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A Phased Mission Approach to Fault Propagation

Abstract: On complex systems with built-in health management systems, the faults

diagnosed during a mission can number in the tens of thousands. When these faults are

evaluated, many are found to be false. This work has, therefore, developed a technique by

which diagnosed faults can be evaluated using known system data and a system modelling

technique to automatically verify their legitimacy.

Petri nets (PNs) were selected as the modelling technique since they allow systems to be

modelled in a componentistic and flexible way, that still provides a high level of accuracy.

The PN technique was used to model the performance of an experimental facility, the

BAE Systems fuel rig, which represents an aircraft fuel system. A wide range of faults

were injected into the system and sensor outputs were recorded. By comparing the sensor

outputs from the fuel rig to the PN predicted system behaviour, the faults were assessed as

either genuine or false. The standard deviation technique is used as part of the comparison

process as it provides a high level of detail with low computational requirements. A piece

of software was written to automate the PN simulation and comparison of the output

data.

The ability of the overall technique to verify diagnosed faults was demonstrated by

a thorough consideration of failure modes in the fuel rig system. First and second order

faults were evaluated and the results showed that the technique was very successful at

identifying both genuine and false faults. Some issues were evident when hidden failures

were considered and faults which were revealed for only short periods of time were injected.

The PN technique was also successfully used to model the behaviour of the fuel system

of the Airbus A340 aircraft. This system contains a higher level of complexity in terms

of both design and operation compared to the fuel rig. The behaviour of the system in

normal operation was modelled to replicate that described in literature and a number

of first and second order faults were modelled. The PN predicted behaviour of the fuel

system in the presence of these faults matched well with that expected.

The PN technique can be used to obtain the output of sensors when failures occur, and

such information can be used in the process of system design. An approach is presented

by which a sensors value can be calculated and used to select sensors in a system. The

technique considers the change in the value measured by a sensor as a result of faults for

single sensors and their pairs.
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CHAPTER 1

Introduction

1.1 Health Management System Background

Complex systems can only fulfil their primary functional goals when they are operational;

aircraft and power stations are two examples of such systems. The operation of these

systems often involves an inherent amount of risk and therefore their safe operation must

be closely monitored at all times. Furthermore the lifecycle costs associated with complex

systems are often very high and it is of interest to the system operators to minimise these

costs while also protecting their assets. To achieve these aims, health management systems

are designed as part of complex systems to monitor a large number of sensors and built-in

test (BIT) outputs in order to identify any unexpected system performance.

Sensors and BITs track the behaviour of variables within sub-systems and components,

for example an aircraft’s fuel tank level or a nuclear power plant’s reactor temperature

may be monitored. If a fault occurs on a complex system which causes an unexpected

change in the system performance, health management systems attempt to diagnose the

fault from the sensor and BIT outputs in order to generate an ‘arising’. An arising is a

record of the fault that has been diagnosed in the form of a fault code, as well as the

time of the diagnosis. Every arising is then passed from the health management computer

to a manual operator. This enables action to be taken by the operator, which in serious

situations could prevent the fault propagating through the system and cause widespread

damage. If faults are less severe and are captured prior to causing damage, preventative

maintenance can also be planned in advance allowing it to be carried out when a system

is scheduled to be out of service thereby minimising any loss of operation. In this sense,

it is necessary for health management systems to provide both wide ranging and detailed
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coverage of complex systems. This ensures that less severe component failures, which may

cause an immediate but minor change to the system performance, are diagnosed promptly

as these faults may become more severe or contribute to more critical faults occurring in

the future.

While health management systems perform a key role in ensuring the safe operation

of complex systems, they are known to generate a vast number of arisings even in normal

system operation. On one type of military aircraft the number of arisings generated in

a standard 6 hour flight is in the order of thousands. It is known from the flight data

that the majority of these arisings are ‘false positives’. Current techniques only allow a

small number of these false arisings to be identified. Due to the high quantity of arisings,

using a process of manual verification to identify genuine arisings is both overly time

consuming and highly inefficient. The effect of high volume arisings is even greater on

systems where there isn’t an operator in the command loop. On manned systems, the

occurrence of critical arisings can be manually verified by a human operator. However, on

unmanned systems, such as increasingly popular unmanned aerial vehicles (UAVs), there

is no human operator available to verify the arisings generated in-flight. As a result the

operation of the aircraft would have to be terminated. An increase in aircraft downtime

to verify potentially false arisings not only results in increased maintenance costs, but

will also limit the capabilities available to the aircraft’s operator. The operators of any

form of unmanned complex system would experience similar cost increases and operational

limitations.

Accurate sub-system and component monitoring is particularly important and yet

challenging to provide in complex systems as many operate in several unique operational

phases within a single mission. This presents a challenge as the behaviour of the system

can vary between the different operational phases. On an aircraft for example the phases

may include taxi to runway, take-off, climb, cruise, descend, land and taxi to gate. The

behaviour of different sub-systems can vary between these phases and a suitable monitoring

technique must be able to account for this variation in behaviour. Operational phases can

also be differentiated by time or system configuration.

Phased mission monitoring is further complicated by the fact that a fault may occur

and yet remain hidden in one phase but then be revealed in subsequent phases. Also, the

performance of the system may alter when multiple faults occur, or become revealed due

to a phase change for example. The behaviour of a system in every operational phase and
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at any phase change must therefore be carefully monitored. This multifaceted behaviour

of complex systems helps to illustrate one of the reasons why health management systems

can generate so many false arisings.

1.2 Built-In Tests

Complex systems use BITs to monitor the behaviour of variables in sub-systems and

components. BITs are capable of generating arisings based on the variable outputs that

they monitor. Any faults diagnosed by a BIT are passed to the health management system

to be merged with any other arisings.

An aircraft is an example of a complex system that makes use of BITs. On the BAE

Systems Eurofighter Typhoon aircraft three types of BIT are used: powered built-in tests

(PBITs), continuous built-in tests (CBITs) and interrupted built-in tests (IBITs). Each

BIT performs a different function within the overall health monitoring process. PBITs

are used when the aircraft is started-up to identify any components that have failed prior

to power-up or exhibit a fault on power-up. PBITs are both thorough and wide-ranging

to ensure that a detailed analysis of sub-systems and components is conducted prior to

increased operational demands. CBITs are run throughout the operational mission of the

aircraft and monitor variable behaviour in every operational phase. CBITs are active in

the background of normal operational system activity and they do not offer the coverage

or detail provided by PBITs. An IBIT is an on demand test that is initiated by a pilot

or maintenance engineer usually at the end of an aircraft mission. IBITs provide a level

of detail and coverage similar to that provided by PBITs. The combination of the three

BITs described above provides an example of how detailed coverage of a complex system

throughout its operation can be achieved.

BITs are modular stand-alone units that are often purchased through third party

suppliers to supplement health management systems. The BIT is installed with the ap-

propriate sub-system or component to form a line replaceable item (LRI). A BIT is specific

to the LRI that it is installed on, but a single LRI can contain multiple types of BITs. A

single LRI on the Typhoon aircraft could therefore contain a PBIT, a CBIT and an IBIT

or any combination of these. A single LRI will use the same set of sensors as inputs to all

of its BITs. The manner in which these inputs are dealt with and analysed is specific to

each BIT.
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On many systems if a BIT generates an arising, the entire LRI is replaced immediately.

This procedure is not only expensive but in many cases it may be unnecessary if the fault

identified by the BIT is shown to be false. However, with no process in place to verify

these arisings large costs are incurred replacing LRIs on complex systems. It may also be

possible that the BIT is faulty and as a result has generated an arising. Replacing the

LRI as a result of this would again be unnecessary and costly but is unavoidable using

current methods.

1.3 False Arisings

The number of false arisings generated by the health management system of a complex

system has a significant impact on the maintenance costs and availability of the system.

Identifying the causes of false arisings is therefore important in the overall effort to reduce

the number generated.

1.3.1 False Arising Causes

1.3.1.1 Variable Power Supply at Start-Up

Complex systems are very large and may contain hundreds of sub-systems. When these

complex systems start-up there may only be a finite amount of power available to bring all

the sub-systems and components online. As a result, the power supply within the system

will fluctuate. This means that the sub-systems and components within the system will

start-up at different times, as and when the power supply becomes available to them. This

inconsistent start-up process often creates false arisings.

Consider the flight control system on an aircraft. For redundancy purposes it may

contain three identical flight control computers that perform the same tasks. If one com-

puter comes online before the remaining units, the system sensor outputs will cause the

health management system to generate an arising stating that the remaining computers

have failed. However, these arisings would be false as the offline computers have not failed,

they have only yet to finish starting up. Given that this problem can affect all of the elec-

trically driven components and systems on an aircraft, the variable power supply available

to an aircraft at start-up could cause a great number of false arisings.
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1.3.1.2 Tolerance Levels

A tolerance level is factored into a health management system analysis of sensor outputs

and in BITs in order to allow for noise within system variables. Noise will cause system

variables, such as flow pressure or flow rate, to be reported by sensors as lower or higher

than they actually are. For example, in an aircraft fuel system although a section of pipe

may be operating at a constant flow rate, noise may cause the reported flow rate to vary

at levels above or below this constant value. Health management systems and BITs are

designed to apply tolerances to account for this. However if the tolerances are overly

restrictive, noise could cause variables to exceed these tolerances causing an arising to be

generated. If noise is the only cause of this arising occurring, the arising can be classified

as false.

It would be possible to reduce the number of false arisings generated due to tolerance

levels by relaxing the tolerances on the system variables. However, this would increase the

likelihood of a genuine fault occurring and going undetected by the health management

system or a BIT. Such a situation creates a ‘true negative’, which can be very dangerous.

On complex systems, many of which are safety critical, narrow tolerances are applied

to ensure that all faults are identified, even if it results in an increased number of false

arisings.

The issue of false arisings generated due to tolerance levels is particularly prevalent on

the start-up of complex systems. At this time many system variables exhibit significant

changes in values, as related components come online and the system encounters a variable

power supply. On complex systems this results in a large number of false arisings being

generated, as tolerance levels are frequently exceeded. Once the system has completed its

start-up processes and settled into its standard operating behaviour, such false arisings

are less likely to be generated.

1.3.1.3 Sensor Failures

False arisings can be generated as a result of a fault with sensor equipment. If a sensor

experiences a failure, the inputs to the health management system and BITs will fail to

represent the true state of the component. This has the potential to cause multiple false

arisings. The occurrence of such a sensor or instrument failure would effect every BIT

type which relies on that sensor output.
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The failure of a sensor also has more serious repercussions if a genuine fault of the

related component occurs. The effect of the fault will not be represented in the output of

the sensor and neither the health management system nor a BIT may be able to diagnose

the presence of the fault.

1.3.1.4 BITs

There are a number of ways in which BITs can cause false arisings to be generated on

complex systems. Any fault within a BIT unit can cause false arisings to be generated.

In a similar fashion to sensor failures, hardware or software faults within a BIT can cause

incorrect outputs to be produced. In the right conditions these can cause false arisings to

be generated and passed to the health management system.

A second source of false arisings from BITs can be attributed to their tolerance levels

- an issue which was identified previously.

The acquisition of BITs from third party manufactures creates a further source of

false arisings in complex systems. BITs designed by third party companies are often not

application specific and are subject to testing and analysis by the parent company only. As

these BITs are purchased from suppliers, it is not possible for operators of complex systems

to change or modify the units. When these BITs are installed on complex systems, their

behaviour and fault testing performance can differ from the expected behaviour including

the generation of false arisings. The occurrence of these false arisings can be reduced if

the suppliers of BITs are made aware of falsely generated arisings. The supplier can then

make appropriate adjustments to prevent the BIT from generating the unwanted arisings.

However, this process is dependent on the supplier being made aware of and verifying the

arising as being false using its own internal testing mechanism. If the manufacturer cannot

verify a fault as being false in the equivalent operating conditions, the BIT will not be

altered and the false arising will continue to be generated.

1.3.1.5 Variable Mission Types

Sub-system and component monitoring techniques are currently unable to account for the

type of mission being undertaken by a complex system. As a result, a number of false

arisings are generated. Consider a military aircraft undertaking a training mission. As no

warfare-based phases of operation are conducted, a number of weapon and combat-based

components may be omitted from the aircraft set-up process. As the health management
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system and BITs cannot account for such information they will generate a number of false

arisings stating that these missing components have failed.

1.4 Research Aim

The number of arisings generated by complex systems poses a problem to system operators

who want to operate these systems safely but also effectively. Abandoning or delaying

missions to investigate every arising is not practical. Missions are therefore undertaken

in spite of unchecked arisings being present. While it is known that the majority of these

arisings are false, there is no effective method available to identify which ones.

It has been shown that while false arisings can be generated throughout a system’s

operation/mission, the majority of false arisings are generated at start-up. On one military

aircraft, of all the arisings generated during a mission almost 70% occurred during the

start-up phase. Developing a technique to analyse arisings generated in the start-up phase

of complex systems and identifying them as either true or false would therefore reduce the

total number of arisings significantly.

The aim of the project is to develop a technique that can verify true arisings in the

event of a component or system failure and filter those arisings that can be proven to be

false. This technique is primarily concerned with those arisings that are generated in the

start-up phases of a mission.

1.5 Research Objectives

In order to verify the accuracy of fault arisings it is necessary to replicate the behaviour

of faults using a system model. There are a large number of techniques which have been

devised, developed and utilised to model a full range of system types over many decades.

Identifying the most suitable technique is the first stage of this research. Converting the

modelling technique processes into a piece of software and testing it on a range of system

types is also necessary in order to achieve the project aim. A number of objectives have

been listed to achieve this project aim:

• Review and evaluate existing system modelling techniques. Demonstrate their ca-

pability through application to a theoretical system.
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• Identify the most suitable system modelling technique and represent its behaviour in

a software program. Use a further theoretical system to verify accuracy of software.

• Apply the chosen modelling technique to a physical system.

• Review existing fault verification techniques and through application to the physical

system identify the most suitable technique(s) for project. Create a demonstrator

that uses the chosen fault verification technique to verify fault arisings generated

from the physical system using the physical system and system model outputs.

• Use the system modelling software and fault verification technique to demonstrate

how fault arisings on the physical system can be verified as true or false. Consider

a phased mission of the system.

• Demonstrate application of the technique on an industrial scale system

• Identify further areas where the modelling software and fault verification demonstra-

tor can be used to improve the design/operation of systems.



CHAPTER 2

Literature Review

2.1 Introduction

The purpose of this literature review is to identify and evaluate existing system modelling

techniques that may be suitable for fault propagation analysis. Through application to a

simple, theoretical system the most appropriate modelling technique for this project will

be identified.

The necessary characteristics required of the modelling technique for this project would

include those listed below.

• Ability to model complex systems with accuracy

• Ability to deal with phased missions

• Offer a high level of flexibility

There are numerous techniques available to model systems [1] and consideration is

given to three of the most developed and widely used; the decision table, digraph and the

petri net (PN) techniques. The theoretical system that the modelling techniques will be

applied to is a domestic hot water system. The system is considered in greater detail in

Section 2.2.3.1. The most promising technique will also be used to model a tank level

control system. This system is described in Section 2.4.4. Considering a further system

will test the robustness of the modelling technique and help to confirm the observations

made from its use when modelling the hot water system.
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2.2 Decision Tables

2.2.1 Technique Details

Any process, be it chemical or manufacturing for example, is subject to a set of conditions

that will determine its resulting action. A decision table is a tabular representation of

these condition sets and the resulting actions. A complete decision table will list every

relevant condition set, including failures, and the respective actions of a component. When

modelling a physical system using the decision table modelling technique, every component

is modelled by a decision table. A component’s inputs and internal modes would be

considered as a set of conditions while the output is the resulting action.

Consider a simple gas pipe with the conditions ’Gas Input’ and ’Internal Mode’. The

input condition can provide either supply (S) or no supply (NS) and the internal mode

can either exhibit no blockage (NB) or a blockage (B). Depending on these conditions the

resulting action ’Gas Output’ will provide either a supply (S) or no supply (NS). The gas

pipe has been modelled using a decision table in Table 2.1.

Table 2.1: Gas pipe decision table

Row Number Gas Input Internal Mode Gas Output

1 NS B NS

2 NS NB NS

3 S B NS

4 S NB S

It can be seen from row four of Table 2.1 that a gas supply will only be output from the

gas pipe when there is a supply at the input and there is no blockage in the pipe. All other

combination of conditions will produce the same output - no supply. Although a decision

table shows a range of condition sets and resulting actions, Table 2.1 demonstrates that

only one row of a decision table can be true at any one time.

The gas pipe decision table shown above is one of the most basic that could be de-

veloped. A more complex component with multiple input and output variables would

produce a much larger decision table. It is not uncommon for a detailed decision table

to contain several columns and hundreds of rows. In order to consider only the minimum

number of conditions to produce all the system outputs, a simplification rule is applied.
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To simplify a decision table there must be at least two rows with matching outputs.

These rows must also have identical values in all but one of the other columns. In this

remaining column, if all the possible states of the condition are shown in the otherwise

identical rows, then the rows can be simplified to one with the value in the non-identical

column being set to a dash (-). This indicates the value of this variable does not matter,

as it has no affect on the output.

In Table 2.1, when there is no gas supply at the input it is irrelevant what the internal

mode of the pipe is, there will be no gas supply output. Rows one and two can therefore

be combined. A similar outcome occurs when the pipe is blocked. The simplified gas pipe

decision table is shown below.

Table 2.2: Simplified gas pipe decision table

Row Number Gas Input Internal Mode Gas Output

1 NS – NS

2 – B NS

3 S NB S

When constructing the decision tables of an entire system it is necessary to consider

how the components are linked together. Where two components are linked, all possible

outputs from the first component must be considered as unique inputs to the second

component. In cases where a component has multiple inputs each must be considered as a

condition set. In the decision table all combination of input variable states must then be

evaluated. Only in this way will the decision table technique provide the most accurate

representation of the system behaviour.

2.2.2 Literature Review

The decision table modelling technique was first developed by Pollack [2]. The technique

represented an expansion of Pollack’s simpler yet more restrictive truth tables [3]. Truth

tables limited the detail with which components could be modelled as any description of

a system state had to be in a binary form. Contrastingly, decision tables do not place a

limit how many discrete values can be used to describe a system variable [4].

Since their inception decision tables were designed to be able to model any system
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type. Their application, therefore, is very wide ranging. Some of the systems modelled

by decision tables include process plant systems [5], the residual heat removal system of

a nuclear power plant [4] and a steel structure code-checking system [6]. These systems

consider a range of components that are electrical, human and mechanical in nature.

One of the main advantages of using decision tables to model systems, as identified

by Carpignano and Poucet, is the fact that they are context free [7]. This means that

a decision table can be constructed knowing only the component type and its direct in-

puts. Information regarding its location in the overall system or its “underlying functional

structure” is not required. Salem et al [4] also note that this characteristic means compo-

nent decision tables can quickly account for changes in the system topology. This feature

adds further value as it doesn’t limit the decision table technique to analysing completed

systems; it also allows it to be used as an effective system design tool once the decision

tables have been constructed. For these reasons Kelly and Lees consider the decision table

modelling technique to be very flexible [5].

As component decision tables are context free, they are not unique to a single system.

If the same component is used in multiple systems, the same decision table can also be

used. This means a library of component decision tables can be built over time as new

components are considered. Salem et al also observe that by continuously building this

library of decision tables, the time taken to model systems will continually decrease [4].

This is important because, as a number of authors note [5], [8], creating decision tables

remains a manual task which requires significant resources. Kelly and Lees also state that

the process of creating decision tables does not suit automation [5]. The reason for this is

identified by Salem et al [4]; constructing component decision tables represents the only

opportunity an analyst has to input their system knowledge into the model. Having a

computer attempt to undertake this task risks key system knowledge being omitted and

the system model being inaccurate.

In a review of the decision table technique, Carpignano and Poucet criticise “the simpli-

fied representation scheme of the system and component behaviour in which no functional

information can be represented” [7]. The decision table technique fails to consider the

functional details of a system as it uses a componentistic approach to modelling. The

same authors state that techniques using this approach have difficulties modelling a sys-

tem’s global behaviour and control properties because they do not consider the functional

role of components in a system. As a result the detail with which a system’s true be-
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haviour can be modelled using the decision table technique is limited. Other authors have

made a similar observation about the poor consideration of control loops. Andrews and

Henry, for example, state that an “inability to detect, classify and analyse control loops”

is the decision table modelling technique’s primary weakness [9]. It is the consideration of

only individual system components and not all of the components collectively which leads

to this poor consideration of control loops by the decision table technique. Andrews and

Henry propose incorporating a positive/negative gain into the decision tables in order to

correctly account for control loops.

A further shortcoming of the decision table modelling technique is its inability to

account for the reverse propagation of faults. According to Carpignano and Poucet, this

is due to the fact that decision tables are unidirectional [7]. As a result when a fault occurs

in any one component, only those components downstream of it will exhibit the effects

of the failure. Considering a system where flow moves from left to right, downstream

components would be those to the right of a failed component. Components upstream, or

to the left, of the failed component will not be able to account for the failure even though,

in reality, a fault may propagate in both directions in a system. For this reason how

components have been linked in the model will also significantly affect the propagation of

any faults.

When a system is modelled for the first time, it is important to check that the model

does not contain errors. Identifying modelling errors as early as possible is always prefer-

able, however, it may not be until further analysis is undertaken that these errors become

apparent. Having to correct errors at a later stage will take longer and require more re-

sources, as the analysis process may have to be repeated. Given the above and the fact

that decision tables consider components individually, Carpignano and Poucet state that

system models produced by the tables are difficult to verify “for congruence and complete-

ness” [7]. However many authors [10], [11], [12] take a different opinion and consider the

technique easy to verify and validate. Vanthienen et al consider decision tables effective

because their structured nature makes anomalies easy to identify [11]. Also unlike the PN

technique, for example, decision tables do not have to be converted into their operational

form in order to be verified. This means errors can be identified and corrected earlier in

the decision table modelling process.

Majdara and Wakabayashi have recently attempted to overcome some limitations of

the decision table technique by combining it with a number of functional modelling features
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to create a single technique that doesn’t ignore “any necessary details” [8]. The developed

method is based on the decision table technique; components are modelled by both function

and state transition tables. Function tables are the same as decision tables and can be

simplified in the same manner, as can the state transition tables. The authors consider

the state transition tables to be the tabular form of state diagrams. They are used for

those components that have multiple operating states, i.e. a valve as it can be open or

closed. The contribution from the functional modelling techniques comes in the form of

considering the physical properties of flow through the system. Any physical property

can be incorporated into the model, i.e. temperature, and these are defined at the start

of modelling. Every component that can vary the defined physical properties has an

extra column added to its function and/or state transition table that shows how the

property is affected by the component. While the authors consider application of the

developed technique a success, it is not clear how the physical properties are handled by

the technique. The technique also continues to fail to account for reverse propagation and

would require an even larger library of results to store the two types of tables.

2.2.3 Application to Hot Water System

2.2.3.1 System Description

The purpose of the hot water system is to provide a supply of hot water on demand from

a user. To model this behaviour the system operation has been split into two phases. In

the first phase the water is heated while the tap remains closed. In the second phase, the

tap is opened and a supply of hot water is output from the system. A schematic diagram

of the hot water system is shown in Figure 2.1

In phase one the water pipe is filled with water while the tap is closed. The water is

heated by the pilot light which is constantly lit and receives a gas input from the supply.

A feedback loop regulates the temperature in the water pipe using a temperature sensor,

controller and a control valve in the gas pipe. The valve remains fully opened until the

water temperature reaches its upper limit, at which point the valve is closed. The water

in the pipe is then allowed to cool until its temperature falls to its lower limit. At this

point the feedback loop opens the control valve and the heating process is repeated.

In phase two the tap is opened and hot water leaves the system. The flow of hot water

leaving the system is continuously replaced by cold water entering the system. This water



2.2. Decision Tables 15

Figure 2.1: Hot water system

is heated by an unbroken gas supply to ensure a constant supply of hot water is provided

to the tap. Before entering the water pipe, the pressurised water supply passes through a

non-return valve (NRV). This valve is in place to prevent reverse flow should the hot water

system become over-pressurised. If an excessive pressure does build up in the system it

will be outlet through the pressure relief valve.

2.2.3.2 Phase 1 Component Decision Tables

The phase 1 decision tables of the control valve and water pipe components are shown

below. These decision tables provide an example of how the hot water system has been

modelled using the decision table technique. The decision tables of all the remaining

system components are shown in Appendix A. The decision tables shown below represent

the steady state behaviour of the hot water system components. It is necessary to consider

the steady state behaviour, as decision tables cannot model the dynamic performance of

components. The decision tables have been simplified where possible.

Table 2.3 presents the control valve decision table. The possible gas inputs and outputs
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are no supply (NS) and supply (S). The controller input will be either signal to open (SO)

or signal to close (SC). The potential internal modes are working (W), stuck open (StO)

and stuck closed (StC).

Table 2.3: Control valve decision table

Row Number Gas Input Controller Signal Input Internal Mode Gas Output

1 NS – – NS

2 – SC W NS

3 – – StC NS

4 S SO W S

5 S – StO S

From Table 2.3 it can be seen that a gas output supply requires a gas input supply and

the control valve to be open. The control valve will be open if it is in a working state and

receives the correct input signal or if the control valve is stuck open. All other condition

states will produce no output supply.

Table 2.4 details the water pipe decision table. The heat and water input states will

either be no supply (NS) or supply (S) while the internal mode will be one of secure (S),

leaking (Lk) or ruptured (R). The output states describe the temperature, pressure and

volume of the water in the pipe as either zero (0), low (L), normal (N) or high (H). A zero

output can only occur when the pipe is ruptured and therefore represents atmospheric

conditions.

It is assumed that the water supply to the system is pressurised. Row 4 of Table 2.4

shows that when there is a water input but no heat input the pipe pressure will be normal

but the pipe temperature low. In the presence of a leak, it is assumed that there will

be a loss of water and water pressure in the pipe however the system would be able to

compensate for any heat lost. It is also assumed that the physical properties of the pipe

prevent it from being filled above its maximum level, indicated in Table 2.4 as normal.

2.2.3.3 Phase 2 Decision Tables

In phase 2 the tap is opened to supply hot water. As hot water constantly leaves the

system, fresh cold water must be added and heated to replace it. There is therefore a

constant flow of water through the system in phase 2. In spite of this change in the
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Table 2.4: Water pipe decision table - Phase 1

Row Heat Water Internal Pipe Pipe Pipe

Number Input Input Mode Pres. Temp. Vol.

1 NS NS – L L L

2 S NS – L H L

3 S S S H H N

4 NS S S N L N

5 S S Lk L N L

6 NS S Lk L L L

7 – – R 0 0 0

system behaviour only two of the component decision tables change as a result; the water

pipe and the tap. Table 2.5 shows the phase two decision tables for the water pipe.

The codes used to represent the input states, internal modes and output states have not

changed from those defined with the phase 1 decision table.

Table 2.5: Water pipe decision table - Phase 2

Row Heat Water Internal Pipe Pipe Pipe

Number Input Input Mode Pres. Temp. Vol.

1 NS NS – L L L

2 S NS – L H L

3 S S S N N N

4 NS S S N L N

5 S S Lk L N L

6 NS S Lk L L L

7 – – R 0 0 0

The constant addition of cold water to the system in phase 2 means that only if there

is no water supply will the pipe temperature reach a high level. At all other times the

pipe temperature should not exceed normal.
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2.2.3.4 Results

The ability of the decision table modelling technique to accurately model the behaviour

of the hot water system and the effect of possible failure modes will now be assessed.

By injecting individual failure modes into the system model the resultant symptoms can

be determined. These will then be compared to the expected symptoms produced by

the physical form of the system. A symptom will be considered as any unexpected and

measurable component behaviour or state.

The expected symptoms have been determined theoretically through consideration of

how a physical version of the hot water system would react to the occurrence of the

failure modes. It is assumed that when a component failure occurs all of the remaining

components are working normally.

All of the failure modes listed in the decision tables as internal mode states have been

assessed and analysed. Several results of interest will now be considered in greater detail.

Consider first the failure mode ‘Control Valve Stuck Closed’ when the system is in phase

1. This failure mode is injected into the system model in Table 2.3. Propagating its

effect through the remaining phase 1 component decision tables a number of symptoms

are produced. These are shown in Table 2.6 along with the expected system symptoms.

Table 2.6: Control valve stuck closed phase 1 results

Expected System Symptoms Decision Table Symptoms

Control Valve Closed Control Valve Closed

No Gas Output from Control Valve No Gas Output from Control Valve

No Heat Supply from Pilot Light No Heat Supply from Pilot Light

Low Water Pipe Temperature Low Water Pipe Temperature

Table 2.6 shows that the decision table has accurately represented the behaviour of

the hot water system in the presence of the control valve fault. All of the expected system

symptoms have been found from the decision table model. In phases 1 and 2 the model

predicted symptoms of several failure modes match exactly with those expected. However

there are a number of failure modes where the expected and predicted symptoms are not

the same.

Consider the results of the failure mode ‘Pressure Relief Valve Stuck Open’ in phase
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2. This failure mode is injected into the decision table model from Table A.6 in Appendix

A. When the pressure relief valve fails open in phase 2 there will be an above atmospheric

pressure output through the valve. As a result the water pipe pressure will fall to zero

and there will be insufficient pressure to enable water to flow out of the tap. With no

flow out of the tap there will also not be any water flow into the system through the

non-return valve. Any pressure increase that would be created through the continuous

addition of heat to the system is lost through the pressure relief valve. The predicted and

the expected symptoms are shown in Table 2.7.

Table 2.7: Pressure relief valve stuck open phase 2 results

Expected System Symptoms Decision Table Symptoms

Above Atmospheric Pressure Output Above Atmospheric Pressure Output

Water Pipe Pressure Zero

No Output from Tap

No Flow into NRV

No Flow out of NRV

Table 2.7 shows that there are five expected symptoms produced as a result of the

pressure relief valve fault but only one has been identified by the decision table technique.

The decision table model has correctly identified the above atmospheric pressure output

from the pressure relief valve, however, the effect on the water pipe pressure, tap output

and flow through the non-return valve has not been captured. This is due to the inability

of the decision table technique to model the reverse propagation effect of faults. As there

are no components that receive an input from the pressure relief valve the effect of the

failure is limited to that component alone. This modelling limitation is seen in the results

of several other failure modes.

Eighteen failure modes were considered in each phase of system operation, thirty-six

in total. From these failure modes ninety-nine expected symptoms were identified. The

decision table technique could only match seventy-four or 75% of these. It also produced

twelve symptoms that were not expected. The decision table technique has therefore failed

to provide a truly accurate representation of the hot water system in the presence of the

failure modes under consideration.
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2.3 Digraph

2.3.1 Technique Details

The digraph technique models a system by displaying its process variables on a directed

graph. The system behaviour is captured in the model by defining all of the process

variables that are present throughout the system as well as any relationships that exist

between them. By including all possible relationships between variables, the behaviour

of the system in both normal operation and with component failures is accounted for.

A system model can be constructed by linking individual component digraphs. Linked

components will share at least one process variable and by joining these together a complete

system model can be created.

Process variables are represented on a digraph by circular nodes. Every node contains

an alphanumeric label that indicates the variable type it represents and its location within

the system structure. Typical variables considered by the digraph technique are pressure

(P), temperature (T), mass flow (M) and signal (S). Relationships between two variables

are represented on a digraph by directed edges, which connect the relevant nodes. The

arrow on the directed edge points from the independent variable towards the dependent

one. Coupled to every directed edge is a number that represents the strength of the

relationship between the linked variables. This number is known as a gain and is the

partial derivative of the dependant variable to the independent one. Relationships must

be described in the digraph technique using one of five discrete variables; +10, +1, 0,

-1, -10. Strong relationships are represented by ±10 while moderate relationships are

represented by ±1. A zero gain represents the nullification of a relationship. This is

commonly used with conditional edges, which require a certain condition to exist in order

for the relationship to be active. Only one edge linking two variables can be active at a

time.

To demonstrate the digraph features described above, consider a valve connecting two

pieces of pipe, as shown in Figure 2.2. The valve can either be fully opened or fully closed.

In the digraph of Figure 2.2 the two nodes, M1 and M2, are connected by two directed

edges, one normal and one conditional. As the arrow on the directed edges points away

from M1, it is the independent variable. M2 is the dependent variable. The gain in Figure

2.2 can therefore be expressed as:
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1 2 M1 M2

+1

0: Valve Closed

Figure 2.2: (a) Pipe schematic (b) Pipe digraph

Gain =
δ(M2)

δ(M1)
(2.1)

In normal operation the valve is open. This allows mass flow through the pipe and is

represented on the digraph by a gain of +1. If the valve is closed there is no mass flow

through the pipe and therefore no relationship between the two nodes. This behaviour is

modelled on the digraph by the conditional edge, which has a gain of zero.

The state of any system variable is expressed by the digraph technique using directed

edges and the same set of values that describe relationship strengths. In its normal state

a variable has a value of zero. If a variable experiences a moderate change in its value, its

state will be ±1. If a variable becomes much larger or smaller than its normal value, its

state is expressed as ±10. It should be noted that the digraph technique limits the value

any variable can have to ±10.

When a component fails or begins to operate in a way that does not represent its

normal behaviour, it can create a disturbance within a system. Disturbances are modelled

in the digraph technique using nodes with directed arrows. The node details the fault

while the directed arrow shows which variable is initially affected by the disturbance. The

magnitude of a disturbance is measured using the same set of values used to describe the

variable states. A strong disturbance will therefore have a value of ±10 while a moderate

disturbance is given a value of ±1. The sign indicates whether the disturbance will cause

the process variable to take a value greater/lower than it would normally have. Multiple

disturbances can affect a single node and disturbances can be conditional.

When a disturbance occurs, its effect may not be limited to the point where it first

enters the system - the disturbance could propagate through the system. In a digraph,

disturbances pass from independent variables to dependent ones along active directed

edges. The effect of a disturbance on a dependent variable can be found by multiplying

the magnitude of the disturbance in the independent variable by the respective gain.

To show how disturbances propagate through a system consider again the valve section
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in Figure 2.2. The digraph in Figure 2.3 includes consideration of the disturbance ‘no

supply’.

+1

0: CV Closed

NS

M1 M2

-10

Figure 2.3: Pipe digraph with failure mode

When the pipe valve is open a loss of supply (NS) would require the system to create

flow in order to maintain normal operating behaviour. As this is not possible a strong

disturbance will enter the digraph at M1. The state of M1 is therefore expressed as

M1(-10). As the valve is open and the normal relationship is active the disturbance will

propagate to M2. Using the multiplication rule outlined above, disturbance multiplied

by gain, the state of M2 becomes M2(-10). This represents a very low amount of flow at

point two. Had the valve been closed, the zero gain on the conditional edge would have

prevented the disturbance propagating to M2.

2.3.2 Literature Review

The digraph modelling technique was devised by Lapp and Powers as a tool to enable the

computer aided construction of fault trees [13]. Its use was first published in April 1977.

The digraph technique represented a novel approach to system modelling as it used the

functional details of a system to model its behaviour. The advantage of using a functional

modelling technique is the added detail with which a system can be represented.

As the digraph technique considers all of the relationships between process variables, it

is able to model the reverse propagation effects of faults within in a system. For this reason

functional modelling techniques, such as the digraph technique, are considered to be more

effective at modelling the global behaviour of systems than componentistic approaches.

When Lapp and Powers created digraphs one of the motivating factors was the need for

a systematic modelling technique. A systematic technique is desirable because it provides

a methodical, ordered process which is not open to analyst subjectivity. The decision

table modelling technique is an example of a non-systematic process as it allows variables
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to be represented by any number of analyst defined states [4]. In this case an analysts’

subjective input is required to model the system. Comparatively, in the digraph technique

the strength of relationships and disturbances is limited to a set of five values. As a result

this aspect of the technique is relatively objective. However, identifying system variable

relationships and which conditions might have to be met in order for these relationships

to become active still leaves the digraph technique open to analyst interpretation. This

subjective input prevents it from being considered a truly systematic technique.

Although the set of five values, which are used to define relationships, disturbances and

variable states in the digraph technique, provide an objective characteristic it also limits

the accuracy with which systems can be modelled. There are only two values, for example,

to describe the state of a variable that has exceeded its expected level; moderately high

and very high. In an attempt to overcome this limitation Bartlett et al added two values

to the set in order to model the fuel system of an aircraft with greater accuracy; ±5 [14].

The authors consider the application of the expanded technique to be a success and state

the extra values allowed partial component failures to be modelled. However using these

additional values raises a number of issues. The use of ±5 to model partial failures creates

a conflict with the original definition of ±1. It is no longer clear what ±1 represents.

Furthermore, as partial failures do not create uncontrollable faults it can be argued that

they could have been modelled by ±1 thereby making the use of ±5 superfluous. Finally,

the inclusion of the additional values makes the overall technique less objective as greater

influence is placed on the analyst’s interpretation of the system’s behaviour.

A further limitation of the digraph technique, related to the limited number of values

available to model component behaviour, is identified by Andrews and Brennan [15]. The

digraph technique does not allow the expressed state of a process variable to be nil, i.e. 0L

or 0L/min. The closest option available is very low (-10). In situations where a blocked

pipe cuts off mass flow, using a very low level as opposed to zero immediately introduces

a source of error into the model.

Andrews and Brennan have also identified that the digraph technique has issues mod-

elling uncontrollable disturbances [15]. They cite an example where a system containing

two feedback loops incorrectly propagates a large positive disturbance through the sys-

tem. Despite the issues created when dealing with uncontrollable disturbances the digraph

technique is still considered by many authors to be effective when dealing with control

loops [7], [13], [15]. Many of the same authors also note that control loops are very effec-
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tively displayed in digraphs, even when complex systems are considered. This makes them

not only easy to identify but also help the analyst to ensure the behaviour of the system

has been correctly modelled. In their description of the digraph technique, Andrews and

Morgan [16] state that control loops are considered in a structured and effective manner.

However, they noted that other researchers [17] had encountered problems when trying to

model two-way flow within systems.

Two-way flow can also have a detrimental effect on control loops in a digraph. A

control loop is built assuming one direction of flow (+ve). If a control loop sensor records

reverse acting flow (-ve), a negative feedback loop will become overall positive. As a result

the feedback loop would act to amplify a disturbance, not correct it. This could cause a

controllable disturbance to become uncontrollable and fail the system.

Carpignano and Poucet have observed that component digraphs are context dependant;

that is their structure is dependent on both the component type and how it is utilised in

a system [7]. This means that individual component digraphs are unique to the system

they are designed for and cannot be stored in a library of component models. By means

of an example consider the non-return valve in the hot water system shown in Section

2.2.3.2. Its digraph model would not be correct if the same non-return valve was used in

a cold water system. In the hot water system there is a need to consider the temperature

variable within the valve’s digraph but this would not be the case in a cold water system.

The digraph technique has previously been used to consider phased missions. However,

there are conflicting opinions about its practicality. Andow [17] states that the consider-

ation of a time base would require digraphs specific to each stage and therefore it would

be a mismatch to use digraphs to model phased missions. However Allen believes that so

long as the timing of every failure is carefully considered as well as “the repair of sleeping

failures”, digraphs can accurately represent phased missions [18].

Multiple authors have stressed that one of the key benefits of using the digraph tech-

nique is the knowledge that is gained by the analyst which can then be used to build in

the system model [13], [15], [16]. This level of knowledge could only be gained through a

manual technique. Andrews and Morgan state that in a fully automated technique a sim-

ilarly full understanding of the system’s behaviour could not be achieved [16]. This does,

however, mean that the process of building a system digraph is a long, resource intensive

task. The digraph technique is designed to allow any type of system to be modelled. Some

of the systems modelled by the digraph technique include a nitric acid cooling system [13],
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a pressure/volumetric regulation system [15] and the process stream of a butane vaporiser

[16]. These system models have considered not only a range of mechanical and electrical

components but also multiple complex control loop arrangements.

2.3.3 Application to Hot Water System

2.3.3.1 Digraph Topography

Figure 2.4 shows a breakdown of the hot water system and how the component input

and output locations have been numbered for modelling by the digraph technique. The

dummy tails are used when flow crosses over the system boundaries.

Gas Pipe Control
Valve

Pilot
Light

Water
Pipe

Non-Return
Valve

Temp
Sensor

Controller

Tap

Pressure
Relief Valve

Gas
Supply

Dummy
Tail

Dummy
Tail

0 1 2

3

5

67

68

6

9

10

Water
Supply

4

Figure 2.4: Hot water system digraph topography

The control loop in the hot water system can be clearly identified in Figure 2.4. The

components on the control loop are the temperature sensor, controller, control valve, pilot

light and water pipe.

Code names have been used to represent the failure modes on the component and

system digraphs. Table 2.8 lists all of the component failure modes and their respective

codes.
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Table 2.8: Digraph codes - Component failure modes

Component Failure Mode Code

Gas Pipe No Supply NS

Gas Pipe Blocked P01B

Control Valve Stuck Open CVSO

Stuck Closed CVSC

Pipe to Pilot Blocked P23B

Controller Failed High CFH

Failed Low CFL

Pilot Light Failed Off PLFO

Non-Return Valve Failed Open NRVFO

Failed Closed NRVFC

No Supply NS

Water Pipe Leaking WPL

Ruptured WPR

Pressure Relief Valve Stuck Open PRVSO

Stuck Closed PRVSC

Tap Stuck Open TSO

Stuck Closed TSC

2.3.3.2 Phase 1 Digraph Models

In the construction of any system digraph, consideration is first given to the individual

component digraphs. Having considered all the system components, the system digraphs

for each phase will be presented. The control valve and water pipe component digraphs

are shown below. The remaining hot water system component digraphs are presented in

Appendix B.

Figure 2.5 shows the control valve component digraph. The control valve has two

inputs; a mass flow from the gas pipe, M1, and a pressure input from the reverse-acting

controller, P10. In normal system behaviour these inputs have direct relationships with the

output variable M2. However, the conditional edges show that unconventional component

behaviour, i.e. control valve stuck, causes these relationships to vary. If the control valve
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Figure 2.5: Control valve digraph - Phase 1

becomes stuck open or closed it will fail the control loop and introduce a large disturbance

into the system, as the control loop cannot correct it. A large disturbance will also be

created if the pipe between the control valve and the pilot light is blocked.

If the control valve fails open when there are no outputs from the system (NO), a large

positive disturbance will be introduced. However should the control valve become stuck

open when there is a leak in the water pipe (WPL) or when the tap is stuck open (TSO)

the disturbance will only be moderate. This is because any output from the system will

result in cold water being added to replace it. This will reduce the effect of the control

valve becoming stuck open hence the smaller disturbance.

Figure 2.6 displays the digraph model of the water pipe component in phase 1. There

are two inputs to the water pipe, water through the non-return valve and heat from the

pilot light. In order to accurately model the pipe and its behaviour, three process variables

are considered at its output - temperature, pressure and level.

A conditional relationship exists between the temperature input (T3) and the pipe

pressure (P6). The temperature input will only have an effect on the pipe pressure when

the pipe is full of water and when the water temperature in the pipe is very high. As water

is incompressible, at all other times the temperature input will not have a measurable effect

on the pipe pressure. There is also a conditional relationship between M5 and T6. Only

when cold water enters the water pipe will the temperature in the pipe be affected.

If the water pipe ruptures, an uncontrollable disturbance will affect all of the water

pipe variables. If the pipe is leaking there will be a loss of water and pressure in the pipe.

This disturbance will be controllable because the water supply can replace any fluid and
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Figure 2.6: Water pipe digraph - Phase 1

pressure lost.

The complete phase 1 system digraph model of the hot water system is shown in Figure

2.7. The figure shows how the individual component digraphs are joined together to create

a complete system digraph. The mass flow output from the control valve, M2, is an input

to the pilot light, which outputs temperature to the water pipe through T3. The control

loop can also be seen on the figure joining the M2, T3, T6, S9 and P10 nodes together.

2.3.3.3 Phase 2 Digraph Models

There are three components that produce identical digraphs in both the first and second

phases of operation of the system; the gas pipe, the pilot light and the pressure relief valve.

The remaining component digraphs are altered in some form to account for the fact that

as the tap is open in phase 2 the control valve should always be open to provide gas to

heat the constant addition of cold water to the system. The system digraph for phase 2

is shown in Figure 2.8.

2.3.3.4 Results

The digraph system model will be evaluated using the same process that was applied to

the decision table system model. Failure modes will be injected into the model and any

unexpected and measurable system symptoms will be recorded and compared to a list of

expected symptoms.
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The limited manner by which the digraph technique represents component states means

that the symptoms identified from the model may not exactly match those expected.

Consider the symptoms produced by the failure mode ‘No Gas Supply to Gas Pipe’ in

phase 1 as shown in Table 2.9

Table 2.9: No gas supply to gas pipe phase 1 results

Expected System Symptoms Digraph Symptoms

Control Valve Open Control Valve Open

No Gas Out from Control Valve V. Low Gas Out from Control Valve [M2(-10)]

Low Water Pipe Temperature V. Low Water Pipe Temperature [T6(-10)]

Table 2.9 shows that while the digraph technique has produced three symptoms in the

presence of the fault, two of them are not an exact match with that expected. The digraph

technique cannot describe the state of a variable as zero and so the gas output from the

control valve has to be displayed as very low. Furthermore the digraph has also predicted

the water pipe temperature state to be very low in the presence of the gas pipe fault when

it would only be expected to be low. Similar results can be seen when several other failure

modes are considered. This demonstrates the lack of flexibility provided by the digraph

technique when modelling systems, failure modes and the interaction between variables.

The digraph technique has also failed to identify symptoms where they would otherwise

be expected. Consider the symptoms of the failure mode ‘Pressure Relief Valve Stuck

Open’ in phase 2 as shown in Table 2.10.

