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Abstract 

A dented pipe fails either through being punctured or by fatigue damage accumulation due to 

internal pressure fluctuation. Increasing the wall thickness may prevent these failures but is 

impractical. As a pipe is punctured, transmission services must be cut off and repair processes 

have to be made immediately. However, when a dent depth is not large enough to puncture the 

pipe, the pipe can safely continue in service for a long time until a fatigue crack initiation occurs. 

Therefore, the fatigue life assessment has attracted much attention in the pipe industries for 

economic and safety reasons. 

The severe tensile residual stress concentration and the large plastic strain deformation in the 

dented region are the main causes of the pipe failure due to fatigue damage. Accurate calculation 

and prediction of the residual stress and variations resulting from internal pressure fluctuation can 

lead to safety assessments and prediction of the remaining life of the dented pipe. Due to the 

complex nature of the contact process, the deformed pipe geometry and the elastic-plasticity, 

analytical approaches are incapable of obtaining stress solutions. Therefore, FE modelling is 

employed in the present work. Experimental tests are employed to investigate the indenter force­

dent depth behaviour which can be compared with the FE solutions to confirm and validate the 

FE models. The rigid perfect elastic-plastic limit load method and an energy-based method are 

also used to analytically calculate the limit load and the indenter force/deflection relationship of 

indented rings to predict damage. 

Two dimensional FE modelling is performed to calculate the contact and residual stress and 

strain distributions on the outer, inner surfaces and through the wall thickness. These FE 

solutions show that high stress concentrations occur in the indented region, which give the 

potential for fatigue damage. As the 2D FE modelling requires only limited resources, the 

indenter size and indentation position can be changed to analyse their effects on stress and strain 

distributions in the indented region. This forms the foundation of later 3D FE modelling. 

Stress sensitivity and the validation of shell models are investigated and confirmed through 

the 2D and 3D FE modelling and by comparing experimental test data with the FE solutions. 

Based on this work, the decision is made to use shell element modelling to perform the residual 

stress and stress range calculations in a 3D pipe. 

xii 



Semi-empirical formulations are developed to predict stress and stress range values if the 

residual dent depth, the pipe and indenter geometries, material property, internal pressure and 

pressure range are known. These FE solutions and semi-empirical formulae can be used to 

calculate the stress range and mean stress. 
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Chapter 1 

Introduction 

Pipelines are widely used for transmitting gases and liquids from their production sites to 

houses and industrial organisations. Many of these are buried underground, and if these 

pipelines should leak or rupture, there is a potential danger due to fires or explosions. 

Therefore, during the design of pipelines, a number of possible sources of failure need to be 

taken into account, e.g. indentation from diggers during construction or earth movement, 

corrosion, fatigue, etc. In addition to the failure due to indentations, pipes also may be damaged 

due to defects caused during forging processes, transportation and installations. Generally, the 

defects produced during the forging processes are called pre-existing flaws. These defects are 

normally easy to find and repair, therefore; severe damages due to these flaws can be avoided 

before accidents happen. However, it is very dangerous for pipes to have defects when the 

pipes are used in transmission services. In this case, if the transmission services are interrupted 

to repair the defect, it would result in substantial financial loss. If the defect is left unrepaired, 

the residual stress concentration in the defect region may gradually weaken the pipe due to the 

cyclic internal pressure changes. A microcrack may then be formed in the defected pipe. The 

pipe therefore may finally fail due to fatigue damage caused by internal pressure fluctuations 

and contribute to severe environment pollution and possible loss of life. Traditionally the flaws 

caused during the transmission services are called external defects which are the subject of 

investigation in this thesis. 

Using advanced modem technology, it is relatively easy to locate the positions and estimate 

the severity of flaws in pipes, and subsequently assess the residual life of imperfect pipes. 

The various approaches used to assess the residual life of an imperfect pipe are based on 

theoretical, numerical and experimental methods. Regardless of which method is used, it is 

difficult to accurately assess the residual life of imperfect pipes, although experimental results 

are generally regarded as more reliable than theoretical and numerical predictions. Fatemni and 

Yang [I] reviewed a number of fatigue theories. However, theoretical approaches based on 

crack initiations cannot accurately predict fatigue life. Therefore, present residual life prediction 

theories can be very conservative. It is extremely expensive to carry out laboratory tests with 



real pipes under practical loading conditions. For these reasons, much research has 

concentrated on the improvement of methods used for determining the stress distributions in 

imperfect pipes. 

In recent years, many assessment approaches based on theoretical, numerical and 

experimental methods have been proposed. Tam and Croll [2 - 4] proposed a theoretical 

analysis method called the equivalent load method, to analyse the stress concentration of dented 

pipes, based upon linear elastic cylindrical shell theory. Godoy [5, 6] proposed the use of a 

perturbation method to analyse the stress distributions of thin-walled plates and cylindrical 

shells with defects. However, elastic analyses neglect the locked-in residual stresses that 

contribute to fatigue life. 

Flores and Godoy [7], Ohtani et al [8] investigated the stress distributions in imperfect 

spherical pressure vessels using finite element (FE) simulations. Fowler et al [9], Zarea et al 

[10] and Hart et al [11] investigated the residual fatigue life of dented pipes using FE modelling. 

Alexander [12] proposed a semi-empirical formulation to estimate stress concentration factors 

for a pipe with D/t = 68, with a range of residual depths. 

Corder et al [13] investigated semi-empirical formulations, by using an experimental 

programme to explain the relationships between dent force and dent depth, dent depth and 

residual dent depth, puncture force and pressure or other geometric dimensions of pipe and dent, 

and burst pressure with other material or geometric parameters. Fowler et al [9], Kiefner et al 

[14], and Hagiwara et al [15] carried out a series of fatigue tests in order to estimate the residual 

fatigue life of dented pipes. Lancaster and Palmer [16, 1 7] carried out a series of tests to predict 

the burst pressure and strain distribution in dented pipes with a gouge. 

Although most impact damage to pipelines is very localised [18-25], as indicated in Fig. 1.1 

(a), in some cases, the damage can extend over a significant length of the pipe [10], as indicated 

in Fig. 1.1 [b]. In the latter case, the behaviour (except at the ends of the damage) is essentially 

two-dimensional and can be analysed as a simple plane-strain ring, as indicated in Fig. 1.1 (c). 
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(a) Localised impact damage (b) Extensive impact damage (c) T\.Vo-dim~nsi.onal aporoximation 
of extensIve Impacf <lamage 

Fig.l.l Dented pipes 

Indentation damage can occur with or without internal pressure and the deformations and 

residual stresses are affected by the magnitude of the internal pressure when the damage occurs. 

With suitable finite element software [26] the deformations and residual stresses due to impact 

can be obtained. However, these solutions may be time consuming and expensive. For rings, 

simple analysis methods can be used as an alternative. For example, Castiglano's theorem can 

be used to determine elastic deformations and the upper and lower bound methods can be used 

to determine limit loads when the rings are free of internal pressure. A comparison of the 

analytical and finite element solutions with experimental data showed that the analytical limit 

load method is simple to use and gives accurate predictions. However, investigations showed 

that if internal pressure is large enough, the limit load methods give inaccurate predictions. An 

alternative energy-based approach was therefore used to explain why the approach used when 

there is no pressure is inaccurate for the case of pressurised pipes, and the relationship between 

indentation force and dent depth was predicted when internal pressure is significant. The 

accuracy of the analytical method for pressurised rings with large, non-linear deformation is 

assessed by comparing predictions with the corresponding results of finite element analyses. 

However, although the accuracy of analytical methods used in this thesis was reasonably 

confirmed by comparing the analytical solutions with the experimental data and the finite 

element analyses, residual stresses and stress changes caused when the internal pressure 

fluctuates cannot be assessed analytically. Finite element analyses were used in predicting the 

local stress concentration in indented pipelines. However, based on present developed 

experimental techniques, accurate assessment of residual stresses in pipes is not possible. Like 

analytical solutions obtained for indented rings, the accuracy of the finite element analyses for 
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indented pipes was validated by comparing the finite element force versus deflection curves 

with those obtained from experimental tests. Five 6082-T6 aluminum alloy tubes with a 

diameter of 86.4mm and a wall thickness of 1.2mm, were indented by a rigid indenter in 

experimental tests for pressure levels of 0, 2, 3, 4 and 5MPa. The indenter force versus 

deflection curves were automatically recorded on an Instron 1195 Automated Material Test 
\ 

System. These data were used for comparison with results obtained from the finite element 

analyses performed using the same conditions. 

In reality, in order to assess the fatigue life of indented pipes after an accident, perfonning a 

valid finite element analysis is not a simple job even for an expert analyst. Comprehensive finite 

element analyses were therefore performed to develop an empirical formulation to predict the 

residual stresses in indented pipes. A semi-empirical formulation predicting the stress changes 

due to the internal pressure fluctuations was also developed on the basis of finite element 

analyses and analytical solutions of stresses in an imperfect pressurised ring. Using these 

results the fatigue life of any indented pipes with the same conditions used in this thesis would 

be expected to be accurately assessed. 

In chapter 2, previous achievements of research on indented pipes and related subjects were 

reviewed. It can be seen that previously used approaches to investigate indented pipes are 

focused on experiments, FE analysis and linear elastic solutions. Some empirical formulations 

to predict the limit loads of the internal pressure and the relationships between indenter force 

and dent depth were developed. Analytical solutions of limit loads and indenter force-deflection 

relationships have not been reported. The experiments were mainly used to investigate fatigue 

life of indented pipes with an existing defect. Shell element models were generally applied to 

perform a FE analysis to predict residual stresses. 

Chapter 3 discusses details of the elastic-plastic method used to analytically investigate the 

limit loads of indenter forces of indented unpressurised rings with symmetrical loading and 

boundary conditions. Subsequent analytical solutions of the limit loads of indented rings were 

obtained and compared with results obtained from experiments and FE analyses. A very good 

correlation of these results was obtained. 

For pressurised indented rings with symmetrical loading and boundary conditions, analytical 

curves for the elastic-plastic solution of the indenter force versus dent depth were obtained and 

validated with the FE analyses and experimental results in chapter 4. Analytical solutions of the 
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limit loads and the indenter force versus dent depth curves of indented rings with asymmetrical 

loading and asymmetrical boundary conditions were investigated and obtained in chapters 5 and 

6, respectively. These two analytical solutions were also confirmed and validated by 

comparison with results obtained from the experimental tests and the FE analyses. Chapter 7 

focuses on investigations of the indenter force versus dent depth behaviours of the indented 

rings with spring-like supports which are closer to reality because the pipes are supported by 

soils. In this chapter the analytical solutions are obtained and compared with the corresponding 

FE analyses. 

Chapter 8 starts to investigate the residual stresses and stress variations induced by the 

internal pressure fluctuations for indented rings using the FE analysis. In order to investigate 

the effects of the internal pressure, geometrical dimensions, supports and residual dent depths 

on the residual stresses and stress variations, subsequent parametrical analyses were performed. 

A semi-empirical formulation predicting the stress variations was developed after investigating 

the analytical solution of an imperfect pipe model. 

In following chapters, three-dimensional indented pipes were investigated for different 

purposes using experiments and FE analyses. Chapter 9 investigates the stress sensitivity to the 

element sizes using the FE analysis and chapter 10 investigates the indenter force versus dent 

depth behaviors using aluminum alloy tubes to perform a series of tests and using the FE 

analysis. Comparisons of the results obtained from the shell element and 3D brick element 

models were carried out and a very good correlation of the validation of these models was 

obtained. Therefore, the shell element models were used to investigate residual stresses and 

stress variations in chapters II and 12 to reduce computer analysis times. The residual stresses 

in the pipes with a constant internal pressure were investigated in chapter II using the shell 

element models, and empirical formulations to predict the residual stresses were also developed 

using the FE results and curve fitting. Chapter 12 discusses the stress variations in the pipes 

using the shell element models when the internal pressure fluctuates after the indentation. 

Accurate semi-empirical formulations to predict the stress variations were also obtained. In 

chapter 13 all the work in this thesis was summarized and possible future work was proposed. 

The fatigue life of indented pipes therefore can be assessed using S-N curves and the obtained 

stress results here. 

5 
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Chapter 2 

Literature Review 

2.1 Main Factors Causing Pipe Failure 

The threat of external damage has long been recognised in the design of onshore and 

offshore pipes. Most design codes take account of such damage by including measures that 

reduce the likelihood of failure in high risk areas. The most widely used approach is to limit 

the pipe design factor (ratio of hoop stress to specified minimum yield stress) in these areas. 

As Corder et al [13] reported, pipe damage occurs mainly from the pre-existing defects in the 

surface such as gouges, pores or inclusions formed when the pipes are forged. 

Pipe failure is likely to be caused by an external indentation. For instance, a large stone 

may hit the surface of the pipe when landslip takes place; or pipes may be indented by teeth of 

excavators or tractors in public operation fields. The influences of pre-existing indentations 

on pipe safety and fatigue life have been studied for many years. Corder et al [13] proposed 

some semi-empirical formulae to explain quantitatively the influence of indenter size on the 

fatigue life of the pipes, limit burst pressure, etc. Bai et al [27] calculated the fracture strength 

of indented pipes with cracks. Hart et al [11] analysed the influence of the indentation on 

vibrations in a section pipe in Alaska by using infinite element technology. 

Another cause of pipe failure is environmental chemical corrosion. The propagation of 

stress corrosion cracks in pipe steels at neutral pH was studied by Wilmott and Sutherby [28] 

under realistic environmental conditions. The impact of the hoop stress on the growth of 

shallow surface cracks in an X60 pipe steel was investigated at 40%, 70% and 100% of the 

minimum yield strength of the material. Crack growth rate is shown to be independent of the 

applied stress in the range studied for shallow cracks. 

It is reported in the literature (see, for example Eiber et aI, [29]) that failure of the pipe due 

to mechanical damage defects is generally due to a number of possible causes such as low­

cycle fatigue of the highly strained material, and localised strain aging of the cold-worked 

steel that leads to failure as a result of hydrogen cracking. 

2.2 Basic Codes For Pipe Safety Design 

In early 1965, the Institution of Gas Engineers published its first recommendations 

concerning the installation of steel pipes for high-pressure gas transmission, issued as 
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Communication 674. It originally aimed to protect members of the public and the personnel 

of the pipe constructors and operators from possible hazards, so far as is reasonably 

practicable, as well as to ensure that the security of the gas supply is adequately maintained. 

The basic requirements for safety design were described, or simply presented with formulae. 

The new version issued is Communication 1530 in 1993. API (American Petroleum Institute) 

[31] published a pipe design code, called Specification for Line Pipe, in which the 

indentations are strictly included as follows: 

(i) The pipe shall contain no indentations greater than 1/4 in. (6.35mm), measured as the 

gap between the lowest point of the indentation and a prolongation of the original 

contour of the pipe. 

(ii) The length of the indentation in any direction shall not exceed one half of the diameter 

of the pipe. 

(iii) All cold-formed indentations deeper than 1/8 in. (3.18mm) with a sharp bottom gouge 

shall be considered a defect. 

(iv) The gouge may be removed by grinding. 

Kannappan [30] presented a formula for the minimum wall thickness and allowable working 

pressure of the pipe from Design Codes as follows: 

tm = ( )+A=t+A 
2 SEq +py 

PD 

where 

tm = minimum required wall thickness, in inches 

t = pressure design thickness, in inches 

P = internal pressure, in Psig 

D = outer diameter of the pipe, in inches 

S = allowable stress at design temperature (known as hot stress), in Psig 

(2.1) 

A = allowance, additional thickness to provide for material removed In threading, 

corrosion, or erosion allowance. A manufacturing tolerance (MT) should also be considered. 

Y = coefficient that takes material properties and design temperature into account. 

For t~d/6 and temperature below 900Op, Y = 0.4 may be assumed. The coefficient Y can 

be written as follows: 

Y = d /(d +D) (2.2) 

where d is the inside diameter = D - 2t 

A quality factor Eq is defined as follows: 
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(2.3) 

where Ee is the casting quality factor, Ej is the joint quality factor, and Es is structural quality 

factor. 

Allowable working pressure is determined by: 

p = 2SEqt 
D-2Yt 

2.3 Limit Load Analysis 

(2.4) 

Because of the complexity of the structure, limit load analysis for a pipe with plain 

indentations or combined gouges and indentations is very difficult. A review has been 

presented by Miller [32], in which a number of semi-empirical formulae were highlighted. 

Here, for simplicity, only a number of formulations for pipes with surface defects are 

reviewed. 

(I) Lower Bound Formula 

PR =1- a + alt 

U It t (1 + 1.61c2 / Ra) 12 

where 

or 

2c= defect length 

a= defect depth 

b= ligament thickness 

R= cylinder radius 

t= cylinder thickness 

a f = flow stress which is defined as 

(in Upper bound Formula 

PR TJ 

U It = 1 - {I - TJ }/ M(P) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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where 

p = c/(Rtyl2 

TJ=b/t 

M(p) is a factor taken from the through-crack result, which is defined as 

( )
112 

M(p) = 1 + 1.61p2 

or 

M(P)= ~ + 1.05p2 JI2 

(iii) Miller's Formula 

PR = 1- a + alt 

0' yt t ~ + 1.61c2 I RaJ 12 

(Iv) Kiefner Formula 

2.4 Experimental Work 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

(2.13) 

(2.14) 

To predict and improve the safety and reliability of pipes and better understand the 

damage mechanisms, research based on experimental techniques involving indented pipes has 

been performed by many researchers. Ong et al [24] investigated the strain distribution in the 

indented region. Lancaster and Palmer [16, 17] investigated the bursting pressure of pipes 

with a gouge in an indentation. EPRG (European Pipe Research Group) has carried out an 

extensive experimental programme to fully analyse the deformation of indented pipes, in 

which the main achievements were reviewed by Corder et al [13]. Based on measuring 

experimental data, some useful empirical formulae have been established, from which burst 

pressures and puncture forces may be predicted. 
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2.4.1 Empirical Formulations for Fatigue Life 

From EPRG experiments, a new fatigue life formula has been given by Corder et al [13] 

as follows: 

where 

Ks = 2.871.Jt(H I 2S) 

217 A = UTS[ B~ + B2 ~ -B2] 

B = (ua 11.3uSMYS 11- (ua 11.3uSMYS ~l + S)/(l- S)] 

where 

Nc= number of cycles to failure 

2 0' A = equivalent cyclic stress at 8=0, in MPa 

S= minimum stress/maximum stress in fatigue cycle 

UTS= 1.3 C1 SMYS 

0' SMYS = specified minimum yield strength, in MPa 

(J' a = cyclic stress, in MPa 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Fatigue tests for pipes with a gouge in an indentation were also carried out by Fowler et al . 

[9], Kiefner et al [14], and Hagiwara et al [15]. Based upon test results, Hagiwara et al [15] 

proposed a power law equation for predicting fatigue life as follows: 

N f = C(d I DY'(t I Tf(AuI Er 
where 

C = defect half length 

d = maximum dent depth during denting 

T = gouge depth 

D = pipe diameter 

T = wall thickness of pipes 

a,~, 'Yare material constants. 

(2.19) 
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2.4.2 Burst Pressure Formulations 

The burst pressure of pipes containing combined indentations and cracks was investigated 

by Bai et al [27]. Based upon previous research, they proposed a semi-empirical formula to 

predict the burst pressure of pipes containing a combined indentation and a longitudinal crack, 

as follows: 

I 
P=2u-

D 
(2.20) 

where t is the pipe wall thickness, D is pipe nominal outside diameter, and cr is critical stress 

at failure, which is given as follows: 

U= 2up cos-1[ex{- 1rK;'at Jl (2.21) 
1& 8y2au2 

p 

1 

Kmtd = [1000 ~ (C. -17.6)]2 

Y = ~(1_1.8Dd +5.1H Dd) 
.JQ D I 

I-a 
up = auy 

I -at M t 

Kmat = the material toughness parameter 

a = crack depth 

Y = pipe geometry shape function, 

F, Q and a bending correction factor are given by Newman and Raju [33], 

Dd = indentation depth 

cry = yield strength stress 

cr p = collapse stress 

Mt is a factor determined by 

M t = ~1 + 0.6275x2 - 0.003375x4 for x ~ 7.07 

Mt = 0.032x2 + 3.3 for x>7.07 

x = L/~DI 
where L is defined as the length of local crack 
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2.4.3 Force and Deflection Formulations 

Empirical formulae were reviewed by Bai et al [27] for the mean value of the indentation 

force F, as follows: 

F = 0.011P,H°.42 (2.28) 

and for the mean value of the force based on a lower 95% confidence level: 

F = 0.007 P,Ho.s (2.29) 

where H is the indentation depth after springback (in nun) and Pr is given by: 

P, = ~O'SMYSLt(t + 0.7 PD / O'UTS) (2.30) 

where 

F= indentation force, in kN 

t= pipe wall thickness, in mm 

a SMYS = specified minimum yield strength, in MPa 

a UTS = ultimate tensile strength, in MPa 

L= tooth length, in mm 

D= pipe outside diameter, in mm 

P= internal pressure, in MPa 

2.4.4 Puncture Force Formulation 

Lower bound: 

Fp = 0.270'UTS(L + 1)1 

Mean value: 

F p = 0.23uUTS(L + I)t 

Minimum value: 

Fp = 0.16uUTS(L + I)t 

where I is the width of the tooth (in mm). 

The damage hoop stress limit formula with a gouge is given by 

13 
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(2.33) 



2-uh = -ucos-1 {a} 
K 

_[~S1rE(fJ[1_1.8H]+Y2[lO.2RH])-2 )ln~~5~1.9)] 
(72 Ad 2R 2Rt 

a=e 

where 

Y I and Y2 are compliance functions given by 

11 =1.12-0.2{~)+10·{~r -21.{~J +30.{~J 

Y2 =1.12-1.3{~)+7.3{~r -13.{~J +14.{~J 
- d 
(J' = 1.150'SMYs(l--) 

t 

cr h = hoop stress at failure (lbfi'in2) 

E= Young's modulus (lbfi'in2) 

A= fracture area of 2/3 Charpy test specimen(in2
) 

d= gouge depth(in) 

H= dent depth corrected for springback (in) 

R= pipe radius(in) 

Cv=2/3 Charpy energy (ftlbt) 

2.4.5 Dent Depth-Residual Dent Depth Formulation 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

The relationship between the indentation depth and the residual indentation depth has been 

given by Corder et al [13] as follows: 

H=O.32Hb2 (2.38) 

where Ho is damage dent depth. 

Modem pipe materials are ductile and should therefore fail by ductile initiation or plastic 

collapse. When a pipe defect fails by plastic collapse (failure governed by the flow stress) the 

semi-empirical relationships were reviewed by Corder et al [13] can be used and have been 

adopted extensively by pipe operators around the world, as follows: 

O'h = 0' jlow(1- d 1 1)/(1- Md 1 I) (2.39) 

1 

M = (1 + 0.26(2c I JiiiY)2 (2.40) 
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where 

(J h = hoop stress at failure 

(J flow = flow stress 

d = defect depth 

2c = defect length 

R = pipe radius 

T = pipe wall thickness 

These semi-empirical formulae are not commonly accepted because of the large 

differences that exist between the experimental data and results obtained from these 

simplified semi-empirical formulae. 

2.5 Basic Analytical Approaches 

The analytical approaches used in the analysis of imperfect pipes or thin-wall shells can be 

divided into two basic types; linear elastic analysis and elasto-plastic analysis. 

2.5.1 Analysis based on linear elastic mechanics 

For the analysis of the fatigue life of indented pipes, without cracks, using elastic linear 

theories, stress concentration factors may be determined in the indented region. If the 

indented pipe has a pre-existing crack, the stress intensity factor may be calculated using 

linear elastic fracture mechanics theories. Engineers can apply both of these approaches to 

predict the residual fatigue life of indented pipes. 

2.5.1.1 Linear stress analysis for indented pipes 

There are two main approaches used for linear stress analysis; perturbation approach and 

an equivalent load method. 

(a) Perturbation method 

Perturbation analysis, in which the solution is expanded as a series of terms containing a 

damage parameter, was employed by Godoy [5, 6]. When using this technique to analyse the 

linear elastic stress distribution of an imperfect shell, the displacement vector is expressed in 

terms of a damage parameter 't as follows: 
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(2.41) 

where a j is perturbation coefficient and ao is the displacement vector for a perfect cylindrical 

shells. 

(b) Eguivalent load method 

To theoretically estimate the stress concentration factor of damaged pipe, Tam and Croll 

[3-4] proposed that the equivalent load method could be used. They assumed that for an 

indented tubular member a typical defect is as shown in Fig.2.1, such that 

w = woe-bx1r 

1r+2 
RI =r--

4
-w 

1r-2 
R2 =r+-

4
-w 

1r 
S=-w 

2 

(2.42) 

where x represents the axial position in the pipe, b is a dent shape factor, rand ware the 

radius of the pipe and the dent depth at position x, respectively, Rl and R2 represent the two 

radii of the deformed pipe, and S is the width of the dent, as shown in Fig.2.1. 

s 

I'" 
L 

~I 
Wo 

r 

x 

Fig. 2.1 Typical dent damage cylinder used for stress analysis in equivalent load method 

The equivalent load method is based on the replacement of geometric deviations with an 

appropriately chosen normal pressure to be applied to the perfect (undamaged) shell. The 

damaged shell is taken to be subjected to the same in-plane stress resultants (n~, n~, n~e ) as 
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the perfect shell. The first order equivalent pressure, p:, may be obtained through simple 

static equivalence as follows: 

* 00 0000 
Pz = nxZx + n(}z(} + nx(}Zx(} (2.43) 

where (X~, X~ , X~e) are errors in axis, circumferential curvature and twist resulting from the 

local damage. When this equivalent pressure is applied to the perfect shell, an additional set 

of stress and moment resultants ( n: , n; , n:e , m: ,m; ,m:e ) is produced. Adding these 

increments of stresses and moments to the perfect shell thus yields the first order correction 

for the damaged shell. 

(2.44) 

By analogy, a second order equivalent load is given by 

** * 0 * 0 • 0 Pz = nxXx + n(}X(J + nx(}Xx(J (2.45) 

The second order correction of in-plane stresses and moments (so-called membrane force 

or section moments) is written as 

•• •• •• •• •• •• nx ,n(} ,nx(},mx ,m(} ,mx(} (2.46) 

Therefore the second order approximation of in-plane stress and moments can be 

presented as 

, 0 • •• 
nx = nx +nx +nx 

, 0 • •• 
n(} = n(} + n(} + n(} 

, 0 • •• 
nx(} = nx(} + nx(} + nx(} 

, 0 • *. mx =mx +mx +mx 
(2.47) 

, 0 • •• 
m(} = m(} + m(} + m(} 

o • •• mx(} = mx(} + mx(} + mx(} 

By repeating the above process until convergence is reached, an appropriate solution for 

imperfect pipes can be obtained. 
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(cl linear elastic solution of dented cylinders 

To systematically describe the indentation damage, Tam and Croll [2-4] applied a two­

dimensional Fourier analysis, as follows: 

wO(x,O)= 1: 1: w~ cos;Ocosj 2~ 
I=Oj=O I 

(2.48) 

where WO(x,S) is the radial displacement component of the indentation, w~ is the amplitude 

of the Fourier harmonic (i, j) having i circumferential and j meridional waves, respectively, 

and I is the length over which the radial geometric errors have any significance. 

At low deformation levels, the various changes in curvature, (X~, X~, X~a) may be 

approximated as follows: 

o2wO 0 1 o2wO 0 1 o2wO 

X~ = --2-'XO = 2 2 ,XxO = - ~~ 
Ox r 08 r t«CIU 

Therefore the first order equivalent pressure is expressed as 

p; = i: i: -~2(2~1l)2 +nS;2/r2 ~8COSI8COSj211X 
;=OJ=O I 

2 ~ ~ [ 0 •• 21r] 0 • • Ll i . 2~ - ~ ~ nxOIJ- WqSln,uS DJ-
;=OJ=O rl I 

(2.49) 

(2.50) 

When this equivalent pressure is applied to the perfect cylinder, a first order 

approximation of the incremental stress and moment resultants may be estimated. For clarity, 

the relevant simplified shell equilibrium equations can be written as follows: 

A2 +.!. (1 + ,u ) 
2 

.!.(l + ,u)A 
2 

-,ul 

.!.(1 + ,u)A ;2 +.!. (1- ,u),t2 -; 
2 2 

-,ul -; .!.~2 + l2)+ 1 
a 

where 

a = 12(r / t)2 

Iv = 21tjr / I 

K (= Et /(1- ,u2) ) is the membrane stiffness 

E is Young's modulus 

t is cylinder wall thickness 
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( u~, v ~, w ~) are harmonic amplitudes of the equivalent load induced incremental displacement 

components 

* ( ) 00 00 * 2nx u x,8 = ~ ~ uij cosi8sinj-
i=Oj=O I 

* ( ) 00 00 * 2nx v x,8 ,= ~ ~ vij sinifJcosj-
i=Oj=O I 

(2.54) 

* ( ) 00 00 * 2nx 
W x,8 = ~ ~ wij cosi8cosj-

i=Oj=O I 

To estimate the stress concentration factors on the surfaces of the cylinders, Tam and Croll 

[2-4] presented the following expressions, based on shell assumptions: 

* ( J cr· 0' , r 
Si=-' =Nj +Nj ±6WOM; -

crO t x 

(2.55) 

where 

i=x,x9,9 

o ' , o n· , n· , m· 
N· =-' N·=-' M·=--'-, 0" 0" 0 

nx nx nxwo 
(2.56) 

2.5.1.2 S-N fatigue life prediction 

Cylindrical shells containing local damage have been shown to exhibit high stress 

concentrations at the most damaged positions. The two-dimensional nature of these stresses 

has complicated the fatigue assessment process. However, for simplicity, the maximum 

principal stress theory was used by Tam and Croll [4]. It implies that the number of cycles 

required to cause fatigue failure under combined stresses is the same as that due to the 

maximum principal stress acting alone. For this reason, the following fatigue evaluation is 

based upon the meridional stress component only. The S-N expression is given by 

10gN = loga - m logfla (2.57) 

where m, a are material fatigue constants, and N and flO' represent the cyclic life and the 

stress range, respectively. 

Under cyclic loading conditions, the design stress range for a perfect cylinder will induce 

a higher stress range in the damaged shell. This has the effect of lowering the number of 

cycles to failure. A measure of the fatigue strength reduction is based upon the fatigue cycle 

reduction factor, Nt, defined as 
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Ni (t1.a P Jm (l)m 
Nt = N P = l1ai = S x 

(2.58) 

where subscripts i and p refer to imperfect and perfect cylinders, respectively, m is a material 

fatigue constant, and Nt is defined as the fatigue cycle reduction factor. 

2.5.2 Analysis based on elastic-plastic fracture mechanics 

For the elasto-plastic fracture mechanics analysis of structures, the stress intensity factor 

(SIF) must be calculated. For the analysis of cylindrical shells with cracks, Newman and Raju 

[33] calculated the stress intensity factors (SIF) for a cylinder with an elliptical crack on its 

inner surface, as follows: 

PRH (a a R ) K J =- 1f-F -,-,-,; 
t Q c t t 

where 

PR = means hoop stress due to the internal pressure 
t 

Q= shape factor for an elliptical crack = I + 1.464( a / c) 1.65 

a= depth of surface crack 

c= half-length of surface crack 

t= cylinder wall thickness 

R, Ro= inner and outer radii of cylinder 

4> = parametric angle of elliptical crack 

F= geometric shape function which is given by 

( )( )

2 
a 0.89 a 

1.13-0.09-+ -0.54+ - + 

O 97 
c 0.2 + a let 

F = · fed; 

( 0.5 - a ~ c + 14(1- a Ie )24 X ; J 
where 

[R; +R2 ~] t fe = 2 2 + 1 - 0.5 - -
Ro -R t R 
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1 

!; =[Sln2;+(:r COS2;T (2.63) 

Koh and Na [34] calculated the stress intensity factor of a thick-walled cylinder with an 

autofrettaged residual stress and an external radial crack, as follows: 

KI = KIP +KIR 

KIP =UoD.[ii!(alt) (2.64) 

KIR =u~D.[iif(alt) 

where 

KIP and KIR = stress intensity factors due to internal pressure and autofrettage residual 

stress 

a= crack length 

f= geometric shape function which is given by 

!(a/t) = 1.12 + AI; + A2(; Y + A3(; J + A.t(; r (2.65) 

(jOD = the nominal tangential stress at the outer surface of cylinder subjected to pressure P 

R2 
(jOD = 2P 2 2 

Ro -R 
(2.66) 

a ~D = autofrettage nominal residual stress at outer surface of smooth cylinder 

(2.67) 

p = boundary between elastic and plastic deformation during the autofrettage process 

a ys = yield stress 

2.6 Numerical analysis based on FE techniques 

FE calculations of indented pipes have been the most commonly used approaches for 

fatigue life analysis. Linear elastic theory is inadequate for analysing pipes with locked-in 

residual stresses for an elasto-plastic material with work-hardening. 
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2.6.1 FE analysis using shell elements 

Ohtani et al [8] proposed the use of curved quadrilateral shell elements to investigate the 

strain concentrations in an imperfect thin spherical shell. They found that a higher strain 

concentration was induced by the bending strain which is proportional to the amplitude of the 

imperfection. As expected, the peak value of the strain concentration occurs at the centre of 

the imperfection. 

Ong et al [24] analysed the residual stress distributions in local indented pressurised pipes 

using experimental measurements and FE solutions using 8-node shell elements. Their work 

indicated that the maximum value of residual strain is at the flank of the indentation when the 

flaws are of a local nature rather than being long indentations. Otherwise, the peak value of 

residual strain is at the damage centre for a long indentation. 

To estimate the residual life of indented damaged pipes, Zarea et al [10] proposed the use 

of static and dynamic FE models, using thin triangular shell elements for static analysis and 

quadrangular shell elements for dynamic analysis. Through this work, Zarea et al [10] 

established the relationships between dent depth and force, dent depth and residual dent depth, 

and calculated the residual stress distribution under cyclic pressure variation, in order to 

analyse the residual fatigue life. However, the paper by Zarea et al [10] did not give empirical 

analytical formulae derived from the FE calculations. Powell et al [11] also used the FE 

method to analyse the fatigue damage of indented pipes. However, unlike Zarea et al [10], 

they used 8-node shell. elements to undertake all the computations. In the dynamic model, 

Zarea et al [10] simulated complete failure processes from void nucleation to the crack 

development. 

2.6.2 FE analysis using three-dimensional (brick) solid elements 

3-D solid brick elements have been used by many researchers to assess the integrity of 

pipes with a gouge in a dent. Solid brick elements are more accurate and more convenient 

than shell elements for modelling the gouges and cracks, but the computing costs are 

significantly higher. Because it is difficult to obtain analytical expressions for the stress 

intensity factor at the tips of cracks, many researchers have been successful in estimating SIF 

by using FE calculations using solid brick elements. Newman et al [33], Raju et al [35], 

Zheng et al [36], and Koh et al [34] obtained semi-empirical expressions for cylinders with 

different sizes of cracks using this method. Zarrabi [37] calculated the plastic collapse 

pressure for cylindrical vessels with defects using solid brick element models. 
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2.7 Fatigue theories for the analysis of the fatigue damage of pipes 

A number of fatigue theories have been reviewed by Fatemi et al [1]. The most generally 

accepted approaches are the stress-life approaches, strain-life approaches and K-life 

approaches. 

2.7.1 Stress-life approaches 

For zero mean stress cycles, based on uniaxial tensile-compressive tests, Basquin 

proposed that the cyclic fatigue life relates to cyclic stress amplitude as follows (see, for 

example Suresh [38]): 

l1a ' ( \b 2 = (J' a = a f 2N f ) (2.68) 

where cr a (= (cr max - 0' min) /2) is cyclic stress amplitude, cr~ is a fatigue strength coefficient 

(which, for most metals, can be represented to a good approximation, by the true fracture 

strength cr f' corrected for necking, in a monotonic tension test) and b is called Basquin's 

exponent. 

For a non-zero mean stress, the cyclic stress amplitude is generally defined in the same 

way as that for zero mean stress. However, in order to fit experimental results the cyclic stress 

amplitude used in equation (2.68) sometimes are modified, for example, Suresh [38] reviewed 

Gerber, Goodman, and Soderberg's models which are expressed as follows: 

a. Soderberg expression: 

a a = { 1 - :: }cr aO 

where a aD refers to the cyclic stress amplitude obtained with zero mean stress. 

b. Modified Goodman expression: 

(J' a = {I - am }a aD 
aUTS 

c. Gerber expression: 

(2.69) 

(2.70) 

(2.71 ) 

where cry and a UTS are the material yield stress and ultimate tensile strength, respectively 
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While the Basquin relation is valid only for zero mean stress, Suresh [38] also reviewed 

Morrow relation which is a modification of Basquin relation and accounts for mean stress 

effects (for any am)' in the following fonn 

(2.72) 

For a multiaxial stress situation, Suresh [38] described the stress-life relationship in terms 

of an equivalent stress amplitude and an equivalent mean stress, defined as follows 

Ua,e = ~~(Ula -u2af + (0'1 a -u3af + (U2a -u3af 

Um,e = ~~(Ulm -u2mf + (Ulm -u3mf + (U2m -u3mf 

(2.73) 

(2.74) 

where (0'Ia'0'2a'0'3a) and (0'Im'0'2m'0'3m) are the amplitudes of the principal stresses and 

mean values of the principal stresses, respectively. 

2.7.2 Strain-life approach 

Suresh [38] reviewed the Coffin and Manson strain-life approach which was developed 

through their independently obtained experimental observations. The relationship is nearly 

satisfied: 

f1&p '( ~ 
-=&/2Nf ) 

2 
(2.75) 

where ~6p,6~ are the plastic strain amplitude and fatigue ductility coefficient, respectively, 

and c is the fatigue ductility exponent. 

The total strain amplitude, in a constant strain amplitude situation, can be written as the 

sum of an elastic strain amplitude and a plastic strain amplitude, i.e. 

