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Abstract

A dented pipe fails either through being punctured or by fatigue damage accumulation due to
internal pressure fluctuation. Increasing the wall thickness may prevent these failures but is
impractical. As a pipe is punctured, transmission services must be cut off and repair processes
have to be made immediately. However, when a dent depth is not large enough to puncture the
pipe, the pipe can safely continue in service for a long time until a fatigue crack initiation occurs.
Therefore, the fatigue life assessment has attracted much attention in the pipe industries for
economic and safety reasons.

The severe tensile residual stress concentration and the large plastic strain deformation in the
dented region are the main causes of the pipe failure due to fatigue damage. Accurate calculation
and prediction of the residual stress and variations resulting from internal pressure fluctuation can
lead to safety assessments and prediction of the remaining life of the dented pipe. Due to the
complex nature of the contact process, the deformed pipe geometry and the elastic-plasticity,
analytical approaches are incapable of obtaining stress solutions. Therefore, FE modelling is
employed in the present work. Experimental tests are employed to investigate the indenter force-
dent depth behaviour which can be compared with the FE solutions to confirm and validate the
FE models. The rigid perfect elastic-plastic limit load method and an energy-based method are
also used to analytically calculate the limit load and the indenter force/deflection relationship of
indented rings to predict damage.

Two dimensional FE modelling is performed to calculate the contact and residual stress and
strain distributions on the outer, inner surfaces and through the wall thickness. These FE
solutions show that high stress concentrations occur in the indented region, which give the
potential for fatigue damage. As the 2D FE modelling requires only limited resources, the
indenter size and indentation position can be changed to analyse their effects on stress and strain
distributions in the indented region. This forms the foundation of later 3D FE modelling.

Stress sensitivity and the validation of shell models are investigated and confirmed through
the 2D and 3D FE modelling and by comparing experimental test data with the FE solutions.
Based on this work, the decision is made to use shell element modelling to perform the residual

stress and stress range calculations in a 3D pipe.

Xii



Semi-empirical formulations are developed to predict stress and stress range values if the
residual dent depth, the pipe and indenter geometries, material property, internal pressure and
pressure range are known. These FE solutions and semi-empirical formulae can be used to

calculate the stress range and mean stress.
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Notation

o Angular position of a circle beam

o, 0, O3, Ol4, OLs Angles of plastic hinges.

OLimax, O12max Maximum rotational angles of plastic hinges

B1, B2, B3 Three non-dimensional constants wused in stress-strain

empirical formulation (see Appendix 5.A)

) Deflection/ dent depth for the pipe/ring
8o Non-dimensional dent depth (=6/R).
S Measured dent depth after indentations
Smax Maximum deflection/ dent depth.
smax Maximum elastic deflection/ dent depth.
3p Deflection/ dent depth caused purely by deformation.
Or Residual dent depth.
A8 Dent depth change due to a pressure fluctuation.
€ Strain
Elows Eup Lower and upper yield strains
&y Yield strain
true True ultimate tensile strain
uts
0, 6o Angular positions of the support and the plastic hinge with
symmetrical supports.
0, Angular positions of the load.
0,, 65,03, 04 Angular positions of the support for asymmetrical supports
c Stress
0o A stress constant used in stress-strain empirical formulation

(see Appendix 5.A)
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Residual hoop stress
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Hoop stress variation

Ranges of residual hoop, axial and von Mises stresses caused
by pressure changes.

Young's modulus

Indenter force or external load.

Upper bound limit load

Limit load of indented pipes

Non-dimensionalb coefficient contributed by bending moment
Non-dimensional coefficient contributed by internal pressure.
Sectional second moment of inertia

The equivalent stiffness of spring type support (MPa).

The vertical stiffness of a uniform spring (MPa).

The stiffness of single springs (N/mm).

A non-dimensional constant used in a stress-strain empirical
formulation (see Appendix 5.A)

Gradients of indenter force versus dent depth curves predicted
by equations (4.3), (4.11) and (4.12), respectively.

The total equivalent stiffness of pressurised pipe with spring
type supports (MPa).

Normalised initial flexibility of indenter force versus dent
depth curves.

Axial length of a dented ring
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Li Axial length of indenter.

L(6) Non-dimensional function referring to magnitude of the limit
load.

Ls(01, 6, 65) Non-dimensional function.

M, Mg, Mg, Mg Bending moments where subscripts A, B and E refer to section
positions (see Fig 3.2).

M, Limit moment which is defined as o,t%/4.

M;, M,, M; Bending moments used in imperfect rings.

N Circumferential force at section A.

n Material working hardening exponent
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t Wall thickness
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UgA, UxC Displacements in the circumferential direction at sections A
and C

UxB, UyB Displacements in the x and y directions at position B

W, Internal energy dissipated

We Work done by external force F

Wp Work done by internal pressure
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Chapter 1

Introduction

Pipelines are widely used for transmitting gases and liquids from their production sites to
houses and industrial organisations. Many of these are buried underground, and if these
pipelines should leak or rupture, there is a potential danger due to fires or explosions.
Therefore, during the design of pipelines, a number of possible sources of failure need to be
taken into account, e.g. indentation from diggers during construction or earth movement,
corrosion, fatigue, etc. In addition to the failure due to indentations, pipes also may be damaged
due to defects caused during forging processes, transportation and installations. Generally, the
defects produced during the forging processes are called pre-existing flaws. These defects are
normally easy to find and repair, therefore; severe damages due to these flaws can be avoided
before accidents happen. However, it is very dangerous for pipes to have defects when the
pipes are used in transmission services. In this case, if the transmission services are interrupted
to repair the defect, it would result in substantial financial loss. If the defect is left unrepaired,
the residual stress concentration in the defect region may gradually weaken the pipe due to the
cyclic internal pressure changes. A microcrack may then be formed in the defected pipe. The
pipe therefore may finally fail due to fatigue damage caused by internal pressure fluctuations
and contribute to severe environment pollution and possible loss of life. Traditionally the flaws
caused during the transmission services are called external defects which are the subject of
investigation in this thesis.

Using advanced modern technology, it is relatively easy to locate the positions and estimate
the severity of flaws in pipes, and subsequently assess the residual life of imperfect pipes.

The various approaches used to assess the residual life of an imperfect pipe are based on
theoretical, numerical and experimental methods. Regardless of which method is used, it is
difficult to accurately assess the residual life of imperfect pipes, although experimental results
are generally regarded as more reliable than theoretical and numerical predictions. Fatemni and
Yang [1] reviewed a number of fatigue theories. However, theoretical approaches based on
crack initiations cannot accurately predict fatigue life. Therefore, present residual life prediction

theories can be very conservative. It is extremely expensive to carry out laboratory tests with



real pipes under practical loading conditions. For these reasons, much research has
concentrated on the improvement of methods used for determining the stress distributions in
imperfect pipes.

In recent years, many assessment approaches based on theoretical, numerical and
experimental methods have been proposed. Tam and Croll [2 - 4] proposed a theoretical
analysis method called the equivalent load method, to analyse the stress concentration of dented
pipes, based upon linear elastic cylindrical shell theory. Godoy [5, 6] proposed the use of a
perturbation method to analyse the stress distributions of thin-walled plates and cylindrical
shells with defects. However, elastic analyses neglect the locked-in residual stresses that
contribute to fatigue life.

Flores and Godoy [7], Ohtani et al [8] investigated the stress distributions in imperfect
spherical pressure vessels using finite element (FE) simulations. Fowler et al [9], Zarea et al
[10] and Hart et al [11] investigated the residual fatigue life of dented pipes using FE modelling.
Alexander [12] proposed a semi-empirical formulation to estimate stress concentration factors
for a pipe with D/t = 68, with a range of residual depths.

Corder et al [13] investigated semi-empirical formulations, by using an experimental
programme to explain the relationships between dent force and dent depth, dent depth and
residual dent depth, puncture force and pressure or other geometric dimensions of pipe and dent,
and burst pressure with other material or geometric parameters. Fowler et al [9], Kiefner et al
[14], and Hagiwara et al [15] carried out a series of fatigue tests in order to estimate the residual
fatigue life of dented pipes. Lancaster and Palmer [16, 17] carried out a series of tests to predict
the burst pressure and strain distribution in dented pipes with a gouge.

Although most impact damage to pipelines is very localised [18-25], as indicated in Fig. 1.1
(a), in some cases, the damage can extend over a significant length of the pipe [10], as indicated
in Fig. 1.1[b]. In the latter case, the behaviour (except at the ends of the damage) is essentially

two-dimensional and can be analysed as a simple plane-strain ring, as indicated in Fig. 1.1(c).



SO

(2) Localised impact damage  (b) Extensive impact damage  (c) T}yo-dimcnsional atpgroximation
(o)

extensive impact damage

Fig.1.1 Dented pipes

Indentation damage can occur with or without internal pressure and the deformations and
residual stresses are affected by the magnitude of the internal pressure when the damage occurs.
With suitable finite element software [26] the deformations and residual stresses due to impact
can be obtained. However, these solutions may be time consuming and expensive. For rings,
simple analysis methods can be used as an alternative. For example, Castiglano's theorem can
be used to determine elastic deformations and the upper and lower bound methods can be used
to determine limit loads when the rings are free of internal pressure. A comparison of the
analytical and finite element solutions with experimental data showed that the analytical limit
load method is simple to use and gives accurate predictions. However, investigations showed
that if internal pressure is large enough, the limit load methods give inaccurate predictions. An
alternative energy-based approach was therefore used to explain why the approach used when
there is no pressure is inaccurate for the case of pressurised pipes, and the relationship between
indentation force and dent depth was predicted when internal pressure is significant. The
accuracy of the analytical method for pressurised rings with large, non-linear deformation is
assessed by comparing predictions with the corresponding results of finite element analyses.

However, although the accuracy of analytical methods used in this thesis was reasonably
confirmed by comparing the analytical solutions with the experimental data and the finite
element analyses, residual stresses and stress changes caused when the internal pressure
fluctuates cannot be assessed analytically. Finite element analyses were used in predicting the
local stress concentration in indented pipelines. = However, based on present developed
experimental techniques, accurate assessment of residual stresses in pipes is not possible. Like

analytical solutions obtained for indented rings, the accuracy of the finite element analyses for



indented pipes was validated by comparing the finite element force versus deflection curves
with those obtained from experimental tests. Five 6082-T6 aluminum alloy tubes with a
diameter of 86.4mm and a wall thickness of 1.2mm, were indented by a rigid indenter in
experimental tests for pressure levels of 0, 2, 3, 4 and SMPa. The indenter force versus
deflection curves were automatically nl-ecorded on an Instron 1195 Automated Material Test
System. These data were used for cémparison with results obtained from the finite element
analyses performed using the same conditions.

In reality, in order to assess the fatigue life of indented pipes after an accident, performing a
valid finite element analysis is not a simple job even for an expert analyst. Comprehensive finite
element analyses were therefore performed to develop an empirical formulation to predict the
residual stresses in indented pipes. A semi-empirical formulation predicting the stress changes
due to the internal pressure fluctuations was also developed on the basis of finite element
analyses and analytical solutions of stresses in an imperfect pressurised ring. Using these
results the fatigue life of any indented pipes with the same conditions used in this thesis would
be expected to be accurately assessed.

In chapter 2, previous achievements of research on indented pipes and related subjects were
reviewed. It can be seen that previously used approaches to investigate indented pipes are
focused on experiments, FE analysis and linear elastic solutions. Some empirical formulations
to predict the limit loads of the internal pressure and the relationships between indenter force
and dent depth were developed. Analytical solutions of limit loads and indenter force-deflection
relationships have not been reported. The experiments were mainly used to investigate fatigue
life of indented pipes with an existing defect. Shell element models were generally applied to
perform a FE analysis to predict residual stresses.

Chapter 3 discusses details of the elastic-plastic method used to analytically invéstigate the
limit loads of indenter forces of indented unpressurised rings with symmetrical loading and
boundary conditions. Subsequent analytical solutions of the limit loads of indented rings were
obtained and compared with results obtained from experiments and FE analyses. A very good
correlation of these results was obtained.

For pressurised indented rings with symmetrical loading and boundary conditions, analytical
curves for the elastic-plastic solution of the indenter force versus dent depth were obtained and

validated with the FE analyses and experimental results in chapter 4. Analytical solutions of the



limit loads and the indenter force versus dent depth curves of indented rings with asymmetrical
loading and asymmetrical boundary conditions were investigated and obtained in chapters 5 and
6, respectively. These two analytical solutions were also confirmed and validated by
comparison with results obtained from the experimental tests and the FE analyses. Chapter 7
focuses on investigations of the indenter force versus dent depth behaviours of the indented
rings with spring-like éupports which are closer to reality because the pipes are supported by
soils. In this chapter the analytical solutions are obtained and compared with the corresponding
FE analyses.

Chapter 8 starts to investigate the residual stresses and stress variations induced by the
internal pressure fluctuations for indented rings using the FE analysis. In order to investigate
the effects of the internal pressure, geometrical dimensions, supports and residual dent depths
on the residual stresses and stress variations, subsequent parametrical analyses were performed.
A semi-empirical formulation predicting the stress variations was developed after investigating
the analytical solution of an imperfect pipe model.

In following chapters, three-dimensional indented pipes were investigated for different
purposes using experiments and FE analyses. Chapter 9 investigates the stress sensitivity to the
element sizes using the FE analysis and chapter 10 investigates the indenter force versus dent
depth behaviors using aluminum alloy tubes to perform a series of tests and using the FE
analysis. Comparisons of the results obtained from the shell element and 3D brick element
models were carried out and a very good correlation of the validation of these models was
obtained. Therefore, the shell element models were used to investigate residual stresses and
stress variations in chapters 11 and 12 to reduce computer analysis times. The residual stresses
in the pipes with a constant internal pressure were investigated in chapter 11 using the shell
element models, and empirical formulations to predict the residual stresses were also developed
using the FE results and curve fitting. Chapter 12 discusses the stress variations in the pipes
using the shell element models when the internal pressure fluctuates after the indentation.
Accurate semi-empirical formulations to predict the stress variations were also obtained. In
chapter 13 all the work in this thesis was summarized and possible future work was proposed.
The fatigue life of indented pipes therefore can be assessed using S-N curves and the obtained

stress results here.
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Chapter 2

Literature Review

2.1 Main Factors Causing Pipe Failure

The threat of external damage has long been recognised in the design of onshore and
offshore pipes. Most design codes take account of such damage by including measures that
reduce the likelihood of failure in high risk areas. The most widely used approach is to limit
the pipe design factor (ratio of hoop stress to specified minimum yield stress) in these areas.
As Corder et al [13] reported, pipe damage occurs mainly from the pre-existing defects in the
surface such as gouges, pores or inclusions formed when the pipes are forged.

Pipe failure is likely to be caused by an external indentation. For instance, a large stone
may hit the surface of the pipe when landslip takes place; or pipes may be indented by teeth of
excavators or tractors in public operation fields. The influences of pre-existing indentations
on pipe safety and fatigue life have been studied for many years. Corder et al [13] proposed
some semi-empirical formulae to explain quantitatively the influence of indenter size on the
fatigue life of the pipes, limit burst pressure, etc. Bai et al [27] calculated the fracture strength
of indented pipes with cracks. Hart et al [11] analysed the influence of the indentation on
vibrations in a section pipe in Alaska by using infinite element technology.

Another cause of pipe failure is environmental chemical corrosion. The propagation of
stress corrosion cracks in pipe steels at neutral pH was studied by Wilmott and Sutherby [28]
under realistic environmental conditions. The impact of the hoop stress on the growth of
shallow surface cracks in an X60 pipe steel was investigated at 40%, 70% and 100% of the
minimum yield strength of the material. Crack growth rate is shown to be independent of the
applied stress in the range studied for shallow cracks.

It is reported in the literature (see, for example Eiber et al, [29]) that failure of the pipe due
to mechanical damage defects is generally due to a number of possible causes such as low-
cycle fatigue of the highly strained material, and localised strain aging of the cold-worked

steel that leads to failure as a result of hydrogen cracking.

2.2 Basic Codes For Pipe Safety Design

In early 1965, the Institution of Gas Engineers published its first recommendations

concerning the installation of steel pipes for high-pressure gas transmission, issued as



Communication 674. It originally aimed to protect members of the public and the personnel

of the pipe constructors and operators from possible hazards, so far as is reasonably

practicable, as well as to ensure that the security of the gas supply is adequately maintained.

The basic requirements for safety design were described, or simply presented with formulae.

The new version issued is Communication 1530 in 1993. API (American Petroleum Institute)

[31] published a pipe design code, called Specification for Line Pipe, in which the

indentations are strictly included as follows:

i) The pipe shall contain no indentations greater than 1/4 in. (6.35mm), measured as the
gap between the lowest point of the indentation and a prolongation of the original
contour of the pipe.

(i)  The length of the indentation in any direction shall not exceed one half of the diameter
of the pipe.

(iii)  All cold-formed indentations deeper than 1/8 in. (3.18mm) with a sharp bottom gouge
shall be considered a defect.

(iv)  The gouge may be removed by grinding.

Kannappan [30] presented a formula for the minimum wall thickness and allowable working

pressure of the pipe from Design Codes as follows:

PD
tm=W+A=t+A 2.1
where
tm = minimum required wall thickness, in inches
t = pressure design thickness, in inches
P = internal pressure, in Psig
D = outer diameter of the pipe, in inches
S = allowable stress at design temperature (known as hot stress), in Psig
A = allowance, additional thickness to provide for material removed in threading,
corrosion, or erosion allowance. A manufacturing tolerance (MT) should also be considered.
Y = coefficient that takes material properties and design temperature into account.
For t>d/6 and temperature below 900°F, Y = 0.4 may be assumed. The coefficient Y can
be written as follows:
Y=d/(d+ D) 2.2)
where d is the inside diameter =D - 2t

A quality factor Eq is defined as follows:



E =EEE, (2.3)
where E. is the casting quality factor, E; is the joint quality factor, and E; is structural quality
factor.

Allowable working pressure is determined by:
_ 2SE qt
D -21t

(2.4)

2.3 Limit Load Analysis

Because of the complexity of the structure, limit load analysis for a pipe with plain
indentations or combined gouges and indentations is very difficult. A review has been
presented by Miller [32], in which a number of semi-empirical formulae were highlighted.
Here, for simplicity, only a number of formulations for pipes with surface defects are

reviewed.

(i) Lower Bound Formula
PR a alt
+

__=1—__.

ogt ! (1+l.61c2/Ra)/2
where

2c= defect length

a= defect depth

(2.5)

b= ligament thickness

~
]

cylinder radius
t= cylinder thickness
o= flow stress which is defined as
1
oy =5(0'y +oyrc) 2.6)

or

or=1150, (2.7)

(ii) Upper bound Formula

PR n
o st - 1-(1-7))/M(p)

(2.8)



where
p=cl/(Rt)" 2.9)
n=>blt (2.10)
M(p) is a factor taken from the through-crack result, which is defined as

M(p) = (1+161p%)" @.11)
or
M(p)=(1+1.05,oz)”2 (2.12)

(iii) Miller's Formula
PR alt

LI DL v (2.13)
oyt (1+ 1.61c2/Ra)
(iv) Kiefner Formula

PR _ n (2.14)

ot 1—(1—r,)/(1+1.05p2)/2

2.4 Experimental Work

To predict and improve the safety and reliability of pipes and better understand the
damage mechanisms, research based on experimental techniques involving indented pipes has
been performed by many researchers. Ong et al [24] investigated the strain distribution in the
indented region. Lancaster and Palmer [16, 17] investigated the bursting pressure of pipes
with a gouge in an indentation. EPRG (European Pipe Research Group) has carried out an
extensive experimental programme to fully analyse the deformation of indented pipes, in
which the main achievements were reviewed by Corder et al [13]. Based on measuring
experimental data, some useful empirical formulae have been established, from which burst

pressures and puncture forces may be predicted.
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2.4.1 Empirical Formulations for Fatigue Life

From EPRG experiments, a new fatigue life formula has been given by Corder et al [13]

as follows:

N, = 100[(UTS - 50) /(20 4K )* (2.15)
where

K, =2.871/t(H/2S) (2.16)

1 |

20 4 =UTS B(4+32)5-32 2.17)
B=(o,/130s5pys N1 - (04 /130 spqys X1+ $) /(1 - 8)] (2.18)
where

N= number of cycles to failure
20, = equivalent cyclic stress at S=0, in MPa
S= minimum stress/maximum stress in fatigue cycle

UTS= 1.3 0gys

Osmys = specified minimum yield strength, in MPa

o, = cyclic stress, in MPa

Fatigue tests for pipes with a gouge in an indentation were also carried out by Fowler et al .
[9], Kiefner et al [14], and Hagiwara et al [15]. Based upon test results, Hagiwara et al [15]

proposed a power law equation for predicting fatigue life as follows:

Ny=C(a/DY (/T (ac/EY (2.19)
where

C = defect half length

d = maximum dent depth during denting

T = gouge depth

D = pipe diameter

T = wall thickness of pipes

a,B,y are material constants.

