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Abstract

Automated Tape Laying (ATl) trials using low cost wind energy suitable material and

mould tools have been conducted. New materials proved problematic during ATllay-up

and observations of the ATl processshow that the prepreg tack and stiffness properties

significantly affect lay-up performance. Prepreg tack has not been widely researched

within the composites industry due to the absence of a standardised method for

characterisation. A new tack and stiffness test has therefore been developed which is

representative of the ATl process.The new test was used to investigate the responseto

process and material variables. Two failure modes were observed and compared to
those found in Pressure Sensitive Adhesives (PSA). Failure modes are associated with

the viscoelastic stiffness of the resin. High stiffness appears to result In interfacial failure
turning to cohesive failure when stiffness is reduced. A peak in tack is observed to

correspond with the transition In failure mode leading to the conclusion that prepreg

tack Is the result of a chain system rather than a single property. The chain system

consists of an interface and bulk components each having individual time and physical
variable dependant properties.

Tack and stiffness Is shown to conform to the Williams-Landel-Ferry (WlF) tlme-

temperature superposition principle for both cohesive and interfacial failure modes.

Cohesive viscoelastic and surface energy interface failure mechanisms may be

theoretically linked via the lennard-Jones energy well with molecular jumps triggered

by thermal vibrations. This analogy allows both failure phenomenon to simultaneously

follow the time temperature superposition principle and is typically demonstrated in U

dynamic mechanical modelling. The theoretical analogy is used in the explanation of

experimental results where tack is essentially thought of as a low energy non-covalent

molecular bond or reaction.

The experimental technique developed here could allow for the standardisation of tack
and stiffness specification for manufacturers. The application of results to ATl
production Is explored and demonstrated using ATl equipment. The results show that
optimum lay-up conditions may be explored offline using the new tack and stiffness

test. Results also show promising signs that the WlF relationship could be exploited to
greatly Increase lay-up speed and consistency, increasing the attractiveness of the

process to wind turbine blade manufacturers. A theoretical results curve Is also

presented which may allow manufacturers to determine the effect of changes in surface
conditions and resin properties on tack.
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Nomenclature
Abbreviations
AFP
AIRPOWER
APL
ATL
ATW

BEM
BIAX
BPA
CFW
CSM
CTL
DC
DSC
FAW
FW
GFRP
GPC

HLU
LJ

OCA

PSA
PU
PVC

RH
RIFT
SAOS
THF
TRIAX
TSB
TIS

UD

UV
VART
VF
VI
VOC

WBL
WE
WLF
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Automated Fibre Placement

Affordable Innovative Rapid Production of Offshore Wind Energy Rotor-blades

Automated Ply Lamination

Automated Tape Laying

Automated Tape Winding

Blade Element Momentum theory

BI-axial

Bisphenol-A

Continuous Filament Winding

Chopped Strand Mat

Contour Tape Laying

Dahlquist's Criterion

Differential scanning calorimetry

Fibre Areal weight

Filament Winding

Glass Fibre Reinforced Plastic

Gel Permeation Chromatography

Hand Lay-Up

Lennard-Jones two parameter molecular adhesion model

Occupational Contact Allergy

Pressure Sensitive Adhesives

Polyurethane

Poly Vinyl Chloride

Relative Humidity

Resin Infusion under Flexible Tooling

Small Amplitude Oscillatory Shear rheometry

Tetrahydrofuran

Tri-axial

Technology Strategy Board

Time Temperature Superposition

Unidirectional

Ultra Violet

Vacuum Assisted Resin Transfusion

Volume Fraction

Vacuum InfUSion

Volatile Organic Compound

Weak Boundary Layer

Wind Energy

Wllllams-Landel-Ferry time temperature superposition equation
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Symbols
A Area [m2]

at Time shift /octor (WLF)

b Tape width [mm]

Cl WLFconstant

Cl WLFconstant

E Young's Modulus [GPa]

E. activation energy [kJ/mol]

Fp Average peel/orce [N]

F Force [N]

G Work of adhesion [J/m2]

G' Shear storage modulus [Pa]
Gil Shear loss modulus [Pa]

h Layer thickness [mm]

Mn Number average molecular weight [g/mol]

Mw Weight average molecular weight [g/mol]

p pressure [MPa]
P peel Resistance [N/mm]
P Polydisperslty
R Universal gas constant [J/mol KJ
Ra Surface roughness average [j.U1l]

RH Relative humidity [%]
S Shear stress [N/m2]

T Temperature [-e]

To Reference temperature [-e]