Table 2.10: Pressure relief valve stuck open phase 2 results

Expected System Symptoms Digraph Symptoms

Output from Pressure Relief Valve Output from Pressure Relief Valve [P8(+10)]

Water Pipe Pressure Zero Water Pipe Pressure Very Low [P6(-10)]

No Output from Tap

No Flow into NRV

No Flow out of NRV

Table 2.10 shows that only two symptoms have been found from the digraph model.
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This is due to the fact that when the failure mode is injected into the digraph its prop-

agation is limited to the P6 and P8 nodes. This result can be attributed to the manner

in which the model designer has interpreted the system. The relationship between the P6

and L6 variables has been accounted for in the directed edges between L6 and M7. While

the failure mode does nullify the relationship between L6 and M7 it has not caused the

variable states to change. This example demonstrates the issues that can be caused due

to the analyst’s interpretation of the system under consideration.

A number of other failure modes experience the issues identified by the results in

Table 2.10. As a result the digraph model has failed to identify seven of the ninety-nine

symptoms that were expected.

It should also be noted that two digraph models were required in order to model both

the phases of the hot water system’s operation. Constructing a system model of each phase

of a systems operation will require greater amount of resources compared to a technique

that could provide a single model capable of dealing with multiple phases.

2.4 Petri Nets

2.4.1 Technique Details

A PN is a bipartite, directed graph that can be used to model the structure and behaviour

of a system. The technique uses four tools to generate a system model: a set of places (P),

a set of transitions (T), an input function (I) and an output function (O). The combination

of these tools forms the structure (C) of the PN, which is expressed mathematically as;

C = (P, T, I,O) (2.2)

In a PN there are two node types; circles representing places and squares representing

transitions. The input and output functions are modelled by directed edges connecting

places to transitions and transitions to places respectively. PNs do not allow two nodes of

the same type to be directly connected. The basic workings of a PN are shown in Figure

2.9. The modelled system requires two inputs in order to produce an output. The presence

of an input or an output in the system is modelled using a small black dot known as a

token.

The PNs shown in Figure 2.9 consist of three places and one transition. The input
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Figure 2.9: Petri net firing process

places, p1 and p2, are identified as circles with arrow headed edges pointing away from

them. In (a) only one input is present, as denoted by the token in p1. In (b) both inputs

are present. In this state, as the executing requirements of the system have been met,

the transition in the centre of the PN, t1, becomes enabled. After a delay of time ‘D’,

the transition fires and a token is taken from both the input places and a single token is

added to the output place, p3, as seen in (c). The delay, D, in Figure 2.9 represents the

time taken to transform the separate input entities into a single output. Originally the

PN technique did not account for any transition delays, all transitions were immediate.

However, in its current form transition delays can be set at a specific value, sampled from

a distribution or set to zero. If a transition does not have a time delay, a ‘0’ is used instead

of a ‘D’. If an edge connecting a place and a transition has arrows at both ends then when

the transition fires a token will be taken from and returned to the same place. Figure 2.9

demonstrates that PNs do not have to contain a constant number of tokens. The process

of firing a transition both destroys and creates tokens.

Figure 2.9 shows a single transition with multiple inputs. In a PN there is no limit on

the number of inputs or outputs that a place or transition can have. Individual places are

also not limited to containing one token; any number of tokens can be stored in a single

place. The edges used to connect places and transitions can also be weighted to indicate

the transfer of multiple tokens. This effectively allows a single edge to represent a multiple

number of edges. If an edge is weighted a slash is placed through it and a numerical label

is placed next to it to indicate its weighting. If there is no slash the edge is assumed to

have a value of one. If a transition has any weighted inputs, it will not be enabled until

the relevant input place(s) contains at least the same number of tokens as the value of the

edge label. Figure 2.10 displays how many of the above features are modelled on a PN.

Due to the weighted edges in Figure 2.10 the transition, t1, requires two tokens in p1
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Figure 2.10: A weighted petri net graph

and three tokens in p2 before it will be enabled. In (a) p2 does not contain enough tokens

therefore the transition is not enabled. In (b) enough tokens are present to enable the

transition. Firing the transition after the time delay removes all the tokens from p1 and

p2, places one token in p3 and one token back in p1, as is shown in (c). At this point the

transition is no longer enabled.

A PN feature that does change the standard transition firing rules is the inhibit edge.

These edges, when active, prevent the firing of transitions and therefore the flow of tokens

through a system. Figure 2.11 demonstrates their application. When the inhibit edge,

identified by a small circle as opposed to an arrowhead at its tip, is activated by placing

a token in p2, the transition does not fire even though it is enabled and the time delay D

has elapsed. The enabling of a transition therefore now requires that a suitable number of

tokens be present in all its normal input places and no tokens be present in its inhibitor

input places. This tool is useful when modelling component failures such as a blocked

pipe.

D D

t < D t > D

p1

p2

p3
t1

Figure 2.11: A petri net graph with inhibit edge

As can be seen in the above examples, the firing of transitions facilitates the flow of

tokens around a PN model. This represents the flow of information, signal or mass flow

around the system being modelled. The movement of these tokens not only allows PNs
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to model dynamic systems but also makes the PN model itself dynamic. Finally, PNs can

show the overall state of a system using unique ‘system up’ and ‘system down’ places.

Using a simple example, where the firing of a single transition fails the system, Figure

2.12 shows how these places are used.

D

Up Down

D

Up Down
t < D t > D

Figure 2.12: A petri net graph with system up and system down places

2.4.2 Literature Review

PNs were created by Carl Petri and first presented in his 1962 thesis [19]. Petri’s initial

work was mainly theoretical. The technique was developed by the Information System

Theory Project of Applied Data Research and the Computation and Structures Group at

M.I.T. This further development created the graphical form of the technique described

above.

PNs were designed to be adept at modelling dynamic systems with concurrent pro-

cesses; systems where multiple component activities occur at the same time [20]. The

ability of the PN technique to effectively handle dynamic systems has been verified by

multiple authors [21] [22]. Similarly, many authors state that the technique can be readily

applied to systems containing concurrent and asynchronous processes [20] [21].

As a modelling tool, the PN technique is relatively simple. It contains only a small

number of features that are used to model an entire system. The minimalistic nature

of the technique is deceiving however. Russo and Sasso [21] state that “In spite of the

apparent simplicity of Petri Nets, the systems that can be modelled are diverse, displaying

significant breadth and complexity”. It is the flexibility of the PN technique that allows

this wide range of systems to be modelled. There is no limit to the number of inputs or

outputs from places or transitions. Furthermore, there are no limitations on which places

can be linked to which transitions. As a result, PN models can be structured to account

for reverse propagation effects and two-way flow. The flexible nature of PNs not only

allows complex systems to be accurately modelled but also smaller, simplified models to

be produced where appropriate, i.e. time limited situations. These smaller models would
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be appropriate in the initial stages of design, where topological system changes are likely

to occur [20].

Evidence of the wide use of PNs can be seen in many pieces of literature. Beyond

the computer and manufacturing systems already noted [21], PNs have been used to

model economic systems [20], workflow processes and laboratory automation processes

[21]. Murata [23] also lists a greater number of PN applications than can be considered

here. In order to model the range of systems described above, the nodes on a PN have

been interpreted in a number of different forms. Table 2.11 shows some of the typical

place and transition interpretations.

Table 2.11: Potential petri net place and transition representations

Input Place Transition Output Place

Required Resources Task Released Resources

Input Data Computation Output Data

Input Signals Signal Processor Output Signals

Pre-conditions Event Post Conditions

Conditions Logic Clause Conclusion

Phased missions have also been successfully modelled using PNs. Schneeweiss [24] has

demonstrated their application to smaller systems while Mura and Bondavalli [25] and

Chew et al. [22] have modelled more complex systems. In the more complex cases multiple

sub-nets were used within an overall PN to model the respective missions. Chew et al.

used three sub-nets; a phase PN, a component PN and a master PN. This arrangement

provided “a more structured modelling technique” that allowed more complex systems

to be considered compared to the Mura and Bondavalli technique which only used two

sub-nets.

It has been shown that PNs provide a number of advantages as a modelling technique.

However, there are also limitations to the technique. In poorly structured PNs there is

a condition called ‘conflict’ that can affect a system model [21]. Figure 2.13 shows an

example of a PN in conflict.

In Figure 2.13 both transitions are enabled but there are not enough tokens in p1 to

allow both transitions to fire. Should this situation occur, it would be necessary for an

analyst to instruct the model which transition should be fired. Alternatively a ‘prioritisa-
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Figure 2.13: A petri net graph in conflict

tion scheme’ could be built into the model to determine which transition should be fired

[21].

PNs can also be affected by a situation known as ‘deadlock’. This will occur when

multiple processes, which are using shared resources, are all waiting for another process

to finish using a resource. In this situation none of the processes can be completed and

the system becomes stuck. A well-used example illustrating this problem is the dining

philosophers’ problem [20].

A practical limitation of the PN technique relates to the number of tokens within the

model. Although there is no limit to the number of tokens allowed in a model, considering

a large number of tokens will enable the number of reachable states within a model to

increase significantly [26]. A reachable state is a PN marking that can occur through the

firing of a number of transitions. In Figure 2.10 the PN in (c) is a reachable state of the

PN in (b).

In a PN tokens do not contain any information or data. This means that every unique

process in a system must be represented by its own set of places and transitions. Jensen

[27] considers this inconvenience to only be “annoying for a small system” but states that

when a system with a large number of processes has to be considered, the overall PN

becomes unreadable due to its size. In an attempt to overcome this limitation, the PN

technique has been developed to allow it to be applied “to more realistic situations” [21].

Russo and Sasso breakdown these developed techniques into two key groups; coloured PNs

and hierarchical PNs.

Coloured PNs allow tokens to take on different colours. Each colour of token also

contains specified information [27]. For example in a mechanical assembly process the

tokens might be coloured and defined as follows; red = raw material one, blue = raw

material two, green = machine available, yellow = finished product. With every resource
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in the system represented by a different colour, multiple unique tokens can now occupy the

same place. This removes the need for unique sub-nets within a PN and therefore reduces

the size of the overall PN. The red, blue and green resource tokens, for example, could

occupy a single place which inputs to a single transition representing machining taking

place. When the transition fires a yellow and a green token would be output. The yellow

token represents the finished product and the green token indicates that the machine is

available to be used again. Although coloured tokens behave like normal ones in a PN, the

rules governing the firing of transitions have changed. Transitions now require not only

the correct number of tokens to be present in all input places but the colour of the tokens

must also satisfy a condition known as a ‘guard condition’. If all of the guard conditions

on a transition’s inputting edges are not satisfied then transition will not be enabled [21].

The work by Jensen provides much more detail and multiple examples on the topic of

coloured PNs [27].

Hierarchical PNs are used for systems that would otherwise produce very large and/or

complex PNs. They allow an individual place or transition to represent an entire sub-

net that effectively exists on a lower level. The enabling of a hierarchical transition, for

example, places a token in the start place of a sub-net. Once the token reaches the end

place of the sub-net, the transition on the higher level is fired. The transition delay is

therefore represented by the amount of time it takes the sub-net to execute. If a token

arrives in a hierarchical place, it will place a token in the starting place of a sub-net and

make the token on the higher level unavailable. When the sub-net finishes executing the

token on the higher level becomes available again. This situation requires the sub-net to

have a single start and a single end place. The key benefit of a hierarchical PN is the

effective way in which it can deal with large PNs. This method can provide a simple, easy

to interpret upper level PN with all the detail of a large PN effectively hidden in lower

levels. It also makes large PNs easier to model as the system can be broken down into

smaller sections [21].

In spite of the advantages and wide ranging uses of PNs, Schneeweiss [24] [28] states

that “PN are not yet used to the extent that they can be used” and that people out with

the reliability engineering community “are hardly aware of them and certainly don’t use

them”. Chew et al propose that the reason for this is the numerous variations of the

technique, such as those described above [22]. Schneeweiss believes that there remains

great potential for the expanded uses of PNs in the wider world.
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2.4.3 Application to Hot Water System

As PNs can model the dynamic behaviour of systems, the behaviour of the hot water

system in both phases of operation can be modelled by a single PN. The water pipe and

feedback loop sections of the PN model are shown below with the other PN models shown

in Appendix C. A number of the same PN place nodes appear in multiple figures. In the

system PN model however, these places would only appear once.

The water pipe section of the PN model is split over three figures; Figure 2.14, 2.15

and 2.16. The place descriptions are given in Tables 2.12, 2.13 and 2.14 respectively.

P11 P12 P13P19

D8t8 D9 D10D11 t9 t10t11

D13t13D12t12

P6
P50 P51

P50

D14

t14

Figure 2.14: Water pipe petri net model [1/3]

Table 2.12: Water pipe petri net place descriptions [1/3]

Place No. Description Place No. Description

6 Heat out of Pilot Light 19 Lost Heat

11 Low Water Pipe Temp 50 Block Cooling

12 Normal Water Pipe Temp 51 Dead Place

13 High Water Pipe Temp
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Figure 2.14 shows how the PN model represents the heating of the fluid in the water

pipe. Heat out of the pilot light at p6 enables one of the transitions D8, D9 and D10,

which in turn control the presence of tokens in the water pipe temperature places p11,

p12 and p13. Should the water pipe temperature be high, the heat provided by the pilot

light would be lost; p19. The firing of transitions D8, D9, D10 or D11 adds a token to

place p50 that prevents the model decreasing the water pipe temperature. Tokens in p50

are removed to dead place p51 to ensure the water pipe temperature can decrease when

there is no heat from the pilot light. The presence of conflict between t8, t9, t10 and t11

is avoided as D11 is greater than D8, D9 and D10.

P9

2

2

2

2

D7

t7

P11 P12 P13

P10

P14

P15

P16

P17

P18

D15t15

D16t16

D17t17
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D19t19

D20t20

D21t21

D22t22

Figure 2.15: Water pipe petri net model [2/3]

Figure 2.15 shows how the addition of cold water from the non-return valve, p9, to

the water pipe in p10, decreases the temperature of the water pipe contents as shown in

places p11, p12 and p13. Transition D18 is necessary to model the flow into the water pipe

when it is ruptured. Transitions D19 to D22 change the water pipe volume and pressure

as water enters the piping. When the water pipe level reaches normal, p18, a token in this

place will inhibit the further addition of water to the system.

Figure 2.16 shows the effect of a leak or rupture in the water pipe on the system. A
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Table 2.13: Water pipe petri net place descriptions [2/3]

Place No. Description Place No. Description

9 Water out of Non-Return Valve 14 Low Water Pipe Pres

10 Water into Water Pipe 15 Normal Water Pipe Pres

11 Low Water Pipe Temp 16 High Water Pipe Pres

12 Normal Water Pipe Temp 17 Low Water Pipe Volume

13 High Water Pipe Temp 18 Normal Water Pipe Volume

Table 2.14: Water pipe petri net place descriptions [3/3]

Place No. Description Place No. Description

11 Low Water Pipe Temp 18 Normal Water Pipe Volume

12 Normal Water Pipe Temp 19 Lost Heat

13 High Water Pipe Temp 20 Lost Pressure

14 Low Water Pipe Pres 21 Lost Volume

15 Normal Water Pipe Pres 33 Water Pipe Ruptured

16 High Water Pipe Pres 34 Water Pipe Leaking

17 Low Water Pipe Volume

rupture, indicated by a token in p33, removes any and all tokens from the temperature,

pressure and volume places; p11 to p18. A leak, p34, reduces the volume and pressure in

the water pipe. Places p19, p20 and p21 record the amount of heat, pressure and volume

lost from the system.

Figure 2.17 shows the feedback loop section of the PN model. Table 2.15 lists the PN

place descriptions. The figure shows how the water pipe temperature enables transitions

that can change the control valve state. The failed states of the temperature sensor,

controller and control valve also control the ability of these transitions to fire.

2.4.3.1 Results

Having constructed the hot water system PN model the effect of inputting the system

failure modes into the model can be evaluated. The symptoms from the PN model have

been determined using a software program. The program, written in C++, models the
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Figure 2.16: Water pipe petri net model [3/3]
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Figure 2.17: Feedback loop petri net model

behaviour of a PN using an input file which lists the places, transitions and initial marking

of the model. The PN is given an initial marking that represents the normal behaviour
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Table 2.15: Feedback loop petri net place descriptions

Place No. Description Place No. Description

11 Low Water Pipe Temp 45 Temp Sensor Failed High

12 Normal Water Pipe Temp 46 Control Valve Stuck Closed

13 High Water Pipe Temp 47 Controller Failed Low

42 Control Valve Open 48 Temp Sensor Failed Low

43 Control Valve Closed 49 Control Valve Stuck Open

44 Controller Failed High

of the system and a token is added in the relevant component failure place. The resul-

tant behaviour of the system is then found and the symptoms present in the system are

recorded. The process is then repeated with a different component failure until all of the

possible failures have been considered.

The symptoms identified by the PN model are, in all failure mode cases, the same as

those determined from the theoretical analysis. There are certain failure modes, such as

‘Control Valve Stuck Open’, where some of the tokens in the PN will always be moving.

When this failure mode occurs the water pipe pressure will increase to high causing the

excess pressure to escape through the pressure relief valve. In the PN model when there is

flow out of the pressure relief valve, the water pipe pressure falls to normal. The continuous

high temperature created by the valve failure however, increases the water pipe pressure

to high and the process repeats itself.

The ability of the PN technique to correctly predict all of the system symptoms in a

single system model demonstrates the flexibility of the technique and an ability to produce

accurate models of phased mission systems. Given the success of the PN technique when

utilised above, it will be applied to a further system to confirm these conclusions.

2.4.4 Application to Tank Level Control System

2.4.4.1 System Overview

The tank level control system is shown in Figure 2.18. Its principal aim is to maintain

a suitable level of water in the tank and to provide a supply of water on demand when

the outlet valve is open. If the water level in the tank is insufficient, the pump will be
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activated and water will flow into the tank. When the water level reaches the required

level the control sensor, L1, will induce a series of events that will turn the pump off.

Should the water level ever exceed an acceptable level the trip sensor, L2, will deactivate

the entire system.

CS1

CS2

CS3

CS4

CS5

FS1

FS2

LS1

Gen 1

Gen 2

Push Button

Relay 2

Relay 1

Switch 1

Switch 2

Pump

Control Sensor
L1

Trip Sensor
L2

Outle t Valve
Tank

Figure 2.18: Tank level control system

2.4.4.2 System Description

Prior to start-up, the tank is assumed to be empty, the outlet valve and switches closed

and the relays open. The start-up process is initiated by closing the push button. This

completes the lower electric circuit and energises the relays. The circuit remains active

when the push button is released, as relay 1 is self-latching. When relay 2 closes the pump

circuit becomes active and the pump begins to fill the tank with water. The level of water

in the tank is described by one of five discrete states; zero, low, normal, high or full. The

system is set to maintain a normal level of water in the tank and the control loop enables

this process. The control loop in the system is comprised of the control sensor L1, switch

1 and relay 2. Opening or closing switch 1, to de-energise or energise relay 2, controls the

operation of the pump. If any component in the control loop fails in such a way as to keep

the pump circuit active when the tank level is normal, the tank will continue to be filled.

If the tank level becomes high or full the trip loop will shut down the entire system. The
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trip sensor, L2, opens switch 2, which causes relays 1 and 2 to deactivate and open and

the pump to turn off. If relay 1 is opened, the system is effectively shut-down and will

require a push button input in order to be re-activated.

The rate at which water can be added to the tank from the pump or lost through the

outlet valve is described as either high or low. In normal conditions a high flow rate will

always be produced, however if the pump is experiencing a partial failure or the outlet

valve pipe is partially blocked, a low flow rate will be experienced. A low flow rate is

assumed to represent water flowing at 50% of a high flow rate. Two categories of leaks are

also considered; small and large. A large leak is assumed to allow water out of the tank at

a high flow rate while a small leak will allow water out at low rate. A leak at any height

in the tank will allow the tank level to fall to that point but no further. Leak heights are

categorised using the same discrete levels used to describe the water level in the tank.

The state of the tank level control system is monitored by eight sensors; five current

sensors, CS1-5, two flow sensors, FS1-2, and a level sensor, LS1. The control sensor and

trip sensor do not produce measureable outputs and as such cannot be used to monitor the

state of the system. The location of all the system sensors can be seen in Figure 2.18. The

current sensors indicate the presence, or absence, of a flow of electric current. The flow

sensors indicate a water flow rate of either zero, low or high and the level sensor provides a

measure of the water in the tank as either zero, low, normal, high or full. Unless otherwise

specified it is assumed throughout that the sensors are working and accurate.

2.4.4.3 Mission Phases

The effect of failure modes on the tank level control system will be considered while it

undertakes a five phase mission. The mission phases are described below.

Phase 1: Activation Phase one begins when a push button input is received and ends

when the pump circuit has been activated.

Phase 2: Outlet Valve Closed and Pump On In phase two the pump fills the tank

with water. When the tank level rises to normal the phase ends.

Phase 3: Outlet Valve Closed and Pump Off Throughout phase three the tank

level is normal, the pump off and outlet valve closed. In this phase the system is in standby

and the tank level should not change.
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Phase 4: Outlet Valve Open and Pump Off The outlet valve is opened in phase

four. In this state the tank level should fall as there is no water flow into the tank to

replace that being lost.

Phase 5: Outlet Valve Open and Pump On The final operating state of the system

has the outlet valve open and pump on. In this phase the rate of water flow out of the

system should be equal to the flow rate into the system.

2.4.4.4 Failure Modes

In order to fully test the PN software an extensive number of failure modes in the tank

level system have been considered. These are listed in Table 2.16. A number of second

order failure modes have also been considered because they are known to override the

control loop features of the system. An example of one of the second order failure modes

considered is ‘Level Sensor 1 Failed Low and Switch 2 Stuck Closed’.

2.4.4.5 Tank Level Control System Petri Net Model

This section presents two sub-nets from the tank level control system PN model. The

remainder of the system model is shown in Appendix D. The fuel rig model has also been

created as an input file to the PN software introduced previously and described in detail

in Chapter 6.

Figure 2.19 shows the power-up, opening and closing processes for relay 1. It should

be noted that as in the previous application example some place nodes appear multiple

times to make the PN figures easier to interpret. The figures have been simplified further

by combining transitions that have the same input and output places except for one place,

which is unique to each transition. An example of this can be seen on the right side of

Figure 2.19 with switch 2 working open (Sw2WO) and switch 2 failed open (Sw2FO) both

listed next to a single place node. This arrangement is representative, on the actual PN

model, of two transitions. The first transition has the inputs Re1WC, Re1E, Sw2WO

and the outputs Sw2WO, Re1DE and Re1WO. The second transition has inputs Re1WC,

Re1E, Sw2FO and outputs Sw2FO, Re1DE and Re1WO. Where there are multiple labels

next to a single place it is only possible for one of these labels to be active or true at one

time. In the example considered above switch 2 can be working open or failed open but

never both at the same time. This means there will never be more than one token in a
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Table 2.16: Tank level system first order failure modes

Code Component Failure

GeniF (1,2) Power supply Geni failed

PBSC Push button stuck closed

SWiSO/C (1,2) Switch SWi stuck open/closed

REiSO/C (1,2) Relay REi stuck open/closed

PF Pump failed

P-50 Pump working 50%

POPB Pump output pipe blocked

L1FH/L Control Sensor L1 fails high/low

L2FH/L Level Sensor L2 fails high/low

OVFO/C Output valve stuck open/closed

OVPPB Output valve pipe partially blocked

OVPB Output valve pipe blocked

Sml/Lrg-B-Lk Small/large leak in tank base

Sml/Lrg-L-Lk Small/large leak at low tank height

Sml/Lrg-N-Lk Small/large leak at normal tank height

Sml/Lrg-H-Lk Small/large leak at high tank height

Sml/Lrg-F-Lk Small/large leak at full tank height

merged place at one time. Finally, any transitions without a specified delay are assumed

to have a delay of zero.

Figure 2.19 shows that in order for relay 1 to become energised the generator must

be working, switch 2 working closed or failed closed and there must be an input from the

push button, or the push button must be failed closed. If all of these inputs are present

t1 will fire. Once energised the relay will transition from working open to working closed,

t2. If the generator fails or switch 2 is opened, relay 1 will become de-energised and open.

Figure 2.20 shows how the outlet valve state is changed and, as a result, how demand

for water to flow out of the tank through the outlet valve is established. From a working

closed state, transition t1 will fire when a demand on the outlet valve is present. The

continued presence of this demand will inhibit the PN from returning the state of the

outlet valve to working closed. In normal operation transition t2 would then fire to create
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Figure 2.19: Relay 1 powering-up/down, opening and closing

two tokens in the ‘Water out Tank’ place. Tokens in this place represent the demand for

water from the tank. Two tokens would also be added to this place if the outlet valve had

failed open. If there is a partial blockage in the outlet valve pipe, only one token will be

placed in the ‘Water out Tank’ place.
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Figure 2.20: Output valve demand

2.4.4.6 Results

Before considering the effect of component failures on the tank level system, the behaviour

of the system with no faults present is considered. Figures 2.21, 2.22 and 2.23 show the

tank level, pump flow rate and outlet valve flow rate when no faults are present in the

system. Two curves are shown on each figure. These represent the sensor outputs from

the PN model and the sensor outputs that would be expected on a physical version of the
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system.
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Figure 2.21: Tank level in fault free mission
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Figure 2.22: Pump flow rate in fault free mission

Figure 2.21 shows the tank level increasing in phase 2 at the same time as the pump

flow rate is initially high in Figure 2.22. The decrease in tank level in phase 4 coincides

with the increase in the outlet valve flow rate in Figure 2.23. The tank level remains

constant in phases 1, 3 and 5 at the same points in time that the pump flow rate and

outlet valve flow rate cancel each other out.

All three of the figures show that as the PN model considers only discrete variable

states, it cannot model the linear change shown on the sensor output curves expected

from the physical system. It would be possible to add more detail to the PN model in

order to more accurately represent the behaviour of the tank level system. However given

one second timesteps are being considered Figures 2.21, 2.22 and 2.23 show that the PN
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Figure 2.23: Outlet valve flow rate in fault free mission

model already provides a good level of accuracy compared to the expected system outputs.

Table 2.17 lists the current sensor readings that would be expected to be seen in each

phase of system operation when no faults are present. The current sensors will either

record a positive current flow (Y) or no flow (N). When no faults are modelled in the tank

level PN the predicted current sensor outputs match those shown in Table 2.17.

Table 2.17: Tank level system expected current sensor readings

Operating Mode CS1 CS2 CS3 CS4 CS5

Phase 1 Y Y Y Y Y

Phase 2 Y Y N Y Y

Phase 3 N Y N Y N

Phase 4 N Y N Y N

Phase 5 Y Y N Y Y

From Table 2.17 it can be seen that a current flow is only expected at CS3 in phase

1 when there is an input to the push button. As relay 1 is self-latching it can be seen

that a current flow is recorded at CS2 and CS4 throughout the mission. Should the trip

sensor L2 ever open switch 2, and therefore relay 1, there will be no current flow recorded

by these sensors. Finally the output from sensors CS1 and CS5 changes as a result of

the tank level. A current flow is recorded when the tank level is below normal, thereby

activating the pump, while no current flow is recorded when the tank level is normal. At

this time switch 1 is open which breaks the circuits that contain CS1 and CS5.
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2.4.4.7 Overview

Thirty-two failure modes were considered when evaluating the tank level control system.

All of the faults were modelled using the PN and the results compared to a theoretical

prediction of the system’s behaviour. In every case considered, the PN predicted system

behaviour matched with the theoretical performance of the system in terms of flow rate,

tank level and current sensor outputs. Section 2.4.4.8 provides a detailed example of one

of the failure modes considered.

Ten failure modes did not cause the behaviour of the system to change from that where

no faults were present. These hidden faults are; push button stuck closed, switch 2 stuck

closed, relay 1 stuck closed, level sensor L2 fails low and any leak at the normal tank

level height and above. All of the non-leak faults act to maintain an electrical current

in the trip loop. In normal operation this loop is never broken and therefore the faults

are hidden. The leak faults are also hidden as in normal operation the tank level doesn’t

exceed the normal tank level height.

2.4.4.8 Level Sensor 1 Failed Low

The results of the failure mode ‘Level Sensor 1 Failed Low’ will be considered in detail

below. The failure of level sensor 1, the control sensor, should cause the pump to remain

on even though the tank level has reached normal. As the control sensor has failed low it

will never open switch 1 which would de-energise relay 2 and deactivate the pump circuit.

As a result the tank level will continue to increase to high at which point the trip sensor

will open switch 2 thereby de-energising relay 1 and the system as a whole. When the

outlet valve is open the tank level should fall to zero. Figures 2.24 – 2.26 show how the

system outputs as predicted by the PN model compare to the expected behaviour.

Figure 2.24 shows that the PN model has correctly modelled the increase in the tank

level to high as a result of the control sensor fault. The pump flow rate figure also

correctly illustrates a longer period of flow into the tank over this time. The system enters

operational phase 3 after four seconds, where there is no flow into or out of the tank.

Phase 4 begins after six seconds and continues till the end of the mission although there is

only a change in the tank level between six and nine seconds. From nine seconds onwards

the tank level is zero and therefore there is no flow through the outlet pipe although the

outlet valve remains open. The system does not enter phase 5 in the presence of the level
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Figure 2.24: Level sensor 1 failed low tank level
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Figure 2.25: Level sensor 1 failed low pump flow rate

sensor fault, as the pump is not on when the outlet valve is open during the mission.

Table 2.18 shows the current sensor outputs from the tank level system in the presence

of the ‘Level Sensor 1 Failed Low’ fault. The PN model outputs matched with those

expected from a physical version of the system. The PN model has therefore correctly

predicted the behaviour of the tank level control system in the presence of the fault.

2.4.4.9 Second Order Faults

Nine second order failure modes were also considered when evaluating the tank level control

system. As mentioned previously, the majority of these were chosen as they were known

to override the control loop features of the system. Four of the second order failure modes

included the fault ‘Control Sensor L1 Fails Low’. This fault was paired with one of the

following; push button stuck closed, relay 1 stuck closed, switch 2 stuck closed, level sensor
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Figure 2.26: Level sensor 1 failed low outlet valve flow rate

Table 2.18: Tank level system expected current sensor readings

Operating Mode CS1 CS2 CS3 CS4 CS5

Phase 1 Y Y Y Y Y

Phase 2 Y Y N Y Y

Phase 3 N N N N N

Phase 4 N N N N N

L2 fails low. Four further faults were also considered by using switch 1 stuck closed instead

of the control sensor L1 fault. All of these second order failure modes caused the tank

level in the system to become full as the pump was always on. The PN model accurately

predicted the behaviour of the system when all of these second order faults were injected

in the PN.

The final second order failure mode considered was a small leak in the tank base and

the outlet valve pipe partially blocked. These faults caused a small deviation in several

aspects of the system’s behaviour from the second phase onwards. When these faults

were included in the PN model, the outputs were very similar to those expected. The

only variation appeared in phase 5 where the expected tank level is between the low and

normal tank level heights modelled by the PN. As this tank level height was not modelled

in the PN, a variation is inevitable. However, had the PN model considered the tank level

variable in more detail, it would be expected that the model match the expected behaviour

of the system.
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The results of modelling the tank level control system and considering the range of

faults described above has demonstrated the flexibility of the PN technique. The accuracy

with which the tank level control system was modelled and the similarity of the PN outputs

with those expected from a physical version of the system show that the technique can be

used to provide high level of detail.

2.5 Modelling Technique Selection & Conclusion

All three of the modelling techniques considered by this work have been used to model the

hot water system. The PN technique has also been used to model the tank level control

system. A summary of the results of each technique is given below.

Decision Tables

Advantages

• Componentistic modelling approach would be easy to apply to large systems

Disadvantages

• Failed to identify 25/99 symptoms

• Identified symptoms that were not expected

• Issues with reverse propagation identified

Digraph

Advantages

• Captures global system behaviour

Disadvantages

• Requires multiple models for phased missions

• Failed to identify 7/99 symptoms

• Lacks modelling flexibility due to limited state and relationship values

• Model subject to analyst’s interpretation of system behaviour
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Petri Nets

Advantages

• Identified all expected symptoms from hot water and tank level control systems

• Offers greatest amount of modelling flexibility

• Can be applied modularly to systems

Disadvantages

• System models can become very large and difficult to interpret

• Excessive token count can create high number of reachable states

Of the three techniques evaluated above only the PN technique has been able to identify

all of the expected symptoms for the failure modes under consideration. This technique

has also been shown to offer a high level of modelling flexibility and an ability to model

phased mission systems effectively. While the digraph technique also modelled the hot

water system with a high level of accuracy it fails to provide the flexibility and phased

mission capability offered by PNs. The decision table technique lacked modelling accuracy

compared to the other techniques. Given these results the PN technique will be used as

the modelling technique for the remainder of this work.





CHAPTER 3

Fuel Rig System and PN Model

3.1 Introduction

This chapter introduces the physical system that will be used as part of developing the fault

verification technique and, later, its application. The aim of this chapter is to present the

system and the accompanying PN model that has been constructed. The physical system

under consideration is the Advanced Diagnostic Test Facility provided by BAE Systems.

Figure 3.1 shows the system in the BAE Systems facility.

Figure 3.1: BAE Systems fuel system rig

The BAE Systems Advanced Diagnostic Test Facility, or fuel rig, is a mechanical system

that is representative of a fuel system on an unmanned aerial vehicle (UAV). The fuel rig
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is controlled by a manual input to a graphical user interface that has been developed by

BAE Systems. It is possible to inject or artificially create faults in the fuel rig to replicate

those that occur during the operation of a UAV fuel system. The fuel rig is also fitted

with a range of sensors whose outputs are used to monitor the behaviour of the system.

These sensor outputs can also be recorded for subsequent analysis. Using the recorded

fuel rig sensor outputs and determining the PN model variable outputs, the actual and

predicted behaviour of the system will be known. All of this data is then available to be

used in the fault verification process.

3.2 System Description

3.2.1 System Operation

The fuel rig represents a four fuel tank UAV fuel system. The fuel rig contains three tanks

with one split into two by means of a divider. Figure 3.2 shows the fuel rig system and

how the two auxiliary tanks are created using a single, split tank. Within both of the wing

tanks and the RH auxiliary fuel tanks is a level probe, or sensor, and a set of high and

low level switches. The LH auxiliary tank only contains a level sensor. Each tank also

contains a drain valve. The pumps on the system are peristaltic pumps. Water is used on

the fuel rig to represent jet fuel.

Both wing tanks have direct connections to the left hand (LH) and right hand (RH)

engines. Supply to each engine is controlled by a set of triple port L-valves (TPLVs)

and the engine pumps. The possible valve settings are ON, CROSSFEED and OFF. The

engine pumps operate with a rating between 0 and 100%. When the system is operating

normally the valves will be in the ON setting, the engines will have a rating greater than

0% and fuel is supplied to the LH engine from the LH wing tank and to the RH engine

from the RH wing tank. When a TPLV is in the CROSSFEED setting, fuel is supplied

from the wing tank on the opposite side to the location of the engine. In the OFF setting

the engine receives no fuel. If the engine ratings are 0% there will be no fuel supply to the

engines irrelevant of the TPLV setting. The fuel supply from the auxiliary tanks to the

wing tanks is controlled by the auxiliary engine pump ratings alone.

The fuel feed to each engine is monitored by two sensors; a fuel flow rate sensor and

a flow pressure sensor. The engines are represented on the fuel rig by a single collector
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Figure 3.2: BAE Systems fuel rig system schematic

tank where water is accumulated to be re-used in the system. Water is pumped from the

engine tank to the fuel tanks using a pump and piping system not shown on Figure 3.2.

3.2.2 Failure Modes

Faults can be injected into the fuel rig system in one of two ways; either manually or

through the graphical user interface that controls the system. A valve blockage is an

example of a fault that would be manually injected by closing one of the valves on the

fuel rig while a sensor failure is an example of a fault that is injected using the graphical

user interface. Table 3.1 lists all of the faults that are considered by this work. Further

faults can be injected onto the system but were not considered due to logistical/availability

issues. It is assumed throughout that if a component fails, it remains in that failed state

for the remainder of the mission.
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Table 3.1: Fuel rig system first order failure modes

Code Component Failure

WT Lk Wing Tank Leaking

AT Lk Auxiliary Tank Leaking

Eng Pump FO Engine Pump Failed Off

Eng Pump D Engine Pump Degraded

Aux Pump FO Auxiliary Pump Failed Off

Aux Pump D Auxiliary Pump Degraded

Eng IV B/FC Engine Isolation Valve Blocked/Failed Closed

TPLV IV B/FC Triple Port L-Valve Isolation Valve Blocked/Failed Closed

WT IV B/FC Wing Tank Isolation Valve Blocked/Failed Closed

AT IV B/FC Auxiliary Tank Isolation Valve Blocked/Failed Closed

LS FH Level Sensor Failed High

LS FL Level Sensor Failed Low

LS FS Level Sensor Failed Stuck

FS FH Flow Rate Sensor Failed High

FS FO Flow Rate Sensor Failed Off

FS FS Flow Rate Sensor Failed Stuck

FP FH Flow Pressure Sensor Failed High

FP FO Flow Pressure Sensor Failed Off

FP FS Flow Pressure Sensor Failed Stuck

H/LLSw FOn High/Low Level Switch Failed On

H/LLSw FOff High/Low Level Switch Failed Off

H/LLSw FS High/Low Level Switch Failed Stuck

3.2.3 System Monitoring and Health Management

To allow for detailed operational and behavioural analysis to be undertaken all of the fuel

rig sensor outputs are recorded when the system is in operation. The variable outputs are

stored in a text (.txt) file known as the data log. Sensor outputs are written to the data
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log at 0.5 second timesteps. The faults identified by the health management system are

also recorded and are stored in a separate text document which is known as the health

log.

3.3 Petri Net Model

The fuel rig system has been modelled using the PN technique. This PN model has been

converted into an input file that can be read by the PN software described in Chapter

6. Section 3.3.1 describes several unique transition types that were used to model the

fuel rig system. Section 3.3.2 presents the order in which PN modules are listed in the

input file and Section 3.3.3 presents sub-net models of the fuel rig components and their

interactions.

3.3.1 Specialist Transitions

The majority of transitions in the PN model are of the standard type as described in

Section 2.4. There are however three specialist transition types that are utilised which do

not follow the standard conventions.

3.3.1.1 Clear Transition

The ‘Clear’ transition has two input places and one output place. The purpose of the

clear transition is to remove all of the tokens from one of the input places irrelevant of

how many tokens there are. Upon firing token(s) are also added to the output place to

satisfy the edge weighting. A capital ‘C’ is placed inside the transition to identify it as a

clear transition as shown in Figure 3.3.

ON FLOW RATE
SENSOR OUTPUT

C

ON FLOW RATE
SENSOR OUTPUT

C

Figure 3.3: Clear transition firing process
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3.3.1.2 If Transition

The ‘If’ transition is used in the PN model to determine if a leak is low enough to affect

the water level in a tank. The transition is identified by the capital ‘I’ in the top left

corner of the transition as seen in Figure 3.4.

LEAK OUTPUT
TANK LEVEL

TANK LEAK SIZE

TANK LEAK HEIGHT
I

1

Figure 3.4: If transition

An ‘if’ transition must have three input places; leak height, leak size and tank level.

When enabled, the transition compares the number of tokens in the tank level place to

the number of tokens in the leak height place. If there are more tokens in the tank level

place, which indicates the tank level is above that of the leak, the transition fires and a

token is added to the ‘Tank Leak Output’ place. If the number of tokens in the tank level

place is the same as or less than the tokens in the leak height place, the transition does

not fire.

3.3.1.3 Single Transition

The ‘Single’ transition type is unique in that it can fire once and only once. It is used to

model phase changes in the fuel rig PN model. Each ‘single’ transition also has a number

associated with it. The single transitions can only fire in numerical order.

Consider the single transitions modelling phase changes in Figure 3.5. When single

transition ‘S1’ fires after a delay of 10 seconds the engine pump ratings change from 0% to

50%. After a further delay of 30 seconds the engine pump ratings return to 0% as single

transition ‘S2’ fires. Had normal transitions, as opposed to single transitions, been used

transition S1 would then incorrectly fire again as it has the same inputs but a shorter

delay than transition ‘S3’. However as it has already fired, transition ‘S3’ fires and the

mission is completed correctly.
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Figure 3.5: Set of single transitions

3.3.2 Model Structure Overview

The list below provides an overview of the fuel rig PN model and the order in which fuel

rig components and component behaviour is considered. The order by which transitions

are listed in the input file will also be the order by which they are evaluated by the PN

software. The ordering of transitions in the input file is therefore important. Further detail

regarding the operation of the PN software is presented in Chapter 6. Small sections or

sub-nets of the system PN and further detail about each section is considered and presented

beyond.

• Clear Sensor Output Places

• Level Sensor State Changes

• High and Low Level Switch State Changes

• Pipe State Changes

• Isolation Valve State Changes

• Pump State Changes

• Tank Demands

• Auxiliary Tank Outputs - Pump and Leak

• Auxiliary Tank Level Changes
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• Auxiliary Tank High and Low Level Switch Changes

• Auxiliary Tank to Wing Tank Flow

• Wing Tank Level Changes

• Wing Tank Outputs - Pump and Leak

• Wing Tank Level Changes

• Wing Tank High and Low Level Switch Changes

• Wing Tank to Triple Port L-Valve Flow

• Fuel Flow Rate and Flow Pressure Outputs

• Fault Injections

• Phase Changes

3.3.3 Fuel Rig Component Sub-Net Models

The fuel rig system is structurally the same on the LH side as it is on the RH side. The

PN model of the LH side is identical to that of the RH side. The PN sub-net models will

therefore only show the RH side of the system.

3.3.3.1 Clear Sensor Output Places

The first transitions listed in the PN model input file are a set of clear transitions with

their respective input and output places. Firing of these transitions remove all of the

tokens from the flow rate and flow pressure sensor output places. Figure 3.6 shows these

sub-nets for the RH sensors. The sub-nets for the LH sensors are identical but with the

sensor output and sensor stuck places changed as appropriate.

The flow rate and flow pressure outputs are determined every timestep and therefore

the output places must be cleared before these values are determined at the next timestep.

It can be seen from Figure 3.6 that if the flow rate or flow pressure sensor is stuck then

the clear transitions will be inhibited from firing.



3.3. Petri Net Model 65

ON
RH ENGINE
FLOW RATE
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RH FLOW RATE
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RH ENGINE
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C
RH FLOW PRESSURE

SENSOR STUCK

Figure 3.6: RH flow rate and flow pressure clear transitions

3.3.3.2 Level Sensor State Changes

The next group of transitions within the input file are those that control the state of the

level sensors. Figure 3.7 shows the transitions that, on firing, change the state of the RH

wing tank level sensor.

RHWT LEVEL
SENSOR WORKING

RHWT LEVEL
SENSOR STUCK

RHWT LEVEL 
SENSOR FAIL LOW

RHWT LEVEL 
SENSOR FAIL HIGH

Figure 3.7: RH wing tank level sensor state

Figure 3.7 shows that the state of the level sensor can be changed from working to

failed off, failed high or failed stuck. Equivalent places are also listed for the LH wing tank

and both of the auxiliary tanks in the input file.

3.3.3.3 High and Low Level Switch State Changes

All of the low and high level switches on the fuel rig can fail both on and off. Figure 3.8

shows how this behaviour has been modelled for the RH wing tank high level switch.

Figure 3.8 shows that the high level switch can fail off from both working states. An

electrical fault of the high level switch is an example of what could cause this switch to fail

off from the working on state. This event could affect any of the switches on the system.

If the switch fails stuck it will not be able to fail in another way. Equivalent transitions

for all of the high and low level switches on the fuel rig have been constructed in the same

manner as above.
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RH WT HLSw
WORKING ON

RH WT HLSw
FAILED ON

RH WT HLSw STUCK RH WT HLSw
FAILED OFF

RH WT HLSw
WORKING OFF

Figure 3.8: RH wing tank high level switch state

3.3.3.4 Pipe State Changes

The state of the piping in the fuel rig can change as a result of a blockage, which will

cause a pipe to become obstructed. Pipe blockages have been modelled using two levels of

severity; partially blocked and fully blocked. Figure 3.9 shows how these blockages have

been modelled in the PN for the pipe between the RH wing tank and the RH TPLV.

RHWT to RHTPL-V
PIPE OBSTRUCTED

RHWT to RHTPL-V
PIPE UNOBSTRUCTED

RHWT to RHTPL-V
PIPE PART OBSTRUCTED

Figure 3.9: RH wing tank to triple port L-valve pipe state

Figure 3.9 shows that the pipe can change state from unobstructed to partially or fully

obstructed as a result of a blockage. It can also change from partially obstructed to fully

obstructed. The remaining pipe sections have equivalent PN transitions that control their

state.

3.3.3.5 Isolation Valve State Changes

This section presents the PN sub-nets of the isolation valve operating states. There are

four isolation valves on each side of the fuel rig system. The models of the operating states

of the auxiliary tank isolation valve and the wing tank isolation valve are structurally the

same. Figure 3.10 shows the PN sub-net of the RH wing tank isolation valve.

The left side of Figure 3.10 shows that the wing tank isolation valve can fail open from



3.3. Petri Net Model 67

RHWT IV
WORK OPEN

RHWT IV
FAIL OPEN

RHWT IV
WORK CLOSED

RHWT IV BLOCKED/
FAIL CLOSED

RHWT to RHTPL-V
PIPE UNOBSTRUCTED

RHWT to RHTPL-V
PIPE OBSTRUCTED

Figure 3.10: RH wing tank isolation valve state

an open state only. It can also experience a blockage when working open. The transitions

on the right side of the figure show that if the isolation valve is working closed, blocked or

failed closed, the piping section from the wing tank to the TPLV will change state from

unobstructed to obstructed. The equivalent model for the auxiliary tank isolation valve

changes the state of the piping that runs from the auxiliary tank to the wing tank.

Figure 3.11 shows how the state of the RH TPLV is modelled in the PN. The structure

of the PN sub-net in Figure 3.11 is similar to that in Figure 3.10. The TPLV isolation

valve can fail open or blocked from a working on state. It can also fail closed from a

working closed state. The same PN structure is used for the engine isolation valves.