~& ~&e f1&p 
-=--+--
2 2 2 

(2.76) 

Using Basquin equation and linear elastic theory, gives: 

(2.77) 

Combining the Coffin-Manson relationship and the above equation, results in: 
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(2.78) 

For multiaxial situations, as in the stress-based life approaches, the strain-life is expressed 

in tenns of the amplitude of equivalent strain as follows: 

(2.79) 

where for the fully plastic state, Poisson's ratio, U =0.5, and for the elastic state, U =0.33 for 

most metals and alloys, and (£1'£2 '£3) are the components of principal strains. 

2.7.3 K factor-life approach 

To estimate the fatigue life of cylinders with cracks, Paris and Erdogan [39] suggested a 

relationship between crack length and the number of cycles, as follows: 

da = C(M)n 
dN 

where 

~K = Stress-intensity factor range 

a = crack length 

N= number of fatigue cycles 

C= material constant 

n= material constant (a value of 4 is given in [39]) 

(2.80) 

The above equation has been shown to be in good agreement with experimental data when 

the SIF range is relatively small. However, if a larger range of ~K is used, the fatigue life 

calculated by the Paris-Erdogan relationship does not give accurate correlation with test data. 

For this reason, Forman et al [40] proposed the modified formulation: 

da 

dN 

where 

R= load ratio 

Kc= critical stress-intensity factor for fracture. 
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2.8 Summary 

Summarising previous work, it is found that many empirical formulae to predict the limit 

loads of the internal pressure and external force have been developed. It is also found that the 

linear analysis methods, e.g. perturbation and equivalent load methods, which require a lot of 

numerical calculations, cannot accurately predict the non-linear behaviour of indented pipes. 

Responses of the residual stresses and stress variations of indented pipes to the material 

properties, the geometrical dimensions (of pipes and indenters), the internal pressure and the 

residual dent depth were not investigated and are unknown. No empirical formulae were 

developed to predict residual stresses and stress variations and no analytical solutions were 

obtained to predict the non-linear elastic-plastic behaviours of indented pipes. Therefore, this 

thesis will attempt to investigate those stresses using experiments, FE analysis and energy­

based elastic-plastic methods. 
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Chapter 3 

Elastic-Plastic Response of Unpressurised Indented 
Pipes 

3.1 Introduction 

Most impact damage to pipelines is very localised [1-4, 16, 17], as indicated in Fig. 1.1 (a). 

However, in some cases, the damage can extend over a significant length of the pipe [12], as 

indicated in Fig. 1.1 (b). In the latter case, the behaviour (except at the ends of the damage) is 

essentially two-dimensional and can be analysed as a plane-strain ring, as indicated in Fig. 1.1 (c). 

Indentation damage can occur with or without internal pressure and the deformations and 

residual stresses are affected by the magnitude of the internal pressure when the damage occurs. 

With suitable FE software [26] the deformations and residual stresses due to impact can be 

obtained. However, these solutions may be time consuming and expensive. For rings, simple 

analysis methods can be used as an alternative. For example, Castiglano's theorem can be used to 

determine elastic deformations, and the upper bound methods can be used to determine limit 

loads. In this chapter, the accuracy of these methods will be assessed by comparing predictions 

obtained from analytical solutions with experimental data and with detailed FE analysis. 

3.2 Experimental Work 

3.2.1 Material 

The material chosen for the experimental investigation is 6082-T6 aluminium alloy. The 

tensile stress-strain curve for the material is shown in Fig. 3.1; Young's modulus, Poisson's ratio, 

yield stress and ultimate tensile stress are 70 GPa, 0.3, 300 MPa and 351 MPa, respectively. Fig. 

3.1 also shows the stress-strain curve for a practical gas pipeline material, namely X65 SAW, 

which has a Young's modulus, Poisson's ratio, yield stress and ultimate tensile stress of 223GPa, 

0.3, 448MPa and 675MPa, respectively. These material properties were also used in some of the 

FE analyses. 
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Fig. 3.1 True stress-strain curves of 6082-T6 aluminium alloy and X65 SAW pipe steel. 

3.2.2 Geometry and Loading 

For the experimental tests, 6082-T6 aluminium alloy rings were set on a V -block support cast 

with plaster to form the arc supporting bed as shown in Fig.3.2. The support conditions were 

essentially an arc support which was very close to a three point support situation. The support 

angle, 8, is shown in Fig. 3.2. The rings were radially loaded at point A (see Fig.3.3) by a Bright 

Drawn Mild Steel indenter with an end radius of 2 mm and an axial length of 50mm. 

o 
45 1 

L Cast V -bloack support 
-

Fig. 3.3 Dented ring set on a v-block support for experimental tests 
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The tests were conducted on an Instron 1195 machine with 1 kN and 50 kN load cells, and the 

data (force and displacement) were recorded automatically; the load point displacement rate was 

set to 2mmlmin. 

Tests were performed on eight rings with dimensions, peak loads and initial gradients of force 

versus displacement curves given in Table 3.1. 

Table 3.1 Geometries and experimental results of dented rings 

Geometry of 6082-T6 aluminium alloy rings used in tests 
Test Support Outer diameter D; Wall thickness t; Axiallength L 
No Angle 0 Limit load Initial gradient 

e -(mm) t (mm) O/t L(mm) N/mm N/(mm)2 

TEl 45° 88.8 1.2 72.0 40 14.6 2.33 
TE2 45° 88.8 1.2 72.0 40 14.0 2.31 
TE3 45° 88.8 1.2 72.0 40 13.5 2.25 
TE4 45° 125 3 41.6 50 66.0 11.36 
TE5 45° 125 3 41.6 50 61.0 10.28 
TE6 45° 92.4 3 30.8 50 86.0 23.07 
TE7 45° 92.4 3 30.8 50 88.7 24.09 
TE8 45° 120 5 24 50 204 61.42 

The peak loads (or limit loads) were obtained from the force (per unit length of the pipe) 

versus dent depth curves of the experimental data; initial gradients were obtained from the initial 

linear parts of the force versus dent depth curves obtained from experiments. 

3.2.3 Results of the Ring Tests 

A series of eight experimental indentation tests, of rings with a range of geometrical 

dimensions were performed; they were supported in a 90° V-block as shown in Fig.3.2. The 

indenter force versus depth curves obtained from the experiments are shown in Fig. 3.3. 
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Fig. 3.3 Indenter force versus depth curves obtained from experiments performed on the 6082-T6 

aluminium alloy rings. 
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3.3. FE Analysis 

3.3.1 Material 

Six materials were used in the FE analyses. Results were obtained for the aluminium alloy 

(6082-T6) for comparison with the experimental results. Since practical pipelines are usually 

made from a variety of steels, FE analyses were performed using material data for one of these 

steels, namely X65 SAW. Four idealised materials (i.e. Ideal-A, B, C and D) with elastic, 

perfectly plastic material properties were also used to investigate the influence of material 

properties on the collapse load. Of the latter four idealised materials, three (ldeal-B, C and D) 

were chosen to have a Young's modulus of 223 GPa and yield stresses of 300 MPa, 448 MPa and 

600MPa, respectively and the fourth, Ideal-A, has a Young's modulus of 70GPa and yield stress 

of 300MPa, i.e., the same yield stress as material Ideal-B but a different Young's modulus. The 

basic properties of these six materials are given in Table 3.2. In the FE analyses, all materials 

were assumed to obey an isotropic rule. 

T bl 32M t . I a e a ena propertIes use d' FE In analyses. 
Material E cry crUTS Poisson's ratio 

6082-T6 alloy 70GPa 300 MPa 351 MPa 0.3 
X65 SAW 223 GPa 448 MPa 675 MPa 0.3 

Ideal-A 70GPa 300 MPa - 0.3 
Ideal-B 223 GPa 300 MPa - 0.3 
Ideal-C 223 GPa 448 MPa - 0.3 
Ideal-D 223 GPa 600 MPa - 0.3 

3.3.2 FE Meshes, Boundary Conditions and Loading 

The ABAQUS [26] FE software was used for the analyses. Due to symmetry, only one half 

of the rings were modelled. All models consisted of 675 8-noded, plane-strain, reduced 

integration elements, as shown in Fig. 3.4. Mesh convergence was checked for some of the cases 

by using four times as many elements and it was found that peak loads were the same to within 

0.5% (compared with the 675 element results, see FE7 to FEIO in Table 3.3) in all cases. The 

nodes on the rings at sections A and C (Fig.3.4(a» were restrained (i.e. UxA=UxC=O) in the 

circumferential direction for all analyses. In some of analyses the rings were fully restrained 

(i.e.uxB=uyB=O) at the outer diameter at position B, which is referred as boundary condition 1 or 

BCI (see Fig.3.4(c». In some of the analyses, the rings were restrained only in the vertical 

direction (i.e.uyB=O) at the outer diameter at position B, which is referred as boundary condition 2 
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or BC2 (see Fig.3.4(d». The load was applied in the radially inwards direction at the outer 

diameter position at point A. In total 62 analyses were performed, these are defined in Tables 3.3 

to 3.8. 

(a) FE meshes of half a ring (b) Locally amplified meshes 

B 
7// 

c c 

(c) Boundary condition I (BCI) (d) Boundary condition 2 (BC2) 

Fig. 3.4 FE meshes and boundary conditions for the indented ring analyses. 
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Table 3.3 Geometrical dimensions, boundary conditions and FE results for 6082-T6 aluminium 

alloy rings 

Ring Dimension 
Outer diameter D (mm) 

FENo. Thickness t (mm Limit Initial 
Supporte Boundary Load Gradient Number of 

D t Dlt d Condition N/mm N/(mm)2 Elements 
Angle e 

FEI 88.8 1.2 72 45° BCI 14.2 2.22 675 
FE2 88.8 1.2 72 45° BC2 12.3 1.53 675 
FE3 125 3.0 41.6 45° BCI 69.4 12.39 675 
FE4 125 3.0 41.6 45° BC2 62.0 9.69 675 
FE5 92.4 3.0 30.8 45° BCI 99.7 32.80 675 
FE6 92.4 3.0 30.8 45° BC2 90.0 23.85 675 
FE7 120 5.0 24 45° BCI 223 67.97 675 
FE8 120 5.0 24 45° BC2 203 56.79 675 
FE9 120 5.0 24 45° BCI 222 69.71 2700 

FElO 120 5.0 24 45° BC2 203 55.40 2700 

Table 3.4 Geometrical dimensions, boundary conditions and FE results for X65 SAW pipeline 

steel rings. 

Ring Dimension 
Outer diameter D (mm) 

FE No. Thickness t (mm Limit Initial 
Supported Boundary Load Gradient Number of 

D t D/t AngleS Condition N/mm N/(mm)2 Elements 

FEll 88.8 1.2 72 45° BCl 24.2 7.34 675 
FEl2 128 3.0 42.6 45° BCl 115 38.76 675 
FEl3 92.4 3.0 30.8 450 BCl 169 107.28 675 
FE14 88.8 1.2 72 00 BCl 36.4 ** 675 
FEI5 128 3.0 42.6 00 BCl 180 ** 675 
FEI6 92.4 3.0 30.8 00 BCI 267 ** 675 
FEI7 88.8 1.2 72 900 BCI 17.3 ** 675 
FEI8 128 3.0 42.6 900 BCl 81.7 ** 675 
FEI9 92.4 3.0 30.8 900 BCl 119 ** 675 

** Not used 
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Table 3.5 Geometrical dimensions, boundary conditions and FE results for idealised elastic 

perfectly plastic material Ideal-A (oy=300MPa and E=70GPa). 

Ring Dimension 
Outer diameter D (mm) 

FE No. Thickness t (mm) Limit Initial 
Support Boundary Load Gradient Number of 

D t D/t AngleS Condition N/mm N/(mm)2 Elements 

FE20 88.8 1.2 72 _60° BCI 54.0 206.56 675 
FE21 88.8 1.2 72 _45° BCI 36.5 68.68 675 
FE22 88.8 1.2 72 -22.5° BCI 24.0 19.64 675 
FE23 88.8 1.2 72 0° BCl 18.2 7.85 675 
FE24 88.8 1.2 72 22.5° BCI 14.9 4.08 675 
FE25 88.8 1.2 72 45° BCl 12.6 2.20 675 
FE26 88.8 1.2 72 70° BCI 10.3 1.22 675 
FE27 88.8 1.2 72 90° BCl 9.3 0.86 675 
FE28 128 3.0 42.6 _45° BCI 184 366.67 675 
FE29 128 3.0 42.6 -22.5° BCl 123 114.27 675 
FE30 128 3.0 42.6 0° BCl 92.0 47.15 675 
FE31 128 3.0 42.6 22.5° BCl 74.0 23.17 675 
FE32 128 3.0 42.6 45° BCI 61.3 12.18 675 
FE33 128 3.0 42.6 70° BCI 48.8 6.50 675 
FE34 128 3.0 42.6 90° BCI 43.4 4.71 675 
FE35 92.4 3.0 30.8 _45° BCI 263 824.04 675 
FE36 92.4 3.0 30.8 -22.5° BCl 185 313.45 675 
FE37 92.4 3.0 30.8 0° BCl 138 125.77 675 
FE38 92.4 3.0 30.8 22.5° BCI 110 62.86 675 
FE39 92.4 3.0 30.8 45° BCI 90.0 32.48 675 
FE40 92.4 3.0 30.8 70° BCI 72.0 17.69 675 
FE41 92.4 3.0 30.8 90° BCl 63.0 12.57 675 
FE42 88.8 1.2 72 45° BC2 11.3 ** 675 
FE43 128 3.0 42.6 45° BC2 55 *. 675 
FE44 92.4 3.0 30.8 45° BC2 81.5 *. 675 

** Not used 

Table 3.6 Geometrical dimensions, boundary conditions and FE results for idealised elastic 

perfectly plastic material Ideal-B (oy=300MPa and E=223GPa). 

Ring Dimension 
Outer diameter D(mm) 

Limit FE No. Thickness t (mm) Initial 

Supported Boundary Load Gradient Number of 

0 t Olt Angle e Condition N/mm N/(mm)2 Elements 

FE45 88.8 1.2 72 45° BCl 15.2 7.54 675 
FE46 128 3.0 42.6 45° BCl 69.7 38.63 675 
FE47 92.4 3.0 30.8 45° BCI 101 107.16 675 

FE48 88.8 1.2 72 45° BC2 13.6 *. 675 

FE49 128 3.0 42.6 45° BC2 63.6 *. 675 

FE50 92.4 3.0 30.8 45° BC2 92.3 *. 675 

** Not used 
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Table 3.7 Geometrical dimensions, boundary conditions and FE results for idealised elastic 

perfectly plastic material Ideal-C (cry=448MPa and E=223GPa). 

Ring Dimension 
Mean Radius R (mm) 

FE Thickness t 'mm) Supported Limit Initial 
No. Angle e Boundary Load Gradient Number of 

R t D/t Condition N/mm N/(mm)2 Elements 

FESt 88.8 1.2 72 45° BCI 21.7 7.54 675 
FE52 128 3.0 42.6 45° BCI 101 38.63 675 
FE53 92.4 3.0 30.8 45° BCl 146 107.16 675 
FE54 88.8 1.2 72 45° BC2 19.2 ** 675 
FE55 128 3.0 42.6 45° BC2 91.1 ** 675 
FE56 92.4 3.0 30.8 45° BC2 133 ** 675 

** Not used 

Table 3.8 Geometrical dimensions, boundary conditions and FE results for idealised elastic 

perfectly plastic material Ideal-D (cry=600MPa and E=223GPa). 

Ring Dimension 

FE 
Outer diameter D (mm) 

Thickness t mm) Limit Initial 
No. Supported Boundary Load Gradient Number of 

R t D/t Angle e Condition N/mm N/(mm)2 Elements 

FE57 88.8 1.2 72 45° BCI 28.0 7.54 675 
FE58 128 3.0 42.6 45° BCl 131 38.63 675 
FE59 92.4 3.0 30.8 45° BCI 191 107.16 675 
FE60 88.8 1.2 72 45° BC2 24.6 ** 675 
FE61 128 3.0 42.6 45° BC2 118 ** 675 
FE62 92.4 3.0 30.8 45° BC2 173 ** 675 

** Not used 

The loads were applied using a rigid indenter with a 2mm radius and rigid surface contact 

elements. Large deformation, elastic-plastic analyses were performed using the standard arc­

length (Riks) algorithm facility within the ABAQUS [26] program. 

3.3.3 FE Results 

3.3.3.1 Idealised Elastic Perfectly Plastic Materials 

Four idealised elastic perfectly plastic materials (Ideal-A, B, C and D) were chosen to 

investigate the effects of the Young's modulus and yield stress on the limit loads, using FE 

analysis, for three geometries (Dlt=72, 42.6, 30.8). The results were also used to investigate the 

effects of the support angular positions on peak loads, which can be obtained from the maximum 
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points of the force versus dent depth curves from the FE analyses. The results obtained from each 

of the FE analyses are shown in Tables 3.5 to 3.8. Typical indenter force versus depth curves, 

obtained from FE32, 46, 52 and 58 for D/t=42.6, are shown in Fig.3.5. 
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Fig.3.5 Typical indenter force versus depth curves obtained from idealised materials: Ideal-A, B, 

C and D for a ring with a diameter of 128 mm and a wall thickness of 3mm. 

Fig.3.6 shows the initial gradients for D/t ratios of 72, 42.6 and 30.8 which have been 

multiplied by 104 and then been normalised by dividing them by their Young's moduli of 70GPa 

and 223GPa. It can be seen that normalised initial gradients for these materials are consistent. 
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Fig.3.6 Normalised initial gradients for idealised materials of Ideal-A and B 
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For the Ideal-A material, the initial gradients, G, shown in Table 3.5 obtained from the FE 

analyses can be conveniently normalised by dividing by Ee IR3. The subsequent normalised 

initial flexibility (IIG), K(e), is shown in Fig. 3.7 from which it can be seen that the initial 

gradients, G, of the force versus dent depth curves decrease with increasing of support angles. 
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Fig.3.7 Normalised initial flexibility of indenter force versus dent depth curves for different 

angular support positions and different ratios of D/t of 72, 42.6 and 30.8 for idealised material 

Ideal-A 

The peak loads for FE25, FE32, FE39, FE45 to FE47, FE51 to FE53 and FE57 to FE59 

shown in Tables 3.5 to 3.8 were obtained with boundary condition 1 and the angular support 

position of 45°. The peak loads were normalised by dividing by the associated yield stresses; a 

comparison of some of these results is shown in Fig.3.8. It can be seen that these normalised 

peak loads are in good agreement with each other (differences are less than 5%). 
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Fig.3.8 Normalised peak loads for idealised materials of Ideal-A, 8 , C and D 

The peak load for material ldeal-A with different angular support positions are given in Table 

3.5 and these are shown in Fig. 3.9 (see FE20 to FE41), from which it can be seen that the peak 

loads decrease as the support angle is increased. 
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Fig.3.9 Peak loads for different angular support positions and different D/t ratios. 
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3.3.3.2 6082-T6 Aluminium Alloy 

Typical indenter force versus depth curves, obtained from the FE I, FE3 and FE5 analyses 

performed on the aluminium alloy models, are shown in Fig.3.10. The initial gradients and peak 

loads obtained from FEI to FElO are given in Table 3.3 . 
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Fig. 3.10 Typical indenter force versus depth curves obtained from FE analyses for 6082-T6 

aluminium alloy rings 

From Table 3.3 it can be seen that the indenter forces obtained when all movements at point B 

and D are constrained (boundary condition 1) are higher than those obtained by constraining only 

the vertical movements at points Band D (boundary condition 2). FE7 to FE 10 indicate that 

peak loads obtained from the FE models with 675 reduced integration, 8-nodes, quadratic, plane­

strain elements are very close to those obtained with 2700 elements. 

The initial gradients (see FE 1 to FES) obtained for boundary conditions I and 2, are plotted 

against each other in Fig. 3.11. It can be seen that the initial gradients obtained using boundary 

condition 1 are, in general, about 240/0 higher than those obtained by using boundary condition 2. 
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Fig. 3.11 Comparisons of initial gradients obtained by using boundary conditions 1 and 2 for 

6082-T6 aluminium alloy rings. 

3.3.3.3 X65 SAW Steel 

Typical indenter force versus dent depth curves obtained from the FE II to FE 13 FE analyses, 

performed on the X65 SAW steel models, are shown in Fig. 3.12. The peak loads are gi ven in 

Table 3.4. 
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Fig. 3.12 Typical indenter force versus depth curves obtained from FE analyses for X65 SAW 

steel rings 
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The normalised initial gradients for the FE 1, FE3, FE5 and FE II to FE 13 FE analyses, given 

in Tables 3.3 and 3.4 for the 6082-T6 aluminium alloy and the X65 SAW steel are shown in Fig. 

3.13. In this figure all of the gradients are amplified by 104
• It can be seen from this figure that 

there is good agreement. 
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Fig. 3.13 Normalised initial gradients for 6082-T6 aluminium alloy and X65 SA W 

The peak loads obtained from the FE 1, FE3, FE5, FE 11, FE 12 and FE 13 analyses have been 

normalised with respect to the appropriate yield, flow and ultimate tensile stresses. The 

representative flow stress, crr. is defined as the average of the yield and ultilnate stresses, i.e. crr 

=(cry+cruTs)/2. The normalised peak loads for the X65 SAW material are plotted against the 

corresponding results obtained for the 6082-T6 aluminium alloy material in Fig.3.14. It can be 

seen that the best correlation is obtained using the representative flow stress. 
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FigJ.14 A comparison of normalised peak limit loads for 6082-T6 aluminium alloy and X65 

SAW 

3.4 Analytical Methods 

3.4.1 Elastic Strain Energy Solution 

For the elastic response of the ring, Castiglano's theorem [41] can be used, i.e. 

8= au of (3.1 ) 

whereb' is the displacement due to and in the direction of the load F and U is the complementary 

strain energy in the structure. 

Considering the ring as a thin curved beam, the strain energy can be determined from the 

bending moment, M, distribution. 

U=_I-JM 2ds 
2£1 

(3.2). 

Taking the angle a to be measured from point A (see Fig.3.4 (a)), the bending moment at 

angular position, U, is given by 

M(a)=MA-NAR(l-cosa)-~ Rsina (3.3) 
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where MA and NA are the unknown moment and circumferential force at section A. It is assumed 

that the beam is built in at position B, as indicated in Fig.3.2 and there is no internal pressure, 

hence 

u = -4 r}+O RM(a)2 da 
Er .lY 

Therefore using equation (3.1) gives 

8 = ~ (A + 8 + c t. = ~ K (0 )F 
Et 3 D r Et J 

where A, B, C and 0 are functions only of the support angle, e, i.e., 

A = 1(!L + B + l sin 2B) 
422 

B = (\ + sin B)[%Sin 2B + 3cosB - (t + 0 ~cos2 0 + sin 0 + \)] 

C = cos 0(1 + 1 sin 20 + sin oI(t + B )cos B-2 sin B-2] 

D = 2( (f + 0 I -2 cos 
2 

0 - t (f + 0 )s i n 20 J 

(3.4 ). 

(3.5) 

(3.6). 

Normalised initial flexibility, K(B), of the force-displacement curves obtained from the FE 

method for the material Ideal-A are compared with those obtained using equation (3.5) in 

Fig.3 . IS. It can be seen that the normalised initial flexibility obtained using equation (3.5) and 

obtained from the FE analyses are very close in all cases. This figure clearly shows that equation. 

(3.5) is capable of accurately predicting the initial gradients. 
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FigJ.15. Normalised initial fl ex ibility obtained from the FE and analytical solutions for different 

support angular positions. 
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3.4.2 Limit Loads 

Upper bound theorems exist for determining limit loads [42, 43]. The upper bound method is 

based upon the use of a kinematically admissible velocity field in which, if all boundary 

conditions are satisfied, the loads determined by equating the rate at which the external forces do 

work to the rate of internal energy dissipation will be either higher than or equal to the actual 

limit load. 

To calculate the limit load for the dented ring shown in Fig.3.2, the indenter force is assumed 

to be a concentrated force (denoted by F). It is assumed that there are five plastic hinges at A, B, 

D, E and F, which can form an admissible velocity field and that arcs of the ring between the 

hinges are rigid (see p.98). Based on the compatibility of the assumed kinematic velocity field, 

the relationship of the angular rotations at those five plastic hinges and the displacement of hinge 

A, for small deformation, is given by 

s: cos OO - cosO + sin(OO + B) 
u = Rat 

1- sinBO 
(3.7) 

I + sin 0 
a2 = al 

1- sin 00 
(3.8) 

(3.9) 

where 80 (see Fig.3.2) is the angular position of the plastic hinges of E and F, and a2 is the 

relative rotation of arcs AE and EB or of arcs AF and FD. The displacement and rotation of 

hinge A are 8 and 2a3, respectively, and at is the rotational angle of hinges Band D. The upper 

bound can be optimised by allowing 80 to be a variable. The value of 80 which minimises the 

upper bound load is the optimised value of 90• The limit moment Mo at the hinges is given by 

1 2 
Mo = 4 G'yt (3.10). 

The internal energy dissipated, WI, and the work, WE, done by the external force F, are given 

by 

(3.11 ) 

and 

(3.12). 
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By employing the virtual work principle and minimising the external force F with respect to 

eO, the optimised upper bound is given by 

FU = L(B) 4M 0 
R 

where L(B) is given by 

L(e)= (I + sin 0) 
(2 sin (t + -t e )- cos 0) 

(3.13) 

(3.14). 

The non-dimensional function, L(B), relates the magnitude of the limit load to the position, 8, 

of the support; the variation of L(e) with 8 is shown in Fig.3.16, which illustrates that the upper­

bound limit load of the dented ring decreases with increasing support angle, 8. The FE results for 

idealised material Ideal-A, normalised by dividing the peak loads by t2crylR, are also included in 

Fig. 3.16, for comparison with the upper-bound prediction. 
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Fig.3.16 Values of non-dimensional limit load function, L(e), for different support angular 

positions for material Ideal-A. 

3.5 Comparisons of Experimental, FE and Analytical Solutions 

A comparison of the solutions obtained from experiments, FE and analytical solutions is 

performed in order to validate the FE modelling analyses and the analytical solutions derived in 

this chapter. 
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3.5.1. Initial gradient 

The initial gradient results given in Tables 3.1 and 3.3 for the 6082-T6 aluminium alloy, with 

different D/t ratios, are shown in Table 3.8. It is seen that for the large D/t ratio, the initial 

gradients obtained from the experiments are in good agreement with those obtained from FE 

analyses with boundary condition 1, but are smaller than those obtained from the analytical 

solution described in this chapter. However, for small D/t ratios, the initial gradients obtained 

from the experiments are closer to those from the FE analyses with boundary condition 2 and are 

much smaller than those obtained from the analytical solution, i.e. Eq.(3.5). However, the initial 

gradients obtained from the FE analyses with boundary condition 1 are also quite close to those 

obtained from the analytical solution. These differences occur because in the analytical solution 

the vertical movements at C are prevented but in the FE analyses and experiments point C is 

allowed to move vertically. 

Table 3.8 Initial gradients from experiments, FE analyses and analytical solutions for the 6082-

T6 aluminium alloy 

Olt Experimental FE (BC1) FE (BC2) Analytical 
Results Solution Solution Solution 

TE1 2.33 
72 TE2 2.31 FE1 2.22 FE2 1.53 2.52 

TE3 2.25 
TE4 11.36 

41.6 TE5 10.28 FE3 12.39 FE4 9.69 14.58 

TE6 23.07 
30.8 TE7 24.09 FE5 32.80 FE6 23.85 37.06 

24 TEB 61.42 FE7 67.97 FEB 56.79 BO.60 

The close agreement between the FE and analytical elastic predictions, indicated in FigJ.15, 

for material Ideal-A, shows that similar conclusions on the relative magnitudes of initial 

deflections would be obtained with all of the other material models. 
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3.5.2. Limit loads 

3.5.2.1 6082-T6 Aluminium Alloy 

The force versus displacement curves obtained from each of the FE and analytical solutions 

performed on the aluminium alloy models are shown in Fig. 3.17; the analytical limit loads were 

calculated by using the representative flow stress. Also shown in these figures are the 

corresponding experimental results. The limit loads obtained from the FE and analytical analyses 

are given in Table 3.9, which shows that the analytical limit loads, obtained using the yield stress 

in the predictions, are generally very close to those obtained from the experiments. These data 

indicate that the analytical, FE and experimental results are consistent and that using 

representative flow stress gives closer correlation of analytical solutions to those obtained using 

the FE results with boundary condition 1. 

Table 3.9 FE and analytical solution for limit loads in 6082-T6 aluminium alloy rings by using 

yield, flow and ultimate tensile stresses in the analytical formulation (O'y= yield stress; O'F 

representative flow stress; Outs= ultimate stress); 8=450 

O/t Experimental FE (BC1) FE (BC2) Analytical Analytical Analytical 
N/mm N/mm N/mm UsinA O'x Usin~ O'r using OUTS 

TE1 14.6 
72 TE2 14.0 FE1 14.2 FE2 12.3 14.2 16.0 17.2 

TE3 13.5 
TE4 66.0 

41.6 TE5 61.0 FE3 69.4 FE4 62.0 66.2 71.8 77.5 

TE6 86.0 
30.8 TE7 88.7 FE5 99.7 FE6 90.0 90.6 98.0 105.7 

24 TEa 204 FE7 223 FEB 203 195.1 211.7 228.3 
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FigJ.17 Indenter force versus dent depth curves obtained from the analytical fonnulation, the 

FE modelling analyses and the experimental tests for 6082-T6 aluminium alloy rings; BC 1 and 

BC2 refer to boundary conditions 1 and 2, respectively. 

A comparison of the solutions of the analytical, FE and experimental results indicates that for 

large Olt ratios, the limit load results obtained from the experimental tests and the FE analyses, 
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with boundary condition 2, are in good agreement but they are significantly smaller than those 

obtained using the analytical solutions. The results obtained from the FE analyses, with 

boundary condition 2, were found to be smaller than those obtained from the experimental tests 

for Olt =72. For smaller D/t ratios ranging from 24 to 41.6, it was found that the solutions 

obtained from the FE analyses, the analytical formulations and the experimental tests are 

reasonably close. For the smaller Olt ratios, it can also be seen that the indenter forces obtained 

from the FE analyses, with boundary condition I, are higher than those obtained from the 

experimental tests. In these cases, better agreement between the FE and the experimental results 

is obtained when the FE analyses are performed with boundary condition 2. 

All of the above analyses show that the analytical formulation for predicting the limit load is 

capable of giving reasonably accurate predictions of the limit loads for smaller D/t ratios, with 

the support as shown in Fig.3.2. However, the analytical formulation for predicting the limit load 

overestimates the limit loads for larger D/t ratios, i.e. D/t=72. The differences between the 

analytical, FE modelling and experimental test results are considered to be mainly due to the 

differences in the boundary conditions and the assumption of rigid arcs between AE, EB etc in 

the analytical solution. 

3.5.2.2 Elastic Perfectly Plastic Materials 

The results obtained from each of the FE analyses using the elastic perfectly plastic material 

models and the theoretical analyses, were normalised by dividing them by the yield stress. The 

results are given in Table 3.10 which illustrates that the material properties influenced the value 

of the predictions, by between 1.4% to 14%. 

Table 3.10 Normalised peak loads obtained from the analytical and FE analyses performed for 

elastic perfectly plastic materials with boundary conditions I and 2 (BC I and BC2). 

Ideal-A 

e = 45° Materials: Ideal-B, C and 0 (E=223GPa) (E=70GPa) 

Yield stress 300MPa B 448MPa C 600MPa D 300MPa A 
Analytical 

D/t T FE FE FE FE FE FE FE FE 
(mm) BC1 BC2 BC1 BC2 BC1 BC2 BC1 BC2 

30.8 3 0.337 0.307 0.326 0.297 0.318 0.288 0.302 0.272 0.3 

42.6 3 0.232 0.212 0.225 0.203 0.218 0.197 0.205 0.183 0.215 

72 1.2 0.051 0.045 0.048 0.043 0.047 0.041 0.043 0.038 0.049 
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From a comparison of the FE predictions, for boundary condition I, with the analytical 

predictions, it can be seen that the peak loads obtained from the FE analyses with a Young's 

modulus of 223GPa are higher than those obtained using the analytical method. This comparison 

also shows that the yield stress used in the FE analyses has an effect on the normalised peak load 

predictions. The FE results with a lower Young's modulus (70GPa) indicate that the peak loads 

obtained from the FE analyses, with boundary condition I, for large D/t ratios are smaller than 

those obtained using the analytical method. The results also clearly show that Young's modulus 

influences the peak loads obtained from the FE analyses. 

The results in Table 3.10 also show that for rings made from materials Ideal-B, C and D, with 

smaller D/t ratios, the peak loads obtained using boundary condition 2 are relatively close to 

predictions obtained using the analytical method. For the higher D/t ratio, i.e. 0/t=72, the use of 

boundary condition I gives better agreement with the predictions of peak loads obtained using 

the analytical method. A comparison of results for material Ideal-A and boundary condition I, 

with analytical predictions, indicates better agreement of the predictions of peak loads than that 

obtained using boundary condition 2. The same conclusion was made in section 3.5.2.1 for the 

6082-T6 aluminium alloy material. The results show that for the highest Dlt ratio, i.e. D/t=72, 

using boundary condition 1, the correlations with the analytical results are generally better than 

when boundary conditions 2 is used. The results also show that for materials with higher E 

values and smaller D/t ratios, the correlation is better using boundary conditions 2 than boundary 

conditions I. For the lower E value, Ideal-A material, using boundary conditions I gives better 

correlation of peak loads than is obtained using boundary conditions 2. 

The effects of Olt on the correlation of the analytical limit load and the FE prediction of peak 

load, can also be obtained from Table 3.10. It can be seen that for the idealised material Ideal-B, 

the FE peak loads and the analytical limit load are closer for a D/t ratio of 72 rather than for that 

of 30.8. However, for idealised material Ideal-A, the limit loads obtained from the analytical 

method are closer to the FE peak loads for a D/t ratio of 30.8 rather than for that of 72. 

The effects of angular positions of the support on limit loads (see Table 3.5) are shown in 

FigJ.16 which indicates that FE modelling can predict the limit loads better at large rather than 

small angular positions. However, small angular support positions (i.e. 8 ~ -45 0 ) are likely to be 

rare in practical applications. 

51 



3.5.2.3 X65 SAW Steel 

The indenter force versus displacement curves obtained from each of the FE analyses, using 

boundary conditions 1, and the analytical solutions for the X65 SAW steel models, are shown in 

Fig. 3.18; the analytical limit loads were calculated using the representative flow stress. The peak 

loads are shown in Table 3.11. 

Table 3.11 FE and analytical peak load comparisons for X65 SAW steel rings using the yield, 

flow and ultimate tensile stresses in the analytical formulation (crF representative flow stress; 

cry= yield stress; crUTS= ultimate tensile stress) 
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Fig. 3.18 The indenter force versus depth curves from analytical , FE and experimental tests using 

X65 SAW steel models with the support angular position of 45° 

It can be seen that similar conclusions can be derived from the steel data as were derived fronl 

the aluminium data. For higher D/t ratios, i.e. Dlt=72, using the yield stress in the analytical 

solution gives closer correlation with predictions of peak loads obtained from the FE analyses. 

For the lowest D/t ratio, i.e. D/t=30.8, the peak FE load is very close to that obtained using the 

representative flow stress in the analytical formulation . This is because the analytical limit load 
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solutions are based on small deformation theory whereas the FE and the experimental data 

include large deformation and large strain effects. 

3.6 Conclusions 

All of the above analyses illustrate that due to the effects of the non-linear large deformations 

and large strains in dented rings, material properties and geometries can influence the accuracy of 

the predictions of the peak loads obtained using the analytical solutions, i.e. Eq.3.13. However, 

using the flow or yield stress in the analytical solutions can give reasonably accurate peak load 

predictions. For smaller O/t ratios, peak loads can be accurately predicted using the analytical 

solutions. 

Due to the differences of the boundary conditions in the FE, experimental and analytical 

solutions, the initial gradients obtained from the analytical solution are higher than those obtained 

from the FE and the experimental test results. However, for larger O/t ratios, i.e. 0/t=72, the 

analytical solutions can give very good agreement for the predictions of initial gradients. 

The FE and the experimental results indicate that using boundary condition I results in more 

accurate predictions of the initial gradients and limit loads of dented rings on a saddle-type 

support with larger O/t ratios, i.e. 0/t=72. However, using boundary condition 2 is capable of 

predicting the peak loads and initial gradients for smaller O/t ratios, i.e. 0/t=30.8. 

3.7 Summary 

The elastic-plastic responses of pipes with long indentations were investigated in this chapter 

using experimental tests, FE analyses and simple analytical methods (initial gradients and limit 

loads). Six different materials, four different geometries and two different boundary conditions 

were used to investigate their effects on the elastic-plastic responses. All of results presented in 

this chapter indicate that by using the average of yield and ultimate stresses as the representative 

flow stress in the limit load method, it is possible to obtain reasonably accurate predictions for the 

peak loads. 
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Chapter 4 

Prediction of Indentation Force-Deflection Behaviour 
of Pressurised Pipes 

4.1 Introduction 

In chapter 3, the upper bound method has been used to determine the limit loads for 

unpressurised rings. A comparison of the analytical and FE solutions with experimental data 

showed that the analytical limit load method is simple to use and can give accurate predictions. 

It is shown in this chapter that if the internal pressure is large enough, the limit load methods 

previously used in chapter 3 for unpressurised pipes, give inaccurate predictions. This chapter 

explains why the approach used when there is no pressure is inaccurate for the case of pressurised 

pipes, and presents an alternative energy-based approach for predicting the relationship between 

indentation force and dent depth when internal pressure is significant. The accuracy of the 

analytical method for pressurised rings with large, non-linear deformation is assessed by 

comparing predictions with the corresponding results of FE analyses. 

4.2 FE Analyses 

4. 2.1 Material 

Seven materials were used in the FE analyses. They are designated as idealised materials 

Ideal-A to E, 6082-T6 aluminium alloy and X65 SAW steel, which is a practical pipe material. 