11



2.4.2 Burst Pressure Formulations

The burst pressure of pipes containing combined indentations and cracks was investigated
by Bai et al [27]. Based upon previous research, they proposed a semi-empirical formula to

predict the burst pressure of pipes containing a combined indentation and a longitudinal crack,

as follows:
P=20L (2.20)
D

where t is the pipe wall thickness, D is pipe nominal outside diameter, ando is critical stress

at failure, which is given as follows:

2 2

=222 cos7!| ex -% (2.21)

b4 8Y ac),

1

E 2
Koot = [1000;(@ -17.6)] (2.22)
Y= L(l —1824 51y D (2.23)

Jel T
o, =ac,— 2 (2.24)

P Yt-alM, : '

Kmat = the material toughness parameter

a = crack depth

Y = pipe geometry shape function,

F, Q and a bending correction factor are given by Newman and Raju [33],
D4 = indentation depth

o, = yield strength stress

6, = collapse stress

M, is a factor determined by

M, =1+0.6275x2 —0.003375x* forx<7.07 (2.25)
M, =0.032x% +3.3 for x>7.07 (2.26)
x=L/{Dt 2.27)

where L is defined as the length of local crack

12



2.4.3 Force and Deflection Formulations
Empirical formulae were reviewed by Bai et al [27] for the mean value of the indentation

force F, as follows:

F =0.011P,H% (2.28)
and for the mean value of the force based on a lower 95% confidence level:

F =0.007P,H%? (2.29)
where H is the indentation depth after springback (in mm) and P, is given by:

P, = \JosyysLt(t +0.7PD/oyrs) (2.30)
where

F= indentation force, in kN

t= pipe wall thickness, in mm

O guys = specified minimum yield strength, in MPa
G5 = ultimate tensile strength, in MPa

L= tooth length, in mm

D= pipe outside diameter, in mm

P= internal pressure, in MPa

2.4.4 Puncture Force Formulation

Lower bound:

Fp=0270yrs(L + ) (2.31)
Mean value:

Fp=0230yrs(L+1)t (2.32)

Minimum value:

F, =0.160yzs(L + )t (2.33)

where [ is the width of the tooth (in mm).

The damage hoop stress limit formula with a gouge is given by

13



o, = %;cos" {e}

E"E(Yl[1-%]%[10.2%])-2e(hf"v’;m]] @34)

_l:;zAd
a=e

where

Y, and Y> are compliance functions given by

2 3 4
n=112- 0.23({—) + 10.6(-‘:-) - 21.7(%) + 30.4(%) (2.35)

2 3 4
Y, =112- 1.39(-‘;—) + 7.32(1:—) - 13.1(%) + 14.0(%) (2.36)

o =1.150guys(l —ff-) (2.37)

o, = hoop stress at failure (Ibf/in%)

E= Young’s modulus (Ibf/in’)

A= fracture area of 2/3 Charpy test specimen(inz)
d= gouge depth(in)

H= dent depth corrected for springback (in)

R= pipe radius(in)

C.=2/3 Charpy energy (ftlbf)

2.4.5 Dent Depth-Residual Dent Depth Formulation
The relationship between the indentation depth and the residual indentation depth has been
given by Corder et al [13] as follows:

H=032H? (2.38)

where Hp is damage dent depth.

Modern pipe materials are ductile and should therefore fail by ductile initiation or plastic
collapse. When a pipe defect fails by plastic collapse (failure governed by the flow stress) the
semi-empirical relationships were reviewed by Corder et al [13] can be used and have been

adopted extensively by pipe operators around the world, as follows:

On =0 fow(—d/1)/(1- Md /1) (2.39)
1
M=(+ 0.26(2c/JFt)2)2 (2.40)
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where

o, = hoop stress at failure

O pow = flOW stress

d = defect depth

2¢ = defect length

R = pipe radius

T = pipe wall thickness

These semi-empirical formulae are not commonly accepted because of the large
differences that exist between the experimental data and results obtained from these

simplified semi-empirical formulae.

2.5 Basic Analytical Approaches
The analytical approaches used in the analysis of imperfect pipes or thin-wall shells can be

divided into two basic types; linear elastic analysis and elasto-plastic analysis.

2.5.1 Analysis based on linear elastic mechanics

For the analysis of the fatigue life of indented pipes, without cracks, using elastic linear
theories, stress concentration factors may be determined in the indented region. If the
indented pipe has a pre-existing crack, the stress intensity factor may be calculated using
linear elastic fracture mechanics theories. Engineers can apply both of these approaches to

predict the residual fatigue life of indented pipes.

2.5.1.1 Linear stress analysis for indented pipes
There are two main approaches used for linear stress analysis; perturbation approach and

an equivalent load method.

(a) Perturbation method

Perturbation analysis, in which the solution is expanded as a series of terms containing a
damage parameter, was employed by Godoy [5, 6]. When using this technique to analyse the
linear elastic stress distribution of an imperfect shell, the displacement vector is expressed in

terms of a damage parameter 1 as follows:

15



n
v=Ya; (2.41)
i=0

where a; is perturbation coefficient and a, is the displacement vector for a perfect cylindrical

shells.

(b) Equivalent load method

To theoretically estimate the stress concentration factor of damaged pipe, Tam and Croll
[3-4] proposed that the equivalent load method could be used. They assumed that for an

indented tubular member a typical defect is as shown in Fig.2.1, such that

z—2 2.42)

where x represents the axial position in the pipe, b is a dent shape factor, r and w are the
radius of the pipe and the dent depth at position x, respectively, R; and R; represent the two
radii of the deformed pipe, and S is the width of the dent, as shown in Fig.2.1.

X

Fig. 2.1 Typical dent damage cylinder used for stress analysis in equivalent load method

The equivalent load method is based on the replacement of geometric deviations with an

appropriately chosen normal pressure to be applied to the perfect (undamaged) shell. The

damaged shell is taken to be subjected to the same in-plane stress resultants (n?,ng,n’ ) as

16



the perfect shell. The first order equivalent pressure, p,, may be obtained through simple

static equivalence as follows:

* 0.0 0.0 o 0
Py =Ny Xx t 199 +nyp9Xx0 (2.43)
where (%°,%9,X) are errors in axis, circumferential curvature and twist resulting from the
local damage. When this equivalent pressure is applied to the perfect shell, an additional set
of stress and moment resultants (n,,ng,n,,m,,my,m,) is produced. Adding these

increments of stresses and moments to the perfect shell thus yields the first order correction

for the damaged shell.
! *
ny = ng +ny
' 0 *
ng = ne + ng
' 0 *
' 0 E 3

my =my +m,
' O %*

By analogy, a second order equivalent load is given by
L1 * 0 * 0 * 0
Pz =NxXx tNoXg +NxoXx0 (2.45)
The second order correction of in-plane stresses and moments (so-called membrane force

or section moments) is written as
ok *k *k *%k ok k%
By sNg >Bx@,Mx M@ ,Mxf (2.46)
Therefore the second order approximation of in-plane stress and moments can be

presented as

' 0 % k%
ny ="x+”x+”i*
' *
ng =n2+n9 +ng

' 0 + * +n**
n =n n
X0 e e T0 (2.47)

My =My +my +my
' 0 * X%k
mg =mg +mg +mg
[ 0 %* sk
myg =m g +myg +myg
By repeating the above process until convergence is reached, an appropriate solution for

imperfect pipes can be obtained.
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(c) linear elastic solution of dented cylinders

To systematically describe the indentation damage, Tam and Croll [2-4] applied a two-

dimensional Fourier analysis, as follows:

¥
wo(x,6)= ) ¥Z w?j cosi0cosj2£ (2.48)
i=0j-0 l

where w(x,8) is the radial displacement component of the indentation, w} is the amplitude

of the Fourier harmonic (i, j) having i circumferential and j meridional waves, respectively,
and 1 is the length over which the radial geometric errors have any significance.
At low deformation levels, the various changes in curvature, (x°,%J,%x%) may be

approximated as follows:

0 _ﬁZwO o 1 w0 0 16%*w°

Zx = & 6 _2?’2%0 Ty & (2.49)
Therefore the first order equivalent pressure is expressed as
Py = }'5 *E - [n2(27q°/1)2 +n3i2/r2}v?j cosif cos jo’“
== , (2.50)
-2y 3 l:nggij—”]wg siniasinjz—mc
i=0 j=0 rl I

When this equivalent pressure is applied to the perfect cylinder, a first order
approximation of the incremental stress and moment resultants may be estimated. For clarity,

the relevant simplified shell equilibrium equations can be written as follows:

1
'121’“%(14'/1) 5(i+#)‘1 - A ":{ .
E(1+,;)°,1. i2+5(1-y)2.2 —i =l (2) . (2.51)
i i -1—(i2+12)+1 Wy —wij(nxl + ngi )K
L. a -
where
o =12(r/t)’ (2.52)
A =2mjr/1 (2.53)

K (= Et/(1- pz)) is the membrane stiffness

E is Young's modulus

t is cylinder wall thickness

18
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(uij,v,.j,wi'j) are harmonic amplitudes of the equivalent load induced incremental displacement

components
o o
u*(x,0)= T X u;}cosiesinjz—q
i=0 j=0 !
o oo
V(5,8)= £ ¥ vjsinicos j 2 (2.54)
i=0 j=0 l
o 00 2
w*(x,0)= y X w;j cosi0cosj£
i=0 j=0 !

To estimate the stress concentration factors on the surfaces of the cylinders, Tam and Croll

[2-4] presented the following expressions, based on shell assumptions:

*
S;="L=N{+N;+ 6WOM}[1) (2.55)
oy t
where
i=x,x0,0
0 "? ' ";' ' m;‘
N’. =——O-,N’~=—6’M'-= 0 (2.56)
Ry new(

2.5.1.2 S-N fatigue life prediction

Cylindrical shells containing local damage have been shown to exhibit high stress
concentrations at the most damaged positions. The two-dimensional nature of these stresses
has complicated the fatigue assessment process. However, for simplicity, the maximum
principal stress theory was used by Tam and Croll [4]. It implies that the number of cycles
required to cause fatigue failure under combined stresses is the same as that due to the
maximum principal stress acting alone. For this reason, the following fatigue evaluation is
based upon the meridional stress component only. The S-N expression is given by
logN =loga - mlogAc ' (2.57)
where m, a are material fatigue constants, and N and Ao represent the cyclic life and the
stress range, respectively.

Under cyclic loading conditions, the design stress range for a perfect cylinder will induce
a higher stress range in the damaged shell. This has the effect of lowering the number of
cycles to failure. A measure of the fatigue strength reduction is based upon the fatigue cycle

reduction factor, N,, defined as
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v, =iv_i_=(ﬂjm {_1_]’”
Np Ao Sy

(2.58)

where subscripts i and p refer to imperfect and perfect cylinders, respectively, m is a material

fatigue constant, and N, is defined as the fatigue cycle reduction factor.

2.5.2 Analysis based on elastic-plastic fracture mechanics

For the elasto-plastic fracture mechanics analysis of structures, the stress intensity factor

(SIF) must be calculated. For the analysis of cylindrical shells with cracks, Newman and Raju

[33] calculated the stress intensity factors (SIF) for a cylinder with an elliptical crack on its

inner surface, as follows:

PR a
K;=—_|[n—F
= Q(

where

PR .
e = means hoop stress due to the internal pressure

Q= shape factor for an elliptical crack =1+ 1.464(a / c)"**
a= depth of surface crack

c= half-length of surface crack

t= cylinder wall thickness

R, R,= inner and outer radii of cylinder

¢ = parametric angle of elliptical crack

F= geometric shape function which is given by

o -

2
1.13—0.093+(—0.54+ﬂ9_ al 4
c 02+alc \ t

F=0.97 fcgf¢

_(0.5 - ﬁ +14(1-a/ c)z“J(%T

where
R2 2

f. = —‘;;Rzﬂ—o.s\/z L
R, —R t |R

2
g=1+ {0.1 + 0.35(%] ](1 ~sing)
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1
5 -
fs= [sin%ﬂ(%) cos? ¢]4 (2.63)

Koh and Na [34] calculated the stress intensity factor of a thick-walled cylinder with an
autofrettaged residual stress and an external radial crack, as follows:
Ky=Kip+Kjg
Kip=0opJmf(alt) (2.64)
Kig=copJmf(alt)
where

Kip and K|r = stress intensity factors due to internal pressure and autofrettage residual
stress
crack length

()
il

f= geometric shape function which is given by

2 3 4
f(a/t)=1.12+A15:—+A2(%) +A3(£:-) +A4(“) (2.65)

t

Oop = the nominal tangential stress at the outer surface of cylinder subjected to pressure P

RZ
oop =2P———— (2.66)
R? - R?
O"OD = autofrettage nominal residual stress at outer surface of smooth cylinder
2 2 2 2
Gop =20y{ L+ ——— -2 (2.67)
2R, R, -R 2R, R

p = boundary between elastic and plastic deformation during the autofrettage process

o, = yield stress

2.6 Numerical analysis based on FE techniques

FE calculations of indented pipes have been the most commonly used approaches for
fatigue life analysis. Linear elastic theory is inadequate for analysing pipes with locked-in

residual stresses for an elasto-plastic material with work-hardening,.
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2.6.1 FE analysis using shell elements

Ohtani et al [8] proposed the use of curved quadrilateral shell elements to investigate the
strain concentrations in an imperfect thin spherical shell. They found that a higher strain
concentration was induced by the bending strain which is proportional to the amplitude of the
imperfection. As expected, the peak value of the strain concentration occurs at the centre of
the imperfection.

Ong et al [24] analysed the residual stress distributions in local indented pressurised pipes
using experimental measurements and FE solutions using 8-node shell elements. Their work
indicated that the maximum value of residual strain is at the flank of the indentation when the
flaws are of a local nature rather than being long indentations. Otherwise, the peak value of
residual strain is at the damage centre for a long indentation.

To estimate the residual life of indented damaged pipes, Zarea et al [10] proposed the use
of static and dynamic FE models, using thin triangular shell elements for static analysis and
quadrangular shell elements for dynamic analysis. Through this work, Zarea et al [10]
established the relationships between dent depth and force, dent depth and residual dent depth,
and calculated the residual stress distribution under cyclic pressure variation, in order to
analyse the residual fatigue life. However, the paper by Zarea et al [10] did not give empirical
analytical formulae derived from the FE calculations. Powell et al [11] also used the FE
method to analyse the fatigue damage of indented pipes. However, unlike Zarea et al [10],
they used 8-node shell elements to undertake all the computations. In the dynamic model,
Zarea et al [10] simulated complete failure processes from void nucleation to the crack

development.

2.6.2 FE analysis using three-dimensional (brick) solid elements

3-D solid brick elements have been used by many researchers to assess the integrity of
pipes with a gouge in a dent. Solid brick elements are more accurate and more convenient
than shell elements for modelling the gouges and cracks, but the computing costs are
significantly higher. Because it is difficult to obtain analytical expressions for the stress
intensity factor at the tips of cracks, many researchers have been successful in estimating SIF
by using FE calculations using solid brick elements. Newman et al [33], Raju et al [35],
Zheng et al [36], and Koh et al [34] obtained semi-empirical expressions for cylinders with
different sizes of cracks using this method. Zarrabi [37] calculated the plastic collapse

pressure for cylindrical vessels with defects using solid brick element models.
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2.7 Fatigue theories for the analysis of the fatigue damage of pipes
A number of fatigue theories have been reviewed by Fatemi et al [1]. The most generally
accepted approaches are the stress-life approaches, strain-life approaches and K-life

approaches.

2.7.1 Stress-life approaches
For zero mean stress cycles, based on uniaxial tensile-compressive tests, Basquin
proposed that the cyclic fatigue life relates to cyclic stress amplitude as follows (see, for

example Suresh [38]):

A_2O-_ =0, = G'f (2Nf)b (268)

where o,(= (cmax ‘O'man)/ 2) is cyclic stress amplitude, o,is a fatigue strength coefficient

(which , for most metals, can be represented to a good approximation, by the true fracture
strength o, corrected for necking, in a monotonic tension test) and b is called Basquin's
exponent.

For a non-zero mean stress, the cyclic stress amplitude is generally defined in the same
way as that for zero mean stress. However, in order to fit experimental results the cyclic stress
amplitude used in equation (2.68) sometimes are modified, for example, Suresh [38] reviewed
Gerber, Goodman, and Soderberg's models which are expressed as follows:

a. Soderberg expression:
0y = {1 - "—"’}aao (2.69)
Ty

where o, refers to the cyclic stress amplitude obtained with zero mean stress.

b. Modified Goodman expression:

o, ={1- Im }aao (2.70)
ouTs
c. Gerber expression:
o 2
o4 = 1-[ L J O a0 (2.71)
ouUTS

where oy and o, are the material yield stress and ultimate tensile strength, respectively
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While the Basquin relation is valid only for zero mean stress, Suresh [38] also reviewed
Morrow relation which is a modification of Basquin relation and accounts for mean stress

effects (for any o, ), in the following form

o, =(a"f —a'mX2Nf7’ (2.72)
For a multiaxial stress situation, Suresh [38] described the stress-life relationship in terms

of an equivalent stress amplitude and an equivalent mean stress, defined as follows

1
Oge ™ '\/—-2-' (ala - a'Za)2 + (a'la —03q )2 + (02a - 0'30)2 (2.73)
Omye = 71—5\/ (©tm —G2m Y + (01 = T3 F +(O2m — O3 f (2.74)

where (o‘,a,ch,csa) and (G,m,GZm,c3m) are the amplitudes of the principal stresses and

mean values of the principal stresses, respectively.

2.7.2 Strain-life approach

Suresh [38] reviewed the Coffin and Manson strain-life approach which was developed
through their independently obtained experimental observations. The relationship is nearly

satisfied:
Ag
p 1
—L=s; en, ¥ (2.75)

where Aep,s} are the plastic strain amplitude and fatigue ductility coefficient, respectively,

and c is the fatigue ductility exponent.
The total strain amplitude, in a constant strain amplitude situation, can be written as the

sum of an elastic strain amplitude and a plastic strain amplitude, i.e.

Ae
éﬁ = &.,.._ﬂ (2.76)
2 2 2

Using Basquin equation and linear elastic theory, gives:

'

A—ji =%f(21v B 277)

Combining the Coffin-Manson relationship and the above equation, results in:
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AT, (2.78)

For multiaxial situations, as in the stress-based life approaches, the strain-life is expressed
in terms of the amplitude of equivalent strain as follows:
Ag,, O
el / i
5 A =—E—(2Nf)b +£f(2Nf)£
(2.79)
6 = \/(81 _52)2 +(51 ‘53)2 +(32 _33)2
“ V2(1+v)

where for the fully plastic state, Poisson's ratio, v=0.5, and for the elastic state, v=0.33 for

most metals and alloys, and (&,,¢,,€,) are the components of principal strains.

2.7.3 K factor-life approach
To estimate the fatigue life of cylinders with cracks, Paris and Erdogan [39] suggested a

relationship between crack length and the number of cycles, as follows:

da_ o
N C(AK) (2.80)

where

AK = Stress-intensity factor range

a = crack length

N= number of fatigue cycles

C= material constant

n= material constant (a value of 4 is given in [39])

The above equation has been shown to be in good agreement with experimental data when
the SIF range is relatively small. However, if a larger range of AK is used, the fatigue life
calculated by the Paris-Erdogan relationship does not give accurate correlation with test data.
For this reason, Forman et al [40] proposed the modified formulation:

da __ C(AK)"
dN  (1-R)K, -AK (281)

where
R= load ratio

K= critical stress-intensity factor for fracture.
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2.8 Summary

Summarising previous work, it is found that many empirical formulae to predict the limit
loads of the internal pressure and external force have been developed. It is also found that the
linear analysis methods, e.g. perturbation and equivalent load methods, which require a lot of
numerical calculations, cannot accurately predict the non-linear behaviour of indented pipes.
Responses of the residual stresses and stress variations of indented pipes to the material
properties, the geometrical dimensions (of pipes and indenters), the internal pressure and the
residual dent depth were not investigated and are unknown. No empirical formulae were
developed to predict residual stresses and stress variations and no analytical solutions were
obtained to predict the non-linear elastic-plastic behaviours of indented pipes. Therefore, this
thesis will attempt to investigate those stresses using experiments, FE analysis and energy-

based elastic-plastic methods.
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Chapter 3

Elastic-Plastic Response of Unpressurised Indented
Pipes

3.1 Introduction

Most impact damage to pipelines is very localised [1-4, 16, 17], as indicated in Fig. 1.1 (a).
However, in some cases, the damage can extend over a significant length of the pipe [12], as
indicated in Fig. 1.1(b). In the latter case, the behaviour (except at the ends of the damage) is
essentially two-dimensional and can be analysed as a plane-strain ring, as indicated in Fig. 1.1(c).

Indentation damage can occur with or without internal pressure and the deformations and
residual stresses are affected by the magnitude of the internal pressure when the damage occurs.
With suitable FE software [26] the deformations and residual stresses due to impact can be
obtained. However, these solutions may be time consuming and expensive. For rings, simple
analysis methods can be used as an alternative. For example, Castiglano's theorem can be used to
determine elastic deformations, and the upper bound methods can be used to determine limit
loads. In this chapter, the accuracy of these methods will be assessed by comparing predictions

obtained from analytical solutions with experimental data and with detailed FE analysis.

3.2 Experimental Work
3.2.1 Material

The material chosen for the experimental investigation is 6082-T6 aluminium alloy. The
tensile stress-strain curve for the material is shown in Fig. 3.1; Young's modulus, Poisson's ratio,
yield stress and ultimate tensile stress are 70 GPa, 0.3, 300 MPa and 351 MPa, respectively. Fig.
3.1 also shows the stress-strain curve for a practical gas pipeline material, namely X65 SAW,
which has a Young's modulus, Poisson's ratio, yield stress and ultimate tensile stress of 223GPa,
0.3, 448MPa and 675MPa, respectively. These material properties were also used in some of the

FE analyses.
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Fig. 3.1 True stress-strain curves of 6082-T6 aluminium alloy and X65 SAW pipe steel.