RHTPLV IV
WORK OPEN

RHTPLV IV
FAIL OPEN

RHTPLV IV
WORK CLOSED

RHTPLV IV BLOCKED/
FAIL CLOSED

Figure 3.11: RH triple port L-valve isolation valve state

3.3.3.6 Pump State Changes

The pumps on the fuel rig have three possible states; operational, failed off and degraded-

operational. Figure 3.12 shows how a RH engine pump failure affects the RH wing tank
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demand and RH engine pump operational state. Equivalent sub-nets are also listed for

RH ENGINE PUMP
OPERATIONAL

RH ENGINE
PUMP FAIL OFF

RHWT DEMAND

E

Figure 3.12: RH engine pump state

the LH engine and both auxiliary pumps.

Pumps are in a degraded state when their rating is limited to a maximum of 50%. If

the pump is operating below this rating, the effect of the degradation fault will not be

seen. However, if the engine rating is greater than 50% when the pump degradation fault

occurs, the pump rating will fall to 50%. Figure 3.13 shows how this behaviour has been

modelled in the PN for the RH engine pump.

RH ENGINE PUMP DEGRADED

RH ENGINE PUMP - 50% RH ENGINE
PUMP - 75%

RH ENGINE
PUMP - 100%

t1 t2
RH ENGINE PUMP - 75%
RH ENGINE PUMP - 100%

Figure 3.13: RH engine pump degraded state

Figure 3.13 shows how the PN would look immediately after the pump degraded fault

is injected when the pump rating is 75%. The transition t1 would first fire adding a

token to the ‘RH Engine Pump - 50%’ place. This ensures the PN simulates the fuel rig

behaviour with a reduced engine rating.

Upon transition t1 firing a token will also remain in the ‘RH Engine Pump - 75%’

place. Should a future phase change reduce the engine pump rating to 50% or below,

transition t2 would fire removing the token added to the ‘RH Engine Pump - 50%’ place

by the firing of transition t1. The transitions in Figure 3.13 would continue to fire if the

pump rating changed in subsequent phases. Issues that could be caused by having more

than one engine rating place marked are resolved when the pump demand transitions are

considered.
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3.3.3.7 Tank Demands

A demand for water from a tank will be created if the pump is operational or degraded

and the pump rating is greater than 0%. If the pump rating changes to 0% or the engine

pump fails off, the demand for water will be lost. Figure 3.14 shows how demand from

the RH auxiliary tank is modelled in the PN.

RH AUX PUMP
OPERATIONAL

RH AT DEMAND
RH AUX PUMP 0%

RH AUX PUMP 0%RH AT DEMAND

Figure 3.14: RH auxiliary tank demand

Figure 3.15 shows the sub-nets that model the state of demand for water from the RH

wing tank. It can be seen that the ability to create demand is dependent on the engine

pump states, the engine pump ratings and the TPLV states. Either the RH engine pump

must be operational with the RH TPLV in the ON position or the LH engine must be

operational with the LH TPLV in the CROSSFEED position. If at least one of these

requirements are met, a demand for water from the RH wing tank will be established.

The lower part of Figure 3.15 shows how the RH wing tank demand is lost as a result

of the TPLV state changing to OFF or the engine ratings changing to 0%. The lowest

three sub-nets cater for the all the possible operating states of the fuel rig including; RH

wing tank feeding RH engine, RH wing tank feeding LH engine and RH wing tank feeding

both engines.

3.3.3.8 Auxiliary Tank Outputs - Pump and Leak

Having established a demand for water from the auxiliary tank, the next set of sub-nets

determine how much liquid will leave the tank. The determining factors in this process are

the auxiliary pump rating, the auxiliary tank level and the state of the pipe between the

auxiliary tank and the wing tank. For every pump, four pump ratings are considered; 25%,

50%, 75% and 100%. Figure 3.16 shows the transition that fires when the RH auxiliary

pump rating is 75% and there is no blockage in the auxiliary to wing tank pipe. There

are four input places to the transition. The first confirms the auxiliary tank outlet pipe
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Figure 3.15: RH wing tank demand

is unobstructed. The second place provides the auxiliary pump engine rating. The third

ensures there is a demand for water from the tank and the fourth input place confirms

there is enough water in the tank to meet the demand. All of the input places are also

output places. There are an additional three output places. The first of these indicates

the flow out of the tank and into the pipe, tokens in this place will be used to increase

the wing tank level. The tokens added to the second output only place will be used to

reduce the auxiliary tank level. The tokens added to the auxiliary flow rate place will

remain there to indicate the predicted flow rate out of the auxiliary tank. The inhibit

edge prevents the transition firing if the pump is degraded.

There are equivalent sub-nets for all four of the possible engine ratings. The weightings

of the output edges are adjusted as appropriate dependant on the engine rating. There
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Figure 3.16: RH auxiliary tank output - Auxiliary pump 75%

is also a similar set of transitions to cater for scenarios where the auxiliary tank to wing

tank pipe is partially blocked and where the auxiliary pump is degraded.

If for whatever reason there is no flow out of the auxiliary tank, the bottom transition

in Figure 3.16 fires to add one token to the flow rate place. A single token in this place

indicates a flow rate of 0L/min.

A leak is the other possible cause of an output from the auxiliary tank. A range of

leak sizes have been considered in the model in addition to fifty possible leak heights - this

reflects the maximum number of tokens used to model the tank level. The process used to

determine leak sizes will be considered in more detail in Section 4.10.2. Figure 3.17 shows

how tank leaks are modelled in the PN.

RH AUX LEAK OUTPUT
RH AUX TANK LEVEL

RH AUX TANK LEAK SIZE

RH AUX TANK LEAK HEIGHT

5

14

5RH AUX TANK LEAK SIZE

RH AUX LEAK OUTPUT

RH AUX LEAK RATE

RH AUX TANK LIQUID OUT

I
1

Figure 3.17: RH auxiliary leak output

The top transition in Figure 3.17 is an ‘if’ transition. As was discussed previously

this transition checks to ensure the tank level is above the height of the leak. If this is

determined as true a token is added to the leak output place.

The leak output place and the leak size place are inputs to the lower transition. The
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tokens added to the leak rate output place remain there to indicate the effect of the leak

at each timestep. The tokens added the liquid out place join those added due to the pump

outputs, as shown in Figure 3.16, and are used to reduce the auxiliary tank level. There

are equivalent transitions for every leak size considered.

3.3.3.9 Auxiliary Tank Level Changes

The previous sub-nets determined how much water will leave the auxiliary tanks due to

the pump operation or a leak. The following sub-nets will adjust the auxiliary tank level

to account for these losses.

The level in each auxiliary tank is measured by two PN places. For the RH auxiliary

tank these places are ‘RH Aux Tank Level’ and ‘RH Aux TL-ve’. The first of these places

can contain up to fifty tokens, each of which represents 1.2cm of water to give a maximum

tank level of 60cm. Using this place alone however did not provide enough accuracy with

which to measure the tank level. The ‘RH Aux TL-ve’ place was therefore added. This

place can contain up to six hundred tokens which, combined, are equivalent to one token

in the tank level place. Figure 3.18 shows how the RH auxiliary tank level is changed.

RHAUX TANK LEVEL
SENSOR STUCK RHAUX TANK LIQUID OUT

C

40 40

20 20

10 10

5 5

4 4

3 3

2 2

600

RHAUX TANK
LIQUID OUT

RHAUX TL-VE

RHAUX TL-VE RHAUX TL DOWN

RHAUX TANK LEVEL ON

E1

E2

E3

E4

E5

E6

E7

Figure 3.18: RH auxiliary tank level change

The top transition in Figure 3.18 will only fire if the RH auxiliary tank level sensor has
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failed stuck. It is a clear transition that removes all of the tokens from the ‘RH Aux Tank

Liquid Out’ place. Removing the tokens from this place will not change the RH auxiliary

tank level.

The central block of transitions in Figure 3.18 moves tokens from the ‘RH Aux Tank

Liquid Out’ place to the ‘RH Aux TL-ve’ place. Using the set of transitions shown will

ensure that no matter how many tokens are in the liquid out place, they will all be moved

to the TL-ve place. The different engine ratings and leak sizes will all produce a different

number of tokens in the liquid out place and using the transitions shown is the easiest

way to account for them all and all possible combinations. The delay lengths of these

transitions are such that ε1 < ε2 < ε3 < ε4 < ε5 < ε6 < ε7.

The sub-nets shown at the bottom of Figure 3.18 illustrate how tokens are removed

from the ‘RH Aux Tank Level’ place. Once six hundred tokens are in the TL-ve place,

the upper transition fires adding a token to the ‘RH Aux TL Down’ place. This will then

enable the final transition, which removes a token from the tank level place. The PN

software will use the token count in both the tank level and TL-ve places when calculating

the PN determined auxiliary tank level values.

3.3.3.10 Auxiliary Tank High and Low Level Switch Changes

Having potentially reduced the tank level in Figure 3.18, it is necessary to consider the

state of the auxiliary tank low level switches. Figure 3.19 shows how the RH auxiliary

tank low level switch state is changed.

RHAUX TANK LLSw
WORKING ON

RHAUX TANK LLSw
WORKING OFF

RHAUX TANK LEVEL
RHAUX TANK
LLSw STUCK

RHAUX TANK LEVEL

RHAUX TANK LLSw
WORKING OFF

RHAUX TANK LLSw
WORKING ON
RHAUX TANK
LLSw STUCK

Figure 3.19: RH auxiliary tank low level switch change

The top transition in Figure 3.19 will only fire and change the low level switch state

from on to off if there are no tokens left in the ‘RH Aux Tank Level’ place. The transition

is also inhibited from changing the state of the switch if it has failed stuck. The lower



74 Chapter 3. Fuel Rig System and PN Model

sub-net shows how the low level switch state would change from off to on. The sub-net

structure in Figure 3.19 can be applied to all of the low level switches on the fuel rig

system by adjusting the input and output places as appropriate.

The high level switch changes are shown for the RH auxiliary tank in Figure 3.20.

RH AUX HLSw
WORKING ON

RH AUX HLSw
WORKING OFF

RH AUX LEVEL RH AUX HLSw STUCK

RH AUX LEVEL

RH AUX HLSw
WORKING OFF

RH AUX HLSw
WORKING ON

RH AUX HLSw STUCK

50

50

Figure 3.20: RH wing tank high level switch change

Figure 3.20 shows that the high level switch will only be working on if the auxiliary

tank level place contains fifty tokens as a result of the tank being full. Otherwise the high

level switch state will be ‘working off’. These sub-nets can be applied to all of the high

level switches on the fuel rig by changing the output and input places as appropriate.

3.3.3.11 Auxiliary Tank to Wing Tank Flow

The sub-nets described to this point have determined the amount of flow to leave the

auxiliary tanks and the resultant effect on the auxiliary tank levels. The water flow from

the auxiliary tank to the wing tank and the resultant increase in the wing tank level will

now be considered.

The piping between the auxiliary tank and the wing tank can fail as a result of a

blockage or a leak. A fault with the auxiliary tank isolation valve can also affect this

section of the system. The effect of a pipe or isolation valve blockage on the flow out of

the auxiliary tank was accounted for in Sections 3.3.3.4, 3.3.3.5 and 3.3.3.8. Figure 3.21

shows how the effect of pipe leaks are included in the PN model when the auxiliary pump

rating is 100%.

Figure 3.21 shows that three pipe leak sizes have been considered; small, medium and

large. A large leak will cause all of the flow out of the RH auxiliary tank to be lost. Smaller

leaks will lose proportionally smaller amounts of flow. The bottom sub-net in Figure 3.21

shows that when there are no leaks in the pipe all of the flow out of the auxiliary tank
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Figure 3.21: RH auxiliary tank to wing tank flow

goes to the wing tank.

Whereas the auxiliary tank level was represented by two PN places, the wing tanks

are represented by three PN places. The three places for the RH wing tank are ‘RH WT

Level’, ‘RH WT TL-ve’ and ‘RH WT TL+ve’. The additional place, TL+ve, is necessary

to account for the increases in the wing tank level as a result of the auxiliary tank input.

Both the TL-ve and TL+ve place can hold a maximum of six hundred tokens and this

represents one token in the ‘RH WT Level’ place. The PN software accounts for tokens

in all three places when determining the wing tank level values.

Having determined what proportion of the flow out of the auxiliary tank will reach

the wing tank, the next consideration is to convert this into tokens that fill the ‘RH WT

Liquid In’ place. Figure 3.22 shows, given the different input flow rates, how many tokens

are added to the wing tank liquid in place. In terms of delays, ε1 < ε2 < ε3.

Figure 3.22 shows that each of the possible flow rates into the wing tank will cause a

different number of tokens to be added to the ‘RH WT Liquid In’ place. If the wing tank

level sensor is stuck all of the tokens added to the ‘RH WT Liquid In’ place are removed

to prevent the wing tank level from being changed.

The number of tokens in the ‘RH WT Liquid In’ place represents the increase in the

wing tank level. The tokens in this place are moved to the ‘RH WT TL+ve’ place using

equivalent transitions to those shown in the centre of Figure 3.18. If the respective input

conditions are met the transitions in Figure 3.23 will then fire to increase the RH WT

Level token count by one.
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Figure 3.22: RH wing tank level increase

600
RHWT TL+VE RHWING TL UP

RHWT LEVELON

Figure 3.23: RH wing tank level change

3.3.3.12 Wing Tank Outputs - Pump and Leak

Figure 3.15 showed how demand for water from the wing tanks was established. The

transitions which then fire to satisfy this demand are very similar to those in Figure 3.16

which showed the RH auxiliary tank pump output. Figure 3.24 shows the transition that

fires when the RH wing tank experiences a demand from the RH engine which has a rating

of 50%.

RH WT to TPLV PIPE
UNOBSTRUCTED

RH WT FLOW OUTRH ENGINE PUMP 50%

RH WT DEMAND

RH WT LEVEL

RH WT LIQUID OUT

RH TPLV FLOW IN

2
27

RH ENGINE
PUMP DEGRADED

Figure 3.24: RH wing tank output - RH engine pump 50%

Figure 3.24 shows that the inputs to the transitions are equivalent to those in Figure
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3.16. There are two output only places however, flow out and liquid out. The tokens in

the flow out place will be used to determine the flow rate and flow pressure sensor outputs

downstream. Tokens in the liquid out place will be used to reduce the wing tank level.

The inhibit edge originating from the ‘RH TPLV Flow In’ place stops the transition from

firing if there is already water at the input to the TPLV. The cause of such a backlog will

be seen in subsequent transitions.

Equivalent transitions are in place for all of the remaining engine pump ratings and

when the engine pump is degraded. Dependent upon the input conditions, the number of

tokens added to the flow out and liquid out places varies as appropriate. Leak outputs

from the wing tanks are modelled in the same way as leak outputs from the auxiliary

tanks.

3.3.3.13 Wing Tank Level Changes

The PN sub-nets that control the decrease in the wing tank levels as a result of pump

and leak outputs have the same structure as the sub-nets which fulfil the function for the

auxiliary tanks. The transitions shown in Figure 3.18 are duplicated with the relevant

wing tank input and output places used instead of the auxiliary tank places.

3.3.3.14 Wing Tank High and Low Level Switch Changes

The sub-nets that model changes in the operating state of the low level switches on the

fuel rig were shown in Figure 3.19. Equivalent sub-nets are used to model the RH wing

tank low level switch states.

The sub-nets that model the state of the RH wing tank high level switch are equivalent

to those shown in Figure 3.20.

3.3.3.15 Wing Tank to Triple Port L-Valve Flow

Flow leaving the wing tanks will travel through a pipe to either the LH or RH TPLV.

Figure 3.21 showed different scenarios of flow between the auxiliary and wing tanks in the

presence of leaks and no leaks. Equivalent sub-nets are used to model flow between the

wing tanks and the TPLVs. Figure 3.25 shows the sub-nets modelling the flow from the

RH wing tank to the LH and RH TPLVs when there are no leaks in the piping.

The first two transitions in Figure 3.25 show that the flow out of the RH wing tank

will reach the input of the TPLVs subject to the operating state of the respective valve
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Figure 3.25: RH wing tank to TPLVs flow

and the input not containing water already. The TPLV input may contain a backlog of

water if, for example, an isolation valve downstream has become blocked or failed closed.

The bottom sub-net shows that water will flow from the TPLV input to the TPLV output

if the TPLV isolation valve is not closed or blocked. For the transition to fire it is also

required that there is not a backlog of water at the valve exit. A backlog at this point

could be caused by a fault with the engine isolation valve. Equivalent sub-nets to those

shown above are also included in the input file to account for all of the possible number

of tokens in the ‘RH WT Flow Out’ place.

3.3.3.16 Fuel Flow Rate and Flow Pressure Outputs

Once water reaches the exit of the TPLV isolation valves, it will pass through the engine

pumps and engine isolation valves before reaching the ‘engines’. The sub-nets at this

point in the input file therefore determine the outputs from the flow rate and flow pressure

sensors while also accounting for the operating state of the engine isolation valve and the

engine pump rating. Figure 3.26 shows one of the transitions that could fire when the RH

engine isolation valve is working open and the RH engine pump rating is 100%.

The transition in Figure 3.26 shows that when the engine isolation valve is open and

the sensors have not failed stuck, tokens will be added to the flow rate and flow pressure

places. It is not necessary to have the engine rating places as inputs because the fact that

there are tokens in the ‘RH TPLV Flow Out’ place indicates the engine rating must be
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Figure 3.26: RH sensor outputs - Sensors working, engine IV open, engine rating 100%

greater than 0%. Equivalent sub-nets account for all possible number of tokens that can

be present in the ‘RH TPLV Flow Out’ place. The number of tokens added to the sensor

output places is proportional to the tokens in the flow out of the TPLV place.

If there are no tokens in the ‘RH TPLV Flow Out’ place but the engine rating is greater

than 0% the transition in Figure 3.27 would fire. This scenario may occur, among other

reasons, as a result of a blockage or fault with the wing tank isolation valve or TPLV

isolation valve.

RH ENGINE IV BLOCKED/FAILED CLOSED

RH TPLV FLOW OUT

RH ENGINE IV WORKING CLOSED
RH ENGINE
FLOW RATE

RH FLOW RATE SENSOR STUCK

RH FLOW PRESSURE SENSOR STUCK

RH ENGINE
FLOW PRESSURE

ON

RH ENGINE PUMP 0%

Figure 3.27: RH sensor outputs - Sensors working, engine IV open, engine rating > 0%

In Figure 3.27 a token is added to the flow rate and flow pressure places even though

there is no water flow. A token has been added to these places to enable the software to

differentiate between when there is no flow in the system and when the sensors have failed

off. If no tokens are present in the sensor output places the software will interpret this as

the sensors having failed off. Placing a single token in each place when there is no flow is

therefore critical for the PN outputs to be accurate. Figure 3.28 shows that a single token

is also placed in each of the sensor output places when the engine rating is 0%.

If the engine isolation valve becomes blocked or fails closed when the engine pump is on

a small amount of water will be trapped between the pump and the engine isolation valve.

As the engine pump remains on the trapped fluid will become highly pressurised even
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RH ENGINE
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RH FLOW RATE SENSOR STUCK

RH FLOW PRESSURE SENSOR STUCK

RH ENGINE
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Figure 3.28: RH sensor outputs - Sensors working, engine IV open, engine rating 0%

though the flow remains stationary. This is true irrelevant of the engine rating. Figure

3.29 shows how this behaviour has been modelled in the PN.

RH ENGINE PUMP 0%
RH ENGINE IV WORKING CLOSED

RH ENGINE
FLOW RATE

6
RH FLOW RATE SENSOR STUCK

RH FLOW PRESSURE SENSOR STUCK

RH ENGINE
FLOW PRESSURE

RH ENGINE IV BLOCKED
RH ENGINE IV FAILED CLOSED

Figure 3.29: RH sensor output - Sensors working, eng IV blocked/closed, eng rating > 0%

Figure 3.29 shows that, so long as the sensors have not failed stuck, a single token will

be added to the flow rate place to indicate a zero flow rate while six tokens are added to

the flow pressure place to indicate very high pressure. This is the only scenario in which

six tokens will be present in the flow pressure place.

The subsequent sets of sub-nets consider the cases where either the flow rate or flow

pressure sensors have failed stuck. In these cases tokens are not added to the respective

sensor output places. Figure 3.6 showed that when these sensors are stuck the clear

transitions are inhibited from changing thereby maintaining the number of tokens in the

sensor outlet place.

Figure 3.30 shows transitions where the flow pressure sensor is stuck. In the first sub-

net the engine pump rating is 100% and the engine isolation valve is open. In the second

sub-net the engine pump rating is greater than 0% and the engine isolation valve is closed.

In the third sub-net the engine pump rating is 0%.

The first sub-net in Figure 3.30 is similar to that shown in Figure 3.26 expect there

is only an output to the flow rate place. A similar comparison can be made between the

second sub-net and Figure 3.29 and the third sub-net and Figure 3.28. In all of these cases

the behaviour of the system remains the same except that tokens are not added to the
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Figure 3.30: RH sensor outputs - Flow pressure sensor stuck

flow pressure sensor output place. In this way, the behaviour of the system in the presence

of the fault is accurately modelled.

A similar, but opposite, effect can be seen when the flow rate sensor is failed stuck as

can be seen in Figure 3.31.
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RH FLOW RATE SENSOR STUCK

RH ENGINE
FLOW PRESSURE

6

RH ENGINE PUMP 0%

RH ENGINE IV BLOCKED/FAILED CLOSED

Figure 3.31: RH sensor outputs - Flow rate sensor stuck
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Again, the sub-nets in Figure 3.31 are similar to those where no sensor faults are

present. The only difference being that no tokens are added to the flow rate sensor output

place. Tokens are added to the flow pressure sensor output place in the same number as

they were when no sensor faults were present.

If the flow rate sensors have failed high or failed off, the above transitions will still be

able to fire. This ensures the correct number of tokens are still added to the flow pressure

sensor output place. The relevant transition in Figure 3.32 will then fire to correct the

number of tokens in the flow rate sensor output place.

RH FLOW RATE SENSOR
FAILED HIGH

RH ENGINE
FLOW RATE

C

RH FLOW RATE SENSOR
FAILED HIGH

RH ENGINE
FLOW RATE

6

RH FLOW RATE SENSOR
FAILED OFF

RH ENGINE
FLOW RATE

C

E

Figure 3.32: RH sensor outputs - Flow rate sensor failed high/off

If the flow rate sensor has failed high, the top transition in Figure 3.32, a ‘clear’

transition, will fire to remove tokens from the flow rate place. The middle transition will

then fire to add six tokens to the flow rate sensor output place. Using this arrangement

minimises the number of transitions required to place the correct number of tokens in the

output place.

If the flow rate sensor fails off the bottom transition in Figure 3.32 will fire to remove

the tokens from the flow rate output place. As mentioned previously, the software will

identify a lack of tokens as a sign that the flow rate sensor has failed off.

Equivalent sub-nets to those shown in Figure 3.32 are used to model the system be-

haviour when the flow pressure sensor fails high or off.

3.3.3.17 Fault Injection

The penultimate sub-nets listed in the input file are those that inject faults into the PN

model. Figure 3.33 shows what a typical set of nodes would look like when a ‘RH Flow

Rate Sensor Failed Off’ fault is to be injected into the model, sixty seconds into the

mission.
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Figure 3.33: Failure mode inject transition

3.3.3.18 Phase Changes

The final set of sub-nets listed in the input file are the phase change nodes. These sub-nets

model the change in the operating state of the system either through increasing/decreasing

the pump ratings or altering the TPLV settings. Phase change sub-nets have transitions

of the specialist ‘single transition’ type as described in Section 3.3.1.3.

3.3.3.19 Faults Modelled in Software

Figure 3.7 showed how the state of the level sensor is changed in the PN model. The

effect of the level sensors failing stuck on the system was shown in Figures 3.18 and 3.22.

The effect of the level sensor failing high or low, however, is not shown. The effects of

these failure modes are accounted for in the PN software and not the PN model. The PN

software evaluates the PN marking when computing the tank levels to determine if any

level sensor has failed high or low. If a level sensor has failed high, the PN software will

record the tank level as 60cm. If a level sensor has failed low, the the level sensor will

record the tank level as 0cm. These actions are described further in Chapter 6.

To model high and low level sensor faults in the PN model would require extra place

nodes to represent the actual tank level and the tank level output by the level sensors.

However, by accounting for these failure modes in the PN code, the size and complexity

of the PN model can be minimised.

3.4 Conclusion

This chapter aimed to introduce the physical system that will be used to develop and test

the fault verification technique. The BAE Systems fuel rig system has been described in

detail and its modes of operation have also been discussed. Potential component failure

modes that can be injected into the fuel rig have been presented. These faults can either

be injected into the fuel rig manually or through a computer interface.

In order to model the fuel rig system with a suitable level of accuracy, three specialist
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transitions were introduced; clear, if and single. Each of these were introduced and their

area of application discussed. The fuel rig PN was then presented in accordance with

the order in which the transitions are listed in the PN software input file. Sub-nets were

presented that showed how the fuel rig normal operating behaviour has been modelled as

well as the fuel rig behaviour in the presence of faults.

The fuel rig PN model can now be used to accurately predict the behaviour of the fuel

rig system in a range of operating phases and in the presence of numerous failure modes.

Knowing the outputs from the fuel rig sensors, a comparison technique can be applied to

the data sets to potentially identify the validity of arisings.



CHAPTER 4

Fault Verification Techniques

4.1 Introduction

The process of verifying arisings from the fuel rig system will be undertaken by comparing

the variable outputs from the fuel rig with the predicted variable outputs from the PN

model. This chapter will investigate how to compare these variable outputs by assessing

a range of different techniques. Techniques will be applied to two different scenarios to

determine their ability to compare the recorded and predicted behaviour of the fuel rig

with and without faults present. The PN software will be used to conduct all of the

analysis.

A number of techniques for comparing the variable outputs have been identified from

literature and others designed independently. The standard deviation and dynamic time

warping techniques have both been sourced from literature. The point-by-point, delta,

binary and time techniques were developed separately. The point-by-point and delta

techniques were developed with a focus on the fuel rig tank level variables as, if a fault

were to occur in a fuel system, it is likely that the effect of that fault will be seen in the

behaviour of the system’s fuel tanks and their respective levels.

A thorough description of each technique is given below and the result of their appli-

cation to the fuel rig with and without faults is also presented. The techniques have been

identified and developed as being suitable for fault conditions generated by PBITs. They

are therefore applied retrospectively and the system behaviour throughout the fuel rig’s

operation is known.
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4.2 Application of Comparison Techniques to Fuel Rig De-

tails

4.2.1 Application to Fuel Rig

All of the comparison techniques will be tested by evaluating the RH wing tank level

data from a mission of the fuel rig in two different scenarios. These scenarios will test

the ability of the technique to operate successfully in the presence of a fault and without

a fault present. This is representative of actual scenarios that would be encountered by

the system. The first scenario will involve the fuel rig undertaking a phased mission with

no faults present. In the second scenario the same phased mission is carried out and a

leak is induced in the base of the RH wing tank after 90 seconds. Each scenario has been

conducted four times to test the robustness of the techniques and the fuel rig data from

each mission was recorded.

4.2.2 Mission Description

The phased mission in both scenarios is the same. It is a three phase mission lasting 200

seconds. The mission progresses from phase 1 to phase 2 after 20 seconds and from phase 2

to phase 3 after 180 seconds. In phases 1 and 3 all of the engine ratings on the fuel rig are

0% and there are no flow paths. In phase 2 the RH TPLV is set to on and the RH engine

rating is set to 50%. Figure 4.1 shows a set of the recorded and PN predicted RH wing

tank level values from scenario 1. Figure 4.2 shows a set of the recorded and PN predicted

tank level values from scenario 2. Also shown on Figure 4.2 is a set of PN predicted values,

where the leak fault has not been included in the PN model. This illustrates the variation

in the tank level behaviour as a result of the leak fault.

4.2.3 Initial Tank Level

In order to run a PN simulation of the fuel rig, the initial tank level values have to be

assigned to the system model. While it would be easier to use the first tank level value

for each tank
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Figure 4.1: Scenario 1 RH wing tank level
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Figure 4.2: Scenario 2 RH wing tank levels with and without leak in PN model
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from the data log file, this is not always sensible on the fuel rig. Figure 4.3 shows the RH

wing tank level values recorded during four test runs in scenario 1 which illustrates the

issue. In all test runs the RH pump was activated after approximately 20 seconds.
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Figure 4.3: RH wing tank level values at pump switch on

It can be seen in Figure 4.3 that the tank level variable has an unstable nature at the

start of the mission. This is a result of the time taken for the tank level sensor to fully

engage and settle on the actual level of water in the tank. Using the first tank level value

listed in the data log as the initial tank level value may, therefore, be inaccurate. Figure

4.3 shows that it takes approximately 5 seconds for the tank level values in all the tests to

begin to settle. In order to account for this activity and still use an accurate initial tank

level, the PN software averages the recorded tank levels between 5 and 8 seconds. This

process will be suitable even if the pump is on or a leak is present from the start of the

mission, as the time period being averaged is small enough that minor level changes will

not have a significant effect on the initial tank level value assigned to the model.
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4.2.4 Phase Change Effects

While evaluating the behaviour of the fuel rig, it was also found that at phase changes

the system variables were liable to unexpectedly fluctuate for a short time. This came as

a result of the pumps on the system turning on and physically vibrating the system, or

turning off and again disturbing the state of the system. This effect can be seen in Figure

4.3 when the engine pumps are turned on after 20 seconds and the tank level values

increase before settling at a higher value. A similar effect was seen when many faults were

injected into the rig, for example valve blockages, which also cause the system to vibrate.

The effect of these short term variable fluctuations is not limited to the tank level variable,

but can also be seen in other system variables. As a result of these fluctuations, tolerances

were often exceeded unexpectedly.

In order to account for this short term fluctuation, the comparison techniques described

in this chapter ignore the first 5 seconds of data immediately after a phase change or

arising. In doing so, the system variables on the fuel rig are able to fluctuate and then

settle again without requiring every comparison technique to attempt to quantify the

variable fluctuations.

4.3 Point-by-Point Technique

4.3.1 Description

The point-by-point comparison technique has been designed to provide a linear comparison

of tank levels. Comparisons will be made every second. This enables the most thorough

analysis possible, as the PN software utilises larger 1 second timesteps whereas the fuel

rig records values every 0.5 seconds.

In order to carry out the point-by-point analysis, vectors of the tank levels recorded

from the fuel rig and predicted by the PN model must be constructed in the PN software.

The fuel rig tank level data is read directly from the data log file with only data recorded

at whole second timestamps saved to a first vector. The PN tank levels are determined

from the token counts of the relevant places at each timestep and added to a second vector.

Having constructed two equally sized vectors of tank level values, the residual values in

the tank level at each time step can be found by subtracting the fuel rig tank level from

the value predicted by the PN model at the same timestep. Table 4.1 lists a group of



90 Chapter 4. Fault Verification Techniques

predicted and recorded RH wing tank level values, as well as the resultant residuals from

a fuel rig mission where no faults are present. The data in the table covers a period of

five timesteps where there are no phase changes.

Table 4.1: Calculating residual values in point-by-point technique

Time (s) 98 99 100 101 102

Predicted Tank Level (cm) 25.6909 25.6364 25.5818 25.5273 25.4727

Fuel Rig Tank Level (cm) 26.2250 25.9873 25.9302 26.0405 25.5086

Residual (cm) -0.5341 -0.3509 -0.3484 -0.5132 -0.0359

In order to determine if all of the tank level residuals are small enough, it is necessary

to apply a tolerance test. The successful application of tolerances to any variable on a

complex system requires detailed testing and analysis, that balances the need for accuracy

with the desire to prevent false alarms by allowing for noise in the system. Assuming an

initial tolerance of ±1.2cm, the value of one PN tank level token, all of the results in Table

4.1 would pass the tolerance test. However, if the tolerance were reduced to ±0.5cm, the

residual at time ti = 98 and ti = 101 seconds would fall outside the tolerance and therefore

fail the test. It could therefore be argued that a tolerance of ±0.5cm is overly restrictive

as the results, with no faults present, should be similar. However, further testing and

analysis would be required to justify this.

All of the residuals determined by the point-by-point technique are subject to a tol-

erance test and the number of residuals that pass and fail is recorded. To determine if

the PN predicted wing tank levels are similar enough to those recorded from the fuel rig,

a minimum percentage of passed tolerance tests can be defined, i.e. 97%. Using a value

below 100% is reasonable, as it prevents a nominal number of spurious rig results, which

may have been subject to higher levels of noise, from influencing the final result. Using a

single cut-off percentage will provide a definitive pass or fail result. Alternatively, it would

also be possible to use a number of success bands, i.e. 93-95%, 95-97%, 97%+, to describe

a level of confidence regarding the similarity of the two sets of data.
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4.3.2 Application to Fuel Rig

4.3.2.1 Scenario 1

Having determined the initial tank levels, the relevant simulations can be conducted and

the application of the point-by-point technique can be carried out. Table 4.2 shows the

percentage of tank level residuals that fall within the 1.2cm tolerance limit.

Table 4.2: Percentage of residuals within tolerance levels - Scenario 1

Test 1 Test 2 Test 3 Test 4

100% 99.5% 99.5% 100%

The results in Table 4.2 show that nearly every residual value was within the tolerance

limit for the RH wing tank. Two of the tests produced a 100% success rate, while 99.5%

of the residuals in the remaining tests were within the tolerance limit. These results are

in line with those that could be expected given the similarity of the curves in Figure 4.1.

The results in Table 4.2 demonstrate that the model provides an accurate representa-

tion of the fuel rig system and also increases confidence in its application in future tests.

The results also demonstrate that the techniques employed to determine the initial tank

levels and deal with the phase change effects, as described in Section 4.2.1, have been

successful.

4.3.2.2 Scenario 2

The second scenario considers when a leak is injected into the base of the RH wing tank

of the fuel rig. The top line of Table 4.3 shows how many residuals are within the 1.2cm

tolerance when the leak is injected in the fuel rig and modelled in the PN. The second row

in the table shows the results produced by the point-by-point technique when the leak is

injected into the fuel rig but is not included in the PN model. This arrangement, where

the fault is only injected in the fuel rig, will show the results of using the point-by-point

technique when comparing different data sets.

It can be seen in the top row of Table 4.3 that when the PN model includes the leak

failure mode the number of residuals within the tolerance limit is at least 99.0%. This

shows that the tank level values in the data sets are similar. When the leak is not injected

into the model the number of residuals falls to between 55 and 61%. As the fault is injected
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Table 4.3: Percentage of residuals within tolerance levels - Scenario 2

Test 1 Test 2 Test 3 Test 4

PN Model with Leak 99.5% 99.5% 99.0% 99.0%

PN Model without Leak 55.8% 60.0% 57.6% 60.3%

into the fuel rig after 90 seconds, the outputs from the fuel rig and PN should be similar

until this time. The number of residuals within the tolerance limit reflects this. Beyond

90 seconds the two outputs should be significantly different and the results show this to

be the case. Figure 4.2 also illustrates this point.

Importantly the above results show that the PN model is accurately representing the

behaviour of the fuel rig in both normal operation and with a fault present. The results

from the second row of Table 4.3 also show that the technique can identify deviations

between outputs. These results, along with those in Table 4.2, suggest that the tolerances

being used in this technique are suitable.

One potential disadvantage of the point-by-point technique would be revealed when

variables containing high levels of noise are considered. In these cases, where the fuel

rig output shows a large amount of variation in a normal operating state, the tolerances

applied by this technique would have to be wider to allow for the increased noise levels.

As mentioned previously, this increases the risk of genuine faults not being verified. The

application of the point-by-point technique could, therefore, be limited to variables that

exhibit lower levels of noise.

4.4 Delta Technique

4.4.1 Description

The delta comparison technique uses the change in tank level over time, or tank level

gradient, to compare the PN predicted tank levels and those recorded from the fuel rig.

The tank level gradient in each phase of the fuel rig’s operation is compared using this

technique in order to determine the overall similarity of the two sets of data.

The technique uses two tank level vectors, one listing the tank level values recorded

from the fuel rig and a second listing those predicted by the PN model. Two further vectors
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are then constructed that list the phase start and end times, along with the arising time,

if one is present. One of these vectors lists the phase start and arising times with a 5

second delay to account for the fuel rig phase change effects. Table 4.4 shows, using a set

of actual phase times, what times are used when calculating the tank level gradients from

the PN model and fuel rig tank level data. In the case of Table 4.4 a fault is injected into

the fuel rig after 90secs.

Table 4.4: Phase times used to calculate phase gradients

Actual PN Model Fuel Rig

Phase 1 0 – 21 0 – 21 5 – 21

Phase 2 21 – 90 21 – 90 26 – 90

Phase 3 (Arising) 90 – 183 90 – 183 95 – 183

Phase 4 183 – 190 183 – 190 188 – 190

Table 4.4 shows that the gradients are calculated from the PN data in line with the

actual phase times. The fuel rig tank data is evaluated after a 5 second delay from the

start of the phase or from the arising time. Once the times at which the tank levels will be

evaluated are known, the tank levels are identified from the respective vectors. In order to

reduce the effect of noise and erroneous values from the fuel rig data, every fuel rig tank

level value used is averaged from three data log values. In calculating this value at the

phase start time, the tank level at the time searched for and the two subsequent values

are used. The averaged value at the end of the phase is found from the tank level at the

time searched for and the two previous values. This ensures no values recorded at a phase

change are used. The PN model tank level values are not averaged, as they do not contain

noise. Having found all of the tank levels at the start and end of each phase of operation

and knowing the time at which these phases start and end, the respective phase gradients

can be found. Equation 4.1 is used to determine the gradient of each operational phase,

where y2 represents the tank level at time x2 and y1 is the tank level at time x1.

m =
y2 − y1
x2 − x1

(4.1)

Gradient residuals in each phase are then found by taking the fuel rig gradient from

the model predicted gradient. Each gradient residual will then be subject to a tolerance
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test to ensure that the actual and predicted values are within a suitable range. If all of

the gradient residuals are within the tolerance limit, the actual and predicted tank level

behaviour is considered to be suitably similar. Determining a suitable tolerance level will

come from data analysis of the fuel rig.

4.4.2 Application to Fuel Rig

The accuracy and ability of the delta comparison technique to identify the presence of a

fault will now be tested using the two fuel rig scenarios described in Section 4.2.1.

4.4.2.1 Scenario 1

Table 4.5 lists the predicted and actual tank levels at the start and end of every phase

in test one. The fuel rig tank levels are the averaged tank level values. The tank level

gradients in each mission phase have also been calculated and are displayed in the table. In

this scenario, as no faults are present, there are three phases of operation to be considered.

Table 4.5: Tank levels (cm) and phase gradients (cm/sec) - Scenario 1

Ph. Time Model TLs Model Grad Rig TLs Rig Grad

Phase 1 0 – 21 30.000 – 30.000 0.000 29.300 – 29.262 -0.0024

Phase 2 21 – 182 30.000 – 21.000 -0.0559 29.625 – 21.086 -0.0530

Phase 3 182 – 191 21.000 – 21.000 0.000 20.908 – 20.596 -0.0782

Table 4.5 shows that the RH wing tank level gradients determined from the PN model

and fuel rig data are very similar in phases 1 and 2. There is only a small amount of

variation in the gradient values and the tank level values are also similar. There is a

greater amount of variation between the gradients in phase 3. This could be due to that

fact that phase 3 is relatively short, at 9 seconds long, and therefore any noise in the

tank level values will have a greater affect on the gradient value. Figure 4.4 also shows

how small tank level changes in a short phase can have a significant effect on the gradient

values.

Figure 4.4 shows two curves plotted from fuel rig data. The figure shows data from

phase 1 where the tank level should remain constant. In test 1 the tank level decreases by

0.04cm, whereas in test 2 the tank level decrease is 0.45cm. Compared to the tank level of
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Figure 4.4: Phase 1 tank level phase gradients

approximately 30cm, these changes are very small, however, the short phase length means

that the gradient of each curve is significantly different. The test 1 curve has a gradient

of -0.002cm/sec, while the test 2 gradient is -0.027cm/sec. These results show that noise

can have a significant impact on the results from the delta technique. Table 4.6 shows the

gradient residuals in each phase of the four tests conducted in scenario 1.

Table 4.6: Gradient residuals (cm/sec) - Scenario 1

Test 1 Test 2 Test 3 Test 4

Phase 1 0.0024 0.0060 0.0266 -0.0037

Phase 2 0.0029 0.0033 -0.0038 -0.0030

Phase 3 0.0782 0.0254 0.0100 -0.0222

The phase 2 results in Table 4.6 show that the PN and fuel rig tank level gradients

match well, as the residual values are all relatively small. A similar result can be seen in

three of the phase 1 results (Test 1, test 2 and test 4). The cause of the anomalous result

from test 3 has already been discussed. The results from phase 3 show a consistently

larger residual value than in the previous phases. As the engines are off in this phase,
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there will be no change in the PN model tank level. The cause of the high residual values

can, therefore, be attributed to the fuel rig data and the short phase length. These results

give further proof that the delta technique can produce large residual values as a result of

noise and in particular as a result of noise and a short phase length.

From these results it can be hypothesised that identifying a suitable tolerance level

for the delta technique may be problematic. Considering only the results from phase 2, a

tolerance value of ±0.005cm/sec would appear to be sensible. However, if all of the results

are considered, and all tests need to pass, a much larger tolerance closer to ±0.03cm/sec

would be required.

4.4.2.2 Scenario 2

In scenario 2 a leak is injected into the base of the fuel tank after 90 seconds. As a result

all of the tests in scenario 2 have four phases, as the injection of a fault is treated as a

phase change. Phase 3 now represents the point from which the leak is present in the

system. All other operational phases remain the same. The phase gradient residuals for

each of the four tests in scenario 2 with the leak modelled in the PN are shown in Table

4.7.

Table 4.7: Gradient residuals (cm/sec) - Scenario 2

Test 1 Test 2 Test 3 Test 4

Phase 1 0.0006 0.0058 0.0102 0.0029

Phase 2 0.0103 0.0080 0.0065 0.0140

Phase 3 0.0105 0.0116 0.0138 0.0088

Phase 4 -0.0513 -0.0372 -0.0339 -0.0581

The phase 1 and 2 results in Table 4.7 are in line with those that were produced in

scenario 1. This result would be expected given that the fuel rig is in the same operational

state as in scenario 1 and there are no faults present. The phase 3 gradient residuals are,

on the whole, larger than those from phases 1 and 2 but not significantly larger. There

are a number of potential causes for this; the PN may not be accurately modelling the

effect of the leak on the tank level or noise could be impacting the fuel rig results. Looking

at Figure 4.2 it is likely that noise is causing the increase in the residual values. Noise
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and a short phase length again appear to have caused high residual values in phase 4. To

determine if the phase 4 residual values could be used as a tolerance guide, the results

of not including the leak fault in the PN model are considered. Table 4.8 presents the

residuals for the four tests when the leak is injected into the fuel rig but not modelled in

the PN.

Table 4.8: Gradient residuals without fault in model - Scenario 2

Test 1 Test 2 Test 3 Test 4

Phase 1 0.0006 0.0058 0.0102 0.0029

Phase 2 0.0121 0.0085 0.0085 0.0147

Phase 3 0.0449 0.0461 0.0470 0.0436

Phase 4 -0.0353 -0.0346 -0.0285 -0.0420

Table 4.8 shows that the residuals in phase 3, the first phase after the fault is injected,

are significantly larger than those in Table 4.7. This shows that the effect of the leak

can be seen in the gradient residual results. However, it is also clear that the results in

phase 4 have not changed. Despite the differing tank level behaviours being modelled in

scenario 2, the residual values in phase 4 remain consistently high. If the tolerance limit

was set at the highest residual value from Table 4.7, ±0.0581, all of the residual results in

Table 4.8 would have passed when they should all have failed. Therefore, the results from

scenarios 1 and 2 suggest that there are issues with the delta comparison technique in its

current form. It has been shown that comparing the PN and fuel rig tank levels over a

short phase length does not allow an accurate comparison to be made. Furthermore, the

noise in the tank level data has a significant impact on the delta results. Identifying a

suitable tolerance level would prove to be challenging and may require different tolerance

levels dependent upon a number of factors, i.e. phase length, arising type, etc.

4.5 Standard Deviation Technique

4.5.1 Description

The standard deviation (SD) comparison technique determines the variation that is present

in a single data set. In order to compare the results recorded from the fuel rig and predicted
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by the PN model, a residual data set will be evaluated to determine the SD value.

Márquez et al demonstrated the use of the SD technique as a means of comparing two

sets of data from a railway points system [29]. A known ‘good’ set of data was compared

to the actual data set from the railway points to try and identify the occurrence of faults.

If the SD of the residual data set exceeded a specified tolerance, a fault was considered to

have occurred. The technique was successfully applied by Márquez et al to 760 data sets

with all faults successfully detected and no false alarms registered.

In order to determine the residual values, the SD comparison technique must first

create vectors of the tank level values recorded from the fuel rig and predicted by the PN

model. Only tank level values recorded from the fuel rig at whole second timesteps are

read from the data file and saved to the vector. The PN tank level values are found in

the normal way. Two vectors of equal size will therefore have been created. From these

vectors the SD of the residuals can be computed.

Equation 4.2 shows how the SD is found.

SD =

√√√√√ n∑
i=1

(xi − x̄)2

(n− 1)
(4.2)

The final aspect of the technique is to apply a tolerance test to the SD value. A toler-

ance limit was also applied by Márquez et al in their work with the railway points system.

Identifying a suitable tolerance level, as has been mentioned, will require consideration of

the variable behaviour, noise levels and system safety considerations amongst others.

4.5.2 Application to the Fuel Rig

The SD technique will now be used to compare the RH wing tank level curves produced

by the PN model and the fuel rig in two scenarios.

4.5.2.1 Scenario 1

The result of applying the SD technique to the four sets of test data from scenario 1 is

shown in Table 4.9.

The results of Table 4.9 show that the SD values calculated are very consistent. Given

the similarity of the two curves in test 1, as shown in Figure 4.1, these SD results can

be assumed to show a good level of similarity between the two curves. The results also
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Table 4.9: Standard deviation values - Scenario 1

Test 1 Test 2 Test 3 Test 4

SD (cm) 0.2829 0.2232 0.1959 0.2647

indicate that a tolerance level of at least 0.3cm would be necessary for the RH wing tank

level variable in order to prevent arisings being incorrectly verified.