T. Gloss transition temperature (-e]

V Separation velocity [mm/mln]

Wedh Work of adhesion [J/m2]

Z Extension [mm]

E Strain

1'1 Viscosity [MPas]
p Density [kg/m5]

0 Standard deviation

0 Tensile strength (MPa]
CAl Frequency [Rad/s]

i Strain rate [5.1]

is Phose angle n

R J Crossley 5



Contents

~1Js;trCl~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• :2
Acknowledgements •••••11••••• II •••• 11••••• 11••••••••••••••• II. II •• 11•••••••••••••• 11••• 3
~()I11E!I1c:ICltlJrt!•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••~
1 Introdu~lon 9
1.1
1.2

Turbine blade
Turbine blade

1.2.1
1.2.2
1.2.3

design ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••11
11

cl4!II1IlI1c1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~

Size ••.••.•••.••.••.•••••••.•.•••••••••••••••.••••.••..••..••.••••.•••••••.•••.••.•••••..•..•••
Geometry ...................................•.•.•.....•.•....•..••...•..••••.•.•.••.••...•.• 12
Materials 13

1.3
1.4
1.5
1.6

Existing production methods ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••20
Automated forming processes ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••25
Aim. and objectlve •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••30
Theme of thl. work •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••31

2 Literature review ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••32
2.1 Pr.pr.g materials •.••.........•......••.•.••.•••.••......••...•.............•..•..•.••••.........•32

2.1.1 Production...................................................•....................•......... 32
2.1.2 Speclflcationand supply ...............................•.......................•.•..... 33
2.1.3 Resinchemistry and cure 36
Automated tape laying •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••37
Preprag flexural rigidity •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••40
Prepr_g tack •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••,•••••••••••••••••41

2.4.1 Deflnition............................................•............................•.......... 41
2.4.2 Commercialcharacterisation 42
2.4.3 Experimentalcharacterisation....................................................•... 43
Pressure sensitive adhesives ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••44

2.2
2.3
2.4

2.5

2.6
2.7
2.8

2.5.1 Probetesting..•....................•..............................................•........ 44
2.5.2 Peel testing 53
2.5.3 Shear testing 63
FtI1.. .,I()II" •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ti~
Adhesives theory ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••6t
Polymer melts ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••71

2.8.1 Basicmolecularprinciples 71
2.8.2 Molecular description ••••••••••...•.•...••.••••••••.•••.•..........•••••.•.....•.••.•••.• 73
2.8.3 Melt behaviour ..............................................•..............•............... 74
2.8.4 Diffusion.........•...................................................................•.•..... 76
2.8.5
2.8.6
2.8.7
2.8.8
2.8.9

Time-temperature dependant behaviour 76
78
78
80
81

Mathematical models ..•...................••••...•.......•.•••....•••..•................
Molecular adheslon ......•••.......•.•......•••....•....••••.•..••••••••••••••.•••••••••.•
Dynamic molecular modelllng .
Molecular characterisation ...•.•.......•.•.•..•.••••••.••.•••.••..••.•••.••••••••.•••.•

3 Experimental methodology •••••••••••••••••••••••••••••••••••••••••••••••••••83
3.1
3.2

General approach •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••83
ATL feasibility study •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••84

3.2.1 Materia/s........................................................................••........... 85
3.2.2
Tack

3.3.1
3.3.2

3.3
Equipment ••..••••.••......•..... ·..•.•.••.••..••••.....••......•..••••.••.•••.••••••••.•••.• 85

and Itlffne •• te.t •••••••••••.•••••••••••.•••••••.•••••••.••••••••••.•••••••••••••••••••••.•88
88
89

Operation •••..•••.•••••.•••••••••.•••••••.•••••••.•.••.•••••.••••.••..•••.••.•••••••••.•••••
Equipment •..•.•....•..•...•....•.•.....•.....•••...•...•.......•.•....•.......•............

