slant. Bozinovic and Srihari's method [BS89} looks to be the most

promising approach (see section 2.3.5).

9.3.3. The Radial Distance/Sector Area Feature

The Radial Distance/Sector Area (RD/SA) feature loses information inside the outer boun-

dary of characters. Often there are lines in the middle of characters which could provide

useful discriminatory information which is currently lost by the Radial Distances. The Sec-

tor Area attempts to recover some of the information about the interior of the shape by look-

ing at the distribution of its area. but if more detail is required then a second set of Radial

Distance features could be taken.

- 288 -

TIle first possibility for these extra features is that they would measure the second furthest

distance from the reference centre to a point on the outline, along each of the radials.

Further feature sets could measure the third furthest distance and so on. The second furthest

distarices are probably very similar to the first furthest distances since they are usually meas-

ured from the near side of the outermost strokes. The third furthest distance would be the far

side of the first interior stroke and so is probably more useful as a feature. TIle addition of

these measurements should improve the recognition rate.

Another possible development of this feature approach is to make it faster to compute in an

adaptive segmentation system. This would mean making it possible to rapidly compute the

feature from its previous value, based on the change in segmentation. It is unlikely that this

can be achieved for the complex segmentations described in section 5.7, but for simpler,

vertical line segmentations it might be possible. The changes in segmentation would be

small shifts in position of the vertical lines so changes in a segment's features might best be

determined by looking at the pixels in the added and deleted vertical columns. This

development would be limited to applications where vertical line segmentation is sufficient

for correct segmentation of characters.

A variant of the feature which measures horizontally from a vertical reference line, rather

than radially from a point, might allow fast recalculation based on the addition or removal of

vertical pixel columns. The changes from the standard RD/SA feature would be that the

reference centre is replaced by a vertical line through the centre of the character, the radial

lines become equally spaced horizontal pixel rows, the radial distance becomes the distance

to the furthest black pixel on the measurement row (two measurements: one to the left and

one to the right) and the sector area becomes the number of hlack pixels between the meas-

urement rows. It is likely that recognition accuracy using this variant would be close to the

standard RD/SA feature. The difficulty in computing it from its previous value is in allow-

ing for normalization of the values and movement of the central reference line when the seg-

mentation changes.

9.3.4. Integrated Contextual Segmentation

TIle integrated contextual segmentation approach can be developed in two main ways. One

way is to develop it for use with adaptive segmentation in the hierarchical network. TIle

- 289-

other is to develop it on its own as a feedforward-only system.

In either case, the next step in the development of the approach should be to devise an over-

segmentation technique which handles both merged and non-merged characters. This tech-

nique should ideally divide characters into not more than three segments. TIle legal charac-

ter segmentation construction method must then be extended to allow three-segment charac-

ters.

Developing the method for adaptive segmentation will probably require the approximate

dictionary matching method to allow insertions and deletions of characters. The agrep

method would be suitable for this purpose. The word scoring system would then need to be

extended to take insertions and deletions into account.

If the method is to be used without adaptive segmentation then an important aim is to reduce

the number of legal character segmentations which have to be matched against the diction-

ary. This reduction can be based on the widths, and possibly heights, of segment groups in

relation to the average segment group width of the character segmentation. Character seg-

mentations containing segment groups whose measurements deviate too greatly from the

average should be eliminated. Hopefully the number of character segmentations can be con-

siderably reduced without eliminating the correct one.

9.3.5. Hierarchical Adaptive Contextual Classification

The hierarchical adaptive contextual classification network is clearly a very important area

for future research. Accurate contextual processing is essential if handwritten character

recognition is to progress to practical levels of accuracy. The hierarchical network incor-

porates several sensible ideas for achieving this aim and has great potential as an approach to

the problem. Suggestions for general development of the approach have already been dis-

cussed in chapter 8. This section discusses further the testing of the network and its

development for a character recognition application.

Initial testing and development would benefit from some simplification of the approaches

described in earlier chapters. The complex segmentation of cursive words, detailed in sec-

tion 5.7, could be replaced with a vertical segmentation to simplify the adaptive

- 290-

segmentation layer. Vertical segmentation would benefit from slant correction, as men-

tioned in section 9.3.2. The Radial Distance/Sector Area feature should be modified as

described in section 9.3.3 to facilitate the rapid recalculation of feature values during vertical

adaptive segmentation. The isolated character classification module would be a radial basis

function classifier using these features, as described in section 7.4. An initial segmentation

of words can be determined from a set of over-segmented sections using the strategy

presented in section 7.7. 1be word recognition module would use the approximate diction-

ary matching system of section 7.5. This arrangement would provide a good starting point

for testing the feedforward and feedback mechanisms of the network.

There are initially three key areas in developing the hierarchical network. Firstly, the stra-

tegies for ordering the feedforward and feedback processes must be further investigated.

Several possibilities have been suggested and one has been proposed as the most effective

strategy, but alternatives should also be considered. Secondly, the assignment of accep-

tance, rejection and feedback thresholds for classifier modules must be explored Tests must

be conducted to find optimal values for each module. Thirdly, the alteration of modules'

output confidences as a result of contextual verification or correction must be investigated.

1be application of probability theory, certainty theory, possibility theory or other techniques

to this alteration should be explored.

A final consideration is that the modularity of the approach is an important aid to develop-

ment. The contextual mechanisms need not be concerned with the specifics of the applica-

tion and modularization provides a way of hiding these application specific details from the

network. Future research in contextual processing can then concentrate on the arrangement

of modules and the communication between them. Modularization also allows the contin-

ued development of individual classifiers for specific stages of recognition to be conducted

independently. As noted in section 9.2, modularity requires much greater standardization

than currently exists. The field of character recognition in general, and in particular the con-

textual processing area, would be greatly aided by a standardization of data formats for

image representation, segmented image representation, features, classifier inputs and out-

puts, and further formats for higher levels of contextual abstraction (e.g., word output, sen-

tence output). This should be given serious consideration in the near future.

- 291 -

References

[AAH91] Abe. K.• Arcelli, C. and Held. A. (1991). "Split and Merge for a Hierarchical
Contour Sketch via Dominant Point Detection." Proceedings of the 1st Interna-
tional Conference on Document Analysis and Recognition, pp. 392-400, Saint-
Malo, France.

[Abe68] Abend, K. (1968), "Compound Decision Procedures for Unknown Distributions
and for Dependent States of Nature," in Pattern Recognition, ed. L. Kanal, pp.
207-249, Thompson, Washington, D.C., U.S.A.

[Agm54] Agmon, S. (1954), "The Relaxation Method for Linear Inequalities," Canadian
Journal of Mathematics, vol. 6, pp. 382-392.

[AHF88] Assal, M.H.A., Home, E. and Fairhurst, M.e. (1988), "An Enhanced Linear
Model Edge Detector," in Lecture Notes in Computer Science, vol. 301,
Proceedings of the British Pattern Recognition Association 4th International
Conference on Pattern Recognition, ed. 1. Kittler, pp. 68-79, Springer-Verlag.

[AHS85] Ackley, D.H., Hinton, a.E. and Sejnowski, T.J. (1985), "A Learning Algorithm
for Boltzmann Machines," Cognitive Science, vol. 9. pp. 147-169.

[AKC90] Ahalt, S.C .• Krishnamurthy. A.K .• Chen. P. and Melton, D.E. (1990). "Competi-
tive Learning Algorithms for Vector Quantization," Neural Networks, vol. 3. no.
3. pp. 27-290.

[Alb75a] Albus. lS. (1975), "A New Approach to Manipulator Control: The Cerebellar
Model Articulation Controller (CMAC)," Transactions of the ASME, Series G,
Journal of Dynamic Systems, Measurement, and Control, vol. 97, pp. 220-227.

[Alb75b] Albus. lS. (1975). "Data Storage in the Cerebellar Model Articulation Con-
troller (CMAC)," Transactions of the ASME, Series G, Joumal of Dynamic Sys-
tems, Measurement, and Control, vol. 97. pp. 228-233.

[Als88] Alstyne. M. v. (1988). "Remaking the Neural Net: A Perceptron Logic Unit,"
Neural Networks Supplement: INNS Abstracts, vol. 1, p. 143.

[AM88] Amari, S.-1. and Maginu, K. (1988), "Statistical Neurodynamics of Associative
Memory," Neural Networks, vol. I, no. 1, pp. 63-73.

[Ama67] Amari, S.-I. (1967), "A Theory of Adaptive Pattern Classifiers," IRE Transac-
tions on Electronic Computers, vol. 16, pp. 299-307.

[Ama83] Amari, S.-1. (1983). "Field Theory of Self-Organizing Neural Nets," IEEE Tran-
sactions on Systems, Man and Cybernetics, vol. 13, pp. 741-748.

[Ams82] Amsler, R.A. (1982), "Computational Lexlcology: A Research Program,"
National Computer Conference, AFlPS Conference Proceedings, pp. 657-663.

[And68] Anderson, J. (1968), "A Memory Storage Model Utilizing Spatial Correlation
Functions," Kybernetik, vol. 5, pp. 113-119.

- 292-

[AP77] Ali, F. and Pavlidis, T. (1977), "Syntactic Recognition of Handwritten
Numerals," IEEE Transactions on Systems. Man and Cybernetics, vol. 7, no. 7,
pp.537-541.

[Arc81] Arcelli, C. (1981), "Pattern Thinning by Contour Tracing," Computer Graphics
and Image Processing, vol. 17, pp. 130-144.

[AS78] Arcelli, C. and Sanniti di Baja, G. (1978), "On the Sequential Approach to
Medial Line Transformation," IEEE Transactions on Systems, Man and Cyber-
netics, vol. 8, no. 2, pp. 139-144.

[AS80] Arcelli, C. and Sanniti di Baja, G. (1980), "Medial Lines and Figure Analysis,"
Proceedings of the 5th International Conference on Pattern Recognition, pp.
1016-1018, IEEE.

[AS81] Arcelli, C. and Sanniti di Baja, G. (1981), "A Thinning Algorithm Based on
Prominence Detection," Pattern Recognition, vol. 13, no. 3, pp. 225-235.

[AS85] Arcelli, C. and Sanniti di Baja, G. (1985), "A Width-Independent Fast Thinning
Algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 7, pp. 463-474.

[ASS9] Arcelli, C. and Sanniti di Baja, G. (1989), "A One-Pass Two-Operations Process
to Detect the Skeletal Pixels on the 4-Distance Transform," IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 11, pp. 411-414.

[AUn] Aho, A.V. and Ullman, J.D. (19n), The Theory of Parsing, Translation and
Compiling, Vol. 1: Parsing, Prentice-Hall, Englewood Cliffs, New Jersey,
U.S.A.

[Aus8S] Austin, 1. (198S), "Grey Scale N Tuple Processing," in Lecture Notes in Com-
puter Science, vol. 301, Proceedings of the British Pattern Recognition Associa-
tion 4th International Conference on Pattern Recognition, ed. 1. Kittler, pp.
110-119, Springer-Verlag.

[BaiSS] Baird, H.S. (1988), "Feature Identification for Hybrid Structural/Statistical Pat-
tern Classification," Computer Vision, Graphics and Image Processing, vol. 42,
pp.31S-333.

[Bal81] Ballard, D.H. (1981), "Generalizing the Hough Transform to Detect Arbitrary
Shapes," Pattern Recognition, vol. 13, no. 2, pp. 111-122.

[Ban91] Banks, R.N. (1991), Neural Networks for Handprinted Character Recognition,
Ph.D. thesis, University of Nottingham, Nottingham, England.

[BarS8] Baruch, O. (1988), "Line Thinning by Line Following," Pattern Recognition
utters, vol. 8, no. 4, pp. 271-276.

[BB59] Bledsoe, W.W. and Browning, I. (1959), "Pattern Recognition and Reading by
Machine," Proceedings of the Eastern Joint Computer Conference, pp. 225-232.

[BBM64] Bashkirov, O.A., Braverman, E.M. and Muchnik, LB. (1964), "Potential Func-
tion Algorithms for Pattern Recognition Learning Machines," Automation and
Remote Control, vol. 25, pp. 629-631.

[BBS931 Bronkhurst, A.W., Bosman, A.J. and Smoorenburg, G.F. (1993), "A Model for
Context Effects in Speech Recognition," Journal of the Acoustical Society of
America, vol. 93, no. 1, pp. 499-509.

J 293-

[BC90] Barnard, E. and Casasent, D. (1990), "Shift Invariance and the Neocognitron,"
Neural Networks. vol. 3. no. 4. pp. 403-410.

[BCG81] Bezdek. J.C., Coray, C., Gunderson. R. and Watson, J. (1981), "Detection and
Characterization of Cluster Substructure," SIAM Journal of Applied Mathemat-
ics, vol. 40. pp. 339-372.

[BD88] Broomhead, D.S. and Lowe. D. (1988), "Multi variable Functional Interpolation
and Adaptive Networks," Complex Systems, vol. 2. pp. 321-355.

[BeaSO] Beaumont, G.P. (1980), Intermediate Mathematical Statistics, Chapman and
Hall.

[Beu73] Beun, M. (1973), "A Flexible Method for Automatic Reading of Handwritten
Numerals," Philips Technical Review, vol. 33,00.4, pp. 89-101, 130-137.

[Bez8t] Bezdek, lC. (1981), Pattern Recognition with Fuzzy Objective Function Algo-
rithms, Plenum. New York, U.S.A.

[BF77] Brayer. 1M. and Fu, K.-S. (1977), "A Note on the k-taH Method of Tree Gram-
mar Inference," IEEE Transactions on Systems. Man and Cybernetics, vol. 7,
pp.293-300.

[BF79] Bentley, lL. and Friedman, lE. (1979), "Data Structures for Range Searching,"
Computing Surveys, vol. 11. no. 4.