4.5.2.2 Scenario 2

The SD technique will now be applied to four test data sets from the fuel rig with a leak

injected in the base of the RH fuel tank. The PN simulations will be carried out twice. In

the first set of simulations the leak fault will be included in the model. In the second set

the leak fault will be omitted. This will show how the SD technique deals with differing

system behaviour. Table 4.10 shows the SD values produced from the results of each set

of simulations.

Table 4.10: Standard deviation values - Scenario 2

Test 1 Test 2 Test 3 Test 4

SD (cm) - PN Model with Leak 0.4081 0.3818 0.4956 0.4052

SD (cm) - PN Model without Leak 1.7210 1.6781 1.7239 1.7223

The results of Table 4.10 show a clear difference in the SD results when the leak fault

is included in the PN model and when it is not. Looking first at the results where the

leak is included in the PN model, it can be seen that all of the SD values are higher than

those listed in Table 4.9. This shows that there is a greater variation between the recorded

and predicted tank level values when a fault occurs in the mission than when there is no

fault. Nonetheless, the difference between the SD values is modest and considering the

similarity of the respective curves in Figure 4.2, it can be concluded that the SD values

in top line of Table 4.10 have been found from a data set of residual values that contain

a small amount of variation.

The SD values produced when the leak fault is not included in the PN model are several

times higher than when the fault is included. The variation between the respective curves

in Figure 4.2 illustrates why these larger SD values have been produced. These results
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suggest that the SD technique is sensitive to the difference in data sets being compared.

As a result, it may be possible to use wider tolerances with the SD technique, which would

reduce the likelihood of false positive arisings being verified. From the results of Table

4.9 and 4.10 a SD tolerance of 1.0cm could be applied without the risk of false positives

arisings being generated.

The SD technique method is versatile enough that it could be applied to any variable

on the fuel rig system. As long as a residual vector of values can be created, the SD tech-

nique can be applied. However, as with the other fault verification techniques considered,

unexpected levels of noise in a data set could cause higher than expected SD values to be

produced. Despite this, it has been shown that as the technique is sensitive to variations

between data sets, wider tolerances may be applied which could reduce/negate this issue.

4.6 Dynamic Time Warping Technique

4.6.1 Description

Dynamic Time Warping (DTW) is a means of comparing two curves, or sets of data, that

is considered by some to be more intuitive than a direct comparison, such as that used

in the point-by-point technique described in Section 4.3. The DTW technique was first

devised in 1983 and is unique in that it allows the time axis to be distorted to account

for sources of variation and error between two curves [30]. The original use of DTW was

in the field of handwriting recognition [30] [31] however, more recently, Atamuradov et al

have demonstrated its application in fault diagnosis with a railway turnout/points system

[32].

The DTW technique attempts to find the optimal match of two curves by determining

the smallest distance between the points on the first curve and the points on the second

curve. In order to use DTW it is unnecessary for the two curves to contain the same

number of points. Considering the fuel rig system and the tank level variable specifically,

the DTW technique will be used to find which data point recorded from the fuel rig is the

shortest distance from each data point on the PN tank level curve, a process which will

be known as matching.

The first stage in the technique is to write all of the recorded fuel rig tank level values

and PN predicted values to individual vectors. The next stage of the technique is to
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determine the shortest distance between every data point on the PN tank level curve and

a data point on the fuel rig tank level curve. Initially, every data point from the fuel rig

curve can be considered when finding the shortest distance. This is known as ‘complete

matching’. However, DTW can limit the potential number of data point matches in order,

for example, to reduce computational demands. Three constraints can be applied, as

described below:

1. Continuity Condition

The continuity condition directly controls the number of points on the second curve

which can be considered as potential matches for each point on the first curve. Vuori

et al [33] formalised this in the form of an equation and gave more information on the

continuity condition. Figure 4.5 shows how the variable c from the continuity condition

equation affects the points that can be matched on two curves of eight and six points

respectively. The boxes that are crossed out indicate that a match is not permitted by the

continuity condition. The figure shows how increasing the value of c relaxes the constraints

on which points can be matched. One noteworthy concern is the higher the value of c, the

more calculations will have to be carried out to find the smallest distance between all the

possible point combinations, which will increase the computational requirements.
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Figure 4.5: Effect of varying c on point matches

2. Boundary Condition

The boundary condition is an optional constraint that ensures that the first and last

points of each curve are automatically matched. While this condition may be appropriate

in some systems or variables, there is an obvious issue with the fuel rig tank level vari-

able. It has been shown that the first tank level values recorded by the fuel rig are often
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erroneous.

3. Monotonicity Condition

The monotonicity condition is another condition that limits possible point matches.

Niels [31] describes this in more detail. The monotonicity condition appears to be useful

in cases where curves have a circular nature to them, such as in alphabetical letters.

However, given such curves are not likely to be found when considering the fuel rig tank

level variable, it is unlikely that enforcing the monotonicity condition will have a significant

effect on the overall result of the DTW technique.

Having applied the chosen constraints, the distance between each of the possible point

matches can be calculated. The distance between the points is measured in the DTW

technique by Euclidean distance. Euclidean geometry states that the distance between

two points, P = (x1, y1) and Q = (x2, y2), is found using Equation 4.3.

|PQ| =
√

(x1 − x2)2 + (y1 − y2)2 (4.3)

The shortest distance between each point on the first curve and a point on the second

curve is then summed together and divided by the number of matched points to give the

average distance between the curves, also called the DTW value. This value gives an

indication of how similar the curves are, while the lower the value the smaller the distance

between the curves. To determine whether the DTW value is small enough to consider

the curves a good match, the result will be subject to a tolerance test.

4.6.2 Application to Fuel Rig

The DTW technique will now be applied to the two fuel rig scenarios used to assess the

comparison techniques. Throughout the application of the DTW technique the continuity

condition parameter c will be set to 0.4, as determined from a short period of testing, and

the boundary and monotonicity conditions will not be enforced.

4.6.2.1 Scenario 1

Once the PN simulation has been completed, the DTW technique is applied. Table 4.11

shows, for each of the four tests in scenario 1, which points from the fuel rig curve provided

the closest match to a range of points at the start and middle of the predicted tank level

curve. The values in the table indicate the time, or x-axis value, of the points on the
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respective curves. The DTW value for each test is also given.

Table 4.11: DTW point matches - Scenario 1

Model Time Test 1 Test 2 Test 3 Test 4

0 0 1.5 0.5 0

1 1.5 1.5 1.5 1

2 2 2 2 2
...

...
...

...
...

100 100 100 100 100

101 101 101 101 101

102 102 102 102 102
...

...
...

...
...

DTW Value (cm) 0.3300 0.2078 0.4167 0.2446

From Table 4.11 it can be seen that in the lower group, 100 – 102 seconds, all of the

PN data points were matched with a fuel rig data point recorded at the same time. In the

upper group, 0 – 2 seconds, the matching is not as linear. Given the noise that is present

in the fuel rig data at this time, it is not unexpected to find that some of the data point

times do not match. Nonetheless, the variation between the two curves can be seen to be

a maximum of 1.5 seconds. These results illustrate that when noise is present in the fuel

rig data the DTW technique provides some flexibility to deal with this issue. Evaluation

of the final DTW values will be considered with the results of scenario 2.

4.6.2.2 Scenario 2

Table 4.12 shows, for each of the four tests in scenario 2, which points from the fuel rig

curve are the closest match to a range of points at the start and middle of the predicted

tank level curve.

The results in Table 4.12 are similar in both groups to those results listed in Table

4.11. The noise present in the fuel rig data at the start of the mission has resulted in

several data points being matched that were not recorded at the same time. However, the

variation between the data point times is less than 2 seconds. It could also be concluded

from these results, and those in Table 4.11, that the PN model is accurately representing
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Table 4.12: DTW point matches - Scenario 2

Model Time Test 1 Test 2 Test 3 Test 4

0 1 1 1.5 1.5

1 1 1 1.5 1.5

2 2 2 1.5 1.5
...

...
...

...
...

100 100 100 100 100

101 101 101 101 101

102 102 102 102 102
...

...
...

...
...

DTW Value (cm) 0.3413 0.3215 0.3971 0.3764

the behaviour of the fuel rig when in normal operation and with a leak in the base of the

RH wing tank.

To investigate the sensitivity of the DTW technique, a comparison between a fuel rig

tank level curve and a PN tank level curve where the leak is not included in the PN model

but is injected in the fuel rig is carried out. All four sets of the fuel rig data with a leak

present are analysed and Table 4.13 shows the respective data points that produce the

shortest Euclidean distance for three small sections of the mission, and the overall DTW

values.

Table 4.13 shows that the matching points in each of the sections considered are close

together and never more than 1.5 seconds apart. This is true even after the leak has been

injected into the fuel rig after 90 seconds and the curves diverge, as shown in Figure 4.2.

In the third section, long after the leak has been injected into the fuel rig, the largest

variation in the x-axis values of the matching points is 0.5 seconds. Given the difference

between the curves at these times, it might have been expected to see greater variation

in the matched points x-axis values. The cause of these results can be attributed to the

fact that the Euclidean distance equation gives equal weighting to the distance between

points on the x-axis, as it does to the y-axis. This means that, unless there is a significant

difference between multiple points on the y-axis at the same time, due to persistent noise

or many erroneous values in the data log for example, point matches will always be made
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Table 4.13: DTW point matches without fault - Scenario 2

Model Time Test 1 Test 2 Test 3 Test 4

0 1 1 1.5 1.5

1 1 1 1.5 1.5

2 2 2 1.5 1.5
...

...
...

...
...

100 100 100 100 100

101 100.5 101 101 101

102 102 102 102 102
...

...
...

...
...

174 173.5 173.5 174.5 174

175 175.5 175.5 174.5 175

176 175.5 176.5 175 175
...

...
...

...
...

DTW Value (cm) 1.4799 1.4015 1.4466 1.4445

with very similar x-axis values.

A further conclusion that can be made from Table 4.13 relates to the DTW values.

The result of every test shows that the DTW values are all significantly higher than those

in Table 4.11 and Table 4.12. All of the DTW values in the previous tables were less than

0.5cm. By comparison all of the DTW values in Table 4.13 are greater than 1.4cm. Given

these results, a tolerance of 0.7cm could be safely proposed for the RH wing tank level

variable. The results from Table 4.12 and 4.13 indicate that using this tolerance value

would prevent false positives from occurring.

The DTW results have shown that there is some flexibility in the technique and that

it can be used to overcome some issues caused by the presence of noise in variables. It

was possible to use the results to confirm the presence of the leak in the wing tank.

The results were also shown to change significantly, when the leak fault was present in

the fuel rig but not in the PN model. One potential issue with the DTW technique is

the number of calculations that are required, although this is dependant on the constraint

conditions applied. Compared to the other techniques considered, significantly many more
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calculations are necessary in order to generate a result. When considering all of the fuel

rig variables, this requirement could increase computational needs significantly.

4.7 Binary Technique

4.7.1 Description

The comparison techniques considered up to this point have dealt with the tank level

variable alone. The binary technique, however, was designed to allow the output from the

low and high level switches to be compared.

The binary technique compares the state of the low/high level switch only at the end

of the mission. The switch state from the fuel rig is read from the data log file, as either on

or off. In the PN model, however, the switch states can be working on/off or failed on/off.

In order to account for the greater number of model states, a positive, or ‘on’, output from

the fuel rig is assumed to be verified if the PN contains a token in the switch ‘working on’

or ‘failed on’ places. It is necessary to include the ‘failed on’ place, because without it, if

the ‘high/low level switch failed on’ fault were to occur, the binary technique would fail

to correctly verify it. Similarly, a negative, or ‘off’, output is verified by a token in the

‘working off’ or ‘failed off’ PN places. If the predicted and actual state of the low/high

level switches match, the binary test is considered to have been passed.

The greatest advantage of the binary technique is that it has very low computational

requirements. It may, therefore, be of benefit to use a variation of the binary technique to

compare other system variables at the end of or throughout a period of fuel rig activity.

Possibilities include; at the start and end of every phase, or every x seconds. Such a

comparison, although very limited in detail, could provide a quick check to ensure that

the respective data points are within a sensible range before a more computationally

demanding and exhaustive technique is applied.

Although the binary technique allows variables beyond the tank level to be compared,

its application with the low and high level switches could be limited. For safety reasons the

fuel tanks on many systems are not permitted to ‘run dry’ or become completely empty.

As a result, the low level switches should always be on. Also, when in operation, the

high level switch is likely to be off for the majority, if not all, of the mission. As a result,

comparing the low and high level switch states will allow only a small number of faults
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to be verified. The suggested application of an adjusted binary technique as an initial

comparison technique, however, could prove useful if the computational times associated

with other techniques become too great.

4.8 Time Comparison Technique

4.8.1 Description

The time comparison technique is an extension of the binary technique, that considers the

state of low and high level tank switches. The distinctive feature of the time technique is

that it compares the actual and predicted time at which the state of a switch changes.

Before comparing the time at which a switch changes state, the time comparison

technique assesses the PN predicted results and fuel rig data log to ensure that a change

of state has occurred in both results. Once it has been identified that a state change occurs,

the time at which the state change occurred in the fuel rig and PN model is determined.

If the difference between these times is within a set tolerance, this stage of the test is

passed. The state of the switch at the end of the mission must also be consistent in both

the recorded results and predicted data in order for the result to stand.

The time comparison technique assumes that the tank switches can only change state

once over the time period under consideration. In the case of the high and low level

switches on the fuel rig this is reasonable, as once either switch turns off it would require

fuel to be created for them to change state again.

The time comparison technique is similar to the binary technique, since it has very

low computational requirements. However, it is also similar in the sense that it has only

limited application potential in terms of fault verification. There is only a small number

of faults that can be verified by the time comparison technique alone and the techniques

considered in Section 4.3 to Section 4.6 may be able to verify these faults with greater

accuracy.

4.9 Fault Verification Technique Selection

The aim of this chapter is to identify the most suitable technique for the comparison of

fuel rig and PN variable outputs in order to verify arisings. While all of the techniques

considered above displayed a positive comparison feature, that in some cases is highly
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specific, several exhibit poor performance characteristics. The binary and time comparison

techniques have very low computational requirements, however do not provide a similar

level of detail, compared to the other techniques. The delta technique was shown to have

issues when dealing with even small amounts of noise, which are constantly present on

the fuel rig. Another technique that was identified to have potential issues with noise is

the point-by-point technique. Of the two remaining techniques, the DTW technique was

identified as the one with far greater computational demands. Additional time would also

have to be spent determining which constraint conditions to apply to which variables and,

if the continuity condition were to be applied, identifying the optimum value of c. As a

result, the SD technique was identified as the most robust and suitable for application to

the fuel rig system. The technique was successfully applied to the tank level variable and

it is clear how this can be extended to the other variables on the fuel rig system. It has

also been used in the process of variable comparison in the past and will be used in this

work going forward. Tokens representing different variables in the fuel rig PN will have

unique values associated with them. A token in a tank level place for example, will have

a different value from a token in a flow rate place. Establishing the true value of each

variable in the PN will therefore require a unique piece of code for each variable. Once

these values have been established however, they are all compared in the same manner

using the SD technique presented in Section 4.5.

4.10 Fuel Rig Specific Features

In order to make the SD fault verification technique as effective as possible, a number of

fuel rig specific features have been developed for in the PN software. Implementing these

will improve the accuracy and capability of the technique.

4.10.1 Auxiliary Tank Vibration Effect

The engine and auxiliary pumps are represented on the fuel rig using peristaltic pumps.

When operational, the rotational motor within these pumps causes the fuel rig to vibrate.

The effect is greater as the pump rating is increased and the motor turns at a greater speed.

Testing identified that the effect of this vibration was greater on the auxiliary tanks than

on the wing tanks. Figure 4.6 shows the effect of the auxiliary pump vibrations on the
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RH auxiliary fuel tank level. The figure shows the tank levels recorded from a phased

mission, where the auxiliary tank isolation valve is closed to prevent any fluid leaving the

tank. The auxiliary pumps are only active in phase 3.
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Figure 4.6: RH auxiliary tank level

It can be seen that at the start of phase 3, as the auxiliary pump rating is established,

there is a significant increase in the tank level. A similar, but smaller, effect can be seen at

the start of phase 2 when the engine pump demand is established. Both of these increases

are related to the pump induced rig vibrations that cause the fluid in the fuel tanks to

shake. As would be expected once the pump demands are removed, and the rig stops

shaking, at the start of phases 4 and 5 the tank level falls. Figure 4.7 shows the RH wing

tank level over the course of the same phased mission. There will be no flow into the wing

tank.

Figure 4.7 shows an increase in the wing tank level at the start of both phases 2 and 3.

A decrease in the wing tank level can be identified at the start of phases 4 and 5. These

results indicate that the pump induced system vibrations are affecting both the auxiliary

and wing tanks on the fuel rig. While the engine pump alone is having an effect on the

tank levels, there is a much larger effect when both the engine and auxiliary pumps are

on. It is therefore sensible to attempt to quantify the effect of the vibration when both

pumps are on. This will enable accurate comparisons to be made between the fuel rig and

PN predicted tank level behaviour.

The vibration effects will be quantified by comparing the recorded tank levels, when

only the engine pumps are on and when the engine and auxiliary pumps are on. During the
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Figure 4.7: RH wing tank level

tests the auxiliary and engine tank isolation valves were closed to prevent any flow leaving

the tanks. The tests were performed at a number of tank level heights to investigate

whether the vibration effect varied with tank level. Figure 4.8 and Figure 4.9 show the

tank level values for the situation with the auxiliary engine off vs auxiliary engine on,

for the RH auxiliary and wing tank respectively. Both figures show a clear increase in

the tank level when the auxiliary tanks are on, and that the effect is greater at higher

tank levels. Using the gradient of a linear trend line through the points plotted when the

auxiliary engine is on, the vibration effect on each of the four tanks can be quantified.

Using a process of trial and error, it was identified that the effect of the vibration

on both wing tanks could be accounted for by a single equation. Therefore during the

process of fault verification, all wing tank level values predicted by the PN when both

the wing and auxiliary pumps are on, are multiplied by 1.033. The auxiliary tanks have

to be considered individually, with LH auxiliary tank levels multiplied by 1.05 and the

RH auxiliary levels subject to the formula shown in Equation 4.4. In the equation, L′

represents the adjusted RH auxiliary tank level and L represents the initially predicted

tank level.

L′ = (L ∗ 1.08) + 0.3 (4.4)
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Figure 4.8: Vibration test RH auxiliary tank level
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Figure 4.9: Vibration test RH wing tank level

4.10.2 Leak Faults

The only fault type that will not be evaluated using the SD technique, described in Section

4.5, is a tank leak. By considering the leak faults separately it is possible to determine the

size and location of the leak when verifying the fault. Determining these additional pieces

of information using the SD technique would require every possible size and location of
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leak to be evaluated. Leak faults are evaluated using only data recorded from the fuel rig.

The process created to verify a leak arising considers both the tank level and flow rate

variables of the tank under consideration. In order to compare the two variables directly

requires flow rate monitors at the input to and exit from the tank. Initially the flow

rate data must be converted into tank level values. Equation 4.5 is used to convert the

flow rate data (FRi) at every timestep (∆t) in the mission into the volume of liquid that

leaves/enters the tank (V ). Both flow rates out of and into the tank under consideration

must be subject to Equation 4.5. Equation 4.6 then converts the volume into a change

in the tank level (L′) using the tank cross sectional area (CSA). Given the initial tank

level, found using the method presented in Section 4.2.3, this value can be used to help

calculate the tank level from the flow rate outputs throughout the mission.

V =
FRi + FRi+1

2
∗∆t ∗ 1000 (4.5)

L′ =
V

CSA
(4.6)

In Equation 4.5 the flow rate data is measured in L/sec. The volume is expressed in

cm3. The cross sectional area of the tank is measured in cm2 and the change in tank level

is expressed in cm.

To reduce the noise effects seen in the tank level output, a 10-point moving average

has been applied to the level sensor data. This filter determines a tank level by averaging

the nine previous data points with the 10th point under consideration. This significantly

reduces the noise in the level sensor output and enables a more accurate comparison with

the flow rate data to be carried out.

To verify the presence of a leak arising, the tank level gradients prior to and after the

arising time are assessed. Gradients, m, are calculated from the data recorded by both

the level sensor and flow rate data and Equation 4.1. The tank level gradient prior to the

arising is found using data points from the start of the phase in which the arising occurs

and at the arising time. The first data point is taken as that 20 seconds after the phase

start time. The second data point is at the time of the arising. The tank level gradient

after the arising is found using data points 20 and 30 seconds after the arising. The 20

second delay from the start of the phase/arising is necessary to allow phase change effects

and the moving average results to settle.
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The gradient residual before and after the arising is then found. The gradient residual

is found by subtracting the flow rate tank level gradient from the level sensor value. If

a leak is present, the gradient residual after the arising will be lower than that prior, as

only the level sensor output after the arising will show any leak effects. To allow for the

presence of noise in the tank level variable, the gradient residual must fall by 0.019cm/sec

in order for a leak to be verified. This value was identified from testing of a variety of leak

sizes and locations on the fuel rig. Equation 4.7 expresses how a leak is verified, where

RGrad−Pre is the gradient residual prior to the arising, and RGrad−Post is the gradient

residual after the arising.

RGrad−Post < RGrad−Pre − 0.0190 (4.7)

The final step, having verified the presence of a leak, is to identify the location or

height of the leak. As was shown above, when a leak occurs the gradient residual value

decreases. It follows then that, if the tank level were to fall below the height of the leak,

the gradient residual value would increase to a value approaching that found prior to the

leak appearing. It was shown previously, that in order for a leak to be verified the gradient

residual value after the arising had to be at least 0.019cm/sec lower than the value prior to

the report. Therefore, in order to confirm the tank level has fallen below the leak height,

the residual gradient must be greater than the residual gradient prior to the arising less

0.019cm/sec. The leak height will have been identified if Equation 4.8 is satisfied. In the

equation RGrad−Interval is the gradient residual at an interval some time after the arising.

RGrad−Interval > RGrad−Pre − 0.0190 (4.8)

To find the leak height as accurately as possible, gradient residual values are found

at 15 second intervals starting from the last time considered to find the post fault report

gradients, i.e. 30 seconds after the arising. If Equation 4.8 is satisfied by any of these,

then the leak height is determined from the level sensor outputs at that time. If a leak

is verified but the gradient residuals never exceed the minimum gradient residual, it is

possible that the leak could be present anywhere between the base of the tank and the

tank level at the end of the mission.

The leak arising technique will now by demonstrated by means of an example. A five

phased mission was undertaken by the fuel rig and a leak was injected into the side of the
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LH auxiliary tank of the fuel rig after 60 seconds. Only in phase 3 the LH auxiliary pump

rating is set to 75%. In all other phases the pump rating is 0%. For this test a flow rate

meter was placed at the outlet from the LH auxiliary tank, thereby ensuring that the flow

rates out of the auxiliary tank were measured. Figure 4.10 shows the tank levels for the

LH auxiliary tank over the course of the mission, as determined from the moving averaged

level sensor data and the flow rate data.
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Figure 4.10: LH auxiliary tank levels

Figure 4.10 shows that the effects of the leak are only visible in the level sensor data.

As none of the leak flow passes through the flow rate meter, its effects are not captured in

the flow rate data. The tank level calculated from the flow rate data only falls in phase 3,

as expected, when the auxiliary pump is on. At the start of phase 3 the level sensor curve

also becomes steeper indicating an increased flow out of the tank. This effect, however,

only lasts until the middle of the phase, when the gradient becomes more gradual. This

change is a result of the tank level falling below the height of the leak and no longer

having an effect. Beyond this point the gradients of the level sensor and flow rate tank

level curves are similar.

In the phased mission considered above the arising occurs in the second phase of the

mission, which began after 15 seconds. The leak arising was recorded at 60 seconds. The

pre arising tank level gradients are, therefore, found using the tank level and flow rate

sensor data points at 35 and 60 seconds. The post arising gradients are found using the
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data points at 80 and 90 seconds. Table 4.14 lists the tank level gradient values found using

Equation 4.1 and the gradient residual values for the phased mission being considered.

Table 4.14: Level sensor and flow rate determined tank level gradients

Pre-Arising (cm/sec) Post-Arising (cm/sec)

Level Sensor -0.0015 -0.1752

Flow Rate Sensor -0.0002 -0.0001

Gradient Residual -0.0013 -0.1751

It can be seen that while the gradients determined from the flow rate data show only a

small amount of change, the gradients determined from the level sensor data show a much

larger amount of change. The gradient residual value has decreased by 0.1738cm/sec due

to the leak. As Equation 4.9 has been satisfied, a leak can be verified. The size of the leak

is equivalent to the change of the gradient residual values, 0.1738cm/sec. To determine

the height of the leak the RGrad−Interval term in Equation 4.10 has to be found. Inserting

the relevant values it can be found that, if the gradient residual at any interval is greater

than -0.0203cm/sec, then the tank level will have dropped below the leak height. Table

4.15 lists the interval gradient residuals for the phased mission. Intervals including data

that falls within the first ten seconds of a phase are ignored due to phase transition effects.

The results show that the gradient residuals calculated at the first three intervals are

all lower than the value required to identify the leak height. The interval from 150 – 165

seconds represents the first time that the gradient residual is greater than -0.0203cm/sec.

It can also be seen that all subsequent values are greater than this value. It is clear

therefore that at 150 seconds the tank level has fallen below the height of the leak. The

leak height can therefore be found from the level sensor data at 150 seconds. A leak

height of 23.6cm is found by averaging the tank level values over the first 3 seconds of the

interval. This result also matches well with the observations that were made of the tank

level curves in Figure 4.10.

4.10.3 Fuel Rig Variable Tolerance Limits

In order to fully apply the SD verification technique to the fuel rig system, it is necessary

to determine the tolerance limits for each of the system variables. In Section 4.5, a
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Table 4.15: Residual values after arising

Interval (sec) Interval Residual (cm/sec)

90 – 105 -0.1592

120 – 135 -0.1127

135 – 150 -0.0865

150 – 165 0.0190

165 – 180 0.0415

180 – 195 0.0488

210 – 225 0.0038

225 – 240 -0.0063

240 – 255 -0.0004

255 – 270 -0.0015

270 – 285 0.0052

tolerance limit for the RH wing tank level variable was proposed based on the results

shown. However, the behaviour of each variable must be considered in the presence of

many possible failure modes on the system and in a range of operating modes in order

to determine the most suitable limits. Table 4.16 lists all of the SD tolerance limits that

have been chosen for the fuel rig variables. These tolerance limits have been identified

to provide the best differentiation between faulty and non-faulty behaviour in the fuel rig

system. The application of these tolerances with the overall fault verification technique

should allow arisings generated on the fuel rig to be correctly identified as either genuine

or false.

4.11 Conclusion

This chapter has considered a number of variable comparison techniques that could be

used to verify the occurrence of faults on the fuel rig system. Two of the techniques, SD

and DTW, were found to offer a superior comparison of the predicted and actual behaviour

of the tank level variable. A number of other techniques showed greater evidence of issues

with noise, accuracy and failed to provide as detailed an analysis. All of the techniques

were applied to two scenarios involving the fuel rig system undertaking a phased mission.
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Table 4.16: Fuel rig SD tolerance limits

Fuel Rig Variable Tolerance

LH Auxiliary Tank Level 1.500cm

RH Auxiliary Tank Level 1.500cm

LH Wing Tank Level 1.500cm

RH Wing Tank Level 1.500cm

LH Flow Rate 0.30L/min

RH Flow Rate 0.30L/min

LH Fuel Flow Pressure 9,000Pa

RH Fuel Flow Pressure 9,000Pa

LH Wing Tank High Level Switch 0.1

RH Wing Tank High Level Switch 0.1

LH Wing Tank Low Level Switch 0.1

RH Wing Tank Low Level Switch 0.1

RH Auxiliary Tank High Level Switch 0.1

RH Auxiliary Tank Low Level Switch 0.1

In the first scenario no faults were considered. In the second scenario a fault was injected

in the fuel rig system and modelled in the PN. The SD and DTW techniques demonstrated

an ability to accurately compare the fuel rig and PN tank level behaviour, when no faults

were present and in the presence of faults. Owing to the ease with which the SD technique

could be applied to the other variables on the fuel rig system, it was chosen as the most

suitable fault comparison technique. The SD technique also created smaller computational

demands compared to the DTW technique.

The penultimate section of this chapter considered features of the fault verification

technique that are specific to the fuel rig system. It was found that the peristaltic pumps

installed on the system cause the fuel rig to vibrate and the water in the tanks to shake.

This effect was amplified when both the auxiliary and engine pumps were active. A number

of formula were, therefore, derived to allow the PN predicted tank levels to account for this

phenomena, when all the pumps were active. A specific leak fault verification technique

was also introduced. This technique not only verifies the presence of a leak, but can also

estimate the leak size and, where possible, the leak height in the tank. Finally, the fuel
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rig variable SD tolerances were also presented.

The complete fault verification technique can now be used to assess the legitimacy of

arisings produced by the fuel rig system.



CHAPTER 5

Fuel Rig System Results

5.1 Introduction

Previous chapters have identified a modelling technique and variable comparison technique

with which to verify arisings from complex systems. The operation of the BAE Systems

fuel rig was described and modelled in Chapter 3. All of these resources will now be

combined to verify arisings from fuel rig.

This chapter will consider the results of applying the fault verification process to aris-

ings generated during a phased mission of the fuel rig system. All of the first order faults

listed in Table 3.1 have been induced in the fuel rig and its behaviour has been recorded in

the form of the output variables. Using the PN model of the fuel rig and the SD compari-

son technique, the ability of the fault verification process to correctly verify these faults is

demonstrated. A scenario where the fault verification process is used to identify a single

genuine fault from a list of arisings is also investigated. A number of second order faults

are considered. The results will also consider the ability of the fault verification technique

to identify false arisings.

5.2 Phased Mission Description

All of the failure modes considered in this chapter were individually injected into the fuel

rig while it was progressing through the same phased mission. The mission undertaken

has five phases and a duration of 300 seconds. The system pump demands and TPLV

states throughout the mission are displayed in Table 5.1. In phase 2 the TPLVs are set

to ON and a 50% demand is applied to both engine pumps. This creates flow paths from
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the LH and RH wing tanks to the LH and RH engines respectively. Phase 2 lasts for 90

seconds.

All of the first order failure modes were injected after 60 seconds, during phase 2.

Injecting the faults at this time allowed the effect of the fault to fully propagate through

the model. It also allows the fault to be present while the system operates in several

different phases. This will reduce the number of hidden failure modes considered.

Table 5.1: Fuel rig pump and valve states in phased mission

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

LH Auxiliary Pump 0% 0% 75% 0% 0%

RH Auxiliary Pump 0% 0% 75% 0% 0%

LH Engine Pump 0% 50% 50% 50% 0%

RH Engine Pump 0% 50% 50% 50% 0%

LH TPL-Valve OFF ON ON ON OFF

RH TPL-Valve OFF ON ON ON OFF

Phase Length 15s 90s 90s 90s 15s

Cumulative Mission Length 15s 105s 195s 285s 300s

5.3 Normal Operating Behaviour

The ability of the fault verification technique to assess the legitimacy of arisings is based

on the fuel rig variable outputs and the PN model prediction of those outputs. The figures

below, from Figure 5.1 to Figure 5.13, show these outputs, as recorded from the fuel rig

and as predicted by the PN model, when no faults are present in the system. These

‘clean’ outputs will be used as a baseline performance indicator that future outputs can

be compared to in order to identify the effects of faults on the system.

Table 5.2 lists the SD values calculated from the recorded and predicted fuel rig system

variable outputs in the ‘clean’ arrangement. None of the SD values exceed the respective

tolerances. These results can now be used to see the effect of different failure modes on

the performance of the system in the phased mission.
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Figure 5.1: ‘Clean’ fuel rig arrangement - Auxiliary tank levels
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Figure 5.2: ‘Clean’ fuel rig arrangement - RH wing tank level
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Figure 5.3: ‘Clean’ fuel rig arrangement - LH wing tank level
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Figure 5.4: ‘Clean’ fuel rig arrangement - RH fuel flow rate
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Figure 5.5: ‘Clean’ fuel rig arrangement - LH fuel flow rate
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Figure 5.6: ‘Clean’ fuel rig arrangement - RH fuel flow pressure
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Figure 5.7: ‘Clean’ fuel rig arrangement - LH fuel flow pressure
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Figure 5.8: ‘Clean’ fuel rig arrangement - RH wing tank high level switch state
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Figure 5.9: ‘Clean’ fuel rig arrangement - RH wing tank low level switch state
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Figure 5.10: ‘Clean’ fuel rig arrangement - LH wing tank high level switch state
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Figure 5.11: ‘Clean’ fuel rig arrangement - LH wing tank low level switch state
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Figure 5.12: ‘Clean’ fuel rig arrangement - RH auxiliary tank high level switch state
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Figure 5.13: ‘Clean’ fuel rig arrangement - RH auxiliary tank low level switch state

Table 5.2: SD of fuel rig variables in fault free mission

Fuel Rig Variable Tolerance SD

LH Auxiliary Tank Level (LHAT) 1.500cm 0.601cm

RH Auxiliary Tank Level (RHAT) 1.500cm 0.443cm

LH Wing Tank Level (LHWT) 1.500cm 0.407cm

RH Wing Tank Level (RHWT) 1.500cm 0.522cm

LH Flow Rate (LHFR) 0.30L/min 0.10L/min

RH Flow Rate (RHFR) 0.30L/min 0.23L/min

LH Fuel Flow Pressure (LHFP) 9,000Pa 858Pa

RH Fuel Flow Pressure (RHFP) 9,000Pa 1,792Pa

LH Wing Tank High Level Switch (LHWTHLS) 0.1 0.0

RH Wing Tank High Level Switch (RHWTHLS) 0.1 0.0

LH Wing Tank Low Level Switch (LHWTLLS) 0.1 0.0

Continued on next page
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Fuel Rig Variable Tolerance SD

RH Wing Tank Low Level Switch (RHWTLLS) 0.1 0.0

RH Auxiliary Tank High Level Switch (RHATHLS) 0.1 0.0

RH Auxiliary Tank Low Level Switch (RHATLLS) 0.1 0.0

5.3.1 Fuel Rig Sensor Output Anomalies

A number of inconsistent fuel rig behaviours can be identified from the above figures.

These behaviours can also be seen when faults are injected into the fuel rig and therefore

the cause of these inconsistencies will be evaluated now.

In Figures 5.1, 5.2 and 5.3, the initial tank levels of the LH and RH wing tanks and

auxiliary tanks are not the same. A specific initial tank level was not prescribed prior

to the period of testing undertaken. In retrospect while it would be preferable to use a

consistent initial tank level in terms of comparing behaviour and performance, the results

do not suggest this has had a significant effect. Furthermore the refilling process in use on

the system is not conducive with achieving high levels of accuracy. It is likely therefore,

that achieving a consistent initial tank level would have required a relatively high amount

of resources, which would not have provided a significant benefit.

All of the curves on the tank level figures show a small increase in level at the start

of phase 3, when the engine and auxiliary pumps are both active, and a decrease at the

end of phase 3. This behaviour is representative of the peristaltic pump effects described

in Section 4.10.1.

It can be seen in Figures 5.4 and 5.5 that the flow rates recorded from the LHS and

RHS of the fuel rig are markedly different. There are a number of potential causes for

this variation. The peristaltic pumps installed on the system contain rotational motors

that operate in such a way as to create distorted and irregular flow. This could cause

variations in recorded flow rate values. There could also be measurement variances at the

flow meters themselves. However, these faults may not cause the constant variation seen

between the two sets of flow rate values. More likely is an issue with the inconsistent

use of components such as pumps on the system. As one pump will likely have been

used more than another, the operating performance of the two will be different. Another
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possible cause can be identified from the conversion of the electrical sensor outputs to a

flow rate value. These conversion factors were determined when the system was initially

constructed. Over time the replacing of components, general use of the system and any

minor defects could lead to these factors being inaccurate. Considering all of the possible

sources listed above, it is likely that a combination of these factors is having an effect on

the recorded results. In spite of this variation, Figures 5.4 and 5.5 show that the PN has

accurately modelled the behaviour of the flow rate variable on both sides of the system.

Figures 5.6 and 5.7 show that the flow pressure variables exhibits a similar variation

in behaviour as is seen with the flow rate variable. Again the output from the LHS of the

system is lower than that recorded from the RHS of the system. While no further causes

to this variation beyond those discussed previously have been identified, the consistent

pattern suggests the inconsistent use of components and inaccurate conversion factors are

having the greatest influence on the recorded values. The figures also show that the PN

model has accurately represented the flow pressure outputs from both sensors.

5.4 First Order Failure Modes

5.4.1 Overview

The results from using the fault verification technique to evaluate first order fuel rig faults

will now be considered. Table 5.3 gives an overview of these results, all of which are

evaluated in more detail below. The failure modes considered by the work are listed in the

first column of Table 5.3, the fault codes are defined in Table 3.1. Each section of the table

shows which system variables have been affected by certain failure modes. The system

variables, as listed in column four, are all affected in some manner when any individual

failure mode listed in the same section occurs. The second column shows whether the

fault verification technique has been able to confirm the presence of the failure mode from

the SD values when the arising is injected into the fuel rig and included in the PN model.

The third column shows whether the fault verification technique has been able to identify

the failure mode as false, from the SD values, when the arising is not present in the system

but is included in the PN model.

Considering the first section of Table 5.3, it can be seen that if the RH engine pump fails

off or the RH engine isolation valve, RH TPLV isolation valve or RH wing tank isolation
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valve is blocked or failed closed it will cause the behaviour of the RH wing tank level, RH

flow rate and RH flow pressure variables to change from that seen when no faults were

present in the fuel rig. Each of the four failure mode occurring on their own will affect the

behaviour of all three variables listed. The outputs recorded from the remaining system

variables exhibit similar behaviour to that shown in the respective figures in Section 5.3. In

the case of every failure mode listed in the first section of column one, the fault verification

technique has been able to confirm the presence of an arising as true (column two) and

false (column three) where appropriate. The third section in Table 5.3 shows that this

will not always be the case as the fault verification technique has failed to identify the RH

level sensor failed stuck arising as false.

Table 5.3: First order failure modes results overview

Failure Genuine Arising False Arising Variable(s)

Mode(s) All SD Within Limit >0 SD Outwith Limit Affected

Eng IV B/FC, X X RHWT

TPL-V IV B/FC, X X RHFR

WT IV B/FC, X X RHFPR

Eng Pump FO X X

AT IV B/FC, X X RHAT

Aux Pump FO X X RHWT

LS FH, X X RHWT

LS FL, X X

LS FS X

FS FH, X X RHFR

FS FO, X X

FS FS X X

FP FH, X X RHFP

FP FO, X X

FP FS X

WT HLSw FOn, X X RHWTHLSW

WT HLSw FOff, X

WT HLSw FS X

Continued on next page
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Failure Genuine Arising False Arising Variable(s)

Mode(s) All SD Within Limit >0 SD Outwith Limit Affected

WT LLSw FOn, X X RHWTLLSW

WT LLSw FOff, X

WT LLSw FS X

Eng Pump D X X

Aux Pump D X RHAT

RHWT

WT Lk n/a n/a RHWT

AT Lk n/a n/a RHAT

Both leak failure modes are not evaluated using the same process as the other failure

modes and therefore cannot be assessed in the second and third columns. The leak failure

modes are considered in Section 5.4.9.

5.4.2 Isolation Valve Failure Modes

A detailed analysis of the failure mode ‘Right-Hand Engine Isolation Valve Blocked/Failed

Closed’ will now be considered. As the vast majority of the fuel rig failure modes under

consideration have been analysed using the same process the remaining failure modes will

be analysed in an abbreviated form.

5.4.2.1 RH Engine Isolation Valve Blocked/Failed Closed

In the event of the RH engine IV becoming blocked or failing closed the flow path from

the RH wing tank to the RH engine will be lost. It would be expected that the effect of

this fault would be seen in the RH wing tank level, the RH flow rate and RH fuel flow

pressure variables. Figure 5.14 shows the tank levels recorded from the LH and RH wing

tank level sensors on the fuel rig over the course of the phased mission when this fault

occurs. Also plotted are the tank levels predicted by the PN model. Evaluating both

wing tanks should allow the effect of the fault on the RH wing tank level to be directly

compared to the LH wing tank level, which should be behaving normally. The clean RH
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wing tank level behaviour, and that of all the variables, can be seen in Section 5.3.
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Figure 5.14: RH engine IV blocked - Wing tank levels

The effect of the RH engine IV fault can be seen in the tank level variables plotted in

Figure 5.14. From 60 seconds onwards the RH wing tank level never decreases as the fault

prevents any flow from leaving the tank. By comparison the LH wing tank level continues

to decrease in the remainder of phase 2 and all of 4. In phase 3 both the LH and RH

wing tank levels increase due to the input flow from the auxiliary tanks. However, the RH

wing tank level increases at a greater rate than the LH wing tank level, as there is only

flow into the RH wing tank but flow both into and out of the LH wing tank. The fault

has therefore had a visible effect on the behaviour of the RH wing tank level variable in

phases 2 – 4.

Applying the SD technique to both the LH and RH wing tank level data sets produces

SD values of 0.496cm and 0.901cm respectively. Both of these values are within the

tolerance limit of 1.500cm for tank level variables. The PN model has therefore accurately

represented the behaviour of a RH engine IV blockage in the wing tank level variables.

Although both of the wing tank SD values were within the tolerance limits, from Figure

5.14 it can be seen that in phase 3 the recorded RH tank level values increase at a lower
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rate than the PN values. Over a greater period of time this could cause the RH wing tank

SD value to exceed the tolerance limit. The lack of conformity could be a result of several

factors. System noise is likely to be one of these factors. Issues created by inconsistent

equipment use as discussed in Section 5.3.1 could also be a cause. Another factor could

be due to the pipe configuration from the auxiliary tanks to the wing tanks, which is

not the same on the two sides of the system. The longer series of piping feeding the RH

wing tank would require a slightly higher auxiliary pump rating to achieve the same flow

rate, yet both auxiliary pumps were run at the same setting. Individually or collectively,

these factors could cause the variation between the recorded and predicted wing tank level

values.

Figures 5.15 plots the flow rate measured by the sensor on the LHS of the system

between the TPLV and the engine. Figure 5.16 plots the flow rate measured from the

RHS of the system.
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Figure 5.15: RH engine IV blocked - LH flow rate

There is a good level of similarity between the predicted and recorded flow rate values

shown in Figures 5.15 and 5.16. The effect of the IV fault can be seen in the RH flow

rate variable, which rapidly falls from approximately 6L/min to 0L/min after 60 seconds
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Figure 5.16: RH engine IV blocked - RH flow rate

and remains there for the remainder of the mission. The LH flow rate remains relatively

constant at 4.8L/min in phases 2 – 4 and at 0L/min in phases 1 and 5, reflecting the

engine pump demand in those phases. Applying the SD technique to the two data sets

produces a SD value of 0.11L/min for the LH flow rate variable and 0.25L/min for the

RH flow rate. Both of these values are within the flow rate tolerance of 0.30L/min. The

cause of the variation between the flow rates recorded from the two sides of the fuel rig is

discussed in Section 5.3.1.

The fuel flow pressures recorded from the fuel rig and predicted by the PN model over

the course of the mission, where the RH engine IV is blocked/failed closed, are displayed

below. The results from the LH side of the system are shown in Figure 5.17 and from the

RH side of the system in Figure 5.18

Figures 5.17 and 5.18 show that while on the LHS the flow pressure remains relatively

constant from phases 2 through 4, the RH flow pressure variable increases from approx-

imately 25,000Pa to more than 300,000Pa at the time the engine IV fault occurs. This

represents an increase of more than 1,200% in the recorded flow pressure. The cause of

this significant increase is the IV blockage. As the blockage occurs downstream of the RH
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Figure 5.17: RH engine IV blocked - LH flow pressure
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Figure 5.18: RH engine IV blocked - RH flow pressure
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low pressure engine pump, fuel and air is trapped at the location of the pressure sensor.

When the pump is on these trapped materials quickly become highly pressurised which

causes the large values plotted in Figure 5.18 to be produced. By comparison a blockage

upstream of the engine pump would not see any air or fuel trapped at the pressure sensor

and so only a blockage downstream of the engine pump can cause the effect seen in the

fuel flow pressure outputs of Figure 5.18. Although unique flow rate behaviour has been

recorded from each side of the fuel rig, the PN model has produced an accurate prediction

of both variable outputs in the presence of the fault.

Analysing the fuel flow pressure data sets using the SD technique produces results of

821Pa and 4,950Pa for the LH and RH sides of the fuel rig respectively. Both of these

results are within the fuel flow pressure tolerance limit of 9,000Pa.

Figure 5.19 displays the LH and RH auxiliary tank level values as recorded from the

fuel rig and predicted by the PN model.
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Figure 5.19: RH engine IV blocked - Auxiliary tank levels

Figure 5.19 shows that, accounting for the tank level adjustments due to the peristaltic

pump effects as described in Section 4.10.1, the recorded and predicted auxiliary tank levels

are very similar on both sides of the fuel rig system. The only true change in the auxiliary
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tank levels occurs in phase 3, when a demand is applied to the auxiliary pumps. In the

remaining phases the tank level does not change. The RH engine IV fault therefore has

no visible effect on the performance of the auxiliary tank level variables.

The SD of the LH auxiliary tank level data sets is 0.612cm. The SD of the RH auxiliary

tank level data sets is 0.499cm. Both of these values are within the tank level tolerance

limit of 1.500cm.

The SD values for a range of system variables are listed in Table 5.4. The RH wing

tank level, RH flow rate and RH fuel flow pressure variables all displayed behaviour that

was different from the behaviour expected when no fault was present. The PN model that

included the fault however, accurately predicted this recorded behaviour. As a result when

the ‘RH Engine IV Blocked/Failed Closed’ arising is present in the fuel rig and modelled

in the PN model all of the SD values are within the tolerances for the respective variables,

as shown in column three. This indicates that the expected behaviour of the system with

the fault present is similar to that exhibited by the fuel rig. Therefore it is possible to

confirm that the fault verification technique can verify the occurrence of the ‘RH Engine

IV Blocked/Failed Closed’ arising. The high and low level switch results have not been

listed as their behaviour is unaffected by presence of the fault during the course of the

mission. Their behaviour is consistent with that shown in Section 5.3.