3.2.2 Geometry and Loading
For the experimental tests, 6082-T6 aluminium alloy rings were set on a V-block support cast

with plaster to form the arc supporting bed as shown in Fig.3.2. The support conditions were

essentially an arc support which was very close to a three point support situation. The support
angle, 0, is shown in Fig. 3.2. The rings were radially loaded at point A (see Fig.3.3) by a Bright
Drawn Mild Steel indenter with an end radius of 2 mm and an axial length of 50mm.
Indenter
E \ ;'A E
\t\x y R\;,& \ Ring
/ L oS ‘T')i A

\ 0,
45° Lo 90 A 45°
D\ "B

Plaster

Cast V-bloack support

Fig. 3.3 Dented ring set on a v-block support for experimental tests
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The tests were conducted on an Instron 1195 machine with 1 kN and 50 kN load cells, and the

data (force and displacement) were recorded automatically; the load point displacement rate was

set to 2mm/min.

Tests were performed on eight rings with dimensions, peak loads and initial gradients of force

versus displacement curves given in Table 3.1.

Table 3.1 Geometries and experimental results of dented rings

Geometry of 6082-T6 aluminium alloy rings used in tests

Test | Support Outer diameter D; Wall thickness t; Axial length L
No Angle D Limit load | Initial gradient
0 (mm) | t (mm) D/t L (mm) N/mm N/(mm)?
TEI 45° 88.8 1.2 72.0 40 14.6 2.33
TE2 45° 88.8 1.2 72.0 40 14.0 231
TE3 45° 88.8 1.2 72.0 40 13.5 2.25
TE4 45° 125 3 41.6 50 66.0 11.36
TES 45° 125 3 41.6 50 61.0 10.28
TE6 45° 924 3 30.8 50 86.0 23.07
TE7 45° 92.4 3 30.8 50 88.7 24.09
TES 45° 120 5 24 50 204 61.42

The peak loads (or limit loads) were obtained from the force (per unit length of the pipe)

versus dent depth curves of the experimental data; initial gradients were obtained from the initial

linear parts of the force versus dent depth curves obtained from experiments.

3.2.3 Results of the Ring Tests

A series of eight experimental indentation tests, of rings with a range of geometrical

dimensions were performed; they were supported in a 90° V-block as shown in Fig.3.2. The

indenter force versus depth curves obtained from the experiments are shown in Fig. 3.3,
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Fig. 3.3 Indenter force versus depth curves obtained from experiments performed on the 6082-T6

aluminium alloy rings.
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3.3. FE Analysis
3.3.1 Material

Six materials were used in the FE analyses. Results were obtained for the aluminium alloy
(6082-T6) for comparison with the experimental results. Since practical pipelines are usually
made from a variety of steels, FE analyses were performed using material data for one of these
steels, namely X65 SAW. Four idealised materials (i.e. Ideal-A, B, C and D) with elastic,
perfectly plastic material properties were also used to investigate the influence of material
properties on the collapse load. Of the latter four idealised materials, three (Ideal-B, C and D)
were chosen to have a Young's modulus of 223 GPa and yield stresses of 300 MPa, 448 MPa and
600MPa, respectively and the fourth, Ideal-A, has a Young's modulus of 70GPa and yield stress
of 300MPa, i.e., the same yield stress as material Ideal-B but a different Young's modulus. The
basic properties of these six materials are given in Table 3.2. In the FE analyses, all materials

were assumed to obey an isotropic rule.

Table 3.2 Material properties used in FE analyses.

Material E o, Guts Poisson's ratio
6082-T6 alloy 70 GPa 300 MPa 351 MPa 0.3
X65 SAW 223 GPa 448 MPa 675 MPa 0.3
Ideal-A 70GPa 300 MPa - 0.3
Ideal-B 223 GPa 300 MPa - 0.3
Ideal-C 223 GPa 448 MPa - 0.3
Ideal-D 223 GPa 600 MPa - 0.3

3.3.2 FE Meshes, Boundary Conditions and Loading

The ABAQUS [26] FE software was used for the analyses. Due to symmetry, only one half
of the rings were modelled. All models consisted of 675 8-noded, plane-strain, reduced
integration elements, as shown in Fig. 3.4. Mesh convergence was checked for some of the cases
by using four times as many elements and it was found that peak loads were the same to within
0.5% (compared with the 675 element results, see FE7 to FE10 in Table 3.3) in all cases. The
nodes on the rings at sections A and C (Fig.3.4(a)) were restrained (i.e. uxa=uxc=0) in the
circumferential direction for all analyses. In some of analyses the rings were fully restrained
(i.e.uxg=uyg=0) at the outer diameter at position B, which is referred as boundary condition 1 or
BC1 (see Fig.3.4(c)). In some of the analyses, the rings were restrained only in the vertical

direction (i.e.uyg=0) at the outer diameter at position B, which is referred as boundary condition 2
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or BC2 (see Fig.3.4(d)). The load was applied in the radially inwards direction at the outer
diameter position at point A. In total 62 analyses were performed, these are defined in Tables 3.3
to 3.8.

LA N
™\
by
&
i
B
C
(a) FE meshes of half a ring (b) Locally amplified meshes
X R B«r ¥ % B
C C

(¢ ) Boundary condition 1 (BC1) (d) Boundary condition 2 (BC2)

Fig. 3.4 FE meshes and boundary conditions for the indented ring analyses.



Table 3.3 Geometrical dimensions, boundary conditions and FE results for 6082-T6 aluminium

alloy rings

Ring Dimension
Outer diameter D (mm)
FE No. Thickness t (mm) Limit Initial
Supporte | Boundary | Load Gradient | Number of
D t D/t d Condition | N/mm N/(mm)? | Elements
_Angle 6

FE1 88.8 1.2 72 45° BCl1 14.2 2.22 675
FE2 88.8 1.2 72 45° BC2 12.3 1.53 675
FE3 125 3.0 41.6 45° BClI 69.4 12.39 675
FE4 125 3.0 41.6 45° BC2 62.0 9.69 675
FES 92.4 3.0 30.8 45° BC1 99.7 32.80 675
FE6 92.4 3.0 30.8 45° BC2 90.0 23.85 675
FE7 120 5.0 24 45° BClI 223 67.97 675
FE8 120 5.0 24 45° BC2 203 56.79 675
FE9 120 5.0 24 45° BClI 222 69.71 2700
FE10 120 5.0 24 45° BC2 203 55.40 2700

Table 3.4 Geometrical dimensions, boundary conditions and FE results for X65 SAW pipeline

steel rings.

Ring Dimension
Outer diameter D (mm)
FE No. Thickness t (mm) Limit Initial
Supported | Boundary Load Gradient | Number of
D t D/t Angle 0 Condition N/mm N/(mm)? Elements

FE1l 88.8 1.2 72 45° BCl 242 7.34 675
FE12 128 3.0 42.6 45° BCl 115 38.76 675
FE13 92.4 3.0 30.8 45° BCl 169 107.28 675
FE14 88.8 1.2 72 0° BCl1 36.4 il 675
FE15 128 3.0 42.6 0° BCl 180 * 675
FE16 924 3.0 30.8 0° BCl 267 ** 675
FE17 88.8 1.2 72 90° BCl 17.3 *x 675
FE18 128 3.0 42.6 90° BCl 81.7 o 675
FE19 92.4 3.0 30.8 90° BCl 119 *x 675

**  Not used
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Table 3.5 Geometrical dimensions, boundary conditions and FE results for idealised elastic

perfectly plastic material Ideal-A (5,=300MPa and E=70GPa).

Ring Dimension
Outer diameter D (mm)
FENo. | Thickness t (mm) Limit Initial
Support Boundary | Load Gradient Number of
D t D/t Angle 6 Condition | N/mm N/(mm)? Elements

FE20 88.8 1.2 72 -60° BCl1 54.0 206.56 675
FE21 88.8 | 1.2 72 -45° BCl 36.5 68.68 675
FE22 88.8 | 1.2 72 -22.5° BCl 24.0 19.64 675
FE23 88.8 112 72 0° BCl 18.2 7.85 675
FE24 88.8 | 1.2 72 22.5° BCl 14.9 4.08 675
FE25 88.8 1.2 72 45° BCl1 12.6 2.20 675
FE26 88.8 | 1.2 72 70° BCl1 10.3 1.22 675
FE27 88.8 | 1.2 72 90° BC1 9.3 0.86 675
FE28 128 3.0 42.6 -45° BCl 184 366.67 675
FE29 128 3.0 42.6 -22.5° BCl1 123 114.27 675
FE30 128 3.0 42.6 0° BC1 92.0 47.15 675
FE3l 128 3.0 42.6 22.5° BClI 74.0 23.17 675
FE32 128 3.0 42.6 45° BCl1 61.3 12.18 675
FE33 128 3.0 42.6 70° BCl1 48.8 6.50 675
FE34 128 3.0 42.6 90° BCl 43.4 471 675
FE35 924 |30 30.8 -45° BCl1 263 824.04 675
FE36 924 |30 30.8 -22.5° BClI 185 313.45 675
FE37 924 | 3.0 30.8 0° BCI 138 125.77 675
FE38 924 | 3.0 30.8 22.5° BCl1 110 62.86 675
FE39 924 | 3.0 30.8 45° BC1 90.0 32.48 675
FE40 924 | 3.0 30.8 70° BClI 72.0 17.69 675
FE41 924 | 3.0 30.8 90° BCl1 63.0 12.57 675
FE42 88.8 | 1.2 72 45° BC2 11.3 i 675
FE43 128 3.0 42.6 45° BC2 55 ** 675
FE44 924 | 3.0 30.8 45° BC2 81.5 ** 675

**  Not used

Table 3.6 Geometrical dimensions, boundary conditions and FE results for idealised elastic

perfectly plastic material Ideal-B (c,=300MPa and E=223GPa).

Ring Dimension
Outer diameter D(mm)
FENo. | Thicknesst (mm) Limit Initial
Supported | Boundary | Load Gradient Number of
D t D/t Angle 6 Condition | N/mm N/(mm)? Elements

FE4S | 888 |12 |72 45° BCl 15.2 7.54 675
FE46 | 128 |30 [426 45° BCl 69.7 38.63 675
FE47 924 13.0 30.8 45° BC1 101 107.16 675
FE48 888 |12 72 45° BC2 13.6 ** 675
FE49 | 128 |3.0 |426 45° BC2 | 636 w 675
FESO | 924 [3.0 [308 45° BC2 | 923 o 675

**  Not used
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Table 3.7 Geometrical dimensions, boundary conditions and FE results for idealised elastic

perfectly plastic material Ideal-C (6,=448MPa and E=223GPa).

Ring Dimension

Mean Radius R (mm)
FE Thickness t (mm) Supported Limit Initial
No. Angle 6 Bounfi?"y Load Gradient Number of

R t D/t Condition N/mm N/(mm)’ | Elements

FE51 | 888 |12 |72 45° BCl 21.7 7.54 675
FES2 | 128 | 3.0 | 42.6 45° BCl 101 38.63 675
FE53 | 924 |3.0 | 30.8 45° BCl 146 107.16 675
FE54 | 888 | 1.2 |72 45° BC2 19.2 > 675
FE55 | 128 | 3.0 |42.6 45° BC2 91.1 ** 675
FES6 | 92.4 | 3.0 | 30.8 45° BC2 133 ** 675

**  Not used

Table 3.8 Geometrical dimensions, boundary conditions and FE results for idealised elastic

perfectly plastic material Ideal-D (5,=600MPa and E=223GPa).

Ring Dimension
Outer diameter D (mm)
FE Thickness t (mm) Limit Initial
No. Supported | Boundary Load Gradient Number of
R t D/t Angle 6 Condition N/mm N/(mm)® Elements

FES57 88.8 1.2 | 72 45° BCl1 28.0 7.54 675
FES8 128 3.0 42.6 45° BCl1 131 38.63 675
FES9 | 924 {3.0 | 30.8 45° BCl1 191 107.16 675
FEG60 | 88.8 1.2 | 72 45° BC2 24.6 o 675
FE61 128 3.0 | 42.6 45° BC2 118 i 675
FE62 | 924 [ 3.0 | 30.8 45° BC2 173 ** 675

**  Not used

The loads were applied using a rigid indenter with a 2mm radius and rigid surface contact
elements. Large deformation, elastic-plastic analyses were performed using the standard arc-

length (Riks) algorithm facility within the ABAQUS [26] program.

3.3.3 FE Results
3.3.3.1 Idealised Elastic Perfectly Plastic Materials
Four idealised elastic perfectly plastic materials (Ideal-A, B, C and D) were chosen to
investigate the effects of the Young's modulus and yield stress on the limit loads, using FE
analysis, for three geometries (D/t=72, 42.6, 30.8). The results were also used to investigate the

effects of the support angular positions on peak loads, which can be obtained from the maximum
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points of the force versus dent depth curves from the FE analyses. The results obtained from each
of the FE analyses are shown in Tables 3.5 to 3.8. Typical indenter force versus depth curves,
obtained from FE32, 46, 52 and 58 for D/t=42.6, are shown in Fig.3.5.

140
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100
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40
20

—o—FE46 O—FES2
——FES58 —@—FE32

Indenter force (N/mm

0 5 10 15 20
Dent depth (mm)

Fig.3.5 Typical indenter force versus depth curves obtained from idealised materials: Ideal-A, B,

C and D for a ring with a diameter of 128 mm and a wall thickness of 3mm.

Fig.3.6 shows the initial gradients for D/t ratios of 72, 42.6 and 30.8 which have been
multiplied by 10* and then been normalised by dividing them by their Young's moduli of 70GPa

and 223GPa. It can be seen that normalised initial gradients for these materials are consistent.
BCl Slope=1

0=45° \\

OFE data

)

D/=30.8

D/it=72

-

D/t=42.6

- N W A~ OO0 O

Normalised initial gradient for
Ideal-B

0 2 4 6
Normalised initial gradient for ldeal-A

Fig.3.6 Normalised initial gradients for idealised materials of Ideal-A and B
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For the Ideal-A material, the initial gradients, G, shown in Table 3.5 obtained from the FE
analyses can be conveniently normalised by dividing by Et/R®. The subsequent normalised
initial flexibility (1/G),K(6), is shown in Fig. 3.7 from which it can be seen that the initial

gradients, G, of the force versus dent depth curves decrease with increasing of support angles.

2

15 —{1-D/t=72 Ideal-A
—A—D/t=42.6 Ideal-A |
—0—D/t=30.8 Ideal-A

Normalised initial flexibility
(K(6))

0 16 30 45 60 75 90
Support angular position (6°)

Fig.3.7 Normalised initial flexibility of indenter force versus dent depth curves for different
angular support positions and different ratios of D/t of 72, 42.6 and 30.8 for idealised material
Ideal-A

The peak loads for FE25, FE32, FE39, FE45 to FE47, FES] to FES3 and FE57 to FE59
shown in Tables 3.5 to 3.8 were obtained with boundary condition 1 and the angular support
position of 45°. The peak loads were normalised by dividing by the associated yield stresses; a
comparison of some of these results is shown in Fig.3.8. It can be seen that these normalised

peak loads are in good agreement with each other (differences are less than 5%).
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Fig.3.8 Normalised peak loads for idealised materials of Ideal-A, B, C and D

The peak load for material Ideal-A with different angular support positions are given in Table
3.5 and these are shown in Fig. 3.9 (see FE20 to FE41), from which it can be seen that the peak

loads decrease as the support angle is increased.

400
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g t
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Support angular position (¢°)

Fig.3.9 Peak loads for different angular support positions and different D/t ratios.
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3.3.3.2 6082-T6 Aluminium Alloy
Typical indenter force versus depth curves, obtained from the FEI, FE3 and FES analyses
performed on the aluminium alloy models, are shown in Fig.3.10. The initial gradients and peak

loads obtained from FEI1 to FE10 are given in Table 3.3.
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E
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.§ 60
£ . —@—FE5 D/t=30.8
2 40 —BFE3 D/t=416
g —O—FE1 D=72
S 20

0 5 10 15 20 25 30
Dent depth (mm)

Fig. 3.10 Typical indenter force versus depth curves obtained from FE analyses for 6082-T6

aluminium alloy rings

From Table 3.3 it can be seen that the indenter forces obtained when all movements at point B
and D are constrained (boundary condition 1) are higher than those obtained by constraining only
the vertical movements at points B and D (boundary condition 2). FE7 to FEI0 indicate that
peak loads obtained from the FE models with 675 reduced integration, 8-nodes, quadratic, plane-
strain elements are very close to those obtained with 2700 elements.

The initial gradients (see FE1 to FE8) obtained for boundary conditions 1 and 2, are plotted
against each other in Fig. 3.11. It can be seen that the initial gradients obtained using boundary

condition | are, in general, about 24% higher than those obtained by using boundary condition 2.
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Fig. 3.11 Comparisons of initial gradients obtained by using boundary conditions 1 and 2 for

6082-T6 aluminium alloy rings.

3.3.3.3 X65 SAW Steel

Typical indenter force versus dent depth curves obtained from the FE11 to FE13 FE analyses,

performed on the X65 SAW steel models, are shown in Fig. 3.12. The peak loads are given in
Table 3.4.
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Fig. 3.12 Typical indenter force versus depth curves obtained from FE analyses for X65 SAW

steel rings
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The normalised initial gradients for the FE1, FE3, FES5 and FE11 to FE13 FE analyses, given
in Tables 3.3 and 3.4 for the 6082-T6 aluminium alloy and the X65 SAW steel are shown in Fig.
3.13. In this figure all of the gradients are amplified by 10*. It can be seen from this figure that

there is good agreement.

Q8

X 6 D/t=30.8

2 5

(2]

T Slope=1

= 4

Q

é% 3 Dit=416 N
BC 1

o 2 .

2 =45

© 1

£

g 0 |

0 2 4 6

Normalised gradients for 6082-T6 alloy

Fig. 3.13 Normalised initial gradients for 6082-T6 aluminium alloy and X65 SAW

The peak loads obtained from the FEI, FE3, FES, FEI1, FE12 and FE13 analyses have been
normalised with respect to the appropriate yield, flow and ultimate tensile stresses. The
representative flow stress, oy is defined as the average of the yield and ultimate stresses, i.e. o¢
=(oytours)/2. The normalised peak loads for the X65 SAW material are plotted against the
corresponding results obtained for the 6082-T6 aluminium alloy material in Fig.3.14. It can be

seen that the best correlation is obtained using the representative flow stress.
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Fig.3.14 A comparison of normalised peak limit loads for 6082-T6 aluminium alloy and X65
SAW

3.4  Analytical Methods
3.4.1 Elastic Strain Energy Solution

For the elastic response of the ring, Castiglano's theorem [41] can be used, i.e.

=oU
6="3F 3.1)

where s is the displacement due to and in the direction of the load F and U is the complementary

strain energy in the structure.

Considering the ring as a thin curved beam, the strain energy can be determined from the

bending moment, M, distribution.

U =5 [M2ds (3.2).

Taking the angle o to be measured from point A (see Fig.3.4 (a)), the bending moment at
angular position, a, is given by

M(a)=MA-Nﬂ?(l—cosa)—%Rsina 3.3)
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where M and Ny are the unknown moment and circumferential force at section A. It is assumed
that the beam is built in at position B, as indicated in Fig.3.2 and there is no internal pressure,
hence
2
_ 12 ’§+I)
U= RM(a) da (3.4).
Therefore using equation (3.1) gives

. _12R? B+C _ R o ;
R Jo- Bk (3.5)

where A, B, C and D are functions only of the support angle, 6, i.e.,

_l1(z 1 )
A——4(2+9+ sin 260
3

B=(+ sine)isin 26 +3cosf — £+6'Xcosz 0 +sin6 + 1)] (3.6).

C= cosB(%+%sin2 0 +sin 01(§+ 0)cos6 - 25in0 —2]

D= 2[(§+ o -2cos? ()—%(%JrO)sin 29)

Normalised initial flexibility, (@), of the force-displacement curves obtained from the FE

method for the material Ideal-A are compared with those obtained using equation (3.5) in
Fig.3.15. It can be seen that the normalised initial flexibility obtained using equation (3.5) and
obtained from the FE analyses are very close in all cases. This figure clearly shows that equation.

(3.5) is capable of accurately predicting the initial gradients.
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Fig.3.15. Normalised initial flexibility obtained from the FE and analytical solutions for different

support angular positions.
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3.4.2 Limit Loads

Upper bound theorems exist for determining limit loads [42, 43]. The upper bound method is
based upon the use of a kinematically admissible velocity field in which, if all boundary
conditions are satisfied, the loads determined by equating the rate at which the external forces do
work to the rate of internal energy dissipation will be either higher than or equal to the actual
limit load.