[BG89] Baeza-Yates, R.A. and Gonnet, G.H. (1989), "A New Approach to Text Search-
ing," Proceedings of the J 2th Annual ACM-SIGIR Conference on Information
Retrieval, pp. 168-175, Cambridge. Mass., U.S.A.

[BH67] Ball, G.H. and Hall, DJ. (1967), "A Clustering Technique for Summarizing
Multivariate Data," Behavioural Science, vol. 12, pp. 153-155.

[Bha43] Bhattacharyya, A. (1943), "On a Measure of Divergence Between Two Statisti-
cal Populations Defined by Their Probability Distributions," Bulletin of the Cal-
cutta Mathematical Society, vol. 35, pp. 99-109.

[BHN68] Balds, R., Herbst, N.M. and Nagy, G. (1968), "An Experimental Study of
Machine Recognition of Hand-Printed Numerals." IEEE Transactions on Sys-
tems, Science and Cybernetics, vol. 4, 00. 2, pp. 119-132.

[BK88] Baptista, G. and Kulkarni, K. (1988), "A High Accuracy Algorithm for Recog-
nition of Handprinted Numerals," Pattern Recognition, vol. 21, pp. 287-291.

[BK94] Bose. C.B. and Kuo, S.-S. (1994), "Connected and Degraded Text Recognition
Using Hidden Markov Model," Pattern Recognition, vol. 27, no. 10, pp. 1345-
1363.

[BKP86] Baird, H.S., Kahan, S. and Pavlidis, T. (1986). "Components of an Omnifont
Page reader." Proceedings of the 8th International Conference on Pattern
Recognition. pp. 344-348. IEEE. Paris. France.

[BL70] Block, H.D. and Levin. S.A. (1970). "On the Boundedness of an Iterative Pro-
cedure for Solving a System of Linear Inequalities." Proceedings of the Ameri-
can Mathematical Society. vol. 26. pp. 229-235.

[Blu67] Blum. H. (1967). "A Transformation for Extracting New Descriptors of Shape."
in Models for the Perception of Speech and Visual Form. ed. W. Wathen-Dunn,
pp. 362-380. MIT Press, Cambridge. Mass .• U.S.A.

[Bor84]

[Bow84]

[Boy92]

[Bre65]

[BS82]

[BS88]

[BS89]

[BSA91]

[BT73]

[Bur86]

[Bur87]

[But93]

[BV75]

[BW88]

[Cal70]

[Car66)

[Car89]

- 294-

Borgefors, G. (1984), "Distance Transformations in Arbitrary Dimensions,"
Computer Vision. Graphics and Image Processing. vol. 27, pp. 321-345.

Bow, S.-T. (1984), Pattern Recognition, Marcel Dekker, New York, U.S.A.

Boyan, J.A. (1992), Modular Neural Networks for Learning Context-Dependent
Game Strategies, M.Phil. thesis, University of Cambridge, Cambridge, England.

Bresenham, J.E. (1965), "Algorithm for Computer Control of Digital Plotter,"
IBM Systems Journal, vol. 4, no. 1, pp. 25-30.

Bozinovic, R.M. and Srihari, S.N. (1982), "A String Correction Algorithm for
Cursive Script Recognition," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 4, no. 6, pp. 655-663.

Borgefors, G. and Sanniti di Baja, G. (1988), "Skeletonizing the Distance
Transform on the Hexagonal Grid," Proceedings of the 9th International
Conference on Pattern Recognition, vol. 1, pp. 504-507, IEEE, Rome, Italy.

Bozinovic, R.M. and Srihari, S.N. (1989), "Off-Line Cursive Script Word
Recognition," IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. II, no. I,pp. 68-83.

Belkasim, S.D., Shridhar, M. and Ahmadi, M. (1991), "Pattern Recognition
with Moment Invariants: A Comparative Study and New Results," Pattern
Recognition, vol. 24, no. 12, pp. 1117-1138.

Booth, T.L. and Thompson, R.A. (1973), "Applying Probability Measures to
Abstract Languages," IEEE Transactions on Computers, vol. 22, no. 5, pp.
442-450.

Burr, D. (1986), "A Neural Network Digit Recognizer," Proceedings of the
International Conference on Systems. Man and Cybernetics, pp. 1621-1625,
IEEE, Atlanta, U.S.A.

Burr, DJ. (1987), "Experiments with a Connectionist Text Reader," Proceed-
ings of the 1st IEEE International Conference on Neural Networks, vol. IV, pp.
717-724, IEEE, San Diego, U.S.A.

Buturovic, LJ. (1993), "Improving k-Nearest-Neighbour Density and Error
Estimates," Pattern Recognition, vol. 26, no. 4, pp. 611-616.

Breuer, P. and Vajta, Jr, M. (1975), "Structural Character Recognition by Form-
ing Projections," Prob. Control Information Theory, vol. 4, pp. 339-352.

Baum, E. and Wilczek, F. (1988), "Supervised Learning of Probability Distribu-
tions by Neural Networks," in AlP Conference Proceedings 151: Neural Net-
works for Computing, ed. 1. Denker, pp. 53-58, American Institute of Physics,
New York, U.S.A.
Calvert, T.W. (1970), "Nonorthogonal Projections for Feature Extraction in Pat-
tern Recognition," IEEE Transactions on Computers, vol. 19, pp. 447-452.

Carlson, G. (1966), "Techniques for Replacing Characters that are Garbled on
Input," 1966 Spring Joint Computer Conference. AFIPS Conference Proceed-
ings, vol. 28, pp. 189-192, Spartan, Washington, D.C., U.S.A.

Carpenter, G.A. (1989), "Neural Network Models for Pattern Recognition and
Associative Memory," Neural Networks, vol. 2, no. 4, pp. 243-257.

[Cas70]

[CC73]

[CCI84]

[Ced79]

[CG87a]

[CG87b]

[CG88]

[CH67]

[CH89]

[Che52]

[Chc65]

[Ch057]

[CKZ94]

[CL85]

[CL88]

[CN82]

- 295-

Casey, R.G. (1970), "Moment Nonnalization of Handprinted Characters," IBM
Journal of Research Developments, vol. 14,pp. 548-557.
Caskey, D.L. and Coates, Jr, C.L. (1973), "Machine Recognition of Handprinted
Characters," Proceedings of the 1st International Joint Conference on Pattern
Recognition, pp. 41-49.
CCITI (1984), "Facsimile Coding Schemes and Coding Control Functions for
Group 4 Facsimile Apparatus," Fascicle VII.3 - Rec. T.6.
Cederberg, R.L.T. (1979), "Chain-Link Coding and Segmentation for Raster
Scan Devices," Computer Graphics and Image Processing, vol. 10, pp. 224-
234.
Carpenter, G.A. and Grossberg, S. (1987), "A Massively Parallel Architecture
for a Self-Organizing Neural Pattern Recognition Machine," Computer Vision,
Graphics and Image Processing, vol. 37, pp. 54-115.
Carpenter, G.A. and Grossberg, S. (1987), "ART2: Self-Organization of Stable
Category Recognition Codes for Analog Input Patterns," Applied Optics, vol.
26, pp. 4919-4930.
Chieuh, T.-D. and Goodman, R. (1988), "A Neural Network Classifier Based on
Coding Theory," Proceedings of the 1987 IEEE Conference on Neural Informa-
lion Processing Systems - Natural and Synthetic, pp. 174-183, American Insti-
tute of Physics, New York, U.S.A.
Cover, T.M. and Hart, P.E. (1967), "Nearest Neighbour Pattern Classlficatton,"
IEEE Transactions on Information Theory, vol. 13,pp. 21-27.
Chen, Y.-S. and Hsu, W.-H. (1989), "A Systematic Approach for Designing 2-
Subcycle and Pseudo I-Subcycle Parallel Thinning Algorithms," Pattern
Recognition, vol. 22, no. 3, pp. 267-282.
Chernoff, H. (1952), "A Measure of Asymptotic Efficiency for Tests of a
Hypothesis Based on a Sum of Observations," Annals of Mathematical Statis-
tics, vol. 23, pp. 493-507.

Chen, C.-H. (1965), "A Computer Searching Criterion for Best Feature Set in
Character Recognition," Proceedings of the IEEE, vol. 53, pp. 2128-2129.
Chomsky, N. (1957), Syntactic Structures, Mouton, The Hague, Netherlands.

Chen, M.-Y., Kundu, A. and Zhou, 1. (1994), "Off-Line Handwritten Word
Recognition Using a Hidden Markov Model Type Stochastic Network," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 5, pp.
481-496.
Cheng, Y.S. and Leung, C.H. (1985), "Chain-Code Transfonn for Chinese
Character Recognition," Proceedings of the International Conference on Cyber-
netics and Society, pp. 42-45, IEEE, Tucson, Arizona, U.S.A.
Caelli, T.M. and Liu, Z.Q. (1988), "On the Minimum Number of Templates
Required for Shift, Rotation and Size Invariant Pattern Recognition," Pattern
Recognition, vol. 21, no. 3, pp. 205-216.
Casey, R.G. and Nagy, G. (1982), "Recursive Segmentation and Classification
of Composite Character Patterns," Proceedings of the 6th International Confer-
ence on Pattern Recognition, pp. 1023-1026, IEEE, Munich, Germany.

- 296-

[Con89] Connor, P.J. (1989), "Outlines of Binary Images," Proceedings of the 5th Inter-
national Conference on Computer Aided Production Engineering, Edinburgh.

[Cor93] Cornforth, D.J. (1993), Classifiers for Machine Intelligence, Ph.D. thesis,
University of Nottingham, Nottingham, England.

[Cos60] Cosgriff, R.L. (1960), "Identification of Shape," Report 820-11, ASTIA AS 254
792, Ohio State University Research Foundation, Columbus, U.S.A.

[CP76] Casasent, D. and Psaltis, D. (1976), "Position, Rotation and Scale Invariant Opt-
ical Correlation," Appl. Optics, vol. 15, pp. 1795-1799.

[CP79] Chen, P. and Pavlidis, T. (1979), "Segmentation by Texture Using a Co-
Occurrence Matrix and a Split-and-Merge Algorithm," Computer Graphics and
Image Processing, vol. 10, pp. 172-182.

[Cri94] Cripps, M. (1994), "Prototyping Report for Match Quality," PAFEC Ltd Inter-
nal Report DTHC20_prot.

[CS83] Cottrell, G. and Small, S. (1983), "A Connectionist Scheme for Modeling Word
Sense Disambiguation," Cognition and Brain Theory, vol. 1, pp. 89-120.

[CS84] Cottrell, G. and Small, S. (1984), "Viewing Parsing as Word Sense Discrimina-
tion: A Connectionist Approach," in Computational Models of Natural
Language Processing, ed. B. Bara and G. Guida, pp. 91-119, Elsevier Science
Publishers, New York, U.S.A.

[CS86] Chu, Y.K. and Suen. C.Y. (1986), "An Alternative Smoothing and Stripping
Algorithm for Thinning Digital Binary Patterns," Signal Processing, vol. 11, no.
3, pp. 207-222.

[CT65] Cooley, J.W. and Tukey, J.W. (1965), "An Algorithm for Machine Calculation
of Complex Fourier Series," Mathematics of Computation, vol. 19, pp. 297-301.

[CT94] Cheng, B. and Titterington, D.M. (1984), "Neural Networks: A Review from a
Statistical Perspective," Statistical Science, vol. 9, pp. 2-54.

[CWS87] Chin, R.T., Wan, H.-K., Stover, D.L. and Iverson, R.D. (1987), "A One-Pass
Thinning Algorithm and Its Parallel Implementation," Computer Vision, Graph-
ics and Image Processing, vol. 40, pp. 30-40.

[Dan80] Danielsson, P.E. (1980), "Euclidean Distance Mapping," Computer Graphics
and Image Processing, vol. 14, pp. 227-248.

[Dan82] Danielsson, P.E. (1982), "Encoding of Binary Images by Raster-ChainCoding
of Cracks," Proceedings of the 6th International Conference on Pattern Recog-
nition, pp. 335-338, IEEE, Munich, Germany.

[Dav75] Davis, L.S. (1975), "A Survey of Edge Detection Techniques," Computer
Graphics and Image Processing, vol. 4, pp. 248-270.

[Dav82] Davis, L.S. (1982), "Hierarchical Generalized Hough Transforms and Line-
Segment Based Generalized Hough Transforms," Pattern Recognition, vol. 15,
no. 4, pp. 277-285.

[Dav90] Davies, E.R. (1990), "Chapter 15 - Abstract Pattern Matching Techniques," in
Machine Vision: Theory, Algorithms, Practicalities, pp. 345-368, Academic
Press.

[Dea81] Deans, S.R. (1981), "Hough Transform from the Radon Transform," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol, 3, 00. 2, pp.

- 297-

185-188.

[Dea83] Deans, S.R. (1983), Applications of the Radon Transform, John Wiley and Sons,
New York, U.S.A.

[Den86] Denker, J.S. (1986), "Neural Network Models of Learning and Adaptation,"
Physica, vol. 220, pp. 216-232.

[Des80] Dessimoz, 1.-0. (1980), "Specialized Edge-Trackers for Contour Extraction and
Line-Thinning," Signal Processing, vol. 2, no. 1, pp. 71-73.

[Deu69] Deutsch, E.S. (1969), "Comments on a Line Thinning Scheme," Computer
Journal, vol. 12, p. 412.

[Deu72] Deutsch, E.S. (1972), "Thinning Algorithms on Rectangular, Hexagonal and
Triangular Arrays," Communications of the ACM, vol. 15, no. 9, pp. 827-837.