Table 5.4: SD of fuel rig variables - RH engine IV fault

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.612cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.499cm 0.480cm

LH Wing Tank Level 1.500cm 0.496cm 0.437cm

RH Wing Tank Level 1.500cm 0.901cm 4.246cm

LH Flow Rate 0.30L/min 0.11L/min 0.10L/min

RH Flow Rate 0.30L/min 0.25L/min 2.13L/min

LH Fuel Flow Pressure 9,000Pa 821Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 4,951Pa 107,294Pa

To demonstrate how the fault verification technique can also be used to identify false
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arisings consider column four of Table 5.4. This column shows the SD values of the fuel

rig variables when the engine IV fault is included in the PN model simulation but is not

present in the fuel rig itself. It can be seen that the SD values of the RH wing tank

level, RH flow rate and RH fuel flow pressure variables all exceed the respective tolerance

values. These results show that should the ‘RH Engine IV Blocked/Failed Closed’ arising

be falsely generated when the system is operating normally, the fault verification technique

would correctly filter the arising. Figures 5.20, 5.21 and 5.22 show how the recorded and

predicted curves of the RH wing tank level, RH fuel flow rate and RH flow pressure contrast

when the RH engine IV fault is only included in the PN model. It should be noted that

the variables which exceed the SD limit when the arising is false are the same as those

whose behaviour changes when the arising is genuine.
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Figure 5.20: RH engine IV blocked falsely diagnosed - RH wing tank levels

Further sections will be considered as follows; graphs will only be presented where the

variable behaviour in the presence of a fault differs from that where no faults are present.

Graphs of the fuel rig variables where no faults are present in the system are shown in

Section 5.3. Table 5.3 presented an overview of these results.



5.4. First Order Failure Modes 139

-1

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

F
ue
lF
lo
w
R
at
e
(L
/m
in
)

Time (s)

RH Fuel Flow Rate - Fuel Rig RH Fuel Flow Rate - PN

Phase 2 Phase 3 Phase 4

Figure 5.21: RH engine IV blocked falsely diagnosed - RH fuel flow rate
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Figure 5.22: RH engine IV blocked falsely diagnosed - RH fuel flow pressure
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5.4.2.2 RH Triple Port L-Valve Isolation Valve Blocked/Failed Closed

If a TPLV IV becomes blocked or fails closed the flow path from the wing tank to the IV and

all flow paths downstream of the IV will be terminated. The effect of the blockage/failure

on the RH TPLV IV should be visible in the RH wing tank level, RH flow rate and RH

fuel flow pressure variables. Figure 5.23 shows the RH wing tank levels recorded from and

predicted for the fuel rig system during the five phase mission under consideration.
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Figure 5.23: RH triple port L-valve IV blocked - RH wing tank levels

Figure 5.23 shows that from the time of the fault occurring in phase 2 the only change

in the RH wing tank level is an increase in phase 3 due to the flow in from the auxiliary

tank. The location of the fault, downstream of the wing tank, prevents any further fuel

from leaving the tank. Comparing this figure to that from Section 5.3 it can be seen that

the effect of the fault can be seen in the RH wing tank variable. This behaviour is also

the same as that seen when there was a blockage in the RH engine IV, as described in

Section 5.4.2.1. As both of these IVs are on the same section of the system and both are

downstream of the wing tank, this result is consistent with what would be expected. The

potential causes of the variation between the fuel rig and PN tank level gradients in phase

3 were identified and discussed in Section 5.4.2.1. The LH wing tank level variables is
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unaffected by the fault.

Figure 5.24 shows the flow rate recorded by the RH flow rate sensor and as predicted

by the PN model throughout the mission.
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Figure 5.24: RH triple port L-valve IV blocked - RH flow rate

The effect of the fault on the fuel rig system can be clearly seen in the RH flow rate

variable. Once the fault is injected into the system, there is no flow downstream of the

wing tank and therefore no flow past the flow rate sensor. As a result, the recorded flow

rate falls to approximately zero. The PN system model has predicted this performance

well. The LH flow rate variable is not affected by the TPLV fault and its behaviour is in

line with that shown in the relevant figure of Section 5.3.

Figure 5.24 also provides a good example of the level of noise in the system and the

fuel flow rate variable. After the fault has been injected the flow rate recorded from the

fuel rig should be 0L/min. However it can be seen that the flow rate fluctuates between

approximately ±0.5L/min. This occurs despite of the fact that there is no flow in the

system at this time. Furthermore there shouldn’t be any reverse flow in the system and

so negative flow rate values are unexpected and can therefore be attributed to noise.

The effects of noise can be seen both prior to and after the fault occurring. The fault
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verification technique accounts for this level of noise in the tolerances that it applies to

variables. It follows therefore that a system with smaller amounts of noise could utilise

narrower tolerances.

Figure 5.25 shows the fuel flow pressure values recorded at the RHS of the fuel rig

system and predicted by the PN model.
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Figure 5.25: RH triple port L-valve IV blocked - RH fuel flow pressure

Figure 5.25 shows that the TPLV IV blockage causes a significant change in the be-

haviour of the fuel flow pressure values on the fuel rig. The blockage has prevented any fuel

flow passing through the low pressure engine pump and, as a result, past the flow pressure

sensor. The fuel flow pressure values therefore fall to around zero. The figure also shows

that the fuel rig PN model has predicted the behaviour of the fuel flow pressure variable

in the presence of the TPLV IV fault well. The presence of noise in the flow pressure

variable can be clearly seen in Figure 5.25 and the observations that were applied when

considering noise in the flow rate variable can also be applied here. The LH flow pressure

sensor outputs have not been affected by the TPLV IV fault and the behaviour of this

variable can be seen from the graph in Section 5.3.

Table 5.5 summarises all of the SD values for the fuel rig variables when the TPLV IV
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is blocked/failed closed. It can be seen that when correctly diagnosed all of the SD values

are within the relevant tolerances, including those variables whose behaviour has changed

as a result of the fault. An arising created in this scenario would therefore be correctly

verified as a genuine fault. The table also shows the SD results when the fault is included

in the PN model but is not present in the system itself - a scenario representative of a

false arising. In this case the RH wing tank level, RH flow rate and RH fuel flow pressure

variables all exceed their respective tolerances. As a result any TPLV blocked/failed closed

arising falsely generated by the health management system would be filtered.

Table 5.5: SD of fuel rig variables - RH TPL-valve IV fault

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.531cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.510cm 0.480cm

LH Wing Tank Level 1.500cm 0.454cm 0.437cm

RH Wing Tank Level 1.500cm 1.104cm 4.270cm

LH Flow Rate 0.30L/min 0.10L/min 0.10L/min

RH Flow Rate 0.30L/min 0.17L/min 2.13L/min

LH Fuel Flow Pressure 9,000Pa 1,170Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 2,748Pa 9,247Pa

5.4.2.3 RH Wing Tank Isolation Valve Blocked/Failed Closed

Should a wing tank IV become blocked or fail closed, the flow paths downstream of the

respective wing tank IV will be terminated. When the RH engine pump is on, the effect

of the failure mode will be seen in the RH wing tank level, RH flow rate and RH fuel flow

pressure variables. Figure 5.26 shows the RH wing tank level variable over the course of

the mission when the wing tank IV fault occurs.

Figure 5.26 shows that the shape of the fuel rig and PN tank level curves are very

similar to those shown in Section 5.4.2.1 and in Section 5.4.2.2. This is due to the fact

that the location of all three faults is in a similar section of the system and all of the faults



144 Chapter 5. Fuel Rig System Results

0

10

20

30

40

50

60

0 50 100 150 200 250 300

T
an

k
L

ev
el

(c
m

)

Time (s)

RH Wing Tank - Fuel Rig RH Wing Tank - PN

Phase 2 Phase 3 Phase 4

Figure 5.26: RH wing tank IV blocked - RH wing tank level

prevent fuel from leaving the RH wing tank. The observations made in these previous

sections regarding the wing tank level therefore also apply here.

Figure 5.27 shows that the RH fuel flow rate falls to approximately zero once the fault

has been injected into the fuel rig. Again this behaviour is consistent with that shown

where a fault occurred in the engine IV and TPLV IV. As with the observation made of

the RH wing tank level variable, this is due to the location of the fault and its similarity

to those already considered preventing any fuel flow from the wing tanks to the engines.

Figure 5.28 shows that at the time of the fault being injected into the fuel rig the

fuel flow pressure value falls from approximately 23,000Pa to zero. This is a result of the

fault preventing any flow through the engine pump and past the flow pressure sensor. The

behaviour of the flow pressure variable is consistent with that produced when the previous

IV faults were considered.

The behaviour of the LH wing tank level, flow rate and flow pressure variables have

been unaffected by the presence of the wing tank IV fault in the system. Their sensor

outputs are consistent with those shown in Section 5.3.

Table 5.6 summarises all of the SD results for the variables on the fuel rig when the
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Figure 5.27: RH wing tank IV blocked - RH fuel flow rate
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Figure 5.28: RH wing tank IV blocked - RH flow pressure
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RH wing tank IV is blocked/failed closed. It can be seen that all of the SD values are

within the tolerance limits. Also listed are the SD results produced when a false arising

is generated citing a fault in the RH wing tank IV. The results shows that the RH wing

tank level, fuel flow rate and fuel flow pressure variables all exceeded their tolerances and

would therefore enable the arising to be correctly filtered.

Table 5.6: SD of fuel rig variables - RH wing tank IV fault

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.666cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.548cm 0.480cm

LH Wing Tank Level 1.500cm 0.730cm 0.437cm

RH Wing Tank Level 1.500cm 1.132cm 4.294cm

LH Flow Rate 0.30L/min 0.12L/min 0.10L/min

RH Flow Rate 0.30L/min 0.16L/min 2.13L/min

LH Fuel Flow Pressure 9,000Pa 883Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 2,774Pa 9,247Pa

5.4.2.4 RH Auxiliary Tank Isolation Valve Blocked/Failed Closed

When an auxiliary tank IV becomes blocked or fails closed, the flow path from the aux-

iliary tank to the wing tank will be terminated. Over the duration of the mission under

consideration the effect of the failure mode will be seen in the output of the auxiliary tank

level and wing tank level variables.

Figures 5.29 and 5.30 show the auxiliary tank levels and wing tank levels over the

mission under consideration when the RH auxiliary tank IV is blocked/failed closed.

The effect of the RH auxiliary tank IV fault can be seen in Figure 5.29. The only

change in the RH auxiliary tank level during the entire mission is due to the peristaltic

pump effects seen in phase 3. The blockage in the auxiliary tank IV prevents any flow

from leaving the tank, as would be expected in phase 3. By comparison the LH auxiliary

tank level steadily decreases throughout phase 3, as fuel leaves the tank to replenish the

LH wing tank.
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Figure 5.29: RH auxiliary tank IV blocked - Auxiliary tank levels
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Figure 5.30: RH auxiliary tank IV blocked - RH wing tank level
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In Figure 5.30 an increase in the tank level would be expected in phase 3, as shown

in Figure 5.2. However, as the blockage prevents any fuel reaching the wing tank its level

falls throughout the mission.

The RH auxiliary tank IV fault has affected none of the remaining fuel rig variables.

This is primarily due to the fact that the RH wing tank level remains above zero throughout

the mission and therefore both the LH and RH engines are supplied with fuel throughout

the mission. The graphs of these variables are accurately represented by those shown in

Section 5.3. The SD results for these variables are shown in Table 5.7. All of the variables

are within their respective tolerances. Table 5.7 also shows the SD results when an arising

related to the RH auxiliary tank IV is falsely generated. In this situation both the RH

auxiliary and wing tank results exceed the specified tolerances and as a result the arising

would be filtered.

Table 5.7: SD of fuel rig variables - RH auxiliary tank IV fault

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.673cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.888cm 2.332cm

LH Wing Tank Level 1.500cm 0.536cm 0.437cm

RH Wing Tank Level 1.500cm 0.581cm 3.568cm

LH Flow Rate 0.30L/min 0.07L/min 0.10L/min

RH Flow Rate 0.30L/min 0.15L/min 0.20L/min

LH Fuel Flow Pressure 9,000Pa 728Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 1,833Pa 1,688Pa

5.4.3 Level Sensor Failure Modes

Three unique level sensor failure modes have been identified on the fuel rig system. These

are; level sensor fails high, fails low and fails stuck. When the level sensor fails high, it

constantly outputs the maximum tank level. Conversely, when the sensor fails low, it will

constantly output a tank level of zero. Should the sensor fail stuck it will always output



5.4. First Order Failure Modes 149

the same tank level value. Table 5.3 showed that each level sensor fault only had an impact

on the RH wing tank level variable. All of the remaining system variables should continue

to operate as expected and as shown in Section 5.3.

5.4.3.1 RH Wing Tank Level Sensor Failed High

Figure 5.31 shows the RH wing tank level output when the fault is injected into the system

after 60 seconds.
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Figure 5.31: RH wing tank level sensor failed high - RH wing tank level

It can be seen in Figure 5.31 that the effect of the fault is to increase the tank level

output to the maximum level of 60cm. This output does not show the actual fuel level

in the RH wing tank and the performance of the system does not change as a result of

the fault. It can be seen from the remaining system outputs that the system continues

to operate normally - providing fuel to both engines. The figure also shows that the PN

model has represented the effect of this fault very well.

Table 5.8 shows the SD values for a number of system variables. It can be seen that

when the level sensor failed high fault is present in the fuel rig and PN model, all of the SD

values are within the tolerance limits. When the fault is only included in the PN model, as
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a result of a false arising, the SD of the RH wing tank level variable exceeds the tolerance

limit. In this case, the arising would not be verified and would correctly classified as false.

Table 5.8: SD of fuel rig variables - RH wing tank level sensor failed high

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.810cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.496cm 0.480cm

LH Wing Tank Level 1.500cm 0.468cm 0.437cm

RH Wing Tank Level 1.500cm 0.158cm 7.040cm

LH Flow Rate 0.30L/min 0.09L/min 0.10L/min

RH Flow Rate 0.30L/min 0.19L/min 0.20L/min

LH Fuel Flow Pressure 9,000Pa 820Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 1,373Pa 1,688Pa

5.4.3.2 RH Wing Tank Level Sensor Failed Low

Figure 5.32 shows the RH wing tank level over the course of the mission where the level

sensor fails low. It can be seen from the figure that the fault has resulted in the reported

wing tank level falling to 0cm after 60 seconds. Again, this output does not match the

true state of the RH wing tank level and the operation of the system continues as normal.

For example the RH flow rate graph, in the presence of this failure mode, shows a normal

level of operation which indicates fuel is being provided to the RH engine. The RH flow

rate graph is similar to that shown in Section 5.3.

The SD value for each variable is shown in Table 5.9. All of the SD values are within

the respective tolerances when the failure mode is present in the fuel rig and included in

the PN model. Also shown are the SD values produced when the ‘RH wing tank level

sensor failed low’ fault is incorrectly diagnosed. It can be seen from the table that in this

case, the SD of the RH wing tank level variable is significantly greater than the permissible

tolerance limit. As a result, the fault verification technique would correctly filter the fault.
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Figure 5.32: RH wing tank level sensor failed low - RH wing tank level

Table 5.9: SD of fuel rig variables - RH wing tank level sensor failed low

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.867cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.553cm 0.480cm

LH Wing Tank Level 1.500cm 0.535cm 0.437cm

RH Wing Tank Level 1.500cm 0.165cm 15.493cm

LH Flow Rate 0.30L/min 0.09L/min 0.10L/min

RH Flow Rate 0.30L/min 0.17L/min 0.20L/min

LH Fuel Flow Pressure 9,000Pa 824Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 1,473Pa 1,688Pa

5.4.3.3 RH Wing Tank Level Sensor Failed Stuck

When the RH wing tank level sensor fails stuck, it will continuously output the value that

was last output when the sensor was working correctly. Figure 5.33 shows the RH wing
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tank level on the fuel rig, when the level sensor fails stuck.
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Figure 5.33: RH wing tank level sensor failed stuck - RH wing tank level

It can be seen in Figure 5.33 that the RH wing tank level recorded from the fuel rig

remains constant at approximately 45cm from the time of the fault occurring throughout

the remainder of the mission. The recorded value does also not change at the start and

end of phase 3, where otherwise it would be expected to due to the control inputs and

vibrational effects of the auxiliary pumps. The PN model has accurately reflected the

behaviour of the RH wing tank level variable in the presence of the fault. None of the

remaining fuel rig variables have been affected by the failure mode during the phased

mission and their behaviour reflects that seen in the figures of Section 5.3.

The SD result of every variable is within the respective tolerance when the fault is

present in the fuel rig and the PN. These SD results are shown in detail in Table 5.10.

The table also displays the SD values that would be produced should a false arising be

generated that stated the RH wing tank level sensor had failed stuck.

Considering the false arising results in column four of Table 5.10, it can be seen that

none of the variables have exceeded their tolerance. This is unexpected, as when these SD

values were calculated, the level sensor fault was only present in the PN model and not
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Table 5.10: SD of fuel rig variables - RH wing tank level sensor failed stuck

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.769cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.492cm 0.480cm

LH Wing Tank Level 1.500cm 0.470cm 0.437cm

RH Wing Tank Level 1.500cm 0.202cm 1.309cm

LH Flow Rate 0.30L/min 0.09L/min 0.10L/min

RH Flow Rate 0.30L/min 0.16L/min 0.20L/min

LH Fuel Flow Pressure 9,000Pa 885Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 1,435Pa 1,688Pa

the fuel rig. It would be expected that the SD of the RH wing tank level variable would

exceed the tolerance limit. Figure 5.34 plots the RH wing tank level curves produced from

the fuel rig and PN model, when the level sensor fault is falsely diagnosed.

Figure 5.34 shows the PN predicted tank level remains constant from the time of

the fault occurring onwards. By comparison, the recorded tank level varies through the

mission. Despite the fact that the fuel rig tank level value changes throughout the mission,

the values remain relatively close to the equivalent PN tank level values. As a result the

SD of the residual values of the two curves is 1.309cm, which is within the tolerance limit.

This explains why the fault verification software would not filter the false arising.

It can be seen in Figure 5.34 that from approximately 250 seconds onwards the two

tank level curves begin to diverge. Had the length of phase 4 been longer the difference in

the tank levels would have continued to increase. As a result the RH wing tank level SD

value would also be greater. These results indicate a limitation of the fault verification

technique where short phases and missions do not allow enough time for some variables to

diverge sufficiently and for the resultant SD value to exceed the variable tolerances. In its

current form however, the fault verification technique is unable to filter out a false arising

of the ‘RH Level Sensor Failed Stuck’ fault.
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Figure 5.34: RH wing tank level sensor failed stuck false arising - RH wing tank level

5.4.4 Fuel Flow Rate Sensor Failure Modes

The fuel flow rate sensor on the fuel rig system can fail in a number of different ways.

Those are failed high, failed off and failed stuck. Each of these failure modes will be

considered individually.

5.4.4.1 RH Fuel Flow Rate Sensor Failed High

Should a fuel flow rate sensor fail high, the output from the sensor will increase to its

maximum value and remain at that value. Figure 5.35 shows the RH fuel flow rate output

from the fuel rig and PN, when the RH fuel flow rate senor fails high in the phased mission

under consideration.

The figure clearly shows that the effect of the flow rate sensor fault is to increase the

sensor output from approximately 5L/min to 60L/min. Having reached this value, the fuel

flow rate then remains at this level for the remainder of the mission. The PN predicted

fuel flow rate can be seen to correspond well with the sensor outputs recorded from the

fuel rig system.
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Figure 5.35: RH fuel flow rate sensor failed high - RH fuel flow rate

Table 5.11 lists the SD values determined when the ‘RH Fuel Flow Rate Sensor Failed

High’ fault is correctly and incorrectly diagnosed.

Table 5.11: SD of fuel rig variables - RH fuel flow rate sensor failed high

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.646cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.567cm 0.480cm

LH Wing Tank Level 1.500cm 0.479cm 0.437cm

RH Wing Tank Level 1.500cm 0.567cm 0.506cm

LH Flow Rate 0.30L/min 0.10L/min 0.10L/min

RH Flow Rate 0.30L/min 0.07L/min 2.13L/min

LH Fuel Flow Pressure 9,000Pa 794Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 1,291Pa 1,688Pa
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When correctly diagnosed, only the RH fuel flow rate variable behaviour changes yet

all of the variables are within the tolerance limits. This indicates that the fault verification

technique can verify this fault. When the fault is incorrectly diagnosed, the SD of the RH

flow rate variable exceeds the tolerance limit thereby ensuring the arising is filtered as

false.

5.4.4.2 RH Fuel Flow Rate Sensor Failed Off

The fuel flow rate sensor on the fuel rig may fail off as a result of a mechanical or electrical

fault with the sensor. Should either of these circumstances occur, the fuel flow rate sensor

will not produce an electrical output to the fuel rig computer. As a result, the fuel flow

rate recorded by the system computer will only reflect the scaling and offset value applied

to the electrical output of the flow rate sensor. Figure 5.36 shows the fuel flow rate values

when the flow rate sensor fails off.

-15

-10

-5

0

5

10

0 50 100 150 200 250 300

F
ue

lF
lo

w
R

at
e

(L
/m

in
)

Time (s)

RH Fuel Flow Rate - Fuel Rig RH Fuel Flow Rate - PN

Phase 2 Phase 3 Phase 4

Figure 5.36: RH fuel flow rate sensor failed off - RH fuel flow rate

Figure 5.36 shows that after the fault occurs the fuel flow rate recorded by the system

computer is approximately -12.5L/min. This value represents the scaling and offset figure

that is applied to the electrical output from the fuel flow rate sensor to convert it to a flow
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rate value. As the electrical output in the presence of the fault is zero, only the scaling

and offset figure is recorded by the fuel rig. Figure 5.36 shows that the PN has modelled

the effect of the fault on the flow rate variable output well.

None of the remaining fuel rig system variable outputs have been affected by the RH

fuel flow rate sensor fault. Graphs of their outputs are similar in shape to those shown in

Section 5.3. The SD of each variable is listed in Table 5.12. Also listed is the SD values

produced when a false arising is produced that states the RH fuel flow rate sensor has

failed off. Should this arising be generated, the SD of the RH fuel flow rate variable can

be seen to exceed its tolerance resulting in the arising being filtered.

Table 5.12: SD of fuel rig variables - RH fuel flow rate sensor failed off

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.545cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.594cm 0.480cm

LH Wing Tank Level 1.500cm 0.466cm 0.437cm

RH Wing Tank Level 1.500cm 0.451cm 0.506cm

LH Flow Rate 0.30L/min 0.11L/min 0.10L/min

RH Flow Rate 0.30L/min 0.07L/min 6.59L/min

LH Fuel Flow Pressure 9,000Pa 1,262Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 1,572Pa 1,688Pa

5.4.4.3 RH Fuel Flow Rate Sensor Failed Stuck

When the fuel flow rate sensor becomes stuck, its output remains constant at the same

value that was last output when the sensor was working correctly. Figure 5.37 shows the

RH fuel flow rate output, when the flow rate sensor fails stuck during the phased mission.

Figure 5.37 shows that, as expected, the fuel flow rate recorded from the fuel rig has

remained constant from the time of the fault occurring. The lack of noise in the recorded

output and the fact that the fuel flow rate does not decrease in phase 5 when the engine

pump rating falls to 0% are evidence that the sensor output has become stuck. The PN

can be seen to model this behaviour accurately.
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Figure 5.37: RH fuel flow rate sensor failed stuck - RH fuel flow rate

The fuel rig output variables not discussed above have not been affected by the flow

rate sensor fault. Their behaviour is consistent with that shown in the graphs of Section

5.3. When the fault has been diagnosed correctly the SD of each variable is within the

specified tolerances as shown in Table 5.13. The table also lists the SD values produced

when the fuel flow rate failed stuck fault is identified incorrectly. It can be seen that in

this scenario the RH fuel flow rate variable has been exceeded. As a result the arising

which details this fault would be filtered preventing unnecessary maintenance resources

from being used.

Table 5.13 show that the RH fuel flow rate SD value is more than 10 times larger when

diagnosed incorrectly compared to when it is diagnosed correctly. This is predominantly

due to the fact that in phase 5, when diagnosed incorrectly, there is a significant variation

in the fuel rig and PN flow rate values. As a result, the SD of the RH flow rate variable

exceeds the SD tolerance. This outcome contrasts with that produced when the level

sensor failed stuck. As was shown in Section 5.4.3.3, when the level sensor failed stuck

there was only a small difference between the two sets of results and this kept the RH

wing tank level SD within the tank level tolerance.



5.4. First Order Failure Modes 159

Table 5.13: SD of fuel rig variables - RH fuel flow rate sensor failed stuck

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.638cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.530cm 0.480cm

LH Wing Tank Level 1.500cm 0.501cm 0.437cm

RH Wing Tank Level 1.500cm 0.567cm 0.506cm

LH Flow Rate 0.30L/min 0.09L/min 0.10L/min

RH Flow Rate 0.30L/min 0.07L/min 0.85L/min

LH Fuel Flow Pressure 9,000Pa 898Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 1,314Pa 1,688Pa

5.4.5 Flow Pressure Sensor Failure Modes

The flow pressure sensors on the fuel rig can fail in one of three ways; fail high, fail off

or fail stuck. The consequences of these failure modes occurring are the same on the flow

pressure sensors as they are on the fuel flow rate sensors. For example, if the flow pressure

sensor fails high it will constantly output its maximum possible value.

5.4.5.1 RH Flow Pressure Sensor Failed High

The RH flow pressure sensor output over the course of the mission is shown in Figure

5.38. The RH flow pressure sensor is failed high after 60 seconds. Figure 5.38 shows that

when the flow pressure sensor fails high the recorded output increases to 320,000Pa. This

output value remains constant throughout the remainder of the mission. The PN model of

the fuel rig system has accurately represented this behaviour, as can be seen in the figure.

The behaviour of all of the remaining output variables from the fuel rig can be seen

in Section 5.3. They do not show any behaviour that illustrates the flow pressure sensor

failure has affected them. The SD of every variable is listed in Table 5.14 below. It can

be seen that, when diagnosed correctly, all of the SD values are within the tolerance limit

and as a result the arising would be verified. The SD values produced as a result of the

fault being diagnosed incorrectly are also listed in column four. As would be expected,
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Figure 5.38: RH flow pressure sensor failed high - RH fuel flow pressure

Table 5.14: SD of fuel rig variables - RH flow pressure sensor failed high

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.659cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.530cm 0.480cm

LH Wing Tank Level 1.500cm 0.527cm 0.437cm

RH Wing Tank Level 1.500cm 0.510cm 0.506cm

LH Flow Rate 0.30L/min 0.10L/min 0.10L/min

RH Flow Rate 0.30L/min 0.17L/min 0.20L/min

LH Fuel Flow Pressure 9,000Pa 844Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 673Pa 111,240Pa

only the RH flow pressure sensor variable has exceeded its tolerance when the sensor is

falsely diagnosed as having failed high. The extremely large SD value is produced as a
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result of the PN predicted flow pressure being 320,000Pa from the time at which the fault

is injected in the model. By contrast the flow pressure value recorded from the fuel rig

remains around 25,000Pa until phase 5 when it falls to zero.

5.4.5.2 RH Flow Pressure Sensor Failed Off

Figure 5.39 shows the fuel rig and PN flow pressure outputs when the flow pressure sensor

fails off in phase 2 of the phased mission.
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Figure 5.39: RH flow pressure sensor failed off - RH flow pressure

Figure 5.39 shows that when the flow pressure sensor fault occurs, the values recorded

from the fuel rig fall to just under -100,000Pa. This value represents the scaling and offset

figure that is applied to the electrical output from the flow pressure sensor. As was seen

with the flow rate sensor when it failed off, with no sensor output to consider the fuel

rig computer records only the scaling/offset factor. The PN model of the flow pressure

behaviour matches well with the values recorded from the fuel rig system.

Graphs of all the other fuel rig variables show system behaviour that would be expected

with no faults present. This can be seen in Section 5.3. The effect of the flow pressure

sensor fault is therefore only seen in the flow pressure sensor variable. The fuel rig SD
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results are listed in Table 5.15. All of the results are within the respective tolerances

when the sensor fault is correctly diagnosed. Also shown are the SD values when the flow

pressure sensor is incorrectly diagnosed as having failed off. Should this scenario occur the

RH flow pressure variable can be seen to exceed its tolerance and as a result the arising

would be filtered.

Table 5.15: SD of fuel rig variables - RH flow pressure sensor failed off

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.487cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.928cm 0.480cm

LH Wing Tank Level 1.500cm 0.563cm 0.437cm

RH Wing Tank Level 1.500cm 0.458cm 0.506cm

LH Flow Rate 0.30L/min 0.10L/min 0.10L/min

RH Flow Rate 0.30L/min 0.18L/min 0.20L/min

LH Fuel Flow Pressure 9,000Pa 1,467Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 752Pa 46,890Pa

5.4.5.3 RH Flow Pressure Sensor Failed Stuck

The output from the RH flow pressure sensor when it fails stuck during the phased mission

is shown in Figure 5.40. It can be seen on Figure 5.40 that when the flow pressure sensor

fails stuck, the fuel rig output remains constant at the last value output when the sensor

was working correctly. As the sensor is stuck, there is no noise in the recorded sensor

output. Also, the sensor output does not change in any of the subsequent phases of

system operation. The PN predicted output of the RH flow pressure sensor can be seen

to be very similar to that recorded from the fuel rig.

The RH flow pressure output is the only variable that is affected by the flow pressure

sensor fault. The behaviour of all the other variables on the system is the same as that

when there are no faults present. This behaviour can be seen in the graphs of Section

5.3. Table 5.16 lists the SD values when the flow pressure sensor fault is correctly and
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Figure 5.40: RH fuel flow pressure sensor failed stuck - RH fuel flow pressure

incorrectly diagnosed. When correctly diagnosed, the SD calculated for each variable is

within the respective tolerance limit.

Table 5.16: SD of fuel rig variables - RH flow pressure sensor failed stuck

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.590cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.594cm 0.480cm

LH Wing Tank Level 1.500cm 0.565cm 0.437cm

RH Wing Tank Level 1.500cm 0.474cm 0.506cm

LH Flow Rate 0.30L/min 0.10L/min 0.10L/min

RH Flow Rate 0.30L/min 0.21L/min 0.20L/min

LH Fuel Flow Pressure 9,000Pa 1,264Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 930Pa 4,474Pa
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Table 5.16 shows that when the fault is falsely diagnosed, all of the SD values for the

fuel rig output variables fall within their respective tolerances. It would be expected that,

as with the other RH flow pressure sensor faults, the SD of the RH flow pressure variable

would exceed the tolerance limit. However, this is not the case. Figure 5.41 shows the fuel

rig and PN values of the RH flow pressure variable when the fault is falsely diagnosed.
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Figure 5.41: RH fuel flow pressure sensor failed stuck - RH fuel flow pressure

It can be seen in Figure 5.41 that the only major variation between the two curves

appears in phase 5. In this phase the PN flow pressure remains at 23,000Pa while the fuel

rig flow pressure falls to less than zero. However, as phase 5 is relatively short the SD of

the entire mission remains below 9,000Pa. Were phase 5 to be extended, the SD of the

RH fuel flow pressure variable would increase. Table 5.17 shows how the SD of the flow

pressure variable increases as phase 5 is extended.

The table shows that phase 5 of the mission would have to be extended from 15 to

45 seconds in order for the flow pressure tolerance to be exceeded and the arising to be

identified as false. In the current phased mission arrangement, the behaviour of the RH

flow pressure outputs are too similar for too much of the mission an the tolerance too

large for the fault to be identified as false using the techniques applied.
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Table 5.17: Effect of increasing duration of phase 5 on RH fuel flow pressure SD

Phase 5 Length RH Fuel Flow Pressure SD

15sec 4,474Pa

25sec 7,289Pa

35sec 8,916Pa

45sec 10,194Pa

55sec 11,257Pa

5.4.6 High Level Switch Failure Modes

High level switches are installed within the fuel tanks to provide an indicator of when the

tank is full and, in association with the tank level sensors, to prevent overfilling. Three

failure modes can occur; fail on, fail off and fail stuck. The high level switch output is a

digital signal of either ‘0’ or ‘1’. If the output is ‘0’, this indicates that the switch is on

and the fuel level in the tank is equal to or greater than that of the switch height. If the

output is ‘1’ the fuel level is below that of the switch height and the switch is off. The

high level switches are located at the top of the 60cm tall fuel tanks on the fuel rig.

5.4.6.1 RH Wing Tank High Level Switch Failed On

If the high level switch fails on, the output from the switch will be ‘0’. Figure 5.42 shows

the output from the RH wing tank high level switch when it fails on during the mission.

Figure 5.42 shows that the impact of the high level switch failing on is to change the

switch output from ‘1’ to ‘0’. The latter switch output, therefore, reports that the fuel

tank is full. Figure 5.43 shows the RH tank level over the course of the mission. It can be

seen in Figure 5.43 that the RH wing tank level is always below 60cm during the mission

and therefore, the high level switch output does not represent the true state of the system

after the fault occurs. The PN predicted behaviour of the RH wing tank high level switch

output matches exactly with that recorded from the fuel rig during the mission. As a result

the SD of the RH wing tank high level switch variable is zero and within the tolerance

limit. In the presence of the RH wing tank high level switch fault, only the behaviour of

the RH wing tank high level switch variable is affected. The behaviour of all the other

system variables is similar to that shown in Section 5.3.



166 Chapter 5. Fuel Rig System Results

-0.5

0.0

0.5

1.0

1.5

0 50 100 150 200 250 300

S
w

it
ch

S
ta

te

Time (s)

RH Wing Tank High Level Switch State - Fuel Rig

RH Wing Tank High Level Switch State - PN

Phase 2 Phase 3 Phase 4

Figure 5.42: RH wing tank high level switch failed on - High level switch state
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Figure 5.43: RH wing tank high level switch failed on - RH wing tank level



5.4. First Order Failure Modes 167

Table 5.18 shows that when the high level switch fault is correctly diagnosed, all the

SD values of the high and low level switch variables are within the tolerance limits. As

none of the other variables are affected by the fault, their SD results have been omitted

for brevity.

Table 5.18: SD of fuel rig variables - RH wing tank high level switch failed on

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Wing Tank High Level Switch 0.1 0.0 0.0

RH Wing Tank High Level Switch 0.1 0.0 0.37

LH Wing Tank Low Level Switch 0.1 0.0 0.0

RH Wing Tank Low Level Switch 0.1 0.0 0.0

RH Aux Tank High Level Switch 0.1 0.0 0.0

RH Aux Tank Low Level Switch 0.1 0.0 0.0

Column four of Table 5.18 shows that when the high level switch fault is falsely di-

agnosed, the SD of the RH wing tank high level switch variable exceeds its tolerance.

When falsely diagnosed, the fuel rig output of the high level switch does not change state.

However the fault will be present in the PN model and therefore, the PN high level switch

output does change state. This results in the SD value exceeding the high level switch

tolerance limit. As a result the false arising is correctly identified and can be filtered.

5.4.6.2 RH Wing Tank High Level Switch Failed Off

When the high level switch fails off, its output will constantly be ‘1’ or off. It was shown in

Section 5.3 that in normal operation the RH wing tank high level switch is off throughout

the entire mission. Injecting the fault in the fuel rig therefore has no effect on the behaviour

of any system variables. The occurrence of this fault creates a hidden failure that would

not be revealed, until the RH wing tank level reaches the level of the high level switch.

As none of the system variables are affected by this failure mode, all of the graphs in

Section 5.3 give an accurate representation of the system behaviour in the presence of the

fault. The SD values calculated from the graphs of all the switch variables are listed in

Table 5.19. All of the SD values are within the tolerances listed for the respective variables.
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The SD values found, when the high level switch fault is incorrectly diagnosed, are also

listed. It can be seen that again none of the SD values exceed the tolerances. Therefore,

if an arising included the failure mode ‘RH Wing Tank High Level Switch Failed Off’, the

fault verification technique would verify it as genuine whether it was true or false.

Table 5.19: SD of fuel rig variables - RH wing tank high level switch failed off

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Wing Tank High Level Switch 0.1 0.0 0.0

RH Wing Tank High Level Switch 0.1 0.0 0.0

LH Wing Tank Low Level Switch 0.1 0.0 0.0

RH Wing Tank Low Level Switch 0.1 0.0 0.0

RH Aux Tank High Level Switch 0.1 0.0 0.0

RH Aux Tank Low Level Switch 0.1 0.0 0.0

5.4.6.3 RH Wing Tank High Level Switch Failed Stuck

If the high level switch fails stuck, it will continue to output the last correct switch state

prior to the component failing. When the high level switch fails stuck in the phased

mission it’s output will remain ‘1’ or off. However, in normal operation the high level

switch output will be off throughout the mission. Therefore the switch failing stuck has

no effect on the fuel rig system or any of its variables, it is a hidden fault. As none of

the fuel rig system variables are affected by the failure mode, their behaviour can be seen

from the graphs in Section 5.3. The SD values produced in the presence of this fault are

the same as those shown in Table 5.19.

5.4.7 Low Level Switch Failure Modes

Low levels switches are used on the fuel rig to indicate, when the fuel level in the tanks

approaches zero. They are used with the tank level sensors to monitor the fuel level in the

tanks and prevent pumps from ‘running dry’. The operation, output signals and failure

modes of the low level switches are the same as those produced/experienced by the high
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level switches.

5.4.7.1 RH Wing Tank Low Level Switch Failed Off

Section 5.3 showed that in normal operation the RH wing tank low level switch was on

throughout the phased mission. The switch therefore produced a constant ‘0’ output. If

the low level switch were to fail off, the switch output would change to ‘1’. Figure 5.44

shows the RH wing tank low level switch output during the phased mission when the low

level switch fails off.
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Figure 5.44: RH wing tank low level switch failed off - Low level switch state

Figure 5.44 shows that when the low level switch fails off, the output from the switch

changes from ‘0’ to ‘1’. The switch remains off from the time of the fault occurring till

the end of the mission. Figure 5.45 shows the RH wing tank level over the course of

the same mission. It can be seen from Figure 5.45 that the tank level remains between

approximately 40 and 50cm throughout the mission. The low level switch failure therefore

has no effect on the actual tank level in the RH wing tank.
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Figure 5.45: RH wing tank low level switch failed off - RH wing tank level

The PN predicted behaviour of the RH wing tank low level switch state can be seen

to match very well with that recorded from the fuel rig system. As a result when the

fault is diagnosed correctly, the SD of the RH wing tank low level switch variable is zero.

As the failure mode also has no effect on any of the other system variables, all other SD

values also fall within the respective tolerance limits. Graphs of these variables behaviour

are similar to those shown in Section 5.3. Also listed are the SD values produced as a

result of an incorrect diagnosis of the low level switch failing off. It can be seen that

should this scenario occur, the RH wing tank low level switch variable will exceed its

tolerance. Therefore, the fault verification technique would be able to correctly identify

both a genuine and false arising in this case.

5.4.7.2 RH Wing Tank Low Level Switch Failed On

When the RH wing tank low level switch fails on, it will continue to produe an output of

‘0’ irrelevant of the actual tank level. Nonetheless, as shown in Section 5.3 the expected

output of the low level switch is already ‘0’ throughout the mission. Any occurrence of the

fault ‘low level switch failed off’ in the phased mission under consideration would therefore
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Table 5.20: SD of fuel rig variables - RH wing tank low level switch failed off

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Wing Tank High Level Switch 0.1 0.0 0.0

RH Wing Tank High Level Switch 0.1 0.0 0.0

LH Wing Tank Low Level Switch 0.1 0.0 0.0

RH Wing Tank Low Level Switch 0.1 0.0 0.37

RH Aux Tank High Level Switch 0.1 0.0 0.0

RH Aux Tank Low Level Switch 0.1 0.0 0.0

be hidden. Evaluating the fuel rig system outputs when this fault is injected reveals this

to be the case. The graphs in Section 5.3 therefore give an accurate representation of the

system behaviour in the presence of this fault.

The SD values of the switch variables on the system are presented in Table 5.21. All

of the SD values calculated when the fault is correctly diagnosed are within the tolerance

limits. Also listed are the SD values produced as a result of the failure mode being

incorrectly diagnosed. As can be seen from these results however, no variables exceed

their tolerance limit, as the behaviour of the system with the fault present is the same as

that without it. This means that the fault verification technique would correctly verify a

genuine arising but would also incorrectly verify a false arising.

5.4.7.3 RH Wing Tank Low Level Switch Failed Stuck

In the event of the low level switch failing stuck, it will continuously output that it is

either in an on or off state. The state output by the switch is dependent upon what state

was last output when the switch was working correctly. In the case of the phased mission

under consideration, it has been shown in Section 5.3 that the RH wing tank low level

switch state remains constant throughout the mission. As a result any occurrence of the

low level switch failing stuck during the mission would have no effect on the fuel rig system

or its outputs. Section 5.3 therefore presents an accurate representation of the fuel rig

behaviour. The results shown in Table 5.21 also represent the SD values that are produced

when the low level switch fails stuck in the phased mission.
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Table 5.21: SD of fuel rig variables - RH wing tank low level switch failed on

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Wing Tank High Level Switch 0.1 0.0 0.0

RH Wing Tank High Level Switch 0.1 0.0 0.0

LH Wing Tank Low Level Switch 0.1 0.0 0.0

RH Wing Tank Low Level Switch 0.1 0.0 0.0

RH Aux Tank High Level Switch 0.1 0.0 0.0

RH Aux Tank Low Level Switch 0.1 0.0 0.0

5.4.8 Pump Failure Modes

The low pressure pumps on the fuel rig system can fail in two different modes; pump failed

off and pump degraded. If the pump fails off, it will not produce any output regardless

of the input demand. If the pump has become degraded, its operational capacity will be

reduced and the level of degradation will determine its maximum operational capability.

5.4.8.1 RH Engine Pump Failed Off

If the RH egine pump were to fail off, the flow path from the RH wing tank to the RH

engine would be lost. The failure mode would have an impact on the RH wing tank level,

the RH flow rate and the RH flow pressure variables. The effect of this failure mode is

therefore the same as that caused when the RH wing tank IV is blocked/failed closed and

when the RH triple port L-valve IV is blocked/failed closed. The effect of the RH engine

pump failing off can therefore be seen in Section 5.4.2.2 and Section 5.4.2.3. The result of

applying the fault verification technique is also the same, genuine faults are verified and

false faults are filtered.

5.4.8.2 RH Auxiliary Pump Failed Off

Should the RH auxiliary pump fail off the flow path from the RH auxiliary tank to the

RH wing tank will be lost. This means that no fuel will be added to the wing tank in

phase 3, when both auxiliary pumps should be on. The effect of this failure mode is the
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same as that produced when the RH auxiliary tank IV is blocked/failed closed. The result

on the fuel rig system of the auxiliary pump failing off can therefore be seen in Section

5.4.2.4. The fault verification technique can successfully verify genuine faults and identify

false faults when an arising includes the failure mode ‘RH Auxiliary Pump Failed Off’.

5.4.8.3 RH Auxiliary Pump Degraded 50%

If the RH auxiliary pump is degraded by 50%, its maximum output will be 50%. Table

5.1 lists the demand of the RH auxiliary pump in phase 3 at 75%. Due to the degraded

pump, the fuel rig system will be unable to meet this demand, when it is requested. The

effect of the failure mode should, therefore, be seen in the RH auxiliary tank level and RH

wing tank level. Figure 5.46 shows the LH and RH auxiliary tank levels over the course

of the mission.
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Figure 5.46: RH auxiliary pump degraded 50% - Auxiliary tank levels

On close inspection of Figure 5.46, it can be seen that in phase 3 the RH auxiliary

tank level falls at a lower rate than LH auxiliary tank level. This is true when considering

both the tank level values recorded from the fuel rig and those predicted by the PN model.

This is due to the failure mode, which limits the operation of the RH auxiliary pump to
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50% while the LH auxiliary pump operates at 75%. The effect of this fault should also be,

therefore, visible in the RH wing tank level. Figure 5.47 shows the RH wing tank level of

the fuel rig during the mission.
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Figure 5.47: RH auxiliary pump degraded 50% - RH wing tank level

Comparing the behaviour of the RH wing tank level variable in Figure 5.47 to that in

Figure 5.2 ,when there was no fault present in the system, the effect of the fault is clear.

In Figure 5.47 the RH wing tank level shows only a small increase in phase 3. In Figure

5.2 the increase in tank level is much larger, approximately 5cm.

When the auxiliary pump is degraded to 50% capacity, it should only have the ability

to provide the RH wing tank with enough fuel to replace that being removed by the RH

engine pump, which is also operating at 50% demand. Figure 5.47 shows a slight increase

in the RH wing tank level, which shows that a greater amount of fuel enters the tank than

leaves it in phase 3. The reasons for this small variation in component performance have

been discussed in Section 5.4.2.1.

All of the remaining system variables have not been affected by the auxiliary pump

fault. Graphs of their behaviour over the course of the mission are therefore similar to

those in Section 5.3. The SD values for a number of system variables are listed in Table
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5.22. It can be seen that when diagnosed correctly, all of the SD values are within the

tolerance limit. The fault verification technique would therefore be able to verify the

arising correctly.

Table 5.22: SD of fuel rig variables - RH auxiliary pump degraded 50%

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.621cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.507cm 0.929cm

LH Wing Tank Level 1.500cm 0.541cm 0.437cm

RH Wing Tank Level 1.500cm 0.353cm 1.044cm

LH Flow Rate 0.30L/min 0.10L/min 0.10L/min

RH Flow Rate 0.30L/min 0.19L/min 0.20L/min

LH Fuel Flow Pressure 9,000Pa 901Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 1,725Pa 1,688Pa

When the failure mode is falsely diagnosed, none of the SD values exceed their tol-

erances and therefore the fault verification technique cannot filter the arising as false.