To calculate the limit load for the dented ring shown in Fig.3.2, the indenter force is assumed
to be a concentrated force (denoted by F). It is assumed that there are five plastic hinges at A, B,
D, E and F, which can form an admissible velocity field and that arcs of the ring between the
hinges are rigid (see p.98). Based on the compatibility of the assumed kinematic velocity field,
the relationship of the angular rotations at those five plastic hinges and the displacement of hinge

A, for small deformation, is given by

6o — cos 8 +sin(6
_ cosbg —cos + sin( 0+¢9)Ra

g 3.7
1-sinf (3.7)

1-sinéf
Q= —a 69

where 6, (see Fig.3.2) is the angular position of the plastic hinges of E and F, and a, is the

relative rotation of arcs AE and EB or of arcs AF and FD. The displacement and rotation of

hinge A are 8 and 2as, respectively, and a, is the rotational angle of hinges B and D. The upper

bound can be optimised by allowing 6 to be a variable. The value of 8, which minimises the

upper bound load is the optimised value of 6. The limit moment My at the hinges is given by

M, =i-0yt2 (3.10).
The internal energy dissipated, W;, and the work, Wg, done by the external force F, are given

by

L+ si

Wy =2Moa; + Moay +Moa3)=4Moaz=4M0—+—s.’ln—9—a1 (3.11)
1-sinéy :

and

Wg = F68 (3.12).
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By employing the virtual work principle and minimising the external force F with respect to

0y, the optimised upper bound is given by

4M g

Fy =L(9) (3.13)
where L(9) is given by
L(6)= (1+5sin ) (3.14).

=— :
(2sin (% + 56’)— cos 0)
The non-dimensional function, L(#), relates the magnitude of the limit load to the position, 6,

of the support; the variation of L(¢) with 6 is shown in Fig.3.16, which illustrates that the upper-

bound limit load of the dented ring decreases with increasing support angle, 6. The FE results for

idealised material Ideal-A, normalised by dividing the peak loads by t’c,/R, are also included in

Fig. 3.16, for comparison with the upper-bound prediction.

20
15
—— Analytical
10 | © D/t =72 Ideal-A

. A D/t=426 Ideal-A
A D/t =30.8 Ideal-A

Upper-Bound function L§)

90 -60 -30 0 30 60 90
Angular support position (6°)

Fig.3.16 Values of non-dimensional limit load function, L(¢), for different support angular

positions for material Ideal-A.

3.5 Comparisons of Experimental, FE and Analytical Solutions

A comparison of the solutions obtained from experiments, FE and analytical solutions is
performed in order to validate the FE modelling analyses and the analytical solutions derived in

this chapter.
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3.5.1. Initial gradient

The initial gradient results given in Tables 3.1 and 3.3 for the 6082-T6 aluminium alloy, with
different D/t ratios, are shown in Table 3.8. It is seen that for the large D/t ratio, the initial
gradients obtained from the experiments are in good agreement with those obtained from FE
analyses with boundary condition 1, but are smaller than those obtained from the analytical
solution described in this chapter. However, for small D/t ratios, the initial gradients obtained
from the experiments are closer to those from the FE analyses with boundary condition 2 and are
much smaller than those obtained from the analytical solution, i.e. Eq.(3.5). However, the initial
gradients obtained from the FE analyses with boundary condition 1 are also quite close to those
obtained from the analytical solution. These differences occur because in the analytical solution
the vertical movements at C are prevented but in the FE analyses and experiments point C is

allowed to move vertically.

Table 3.8 Initial gradients from experiments, FE analyses and analytical solutions for the 6082-

T6 aluminium alloy

Dit | Experimental FE (BC1) FE (BC2) Analytical
Results Solution Solution Solution
TE1 2.33
72 | TE2 2.31 FE1 | 222 | FE2 | 1.53 2.52
TES3 2.25
TE4 | 11.36
416 | TES5 1028 | FE3 | 1239 | FE4 | 9.69 14.58
TE6 | 23.07
30.8| TE7 | 24090 | FE5 | 3280 | FE6 | 23.85 37.06
24 | TE8 | 6142 | FE7 | 6797 | FE8 | 56.79 80.60

The close agreement between the FE and analytical elastic predictions, indicated in Fig.3.15,
for material Ideal-A, shows that similar conclusions on the relative magnitudes of initial

deflections would be obtained with all of the other material models.
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3.5.2. Limit loads
3.5.2.1 6082-T6 Aluminium Alloy

The force versus displacement curves obtained from each of the FE and analytical solutions
performed on the aluminium alloy models are shown in Fig. 3.17; the analytical limit loads were
calculated by using the representative flow stress. Also shown in these figures are the
corresponding experimental results. The limit loads obtained from the FE and analytical analyses
are given in Table 3.9, which shows that the analytical limit loads, obtained using the yield stress
in the predictions, are generally very close to those obtained from the experiments. These data
indicate that the analytical, FE and experimental results are consistent and that using

representative flow stress gives closer correlation of analytical solutions to those obtained using

the FE results with boundary condition 1.

Table 3.9 FE and analytical solution for limit loads in 6082-T6 aluminium alloy rings by using
yield, flow and ultimate tensile stresses in the analytical formulation (c,= yield stress; o=

representative flow stress; o= ultimate stress); 6=45°

D/t |Experimental| FE (BC1) FE (BC2) Analytical | Analytical Analytical
N/mm N/mm N/mm Using o, | Using o | using Surs
TE1| 14.6
72 {TE2 | 140 | FE1 | 14.2 FE2 12.3 14.2 16.0 17.2
TE3 | 135
TE4 | 66.0
416 |TE5| 61.0 | FE3 | 69.4 FE4 62.0 66.2 71.8 775
TE6 | 86.0
30.8{ TE7 | 88.7 | FE5 | 99.7 FE6 90.0 90.6 98.0 105.7
24 |TE8| 204 {FE7 | 223 FE8 203 195.1 211.7 228.3
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Fig 3.17 (a) D/t=72
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Fig 3.17 (b) D/t=41.6
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Fig 3.17 (d) D/t=24

Fig.3.17 Indenter force versus dent depth curves obtained from the analytical formulation, the
FE modelling analyses and the experimental tests for 6082-T6 aluminium alloy rings; BCI and

BC2 refer to boundary conditions 1 and 2, respectively.

A comparison of the solutions of the analytical, FE and experimental results indicates that for

large D/t ratios, the limit load results obtained from the experimental tests and the FE analyses,
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with boundary condition 2, are in good agreement but they are significantly smaller than those
obtained using the analytical solutions. The results obtained from the FE analyses, with
boundary condition 2, were found to be smaller than those obtained from the experimental tests
for D/t =72. For smaller D/t ratios ranging from 24 to 41.6, it was found that the solutions
obtained from the FE analyses, the analytical formulations and the experimental tests are
reasonably close. For the smaller D/t ratios, it can also be seen that the indenter forces obtained
from the FE analyses, with boundary condition 1, are higher than those obtained from the
experimental tests. In these cases, better agreement between the FE and the experimental results
is obtained when the FE analyses are performed with boundary condition 2.

All of the above analyses show that the analytical formulation for predicting the limit load is
capable of giving reasonably accurate predictions of the limit loads for smaller D/t ratios, with
the support as shown in Fig.3.2. However, the analytical formulation for predicting the limit load
overestimates the limit loads for larger D/t ratios, i.e. D/t=72. The differences between the
analytical, FE modelling and experimental test results are considered to be mainly due to the
differences in the boundary conditions and the assumption of rigid arcs between AE, EB etc in

the analytical solution.

3.5.2.2 Elastic Perfectly Plastic Materials

The results obtained from each of the FE analyses using the elastic perfectly plastic material
models and the theoretical analyses, were normalised by dividing them by the yield stress. The
results are given in Table 3.10 which illustrates that the material properties influenced the value

of the predictions, by between 1.4% to 14%.

Table 3.10 Normalised peak loads obtained from the analytical and FE analyses performed for
elastic perfectly plastic materials with boundary conditions 1 and 2 (BC1 and BC2).

Ideal-A
0 = 45° Materials: Ideal-B, C and D (E=223GPa) (E=70GPa)

Yield stress | 300MPa B | 448MPa C [ 600MPa D 300MPa A
Dit T FE FE FE FE FE FE FE FE
mm) | BC1 | BC2 | BC1 | BC2 | BC1 | BC2 | BCH BC2
308 3 [0.337]0.307 |0.326 | 0.297 1 0.318 | 0.288 | 0.302 | 0.272 0.3
426| 3 [0.232(0.212]0.225|0.203 | 0.218 | 0.197 [ 0.205 | 0.183 0.215
72 | 1.2 [0.051]0.045 | 0.048 | 0.043 | 0.047 [ 0.041 | 0.043 | 0.038 0.049

Analytical
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From a comparison of the FE predictions, for boundary condition 1, with the analytical
predictions, it can be seen that the peak loads obtained from the FE analyses with a Young's
modulus of 223GPa are higher than those obtained using the analytical method. This comparison
also shows that the yield stress used in the FE analyses has an effect on the normalised peak load
predictions. The FE results with a lower Young's modulus (70GPa) indicate that the peak loads
obtained from the FE analyses, with boundary condition 1, for large D/t ratios are smaller than
those obtained using the analytical method. The results also clearly show that Young's modulus
influences the peak loads obtained from the FE analyses.

The results in Table 3.10 also show that for rings made from materials Ideal-B, C and D, with
smaller D/t ratios, the peak loads obtained using boundary condition 2 are relatively close to
predictions obtained using the analytical method. For the higher D/t ratio, i.e. D/t=72, the use of
boundary condition 1 gives better agreement with the predictions of peak loads obtained using
the analytical method. A comparison of results for material Ideal-A and boundary condition 1,
with analytical predictions, indicates better agreement of the predictions of peak loads than that
obtained using boundary condition 2. The same conclusion was made in section 3.5.2.1 for the
6082-T6 aluminium alloy material. The results show that for the highest D/t ratio, i.e. D/t=72,
using boundary condition 1, the correlations with the analytical results are generally better than
when boundary conditions 2 is used. The results also show that for materials with higher E
values and smaller D/t ratios, the correlation is better using boundary conditions 2 than boundary
conditions 1. For the lower E value, Ideal-A material, using boundary conditions | gives better
correlation of peak loads than is obtained using boundary conditions 2.

The effects of D/t on the correlation of the analytical limit load and the FE prediction of peak
load, can also be obtained from Table 3.10. It can be seen that for the idealised material Ideal-B,
the FE peak loads and the analytical limit load are closer for a D/t ratio of 72 rather than for that
of 30.8. However, for idealised material Ideal-A, the limit loads obtained from the analytical
method are closer to the FE peak loads for a D/t ratio of 30.8 rather than for that of 72.

The effects of angular positions of the support on limit loads (see Table 3.5) are shown in
Fig.3.16 which indicates that FE modelling can predict the limit loads better at large rather than
small angular positions. However, small angular support positions (i.e. 8 <-45°) are likely to be

rare in practical applications.
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3.5.2.3 X65 SAW Steel

The indenter force versus displacement curves obtained from each of the FE analyses, using

boundary conditions 1, and the analytical solutions for the X65 SAW steel models, are shown in

Fig. 3.18; the analytical limit loads were calculated using the representative flow stress. The peak

loads are shown in Table 3.11.

Table 3.11 FE and analytical peak load comparisons for X65 SAW steel rings using the yield,

flow and ultimate tensile stresses in the analytical formulation (o= representative flow stress;

o,= yield stress; oyrs= ultimate tensile stress)

D/t=30.8 ; t=3 mm D/t=42.6 ;t= 3 mm DiA=72;t=1.2mm
0 Analytical by using Analytical by using Analytical by using
FE Oy Or Outs FE Cy Cr Cuts FE Oy Of Outs
90° | 119 90 |113 135 |81.7| 64.5 | 90.9 97 |17.3| 15 18.5 22
45°1 169 | 135 (169.2| 203 | 115 | 96.5 | 121 145 (242 22 27.6 33
0° [ 267 | 218 [273 | 328 | 180 | 156 | 195 | 235 |36.4| 355 | 446 | 53.6
. 180
£ 160
§ 140
r 120 —— Analytical
3} 100
L 80 D/t=30.8;t=3 mm
31__.3 60 e=45°
$ 40
2 20 & Steel: X65 SAW
O -
0 10 20 30

Dent depth (mm)

Fig. 3.18 (a) D/t=30.8
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Fig. 3.18 (b) D/t=42.6

D/t=72;t=1.2mm

0 o g e | 0=45
5 [ —Analytical  Steel: X65 SAW

Indenter force (N/mm)
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Fig. 3.18 (c) D/t=72
Fig. 3.18 The indenter force versus depth curves from analytical, FE and experimental tests using

X65 SAW steel models with the support angular position of 45°

It can be seen that similar conclusions can be derived from the steel data as were derived from
the aluminium data. For higher D/t ratios, i.e. D/t=72, using the yield stress in the analytical
solution gives closer correlation with predictions of peak loads obtained from the FE analyses.
For the lowest D/t ratio, i.e. D/t=30.8, the peak FE load is very close to that obtained using the

representative flow stress in the analytical formulation. This is because the analytical limit load
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solutions are based on small deformation theory whereas the FE and the experimental data

include large deformation and large strain effects.

3.6 Conclusions

All of the above analyses illustrate that due to the effects of the non-linear large deformations
and large strains in dented rings, material properties and geometries can influence the accuracy of
the predictions of the peak loads obtained using the analytical solutions, i.e. Eq.3.13. However,
using the flow or yield stress in the analytical solutions can give reasonably accurate peak load
predictions. For smaller D/t ratios, peak loads can be accurately predicted using the analytical
solutions.

Due to the differences of the boundary conditions in the FE, experimental and analytical
solutions, the initial gradients obtained from the analytical solution are higher than those obtained
from the FE and the experimental test results. However, for larger D/t ratios, i.e. D/t=72, the
analytical solutions can give very good agreement for the predictions of initial gradients.

The FE and the experimental results indicate that using boundary condition 1 results in more
accurate predictions of the initial gradients and limit loads of dented rings on a saddle-type
support with larger D/t ratios, i.e. D/t=72. However, using boundary condition 2 is capable of

predicting the peak loads and initial gradients for smaller D/t ratios, i.e. D/t=30.8.

3.7 Summary

The elastic-plastic responses of pipes with long indentations were investigated in this chapter
using experimental tests, FE analyses and simple analytical methods (initial gradients and limit
loads). Six different materials, four different geometries and two different boundary conditions
were used to investigate their effects on the elastic-plastic responses. All of results presented in
this chapter indicate that by using the average of yield and ultimate stresses as the representative
flow stress in the limit load method, it is possible to obtain reasonably accurate predictions for the

peak loads.
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Chapter 4

Prediction of Indentation Force-Deflection Behaviour
of Pressurised Pipes

4.1 Introduction

In chapter 3, the upper bound method has been used to determine the limit loads for
unpressurised rings. A comparison of the analytical and FE solutions with experimental data
showed that the analytical limit load method is simple to use and can give accurate predictions.
It is shown in this chapter that if the internal pressure is large enough, the limit load methods
previously used in chapter 3 for unpressurised pipes, give inaccurate predictions. This chapter
explains why the approach used when there is no pressure is inaccurate for the case of pressurised
pipes, and presents an alternative energy-based approach for predicting the relationship between
indentation force and dent depth when internal pressure is significant. The accuracy of the
analytical method for pressurised rings with large, non-linear deformation is assessed by

comparing predictions with the corresponding results of FE analyses.

4.2 FE Analyses
4. 2.1 Material

Seven materials were used in the FE analyses. They are designated as idealised materials
Ideal-A to E, 6082-T6 aluminium alloy and X65 SAW steel, which is a practical pipe material.
The tensile stress-strain curves for 6082-T6 aluminium alloy and X65 SAW are shown in Fig.
3.1; Young's modulus, Poisson's ratio, yield stress and ultimate tensile stress for the materials are
given in Table 4.1.

The five idealised materials (i.e. Ideal-A, B, C, D and E) with elastic, perfectly plastic
material properties, were used to investigate the influence of Young’s modulus and yield stress
on the force-deflection curves. Of the idealised materials, Ideal-B, C and D, were chosen to have
the same Young's modulus of 223 GPa and yield stresses of 300 MPa, 448 MPa and 600MPa,
respectively. The other two idealised materials, Ideal-A and E, together with material Ideal-B,

were chosen to have a yield stress of 300MPa and Young's moduli of 70GPa, 150GPa and
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223GPa. The material properties for the seven materials are summarised in Table 4.1. In all of

the FE analyses, the materials were assumed to obey an isotropic hardening rule.

Table 4.1 Material parameters used in FE analyses

Material E (GPa) oy, (MPa) | oyrs (MPa) | Poisson's ratio
6082-T6 alloy 70 300 351 0.3
X65 SAW 223 448 675 0.3
Ideal-A 70 300 - 0.3
Ideal-B 223 300 - 0.3
Ideal-C 223 448 - 0.3
Ideal-D 223 600 - 0.3
Ideal-E 150 300 - 0.3

4.2.2 FE Meshes, Boundary Conditions and Loading

ABAQUS [26] FE software was used for the analyses of the rings; the dimensions, support
and loading conditions are shown in Fig. 4.1. Due to symmetry, only one half of the rings were
modelled (see Fig. 3.4). All models consisted of 3600 8-noded, plane-strain, reduced integration
clements. The nodes on the rings at sections A and C (Fig. 3.4(a)) were restrained in the
circumferential direction (i.e. uxa=u,c=0) for all of the analyses. Also, the rings were fully
restrained (i.e.uxp=uyp=0) at the outer diameter at positions B and D, which are at an angle 0 to
the x-direction, see Fig. 4.1. The load was applied in the radially inwards direction at the outer

diameter position at point A. In total 25 analyses were performed, as defined in Table 4.2.

(moving down)

| Indenter
\ A
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/L ! E
eo 0‘ ) eo X
| '
e [ )
\\ \ / /
\\\/ ; ! ‘\//1
\C

Fig.4.1 Indented ring geometry, loading and boundary conditions
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Table 4.2 Materials, Geometries and Pressures used in the FE analyses

Wall Support Pressure | Initial gradient
FE No. Material | Diameter | thickness D/t angle p (MPa) | Per unit length
D (mm) t (mm) 0 K., (MPa)

FEIP Ideal-A 128 3.0 42.6 0° 5 84.37
FE2P Ideal-A 128 3.0 42.6 25° 5 45.76
FE3P Ideal-A 128 3.0 42.6 45° 5 29.32
FE4P Ideal-A 128 3.0 42.6 65° 5 20.71
FESP Ideal-A 128 3.0 42.6 90° 5 14.55
FE6P Ideal-A 128 3.0 42.6 45° 0 12.96
FE7P Ideal-A 128 3.0 42.6 45° 0.1 13.37
FE8P Ideal-A 128 3.0 42.6 45° 0.5 14.96
FESP Ideal-A 128 3.0 42.6 45° 1 17.09
FE10P Ideal-A 128 3.0 42.6 45° 2 19.25
FEL1P Ideal-A 128 3.0 42.6 45° 8 40.21
FE12P Ideal-E 128 3.0 42.6 45° 5 46.95
FE13P Ideal-B 128 3.0 42.6 45° 5 60.39
FE14P Ideal-C 128 3.0 42.6 45° 147 69.13
FE15P Ideal-D 128 3.0 42.6 45° 10 79.09
FE16P Ideal-C 128 3.0 42.6 45° 5 60.39
FE17P Ideal-D 128 3.0 42.6 45° 5 60.39
FE18P Ideal-A 88.8 1.2 72 45° 2.82 12.05
FE19P Ideal-A 924 3.0 30.8 45° 6.77 56.34
FE20P 6082-T6 88.8 1.2 72 45° 2.82 11.46
FE21P 6082-T6 128 3.0 42.6 45° S 31.57
FE22P 6082-T6 92.4 3.0 30.8 45° 6.77 57.60
FE23P X65 Saw 88.8 1.2 72 45° 2.82 17.21
FE24P X65 Saw 128 3.0 42.6 45° 5 60.31
FE25P X65 Saw 924 3.0 30.8 45° 6.77 136.90

4.2.3 FE Results
4.2.3.1 Typical Behaviour

The force-deflection predictions obtained from the FE analyses of a ring with zero, low and
high pressures are shown in Fig. 4.2 for a ring with a D/t=42.6 (t=3mm), 6=45° and material
Ideal-A. The general behaviour is typical of that obtained with other D/t ratios (30<D/t<70) and
0 values (0°<8<90°), see Figs. 4.3 to 4.7. As was shown previously in chapter 3, when the
internal pressure is zero, the force deflection curve reaches a maximum value and then, with
continued deformation, the load reduces. The initial (elastic) slope and maximum load can be
accurately predicted, in this case, using the simple analytical techniques in chapter 3. It can be
seen that the internal pressure has a significant effect on the initial slope and on the subsequent
force versus deflection behaviour in the elastic-plastic region. Hence, the straightforward use of

a limit load approach, to determine the maximum load and to predict the post-yield behaviour, is
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obviously inadequate. The modifications introduced to the limit load approach to enable the

post-yield behaviour to be reasonably accurately predicted, are described in Section 4.3.

300 —O~ FE P=0 MPa
—e—FE P=0.1 MPa
—A— FE P=0.5 MPa

250 —e—FE P=1MPa
—a— FE P=2 MPa

200 —e—FE P=5 MPa
—o—FE P=8 MPa

Indenter force (N/mm)
o
o

0 &5 10 15 20 25 30 35 40
Dent depth (mm)

Fig. 4.2 Indenter force per unit length versus dent depth curves, for different internal pressures,
i.e.p=0,0.1,0.5, 1,2, 5 and 8MPa, and for idealised material Ideal-A,0 =45°, D/t=42.6 and

t=3mm

—&— FE angle=0
—a&— FE angle=25
—— FE angle=45

Indenter force (N/mm
o
o

154 —e— FE angle=65
50 —o—FE angle=90
0
0 15 30 45
Dent depth (mm)

Fig. 4.3 Indenter force per unit length versus dent depth curves for different angular support
positions, i.e. 0=0°, 25°, 45°, 65° and 90°, and for idealised material Ideal-A, p=5MPa, D/t=42.6

and t=3mm
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Fig. 4.4 Indenter force per unit length versus dent depth curves for different yield stresses of 300,
448 and 600MPa, and for a pressure, p, which produces a mean hoop stress of 0.34c, in the ring;

D/t=42.6, t=3mm and 6=45°
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Fig. 4.5 Indenter force per unit length versus dent depth curves for different yield stresses of 300,

448 and 600MPa, for p=5MPa, D/t=42.6, t=3mm and 0=45°
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Fig. 4.6 Indenter force per unit length versus dent depth curves for different Young's moduli, i.e.