The tensile stress-strain curves for 6082-T6 aluminium alloy and X65 SAW are shown in Fig. 

3.1; Young's modulus, Poisson's ratio, yield stress and ultimate tensile stress for the materials are 

given in Table 4.1. 

The five idealised materials (i.e. Ideal-A, B, C, D and E) with elastic, perfectly plastic 

material properties, were used to investigate the influence of Young's modulus and yield stress 

on the force-deflection curves. Of the idealised materials, Ideal-B, C and D, were chosen to have 

the same Young's modulus of 223 GPa and yield stresses of 300 MPa, 448 MPa and 600MPa, 

respectively. The other two idealised materials, Ideal-A and E, together with material Ideal-B, 

were chosen to have a yield stress of 300MPa and Young's moduli of 70GPa, 150GPa and 
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223GPa. The material properties for the seven materials are summarised in Table 4.1. In all of 

the FE analyses, the materials were assumed to obey an isotropic hardening rule. 

T bl 4 1 M t . I a e a ena parameters use d' FE In analyses 
Material E (GPa) cry ( MPa) crUTS (MPa) Poisson's ratio 

6082-T6 alloy 70 300 35] 0.3 
X65 SAW 223 448 675 0.3 
Ideal-A 70 300 - 0.3 
Ideal-B 223 300 - 0.3 
Ideal-C 223 448 - 0.3 
Ideal-D 223 600 - 0.3 
Ideal-E 150 300 - 0.3 

4.2.2 FE Meshes, Boundary Conditions and Loading 

ABAQUS [26] FE software was used for the analyses of the rings; the dimensions, support 

and loading conditions are shown in Fig. 4.1. Due to symmetry, only one half of the rings were 

modelled (see Fig. 3.4). All models consisted of 3600 8-noded, plane-strain, reduced integration 

elements. The nodes on the rings at sections A and C (Fig. 3.4(a)) were restrained in the 

circumferential direction (i.e. UxA=UxC=O) for all of the analyses. Also, the rings were fully 

restrained (i.e.uxB=uys=O) at the outer diameter at positions Band 0, which are at an angle 8 to 

the x-direction, see Fig. 4.1. The load was applied in the radially inwards direction at the outer 

diameter position at point A. In total 25 analyses were performed, as defined in Table 4.2. 

x 

Fig.4.1 Indented ring geometry, loading and boundary conditions 
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Table 4.2 Materials, Geometries and Pressures used in the FE analyses 

Wall Support Pressure Initial gradient 
FE No. Material Diameter thickness Dlt angle p (MPa) Per unit length 

D(mm) t (mm) e Kep(MPa) 
FEIP Ideal-A 128 3.0 42.6 0° 5 84.37 
FE2P Ideal-A 128 3.0 42.6 25° 5 45.76 
FE3P Ideal-A 128 3.0 42.6 45° 5 29.32 
FE4P Ideal-A 128 3.0 42.6 65° 5 20.71 
FE5P Ideal-A 128 3.0 42.6 90° 5 14.55 
FE6P Ideal-A 128 3.0 42.6 45° 0 12.96 
FE7P Ideal-A 128 3.0 42.6 45° 0.1 13.37 
FE8P Ideal-A 128 3.0 42.6 45° 0.5 14.96 
FE9P Ideal-A 128 3.0 42.6 45° 1 17.09 
FEI0P Ideal-A 128 3.0 42.6 45° 2 19.25 
FEI1P Ideal-A 128 3.0 42.6 45° 8 40.21 
FE12P Ideal-E 128 3.0 42.6 45° 5 46.95 
FE13P Ideal-B 128 3.0 42.6 45° 5 60.39 
FE14P Ideal-C 128 3.0 42.6 45° 7.47 69.13 
FE15P Ideal-D 128 3.0 42.6 45° 10 79.09 
FE16P Ideal-C 128 3.0 42.6 45° 5 60.39 
FE17P Ideal-D 128 3.0 42.6 45° 5 60.39 
FE18P Ideal-A 88.8 1.2 72 45° 2.82 12.05 
FE19P Ideal-A 92.4 3.0 30.8 45° 6.77 56.34 
FE20P 6082-T6 88.8 1.2 72 45° 2.82 11.46 
FE21P 6082-T6 128 3.0 42.6 45° 5 31.57 
FE22P 6082-T6 92.4 3.0 30.8 45° 6.77 57.60 
FE23P X65 Saw 88.8 1.2 72 45° 2.82 17.21 
FE24P X65 Saw 128 3.0 42.6 45° 5 60.31 
FE25P X65 Saw 92.4 3.0 30.8 45° 6.77 136.90 

4.2.3 FE Results 

4.2.3.1 Typical Behaviour 

The force-deflection predictions obtained from the FE analyses of a ring with zero, low and 

high pressures are shown in Fig. 4.2 for a ring with a D/t=42.6 (t=3mm), 8=45° and material 

Ideal-A. The general behaviour is typical of that obtained with other D/t ratios (30<D/t<70) and 

9 values (0°<9<90°), see Figs. 4.3 to 4.7. As was shown previously in chapter 3, when the 

internal pressure is zero, the force deflection curve reaches a maximum value and then, with 

continued deformation, the load reduces. The initial (elastic) slope and maximum load can be 

accurately predicted, in this case, using the simple analytical techniques in chapter 3. It can be 

seen that the internal pressure has a significant effect on the initial slope and on the subsequent 

force versus deflection behaviour in the elastic-plastic region. Hence, the straightforward use of 

a limit load approach, to determine the maximum load and to predict the post-yield behaviour, is 
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obviously inadequate. The modifications introduced to the limit load approach to enable the 

post-yield behaviour to be reasonably accurately predicted, are described in Section 4.3. 
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Fig. 4.2 Indenter force per unit length versus dent depth curves, for different internal pressures, 

i.e. p=O, 0.1, 0.5, 1, 2, 5 and 8MPa, and for idealised material Ideal-A,8 =45°, D/t=42.6 and 

t=3mm 
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Fig. 4.3 Indenter force per unit length versus dent depth curves for different angular support 

positions, i.e. 8=0°, 25°, 45°, 65° and 90°, and for idealised material Ideal-A, p=5MPa, D/t=42.6 

and t=3mm 
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Fig. 4.5 Indenter force per unit length versus dent depth curves for different yield stresses of 300, 

448 and 600MPa, for p=5MPa, 0/t=42.6, t=3mm and 8=45° 
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Fig. 4.6 Indenter force per unit length versus dent depth curves for different Young's moduli , i.e. 

E=70, 150 and 223Gpa, and for p=5MPa, 8=45°, D/t=42.6 and t=3mm 
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Fig. 4.7 Indenter force per unit length versus dent depth curves for different Olt ratios of72, 42.6 

and 30.8, with their corresponding thicknesses, i.e. t=1.2, 3 and 3mm, and for idealised material 

Ideal-A, a pressure which produces a mean hoop stress of 0.34cry in the ring, and 8=45° 
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4.2.3.2 Initial Force-displacement Gradient 

The FE initial gradient results, were obtained from the force-deflection curves obtained from 

the FE analyses, FE I P to FE25P, and are shown in Table 4.2. The results indicate that the initial 

gradients per unit length, for pressurised rings, are functions of the internal pressure (p), Young's 

modulus (E), D/t ratio and angular support position (8). The associated curves are shown in 

Figs.4.8 to 4.11, along with the results of analytical solutions which will be described in section 

4.3. 

From Figs 4.8 to 11, it can be seen that the initial g'radients, obtained from the FE analyses, in 

pressurised rings vary linearly with the Young's modulus (E), as expected, and linearly with the 

internal pressure (p) and that they vary non-linearly with the angular support position (8) and 

with the D/t ratio. 
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Fig. 4.8 Initial gradient per unit length versus pressure curves for materialldeal-A,8 =45°, 

D/t=42.6 and t=3mm 
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t=3mm and p=5MPa. 

4.2.3.3 Response Obtained with Idealised Elastic, Perfectly Plastic 

Material Behaviour Models 

Five idealised elastic perfectly plastic materials (Ideal-A, B, C, D and E) were chosen to 

investigate the effects of the Young's modulus and yield stress on the typical force-deflection 

curves for three geometries (D/t=72, 42.6, 30.8). The results were also used to investigate the 

effects of the support angular positions and magnitudes of the internal pressure on the force­

deflection curves. Typical force-deflection curves, obtained from FEIP to FEI9P, are shown in 

Fig.4.2 to 4.7. 

The general shape of the force-deflection curve depends on the magnitudes of the internal 

pressure. In general, the load carrying capacity increases with increasing pressure and the 

deformation caused by a given load reduces with increasing internal pressure (FigA.2). 

However, the deformation caused by a given load is increased as the support angle, 8, is 

increased (Fig.4.3). It can be seen from Figs. 4.4 and 4.5, that the force versus displacement 

response is significantly affected by the magnitude of the yield stress. However, apart from the 

early low deformation regions of the response, the magnitude of the Young's modulus has a 

relatively small effect on the force versus displacement response, see Fig 4.6. As the diameter, 
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0, increases, for a given thickness, t, the deformation for a particular load is increased, see Fig. 

4.7. 

4.2.3.4 6082-T6 aluminium alloy and X65 SAW 

Typical indenter force per unit length versus depth curves obtained from the FE20P to FE25P 

FE analyses, performed with the 6082-T6 aluminium alloy and X65 SAW steel material models, 

are shown in Figs. 4.12 and 4.13, respectively. The general behaviour is similar to that obtained 

for the elastic perfectly plastic materials, see Fig. 4.7. 
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Fig. 4.12 Indenter force per unit length versus dent depth curves for different Olt ratios of 72, 

42.6 and 30.8, with their corresponding thickness, i.e. t= 1.2, 3 and 3mm, for 6082-T6 aluminium 

alloy, with a pressure which produces a mean hoop stress of 0.34cry in a ring with 8=45° 
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Fig. 4.13 Indenter force per unit length versus dent depth curves for different D/t ratios of 72, 

42.6 and 30.8 with their corresponding thickness, i.e. t= 1.2, 3 and 3mm, for X65 SAW, with a 

pressure which produces a mean hoop stress of O.22cry in a ring with 8=45° 

4.3 Analytical Solutions 

4.3.1 Elastic Behaviour 

In chapter 3, the small deformation relationship between force and deflection, for an 

unpresssurised ring, was obtained using Castiglano's theorem as follows: 

F - Et
3 

( D ) 8 
- 12R3 AD+B+C (4.1 ) 

where A, B, C and D are functions of the support angle 8, as follows: 

A = 1 (Jr + B + 1 sin 20) 
4 \2 2 

B = (I + sin O)~sin 2(h 3cosO - (~ + 0 ~cos2 0 + sin 0 + I)] 
C = cos 0(1 + 1sin 2 0 + sinO l(~ + 0 )coso - 2sin 0 -2] (4.2). 

D = z((~ +of -2cos
2 0-1(~ +0~in20) 

Hence, the small deformation "stiffness", Ke, is given by 

K -K( D ) 
e - 12R3 AD+B+C (4.3) 

which is only related to the ring dimensions, the support position and Young's modulus. 
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Equation (4.3) indicates that the initial elastic deformation can be simulated using a spring 

with an elastic constant K e; this concept is valid for any structure in the linear elastic 

deformation range. However, because the internal pressure causes initial deflections and stresses 

within the pipe, the initial " tangent stiffness matrix " [44] relating the indentation force to the 

indentation depth is dependent upon the internal pressure when the indentation force is applied, 

hence, there is a coupled effect between the pressure and force on the displacement caused by the 

combined load such that the force (F) versus displacement (8) curve is dependent on the pressure 

p. 

The displacements in the radial-directions, obtained from a FE analysis for a ring with 8=45°, 

D/t=42.6 and E=230GPa are plotted against the circumferential position, u, in Fig. 4.14. This 

indicates that the load induced curvature of the ring is large at angular positions in the vicinity of 

a=O°, ±72° and ±135° and is relatively small at other positions. Hence, the elastic deformation 

can be reasonably accurately represented by five elastic hinges, at a=O°, ± 72° and ± 135°, 

connected by rigid beams between these hinges. For indented rings with a support angle 8, the 

positions of the five elastic hinges may be assumed to be at u=Oo, ±(:\-1Z"+!O) and ±(!1Z"+O), 

which are the positions predicted by limit load analysis for unpressurised rings in chapter 3. In 

such circumstances, the relationship between the angles of rotation at the elastic hinges (i.e. aI, 

a2, U3) and the displacement 8 can be obtained from a kinematic analysis of the system (see 

Appendix I.A.I). 
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Fig. 4.14 Radial displacement versus circumferential position curves in the elastic deformation 

range for D/t=42.6, 8=450 and E=230GPa. 

For small deformations, the energy stored in the five hinges will be tKeo2, where Ke is the 

stiffness of an equivalent linear spring, irrespective of whether the ring is pressurised or not, 

because the rotation of the hinges is simply governed by the kinematics of the system (see 

Appendix I.A.2). The kinematic analysis is given in Appendix I.A.i. 

The work done by the external force, F, is given by WE = f Fd8 and the work, Wp, done by 

internal pressure is given by 

1 2 
Wp =Wp +Wp (4.4) 

where W ~ and w t are the sum of the work done by internal pressure on the D-F and B-E arcs 

and on the F-A and A-E arcs of the ring in Fig. 4.1, respectively, and are given by 

(4.5) 

and 

wi = 2pR2 JgI {- (I-sin0l( ~:~ -I) + [sin( O-a2)+sin( 00 +a2 )+co~ 0 + 00 + a2)- cosa21}da\ (4.6) 

Hence, it follows that 

(4.7) 
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Differentiation of equation (4.7) with respect to 8 gives 

F =Ke 0+ pRFP (4.8) 

(4.9). 

The term pRF P in equation (4.8) can be rewritten as p~P 8 and expressing PRJP as K p' in 

the limit, as 8 --)0 0, and putting 80 = %, the small elastic deformation stiffness, K p, 

associated with the internal pressure, is given by 

K = plimitL 
p 00 

60 -+0 

4.10). 

From the kinematics of the system (see Appendix 1.A.I) and equation (4.9), the limiting 

solution, as 8 --)0 0, of equation (4.10) is given by 

-(I-sin 00 )2 sin ()~Bo +cosOo cos 9-;00 (sinO+sin 0o)+(I-sin 0o)(l+sin 0>[ cos ()~80 +sin ()-2Bo ] 
K =2p--------------------------~~--------=_~--------~ 

p cos 00 -cosO+sin(0+80 {cos ()~80 +sin ()~Oo ] 

Substituting equation (4.10) into equation (4.8) gives 

F = Kep8 = (Ke +K p,k5 

(4.11 ) 

(4.12). 

Hence, it can be seen that the initial gradient, Kep ' of the indenter force versus deflection 

curve, in the small deformation range, depends upon the Young's modulus, E, the geometrical 

ratio, Dlt, the internal pressure, p, and the support position, 9. The theory predicts a linear 

relationship between Kep and p or E, but a non-linear relationship between Kep and D/t or 9. 

The initial gradients obtained from the FE analyses FE 1 P to FE25P and those obtained from 

the above analytical method are plotted against each other in Fig.4.15, also plotted for 

comparison are analytical results obtained without the coupling effect, due to the pressure, being 

included. 
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Fig.4.15 Comparison of the FE and the analytical solutions of the initial gradients per unit length 

of indenter force versus dent depth curves, for small deformations in pressurised pipes. 

From Fig.4.15 it can be seen that the analytical initial gradient solutions for different 

materials, different geometrical dimensions, different angular support positions and different 

magnitudes of the internal pressure are very close to those obtained from FE analyses, provided 

that the effects of pressure are included. The analytical predictions of initial gradient are also 

compared with the FE results in Figs. 4.8 to 4.11. The correlation of the initial gradient solutions 

is very good and indicates that the theory is capable of predicting the initial gradients, for small 

deformations, provided the coupling effect between the pressure and force, on the deformation, is 

included. 

Equations (4.10) and (4.12) reflect the effects of the internal pressure on the external indenter 

force or displacement, for small additional deformations induced by the indenter force. For a 

given indenter force F, the displacement 8, reduces with an increase of the internal pressure, p; or 

for a given displacement, 0, the external indenter force, F, increases as the internal pressure, p, is 

increased. This is in agreement with the FE solutions shown in Fig. 4.2. However, although 

equations (4.1 0) and (4.12) provide an approximate relationship between the indenter force and 

dent depth, for small deformations induced by the indenter force, such accurate results could not 

be obtained if the coupling effect was ignored. 
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4.3.2 Inelastic Behaviour 

For unpressurised pipes with long indentations, it was found that the limit load method in 

chapter 3 is capable of accurately predicting peak loads by assuming five plastic hinges at 

positions A, E, B, D and F (see Fig.4.1). The kinematics of this five hinge system allows the 

vertical displacement, or dent depth to be related to the angular rotation of the hinges, see 

Appendix I.A.I. Hence the work, WE, done by the external indenter force, F, can be equated to 

the sum of the dissipation of energy at the hinges, WI, during deformation. Since WI can be 

determined, the external force at collapse may be obtained. 

With the addition of internal pressure during the indentation process and the geometric 

changes which occur during the indentation process, the superposition of the elastic solution 

(based on small deformation theory) and a limit load solution (also based on small deformation 

theory), which gives accurate predictions for unpressurised rings in chapter 3, is inadequate. For 

the plastic behaviour of pressurised rings, energy is dissipated at the five hinges, as in the 

unpressurised situation, but as well as work being done by the applied force, F, there is work 

done by the internal pressure, p, associated with displacements which occur as F is increased. In 

this case, the 'coupling effect' as well as the finite deformation effect is important and the 

kinematic analysis relating the hinge rotations to the load-line displacement, must reflect this. 

The kinematic analysis including large deformation effects is given in Appendix I.A.I. Since the 

relationship between the load-line displacement and hinge rotations is non-linear, an incremental 

approach is required. In this case, by equating the work done by the applied force, F, during an 

increment of displacement and the associated work done by the internal pressure, p, to the energy 

dissipated in the hinges by the corresponding increments of the rotation, the instantaneous force, 

F, associated with the increment of load-line displacement, can be determined. Hence, by adding 

this plastic solution to the elastic solution, section 4.3.1, an elastic-plastic force-deflection 

prediction can be obtained. The results of a kinematic analysis incorporating large deformation 

effects, together with expressions for the work done by the internal pressure and the energy 

dissipated at hinges, are outlined in the Appendices I.A.3 to I.A.4. 

It should be noted that the kinematic analysis is only appliable until the three hinges at A, E 

and F are in line; the conditions under which this occurs are given in Appendix I.A.I. The 

resulting maximum displacement, 8max, and rotations Ulmax and U2max at hinges Band E, i.e. UI 

and U2 when A, E and F are in line, are shown in Figs. 4.l6(a) and 4.16(b). It can be seen that 
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when omax is achieved, the defonnation is generally large and therefore predictions for higher 

values of 8 would be of little practical interest, particularly for the higher values of e. Predictions 

based on the analytical method are only valid for values of 0 less than omax and hence all of the 

results presented graphically are tenninated when this value of 0 is reached. 

2 -
co 

1.8 -c 
0 Ow 1.6 -c -Q) [k: 1.4 -
E ~ 1.2 -:.c IV 

I S c 1 -
0 
c .s:::. 

0.8 -.... 
E Co 

Q) 
0.6 -::J "C 

E 0.4 -'x 
co 0.2 -~ 

0 I 

-0 15 30 45 60 75 90 

Support angular position (eo) 

(a) Maximum non-dimensional dent depth 

- 100 
en 
Q) 
Q) 

80 -~ 

C> 
Q) 
"0 - 60 -)( 

IV 
E 
N 
~ 40 -

"0 
C 
co 
)( 20 -ro 
E 
'r" 

~ 
0 --,-- -, 

0 15 30 45 60 75 90 

Support angular position (eo) 

(b) Maximum rotational angles 

Fig.4.16 Maximum non-dimensional dent depth and rotational angles, Ul max and U2max (when A, 

E and F are in line), for the plastic hinges at positions D and F, for different support angular 

positions 
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Figs. 4.l6 (a) and (b) clearly show that large angular support positions will allow large 

maximum displacements and maximum rotational angles in those analyses. 

Since the deformation is non-linear, WE is given by 

(4.13). 

From the conservation of energy principle and equations (l.aI3), (1.aI4) and (4.13), it can be 

shown that the external force, F, is given by 

da2 dWp 
F =4Mo do - do 

where ~ and d::! are given by 

da2 _ 1 cos(a2 -at )-sin(Oo +a2 -at )+sin(O+at )+sin(Oo -at) 
d8 - R cos(Oo -a2 )+sin(O+Oo +a2 )-cos(O+a2 )-sin a2 

and 

(4.14) 

( 4.15) 

(4.16). 

For convenience, two non-dimensional coefficients, FP and FM
, are defined, where 

FP is given by equation (4.9) and 

M _ cos(a2 -at }-sin(Oo +a2 -at )+sin(O+at )+sin(Oo -at) 
F - cos(Oo -a2 )+sin(O+Oo +a2 )-cos(O+a2 )-sin a2 (4.17). 

Therefore, the external force, F, can be expressed as 

F = 4M 0 F M + pR F P 
R ( 4.18) 

For 8=0°, 25°, 45°, 65° and 90°, FM and FP are plotted against the indenter displacement (dent 

depth) in Fig.4.17 (a) and (b). It can be seen that at small dent depths, FM is dominant but FP 

becomes more significant for the larger dent depths. 
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Pig. 4.17 Non-dimensional coefficients for support angular positions of 0°, 25°, 45°, 65° and 90°. 

A schematic indenter force per unit length versus displacement predicted by equation (4.18) is 

shown in Fig. 4.18, as curve OAC. It can be seen that the initial elastic region is poorly 

described, i.e., the figure implies a steep change in force for no change in deflection in the early 

deformation part of the curve. To overcome this problem, the elastic behaviour predicted by 
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equation (4.12) has been superimposed in Fig.4.18, as line OD. Hence the predicted behaviour is 

taken to be that of curve OBC. However, it should be noted that equation (4.8) is capable of 

predicting the elastic behaviour with a 'coupling effect' between the indenter force and the 

internal pressure, as shown by line OF. Therefore, an alternative prediction, given by curve 

OEe, could be obtained. However, in general, the difference between curves 08 and OE is very 

small. 
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Fig. 4.18 Schematic indenter force versus depth curves, obtained using equations (4.8), (4.12) 

and (4.18), for E=70GPa, D/t=46.2, t=3mm, 9=45°, p=5 MPa and oy=300 MPa 

4.4 Comparisons of FE and Analytical Solutions 

A comparison of the solutions obtained from the FE analyses and analytical solutions was 

performed in order to assess the accuracy of the analytical solutions described in this chapter. 

4.4.1. Idealised Elastic, Perfectly Plastic Materials 

4.4.1.1 Comparison with Different Support Positions 

The force-deflection curves obtained from FE analyses FEIP to FE5P and the corresponding 

analytical solutions, for the idealised material model (Ideal-A), for support angular positions of 

0°, 25°, 45°, 65° and 90°, are shown in Fig. 4.19. These curves indicate that the analytical and FE 

results are consistent and that for smaller angular positions, in particular, very close correlation of 

the analytical and FE solutions can be obtained. It should be noted that very good correlation of 

analytical and the FE solutions were obtained for small dent depths, i.e. in the elastic region, as 
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well as in the elastic-plastic region unlike the situation that would result if the 'coupling effect' 

was excluded from the analytical model. 
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Fig. 4.19 Indenter force per unit length versus dent depth curves obtained from the FE and 

analytical solutions for different support angles, for material Ideal-A, p=5MPa, D/t=42.6 and 

t=3mm 
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4.4.1.2 Comparison with Different Internal Pressures 

The force-deflection curves obtained from the FE analyses FE6P to FEIIP and FE3P and the 

corresponding analytical solutions for the (Ideal-A) idealised material model, for different 

internal pressures, are shown in Fig. 4.20. These curves indicate that the analytical and FE results 

are reasonably consistent. They indicate that for the higher pressures, the analytical solutions are 

slightly higher than the FE solutions when the dent depths are large, and that for the lower 

pressures, the analytical solutions are slightly lower than the FE solutions. Also at the lower 

pressures, the curves exhibit a maximum in the force for both the FE and analytical results. It is 

shown that generally, when pressure is low the analytical solutions are underestimated while 

when pressure is high the analytical solutions are conservative. 
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Fig. 4.20 Indenter force per unit length versus dent depth curves obtained from the FE and 

analytical solutions for different pressure levels, for idealised material Ideal-A, 8=45°, D/t=42.6 

andt=3mm 

4.4.1.3 Comparison with Different Young's Moduli 

The force-deflection curves obtained from the FE analyses FE3P, FE12P and FE13P and the 

corresponding analytical solutions for the idealised material models (Ideal-A, E and B) with 

Young's moduli of 70GPa, 150GPa and 223GPa, are shown in Fig. 4.21. These curves indicate 

that the analytical and FE results are in close agreement. They also indicate that the Young's 

moduli affect the indenter force solutions, see equations (4.3) and (4.12). For the higher values of 

Young's moduli, the FE solutions are higher. However, it can be seen that the analytical 

solutions, when the dent depths are large, are not strongly dependent on the Young's moduli, but 

there is an effect in and near the elastic range. For dent depths greater than about 4mm, all 

analytical curves are practically identical. 
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Fig. 4.21 Indenter force per unit length versus dent depth curves obtained from the FE and 

analytical solutions for different Young's moduli of 70, 150 and 223GPa, with p=5MPa, 9=45°, 

D/t=42.6 and t=3mm 

4.4.1.4 Comparison with Different Yield Stresses 

The force-deflection curves obtained from the FE analyses FE 13P to FE 17P and the 

corresponding analytical solutions performed on the idealised material models (ldeal-B, C and D) 
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with yield stresses of 300MPa, 448MPa and 600MPa, are shown in Fig. 4.22. These curves 

indicate that the analytical and FE results are in close agreement. 
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Fig. 4.22 Indenter force per unit length versus dent depth curves obtained from the FE and 

analytical solutions for different yield stresses of 300, 448and 600MPa, 8=45°, D/t=42 .6 and 

t=3mm 
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4.4.1.5 Comparison with Different D/t Ratios 

The force-deflection curves obtained from the FE analyses FE3P, FE18P and F19P and the 

corresponding analytical solutions for the (Ideal-A) idealised material model, with D/t ratios of 

72, 42.6 and 30.8, are shown in Fig. 4.23. These curves indicate that the analytical and FE results 

are in good agreement. They also indicate that the analytical predictions are higher than the FE 

solutions for all D/t ratios investigated. 
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Fig. 4.23 Indenter force per unit length versus dent depth curves obtained from the FE and 

analytical solutions for different D/t ratios of 72, 42.6and 30.8,with material Ideal-A, a pressure 

which produces a mean hoop stress of 0.34 times O'y and 8=45° 

4.4.2. 6082-T6 Aluminium Alloy and X65 SAW Steel 

The force-deflection curves obtained from the FE analyses FE20P to F22P for 6082-T6 

aluminium alloy models and FE23P to FE25P for X65 SAW models, are shown in Fig. 4.24 and 

4.25, respectively. The analytical solutions also shown, were obtained using a representative flow 

stress, O'f, equal to average of the yield stress and the UTS, i.e. (O'y+O'uTs)/2 . These curves 

indicate that the analytical and FE results are in good agreement. The agreement is generally 

better than that obtained with the idealised, elastic perfectly plastic models. 
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Fig. 4.24 Indenter force per unit length versus dent depth curves obtained from the FE and 

analytical solutions for different D/t ratios of72, 42.6and 30.8, for the 6082-T6 aluminium alloy, 

a pressure which produces a mean hoop stress of 0.34 times cry and 8=45° 
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Fig. 4.25 Indenter force per unit length versus dent depth curves obtained from the FE and 

analytical solutions for different D/t ratios of72, 42.6and 30.8, for the X65 SAW, a pressure 

which produces a mean hoop stress of 0.22 times cry and 8=45° 
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4.5 Conclusions 

An approximate analytical approach, which incorporates the large deformation effects and the 

coupling effect between internal pressure and indenter force on the force versus indenter depth 

response, has been developed for pressurised rings. For axially long indentations, the analytical 

model can be applied to pipes as well as to rings. 

The validity of the analytical model has been assessed by comparing predictions based on it 

with corresponding results from FE analyses. The FE and analytical predictions correlate well in 

both the elastic and elastic-plastic regions for a wide range of Dlt ratios, pressures, angular 

support positions, Young's moduli and yield stress (see Figs. 4.19 to 4.23). 

The analytical model can be incorporated in a computer program to run quickly on a small 

desk-top computer, thus obviating the need for expensive and time-consuming FE calculations. 

Hence the program can be conveniently used to perform parametric analyses of the effects of 

various input parameters (D/t, p, 8, E and cry). 

The results obtained for 6082-T6 aluminium alloy and for X65 SAW steel indicate that using 

a representative flow stress, crf (=(cry+cruTs)/2), as a representative yield stress in the analytical 

model, produces accurate results when compared with the FE results obtained using the actual 

stress-strain curves. 

4.6 Summary 

The force-deflection behaviour of pressurised pipes, due to radial indentation loading, was 

investigated using FE and analytical methods. Seven different materials, three different 

geometries, seven different pressure levels and five different support conditions were used to 

investigate their effects on the force-deflection behaviour. The comparisons of the FE and 

analytical solutions indicate that an energy-based, analytical approach can accurately predict the 

force-deflection behaviour in both the elastic and elastic-plastic states. 
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Chapter 5 

Elastic-Plastic Response of Unpressurised Pipes 
Subjected to Long Offset Indentations 

5.1 Introduction 

In chapters 3 and 4 efforts have been made to investigate the limit load and force-deflection 

predictions of dented rings, with symmetrical supports, subject to symmetrical radial indenter 

loading using experimental tests, analytical methods and FE analyses. In this chapter the effects 

of asymmetric support and loading conditions on the indenter limit load are investigated using 

experimental tests, FE analyses and analytical methods. 

For underground pipelines, the surrounding soil produces support for the pipelines and 

reaction forces to resist the pipeline deformation or the movements caused by indentation loads. 

Exact simulation of the support conditions of the soil is difficult, since they are very variable. A 

complete investigation of the support produced by the surrounding soil when an indentation load 

is applied would require many experimental tests to be performed and corresponding FE and/or 

analytical analyses to be performed. In this chapter a general analytical formulation, which 

covers the effects of the support and indentation positions on the limit loads of indented rings, is 

described. 

The indentation type investigated in this chapter is shown in Fig. 5.1. If the offset indentation 

angle, 9" is zero, the indentation is radial with asymmetric support conditions. Symmetric 

indentation conditions, in which equal right and left support angles (92=85) and zero offset 

indentation angle (9,=0°) exist, were covered in chapters 3 and 4. 
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D 

Fig.5.1 Indentation loading and support conditions. 

5.2 Experimental Work and Validation of the FE Analyses 

5.2.1 Material 

The material chosen for the experimental investigation is 6082-T6 aluminium alloy. The 

tensile stress-strain curve for the material is shown in Fig. 3.1; the Young's modulus, Poisson's 

ratio, yield stress and ultimate tensile stress are given in Table 5.1. Fig. 3.1 also shows the stress­

strain curve for a practical gas pipeline material, namely X65 SAW. The material properties for 

6082-T6 aluminium alloy, X65 SAW steel and an idealised elastic-plastic material (Ideal-A) are 

given in Table 5.1. 

Table 5.1: Material parameters used in experiment tests 

Material E (OPa) (jy (MPa) (jUTS (MPa) Poisson's ratio 
6082-T6 alloy 70 300 351 0.3 
X65 SAW 223 448 675 0.3 
Ideal-A 70 300 - 0.3 

5.2.2 Geometry and Loading 

In order to perform the experimental tests, the 6082-T6 aluminium alloy rings were placed 

on a V -block, plaster, which was cast into the gap between the rings and the V -block, used to 

form an arc supporting bed, as shown in Fig.5.2. The rings were also clamped to the V-block at 

position F. These support conditions provide an arc support. The support angles, 82 and 85 (550 
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and 35°, respectively) are shown in Fig. 5.2. Radial indentation, i.e., 8 1=0°, was used. The 

rings were radially loaded at point A (see Fig.5.2) by a Bright Drawn Mild Steel indenter with 

an end radius of 2 mm and an axial length of 50mm. 

Indenter 

Fig. 5.2 Dented ring test conditions. 

The tests were conducted on an Instron 1195 uniaxial test machine with 1 kN and 50 kN load 

cells. The load point displacement rate was set to 2mmJmin and the data (force and displacement) 

were recorded automatically. Tests were performed on four rings with the dimensions given in 

Table 5.2. Also given in Table 5.2 are the peak indenter loads obtained during the tests. The 

peak loads, or limit loads, were obtained from the maximum load point of the indenter force (per 

unit length of the pipe) versus dent depth curves, as shown in Fig. 5.3. 

Table 5.2: Geometries and experimental peak load results for 6082-T6 aluminium alloy dented 

ring tests 

Test Peak load I unit length 
No D (nun) t (nun) D/t L(mm) N/mm 

TEl 120 1.5 80.0 50 14.9 
TE2 125 3 41.6 50 64.0 
TE3 120 5 24 50 203 
TE4 120 5 24 50 200.3 

5.2.3 Ring Test Results 

The indenter force versus depth curves obtained from the four experiments are shown in 

Fig.5.3. The repeatability of the results is seen to be good from the results obtained for tests TE3 

and TE4, which have the same dimensions and test conditions. As the thickness is reduced and 
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hence the D/t value is increased, the peak load drops very significantly and the initial slopes are 

also reduced. 

250 - Peak load 
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Fig. 5.3 Indenter force versus dent depth curves for 6082-T6 aluminium alloy rings, obtained 

from experiments with an offset angle, 9)= 0°, a right support angle 92=55°, and a left support 

angle 85=35°. 

5.2.4 FE Meshes, Boundary Conditions and Loading 

The ABAQUS [26] FE software was used for the analyses. All models consisted of 3600 8-

noded, plane-strain, reduced integration elements, as shown in Fig. 5.4. The rings were fully 

restrained at the outer diameter at positions C and D. The indentation load was applied in the 

vertically downward direction at the outer diameter position at point A. 

1111 '1111 'II!I fnol. 

D 

(a) Mesh of a ring (b) Locally amplified mesh 

Fig. 5.4 Mesh used for the dented ring tests. 
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The loads were applied using a rigid indenter with a 2mm radius and rigid surface contact 

elements and assuming that no slipping occurs between the indenter and the rings. The large 

deformation, elastic-plastic analyses were performed using the standard RIKS algorithm facility 

within ABAQUS [26]. 

5.2.5 Comparison of FE Results with the Experimental Data 

The FE predictions are compared with the experimental results in Table 5.3 and Fig. 5.5. It 

can be seen that the FE predictions are slightly higher than the experimental results, but in 

general, the predictions are in good agreement with the experimental data. The small discrepancy 

between the FE and experimental results is thought to be due to the fact that the support 

conditions, on the outer surface of the rings at C and D, used in the FE analyses, were fully fixed, 

whereas the displacements at the same positions in the experiments are only prevented from 

movements in the outer normal directions of the rings. Hence, the rings used in FE analyses are 

subjected to a slightly higher level of constraint than those used for the experiments. However, 

all of the differences between the FE solutions and the corresponding experimental results are 

within 13%. This degree of correlation was considered to be good enough and so the same mesh 

was used for all of the subsequent analyses reported in this chapter. 
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Fig.5.5 Comparison of FE predictions with experimental indenter force versus depth curves 

obtained from the 6082-T6 alloy ring tests with 8 1=0°,82=55° and 95=35°. 
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Table 5.3: D/t ratios, limit loads obtained from the experimental tests and FE. 

Dlt Limit load (N/mm) Limit load (N/mmJ Difference Jo/<!l 
80 TEl 14.9 FEI 

41.6 TE2 64.0 FE2 
5 TE3 203.0 
5 TE4 200.3 FE3 

5.3 Results of General FE Analyses 

5.3.1 Materials and Geometry 

15.5 4 
69.5 8.6 

10.8 
225 12.5 

In addition to the FE analyses performed for comparison with the experimental test results for 

the aluminium alloy (6082-T6), FE analyses were obtained for two other materials. Since 

practical pipelines are usually made from a variety of steels, FE analyses were performed using 

material data for one of these steels, namely X65 SAW. An idealised material, Ideal-A, with 

elastic, perfectly plastic material properties was also used to investigate the influence of material 

properties on the elastic-plastic response. Ideal-A material has a Young's modulus of 70GPa and 

yield stress of 300MPa. The material properties are summarised in Table 5.1. In all of the FE 

analyses, the materials were assumed to obey an isotropic hardening rule. The ring dimensions 

used in the FE analyses are shown in Table 5.4. 

Table 5.4: Ring dimensions used in the FE analyses 

FE Model No. D(mm) t (mm) D/t 
I 120 1.5 80 
2 120 5.0 24 
3 128 3.0 42.6 
4 88.8 1.2 72 
5 92.4 3.0 30.8 

5.3.2 Behaviour for Pipes Made from an Idealised Elastic Perfectly 

Plastic Material (Ideal-A) 

The idealised elastic, I?erfectly plastic material, Ideal-A, was chosen to investigate the effects 

of the support and indenter offset angular position on the limit loads. A total of III FE analyses 

(FE4 to FEl14) were performed for the Ideal-A material, see Appendix 2.A. for details of the FE 

analyses. The typical behaviour obtained from these analyses is as indicated in Fig. 5.5 which 
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was obtained for the aluminium alloy (FE and experiments). The peak (i.e. limit) loads obtained 

from analyses (FE4 to FElI4) were normalised by dividing them by oye/2R and these are shown 

in Figs.5.6 to 5.9; the loading and boundary conditions used in the FE analyses are summarised in 

Appendix 2.A. 
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Fig. 5.6 The normalised peak load versus indenter offset angular position, with (}z=95= 45° and 

D/t =72, 42.6 and 30.8, for idealised material Ideal-A 
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Fig. 5.7 The normalised peak load versus right support angular position, with 92=45°, D/t =72, 

42.6 and 30.8 and 8)= 20°, for idealised material Ideal-A. 
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Fig. 5.8 The normalised peak load versus left support angular position, with 85= 45°, D/t=72, 42.6 

and 30.8 and 91=20°, for idealised material Ideal-A 
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Fig. 5.9 The normalised peak load versus left support angular position, with 85=45°, D/t=72, 42.6 

and 30.8 and 91= 0°, for idealised material Ideal-A 

Fig. 5.6 shows that the peak load slightly increases as the indenter offset angle increases from 

0° to 20°. The peak load increases more significantly as the offset angle increases from 20° to 

60°. However, at these higher offset angles, it is more likely that slipping will occur between the 
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indenter and the ring. Also, it can be seen, from Figs.5.7 to 5.9, that the peak load decreases 

when either the right or left support angle is increased. 