R J Crossley



3.4
3.5

3.3.3 Specimens 91
3.3.4 Accuracy.•......•..........................................................•.••.•..........•• 91
3.3.5 Analysis...................•.................... ,.................•........................... 93
3.3.6 Repeatability study ..........•...........................••.............................. 95
3.3.7 Controlling uncertainty .....•...... , ,...................•...............•.•. 96
Commercial prepreg tack characterisation 99
Effect of variables on tack and stiffness 101

3.5.1
3.5.2

Tackand stiffness tests ...................••. 1, ••••• , •••••••• 1, •••••• 1, ••••••••••••••• 101
Control of variables .•.•...........•.......•.•.•.••••.••.•••••..•.•......••••...•.••••... 103

3.6
3.7
3.8

Rheology ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••106
Time temperature superposition Investigation 107
ATL applicability study ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••109

4 Results and observatlons 112
4.1
4.2

ATLfeasibility trlal •••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••112
Commercial prepreg characterisation 117

4.2.1 Roll position effects ..................................•....................•.•......•.... 117
4.2.2 Faceposition effects..............................•..............•.•.....•.............. 118
4.2.3 Overall characterisation.............................•.•............................... 118
Effect of tack variables •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••1204.3

Temperature ................••.•..........•.••.•.......••••...•.••••••.••••••••••....•.••• 120

4.4
4.5

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13 Stiffness summary ....................•......•..•.................•......•••••....•••.•. 139
4.3.14 Tacksummary 140
Rheology ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••142.
Time temperature superposition 143

4.5.1 Gel permeation chromatography 143
4.5.2 Differential scanning calorimetry 145
4.5.3 Rheology.......•.........................................................................•. 145
4.5.4 Peeltestlng..........................................•.............•.....••............•.•. 148
ATL applicability .tudy ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••154

4.6.1 Prepreg tack in commercial conditions 154
4.6.2 ATLtrials :......................................................•...............•...•....... 157

Feed rate •...•......•.•.......••.•...••........•••..•.....•.•....•••••••.••..••....•••••.••• 123
SurrBce roughness •..•...•.......•....................•......•............•.•........... 124
Release agents ••••••.••.....•....•••.•...•.......••••••..•••.•••.••.•..••••••••••.•...... 127
Compaction force .•.......•....••••••••..••.•.••....••••.•••••••.•••.••..•.•..••••••..••. 128
Surface material ••••.••.••.•.•...•.•.••• , ,.....•. ,.. , ,........•..••••........ 130
Contact temperature ,.........................................•........... 132
Resin type , 133
Fibre areal weight ••...••.••.•..••••...•..••.•...•.•.••...•......••••••••...••••..•••.••• 134
Fibre type ................................................................•......•.......... 134
Resin content , 136
Fibre architecture ••...••••••..••••...•.••••.•.•. ,.•.•....•••.••.••.....•••••...........•. 137

4.6

5 Discussion ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••159
5.1
5.2

Tack and stlffne •• methodology •••••••••••••••••••••••••••••••••••••••••••••••••••••••••151
Effect of variables on tack and stiffness 161

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10

Temperature ••.•.•••....•••..••..•.•.....•••••••..•••.•••.•••.•••••••.•••.•..•••..•••••..• 161
Feed rate ••••••....•...•••.•••••.•.••••••••....••...••••.••••••.•••.•••.••••••••••.••••.•••• 162
Surface roughness ••.•.•.•••••.••••.••.....••••••••.••..•.•.•••.••.••••••. ,••.••••..•••. 163
Release agent .•••••••••..•••••••.••••.••.••....•..................••••.•....•••••••••••••• 163
Compaction force .•••.•.••••....••...•..••••.•.......•........•...•...•.....••• ,••••...••164
Surface type.......•..•...•........•.•..........•.•••.............••.•..•...•..•.•...•.•... 165
Resin type..•.....•...........................•.•....•.....•..•.•.....•.•...•...•.•...•.•... 165
Contact temperature 166
FAW •.••••••••••••••••••••••••••••••••••••••••••••.•••••••••.••••••••••••••••••••••••••••••••• 166
Fibre type ......................................................................•........... 167

R J Crossley 7



5.3
5.2.11 Resincontent , , 169
5.2.12 Fibrearchitecture 170
Time temperature superposition Investigation 171
5.3.1 DSC..............•.•................................................................•........ 171
5.3.2 GPC•......••..........•................................•...................•..•...•.•..•..... 171
5.3.3 Rheology1, •••••••• II II II II II •••••••••••••••••• II II II ••• II •••••••••••••••••••••••• II II II I ••• 171
5.3.4 Tackand stiffness results 172
Results Summary ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••1735.4

Stiffness ... t ••• t ••••• t. tt •• t •••• t •• t. t •• t •• t. t. t •••• t. t. t. t ••••••• t ••••••••• t •• t •• t .t •• t.t. t 173

5.5
5.6

5.4.1
5.4.2
5.4.3 Mo/ecu/ar theory ••••••••.•••.•••....•.•.••••••.•.••...•.••••.......•......•••....••...... 178
Commercial prepreSi •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••182
ATL feasibility and application 183