[OH68] Ouda, R.O. and Hart, P.E. (1968), "Experiments in the Recognition of Hand-
Printed Text: Part II - Context Analysis," 1968 Fall Joint Computer Confer-
ence, AFIPS Conference Proceedings, vol. 33, pp. 1139-1149, Thompson,
Washington, o.c., U.S.A

[OH72] Duda, R.O. and Hart. P.E. (1972), "Use of the Hough Transform to Detect Lines
and Curves in Pictures," Communications of the ACM, vol. 15, pp. 11-15.

[OH73] Duda, R.O. and Hart, P.E. (1973), Pattern Classification and Scene Analysis,
John Wiley and Sons, New York. U.S.A

[Oin55] Dinneen, G.P. (1955), "Programming Pattern Recognition," Proceedings of the
Western Joint Computer Conference, pp. 94-100, New York, U.S.A

[OK82] Devijver, P.R. and Kittler, 1. (1982), Pattern Recognition: A Statistical
Approach, Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A

[OL90a] Oinstein, I. and Landau, G.M. (1990), "Parallel Computable Contour Feature
Strings for 20 Shape Recognition," SPIE Technical Symposium Opt. Engineer-
ing Photonics Aerospace Sensing (Real-Time Image Processing II), Orlando,
Florida.

[DL90b] Downton, AC. and Leedham, C.G. (1990), "Preprocessing and Presorting of
Envelope Images for Automatic Sorting Using OCR," Pattern Recognition, vol.
23, no. 3/4, pp. 347-362.

[DLG9I] Dinstein, I., Landau, G.M. and Guy, G. (1991), "Parallel (PRAM EREW) Algo-
rithms for Contour-Based 2D Shape Recognition," Pattern Recognition, vol. 24,
no.l09,pp.929-942.

[Oor86] Dorst, L. (1986), "Pseudo-Euclidean Skeletons," Proceedings of the 8th Inter-
national Conference on Pattern Recognition, pp. 286-288, IEEE. Paris, France.

[Oos77] Doster, W. (1977). "Contextual Postprocessing System for Cooperation with a
Multiple Choice Character Recognition System," IEEE Transactions on Com-
puters, vol. 26, pp. 1090-1101.

[Doy60] Doyle, W. (1960), "Recognition of Sloppy, Handprinted Characters," Proceed-
ings of the Western Joint Computer Conference, vol. 17, pp. 133-142.

[OP81] Davis, E.R. and Plummer, AP.N. (1981), "Thinning Algorithms: A Critique
and a New Methodology," Pattern Recognition. vol. 14. no. 1. pp. 53-63.

[OTIO] Donaldson. R.W. and Toussaint. G.T. (1970). "Use of Contextual Constraints in
Recognition of Contour- Traced Handprinted Characters." IEEE Transactions on

- 298-

Computers, vol. 19, pp. 1096-1099.

[DT91] Downton, A.C. and Tregidgo, R.W.S. (1991), "The Use of a Trie Structured
Dictionary as a Contextual Aid to Recognition of Handwritten British Postal
Addresses," Proceedings of the Jst International Conference on Document
Analysis and Recognition, pp. 594-602, Saint-Malo, France.

[Dud70] Duda, R.O. (1970), "Elements of Pattern Recognition," in Adaptive, Learning
and Pattern Recognition Systems, ed. 1.M. Mendal and K.-S. Fu, Academic
Press.

[Dut74] Dutta, A.K. (1974), "An Experimental Procedure for Handwritten Character
Recognition," IEEE Transactions on Computers, vol. 23, pp. 536-545.

[EC90] Elliman, D.G. and Connor, P. (1990), "The Creation of Topological Outlines
from Binary Images," Proceedings of Vision Interface '90, pp. 53-60., Canadian
Image Processing and Pattern Recognition Society, Halifax, Nova Scotia,
Canada.

[EL90] Elliman, D.G. and Lancaster, I.T. (1990), "A Review of Segmentation and Con-
textual Analysis Techniques for Text Recognition," Pattern Recognition, vol,
23, pp. 337-346.

[E1193] Elliman, D.G. (1993), "Ideas for Improved Vectorization," Private communica-
tion.

[EUF90] Edelman, S., Ullman, S. and Flash, T. (1990), "Reading Cursive Script by
Alignment of Letter Prototypes," International Journal of Computer Vision, vol.
5,no. 3,pp. 303-331.

[Eve93] Evett, L. (1993), "The Use of Linguistic Information in Script Recognition,"
British Machine Vision Association and Society for Pattern Recognition Techn-
ical Meeting on Handwritten Character and Script Recognition.

[Fah88] Fahlman, S.E. (1988), "Faster-Learning Variations on Back-Propagation: An
Empirical Study," in Proceedings of the 1988 Connectionist Models Summer
School, ed. D.S. Touretzky, G.E. Hinton and TJ. Sejnowski, pp. 38-51, Morgan
Kaufmann Publishers, Los Altos, California, U.S.A.

[Fah91] Fahlman, S.E. (1991), "The Recurrent Cascade-Correlation Architecture," in
Advances in Neural Information Processing Systems 3, ed, R.P. Lippmann, lE.
Moody and D.S. Touretzky, pp. 190-196, Morgan Kaufmann Publishers, Los
Altos, California, U.S.A.

[Fan86] Fanty, M. (1986), "Context-Free Parsing with Connectionist Networks," in AlP
Conference Proceedings 151: Neural Networks for Computing, ed. 1. Denker,
pp. 140-145, American Institute of Physics, New York, U.S.A.

[Fan87] Fan, T.I. (1987), "Optimal Matching of Deformed Patterns with Positional
Influence," Information Science, vol. 41, pp. 259-280.

[FB86] Fu, K.-S. and Booth, TL (1986), "Grammatical Inference: Introduction and
Survey - Part I," IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 8,no. 3,pp. 343-375.

[FCC67] Fu, Ko-S., Chien, Y.T. and Cardillo, G.P. (1967), "A Dynamic Programming
Approach to Sequential Pattern Recognition," IEEE Transactions on Comput-
ers, vol. 16, pp. 790-803.

- 299-

[Fis36] Fisher, R.A. (1936), "The Use of Multiple Measurements in Taxonomic Prob-
lems," (reprinted in) Contributions to Mathematical Statistics, John Wiley and
Sons, New York, U.S.A., 1950.

[FK83] Favre, A. and Keller, H. (1983), "Parallel Syntactic Thinning by Recoding of
Binary Pictures," Computer Vision, Graphics and Image Processing, vol. 23,
pp.99-112.

[FK88] Fletcher, L.A. and Kasturi, R. (1988), "A Robust Algorithm for Text String
Separation from Mixed Text/Graphics Images," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 10, no. 6. pp.910-918.

[FKH76] Fujimoto, Y., Kadota, S., Hayashi, S., Yamamoto, M., Yajima. S. and Yasuda,
M. (1976), "Recognition of Handprinted Characters by Nonlinear Elastic
Matching," Proceedings of the 3rd International Joint Conference on Pattern
Recognition, pp. 113-118.

[FL90] Fahlman, S.E. and Lebiere, C. (1990), "The Cascade-Correlation Learning
Architecture," in Advances in Neural Information Processing Systems 2, ed.
D.S. Touretzky, pp. 524-532, Morgan Kaufmann Publishers, Los Altos, Califor-
nia, U.S.A.

[For71] Forney, Jr, G.D. (1973), "The Viterbi Algorithm," Proceedings of the IEEE,
vol. 61, pp. 268-278.

[For90] Forsyth, R. (1990), "Neural Learning Algorithms: Some Experimental Trials,"
Proceedings of the 3rd Conference on Neural Networks and Their Applications,
pp. 301-317, Nimes, France.

[FR88] Fromkin, V. and Rodman, R. (1988), An Introduction to Language, Holt,
Rinehart and Winston, Inc., New York, U.S.A., 4th Ed.

[Fre6O] Fredkin, E. (1960), "Trie Memory," Communications of the ACM, vol. 3, no. 9,
pp. 490-500.

[Fre61] Freeman, H. (1961), "On the Encoding of Arbitrary Geometric Configurations,"
IRE Transactions on Electronic Computers, pp. 260-268.

[Fre74] Freeman, H. (1974), "Computer Processing of Line-Drawing Images," Compu-
tational Surveys, vol. 6, pp. 57-97.

[Fu68] Fu, K.-S. (1968), Sequential Methods in Pattern Recognition and Machine
Learning, Academic Press.

[Fu80] Fu, K.-S. (1980), "Syntactic Image Modeling Using Stochastic Tree Gram-
mars," Computer Graphics and Image Processing, vol. 12, pp. 136-152.

[Fu82] Fu, K.-S. (1982), Syntactic Pattern Recognition and Applications, Prentice-Hall,
Englewood CUffs, New Jersey, U.S.A.

[Fu86] Fu, K.-S. (1986), "Chapter 4 - Syntactic Pattern Recognition," in Handbook of
Pattern Recognition and Image Processing. ed. T.Y. Young and K.-S. Fu. pp.
85-117. Academic Press.

[FU94] Ferreira, A. and Ubeda, S. (1994), "Ultra-Fast Parallel Contour Tracking with
Applications to Thinning," Pattern Recognition. vol. 27. no. 7, pp. 867-878.

[Fuk72] Fukunaga, K. (1972), Introduction to Statistical Pattern Recognition, Academic
Press.

- 300-

[Fuk75] Fukushima. K. (1975), "Cognitron: A Self-Organizing Multilayered Neural Net-
work," Biological Cybernetics, vol. 20, pp. 121-136.

[FukSO] Fukushima. K. (1980), "Neocognitron: A Self-Organizing Neural Network for a
Mechanism of Pattern Recognition Unaffected by a Shift in Position," Biologi-
cal Cybernetics, vol. 36, pp. 193-202.

[Fuk86a] Fukunaga. K. (1986), "Chapter 1 - Statistical Pattern Classification," in Hand-
book of Pattern Recognition and Image Processing, ed. T.Y. Young and K.-S.
Fu. pp. 3-32, Academic Press.

[Fuk86b] Fukushima, K. (1986), "A Neural Network Model for Selective Attention in
Visual Pattern Recognition," Biological Cybernetics, vol. 55, pp. 5-15.

[Fuk88] Fukushima. K. (1988), "Neocognitron: A Hierarchical Neural Network Capable
of Visual Pattern Recognition," Neural Networks, vol. 1, no. 2, pp. 119-130.

[Fuk89] Fukushima. K. (1989), "Analysis of the Process of Visual Pattern Recognition
by the Neocognitron," Neural Networks, vol. 2, no. 6, pp. 413-420.

[Gal88] Gallant, S.I. (1988), "Connectionist Expert Systems," Communications of the
ACM, vol. 31, no. 2, pp. 152-169.

[GE88] Goshtasby, A. and Ehrich, R.W. (1988), "Contextual Word Recognition Using
Probabilistic Relaxation Labeling," Pattern Recognition, vol. 21, no. 5, pp.
455-462.

[GG89] Gath, I. and Geva, A. (1989), "Unsupervised Optimal Fuzzy Clustering," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 773-
781.

[GL92] Gan, K.W. and Lua, K.T. (1992), "Chinese Character Classification Using an
Adaptive Resonance Network," Pattern Recognition, vol. 25, no. 8, pp. 877-
882.

[Glu71] Glucksman, H.A. (1971), "Multicategory Classification of Patterns Represented
by High-Order Vectors of Multilevel Measurements," IEEE Transactions on
Computers, vol. 20, pp. 1593-1598.

[GMW68] Genchi, H., Mori, K.I., Watanabe, S. and Katsuragi, S. (1968), "Recognition of
Handwritten Numeral Characters for Automatic Letter Sorting," Proceedings of
the IEEE, vol. 56, pp. 1292-1301.

[GN9l] Green, A.D.P. and Noakes, P.O. (1991), "Solving the Interconnection Problem
with a Linked Assembly of Neural Networks," lEE Proceedings - F Radar And
Signal Processing, vol. 138, no. 1, pp. 63-72.

[GR82] Gersho, A. and Ramamurthi, B. (1982), "Image Coding Using Vector Quantiza-
tion," Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. 1,pp. 428-431.

[Gra72] Granlund, G.H. (1972), "Fourier Preprocessing for Hand Print Character Recog-
nition," IEEE Transactions on Computers, vol. 21, pp. 195-210.

[Gra84] Gray, R.M. (1984), "Vector Quantization," IEEE Acoustics, Speech and Signal
Processing Magazine, vol. 1, pp. 4-29.

[Gre60] Greville, T.N.E. (1960), "Some Applications of the Pseudoinverse of a Matrix,"
Society for Industrial and Applied Mathematics Review, vol. 2, no. 1,pp. 15-22.

- 301 -

[Gr068] Grossberg, S. (1968), "Some Nonlinear Networks Capable of Learning a Spatial
Pattern of Arbitrary Complexity," Proceedings of the National Academy of Sci-
ences, vol. 59, pp. 368-372.

[Gro72] Grossberg, S. (1972), "Neural Expectation: Cerebellar and Retinal Analogues of
Cells Fired by Unleamable and Learnable Pattern Classes," Kybemetik, vol. 10,
pp.49-57.

[Gro73] Grossberg, S. (1973), "Contour Enhancement. Short-Term Memory, and Con-
stancies in Reverberating Networks," Studies in Applied Mathemaucs, vol. 52,
pp.217-257.

[Gro76a] Grossberg, S. (1976), "Adaptive Pattern Classification and Universal Recording:
I. Parallel Development and Coding of Neural Detectors," Biological Cybernet-
ics, vol. 23, pp. 121-134.

[Gro76b] Grossberg, S. (1976), "Adaptive Pattern Classification and Universal Recording:
II. Feedback, Expectation, Olfaction, and Illusions," Biological Cybernetics,
vol. 23, pp. 187-202.

[Gro82] . Grossberg, S. (1982), Studies of Mind and Brain: Neural Principals of Learn-
ing, Perception, Cognition, and Motor Control, Reidel Press, Boston, U.S.A

[Gro87] Grossberg, S. (1987), "Competitive Learning: From Interactive Activation to
Adaptive Resonance," Cognitive Science, vol. 11, pp. 23-63.