It would be expected that the RH auxiliary tank level and RH win tank level variables

would have SD values that exceed their tolerances. However the effect of the fault on

these variables does not change their behaviour enough to cause the SD tolerance to be

exceeded. Figure 5.48 shows the RH wing tank level, when the auxiliary pump degraded

50% fault is falsely diagnosed. It can be seen, that without the fault present on the fuel

rig, the wing tank level increases as expected in phase 3 by approximately 5cm. The PN

tank level, by comparison, only increases by 1 – 2cm. However, the difference between

recorded tank levels and those predicted by the PN model with the fault present are not

large enough to create a SD which exceed the tank level tolerance. Without reducing the

tank level tolerance it would not, therefore, be possible to filter this auxiliary pump fault

were it falsely diagnosed.
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Figure 5.48: RH auxiliary pump degraded 50% false arising - RH wing tank level

5.4.8.4 RH Engine Pump Degraded 50%

Should the engine pump become degraded by 50%, it will only be able to operate at a

maximum of 50% of its capability. Any occurrence of this fault in the phased mission

being undertaken will not have an effect on the fuel rig variables, as the engine pumps are

only operated at a maximum of 50%. Table 5.1 shows that the engine pumps are operated

at a demand of 50% in phases 2, 3 and 4, while they are off in phases 1 and 5. The failure

mode ‘engine pump degraded’ will therefore be hidden, should it occur.

As the failure mode is hidden, the graphs in Section 5.3 display the behaviour that

would be expected from the fuel rig variables. Table 5.23 contains the SD values calculated

from the data of the fuel rig variables, when the fault was injected into the fuel rig and

modelled in the PN. In this scenario all of the SD values are within the tolerance limits,

which means the arising would be verified. The table also lists the SD values calculated

when the engine pump degraded fault was falsely diagnosed. In this scenario the failure

mode is present in the PN model results but not in the fuel rig variable outputs. However,

as the fault is hidden the behaviour of the PN predicted behaviour is the same as that

recorded and therefore none of the SD values exceed the respective tolerances. As a result,
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a false arising specifying that the engine pump had degraded up to 50% would go unfiltered

in the phased mission under consideration.

Table 5.23: SD of fuel rig variables - RH engine pump degraded 50%

Standard Deviation

Fault Diagnosed Fault Diagnosed

Fuel Rig Variable Tolerance Correctly Incorrectly

LH Auxiliary Tank Level 1.500cm 0.612cm 0.633cm

RH Auxiliary Tank Level 1.500cm 0.430cm 0.480cm

LH Wing Tank Level 1.500cm 0.458cm 0.437cm

RH Wing Tank Level 1.500cm 0.514cm 0.506cm

LH Flow Rate 0.30L/min 0.10L/min 0.10L/min

RH Flow Rate 0.30L/min 0.20L/min 0.20L/min

LH Fuel Flow Pressure 9,000Pa 865Pa 872Pa

RH Fuel Flow Pressure 9,000Pa 1,957Pa 1,688Pa

5.4.9 Tank Leak Failure Modes

Tank leak failures are unique in that the extent to which they impact on the system

depends on the location and size of the leak. A large leak in the base of a tank, for

example, will have a greater impact on a system than a small leak near the top of a tank.

Two types of tank leaks have been considered on the fuel rig; a smaller leak in the base of

the RH wing tank and a larger leak in the side of the LH auxiliary tank. The verification

technique that will be applied to these tank leaks is detailed in Section 4.10.2.

5.4.9.1 RH Wing Tank Base Leak

In order to apply the leak fault verification technique, to the RH wing tank leak it was

necessary to place an additional flow rate sensor between the RH auxiliary tank and the

RH wing tank. This meter will provide a measure of the flow rate into the RH wing tank,

while the flow rate meter next to the RH engine pump measures the flow rate out of the

wing tank.

Applying the process described in Section 4.10.2, the first stage in the verification
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process is to find the tank levels during the mission from the flow rate outputs. Figure

5.49 shows the tank level recorded from the level sensor and as determined from the flow

rate sensors.
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Figure 5.49: RH wing tank base leak - RH wing tank level

Figure 5.49 shows that the level sensor and flow rate tank level variables have different

behaviours throughout the mission. This is due to the leak effects, which are only displayed

in the level sensor curve. When the leak occurs, i.e. after 60 seconds, the gradient of the

tank levels recorded by the level sensor decreases. By comparison the flow rate determined

tank level stays constant throughout phase 2. The gradient of the tank levels recorded by

the level sensor are also lower in phase 4 compared to the tank levels found from the flow

rates. In phase 3, the flow into the wing tank creates a positive gradient in the flow rate

curve but this is not seen in the level sensor curve because of the leak effects.

Knowing the time at which the leak occurred from the arising details, the gradient of

each tank level curve prior to and after the leak occurring is identified. Table 5.24 lists

these gradients and the resultant gradient residual values prior to and after the fault.

The gradient residual prior to the arising time is 0.0104cm/sec. The gradient residual

after the arising is -0.0193cm/sec. There is therefore a decrease in the gradient residual
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Table 5.24: RH wing tank leak - Tank level curve gradients

Prior to Arising After Arising

Level Sensor Tank Level Curve Gradient -0.0479cm/sec -0.0783cm/sec

Flow Rate Sensor Tank Level Curve Gradient -0.0583cm/sec -0.0590cm/sec

Gradient Residual 0.0104cm/sec -0.0193cm/sec

of 0.0297cm/sec. It was stated in Secion 4.10.2 that a decrease in the gradient residual

of at least 0.0190cm/sec was necessary in order to verify a leak. As this value has been

exceeded a leak can be confirmed.

The final stage in the analysis of leak faults is to determine the location of the leak.

The verification technique considers the fuel rig data at 15 second timesteps in order to

accurately determine the location of the leak. Applying the technique as described in

Section 4.10.2 the gradient residual over one of the 15 second timesteps will have to be

greater than -0.0086cm/sec in order to confirm the leak height (0.0104-0.0190 = -0.0086).

Table 5.25 lists the gradient residuals determined at every valid timestep in the mission

from the time of the leak appearing.

Given that none of the interval residual values was greater than -0.0086cm/sec prior

to the end of the mission, it was not possible to determine the exact height at which the

leak occurred. However, knowing the tank level, from the wing tank level sensor, at the

end of the mission it is possible to state the leak is present between the base of the tank

and a height of 22.7cm.

5.4.9.2 LH Auxiliary Tank Side Leak

The second leak failure mode considered is that of a leak in the side of the LH auxiliary

tank. In order to assess this fault it was necessary to place a flow rate meter at the exit

from the LH auxiliary tank in order to monitor the flow out of this tank and into the LH

wing tank. As there is no flow into the auxiliary tanks during the phased mission, there

is no need for a flow rate sensor at the input to the auxiliary tank. The leak verification

technique is applied in the same way as it was in Section 5.4.9.1.

Figure 5.50 shows the LH auxiliary tank levels during the mission as determined from

the level sensor and flow rate outputs. The auxiliary pumps only experience a demand
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Table 5.25: Residual values after arising - RH wing tank leak

Interval (sec) Interval Residual (cm/sec)

35 – 60 0.0104

80 – 90 -0.0193

90 – 105 -0.2623

105 – 120 Phase Change

120 – 135 -0.0173

135 – 150 -0.0489

150 – 165 -0.0502

165 – 180 -0.0470

180 – 195 -0.0446

195 – 210 Phase Change

210 – 225 -0.0281

225 – 240 -0.0347

240 – 255 -0.0323

255 – 270 -0.0613

270 – 285 -0.0295

285 – 300 Phase Change

during phase 3 of the mission. There should therefore only be a change in the auxiliary

tank levels during phase 3. Figure 5.50 shows, however, that the leak has caused the tank

levels recorded by the level sensor to fall during phase 2. The level sensor curve also falls

in phase 3 and is relatively flat in phase 4, both as expected. Looking at the phase 3

section of the curve in more detail it can be seen there is a change in the gradient of the

tank levels recorded from the level sensor at the midpoint of the phase, approximately 150

seconds. This is due to the tank level falling below the height of the leak. The tank levels

determined from the flow rate outputs exhibit the expected auxiliary tank level behaviour

as it only reflects the flow of fuel out of the tank through the pipe system when a demand

is present.

The gradient of each tank level curve prior to and after the arising is shown in Table

5.26. The gradient residuals are also shown. Table 5.26 shows that the gradient residual

decreased by 0.1738cm/sec as a result of the leak. The presence of a leak in the tank was



5.4. First Order Failure Modes 181

0

10

20

30

40

50

60

0 50 100 150 200 250 300

T
an

k
L

ev
el

(c
m

)

Time (s)

Level Sensor Tank Level Flow Rate Tank Level

Phase 2 Phase 3 Phase 4

Figure 5.50: LH auxiliary tank side leak - LH auxiliary tank level

Table 5.26: RH wing tank leak - Tank level curve gradients

Prior to Arising After Arising

Level Sensor Tank Level Curve Gradient -0.0015cm/sec -0.1752cm/sec

Flow Rate Sensor Tank Level Curve Gradient -0.0002cm/sec -0.001cm/sec

Gradient Residual -0.0013cm/sec -0.1751cm/sec

therefore verified (0.1738 ¿ 0.0190). Table 5.27 lists the interval gradient residuals found

at 15 second timesteps after the arising time. In order to confirm that the tank level has

fallen below the height of the leak, an interval residual of greater than -0.0203cm/sec is

required (-0.0013-0.0190 = -0.0203).

Table 5.27 shows that between 150 and 165 seconds the gradient residual was

0.0190cm/sec. This residual is greater than -0.0203cm/sec and therefore indicates that

the tank level had fallen below the leak height. Using the level sensor outputs the leak

height was determined to be 23.6cm. Looking again at Figure 5.50 it can be seen that

the time interval and leak height determined match well with the point at which the level
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Table 5.27: Residual values after arising - LH auxiliary tank leak

Interval (sec) Interval Residual (cm/sec)

35 – 60 -0.0013

80 – 90 -0.1751

90 – 105 -0.1592

105 – 120 Phase Change

120 – 135 -0.1127

135 – 150 -0.0865

150 – 165 0.0190

sensor tank level gradient changed noticeably.
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5.5 Identifying Genuine Faults Among Multiple Arisings

Due to the number of arisings that can be generated over a short period of time by complex

systems, it is possible that several arisings will be generated at the same time. This section

will consider the scenario, where four arisings are generated at the same time but only

one is genuine, i.e. the other three arisings are false. The variable comparison aspect

of the fault verification technique applied is consistent with that applied throughout this

chapter.

Using the five phase mission, the fault ‘RH Flow Pressure Sensor Failed Off’ has been

induced in the fuel rig after 60 seconds. This failure mode has been included in the health

log input file along with the ‘RH Flow Pressure Sensor Failed Stuck’, ‘RH Wing Tank

Isolation Valve Blocked’ and ‘RH Flow Sensor Failed Stuck’ failure modes which are all

false. Including two failure modes of the same component will ensure the fault verification

software can distinguish between them. The effect of the genuine fault should be seen in

the wing tank level, fuel flow rate and flow pressure variables on the RHS of the system, as

described in Section 5.4.5.2. Figure 5.51 shows the RH wing tank level behaviour predicted

by the PN model when each of the failure modes are included individually. The fuel rig

data plotted on the graph represents that with the ‘RH Flow Pressure Sensor Failed Off’

failure mode present. Figures 5.52 and 5.53 show equivalent graphs of the RH fuel flow

rate and flow pressure.
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Figure 5.51: Multiple concurrent arisings - RH wing tank level
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Figure 5.52: Multiple concurrent arisings - RH fuel flow rate
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Figure 5.53: Multiple concurrent arisings - RH flow pressure

Figure 5.51 shows that the PN model predicts only one of the failure modes will produce

a behaviour in the RH wing tank level variable, that significantly differs from that recorded

from the fuel rig. The failure mode is ‘Wing Tank Isolation Valve Blocked’. This is due to

the fact that this is the only failure mode, which prevents the flow of fuel out of the RH

wing tank. As a result, this is the only failure mode that causes the SD of the RH wing

tank level variable to exceed the tank level tolerance. The PN predicted behaviour of the

remaining failure modes produced similar behaviour to that recorded from the fuel rig. As

a result the respective RH wing tank level SD values were also the same and within the

SD limit.

Figure 5.52 shows that there was a deviation from the recorded fuel flow rate, when

two of the failure modes were modelled in the fuel rig PN. The wing tank IV blockage

prevents any flow from reaching the fuel flow rate sensor and, therefore, causes the fuel

flow rate behaviour to differ. The flow sensor stuck failure mode also caused the behaviour

of the fuel flow rate variable to deviate from that recorded in phase 5. The SD values

determined for these failure modes both exceeded the fuel flow rate SD tolerance.

Figure 5.53 shows the flow pressure as recorded from the fuel rig and as predicted by
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the PN models with the individual failure modes included. It can be seen that only one of

the failure modes has an effect on the predicted RH flow pressure behaviour that results

in it matching that recorded from the fuel rig. That is the failure mode ‘Pressure Sensor

Failed Off’. The three other failure modes produced a flow pressure curve that differs

significantly from the recorded flow pressure curve. The SD of these three results also

exceed the tolerance for the flow pressure variable by far

Table 5.28 lists the SD values for a range of system variables when each of the failure

modes were considered by the PN software one by one.

Table 5.28: SD of fuel rig variables - Genuine fault among multiple arisings

Failure Mode

Pressure Sensor Pressure Sensor Wing Tank Flow Sensor

Fuel Rig Variable Failed Off Stuck IV Blocked Stuck

LH Aux Tank Level 0.494cm 0.494cm 0.494cm 0.494cm

RH Aux Tank Level 0.733cm 0.733cm 0.733cm 0.733cm

LH Wing Tank Level 0.507cm 0.507cm 0.507cm 0.507cm

RH Wing Tank Level 0.450cm 0.450cm 4.247cm 0.450cm

LH Flow Rate 0.11L/min 0.11L/min 0.11L/min 0.11L/min

RH Flow Rate 0.18L/min 0.18L/min 2.07L/min 0.77L/min

LH Flow Pressure 1,350Pa 1,350Pa 1,350Pa 1,350Pa

RH Flow Pressure 908Pa 45,693Pa 37,283Pa 45,602Pa

From Figure 5.53 alone it is possible to identify not only which failure modes are

associated with false arisings but also which of the failure modes is genuine. Only one

of the PN curves in this figures is similar to fuel rig curve, the pressure sensor failed

off curve. The behaviour of the three other curves is different from 60 seconds onwards.

Table 5.28 also provides numerical evidence that only the failure mode ‘RH Flow Pressure

Sensor Failed Off’ produced SD values for all of the system variables that were within the

tolerances. The fault verification process is, therefore, capable of identifying a genuine

arising amongst several false ones. Given the large number of arisings that are generated

by complex systems, the capability that has been demonstrated in this section has the

potential to reduce the unnecessary use and wastage of valuable resources.
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5.6 Second Order Failure Modes

Second order failure modes refer to situations where two faults are present on a system at

one time. A number of second order failure modes have been considered on the fuel rig.

Scenarios where both faults occur at the same time and scenarios where the faults occur

at different times are considered. A second order failure mode that includes a leak is also

evaluated.

When second order failure modes are considered by the fault verification technique,

it first considers each fault individually and then together. The faults are considered

individually first because it is possible that one or both of the faults may be false. All

possible scenarios are therefore considered. The phased mission undertaken throughout

this section is the same mission comprising 5 phases, as described in Section 5.2.

Three second order failure mode scenarios are presented below. They provide an insight

as to the capability and limitation of the technique.

5.6.1 RH Fuel Flow Rate Sensor Failed High and RH Auxiliary Tank

Low Level Switch Failed Off

In this scenario the failure modes are induced in the fuel rig at different times. After 60

second the RH fuel flow rate sensor is failed high. The RH auxiliary tank low level switch

is then failed off after 135 seconds. It would be expected that the effects of these faults, as

described in Section 5.4.4 and 5.4.7 respectively, would be seen simultaneously from 135

seconds onwards.

The fault verification technique first considers only the RH fuel flow rate sensor failing

high in the PN model, i.e. it makes no account of the potential low level switch fault. This

first order failure mode has already been considered and Figure 5.35 shows the resultant

RH fuel flow rate graph. It can be seen in Table 5.3 that the low level switch fault does

not affect the RH fuel flow rate and therefore the fuel rig curve will be the same when

considering this second order fault as is shown in Figure 5.35. Figure 5.35 shows that the

PN model has accurately predicted the behaviour of the fuel flow rate variable including

the effect of the flow rate sensor fault which occurred after 60 seconds. As a result the

SD of the RH fuel flow rate variable is 0.07L/min, which is within the tolerance for this

variable.

Figure 5.54 shows the state of the RH auxiliary tank low level switch over the duration
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of the same mission. As the PN model has not included the low level switch fault, it

would be expected that the PN predicted low level switch behaviour will differ from that

recorded from the fuel rig.
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Figure 5.54: RH fuel flow rate failed high - RH auxiliary tank low level switch state

The effect of the auxiliary tank low level switch fault can be clearly seen on the fuel

rig curve of Figure 5.54. The PN curve however does not indicate a change of state as the

PN model did not include the low level switch fault. The SD of the RH auxiliary tank

low level switch variable is therefore 0.49. This value exceeds the switch state tolerance

of 0.1. All of the SD results of the remaining system variables were within the specified

tolerances, when only the fuel flow rate sensor fault was considered.

Given that the SD of the RH auxiliary low level switch exceeded the tolerance limit,

it can be concluded that either the fuel flow rate sensor has not failed or it is not the only

component on the system that has failed. It can, however, be stated that the RH fuel flow

rate sensor alone has not failed.

Having failed to successfully verify the first arising, the fault verification technique

then considers the failure mode within the second arising – RH auxiliary tank low level

switch failed off. The flow rate sensor fault is now ignored. Figure 5.55 and Figure 5.56
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show the RH fuel flow rate and RH auxiliary tank low level switch state over the course

of this mission.
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Figure 5.55: RH auxiliary tank low level switch failed off - RH fuel flow rate

Figure 5.55 shows that without consideration of the flow rate sensor fault, the PN fuel

flow rate is significantly different from the fuel rig flow rate from 60 seconds onwards.

The SD of the residual results in this figure is 20.39L/min. This SD result far exceeds

the 0.3L/min tolerance of the fuel flow rate variable. In comparison to the fuel flow rate

results, Figure 5.56 shows that the PN model has predicted the same behaviour in the RH

auxiliary low level switch as has been recorded from the fuel rig. The SD of these results

is therefore 0. However, as the SD of the fuel flow rate variable exceeded the permissible

tolerance the second arising will also be filtered by the fault verification technique.

Having considered both of the arisings individually, they are now considered together.

When both of the failure modes are included in the PN model, none of the SD tolerances

are exceeded. The RH fuel flow rate behaviour, as taken from the fuel rig and PN data,

produces the same graph as shown in Figure 5.35. The RH auxiliary tank low level switch

behaviour is the same as that in Figure 5.56. The behaviour of all of all the remaining

system variables is unaffected and the outputs of these variables are shown in Section 5.3.
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Figure 5.56: RH auxiliary tank low level switch failed off - RH auxiliary tank low level

switch state

Table 5.29 shows the SD values determined for every variable on the system when the

arising failure modes are considered independently and together.

The results of Table 5.29 confirm the fact that when considered individually, the failure

modes are identified as false faults. The fault verification technique can determine this

from the SD values in the first two columns, which exceed the tolerance limits. It is

only when the faults are considered concurrently that all of the SD values fall within the

tolerances. The fault verification technique has therefore correctly identified that a second

order fault is present in the fuel rig system.

There is a small variation in some of the SD values for the same variables in Table

5.29, even though the same fuel rig data was considered each time. This is due to the

fact that in each of the analysis considered above faults were injected into the PN model

at different times. Immediately following any fault the initial data is ignored to allow the

fuel rig system variables to settle. As a result different data points have been ignored in

each analysis which has caused a small variation in the SD values.
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Table 5.29: SD of fuel rig variables - Fuel flow rate sensor failed high and auxiliary tank

low level switch failed off

Failure Mode

Flow Rate Sensor Aux Tank Low Both Failure

Failed High Level Sw Stuck Modes

LH Auxiliary Tank Level 0.492cm 0.492cm 0.497cm

RH Auxiliary Tank Level 0.616cm 0.610cm 0.619cm

LH Wing Tank Level 0.506cm 0.517cm 0.512cm

RH Wing Tank Level 0.510cm 0.530cm 0.518cm

RH Auxiliary Flow Rate 0.14L/min 0.13L/min 0.13L/min

RH Flow Rate 0.08L/min 20.39L/min 0.08L/min

LH Flow Pressure 995Pa 994Pa 1,008Pa

RH Flow Pressure 1,681Pa 1,679Pa 1,704Pa

RH Wing Tank High Level Sw 0.0 0.0 0.0

RH Wing Tank Low Level Sw 0.0 0.0 0.0

RH Aux Tank High Level Sw 0.0 0.0 0.0

RH Aux Tank Low Level Sw 0.49 0.0 0.0

5.6.2 RH Wing Tank Base Leak and RH Fuel Flow Rate Sensor Failed

Off

It is possible for the fault verification technique to consider a leak and another fault

within a system. It is necessary to carry out the leak fault verification process in order to

determine both the size and the location of the leak. These values can then be used as an

input to the PN model, so the behaviour of the system can be most accurately modelled.

In this mission the leak was injected into the RH wing tank after 60 seconds and the RH

fuel flow rate sensor was failed off after 135 seconds.

The leak verification process is first considered. Figure 5.57 shows the RH wing tank

level over the course of the mission.

Figure 5.57 shows very unique tank level curves. The tank level values determined

by the flow rate outputs increase significantly from 135 seconds onwards. This is due to

the flow rate sensor fault, which produces an output of -12.5L/min. This is interpreted
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Figure 5.57: Wing tank leak and fuel flow rate sensor failed off - RH wing tank level

as reverse flow and therefore from 135 seconds onwards the wing tank is seen, incorrectly,

to receive a large volume of fuel from the engine. By comparison, the tank level sensor

curve is much closer to the behaviour expected in the presence of the wing tank leak

fault. Applying the leak verification process, the tank level gradient residual changed

from 0.0275cm/sec prior to the leak arising to -0.0470cm/sec after the arising. As this

decrease in the tank level gradient residual is greater than 0.0190cm/sec, the presence of

the leak is confirmed. The size of the leak is expressed in terms of its effect on the tank,

in this case the leak size is 0.0745cm/sec.

In determining the location of the leak, gradient residuals were found at regular in-

tervals after the arising time. None of these gradient residuals, however, indicated that

the effect of the leak had disappeared. The location of the leak could therefore only be

narrowed down to a height of between 0 and 10.5cm. When the leak fault is considered

concurrently with the fuel flow rate sensor fault, the leak will be modelled in the base of

the tank to consider the worst case scenario.

Having confirmed the presence of a leak, the fault verification technique next considers

the fuel flow rate sensor fault individually. Figure 5.58 shows the RH wing tank level, as
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recorded from the fuel rig and predicted by the PN model, when the wing tank leak is not

considered.
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Figure 5.58: Wing tank leak and fuel flow rate sensor failed off - RH wing tank level

Figure 5.58 shows that without consideration of the wing tank leak the PN model has

failed to accurately predict the behaviour of the RH wing tank level. As a result, the SD

of the RH wing tank level variable is 3.709cm and exceeds the tolerance. The presence of

the fuel flow rate fault alone in the system is therefore disproved.

The final step in the fault verification process is to consider the leak and fuel flow rate

fault concurrently. Considering both of these faults in the same PN model, the predicted

behaviour of the fuel rig system matches well with that recorded. Figure 5.59 shows the

RH wing tank level variable when both faults are included in the PN model. It is only

possible to achieve this set of results by including the leak fault in the PN model along

with the flow rate sensor fault.

None of the SD tolerances have been exceeded and as a result the presence of both

faults in the system is confirmed. The figures of the output variables as predicted by the

PN model and recorded from the fuel rig when both failure modes are therefore similar

to those displayed in Section 5.3. Table 5.30 lists the SD values of the fuel rig output
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Figure 5.59: Wing tank leak and fuel flow rate sensor failed off - RH wing tank

variables, when only the fuel flow rate sensor fault is considered and when both faults are

considered.

5.6.3 RH Flow Pressure Sensor Stuck and RH High Level Switch Failed

On

In this final second order scenario, the RH flow pressure sensor is failed stuck after 60

seconds while the RH wing tank high level switch is failed on after 135 seconds. The

fault verification technique first considers the flow pressure sensor fault then the high level

switch fault and finally both faults together.

When the fault verification technique considers only the flow pressure sensor fault, the

result of one system variable exceeds the SD tolerance limit. That variable is the RH

wing tank high level switch. Figure 5.60 shows the predicted and recorded state of the

RH wing tank high level switch during the mission. Figure 5.60 shows that the PN model

has failed to represent the fault that occurs in the high level switch. As a result the SD of

this variable is 0.49, which exceeds the tolerance limit of 0.1 for all the switch variables.

Having exceeded this tolerance the fault verification technique considers the next arising.
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Table 5.30: SD of fuel rig variables - Wing tank level sensor failed high and engine IV

blocked/failed closed

Failure Mode

Flow Rate Sensor Both Failure

Failed Off Modes

LH Auxiliary Tank Level 0.477cm 0.482cm

RH Auxiliary Tank Level 0.745cm 0.758cm

LH Wing Tank Level 0.585cm 0.595cm

RH Wing Tank Level 3.709cm 0.545cm

RH Auxiliary Flow Rate 0L/min 0L/min

RH Flow Rate 0.13L/min 0.13L/min

LH Flow Pressure 1,534Pa 1,562Pa

RH Flow Pressure 1,884Pa 1,894Pa
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Figure 5.60: Flow pressure sensor stuck and high level switch failed high - RH wing tank

high level switch
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When considering only the high level switch failed on failure mode it would be expected

that the PN model would fail to identify the flow pressure sensor fault. Figure 5.61 shows

the flow pressure outputs in this scenario.
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Figure 5.61: Flow pressure sensor stuck and high level switch failed high - RH flow pressure

Figure 5.61 shows that while the fuel rig and PN flow pressure curves are not identical

during the mission, they are very similar over four of the five phases. There is a greater

difference between the curves in phase 5, however, the duration of this phase is relatively

short. Consequently the SD of these results, 3,434Pa, is within the tolerance limit for the

flow pressure variable. The behaviour of the remaining variables on the system are not

affected as a result of omitting the flow pressure sensor fault. Therefore, when considering

the high level switch fault all of the SD results are within the specified tolerances. The

presence of the fault ‘RH Wing Tank High Level Switch Failed On’ would, therefore, be

incorrectly confirmed by the fault verification technique as the only fault present in the

system.

As the process of evaluating second order faults has been initiated, the fault verification

process will consider both faults concurrently, even though the high level switch fault was

verified. When both faults are considered within a single PN model, the predicted system
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outputs are very similar to those recorded from the fuel rig. All of the SD values are within

the tolerances set for the respective variables. The greatest change, in comparison to the

results that only considered the high level switch fault, occurs in the RH flow pressure

variable. This change occurs as the PN model includes the RH pressure sensor fault,

which means the PN predicted behaviour is more similar to that recorded in phase 5 of

the mission. The SD values of the system variables, when each of the three failure mode

combinations are considered by the PN model, are shown in Table 5.31

Table 5.31: SD of fuel rig variables - Fuel flow rate sensor failed high and auxiliary tank

low level switch failed off

Failure Mode

Flow Pres Wing Tank High Both Failure

Sensor Stuck Level Sw Fail On Modes

LH Auxiliary Tank Level 0.467cm 0.407cm 0.409cm

RH Auxiliary Tank Level 0.487cm 0.468cm 0.475cm

LH Wing Tank Level 0.471cm 0.486cm 0.490cm

RH Wing Tank Level 0.406cm 0.464cm 0.464cm

RH Auxiliary Flow Rate 0.14L/min 0.14L/min 0.14L/min

RH Flow Rate 0.23L/min 0.23L/min 0.23L/min

LH Flow Pressure 1,217Pa 1,220Pa 1,240Pa

RH Flow Pressure 934Pa 3,434Pa 954Pa

RH Wing Tank High Level Sw 0.49 0.0 0.0

RH Wing Tank Low Level Sw 0.0 0.0 0.0

RH Aux Tank High Level Sw 0.0 0.0 0.0

RH Aux Tank Low Level Sw 0.0 0.0 0.0

The SD results shown in Table 5.31 show that only the ‘Flow Pressure Sensor Failed

Stuck’ failure mode would be correctly identified as false by the fault verification technique.

The first order failure mode, ‘Wing Tank High Level Switch Failed On’, and the second

order failure mode would both be verified by the fault verification technique as all of

the SD values were within the tolerance limits. The technique has therefore incorrectly

identified the high level switch first order fault as genuine.

The results from this second order fault demonstrate that there are limitations to
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the capability of the fault verification technique. This is especially true when there is

a deviation between the actual and predicted system behaviour for only a short period

of time. Nonetheless the technique has been able to correctly identify the fact that a

second order fault is present within the system. Given the first and second order faults

are evaluated immediately after each other, it would be possible for a human operator

to check the software results and identify the anomaly. Furthermore the presence of the

same high level switch fault as a first and second order fault would supersede its need to

be physically checked or replaced separately.

5.7 Conclusion

This chapter has presented the results of applying the fault verification technique to a

range of failure modes injected on the fuel rig system. All of the failure modes were

injected onto the fuel rig while it was proceeding through a phased mission comprised of

five phases. The mission lasted for 300 seconds. Prior to evaluating the failure modes,

the PN predicted performance of the fuel rig system with no faults present was presented.

These results showed a good level of similarity with those recorded from the fuel rig, which

indicated that the PN model provided an accurate representation of the fuel rig system.

A wide range of first order failure modes have been considered in this work. They

include blockages, sensor failures and leaks. In every case, the PN predicted behaviour of

the fuel rig system in the presence of a failure mode has been very similar to that recorded

from the fuel rig. The SD values of all the system output variables have been found to

be within the tolerance levels set for each variable type. These results indicate that the

PN model has accurately captured the behaviour of the fuel rig in the presence of the

failure modes under consideration. The analysis also investigated the ability of the fault

verification technique to identify falsely diagnosed failure modes. In the majority of cases

the falsely diagnosed fault was correctly identified. However, two issues were discovered

when trying to identify false faults. The first issue was caused by hidden failures. These

faults did not change any of the system variable behaviours during the phased mission. As

a result none of the SD values exceeded the respective tolerances and, therefore, it was not

possible to identify the fault as false. The second issue was caused by false faults that only

caused significant behavioural variation in short phases. In these cases, the PN predicted

system behaviour that included the fault was very similar to that recorded from the fuel
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rig without the fault for the majority of the mission. It was only in the final phase of the

mission that a significant variation appeared. However the short final phase length meant

this variation was often too small to increase the SD value above the tolerance limit.

The ability of the fault verification technique to identify a single genuine failure mode

amongst several other false faults was also demonstrated. On complex systems, where

many hundreds of arisings could be generated over a relatively short mission, the ability

of the fault verification technique to correctly and quickly categorise faults as true or false

is important. The analysis showed that the genuine fault that was injected on the fuel rig

was correctly verified as true, while the remaining failure modes were proven to be false.

Finally a number of second order failure modes were evaluated. When considering

second order failure modes, the fault verification technique analyses each fault individually

and then both faults concurrently. The results of this process demonstrated that the fault

verification technique was successful at verifying the presence of multiple faults on the fuel

rig system. This included a scenario where a leak fault was one of the two faults present

in the system. The results did however show that the second order technique is liable

to produce inaccurate results when a significant variation in the fuel rig and PN variable

behaviours is only apparent in short phases. This situation led to a first order fault being

incorrectly verified.

The limitation of the fault verification technique when dealing with hidden faults has

been identified. The short duration of the phased mission that was considered by this work

can be partially attributed to this. A longer mission may have resulted in the fuel tanks

either being completely full or empty at one point, which would have revealed the level

switch failures. The fault verification technique also demonstrated a limited capability

when dealing with certain false arisings. When the level sensor failed stuck, for example,

the deviation between the predicted and actual tank level values was small enough that

the tank level SD tolerance was not exceeded. Again, in a longer mission profile this issue

may not be a concern.





CHAPTER 6

Software Operation

6.1 Petri Net Software Operation Overview

This chapter will provide detail of how the PN software is structured and executed. Con-

sideration will be given to both the software and the input files that are required for the

software to operate. The PN software has been written using C++ and can be split into

four sub-routines. These sub-routines and their interactions are shown in Figure 6.1.

Figure 6.1: Petri net software process overview

The line on the RH side of Figure 6.1 illustrates the loop used when there are multiple

arisings to consider. Multiple arisings are common on complex systems, especially during

the start-up phase where sub-systems are activated at different times, which can cause

numerous tolerances to be exceeded. Once all of the arisings have been evaluated, the

software operation ends the process as will be discussed in detail in this chapter.
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6.2 Input Files

The PN software has four input files; the PN file, the data log, the health log and the fault

codes file. The PN file defines all of the PN constituent parts. An example of a PN file

is shown in Figure 6.2. The PN file is separated into several sections; Places, Transitions,

Initial Marking, Phase Places, Monitor and Compare.

Figure 6.2: Petri net file example

The Places section of the PN file lists all of the place nodes in the PN and their

descriptions. The Transitions section lists most of the transitions in the PN model. The

only transitions not listed are those which inject the failure modes into the PN model.

These transitions are selected individually as is described below. Every listed transition is

displayed in terms of the respective input, output and inhibit place nodes. Edge weightings

and the transition delay, if applicable, are also listed. Edge weightings are shown with



6.2. Input Files 203

a ‘:x’ suffix to a place number, where x represents the weight of the edge. Inhibit edges

are identified by a ‘:-1’ after the place number. At the end of the Transitions section is a

placeholder seen as “**1**”. This code will be replaced with the phase change and failure

mode transitions in a new PN file, once the data log and health log have been evaluated.

Using this approach allows a single PN file to be used with any mission type, as the

software will amend the PN file as appropriate. It also reduces the number of transitions

that have to be included in the PN file thereby decreasing computational resources. The

Initial Marking section of the PN file defines those PN places that are marked at the start

of the simulation. The Phase Places section of the PN file defines which place nodes must

be marked in each individual phase of system operation. The PN software can record the

token count in place nodes of interest, such as those which represent flow rate or tank

level. The Monitor section lists the place nodes which the PN software will record data

from. Either a single place or a range of places can be monitored. The Compare section

details which SD test each variable will be subject to. As values of different variables

are represented by a unique number of tokens in the PN, a customised version of the

SD technique is applied when evaluating each variable type. The ‘SD’ and ‘PRESSURE’

terms reflect the version of the SD technique applied to the tank level and flow pressure

variables for example. The tolerance for each test is also specified.

All of the remaining input files are described below. The data log file contains all of

the sensor outputs recorded from the fuel rig system over the course of the mission. The

health log file lists all of the arisings that have been recorded from the fuel rig. This

includes the diagnosed failure mode and the time at which the arising appeared. Finally,

the fault codes file lists all of the failure modes on the fuel rig. This file also contains most

parts of the transitions that are required to simulate each failure mode in the PN model.

The transition delay time is added from the health log file when the new PN file is created.

Figure 6.3 shows how the PN software uses these input files in the first sub-routine.

The input file sub-routine shown in Figure 6.3 requires that the four file names are

input to the software. Subsequently the software will open each file and search for any and

all required information automatically. From the data log the software finds the mission

duration, the order of the phases in the mission and the respective phase numbers. The

software opens the original PN file to find the places specific to each operational phase.

These place numbers, along with the order of the phase numbers and their duration, will

be used to list the operational phase changes in the Transition section of the new PN file.
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Figure 6.3: Petri net software input file sub-routine

The health log file is then opened to find the first arising. The failure mode code contained

in the arising detail is matched with a code from the fault codes file. Having matched the

respective fault codes, the correct failure mode transition can also be listed in the new

PN file. The finalised new PN file is then input to the sub-routine, which builds the PN

model in the software.

If the health log file contains more than one arising, then a loop in the code will return
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the software process to the point shown in Figure 6.3, until all of the arisings have been

considered. Each time a new arising is considered, the arising details have to be saved

and a new match found in the fault codes file. An up-to-date new PN file can then be

constructed and the remainder of the software process executed.

6.3 Computational Model

The software builds the computational model of the PN from the new PN file. An Object

Orientated Programming approach is used when considering the Place, Transition and

Monitor sections. Each of these variables is defined as a ‘class’, of which there are several

‘instances’. A single PN place is an instance of the Place class, for example, and a single

transition is an instance of the Transition class. This way all of the PN details can be

stored in the computational model in an orderly and structured fashion. The sub-routine

also uses the information listed in the Initial Marking sub-section of the PN file to add

tokens to the relevant places prior to executing the PN simulation. Information in the

Phase Places and Compare sub-sections of the PN file are not used in this sub-routine.

Once the PN model has been read-in and built by the software, it can be executed.

6.4 PN Simulation Execution

A sub-routine within the PN software titled ‘nTimeSteps’ allows the PN model to be

executed for a defined time period or mission. Figure 6.4 shows the flow chart of the

‘nTimeSteps’ sub-routine.

The only input requirement of the ‘nTimeSteps’ sub-routine is to define the time step

length and the mission duration. The mission duration is known from the first sub-routine

where it was identified from the data log. The time step length can be any integer value;

a step length of 1 second was applied throughout the work. The simulation time variable

is also defined and set to zero by the software at the beginning of the operation. The

time step length is the value by which the simulation time will be incremented once all of

the PN transitions have been evaluated. This command can be seen on Figure 6.4 when

the response to decision node 1 is ‘NO’. Decision node 1 compares the current simulation

time to the mission duration. If the simulation time is less than the mission duration,

the simulation time is increased by the time step length and a counter, i, is initiated.
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Figure 6.4: Petri net simulation sub-routine

Using this counter, all of the transitions in the PN are evaluated. Those transitions

that are enabled have their active time increased by the time step length. Once all of
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the transitions have been evaluated, the response to decision node 3 will be ‘YES’ and

a further counter, j, is initiated. When decision node 4 identifies a transition which is

fireable, that is the required number of input tokens are present and the transition delay

has been satisfied, the software fires the transition and initiates counter k. This counter is

used to evaluate if the effect of the transition firing has changed the enabled state of any

other transitions. Those transitions that are no longer enabled have their active time reset

to zero. Any transitions that remain enabled are not affected. Once all of the transitions

have been checked, the output from decision node 7 will be ‘YES’. The loop originating

from decision node 4, in the lower half of Figure 6.4, then continues until counter j is

equal to the number of transitions in the PN. At this time decision node 5 will produce

a ‘YES’ output and the number of tokens in the places being monitored will be recorded.

The process of evaluating the PN transitions is repeated, until the simulation time is no

less than the mission duration, at which point the sub-routine terminates. The processes

undertaken by the sub-routine in between each time decision node 1 makes a decision are

known as a ‘cycle’. A mission of duration 100 seconds, modelled with a 1 second timestep

will therefore undertake 100 cycles.

6.5 Data Evaluation

The final sub-routine of the PN software is the comparison of the fuel rig data from the

data log with the data recorded from the PN simulation. As was stated in Chapter 4,

the first step in the comparison of the fuel rig variables is to convert the recorded number

of tokens from the PN simulation into numerical values. This process is unique to each

variable and is dependent on the value of the tokens representing each variable. Having

determined the numerical value of a variable at every time step throughout the mission the

SD comparison technique is applied as described in Chapter 4. Once all of the variables

listed in the Compare sub-section of the PN file have been evaluated, the software will

check to see if all of the arisings listed in the health log file have been evaluated. If

they have, the program will end. If there are arisings that still require investigation, the

software will return to the first sub-routine following the route shown in Figure 6.3.
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6.6 Software Performance

The fuel rig PN model contains 239 places and 454 transitions. The PN software was used

to simulate a 300 second phased mission of the fuel rig system. Every simulation included

the analysis of fourteen variables. The analysis of a single failure mode using the software

on a Samsung P510 laptop computer took between 5 and 10 seconds. The analysis of a

second order failure mode therefore took approximately 20 to 30 seconds as three unique

simulations were evaluated.

6.7 Conclusions

This chapter has described how the PN software, written in C++, was structured and

executed. The software was designed to provide a high level of flexibility and reduced

computational requirements. The ability to consider any type of phased mission without

having to make changes to the software demonstrates the built-in flexibility. The short

analysis times on a computer with relatively low processing power indicates that the

software could be effectively applied to a real system.



CHAPTER 7

Airbus A340 Fuel System

7.1 Introduction

The BAE Systems fuel rig provided a means by which to test the PN modelling and fault

verification techniques on a small scale system. In order to demonstrate the applicability

of the PN modelling technique to a larger system, the fuel system of the Airbus A340

aircraft will be modelled using the PN technique. A number of first order faults and a

second order fault will then be propagated through the model. The effects of these faults

on the system will be captured using the PN software and the results evaluated. Successful

application of the PN modelling technique to the Airbus fuel system will demonstrate the

flexibility and applicability of the technique to both small and large scale systems.

7.2 System Description

7.2.1 System Operation

The Airbus A340’s fuel system is comprised of eight fuel tanks. There are four inner tanks,

two in each wing, two outer tanks, one in each wing, a centre tank in the body of the

aircraft and a trim tank in the tail of the aircraft. Each inner tank feeds a collector cell

which, in turn, feeds fuel to one of the aircraft’s four engines. Each outer tank and the

trim tank also have a connecting surge tank, which provides capacity for fuel expansion

at high temperatures. Figure 8.1 shows the layout and piping arrangement of the A340

fuel system [34].

Figure 8.1 shows that each engine has a dedicated collector cell which provides the
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Figure 7.1: Airbus A340 fuel system

fuel supply. There are two pumps in each collector cell, ‘Main’ and ‘Standby’, which can

deliver the fuel to the engine. The standby pump is a cold back up; it is only used if there

is a fault with the main pump. Fuel is transferred from the inner tanks to the collector

cells by jet pump. If this pump fails there is a one-way valve which can be opened to allow

the transfer of fuel to the collector cell by gravity. There is also a series of piping which

can transfer fuel from the collector cell to the centre tank in the case of a fault, such as an

engine failure or a blockage in the supply pipe to the engine. The centre tank can supply

fuel to all of the other tanks on the aircraft. Pumps in the centre tank and isolation valves

on the system are used to control the transfer of fuel from the centre tank to its intended

destination.

The transfer of fuel to and from the trim tank is used to control the centre of gravity

point on the aircraft. Prior to take-off the trim tank is empty. Once the aircraft reaches
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the end of its climb phase, fuel is pumped into the trim tank from the centre tank to

optimise the centre of gravity location for cruise. The flight management system controls

the forward transfer of fuel as the inner tank volumes fall and move the centre of gravity

aft of its original position. Transfer of fuel to and from the trim tank is restricted below

certain altitudes and within 75 minutes of landing. The trim tank is fitted with a main

and standby jet pump to feed fuel forward to the centre tank for dispersion to the inner

tanks.

The outer tanks are located at the furthest point from the centre of the aircraft. Fuel

in these tanks can be transferred to the inner tanks by gravitational means. Table 8.1 lists

the capacity of the fuel tanks on the A340 [34].

Table 7.1: Airbus A340 fuel tank volumes

Inner Tank 15,000L

Collector Cell 5,952L

Centre Tank 41,468L

Tail Tank 6,114L

Outer Tank 3,624L

Total Fuel Volume 138,638L

The cross feed piping in the A340 fuel system is in place to allow the re-distribution

of fuel in the event of a fault such as an engine failure. Should engine 1 fail, for example,

the cross feed valve shown below the collector cell would open allowing fuel to return to

the centre tank. This fuel is then distributed to all of the tanks to maintain the ability of

the aircraft to complete its mission. Fuel would continue to be supplied to all of the inner

tanks to maintain the distribution of weight on the aircraft even though only three of the

engines would be in use.

7.2.2 Fuel Usage

The distribution of fuel within the A340 fuel system is carefully controlled to ensure the

centre of gravity position of the aircraft allows an efficient production of net lift and, as

much as possible, reduces structural bending moments. The use of fuel from different

tanks is therefore specifically prescribed in order to manage this distribution of weight.
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An engine is always supplied with fuel from its collector cell, as shown in Figure 8.1.

Fuel taken from this cell is automatically replaced with fuel from the related inner tank.

The inner tanks are maintained full with fuel from the centre tank, until this has been

emptied. The fuel volume in the inner tanks is then allowed to fall until the flight control

and monitoring system initiates the forward transfer of fuel from the trim tank. The

point at which this transfer occurs is determined by a number of factors including mission

profile, atmospheric conditions, the aircraft weight and the distribution of that weight. It

will be assumed when modelling the A340 fuel system that the forward transfer of fuel

begins when the inner tank volumes have fallen to 75,000L (50%) and stops when they

reach 80,000L (53%). Multiple forward fuel transfers may therefore occur until the trim

tank is emptied. Fuel is then transferred in from the outer tanks when the inner tank

volumes fall to 12% of their volume. Any remaining fuel in the inner tanks and collector

cells would then be used before the system is empty. As mentioned previously, the trim

tank is filled using fuel from the centre tank.

7.2.3 Operating Phase Flow Rates

The Airbus A340 is a commercial aircraft that operates in numerous phases of operation.

Six unique phases have been identified for the purpose of modelling a phased mission.

These phases are; taxi, take-off, climb, cruise, descend and approach. Table 8.2 shows the

flow rates for these phases that have been identified from literature [35] [36].

Table 7.2: Airbus A340 mission flow rates

Taxi 0.20L/sec

Take-Off 1.90L/sec

Climb 1.30L/sec

Cruise 0.50L/sec

Descend 0.10L/sec

Approach 0.50L/sec
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7.2.4 System Sensors

It is known that on the Airbus A340 there are a variety of sensors that monitor, among

other variables, the fuel quantity, fuel level and fuel temperature. This work will consider

only the volume of the fuel tanks on the system and flow rate at a number of chosen

locations. The location of the flow rate sensors is shown on Figure 7.2.
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Figure 7.2: Location of flow sensors on A340 petri net model

7.3 Petri Net Model

7.3.1 Overview

The Airbus A340 fuel system has been modelled using the PN technique. The transition

types used to model the fuel system are the same as those that were used to model the BAE

Systems fuel rig; the standard transition type and the three specialist ones which were

created. No further new transition or place types were developed. The A340 PN model
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contains 208 place nodes and 451 transitions. Additional transitions would be created

dependent on the mission profile and the number of faults that are to be injected into the

model.