5.3.3 Behaviour of Pipes Made from X65 SAW Steel Material 

A further III analyses were performed using the X65 SAW steel material data. The loading 

and boundary conditions used for the analyses (FE 115 to FE225) are given in Appendix 2.A. The 

main reason for performing these analyses was to investigate the applicability of using a 

representative flow stress, Or, for predicting the peak loads. In this chapter, Or was taken to be the 

average of the yield stress and the ultimate tensile stress. As with the idealised material, Ideal-A, 

the peak loads obtained from X65 SAW steel were normalised by dividing them by oct2/2R; the 

results are shown in Figs. 5.1 0 to 5.13. 
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Fig. 5.10 The normalised peak load versus indenter offset angular position, with 82=85=45° and 

D/t=72, 42.6 and 30.8, for X65 SAW steel. 
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Fig. 5.11 The normalised peak load versus right support angular position, with 82=45°, D/t=72, 

42.6 and 30.8 and 91=20°, for X65 SAW steel. 
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Fig. 5.12 The normalised peak load versus left supported angular position, with 85=45°, D/t=72, 

42.6 and 30.8 and 8 1=20°, for X65 SAW steel. 
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Fig. 5.13 The normalised peak load versus left support angular position, with 85=45°, D/t=72, 

42.6 and 30.8 and 91=0°, for X65 SAW steel. 

A comparison of Figs. 5.10 to 5.13, for the X65 SAW material, with the corresponding results 

for the Ideal-A material (Figs. 5.6 to 5.9) shows very close correlation. This is more clearly 

shown in Figs.5.l4 (a) to (d) in which the normalised peak loads for the X65 SAW material are 

also plotted against the corresponding results obtained for the Ideal-A material, for different 

indenter offset and support angles. It can be seen, from Figs. 5.l4 (a) to (d), that very close 

correlation of the results is obtained for Ideal-A and X65 SAW steel materials. This indicates 

that the representative flow stress chosen to normalise the data can be used to predict the peak 

loads, or limit loads, for hardening materials, from data for idealised elastic-plastic materials [see 

chapter 3]. This conclusion is important when considering the suitability of simple analytical 

methods for predicting the behaviour of steel pipes. 
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Fig.5.14 FE normalised peak loads for X65 SAW steel versus those for 6082-T6 aluminium 

alloy, for different indenter offset angular positions, different support angular positions and for 

different D/t ratios. 
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5.4 Analytical Methods 

5.4.1 Initial Load-Displacement Gradient 

As with the case of symmetrical loading and support conditions applied in chapter 3, the 

elastic force-deflection behaviour, for an unpresssurised ring, with asymmetrical loading and 

support conditions, can be obtained using Castiglano's theorem. The resulting relationship 

between force and deflection is given by 

F - Et D t5 3 ( ) 
- 12R3 AD+B+C 

where A, B, C and D are functions of the angles 92 and 9s, i.e. 

A =l(Jr+82 +85 +1(sin282 +sin285)) 

B = ~ +tsin82 +tsin85XBl + B2 + B3) 

Bl = sin 282 + sin 285 + sin(82 + 85)+ (3 + !sin 82 sin 85 Xeos82 + eos8s) 

B2=-1(Jr+82 +85) {eos2 82 +sin82 +eos2 85 +sin05 +2} 

B3 = -!eos82 sin 2 85 -1sin2 82 cos85 

C=i(1+!Sin282 +sin82 +!sin285 + sin85XCl+C2) 

Cl = (1l" + 82 + (5)( eos2 82 +eos2 85) 
C2 = -sin 282 - sin 285 - 2sin(82 + 85)- 4eos82 - 4eos85 

D =t( Jr + 82 + (5) 2_ (cos 82 + cos 85 )2 -i( 1l" + 82+ 05) (sin 2°2 + sin 2°5) 

(5.1) 

(5.2). 

Hence, the initial slope, K, of the indenter force versus depth curves, for an unpressurised ring 

with asymmetrical loading and support condition, is given by 

(5.3) 

Fig. 5.15 shows a typical comparison between the initial gradients obtained from the FE and 

experimental tests with the analytical predictions. It can be seen that the agreement is excellent. 

This degree of accuracy is applicable to all of the materials, geometries, load positions and 

support positions investigated. 
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Fig. 5.15 A comparison of initial gradients of the indenter force versus dent depth curves 

obtained from the FE analyses, the experimental test data and the analytical methods for 6082-T6 

aluminium alloy ring models with D/t=80, 41.6 and 24, 8)=0°, 82=55° and 85=35°. 

5.4.2 Upper Bound Limit Load Theory 

As in the case of symmetrical support and loading conditions [see chapter 3], in order to 

determine the upper bound, it was assumed that the offset indenter ring has five plastic hinges, at 

positions A, B, C, D and E, as shown in Fig. 5.16 (a). The rotational angles of these five plastic 

hinges (A, B, C, D and E) are denoted as as, 0.2, a), 0.3 and 0.4, respectively, as shown in Fig.5.16 

(b). If the load point, position A, moves vertically downwards, as shown in Fig.5.16 (b), the 

relationships between angles of rotation and the loadline displacement can be determined and 

hence the upper bound analysis method, previously used for symmetrical support and loading 

[chapters 3 and 4], can again be used. 
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(a) Offset indented ring (b) Deformation of offset indented ring 

Fig. 5.16 Kinematically admissible velocity field for the upper bound analysis 

The kinematic relationships can be represented by the following five equations: 

d 
cos (}t +sin (}s d 

a2 - at - cos (}t -sin 03 

da5 = da2 + da4 - dat - da3 

do = R COS((}4 -(}t)-COS((}2 ~(}d+sin((}2 +(}4) da3 
CosOt-sm 04 

From equations 5 A( d) and (e), it follows that 

d - cosOI -sin B4 COS(03 +Bl )-cos(Os +01 )+sin(Bs +(3 ) d 
a3 ~ cos OJ -sin B3 COS(04 -Bd-coS(02 -Bd+sin(02 +(4 ) al 

Substituting equation (5.5) into 5A(b) gives 

_ cos OJ +sin O2 COS(03 +OJ )-COs(Os +01 )+sin(Os +(3 ) d 
da4 - cos OJ -sin B3 COS(04 -Od-COS(02 -Bd+sin(B2 +(4 ) at 

The internal energy dissipated, WI, at the plastic hinges, is given by 

WI = Mo(dal +da 2 +da3 +da4 +das) 

where 
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(5.8) 

where t is the ring wall thickness and cry is the material yield stress. 

Substituting for dU2, dU3, dU4 and dus from equations 5.4(a), (5.5), 5.4(b) and 5.4(c) into 

(5.7) gives 

(5.9). 

Based on equations 5.4(d) and 5.4(e), the work done, WE, by the external force, F, is given by 

(5.10). 

Since the work done by the external force is equal to the internal energy dissipated, then 

equations (5.9) and (5.10) give 

(5.11). 

Minimising the external force F with respect to (h and 84, the optimised upper bound, Fu, is 

given by 

5.12(a) 

where Ls(O} , 02, OS) is a non-dimensional function of 81, 82 and 83, given by 

5.12(b). 

5.5 Comparison of the Analytical Solutions with the FE and Experimental 

Results 

5.5.1 6082-T6 Alloy Results 

The indenter force versus dent depth curves, obtained from the FE analyses and experimental 

tests performed on the aluminium alloy models, are shown in Fig. 5.17. The analytical limit load 

solutions, also shown in Fig. 5.17, are calculated by using a representative flow stress which is 

the average of the yield stress and the ultimate tensile stress. The analytical, elastic solutions for 

the initial gradient, also shown in Fig. 5.17, are obtained using equation (5.1). The limit loads, 

obtained from the FE and analytical analyses, are also given in Table 5.5, which shows that the 

analytical limit loads, obtained using the representative flow stress in the predictions, are 
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generally in reasonably good agreement with those obtained from the experiments and the FE 

analyses. However, these data indicate that if a slightly lower representative flow stress was used 

for the analytical predictions, then generally closer correlation between the analytical solutions 

and those obtained from the FE analyses and experimental tests would be obtained. 

Table 5.5: FE, experimental and analytical limit loads for 6082-T6 aluminium alloy rings using 

yield, flow and ultimate tensile stresses in the analytical formulations (Oy= yield stress; OF 

representative flow stress; cruts= ultimate tensile stress) for 8)=0°, 82=55° and 85=35° 

Olt Experimental FE 
N/mm N/mm 

80 TE1 14.69 15.5 
41.6 TE2 64.03 69.5 

TE3 203.25 
24 TE4 200.29 225 
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using Oy using Of Using O UTS 

17 18.4 19.8 
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Fig. 5.1 7 Indenter force versus dent depth curves obtained from the FE analyses, 

experimental tests and the analytical methods, for the case with 8)=0°, 82=55° and 85=35°, for 

the 6082-T6 aluminium alloy rings 
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5.5.2 Ideal-A Results 

The peak loads obtained from each of the FE analyses, using the elastic perfectly plastic 

material model (Ideal-A) and from the theoretical analyses, are normalised by dividing them by 

oyt2/2R; the results are shown in Figs. 5.18 to 5.21. 
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Fig.5 .18 A comparison of the FE and analytical normalised limit loads for different offset 

angular positions, with 82=85=45°, for the idealised material Ideal-A 
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Fig.5.l9 A comparison of the FE and analytical normalised limit loads for different right support 

angular positions, with 9)=20° and 82=45°, for the idealised material Ideal-A 
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Fig.5.20 A comparison of the FE and analytical normalised limit loads for different left support 

angular positions, with 8)=20° and 85=45°, for the idealised material Ideal-A 
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Fig.5 .21 A comparison of the FE and analytical normalised limit loads for different left support 

angular positions, with 8)=0° and 85=45°, for the idealised material Ideal-A 

Figs. 5.18 to 5.21 show that for the smaller D/t ratios, i.e. D/t=41.6 and 30.8, very close 

correlation of the FE and the analytical solutions can be obtained. However, for the larger D/t 

ratios, i.e. D/t=80, the FE solutions are significantly lower than the corresponding analytical 

solutions. This is because large non-linear deformation effects which occur for the large D/t ratio 
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rings, are included in the FE analyses but not in the analytical solutions. Therefore, for the peak 

load predictions of large D/t ratios, it is suggested that the yield stress should be used in the 

analytical method (see chapter 3). 

5.5.3 X65 SAW Steel Results 

The normal ised limit loads obtained from each of the FE analyses for the X65 SAW steel 

models are compared with those obtained for the idealised material Ideal-A in Figs.5.l4 (a) to 

(d). The close correlation of the results indicates that the normalised limit loads can be obtained 

either using the idealised material Ideal-A or using the X65 SAW steel models in the FE 

analyses. The normalised limit loads obtained from the FE analyses and the analytical methods 

for the idealised material Ideal-A are the same as those for the X65 SAW steel. Comparisons of 

the peak loads, obtained from the FE analyses, and the analytical solutions are shown in Figs. 

5.22 to 5.25 for the X65 SAW steel material. It can be seen from Figs. 5.22 to 5.25 that a 

reasonably close correlation exists between the analytical solutions and the FE predictions of the 

peak loads for the X65 SAW steel material. 
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Fig.5.22 A comparison of the FE and analytical normalised limit loads for different offset 

angular positions, with 82=85=45°, for X65 SAW steel material 
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Fig.5.23 A comparison of the FE and analytical normalised limit loads for different right support 

angular positions, with 8 1=20° and 82=45°, for X65 SAW steel material 
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Fig.5.24 A comparison of the FE and analytical normalised limit loads for different left support 

angular positions, with 81=20° and 85=45°, for X65 SAW steel material 
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Fig.5.25 A comparison of the FE and analytical normalised limit loads for different left support 

angular positions, with 81=0° and 95=45°, for X65 SAW steel material 

5.6 Conclusions 

The reasonably close correlation between the FE predictions of indenter force versus depth 

and the corresponding experimental test data indicates that the FE meshes, boundary conditions 

and large deformation FE analysis methods are capable of producing accurate results. 

An upper bound limit load analytical approach for predicting the peak (or limit) loads gives 

good (i.e. close to the FE results) upper bounds for rings with elastic perfectly plastic material 

behaviour models. The correlation is generally good but is poorest for the larger D/t ratios 

because the analytical approach does not model the significant effect of the geometric 

nonlinearity caused by large deformations which occur with large D/t ratios. 

Using a representative flow stress, which is the average of the yield stress and ultimate tensile 

stress, a reasonably good correlation between the analytical and FE predictions, for rings made 

from 6082-T6 aluminium alloy and X65 SAW steel, are obtained. For higher D/t ratios, better 

correlation would be obtained if the yield stress is used to predict the limit loads using the 

analytical approach. 

The initial slope and peak values of the force versus dent depth curves can be accurately 

predicted using simple analytical approaches. Use of the simple analytical approaches could 

significantly reduce the time and effort required in assessing the likely effects on the structural 

integrity of dents created in pipelines due to accidents. 
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5.7 Summary 

The results of investigations to determine the elastic-plastic response of unpressurised pipes 

with long offset indentations are presented in this chapter. They include the results of 

experimental tests, FE analyses and analytical methods. Three different materials and five 

different geometries were used to investigate their effects on the behaviour. A comparison of the 

experimental results, the FE and the analytical solutions indicates that the general analytical 

formulations developed in this chapter, for predicting the peak indenter loads in offset indented 

pipes, are reasonably accurate. Also the analyses presented in this chapter indicate that using a 

representative flow stress, which is the average of yield and ultimate tensile stresses, in the 

analytical method, is appropriate for predicting the peak indenter loads. 
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Chapter 6 

Force-Deflection Behaviour of Pressurised Pipes 
Subjected to Loading by Axially Long Offset Indenters 

6.1 Introduction 

If an indentation is axially long, then the indenter force versus deflection behaviour can be 

accurately assessed using a ring model for the pipe; this greatly simplifies the analysis. The 

possible modes of failure which must be taken into account as a result of indentation are the 

immediate failure by puncturing or by low cycle fatigue due to fluctuating pressure and the 

significant residual stresses resulting from the indentation. Therefore, to ensure that failure does 

not occur, it is important to be able to predict the force versus deflection behaviour of indented 

pipes under a wide range of conditions as discussed in [chapters 3-5]. 

This chapter contains an investigation of the limit load and force versus deflection behaviours 

of dented rings with non-symmetrical support and offset loading, using analytical methods and 

FE analyses. The effects of asymmetry of supports, offset of loading, internal pressure, types of 

material and geometry are investigated. The loading and support conditions are the same as the 

shown in Fig. 5.1. The FE meshes, boundary conditions and large deformation FE analysis 

methods used have been validated by comparing predictions for unpressurised rings with the 

results of experimental tests. 

6.2 FE Analysis 

6.2.1 Materials 

Two materials were used in the FE analyses. Fig. 3.1 shows the stress-strain curve for a 

practical gas pipeline material, X65 SA W steel and a 6082-T6 aluminium alloy, for which 

experimental test data (with zero internal pressure) is available [chapter 5]. Young's modulus, 

Poisson's ratio, yield stress and ultimate tensile stress for both materials are given in Table 3.2. In 

the FE analyses, all materials were assumed to obey an isotropic hardening rule. 
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6.2.2 FE Meshes, Boundary Conditions and Loading 

The ABAQUS [26] FE software was used for the analyses. All models consisted of 3600 8-

noded, plane-strain, reduced integration elements, as shown in Fig. 5.4. The rings were fully 

restrained at the outer diameter at positions C and D (Fig. 5.4 (a)). The indentation load was 

applied in the vertically downward direction at the outer diameter position at point A. In total 19 

analyses were performed, as defined in Tables 6.1. 

Table 6.1: The geometries, pressures, supporting and loading positions used in the FE analyses. 

t Pressure Gradient 
FE No. D/t (mm) 8) 82 85 (MPa) (MPa) 
FEI *6 80.0 1.5 0° 35° 55° 0 1.85 

FE2 *6 42.6 3. 0° 35° 55° 0 13.15 

FE3 *6 24.0 5. 0° 35° 55° 0 71.05 

FE4 *X 42.6 3. 0° 45° 45° 5 58.30 

FE5 *X 42.6 3. 10° 45° 45° 5 62.30 

FE6 *X 42.6 3. 20° 45° 45° 5 62.60 

FE7 *X 42.6 3. 30° 45° 45° 5 69.00 

FE8 *X 42.6 3. 0° 55° 35° 5 60.00 

FE9 *X 42.6 3. 0° 65° 25° 5 63.50 

FElO *X 42.6 3. 0° 75° 15° 5 70.40 

FEll *X 42.6 3. 0° 55° 35° 0 42.20 

FEl2 *X 42.6 3. 0° 55° 35° 0.5 44.20 

FEl3 *X 42.6 3. 0° 55° 35° 2.5 51.60 

FEl4 *X 42.6 3. 0° 55° 35° 8 70.82 

FEl5 *X 42.6 3. 0° 10° _10° 5 203.3 

FEl6 *X 42.6 3. 0° 35° 15° 5 98.20 

FE17 *X 72.0 1.2 10° 45° 45° 2.91 17.60 

FEl8 *X 72.0 1.2 0° 55° 35° 2.91 17.40 

FEl9 *X 30.8 3. 10° 45° 45° 7 136.60 

FE20 *X 30.8 3. 0° 55° 35° 7 131.80 

Note: *6 and *X refer to 6082-T6 aluminium alloy and X65 SAW steel, respectively. 

The loads were applied using a rigid indenter with a 2mm radius, to match the conditions for 

existing experimental test data [chapter 5], and rigid surface contact elements, with no slipping 

between the indenter and the rings. Large deformation, elastic-plastic analyses were performed, 

using the standard RIKS algorithm facility within the ABAQUS [26] programs. 
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6.3 FE Results 

6.3.1 6082-T6 Aluminium Alloy 

Typical indenter force versus depth results, for an unpressurised ring, obtained from the FE I 

to FE3 FE analyses, performed with the aluminium alloy material models, are shown in Fig.6.1. 

Also shown in Fig. 6.1 are the corresponding experimental test results. It can be seen that the 

agreement between the FE and experimental results is generally very good, indicating that the 

meshes, boundary conditions and large deformation analysis are suitable for the present 

application. 

250 -

~ 200 -
....... 
Z 
- 150 -Q) 

~ 
~ 100 -
C 
Q) 

-g 50 -

o 
o 5 

o FE1 D/t=80 
--A- FE2 D/t=42.6 
-0- FE3 O/t=24 
~ TE1 O/t=80 
-b-TE2 O/t=41.6 
-+-TE3 D/t=24 

10 

Dent depth (mm) 

15 20 

Fig.6.1 Indenter force versus dent depth obtained from experimental and FE analyses of 6082-T6 

alloy rings, with 8\=0°, 82=55° and 85=35°. 

6.3.2 X65 SA W steel 

The X65 SAW steel material has been used to investigate the effects of the loading position, 

the pressure, the supporting positions and the ring dimensions on the indenter force versus 

deflection curves. 

6.3.2.1 Effect of Loading Positions 

The effect of loading position has been investigated using the results of the FE4 to FE7 

analyses in which the indenter offset angle, 8\, was varied from 0° to 30°. The D/t ratio used is 

42.6, the internal pressure is 5MPa and the left and right supporting angular positions are both 
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45°. The indenter force-deflection curves are shown in Fig 6.2. It can be seen that the 

differences in the curves are relatively small, but the higher curves are related to the lower offset 

angles. 
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Fig. 6.2 Indenter force versus deflection curves obtained from FE analyses for the X65 SAW 

materials with D/t=42.6, t=3mm, a pressure of 5MPa, both support angular positions are at 45° 

and indenter offset angles of 0°, 10°, 20° and 30°. 

6.3.2.2 Effect of Internal Pressure 

The effect of internal pressure was investigated using the results of the FE8 and FE 11 to FE 14 

analyses for D/t=42.6, 8}=0°, 82=55° and 85=35°. The indenter force versus deflection curves are 

shown in Fig 6.3. It can be seen that at low pressures, there is a peak in the force versus 

deflection curve. However, at the higher pressures, the curves continue to increase even at high 

dent depths (i.e. dent depths> 10 x wall thickness). 
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Fig. 6.3 Indenter force versus deflection curves for the X65 SAW material with D/t=42.6, 

t=3mm, 8 1=0°, 82=55°,85=35° and pressures of 0, 0.5, 2.5, 5 and 8MPa. 

6.3.2.3 Effects of Support Position 

The effect of the support position was investigated for rings with D/t=42.6, using the results 

of the FE4 and FE8 to FEIO, FEI5 and FEI6 analyses. For the case where the total support span 

(i.e. 82 + 85=90°) is constant and with a zero offset angle, i.e. 8 1=0°; the (82, 85) pairs used were 

(45°, 45°), (55°, 35°), (65°, 25°), and (75°, 15°). The indenter force versus deflection curves are 

shown in Fig 6.4. It can be seen that as the support position deviates from the symmetric 

position, the force required to produce a given deflection decreases. However, the reduction is 

relatively small. 
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Fig.6.4 Indenter force versus deflection curves obtained from FE analyses with the X65 SAW 

material with a pressure of 5MPa, D/t=42.6, t=3mm and 9)=0°, for (82, 85) pairs of (45°,45°), 

(55°, 35°), (65°, 25°) and (75°, 15°). 

The results for various angular support positions of (92, 95)=(10°, -10°), (35°, 15°) and (55°, 

35°), from the FE 15, FE 16 and FE8 analyses, for the D/t ratio of 42.6, internal pressure of 5MPa 

and a zero indenter offset angle, are shown in Fig 6.5. 
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Fig. 6.5 Indenter force versus deflection curves obtained from FE analyses with the X65 SAW 

material with D/t=42.6, t=3mm, a zero indenter offset indentation angle, a pressure of 5MPa and 

support angle pairs, (82, 85) of(10°, -10°), (35°, 15°) and (55°, 35°). 
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It can be seen that curves converge at the higher load and deformation levels but at lower load 

levels, the curves are higher when the total support span (i.e. 92 + 95) approaches zero. 

6.3.2.4 Effect of D/t 

The effects of the D/t ratio were investigated using the results of the FE5, FE8 and FE 17 to 

FE20 analyses with a pressure which produces a mean hoop stress of 0.234 times the yield stress. 

The indenter force versus deflection curves are shown in Fig 6.6. 
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Fig. 6.6 Indenter force versus deflection curves obtained from FE analyses for the X65 SAW 

models with an internal pressure which produce a mean hoop stress of 0.234 times the yield stress 

and with D/t ratios of 72, 42.6 and 30.8. 

From Fig. 6.6 (a), which presents results with 9 1=0°, 92=55° and 95=35°, it can be seen that 

the curves are higher when the D/t ratio reduces. Similarly, Fig. 6.6 (b) shows the same effect 

with 9)=10°, 92=45° and 95=45°. 

6.4 Analytical Methods 

6.4. 1 Elastic Behaviour 

In chapter 5, an analytical solution for the elastic indenter force versus deflection behaviour, 

for an unpresssurised ring, was obtained using Castiglano's theorem, see equations 5.1 and 5.2. 

For the small elastic deformation range, as is the case of that with symmetric support and 

radial loading conditions [see chapter 4], the indenter force, for a pressurised ring with 

asymmetric supports and offset loading conditions, is given by 

F = Kep8 = {Ke +K p}5 (6.1) 
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where K e is initial stiffness tenn and K p is the stiffness associated with the stress caused by the 

internal pressure; K e and K p are given by 

3 ( ) K - Et D 
e - 12R3 AD+B+C 

F P 
Kp =p limit-

00-+0 80 

where 00 is 01R 

(6.2) 

(6.3) 

The stiffness, K p' exists due to the coupling effect of the internal pressure and the indenter 

force on the indenter force versus depth curve in the small deformation range, see chapter 4. 00, 

defined as 01R, is dimensionless and FP is given by equation (a27) in Appendix 3.A.3. For small 

defonnation the indenter force, F, can be approximately given by [chapter 4] 

F = Et
3 

( D ) 8 + pR F P 
12R3 AD+B+C 

(6.4) 

The initial gradients of the indenter force versus depth curves, obtained from the analytical 

approach, described by equations (6.1) to (6.3), the FE analyses in Table 6.1 and the experimental 

tests (TEl to TE3), are shown in Fig.6.7. It can be seen that there is a very good correlation 

between the results. 
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Fig .. 6.7 The initial gradients of the indenter force versus depth curves obtained from the analytical 

approach, the FE analyses and the experimental tests. 

116 



6.4.2 Non-linear Elastic-Plastic Behaviour 

For long indentation of pipes, it has been shown [chapters 3, 5] that a limit method can 

accurately predict peak loads by assuming that plastic hinges exist at five positions A, B, C, D 

and E (see Fig.(3.al)). The kinematic relationship between the vertical displacement or dent 

depth and angles of rotation of the hinges can be determined. From these kinematic 

relationships, the work done, W p, by the internal pressure, and the work done, WE, by the 

indenter force, can be obtained using an incremental method. The energy dissipated, WI, during 

deformation can also be obtained using the incremental method. The indenter force, F, for a 

pressurised indented ring with asymmetric supports and an offset indenter loading condition, can 

be obtained using the same method as that used for a symmetric support and loading conditions 

(i.e. 9 1=0°, 92=95) [chapter 4]. The approach is outlined in Appendix 3.A.3. Hence the indenter 

force, F, can be expressed as 

F = 4Mo F M + pR F P 
R (6.5). 

where FM and FP are both dimensionless functions related to the effects of the deformation and 

the internal pressure. 

FM and FP are plotted against the non-dimensional vertical displacement (dent depth, ( 0 ) in 

Fig.6.8 for 9 1=0°, 92=95=0°, 25° and 45°. 