[GS87] Gallant, S.I. and Smith, D. (1987), "Random Cells: An Idea Whose Time Has
Come and Gone ... and Come Again?," Proceedings of the 1st 1EEE Interna-
tional Conference on Neural Networks, vol. II, pp. 671-678, IEEE, San Diego,
U.S.A

[GS90] Govindan, V.K. and Shivaprasad, AP. (1990). "Character Recognition - A
Review," Pattern Recognition. vol. 23. no. 7. pp. 671-683.

[GT78] Gonzalez. R.C. and Thomason. M.G. (1978), Syntactic Pattern Recognition.
Addison-Wesley, Reading. Mass., U.S.A

[Gfid76] Gfi<lesen.A. (1976). "Quantitative Analysis of Preprocessing Techniques for the
Recognition of Handprinted Characters." Pattern Recognition. vol, 8. pp. 219-
227.

[GW77] Gonzalez. R.C. and Wintz, P.A (1977). Digital Image Processing. Addison-
Wesley, Reading. Mass., U.S.A.

[GW92] Garris. M.D. and Wilkinson, R.A (1992), "NIST Special Database 3: Handwrit-
ten Segmented Characters." Image Recognition Group, Advanced Systems
Division, National Institute of Standards and Technology.

[Har68] Hart. P.E. (1968), "The Condensed Nearest Neighbour Rule," IEEE Transac-
tions on Information Theory, vol, 14, pp. 515-516.

[Har75] Hartigan, J.A (1975), Clustering Algorithms, John Wiley and Sons, New York,
U.S.A.

[Har84] Haralick, RM. (1984), "Digital Step Edge from Zero Crossing of Second Direc-
tional Derivatives," IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 6. no. 1, pp. 58-68.

[HAS84] Hinton, G., Ackley, D. and Sejnowski, T. (1984). "Boltzmann Machines: Con-
straint Satisfaction Networks that Learn," Carnegie-Mellon University,

- 302-

Department of Computer Science, Technical Report CMU-CS-84-119.

[HB88] Hanson, S. and Burr, D. (1988), "Minkowski-r Back-Propagation: Learning in
Connectionist Models with Non-Euclidean Error Signals," Proceedings of the
1987 IEEE Conference on Neural Information Processing Systems - Natural
and Synthetic, pp. 348-357, American Institute of Physics, New York, U.S.A.

[HC86] Huang, J.S. and Chuang, K. (1986), "Heuristic Approach to Handwritten
Numeral Recognition," Pattern Recognition, vol. 19,00. I, pp. 15-19.

[HC87] Huang, J.S. and Chung, M.-L. (1987), "Separating Similar Complex Chinese
Characters by Walsh Transform," Pattern Recognition, vol. 20, DO. 4, pp. 425-
428.

[HD80] Hall, P.A.V. and Dowling, G.R. (1980), "Approximate String Matching," Com-
puting Surveys, vol. 12, no. 4, pp. 381-402.

[HD86] Ho, S.-B. and Dyer, C.R. (1986), "Shape Smoothing Using Medial Axis
Transform," IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 8, pp. 512-520.

[Heb49] Hebb, D.O. (1949), "Chapter 4 - The First Stage of Perception: Growth of the
Assembly," in The Organisation of Behaviour, John Wiley and Sons, New
York, U.S.A.

[Hec82] Hecht-Nielson, R. (1982), "Neural Analog Processing," Proceedings of the
SPIE,vol. 36O,pp. 18~189.

[Hec87a] Hecht-Nielson, R. (1987), "Neural Network Nearest Matched-Filter
Classification of Spatiotemporal Patterns," Applied Optics, vol, 26, pp. 1892-
1899.

[Hec87b] Hecht-Nielson, R. (1987), "Counterpropagation Networks," Applied Optics, vol.
26, pp. 4979-4985.

[HF92] Hoehfeld, M. and Fahlman, S.E. (1992), "Learning with Limited Numerical Pre-
cision Using the Cascade-Correlation Learning Algorithm," IEEE Transactions
on Neural Networks, vol. 3, no. 4, pp. 602-611.

[HHS90] Ho, T.K., HUll, J.J. and Srihari, S.N. (1990), "Combination of Structural
Classifiers," IAPR (International Association for Pattern Recognition)
Workshop on Syntactic and Structural Pattern Recognition, pp. 123-136, Mur-
ray Hill, New Jersey, U.S.A.

[Hig61] Highleyman, W.H. (1961), "An Analog Method for Character Recognition,"
IRE Transactions on Electronic Computers, vol. 10, pp. 502-512.

[Hig62] HighJeyman, W.H. (1962), "Linear Decision Functions, with Application to Pat-
tern Recognition," Proceedings of the IRE, vol. 50. pp. 1501-1514.

[Hil69] Hilditch, C.J. (1969), "Linear Skeletons from Square Cupboards," in Machine
Intelligence N, ed. B. Meltzer and D. Michie, pp. 403-420, University Press,
Edinburgh, Scotland.

[Hil83] Hilditch, C.J. (1983), "Comparison of Thinning Algorithms on a Parallel Pro-
cessor," Image and Vision Computing, vol. 1, no. 3, pp. 115-132.

[HK65] Ho, Y.-c. and Kashyap, R.L. (1965), "An Algorithm for Linear Inequalities and
Its Applications," IRE Transactions on Electronic Computers, vol. 14, pp. 683-
688.

[HK66]

[HLN80]

[Hoa62]
[Hop82]

[Hos72]

[Hou62]

[HRF76]

[HS77]

[HS82]

[HS86]

[HS88]

[HSC83]

[HSC87]

[HSC88]

[HT85]

[HT86]

[HTD72]

- 303 -

Ho, Y.-C. and Kashyap, R.L. (1966), "A Class of Iterative Procedures for Linear
Inequalities," SIAM Journal of Control, vol. 4, pp. 112-115.
Hu, C.-H., u, P., Ning, H.-Y. and Wu, F.-F. (1980), "A Handwritten Numeral
Recognition Machine for Automatic Mail-Sorting,(rq in EUSIPCO-80 Signal
Processing: Theories and Applications, ed. M. Kunt and F. de Coulon, North-
Holland, Amsterdam.
Hoare, C.A.R. (1962), "Quicksort," Computer Journal, vol. 5, pp. 10-15.
Hopfield, J.1. (1982), "Neural Networks and Physical Systems with Emergent
Collective Computational Abilities," Proceedings of the National Academy of
Sciences, vol. 79, pp. 2554-2558.
Hosking, K.H. (1972), "A Contour Method for the Recognition of Handprinted
Characters," in Machine Perception of Patterns and Pictures, The Institute of
Physics, London. England.
Hough, P.V.C (1962), "A Method and Means for Recognizing Complex Pat-
terns," U.S. Patent 3069654.
Hanson, AR., Riseman, E.M. and Fisher, E. (1976), "Context in Word Recogni-
tion," Pattern Recognition, vol. 8, pp. 35-45.
Hunt, lE. and Szymanski, T.G. (1977), "Fast Algorithm for Computing Longest
Common Subsequences," Communications of tilt!ACM, vol. 20, pp. 350-353.
HUll, J.1. and Srihari, S.N. (1982), "Experiments in Text Recognition with
Binary N-Gram and Viterbi Algorithms," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 4, no. 5, pp. 520-530.
Hull, J.1. and Srihari, S.N. (1986), "A Computational Approach to Word Shape
Recognition: Hypothesis Generation and Testing," Proceedings of the IEEE-CS
Conference on Computer Vision and Pattern Recognition, pp. 156-161.
Hertz, L. and Schafer, R.W. (1988), "Multilevel Thresholding Using Edge
Matching," Computer Vision, Graphics and Image Processing, vol. 44, pp.
279-295.
Hull, 11, Srihari, S.N. and Choudhari, R. (1983), "An Integrated Aigorithm for
Text Recognition: Comparison with a Cascaded Algorithm." IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 5, no. 4, pp. 384-395.

Holt, C.M., Stewart, A, Clint, M. and Perrott. R.H. (1987), "An Improved
Parallel Thinning Algorithm." Communications of tilt! ACM, vol. 30, no. 2, pp.
156-160.
Hull, J.1., Srihari, S.N., Cohen, E., Kaan, L., Cullen. P. and Palumbo, P. (1988),
"A Blackboard-Based Approach to Handwritten ZIP Code Recognition,"
Proceedings of the 9th International Conference on Pattern Recognition, vol. 1,
pp. 111-113. IEEE, Rome, Italy.
Hopfield, J.1. and Tank. D.W. (1986). "Neural Computation of Decisions in
Optimization Problems." Biological Cybernetics. vol. 52. pp. 141-152.
Hopfield, J.J. and Tank. D.W. (1986). "Computing with Neural Circuits: A
Model." Science. vol. 233. pp. 625-633.
Hussain. AB.S .• Toussaint. G.T. and Donaldson. R.W. (1972), "Results
Obtained Using a Simple Character Recognition Procedure on Munson's

[Hu62]

[HU79]

[Hue73]

[Hul94]

[HZ83]

[lK88]

[Jai86]

[Jam85]

[JHL66]

[KAM83]

[KAM85]

[Kan82]

[KB73]

[KC94]

[KO]

[KEB91]

[KGV83]

[KI85]

- 304-

Handprinted Data," IEEE Transactions on Computers, vol. 21, pp. 201-205.

Hu, M.K. (1962), "Visual Pattern Recognition by Moment Invariants," IRE
Transactions on Information Theory, vol. 8, pp. 179-187.

Hopcroft, J.E. and Ullman, J.D. (1979), Introduction to Automata Theory,
Languages and Computation, Addison-Wesley, Reading, Mass., U.S.A.

Hueckel, M.H. (1973), "A Local Visual Edge Operator Which Recognizes
Edges and Lines," Journal of the ACM, vol. 20, pp. 634-647.

Hull, J.1. (1994), "A Database for Handwritten Text Recognition Research,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, 00.
5, pp. 550-554.

Hummel, R.A. and Zucker, S.W. (1983), "On the Foundations of Relaxation
Labeling Processes," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 5, no. 3, pp. 267-287.

Illingworth, J. and Kittler, 1. (1988), "A Survey of the Hough Transform," Com-
puter Vision, Graphics and Image Processing, vol. 44, pp. 87-116.

Jain, A.K. (1986), "Chapter 2 - Cluster Analysis," in Handbook of Pattern
Recognition and Image Processing, ed. T.Y. Young and K.-S. Fu. pp. 33-57,
Academic Press.

James, M. (1985), Classification Algorithms, Collins.

Johnson, D.O., Haugh, C.F. and Li, K.P. (1966), "The Application of a Few
Hyperplane Decision Techniques to Handprinted Character Recognition,"
Proceedings of the National Electronics Conference, vol. 22, pp. 869-874.

Kushnir, M., Abe, K. and Matsumoto, K. (1983), "An Application of the Hough
Transform to the Recognition of Printed Hebrew Characters," Pattern Recogni-
tion, vol. 16, no. 2, pp. 183-191.

Kushnir, M., Abe, K. and Matsumoto, K. (1985), "Recognition of Handprinted
Hebrew Characters Using Features Selected in the Hough Transform Space,"
Pattern Recognition, vol. 18, pp. 103-114.

Kandel, A. (1982), Fuzzy Techniques in Pattern Recognition, John Wiley and
Sons, New York, U.S.A.

Krause, P. and Bleichrodt, H. (1973), "Experiments on Direct Input and Recog-
nition of Handwritten Digits and Hand-Printed Letters with Computers,"
translated from Mitteilungen aus dem Institut fur Informations- Verarbeitung in
Technik and Biologie, pp. 9-16, Karlsruhe, West Germany.

Kopec, G.E. and Chou, P.A. (1994), "Document Image Decoding Using Markov
Source Models," IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 16, no. 6, pp. 602-617.

Kanal, L.N. and Dattatreya, G.R., "Pattern Recognition," pp. 720-729.

Kiryati, N., Eldar, Y. and Bruckstein, A.M. (1991), "A Probabilistic Hough
Transform," Pattern Recognition, vol. 24, no. 4, pp. 303-316.
Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimisation by Simu-
lated Annealing," Science, vol. 220, pp. 671-680.

Kittler, J. and IlIingworth, J. (1985), "A Review of Relaxation Labelling Algo-
rithms," Image and Vision Computing, vol. 3, no. 4. pp. 206-216.

- 305-

[Kit80] Kittler, J. (1980), "Automatic Interpretation of Symbolic Data on Maps and
Engineering Drawings," International Congress on Applied Systems Research
and Cybernetics, pp. 2400-2404.

[Kit86] Kittler, J. (1986), "Chapter 3 - Feature Selection and Extraction," in Handbook
of Pattern Recognition and Image Processing, ed. T.Y. Young and K.-S. Fu.
pp. 59-83, Academic Press.

[KK87] Klein, F. and Kubler, O. (1987), "Euclidean Distance Transformations and
Model-Guided Image Interpretation," Pattern Recognition Letters, vol. 5, no. 1,
pp.19-30.

[KKL92] Kohonen, T., Kangas, 1., Laaksonen, 1. and Torkkola, K. (1992), "LVQ_PAK:
A Program Package for the Correct Application of Learning Vector Quantiza-
tion Algorithms," Proceedings of the International Joint Conference on Neural
Networks, vol I, pp. 725-730, IEEE, Baltimore, U.S.A.

[KL76] Kwon, S.K. and Lai, D.C. (1976), "Recognition Experiments with Handprinted
Numerals," Proceedings of the Joint Workshop on Pattern Recognition and
Artificial Intelligence, pp. 74-83, Hyannis, Mass., U.S.A.