E=70, 150 and 223Gpa, and for p=5MPa, 6=45°, D/t=42.6 and t=3mm
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Fig. 4.7 Indenter force per unit length versus dent depth curves for different D/t ratios of 72, 42.6
and 30.8, with their corresponding thicknesses, i.e. t=1.2, 3 and 3mm, and for idealised material

Ideal-A, a pressure which produces a mean hoop stress of 0.34c, in the ring, and 6=45°
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4.2.3.2 Initial Force-displacement Gradient

The FE initial gradient results, were obtained from the force-deflection curves obtained from
the FE analyses, FE1P to FE25P, and are shown in Table 4.2. The results indicate that the initial
gradients per unit length, for pressurised rings, are functions of the internal pressure (p), Young’s
modulus (E), D/t ratio and angular support position (6). The associated curves are shown in
Figs.4.8 to 4.11, along with the results of analytical solutions which will be described in section
43.

From Figs 4.8 to 11, it can be seen that the initial gradients, obtained from the FE analyses, in
pressurised rings vary linearly with the Young’s modulus (E), as expected, and linearly with the
internal pressure (p) and that they vary non-linearly with the angular support position (6) and

with the D/t ratio.

45
T 40
< 35
= 30
o 25
® 20
> 15 o FE
S 10 —— Analytical
£ 5
0

o 1.2 3 4 5 6 7 8
Internal pressure (MPa)

Fig. 4.8 Initial gradient per unit length versus pressure curves for material Ideal-A,0 =45°,

D/t=42.6 and t=3mm
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Fig. 4.9 Initial gradient per unit length versus angular support position curve for material Ideal-A,

p=5MPa, 6 =45°, D/t=42.6 and t=3mm
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Fig. 4.10 Initial gradient per unit length versus D/t ratio curve for material Ideal-A, 6 =45° and a

pressure which produces a mean hoop stress of 0.34c,.
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Fig. 4.11 Initial gradient per unit length versus Young’s modulus curve for 6 =45°, D/t=42.6,
t=3mm and p=5MPa.

4.2.3.3 Response Obtained with Idealised Elastic, Perfectly Plastic
Material Behaviour Models

Five idealised elastic perfectly plastic materials (Ideal-A, B, C, D and E) were chosen to
investigate the effects of the Young's modulus and yield stress on the typical force-deflection
curves for three geometries (D/t=72, 42.6, 30.8). The results were also used to investigate the
effects of the support angular positions and magnitudes of the internal pressure on the force-
deflection curves. Typical force-deflection curves, obtained from FE1P to FE19P, are shown in
Fig4.2t04.7.

The general shape of the force-deflection curve depends on the magnitudes of the internal
pressure.  In general, the load carrying capacity increases with increasing pressure and the
deformation caused by a given load reduces with increasing internal pressure (Fig.4.2).
However, the deformation caused by a given load is increased as the support angle, 0, is
increased (Fig.4.3). It can be seen from Figs. 4.4 and 4.5, that the force versus displacement
response is significantly affected by the magnitude of the yield stress. However, apart from the
early low deformation regions of the response, the magnitude of the Young’s modulus has a

relatively small effect on the force versus displacement response, see Fig 4.6. As the diameter,
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D, increases, for a given thickness, t, the deformation for a particular load is increased, see Fig.
4.7.

4.2.3.4 6082-T6 aluminium alloy and X65 SAW
Typical indenter force per unit length versus depth curves obtained from the FE20P to FE25P
FE analyses, performed with the 6082-T6 aluminium alloy and X65 SAW steel material models,

are shown in Figs. 4.12 and 4.13, respectively. The general behaviour is similar to that obtained

for the elastic perfectly plastic materials, see Fig. 4.7.

—O—FE D/t=72
58l —&— FE D/t=42.6
300  —e—FE D/t=30.8
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200
150
100
50
0

Indenter force (N/mm

0 5 10 15 20 25 30
Dent depth (mm)

Fig. 4.12 Indenter force per unit length versus dent depth curves for different D/t ratios of 72,
42.6 and 30.8, with their corresponding thickness, i.e. t=1.2, 3 and 3mm, for 6082-T6 aluminium

alloy, with a pressure which produces a mean hoop stress of 0.346, in a ring with 6=45°
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Fig. 4.13 Indenter force per unit length versus dent depth curves for different D/t ratios of 72,

42.6 and 30.8 with their corresponding thickness, i.e. t=1.2, 3 and 3mm, for X65 SAW, with a

pressure which produces a mean hoop stress of 0.220, in a ring with 6=45°

4.3 Analytical Solutions
4.3.1 Elastic Behaviour

In chapter 3, the small deformation relationship between force and deflection, for an

unpresssurised ring, was obtained using Castiglano's theorem as follows:

_ _EP ( D )
F‘12R3 AD+B+C g 4.1)

where A, B, C and D are functions of the support angle 6, as follows:

A:%(%+t9+lsin20)

B =(l+sin¢9)%sin20+3cos(9— %+9 c0520+sin8+1)]
C = cos 9(% +Lsin? 0+sin 91(% + 6)0050 ~2sin6 - 2] > (4.2
—9 (= _ 2 _l(l ) :
D = 2((2 +9)2 2cos“ @ Ay +6 sm20]
Hence, the small deformation "stiffness", K, is given by
. . EC D
Ke _1_2?( AD+B+(‘) (4.3)

which is only related to the ring dimensions, the support position and Young's modulus.
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Equation (4.3) indicates that the initial elastic deformation can be simulated using a spring

with an elastic constant K,; this concept is valid for any structure in the linear elastic

deformation range. However, because the internal pressure causes initial deflections and stresses
within the pipe, the initial " tangent stiffness matrix " [44] relating the indentation force to the
indentation depth is dependent upon the internal pressure when the indentation force is applied,
hence, there is a coupled effect between the pressure and force on the displacement caused by the
combined load such that the force (F) versus displacement () curve is dependent on the pressure
p.

The displacements in the radial-directions, obtained from a FE analysis for a ring with 6=45°,
D/t=42.6 and E=230GPa are plotted against the circumferential position, a, in Fig. 4.14. This
indicates that the load induced curvature of the ring is large at angular positions in the vicinity of
a=0°, £72° and +135° and is relatively small at other positions. Hence, the elastic deformation
can be reasonably accurately represented by five elastic hinges, at a=0°, +72° and #135°,

connected by rigid beams between these hinges. For indented rings with a support angle 6, the
positions of the five elastic hinges may be assumed to be at a=0°, (17+16) and t(47+0),
which are the positions predicted by limit load analysis for unpressurised rings in chapter 3. In
such circumstances, the relationship between the angles of rotation at the elastic hinges (i.e. a,
a2, o3) and the displacement & can be obtained from a kinematic analysis of the system (see

Appendix 1.A.1).
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Fig. 4.14 Radial displacement versus circumferential position curves in the elastic deformation

range for D/t=42.6, 6=45° and E=230GPa.

For small deformations, the energy stored in the five hinges will be %K 0%, where K, is the

stiffness of an equivalent linear spring, irrespective of whether the ring is pressurised or not,
because the rotation of the hinges is simply governed by the kinematics of the system (see

Appendix 1.A.2). The kinematic analysis is given in Appendix 1.A.1.
The work done by the external force, F, is given by W = f Fdé and the work, Wp, done by
internal pressure is given by
W= Wh+w} (4.4)
where W}l, and W,E are the sum of the work done by internal pressure on the D-F and B-E arcs

and on the F-A and A-E arcs of the ring in Fig. 4.1, respectively, and are given by

W}, =2alpR2(l—cos(0+00)) (4.5)
and
Wg =2pR2 Ig' {— (1 —sinﬁ)(%—1)+[sin(0—a2)+sin( 6o +a2)+cos(0+00 +a2)—cosa2]}da1 (4.6)

Hence, it follows that

[ Fas+Wp =1K.5? @.7)
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Differentiation of equation (4.7) with respect to & gives
F=K,0+pRF? (4.8)

where F%is given by

e G ) (8 PR S i) ke ) e ) P
cos(mﬂxz )+sin(ﬂ+az)

2 2

P

P
The term pR F P in equation (4.8) can be rewritten as l’%f—-é‘ and expressing pR‘f as K,,in

the limit, as § — 0, and putting &, =%’ the small elastic deformation stiffness, Kp,

associated with the internal pressure, is given by

. . P
K, = plimit & 4.10).

From the kinematics of the system (see Appendix 1.A.1) and equation (4.9), the limiting

solution, as & — 0, of equation (4.10) is given by

K -2p ~(1-sin 8, )2 Sing_Tao-f-COSgO cosa;zoo—(sin B+sin 6y )+(1-sin g )(1+sin 0)[cos%@+sin(—);—0§] (4.11)
d c0s 8y ~cos @+sin(f+6, {cos@ﬂino——fﬂ]
Substituting equation (4.10) into equation (4.8) gives
F=Kgo=(K,+K, (4.12).

Hence, it can be seen that the initial gradient, K ,, of the indenter force versus deflection
curve, in the small deformation range, depends upon the Young’s modulus, E, the geometrical

ratio, D/t, the internal pressure, p, and the support position, 6. The theory predicts a linear

relationship between K, and p or E, but a non-linear relationship between X, and D/t or 6.

The initial gradients obtained from the FE analyses FEIP to FE25P and those obtained from
the above analytical method are plotted against each other in Fig.4.15, also plotted for

comparison are analytical results obtained without the coupling effect, due to the pressure, being

included.
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Fig.4.15 Comparison of the FE and the analytical solutions of the initial gradients per unit length

of indenter force versus dent depth curves, for small deformations in pressurised pipes.

From Fig.4.15 it can be seen that the analytical initial gradient solutions for different
materials, different geometrical dimensions, different angular support positions and different
magnitudes of the internal pressure are very close to those obtained from FE analyses, provided
that the effects of pressure are included. The analytical predictions of initial gradient are also
compared with the FE results in Figs. 4.8 to 4.11. The correlation of the initial gradient solutions
is very good and indicates that the theory is capable of predicting the initial gradients, for small

deformations, provided the coupling effect between the pressure and force, on the deformation, is

included.
Equations (4.10) and (4.12) reflect the effects of the internal pressure on the external indenter

force or displacement, for small additional deformations induced by the indenter force. For a
given indenter force F, the displacement 8, reduces with an increase of the internal pressure, p; or
for a given displacement, 3, the external indenter force, F, increases as the internal pressure, p, is
increased. This is in agreement with the FE solutions shown in Fig. 42. However, although
equations (4.10) and (4.12) provide an approximate relationship between the indenter force and
dent depth, for small deformations induced by the indenter force, such accurate results could not

be obtained if the coupling effect was ignored.
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4.3.2 Inelastic Behaviour

For unpressurised pipes with long indentations, it was found that the limit load method in
chapter 3 is capable of accurately predicting peak loads by assuming five plastic hinges at
positions A, E, B, D and F (see Fig.4.1). The kinematics of this five hinge system allows the
vertical displacement, or dent depth to be related to the angular rotation of the hinges, see
Appendix 1.A.1. Hence the work, WE, done by the external indenter force, F, can be equated to
the sum of the dissipation of energy at the hinges, W), during deformation. Since W; can be
determined, the external force at collapse may be obtained.

With the addition of internal pressure during the indentation process and the geometric
changes which occur during the indentation process, the superposition of the elastic solution
(based on small deformation theory) and a limit load solution (also based on small deformation
theory), which gives accurate predictions for unpressurised rings in chapter 3, is inadequate. For
the plastic behaviour of pressurised rings, energy is dissipated at the five hinges, as in the
unpressurised situation, but as well as work being done by the applied force, F, there is work
done by the internal pressure, p, associated with displacements which occur as F is increased. In
this case, the ‘coupling effect’ as well as the finite deformation effect is important and the
kinematic analysis relating the hinge rotations to the load-line displacement, must reflect this.
The kinematic analysis including large deformation effects is given in Appendix 1.A.l. Since the
relationship between the load-line displacement and hinge rotations is non-linear, an incremental
approach is required. In this case, by equating the work done by the applied force, F, during an
increment of displacement and the associated work done by the internal pressure, p, to the energy
dissipated in the hinges by the corresponding increments of the rotation, the instantaneous force,
F, associated with the increment of load-line displacement, can be determined. Hence, by adding
this plastic solution to the elastic solution, section 4.3.1, an elastic-plastic force-deflection
prediction can be obtained. The results of a kinematic analysis incorporating large deformation
effects, together with expressions for the work done by the internal pressure and the energy
dissipated at hinges, are outlined in the Appendices 1.A.3 to 1.A 4.

It should be noted that the kinematic analysis is only appliable until the three hinges at A, E
and F are in line; the conditions under which this occurs are given in Appendix 1.A.1. The
resulting maximum displacement, Smax, and rotations o ma and dimax at hinges B and E, ie. o

and o, when A, E and F are in line, are shown in Figs. 4.16(a) and 4.16(b). It can be seen that

70



when 8max is achieved, the deformation is generally large and therefore predictions for higher

values of & would be of little practical interest, particularly for the higher values of 6. Predictions

based on the analytical method are only valid for values of & less than §,,,« and hence all of the

results presented graphically are terminated when this value of 3 is reached.
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(a) Maximum non-dimensional dent depth
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Fig.4.16 Maximum non-dimensional dent depth and rotational angles, 0tmax and Otzmax (When A,

E and F are in line), for the plastic hinges at positions D and F, for different support angular

positions
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Figs. 4.16 (a) and (b) clearly show that large angular support positions will allow large
maximum displacements and maximum rotational angles in those analyses.

Since the deformation is non-linear, Wg is given by

Wg ='611F(;i_51_da1 (413)

From the conservation of energy principle and equations (1.a13), (1.a14) and (4.13), it can be

shown that the external force, F, is given by

d dw,

F=aMy 2 -—F (4.14)
where ‘fi‘? and dW” are given by

da2 L (az - )—sin(00+a2 Qi )+sin(0+a1)+sin(60 —a]) (4 15)

d§ R cos(fp-a; )+sin(0+6 +a, )-cos(6+a, )-sina, '
and
aw, - (1-sin 00)cos(¥q+a,)+2sm( 920 a, —a,) co ){260{9“90 smgzl—co ug+a2 J]
—£ = p
dé cos(a % 4a, )+sm(ﬁ+a2)

(4.16).

For convenience, two non-dimensional coefficients, F¥ and F™, are defined, where
F? is given by equation (4.9) and

_ cos(ay—ay)- sin(@g +ay —a; )+sin(@+a, )+sin(fy ;)

M
F cos(Bg —a; )+sin(8+6; +ay )-cos(@+a, )-sina, (4.17).
Therefore, the external force, F, can be expressed as
F=20rY +pRF? “.18)

For 6=0°, 25°, 45°, 65° and 90°, F and F" are plotted against the indenter displacement (dent
depth) in Fig.4.17 (a) and (b). It can be seen that at small dent depths, F™ is dominant but F¥

becomes more significant for the larger dent depths.
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Fig. 4.17 Non-dimensional coefficients for support angular positions of 0°, 25°, 45°, 65° and 90°.

A schematic indenter force per unit length versus displacement predicted by equation (4.18) is

shown in Fig. 4.18, as curve OAC. It can be seen that the initial elastic region is poorly

described, i.e., the figure implies a steep change in force for no change in deflection in the early

deformation part of the curve. To overcome this problem, the elastic behaviour predicted by
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equation (4.12) has been superimposed in Fig.4.18, as line OD. Hence the predicted behaviour is
taken to be that of curve OBC. However, it should be noted that equation (4.8) is capable of
predicting the elastic behaviour with a ‘coupling effect’ between the indenter force and the
internal pressure, as shown by line OF. Therefore, an alternative prediction, given by curve
OEC, could be obtained. However, in general, the difference between curves OB and OE is very

small.

300 - Equation (12) P C

Indenter force (N/mm)

o » 8

0 5 10 15 20
Dent depth (mm)

Fig. 4.18 Schematic indenter force versus depth curves, obtained using equations (4.8), (4.12)
and (4.18), for E=70GPa, D/t=46.2, t=3mm, 6=45°, p=5 MPa and c,=300 MPa

4.4 Comparisons of FE and Analytical Solutions
A comparison of the solutions obtained from the FE analyses and analytical solutions was

performed in order to assess the accuracy of the analytical solutions described in this chapter.

4.4.1. Idealised Elastic, Perfectly Plastic Materials
4.4.1.1 Comparison with Different Support Positions

The force-deflection curves obtained from FE analyses FEIP to FESP and the corresponding
analytical solutions, for the idealised material model (Ideal-A), for support angular positions of
0°, 25°, 45°, 65° and 90°, are shown in Fig. 4.19. These curves indicate that the analytical and FE
results are consistent and that for smaller angular positions, in particular, very close correlation of
the analytical and FE solutions can be obtained. It should be noted that very good correlation of

analytical and the FE solutions were obtained for small dent depths, i.e. in the elastic region, as
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well as in the elastic-plastic region unlike the situation that would result if the ‘coupling effect’

was excluded from the analytical model.
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(b) Support angles of 65° and 90°

Fig. 4.19 Indenter force per unit length versus dent depth curves obtained from the FE and
analytical solutions for different support angles, for material Ideal-A, p=5MPa, D/t=42.6 and

t=3mm
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4.4.1.2 Comparison with Different Internal Pressures

The force-deflection curves obtained from the FE analyses FE6P to FEI 1P and FE3P and the
corresponding analytical solutions for the (Ideal-A) idealised material model, for different
internal pressures, are shown in Fig. 4.20. These curves indicate that the analytical and FE results
are reasonably consistent. They indicate that for the higher pressures, the analytical solutions are
slightly higher than the FE solutions when the dent depths are large, and that for the lower
pressures, the analytical solutions are slightly lower than the FE solutions. Also at the lower
pressures, the curves exhibit a maximum in the force for both the FE and analytical results. It is
shown that generally, when pressure is low the analytical solutions are underestimated while

when pressure is high the analytical solutions are conservative.
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=rerer I | I 1T 1
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(a) p=0, 0.5 and 1MPa
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Fig. 4.20 Indenter force per unit length versus dent depth curves obtained from the FE and

analytical solutions for different pressure levels, for idealised material Ideal-A, 6=45°, D/t=42.6

and t=3mm

4.4.1.3 Comparison with Different Young's Moduli

The force-deflection curves obtained from the FE analyses FE3P, FE12P and FE13P and the
corresponding analytical solutions for the idealised material models (Ideal-A, E and B) with
Young's moduli of 70GPa, 150GPa and 223GPa, are shown in Fig. 4.21. These curves indicate
that the analytical and FE results are in close agreement. They also indicate that the Young's
moduli affect the indenter force solutions, see equations (4.3) and (4.12). For the higher values of
Young's moduli, the FE solutions are higher. However, it can be seen that the analytical
solutions, when the dent depths are large, are not strongly dependent on the Young's moduli, but
there is an effect in and near the elastic range. For dent depths greater than about 4mm, all

analytical curves are practically identical.
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Fig. 4.21 Indenter force per unit length versus dent depth curves obtained from the FE and
analytical solutions for different Young's moduli of 70, 150 and 223GPa, with p=SMPa, 6=45°,
D/t=42.6 and t=3mm

4.4.1.4 Comparison with Different Yield Stresses

The force-deflection curves obtained from the FE analyses FEI3P to FEI7P and the

corresponding analytical solutions performed on the idealised material models (Ideal-B, C and D)
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with yield stresses of 300MPa, 448MPa and 600MPa, are shown in Fig. 4.22. These curves

indicate that the analytical and FE results are in close agreement.
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Fig. 4.22 Indenter force per unit length versus dent depth curves obtained from the FE and
analytical solutions for different yield stresses of 300, 448and 600MPa, 6=45°, D/t=42.6 and

t=3mm
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4.4.1.5 Comparison with Different D/t Ratios
The force-deflection curves obtained from the FE analyses FE3P, FE18P and F19P and the

corresponding analytical solutions for the (Ideal-A) idealised material model, with D/t ratios of
72, 42.6 and 30.8, are shown in Fig. 4.23. These curves indicate that the analytical and FE results
are in good agreement. They also indicate that the analytical predictions are higher than the FE

solutions for all D/t ratios investigated.
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Fig. 4.23 Indenter force per unit length versus dent depth curves obtained from the FE and
analytical solutions for different D/t ratios of 72, 42.6and 30.8,with material Ideal-A, a pressure

which produces a mean hoop stress of 0.34 times o, and 6=45°

4.4.2. 6082-T6 Aluminium Alloy and X65 SAW Steel

The force-deflection curves obtained from the FE analyses FE20P to F22P for 6082-T6
aluminium alloy models and FE23P to FE25P for X65 SAW models, are shown in Fig. 4.24 and
4.25, respectively. The analytical solutions also shown, were obtained using a representative flow
stress, oy, equal to average of the yield stress and the UTS, ie. (o,+oyrs)/2. These curves
indicate that the analytical and FE results are in good agreement. The agreement is generally

better than that obtained with the idealised, elastic perfectly plastic models.
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Fig. 4.24 Indenter force per unit length versus dent depth curves obtained from the FE and
analytical solutions for different D/t ratios of 72, 42.6and 30.8, for the 6082-T6 aluminium alloy,

a pressure which produces a mean hoop stress of 0.34 times oy and 6=45°
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Fig. 4.25 Indenter force per unit length versus dent depth curves obtained from the FE and
analytical solutions for different D/t ratios of 72, 42.6and 30.8, for the X65 SAW, a pressure

which produces a mean hoop stress of 0.22 times o, and 6=45°
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4.5 Conclusions

An approximate analytical approach, which incorporates the large deformation effects and the
coupling effect between internal pressure and indenter force on the force versus indenter depth
response, has been developed for pressurised rings. For axially long indentations, the analytical
model can be applied to pipes as well as to rings.