2.5 -

2.25 -

2 -

~ 
1.75 -

u. 
1.5 

1.25 -

-- -!] -<>- angle of 0 

-0- angle of 25 

--6- angle of 45 
~~~. 

1 -

0.75 
0 0.15 0.3 0.45 0.6 

Non-dimensional dent depth (80 ) 

(a) Non-dimensional coefficient, FM 

117 



1 -

0.8 -

0.6 - ~angleOf1~ a.. 
-0- angle of 25 u. 

0.4 -
-ta- angle of l5 

0.2 -
82=85 

0 
0 0.15 0.3 0.45 0.6 

Non-dimensional dent depth (0o) 

(b) Non-dimensional coefficient, FP 

Fig. 6.8 Non-dimensional coefficients for 81=0°, 82=85=0°, 25° and 45°. 

Fig. 6.8 (a) and equation (6.5) cannot be used to predict the indenter force for the small 

deformation in the elastic range. Therefore, as with symmetric loading and symmetric support 

[chapter 4], the indenter force can be determined using the two indenter force versus depth curve 

predictions provided by equations (6.4) and (6.5). 

6.5 Comparisons of Experimental, FE and Analytical Solutions 

The results obtained from the experimental tests, the FE analyses and the analytical approach 

were compared in order to validate the FE modelling method (see section 6.3.1) and to assess the 

accuracy of the analytical approach described in this chapter. 

6.5.1 6082-T6 Aluminium Alloy 

The force versus deflection curves obtained from the experimental tests, FE analyses FE 1 to 

FE3 and the analytical approach, for the 6082-T6 aluminium alloy, with 8 1=0°, 82=55° and 

85=35°, are shown in Fig. 6.9. These curves indicate that the analytical, FE and experimental 

results are in broad agreement for both small and large deformations of the rings. Also, the 

analytical approach produces particularly good predictions in the early (small indentation depth) 

and large deformation stages of the deformation process. 
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Fig. 6.9 Indenter force versus depth curves obtained from the experimental tests, the FE analyses 

and the analytical approach for a ring with p=O MPa, 9,=0°, 92=55° and 85=35°, using 6082-T6 

aluminium alloy. 

6.5.2. X65 SAW Steel 

6.5.2.1 Effect of Indentation Offset 

The force versus deflection curves obtained from the FE analyses FE4 to FE7 and the 

analytical solutions for the X65 SAW steel models with 9,=0°, 10°, 20°, and 30°, 92=95=45° and 

p=5 MPa, are shown in Fig. 6.10. These curves indicate that the analytical and FE results are 

reasonably consistent and that the effects of the indenter offset angle on the indenter force versus 

deflection curves is negligible in this case. 
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Fig. 6.10 Indenter force versus depth curves obtained from the FE and analytical solutions for 

9 1=0°, 10°, 20° and 30° and for X65 SAW in rings with a D/t=42.6, t=3mm, 92=85=45° and 

p=5MPa. 

6.5.2.2 Effect of Internal Pressure 

The indenter force versus deflection curves obtained from the FE analyses FE8 and FE 11 to 

FE 14 and the corresponding analytical solutions, for the X65 SAW steel, with different internal 

pressure levels, are shown in Fig. 6.11. These curves indicate that the analytical and FE results 

are in excellent agreement. 
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Fig. 6.11 Indenter force versus depth curves obtained from the FE and analytical solutions for 

X65 SAW rings with D/t=42.6, t=3mm, 91=0° and (92, 95)= (55°, 35°). 

6.5.2.3 Effect of Angular support Positions 

The force versus deflection curves obtained from the FE analyses FE4, FE8 to FE 10 and the 

corresponding analytical solutions, for the X65 SAW steel, with 81=0°, (82, 95)= (10°, -10°), (35°, 

15°) and (55°, 35°) and p=5MPa, are shown in Fig. 6.12. These curves indicate that the analytical 

and FE results are in good agreement and that the effect of the radial offset angles on the indenter 

force versus deflection curves is negligible in this case. 
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Fig. 6.12 Indenter force versus depth curves obtained from the FE and analytical solutions for 

8)=0°, (92, 95)=(10°, _10°), (35°, 15°) and (55°,35°), for X65 SAW, with p=5MPa. 

The indenter force versus deflection curves obtained from FE analyses (FE8, FE 15, and 

FE 16) and the corresponding analytical solutions, performed on the X65 SAW models, with 

D/t=42.6, for p=5MPa and 9)=0°, are shown in Fig. 6.13. The close correlation of the curves 

obtained from the analytical and FE results indicates that the analytical method can accurately 

describe the effects of the angular support positions. 
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Fig. 6.13 Indenter force versus depth curves obtained from the FE and analytical solutions for 

X65 SAW, with D/t=42.6, t=3mm, 9)=0°, p=5MPa and supported angle pair, (82, 85)= (10°, -10°), 

(35°, 15°) and (55°,35°). 

6.5.2.4 Effect of D/t 

The indenter force versus deflection curves obtained from the FE analyses FE5, FE8, FE 17 

and F20 and the corresponding analytical solutions, for X65 SAW steel, with D/t=72, 42.6 and 

30.8, for 81= 10° and 92=85= 45°, are shown in Figs. 6.14. The pressure used in the FE analyses 

produces a mean hoop stress of 0.234 times the material yield stress (see Table 3.1). The 

representative flow stress, which is the average of the yield stress and the ultimate tensile stress, 

was used in the analytical predictions. These curves indicate that the analytical and FE results are 

in good agreement for the D/t ratios used. However, there seems to be a small systematic effect of 

the D/t ratio on the indenter force predictions. It can be seen from Fig. 6.14 (a) that as the D/t 

ratio reduces, there is a tendency for the analytical predictions to be slightly lower than the 

corresponding FE results for large dent depths. 
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Fig. 6.14 Indenter force versus deflection curves obtained from the FE and analytical solutions 

for D/t=72, 42.6and 30.8 for X65 SAW steel, with a pressure which produces a mean hoop stress 

of 0.234 times cry and (82, 85)= (55°, 35°). 
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6.6 Conclusions 

The good correlation of the experimental, the FE and the analytical solutions shows that the 

analytical methods described in this chapter, can accurately predict the indenter force versus 

deflection curves for the pipes with or without internal pressures, when indented by a long 

indenter. The analytical formulations include the effects of the pressure, material properties, the 

indenter offset and angular support positions. The solutions of the FE and the analytical analyses 

also illustrate that the indenter force versus deflection curves are very close for all cases of the 

indenter offset angles investigated, i.e. less than 30°. Therefore, it is concluded that the indenter 

force versus deflection behaviour of rings can be accurately predicted by the analytical methods 

described in this chapter. 

6.7 Summary 

The indenter force versus deflection characteristics of pressurised pipes with long offset 

indentations have been investigated using experimental testing, FE and analytical methods. Two 

different materials and five different geometries were used to investigate their effects on the 

elastic-plastic behaviour. A comparison of the experimental, FE and the analytical results 

indicates that the analytical formulation developed in this chapter, for predicting the force­

deflection curves, for pressurised pipes with offset indenters, is reasonably accurate. Also, all of 

the analyses presented in this chapter indicate that by using a representative flow stress, which is 

the average of the yield and ultimate tensile stresses, the analytical methods can accurately 

predict the force-deflection curves. 
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Chapter 7 

Force-Deflection Behaviour of Pipes with Spring 
Type Supports due to Axially Long Indentations 

7.1 Introduction 

The limit load and force-deflection behavi9urs of dented rings with symmetry and non­

symmetrical supports with symmetric and offset loading, using analytical methods and FE 

analyses have been reported in previous chapters [3-6]. The effects of asymmetry of supports, 

offset of loading, internal pressure, types of material and pipe geometry were investigated. 

The FE meshes, boundary conditions and large deformation FE analysis methods used have 

been validated by comparing predictions for unpressurised rings with the results of 

experimental tests. 

Since the soil support around pipes is more likely to be spring-like rather than rigid, this 

chapter is concerned with the prediction of the indenter force-deflection behaviour when the 

pipes have spring type supports. 

7.2 FE Analysis 

7.2.1 Material 

The material used in the FE analyses (see Fig.7.l) is elastic, perfectly plastic with a 

Poisson's ratio of 0.3, a Young's modulus, of 70GPa and a yield stress of 300MPa. In the FE 

analyses, the material is assumed to obey an isotropic hardening rule. 
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Fig. 7.1 The elastic, perfectly plastic material used in FE analyses 

7.2.2 FE Meshes, Boundary Conditions and Loading 

The ABAQUS [26] FE software was used for the analyses of the rings; the dimensions, 

support and loading conditions are shown in Fig. 7.2. Due to symmetry, only one half of the 

rings are modelled (see Fig. 3.4). All models consist of 3600 8-noded, plane-strain, reduced 

integration elements. The nodes on the rings at sections A and C (Fig. 3.4(a)) are restrained in 

the circumferential direction (i.e. UxA=UxC=O) for all of the analyses. Also, the rings, shown in 

Fig. 3.4 (a), are connected to three vertical springs with stiffnesses of K1, K2 and K3, at the 

outer diameter at positions B, C and D, respectively, in which points Band D are at an angle e 
to the x-direction. The total equivalent spring stiffness, K, caused by these three springs is 

K1+K2+K3. For the rings shown in Fig. 7.2 (b), the arc BCD is connected to a uniformly 

distributed spring support with vertical stiffness, Ko, which results in the corresponding total 

equivalent stiffness, K, defined as K = KO(Jr - 20)R. The load was applied in the radially 

inwards direction at the outer diameter position at point A. In total, 12 analyses were 

performed, these are defined in Table 7.1. 
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~ F 

(a) (b) 

Fig.7.2 Ring dimension, loading and boundary conditions 

Table 7.1: The stiffness, angular support position, pressure levels (D/t=30.8, t=3mm) and 

initial gradients of indenter force versus displacement curves obtained from the FE 

analyses and the analytical method. 

FE No Ko K. (*) K2 (*) K3 (*) e p FE Analytical 
(MPa) (N/mm) (N/mm) (N/mm) e) (MPa) Gradient Gradient 

FEI 10 20 10 45 0 13.11 20.26 

FE2 00 00 00 45 0 33.3 41.6 

FE3 100 200 100 45 0 33.34 37.2 

FE4 10 20 10 45 4 17.50 23.1 

FE5 00 00 00 45 4 44.42 53.77 

FE6 0 20 0 90 0 7.73 7.93 

FE7 0 00 0 90 0 12.73 13.1 

FE8 0 20 0 90 4 10.10 10.59 

FE9 0 00 0 90 4 20.40 22.33 

FEIO 0.5 45 4 19.20 27.33 

FEll 1.0 45 4 23.29 36.4 

FEI2 2.0 45 4 26.50 43.75 

(*) 00 indicates that a rigid support (very stiff spring) was used. 

7.2.3 FE Results 

The FE analyses FE 1 to FE 12 are used to investigate the effects of the spring-support on 

the indenter force versus deflection curves, which are shown in Fig.7.3. It should be noted 
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that part of the deflection is due to local (elastic and plastic) behaviour, overall tube 

deformation and spring deflections. It can be seen, from Fig. 7.3 (a) to (g), that as expected, 

the pipes with spring-supports are more flexible than those with rigid supports; for the same 

displacement, the indenter force in the pipes with rigid supports are higher than those with 

spring-supports. This is mainly due to the compression of the springs, when the stiffness of 

the spring is relatively small. Also, from Fig. 7.3, it can be seen that the support types affect 

the indenter force versus deflection curves. When the angular support position is at 8=90°, 

the difference between the forces obtained from the pipes with rigid supports and spring­

supports is relatively small for a given stiffness of the spring. The only difference is an 

additional displacement due to the compression of the spring in each case. The FE analyses 

FE 1 0 to FE 12 are used to investigate the effects of the uniformly distributed spring supports 

on the indenter force versus depth curves. Figs. 7.3 ( e) to (g) show that as the stiffness of the 

springs is increased, the behaviour of the pipes with spring-supports approaches that obtained 

from the pipes with rigid supports. However, all of the indenter force versus depth curves 

exhibit the same pattern of behaviour. In particular, the peak loads obtained in all cases 

except for the most flexible support case (Fig.7.3 (a)), are the same with the rigid and flexible 

supports. 
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Fig. 7.3 Indenter force versus displacement curves obtained from the FE analyses for the 

pipes with uniformly distributed spring supports with D/t=30.8, t=3mm. 

7.3 Analytical Method 

7.3.1 Elastic Behaviour 

For the case ofa pipe with a three-spring support condition, as shown in Fig. 7.2 (a), if the 

vertical stiffnesses of those springs are denoted by K1, K2 and K3 (N/mm) and the pipe has a 

rigid vertical movement, the equivalent stiffness of these three springs, K, is given by 
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(7.1) 

For a pipe with uniformly distributed spring support as shown in Fig. 7.2 (b), if the 

vertical stiffness of each single spring is denoted by Ko (MPa), the equivalent stiffness of 

these springs, K, is given by 

K = (1C - 20)RKo (7.2) 

Assuming small deformations, it has been shown [chapters 4, 6] that the stiffness of the 

pressurised pipes, Kep, is given by 

Kep = tKe +K p) 

where Kp and Ke are given by 

-(1-sinBo)2 sin~+cosBo COS~(SinB+sinBo)+(1-sin8o)(1+sin8{cos~+sin~ ] 
K p = 2 p {" () 00 ()-fJ ] 

K __ EI_3 (---=D~) 
e - 12R3 AD+B+C 

and 

cosBo -cosB+sin(8+Bo 'L cosT+sinT 

(7.3). 

(7.4a) 

(7.4b) 

(7.4c) 

Hence, the total stiffness, Ktotal, of the indented pipe with spring-support, is given by (see 

details in Appendix 4.A.) 

KepK 
Ktotal = K +K ep 

(7.5) 

Equation (7.5) indicates that the relationship between the indenter force, F, and the 

deflection, 0, in the elastic range, is given by 

F = K total8 (7.6) 

The initial gradients of the indenter force versus deflection curves obtained from the FE 

analyses (FE 1 to FE 12) and the analytical method are shown in Fig. 7.4. It can be seen that 

the results obtained from the analytical method are higher than those obtained from the FE 

analyses, because the analytical solutions do not include the deformation of positions Band D 

relative to point C, and the associated deformation of the material in the arc BCD, see Fig.7 .2. 

However, the predictions obtained from the analytical method are reasonably accurate, 
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especially for the relatively stiff supports, which result in relatively small spring deformations 

in the elastic stage. 
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Fig. 7.4 Comparison of the initial gradients obtained from the FE analyses and from the 

analytical method. 

7.3.2 Inelastic Behaviour 

A technique for predicting the indenter force, F, of a pipe with rigid supports, in the 

inelastic range using limit load analysis [chapters 4, 6], has shown that 

F = 4Mo F M + pR F P 
R 

where 

M cos(a2 -at )-sin(Oo +a2 -at )+sin(O+at )+sin(Oo -at) 
F = cos{Oo -a2 )+sin{O+Oo +a2 )-cos{0+a2 )-sin a2 

f)o = 1[ _If) 
4 2 

1[ 00 -1 [cos( 00 -al )-cos( O+al )+cos 0 1 
a2 =---+al -cos 

4 2 2Sin( ~_~) 

(7.7) 

(7.8a) 

(7.8c) 

(7.8d). 

In equation (7.8), a) is the angular position of the plastic hinges at positions Band D, 

relative to point A, see Fig. 7.2. The displacement at position A, 0P' due to the pipe elastic­

plastic deformation, is given by 
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8 p = R[ 1 + sin( (}O + a2 - a} ) - cos( a2 - a} ) - sin( (} + a} ) - sin( (}O - a} ) + sin ()] (7.9) 

For the pipe with a spring-support, the displacement at the position A in Fig. 7.2, 0, is the 

sum of the displacement, due to the deformation, given by equation (7.9), and the vertical 

rigid movement, os, due to the compression of the springs. Hence, the displacement, 0, is 

given by 

8=8p +8s =8p+~ (7.10) 

Therefore, the relationship between the indenter force and the displacement of a pipe with 

spring-supports is given by equations (7.7) and (7.10). 

7.4 Comparisons of FE and Analytical Solutions 

The result of the FE analyses presented in section 7.2.3 show that the inclusion of spring­

supports affects the indenter force versus displacement curves, compared with the solutions 

obtained for rigidly supported pipes. The indenter force versus depth curves, obtained from 

the FE analyses (FE 1 to FE 12), and the corresponding analytical solutions, are shown in Fig. 

7.5. These curves indicate that the behaviour predicted by the analytical and FE results are 

generally consistent and that good correlation of the two sets of results is obtained when the 

indentation depth is high. In particular, when the support angle, 9, is 90°, the differences 

between the analytical and the FE results, in both the elastic and inelastic ranges, are very 

small, see Fig. 7.5 (d). An important conclusion from the comparisons is that the analytical 

methods are capable of describing the basic phenomena observed for all of the types of 

spring-supports investigated. 
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Fig.7.5 Indenter force versus displacement curves obtained from the FE analyses and 

analytical methods for the pipes with uniformly distributed spring supports with D/t=30.8, 

t=3mm. 

7.5 Conclusions 

In many practical situations, pipes are buried underground and the use of the spring­

supports is a more accurate representation of the practical soil support conditions that exist for 

pipes. Compressions of the FE analyses and analytical solutions indicate that the analytical 

methods described in this chapter are capable of predicting the indenter force versus 

deflection curves with reasonable accuracy. Generally the analytical solutions are higher than 

the corresponding FE results. In previous chapters [3-6], it has been shown that the analytical 

methods used are able to predict the indenter force versus displacement behaviour of the pipes 

made from strain hardening materials. Hence, it is expected that the analytical methods 

described in this chapter would also be valid for strain hardening materials, although only 

elastic, perfectly plastic material models are used in the investigation. 

7.6 Summary 

The indenter force-deflection behaviour of pipes, with spring type supports, due to axially 

long indentations, was investigated using FE (FE) analyses and analytical methods. It is 
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found that the analytical methods are capable of giving reasonably accurate predictions of the 

behaviour by comparing with FE results. 
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Chapter 8 

Residual Stresses due to Long External Indentation 
and Subsequent Stress Variations due to Pressure 

Fluctuations in Pipes with Long Indentations 

8.1 Introduction 

Limit load and indenter force-deflection results have been obtained [chapters 3-7] using 

experimental tests, FE analyses and analytical methods. This chapter investigates the residual 

hoop stresses, due to long external indentations, and the subsequent stress variations due to 

pressure fluctuations, in the vicinity of the indentations, using the FE method. The effects of the 

residual dent depth, internal pressure at the time of indentation, indenter and pipe geometry and 

support conditions on the residual hoop stress and stress fluctuations due to internal pressure 

variations are investigated. 

8.2 Materials 

Three materials were chosen for the FE analyses. The tensile stress-strain curves for the 

materials are shown in Fig. 8.1 and some of the material properties are given in Table 8.1. X65 

SAW is a typical pipe steel, grade B is a 24 inch thin wall line pipe material, and grade X52 is an 

18 inch thin wall seamless line pipe material. 

Table 8.1: Material properties 

Material E cry crUTS Poisson's ratio 
X65 SAW 223 GPa 448 MPa 675 MPa 0.3 
Grade B 144 GPa 287.7 MPa 588 MPa 0.3 

X52 180 GPa 360 MPa 616 MPa 0.3 

142 



1000 -

--. 800 -
ro a.. 
~ - 600 -en en 
~ -.-Grade B .... en 400 -0-)(65 
Q) 
:J 
'- -+-X52 
~ 200 

0 
0 0.2 0.4 0.6 0.8 

True Strain 

Fig. 8.1 True stress-strain curves for X65 SAW, grade Band X52 pipe steels. 

The ultimate tensile stresses shown in Table 8.1 and the stresses on Fig. 8.1 all are true 

stresses. In the FE analyses, all of the three materials are assumed to obey an isotropic hardening 

rule. 

8.3 Geometry, Loading and Boundary Conditions 

The two-dimensional pipe indealisations have an outer diameter (D) of 914.4 mm and D/t 

ratios of 72, 50.8, 41.56, 35.17 and 30.48 where t is the wall thickness. The pipes are indented by 

a radial load, as shown in Fig.4.1. A rigid indenter which has a radius in the range of 6 to 

100mm, is used to cause the indentation. The angular support positions are defined by 8, as 

shown in Fig. 4.1; e was varied from 5° to 90°. 

To determine the residual stresses and subsequent stress variations due to pressure 

fluctuations in the pipes, the loading was applied in four steps. First, internal pressure is applied, 

then the indenter load is applied to cause a predetermined dent depth, 0; following this, the 

indenter is removed to obtain the residual hoop stress, crr, and residual dent depth, Or, finally the 

internal pressure is changed from p to one of two predetermined levels, PI and P2, to determine 

the resulting stress variations. 
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8.4 FE Modelling 

The ABAQUS [26] FE software was used for the analyses. For all of the cases, it was only 

necessary to model one half of the pipes, due to the symmetry. All of these symmetric models 

consisted of 4240, 8 or 6 noded, plane-strain, reduced integration elements; part of a model, in 

the vicinity of a loading position, is shown in Figs 8.2. As shown in a previous publication [45], 

the predicted residual stresses, in the indented pipes, after the indenter is removed, are sensitive 

to mesh refinement and hence very fine meshes in the indenter regions are required. All of the 

FE models used have 32 elements through the wall thickness in the indenter regions of the pipes. 

Most of the FE calculations were performed using the X65 SAW material properties. Two FE 

calculations were carried out with grade Band X52 material properties to assess the effect of 

material properties on the behaviour. In total 39 analyses were performed, as defined in Table 

8.2. 

Fig. 8.2 Localised meshes used in the FE analyses for the indented ring analyses 

Table 8.2: Dimensions, boundary conditions, loading conditions and some FE results. 

FE(*) 8 r 8 8, p ~p, ~P2 8r crr ~crl ~cr2 

No. D/t nun nun MPa MPa MPa nun MPa I~Pl l~p2 

FEIS 72 20 12.7 45° 0° 0 •• •• 0 0 •• •• 
FE2S 72 40 12.7 45° 0° 0 •• •• 7.72 385 •• •• 
FE3S 72 60 12.7 45° 0° 0 •• •• 21.5 591 •• •• 
FE4S 72 80 12.7 45° 0° 0 •• •• 37.6 670 •• •• 

. FE5S 72 100 12.7 45° 0° 0 •• •• 54.6 713 •• •• 
FE6S 72 120 12.7 45° 0° 0 •• •• 72.1 720 •• •• 
FE7S 72 140 12.7 45° 0° 0 •• •• 89.9 727 •• •• 
FE8S 72 20 12.7 45° 0° 7.68 1.28 2.56 0.801 338.5 52.5 53.6 

FE9S 72 40 12.7 45° 0° 7.68 1.28 2.56 4.42 621.2 92.0 94.9 

FEIOS 72 60 12.7 45° 0° 7.68 1.28 2.56 6.77 763.6 116 120 

FEllS 72 80 12.7 45° 0° 7.68 1.28 2.56 8.55 829.3 134 139 

FEI2S 72 100 12.7 45° 0° 7.68 1.28 2.56 9.77 886 141 147 

FE13S 72 120 12.7 45° 0° 7.68 1.28 2.56 12.3 937.5 161 169 
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FE14S 72 100 12.7 45° 0° 1.28 1.28 •• 35.4 760 519 •• 
FE15S 72 100 12.7 45° 0° 2.56 1.28 2.56 25.3 778 377 375 
FE16S 72 100 12.7 45° 0° 3.84 1.28 2.56 19 800 235 246 
FE17S 72 100 12.7 45° 0° 5.12 1.28 2.56 15 824 186 201 
FE18S 72 100 12.7 45° 0° 6.4 1.28 2.56 12 854 158 168 
FE19S 72 100 12.7 45° 0° 9.0 1.28 2.56 7.89 946 151 153 
FE20S 72 100 6. 45° 0° 7.68 1.28 2.56 9.83 905 166 174 
FE2IS 72 100 20 45° 0° 7.68 1.28 2.56 9.72 872 133 138 
FE22S 72 100 30 45° 0° 7.68 1.28 2.56 9.65 860 125 130 
FE23S 72 100 50 45° 0° 7.68 1.28 2.56 9.6 839 119 125 
FE24S 72 100 70 45° 0° 7.68 1.28 2.56 9.5 824 115 120 
FE25S 72 100 100 45° 0° 7.68 1.28 2.56 9.3 802 109 114 
FE26S 50.8 100 12.7 45° 0° 7.68 1.28 2.56 22.9 841 148 155 
FE27S 41.6 100 12.7 45° 0° 7.68 1.28 2.56 34 822 153 160 
FE28S 35.2 100 12.7 45° 0° 7.68 1.28 2.56 46 804 152 157 
FE29S 30.5 100 12.7 45° 0° 7.68 1.28 2.56 56 799 145 148 
FE30S 50.8 100 12.7 45° 0° 11 1.28 2.56 15.7 900 118 123 
FE31S 41.6 100 12.7 45° 0° 13.6 1.28 2.56 19.8 910 107 III 
FE32S 35.2 100 12.7 45° 0° 16.2 1.28 2.56 23.5 918 97 101 
FE33S 30.5 100 12.7 45° 0° 18.9 1.28 2.56 27.4 928 91 94.3 
FE34S 72 100 12.7 5° 0° 7.68 1.28 2.56 10.5 1018 188 197 
FE35S 72 100 12.7 25° 0° 7.68 1.28 2.56 10.6 954 165 172 
FE36S 72 100 12.7 65° 0° 7.68 1.28 2.56 9.52 815 123 127 
FE37S 72 100 12.7 90° 0° 7.68 1.28 2.56 10 722 103 106 
FE38S 72 60 12.7 45° 0° 4.92 1.28 2.56 7.02 497 115 123 
FE39S 72 60 12.7 45° 0° 6.17 1.28 2.56 6.68 608 114 120 
FE40S 72 60 12.7 45° 0° 4.92 1.28 2.56 7.02 497 115 123 
FE41S 72 60 12.7 45° 0° 6.17 1.28 2.56 6.68 608 114 120 

(*) The cases of FEIS to FE39S were obtained for X65 SAW material, FE40S for grade B 

material and FE41 S for X52 material. 

Some of the symbols used in Table 2 are defined in the notation; r represents the radius of the 

indenter, the pressure ranges ~PI and ~P2 are P-PI and P-P2, respectively, 8r and crr are the 

residual dent depth and residual hoop stress and ~crl/~Pl and ~(J2/~P2 are the first and second 

normalised stress variations, caused by ~Pl and ~P2, respectively. 

8.5 FE Results 

The results presented in this chapter mainly relate to the central contact point between the 

indenter and the pipe on the outer surface. At this position, the maximum tensile residual hoop 

stress values were found to occur. Since the residual stresses and stress variations associated 

with the internal pressure fluctuations are affected by the residual dent depth, the pipe geometry, 
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the angular support positions and the indenter radius, all of these parameters have been 

investigated separately. 

8.5.1 Typical Residual Hoop Stress Distribution 

The results of FE analysis FEI2S, shown in Fig. 8.3 provides typical residual hoop stress 

distributions on the outer and inner circumferential surfaces of the pipe. In this case, the internal 

pressure, p=7.68 MPa, was reduced in two stages to achieve pressure decreases, ~p of 1.28 and 

2.56MPa. It can be seen, from Fig. 8.3, that the residual hoop stresses in the indentation region 

(e.g. lal< 15°) are positive on the outer surface and negative on the inner surface. Also it can be 

seen that even when the pressure deceased by 1.28 or 2.56MPa, the residual hoop stress 

distribution changes are relatively small and so they remain positive on the outer surface and 

negative on the inner surface. Therefore, since fatigue damage is most likely to occur in regions 

where variations of the tensile residual stresses occur, the results presented in this chapter are 

mainly associated with the residual hoop stresses on the outer surfaces of the indented pipes, at 

the a=O° position. Fig. 8.3 also indicates that the peak value of 886MPa of the residual hoop 

stress is much higher than the ultimate tensile stress (675MPa) of X65 Saw material. This is 

because the maximum stress value of the true stress versus strain curve shown in Fig.8.1 is much 

higher than that of the corresponding ultimate tensile stress. Also since the von Mises yield 

criterion was used in the FE analyses, some stress components, e.g. the hoop stress, may be in 

some cases higher than the corresponding von Mises stress whose maximum value is the same as 

that of true stresses on Fig.8.1. This can be seen from Figs. 8.4 to 8.8 in the following section. 

146 



~ 900 -
co 

700 J On inner surface a.. 
~ - 500 v 
tn 
tn 300 -~ .... 
tn 
c. 

~t'iC5~~6 0 
0 

180 .c. 
co 
::J -500 - Q --P=7.68 MPa "0 

'00 
-700 ~ -A( - P-P1 =1.28 MPa Q) 

0:: 
-900 ~ ~ P-P2=2.56 MPa 

Angular position (a) 

Fig.8.3 Typical residual hoop stress distributions on the inner and outer surfaces of the pipe, for 

X65 SAW material, with r=12.7mm, D/t==72, 8=450 and p==7.68MPa. 

8.5.2 Residual Hoop Stresses 

8.5.2.1 Effect of Dent depth 

The magnitude of the indentation depth has a significant effect on the magnitude of the 

residual hoop stresses created in the pipes. The variations of the residual hoop stresses with 

residual dent depth, for pressurised and unpressurised pipes, are shown in Fig. 8.4. For the 

unpressurised pipe, it can be seen that the residual hoop stresses increase rapidly as the residual 

dent depth increases, for the small 8/D ratios, i.e. less than 0.022. However, the residual hoop 

stresses increase more slowly with an increase of the residual dent depths for large 8/D ratios. 

This is because the plastic deformation zone and contact area both increase as 8r1D increased, 

thus limiting the magnitude of the residual stress that occurs. For the pressurised pipe, the 

residual hoop stresses are much higher than the corresponding values for the unpressurised pipe, 

at the same residual dent depth. Therefore, the pressurised pipe would be likely to be punctured 

at a relatively small dent depth, particularly in high-pressure circumstances. 
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Fig.8.4 Residual hoop stress versus residual dent depth curve for material X65 SAW, 

D/t=72, t=12.7mm, p=O and 7.68MPa, r=12.7 mm and 8=45°. 

8.5.2.2 Effect of Pressure 

The effects of the internal pressure on the residual hoop stresses, for D/t=72, t= 12. 7mm, 

r=12.7mm and 8=45°, for· 8=IOOmm, are shown in Fig.8.5. It can be seen that the residual hoop 

stresses increase as the internal pressure is increased. 
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Fig.8.S Residual hoop stress versus internal pressure for material X65, D/t=72, t= 12. 7mm, 

B=IOOmm, r=12.7 mm and 8=45°. 

8.5.2.3 Effect of D/t Ratio 

Typical plots showing the effect of wall thickness on the residual hoop stresses, are given in 

Fig. 8.6. The results presented represent either constant internal pressure (p=7.68MPa) or a 

pressure p which causes a mean hoop stress of O.6cry in the pipe. The curve presented in Fig. 8.6 

for the constant internal pressure case, i.e. p=7.68 MPa, relates to a situation in which the 

pressure induced hoop stress (in a plain pipe) increases in proportion to Dlt as D/t increases (i.e. 

cr=pD/2t). The curve presented in Fig. 8.6 for which the hoop stress is kept constant at O.6cry 

represents a case in which the pressure reduces as D/t increases. In the case in which the mean 

hoop stress is held constant at O.6cry, the residual dent depths, for the larger D/t ratios (e.g. 72) 

are larger than those for small D/t ratios, for an applied indenter depth of 100mm. From the 

results in Fig.8.6 and those in Table 8.2, it can be seen that for the same dent depth, the variations 

in the residual stresses with D/t ratio are relatively constant, for an equivalent pressure level (i.e. 

a pressure level which produces the same mean hoop stress in the plain pipe with different D/t 

ratios). 
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Fig.8.6 Residual hoop stress versus D/t ratio curves for material X65, with p=7.68MPa or 

with a mean hoop stress of 0.6 times cry, 8=100mm, D=914.4mm, r=12.7 mm and 8=45°. 

8.5.2.4 Effect of Angular Support Position 

Typical residual hoop stress versus angular support position, 9, results are shown in Fig. 8.7. 

This indicates that as the support angle increases, the residual hoop stresses reduce. Also the 

relationship between the support position and the residual hoop stress is approximately linear. 
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Fig.8.7 Residual hoop stress versus angular support position curve for material X65 SAW, 

D/t=72, t=.12.7mm, p=7.68MPa, 8=100mrn and r=12.7 mrn. 
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8.5.2.5 Effect of Indenter Radius 

A typical variation of residual hoop stress with indenter radius size is shown in Fig.8.8 where 

it can be seen that the residual hoop stress increases with decreasing indenter radius size. 
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Fig.8.8 Residual hoop stress versus indenter radius curve for material X65, with D/t=72, 

t=12.7mm, p=7.68MPa, D=lOOmm and 8=45°. 

8.5.3 Stress Variations in Indented Pipes due to Pressure Fluctuations 

8.5.3.1 X65 SAW 

Typical variations of normalised hoop stress variation, flcr/ flp, versus residual dent depth, Dr, 

angular support position,S, indenter radius size, r, and wall thickness, t, are shown in Fig.8.9 (a) 

to (d), respectively. 
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Fig.8.9 (a) Variations of normalised stress change (~(J/~p) with residual dent depth, Or, for X65 

SAW, Dlt=72, t=12.7mm, r=12.7mm, p=7.68MPa, 9=45°, ~p= 1.28 (P-PI) and 2.56 (P-P2) MPa. 
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Fig.8.9 (b) Variations of normalised stress change (~(J/~p) with wall thickness, t, for X65 

SAW, Dlt=72, D=914.4mm, r=12.7mm, p=7.68MPa, 9=45°, ~p= 1.28 and 2.56MPa and 

applied dent depth, 8= 1 OOmm. 
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Fig.8.9 (c) Variations of normalised stress change (~(J/~p) with indenter radius, r, for X65 

SAW, D/t=72, t=12.7mm, r=12.7mm, p=7.68MPa, 8=45°, ~p= 1.28 and 2.56MPa and applied 

dent depth, B=100mm. 
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Fig.8.9 (d) Variation of normalised stress change (~(J/~p) with angular support position~ 8, for 

X65 SAW, D/t=72, t=12.7mm, r=12.7mm, p=7.68MPa, ~p= 1.28 and 2.56MPa and applied 

dent depth, B= 1 OOrnm. 

Figs.8.9 (a) and (b) indicate that the normalised hoop stress change increases with 

increasing residual dent depth, but decreases with the wall thickness in the same conditions (see 
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FE26S to FE33S). However, this change is relatively independent of wall thickness if the 

comparison is based on a situation in which the internal pressure is changed at the same time as 

the wall thickness so as to maintain a constant mean hoop stress. From Fig.8.9 (c), it can be 

seen that for large indenter radii, the normalised stress changes are relatively independent of 

indenter radius, but the variations are much more significant for small indenter radii. From 

Figs.8.9 (d), it can be seen that the normalised hoop stress changes decrease as the support 

angle,8, is increased. 

8.5.3.2 Grade Band X52 

A comparison of the results from the analyses for grade Band X52 pipe materials with those 

for X65 SAW material, under the same conditions, allow the effects of material properties, on the 

normalised hoop stress changes to be assessed. All three materials are of practical importance, 

but the yield stresses for grade B (287 MPa) and for X52 (360 MPa) are significantly different 

from that of X65 SAW material (i.e. 448 MPa). For these analyses, internal pressures of 7.68, 

4.92 and 6.l7MPa, which produce hoop stresses in the plain pipe of 0.617 times the respective 

yield stresses, were used together with an applied dent depth of 60mm. The normalised stress 

changes for D/t=72, t=12.7mm, 8=45°, r=12.7mm, pressure ranges, ~p=1.28 and L\p=2.56MPa, 

are given in Table 8.3, from which it can be seen that the material properties do not significantly 

affect the stress changes which occur due to the internal pressure changes. This indicates that it 

may be possible to use the results for one material to predict the stresses for other materials. 

Table 8.3 The normalised stress changes for three materials, D/t=72 , t=12.7mm, 8=45°, 

r=12.7mm and the mean hoop stress is 0.6170'y 

Material Odent (mm) Or (mm) ~Pl=1.28 MPa ~P2=2.56 MPa 
X65 SAW 60 6.77 116 120 
Grade 8 60 7.02 115 123 

X52 60 6.68 114 120 

8.6 Semi-empirical Formulation for Stress Variation 

As internal pressure fluctuates, the stress changes which occur in indented pipes are elastic 

for the unloading and loading processes. This behaviour can be approximated to that of an 
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imperfect pipe undergoing elastic stress changes when internal pressure is applied. The 

imperfect pipe model shown in Fig. 8.10 has been used to investigate stress concentration in 

imperfect pipes [2-4]. The same imperfect pipe model has been used in this chapter, as the basis 

for the development of a semi-empirical formulation to provide an approximate relationship for 

the stress variation with respect to the ring geometry and residual dent depth. 

s 

c 

Fig.8.10 Imperfect pipe model used in elastic stress response analysis 

Assuming the axial tensile force and moment at section A are denoted by Nand Mo, it can be 

shown using force-moment relationships that the moment distribution is given by 

M 1 (x) = -.!. px2 - M 0 
2 

M2(O)= -PS(~+ RI sinO )- PRf(l-cosO)+ NRI (l-cosO)- Mo 

M3(O) = - ; PRI( R2 sin(: + 0 )-ssin(: ))-Ps( R2 COSO-~)- PRi(l-cosO)+ 

N(RI + R2 sinB)- M 0 

(8.1) 

where M 1, M2 and M3 are moments on straight segment AB, arc BC and arc CD and R 1, R2 and s 

are given by 
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1! 
s=-8r 

2 

(8.2) 

Assuming that the contributions of the axial and shear forces, to the strain energy in the ring 

beam, are negligible, the strain energy is given by: 

U =~[k)(MI(X))2dX+ ij(M2(O))2 RldO+ ij(M3(O))2 R2dO] 
Et3 

(S.3) 

Applying Castigliano's theorem and ignoring small, high order terms, it can be shown that 

the form of the equation for the stress at section A is 

a = P(C(8; +C2 R8r L P{C38r + R) 

t 2 t 
(8.4) 

where c I, C2 and C3 are constants. However, since the actual shapes of the dents in the rings are 

more complex than the assumed shape, shown in Fig.8.10, then predictions based on equation 

(8.4) will only provide an approximate solution for the stresses. In an attempt to improve the 

accuracy of the prediction of stress variations, it is assumed that the form of the equation will be 

the same for "real" indentation shapes, but that the constants (cJ, C2, C3 and C4) in Eq.(S.4) are 

replaced by constants ci, c~, c; and c~, so that the stress change 110' due to the pressure 

fluctuation D.P, becomes 

(8.5) 

The constants ci to c~ have been obtained by optimising the ci to c~ values, to fit the results 

of the FE analyses, given in Table 8.2. The resulting semi-empirical formulation is 

'i:f, = (~)0.14I3 {- 0.2530 + 0.840{ 1.334R~55.110r + 2.12ROr;: 1.0740; J (8.6). 

where {} is in radians. 

The stress variations obtained from the FE data and equation (8.6) are shown in Fig. 8.11. 
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Fig. 8.11 The stress variation obtained from the FE and empirical data 

It can be seen from Fig.8.ll that the semi-empirical fonnulation is capable of accurately 

predicting the effects of the indenter size, angular support position, ring geometry and residual 

dent depth on the normalised hoop stress variations. 

8.7 Conclusions 

Since the residual hoop stress is very sensitive to element sizes in an indented pipe [6], the FE 

mesh used in this chapter consists of 32 elements through the wall thickness in the local 

indentation region. In remote regions, the number of elements through the wall thickness was 

either 16 or 8. Therefore, it can be concluded that the residual hoop stress and normalised stress 

variation presented are reasonably accurate for the support and loading conditions and the 

material models used. 

It was found that the residual hoop stresses and the nonnalised stress variations are related to 