[KL86] Kay, S.M. and Lemay, GJ. (1986), "Edge Detection Using the Linear Method,"
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 34, pp.
1221-1227.

[KL88] Khotanzad, A. and Lu, 1. (1988), "Distortion Invariant Character Recognition
by a Multi-Layer Perceptron and Backpropagation Learning," Proceedings of
the 1st IEEE International Conference on Neural Networks, vol, I, pp. 625-632,
IEEE, San Diego, U.S.A.

[KLK88] Kim, S-D., Lee, J-H. and Kim, J-K. (1988), "A New Chain-Code Algorithm for
Binary Images Using Run-Length Codes," Computer Vision, Graphics and
Image Processing, vol. 41, pp. 114-128, Academic Press.

[Kl086] Klopf, A. (1986), "Drive-Reinforcement Model of Single Neuron Function: An
Alternative to the Hebbian Neuronal Model," in AlP Conference Proceedings
151: Neural Networks for Computing, ed. 1. Denker, pp. 265-270, American
Institute of Physics, New York, U.S.A.

[KLS89] Krzyzak, A., Leung, S.Y. and Suen, C.Y. (1989), "Reconstruction of Two-
Dimensional Patterns from Fourier Descriptors," Machine Vision and Applica-
tions Journal, vol. 2, pp. 123-140.

[Kno69] Knoll, A.L. (1969), "Experiments with 'Characteristic Loci' for Recognition of
Handprinted Characters," IEEE Transactions on Computers, vol. 18, pp. 366-
372.

[Knu68] Knuth. D.E. (1968), "Semantics of Context-Free Languages." Mathematical
Systems Theory, vol. 2. no. 2, pp. 127-146.

[Knu73] Knuth, D.E. (1973), "Digital Searching," in The Art of Computer Programming,
Vol. 3, pp. 481-499, Addison-Wesley, Reading. Mass .. U.S.A.

[K084] Kashyap, R.L. and Oommen, B.J. (1984), "Spelling Correction Using Proba-
bilistic Methods," Pattern Recognition Letters, vol. 2, no. 3, pp. 147-154.

[Koh82] Kohonen, T. (1982), "Self-Organized Formation of Topologically Correct
Feature Maps." Biological Cybernetics, vol. 43. pp. 59-69.

- 306-

[Koh84] Kohonen, T. (1984), Self-Organisation and Associative Memory, Springer-
Verlag, Springer Series in Information Sciences, vol. 8, 3rd Ed., 1989.

[Koh86] Kohonen, T. (1986), "Learning Vector Quantization for Pattern Recognition,"
Helsinki University of Technology, Department of Technical Physics, Technical
Report TKK-F-A-601.

[Koh90a] Kohonen, T. (1990), "Improved Versions of Learning Vector Quantization,"
Proceedings of the International Joint Conference on Neural Networks, vol. I,
pp. 545-550, IEEE, San Diego, U.S.A.

[Koh9Ob] Kohonen, T. (1990), "The Self-Organizing Map," Proceedings of the IEEE, vol.
78,00.9, pp. 1464-1480.

[Koh9Oc] Kohonen, T. (1990), "Statistical Pattern Recognition Revisited," in Advanced
Neural Computers, pp. 137-144.

[Kos86] Kosko, B. (1986), "Differential Hebbian Learning," in AlP Conference
Proceedings 151: Neural Networks for Computing, ed. 1. Denker, pp. 277-282,
American Institute of Physics, New York, U.S.A.

[Kos87] Kosko, B. (1987), "Adaptive Bidirectional Associative Memories," Applied
Optics, vol. 26, pp. 4947-4960.

[Kos88] Kosko, B. (1988), "Bidirectional Associative Memories," IEEE Transactions on
Systems, Man and Cybernetics, vol. 18, pp. 42-60.

[Koz71] Kozlay, D. (1971), "Feature Extraction in an Optical Character Recognition
Machine," IEEE Transactions on Computers, vol. 20, pp. 1063-1067.

[KPB87] Kahan, S., Pavlidis, T. and Baird, H.S. (1987), "On the Recognition of Printed
Characters of any Font and Size," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 9, no. 2, pp. 274-287.

[KPS79] Kwan, C.C., Pang, L. and Suen, C.Y. (1979), "A Comparative Study of Some
Recognition Algorithms in Character Recognition", Proceedings of the Interna-
tional Conference on Cybernetics and Society, pp. 530-535, IEEE, Tucson,
Arizona, U.S.A.

[KR73] Kohonen, T. and Ruohonen, M. (1973), "Representation of Associated Data by
Matrix Operators," IEEE Transactions on Computers, vol. 22, pp. 701-702.

[KR78] Kohonen, T. and Reuhkala, E. (1976), "A Very Fast Associative Method for the
Recognition and Correction of Misspelt Words, Based on Redundant Hash
Addressing," Proceedings of the 4th International Joint Conference on Pattern
Recognition, pp. 807-809, Kyoto, Japan.

[KS91] Kimura, F. and Shridhar, M. (1991), "Recognition of Connected Numeral
Strings," Proceedings of the 1st International Conference on Document
Analysis and Recognition, Saint-Malo, France.

[KS92] Kimura, F. and Shridhar, M. (1991), "Segmentation-Recognition Algorithm for
ZIP Code Field Recognition," Machine Vision and Applications, vol. 5, 00. 3,
pp. 199-210.

[KSP74] Krause, P., Schwerdtman, W. and Paul, D. (1974), "Two Modifications of a
Recognition System with a Pattern Series Expansion and Bayes Classifier,"
Proceedings of the 2nd International Joint Conference on Pattern Recognition,
pp.215-219.

- 307-

[Kuh63] Kuhl, F. (1963), "Classification and Recognition of Hand-Printed Characters,"
IEEE International Convention Record, vol. 11, pp. 75-93.

[Kuk84] Kuklinski, T.T. (1984), "Components of Handprint Style Variability," Proceed-
ings of the 7th International Conference on Pattem Recognition, pp. 924-926,
IEEE, Montreal, Canada.

[Kun89] Kuner, P. (1989), "Matching of Attributed and Non-Attributed Graphs by Use of
a Boltzmann Machine Algorithm," Proceedings of the 1st lEE International
Conference on Artificial Neural Networks, pp. 369-373.

[Kw088] Kwok, P.C.K. (1988), "A Thinning Algorithm by Contour Generation," Com-
munications of the ACM, vol, 31, DO. 11, pp. 1314-1324.

[LA87] Laarhoven, PJ.M. and Aarts, E.H.L. (1987), "Simulated Annealing: Theory and
Applications," D. Reidel, Dordrecht, Holland.

[LB87] Leavers, V.F. and Boyce, J.F. (1986), "The Radon Transform and its Applica-
tion to Shape Parameterization in Machine Vision," Image and Vision Comput-
ing, vol. 5, pp. 161-166.

[LBG80] Linde, Y., Buzo, A. and Gray, R.M. (1980), "An Algorithm for Vector Quan-
tizer Design," IEEE Transactions on Communications, vol. 28, no. 1, pp. 84-95.

[LC83] Li, H.F. and Cheng, S.C. (1983), "Projection Profile and Fourier Transform for
Chinese Character Recognition," International Journal of Electronics (UK), vol.
54, pp. 299- 300.

[LCS84] Landy, M.S., Cohen, Y. and Sperling, G. (1984), "HIPS - A UNIX-Based
Image-Processing System," Computer Vision, Graphics and Image Processing,
vol. 25, DO. 3, pp. 331-347.

[LD87] Leedham, C.G. and Downton, A.C. (1987), "Automatic Recognition and Tran-
scription of Pitman's Handwriting Shorthand - An Approach to Short Forms,"
Pattern Recognition, vol. 20, pp. 341-348.

[Lea90] Leavers, V.F. (1990), "Use of the Radon Transform for Robust Feature Extrac-
tion in Optical Character Recognition," IAPR (International Association for
Pattern Recognition) Workshop on Syntactic and Structural Pattern Recogni-
tion, pp. 249-255, Murray Hill, New Jersey, U.S.A.

[Lev66] Levenshtein, V.I. (1966), "Binary Codes Capable of Correcting Deletions,
Insertions and Reversals," Soviet Physics-Doklady. vol. 10, no. 8, pp. 707-710,
translated from Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp. 845-848,
1965.

[Lev81] Levine, B. (1981), "Derivations of Tree Sets with Applications to Grammatical
Inference," IEEE Transactions on Pattern Analysis and Machine Intelligence.
vol. 3, no. 3, pp. 285-293.

[LF] Leedham, C.G. and Friday, P.O., "Isolating Individual Handwritten Characters,"
pp.411-4n.

[LG87] Lippman, R. and Gold, B. (1987), "Neural Net Classifiers Useful for Speech
Recognition," Proceedings of the 1st IEEE International Conference on Neural
Networks, vol. IV, pp. 417-426, IEEE, San Diego, U.S.A.

[Lia8!] Liao, Y. -Z. (1981), "A Two-Stage Method of Fitting Conic Arcs and Straight-
Line Segments to Digitized Contours," Proceedings of the International Confer-
ence on Pattern Recognition and Image Processing. pp. 224-229, IEEE. Dallas.

- 308 -

Texas, U.S.A.

[Lip87] Lippman, R.P. (1987), "An Introduction to Computing with Neural Nets," IEEE
Acoustic Speech and Signal Processings Magazine, vol. 4, pp. 4-22.

[LLS92] Lam, L., Lee, S.-W. and Suen, C.Y. (1992), "Thinning Methodologies - A
Comprehensive Survey," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14,00.9, pp. 869-885.

[Low91] Low, A. (1991), Introductory Computer Vision and Image Processing,
McGraw-Hill Book Company (UK) Limited.

[LRS91] Lu, S.W., Ren, Y. and Suen, C.Y. (1991), "Hierarchical Attributed Graph
Representation and Recognition of Handwritten Chinese Characters," Pattern
Recognition, vol. 24, 00. 7, pp. 617-632.

[LS81] Lai, M.T.Y. and Suen, C.Y. (1981), "Automatic Recognition of Characters by
Fourier Descriptors and Boundary Line Encodings," Pattern Recognition, vol.
14, pp. 383-393.

[LS88a] Lam, L. and Suen, C.Y. (1988), "Structural Classification and Relaxation
Matching of Totally Unconstrained Handwritten ZW Code Numbers," Pattern
Recognition, vol. 21, no. 1, pp. 19-31.

[LS88b] Leavers, V.F. and Sandler, M.B. (1988), "An Efficient Radon Transform," in
Lecture Notes in Computer Science, vol. 301, Proceedings of the British Pattern
Recognition Association 4th International Conference on Pattern Recognition,
ed. 1. Kittler, pp. 380-389, Springer-Verlag.

[LSA94] Liang, S., Shridhar, M. and Ahmadi, M. (1994), "Segmentation of Touching
Characters in Printed Document Recognition," Pattern Recognition, vol. 27, no.
6, pp. 825-840.

[LT93) Lanitis, A. and Taylor, C. (1993), "Reading Handwritten Postcodes Using FJexi-
ble Template Matching," British Machine Vision Association and Society for
Pattern Recognition Technical Meeting on Handwritten Character and Script
Recognition.

[Lu79] Lu, S.T. (1979), "A Tree-to-Tree Distance and Its Application to Cluster
Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. I,pp. 219-224.

[Lue84] Luenberger, D.O. (1984), "Linear and Nonlinear Programming," Addison-
Wesley, Reading, Mass., U.S.A.

[LW86] Ln, H.E. and Wang, P.S.P. (1986), "A Comment on 'A Fast Parallel Thinning
Algorithm for Digital Patterns,'" Communications of the ACM, vol. 29, no. 3,
pp. 239-242.

[MAC92] Musavi, M.T., Ahmed, W., Chan, KH., Faris, K.B. and Hummels, n.M. (1992),
"On the Training of Radial Basis Function Classifiers," Neural Networks, vol. 5,
no. 4, pp. 595-603.

[Mae90] Maes, M. (1990), "On a Cyclic String-to-String Correction Problem," Informa-
tion Processing Letters, vol. 35, pp. 73-78.

[Mae91] Maes, M. (1991), "Polygonal Shape Recognition Using String-Matching Tech-
niques," Pattern Recognition, vol. 24, 00. 5, pp. 433-440.

- 309-

[Mah36] Mahalanobis, P.C. (1936), "On the Generalized Distance in Statistics," Proceed-
ings of the National Institute of Science (India), vol. 12, pp. 49-55.

[Mal73] Malsburg, C. v.d. (1973), "Self-Organization of Orientation Sensitive Cells in
the Striate Cortex," Kybemetik. vol. 14, pp. 85-100.

[Man83] Manohar, M. (1983), "Edge Detection via Optimal Clustering," Proceedings of
the International Conference on Systems. Man and Cybernetics, vol. 2, pp.
1076-1078, Halifax, Canada.

[Man86] Mantas, 1 (1986), "An Overview of Character Recognition Methodologies,"
Pattern Recognition, vol. 19,00.6, pp. 425430.

[Mar89] Marshall, S. (1989), "Review of Shape Coding Techniques," Image and Vision
Computing, vol. 7, 00. 4, pp. 281-294.

[Mat55] Matusita, K. (1955), "Decision Rules Based on the Distance for Problems of Fit,
Two Samples and Estimation," Annals of Mathematical Statistics. vol, 26, pp.
631-640.

[MD89] Moody, 1 and Darken, C.l (1989), "Fast Learning in Networks of Locally
Tuned Processing Units," Neural Computation, vol. 1, pp. 281-294.

[Mey88] Meyer, F. (1988), "Skeletons in Digital Spaces," in Image Analysis and
Mathematical Morphology; Volume 2: Theoretical Advances, ed. 1 Serra, ch.
13, pp. 258-296, Academic Press.