The validity of the analytical model has been assessed by comparing predictions based on it
with corresponding results from FE analyses. The FE and analytical predictions correlate well in
both the elastic and elastic-plastic regions for a wide range of D/t ratios, pressures, angular
support positions, Young’s moduli and yield stress (see Figs. 4.19 to 4.23).

The analytical model can be incorporated in a computer program to run quickly on a small
desk-top computer, thus obviating the need for expensive and time-consuming FE calculations.
Hence the program can be conveniently used to perform parametric analyses of the effects of
various input parameters (D/t, p, 6, E and o).

The results obtained for 6082-T6 aluminium alloy and for X65 SAW steel indicate that using
a representative flow stress, or (=(cy+0yrs)/2), as a representative yield stress in the analytical
model, produces accurate results when compared with the FE results obtained using the actual

stress-strain curves.

4.6 Summary

The force-deflection behaviour of pressurised pipes, due to radial indentation loading, was
investigated using FE and analytical methods. Seven different materials, three different
geometries, seven different pressure levels and five different support conditions were used to
investigate their effects on the force-deflection behaviour. The comparisons of the FE and
analytical solutions indicate that an energy-based, analytical approach can accurately predict the

force-deflection behaviour in both the elastic and elastic-plastic states.
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Chapter 5

Elastic-Plastic Response of Unpressurised Pipes
Subjected to Long Offset Indentations

3.1 Introduction

In chapters 3 and 4 efforts have been made to investigate the limit load and force-deflection
predictions of dented rings, with symmetrical supports, subject to symmetrical radial indenter
loading using experimental tests, analytical methods and FE analyses. In this chapter the effects
of asymmetric support and loading conditions on the indenter limit load are investigated using
experimental tests, FE analyses and analytical methods.

For underground pipelines, the surrounding soil produces support for the pipelines and
reaction forces to resist the pipeline deformation or the movements caused by indentation loads.
Exact simulation of the support conditions of the soil is difficult, since they are very variable. A
complete investigation of the support produced by the surrounding soil when an indentation load
is applied would require many experimental tests to be performed and corresponding FE and/or
analytical analyses to be performed. In this chapter a general analytical formulation, which
covers the effects of the support and indentation positions on the limit loads of indented rings, is
described.

The indentation type investigated in this chapter is shown in Fig. 5.1. If the offset indentation
angle, 0,, is zero, the indentation is radial with asymmetric support conditions. ~Symmetric

indentation conditions, in which equal right and left support angles (6,=6s) and zero offset

indentation angle (8,=0°) exist, were covered in chapters 3 and 4.
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Fig.5.1 Indentation loading and support conditions.

5.2 Experimental Work and Validation of the FE Analyses
5.2.1 Material

The material chosen for the experimental investigation is 6082-T6 aluminium alloy. The
tensile stress-strain curve for the material is shown in Fig. 3.1; the Young's modulus, Poisson's
ratio, yield stress and ultimate tensile stress are given in Table 5.1. Fig. 3.1 also shows the stress-
strain curve for a practical gas pipeline material, namely X65 SAW. The material properties for
6082-T6 aluminium alloy, X65 SAW steel and an idealised elastic-plastic material (Ideal-A) are
given in Table 5.1.

Table 5.1: Material parameters used in experiment tests

Material E (GPa) oy (MPa) ours (MPa) | Poisson's ratio
6082-T6 alloy 70 300 351 0.3
X65 SAW 223 448 675 0.3
Ideal-A 70 300 - 0.3

5.2.2 Geometry and Loading

In order to perform the experimental tests, the 6082-T6 aluminium alloy rings were placed

on a V-block, plaster, which was cast into the gap between the rings and the V-block, used to

form an arc supporting bed, as shown in Fig.5.2. The rings were also clamped to the V-block at

position F. These support conditions provide an arc support. The support angles, 6, and 05 (55°
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and 35° respectively) are shown in Fig. 5.2. Radial indentation, i.e., 6,=0°, was used. The
rings were radially loaded at point A (see Fig.5.2) by a Bright Drawn Mild Steel indenter with

an end radius of 2 mm and an axial length of 50mm.

Indenter

Fig. 5.2 Dented ring test conditions.

The tests were conducted on an Instron 1195 uniaxial test machine with 1 kN and 50 kN load
cells. The load point displacement rate was set to 2mm/min and the data (force and displacement)
were recorded automatically. Tests were performed on four rings with the dimensions given in
Table 5.2. Also given in Table 5.2 are the peak indenter loads obtained during the tests. The
peak loads, or limit loads, were obtained from the maximum load point of the indenter force (per

unit length of the pipe) versus dent depth curves, as shown in Fig. 5.3.

Table 5.2: Geometries and experimental peak load results for 6082-T6 aluminium alloy dented

ring tests
Test Peak load / unit length
No D (mm) | t (mm) D/t L (mm) N/mm
TEI 120 1.5 80.0 50 14.9
TE2 125 3 41.6 50 64.0
TE3 120 5 24 50 203
TE4 120 5 24 50 200.3

5.2.3 Ring Test Results

The indenter force versus depth curves obtained from the four experiments are shown in

Fig.5.3. The repeatability of the results is seen to be good from the results obtained for tests TE3

and TE4, which have the same dimensions and test conditions.
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hence the D/t value is increased, the peak load drops very significantly and the initial slopes are

also reduced.

Peak load
250 -
E /
£ 200 - HFOOOO0OC
o 150 | —0—Test 1D/t=80 |
o | —@—Test 2 D/t=41.6
£ | —O0—Test3D/t=24
g 100 | —+—Test4Dit=24 |
C N
()]
E 50
0 &
0 5 10 15 20
Dent depth (mm)

Fig. 5.3 Indenter force versus dent depth curves for 6082-T6 aluminium alloy rings, obtained
from experiments with an offset angle, 8,= 0°, a right support angle 8,=55°, and a left support

angle 65=35°,

5.2.4 FE Meshes, Boundary Conditions and Loading
The ABAQUS [26] FE software was used for the analyses. All models consisted of 3600 8-

noded, plane-strain, reduced integration elements, as shown in Fig. 5.4. The rings were fully
restrained at the outer diameter at positions C and D. The indentation load was applied in the

vertically downward direction at the outer diameter position at point A.

D

(a) Mesh of a ring (b) Locally amplified mesh
Fig. 5.4 Mesh used for the dented ring tests.
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The loads were applied using a rigid indenter with a 2mm radius and rigid surface contact
elements and assuming that no slipping occurs between the indenter and the rings. The large
deformation, elastic-plastic analyses were performed using the standard RIKS algorithm facility
within ABAQUS [26].

5.2.5 Comparison of FE Results with the Experimental Data

The FE predictions are compared with the experimental results in Table 5.3 and Fig. 5.5. It
can be seen that the FE predictions are slightly higher than the experimental results, but in
general, the predictions are in good agreement with the experimental data. The small discrepancy
between the FE and experimental results is thought to be due to the fact that the support
conditions, on the outer surface of the rings at C and D, used in the FE analyses, were fully fixed,
whereas the displacements at the same positions in the experiments are only prevented from
movements in the outer normal directions of the rings. Hence, the rings used in FE analyses are
subjected to a slightly higher level of constraint than those used for the experiments. However,
all of the differences between the FE solutions and the corresponding experimental results are
within 13%. This degree of correlation was considered to be good enough and so the same mesh

was used for all of the subsequent analyses reported in this chapter.

250
E 200 ...ooooog........ 000
2 X FE D/t=80 Geece,
——FE 2 DIt=42.6
S 150 —O—FE 3 D/t=24
S —a EX D/t=80
= 100 a EX D/t=426
£ o EX D/t=24
()] y, "
E 50
0 8 ooaeoo0Kooooko0ooAEOK & Kok
0 5 10 15 20
Dent depth (mm)

Fig.5.5 Comparison of FE predictions with experimental indenter force versus depth curves

obtained from the 6082-T6 alloy ring tests with 6,=0°, 6,=55° and 05=35°.
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Table 5.3: D/t ratios, limit loads obtained from the experimental tests and FE.

D/t | Limit load (N/mm) | Limit load (N/mm) | Difference (%)
80 TEI 149 FEI 15.5 4

416 | TE2 64.0 FE2 69.5 8.6
5 TE3 203.0 10.8
5 TE4 200.3 FE3 225 12.5

5.3 Results of General FE Analyses
5.3.1 Materials and Geometry

In addition to the FE analyses performed for comparison with the experimental test results for
the aluminium alloy (6082-T6), FE analyses were obtained for two other materials. Since
practical pipelines are usually made from a variety of steels, FE analyses were performed using
material data for one of these steels, namely X65 SAW. An idealised material, Ideal-A, with
elastic, perfectly plastic material properties was also used to investigate the influence of material
properties on the elastic-plastic response. Ideal-A material has a Young's modulus of 70GPa and
yield stress of 300MPa. The material properties are summarised in Table 5.1. In all of the FE
analyses, the materials were assumed to obey an isotropic hardening rule. The ring dimensions

used in the FE analyses are shown in Table 5.4.

Table 5.4: Ring dimensions used in the FE analyses

FE Model No. D (mm) t (mm) D/t
1 120 1.5 80
2 120 5.0 24
3 128 3.0 42.6
4 88.8 1.2 72
5 92.4 3.0 30.8

5.3.2 Behaviour for Pipes Made from an Idealised Elastic Perfectly
Plastic Material (Ideal-A)

The idealised elastic, perfectly plastic material, Ideal-A, was chosen to investigate the effects
of the support and indenter offset angular position on the limit loads. A total of 111 FE analyses
(FE4 to FE114) were performed for the Ideal-A material, see Appendix 2.A. for details of the FE

analyses. The typical behaviour obtained from these analyses is as indicated in Fig. 5.5 which
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was obtained for the aluminium alloy (FE and experiments). The peak (i.e. limit) loads obtained
from analyses (FE4 to FE114) were normalised by dividing them by csytz/ZR and these are shown
in Figs.5.6 to 5.9; the loading and boundary conditions used in the FE analyses are summarised in

Appendix 2.A.

| _O—FE DIt=308 |
g5 FE DIt=426 |
o e It=42.6 |
= 4 : —e—FE D/t=72 l
3 S
0
® 2
£
§ 1
0 - R ,
0 15 30 45 60

Offset indentation angle (61°)

Fig. 5.6 The normalised peak load versus indenter offset angular position, with 6,=0s= 45° and
D/t =72, 42.6 and 30.8, for idealised material Ideal-A

6
® 5
ke
T 4
T 2 | —O—FE Dt=30.8
g 1 i—A—FE Dit=426,
< ' —e—FE Dt=72 |

o- .

0 15 30 45 60 75 90
Right supported angle (6.°)

Fig. 5.7 The normalised peak load versus right support angular position, with 8,=45°, D/t =72,
42.6 and 30.8 and 6,= 20°, for idealised material Ideal-A.
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Fig. 5.8 The normalised peak load versus left support angular position, with 6s= 45°, D/t=72, 42.6
and 30.8 and 0,=20°, for idealised material Ideal-A
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Fig. 5.9 The normalised peak load versus left support angular position, with 65=45°, D/t=72, 42.6
and 30.8 and 6,= 0°, for idealised material Ideal-A

Fig. 5.6 shows that the peak load slightly increases as the indenter offset angle increases from

0° to 20°.  The peak load increases more significantly as the offset angle increases from 20° to

60°. However, at these higher offset angles, it is more likely that slipping will occur between the
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indenter and the ring. Also, it can be seen, from Figs.5.7 to 5.9, that the peak load decreases

when either the right or left support angle is increased.

5.3.3 Behaviour of Pipes Made from X65 SAW Steel Material

A further 111 analyses were performed using the X65 SAW steel material data. The loading
and boundary conditions used for the analyses (FE115 to FE225) are given in Appendix 2.A. The
main reason for performing these analyses was to investigate the applicability of using a
representative flow stress, oy, for predicting the peak loads. In this chapter, o; was taken to be the
average of the yield stress and the ultimate tensile stress. As with the idealised material, Ideal-A,
the peak loads obtained from X65 SAW steel were normalised by dividing them by ot*/2R; the

results are shown in Figs. 5.10 to 5.13.

6.
- | —O0—FE D/t=30.8
85 | —aFE DI=a26
Ea4-| e |
B3
R
©
£ 2
21

0 — ;

0 15 30 45 60

Offset indentation angle (6,°)

Fig. 5.10 The normalised peak load versus indenter offset angular position, with 6,=05=45° and
D/t=72, 42.6 and 30.8, for X65 SAW steel.
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Fig. 5.11 The normalised peak load versus right support angular position, with 6,=45°, D/t=72,
42.6 and 30.8 and 6,=20°, for X65 SAW steel.
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Fig. 5.12 The normalised peak load versus left supported angular position, with 05=45°, D/t=72,
42.6 and 30.8 and 6,=20°, for X65 SAW steel.
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Fig. 5.13 The normalised peak load versus left support angular position, with 85=45°, D/t=72,
42.6 and 30.8 and 6,=0°, for X65 SAW steel.

A comparison of Figs. 5.10 to 5.13, for the X65 SAW material, with the corresponding results
for the Ideal-A material (Figs. 5.6 to 5.9) shows very close correlation. This is more clearly
shown in Figs.5.14 (a) to (d) in which the normalised peak loads for the X65 SAW material are
also plotted against the corresponding results obtained for the Ideal-A material, for different
indenter offset and support angles. It can be seen, from Figs. 5.14 (a) to (d), that very close
correlation of the results is obtained for Ideal-A and X65 SAW steel materials. This indicates
that the representative flow stress chosen to normalise the data can be used to predict the peak
loads, or limit loads, for hardening materials, from data for idealised elastic-plastic materials [see
chapter 3]. This conclusion is important when considering the suitability of simple analytical

methods for predicting the behaviour of steel pipes.
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Fig.5.14 FE normalised peak loads for X65 SAW steel versus those for 6082-T6 aluminium
alloy, for different indenter offset angular positions, different support angular positions and for
different D/t ratios.
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5.4 Analytical Methods
5.4.1 Initial Load-Displacement Gradient

As with the case of symmetrical loading and support conditions applied in chapter 3, the
elastic force-deflection behaviour, for an unpresssurised ring, with asymmetrical loading and
support conditions, can be obtained using Castiglano's theorem. The resulting relationship

between force and deflection is given by

- E D
Pl (5o (5.1)

where A, B, C and D are functions of the angles 6, and s, i.e.

A= l(n +6 +05 +1(sin 29, +sin205))

B= 1+%sin62 +%sin05 )(131+32+ B3)
Bl =sin 26, +sin 205 +sin(6, + 05 )+ 3+-é—sin 6, sin @5 [cos @y +cosBs )
B2 = —%(zr+492 +65) (cos2 6y +sin By +cos® Os +sin b5 +2 (5.2).
B3 = -%cos@z sin? 6s ——;-sin2 6, cosbs

C %(H%sinz 6, +sin b, +-;-sin205 +sin95)(01+c2)

Cl=(7+6, +65 )(cos2 6, +cos? 05)
C2 = -sin 26, —sin 285 — 2sin(@; + 5 ) 4cos By — 4 cos b5

%(ﬁez +85) %~ (cosBy +cosBs ) —%(7:+0 2+65) (sin 26, +sin 265 )

D=

Hence, the initial slope, K, of the indenter force versus depth curves, for an unpressurised ring

with asymmetrical loading and support condition, is given by

3
k= (pB) (5.3)

Fig. 5.15 shows a typical comparison between the initial gradients obtained from the FE and
experimental tests with the analytical predictions. It can be seen that the agreement is excellent.
This degree of accuracy is applicable to all of the materials, geometries, load positions and

support positions investigated.
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Fig. 5.15 A comparison of initial gradients of the indenter force versus dent depth curves
obtained from the FE analyses, the experimental test data and the analytical methods for 6082-T6
aluminium alloy ring models with D/t=80, 41.6 and 24, 6,=0°, 6,=55° and 05=35°.

5.4.2 Upper Bound Limit Load Theory

As in the case of symmetrical support and loading conditions [see chapter 3], in order to
determine the upper bound, it was assumed that the offset indenter ring has five plastic hinges, at
positions A, B, C, D and E, as shown in Fig. 5.16 (a). The rotational angles of these five plastic
hinges (A, B, C, D and E) are denoted as as, 0.2, a1, 0.3 and o, respectively, as shown in Fig.5.16
(b). If the load point, position A, moves vertically downwards, as shown in Fig.5.16 (b), the
relationships between angles of rotation and the loadline displacement can be determined and
hence the upper bound analysis method, previously used for symmetrical support and loading

[chapters 3 and 4], can again be used.
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(a) Offset indented ring

Fig. 5.16 Kinematically admissible velocity field for the upper bound analysis

The kinematic relationships can be represented by the following five equations:

_ cos @ +sin b5
" cos6 -sin6;

da2

_ cos b +sin 6,
day = cos B —sin 6,
das=day +day —da) —daj

cos(8, -6, )-cos(6, -6, )+sin(6, +6,)
cos G —sin 6,

dé=R daj
cos(6; +6,)-cos(s +6, )+sin(6s +63)

ar=5 cos 6, —sin 6,

day

From equations 5.4(d) and (e), it follows that

_ cos6) -sin 8, cos(6;+6; )-cos(6s+8, )+sin(6s +6;)

ety = coe 6, -sin 65 cos(84 -6, )-cos(6, -6, )+sin(8, +6,)

Substituting equation (5.5) into 5.4(b) gives

_ cosf) +sin 6 cos(03+6, )—cos(8s +6, )+sin(6s +6,)
" cos @, —sin @y cos(f, —6 )—cos(9, -6, )+sin(6, +6, )

da4

The internal energy dissipated, W, at the plastic hinges, is given by

W =M0(a'a1 +day +daz +day +da5)

where
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Mo=ta,2 (5:8)
where t is the ring wall thickness and o, is the material yield stress.

Substituting for da,, das, dos and das from equations 5.4(a), (5.5), 5.4(b) and 5.4(c) into
(5.7) gives

W, =2My [ cosf+sinf; . cos@+sinf, cos(B;+6; )-cos(fs+6) }+sin(Bs+6;) ] da (5.9).

c0sf,—sin@; = cosB)—sinB; cos{6,—6, }-cos(B, -6, }+sin(6,+8,)

Based on equations 5.4(d) and 5.4(e), the work done, Wg, by the external force, F, is given by

cos(8; +6,)-cos(6s + 6, )+sin(6s +6;)
cos &) —sin 6,

Wg = Fdd = RF day (5.10).

Since the work done by the external force is equal to the internal energy dissipated, then

equations (5.9) and (5.10) give

cosé, +sinfs cosf, +sinb, ] (5.11)

F=2My < : + :
R{ cos(6;+6; }-cos(Bs +6, Hsin(Bs+6;) * cos(0,-6, }-cos(6,-6, Hsin(6, +6,)

Minimising the external force F with respect to 83 and 6, the optimised upper bound, Fy, is
given by
Fy =2Mg 4 Ls(61,62,65) 5.12(a)
where Ls(},07,05) is a non-dimensional function of 8, 0, and 65, given by
cos @) +sin 6, cosé +sin O

+
25in(%+@2ﬂ')—cos(92 +6) 23in(%+ 95;9] )—cos(05 -6,)

Ls(61,67,05)= 5.12(b).

5.5 Comparison of the Analytical Solutions with the FE and Experimental

Results
5.5.1 6082-T6 Alloy Results
The indenter force versus dent depth curves, obtained from the FE analyses and experimental
tests performed on the aluminium alloy models, are shown in Fig. 5.17. The analytical limit load
solutions, also shown in Fig. 5.17, are calculated by using a representative flow stress which is
the average of the yield stress and the ultimate tensile stress. The analytical, elastic solutions for
the initial gradient, also shown in Fig. 5.17, are obtained using equation (5.1). The limit loads,
obtained from the FE and analytical analyses, are also given in Table 5.5, which shows that the

analytical limit loads, obtained using the representative flow stress in the predictions, are
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generally in reasonably good agreement with those obtained from the experiments and the FE

analyses. However, these data indicate that if a slightly lower representative flow stress was used

for the analytical predictions, then generally closer correlation between the analytical solutions

and those obtained from the FE analyses and experimental tests would be obtained.