the pipe and indenter dimensions, the pressure magnitude and the angular support position. 

It should be noted that if a dent is found in a pipe, the residual dent depth, the pipe and 

indenter dimensions and the pipe material properties will be known or can be accurately 

measured. However, the actual angular support position are not well defined in most situations. 

Also, the angular support position is associated with the soil quality around the pipe. The 

determination of this angular position can only be completed through a series of tests. In 
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previous chapters [3-7], the relationships between the angular support position and the force­

deflection curve or the limit load have been determined. Hence, an estimation of the likely 

support conditions can be made. Using this information (residual dent depth, material properties, 

pipe geometry, estimated support conditions and pressure at the time of indentation) the result, 

presented in this chapter can be used to obtain predictions of the residual stress and stress 

changes due to pressure fluctuations. This will allow a fatigue assessment to be carried out. 

However, the accuracy of this approach has not yet been validated by comparison with 

experimental pipe fatigue tests. Therefore, it is recommended for the future work that 

experimental tests should be performed to assess the accuracy of the method. 

8.8 Summary 

The residual hoop stresses in pressurised pipes caused by long external indentations and the 

subsequent stress variations caused by internal pressure fluctuations have been investigated for a 

range of residual dent depths, support positions, pressure magnitudes and indenter radii, using the 

FE method, including initial stress and geometrical non-linearity effects. Three materials were 

used in the investigation to assess the effects of material properties on the stress variations. A 

semi-empirical formulation has been developed, based on an imperfect, indented pipe model and 

the results of the FE analyses, to predict the variations of the residual stresses in the pipes. 
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Chapter 9 

Finite Element Analysis of Indented Pipes Using 
Three-Dimensional Solid and Shell Elements 

9.1 Introduction 

This chapter presents FE analysis of indented pipe using 2D, 3D and shell elements. Two 

types of indenters are used; a long cylindrical indenter which can be analysed using a 

relatively simple 2-D plane strain model, and a tooth-type indenter (a short cylinder with 

rounded ends) which requires a 3-D model. Results are presented for the contact stresses and 

the residual stresses left within the pipe wall, due to the application of the indenter. 

Three FE models using 2-D plane strain, shell and 3-D solid elements are used. A mesh 

sensitivity analysis is performed to determine the optimum number of elements needed across 

the thickness of the pipe. The FE solutions indicate that the stresses at the contact point of the 

indenter with the pipe are very sensitive to element sizes, particularly for large indentations. 

The pipe models are expected to require 20 or more elements across the pipe thickness in 

order to produce accurate results. Therefore, a 3-D model of the pipe using brick elements is 

not considered practical. However, since the plastic zone is localised around the indented 

region, it is possible to use sub-modelling to overcome this problem. 

The shell model uses considerably less computer storage than the 3-D solid model, and is 

capable of producing acceptable solutions for the residual stresses, see for example [9, 12]. 

Based on comparison of 3-D solid and shell elements, it is shown that the shell model is valid 

for the analysis of the indented pipe. 

In this chapter, details of the distribution of the residual stresses around the circumference 

of the pipe and along the axis of the pipe are presented for a number of indentation depths. 

Results based on using different FE models are compared. 

9.2 Problem Definition 

The geometry, boundary conditions and loading for the indented pipe are defined in Figure 

4.1. The results presented in this chapter are based on a thin-walled pipe geometry of outer 

diameter, D, of 914.4 mm and wall thickness, t, of 12.7 mm (i.e. a ratio of Dlt = 72). Two 

types of indenters are used in this work; a long cylindrical bar indenter to model a 2-D plane-
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strain indentation, and a 3-D tooth-shaped indenter consisting of a rigid cylinder with two 

half-spheres at either end of the same radius as the cylinder. 

The material, X65 SAW steel, of the pipe is elastic-plastic with isotropic work-hardening 

with first yield at a yield stress cry = 448 MPa. Figure 3.1 shows the stress-strain curve of the 

pipe material. 

The pipe is supported over an arc from 8=135° to 8=225° along its entire axial length, 

where 8 is measured clockwise from the point of contact with the indenter. 

Two load steps are used to simulate an indented un-pressurised pipe. In the first load step, 

the indenter is brought into contact with the pipe wall by prescribing a vertical downward 

displacement with indentation depths ranging from 0.01 to 0.1 D. Following each indentation 

depth, the indenter is removed from the pipe leaving residual stresses within the pipe wall. 

9.3 Finite Element Analyses 

The ABAQUS FE package [26] is used in the analysis of the indented pipes. In all the 

cases, the indenter is modelled as a rigid circular surface, and is moved into the pipe by 

applying a prescribed displacement to the centre of the rigid surface (reference node). The FE 

analysis is performed with geometric non-linearity due to the large deformation of the pipe 

wall caused by the indenter. 

9.3.1 Stress sensitivity to element sizes 

F or a dented pipe, stress distributions at the contact point between the pipe and the indenter 

are complicated and sensitive to element size [5, 20]. The contact penetrating stress between 

the two structures can only be accurately modelled using very fine meshes. To investigate this, 

a quarter of 2-D plane-strain dented pipe structure is analysed, as shown in Figure 9.1. 

Three different indentations of 0.05, 0.075 and 0.1 Do are applied to the un-pressurised 

pipe. All movements at the bottom end of the pipe are fully restrained, and the top end is 

constrained to move vertically due to geometrical symmetry. A number of different meshes 

are used where 5, 8, 15, 20, 30 and 40 quadratic 8-node plane strain elements with 2x2 

integration points are placed through the wall thickness at the contact region (x=O plane), 

reducing along the circumference to 5, 8, 15, 10, 15 and 20 elements, respectively, at the 

remote region (y=O plane). 

Figure 9.2 shows the variation of the residual hoop stress at the contact point on the outer 

surface with the number of elements across the wall thickness. The FE solutions indicate that 
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the residual hoop stresses are very sensitive to the element sizes, particularly at large 

indentation depths. For an indentation depth of 0.075 D, the differences between the residual 

hoop stresses at the contact point vary by up to 10%, while for an indentation of 0.05 D, they 

vary by up to 5%. For the larger indentation depth of 0.1 D, the difference is about 110/0. 

~ Indenter r = 30 mm 

x 

Figure 9.1 2-D plane strain problem used for mesh refinement analysis 
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Figure 9.2 Residual hoop stress at the contact point against the number of 2-D quadratic 

elements through the wall thickness for different indentation depths. 

To investigate the effect on the residual stresses of changing the 2-D elements from 

quadratic 8-node to linear 4-node elements, a pipe indented to 0.1 Do is analysed with 6 

different models with 5, 10, 15, 20, 30 and 60 linear, 4-node plane strain elements with 

reduced integration (1 integration point) through the wall thickness at the contact region. The 
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FE solution for the contact and residual hoop stresses using the 4-node elements on both the 

inner and outer surfaces are shown in Figure 9.3 where it can be seen that contact stresses are 

not very sensitive to element sizes, while the residual stresses are more sensitive to mesh 

refinement. 

To compare the 4-node and 8-element solutions, Figure 9.4 shows the residual hoop 

stresses at the contact point on the · outer surface obtained using both elenlent types. This 

shows that FE solutions using linear and quadratic elements converge when 30 elements are 

placed across the thickness. 

The above results indicate that using 3-D solid elements would require a prohibitively 

large mesh which may be impractical. A shell model, however, would require less 

computation time than a 3-D solid model, and may offer an acceptable compromise between 

accuracy and computational demand. 
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Figure 9.3 Contact and residual stress at the contact plane for the inner and outer surfaces 

against the number of 2-D linear elements through the wall thickness for an indentation depth 

of 0.1 O. 
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Figure 9.4 Residual hoop stress at the contact point against element numbers through the wall 

thickness using 2-D linear and quadratic elements for an indentation depth of 0.1 D. 

9.3.2 FE Shell model 

In order to validate the shell model, an eighth of a pipe model (see Figure 9.5a) in which 

meridional movements and rotations in plane x-yon both sides CD and EF are prevented and 

the axial movement on side CD is restricted. All nodes on side EF are restrained to move by 

an equal axial distance. Displacements in the x-direction and rotations in y-z plane on side 

CE are prevented. On side DF, displacements in the x and y directions and all rotations are 

prevented. 

FE analyses are performed for different indenter radii rangmg from 12.7 to 40 mm, 

internal pressures ranging from 0 to 5.12 MPa, indentation depths ranging fronl 0.02 D to 0.05 

D, and wall thicknesses ranging from 12.7 to 27 mm. 

The FE shell model consists of 10845 linear, 3-node and 4-node reduced integration (with 

I integration point) finite-strain elements. Two 2-D models are used for comparison purposes, 

one consisting of 9525 linear 3-node and 4-node elements with I integration point, and the 

other consisting of 3656 quadratic 6-node and 8-node plane strain elements with 3 and 4 

integration points, respectively. The 2-D linear and quadratic element nl0dels contain 30 and 

32 elements, respectively, across the wall thickness at the contact point (see Fig. 8.2). Part of 

the shell mesh is shown in Figure 9.5b. 
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Figure 9.5 Shell model and FE shell element mesh used to model plane strain conditions 

9.3.2.1 Different indenter sizes 

In order to compare the 2-D and shell models for different indenter sizes, different 

indenter radii of 12.7, 20, 30 and 40 mm are used. An internal pressure of 3.84 MPa is 

applied before indentation. The indentation depth is 0.035 D and the pipe wall thickness is 

12.7 mm. The contact and residual hoop stresses at the contact position on the outer and inner 

surfaces, calculated by using shell elenlents and linear 3-node and 4-node 2-D elenlents, are 

shown in Table 9.1. The results indicate that differences in the contact stresses between shell 

and 2-D models are very large, up to 25 %, whereas the differences between the residual hoop 

stresses are much smaller at less than 5.2 0/0. This can be explained by the fact that the shell 

model cannot accurately simulate the variation of the penetrating pressure across the wall 

thickness caused by the indenter. A comparison of the residual stresses obtained by using 

shell and quadratic 2-D elements is shown in Table 9.2, where it can seen that the differences 

are less than 50/0. 
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Table 9.1 Contact hoop stress solutions for the shell and 2-D linear element models for 

different indenter radii at the contact position 

Indenter radius 
On outer surface On inner surface 

(mm) Shell 2-D 
Error (%) Shell 2-D Error (%) 

(MPa) (MPa) (MPa) (MPa) 

12.7 -749 -999 25 789 740 6.6 
20 -744 -993 25 784 740 5.9 
30 -743 -969 23 783 740 5.8 ---

40 -743 -895 17 783 738 6 

Table 9.2 Residual hoop stress solutions for the shell and 2-D models for different indenter 

radii at the contact position 

On outer surface On inner surface 
Indenter 
radius 2-D 
(mm) Shell 2-D linear Difference 2-D Difference Shell 

linear Difference 2-D Difference 
(MPa) (MPa) (%) quadratic (%) (MPa) 

(MPa) (%) quadratic (%) 

12.7 741 704 5.2 737 0.4 -773 -736 5 -744 3.9 
. - ---- ------ ------_ .. -~----

20 734 702 4.5 690 6.4 -766 -736 4.1 -743 3.1 
------- -------------- ---- --- --_.- -------

30 729 701 3.9 697 4.6 -768 -735 4.5 -741 3.6 
-- -----

40 733 702 4.4 700 4.7 -764 -734 4.1 -741 3.1 
---~--- -------_._-- -------------.---

9.3.2.2 Different internal pressures 

To investigate the influence of the internal pressure on the shell and 2-D solutions, the FE 

simulations are perfonned by applying different internal pressures of 0, 2.56, 3.84 and 5.12 

MPa before indentation. An indenter of radius 30mm is used with an indentation depth of 

0.035 D and pipe wall thickness of 12.7 mm. The residual stresses are listed in Table 9.3, 

which show that changing the internal pressure causes differences of up to 5.90/0 between the 

shell and 2-D models. 
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Table 9.3 Residual hoop stress solutions for the shell and 2-D models for different pressures 

at the contact position 

On outer surface On inner surface 

Pressure 
(MPa) 

Shell 2-D linear Difference 2-D Difference Shell 2-D 
Difference 2-D Difference 

linear (MPa) (MPa) (%) quadratic (%) (MPa) 
(MPa) (%) quadratic (%) 

0 560 544 2.9 553 1.2 -532 -502 5.9 -539 1.3 
2.56 716 682 4.9 688 4.1 -734 -708 3.7 -715 2.6 
3.84 729 701 4 697 4.6 -768 -735 4.5 -741 3.6 
5.12 741 711 4.2 710 4.3 -789 -752 4.9 -758 4.1 

-- - ---.--.--~ 

9.3.2.3 Different indentation depths 

Indentation depth is the main factor that causes a dented pipe to fail either during 

indentation or afterwards due to fatigue failure caused by pressure fluctuations. Indentation 

depths of 0.02, 0.035 and 0.05 D are applied in order to investigate the solution differences 

between the shell and 2-D models. An internal pressure of 3.84 MPa is applied before 

indentation. An indenter of radius 30 mm is used with a wall thickness of 12.7 mm. The 

residual hoop stress solutions are shown in Table 9.4, where it can be seen that changing the 

indentation depth can produce differences of up to 8.6% between the shell and 2-D solutions 

for the range of conditions investigated. 

Table 9.4 Residual hoop stress solutions for the shell and 2-D models for different indentation 

depths at the contact position 

On outer surface On inner surface 

Indenter 

--

depth 
Shell 2-D linear Difference 2-D Difference Shell 

2-D 
Difference 2-D Difference 

linear 
(MPa) (MPa) (%) quadratic (%) (MPa) 

(MPa) (%) quadratic (%) 

0.2 Do 629 579 8.6 648 2.9 -652 -626 4.2 -637 2.3 
-- - - ----

0.35 Do 729 701 4 697 4.6 -768 -735 4.5 -741 3.6 
- .--~~-

0.05 Do 795 760 4.6 783 1.5 -826 -784 5.3 -791 4.4 
--- ---~------ --------- ---- -- ----

9.3.2.4 Different wall thicknesses 

Increasing the pipe wall-thickness can improve resistance to external impact loading and 

thus improve the safety of the pipe. In this section, different wall thicknesses of 12.7, 17, 22 
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and 27 mm are used to compare the shell and 2-D solutions without changing the number of 

elements across the wall thickness. An indenter of radius 30mm is used with an indentation 

depth of 0.035 D and an internal pressure of 3.84 MPa. Comparisons of the residual stress 

solutions between the shell solutions and the 2-D linear and quadratic elements are listed in 

Table 9.5. The results show that at the contact point on the outer surface, residual stress 

differences between the shell and 2-D models increase as the wall-thickness increases. 

Table 9.5 Residual stress solutions for the shell and 2-D models for different wall 

thicknesses at the contact position 

On outer surface On inner surface 
Wall-

thickness 
2-D 

(mm) Shell 2-D linear Difference 2-D Difference Shell 
linear 

Difference 2-D Difference 
(MPa) (MPa) (%) quadratic (%) (MPa) 

(MPa) 
(%) quadratic (%) 

12.7 729 701 4 697 4.6 -768 -735 4.5 -741 3.6 
---------

17 743 703 5.6 718 3.5 -760 -733 3.6 -737 3.1 
--------- _ .. - ... _-_. __ ._- ----------

22 750 703 6.7 703 6.7 -757 -726 4.3 -730 3.7 
-758 

1-----.. - .. -- - .... _-_.- ~-.- .. ----

27 757 700 8.1 705 7.4 -712 6.5 -725 4.5 
-

The above results show that stress solutions are very sensitive to mesh refinement across 

the pipe wall, and can only be obtained using 30 or more elements across the wall thickness 

for a D/t ratio of 72. This implies that in a 3-D dented pipe FE model, the number of elements 

needed to obtain accurate stress solutions will be very large. The above results also show that 

the shell FE models may not be capable of accurately calculating the contact stresses but are 

capable of calculating residual stresses to a reasonable degree of accuracy. 

Although 2-D quadratic elements are considered to be more capable than linear elements 

of accurately calculating stress values, the solutions listed in the above tables indicate that for 

most cases using 2-D linear elements can give residual stresses on both surfaces very close to 

those of the quadratic elements. 

In the analyses of the effects of the indenter radius, the indentation depth, the internal 

pressure and the wall thickness, on the differences in the solutions between the shell and 2-D 

models, the FE solutions show that these factors do not significantly change the residual hoop 

stress between the shell and 2-D models. 
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9.3.3 3-D solid models 

To model a tooth-like indenter, rather than a long cylindrical indenter, a shell or 3-D solid 

model is needed. In this section, a short rigid cylindrical indenter is applied with a radius of 

12.7 mm and an axial length of 20 mm with two half-spheres at either end with the same 

radius as the cylinder. An un-pressurised pipe in indented to a depth of 0.01 D and is then 

released. 

A 3-D solid FE model of the dent region is created as a sub-model rather than a full model 

in order to increase the mesh refinement at the contact region. The sub-model is generated 

with 9 elements through the wall thickness in the dent region and 3 elements across the 

thickness elsewhere, as shown in Figure 9.6. Three types of quadratic solid elements are used; 

20-node, 27-node brick elements and I5-node triangular prism elements with reduced 

integration. The shell FE model, shown in Figure 9.7, is generated with 4-node doubly-curved 

quadrilateral elements and 3-node triangular elements with reduced integration, where fine 

meshes are created in the dent region and coarse meshes elsewhere. 

The FE solutions for the variation of hoop, axial and von Mises stresses obtained using 3-

D solid and shell models are shown in Figures 9.8 and 9.9 along the circumference at the axial 

plane z = 0, and Figure 9.10 along the axial distance from the point of contact at the e = 0° 

plane. From these figures, it can be seen that the residual stress distributions on the pipe outer 

surface obtained using the 3-D solid model are not smooth but oscillatory in the dent region 

especially for the hoop and axial stress distributions. This phenomenon occurs because the 

meshes used for the 3-D solid analysis are not refined enough, even when 9 elements are 

placed across the wall thickness. 

Comparing the residual stress distributions obtained using the shell and 3-D solid models, 

it is clear that they are quite consistent on the pipe inner surface, except at the dent region on 

the pipe outer surface where oscillations of hoop and axial stress occur in the 3-D solid model. 

However, von Mises equivalent stress distributions in the 3-D solid model are not oscillatory 

and are close to those in the shell model. Hence, the comparisons of the solutions obtained 

employing the shell and 3-D solid models show that the shell model can adequately simulate 

the residual stresses resulting from pipe indentation. 
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Figure 9.6 Sub-model of the 3-D solid element model. 

Figure 9.7 Shell me h used to model 3-D condition. 
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9.4 Conclusions 

Due to the localised plastic deformation of indented pipes, FE solutions are quite sensitive 

to mesh refinement in the dent region, requiring more than 30 elements across the wall 

thickness for accurate results to be obtained. This stress sensitivity to element sizes 

demonstrates that to obtain accurate stresses in the dent region using a 3-D solid element 

model would require an excessive number of elements. Comparisons of the FE solutions 

obtained using shell elements with those obtained from 2-D and 3-D solid elements for 

different indenter radii, internal pressures, indentation depths and wall thicknesses, show that 

shell models are capable of accurately calculating the residual stresses in dented pipes. 

9.5 Summary 

This chapter presents analysis of indented pipes using a number of FE models to 

determine the deformations and stresses arising in typical cylindrical pipes damaged by 

indenters. A number of FE models using 2-D plane strain, shell and 3-D solid elements are 

used. A mesh sensitivity analysis and a comparison of the stresses obtained from shell and 3-

D solid elements show that a 3-D solid model may be impractical because it requires a high 

degree of mesh refinement, whereas a shell FE model is capable of accurately calculating the 

residual stresses with considerably less computer time and storage. 
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Chapter 10 

Experimental Validation of FE Approach to Predicting 
the Elastic-Plastic Response of Pipes Subjected to 

Localised Indentations 

10.1 Introduction 

In previous chapters 3-7, analytical and FE solutions to the indentation of pressurised and 

unpressurised rings have been compared with experimental data. These results indicate that the 

FE method is capable of predicting the large deformation response of rings. Also, it has been 

shown (chapter 9) that shell elements can give similar accuracy to that obtained using three 

dimensional brick elements, provided that care is taken in the design of the meshes used for the 

shell elements. 

In this chapter, comparisons of experimental test results with FE predictions are used to 

validate the use of shell elements for predicting the indenter force versus deflection behaviour of 

pipes subjected to localised three dimensional indentations, as opposed to the ring results used to 

simulate the long two dimensional indentation case previously investigated in chapters 3-7. 

10.2 Experimental Work 

10.2.1 Material 

An aluminium alloy (6082-T6) was chosen for the experimental tests because of the relative 

ease with which small diameter pipes, with large D/t ratios, can be accurately manufactured from 

it. The uniaxial tensile stress versus strain curve for the material is shown in FigJ.l. The 6082-

T6 aluminium alloy material has Young's Modulus, Poisson's ratio, yield stress, and ultimate 

tensile stress of 70GPa, 0.3, 300MPa, and 351 MPa, respectively. From Fig. 3.1, it can be seen 

that 6082-T6 aluminium alloy stress-strain curve closely approximates to that of an ideal elastic 

perfectly plastic material behaviour. 

A 6082-T6 aluminium alloy tube was supplied with a nominal outer diameter (D) of 101.6 

mm and nominal wall thickness (t) of 19.05 mm. The tubes were cut into lengths of 

approximately 500 nun. These tubes were then line-bored and honed to produce accurately 
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circular inner diameter. The outer urface of the tube wa then machin d t th r quir d 

dimension u ing the bore as datum ( ee Fig 10.1). 

10.2.2 Geometry, Loading and Boundary Condition 

The final outer diamet r and wall thickne e of th pip s wer 6.4 mm nd 1.2 mm 

re pectively giving a D/t ratio of 72. The pipe were machin d with flang d nd with a radi ] 

thickness of 22 mm and an axial length of 25 mm. To r duce th tr 

junction between the two flanged ends and the traight pipe egment th jun ti 

machined with circular arc fill ets with a radiu of mm Fig. I .1. he plain 

of the pipe wa 334mm. 

End cap, with a thickne of 10 mm were attached to th pip u ing £ ur 

end cap allowed the oil to circulat around a loop con i ting of th t t pip , th c nne ting 

pipes and the pump. 

ig. IO. I xperimental pipe 

The indenter was made of bright drawn mild steel with a h p simi lar t th t of an 

excavator's tooth . The end of the indenter con i t ofha]f a cylind r nd tw qu rter ph re with 

2mm radii (r) and the axial length of the indenter (Li) wa 6mm, a hown in ig. 10.2. Th 

bright drawn mild t el ha ignificantly higher Young' modulu and yield tr th n the 2-

T6 aluminium alloy. Therefore, the indenter can reasonably be as urn d, D r th purp of th 

analysis to be a rigid body. 
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r 

(a) Side view (b) Elevation view 

Fig. 10.2 Indenter used in experimental te t 

To simulate three-line constraint conditions, a flat-bottom d 90° v-groov upp rt, a h wn 

111 ig. ] 0.3 , was used. 

- -----
~ 

ig. 10. 3 Pipe on support 

The internal pressure was kept constant during the deformation proce s. The indent r, hown 

in Fig. 10.2, was positioned in the testing n1achine at the centre of the pipe's 1 ngth and wa 

moved radially inwards to a predetermined dent depth, then it wa reI as d. A t tal of ix 
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experimental tests were performed. The tube has a D/t ratio of 72 and a wall thickness of 1.2mm 

and the corresponding support angle, 8, is 45°. The loading conditions for each test are shown in 

Table] 0.1. 

Table 10.1: The tube loading conditions used in the experimental tests 

Test No. Pressure Loading condition 
p (MPa) 

TEl 0 on-off 
TE2 2 on-off 
TE3 3 on-off 
TE4 4 on-off 
TE5 5 on-off 
TE6 2.8 Cyclic 

10.2.3 Experimental Method 

A Hydraulic Power Pack was used to apply a constant internal pressure during the 

deformation of the indented pipes. The Hydraulic Power Pack with its pressure gauge was 

calibrated before performing the tests. 

The indenter, shown in Fig. 10.2, was fixed to the load cell of an Instron 1195 Automated 

Servo Electric Material Testing Machine. The cross head was moved down at a speed of 0.5 

mm/second, which was slow enough to simulate a static contact process between the indenter and 

the pipe. 

The loading and data acquisition for the experiments were attained using the standard 

facilities of the Instron 1195 Automated Material Testing System, which produces a 

force/displacement plot on a PC and also saves the test results in a data file on the PC. 

To ensure that the Instron system was properly calibrated, a Dial Indicator with a range of 0 to 

15mm x 0.0 I mm was set up on a magnetic base to monitor the displacements of the indenter 

during the tests. 

The FE analyses were not used to simulate the initiation and growth of a crack. Hence, good 

correlation between experimental and FE results would not be expected once a crack had 

initiated. Therefore, to monitor the development of cracks on the inside surface of the pipes, a 

Sony KTV -22 Video inspection system was used. This system has a camera with a long-handle 
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lens which can be placed in ide the pipe and can be positioned to take pictur nd to r c rd the 

crack development. 

Schematic diagrams showing the experimental s t-up used for the t t are gIven In ig ' . 10.4 

and 10.5. 
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I 
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i i L----------
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t------

II 'I 
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II I I 

: L ___ ... __ ...... _ ... __ ...... _ ... ____ ... ____________________ ... ... -.... ------ ....... --- ----- ... _- _ .. _ ... : : 
~----------- ------ ------- --(:YiT -p-{p-e--------- - ------------------------ . 

Fig. lOA Experimental test configuration for pre uri d pip 
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I I \\ omputell 
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.~ : 
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! © ~ i L ______________ ~_J 

amera 

Fig 10.5 Experimental test configuration for observing intetllal cra k initi ti n 

10.3 Experimental Results 

The experimental test of specimens TE I to TES ( ee Table 1) w re per£ rm d with different 

con tant pres ure level , i.e. p=O 2, 3, 4 and 5 MPa. Th results of the ind nter ~ rce er u d nt 
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depth curve are hown in Fig. 10.6 (a) to (e). The variation of the initial gradient with internal 

pre sure obtain d from Figs. 10.6 (a) to (e) i shown in Fig.10.7. The indentation I ad D r a h 

te t wa increased to about 2.SkN and then reduced to zero. Fr rn ig. 10.7 it can b 

the initial lopes of the indenter force versu indentati n depth curv III r e 

pre ur 1 increa ed. In the case of te tTl which wa pertl rm d with p= 

KTV-22 Video in p ction y tern wa u ed to monitor the initi ti nand gr wth 

inner urface. Thi howed that mall crack 

of between 6 and 6.5 mm. However a ig. 10. (a) indicate th pipe wa 

ny 

higher indenter force than thi when indent r d pth of m r than 6.Smm w r appli d. ailur 

occurred at a dent depth of about 10mm. Fig. 10.6 (d) indi t that th pip with int rn I 

pres ure of 4MPa wa punctured when the indenter reach dad pth f b ut 4.5mm. H w er 

in te t TE2, TE3 and TES, the pipe were not punetur d but mall r ck with dif~ r nt iz 

were ob erved on the inner urface aft r te ting. It wa n t el r wh n th e era k tarted t 

initiate. 
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Fig. 10.6 The indenter force versus depth curves obtained from xp rim ntal test for n-off 

indentation on 6082-T6 aluminium alloy tube with =45 0 D/t=72 , t=] .2mm and difD r nt 

internal pressure levels, i.e. p=O, 2, 3, 4 and 5 MPa. 
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Fig. 10.7 The initial gradients obtained from the experimental t t and the 

variou magnitudes of internal pr ure 

an ly D r 

Specimen TE6 was used to inve tigate the behaviour under cyc li c ind nter 1 ding nditi n 

with the pre sure maintained at 2.8MPa. The r ult obtain d fr ]11 thi t t ar 

ig.I O. from which it can be seen that the pipe und lwent b th el ti c-pI a tic nd n n-lin ar 

elastic deformation , during indenter load application Al , it can b n fr m 

Fig. 10. that the indenter force v r u depth curve, under cy li c indent ti re v ry 

similar to the curve obtained from the single loading and unloading indent tion te t , sh wn in 

ig. 10.6 (a) to (e) . 
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Fig. 10. The cyc1 ic ind nter force ver u d pth curv bt .in d fr m xp ri m ntal t t 

performed on the 6082-T6 aluminium alloy tub with 8=45° D/t=72 , t= 1.2mm nd p=2. MP 

10.4 Finite Element Model 

A the contact between the pipe and the ind nt r cau e hi gh I ali d tr 

region the accurate determination of the re idual tre in th pip , 

very car ful me h de ign. Sh 11 element were u ed in order to reduc th 

and because hell model are able to predict re idual tre e with r 

element models hav been widely u d in pip int grity inv ti g ti n 

in th In nt r 

r ulr 

nal tim 

h 11 

th 

geometric and loading symmetry, a quarter of pipe model h wn in Fig. 9.7, wa g n r t d with 

4-node, doubly-curv d, quadrilateral , hell el m nt and 3-n d triangul r h II 

reduced integration . uitably fine me hes were created in th d nt r gi n nd 

were u ed elsewh reo Details of the meshes and F analy pr edur hav b n r p rt d in 

chapter 9. 

10.5 FE Results 

In order to accurately mod I the force ver u d f1 ction b ha i ur f th ind nted pr s un d 

pipes with elastic-pIa tic, large deformation re pon e u ing th ABAQU F ftwar [26] II 

of the F analy e included geometric non-lin rity. In practic , the pip lin ring and the 

locali ed defonnation of the pipe doe not ha e a ignificant ftl ct n th ttl int rn I lum f 
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the pipe. The internal pres ure during the deformation was, therefore, k pt c n tant in the F 

analy e . These analy es were performed in two loading step i .. the pipe wa fir t ubj cted t 

an internal pre sure and then the indenter loading wa applied while maintaining th intern I 

pre sure constant. 

Five FE analy e using the arc-length RlKS method, were pertl rmed with int rnal pre ur 

of 0 2, 3, 4 and 5 MPa. The results are shown in Fig. 1 .9 wh re it can be en that t arly 

tages of the deformation, the indenter force increase rapidly with incr a of th dent depth 

when the pipes are in the elastic range. The FE predicti n of th initial I pe f the curve 

show good agreement with the corre ponding experimental value in Fig. 10.7. After the initial 

loading stage, it can be seen that the slopes of the curve r duce a the dent d pth incr 

further. This occur when the pip s start to experience ignificant pIa tic def! rm ti n. h 

static approach, a oppo ed to the u e of RlKS method, wa al 0 u ed t obtain th ind nt r fI r 

versus dent depth curves for 60 2-T6 aluminium alloy pipe with DI - 72, t= 1.2mm and =45 , 

for p=O and 4 MPa. The re ults are compared with tho e obtained u ing th RIK appro ch fI r 

the same condition in Fig. 10.10. It can be een from ig. 10.10 that th RlK and tatic 

approaches produce almo t identical re ult for this type of g m try and 1 ading. 
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Fig. 10.9 The indenter force versus depth curves obtained from the F analy using the RIKS 

approach for on-off indentation for 6082-T6 aluminium alloy tube with upport angl =45°, 

D/t=72 t= 1.2mm and different internal pres ure level i.e. p=O, 2 3, 4 and 5 MPa. 
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10.6 Comparison of FE and Experimental Test Data 

In order to alidate the FE model u ed in the analy e the re ult btained fr m th 

analyses and the experimental tests are shown in Fig. 10.7 and Fig. 10.11 (a) to (e). It can b 

seen that the re ult obtained from the FE analyse and the exp rimental te t data ar in 

extremely good agreement for the unpre urised pipe. Howev r fI r the pr uri d pip , Fig . 

1 0.11 (b) to (e) , it was found that the indenter forces obtained from th F analy e w re li ghtly 

higher than the result obtained from the experimental test. How ver, the agreem nt i till v ry 

good (error are within 2%). Some of the di crepancy may be du t the fact that cra k may 

have initiated and developed during the experiment and thi wa n t in Iud d in th F 

modelling. Therefore, predictions u ing the E mod I , m y b xp ct d t indic t li ghtly 

tronger behaviour than the corresponding experimental te t . 
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10.7 Discussion and Conclusions 

Fig. 10.7 shows that during the elastic deformation, the initial slopes of the indenter force 

versus depth curves vary almost linearly with internal pressure. This close linear relationship 

between the initial slope and the internal pressure was also found in the FE analyses performed 

on the indented rings [chapters 3-7]. 

For the unpressurised pipe, using a video inspection system, it was found that a crack initiated 

at a dent depth of about 6 to 6.5 mm (i.e. at about 80/0 of the pipe outer diameter). The pipe 

finally failed at a dent depth of around 9mm (i.e. at about 11 % of the pipe outer diameter). This 

experimental observation illustrates that, in unpressurised pipes, the FE results presented can only 

be expected to model the behaviour of the indented pipes up to dent depths of about 660/0 of the 

final failure dent depth, because the crack initiation process was not included in the modelling. 

However, it is interesting to note that the agreement between the FE and experimental 

force/displacement curves did not reduce when a crack was seen to have initiated. 

For the pressurised pipes, crack initiation was not monitored using the video camera, but the 

test data show, like the unpressurised pipes, that pressurised pipes are able to experience dent 

forces which produce significant elastic plastic radial deformations before failure occurs due to 

the initial formation and growth of through-cracks. Fig. I 0.6( d) shows that with an applied 

internal pressure of 4 MPa, which induces a hoop stress of 46.7% of the yield stress, the pipe 

completely failed at a dent depth of 4.4 mm (i.e. at about 5% of the pipe outer diameter). 

Therefore, it may be assumed that cracks start to initiate before the dent depth reaches 5% of the 

pipe outer diameter when an internal pressure of 4 MPa is applied. 

All of the tests were performed for pipes with D/t = 72 and indenters with rlt = 1.67 and axial 

lengths of L/t = 5. If the axial length were to be reduced, a higher localised stress would be 

produced. Hence, it is likely that the pipes would fail at dent depths of less than 5% of the pipe 

outer diameter when an internal pressure of 4 MPa is applied. 

Generally, the FE results are in very good agreement with those obtained from the 

experimental tests. However, the FE models predict that the pipes are slightly stronger than that 

which is observed during the experimental tests, particularly when the internal pressure is 

increased. In this chapter, the FE models use shell elements rather than 3D brick elements. The 

close correlation of the results obtained indicates that the shell element models are generally good 

enough to allow accurate predictions of the indenter force versus deflection behaviour, for pipes 
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undergoing localised indentations. Also, if an indentation should be found in a pipe for which the 

internal pressure at the time of the indentation is known, then the force applied during the 

indentation can be determined. This would be the first step in an assessment of the likely effect 

of the indentation on the integrity of the pipeline. 

10.8 Summary 

The elastic-plastic response of pressurised and unpressurised pipes, subjected to localised 

indentations, has been investigated using FE analyses and experimental testing. A visual 

inspection system was used to monitor the initiation and the development of cracks during the 

indentation of an unpressurised pipe. The experiments show that the pipe can continue to carry 

significant increases of external force, after a crack has initiated, until a through-crack is formed. 

The close correlation of the results obtained from the experimental tests and the FE analyses 

indicates that the shell element models used in this chapter are capable of giving accurate results. 
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Chapter 11 

Prediction of Residual Stresses at Localised 
Indentations in Pipes 

11.1 Introduction 

In previous chapters 3 to 7, analytical methods were successfully applied to obtain the limit 

loads and indenter force versus dent depth curves of indented rings. However, although 

analytical methods are relatively easy to use and can provide accurate predictions, the 

applicability of these methods is generally limited to relatively simple geometries, material 

models and loading conditions. For more complicated geometries and loading conditions, the FE 

method is widely used for performing elastic-plastic analyses [12, 20] and can be used in this 