[MF75] Merlin, P.M. and Farber, OJ. (1975), "A Parallel Mechanism for Detecting
Curves in Pictures," IEEE Transactions on Computers, vol. 24, pp. 96-98.

[MG6O] Marill, T. and Green, D.M. (1960), "Statistical Recognition Functions and the
Design of Pattern Recognizers," IRE Transactions on Electronic Computers,
vol. 9, pp. 472-477.

[MG89] Mitchell, B.T. and Gillies. A.M. (1989), "A Model-Based Computer Vision
System for Recognizing Handwritten ZIP Codes," Machine Vision and Applica-
tions, vol. 2, pp. 231-243.

[MG94] Man, Y. and Gath, I. (1994), "Detection and Separation of Ring-Shaped Clus-
ters Using Fuzzy Clustering," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 16, no. 8, pp. 855-861.

[MGK90] Miller, W.T., Glanz, F.H. and Kraft. L.G. (1990), "CMAC: An Associative
Neural Network Alternative to Backpropagation," Proceedings of the IEEE, vol.
78,00. 10, pp. 1561-1567.

[MH62] Masterson, 1.L. and Hirsch, R.S. (1962). "Machine Recognition of Constrained
Handwritten Arabic Numerals," IRE Transactions on Human Factors in Elec-
tronics, vol. 3, pp. 62-65.

[MH80] Marr, D. and Hildreth, E. (1980), "Theory of Edge Detection," Proceedings of
the Royal Society of London, vol. B207, pp. 187-217.

[MH83] Mantas, 1and Heaton. A.G. (1983), "Handwritten Character Recognition by
Parallel Labelling and Shape Analysis," Pattern Recognition Letters, vol. 1, pp.
465468.

[Mic86] Mielet, L. (1986). Structural Methods in Pattern Recognition. Springer-Verlag.
New York, U.S.A.

- 310-

[MJN87] Martinez-Perez, M.P., Jimenez, J. and Naval6n, J. (1987), "A Thinning Algo-
rithm Based on Contours," Computer Vision, Graphics and Image Processing,
vol. 39. pp. 186-201.

[MMY75] Mori. S.• Mori. T .• Yamanoto, K.. Yamada, H.• Saito. T. and Nakata, K. (1975).
"Recognition of Handprinted Characters," Proceedings of the 2nd USA-Japan
Computer Conference. pp. 18-23.

[Mon68] Montanari. U. (1968). "A Method for Obtaining Skeletons Using a Quasi-
Euclidean Distance." Journal of the ACM. vol. 15. pp. 600-624.

[MP43] McCulloch. W.S. and Pitts. W. (1943), "A Logical Calculus of the Ideas
Immanent in Nervous Activity," Bulletin of Matllematical Biophysics. vol. 9,
pp.127-147.

[MP69a] Miloslavskaya, N.K. and Polyakov, S.T. (1969). "Minsk-I Digital Computer
Simulation of an Algorithm for Handwritten Character Recognition." Soviet
Automatic Control. vol. 14. pp. 42-45.

[MP69b] Minsky. M. and Papert, S. (1969). Perceptrons: An Introduction to Computa-
tional Geometry, MIT Press. Cambridge, Mass .• U.S.A.

[MRG85] Makhoul, 1., Roucos, S. and Gish, H. (1985), "Vector Quantization in Speech
Coding." Proceedings of the IEEE. vol. 73. no. 11. pp. 1551-1588.

[MS54] Motzkin. T.S. and Schoenberg. U. (1954). "The Relaxation Method for Linear
Inequalities." Canadian Journal of Mathematics. vol. 6. pp. 393-404.

[MST94] Michie. D .• Spiegelhalter, DJ. and Taylor. C.C. (1994). Machine Learning:
Neural and Statistical Classification. Ellis Horwood.

[MT77] Muth, F.E. and Tharp. A.L. (1977). "Correcting Human Error in Alphanumeric
Terminal Input." Information Processing and Management. vol. 13. pp. 329-
337.

[Mun68] Munson. lH. (1968). "Experiments in the Recognition of Hand-Printed Text:
Part I - Character Recognition." Proceedings of tile Fall Joint Computer
Conference. vol. 33, pp. 1125-1136.

[MV93] Marzal, A. and Vidal. E. (1993), "Computation of Normalized Edit Distance
and Applications." IEEE Transactions on Pattern Analysis and Machine Intelli-
gence. vol, 15. no. 9. pp. 926-932.

[Nay71] Naylor, W.C. (1971), "Some Studies in the Interactive Design of Character
Recognition Systems," IEEE Transactions on Computers, vol. 20, pp. 1075-
1086.

[NB80] Nevatia, R. and Babu, K.R. (1980), "Linear Feature Extraction and Descrip-
tion," Computer Graphics Image Processing. vol. 13. pp. 257-269.

[NDG80] Ni, G .• Ding. J.• Gao. Z. and Liu, J. (1980). "A Structural Method for Hand-
printed Alphanumeric and Other Symbols," Proceedings of tile 5tll Interna-
tional Conference on Pattern Recognition. pp. 726-728. IEEE.

[Neu75] Neuhoff. DL (1975), "The Viterbi Algorithm as an Aid in Text Recognition."
IEEE Transactions on Information Theory, vol. 21, pp. 222-226.

[Nev86] Nevatia. R. (1986). "Chapter 9 - Image Segmentation." in Handbook of Pat-
tern Recognition and Image Processing. ed. T.Y. Young and K.-S. Fu. pp.
215-231. Academic Press.

[NF77]

[Nie77]

[NS84]

[NTIO]

[0088]

[OG09O]

[OK91]

[Ota75]

[OTK76]

[Ott74]

[Pal79]

[Pav72]

[Pav76]

[Pav77]

[Pav78]

[Pav80]

[Pav82a]

[Pav82b]

- 311 -

Narendra. P.M. and Fukunaga. K. (1977). "A Branch and Bound Algorithm for
Feature Subset Selection." IEEE Transactions on Computers. vol. 26. no. 9, pp.
917-922.

Niemann, H. (1977), "Classification of Characters by Man and by Machine,"
Pattern Recognition, vol. 9, pp. 173-179.
Naccache, N.J. and Shinghal, R. (1984). "SPTA: A Proposed Algorithm for
TIlinning Binary Patterns," IEEE Transactions on Systems. Man and Cybernet-
ics, vol. 14, no. 3, pp. 409-418.

Nagy, G. and Tuong, N. (1970), "Normalization Techniques for Handprinted
Numerals," Communications of tbe ACM, vol. 13, no. 8, pp. 475-481.

Oulamara, A. and Duvemoy, J. (1988), "An Application of the Hough
Transform to Automatic Recognition of Berber Characters," Signal Processing
(Netherlands), vol. 14, pp. 79-90.

O'Gorman, L. (1990), "k x k Thlnning," Computer Vision. Graphics and Image
Processing, vol. 51, pp. 195-215.

O'Hair, M.A. and Kabrisky, M. (1991), "Recognizing Whole Words as Single
Symbols," Proceedings of the 1st International Conference on Document
Analysis and Recognition, pp. 350-358, Saint-Malo, France.

Ota, P.A. (1975), "Mosaic Grammars," Pattern Recognition, vol. 7, pp. 61-65.

Okuda. T., Tanaka. E. and Kasal, T. (1976), "A Method for the Correction of
Garbled Words based on the Levenshtein Metric," IEEE Transactions on Com-
puters, vol. 25, no. 2, pp. 172-178.

Ott, R. (1974), "On Feature Selection by Means of Principal Axis Transform
and Nonlinear Classification," Proceedings of tile 2nd International Ioint
Conference on Pattern Recognition, pp. 220-222.

Palm, G. (1979), "On Representation and Approximation of Nonlinear Systems,
Part II: Discrete Time," Biological Cybernetics, vol. 34, pp. 49-52.

Pavlidis, T. (1972), "Linear and Context-Free Graph Grammars," Journal of tile
ACM, vol. 19, pp. 11-12.

Pavlidis, T. (1976), "The Use of Algorithms of Piecewise Approximations for
Picture Processing Applications," ACM Transactions on Mathematical
Software, vol. 2, pp. 305-321.

Pavlidis, T. (1977), Structural Pattern Recognition, Springer Publishing, New
York, U.S.A.

Pavlidis, T. (1978), "A Minimum Storage Boundary Tracing Algorithm and Its
Application to Automatic Inspection," IEEE Transactions on Systems. Man and
Cybernetics, vol. 8, no. l , pp. 66-69.
Pavlidis, T. (1980), "A Thinning Algorithm for Discrete Binary Images," Com-
puter Graphics and Image Processing, vol. 13, pp. 142-157.

Pavlidis, T. (t982), Algorithms for Graphics and Image Processing, Computer
Science Press, Rockville, MD, U.S.A.

Pavlidis, T. (1982), "Curve Fitting as a Pattern Recognition Problem," Proceed-
ings of the 6th International Conference on Pattern Recognition, pp. 853-858,
IEEE, Munich, Germany.

- 312 -

[Pav82c] Pavlidis. T. (1982). "Vector and Arc Encoding of Graphics and Text." Proceed-
ings of the 6th International Conference on Pattern Recognition. pp. 610-613.
IEEE. Munich. Germany.

[Pav84] Pavlidis. T. (1984). "A Hybrid Vectorization Algorithm," Proceedings of the
7th International Conference on Pattern Recognition, pp. 490-492, IEEE, Mont-
real. Canada.

[Pav86] Pavlidis, T. (1986), "A Vectorizer and Feature Extractor for Document Recogni-
tion," Computer Vision, Graphics and Image Processing, vol. 35, pp. 111-127.

[Pen55] Penrose, R. (1955), "A Generalized Inverse for Matrices," Proceedings of the
Cambridge Philosophical Society, vol. 51, pp. 406-413.

[Pen56] Penrose, R. (1956), "On Best Approximate Solutions of Unear Matrix Equa-
tions," Proceedings of the Cambridge Philosophical Society, vol. 52, pp. 17-19.

[Per80] Perkins, W.A. (1980). "Area Segmentation oflmages Using Edge Points," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 2, pp. 8-15.

[PF69] Partlck, E.A. and Fisher, F.P. (1969), "Nonparametric Feature Selection," IEEE
Transactions on Information Theory, vol. 15, pp. 557-584.

[PF77] Persoon, E. and Fu, K.-S. (1977), "Shape Discrimination Using Fourier Descrip-
tors," IEEE Transactions on Systems, Man and Cybernetics, vol. 7, no. 3, pp.
170-179.

[PFSO] Pferd, W. and Stocker, G.C. (1980), "Optical Fibers for Scanning Digitizers,"
The Bell System Technical Journal, vol. 60, no. 4, pp. 523-533.

[PG87] Perez, A. and Gonzalez, R.C. (1987), "An Iterative Thresholding Algorithm for
Image Segmentation," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 9, no. 6, pp. 742-751.

[PLH88] Pawlicki, T., Lee, D.-S., Hull, 1. and Srihari, S. (1988), "Neural Networks and
Their Application to Handwritten Digit Recognition," Proceedings of the 1st
IEEE International Conference on Neural Networks, vol. II, pp. 63-70, IEEE,
San Diego, U.S.A.

[PM89] Parks, P.C. and Militzer, 1. (1989), "Convergence Properties of Associative
Memory Storage for Learning Control Systems," Proceedings of the IFAC Sym-
posium on Adaptive Systems in Control and Signal Processing, pp. 565-572,
Pergamon Press, Oxford, England.

[POB87] Pizer, S.M., Oliver, W.R. and Bloomberg, S.H. (1987), "Hierarchical Shape
Description via the Multiresolution Symmetric Axis Transform," IEEE Tran-
sactions on Pattern Analysis and Machine Intelligence, vol. 9, no. 4, pp. 505-
511.

[PR69] Pfaltz, J.L. and Rosenfeld, A. (1969), "Web Grammars," Proceedings of the l st
International Joint Conference on Artificial Intelligence. Washington, D.C.,
U.S.A.

[PR78] Panda, D.P. and Rosenfeld, A. (1978), "Image Segmentation by Pixel
Classification in (Gray Level. Edge Value) Space," IEEE Transactions on Com-
puters, vol. 27, pp. 875-879.

[Pri94] Priestnall, G. (1994), "Machine Recognition of Engineering Drawings," Ph.D.
thesis, University of Nottingham, Nottingham. England.

- 313 -

[PS82] Pervez, A. and Suen, C.Y. (1982), "Segmentation of Unconstrained Handwritten
Numeric Postal ZIP Codes," Proceedings of the 6th International Conference
on Pattern Recognition, pp. 545-547, IEEE, Munich, Germany.

[QG92] Quint, D.J. and Gilmore, J.L. (1992), "Alexia Without Agraphia," Neuroradiol-
ogy,vol. 34,no.3,pp.21~214.

[RAB89] Rapcsak, S.Z., Arthur, S.A., Bliklen, D.A. and Rubens, A.B. (1989), "Lexical
Agraphia in Alzheimers-Disease," Archives of Neurology, vol. 46, no. 1, pp.
65-68.

[Rad17] Radon, 1. (1917), "Uber die Bestimmung von Funktionen Durch fhre
Integralwerte Langs Gewisser Mannigfaltigkeiten," Berichte Sachsische Aka-
demie der Wissenschaften Leipzig, Math-Phys Kl., vol. 69, pp. 262-267.

[Ram72] Ramer, U. (1972), "An Iterative Procedure for Polygonal Approximation of
Plane Curves," Computer Graphics and Image Processing, vol. 1, pp. 244-256.

[Rav67] Raviv, 1. (1967), "Decision Making in Markov Chains Applied to the Problem
of Pattern Recognition," IEEE Transactions on Information Theory, vol, 3, no.
4, pp. 536-551.

[RCC90] Riazanoff, S., Cervelle, B. and Chorowicz, 1. (1990), "Parametrisable Skeletoni-
zation of Binary and Multi-Level Images," Pattern Recognition utters, vol. 11,
no. 1, pp. 25-33.