Table 5.5: FE, experimental and analytical limit loads for 6082-T6 aluminium alloy rings using

yield, flow and ultimate tensile stresses in the analytical formulations (o,= yield stress; o=

representative flow stress; o= ultimate tensile stress) for 6,=0°, 6,=55° and 05=35°

D/t  |Experimental FE Analytical | Analytical Analytical
N/mm N/mm | ysing o, using o Using ours
80 TEA1 14.69 156.5 17 18.4 19.8
41.6 TE2 64.03 69.5 66.6 72.3 77.9
TE3 203.25
24 TE4 200.29 225 196.3 213. 229.7
20 - Analytical initial gradient Limit load solution
18
E
E 16
Z 14
g 12
S 13
z 6 —e—FE1
(o) '
A
E 4 nalytical
2
0 T T = I T
0 5 10 15 20 25 30
Dent depth (mm)
(a) D/t =80
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Limit load solution
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=
£ 200
<
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5 100 —L-FE
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[} —— Analytical
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(c) D/t=30.8.

Fig. 5.17 Indenter force versus dent depth curves obtained from the FE analyses,
experimental tests and the analytical methods, for the case with 6,=0°, 6,=55° and 65=35°, for

the 6082-T6 aluminium alloy rings
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5.5.2 Ideal-A Results
The peak loads obtained from each of the FE analyses, using the elastic perfectly plastic
material model (Ideal-A) and from the theoretical analyses, are normalised by dividing them by

o,t*/2R; the results are shown in Figs. 5.18 to 5.21.

6 Analytical
g E - —O—FE D/t=30.8
o —a—FE D/t=42.6
:‘E‘ 4 —e—FE D/t=72
2
g 2
21
o ———4—"——w——7"—.-—9FF
0 15 30 45 60

Offset indentation angle (61°)

Fig.5.18 A comparison of the FE and analytical normalised limit loads for different offset

angular positions, with 6,=6s=45°, for the idealised material Ideal-A

- 6 Analytical
35 —o—FE D/t=30.8
= —&—FE D/t=426
E —e—FE D/t=72
23
0
T 2
£
o 1
-

0 i e | E T | —|

0 15 30 45 60 75 a0
Right supported angle (6,°)

Fig.5.19 A comparison of the FE and analytical normalised limit loads for different right support

angular positions, with 6,=20° and 6,=45°, for the idealised material Ideal-A
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Fig.5.20 A comparison of the FE and analytical normalised limit loads for different left support

angular positions, with 6,=20° and 6s=45°, for the idealised material Ideal-A
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Fig.5.21 A comparison of the FE and analytical normalised limit loads for different left support

angular positions, with 6,=0° and 85=45°, for the idealised material Ideal-A

Figs. 5.18 to 5.21 show that for the smaller D/t ratios, i.e. D/t=41.6 and 30.8, very close
correlation of the FE and the analytical solutions can be obtained. However, for the larger D/t
ratios, i.e. D/t=80, the FE solutions are significantly lower than the corresponding analytical

solutions. This is because large non-linear deformation effects which occur for the large D/t ratio
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rings, are included in the FE analyses but not in the analytical solutions. Therefore, for the peak
load predictions of large D/t ratios, it is suggested that the yield stress should be used in the

analytical method (see chapter 3).

5.5.3 X65 SAW Steel Results

The normalised limit loads obtained from each of the FE analyses for the X65 SAW steel
models are compared with those obtained for the idealised material Ideal-A in Figs.5.14 (a) to
(d). The close correlation of the results indicates that the normalised limit loads can be obtained
either using the idealised material Ideal-A or using the X65 SAW steel models in the FE
analyses. The normalised limit loads obtained from the FE analyses and the analytical methods
for the idealised material Ideal-A are the same as those for the X65 SAW steel. Comparisons of
the peak loads, obtained from the FE analyses, and the analytical solutions are shown in Figs.
5.22 to 5.25 for the X65 SAW steel material. It can be seen from Figs. 5.22 to 5.25 that a
reasonably close correlation exists between the analytical solutions and the FE predictions of the

peak loads for the X65 SAW steel material.
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Fig.5.22 A comparison of the FE and analytical normalised limit loads for different offset

angular positions, with 6,=05=45°, for X65 SAW steel material
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Fig.5.23 A comparison of the FE and analytical normalised limit loads for different right support
angular positions, with 8,=20° and 6,=45°, for X65 SAW steel material
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Fig.5.24 A comparison of the FE and analytical normalised limit loads for different left support
angular positions, with 6,=20° and 65=45°, for X65 SAW steel material
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Fig.5.25 A comparison of the FE and analytical normalised limit loads for different left support
angular positions, with 0,=0° and 65=45°, for X65 SAW steel material

5.6 Conclusions

The reasonably close correlation between the FE predictions of indenter force versus depth
and the corresponding experimental test data indicates that the FE meshes, boundary conditions
and large deformation FE analysis methods are capable of producing accurate results.

An upper bound limit load analytical approach for predicting the peak (or limit) loads gives
good (i.e. close to the FE results) upper bounds for rings with elastic perfectly plastic material
behaviour models. The correlation is generally good but is poorest for the larger D/t ratios
because the analytical approach does not model the significant effect of the geometric
nonlinearity caused by large deformations which occur with large D/t ratios.

Using a representative flow stress, which is the average of the yield stress and ultimate tensile
stress, a reasonably good correlation between the analytical and FE predictions, for rings made
from 6082-T6 aluminium alloy and X65 SAW steel, are obtained. For higher D/t ratios, better
correlation would be obtained if the yield stress is used to predict the limit loads using the
analytical approach.

The initial slope and peak values of the force versus dent depth curves can be accurately
predicted using simple analytical approaches. Use of the simple analytical approaches could
significantly reduce the time and effort required in assessing the likely effects on the structural

integrity of dents created in pipelines due to accidents.
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5.7 Summary

The results of investigations to determine the elastic-plastic response of unpressurised pipes
with long offset indentations are presented in this chapter. They include the results of
experimental tests, FE analyses and analytical methods. Three different materials and five
different geometries were used to investigate their effects on the behaviour. A comparison of the
experimental results, the FE and the analytical solutions indicates that the general analytical
formulations developed in this chapter, for predicting the peak indenter loads in offset indented
pipes, are reasonably accurate. Also the analyses presented in this chapter indicate that using a
representative flow stress, which is the average of yield and ultimate tensile stresses, in the

analytical method, is appropriate for predicting the peak indenter loads.
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Chapter 6

Force-Deflection Behaviour of Pressurised Pipes
Subjected to Loading by Axially Long Offset Indenters

6.1 Introduction

If an indentation is axially long, then the indenter force versus deflection behaviour can be
accurately assessed using a ring model for the pipe; this greatly simplifies the analysis. The
possible modes of failure which must be taken into account as a result of indentation are the
immediate failure by puncturing or by low cycle fatigue due to fluctuating pressure and the
significant residual stresses resulting from the indentation. Therefore, to ensure that failure does
not occur, it is important to be able to predict the force versus deflection behaviour of indented
pipes under a wide range of conditions as discussed in [chapters 3-5].

This chapter contains an investigation of the limit load and force versus deflection behaviours
of dented rings with non-symmetrical support and offset loading, using analytical methods and
FE analyses. The effects of asymmetry of supports, offset of loading, internal pressure, types of
material and geometry are investigated. The loading and support conditions are the same as the
shown in Fig. 5.1. The FE meshes, boundary conditions and large deformation FE analysis
methods used have been validated by comparing predictions for unpressurised rings with the

results of experimental tests.

6.2 FE Analysis
6.2.1 Materials

Two materials were used in the FE analyses. Fig. 3.1 shows the stress-strain curve for a
practical gas pipeline material, X65 SAW steel and a 6082-T6 aluminium alloy, for which
experimental test data (with zero internal pressure) is available [chapter 5]. Young's modulus,
Poisson's ratio, yield stress and ultimate tensile stress for both materials are given in Table 3.2. In

the FE analyses, all materials were assumed to obey an isotropic hardening rule.
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6.2.2 FE Meshes, Boundary Conditions and Loading
The ABAQUS [26] FE software was used for the analyses. All models consisted of 3600 8-
noded, plane-strain, reduced integration elements, as shown in Fig. 5.4. The rings were fully
restrained at the outer diameter at positions C and D (Fig. 5.4 (a)). The indentation load was
applied in the vertically downward direction at the outer diameter position at point A. In total 19

analyses were performed, as defined in Tables 6.1.

Table 6.1: The geometries, pressures, supporting and loading positions used in the FE analyses.

t Pressure | Gradient
FE No. D/t (mm) 0, 0, Os (MPa) (MPa)
FEl *6 80.0 1.5 0° 35° 55° 0 1.85
FE2 *6 42.6 3. 0° 35° 55° 0 13.15
FE3 *6 24.0 5. 0° 35° 55° 0 71.05
FE4 *X 42.6 3. 0° 45° 45° 5 58.30
FE5 *X 42.6 3. 10° 45° 45° 5 62.30
FE6 *X 42.6 3. 20° 45° 45° 5 62.60
FE7 *X 42.6 3. 30° 45° 45° 5 69.00
FE8 *X 42.6 3. 0° 55° 35° 5 60.00
FE9 *X 42.6 3. 0° 65° 25° 5 63.50
FE10 *X 42.6 3. 0° 75° 15° 5 70.40
FEI1l *X 42.6 3. 0° 55° 35° 0 42.20
FE12 *X 42.6 3. 0° 55° 35° 0.5 44.20
FEI13 *X 42.6 3. 0° 55° 35° 2.5 51.60
FE14 *X 42.6 3. 0° 55° 35° 8 70.82
FE15 *X 42.6 3. 0° 10° -10° 5 203.3
FE16 *X 42.6 3. 0° 35° 15° 5 98.20
FE17 *X 72.0 1.2 10° 45° 45° 2.91 17.60
FE18 *X 72.0 1.2 0° 55° 35° 2.91 17.40
FE19 *X 30.8 3. 10° 45° 45° 7 136.60
FE20 *X 30.8 3 0° 55° 35° 7 131.80

Note: *6 and *X refer to 6082-T6 aluminium alloy and X65 SAW steel, respectively.

The loads were applied using a rigid indenter with a 2mm radius, to match the conditions for
existing experimental test data [chapter 5], and rigid surface contact elements, with no slipping
between the indenter and the rings. Large deformation, elastic-plastic analyses were performed,
using the standard RIKS algorithm facility within the ABAQUS [26] programs.
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6.3 FE Results
6.3.1 6082-T6 Aluminium Alloy

Typical indenter force versus depth results, for an unpressurised ring, obtained from the FE1
to FE3 FE analyses, performed with the aluminium alloy material models, are shown in Fig.6.1.
Also shown in Fig. 6.1 are the corresponding experimental test results. It can be seen that the
agreement between the FE and experimental results is generally very good, indicating that the
meshes, boundary conditions and large deformation analysis are suitable for the present

application.
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Fig.6.1 Indenter force versus dent depth obtained from experimental and FE analyses of 6082-T6
alloy rings, with 6,=0°, 6,=55° and 05=35°.

6.3.2 X65 SAW steel
The X65 SAW steel material has been used to investigate the effects of the loading position,
the pressure, the supporting positions and the ring dimensions on the indenter force versus

deflection curves.

6.3.2.1 Effect of Loading Positions
The effect of loading position has been investigated using the results of the FE4 to FE7
analyses in which the indenter offset angle, 61, was varied from 0° to 30°. The D/t ratio used is

42.6, the internal pressure is SMPa and the left and right supporting angular positions are both
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45°. The indenter force-deflection curves are shown in Fig 6.2. It can be seen that the

differences in the curves are relatively small, but the higher curves are related to the lower offset

angles.
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Fig. 6.2 Indenter force versus deflection curves obtained from FE analyses for the X65 SAW
materials with D/t=42.6, t=3mm, a pressure of SMPa, both support angular positions are at 45°
and indenter offset angles of 0°, 10°, 20° and 30°.

6.3.2.2 Effect of Internal Pressure

The effect of internal pressure was investigated using the results of the FE8 and FE11 to FE14
analyses for D/t=42.6, 6,=0°, 6,=55° and 65=35°. The indenter force versus deflection curves are
shown in Fig 6.3. It can be seen that at low pressures, there is a peak in the force versus
deflection curve. However, at the higher pressures, the curves continue to increase even at high

dent depths (i.e. dent depths > 10 x wall thickness).
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Fig. 6.3 Indenter force versus deflection curves for the X65 SAW material with D/t=42.6,
t=3mm, 0,=0°, 6,=55°, 05=35° and pressures of 0, 0.5, 2.5, 5 and 8MPa.

6.3.2.3 Effects of Support Position

The effect of the support position was investigated for rings with D/t=42.6, using the results
of the FE4 and FES8 to FE10, FE15 and FE16 analyses. For the case where the total support span
(i.e. B; + 85=90°) is constant and with a zero offset angle, i.e. 6,=0° the (8,, 05) pairs used were
(45°, 45°), (55°, 35°), (65°, 25°), and (75°, 15°). The indenter force versus deflection curves are
shown in Fig 6.4. It can be seen that as the support position deviates from the symmetric
position, the force required to produce a given deflection decreases. However, the reduction is

relatively small.
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Fig.6.4 Indenter force versus deflection curves obtained from FE analyses with the X65 SAW
material with a pressure of SMPa, D/t=42.6, t=3mm and 0,=0°, for (6,, 6s) pairs of (45°, 45°),
(55°, 35°), (65°, 25°) and (75°, 15°).

The results for various angular support positions of (6, 65)=(10°, -10°), (35°, 15°) and (55°,
35°), from the FE15, FE16 and FES8 analyses, for the D/t ratio of 42.6, internal pressure of SMPa

and a zero indenter offset angle, are shown in Fig 6.5.
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Fig. 6.5 Indenter force versus deflection curves obtained from FE analyses with the X65 SAW

material with D/t=42.6, t=3mm, a zero indenter offset indentation angle, a pressure of SMPa and

support angle pairs, (82, 6s) of (10°, -10°), (35°, 15°) and (55°, 35°).
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It can be seen that curves converge at the higher load and deformation levels but at lower load

levels, the curves are higher when the total support span (i.e. 6, + 05) approaches zero.

6.3.2.4 Effect of D/t
The effects of the D/t ratio were investigated using the results of the FES, FE8 and FE17 to

FE20 analyses with a pressure which produces a mean hoop stress of 0.234 times the yield stress.

The indenter force versus deflection curves are shown in Fig 6.6.
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(a) Indentation with 6,=0°, 6,=55° and 65=35°, t=1.2, 3 and 3mm.
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Fig. 6.6 Indenter force versus deflection curves obtained from FE analyses for the X65 SAW
models with an internal pressure which produce a mean hoop stress of 0.234 times the yield stress

and with D/t ratios of 72, 42.6 and 30.8.

From Fig. 6.6 (a), which presents results with 6,=0°, 8,=55° and 0s=35° it can be seen that

the curves are higher when the D/t ratio reduces. Similarly, Fig. 6.6 (b) shows the same effect

with 0,=10°, 6,=45° and 05=45°.

6.4 Analytical Methods
6.4. 1 Elastic Behaviour
In chapter 5, an analytical solution for the elastic indenter force versus deflection behaviour,
for an unpresssurised ring, was obtained using Castiglano's theorem, see equations 5.1 and 5.2.
For the small elastic deformation range, as is the case of that with symmetric support and

radial loading conditions [see chapter 4], the indenter force, for a pressurised ring with

asymmetric supports and offset loading conditions, is given by

F=Kepd=Ke+Kp ) (6.1)
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where K. is initial stiffness term and K, is the stiffness associated with the stress caused by the

internal pressure; K and K , are given by

__E® D
Ke 'ﬁ( AD+B+C) 6.2)
FP
K, = p limit — 6.3
o 5:1]0 8o 63)
where & is /R

The stiffness, X ,, exists due to the coupling effect of the internal pressure and the indenter

force on the indenter force versus depth curve in the small deformation range, see chapter 4. 8,
defined as 8/R, is dimensionless and F" is given by equation (a27) in Appendix 3.A.3. For small

deformation the indenter force, F, can be approximately given by [chapter 4]

_ £ (_D
F_12R3(AD+B+C)5+'DRFP (6.4)

The initial gradients of the indenter force versus depth curves, obtained from the analytical
approach, described by equations (6.1) to (6.3), the FE analyses in Table 6.1 and the experimental
tests (TE1 to TE3), are shown in Fig.6.7. It can be seen that there is a very good correlation

between the results.
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Fig.6.7 The initial gradients of the indenter force versus depth curves obtained from the analytical

approach, the FE analyses and the experimental tests.
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6.4.2 Non-linear Elastic-Plastic Behaviour

For long indentation of pipes, it has been shown [chapters 3, 5] that a limit method can
accurately predict peak loads by assuming that plastic hinges exist at five positions A, B, C, D
and E (see Fig.(3.al)). The kinematic relationship between the vertical displacement or dent
depth and angles of rotation of the hinges can be determined. From these kinematic
relationships, the work done, W,, by the internal pressure, and the work done, Wg, by the
indenter force, can be obtained using an incremental method. The energy dissipated, W), during
deformation can also be obtained using the incremental method. The indenter force, F, for a
pressurised indented ring with asymmetric supports and an offset indenter loading condition, can
be obtained using the same method as that used for a symmetric support and loading conditions
(i.e. 8,=0°, 6,=05) [chapter 4]. The approach is outlined in Appendix 3.A.3. Hence the indenter

force, F, can be expressed as
F =—4};[0 FY +pRF P (6.5).

where FM and FF are both dimensionless functions related to the effects of the deformation and
the internal pressure.
FM and F* are plotted against the non-dimensional vertical displacement (dent depth, §,) in

Fig.6.8 for 8,;=0°, 6,=0s=0°, 25° and 45°.
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117



0.8 -
0.6 j{—o'—'angle of 0 |
T p \—O—angle of 25
04 - l—a— angle of 15
0.2 -
62=65
O Yy 1 1
0 0.15 0.3 0.45 0.6

Non-dimensional dent depth (5,)

(b) Non-dimensional coefficient, F*

Fig. 6.8 Non-dimensional coefficients for 6,=0°, 8,=65=0°, 25° and 45°.

Fig. 6.8 (a) and equation (6.5) cannot be used to predict the indenter force for the small
deformation in the elastic range. Therefore, as with symmetric loading and symmetric support
[chapter 4], the indenter force can be determined using the two indenter force versus depth curve

predictions provided by equations (6.4) and (6.5).

6.5 Comparisons of Experimental, FE and Analytical Solutions

The results obtained from the experimental tests, the FE analyses and the analytical approach
were compared in order to validate the FE modelling method (see section 6.3.1) and to assess the

accuracy of the analytical approach described in this chapter.

6.5.1 6082-T6 Aluminium Alloy

The force versus deflection curves obtained from the experimental tests, FE analyses FEI to
FE3 and the analytical approach, for the 6082-T6 aluminium alloy, with 6,=0°, 6,=55° and
05=35°, are shown in Fig. 6.9. These curves indicate that the analytical, FE and experimental
results are in broad agreement for both small and large deformations of the rings. Also, the

analytical approach produces particularly good predictions in the early (small indentation depth)

and large deformation stages of the deformation process.
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Fig. 6.9 Indenter force versus depth curves obtained from the experimental tests, the FE analyses
and the analytical approach for a ring with p=0 MPa, 6,=0°, 6,=55° and 65=35°, using 6082-T6

aluminium alloy.

6.5.2. X65 SAW Steel
6.5.2.1 Effect of Indentation Offset

The force versus deflection curves obtained from the FE analyses FE4 to FE7 and the
analytical solutions for the X65 SAW steel models with 6,=0° 10°, 20°, and 30°, 6,=05=45° and
p=5 MPa, are shown in Fig. 6.10. These curves indicate that the analytical and FE results are
reasonably consistent and that the effects of the indenter offset angle on the indenter force versus

deflection curves is negligible in this case.
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Fig. 6.10 Indenter force versus depth curves obtained from the FE and analytical solutions for
0,=0° 10° 20° and 30° and for X65 SAW in rings with a D/t=42.6, t=3mm, 0,=0s=45° and
p=5SMPa.

6.5.2.2 Effect of Internal Pressure
The indenter force versus deflection curves obtained from the FE analyses FE8 and FE11 to
FE14 and the corresponding analytical solutions, for the X65 SAW steel, with different internal

pressure levels, are shown in Fig. 6.11. These curves indicate that the analytical and FE results

are in excellent agreement.
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Fig. 6.11 Indenter force versus depth curves obtained from the FE and analytical solutions for

X65 SAW rings with D/t=42.6, t=3mm, 6,=0° and (8, 65)= (55°, 35°).

6.5.2.3 Effect of Angular support Positions
The force versus deflection curves obtained from the FE analyses FE4, FE8 to FE10 and the
corresponding analytical solutions, for the X65 SAW steel, with 6,=0°, (6,, 85)= (10°, -10°), (35°,
15°) and (55°, 35°) and p=5MPa, are shown in Fig. 6.12. These curves indicate that the analytical
and FE results are in good agreement and that the effect of the radial offset angles on the indenter

force versus deflection curves is negligible in this case.

122



(45, 45)

Indenter force (N/mm
N)
o
o

150 - —x—-FE8 (55, 35)
100 —O—FE9 (65, 25)
/i ——FE10 (75, 15)

50 — Analytical

o

0 5 10 15 20 25 30 35 40
Dent depth (mm)

Fig. 6.12 Indenter force versus depth curves obtained from the FE and analytical solutions for

0,=0°, (62, 65)=(10°, -10°), (35°, 15°) and (55°, 35°), for X65 SAW, with p=SMPa.