case. 

In this chapter, the FE method is used to predict the residual stresses in pipes which are 

indented by rigid 3D indenters. The localised deformations and the residual stresses were 

obtained and used to develop empirical formulations to predict the residual stresses as functions 

of the residual dent depth, internal pressure, indenter size and material properties. 

11.2 Materials 

Three typical pipe materials, X65 SAW, X52 and grade B steel, as shown in Fig. 8.1, were 

used in the FE study. The relevant material properties for these three materials are shown in 

Table 11.1. In the FE analyses, all materials were assumed to obey an isotropic hardening rule. 

Table 11.1. The material properties for X52, X65 and grade B pipe materials. 

eng a true Hardening 
Material (jy 

O'UTS UTS 
c true E Poisson's power 

(MPa) (MPa) (MPa) UTS (GPa) ratio v exponentn 

X52 360 545 616 0.123 180 OJ 4. 
X65 448 598 675 0.121 223 0.3 7.56 

Grade B 287 496 588 0.170 144 0.3 4.5 

0'~7s is the engineering ultimate tensile stress and is given by 
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(
true J a eng = a true e -Cuts 

uts UTS (11.1) 

The work hardening exponents, n, were obtained using the empirical stress-strain 

formulations developed in the Appendix 5.A. 

11.3 Geometry, Loading and Boundary Conditions 

The pipes investigated have an outer diameter of 914.4mm and a wall thickness varying from 

12.7 to 26mm. All pipes were indented by blunt, rigid indenters at the axial middle point of the 

pipe. A side elevation showing the contact between the indenter and the pipe is given in Fig.4.I. 

An idealised shape of the tooth of an excavator or tractor was used for the indenter in the FE 

analyses. The idealised tooth (or indenter) consists of a half cylindrical body with an axial 

length, L, which has two ends which are spherical with the same radius, r, as the cylindrical body. 

The side and front elevations of a quarter of the indenter are shown in Fig. 11.1. F or most of the 

FE analyses, the axial length and radius of the indenter are 20mm and 12.7mm, respectively. The 

indenters are constrained to move radially inwards or outwards. 

Because of the geometrical symmetry, only a quarter of the pipe, was modelled, see Fig.II.I. 

Predicted residual stresses are very sensitive to mesh sizes and very fine meshes are required in 

the dent region in order to obtain accurate results with solid brick elements [45]. Hence, in order 

to save computation time a study was conducted to establish the conditions under which accurate 

results can be obtained using the shell element models [45]. The pipe is fixed on lines CD and 

EF with an angular support position of 45°. On the symmetric plane AEC, all displacements in 

the z-direction and rotations about x and y axes were constrained to be zero. On the symmetrical 

plane ABDC, all displacements in the x- direction and rotations about the y and z axes were 

constrained to be zero. Also, on the plane BFD, the displacement were constrained to be zero in 

z- direction and on lines CD and EF the displacements in the x- and y- directions were 

constrained to be zero. 
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Table 11.2: The geometrical dimensions, loading conditions and FE results for X52 material 

FE P D/t t L r DID Or O'h O'a O'e 
No (MPa) (mm) (mm) (nun) (%) (mm) (MPa) (MPa) (MPa) 
FEI 3.84 72 12.7 20 12.7 0.5 0.407 552 459 505 
FE2 3.84 72 12.7 20 12.7 1. 1.65 709 612 660 
FE3 0 72 12.7 20 12.7 0.5 0.08 454.1 380.5 422.2 
FE4 0 72 12.7 20 12.7 1. 1.2 677.8 570.6 631.1 
FE5 0 72 12.7 20 12.7 1.5 3.28 795.7 705.9 754.8 

FE6 0 72 12.7 20 12.7 2. 6.04 889.2 752.4 829.5 

FE7 0 72 12.7 20 12.7 2.5 9.22 976.2 786.4 896.5 

FE8 0 72 12.7 20 12.7 3. 12.61 938.2 635 830.8 

FE9 0 72 12.7 20 12.7 3.5 15.97 791.7 414 689.1 

FEIO 0 72 12.7 20 12.7 4. 19.31 609 381.1 532.9 

FEll 5.12 72 12.7 20 12.7 0.5 0.6 570.3 459.1 523.7 

FEI2 5.12 72 12.7 20 12.7 0.75 1.55 692.3 586.9 646 

FEl3 5.12 72 12.7 20 12.7 1.0 2.74 786.1 668.9 734.8 

FE14 5.12 72 12.7 20 12.7 1.25 4.1 860.7 746.9 810.3 
FEI5 5.12 72 12.7 20 12.7 1.5 5.54 929.1 810 876.1 
FEI6 5.12 72 12.7 20 12.7 1.75 7.1 989.3 866.7 934.4 
FEI7 5.12 72 12.7 20 12.7 2.0 8.73 1017 895.4 962 

FE18 0 72 12.7 20 5 2.0 5 921.8 741.6 846.4 

FE19 0 72 12.7 20 30 2.0 30 869.5 683.5 793.1 

FE20 0 72 12.7 20 50 2.0 50 826.8 622 745.9 

FE21 0 72 12.7 20 70 2.0 70 790.3 578.8 708.6 

FE22 0 72 12.7 20 90 2.0 90 763.2 545.2 680.9 

FE23 0 72 12.7 20 110 2.0 110 739.3 525 658.9 

FE24 0 72 12.7 20 130 2.0 130 719.9 507.9 640.8 

FE25 0 72 12.7 0 12.7 2.0 6.71 1043 900.6 980 

FE26 0 72 12.7 40 12.7 2.0 5.16 901 702.3 819.9 

FE27 0 72 12.7 60 12.7 2.0 4.7 883.4 673 799.3 

FE28 0 72 12.7 80 12.7 2.0 4.37 866.2 661.3 784.2 

FE29 0 72 12.7 100 12.7 2.0 4.14 855.9 625.3 769.1 

FE30 0 72 12.7 140 12.7 2.0 4.14 855.9 625.3 769.1 

FE31 0 72 12.7 180 12.7 2.0 4.14 855.9 625.3 769.1 

FE32 3.84 65.3 14 20 12.7 1.0 14 828.9 715.6 778.4 

FE33 3.84 50.8 18 20 12.7 1.0 18 818.1 719 773.3 

FE34 3.84 41.6 22 20 12.7 1.0 22 819.2 728.3 777.8 

FE35 3.84 35.2 26 20 12.7 1.0 26 826 736.4 785 
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Table 11.3 The geometrical dimensions, loading conditions and FE results for grade B material 

FE P D/t t Li r BID d O'h O'a O'e 
No (MPa) (mm) (mm) (mm) (%1 (mm) (MPa) (MPa) (MPa) 

FE36 0 72 12.7 20 12.7 '0.5 0.11 318.9 244.9 289.2 
FE37 0 72 12.7 20 12.7 1.0 1.13 541.9 417.4 491.7 
FE38 0 72 12.7 20 12.7 1.5 3.06 640.6 509.4 586.1 
FE39 0 72 12.7 20 12.7 2.0 5.7 721.4 561 656.2 
FE40 0 72 12.7 20 12.7 2.5 8.79 803.3 592.9 721.8 
FE41 0 72 12.7 20 12.7 3. 12.17 817.6 547.9 722.6 
FE42 0 72 12.7 20 12.7 3.5 15.6 645.7 414.8 568.1 

FE43 0 72 12.7 20 12.7 4.0 18.99 515.6 275.2 447.2 
FE44 5.12 72 12.7 20 12.7 0.5 0.68 517.1 412 473.4 
FE45 5.12 72 12.7 20 12.7 0.75 1.65 613.9 508.2 568.5 
FE46 5.12 72 12.7 20 12.7 1.0 2.85 682.7 571.2 634.5 
FE47 5.12 72 12.7 20 12.7 1.25 4.2 751.2 635.8 701 

FE48 5.12 72 12.7 20 12.7 1.5 5.64 808.6 705.6 762.6 
FE49 5.12 72 12.7 20 12.7 1.75 7.15 860.2 759.3 814.6 
FE50 5.12 72 12.7 20 12.7 2.0 8.73 904.5 796.4 855.7 
FE51 0 72 12.7 20 12.7 0.25 0.001 24.85 16.45 21.89 
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Table 11.4 The geometrical dimensions, loading conditions and FE results for X65 material 

FE P D/t t Li r olD d crh cra cre 
No (MPa) (nun) (mm) (mm) (%) (mm) (MPa) (MPa) (MPa) 

FE52 0 72 12.7 20 12.7 0.5 0.09 471.8 365.2 428.8 
FE53 0 72 12.7 20 12.7 l.0 1.18 717.8 567.6 655.8 
FE 54 0 72 12.7 20 12.7 l.5 3.25 816 664.6 751.9 
FE55 0 72 12.7 20 12.7 2.0 6.03 895.6 737.2 828.2 
FE56 0 72 12.7 20 12.7 2.5 9.26 953.6 783.3 881.2 
FE57 0 72 12.7 20 12.7 3.0 12.72 970.6 818.7 893.9 
FE58 0 72 12.7 20 12.7 3.5 16.28 966.8 797.9 894.7 
FE59 0 72 12.7 20 12.7 4.0 19.68 787.6 669.9 737.8 
FE60 l.28 72 12.7 20 12.7 1 1.77 767.8 624.6 707.2 
FE61 2.56 72 12.7 20 12.7 1 2.17 799.5 660.3 739.8 
FE62 3.84 72 12.7 20 12.7 1 2.47 816.6 684.7 759.5 
FE63 5.12 72 12.7 20 12.7 1 2.68 830.1 711.6 778 
FE64 6.4 72 12.7 20 12.7 1 2.84 837.2 735.4 791.7 
FE65 7.68 72 12.7 20 12.7 1 2.96 841.7 752.5 801.4 
FE66 9.80 72 12.7 20 12.7 1 3.05 845.1 766.7 809.4 
FE67 l.28 72 12.7 20 12.7 2 7.44 947.5 789.8 879.7 
FE68 2.56 72 12.7 20 12.7 2 8.15 956.8 814.5 894.4 
FE69 3.84 72 12.7 20 12.7 2 8.56 947.3 830 894.5 
FE70 5.12 72 12.7 20 12.7 2 8.79 933.3 850.1 894.6 
FE71 6.4 72 12.7 20 12.7 2 8.93 915.8 872.6 895.2 
FE72 7.68 72 12.7 20 12.7 2 8.97 896.6 892.1 895.1 
FE73 9.80 72 12.7 20 12.7 2 8.91 879.6 908.5 895.4 
FE74 3.84 72 12.7 20 12.7 0.25 0.02 370.5 267.4 331.3 
FE75 3.84 72 12.7 20 12.7 0.5 0.44 657.2 521.8 601.1 
FE76 3.84 72 12.7 20 12.7 0.75 2.47 816.6 684.7 759.5 
FE77 3.84 72 12.7 20 12.7 1.0 3.84 874.5 751.4 820.4 
FE78 3.84 72 12.7 20 12.7 1.25 5.32 928.7 794.9 870 
FE79 3.84 72 12.7 20 12.7 l.5 6.91 953 815.4 892.5 
FE80 3.84 72 12.7 20 12.7 1.75 10.31 934.5 850.3 895.6 
FE81 3.84 72 12.7 20 12.7 2.0 12.12 912.3 867.4 892.1 
FE82 5.12 72 12.7 20 12.7 0.25 0.06 496.8 378.1 449.7 

FE83 5.12 72 12.7 20 12.7 0.5 0.62 681.3 549.3 625.8 

FE84 5.12 72 12.7 20 12.7 0.75 2.84 837.2 735.4 791.7 

FE85 5.12 72 12.7 20 12.7 1.0 4.22 900.4 800.6 855.4 

FE86 5.12 72 12.7 20 12.7 1.25 5.69 927.4 832.1 884 

FE87 5.12 72 12.7 20 12.7 1.5 7.26 932.5 849.1 893.7 
FE88 5.12 72 12.7 20 12.7 1.75 10.67 877.7 907 894.2 

FE89 5.12 72 12.7 20 12.7 2.0 12.42 825.3 825.1 827.9 
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11.5 FE Re uIt 

11.5.1 Residual tres Distribution on Pipe Surface 

In chapter 9 it is hown that ten ile residual stre e occur on th outer urfac s of pip In 

the vicinity of the dent and that compressive re idual 

F analy es FE I and FE2 the re idual hoop and axial 

s occur on th inn r urfac . Fr 111 

n th f 

the pipe made from material X52 were obtained and the ar sh wn in ig 11 .2 ( ) t (d). 
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~ 300 
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Fig.ll.2 (a) Re idual hoop tre again t axial po ition on the pI n of ymm try AB (Fig. lt . l ) 

for two dent depths (8=0.005 and O.OlD). 
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(Fig.II.l), for two dent depths (8=0.005 and 0.01 D). 
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(Fig. I I. I) for two dent d pth (8=0.005 and 0.0 ID). 

From Fig. 11.2(a) and .(b), it can be seen that the r idual r g n rally very high in 

the dent region and that the p aks in the str di tribution ar v ry h rp. w y fr m th d nt 

region th re idual tr e r duce rapidly and r ach Ie I cl to th whi h app ar in p rtl t 

pipe a ociated with th internal pre ure. From Fig. 11.2 (c) and (d), it an b n that th 

peak value of the r idual hoop and axial tres di tribution n th ur t th 

centre of the dent region (i.e. on the plane of ymmetry). ar ful inv tigati n of all 

di tribution indicate that the maximum re idual tre e h op and v n Mi 

tre es) in the pipe occur at the po ition corre ponding to th dge f c nta t f th ind nt r in 

the axial direction. This is the mo t likely failure position du to fatigu of th indented pipe and 

therefore it ha been the ubject of an experimental inv tigati n [16 17]. idenc in [1 , 

17] also how that in the contact between a punch and a foundati n th rea h 

the maximum value at the end of contact of the indenter with th £ und ti n. in thi 

chapter, all of the re idual tres re ult were obtain d fr m th 

indented pipe u ing the F analy e . 
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11.5.2 Variations of Peak Residual Stresses with Pipe and Indenter 

Geometry, Pressure and Residual Dent Depth 

11.5.2.1 Variation of Peak Residual Stresses with Dent Depth 

The variations of peak residual stresses with residual dent depth, obtained from the FE 

analyses, at a position near the end of axial contact of the indenter, for the three materials, are 

shown in Figs. 11.3 (a) to (g). The results shown in Figs. 11.3 (a) to (c) were obtained for an 

unpressurised pipe. In this case, it can be seen that the residual stresses (hoop, axial and von 

Mises) initially increase with increasing residual dent depths, but at a dent depth of about 10mm 

the residual stresses reach peak values and then reduce with further increase in residual dent 

depth. This is because the plastic deformation zone and contact area both increase. The residual 

stresses in the pipes redistribute in response to the increase in plastic and contact areas resulting 

in lower peak residual stresses for the high residual dent depths. 

From Figs. 11.3 (d) to (g), it can be seen that for pressurised pipes, the relationship between 

the residual stresses and the residual dent depths are similar to those obtained for unpressurised 

pipes, but the residual stresses for pressurised pipes are higher. Figs. 11.3 (d) to (g) also indicate 

that variation of residual stress with residual dent depth is not highly sensitive to the material 

properties but that it is sensitive to the internal pressure and to the residual dent depth. 

From Table 11.1 and Figs. 11.3 (a) to (g), it can be seen that the peak values of either the 

residual hoop stresses or the residual von Mises stresses, obtained from the FE analyses, for the 

pipes made from the three materials, X52, X65 and grade B, are much higher than the ultimate 

engineering tensile stresses. This is because the maximum stress value of the true stress versus 

strain curves shown in Fig.8.1 is much higher than that of the corresponding ultimate tensile 

stress. Also since the von Mises yield criterion was used in the FE analyses, some stress 

components, e.g. the hoop stress, may be higher than the corresponding von Mises stress whose 

maximum value is the same as that of true stresses on Fig.S.I when the residual dent depth 

reaches a certain level. This is why sometimes the hoop stress is higher than IOOOMPa. 

However, the relationship of the von Mises and equivalent strain obtained from the FE analyses 

must be consistent with that of the true stress and the plastic strain obtained from tensile tests. 
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Fig. 11.3 (d) Re idual tre es with re idual dent depth for the pipe with 52 material and 

internal pre ure p=5.12 MPa obtained from FE analy e F II to F l . 

202 



1200 -ro 
~ 1000 -
'--" 

~ 800 -
(/) 
(/) 

~ 600 ....... 
(/) 

ro 400 -
::l 

l:J 

.~ 200 
a:: 

O -r­

o 

r 

-
-+--Hoop 

-o-Axia/ 

-tr- \,On Mises 

5 10 

Residual dent depth (mm) 

Fig. 11.3 (e) Re idual tre es with residual dent depth for the pipe with grad B lin pIpe 

material and internal pressure p=5.12 MPa obtained from F analy F 44 t F 5 . 

1200 
....-

1000 ro 
a.. 
~ 
'--" 800 (/) 
(j) 

--+- FE hoop I Cl) 
~ 600 ....... 

--0- FE axial (j) 

CO -+-- FEvon Mses 
::l 400 l:J 

.(j) 
Cl) 

200 -a:: 

o ,- -----r---

o 5 10 

Residual dent depth (mm) 

Fig. 11.3 Cf) Re idual stresses with residual dent depth for the pip with X65 mat ri al nd 

internal pressure p=3.84 MPa obtained from FE analy e 74 to 1. 

203 



.- 1000 
ro 

0.. 
~ 800 --C/) 
Q) 

600 C/) 
C/) 
Q) 
~ ...... 
C/) 400 
cu 
:::J 

"'0 200 'w 
Q) 

~ 
0 --r- -

0 

r --.-Hoop 

[ ~AXial 
-tr- \,()n Mises 

5 10 

Residual dent depth (mm) 

15 
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11.5.2.2 Variation of Peak Residual Stresses with Internal Pre ure 

The effect of internal pre ure on the re idual tre e h b n In ti g t d in tw way . 

Fir tly, the internal pre sure i applied after indentation. The r ult h wn in ig. l1.4 ( ) w r 

obtained from F analy i FE4 for an unpre uri d pipe with X52 mat rial , whi h wind nt d 

and then ubjected to an increa ing internal pre ure. rOIn Fig. 11.4 ( ), it can b n that th 

effect of the incr a ing internal pre ure i almost n g] igibl . In th ond 

pipes mad from X65 SAW material and with different int rn I pre ur 

w re indented by a con tant dent depth of9.144nlm (1 0/0 of D) or 1.2 mm). 

(b) and (c) , it can be een that the re idual tre e mcrea th 

Thi i due to the fact that the pipe become tiffer a th int rnal pr 

greater fore ar required to produc the am d nt d pth. 
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11.5.2.3 Variation of Peak Residual Stresses with Indenter Radius 

The effect of the indenter radiu on the re idual tf e wa inve tigat d u in an Iy 

F 17 to FE24 for which the applied dent depth i 18.3mm (2% f ) £ r unpr un d pip with 

material XS2. These pip w re indent d by ind nt r with n axi I I ngth f 2 mm nd 

different radii. The variations of re idual stre es with ind nt r radiu 

which indicate that the re idual stre e reduce a the radiu incr a e . 
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Fig. ll.5Re idual stre with indenter' radiu for an re suri d I ip with 52 m t ri'l 

obtained from the FE analy e (FE17 to F 24). 

11.5.2.4 Variation of Peak Residual Stresses with Indenter Axial Length 

The effects of the axial length of the indenter were inve tigated u i ng an Iy 25 t 

FE31 for unpres uri sed X52 pipes; indentations of depth of 18.3mm (20/00) w r u 

indenter axial length was varied from a to 180mn1. The re ults obtain d from th 

are hown in Fig. 11.6. It can be een from Fig. 11.6 that th highe t r idu 1 tl' ur 

the axial length approache zero and that the re idual tre e reduc with incl' a jng axi I 1 ngth 

until the half axial length reaches 50mm after which the re idu 1 tr hav on t nt v lu . 

Hence, if the indenter' axial length is larger than 100mnl the ff! ct of th axi I I ngth n th 

residual stre es is negligible. 
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Fig. 11.6 Residual tress with indenter's axial length for an r un d pip with 52 mat ria l 

obtained from the FE analy e ( 25 to 1). 

11.5.2.5 Variation of Peak Residual Stresses with Wall Thickne 

The effect of the pipe wall thickne on the re idual tr w inv ti gat d u ing th 

analy e FE32 to FE35 obtained from the X52 pip mat rial with an int rnal PI' 

MPa. Th wall thi kne S of these pipe vade from 12.7 to 26mm. h r idual tre wn 

in Fig. 1l.7, indicate that the pipe wall thickne S ha a negligible ffect n th r idu 

However, previou Iy hown re ults in Fig.8.6 in chapter 8, hav hown that th w 11 th i kn 

an affect on the tre s ranges cau ed by internal pre ure f1uctuati n . h tr r ng 

with increa ing wall thickne for a given pre ure fluctuation. 
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11.6 Empirical Formulations for Residual Stress Prediction 

Using the results of the FE analy es and curve fitting technique , it ha b n p ibl t 

derive empirical formu lations for predicting the re idual h p, v n Mi 

maximum stre concentration po itions on the outer pipe urfac . Th 

nd xial tr 

in Iud th f 

the residual dent depth internal pre ure, indenter radiu nd ax i I 1 ngth nd th mat ri I 

properti s. The equation are a fo11ows: 

- 4.3 15 r 
gh = O.7943+0.2324e R ( I 1. 2) 

fh = (1. - 11 8. 726 ~ + 1 OS\ ~ n 
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[ 

n-l 1 -109.529~ny·5(LX(i,.) 1 
. _. n 8,. n uf R 

uaxlOl-gaxlOl (l.luf) (Elf) +36Pe faxial 

( 
-8.52~X -7.482L J gaxial = 0.903+ 0.1 427e 0.6397+ 0.445-! R, 

fOXial=( 1-20.49~ +260( ~ fJ 
(l1.3 ) 

ue=ge (l.330-f) " (E ~)" +36Pe CTf . R fe 
[ 

n-l 8 1 -318.40~n)1.5(LXO,,) 1 

ge =0.7631+0.2732e -5.05j (11.4) 

fe =( ~ -96.9~ + 72S( ~ )2J 

where the flow stress, Of, is defined as the average of the yield stress and engineering ultimate 

tensile stress. 

The results obtained from the FE analyses FE3 to FE89 and from the empirical formulae 

(11.2) to (11.4) are shown and compared in Figs. I 1.8 (a) to (q). 
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From Fig .11. a t q) it can be seen that the prediction ba ed on th mpiric I 

formulation correlate well with the re ults obtained from the FE analy e over th va t range f 

the parameter for which the data was obtained. However, Fig. II.8(m) to ( ) h w:fl r int rn J 

pres ure of 6.4MPa and mat rial X65 (with a material hardening expon nt of 7.5 ) that wh n th 

re idual dent depth i than lmm the predictions of the empiri cal formu lati n may b 4 0/0 

higher than the re ul obtained from the FE analyse for orne data. Thi indicat that wh n th 

re idual d nt depth i very mall and the internal pre ure i high, the predicti n b ed on th 

empirical formulati n m y diff; r ignificantly from tho e obtain d fr m th F analy .nd 

that there may b an 0 r timate of the residual stresses for the material with high hard ning 

exponent i.e. 7.56 . 

From ig. 11. (a to ) it can be seen that accurate residual tr ss pr dicti n 

obtained for I rge r idual dent depth i.e. more than lOmm (;::::1 %D) , but the e pr dicti n are 

les accurate for pip d form d by small indenters, i.e. D/r ratio = 72 a in th pr nt 

inve tigation. t high pre ur and with small indenter, pipes may b punctured b :fI r a 

re idual dent d pth f 1 % f D i achieved. However, for large indenter i.e. DI - 10th pipe 

may be ind nt d to r lati ely I rge d pth without being punctured, becau e a very large ar a f 
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the pipe may undergo a plastic deformation which results in lower peaks in the values of the 

residual stresses. 

From Figs. 11.8 (P) and (q), it can be seen that the empirical formulations can reasonably 

accurately represent the effects of the indenter radius and axial length on the residual stresses. 

However, Fig. 11.8 (q) shows that when the indenter axial length is nearly zero, the differences 

between the predictions obtained from the empirical formulations and the FE analyses are 

relatively large, but less than 15%. 

11.7 Discussion 

From the deformed shapes of the pipes and the outer surface residual stress distributions (see 

Figs. 11.2(a) to (e» it can be seen that the maximum residual tensile stresses occur at very 

localised positions on the plane of symmetry when the residual dent depth is small, i.e. SID < 

0.01. Hence, the residual stresses at this position on the indented pipe are the most important in 

relation to the determination of remaining life, which could be relatively short if the pressure 

fluctuation ranges are large. However, when the residual dent depth is large, the zone of 

plasticity in the pipe is larger and the peak values of the residual stresses reduce as a result of 

stress redistribution associated with the large deformation. 

The FE analyses performed on the unpressurised and pressurised pipes all show that the 

residual stresses are particularly sensitive to the residual dent depth, especially when the indenter 

radius is small. The effects of the internal pressure on the residual stresses are of concern under 

two conditions. The first condition is that of an indentation caused with zero internal pressure 

and the internal pressure increases to the operating condition after the indentation has occurred. 

In this case, the residual stresses remain almost constant during the application of the internal 

pressure. The second condition is that of the internal pressure being applied before an 

indentation is created. In this case, the effect of the internal pressure levels when the indentation 

occurs, on the residual stresses is non-linear and is dependent on the residual dent depth. In this 

case, the effects of the internal pressure on the residual stresses are significant. 

The effects of the indenter size (radius and axial length) on the residual stresses were also 

investigated here. The results show that the indenter radius has an effect on the residual stresses 

and that the residual stresses increase as the indenter radius reduces, for the same residual dent 

depth. The indenter axial length is found to affect the residual stresses at the same applied dent 
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depth but not to affect the residual hoop and von Mises stresses at the same residual dent depth; 

see the empirical fonnulations (11.2) to (11.4). 

The effects of the material properties on the residual stresses were investigated. For three 

typical pipe materials used, the residual stress distribution patterns are similar to one another. 

All of the FE analyses were perfonned with an angular support position of 45°. For localised 

indentations, with small residual dent depths, it is not expected that the angular support position 

will have a significant effect on the residual stresses. However, if the residual dent depth is large, 

then the defonnations may be more widespread and hence the angular support positions are likely 

to have a larger effect on the residual stresses. This is in contrast to previous results in chapter 8 

for long two dimensional indentations in pipes, for which it was found that the angular support 

position does have an effect on the residual stresses and on the indenter force versus dent depth 

behaviour. 

The empirical formulations (I 1.2) to (11.4) were developed in order to be able to predict the 

residual stresses for other materials and for other loading conditions, without the need for 

performing further FE analyses. From Figs. 11.8 (a) to (q), it can be seen that the empirical 

formulations are able to accurately predict the residual stresses. For pipes made from material 

grade B, an internal pressure of 5.12 MPa, which produces mean hoop stresses of 0.624 times 

yield stress, the residual stresses obtained from the empirical fonnulations (11.2) to (11.4) are in 

very good agreement with those obtained from the FE analyses. For unpressurised pipes made 

from X52 or X65 SAW material, the residual stresses obtained from the empirical formulations 

are also very close to those obtained from the FE analyses. For the pipes made from material 

X52, with an internal pressure of 5.12 MPa, which produces mean hoop stresses of 0.50 times 

yield stress, close correlation of the residual stresses obtained from the FE analyses and the 

empirical formulations were also obtained. These results show that even when the internal 

pressure is high (e.g. producing a mean hoop stress of 0.624 times yield stress), the empirical 

formulations are capable of accurately predicting the residual stresses, for the pipes with 

materials having relatively low hardening exponents, i.e. n~.5. 

For the pipes made from material X65 SAW, with an internal pressure of 3.84 MPa, which 

produces a mean hoop stress of 0.3 times yield stress, the residual stresses obtained from the 

empirical formulations are in good agreement with those obtained from the FE analyses. 

However, at an internal pressure of 6.4 MPa, which produces a mean hoop stress of over 0.5 
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times yield stress, the residual stresses obtained from the empirical formulations for d/D<O.1 are 

about 40% higher than those obtained from the FE analyses. This indicates that the empirical 

formulations are not capable of giving good predictions of the residual stresses for pipes with 

high pressure (producing a mean hoop stress of 0.5 times yield stress) and with a relatively high 

hardening exponent, i.e. n=7.56. 

The investigations of the effects of the indenter size, including radius and axial length, on the 

residual stresses indicate that the empirical formulations are able to predict, with reasonable 

accuracy, the effects of the indenter size. 

F or all three materials, and the pressure levels investigated here, it was found that the 

empirical formulations were not able to predict the residual stress decrease which occurs due to 

the large scale plastic deformation resulting from the large applied dent depths. All of the results 

shown in Figs.l1.8 (a) to (0) indicate that as the olD ratios exceed 0.01, the residual stresses 

begin to reduce with increase of the residual dent depth and that the empirical formulations fail to 

predict the phenomenon. Therefore, the empirical formulations should only be used for 

olD<O.OI, for pipes with low hardening exponent, i.e. n<5, and for pipes with high hardening 

exponents, i.e. n>7.56 and low pressure, which may produce a mean hoop stress in a perfect pipe 

of less than 0.4 cry. 

11.8 Summary 

A comprehensive elastic-plastic FE analyses of residual stresses caused by localised pipe 

indentations is presented. The effects of residual dent depth, internal pressure, indenter size and 

material properties have been studied. Empirical formulae are developed to predict the residual 

stresses for other pipe materials and parameters. It has been shown that empirical formulations 

can accurately predict the residual stresses for pipe materials with a low hardening exponent and 

for pipe materials with a high hardening exponent and low pressures. 
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Chapter 12 

Predictio~s of Stress Variations in Indented Pipes 
due to Internal Pressure Fluctuations 

12.1 Introduction 

In chapter II it has been shown that the residual stress is dependent upon the residual dent 

depth and the internal pressure in the pipe at the time at which the dent was created; the 

indenter geometry, pipe geometry and material properties are also important factors. By 

inspection of a dent found during inspection, the shape of the indenter which caused the dent 

can be detennined and also the material and pipe geometry will be known. The dent depth 

can be measured with whatever pressure exists within the pipe at the time of measuring. 

Therefore, if the current pressure is different from the pressure at the time at which the dent 

was created, a correction to the measured dent depth to obtain the dent depth for the pressure 

at which it was created is required. Therefore, if a relationship between the change of dent 

depth, L\o, and change of pressure, Llp, can be established, then the residual stress at the time 

of the indentation can be obtained. If the change of stresses, Llcr, due to the change of 

pressure, L\p, can also be obtained, then this data (residual stresses and stress changes) can be 

used to perform a fatigue assessment. The variations of stresses and dent depths due to 

internal pressure fluctuation are investigated in this chapter. 

12.2 Material Properties 

Two typical pipe materials were used in the FE study. They are grade X52, seamless line 

pipe material, and a 32 inch thick wall, grade X65 SAW, line pipe material. The uniaxial true 

stress versus true strain curves are shown in Fig.8.1. The relevant material properties for 

these two materials are given in Table 8.1. Some analyses were also performed using an 

elastic material behaviour model with a Young's modulus of 180GPa. 

In the FE analyses, all materials were assumed to obey an isotropic hardening rule. Since 

engineering stresses are generally defined as F IS, whereas F is the initial force applied to a 

uniaxial tensile specimen and S is the initial cross-section area of the specimen, then the peak 

value of the engineering stress (commonly referred to as the ultimate tensile stress) is lower 
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than the stress obtained from a true stress versus strain curve. Hence, the true stresses in 

Fig.S.1 are significantly higher than the true tensile stresses. 

12.3 Geometry, Loading and Boundary Conditions 

All of geometry, loading and boundary conditions used in this chapter are the same as 

used in chapter 11, see Figs. 4.1 and 11.1. 

12.4 FE Meshes 

Due to the symmetry of the geometry and loading, it is only necessary to model a quarter 

of a pipe in the FE analyses, a typical mesh is shown in Fig. 9.7, generated with 4-node, 

doubly-curved, quadrilateral shell elements and 3-node, triangular shell elements, with 

reduced integration. Fine meshes were used for the dent region and coarser meshes were 

used elsewhere. Seventy four FE analyses were performed, the details of the analyses are 

given in Tables 12.1 to 12.6 and all of the results were taken at the edge of contact of the 

indenter, where the maximum residual stresses occurred [chapter II]. For all of the non­

linear, elastic-plastic analyses, large deformation and large strain effects were incorporated in 

order to obtain the stress variations within the indented pipes. In addition, some linearly 

elastic analyses were also performed on the imperfect pipes. 

Table 12.1: The Geometry and loading conditions used in the FE analyses, and the residual 

dent depth and normalised stress variation results obtained for the pipes with X52 material, 

with an indenter radius of 12. 7mm and length 20mm. 

FE No Olt t 0 P ilp Or Acrh Acra Acre 
(mm) (% of 0) (MPa) (MPa) (mm) IA~ lAp lAp 

FEI 72 12.7 1. 0 0 1.2 0 0 0 
FE2 72 12.7 1.5 0 0 3.28 0 0 0 
FE3 72 12.7 2. 0 0 6.04 0 0 0 
FE4 72 12.7 2.5 0 0 9.22 0 0 0 
FE5 72 12.7 0.5 3.84 1.28 0.6 39.53 11.72 29.38 
FE6 72 12.7 0.75 3.84 1.28 1.55 49.84 17.66 37.03 
FE7 72 12.7 1.0 3.84 1.28 2.74 61.41 24.38 46.56 
FES 72 12.7 1.25 3.84 1.28 4.1 73.75 29.06 55.31 
FE9 72 12.7 1.5 3.84 1.28 5.54 80.78 34.69 61.56 

FEI0 72 12.7 1.75 3.84 1.28 7.1 87.03 38.59 66.72 
FEll 72 12.7 2.0 3.84 1.28 8.73 92.34 41.72 70.94 
FE12 65.3 14 1.0 5.12 1.28 2.71 53.13 20.78 40 
FEl3 57.2 16 1.0 5.12 1.28 2.67 43.91 16.72 33.13 
FEl4 50.8 18 1.0 5.12 1.28 2.67 37.66 14.06 28.13 
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FE15 45.7 20 1.0 5.12 1.28 2.7 32.97 12.03 24.53 
FE16 41.5 22 1.0 5.12 1.28 2.75 29.37 10.62 21.72 
FE17 36.6 25 1.0 5.12 1.28 2.87 25.63 9.06 18.75 
FE18 30.5 30 1.0 5.12 1.28 3.09 20.78 7.66 15.31 
FE19 26.1 35 1.0 5.12 1.28 3.31 17.81 6.56 12.81 
FE20 22.8 40 1.0 5.12 1.28 3.51 15.16 5.62 11.25 

Table 12.2: The Geometry and loading conditions used in the FE analyses, and the residual 

dent depth and nonnalised stress variation results obtained for the pipes with X65 material, 

with an indenter radius of 12. 7mm and length 20mm. 

FE No Olt T 0 P Ap Or L\crh L\cra Acre 
(mm) (% of 0) (MPa) (MPa) (mm) IL\p IL\p IL\p 

FE21 72 12.7 0.25 6.4 0.64 0.06 36.52 12.94 27.93 
FE22 72 12.7 0.5 6.4 0.64 0.62 39.84 13.91 29.49 
FE23 72 12.7 0.75 6.4 0.64 1.6 50.78 17.77 37.5 
FE24 72 12.7 1.0 6.4 0.64 2.84 62.11 21.88 45.31 
FE25 72 12.7 1.25 6.4 0.64 4.22 74.02 27.69 55.08 
FE26 72 12.7 1.5 6.4 0.64 5.69 82.03 34.16 61.72 
FE27 72 12.7 1.75 6.4 0.64 7.26 89.45 38.87 66.99 
FE28 72 12.7 2.0 6.4 0.64 8.93 95.31 42.38 70.12 

FE29 72 12.7 2.25 6.4 0.64 10.67 104.3 47.85 73.44 

FE30 72 12.7 2.50 6.4 0.64 12.42 113.87 55.27 83.4 
FE31 69.3 13.2 2.0 6.4 0.64 8.92 91.02 40.62 67.19 
FE32 66.7 13.7 2.0 6.4 0.64 8.93 86.33 37.89 64.06 
FE33 64.4 14.2 2.0 6.4 0.64 8.94 82.03 35.74 60.94 

FE34 62.2 14.7 2.0 6.4 0.64 8.96 77.93 33.98 58.01 

FE35 57.2 16 2.0 6.4 0.64 9.1 69.92 28.52 51.17 

FE36 50.8 18 2.0 6.4 0.64 9.23 58.98 24.22 43.36 
FE37 41.5 22 2.0 6.4 0.64 9.48 44.92 18.36 32.81 

Table 12.3: The Geometry and loading conditions used in the FE analyses, and the residual 

dent depth and nonnalised stress variation results obtained for the pipes with X65 material, 

with a pressure of 6.4MPa and a pressure range of 0.64MPa. 

FE No Olt t 0 r L Or L\crh L\cra Acre 
(mm) (% of 0) (mm) (mm) (mm) lAp lAp lAp 

FE38 72 12.7 2.0 16 20.0 8.9 94.7 44.5 73.0 

FE39 72 12.7 2.0 20 20.0 8.8 93.2 43.0 74.8 

FE40 72 12.7 2.0 24 20.0 8.7 93.0 42.4 76.8 
FE41 72 12.7 2.0 28 20.0 8.6 92.8 42.0 77.3 
FE42 72 12.7 2.0 36 20.0 8.5 92.8 41.6 78.3 
FE43 72 12.7 2.0 40 20.0 8.4 93.0 41.4 78.5 

FE44 72 12.7 2.0 50 20.0 8.3 93.0 41.4 78.7 
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FE45 72 12.7 2.0 60 20.0 8.1 93.2 41.2 78.9 
FE46 72 12.7 2.0 70 20.0 8.0 93.2 41.4 78.7 
FE47 72 12.7 2.0 80 20.0 7.9 93.4 41.4 78.7 
FE48 72 12.7 2.0 90 20.0 7.7 93.4 41.4 78.7 
FE49 72 12.7 2.0 100 20.0 7.6 93.4 41.4 78.5 
FE50 72 12.7 2.0 110 20.0 7.5 93.4 41.6 78.3 
FE51 72 12.7 2.0 12.7 0 10.4 81.5 42.0 70.5 
FE52 72 12.7 2.0 12.7 8 10.1 87.5 44.3 75.8 
FE53 72 12.7 2.0 12.7 20 8.9 95.3 42.4 82.7 
FE54 72 12.7 2.0 12.7 30 8.4 97.5 42.6 84.6 
FE55 72 12.7 2.0 12.7 40 7.9 98.4 42.2 85.5 
FE56 72 12.7 2.0 12.7 50 7.4 97.3 41.2 84.6 
FE57 72 12.7 2.0 12.7 80 6.4 96.7 39.5 84.2 
FE58 72 12.7 2.0 12.7 100 5.8 94.5 37.5 82.4 
FE59 72 12.7 2.0 12.7 140 5.8 94.5 37.7 82.4 

Table 12.4: The Geometry and loading conditions used in the FE analyses for the situations 

with a pressure increase after indentation occurred and for the pipes with X52 material, with 

an indenter radius of 12.7mm and length 20mm. 

FE No D/t t 5 Po PI P2 P3 P4 ps 
(mm) (0/0 of D) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

FE60 72 12.7 1 0 1.28 2.56 3.84 5.12 6.4 
FE61 72 12.7 1.5 0 1.28 2.56 3.84 5.12 6.4 
FE62 72 12.7 2 0 1.28 2.56 3.84 5.12 6.4 
FE63 72 12.7 3 0 1.28 2.56 3.84 5.12 6.4 
FE64 72 12.7 1 5.12 5.76 6.4 7.04 7.68 
FE65 72 12.7 2 5.12 5.76 6.4 7.04 7.68 
FE66 72 12.7 3 5.12 5.76 6.4 7.04 7.68 
FE67 41.5 22 2 0 1.28 2.56 3.84 5.12 
FE68 22.86 40 2 0 1.28 2.56 3.84 5.12 

Table 12.5: The Geometry and loading conditions used in FE analyses for the case of a 

pressure increase after indentation has occurred and for the pipes with X65 SAW material, 

with an indenter radius of 12. 7mm and length 20mm. 

FE No Dlt t 5 Po PI P2 P3 P4 ps 
(mm) (% of D) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

FE69 72 12.7 1 0 1.28 2.56 3.84 5.12 6.4 
FE70 72 12.7 1.5 0 1.28 2.56 3.84 5.12 6.4 
FE71 72 12.7 2 0 1.28 2.56 3.84 5.12 6.4 
FE72 72 12.7 3 0 1.28 2.56 3.84 5.12 6.4 
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Table 12.6: The Geometry and loading conditions used in FE analyses for the case of a 

pressure increase after indentation has occurred and for the pipes with X52 material, D/t=72 

and t=12.7mm. 

FE No R L 0 po PI P2 P3 P4 
(mm) (mm) (% of D) (MPa) (MPa) (MPa) (MPa) (MPa) 

FE73 50 20 2 0 1.28 2.56 3.84 5.12 
FE74 12.7 80 2. 0 1.28 2.56 3.84 5.12 

12.5 FE Results 

12.5.1 The effect of Residual Dent Depth on the Stress Variations 

due to pressure variations 

The variations of stress in the indented pipes, due to internal pressure fluctuations, were 

investigated using the result of FE analyses FE5 to FEll and FE21 to FE30. For the 

pressurised pipes made from the X52 material, with an initial pressure, p, of 3.84MPa and an 

internal pressure range, ~p, of 1.28MPa, i.e. the internal pressure was reduced to 2.56MPa 

after indentation, the stress variations were normalised by dividing them by the internal 

pressure range, ~p. The dependence of the normalised stress variations versus the residual 

dent depth can be seen from Fig. 12.1 (a). Similarly, for the pressurised pipes made from 

X65 material and an initial internal pressure, p, of 6.4MPa and a pressure range, L\p, of 

O.64MPa, the normalised stress variations on residual dent depth curves are shown in Fig. 

12.1 (b). From Figs. 12.1 (a) and (b) it can be seen that the normalised stress (hoop, axial and 

von Mises) variations increase as the residual dent depth increases. It can also be seen that 

the normalised stress variations obtained are related to the residual dent depth but appear to be 

only weakly dependent upon the material properties and on the internal pressure ampl itude 

and range. This is because the pipe undergoes an elastic springback process as the internal 

pressure is reduced. 
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Fig. 12.1 (a) Variation of n rmali d tre chang v r u r idu I d nt d pth ur 

obtained fr m the pipe with X52 material £ r It=72 t=12.7mm - 12.7mm =2 mm 

p=3. 4MP and p= 1.2 MP . 
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Fig. 12.1 (b) Variation of nOlmal i ed tre chang v r u r idu I dent d pth ur 

obtained from the pip s with X65 material for Dlt=72 t=12.7mm, - 12.7mm, L=2 mm, 

p=6.4MPa and p=O.64MPa. 

22 



12.5.2 The effect of Wall Thickness on the Stress Variations which 

occur due to pressure variations 

Th effects of the pipe wall thickness on the tre s variation which occur due to pr ure 

variation were investigated u ing the results of FE analyse FE 12 to F 20 and F 31 to F 37, 

performed on pipes with X52 and X65 SAW steels. For the pipe with X52 material the 

initially applied internal pre ure and the subsequent pr ure range are 5.12MPa and 

1.28MPa, resp ctively' the applied dent depth is O.OID. The normali d tr variation 

versus the wall thickne ,t curve are shown in Fig. ] 2.2 (a). F r th pip with X65 

material, the initially applied internal pre ure and the ubsequent pr ure range ar 6.4MPa 

and 0.64MPa re pectively' the applied dent depth i O.02D. The normal1 d tr v ri ti n 

ver u the wall thickne , t, curves, obtained from the X65 material pip ar hown in Fi . 

12.2 (b). From the Fig. 12.2 (a) and (b), it can be seen that the tr variation reduc a 

the wall thickne increa es. 

a. 

70 

60 

50 

<J 40 -b 
<J 

o 

-e- FE hoop 
___ FE axial 

12.7 22.7 32.7 

Pipe wall-thickness (mm) 

Fig. 12.2 (a Variation of norma Ii ed stress change versu wall thickn s curve obtain d 

from the pipes with X52 material for - 12.7mm L=20mm, 8=O.O lD, p=3. 4MPa nd 

p= I .28MPa. 

229 



Cl. 

<J -b 
<J 

120 

100 

80 -

60 

FE Hoop 

--tI- FE Axial 

-+- FE von Mises 

40~ 
20 ~--~------__ _ 

o Ti ----,----,-------,-

12.7 14.7 16.7 18.7 20.7 

Pipe wall-thickness (mm) 

Fig. 12.2 (b) Variations of normali ed tre s chang ver u w 1I th i kn ur 