5.6.1 Performance observations .............................................•....•.....•.•. 183
5.6.2
5.6.3

Tack•.•.••..•....•.•.•..•••••.••••.•••••....•..•....•..••..•••..••••....•••..•.••.•••..••....• 173

Applicability results •..•.•.....•....•.•.......•........•............•.....•...•••••..•••• 184
Tape performance .................................................................•..... 186

6 Conclusions •••••••••••••••••••••••••••••••••••••••aa ••••••••••••••••••••••••••••••• 189
6.1 Tack and .tlffn 189

6.1.1 Method and observations .......................................•.................•.•. 189
6.1.2 Variable effects ...................•.....•.....•......•.•....•.....................•.•..•.. 190
6.1.3 Time temperature superposition ..... II ••• II ••• 11 •••••••••••••••••••• II ••• 11 ••••••• 192
6.1.4 Moleculartheory ......................................•...........•...........•......•... 192
Prepr_g characterisation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••193
ATL dev.lopment ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••11:4
6.3.1 Feaslbllity .•.•.•.....•.•.•...............•.......••....•...•...•.••.•••..••••••.•••.•.•.•••• 194
6.3.2 Appllcation .....•...•.........•.....•..••........•.•......•.•....•.••••....••.•.••••....•••. 195
Major conclusion ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••19&

6.2
6.3

6.4
7 Recommendations and future work 199
7.1
7.2
7.3

Tack and .tlffne •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••199
Prepreg •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••200
~1rL. ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• :lc)CJ

~J)I)E!I1c1I)( ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••:t():t
A. Publications arising from this thesis 2()2
B. Calibration of rolling friction and backing film 2()3
C. ~nalysis of single level results 2()4
D. Analysis of temperature sweep results 2()S
E. Statistical confidence ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••206
Ftt!fE!rE!I1C:E!!I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• :2ClIl

R J Crossley 8



Chapter 1 - Introduction

1 Introduction

The Increasing demand for wind turbines has lead to a shortage In turbine blade supply

(Chapter 1.1). Current turbine blade production Involves a significant amount of manual

glass fibre placement leading to long production times, high labour costs and poor part

consistency (Chapter 1.3). Manufacturers are now seeking to improve production by

utilising automated production methods. However, for reasons of design and effiCiency

suitable automated processes are limited to those capable of producing large blade

components (>60m long) with unidirectional fibres running along the length (Chapter

1.2). Automated Tape Lay-up (ATL), traditionally utilised for aerospace applications, is

believed to be the most appropriate candidate for development.

1.1 Turbine blade demand

The release of CO2 gasses into the atmosphere when burning fossil fuels is now

recognised as a major contributor towards global warming [1]. The United Nations have

agreed through the Kyoto protocol to reduce emissions In the developed world with a

cost penalty for every tonne of C02 produced exceeding agreed limits [2]. The tax
penalty for CO2emissions coupled with Increasing cost of 011 and gas, as finite resources

become depleted, have allowed emission free renewable energy resources to increase in

affordability. Therefore, wind power has become increasingly popuiar as a zero

emissions means of generating electricity. Wind power has proven to be cost effective

and reliable In comparison to other renewable energy sources. For the year 2008, 36%

(8,484 MW) of the European Union's (EU) newly Installed capacity was wind energy,

making it the fastest growing electricity source [3]. Wind power has seen an exponential

growth in demand for Installed capacity which Is set to continue with annual growth of

17%, hampered marginally by the financial crisis In 2009 (Fig 1-1).
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Fig 1.-1. GWECworld market forecast for installed wind power capacity [4J

Blades account for approximately 13% of the total cost of the turbine [5]. Blade

manufacturing is now one of the largest single applications of engineered composites in

the world. In 2007 more than 200,000 metric tonnes of finished blade structures were

completed, consisting of [6]:-

• Glass fibre - 100,240 tonnes

• Carbon fibre - 2,090 tonnes

• Thermoset resin (primarily epoxy and vinyl ester) - 82,550 tonnes

• Core (balsa and foam) - 8,160 tonnes

• Metal (finishing and bolts) - 6,800 tonnes

With these values expected to rise, production increases are required to meet demand.

The stagnation in the growth of large turbine installations (>2 MW) during 2007 was

said to be the result of component shortages, particularly blades [7]. This overwhelming

demand has caused manufacturers to seek automated methods to improve production

efficiency and satisfy demand [8].
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1.2 Turbine bladedesign

1.2.1 Size

The kinetic energy or power contained in moving air is a function of velocity and swept

area [9]. An increase in turbine diameter results in a squared increase in power output.