The indenter force versus deflection curves obtained from FE analyses (FE8, FEIS5, and
FE16) and the corresponding analytical solutions, performed on the X65 SAW models, with
D/t=42.6, for p=5MPa and 6,=0°, are shown in Fig. 6.13. The close correlation of the curves

obtained from the analytical and FE results indicates that the analytical method can accurately

describe the effects of the angular support positions.
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Fig. 6.13 Indenter force versus depth curves obtained from the FE and analytical solutions for
X65 SAW, with D/t=42.6, t=3mm, 6,=0°, p=5MPa and supported angle pair, (0, 05)= (10°, -10°),
(35°, 15°) and (55°, 35°).

6.5.2.4 Effect of D/t

The indenter force versus deflection curves obtained from the FE analyses FES5, FE8, FE17
and F20 and the corresponding analytical solutions, for X65 SAW steel, with D/t=72, 42.6 and
30.8, for 6,= 10° and 6,=0s= 45°, are shown in Figs. 6.14. The pressure used in the FE analyses
produces a mean hoop stress of 0.234 times the material yield stress (see Table 3.1). The
representative flow stress, which is the average of the yield stress and the ultimate tensile stress,
was used in the analytical predictions. These curves indicate that the analytical and FE results are
in good agreement for the D/t ratios used. However, there seems to be a small systematic effect of
the D/t ratio on the indenter force predictions. It can be seen from Fig. 6.14 (a) that as the D/t
ratio reduces, there is a tendency for the analytical predictions to be slightly lower than the

corresponding FE results for large dent depths.
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Fig. 6.14 Indenter force versus deflection curves obtained from the FE and analytical solutions

for D/t=72, 42.6and 30.8 for X65 SAW steel, with a pressure which produces a mean hoop stress
of 0.234 times G, and (65, 65)= (55°, 35°).
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6.6 Conclusions

The good correlation of the experimental, the FE and the analytical solutions shows that the
analytical methods described in this chapter, can accurately predict the indenter force versus
deflection curves for the pipes with or without internal pressures, when indented by a long
indenter. The analytical formulations include the effects of the pressure, material properties, the
indenter offset and angular support positions. The solutions of the FE and the analytical analyses
also illustrate that the indenter force versus deflection curves are very close for all cases of the
indenter offset angles investigated, i.e. less than 30°. Therefore, it is concluded that the indenter
force versus deflection behaviour of rings can be accurately predicted by the analytical methods

described in this chapter.

6.7 Summary

The indenter force versus deflection characteristics of pressurised pipes with long offset
indentations have been investigated using experimental testing, FE and analytical methods. Two
different materials and five different geometries were used to investigate their effects on the
elastic-plastic behaviour. A comparison of the experimental, FE and the analytical results
indicates that the analytical formulation developed in this chapter, for predicting the force-
deflection curves, for pressurised pipes with offset indenters, is reasonably accurate. Also, all of
the analyses presented in this chapter indicate that by using a representative flow stress, which is
the average of the yield and ultimate tensile stresses, the analytical methods can accurately

predict the force-deflection curves.
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Chapter 7

Force-Deflection Behaviour of Pipes with Spring
Type Supports due to Axially Long Indentations

7.1 Introduction

The limit load and force-deflection behaviours of dented rings with symmetry and non-
symmetrical supports with symmetric and offset loading, using analytical methods and FE
analyses have been reported in previous chapters [3-6]. The effects of asymmetry of supports,
offset of loading, internal pressure, types of material and pipe geometry were investigated.
The FE meshes, boundary conditions and large deformation FE analysis methods used have
been validated by comparing predictions for unpressurised rings with the results of

experimental tests.
Since the soil support around pipes is more likely to be spring-like rather than rigid, this

chapter is concerned with the prediction of the indenter force-deflection behaviour when the

pipes have spring type supports.

7.2 FE Analysis
7.2.1 Material

The material used in the FE analyses (see Fig.7.1) is elastic, perfectly plastic with a
Poisson's ratio of 0.3, a Young's modulus, of 70GPa and a yield stress of 300MPa. In the FE

analyses, the material is assumed to obey an isotropic hardening rule.
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Fig. 7.1 The elastic, perfectly plastic material used in FE analyses

7.2.2 FE Meshes, Boundary Conditions and Loading

The ABAQUS [26] FE software was used for the analyses of the rings; the dimensions,
support and loading conditions are shown in Fig. 7.2. Due to symmetry, only one half of the
rings are modelled (see Fig. 3.4). All models consist of 3600 8-noded, plane-strain, reduced
integration elements. The nodes on the rings at sections A and C (Fig. 3.4(a)) are restrained in
the circumferential direction (i.e. uxa=uxc=0) for all of the analyses. Also, the rings, shown in
Fig. 3.4 (a), are connected to three vertical springs with stiffnesses of K, K; and K3, at the
outer diameter at positions B, C and D, respectively, in which points B and D are at an angle 6
to the x-direction. The total equivalent spring stiffness, K, caused by these three springs is
K;+K,+K3. For the rings shown in Fig. 7.2 (b), the arc BCD is connected to a uniformly
distributed spring support with vertical stiffness, Ko, which results in the corresponding total

equivalent stiffness, K, defined as K = K¢(7 - 20)R . The load was applied in the radially

inwards direction at the outer diameter position at point A. In total, 12 analyses were

performed, these are defined in Table 7.1.
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Fig.7.2 Ring dimension, loading and boundary conditions

Table 7.1: The stiffness, angular support position, pressure levels (D/t=30.8, t=3mm) and
initial gradients of indenter force versus displacement curves obtained from the FE

analyses and the analytical method.

FENo | Kp Ki® | Kae(® | Ks(® 0 p FE Analytical
(MPa) | (N/mm) | (N/mm) | (N/mm) | (°) | (MPa) | Gradient | Gradient
FEI 10 20 10 45 0 13.11 20.26
FE2 © © 0 45 0 33.3 416
FE3 100 200 100 45 0 33.34 37.2
FE4 10 20 10 45 4 17.50 23.1
FES5 o0 0 0 45 4 44 .42 53.77
FE6 0 20 0 90 0 7.73 7.93
FE7 0 0 0 90 0 12.73 13.1
FES8 0 20 0 90 4 10.10 10.59
FE9 0 o0 0 90 4 20.40 22.33
FE10 0.5 45 4 19.20 27.33
FEl11 1.0 45 4 23.29 36.4
FE12 2.0 45 4 26.50 43.75

(*) o indicates that a rigid support (very stiff spring) was used.
7.2.3 FE Results

The FE analyses FEI to FE12 are used to investigate the effects of the spring-support on

the indenter force versus deflection curves, which are shown in Fig.7.3. It should be noted
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that part of the deflection is due to local (elastic and plastic) behaviour, overall tube
deformation and spring deflections. It can be seen, from Fig. 7.3 (a) to (g), that as expected,
the pipes with spring-supports are more flexible than those with rigid supports; for the same
displacement, the indenter force in the pipes with rigid supports are higher than those with
spring-supports. This is mainly due to the compression of the springs, when the stiffness of
the spring is relatively small. Also, from Fig. 7.3, it can be seen that the support types affect
the indenter force versus deflection curves. When the angular support position is at 6=90°,
the difference between the forces obtained from the pipes with rigid supports and spring-
supports is relatively small for a given stiffness of the spring. The only difference is an
additional displacement due to the compression of the spring in each case. The FE analyses
FE10 to FE12 are used to investigate the effects of the uniformly distributed spring supports
on the indenter force versus depth curves. Figs. 7.3 (€) to (g) show that as the stiffness of the
springs is increased, the behaviour of the pipes with spring-supports approaches that obtained
from the pipes with rigid supports. However, all of the indenter force versus depth curves
exhibit the same pattern of behaviour. In particular, the peak loads obtained in all cases

except for the most flexible support case (Fig.7.3 (a)), are the same with the rigid and flexible

supports.
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7.3 Analytical Method
7.3.1 Elastic Behaviour

For the case of a pipe with a three-spring support condition, as shown in Fig. 7.2 (a), if the
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Fig. 7.3 Indenter force versus displacement curves obtained from the FE analyses for the

pipes with uniformly distributed spring supports with D/t=30.8, t=3mm.

vertical stiffnesses of those springs are denoted by K;, K, and K3 (N/mm) and the pipe has a

rigid vertical movement, the equivalent stiffness of these three springs, K, is given by



K=K1+Ky+Kj3 (7.1
For a pipe with uniformly distributed spring support as shown in Fig. 7.2 (b), if the

vertical stiffness of each single spring is denoted by K, (MPa), the equivalent stiffness of

these springs, K, is given by

K =(7-20)RK, (7.2)
Assuming small deformations, it has been shown [chapters 4, 6] that the stiffness of the

pressurised pipes, Kep, is given by

Kep=(Ke+Kp) (7.3).

where K, and K. are given by

—(1-siné )2 sm——+cos 8o cos=0 (sm 6+sin 8y )+(1-sin Gy )(1+sin 9)[cosm+sm 8% ]

= 2 2 7.4a
Kp=2p 6+6p . 6-6p (7.42)
cosf —cosﬁ+sm(0+90 cos—5—+sin—— J
__E° ( D )
Ke = 12R3 \ AD+B+C (7.4b)
and

A—Z(2+9+ sin20)
B=(1+sinb) 3sm26’+3cosé) 2(2+¢9 oS 0+sin0+l)]
C-= cosG( +2sm 0+sm01( +9)cost9 2sinf - 2] [ (7.4¢)

D= 2((5+0)2 —-2cos 9—~5(5+0)sin20)

Hence, the total stiffness, K, of the indented pipe with spring-support, is given by (see

J

details in Appendix 4.A.)

K, K

_ 14
Kiotal = %_ 1K (7.5)

Equation (7.5) indicates that the relationship between the indenter force, F, and the
deflection, §, in the elastic range, is given by
F =Kio1a10 (7.6)

The initial gradients of the indenter force versus deflection curves obtained from the FE
analyses (FE1 to FE12) and the analytical method are shown in Fig. 7.4. It can be seen that
the results obtained from the analytical method are higher than those obtained from the FE
analyses, because the analytical solutions do not include the deformation of positions B and D
relative to point C, and the associated deformation of the material in the arc BCD, see Fig.7.2.

However, the predictions obtained from the analytical method are reasonably accurate,
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especially for the relatively stiff supports, which result in relatively small spring deformations

in the elastic stage.

0 20 40 60 80
Analytical gradient (MPa)

Fig. 7.4 Comparison of the initial gradients obtained from the FE analyses and from the

analytical method.

7.3.2 Inelastic Behaviour

A technique for predicting the indenter force, F, of a pipe with rigid supports, in the

inelastic range using limit load analysis [chapters 4, 6], has shown that

aM M P
F=—R°—F +pRF (7.7)
where
FM = cos(a, —ay )—sin(lﬁo +ay —ay )+sin(@+a; )+sin(6y —a; ) (7.82)
cos(Bg —a, )+sin(0+6, +a, )-cos(6+a, )-sin a, '
l-sin8 9% g, \+2sin[ 2-8 (g, - 2290 2cosf 8490 4 22 \gin 22 _cos( 200
P =2pR( sin o)cos( 3 a,) sm(4 3 (:2 al))cos(4 92)[ cos( 5+ 2)sm 5 cos( 3 +a2)] (7.8b)
cos(—fiﬁ+a2)+sin(%9°+az)
1
6o =550 (7.8¢)
r 6 1| cos(8y —a; )-cos( 8+a; )+cos o
ay =7 —— +a)~cos (7.8d).

2sin(%—%°)
In equation (7.8), o is the angular position of the plastic hinges at positions B and D,

relative to point A, see Fig. 7.2.  The displacement at position A, 8p, due to the pipe elastic-

plastic deformation, is given by
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8p = R[1+sin(6p + a3 - a1)-cos(ay —ay)-sin(8 + ;) -sin(Hy — a1 )+ sin 6] (7.9)
For the pipe with a spring-support, the displacement at the position A in Fig. 7.2, 8, is the

sum of the displacement, due to the deformation, given by equation (7.9), and the vertical

rigid movement, d;, due to the compression of the springs. Hence, the displacement, §, is

given by

5=5p+5s=5p+% (7.10)

Therefore, the relationship between the indenter force and the displacement of a pipe with

spring-supports is given by equations (7.7) and (7.10).

7.4 Comparisons of FE and Analytical Solutions

The result of the FE analyses presented in section 7.2.3 show that the inclusion of spring-
supports affects the indenter force versus displacement curves, compared with the solutions
obtained for rigidly supported pipes. The indenter force versus depth curves, obtained from
the FE analyses (FE1 to FE12), and the corresponding analytical solutions, are shown in Fig.
7.5. These curves indicate that the behaviour predicted by the analytical and FE results are
generally consistent and that good correlation of the two sets of results is obtained when the
indentation depth is high. In particular, when the support angle, 6, is 90°, the differences
between the analytical and the FE results, in both the elastic and inelastic ranges, are very
small, see Fig. 7.5 (d). An important conclusion from the comparisons is that the analytical
methods are capable of describing the basic phenomena observed for all of the types of

spring-supports investigated.
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Fig.7.5 Indenter force versus displacement curves obtained from the FE analyses and
analytical methods for the pipes with uniformly distributed spring supports with D/t=30.8,

t=3mm.

7.5 Conclusions

In many practical situations, pipes are buried underground and the use of the spring-
supports is a more accurate representation of the practical soil support conditions that exist for
pipes. Compressions of the FE analyses and analytical solutions indicate that the analytical
methods described in this chapter are capable of predicting the indenter force versus
deflection curves with reasonable accuracy. Generally the analytical solutions are higher than
the corresponding FE results. In previous chapters [3-6], it has been shown that the analytical
methods used are able to predict the indenter force versus displacement behaviour of the pipes
made from strain hardening materials. Hence, it is expected that the analytical methods
described in this chapter would also be valid for strain hardening materials, although only

elastic, perfectly plastic material models are used in the investigation.
7.6 Summary

The indenter force-deflection behaviour of pipes, with spring type supports, due to axially

long indentations, was investigated using FE (FE) analyses and analytical methods. It is
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found that the analytical methods are capable of giving reasonably accurate predictions of the

behaviour by comparing with FE results.
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Chapter 8

Residual Stresses due to Long External Indentation
and Subsequent Stress Variations due to Pressure
Fluctuations in Pipes with Long Indentations

8.1 Introduction

Limit load and indenter force-deflection results have been obtained [chapters 3-7] using
experimental tests, FE analyses and analytical methods. This chapter investigates the residual
hoop stresses, due to long external indentations, and the subsequent stress variations due to
pressure fluctuations, in the vicinity of the indentations, using the FE method. The effects of the
residual dent depth, internal pressure at the time of indentation, indenter and pipe geometry and
support conditions on the residual hoop stress and stress fluctuations due to internal pressure

variations are investigated.

8.2 Materials

Three materials were chosen for the FE analyses. The tensile stress-strain curves for the
materials are shown in Fig. 8.1 and some of the material properties are given in Table 8.1. X65
SAW is a typical pipe steel, grade B is a 24 inch thin wall line pipe material, and grade X52 is an

18 inch thin wall seamless line pipe material.

Table 8.1: Material properties

Material E oy Outs Poisson's ratio
X65 SAW 223 GPa | 448 MPa 675 MPa 0.3
Grade B 144 GPa | 287.7 MPa 588 MPa 0.3
X52 180 GPa 360 MPa 616 MPa 0.3
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Fig. 8.1 True stress-strain curves for X65 SAW, grade B and X52 pipe steels.

The ultimate tensile stresses shown in Table 8.1 and the stresses on Fig. 8.1 all are true
stresses. In the FE analyses, all of the three materials are assumed to obey an isotropic hardening

rule.

8.3 Geometry, Loading and Boundary Conditions

The two-dimensional pipe indealisations have an outer diameter (D) of 914.4 mm and D/t
ratios of 72, 50.8, 41.56, 35.17 and 30.48 where t is the wall thickness. The pipes are indented by
a radial load, as shown in Fig.4.1. A rigid indenter which has a radius in the range of 6 to
100mm, is used to cause the indentation. The angular support positions are defined by 0, as
shown in Fig. 4.1; 6 was varied from 5° to 90°.

To determine the residual stresses and subsequent stress variations due to pressure
fluctuations in the pipes, the loading was applied in four steps. First, internal pressure is applied,
then the indenter load is applied to cause a predetermined dent depth, §; following this, the
indenter is removed to obtain the residual hoop stress, o,, and residual dent depth, 3,, finally the
internal pressure is changed from p to one of two predetermined levels, p; and ps, to determine

the resulting stress variations.
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8.4 FE Modelling
The ABAQUS [26] FE software was used for the analyses. For all of the cases, it was only

necessary to model one half of the pipes, due to the symmetry. All of these symmetric models

consisted of 4240, 8 or 6 noded, plane-strain, reduced integration elements; part of a model, in

the vicinity of a loading position, is shown in Figs 8.2. As shown in a previous publication [45],

the predicted residual stresses, in the indented pipes, after the indenter is removed, are sensitive

to mesh refinement and hence very fine meshes in the indenter regions are required. All of the

FE models used have 32 elements through the wall thickness in the indenter regions of the pipes.

Most of the FE calculations were performed using the X65 SAW material properties. Two FE

calculations were carried out with grade B and X52 material properties to assess the effect of

material properties on the behaviour. In total 39 analyses were performed, as defined in Table

8.2.

Fig. 8.2 Localised meshes used in the FE analyses for the indented ring analyses

Table 8.2: Dimensions, boundary conditions, loading conditions and some FE results.

FE(*) 8 r 0 | 6 P Ap, | Ap2 S o, | Aoy | Ao,
No. | D/t | mm | mm MPa | MPa | MPa | mm | MPa | /Ap, | /Ap,
FE1S 72 20 127 | 45° | ©0° 0 v *h 0 0 ok ok
FE2S 2 1T 40 | 127 [ a5 | 00 | 0 | * | ** | 772 | 385 | * | **
FE3S 72 T 60 | 127 [ a5 | 00 | 0 | * | ** | 215 | 501 | * | **
FE4S 72 80 12.7 | 45° | ©0° 0 ks *k 376 | 670 o o
FE5S 72 | 100 | 127 | 45° ] 0° | 0 | ** | ** | 546 | 713 | ** %
FE6S 72 120 | 12.7 | 45° | 0° 0 * *x 721 | 720 ** o
FE7S 72 140 12.7 | 45° | 0O° 0 *ok *ok 89.9 727 ok o
FESS 72 | 20 | 127 | 45° | 0° | 768 | 128 | 2.56 | 0.801 | 338.5 | 525 | 536
FE9S 72 | 40 | 127 | 45° | 0° | 7.68 | 1.28 | 2.56 | 442 | 6212 | 920 | 94.9
FE10S 72 60 127 | 45° | 0° | 7.68 | 1.28 | 2.56 | 6.77 | 763.6 | 116 120
FEIIS | 72 | 80 | 127 [45° | 0° | 768 | 1.8 | 2.56 | 8.5 | 8293 | 134 | 139
FEI2S | 72 | 100 | 127 | 45° | 0° | 7.68 | 1.28 | 2.56 | 9.77 | 886 | 141 | 147
FEI3S | 72 | 120 | 127 [ 45° | 0° | 768 | 128 | 2.56 | 123 | 937.5 | 161 | 169
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FE14S 72 100 12.7 | 45° | 0° 1.28 1.28 M 354 760 519 *»

FE15S 72 100 12.7 | 45° | ©° 2.56 128 | 256 | 25.3 778 377 375
FE16S 72 100 12.7 | 45° | 0° 3.84 1.28 | 2.56 19 800 235 246
FE17S 72 100 127 | 45° | 0° | 5.12 1.28 | 2.56 15 824 186 201
FE18S 72 100 127 [ 45° | ©° 6.4 1.28 | 2.56 12 854 158 168
FE19S 72 100 12.7 | 45° ] 0° 9.0 128 | 2.56 | 7.89 946 151 153
FE20S 72 100 6. 45° 1 0° 7.68 1.28 | 2.56 | 9.83 905 166 174
FE21S 72 100 20 45° | 0° 7.68 1.28 | 2.56 | 9.72 872 133 138
FE22S 72 100 30 45° | 0° 7.68 1.28 | 2.56 ]| 9.65 860 125 130
FE23S 72 100 50 45° | ©° 7.68 1.28 | 2.56 9.6 839 119 125
FE24S 72 100 70 45° | ©° 7.68 1.28 | 2.56 9.5 824 115 120
FE25S 72 100 100 | 45° ] 0° 7.68 1.28 | 2.56 9.3 802 109 114
FE26S 50.8 100 12.7 | 45° | ©0° 7.68 1.28 | 2.56 | 229 841 148 155
FE27S 41.6 100 12.7 | 45° | o° 7.68 1.28 | 2.56 34 822 153 160

FE28S 35.2 100 12.7 | 45° | 0° | 768 | 1.28 | 2.56 46 804 152 157
FE29S 30.5 100 127 | 45° ] 0° | 768 | 1.28 | 2.56 56 799 145 148
FE30S 50.8 100 127 | 45° | ©0° 11 1.28 | 2.56 15.7 900 118 123

FE31S 41.6 100 12.7 [ 45° | ©0° 13.6 [ 1.28 | 2.56 19.8 910 107 111
FE32S 35.2 100 127 | 45° | ©0° 162 | 128 | 2.56 | 23.5 918 97 101
FE33S 30.5 100 12.7 | 45° [ 0° 189 | 1.28 | 256 | 274 928 91 94.3
FE34S 72 100 12.7 5° 0° | 7.6