The complete model of the BAE Systems fuel rig contains more place (239) and transi-

tion (454) nodes, than the basic model of the more complex A340 fuel system. This is due

to the fact that the A340 fuel system PN model includes only three failure modes. These

faults have been specifically selected to demonstrate a variety of effects on the system. Had

the fuel rig PN model only considered three faults that are equivalent to those modelled

in the A340 PN, it would contain 127 place nodes and 203 transitions. The size of this

basic fuel rig PN model is considerably smaller than the A340 fuel rig PN and indicates

the greater level of complexity present in the A340 system.

7.3.2 Sub-Net Details

The Airbus A340 PN is presented in the form of a series of sub-nets. As with the fuel rig

PN sub-nets, the order by which the sections of the PN are presented reflects the order by

which they are listed in the PN software input file. Where there are two place descriptions

associated with a single place in a sub-net figure, this represents two separate sub-nets

where each place description is associated with one of the sub-nets.

7.3.2.1 Clear Flow Rate Places

The first parts of the PN that are listed in the input file are those that remove tokens

from the flow rate and fuel used places, Figure 7.3 shows these sub-nets.

C

C
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1ON

LH FUEL USED

ON

RH FUEL USED

ON

AFT FLOW RATE
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FORWARD FLOW RATE

CROSS FEED IV 1 FLOW RATE
CROSS FEED IV 2 FLOW RATE

C. CELL 1 MAIN PUMP FLOW RATE
C. CELL 1 STANDBY PUMP FLOW RATE

Figure 7.3: A340 petri net model flow rate and fuel used clear transitions
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Figure 7.3 shows that, every time step, all of the tokens in the flow rate and fuel used

places are removed. The fuel used places represent the fuel consumed by the engines on the

LHS and RHS of the system respectively. The fuel used measure is necessary to indicate

how much fuel has to be taken from the centre tank to replenish the spent fuel.

7.3.2.2 Fuel Pump State Changes

Figure 7.4 shows the sub-nets that control the state of the collector cell 1 pumps.

C. CELL 1 MAIN
PUMP FAIL OFF

C. CELL 1 MAIN
PUMP ON

C. CELL 1 STANDBY
PUMP ON

C. CELL 1 STANDBY
PUMP ON

C. CELL 1 STANDBY
PUMP OFF

C. CELL 1STANDBY
PUMP FAIL OFF

C. CELL 1 STANDBY
PUMP ON

Figure 7.4: A340 petri net model collector cell pump states

It can be seen from the top sub-net in Figure 7.4 that when the main pump fails off,

the standby pump comes online when the transition fires. The transition in the centre

sub-net would then fire to update the PN marking. The transition in the bottom sub-net

of the figure would fire if the standby pump was to fail. Similar sub-nets exist for all four

of the collector cells in the A340 PN model. There are also equivalent sub-nets which

control the operational state of the trim tank jet pumps. The flow of fuel from the inner

tanks to the collector cells is controlled by a jet pump and, in the case of a failure, a

one-way valve. Figure 7.5 shows how the PN models the failure of the jet pump.

Figure 7.5 shows that should the inner tank 1 jet pump fail, the inner tank 1 one-way

valve is opened to maintain a supply of fuel to the collector cell. Equivalent sub-nets exist

for all of the inner tank jet pumps and one-way valves.

7.3.2.3 Engine Fuel Feed Process - Taxi Phase

Figure 7.6 shows the sub-nets that remove tokens from collector cell 1 during the taxi

phase of a mission.
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Figure 7.5: A340 petri net model inner tank jet pump states

The transition in the top sub-net of Figure 7.6 would fire when the system is operating

in the taxi phase and the main collector cell pump is on. Firing the transition removes

two tokens from the collector cell volume place and moves them to the fuel at collector

cell main pump exit place. As the taxi phase flow fuel rate is 0.2L/sec, each fuel token

represents 0.1L of fuel. The inhibit edges prevent this transition firing if there is a build-up

of fuel at the collector cell main pump exit or if pipe section 1 is blocked. Pipe section

1 is assumed to be the section of pipe that stems vertically from the main collector cell

pump in Figure 8.1. Pipe section 2 is the equivalent section of pipe that is connected to

the standby collector cell pump. Pipe section 3 is the section of pipe that connects the

outputs of pipe section 1 and 2 to engine 1. The central sub-net in Figure 7.6 moves the

fuel tokens from the collector cell main pump exit to the standby pump exit in the taxi

phase of operation. The bottom sub-net will move fuel from the collector cell, through the

standby pump, to the standby pump exit in the taxiing operational phase. The transition

in this sub-net will only fire if the collector cell standby pump is on. Figure 7.7 shows how

the PN models the flow of fuel from the collector cell standby pump exit to the engine

when the system is operating in the taxi phase.

The transition in the top sub-net of Figure 7.7 can fire to move fuel tokens from the

standby pump exit place to the engine low pressure valve input place. The movement of

these tokens will only occur if the main or standby collector cell pump is on. The lower

sub-net moves these tokens from the low pressure valve input to the exit. In order for fuel

to reach the low pressure valve exit either the main or standby collector cell pump must

be on. In Figures 7.6 and 7.7, all of the sub-nets showed how the model represented the

behaviour of the system in the taxiing operational phase. Equivalent sub-nets exist for all

of the operational phases considered by this work, as listed in Table 8.2. The number of
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C. CELL 1 VOLUME

C. CELL 1
MAIN PUMP ON

TAXI PHASE

FUEL AT C. CELL
MAIN PUMP EXIT
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2

19

2

2
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STANDBY PUMP ON
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2

19

2

2

C. CELL 1
MAIN PUMP ON

TAXI PHASE

FUEL AT C. CELL
MAIN PUMP EXIT

FUEL AT C. CELL STANDBY PUMP EXIT

PIPE SECTION 3 BLOCKED

2

19

2 FUEL AT C. CELL
STANDBY PUMP EXIT

Figure 7.6: A340 petri net model collector cell output

fuel tokens moved during each operational phase is directly related to the flow rates listed

in the same table. The weighting associated with the relevant inhibit edges in Figures

7.6 and 7.7 are changed such that no more than twenty fuel tokens can be present in

the respective places in any phase of operation. This represents the assumed maximum

capacity of the fuel pipes in the system.

Once fuel is removed from a collector cell, it is replaced with fuel from the inner tank.

Figure 7.8 shows how this process is modelled in the taxiing phase.
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C. CELL 1 MAIN PUMP ON
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Figure 7.7: A340 petri net model engine 1 input

INNER TANK 1 JET PUMP ON
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INNER TANK 1 VOLUME

C. CELL 1 VOLUME

2

59,520

2

INNER TANK 1 ONE-WAY VALVE OPEN

C. CELL 1
VOLUME

Figure 7.8: A340 petri net model collector cell refill

Figure 7.8 shows that, when the jet pump is on or one-way valve is open, two fuel

tokens are taken from the inner tank and put into the collector cell to replace those lost

to the engine. The sub-net shown in Figure 7.8 is only applicable in the taxiing phase,

similar sub-nets have been constructed for all other operational phases considered and for

all four of the inner tank/collector cell pairs in the system.
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7.3.2.4 Cross Feed Fuel Flow Process

If fuel cannot reach an engine from a collector cell, due to a blockage for example, it

will be fed back to the centre tank. In order for this to happen the cross feed isolation

valve, centre tank transfer isolation valve and centre tank refuel isolation valve have to be

opened. Figure 7.9 shows the sub-nets that model the opening and closing of these valves.

CENTRE TANK
REFUEL IV OPEN

CENTRE TANK LH
TRANSFER IV OPEN

CROSSFEED IV 1 OPEN CROSSFEED IV 1 CLOSED

CENTRE TANK LH
TRANSFER IV CLOSED

CENTRE TANK
REFUEL IV CLOSED

FUEL AT C. CELL STANDBY PUMP EXIT

CENTRE TANK
REFUEL IV CLOSED

CENTRE TANK LH
TRANSFER IV CLOSED

CROSSFEED IV 1 CLOSED CROSSFEED IV 1 OPEN

CENTRE TANK LH
TRANSFER IV OPEN

CENTRE TANK
REFUEL IV OPEN

FUEL AT C. CELL STANDBY PUMP EXIT

Figure 7.9: A340 petri net model cross feed valve states

The upper sub-net in Figure 7.9 closes the cross feed valves when there is no fuel at

the standby pump exit. Considering the closing of the valves first ensures that the valves

are not opened incorrectly or left open when no fuel is present at the collector cell standby

pump exit. The lower sub-net opens the cross feed valves when a fuel token is present in

the collector cell standby pump exit place. Once the cross feed valves have been opened,

fuel can flow from the collector cell to the centre tank. Figures 7.10 and 7.11 show how

this behaviour has been modelled in the A340 PN.

Figure 7.10 shows that the movement of fuel tokens from start of the cross feed pipe

section at tank 1 to the centre tank is closely monitored. Each sub-net moves the fuel

tokens along the cross feed section toward the centre tank. The second and third sub-nets

in this figure also record the flow rates at the relevant points in the cross feed section of
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5
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TANK LH TRANSFER

IV INPUT FUEL AT CENTRE
TANK LH TRANSFER
IV EXITCENTRE TANK LH

TRANSFER IV OPEN

Figure 7.10: A340 petri net model cross feed fuel flow 1/2

the system as shown in Figure 7.2. In Figure 7.11, the flow of fuel through the centre tank

refuelling pipes and into the centre tank itself is modelled. All of the sub-nets shown in

Figures 7.10 and 7.11 model the behaviour of the fuel flow through the cross feed section of

the system during the cruise phase. Similar sub-nets are also modelled for the remaining

phases of operation, not shown here, where the flow rate is either higher or lower than

that modelled for the cruise phase in Figures 7.10 and 7.11
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FUEL AT CENTRE TANK
LH TRANSFER IV EXIT

FUEL AT CENTRE TANK
LH REFUEL IV INPUT

5 5

5
5

FUEL AT CENTRE TANK
LH REFUEL IV INPUT

FUEL AT CENTRE TANK
LH REFUEL IV EXIT

CENTRE TANK LH
REFUEL IV OPEN

FUEL AT CENTRE TANK
LH REFUEL IV EXIT

CENTRE TANK VOLUME
5 5

414,675

CENTRE TANK VOLUME

Figure 7.11: A340 petri net model cross feed fuel flow 2/2
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7.3.2.5 Aft Fuel Transfer Process

Figure 7.12 shows the sub-nets that control the flow of fuel from the centre tank to the

trim tank once the cruise phase of operation begins.

TRIM TANK REFUEL
VALVE CLOSED

CENTRE TANK
IV CLOSED

CRUISE PHASE

TRIM TANK REFUEL
VALVE OPEN

CENTRE TANK IV OPEN

30

61,140

30

CENTRE TANK VOLUME

CENTRE TANK
TRANSFER PUMP 1 ON

CENTRE TANK IV OPEN

FUEL AT CENTRE
TANK TRANSFER
PUMP JUNCTION

TRIM TANK VOLUME

30

30
CENTRE TANK

TRANSFER PUMP 1 ON

CENTRE TANK IV OPEN

FUEL AT CENTRE
TANK TRANSFER
PIPE JUNCTION

FUEL AT CENTRE
TANK TRANSFER
PUMP JUNCTION

Figure 7.12: A340 petri net model aft fuel transfer 1/2

The top sub-net in Figure 7.12 opens the trim tank refuel valve and centre tank isolation

valve when the cruise phase begins. The lower two sub-nets are then used to model the

flow of fuel from the centre tank to the centre tank transfer pump junction, seen on Figure

8.1 as the junction immediately above the isolation valve in the centre tank. A flow rate

of 30 fuel tokens per second was assumed for the purpose of modelling. The movement of

fuel from the centre tank transfer pump junction to the trim tank is modelled by the top

two sub-nets in Figure 7.13.

The top sub-nets in Figure 7.13 move the fuel tokens into the trim tank. This action

requires that centre tank transfer pump 1 is on. The third sub-net in the figure closes the

trim tank refuel valve and centre tank isolation valve when the volume of fuel in the trim
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TRIM TANK REFUEL
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CENTRE TANK
IV CLOSED

TRIM TANK REFUEL
VALVE OPEN

CENTRE TANK IV OPEN

TRIM TANK LEAK TRIM TANK VOLUME
10

Figure 7.13: A340 petri net model aft fuel transfer 2/2 and trim tank leak

tank has reached its capacity. The final sub-net shown in Figure 7.13 models the effect

of a leak in the base of the trim tank. Only a large leak size has been modelled as the

current version of the A340 PN model is being used as a demonstrator. A large leak size

has been modelled to demonstrate, most clearly, the effect of the fault on the system. A

complete model would consider multiple leak sizes.

7.3.2.6 Inner Tank Refuel Process

When fuel is been removed from the inner tanks to replenish the collector cells, it is

replaced with fuel from the centre tank, when possible. Figures 7.14, 7.15 and 7.16 model

this process. Figure 7.14 contains the sub-nets that control the centre tank pumps, inner

tank refuel valves and inner tank isolation valves.

The top sub-net in Figure 7.14 will turn off centre tank transfer pump 1 if the volume
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INNER TANK 2 VOLUME
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150,000
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Figure 7.14: A340 petri net model inner tank refuelling 1/3

of fuel in all of the inner tanks is 15,000L; their maximum volume. A similar sub-net is in

place for centre tank transfer pump 2. The second sub-net turns on centre tank transfer
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pump 1 if the volume of fuel in inner tank 1 or 2 falls below 15,000L. An equivalent sub-net

turns on centre tank transfer pump 2 if the volume of fuel in inner tank 3 or 4 is below

15,000L. The third sub-net ensures the centre tank transfer pumps are turned off if the

centre tank level falls to zero. The fourth sub-net shown in Figure 7.14 open the LH

inner refuel valve and RH inner refuel valve when centre tank transfer pump 1 is on. An

equivalent transition will open these same valves if centre tank transfer pump 2 is on. The

final sub-net shown in the figure opens the inner tank 1 isolation valve when centre tank

transfer pump 1 is on. The inhibit place will prevent the isolation valve being opened if

the inner tank is already full of fuel. An equivalent sub-net models the opening of the

other inner tank isolation valves on the system.

CENTRE TANK
TRANSFER PUMP 1 ON

LH FUEL USED

CENTRE TANK VOLUME

FUEL AT CENTRE
TANK TRANSFER
PUMP JUNCTION

38

38

38

76 76FUEL AT CENTRE
TANK TRANSFER
PUMP JUNCTION

FUEL AT CENTRE
TANK TRANSFER
PIPE JUNCTION

38
FUEL AT CENTRE
TANK TRANSFER
PIPE JUNCTION

TAKE-OFF PHASE

TRANSFER PIPE
JUNCTION SUPPLY LHS

38 FUEL AT LH INNER
TANKS REFUEL
VALVE INPUT

TRANSFER PIPE
JUNCTION SUPPLY RHS

38

FUEL AT CENTRE
TANK TRANSFER
PIPE JUNCTION

TAKE-OFF PHASE

TRANSFER PIPE
JUNCTION SUPPLY RHS

38 FUEL AT RH INNER
TANKS REFUEL
VALVE INPUT

TRANSFER PIPE
JUNCTION SUPPLY LHS

Figure 7.15: A340 petri net model inner tank refuelling 2/3

The sub-nets shown in Figure 7.15 move fuel from the centre tank to the inputs of the
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refuel valves on the LHS and RHS of the system. In the first sub-net fuel is removed from

the centre tank. The amount of fuel removed from the centre tank is the same as that

which was used by the engines on the LHS of the system. The sub-net shown represents

the fuel removed from the centre tank during the take-off phase of the mission. Similar

sub-nets model this behaviour in every phase of operation. Equivalent sub-nets use centre

tank transfer pump 2 to remove fuel from the centre tank to replace that used by the

engines on the RHS of the system. The second sub-net moves the combined amount of

fuel removed from the centre tank to the transfer pipe junction. The third and fourth sub-

nets are then used to distribute this fuel to the LHS and RHS of the system equally. All

of the sub-nets shown in Figure 7.15 are only applicable to the take-off phase of operation.

Further sets of sub-nets are in place to model the remaining phases of operation.

38 38FUEL AT LH INNER
TANKS REFUEL
VALVE INPUT
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TANKS REFUEL
VALVE EXIT
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TAKE-OFF PHASE

LH INNER TANKS
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LH INNER TANKS
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SUPPLY LHS

19

INNER TANK 1 IV OPEN

FUEL AT INNER
TANK 1 IV INPUT

INNER TANK 1
VOLUME

Figure 7.16: A340 petri net model inner tank refuelling 3/3

Figure 7.16 shows the sub-nets which control the movement of fuel tokens from the

input of the inner tanks refuel valve on LHS of the system to the inner tanks themselves.
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In the first sub-net fuel is moved from the input of the refuel valve to the exit. The second

and third sub-nets split the fuel provided by the centre tank to inner tank 1 and inner tank

2 input pipes. The final sub-net moves the fuel tokens from the input of the isolation valve

at inner tank 1 to the tank. Equivalent sub-nets for all of the tanks on the system and in

every phase of operation are also present within the model but not shown for brevity.

7.3.2.7 Forward Fuel Transfer Process

The sub-nets which control the trim tank jet pumps, and therefore the forward transfer of

fuel from the trim tank to the inner tanks, are shown in Figures 7.17, 7.18 and 7.19. Fuel

is transferred forward from the trim tanks when the amount of fuel in the inner tanks falls

below 75,000L. The transfer is stopped if the inner tank levels reach 80,000L.

The first sub-net in Figure 7.17 moves fuel tokens from the trim tank to the trim tank

transfer junction if the trim tank isolation valve is open and either trim tank jet pump

1 or 2 is on. The second sub-net moves the fuel tokens to the centre tank transfer pipe

junction. This requires the centre tank isolation valve be open and that one of the trim

tank jet pumps be on. The third and fourth sub-nets split the fuel from the trim tank to

supply all of the inner tanks on the system. These sub-nets are equivalent to the third

and fourth sub-nets shown in Figure 7.15.

The sub-nets contained within Figure 7.18 control the trim tank jet pump, trim tank

isolation valve and centre tank isolation valve. In the first sub-net the trim tank isolation

valve is opened and trim tank jet pump 1 turned on when the fuel volume in inner tank

1 falls below 75,000L. In this sub-net the centre tank isolation valve is always open. The

second sub-net in Figure 7.18 is similar to the first except that it opens the centre tank

isolation valve in addition to changing the state of the trim tank isolation valve and trim

tank jet pump 1. Both of these sub-nets are inhibited by the presence of any fuel in the

centre tank, as the priority list requires fuel in this tank to be used first. The final sub-net

in the figure closes the isolation valve and turns off the jet pump if the tank level in inner

tank 1 reaches 80,000L. There are equivalent sub-nets in the model that use trim tank jet

pump 2 as an input/output component should jet pump 1 have experienced a failure.

The first sub-net in Figure 7.19 closes the trim tank isolation valve and centre tank

isolation valve when the trim tank is emptied. It also turns off trim tank jet pump 1.

A similar sub-net closes the two isolation valves and turns off jet pump 2. The second

sub-net in the figure closes the refuel valve and inner tank isolation valve on the LHS of
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Figure 7.17: A340 petri net model forward fuel transfer 1/3

the system when the trim tank no longer contains fuel. An equivalent sub-net closes the

respective valves on the RHS of the system.
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Figure 7.18: A340 petri net model forward fuel transfer 2/3
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Figure 7.19: A340 petri net model forward fuel transfer 3/3
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7.3.2.8 Outer Tank Fuel Flow Transfer

The final aspect of the fuel system’s behaviour that is listed in the input file is the fuel

transfer from the outer tanks to the inner tanks. Figures 7.20 and 7.21 display how this

behaviour has been modelled in the A340 PN model.

LH OUTER
TANK TRANSFER
VALVE CLOSED

LH OUTER
TANK TRANSFER
VALVE OPEN

25,142

INNER TANK 1 VOLUME

LH OUTER
TANK TRANSFER

VALVE OPEN

LH OUTER
TANK TRANSFER
VALVE CLOSED

LH OUTER TANK VOLUME

Figure 7.20: A340 petri net model outer tank fuel transfer 1/2

The upper sub-net in Figure 7.20 opens the LH outer tank transfer valve when the

volume of fuel in inner tank 1 falls to 2,514L. An equivalent sub-net will open the RH

outer tank transfer valve when the fuel volume in inner tank 4 falls to the same level. The

second sub-net in the figure will close the transfer valve when the volume of fuel in the

outer tank falls to zero. A similar sub-net models the same behaviour on the RHS of the

system.

The sub-nets in Figure 7.21 model the flow of fuel from the LH outer tank to inner

tanks 1 and 2. An equivalent set of sub-nets model the flow of fuel from the RH outer

tank to inner tanks 3 and 4. When the LH outer tank transfer valve first opens, 52 fuel

tokens are added to inner tank 1 every second and the same number are added to inner

tank 2. The second sub-net in the figure models this behaviour. This sub-net requires

that the inner tanks isolation valve, the valve linking the two tanks, be open. If the valve

is closed all of the fuel leaving the outer tank will remain in inner tank 1, the bottom

sub-net shows this behaviour. The top sub-net deals with the situation where there is not

enough fuel tokens to add 52 to each of the inner tanks. When this situation occurs, it is

assumed that inner tank 1 is favoured and receives all of the transferred fuel.



232 Chapter 7. Airbus A340 Fuel System

LH OUTER TANK VOLUME

LH OUTER TANK
TRANSFER VALVE OPEN 104

LH OUTER TANK VOLUME

INNER TANK 1
VOLUME

52

52

104
52

LH INNER TANKS IV OPEN

52

LH OUTER TANK VOLUME

LH OUTER TANK
TRANSFER VALVE OPEN

INNER TANK 1
VOLUME

INNER TANK 2
VOLUME

104

LH INNER TANKS IV CLOSED

LH OUTER TANK VOLUME

LH OUTER TANK
TRANSFER VALVE OPEN

INNER TANK 1
VOLUME

104

Figure 7.21: A340 petri net model outer tank fuel transfer 2/2

7.3.2.9 Fault Injection

Figure 7.22 shows part of the A340 PN model that would be used to inject a leak into the

trim tank after 15,000 seconds. All faults injected into the model would be modelled in a

similar fashion.

NO FAULT INJECTED TRIM TANK LEAK15,000

Figure 7.22: A340 petri net model fault injection

7.3.3 Model Accuracy

The A340 fuel system PN model was constructed using information from literature re-

garding the normal operating behaviour of the physical system [34]. The correctness of
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the PN model was confirmed by replicating the system behaviour described in literature.

In section 7.4.2 a phased mission is considered that is based on an actual A340 long range

flight. The expected performance of the A340 system during this phased mission has been

predicted using an aircraft analysis tool [35], which outputs fuel usage in each phase and

overall. In the absence of official data to verify the A340 PN model, the outputs from

this aircraft analysis tool have been used to confirm the accuracy of the PN model. A

range of phased missions were considered that varied the mission duration and duration

of individual phases. In every case, the PN model predicted behaviour matched well with

that predicted by the aircraft analysis tool. This comparison has been used to verify the

A340 PN model for the purpose of this work. Actual data from the A340 fuel system

would be required to verify the PN model in order to use any results with confidence.

Faults have also been modelled in the A340 PN. The effect of these faults on the system

has been assumed to be similar to the respective effects on the fuel rig system. A more

accurate representation of the effect of these faults would be required in a PN model that

was to be used with the actual A340 fuel system.

7.4 Results

7.4.1 Phased Mission Description

The phased mission that has been identified for the purpose of modelling faults in the

A340 fuel system is a typical long range flight that would be undertaken by an A340. The

route is from New York’s JFK International Airport to Dubai International Airport. The

route is approximately 6,000 nautical miles and takes over 13 hours to complete. Table

8.3 shows the assumed duration of each phase in the flight.

7.4.2 Normal Operating Behaviour

The phased mission described above has been modelled using the Airbus A340 PN. Figure

7.23 shows the tank volumes predicted by the PN during the phased mission when no

faults are present in the system. Only the tank volumes of inner tank 1 and collector cell

1 are shown on the figure, however the tank volume curves of all the other inner tanks

and collector cells on the system are the same.

It can be seen in Figure 7.23 that from the start of the mission only the centre tank
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Table 7.3: Airbus A340 phased mission phases

Taxi 5min

Take-Off 1min

Climb 19min

Cruise 731min (12h11m)

Descend 23min

Approach 3min

Taxi 5min

Total 787min (13h7m)

volume falls as it replaces any fuel used from the collector cells and inner tanks. At the

start of the cruise phase the trim tank is also filled from the fuel in the centre tank. Once

the centre tank is empty, the inner tank volumes fall until the forward transfer of fuel from

the trim tank begins. Two forward transfers can be seen on the figure. Finally, towards

the end of the mission the outer tanks empty of fuel, which is transferred to the inner

tanks. At the end of the mission the collector cells remain full of fuel and the inner tanks

contains approximately 3,500L of fuel. This is expected and represents the reserve fuel

carried to deal with any unexpected diversions or queuing that may be experienced while

waiting to land. Figures 7.24 and 7.25 show a selection of flow rates predicted by the PN

of the A340 fuel system for the phased mission under consideration.

The flow rates from the main pump in collector cell 1 and at engine 1 can be seen to

vary in Figure 7.24 as the system progresses through different phases of operation. The

majority of the mission occurs at cruise and it can be seen that, in this phase, the flow rate

is recorded at 0.50L/sec as specified in Table 8.2. The standby pump flow rate remains at

zero throughout the mission as it is always off. Identical fuel rates have been predicted at

equivalent locations in the other engine feed pipes. In Figure 7.25 the aft fuel transfer to

the trim tank can be seen near the start of the mission and the two forward fuel transfers

create spikes at approximately 8.5 hours into the mission.
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Figure 7.23: Fault-free A340 arrangement - Tank volumes
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Figure 7.24: Fault-free A340 arrangement - Engine 1 flow rates
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Figure 7.25: Fault-free A340 arrangement - Trim tank transfer flow rates

7.4.3 Collector Cell 1 Main Pump Failed Off

The first failure mode that will be considered is the failure of the main pump in collector

cell 1. This fault was selected as there is redundancy in this part of the system which

should result in the key measurements of system performance remaining unchanged, that

is fuel reaches the engines in the amount demanded. The effect of the fault should still be

seen in the flow rate sensors on the A340 PN model. The concept of redundancy was not

exhibited in the fuel rig system and this fault therefore demonstrates the ability of the PN

technique to model this capability.

If the main pump in collector cell 1 fails off, the standby pump, which is a cold backup,

should come online to ensure engine number 1 continues to receive a supply of fuel. The

tank volume curves should therefore be unaffected by the fault. Figure 7.26 shows the flow

rates at the outputs of both collector cell 1 pumps and at the entrance to engine number

1. The fault is injected into the PN model after approximately 4 hours.

Figure 7.26 shows that the flow rate curve at the engine 1 entrance is the same as that

shown in Figure 7.24. The main and standby pump curves, however, are different. It can

be seen that after 4 hours the main pump flow rate falls from 0.5L/sec to zero. At the



7.4. Results 237

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F
lo
w
R
at
e
(L
/s
ec
)

Time (hours)

FUEL FLOW RATE ENG 1

FUEL FLOW RATE MAIN ENGINE PUMP 1

FUEL FLOW RATE STANDBY ENGINE PUMP 1

Figure 7.26: A340 collector cell 1 main pump fail off - Engine 1 flow rates

same time the standby pump flow rate increases from zero to 0.5L/sec. The model has

assumed that the standby pump reacts immediately to the failure of the main pump, on

a physical system it is likely that there would be a short delay. However, without data

from the physical system to reference, it has been assumed that no delay is present. As

the flow rate to engine 1 does not change as a result of the fault, the tank volume readings

predicted by the PN model are the same as those shown in Figure 7.23.

The results shown in Figure 7.26 are in line with those that were predicted above

when the effect of the pump failure was considered. This result shows that the A340 PN

model is correctly modelling the effect of the pump failure, assuming the effects shown are

accurate.

7.4.4 Trim Tank Leak

The next first order failure mode that will be considered is that of a large leak in the trim

tank. This type of failure mode has been considered as it is a key fault on all fuel systems.

This is especially true on aircraft where the loss of fuel through a leak could prevent the

aircraft from successfully completing its mission. Considering a large leak will also ensure
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the effect of the fault can be visibly identified from sensor outputs. The leak is assumed

to be in the base of the trim tank, such that it would always cause a loss of fuel, if there

is fuel present. The fault is again injected into the model after 4 hours, which is after

the trim tank has been filled with fuel from the centre tank. The effect of the leak fault

should be seen in both the tank volume and flow rate graphs. Figure 7.27 shows the tank

volumes during the phased mission as predicted by the A340 PN model.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
an
k
V
ol
um
e
(L
)

Time (hours)

INNER TANK 1 COLLECTOR CELL 1

CENTRE TANK TRIM TANK

LH OUTER TANK

Figure 7.27: A340 trim tank leak - Tank volumes

Figure 7.27 shows that the leak fault has affected the behaviour of the centre tank,

trim tank, outer tank and inner tank. Only the behaviour of the collector cell has been

unaffected by the fault during the course of the mission. Once the leak fault occurs in

the trim tank, fuel from the centre tank is sent to replenish the lost fuel. As a result, the

centre tank empties earlier than when no fault is present. Once the centre tank can no

longer replenish the trim tank, the leak fault causes the volume of the trim tank to fall

to zero. With no fuel in the trim tank, the inner tank volume falls until it receives an

input from the outer tank. This transfer occurs earlier than expected as a result of the

leak, which has prevented any forward transfers of fuel from the trim tank. The volume

of fuel in the inner tanks at the end of the mission, approximately 1,500L, is also lower
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as a result of the leak fault. Nonetheless, the constant presence of fuel in the inner tanks

means that the collector cells remain full throughout the mission. The other inner tanks

and collector cells on the aircraft show identical behaviour to that seen in Figure 7.27.

As both the inner tanks and collector cells have a volume of fuel stored at the end of the

mission, all of the fuel flow rates demanded by the engines on the system were satisfied.

The engine flow rate graph is therefore the same as that shown in Figure7.24.

The results of considering a leak in the trim tank of the Airbus A340 fuel system

demonstrate that the PN technique can be used to effectively model leaks and their effects

on large system. The success of this application assumes that the behaviour of the system

in the presence of the leak has been accurately represented.

7.4.5 Collector Cell 1 Main Pump Failed Off and Engine 1 Pipe Section

3 Blocked

The situation where two faults occur on the Airbus A340 fuel system in the same mission

will now be considered. The two faults are collector cell 1 main pump fails off and engine

1 pipe section 3 blocked. These faults have been chosen as they will create a flow of fuel in

the cross feed section of the system. This will demonstrate the ability of the PN technique

to model the flow of fuel in a system in multiple directions at the same time.

When the two faults occur simultaneously there will be no fuel supply to engine number

1. However, in order to maintain an even distribution of fuel in the system, fuel from

collector cell 1 is pumped through the cross feed system back to the centre tank. Fuel is

then supplied to all four inner tanks on the system. By transferring the fuel in this manner

the fuel weight on the aircraft will be evenly distributed. It is assumed that the behaviour

of the fuel system, in terms of the flow rate demands, does not change as a result of the

faults. Figures 7.28 and 7.29 show the tank levels and flow rates on the fuel system as

predicted by the PN model in the presence of the two faults. The main pump fault is

injected after approximately 1 hour and the blockage fault is injected after 1.5 hours.

The behaviour of multiple variables shown on Figure 7.28, have changed as a result of

the second order failure mode. In every case it is the blockage of the engine 1 feed pipe,

which reduces the amount of fuel burned by the system, which has caused the respective

behaviours to change. The centre tank volume falls at a lower rate as fuel is only burnt by

three engines, with one engine’s fuel consumption being recycled. As a result the time at
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Figure 7.28: A340 collector cell 1 main pump fail off and engine 1 feed pipe blocked - Tank

volumes

which the centre tank is emptied is delayed in comparison to the equivalent point on Figure

7.23. The trim tank curve also shows that the forward transfer of fuel is delayed compared

to the behaviour seen in Figure 7.23. Again, this is due to the reduced fuel demands in

the system. Figure 7.28 shows that the outer tank level stays constant throughout the

mission. In Figure 7.23, the outer tanks were emptied after approximately 12 hours and

therefore the blockage fault has also affected this variable. Finally, the inner tank level

curve behaviour has also been affected by the fault. The tank remains full for a longer

period of time as the emptying of the centre tank is delayed. Also, at the end of the

mission it contains a larger volume of fuel as the overall system fuel demand is reduced.

The effect of both faults can be seen in Figure 7.29. Immediately prior to 1 hour, the

curve illustrating the flow rate from the main collector cell pump falls to zero while the

standby pump flow rate increases to 0.5L/sec at the same time. This concurrent decrease

in the main pump flow rate and increase in the standby pump flow rate means that the

flow rate to engine 1 does not change. However, when the blockage fault is injected after

1.5 hours, the flow rate to engine 1 falls to zero as fuel cannot reach the flow rate sensor or
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Figure 7.29: A340 collector cell 1 main pump fail off and engine 1 feed pipe blocked -

Engine 1 flow rates

the engine. When the blockage fault occurs, the standby pump flow rate does not change

as fuel is directed through the cross feed system to the centre tank for recycling. Figures

7.30 and 7.31 shows the other flow rates recorded from the A340 fuel system.

From Figure 7.30 it can be seen that the forward transfer of fuel from the trim tank

first occurs after approximately 11 hours. This is delayed compared to the behaviour seen

in Figure 7.25 where the forward transfer begins after approximately 9 hours. Finally,

Figure 7.31 shows that from the time of the blockage fault onwards the fuel from the

collector cell standby pump flows through the cross feed system. It enters the centre tank

where it is immediately used to fill the inner tanks of the systems. As a result the centre

tank remains empty from 5.5 hours onwards. It can be seen that the flow rates recorded

from the standby system match those that would be expected from the engine flow rate

sensor and reflect the demand applied to the collector cell pumps.
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Figure 7.30: A340 collector cell 1 main pump fail off and engine 1 feed pipe blocked - Trim

tank transfer flow Rates
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7.5 Application to a Physical System

The work presented in this chapter has shown how the PN technique can be used to

model the fuel system of a large commercial airliner. Using the PN model and the fault

verification technique outlined in Chapter 4, the faults diagnosed on an Airbus A340 could

also be assessed. However, several steps would have to be taken before the A340 PN model

could be considered suitable for use with the physical system.

A complete PN model of the A340 fuel system, including all possible failure modes,

would produce a PN of such size that it would present many challenges in terms of its

construction and modification. It is likely therefore, that either a heirarchical approach

would be required or the use of a coloured PN approach would be necessary in order to

model the system accurately and with confidence. A heirarchical appoach would allow

the fuel system to be broken down into smaller sections that could be easily checked

and verified. It would also reduce the complexity with which the system is modelled.

Alternatively using the coloured PN approach would decrease the size of the PN, however

it would not necessarily reduce the complexity. In addition to using more advanced PN

modelling approaches, the PN model of the A340 fuel system would have to account for a

higher level of detail than it has been possible to consider in this work. The performance of

the A340 fuel system will be affected by variables such as altitude, climate, gravitational

forces and the aircraft’s mass. None of these variables have been accounted for in the

A340 PN model. The need to include the effect of these variables in the PN model further

necessitates that the heirarchical/coloured PN approach is used in order to accurately

account for this information. Another part of the PN model that lacks detail is the

sensor types that have been considered. Due to limited available information on the A340

fuel system, only flow sensors and level sensors were modelled in the PN. On the actual

A340 system there are many more sensor types including flow pressure, temperature and

multiple types of level sensors. All of these sensor types would have to be modelled in order

to accurately represent the effect of failure modes and the behaviour of the system. The

range of failure modes that must be included in the A340 PN model must also be expanded

to cover all possible faults that could be experienced by the system. While the work done

with the fuel rig provides a basis for the behaviour of the system in the presence of some

faults, data from the A340 fuel system would be required in order to accurately model

these faults in the PN. Data from the A340 fuel system would also be required to indicate
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the subtle component interaction effects that are often present in systems and would have

to be included in the PN model. Examples of these interactions include variable start-up

times, how the system deals with redundancy and any effect on the system created by

electronic or mechanical components.

Once the detail with which the A340 system has been increased in the PN model, it

would be necessary to undertake a period of thorough testing on a mock-up or test version

of the system. The fuel rig provided a means of physically testing the PN model, and

fault verification technique, and a similar system would be required to test the A340 PN

model. This testing would verify the PN model of the A340 fuel system, in the same way

that the fuel rig system was used to verify the fuel rig PN. The testing process would

have to replicate the behaviour of the system in any and all operating conditions. All of

the failure modes that could affect the system would also have to be replicated in order

to ensure that the PN model is correctly representing their effects. The fault verification

aspect of the technique would also have to be tested at this stage to ensure that faults

are being correctly verified where genuine, and filtered where false. Once the PN model

and fault verification capability has been verified in the testing phase, the technique can

be considered for integration into the A340 aircraft. Integration of new sub-systems is a

significant investment in both time and money for a company. For this reason, undertaking

a thorough testing regime is critical to enable a smooth integration phase. Integration

includes testing the fault verification capability with the fuel system on each aircraft and

with the higher level aricraft systems. It also includes physically fitting the new equipment

onto the aircraft. There is a risk that the verification software will not work as designed

or expected if it is not integrated correctly.

This section has provided an overview of how the A340 PN model could be developed

to make it suitable for use with the A340 aircraft. The development of the PN model can

be broken down into three stages; increased detail, testing and integration. Sucessfully

completing each of these stages would be necessary in order to use the A340 PN model

and fault verification software with confidence.

7.6 Conclusion

The aim of this chapter was to demonstrate the applicability of the PN technique to a

large scale system. The Airbus A340 fuel system has been used for this purpose. The
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system was modelled using the PN technique and verified, with no faults present, using

performance data from a variety of literature sources and an aircraft analysis tool. A

number of failure modes were also modelled in the PN and their effects on the system

were assumed from the equivalent fault effects on the fuel rig. These faults were then

propagated using the PN software. The result of propagating two first order failure modes

and a second order failure mode showed that the PN model had predicted the expected

system behaviour. The PN predicted system behaviour was measured using tank volume

and flow rate outputs at the chosen sensor locations. In the case of every failure mode the

behaviour that was expected of the fuel system was also seen in the PN outputs.

The A340 model considers more complex behaviour than the fuel rig PN model as it

includes a sophisticated fuel feed arrangement and also multi-directional fuel transfers.

The A340 PN model also accounts for the fuel weight distribution in the system, a feature

not accounted for in the fuel rig PN model. While the A340 PN model has demonstrated

that large systems could be modelled using the PN technique, the current PN model

is of limited value due to its simplicity. As only limited information is available with

which to model the fuel system, several aspects of the system design have been omitted.

This includes sensor types, factors which affect the operational behaviour of the system

(altitude, climate, etc) and the majority of faults that could occur in the system. Section

7.5 presented a detailed look at how the current PN model could be developed for use

with the A340 aircraft. However, in its current form the PN model can only provide a

simplified example of how the PN technique can be used to model large scale systems and

propagate faults through the system.

The A340 PN model, in addition to the fault verification technique developed previ-

ously, could be used on a physical version of the A340 fuel system to verify faults. However,

in order to be used effectively, the PN model would require several developments. The

detail of the model would have to be increased to take account of environmental effects, a

greater number of failure modes and more sensor types. The set-up would also have to be

suitably tested. Developing the fault verification technique to operate in real time would

also significantly improve the capability of the overall technique to verify faults.





CHAPTER 8

Sensor Value Calculation and

Sensor Selection

8.1 Introduction

The PN software described in Chapter 6 and used to verify arisings from the fuel rig

system, could also be used in the process of system design. By modelling potential system

designs using PN models and then propagating failures through the model, the behaviour

of the system due to these failures can be predicted. Of particular interest at this stage is

to identify where to place sensors in the system. Sensors must be carefully positioned to

enable system faults to be identified and diagnosed effectively. However, a designer must

also take into consideration limitations such as cost, weight and space. The value of a

sensor and its location in a system can depend on what sensor information is the most

desirable. The sensors that identify the greatest number of failure modes, for example,

may be different from the sensors that identify the failure modes which will have the

greatest effect on the system. The aim of this chapter, therefore, is to assess the value

of sensors at different locations on the system and provide some guidance as to how such

information can support design decisions.
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8.2 Assessing Sensor Value

8.2.1 Generic Deviation of Output Measured by Sensor

The value of a sensor, in the diagnosis of faults on a system, is directly related to how the

sensor responds when a fault occurs. If a sensor output changes when a fault occurs, such

information can be useful in diagnosing the fault. By comparison, if the sensor output

shows no change when a fault occurs, the sensor is of less value. If no other sensor outputs

change as a result of the fault, it would exist without the knowledge of a system operator.

Such situations should be avoided, as the fault could change the behaviour of the system

unexpectedly or the effects of the fault could become more severe, thereby increasing the

risk of a serious incident occurring. A sensor, whose output changes as a result of a fault,

is therefore more valuable than a sensor whose output does not change.

The first stage in assessing the value of a sensor is to determine whether its output

will vary as a result of a failure occurring in a system. Consider the fuel rig system from

the wing tanks to the engine tanks, as shown in Figure 8.1. The system has four pipe

sections, six isolation valves, two pumps and four tanks. Fourteen possible flow rate sensor

locations have been identified, denoted as Fi, and the predicted output at these sensor

locations will be considered in the presence of the failure modes listed in the first column

of Table 8.1. There are no flow sensor locations or faults modelled in the cross feed pipes.

The fuel rig system and the flow rate sensors at the proposed locations have been modelled

using the PN technique.

If the presence of a fault in the system does not change the sensor output, a value of

‘0’ is shown in the respective cell of the table. If the fault causes the sensor output to

immediately deviate, a value of ‘2’ is shown. If the fault could have a delayed effect on the

sensor output, dependent on the mission profile and time of the fault occurring, a value

of ‘1’ is shown in the cell. The expected system behaviour is flow from the LH wing tank

to the LH engine tank and from the RH wing tank to the RH engine tank.

Table 8.1: Effect of failure modes on flow rate sensors F1-F7

Failure Mode F1 F2 F3 F4 F5 F6 F7

Pipe W Blocked 2 2 2 2 2 2 2

Pipe X Blocked 2 2 2 2 2 2 2

Continued on next page
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Failure Mode F1 F2 F3 F4 F5 F6 F7

Pipe Y Blocked 0 0 0 0 0 0 0

Pipe Z Blocked 0 0 0 0 0 0 0

Valve 1 Blocked 2 2 2 2 2 2 2

Valve 2 Blocked 2 2 2 2 2 2 2

Valve 3 Blocked 2 2 2 2 2 2 2

Valve 4 Blocked 0 0 0 0 0 0 0

Valve 5 Blocked 0 0 0 0 0 0 0

Valve 6 Blocked 0 0 0 0 0 0 0

Pipe W Leak 0 2 2 2 2 2 2

Pipe X Leak 0 0 0 2 2 2 2

Pipe Y Leak 0 0 0 0 0 0 0

Pipe Z Leak 0 0 0 0 0 0 0

Pipe W Rupture 2 2 2 2 2 2 2

Pipe X Rupture 2 2 2 2 2 2 2

Pipe Y Rupture 0 0 0 0 0 0 0

Pipe Z Rupture 0 0 0 0 0 0 0

LH Engine Pump Fail Off 2 2 2 2 2 2 2

RH Engine Pump Fail Off 0 0 0 0 0 0 0

LH Engine Pump Degraded 2 2 2 2 2 2 2

RH Engine Pump Degraded 0 0 0 0 0 0 0

LH Wing Tank Leak 1 1 1 1 1 1 1

RH Wing Tank Leak 0 0 0 0 0 0 0

LH Engine Tank Leak 0 0 0 0 0 0 0

RH Engine Tank Leak 0 0 0 0 0 0 0

Table 8.2: Effect of failure modes on flow rate sensors F8-F14

Failure Mode F8 F9 F10 F11 F12 F13 F14

Pipe W Blocked 0 0 0 0 0 0 0

Continued on next page
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Failure Mode F8 F9 F10 F11 F12 F13 F14

Pipe X Blocked 0 0 0 0 0 0 0

Pipe Y Blocked 2 2 2 2 2 2 2

Pipe Z Blocked 2 2 2 2 2 2 2

Valve 1 Blocked 0 0 0 0 0 0 0

Valve 2 Blocked 0 0 0 0 0 0 0

Valve 3 Blocked 0 0 0 0 0 0 0

Valve 4 Blocked 2 2 2 2 2 2 2

Valve 5 Blocked 2 2 2 2 2 2 2

Valve 6 Blocked 2 2 2 2 2 2 2

Pipe W Leak 0 0 0 0 0 0 0

Pipe X Leak 0 0 0 0 0 0 0

Pipe Y Leak 0 2 2 2 2 2 2

Pipe Z Leak 0 0 0 2 2 2 2

Pipe W Rupture 0 0 0 0 0 0 0

Pipe X Rupture 0 0 0 0 0 0 0

Pipe Y Rupture 2 2 2 2 2 2 2

Pipe Z Rupture 2 2 2 2 2 2 2

LH Engine Pump Fail Off 0 0 0 0 0 0 0

RH Engine Pump Fail Off 2 2 2 2 2 2 2

LH Engine Pump Degraded 0 0 0 0 0 0 0

RH Engine Pump Degraded 2 2 2 2 2 2 2

LH Wing Tank Leak 0 0 0 0 0 0 0

RH Wing Tank Leak 1 1 1 1 1 1 1

LH Engine Tank Leak 0 0 0 0 0 0 0

RH Engine Tank Leak 0 0 0 0 0 0 0

Table 8.1 shows that the majority of faults that occur on the LH side of the system

have an immediate effect on the flow rate sensors F1 - F7. The only exceptions to this are

the pipe W leak, pipe X leak and LH wing tank leak faults. If pipe W or X experiences

a leak, the effect will only be seen in the flow rate sensors downstream of the fault. The



8.2. Assessing Sensor Value 251

LH Wing Tank

RH Wing Tank

RH Engine Tank

IsolationValve 1
F1

F2

F5

F7

F4

F6

F3

F8

F9

F11F10

F13

LH Engine Pump

F12

F14

IsolationValve 2

IsolationValve 3

IsolationValve 4

IsolationValve 5

IsolationValve 6

RH Engine Pump

Pipe W

Pipe X

Pipe Y

Pipe Z

LH Engine Tank

LH Triple Port L-Valve

Figure 8.1: Fuel rig system with proposed flow rate sensor locations

output from the upstream sensors, F1 (F2 and F3) will not change. In the case of the

LH wing tank leak, the effect of this fault will only be seen in the sensor outputs if the

tank empties of fuel before the end of the mission. As the effect of the fault will not be

immediate, a value of 1 is shown in the respective cells. None of the faults that occur on

the RH side of the system have an effect on the flow rate sensors F1 - F7. The results of

Table 8.2 show a similar pattern to that seen in Table 8.1. As would be expected, only

faults from the RH side of the system have affected the output of sensors F8 - F14. The

only faults that do not have an immediate effect on sensors F8 - F14 are pipe Y leak, pipe

Z leak and RH wing tank leak. The reasons for this are the same as those identified for

the equivalent faults on the LH side of the system.