[RD76] Rosenfeld, A. and Davis, L.S. (1976), "A Note on Thinning," IEEE Transac-
tions on Systems, Man and Cybernetics, vol. 25, pp. 226-228.

[RE71] Riseman, E.M. and Ehrich, R.W. (1971), "Contextual Word Recognition Using
Binary Digrams," IEEE Transactions on Computers, vol. 20, no. 4, pp. 397-403.

[Rei91] Reiss, T.H. (1991), "The Revised Fundamental Theorem of Moment Invari-
ants," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
13,no. 8,pp. 83~834.

[RH74] Riseman, E.M. and Hanson, A.R. (1974), "A Contextual Postprocessing System
for Error Correction Using Binary N-Grams," IEEE Transactions on Computers,
vol, 23, no. 5, pp. 480-493.

[RHZ76] Rosenfeld, A., Hummel, R.A. and Zucker, S.W. (1976), "Scene Labelling by
Relaxation Operations," IEEE Transactions on Systems, Man and Cybernetics,
vol. 6, pp. 420-443.

[RipS1] Ripley, B.D. (1981), Spatial Statistics, John Wiley and Sons, New York, U.S.A.

[RM86] Rumelhart, D.E. and McClelland, 1.L. (1986), Parallel Distributed Processing:
Explorations in tile Microstructure of Cognition, vol. 1, MIT Press, Cambridge,
Mass., U.S.A.

[RMS89] Rajavelu, A., Musavi, M. and Shirvaikar, M. (1989), "A Neural Network
Approach to Character Recognition," Neural Networks, vol. 2, no. 5, pp. 387-
394.

[Ros58] Rosenblatt, F. (1958), "The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain," Psychological Review, vol. 65, pp.
386-408.

[Ros62] Rosenblatt, R. (1962), Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms, Spartan Books, Washington, DC, U.S.A.

- 314-

[Ros73] Rosenfeld. A. (1973). "Array Grammar Normal Forms." Information and Con-
trol. vol. 23. no. 2. pp. 173-182.

[RP68] Rosenfeld. A. and Pfaltz, J.L. (1968). "Distance Functions on Digital Pictures."
Pattern Recognition. vol. 1. pp. 33-61.

[Rut66] Rutovitz, D. (1966). "Pattern Recognition." Journal of the Royal Statistics
Society. vol. 129. Series A. pp. 504-530.

[RZ85] Rumelhart, D.E. and Zipser, D. (1985), "Feature DiSCOVeryby Competetive
Learning." Cognitive Science. vol. 9, pp. 75-112.

[SA87] Suzuki, S. and Abe, K. (1987), "Binary Picture Thinning by an Iterative Parallel
Two-Subcycle Operation," Pattern Recognition, vol. 10,110.3, pp. 297-307.

[Sar93] Sardana, H.K. (1993), Edge Moments in Pattern Recognition, Ph.D. thesis,
University of Nottingham, Nottingham, England.

[Sar94] Sarle, W.S. (1994), "Neural Networks and Statistical Models." Proceedings of
the 19th Annual SAS Users Group International Conference, pp. 1538-1550,
SAS Institute, Cary, North Carolina, U.S.A.

[SB81] Sutton, R. and Barto, A. (1981), "Toward a Modern Theory of Adaptive Net-
works: Expectation and Prediction," Psychological Review, vol. 88, pp. 135-
171.

[SB83] Sri hari , S.N. and Bozinovic, R. (1983), "Use of Knowledge in the Visual
Interpretation of Cursive Script," Proceedings of the International Conference
on Systems, Man and Cybernetics. vol. 1, pp. 187-191, Halifax, Canada.

[SB84] Shridhar, M. and Badreldin, A. (1984), "High Accuracy Character Recognition
Algorithm Using Fourier and Topological Descriptors," Pattern Recognition,
vol. 17, pp. 515-524.

[SB86] Shridhar, M. and Badreldin, A. (1986), "Recognition of Isolated and Simply
Connected Handwritten Numerals." Pattern Recognition. vol. 19. no. 1. pp. 1-
12.

[SB87] Shridhar, M. and Badreldin, A. (1986). "Context-Directed Segmentation Algo-
rithm for Handwritten Numeral Strings," Image and Vision Computing, vol. 5,
no. 1, pp. 3-9.

[SB91] Sarkar, S. and Boyer, K.L. (1991), "On Optimal Infinite Impulse Response Edge
Detection Filters," IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 13, no. 11, pp. 1154-1171.

[SBM80] Suen, C.Y., Berthod, M. and Mori, S. (1980), "Automatic Recognition of Hand-
printed Characters - The State of the Art," Proceedings of the IEEE, vol. 68,
00. 4, pp. 469-487.

[SCH72] Sklansky, J., Chazin, R.L. and Hansen. BJ. (1972). "Minimum Perimeter
Polygons of Digitized Silhouettes." IEEE Transactions on Computers. vol. 23.
pp. 445-448.

[Sch89] Schalkoff. R.J. (1989). Digital Image Processing and Computer Vision. John
Wiley and Sons. New York. U.S.A.

[Sch92] Schalkoff, R.J. (1992). Pattern Recognition: Statistical, Structural and Neural
Approaches, John Wiley and Sons. New York. U.S.A.

- 315 -

[SD086] Soffer, B., Dunning, G., Owechko, Y. and Marom, E. (1986), "Associative
Holographic Memory with Feedback Using Phase-Conjugate Mirrors," Optics
Letters, vol. 11, pp. ll8-120.

[SE95] Sulaiman, M.N. and Evans, D.l. (1995), "Using a General-Purpose Neural-
Network Simulation Tool - NEUCOMP - for Character-Recognition Prob-
lems," Journal of Microcomputer Applications, vol. 18, no. I,pp. 65-81.

[Seb89] Sebesta, R.W. (1989), Concepts of Programming Languages, Benjamin Cum-
mings, Redwood City, California, U.S.A.

[Sej77a] Sejnowski, T.J. (1977), "Storing Covariance with Nonlinearly Interacting Neu-
rons," Journal of Mathematical Biology, vol. 64, pp. 303-321.

[Sej77b] Sejnowski, T.J. (1977), "Statistical Constraints on Synaptic Plastlclty," Journal
of Mathematical Biology, vol. 64, pp. 385-389.

[Sej88] Sejnowski, T.1. (1988), "Neural Network Learning Algorithms," in Neural
Computers, ed. R. Eckmiller and C. v.d. Malsburg, NATO ASI Series, vol. F41,
Springer- Verlag.

[SF83] Sanfeliu, A. and Fu, K.-S. (1983), "A Distance Measure Between Attributed
Relational Graphs for Pattern Recognition," IEEE Transactions on Systems,
Man and Cybernetics, vol. 13, no. 3, pp. 353-362.

[Sha70] Shaw, A.C. (1970), "Parsing of Graph-Representable Pictures," Journal of the
ACM, vol, 17, no. 3, pp. 453-481.

[SHC83] Srihari, S.N., Hull, J.1. and Choudhari, R. (1983), "Integrating Diverse
Knowledge Sources in Text Recognition," ACM Transactions on Office Infor-
mation Systems, vol. I, 00. 1, pp. 68-87.

[She78] Sheil, B.A. (1978), "Median Split Trees: A Fast Lookup Technique for Fre-
quently Occurring Keys," Communications of the ACM, vol. 21, no. 11, pp.
947-958.

[Shi73] Shimura, M. (1973), "Multicategory Learning Classifiers for Character Read-
ing," IEEE Transactions on Systems, Man and Cybernetics. vol. 3, pp. 74-85.

[Shi83] Shinghal, R. (1983), "A Hybrid Algorithm for Contextual Text Recognition,"
Pattern Recognition, vol. 16, no. 2, pp. 261-267.

[Shl88] Shlien, S. (1988), "Multi font Character Recognition for Typeset Documents,"
International Journal of Pattern Recognition and Artificial Intelligence, vol. 2,
pp. 603-620.

[Shu94] Shustorovich, A. (1994), "Scale Specific and Robust EdgelLine Encoding with
Linear Combinations of Gabor Wavelets," Pattern Recognition, vol, 27, no. 5,
pp.713-725.

[Sin84] Sinha, R.M.K. (1984), "Primitive Recognition and Skeletonization via Label-
ing," Proceedings of the International Conference on Systems, Man and Cyber-
netics, pp. 272-279, Halifax, Canada.

[Sin87a] Sinha, R.M.K. (1987), "A Width-Independent Algorithm for Character Skeleton
Estimation," Computer Vision, Graphics and Image Processing, vol. 40, pp.
388-397.

[Sin87b] Sinha, R.M.K. (1987), "Some Characteristic Curves for Dictionary Organization
with Digital Search," IEEE Transactions on Systems, Man and Cybernetics, vol.

- 316 -

17, no. 3, pp. 520-527.

[SI92] Srinivasa, N. and Jouaneh, M. (1992), "A Neural Network Model for Invariant
Pattern-Recognition," IEEE Transactions on Signal Processing, vol. 40, 00. 6,
pp. 1595-1599.

[SI93] Srinivasa, N. and Jouaneh, M. (1993), "An Invariant Pattern-Recognition
Machine Using a Modified ART Architecture," IEEE Transactions on Systems.
Man and Cybernetics, vol. 23, no. 5, pp. 1432-1437.

[SK86] Shllen, S. and Kubota, K. (1986), "Optical Character Recognition of Touching
Characters," Proceedings of Vision Interface '86, pp. 390-395.

[SKH86] Sejnowski, TJ., Kienker, P.K. and Hinton, G.E. (1986), "Learning Symmetry
Groups with Hidden Units: Beyond the Perceptron," Physica, vol. D22, pp.
260-275.

[SkI70] Sklansky, 1. (1970), "Recognition of Convex Blobs," Pattern Recognition, vol.
2, pp. 3-10.

[SM83] Stentiford, F.W.M. and Mortimer, R.G. (1983), "Some New Heuristics for Thin-
ning Binary Handprinted Characters for OCR," IEEE Transactions on Systems.
Man and Cybernetics, vol. 13, no. I, pp. 81-84.

[SM92] Sabourin, M. and Mitiche, A. (1992), "Optical Character Recognition by a
Neural Network," Neural Networks, vol. 5, no. 5, pp. 843-852.

[Smi68] Smith, F.W. (1967), "Pattern Classifier Design by Linear Programming," IEEE
Transactions on Computers, vol. 17, pp. 367-372.

[Smi87] Smith, R.W. (1987), "Computer Processing of Line Images: A Survey," Pattern
Recognition, vol. 20, no. I, pp. 7-15.

[SM086] Soffer, B., Marom, E., Owechko, Y. and Dunning, G. (1986), "Holographic
Associative Memory Employing Phase Conjugation," Proceedings of the SPIE,
vol. 684, pp. 2-6.

[SP88] Sinha, R.M.K., Prasada, B. (1988), "Visual Text Recognition Through Contex-
tual Processing," Pattern Recognition, vol. 21, 00. 5, pp. 463-479.

[Spa74] Spanjersberg, A.A. (1974), "Combinations of Different Systems for the Recog-
nition of Handwritten Digits," Proceedings of the Znd International Joint
Conference on Pattern Recognition, pp. 208-209.

[SPH93] Sinha, R.M.K., Prasada, B., Houle, G.F. and Sabourin, M. (1993), "Hybrid Con-
textual Text Recognition with String-Matching," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15, no. 9, pp. 915-925.

[SPS81] Shapiro, B., Pisa, 1. and Sklansky, 1. (1981), "Skeleton Generation from x, y
Boundary Sequences," Computer Graphics and Image Processing, vol. 15, pp.
136-153.

[SR71] Stefanelli, R. and Rosenfeld, A. (1971), "Some Parallel Thinning Algorithms
for Digital Pictures," Communications of the ACM, vol. 18, no. 2, pp. 255-264.

[SRT78] Shinghal, R., Rosenberg, D. and Toussaint, G.T. (1978), "A Simplified Heuris-
tic Version of a Recursive Bayes Algorithm for Using Context in Text Recogni-
tion," IEEE Transactions on Systems. Man and Cybernetics, vol. 8, pp. 412-414.

[SS77] Suen, C.Y. and Shillman, R.I. (1977), "Low Error Rate Optical Character
Recognition of Unconstrained Handprinted Letters Based on a Model of Human

[SS83]

[SS88]

[SSK77]

[SSS76]

[ST79a]

[ST79b]

[Ste61]

[Ste91]

[Sto94]

[Str80]

[Str90]

[Sue82a]

[Sue82b]

[Szu86]

[TA84]

[TA91]

- 317 -

Perception," IEEE Transactions on Systems, Man and Cybernetics, vol. 7, pp.
491-495.
Sarvarayudu, G.P.R. and Sethi, I.K. (1983), "Walsh Descriptors for Polygonal
Curves," Pattern Recognition, vol. 16, pp. 327-336.
Siedlecki, W. and Sklansky, J. (1988), "On Automatic Feature Selection," Inter-
national Journal of Pattern Recognition and Artificial Intelligence, vol. 2, no. 2,
pp. 197-220.

Suen, C.Y., Shinghal, R. and Kwan, C.C. (1977), "Dispersion Factor: A Quanti-
tative Measurement of the Quality of Handprinted Characters," Proceedings of
the International Conference on Cybernetics and Society, pp. 681-685.
Suen, C.Y., Shiau, C., Shinghal, R. and Kwan, C.C. (1976), "Reliable Recogni-
tion of Handprint Data," Proceedings of the Joint Workshop on Pattern Recog-
nition and Artificial Intelligence, pp. 98-102, Hyannis, Mass .• U.S.A.