btained from the pipes with X65 material fI r r=12.7mm L=2 mm = . 2 p= .4MP 

and p=0.64MP. 

12.5.3 The effect of Indenter Size on the Stre Variation which 

occur due to pressure variations 

The ffect of the indenter ize (including the radiu and the xi I 1 ngth) n th tr 

variation w re inve tigated using the re ults of the 5 p -r~ rm d n 

the X65 pipe with an initially applied internal pr p, of 6.4MP , p, 

of O.64MPa, and an applied dent d pth, 8, of O.02D. Th tr In nt r 

radiu curve, obtained for an indenter with an axial I ngth of 2 mm, r i . 12. 

(a). The tre variation ver u the indenter axial I ngth , obt ined for n ind nt r with 

radiu of 12.7mm are hown in Fig. 12.3 (b). rom Fig. 12.3 ( ), it c n b 

indenter radiu ha a relativ Iy mall effect on the tr variation. Fi . 12.3 (b h w that 

the indenter axial length may have a ignificant eft! ct on th h P and n M i tr 

ariations when the length i small. However, both Fig. 12.3 (a) and b) h w that th 

stre variation i not en itive to the indenter ize. 
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the pipe with 65 material for D/t=72 t=12.7mm, L=20mm, 8=O.02D, p=6.4MPa and 
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Fig. 12.3 (b) Variation of normali ed stre s change ver us indent r axial length obtain d 

fr m the pip with X65 material for D/t=72 t= 12.7mm - 12.7mm 8=O.02D p=6.4MPa 

and p=O.64MPa. 
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12.5.4 Elastic Stress Distribution in Imperfect Pipes 

A een from the eia tic-pIa tic analy es pre nted in ection 12.5.1 to J 2.5. th 

normal. ed tre change due to pr ure fluctuation do not eern t b 

the material propertie and to the internal pre ure amplitud ul 

app ar to b po ibl to obtain th normal i ed tr ch ng t i 

analy e , u ing an imp rfect pipe. In order to as wh th r thi i ~ ur 

calculation were u ed with material X52 (ee F 1 to F 4 in Tabl 12.1). In th 

calculation r idual dent hapes were obtained for unpre un d pipe 

indenter depth of O.OID 0.OI5D, 0.02D and 0.025D; the corr 

were found to b 1.2 3.2 6.04 and 9.22mm re p ctively. Th 

analy e were u ed a the hapes of imperfect pip in th ub 

of re idual stre were set to zero and the deform d 

geometry of the imperfect pip . A pre ure of 5.12MP w 

Typi alia tic tres di tributions for the imperfect pip which wer bt in 

dent depth of O.OID and 0.02D are hown in Fig. 12.4 (a) t (d). Fr m 

(d), it can be en that the ela tic tre distribution for th 

d 

m th 

1.. II 

initi .1 

pli d 

r diff! r nt 

from th r idual tr e obtained from th lastic-pla tic analy pre july di LI d in 

chapter 11 (Fig.11.2). 
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Fig. 12.4 (a) Variation of axial tre with axial po ition ~ r imp rfe t pipe bt in 

u ing lin ar ela tic analy e for applied dent d pth fO.OID nd . 2 . 
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dent depth f. 1 D .0 15D 0.02D and 0.025D, re h wn in ig. 12.5 whi h I pr nt 

the re ult fthe rr p nding F ana'ly (F 5toF 11). 
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From Fig. 12.5, it can be seen that for the nonnalised stresses, there is good correlation 

between results obtained from both the linear elastic and non-linear, elastic plastic analyses. 

This confirms that indented pipes undergo an elastic restoration process when the internal 

pressure is reduced. It also indicates that the stress changes due to pressure changes in 

indented pipes can be obtained using linear elastic analyses performed on imperfect pipes [3]. 

12.5.5 Dent Depth Variations due to Internal Pressure Fluctuations 

As the residual dent depth has been shown to be the most important parameter affecting 

the residual stresses [chapter II] and stress variations, the residual dent depth variations 

which occur due to the internal pressure fluctuations has been investigated using the FE 

analyses FE56 to FE70. For the pipes with material X52, the geometry and loading conditions 

are shown in Tables 12.4 to 12.6. The residual dent depth versus internal pressure curves, 

obtained from the FE analyses (FE56 to FE64), are shown in Figs. 12.6 (a) to (c). For the 

pipes with material X65 SAW, the geometry and loading conditions are shown in Table 12.4. 

The residual dent depth versus internal pressure curves, obtained from the FE analyses (FE65 

to FE68), are shown in Fig. 12.6 (d). From Figs. 12.6 (a) to (d), it can be seen that the 

residual dent depth after indentation reduces as the internal pressure increases and that the 

relationship between the residual dent depth and the internal pressure is almost linear. The 

negative residual dent depths in Fig.12.6 (d) indicate that the overall expansion of the pipes 

after internal pressure was increased is greater than the previous residual dent depth. 

The relationship between the residual dent depth and the internal pressure for large 

indenter sizes, i.e. (r=50mm and L=20mm) and (r= 12. 7mm and L=80mm), were investigated 

using the FE analyses (FE69 and FE70) perfonned on the initially unpressurised pipes with 

material X52 and the results are shown in Fig.12.6 (e). It can be seen, from Fig. 12.6 (e), that 

indenter size does not significantly affect the gradient of the residual dent depth versus 

internal pressure curves. 
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12.6 emi-empirical Formulations for Stre s Variation Prediction 

ing th r ult of the FE analy e and curv fitting t chniqu mi- mpiri al 

formulati n £ r predicting the change in tre and th d nt d pth du t th int rn I 

pre ur fluctuation w r developed. The ba ic form of th quation wa tak n fr m th 

analy i of imp r£ t ring [chapter ]. The re ulting formu lation ar a £ 1\ w : 

;h =[1.15-003 - 15.4 ~ r -450920;;;0092ffl8r + I3.61~r +R J 
10.1 @-;+l.009R8r - 6.498r+1 R 

-~'-'- = +-------"'--
t2 t ( 12. 1 

( 
- 15.4 ~J[-24.6065;t+21.963(1{8r +7.l340tr +-l-R] ;e = 1.4-0.4 

and 

3 
~ = R 3 0.00257 R + O.238m ) 

P Et 
(12.2) 

quati n (12.1) includ the f£ ct of the residual dent d pth, the pip radiu , th w II 

thickn and th axial I ngth of the ind nter on the normal i ed tr rt uati n 

(12.2) nabl the f£ ct of the change of internal pr ure to the re idual dent d pth t b 
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predi ted. For the given et of the dimensions and residual dent depth, obtained from F 

analy 5 to E59 given in Tables 12.1 to 12.3, the normalised tr variation wer 

predict d u ing qu tion (12.1) and are shown in Figs. 12.7 (a) to (e). The normali ed tr 

change btained fr m the FE analy es are also shown in Fig. 12.7 (a) to ( ) for ompari n. 

It an be en that ery cIa e correlation between the normali ed tre chang ) obt in d 

u ing th equation 12.1) and from the FE analy e was obtained. 

In ca wher th re i an increa e in the internal pressur the dent d pth obtain d fr m 

quation 12.2 and the FE analy e FE12 to FE20 and FE31 to FE37 ar hown in ig . 12. 

a to d. It can been from Fig. 12.8 (a) to (d) that equation (12.2) gi era nably 

accurat predi tion of the changes in dent depth a the int n1al pre 

indentation. For large indenter size the dent depth versu internal pre ure curv obtain d 

from the FE analy e FE73 and FE74 and the semi-empirical formulation, equati n (12.2)) ar 

hown in ig.12. e) which indicates that the emi-empirical formulati n .1 0 accurat Iy 

predict the dent d pth change for large indenter size . 
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ig. 12.7 a ormali ed tress changes ver u wall thickn curve obtain d fr m th 
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- 12.7mm Lj=20mm, 8=0.01 D, p=5 .12MPa and p= 1.2 MPa. 
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12.7 Di u ion and Conclu ions 

Re ult btain d fr nl th FE analy e and semi-empirical formu lation how th t the 

du to pre ure fluctuations are strongly depend nt on th re idu 

den depth all thi kn (or D/t ratio). For deep dent depth, the normali d tre 

chang ar 1 rg and th r :fI r the fatigue life of the indented pipe would be relati ly h rt. 

and t th r i 

normali 

analy 

II thi kne of a pipe can greatly reduce the normalised tre ch ng . 

tr 

how that the nOrn1alised stre s change are related to the D/t rati 

been shown that the indenter axial length al 0 aft! ct th 

correlation of the results obtained from the lin ar ela ti 

t pip models and the non-linear, ela tic-plastic analy e indicate that 

hang are not trongly related to the material propertie and t the 

fl u tuation . The emi-empirical formulation, equation (12.1), r fl cts the 

t r ti th w 11 thickne t the residual dent depth and the indent r axia l 

length change. In mo t of the ca es investigated in this chapt r the 

n th r ult obtained from the emi-empirical formulation and the 

an Iy ar n Ii ibl . 
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If the internal pressure is increased after indentation, the dent depth is reduced. From the 

results presented in this chapter, it can be seen that this makes a positive contribution to the 

reduction in the stress changes which are dependent on the dent depth. In the previous 

chapter II it has been shown that the residual stresses remain practically constant during the 

increase of internal pressure, after indentation. However, as shown in chapter 11, residual 

stresses can be reasonably accurately estimated using the results of FE analyses or from the 

semi-empirical formulations developed; these require measurements of the residual dent depth 

when the indentation has occurred. Since the pressure at the time at which the dent occurred 

may not be known, the measured dent depth, which could reduce due to an increase of 

internal pressure, cannot be used to accurately predict residual stresses. Therefore, it is 

necessary to estimate the residual dent depth based on dent depth measurement made at a 

different pressure. The semi-empirical formulation, equation (12.2), in this chapter was 

developed for this purpose. Figs. 12.8 (a) to (d) show that the formulation can predict 

reasonably accurate dent depths as the indentation occurred. All of the differences between 

the results obtained above from the semi-empirical formulation, equation (12.2), and the FE 

analyses are within 14%. Fig. 12.8 (e) indicates that the relationship between the dent depth 

and the internal pressure is not strongly influenced by the indenter size. 

12.8 Summary 

The stress variations which occur in indented pipes, due to internal pressure fluctuations 

are investigated using the results of FE analyses for two typical pipe steel materials. It is 

found that the stress variations in indented pipes due to the internal pressure variations are in 

the elastic range for practical pressures. Semi-empirical formulations for predicting the stress 

variations and the dent depth changes due to internal pressure fluctuations were developed. A 

very close correlation was obtained between the results obtained from the FE analyses and the 

predictions based on semi-empirical formulations. 
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Chapter 13 

Conclusions & Future Work 

13.1 Conclusions 

Experimental tests, analytical solutions and FE analyses were performed on pressurised and 

unpressurised pipes subjected to external indentations in order to investigate the fatigue damage 

induced. With applications of Castiglano's theorem and the elastic-plastic energy-based method 

to indented rings with or without pressure, the limit loads and the relationship between the 

indenter force and dent depth were investigated and predicted analytically. Analytical solutions 

of the limit loads and the indenter force versus dent depth curves were obtained and validated for 

a variety of geometrical dimensions, material properties, boundary conditions and external loads 

by comparing with both the experimental results and the FE solutions. 

Residual stresses and stress variations due to the internal pressure fluctuations in the indented 

rings were investigated using the FE analysis where 8-node, plane strain, reduced integration 

elements were used. The maximum residual hoop stresses are found to occur at a position 

beneath the indenter on the outer surface of rings. An internal pressure and a residual dent depth 

were found to have a significant impact on the magnitude of the residual hoop stresses, and 

increasing the indenter pressure and residual dent depth results in the large residual stresses. 

Decreasing the indenter radius was also found to have positive effects but not as seriously as the 

internal pressure or the residual dent depth. The support angular position,S, and the O/t ratio are 

two further factors influencing the residual hoop stresses. Increasing the range of S reduces the 

residual hoop stress value while reducing the Dlt ratio results in a relatively small value of the 

residual hoop stresses. 

Residual hoop stress variations due to the internal pressure fluctuations were investigated 

using the FE analyses and analytical methods. Using the FE solutions and curve fitting 

techniques, a semi-empirical formulation was developed to predict the hoop stress variations. It 

can be seen that increasing the residual dent depth increases the hoop stress variation and 

increasing the wall thickness reduces the hoop stress variation. 

The indenter force-deflection relationship was investigated using experimental tests, 

performed on the 6082-T6 aluminium alloy tubes with or without pressure, and FE analyses 
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where both 30 brick and shell elements were used. Results obtained from these analyses show 

that a shell element model can give reasonably accurate predictions of the indenter force­

deflection relationship, the residual stresses and the stress variations. Subsequent investigations 

of the sensitivity of residual stresses to element sizes indicate that using a shell element model is 

valid and can save a lot computer time when compared to a 3D brick element model. 

For a constant internal pressure, the residual stress solutions of indented pipes were 

investigated using FE analyses where shell element models with reasonable fine meshes in the 

indented regions were used. Parametric analyses were carried out for a variety of internal 

pressures, O/t ratios, indenter sizes, material properties and residual dent depths. Based on the 

results obtained from the parametric analyses and referring to the uniaxial true stress-strain 

empirical formulations in appendix 5.A, empirical formulations predicting residual stresses were 

therefore developed. Using these empirical formulations it is possible to predict the residual 

stresses for other indented pipes without performing any further FE analyses in order to assess the 

subsequent fatigue damage. 

For the internal pressure changes after an indentation, the subsequent stress variations were 

investigated using elastic and elastic-plastic models and FE analysis where shell element models 

were used. Results show that the stresses respond elastically to the internal pressure fluctuations. 

Semi-empirical formulations were developed based on parametrical analyses and the analytical 

solution obtained for indented rings, see chapter 8. These semi-empirical formulations are able to 

explain the effects of the pipe wall thickness, the indenter size and residual dent depth on the 

normalised stress variations and can give accurate predictions. The response of the residual dent 

depth to the internal pressure was also investigated using FE analyses and was predicted using 

empirical formulations. Therefore, the residual dent depth at the time at which the indenter is 

removed can be assessed from the measured dent depth at any time after the indentation whether 

the internal pressure fluctuates or remains constant. For the practical range of pipe parameter 

used in this work, the fatigue life of an indented pipe therefore can be assessed by calculating the 

residual stresses and stress variations using the empirical and semi-empirical formulations 

obtained in this thesis without performing any further FE analyses. 

Therefore, use of the results obtained in this thesis and S-N curves can predict the fatigue life 

of the indented pipes. 
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13.2 Future Work 

Future work can focus on fatigue experimental tests, residual stress analysis for asymmetrical 

indentations and the analysis of crack development in a dented pipe. 

Fatigue experimental tests can be performed to provide enough information to develop 

formulations to predict the remaining life of dented pipes, based on the results of the present 

work. 

Also based on the present work, shell element models can be used to calculate the residual 

stresses and stress range distributions for different indentation positions to form a database or to 

develop new semi-empirical formulae. The work is limited to 2D symmetrical and asymmetrical 

loading, and 3D symmetrical loading. Future work can include unsymmetrical (offset) 3D 

loading. 

The residual stress and stress range distributions may be calculated also by using an inverse 

method. If the residual deformation of the dented pipe is measured, the strain distribution can be 

analytically or semi-analytically calculated based on the non-linear relationship of the strain and 

displacement. Therefore, the stress may be finally calculated from the uniaxial stress-strain 

relationship and the strain value obtained before. However, this method may not be efficient. 

The crack development research can mainly focus on thick-wall pipes. A microcrack on the 

outer surface of the dented pipe can develop due to low cycle fatigue damage accumulations. It 

may develop into a through-crack under the action of section bending moments and membrane 

forces resulting from the internal pressure and the residual stress concentration in the indented 

region. In this case, the remaining life of the pipe is short and repair processes have to be 

performed immediately. For thick-wall pipes, especially as the indented deformation is relatively 

small, the residual stress concentration and bending moment are small, making the formation of a 

through-crack less detrimental. Due to the complex geometry, FE modelling will be the main 

analysis method rather than the analytical LEFM approach. However, some analytical solutions 

are likely to be obtained. Residual stress concentrations are the main causes of crack initiations 

and they still are the main causes of crack developments in the indented region after a microcrack 

forms because these concentrations increase the bending moments. The relationship of the stress 

intensity factor, crack geometry, residual dent depth and internal pressure can be established 

through a parametric analysis. Use of this stress intensity factor formulation and Paris or Forman 

relationship can predict the remaining life of the indented pipe after a crack forms. 
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Appendices 

Appendix I.A. Analytical Formulations in Pressurised Rings with 

Symmetrical Supports 

I.A.I.Kinematic Analysis 

A kinematic field of an indented ring is shown in Fig. (1.al). It is assumed that the relative 

angular rotations of the plastic hinges at positions D and F are a I and Cl2, respectively, that the 

vertical displacement at plastic hinge A is B and that half of the angular rotation at A is Cl3. 

Hence, compatibility of deformations gives 

cos( 00 + a2 - al)+ sin( a2 - al)+ cos( 0 + al)- cos( 00 - al)- cosO = 0 

8 = R[ 1 + sin( 00 + a2 - al ) - cos( a2 - al ) - sin( 0 + al ) - sin( 00 - al ) + sin B] = R80 

(l.a I) 

( l.a2) 

( l.a3) 

where 00 is the non-dimensional displacement at position, A, obtained by dividing 0 by R., i.e., 

oo=olR. 
The position, 80, of the plastic hinge at F, after large deformation, is assumed to stay in the 

same position as its initial position when the deformation is small. The position, 80, is therefore 

given by in chapter 3 

00 =; -~ (l.a4 ) 

Hence, from equations (l.a 1) to (1.a4), it can be seen that 

f( Bo -1[COS(Bo-a1)-COS(B+al)+COSB] 
a2 =---+al -cos 

4 2 2Sin( t-~) 
( l.a5). 

Therefore, 0 (00), Cl2 and Cl3 can all be related to al and the support angle, e. 
Taking almax to be the value of 0.1 when the hinges at F, A and E are in line (beyond this, 

equation (2.a5) is no longer valid) and a2max is the value of the Cl2 when Climax occurs, then 

a = 1" _1. 0 - sin -\ [ 1- c sO 
\ max 8 4 2sin i+~ ] = 1" - 1. B - cos -\ [ I - c sO ] 

8 4 2sin i+~ 
( l.a6) 

and 
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( 1.a7) 

here qu ti n (l.a an al 0 be obtained by as uming the fourth term of the right ide of th 

quati n i .aS to b zero. 

D n ting max a the alue of 8 when Ul max and U2max occur, give 

Om =Rl l+ inB-2 in(1L+ %) in(itr- iB-almax)J (1. ). 

new 

Fig. (l.al) Kinematic field for an indented ring 

1. . 2. la tic nerg tored 

F r n unpr d ring fi ela tic hing s are a umed to exi t at po iti n D ,A nd 

pring con tant K i al 0 a umed for each ela tic hing. H nc , th 

r d by all of the five hinge i given by 

+ 2(a2)2 + (2a )2 J (l.a9) 

It \ h wn th t from in chapt r 3 that if the mall de£ rmati n r lation hip b tw n £ rc 

nd d fl ti n fi r an unpre uri ed ring i obtained using a tiglano' method th n 

(l.a 1 ) 

B nd r fun ti n of th upport angle 8 defi n d a foIl w : 
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A = th + 0 + .lsin 20) 

B = (I +sin O~Sin 20 + 3cosO - t~ + 0 Xcos2 0 + sin 0 + 1 l] 
c = cosO(! + !sin2 0 + sinO E~ + 0 ~osO - 2sinO - 2] 

(1.a II) 

D = {(~ +of -2cos
2 O-!(~ +O~in20 J 

Hence, for the small defonnations the overall "stiffness", Ke, is given by 

3 ( ) K - EI D 
e - 12R3 AD+B+C 

(l.a12) 

which is only related to the dimensions and support position of the ring and Young's modulus. 

The elastic energy stored in the five elastic hinges in the ring, for small defonnation, is 

therefore also given by 

W Ke.\:'2 
IE =T u (l.aI3). 

Equating equation (a13) to (a9) gives 

WIE = ~ [2(al)2 + 2(a2)2 + (2a3 )2]= ~e 8 2 (l.a14) 

Hence, the spring constant (or 'stiffness'), K, for each elastic hinge can be detennined and 

given by 

. . Kef52 
K = limit -......".....~--:----=-

a,-+O (2a, f +2(a2 f +(2a3 f 
(l.aI5). 

F or a pressurised ring, the internal pressure does not change the spring constant, K, 

therefore, the elastic energy stored at the five hinges for small defonnations is also given by 

equation (l.a9), irrespective of the existence of pressure. Hence, it can be seen that from 

equation (l.a 14) the elastic energy stored in the ring can be expressed by equation (l.a 13) for 

pressurised or unpressurised rings. 

I.A. 3. Plastic Work Dissipated 

The internal energy dissipation in the plastic hinges is the sum of work done by the fully 

plastic bending moment at the hinges. Based on the rigid plastic deformation assumption and 

equation (l.a3), the internal energy dissipation, WI, at the five plastic hinges, per unit axial 

length, is given by 
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WI = 2(MOal +MOa2 + M Oa 3)= 4Moa2 (l.aI6) 

where Mo, the plastic bending moment, is given by 

(La 17). 

I.A. 4. Work Done by Internal Pressure 

Since the dented ring undergoes non-linear large deformations, the expressions for the work 

done by the internal pressure are complicated because the direction of internal pressure is normal 

to the deformed ring and hence changes during deformation. Therefore, differential-integration 

techniques were used to calculate the sum of the work done by the internal pressure for each 

small increment of deformation. 

When the rigid arcs BE and DF in Fig. (1.al) rotate with respect to the plastic hinge Band D, 

respectively, by an angle aI, the work done, w~, by the internal pressure p, is given by 

(l.a 18). 

However, when the rigid arcs EA and FA move to the new positions of EnewAnew and 

FnewAnew, respectively, in Fig. (1.al), which are functions of the rotational angles <XI and <X2, for a 

small increment da \, the work done, dW ~ , by the internal pressure p, is given by 

dW) ;2PK{-(I-sinB)( ~: -1)+[ si.( B-a2)+si.( 00 +a2)+Co( B+Bo +a2)-cosa2J~al (La 19). 

Therefore, when the rigid arcs EA and FA move to the new positions of EncwAnew and 

F newAnew, respectively, the work done, w;, by the internal pressure, is given by 

W~ ;2pK til {-(I-sinB)( ~~ -1)+[Si.( B-a2)+si.( 00 +a2)+co~ 0+00 +a2)-cosa2J~al ( l.a20). 

Hence, for the given kinematic mechanism shown in Fig. (l.a 1), the total work done, W p' by 

the internal pressure P during the deformation is given by 

1 2 
Wp=Wp+Wp (l.a21) 
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Appendix 2.A.1: Details of FE Analyses in Chapter 5 

Table A I: Ring dimensions, loading and support positions, and limit load solutions obtained from 

the FE analyses for 6082-T6 aluminium alloy 

Flimil 
FE D/t 91 92 9s N/mm 
No. 
FEI 80.0 0° 35° 55° 15.5 
FE2 41.6 0° 35° 55° 69.5 
FE3 24.0 0° 35° 55° 225 

Table A2: Ring dimensions, loading and support positions, and limit load solutions obtained from 

the FE analyses for the idealised material (ideal-A) and for X65 SAW, for D/t=72. 

Idealised -A Results X65 SAW Results 
D/t 91 92 9s Flimit F1imit 

FENo. N/mm FENo N/mm 
72.0 0° 45° 45° FE4 12.7 FEllS 24.2 
72.0 10° 45° 45° FE5 12.7 FEll6 24.4 
72.0 20° 45° 45° FE6 12.9 FE1l7 25.0 
72.0 30° 45° 45° FE7 13.9 FEl18 26.2 
72.0 40° 45° 45° FE8 15.1 FEl19 28.6 
72.0 50° 45° 45° FE9 17.3 FEl20 32.7 
72.0 60° 45° 45° FE 10 20 FEI21 38.2 
72.0 20° 45° 0° FEll 20.8 FEl22 39.5 
72.0 20° 45° 10° FEl2 18.3 FEl23 34.5 
72.0 20° 45° 20° FEl3 16.4 FEI24 30.9 
72.0 20° 45° 30° FE14 14.8 FEl25 28.2 
72.0 20° 45° 40° FEl5 13.5 FEl26 26.0 
72.0 20° 45° 50° FEl6 12.8 FEl27 24.1 
72.0 20° 45° 60° FEl7 11.7 FEl28 22.5 
72.0 20° 45° 70° FEl8 11 FEl29 21.2 
72.0 20° 45° 80° FEl9 10.3 FE130 19.8 
72.0 20° 45° 90° FE20 9.35 FEl31 17.9 
72.0 20° 0° 45° FE21 13.8 FE132 26.8 
72.0 20° 10° 45° FE22 13.6 FEl33 26.5 
72.0 20° 20° 45° FE23 13.4 FE134 26.1 
72.0 20° 30° 45° FE24 13.2 FE135 25.5 
72.0 20° 40° 45° FE25 13.0 FEl36 25.3 
72.0 20° 50° 45° FE26 12.8 FEl37 24.8 
72.0 20° 60° 45° FE27 12.6 FE138 24.3 
72.0 20° 70° 45° FE28 12.4 FE139 23.9 
72.0 20° 80° 45° FE29 12.2 FEl40 23.4 
72.0 20° 90° 45° FE30 11.7 FEl41 22.4 
72.0 0° 0° 45° FE31 15.0 FEl42 29.8 
72.0 0° 10° 45° FE32 14.5 FE143 28.3 
72.0 0° 20° 45° FE33 13.9 FEl44 27.0 
72.0 0° 30° 45° FE34 13.5 FE145 25.8 
72.0 0° 40° 45° FE35 13 FE146 24.7 
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72.0 0° 50° 45° FE36 12.4 FE147 23.7 
72.0 0° 60° 45° FE37 12.0 FE148 22.8 
72.0 0° 70° 45° FE38 11.7 FE149 22.0 
72.0 0° 80° 45° FE39 11.2 FE150 21.2 
72.0 0° 90° 45° FE40 10.4 FEl51 19.9 

Table A3: Ring dimensions, loading and support positions, and limit load solutions obtained from 

the FE analyses for the idealised material (ideal-A) and for X65 SAW, for D/t=42.6. 

Ideal -A Results X65 SAW Results 
D/t 91 92 8s Flimit Flimil 

FENo. N/mm FENo N/mm 
42.6 0° 45° 45° FE41 63 FE152 119 
42.6 10° 45° 45° FE42 63.5 FEl53 120. 
42.6 20° 45° 45° FE43 65 FE154 125 
42.6 30° 45° 45° FE44 69 FE155 133. 
42.6 40° 45° 45° FE45 76.5 FE156 145. 
42.6 50° 45° 45° FE46 89 FEl57 166 
42.6 60° 45° 45° FE47 107 FE158 199. 
42.6 20° 45° 0° FE48 106 FE159 202 
42.6 20° 45° 10° FE49 92 FE160 176 
42.6 20° 45° 20° FE50 81.5 FE161 157 
42.6 20° 45° 30° FE51 73.5 FE162 142 
42.6 20° 45° 40° FE52 67.5 FEl63 130 
42.6 20° 45° 50° FE53 63 FE164 120. 
42.6 20° 45° 60° FE 54 59 FE165 112. 
42.6 20° 45° 70° FE55 55.5 FE166 105 
42.6 20° 45° 80° FE56 52 FE167 98 
42.6 20° 45° 90° FE57 46.8 FE168 88 
42.6 20° 0° 45° FE58 71 FE169 134. 
42.6 20° 10° 45° FE 59 70 FE170 133 
42.6 20° 20° 45° FE60 68.5 FEl71 130. 
42.6 20° 30° 45° FE61 67.5 FE172 128. 
42.6 20° 40° 45° FE62 66 FE173 126 
42.6 20° 50° 45° FE63 64.5 FE174 124 

42.6 20° 60° 45° FE64 63 FE17S 121. 
42.6 20° 70° 45° FE65 62 FE176 119. 

42.6 20° 80° 45° FE66 61 FEI77 117 
42.6 20° 90° 45° FE67 56.5 FEI78 110. 
42.6 0° 0° 45° FE68 75.5 FEI79 148. 

42.6 0° 10° 45° FE69 72.5 FEI80 140. 

42.6 0° 20° 45° FE70 69.5 FEI81 133. 
42.6 0° 30° 45° FE71 67 FE182 127 
42.6 0° 40° 45° FE72 64 FEI83 121. 
42.6 0° 50° 45° FE73 62.5 FEl84 116. 
42.6 0° 60° 45° FE74 59.5 FE185 112 
42.6 0° 70° 45° FE7S 57.5 FE186 108 
42.6 0° 80° 45° FE76 55 FE187 104 
42.6 0° 90° 45° FE77 50.5 FE188 96 
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Table A4: Ring dimensions, loading and support positions and limit load solutions obtained from 

the FE analyses for the idealised material (ideal-A) and for X65 SAW, for D/t=30.8. 

Ideal-A Results X65 SAW Results 
Olt 91 92 9s Flimit Flimit 

FE No. Nlmm FE No N/mm 
30.8 0° 45° 45° FE78 90.5 FE189 170. 
30.8 10° 45° 45° FE79 91 FEl90 177. 
30.8 20° 45° 45° FE80 92.5 FE191 179 
30.8 30° 45° 45° FE81 99 FEt92 190. 
30.8 40° 45° 45° FEB2 111 FE193 203. 
30.B 50° 45° 45° FEB3 128. FEl94 237. 
30.8 60° 45° 45° FE84 152. FE195 284 
30.8 20° 45° 0° FE85 153. FE196 292 
30.8 20° 45° 10° FE86 133. FE197 254. 
30.8 20° 45° 20° FE87 117 FE19B 226 
30.8 20° 45° 30° FE88 104. FE199 203. 
30.8 20° 45° 40° FE89 96 FE200 186 
30.8 20° 45° 50° FE90 89.5 FE201 172 
30.8 20° 45° 60° FE91 83.5 FE202 160 
30.8 20° 45° 70° FE92 78 FE203 149 
30.8 20° 45° BO° FE93 73 FE204 138. 
30.8 20° 45° 90° FE94 66.5 FE205 124. 
30.8 20° 0° 45° FE95 101 FE206 192 
30.8 20° 10° 45° FE96 99 FE207 189. 
30.8 20° 20° 45° FE97 97.5 FE20B 186. 
30.8 20° 30° 45° FE98 95 FE209 183. 
30.8 20° 40° 45° FE99 93.5 FE210 180. 
30.8 20° 50° 45° FEIOO 91.5 FE211 177. 
30.8 20° 60° 45° FElOl 90 FE2l2 174. 
30.8 20° 70° 45° FEl02 88.5 FE2l3 171. 
30.8 20° 80° 45° FEI03 86.5 FE2l4 167. 
30.8 20° 90° 45° FEl04 81.5 FE2l5 157. 
30.8 0° 0° 45° FE 105 109. FE2l6 214 
30.8 0° 10° 45° FEI06 104. FE2l7 202 
30.8 0° 20° 45° FEI07 100 FE218 191 
30.8 0° 30° 45° FEI08 96 FE219 182 
30.8 0° 40° 45° FEI09 92 FE220 174 
30.8 0° 50° 45° FEtlO 88.5 FE22 I 167 
30.8 0° 60° 45° FEllI 85.5 FE222 160. 
30.8 0° 70° 45° FEll2 82 FE223 154. 
30.8 0° 80° 45° FEll3 78.5 FE224 148 
30.8 0° 90° 45° FEl14 72 FE225 136. 
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Appendix 3.A. Analytical Formulations in Pressurised Ring with 

Asymmetrical Supports 

3.A.l. Kinematic System 

A kinematic field of an off: et indented ring is hown in ig. (3.a.l). If it i 

a2 a 3 a4 and as ar the angles of rotation of the pIa tic hing at p 

re pectively and the vertical di placement at pIa tic hing i d 

compatibility of the deformation give 

F 

E 

I 

I 

D'~/ 

B 

um d th t I, 

nd A, 

2 

a) orf: et indented ring (b) lind nl d rin 

Fig. (3.a.l Kinematical1yadmis ible di plac ment u d D r the D r v r 1I d fl. ti n n Iys i 

of an indented fing. 

cos(B4 +a4 -a3)+ in(B) +a4 -a3)+cos(B2 +a3)-cos(B4 - a3)-cosB2 - in B) = 

<5= R[o B)+ in(B4+a4-a3)-Cos(B)+a4-a3 )-sin(B2+a3)- in(B4 - a 3) in B2] 

co (B3 +a2 -a ) )+sin(- BJ +a2 -a) )+co (Bs +al )- cos(B3 -a ) )- c BS in I = 

<5 = R[ 0 B) + in(B3 +a2 -a ) )- co (- B) +a2 - ad-sin(BS +ad-sin(B3 - a ))+ in 

In quation (3 .al) to (3.aS) there are six unknown variabl (I, 

Ther fore fi e of th six variable are not independ nt. Th pIa ti hing p 

gi en by 
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(}4 =!L _ °2 -OJ 
4 2 (3.a7). 

For large deformations, from equations (3.al) to (3.a4), the relationships between the 

rotations of the plastic hinges and the vertical displacement are given by 

(3.a8) 

(3.a9) 

and 

da2 -1 _ sin (Os +aJ )+sin(03 -ad 
daJ - cos(-OJ+a2-aJFsin(03+a2-ad 

(3.8 I 0) 

do _ R sin(03 +Os +a2 }tCOS(03 +OJ-a 2 )-cos(Os -OJ +a2 )-sina2 
daJ - cos(-OJ+a2-ad:sin(03+a2-ad 

(3.a II). 

Hence, from equations (3.a8) to (3.a11), angles 0.3 and 0.4 can be expressed as 

(3.812) 

(3.aI3). 

From equations (3.a3) and (3.a4) it can be seen that 0.\ is finite and it has a maximum value, 

a\max, obtained when plastic hinges E\, A3 and B\ in Fig.(3.a l.b) are in line. At this position (l\I1IA\ 

is given by 

5 3 I l[ COsoS-SinO\] al --1C--(}5 --(}l -cos- 1 
max - 8 4 4 2Sin( f+ OS~OI ) 

(3.aI4). 

Similarly, the maximum value of <12, i.e. <12max, and the maximum vertical displacement, ~l11n'. 

of position A, are given by 

1f {}s+2{}J 
a2max =8+-4-+almax (3.aIS) 

and 

[ 
3 . () 2' (1f Os -oJ) . (i ~ ) ] 8max = R COS4'()l +sm 5 - sm 8+-4- sm 8 1C - 4 -atmax (3.aI6). 

The differential equation set consisting of equations (3.a8) to (3.a 13) does not have a valid 

solution beyond those maximum values defined by equations (3.aI4) to (3.aI6). Beyond this 

position, the geometrical compatibility equations are not valid. However, when 8 11111), is reached, 
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the defonnations are generally very large and therefore predictions for higher values of 8 would 

be of little practical interests. 

3.A.2. Internal Energy Dissipation and Work Done by Pressure 

Based on a rigid-plastic assumption of the defonnation of the dented ring, the internal energy 

dissipation, WI, is the total work done by the bending moment at the five plastic hinges and is 

given by 

WI = Mo(al +a2 +a3 +a4 +as)= 2Mo(a2 +a4) (3.a 17) 

where Mo is the fully plastic bending moment per unit length and is given by 

(3.aI8). 

Since the indented ring undergoes non-linear, large deformation, the analysis of the work 

done by the internal pressure is complicated. The internal pressure acts in a direction normal to 

the inner surface of the rigid arcs, DE), EIA3, A3BI and BIC (see. Fig.3.al.b) during deformation. 

Hence the work done, W p, by the internal pressure is obtained by summing all of the increments 

of work during deformation, using an integration technique. In this way the work done, W p, by 

the internal pressure, is given by 

Wp =(wt +w: ~R2 (3.a 19) 

where W ft and w t can be detennined from 

(3.a20) 

and 

(3.a21 ). 

wf; and w: are the work done by the internal pressure when the rigid arcs DE and EA, and 

CB and BA, in Fig. (3.a.1. b), move to the new positions of DEt and EtA3, and CB t and BtA3• 

respectively. 
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3.A.3. Indenter Force 

Since the deformation is non-linear and the displacement, 0, is a function of the angle of 

rotation at (see equation (3.all», then WE can be expressed as 

(3.a22). 

Using the conservation of energy concept, and equations (3.a17), (3.aI9) and (3.a22), gives 

g' F J~I dal +(w; +wt ~R2 = 2Mo(a2 +a4) 

Differentiating both sides of equation (6.15) with respect to a., gives 

F~+(dW; + dW:JPR 2 =2Mo(da2 + da4) 
da, da, dal dal da, 

Therefore, from equation (3.a24), the indenter force, F, is given by 

For convenience, two non-dimensional coefficients, FM and FP
, are defined by 

F M = Ji(da2 + da4 ) dal 
2 dal dal d8 

and 

Therefore, the indenter force, F, can be expressed as 

Appendix 4.A. Equivalent Stiffness of Springs 

(3.a23). 

(3.a24). 

(3.a25). 

(3.a26). 

(3.a27). 

(3.a28). 

A two-spring structure is shown in Fig. (4.al). The two springs have stiffnesses of K\ and K2. 

The displacements at positions A and B are denoted by OA and OB. Spring I is fixed at position C 

and a compressive external force, F, is applied to spring 2 at position A. Therefore, 

F=KtOB =K2(OA -OB) (4.a.l ). 
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Fig. (4.a 1) A two- pring tru tur 

Hence the displacement at the po ition B i giv n by 

8B=~8A 
K) +K2 

ub tituting equation (4.a.2) into (4.a.l) give th a 

Equation (4.a.3) indicates that the equival nt tiffn K q f tw - pnn tru luI' 

by 
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Appendix S.A. Approximate Expressions for Uniaxial Tensile Stress­

Strain Curves 

S.A.1 Ramberg-Osgood Stress-Strain Curve 

The Ramberg-Osgood relationship [49] is given by 

( )

n-l 

Eg = cr + a ~ cr 

where u and n is material constants, E is Young's modulus, and cry is the yield stress. 

(5.a.l) 

When t is large compared with cr/E, the component of elastic strain in Eq.(S.a.l) is negligible 

and it is possible to rewrite Eq.( 5 .a.l) as 

( )

,,-J 

Ee = a. ~ 0' 
(J " 

(5.a.2) 

or 

(5.aJ). 

I 

Let cro = cr yu -,:; ,then Eq.(5.a.3) can be re-written as 

(5.a.4). 

It can be seen from this stress-strain relationship that for a material undergoing large strains, 

equation (S.a.4) can be used whereas for small "elastic" deformation, the stress-strain 

relationship may be described using Hook's law, i.e., 

0' = Ee (5.a.5). 

S.A.2 Stress-strain Expressions for Non-mild Steels 

By linking Eqs.(5.a.4) and (S.a.S), a new formulation can be written as follows: 

o(E.n.E.Eo.~,) = EE + t[(o 0 f (EE)~ - EE Jth~ ,(E - Eo) + 1] (5.a.6) 

where assuming to = ~ and ~l and cro are constants, such that ~l is chosen to satisfy 

(5.a.7(a» 

(5.a.7(b». 
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For a practical pipe material, eg X65 A W pip t el with =2 

for 60 2-T6 aluminiull1 alloy with E=70 Pa and cry= MP, th tnt tr 
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Fig. 5.a.2 True stress versus strain curves of 6082-T6 aluminium alloy obtained from 

experimental tests and empirical formulation with n=29.25, ~1=5000 and 00=320MPa 

Substituting (Ey, Oy) into Eq.(5.a.6) gives 

cr, = EE." +1-[(crof(EE,)~ -EE, }h~J(E, -Eo)+I] 

Assuming [th~ I (e y - eo) + 1] '* 0 , then 

[(crof (EE.Y - EE,] = 0 

This gives 

0 0 = EEy = a y 

(5.a.8). 

(5.a.9). 

(5.a.10) 

which indicates that cry is a physical property which is a reasonable estimate for the constant ao. 

5.A.3 Stress-strain Expressions for Mild Steels 

Since the mild steel material has two yield points, upper yield point (oup,eup) and lower yield 

point (Olow,Elow), Eq.(S.a.6) has been changed in order to correspond to the experimental uniaxial 

tensile stress-strain curve, seen in Fig. 5.a.3. Hence, the from of equation used is 

a(E,n,c,co,fJl) = Ec +t[(ao )";1 (Ec); - Ec }hfJl (c - Co)+ 1] 

+ fJ2Ecsech[Ka(c-cup)/(c/ow -Cup)] 

where Ko is a constant which is greater than 3. 

(j up is assumed to be related to Eup using the relationship 

cr = EE (1- A ) "p up J-lj 

which leads to the value of ~3 being given by: 

A = Et.."-CJ..,, 
,.., 3 EEli{' 

Using Eqs.(5.a.ll) and (5.a.13), the upper yield stress can be expressed as 

a lip = E E lip ( I - ~ 3 ) 

= EE"I' +1-[(crof(EE"I')~ -Er."I' Jh~J(E"I' -Eo)+I]+~lEr..P 
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Therefore, from Eqs.(5.a.13), (5.a.16) and (5.a.19), it follows that: 

P3 = 0.1615\ 
P2 = 0.2177 

aO =154.7 

(5.a.20). 

With this set of material properties, it can be seen (Fig.5.a.3) that the empirical formula 

produces a good approximation to the true stress-strain curve. 

Although Eqs.(5.a.ll) to (5.a.19) have been developed in order to represent a material which 

has a uniaxial tensile stress-strain curve with two yield points, such as that commonly obtained 

for mild steel, it can be shown that Eq.(5.a.ll) is also suitable for materials with characteristics 

different from those of mild steel. 

For such materials, it is recognised that 

cr = EE 
\ ." 

Therefore Eq.(5.a.13) can be expressed by 

Also cro is likely to be very close in magnitude to cry, so that Eq.(5.a.16) leads to 

p _' = /- P.l -/ = 0 

(5.a.21 ). 

(5.a.22). 

(5.a.23). 

So that in this case, Eq.(5.a.ll) is the same as Eq.(5.a.6) indicating that Eq.(5.a.l1) can 

represent other types of materials as well as mild steel. 

The material work-hardening exponent (n) in Eq.(5.a.ll) can be used to represent linear 

elastic (n= I ) and perfect plasticity (n=oo) types of materials. 

Ifn=l, it is seen from Eq.(5.a.13) that 

~3 = 0 (5.a.24 ). 

Substituting Eq.(5.a.24) and n=linto Eq.(5.a.16), gives 

Po' = 0 (5.a.25). 

Therefore substituting Eq.(5.a.25) and n= I into Eq.(5.a.ll), gives 

cr = Ef, (5.a.26). 

This verifies that Eq.(5.a.13) can be used to represent linear elastic material behaviour. If 

n=x. then at the yield point Eq.(5.a.ll) can be expressed to 
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0\ = EEl +~(Oy - EEY)+~lEEy 

which gives 

p, =0 

When n=oc and E<l, Eq.(5.a.II) can be further simplified to give 

o = EE + (0 0 - EE) = 0 0 = 0)' 

(5.a.27) 

(S.a.28). 

(S.a.29) 

This indicates that Eq.(5.a.II) can also be used to represent perfectly plastic materials. 
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