Tables 8.1 and 8.2 provide a system designer with a high level analysis of which sensors

will deviate as a result of faults occurring in the fuel rig system. These results would be of

particular value if the design requirements specified knowledge of which sensors exhibited

the greatest number of fault induced deviations. Twenty-four of the twenty-six deviations
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could be identified by selecting one flow rate sensor from F4, F5, F6 or F7 as well as one

from the group of F11, F12, F13 and F14. Selecting F4 and F11, for example, twenty-

four of the twenty-six faults would cause one of the sensor outputs to deviate. Table 8.1

shows that the F4 output deviated as a result of twelve different failure modes while Table

8.2 shows that the output from F11 deviated as a result of twelve further unique failure

modes. It should be noted that the sensors in the first group listed above are all located

below the triple port L-valve on the LH side of the system while all of the sensors in the

second group are located below the triple port L-valve on the RH side of the system. As

no pipe leaks are considered downstream of these valves, the output from the sensors in

each group is the same irrespective of the leak or sensor location considered. By contrast,

it can also be seen in the above tables that upstream of the triple port L-valves, the sensor

output recorded is dependent on the sensor and leak location. It would not be possible to

identify all twenty-six failure modes using any combination of the flow rate sensors as the

engine tank leak faults are downstream of all the sensor locations considered and do not

change any of the sensor outputs when present.

The above work has shown how the value of a sensor can be simply assessed. However,

as no account is taken of the type of sensor deviation that occurs, little information is

available to aid in the diagnosis of the specific fault that has occurred.

8.2.2 Particular Deviation of Output Measured by Sensor

By considering the type of deviation that a failure mode causes in a sensor output, more

information can be extracted and used to define sensor value. A sensor whose output falls

to zero in the presence of all failure modes, for example, offers limited help to the fault

diagnosis process. In this scenario, while it is clear that a failure is present, it is impossible

to identify which fault has occurred. However, a sensor that is affected by failure modes

in different ways can reduce the possible number of true failure modes thereby making the

diagnosis process more efficient by reducing the potential number of failure modes that

have to be considered for further evaluation.

Consider again the fuel rig system shown in Figure 8.1. On this occasion the flow paths

in the system are from the LH and RH wing tanks to the RH engine tank. The failure

modes considered are the same as those listed in the first column of Table 8.1. Table

8.3 shows the sensor outputs from the F1 and F10 sensors in the presence of each of the
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failure modes. Three possible outputs have been identified; the flow rate sensor value will

stay constant (N), fall to zero (Z) or fall to a value greater than zero (L). A value of ‘1’

indicates whether a particular scenario occurs.

Table 8.3: Sensor deviations of F1 and F10

F1 F10

Failure Mode N L Z N L Z

Pipe W Blocked 0 0 1 0 1 0

Pipe X Blocked 1 0 0 1 0 0

Pipe Y Blocked 1 0 0 0 1 0

Pipe Z Blocked 0 0 1 0 0 1

Valve 1 Blocked 0 0 1 0 1 0

Valve 2 Blocked 1 0 0 1 0 0

Valve 3 Blocked 1 0 0 1 0 0

Valve 4 Blocked 1 0 0 0 1 0

Valve 5 Blocked 0 0 1 0 0 1

Valve 6 Blocked 0 0 1 0 0 1

Pipe W Leak 1 0 0 0 1 0

Pipe X Leak 1 0 0 1 0 0

Pipe Y Leak 1 0 0 0 1 0

Pipe Z Leak 1 0 0 1 0 0

Pipe W Rupture 0 0 1 0 1 0

Pipe X Rupture 1 0 0 1 0 0

Pipe Y Rupture 1 0 0 0 1 0

Pipe Z Rupture 0 0 1 0 0 1

LH Engine Pump Fail Off 1 0 0 1 0 0

RH Engine Pump Fail Off 0 0 1 0 0 1

LH Engine Pump Degraded 1 0 0 1 0 0

RH Engine Pump Degraded 0 1 0 0 1 0

LH Wing Tank Leak 0 0 1 0 1 0

Continued on next page
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F1 F10

Failure Mode N L Z N L Z

RH Wing Tank Leak 1 0 0 0 1 0

LH Engine Tank Leak 1 0 0 1 0 0

RH Engine Tank Leak 1 0 0 1 0 0

Total 16 1 9 10 11 5

Table 8.3 shows that by considering the sensor output deviation shape, it is possible

to reduce the potential number of failure modes that have occurred and caused such a

deviation. If the F10 output falls to zero, for example, it is known that one of five possible

failure modes has occurred; pipe 5 blocked, valve 5 blocked, valve 6 blocked, pipe Z rupture

or pump 2 failed off. By comparison, if the type of deviation was not considered, sixteen

possible failures would have to be considered; eleven ‘fall to a value greater than zero’

plus five ‘fall to zero’. If the F1 sensor falls to a value greater than zero, then only the

fault ‘pump 2 degraded’ can be present in the system. However, the results in the table

also show that when the F1 sensor outputs are considered, there are sixteen hidden failure

modes, while there are also ten hidden failure modes when F10 is considered. Table 8.4

shows the number of failure modes that cause the respective sensor deviations to occur

for all of the sensor locations on the system and the resultant sensor ranking.

Table 8.4: Summary of sensor deviations

Flow Rate Sensor N L Z Rank

F1 16 1 9 =8

F2 15 2 9 =6

F3 - F7 26 0 0 =10

F8 16 1 9 =8

F9 15 2 9 =6

F10 10 11 5 5

F11 - F14 9 12 5 =1

Table 8.4 shows the highest ranked sensors, those with the greatest value, are F11 -
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F14. These are the highest ranked sensors as they identify the greatest number of failure

modes, i.e. the number of hidden failures is lowest - nine. These sensors are located at the

end of the active flow paths in the system and therefore any faults that propagate from

upstream have an effect on these sensors. The lowest value sensors are those from F3 -

F7. As no flow passes by these sensors their output never changes from that expected and

all twenty-six faults are hidden. Table 8.4 also shows that the F1 and F8 sensors have

an identical distribution of sensor deviations. The same observation can be made of the

outputs at the F2 and F9 locations. This result is expected given the system arrangement

and the symmetrical positioning of the respective sensors.

While the F11 - F14 sensors recorded a form of deviation as a result of seventeen failure

modes, there remain nine hidden failures. Given the success of combining sensor outputs

to identify a greater number of deviations in Section 8.2.1, it is logical to consider the result

of evaluating sensor pairs to reduce the number of hidden faults predicted. From Section

8.2.1, it was shown to be effective to consider a sensor from each side of the system when

selecting sensor pairs. Using the results the Table 8.4 as a guide, the following sensor pairs

will be considered; F1 and F8, F1 and F9, F1 and F10, F1 and F11. Pairs that include

F2 and F3 in place of F1 are also considered. Twelve sensor combinations are therefore

evaluated. Every pair of sensors will have nine possible outputs, as each sensor outputs

will be ‘N’, ‘Z’ or ‘L’. Table 8.5 shows the results of evaluating sensors F1 and F10 as a

pair. In the column header the first letter represents the output from F1 and the second

letter indicates the F10 output.

Table 8.5: Sensor deviations of F1 and F10 sensor pairs

Failure Mode N,N N,L N,Z L,N L,L L,Z Z,N Z,L Z,Z

Pipe W Blocked 0 0 0 0 0 0 0 1 0

Pipe X Blocked 1 0 0 0 0 0 0 0 0

Pipe Y Blocked 0 1 0 0 0 0 0 0 0

Pipe Z Blocked 0 0 0 0 0 0 0 0 1

Valve 1 Blocked 0 0 0 0 0 0 0 1 0

Valve 2 Blocked 1 0 0 0 0 0 0 0 0

Valve 3 Blocked 1 0 0 0 0 0 0 0 0

Valve 4 Blocked 0 1 0 0 0 0 0 0 0

Continued on next page
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Failure Mode N,N N,L N,Z L,N L,L L,Z Z,N Z,L Z,Z

Valve 5 Blocked 0 0 0 0 0 0 0 0 1

Valve 6 Blocked 0 0 0 0 0 0 0 0 1

Pipe W Leak 0 1 0 0 0 0 0 0 0

Pipe X Leak 1 0 0 0 0 0 0 0 0

Pipe Y Leak 0 1 0 0 0 0 0 0 0

Pipe Z Leak 1 0 0 0 0 0 0 0 0

Pipe W Rupture 0 0 0 0 0 0 0 1 0

Pipe X Rupture 1 0 0 0 0 0 0 0 0

Pipe Y Rupture 0 1 0 0 0 0 0 0 0

Pipe Z Rupture 0 0 0 0 0 0 0 0 1

LH Engine Pump Fail Off 1 0 0 0 0 0 0 0 0

RH Engine Pump Fail Off 0 0 0 0 0 0 0 0 1

LH Engine Pump Degraded 1 0 0 0 0 0 0 0 0

RH Engine Pump Degraded 0 0 0 0 1 0 0 0 0

LH Wing Tank Leak 0 0 0 0 0 0 0 1 0

RH Wing Tank Leak 0 1 0 0 0 0 0 0 0

LH Engine Tank Leak 1 0 0 0 0 0 0 0 0

RH Engine Tank Leak 1 0 0 0 0 0 0 0 0

Total 10 6 0 0 1 0 0 4 5

Table 8.5 shows that by evaluating the F1 and F10 sensor outputs as a pair, the

number of hidden failures, shown in the first results column, is ten - the same number

present when the F10 output is considered on its own. The hidden failure modes are also

the same. Evaluating these sensors as a pair does therefore not offer an improvement in

terms of being able to identify a larger number of faults present in the system. However,

of the sixteen revealed failures, the maximum number of possible faults that could cause

any one set of sensor outputs is six, which occurs when the F1 output is constant and

the F10 output falls to a value greater than zero - the second results column. Three

other unique sensor outputs are produced and these can be caused by one, four and five
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failure modes respectively - as shown in the fifth, eighth and ninth columns respectively.

F10 was able to identify the same number of failure modes when considered individually,

however, on average a greater number of failure modes would have to be evaluated in the

diagnosis process. Combining sensor pairs is therefore of greater overall value compared to

using individual sensor outputs, as fewer failure modes would have to be evaluated thereby

making the diagnosis process more efficient.

By evaluating the remaining sensor pairs in the same way as was shown in Table 8.5,

it will be possible to rank the sensor pairs in terms of their value. The primary factor by

which the sensor pairs will be assessed is the number of faults which can be identified as

a result of a sensor deviation, i.e. the revealed failures. The higher the number of faults

that cause at least one sensor deviation, the higher the value of the sensor pair. The SD of

the revealed faults will then be used to rank the sensor pairs. Considering Table 8.5, the

SD is measured using the values in the ‘Total’ row excluding the first column of hidden

failures. In the case of Table 8.5, a SD value of 2.56 is calculated. A small SD value

can be considered advantageous, as it will indicate that a small number of possible failure

modes are associated with each set of sensor outputs thereby improving the efficiency of

the diagnosis process. Finally the number of unique sensor outputs (USOs) will be used

to rank the results. A USO will be present if a set of sensor outputs can be caused by

only one failure mode. Column five in Table 8.5 shows an example of a USO. The greater

the number of USOs, the more efficient the diagnosis process will be and therefore the

greater value a sensor pair has. Table 8.6 shows the sensor pairs as ranked using the above

method. The F11 sensor is also included on its own as, from Table 8.4, it identified the

greatest number of faults of all the single sensor arrangements.

Table 8.6 shows that three sensor pairs and sensor F11 identified seventeen revealed

failure modes. For that reason, they are the top ranked results. All three of the top ranked

sensor pairs also include F11. This suggests that if a system designer was only interested

in knowing that a fault had occurred, installing F11 would offer the same level of detail as

any of the top ranked sensor pairs. However by using F1/F2 and F11 together, as opposed

to F11 on its own, the fault diagnosis process could be made more efficient as there would

be fewer potential faults to investigate. This conclusion can be made as the SD values of

the top ranked sensor pairs are lower than that of F11 individually. As the sensor pair F2

and F11 can identify seventeen failure modes and it has the lowest SD value, 2.53, it is

the top ranked result by sensor value.
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Table 8.6: Sensor value rankings

Sensor(s) No. of Revealed Faults SD USOs Rank

F2 and F11 17 2.53 0 1

F1 and F11 17 2.80 1 2

F3 and F11 17 4.36 0 =3

F11 17 4.36 0 =3

F2 and F9 16 2.00 3 5

F2 and F10 16 2.33 0 6

F1 and F10 16 2.56 1 7

F3 and F10 16 4.04 0 8

F1 and F9 15 2.10 2 =9

F2 and F8 15 2.10 2 =9

F1 and F8 14 2.19 1 11

F3 and F9 11 3.16 0 12

F3 and F8 10 3.15 1 13

The results in Table 8.6 also show that the fewest faults are identified by the sensor

pairs where one sensor, F3, is located in a section of the system where no flow is present.

The lowest ranked sensor pairs identified ten and eleven failure modes respectively. As the

F3 sensor output does not change, these sensor pairs are therefore reliant on deviations

being recorded from the F8 and F9 sensors respectively. Given the limited data available

to these sensor pairs, it would be expected that they perform poorly compared to sensor

pairs where both sensors are located in areas of the system where flow is present.

If a system designer was primarily interested in being able to immediately identify

which failure mode had occurred in the system, the number of USOs should be used as

the initial ranking factor. Given the results shown in Table 8.6, the sensor pair F2 and F9

would be the top result as three USOs are recorded.

8.2.3 Measured Sensor Deviation with Weighted Failure Mode Effects

Faults can affect systems in different ways and the effect of one fault may be greater than

the effect of another. A pipe leak, for example, will have a smaller effect on a system than
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a pump failing off. Sensors that can identify faults which have a greater effect on a system

are therefore somewhat advantageous. This section will explain how the magnitude of a

fault’s effect on a system can be included in the calculation of sensor value.

Assessing the effect of a fault on a system is an objective process that will require a

level of system knowledge from a designer. The faults considered for the fuel rig system

have been assessed a value between 1 and 5, where 5 indicates the highest level of effect.

Table 8.7 shows the effect values assigned to the faults being considered on the fuel rig.

Table 8.7: Sensor deviations of F1 and F10

Failure Mode Effect Value

Pipe Blockage 3

Valve Blockage 3

Pipe Leak 1

Pipe Rupture 4

Pump Fail Off 4

Pump Degraded 2

Wing Tank Leak 5

Engine Tank Leak 1

Pipe and valve blockages have been given an effect value of 3, as a blockage could

prevent flow reaching one, or both, of the engines but the system arrangement could

be changed to allow the mission to be completed, i.e. flow could be delivered from the

alternative side. A pipe leak has an effect value of 1, as the system can still operate in the

same arrangement albeit at a reduced level of performance. The pipe rupture and pump

failed off faults have an effect value of 4, as the number of alternative system arrangements

will be limited, which could prevent the mission from being completed. An effect value

of 2 is given to a pump degradation fault to reflect the minor effect on the system, but

also its potential to degrade further. A leak in the LH/RH wing tank has an effect value

of 5 to represent the worst case scenario, where there is insufficient fuel to complete the

mission irrelevant of the system arrangement. Finally, a LH/RH engine tank leak is given

an effect value of 1 as fuel has reached the engine and only small amounts of fuel could be

lost.

The process of analysing the sensor outputs in terms of the deviation shape is first
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applied in the same manner as described in Section 8.2.2. However, instead of using a ‘1’

to indicate whether the sensor shape is present, the effect value is used. Table 8.8 shows

how the pipe blockage rows now appear, when there are flow paths from the LH and RH

wing tanks to the RH engine tank.

Table 8.8: Sensor deviations of F1 and F10

F1 F10

Failure Mode N L Z N L Z

Pipe W Blocked 0 0 3 0 3 0

Pipe X Blocked 3 0 0 3 0 0

Pipe Y Blocked 3 0 0 0 3 0

Pipe Z Blocked 0 0 3 0 0 3

The extended version of Table 8.8 therefore shows, which faults cause a deviation in

which sensor outputs and the effect value of these faults. Evaluating this data includes

determining the same variables as were listed in Table 8.6, namely the number of faults

that cause a sensor deviation, the SD of the revealed failures and the number of USOs.

The ability of each sensor and sensor pair to identify high effect failure modes is also

determined. A high effect failure mode will be considered as one that has an effect value

of 4 or 5. If one of these faults occurs, it is likely that the system arrangement will have to

be changed, the mission profile changed or the mission will fail. Of the twenty-six faults

considered, eight have an effect value of 4 or 5. The sum total of sensors or sensor pairs

that show a deviation when such faults occur, are expressed as a percentage of the eight

high effect faults. The ranking of the sensors will therefore now be based on four factors.

The order in which these factors will be evaluated is as follows: faults identified, high

effect percentage, SD and number of USOs. Table 8.9 lists the sensor pairs and F11 using

the ranking system outlined.

Table 8.9 shows only a small amount of change in the ranking of the sensors compared

to that shown in Table 8.6. The sensor pairs F2 and F10, F3 and F10, F2 and F9, F1

and F10 appear in a different order in Table 8.9, as a result of their ability to identify

high effect faults. The sensor pairs F2 and F9, F1 and F10 only exhibit a deviation in

50% of high effect fault cases whereas the other sensor pairs deviate in 75% of cases. As a

result the sensor pairs F2 and F10, F3 and F10 are ranked above the F2 and F9, F1 and
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Table 8.9: Sensor value rankings with fault effect rating

Sensor(s) No. of Revealed Faults High Effect % SD USOs Rank

F2 and F11 17 75% 2.53 0 1

F1 and F11 17 75% 2.80 1 2

F3 and F11 17 75% 4.36 0 =3

F11 17 75% 4.36 0 =3

F2 and F10 16 75% 2.33 0 5

F3 and F10 16 75% 4.04 0 6

F2 and F9 16 50% 2.00 3 7

F1 and F10 16 50% 2.56 1 8

F1 and F9 15 75% 2.10 2 =9

F2 and F8 15 75% 2.10 2 =9

F1 and F8 14 75% 2.19 1 11

F3 and F9 11 75% 3.16 0 12

F3 and F8 10 75% 3.15 1 13

F10 pairs. All of the remaining sensor pairs and the F11 entry have the same ranking as

in Table 8.6 as they all identified 75% of the high effect fault cases. On a system where

there are more high effect failures to consider, the change in the rankings could be more

significant.

As was mentioned in Section 8.2.2, the order by which the sensors are ranked in the

table is determined by the sorting factors. In Table 8.6 and 8.9 the priority was given to

the number of faults that cause a deviation observed by a sensor or group of sensors. This

measurement was therefore used to initially rank the sensors. Dependant on what factors

are of the greatest importance to a system designer, the sensors can be ranked using the

factors discussed above in any order. Alternatively additional factors can be determined

and then applied in the ranking process. Possible factors that could be considered include

accounting for the probability of a failure mode occurring or the reliability of the sensor

working correctly.
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8.3 Conclusion

This chapter has shown a process by which the potential positioning of sensors in a system

can be assessed to determine a sensor scheme for the specified design requirements. The

positioning of sensors in a system can have an effect on the number and type of faults

that can be identified. Failure to identify faults can have effects from a reduced system

performance all the way up to a serious incident, such as a catastrophic failure. Assessing

and selecting sensor locations is therefore an important stage in any system design. The

placement of sensors to improve the safety of the system must, however, be evaluated

against the cost and weight of any sensors, as well as the space available in a system to

position sensors. There is no value in placing so many sensors that the cost or weight of

the resultant system is impractical.

Modelling the placement and outputs of sensors on the fuel rig system was effectively

achieved using the PN technique. The technique developed to rank the sensor positioning

provides several levels of detail. At the highest level, the technique uses a generic sensor

deviation to identify those sensors that can identify the presence of a fault in the system.

This level, while lacking in detail, does offer a simple means of quickly evaluating the

value of a sensor. However, it is not possible using this approach to diagnose a fault in the

system. The next level of the analysis considered the type of the deviation measured by

a sensor as a result of the failure mode. Three possible sensor outputs were considered in

the chosen example, however more levels could be added if observed on the system. Using

the PN modelling technique, integrating these further levels would be straightforward.

Sensor pairs were also considered at this stage, based on the results of the individual

sensor values. The sensor combinations were ranked by assessing the number of faults

that caused a deviation in the sensor pair outputs, a SD measure of the faults identified

and the number of faults that produced a unique set of sensor outputs. The ranking gave

priority to the number of faults that caused a deviation in the sensors in the example,

but any of the variables mentioned above could be prioritised depending on the design

requirements. Finally, the effect of each fault on the system was given a weighting, where

faults that caused a greater effect on the system were given a higher weighting. This factor

was then included in the ranking of the sensors. The aim of this ranking system was to

give extra weight to those sensors that can identify more of the high effect faults.

The results of applying the above technique to the BAE Systems fuel rig system appear
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to be successful. The ranking system provides a flexible, yet robust, means of analysing

the sensor outputs and data is available to justify the rankings provided. The technique

also allows a comparison to be made between a range of sensor combinations thereby

providing a system designer with the opportunity to make an informed decision. Further

work in this area could include automating the analysis process, taking account of a greater

number of operational modes and accounting for occurrence of failure mode probabilities.

In order to address any cost, weight or space limitations that may be present in the system

requirements, an optimisation algorithm could also be developed to rank the sensors while

satisfying these requirements.





CHAPTER 9

Conclusions and Future Work

9.1 Introduction

The aim of this thesis was to develop a process by which arisings generated on complex

systems could be analysed in order to determine whether they were true or false. The mo-

tivation for this work stems from the fact that on many complex system a large number of

arisings are generated, many of which are known to be false. However, no efficient method

exists by which a structured and automated analysis of all arisings can be undertaken.

This thesis has developed a technique to satisfy this requirement and the main conclusions

of this work are presented in this chapter.

9.2 Conclusions

9.2.1 System Modelling Technique

Three modelling techniques, the decision table, digraph and PN techniques, were evalu-

ated in detail in order to identify the most suitable modelling technique for the purpose

of fault propagation. The strengths and weaknesses of each of the modelling techniques

were established from their use in literature. The decision table technique provides a

componentistic modelling approach that could be systematically applied to large, complex

systems. However, the technique lacks the ability to model complex component inter-

action such as the reverse propagation of faults. The digraph technique can be used to

effectively capture the global system behaviour as it models the functional details of a

system. However, the detail and flexibility with which systems can be modelled is limited
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by the finite number of states that can be used to describe component relationships and

fault disturbances. The PN technique allows systems to be modelled both in detail and

with a great deal of flexibility. It can be applied modularly and as such encapsulates the

advantages of both the decision table and digraph techniques. An identified weakness of

the PN technique is that system models can become very large and difficult to interpret.

To confirm these observations, each technique was applied to model an example hot water

system, operating in two phases. The ability of each technique to propagate faults through

the respective system models was then assessed, by comparing the results determined by

the model to those that would be expected from the observed behaviour of the simple sys-

tem. Of the faults considered, only the PN model correctly predicted the behaviour of the

system in every case. The digraph model failed to identify seven of ninety-nine expected

symptoms as a result of the limitation imposed on describing the relationships between

variables. The decision table model failed to identify twenty-five expected symptoms, it

also identified several symptoms that were not expected. The inability of the technique

to model the reverse propagation of faults is the cause of most of these errors.

The results from the application of each technique to model the hot water system

showed that the PN technique most accurately represented the behaviour of the system

in the presence of the faults considered. To confirm these results and aid the development

of an automated PN simulation software, the PN technique was used to model a more

complex example system; a tank level control system. The system mission contained more

operational phases (five) than the hot water system (two), included two feedback loops

and contained multiple sensor types that were not present on the hot water system. After

successfully modelling the behaviour of the tank level control system in the presence of a

larger range of failure modes, such as multiple leak sizes and partial pipe blockages, it was

concluded that the PN technique would be used as the modelling technique of choice.

9.2.2 Fuel Rig System and PN Model

The BAE Systems Fuel Rig system was used to aid the development of the fault verification

technique. The fuel rig is an experimental facility that can be configured to represent the

fuel system of an aircraft. A wide range of faults were physically injected into the system

or artificially represented using the computational input. There were number of sensors

on the fuel rig including level sensors, flow rate sensors and flow pressure sensors. The
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output from these sensors was recorded and used in the fault verification process. The

output from the fuel rig sensors was also used when developing the fuel rig PN model and

confirming its accuracy. By recording the behaviour of the fuel rig when operating without

faults present, the PN model was developed to accurately represent the fuel rig system

behaviour. Faults were then injected into the fuel rig and its sensor outputs recorded

again to inform the further development of the model in capturing the effect of different

faults on the system. In order to accurately capture the fuel rig system behaviour, several

custom transitions were developed. These new transitions were used to clear tokens from

places (i.e. flow rate places), represent an ‘IF’ statement within a transition and to create

single firing transitions.

The fuel rig PN model contains 239 place nodes and 454 transitions. In order to display

key aspects of the PN effectively, smaller sub-nets are shown. These show a small number

of place and transition nodes from within the larger PN.

9.2.3 Fault Verification Techniques

Six data comparison techniques were considered for the purpose of comparing the fuel rig

sensor data and PN simulation results when evaluating arisings from the fuel rig system.

Two techniques were taken from literature; the SD and DTW techniques. The point-

by-point, delta, binary and time techniques were specifically developed for the fuel rig

system.

The techniques were evaluated by comparing the same set of the level sensor outputs

from the fuel rig system with data from the PN model. Two scenarios were considered;

one with no fault present in the fuel rig or the PN model, and one with a fault present in

the fuel rig and modelled in the PN. The results of the tests showed that the binary and

time techniques failed to offer a suitable level of detail for comparison. The point-by-point

and delta techniques both proved to be highly susceptible to noise, which had a significant

effect on the accuracy of results that were produced. The SD technique was chosen as the

most suitable comparison technique, as it proved to be more robust and easier to extend

to further variables, while also having lower computational requirements compared to the

DTW technique.

Having chosen the SD comparison technique, a period of testing and analysis allowed

a set of tolerances to be established for each of the variables on the fuel rig system. In
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addition, a custom analysis technique was developed to deal with tank leak arisings that,

if verified as true, could provide additional information in the form of the leak size and

leak location in the vertical axis of the fuel tank.

9.2.4 Fuel Rig System Results

Using the PN software, the ability to verify the presence of faults in the fuel rig, using the

recorded sensor outputs and PN model outputs, was demonstrated. All of the revealed

failure modes were correctly verified when modelled in the PN. A number of failure modes

that remained hidden were also considered. In normal operation, these faults would not

be diagnosed as they do not change the behaviour of the system. However, as they did not

affect the PN output when included in the system model, they were technically ‘verified’

by the PN software.

First order fault were also modelled in the PN and then analysed using fuel rig data

that was fault free so that a false arising could be simulated. For the majority of failure

modes considered, the fault verification technique correctly identified when the fault was

false. However, there were issues with both hidden faults and faults that had only a small

effect on the fuel rig variables. As hidden failures did not change the behaviour of the

system, the fuel rig data always matched well with the PN predicted data that included

the fault. As a result the SD values were all within the tolerance limits and the fault was

verified incorrectly. For the failure modes which only became revealed in the short, final

operational phase or did not significantly change the behaviour of the system throughout

the mission, the fuel rig and PN data sets were sufficiently similar and the SD values did

not exceed the tolerance limits.

A further scenario considered the ability of the fault verification technique to identify

a single, genuine fault when four faults were listed in the health log. The genuine fault

was correctly identified and the remaining arisings were correctly determined to be false.

Finally a number of second order failure modes were considered. The results showed that

the technique could verify the presence of two genuine faults on the system simultaneously.

However, as it was identified earlier, the technique had issues when one of the faults became

revealed for a short period of time. In this case, a genuine fault was incorrectly categorised

as false.

The results of applying the fault verification technique to the fuel rig system indicated
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that the aim of this research has been fulfilled. The technique is able to consider arisings

generated by the fuel rig system and assess whether the fault is true or false. There are,

however, still some limitations that relate to issues created by hidden faults and faults

that become revealed in phases of short duration, where false faults can be incorrectly

verified as being true and further work is needed.

9.2.5 Software Operation

The PN software has been developed to implement the PN model and the fault verification

technique. Using an input file containing a system PN model, the software can be used

to simulate phased missions of any duration. The software can automatically record the

number of tokens present in a single place or over a range of places throughout the mission.

This allows variables, such as tank level or flow rate, to be evaluated after the simulation.

The PN software includes the process by which the PN simulation data is compared to

data recorded from the fuel rig, or any other system. The comparison of data is customised

to the type of variable being considered and how that variable is represented in the PN

model. For example, the flow rate and flow pressure places in the fuel rig PN model can

store the same number of tokens but the tokens in each of the places represent different

values. This parameter specific information is accounted for in the PN software.

Using a laptop computer the PN software can simulate a 300 second, five phase mission

of the fuel rig system and compare fourteen variables in less than 10 seconds.

9.2.6 Airbus A340

The PN software was used to model the behaviour of the Airbus A340 fuel system. A

seven phase mission was simulated using the A340 PN model which is considerably larger

and contains more complexity than the BAE Systems fuel rig system PN model. The A340

PN model contains 208 place nodes and 451 transitions. Only three failure modes were

modelled in this PN. Had the fuel rig PN considered three equivalent failures it would have

contained 127 place nodes and 203 transitions. The larger size of the A340 PN model,

when considering normal operating behaviour and a similar set of faults, is indicative of its

greater complexity. The normal operating behaviour of the A340 PN model was developed

and verified using information from literature and an aircraft analysis tool. The behaviour

of the A340 system in the presence of faults was an assumption based on the effect of the
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same faults on the fuel rig. In all cases, the PN predicted behaviour of the system in the

presence of the faults matched that which would be expected from the physical system.

Modelling and simulating the behaviour of the A340 fuel system demonstrated that

the PN technique can be used to model large and complex systems. The consideration of

multiple failure modes also shows that the fault verification technique could be applied on

an industrial scale. There are, however, a number of developments that would be necessary

in order for the A340 PN model to be suitable for use in industry. These developments

include increasing the model detail by considering all possible failure modes, modelling a

greater range of sensors and accurately representing complex component interactions. The

use of a more detailed version of the PN modelling technique, such as heirarchical PNs,

would likely have to be used to achieve this level of detail without making the PN model

overly complex. The model and software must also be thoroughly tested on a physical

mock-up and integration testing with the A340 fuel system would also be necessary.

9.2.7 Sensor Value and Optimal Positioning

A technique has been developed by which the potential selection and arrangement of sen-

sors in a system can be ranked in order to determine the most effective set-up to satisfy the

design requirements. The technique uses PNs to model systems and the potential sensor

locations. Faults are simulated in the PN model and the sensor outputs are recorded. The

technique then considers the change in value measured by any sensor, as a result of the

faults, and using this knowledge applies a ranking system to the sensors. The technique

has also demonstrated how to consider the most effective sensor pairs in a system. The

technique has been verified by application to the BAE Systems fuel rig. The results of ap-

plying the technique showed how flow sensors can be ranked according to multiple system

design requirements, i.e. identify as many faults as possible, identify high consequence

faults. The key advantage of the sensor value technique is its ability to rank the possible

sensor locations during the design phase of system development. Using the PN technique,

multiple analysis of system designs can be conducted accurately and quickly. This ap-

proach is more cost effective than a trial and error based technique applied during the

manufacture or assessment stages of system development. While the technique provides a

valuable capability, further development could allow the technique to take account of the

probability of individual failure modes. Automating the analysis process would also make
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the technique more appealing to potential users.

9.3 Future Work

The work undertaken within this thesis and the results produced have served to highlight

a number of areas of potential future work. These are outlined below.

9.3.1 Fault Verification

9.3.1.1 Fault Assessment in Real Time

The research in this thesis has focused on arisings generated by PBITs. A retrospective

approach to analysing the arisings could therefore be performed. There are however, two

further built-in tests that would require consideration of arisings in real time; continuous

and interrupted built-in tests. The continuous built-in tests are active throughout the

operation of a system. The interrupted built-in tests can also be activated during a

mission. Assessing arisings during the operation of a system would require development

of the fault verification technique to consider the behaviour of the system up to the time

of the arising. It would also be necessary to revisit the arising, if initially determined to

be false, at phase changes as a fault may only then become revealed.

9.3.1.2 Tolerance Values

The tolerance values applied to the fuel rig variables when assessing the validity of a

fault were determined from user experience and from the results generated when building

the fuel rig PN model. To apply the fault verification technique to an industrial system,

would require a systematic process to determine the tolerance values for each variable. The

use of tolerance values/levels in industry is widespread. Companies have the resources to

undertake many thousands of simulations recreating a huge range of conditions that would

be experienced by a system. Given the results of these simulations, which may be based

on the Monte Carlo method, an evidence based process can be used to establish tolerance

levels. Safety factors that are specific to different industries can also be applied to give

further confidence to the tolerance values applied.
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9.3.1.3 Hidden Faults

Results from the fuel rig testing demonstrated issues created by hidden faults. This issue

could be minimised or, at least reduced, in the future in a number of ways. The use of

a wider range of sensor types is one possible solution. The more sensor types in place

on a system, the greater the likelihood a disturbance will be registered in the event of

a fault. The use of more sensors however, has to be balanced against the extra cost,

weight and complexity they add to the system. A more effective solution may be to use

different operational modes regularly throughout the mission of a system to ’flush out’

hidden faults. Developing specialist BIT mechanisms to test the state of components/sub-

systems, by changing the phase of operation locally, throughout a mission or on demand

could also solve the issue. From an industrial perspective, any fault verification technique

would be extensively tested. From this testing the conditions under which specific hidden

faults may occur would be known. Given this information, action can be taken to make

design changes, include further sensor types or modify the system’s operational activity

to minimise the effects of hidden faults.

9.3.1.4 Faults Appearing in Phases of Short Duration

The fault verification technique exhibited issues verifying genuine faults when the fault

became revealed in phases of very short duration. On the fuel rig this was particularly

prevalent when faults appeared in the final phase of operation, which lasted for fifteen

seconds. This meant only five seconds of data was available to assess the legitimacy of the

fault. While phases of such short duration may be rare in many complex systems, options

are available to deal with the issue. Where faults only appear in very short operational

phases, a specific fault verification test or unique tolerance limit could be applied. This

test/tolerance limit would account for the fact that a small variation between the data

sets is indicative of the presence of a fault. The risk of using either of these approaches

is they will not be able to account for the presence of noise in the output variables or

differentiate between noise and a fault. A less risky solution to the issue from an industrial

perspective would be to intentionally extend the phase of operation where an arising has

been generated in order to provide more data with which to assess the fault. Combining

this with the use of the short phase verification tests and specialist tolerances would

minimise the time by which the phase length would have to be extended by. Another
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potential solution is to use the limited data available and provide users with a confidence

level/measure that the fault is present. A user, or an algorithm, could then assess the

arising type and the known level of confidence to decide whether to continue or abort the

mission.

9.3.1.5 Efficiency Improvements

On systems where many thousands of arisings are generated, it is likely that several faults

will be reported on multiple occasions. Developing a technique by which all of these

repeated arisings can be assessed on one occasion, or once during every operational phase,

would significantly reduce the computational requirements and improve the efficiency of

the fault verification process.

9.3.1.6 Industrial Application Challenges

The fault verification technique has been validated on a system in a laboratory environ-

ment. Application to an industrial system would therefore show both the true capabilities

and limitations of the technique. Identification of a suitable system would be the first

stage in this process. Creating the PN model and customising and developing the fault

verification software would then be necessary in order to provide a useable capability to

an operator. Consideration of higher order failure modes, such as third order faults, may

also be necessary. Components that can be repaired during the operation of a system may

represent another area of work that has not be considered here, but would have to be ac-

counted for in order to truly consider real world systems. Examples of these components,

such as sensors or pipes, could be seen in power stations or chemical plants.

One key area of concern for using the fault verification technique on an industrial sys-

tem is the requirement to model the system using PNs. As Schneeweiss noted [24], PNs

are not widely used in industry. Combining the fault verification technique developed in

this thesis with an automatic PN generating tool would increase the likelihood of applica-

tion of the technique in industry. Some research undertaken at Loughborough University

[37] has begun to look at the automatic construction of PNs from component and system

descriptions. While future work would be required to combine these two techniques, the

benefits to industry could be significant.
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9.3.2 Sensor Value and Optimal Positioning

9.3.2.1 Probabilistic Approach

Work to determine sensor value in this thesis has only considered the consequence of

certain failure modes occurring. A true risk analysis must also consider the likelihood of

any failure mode occurring. This would require a probabilistic approach to be undertaken,

whereby individual component failure rates are either researched or allocated. The sensor

value could then be determined and sensor rankings adjusted to reflect the risk of the

specific failure modes.

9.3.2.2 Further Sensor Types and Combinations

Flow rate sensors are the only sensor type to have been considered in this study. Other

sensor types, including level sensors and flow pressure sensors could also be considered.

Combining different types of sensor, as well as different sensor locations could also provide

more detail to the fault diagnosis process and would be a valuable contribution.

9.3.2.3 Automation

The method developed to determine sensor value thus far is manual. In order to thoroughly

and effectively analyse all possible sensor type and location combinations, an automated

process will be required. The PN software produced as a part of this research is of

value in terms of predicting the sensor outputs. The ranking of sensors, for given design

requirements, can be automated by integrating the PN software with an optimisation

algorithm.
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APPENDIX A

Hot Water System Component

Decision Tables

The decision tables shown below represent the steady state behaviour of the hot water

system components.

A.1 Phase 1 Component Decision Tables

In Table A.1 the gas input and output states are either supply (S) or no supply (NS). The

internal mode is either no blockage (NB) or blockage (B).

Table A.1: Gas pipe decision table

Row Number Gas Input Internal Mode Gas Output

1 NS – NS

2 – B NS

3 S NB S

In Table A.2 the possible temperature inputs and signal outputs can be high (H),

normal (N) or low (L). The temperature input could also be zero (0). The zero value

represents atmospheric conditions which would be recorded in the event of the water pipe

rupturing. The internal modes of the sensor are working (W), failed low (FL) and failed

high (FH).
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Table A.2: Temperature sensor decision table

Row Number Temp. Input Internal Mode Signal Output

1 0 W L

2 L W L

3 N W N

4 H W H

5 – FL L

6 – FH H

In Table A.3 the range of potential signal inputs are the same as the temperature

sensor outputs; high (H), normal (N) and low (L). The internal modes are working (W),

constant demand (CD), no demand (ND). The output signals to the control valve are

either signal to open (SO) or signal to close (SC).

Table A.3: Controller decision table

Row Number Signal Input Internal Mode Signal Output

1 L W SO

2 N W SC

3 H W SC

4 – CD SO

5 – ND SC

In Table A.4 the gas input and heat output will be either no supply (NS) or supply

(S) and the internal mode will either be working (W) or failed off (FOff).

Table A.4: Pilot light decision table

Row Number Gas Input Internal Mode Heat Output

1 NS – NS

2 – FOff NS

3 S W S
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In Table A.5 the water input and output states are either no supply (NS) or supply

(S). The possible internal modes of the valve are working (W), stuck open (SO) and stuck

closed (SC).

Table A.5: Non-Return valve decision table

Row Number Water Input Internal Mode Water Output

1 – SC NS

2 NS – NS

3 S W S

4 S SO S

In Table A.6 the input pipe pressure state will be one of zero (0), low (L), normal

(N) or high (H). The internal mode of the valve will be working (W), stuck open (SO)

or stuck closed (SC). The output pressure will therefore be either atmospheric (A) if the

valve remains closed or above atmospheric (AA) if the valve is opened and pressurised gas

leaves the system.

Table A.6: Pressure relief valve decision table

Row Number Pipe Pres. Internal Mode Pres. Output

1 – SC A

2 0 W A

3 L W A

4 N W A

5 H W AA

6 0 SO A

7 L SO AA

8 N SO AA

9 H SO AA

In Table A.7 the water volume, temperature and pressure are all input states that

can be one of zero (0), low (L), normal (N) or high (H). The internal modes of the tap

are working closed (WC), stuck closed (SC) and stuck open (SO). The tap outputs are

water output, measured as either supply (S) or no supply (NS), and water temperature,
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described as either low (L), normal (N) or high (H).

Table A.7: Tap decision table

Row Pipe Pipe Pipe Internal Water Water

Number Pres. Temp. Vol. Mode Output Temp.

1 – – – SC NS –

2 – – – WC NS –

3 0 0 0 SO NS –

4 L L L SO NS –

5 L N L SO NS –

6 L H L SO NS –

7 H H N SO S H

8 N L N SO S L

A.2 Phase 2 Component Decision Tables

Tables A.8 shows the phase two decision table for the tap. The codes used to represent

the input states, internal modes and output states have not changed from those defined

with the phase 1 decision table.



A.2. Phase 2 Component Decision Tables 283

Table A.8: Tap decision table

Row Pipe Pipe Pipe Internal Water Water

Number Pres. Temp. Vol. Mode Output Temp.

1 – – – SC NS –

2 0 0 0 WO NS –

3 L L L WO NS –

4 L N L WO NS –

5 L H L WO NS –

6 N N N WO S N

7 N L N WO S L

8 0 0 0 SO NS –

9 L L L SO NS –

10 L N L SO NS –

11 L H L SO NS –

12 N N N SO S N

13 N L N SO S L





APPENDIX B

Hot Water System Component

Digraphs

B.1 Phase 1 Component Digraph Models

M1

0: CV Closed

M2

+1

0: CV Closed

NS P01B
-10 -10

M0
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Figure B.1: Gas pipe digraph

Figure B.2: Temperature sensor digraph - Phase 1
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Figure B.3: Controller digraph - Phase 1
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Figure B.4: Pilot light digraph

M4 M5
+1: L6 < 0

0: NRV Closed

NRVSC
-10:L6 < 0

NS -10: L
6
<
0

T4 T5

+1

0: NRV Closed

-1

L6

0

Figure B.5: Non-Return valve digraph - Phase 1
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Figure B.6: Pressure relief valve digraph
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B.2 Phase 2 Component Digraph Models
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Figure B.9: Non-Return valve digraph - Phase 2
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Figure B.10: Water pipe digraph - Phase 2
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APPENDIX C

Hot Water System Petri Net

Model

D1

P1 P2 P3 P4 P5 P6

P42

P25 P26 P27 P28

t1 t2 t4 t5

t3

D2 D3 D4 D5

Figure C.1: Gas input petri net model

Table C.1: Gas input petri net place descriptions

Place No. Description Place No. Description

1 Gas at Supply Point 25 No Supply

2 Gas at Entry to System 26 Pipe Blocked

3 Gas at Entry to Control Valve 27 Pipe Blocked

4 Gas at Exit from Control Valve 28 Pilot Light Off

5 Gas at Entry to Pilot Light 42 Control Valve Open

6 Heat out of Pilot Light
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D6 D7

P7 t6 P8

P30

t7

P29

P9

P18

Figure C.2: Water input petri net model

Table C.2: Water input petri net place descriptions

Place No. Description Place No. Description

7 Water at Supply Point 18 Normal Water Pipe Volume

8 Water into NRV 29 No Supply

9 Water out of NRV 30 NRV Failed Closed

P13
P14 P15

P16

P20

P31

P32 D36t36

D37t37D38t38D39t39D40 t40

Figure C.3: Pressure relief valve petri net model

Table C.3: Pressure relief valve petri net place descriptions

Place No. Description Place No. Description

13 High Water Pipe Temp 20 Lost Pressure

14 Low Water Pipe Pres 31 PRV Stuck Closed

15 Normal Water Pipe Pres 32 PRV Stuck Open

16 High Water Pipe Pres
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D41t41

D42t42

P36
P24

P22

P35P23

D57

D58

Figure C.4: Tap petri net model [1/2]

Table C.4: Tap petri net place descriptions [1/2]

Place No. Description Place No. Description

22 User Demand 35 Tap Stuck Open

23 Tap Open 36 Tap Stuck Closed

24 Tap Closed

Table C.5: Tap petri net place descriptions [2/2]

Place No. Description Place No. Description

11 Low Water Pipe Temp 18 Normal Water Pipe Volume

12 Normal Water Pipe Temp 23 Tap Open

13 High Water Pipe Temp 37 Pressure at Tap

14 Low Water Pipe Pres 38 Water at Tap

15 Normal Water Pipe Pres 39 Heat at Tap

16 High Water Pipe Pres 40 Hot Water Out

17 Low Water Pipe Volume 41 Cold Water Out
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APPENDIX D

Tank Level Control System Petri

Net Model
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Figure D.1: Relay 2 powering up/down, opening and closing
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Figure D.10: Current sensors CS3 and CS4 outputs