Shinghal, R. and Toussaint, G.T. (1979), "Experiments in Text Recognition
with the Modified Viterbi Algorithm," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 1, DO. 2, pp. 184-193.
Shinghal, R. and Toussaint, G.T. (1979). "A Bottom-up and Top-Down
Approach to Using Context in Text Recognition," International Journal of
Man-Machine Studies, vol. 11, pp. 201-212.

Steinbuch, K. (1961), "Die Lernmatrix," Kybemetik, vol. 1, pp. 36-45.

Stephens, R.S. (1991), "Probabilistic Approach to the Hough Transform,"
Image and Vision Computing, vol. 9, pp. 66-71.

Stockley. P. (1994), "System Specification for Improving Match Quality,"
PAFEC Ltd Internal Report DTHCOOM_SECT8.

Stringa, L. (1980), "State of the Art and Perspectives of the Linguistic-Semantic
Approach to Industrial OCR," in Pattern Recognition in Practice, ed. E.S.
Gelsema and L.N. Kanal, pp. 325-335, North-Holland Publishing Company.

Stringa, L. (1990), "A New Set of Constraint-Free Character Recognition Gram-
mars," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
12, no. 12, pp. 1210-1217.

Suen, C.Y. (1982), " Distinctive Features in Automatic Recognition of Hand-
printed Characters," Signal Processing, vol. 4, pp. 193-207.

Suen, C.Y. (1982), "The Role of Multi-Directional Loci and Clustering in Reli-
able Recognition of Characters," Proceedings of the 6th International Confer-
ence on Pattern Recognition, pp. 1020-1022, IEEE, Munich, Germany.

Szu, H. (1986), "Fast Simulated Annealing," in AlP Conference Proceedings
151: Neural Networks for Computing, ed. J. Denker, pp. 420-425, American
Institute of Physics, New York, U.S.A.

Tsuji, Y. and Asai, K. (1984), "Character Image Segmentation," Proceedings of
the Society of the Photo-Optical Institute of Engineers, vol. 504, Applications of
Digital Image Processing VII, pp. 2-9.
Tsujimoto, S. and Asada, H. (1991), "Resolving Ambiguity in Resolving
Touching Characters," Proceedings of the 1st International Conference on
Document Analysis and Recognition, pp. 701-709, Saint-Malo, France.

- 318 -

[Tam78] Tamura, H. (1978), "A Comparison of Line Thinning Algorithms from Digital
Geometry Viewpoint," Proceedings of the 4th International Joint Conference
on Pattern Recognition, pp. 715-719, Kyoto, Japan.

[TD70] Toussaint, G.T. and Donaldson, R.W. (1970), "Algorithms for Recognizing
Contour-Traced Handprinted Characters," IEEE Transactions on Computers,
vol. 19, pp. 541-546.

[Tes86] Tesauro, G. (1986), "Simple Neural Models of Classical Conditioning," Biolog-
ical Cybernetics, vol. 55, pp. 187-200.

[1F81] Tsao, Y.F. and Fu, K.-S. (1981), "Parallel Thinning Operations for Digital
Binary Images," Proceedings of the International Conference on Pattern
Recognition and Image Processing, pp. 150-155, IEEE, Dallas, Texas, U.S.A.

[TG72] Tou, J.T. and Gonzalez, R.C. (1972), "Recognition of Handwritten Characters
by Topological Feature Extraction and Multilevel Categorization," IEEE Tran-
sactions on Computers, vol. 19, pp. 776-785.

[The89] Therrien, C.W. (1989), Decision Estimation and Classification: An Introduction
to Pattern Recognition and Related Topics, John Wiley and Sons, New York,
U.S.A.

[Tho86] Thomason, M.G. (1986), "Chapter 5 - Syntactic Pattern Recognition: Stochas-
tic Languages," in Handbook of Pattern Recognition and Image Processing, ed.
T.Y. Young and K.-S. Fu. pp. 119-142, Academic Press.

[TIA90] Takahashi, H., Itoh, N., Amano, T. and Yamashita, A. (1990), "A Spelling
Correction Method and Its Application to an OCR System," Pattern Recogni-
tion, vol. 23, pp. 363-377.

[Tol90] Tollenaere, T. (1990), "SuperSAB: Fast Adaptive Back Propagation with Good
Scaling Properties," Neural Networks, vol. 3, no. 5, pp. 561-573.

[Tou78] Toussaint, G.T. (1978), "The Use of Context in Pattern Recognition," Pattern
Recognition, vol. 10, pp. 189-204.

[TP86] Torre, V. and Pogglo, T.A. (1986), " On Edge Detection," IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 8, pp. 147-163.

[Tro76] Troxel, D.E. (1976), "Feature Selection for Low Error Rate OCR," Pattern
Recognition, vol. 8, pp. 73-76.

[TT89] Tsay, Y.-T. and Tsai, W.-H. (1989), "Model-Guided Attributed String Matching
by Split-aDd-Merge for Shape Recognition," International Journal of Pattern
Recognition and Artificial Intelligence, vol. 3, pp. 159-179.

[TY85] Tsai, W.-H. and Yu, S.-S. (1985), "Attributed String Matching with Merging for
Shape Recognition," IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 7, pp. 453-462.

[UlI69] Ullmann, J.R. (1969), "Experiments with the N-Tuple Method of Pattern Recog-
nition," IEEE Transactions on Computers, vol. 18, pp. 1135-1137.

[VB64] Vossler, C.M. and Branston, N.M. (1964), "The Use of Context for Correcting
Garbled English Text," Proceedings of the ACM 9th National Conference, pp.
D2 4-1-D2 4-13.

[Vit67] Viterbi, A.J. (1967), "Error Bounds for Convolutional Codes and an Asymptoti-
cally Optimum Decoding Algorithm," IEEE Transactions on Information

- 319-

Theory. vol. 13.pp. 260-269.
[Wal23] Walsh. J.L. (1923). "A Closed Set of Normal Orthogonal Functions." American

Journal of Mathematics. vol. 45. pp. 5-24.
[Wan80] Wang. P.S. (1980). "Some New Results on Isotonic Array Grammars." Informa-

lion Processing utters. vol 10. no. 3. pp. 129-131.
[Was69] Wasan, M.T. (1969). Stochastic Approximation. Cambridge University Press.

New York. U.S.A.
[Wat65] Watanabe. S. (1965). "Karhunen-Loeve Expansion and Factor Analysis." Tran-

sactions of the 4th Prague Conference on Information Theory.

[WDR81] Wu. A.Y.• Dubltzkl, T. and Rosenfeld. A. (1981). "Parallel Computation of
Contour Properties." IEEE Transactions on Pattern Analysis and Machine Intel-
ligence. vol. 3. no. 3. pp. 331-337.

[Wee68] Wee. W. (1968). "Generalized Inverse Approach to Adaptive Multiclass Pattern
Classification." IEEE Transactions on Computers. vol. 17. pp. 1157-1164.

[Wee70] Wee. W. (1970). "On Feature Selection in a Class of Distribution-Free Pattern
Classifiers." IEEE Transactions on Information Theory. vol. 16. pp. 47-55.

[Wer74] Werbos. PJ. (1974). Beyond Regression: New Tools for Prediction and Analysis
in the Behavioural Sciences. Unpublished Ph.D. thesis, Harvard University,
Cambridge, Mass.•U.S.A.

[Wes86] Weszka, 1.S. (1986), "A Survey of Threshold Selection Techniques," Computer
Graphics and Image Processing. vol. 7. pp. 41-47.

[WG77] Wendling, S. and Gagneaux, G. (1977). "Metric Invariants for Unitary Transfor-
mations and Their Application in Character Recognition," Pattern Recognition,
vol. 9, pp. 233-240.

[WGM73] Widrow, B., Gupta, N. and Maitra, S. (1973), "PunishlReward: Learning with a
Critic in Adaptive Threshold Systems," IEEE Transactions on Systems, Man
and Cybernetics. vol. 5, pp. 455-465.

[WH60] Widrow, B. and Hoff. M.E. (1960), "Adaptive Switching Circuits," 1960 IRE
WESCON Convention Record, Part 4, pp. 96-104. IRE. New York, U.S.A.

[WHF86] Wang, P.S.P., Hui, L.-W. and Heming. T. (1986). "Further Improved Fast
Parallel Thinning Algorithm for Digital Patterns." in Computer Vision, Image
Processing and Communications - Systems and Applications, ed. P.S.P. Wang,
pp. 37-40, World Scientific, Singapore.

[Wit87] Williams, R. (1987), "Reinforcement Learning Connectionist Systems,"
Northeastern University, College of Computer Science, Technical Report NU-
CCS-87-3.

[Win70] Winston, P.H. (1970), Learning Structural Descriptions from Examples. Ph.D.
thesis, TR-76, Department of Electrical Engineering. MIT.

[WM91] Wu, S. and Manber, U. (1991), "Fast Text Searching with Errors," University of
Arizona, Department of Computer Science. Technical Report TR 91-11.

[WNR74] Weszka, J.S., Nagel. R.N. and Rosenfeld, A. (1974). "A Threshold Selection
Technique." IEEE Transactions on Computers. pp. 1322-1326.

[Woo70] Woods. W.A. (1970). "Transition Network Grammars for Natural Language
Analysis." Communications of the ACM. vol 13. no. 10.pp. 591-606.

- 320-

[WR83] White, J.M. and Rohrer, 0.0. (1983), "Image Thresholding for Optical Charac-
ter Recognition and Other Applications Requiring Character Image Extraction,"
IBM Journal of Research Developments, vol. 27, no. 4, pp. 400-410.

[Wri89] Wright, W.A. (1989), "Probabilistic Learning on a Neural Network," Proceed-
ings of the 1st lEE International Conference on Artificial Neural Networks, pp.
153-158.

[WS76] Wendling, S. and Stamon, O. (1976), "Hadamard and Haar Transforms and
Their Power Spectra in Character Recognition," Proceedings of the Joint
Workshop on Pattern Recognition and Artificial Intelligence, pp. 103-112,
Hyannis, Mass., U.S.A.

[WSS89] Waibel, A., Sawai, H. and Shikano, K. (1989), "Modularity and Scaling in
Large Phonemic Neural Networks," IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 37, DO. 12, pp. 1888-1898.

[WW88] Widrow, B. and Winter, R. (1988), "Neural Nets for Adaptive Filtering and
Adaptive Pattern Recognition," Computer, pp. 25-39.

[WWC82] Wahl, F.M., Wong, K.Y. and Casey, R.O. (1982), "Block Segmentation and
Text Extraction in Mixed TextlImage Documents," Computer Graphics and
Image Processing, vol. 20, pp. 375-390.

[WZ89] Wechsler, H. and Zimmerman, O.L. (1989), "Distributed Associative Memory
(DAM) for Bin-Picking," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. II, no. 8, pp. 814-822.

[Xia86] Xia, Y. (1986), "A New Thinning Algorithm for Binary Images," Proceedings
of the 8th International Conference on Pattern Recognition, pp. 995-997, IEEE,
Paris, France.

[XW87] Xu, W. and Wang, C. (1987), "COT: A Fast Thinning Algorithm Implemented
on a Sequential Computer," IEEE Transactions on Systems. Man and Cybernet-
ics, vol. 17, no. 5, pp. 847-851.

[Yam84] Yamada, H. (1984), "Complete Euclidean Distance Transformation by Parallel
Operation," Proceedings of the 7th International Conference on Pattern Recog-
nition, pp. 69-71, IEEE, Montreal, Canada.

[Y09Oa] Yair, E. and Gersho, A. (1990), "The Boltzmann Perceptron Network: A Soft
Classifier," Neural Networks, vol. 3, no. 2, pp. 203-221.

[YG9Ob] Yair, E. and Gersho, A. (1990), "Maximum A Posteriori Decision and Evalua-
tion of Class Probabilities by Boltzmann Perceptron Classifiers," Proceedings of
the IEEE, vol. 78, no. 10, pp. 1620-1628.

[YM78] Yamada. H. and Mori, S. (1978), "Line-Wise Parallel Operations and Their
Application to Handprint Recognition," Proceedings of the 4th International
Joint Conference on Pattern Recognition, pp. 789-793, Kyoto, Japan.

[YM80] Yamamoto, K. and Mori, S. (1980), "Recognition of Handprinted Characters by
Outermost Point Method," Pattern Recognition, vol. 12, pp. 229-236.

[YM92] Young, S.R. and Matessa, M. (1992), "MINDS-II Feedback Architecture:
Detection and Correction of Speech Misrecognitions," Carnegie-Mellon Univer-
sity, Department of Computer Science, Technical Report CMU-CS-92-119.

[YR82]

[YS68]

[YTF73]

[Zad65]

[ZR72]

[ZS84]

- 321 -

Yamamoto, K. and Rosenfeld, A. (1982), "Recognition of Handprinted Kanji
Characters by a Relaxation Method," Proceedings of the 6th International
Conference on Pattern Recognition, pp. 395-398.
Yau, S.S. and Schumpert, I.M. (1968), "Design of Pattern Classifiers with the
Updating Property Using Stochastic Approximation Techniques," IEEE Tran-
sactions on Computers, vol. 17, pp. 861-872.

Yokoi, S., Toriwaki, 1.-1. and Fukumura, T. (1973), "Topological Properties in
Digitized Binary Pictures," Systems, Computers, Controls, vol. 4, DO. 6, pp. 32-
39.

Zadeh, L.A. (1965). "Fuzzy Sets," Information and Control, vol. 8, pp. 338-353.

Zahn, C.T. and Roskies, R.Z. (1972), "Fourier Descriptors for Plane Closed
Curves," IEEE Transactions on Computers, vol. 21. no. 3, pp. 269-281.

Zhang. T.Y. and Suen, C.Y. (1984). "A Fast Parallel Algorithm for Thinning
Digital Patterns," Communications of the ACM. vol. 27. no. 3. pp. 236-239.