This relationship allows a greater power yield per installation cost, reducing the overall

cost per kW. This saving drives manufacturers to produce turbines with increasingly

large rotor diameters. Reducing the blade mass is necessary to allow production of

larger turbines. Simple scaling laws suggest that the turbine blade mass should increase

at a cubed rate proportionally with rotor diameter [10]. However, a 2.65 exponential

mass increase has been observed in practice [9, 11]. This favourable deviation is

attributed to improvements in blade materials, mostly the strength to weight ratio of

composites [11]. Technological advances in materials have allowed the wind energy

market to capitalise on larger turbines with a significant increase in large (>2MW)

turbine installations accounting for more than half of all installed capacity across Europe

in 2006 [7].

The continued trend of increasing turbine diameter installations appears to have

reached a plateau at 126m diameter with 62m lcnq blades in 2004 (Fig 1-2). The

plateau is generally attributed to the increasing design, production, transport and

installation costs. However, increasing financial support from government organisations

may allow larger blades to be developed in future. One such development is the Clipper

Wind 'Britannia project', a 10MW turbine expected to have 72m blades [12].
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Fig 1-2 The largest wind turbine diameters from 1980 to 2008 [7J
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1.2.2 Geometry

High rotor aerodynamic efficiency Is desirable and Is typically maximised within the

limits of affordable production. It is widely accepted that not all of the winds kinetic

energy may be utilised and that wind turbine efficiency cannot exceed 59.3%,

commonly referred to as the Betz limit [10, 13]. This concept along with tip losses and

rotational losses Is embodied In the Blade Element Momentum (BEM) method, which Is

used to define the optimum blade geometry for aerodynamic performance [14]. The

BEM method Is also used to define the aerodynamic loads. The blade may then be

modelled as a simple encastre beam [9]. The main aerodynamic load causes the blade

to deflect towards the tower in the 'flatwise' direction. The Increasing bending moment

towards the root indicates that structural requirements also determine blade shape, with

Increasing Influence towards the hub. Areas approaching the hub require thicker

aerofoils to Increase structural effiCiency [15]. Other operational loads tend be

proportional to blade mass under gravitational, centrifugal and inertial forces [16].

An efficient rotor blade defined by BEM will typically consist of a complex shape with

several aerofoil profiles blended at an angle of twist terminating at a circular flange (Fig

1-3) [10, 17]. To reduce mould complexity and manufacturing costs several deviations

from the Ideal shape are likely, including:-

• Reducing the angle of twist

• linearization of the change in chord length

Such simplifications are detrimental to rotor efficiency [18] and are unlikely to be

tolerated by manufacturers without significant justification. The introduction of new

moulding techniques and materials has allowed production of Increasingly complex

blade shapes. However, production economiCSand practicalities are likely to dictate final

geometry. Turbine suppliers are now capable of the cost effective production of blades

with optimisation features such as; an angle of twist up to 16°, variable chord length up

to 4.2m and multiple aerofoil geometries, with quoted efficiencies of up to 51% for a
90m rotor [19].
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Linearchord length
! (simplified for manufacture)

III I I I I II=:J
Angle of twist

!

x
/x
7

~ ----
FFA-W3-301 Structural aerofoil

DU93-W-210 performance aerofoil

Fig 1-3A typical modern commercial blade with multiple aerofoil profiles, angle of twist

and linear chord length increase

1.2.3 Materials

Composite materials allow the necessary complex aerofoil blade shapes to be formed

and are used by all wind turbine market leaders. They also offer superior structural

capabilities and resistance to corrosion. They are generally formed into a laminate which

consists of layers of fibres encased in a polymer resin matrix. Two laminates may be

separated by a foam core to form a sandwich panel which increases flexural rigidity with

minimal weight increase. An almost endless combination of sandwich configurations,

matrix, fibres and foam core components are utilised, tailored to suit the application and

load case. The typical component and laminate configuration for wind turbine blades is

reviewed here in order to assess the ability of automation methods to handle such

materials.

Resin Matrix

Thermoset resins are the only resin type currently utilised by mainstream turbine

manufacturers. Thermoset resins can be formed easily and then cured at elevated

temperature, solidifying in the required shape by an irreversible chemical reaction.

These isotropic materials allow load transfer between the reinforcement fibres, other

duties include [20]:-

• Protecting notch sensitive fibres from abrasion
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• Protecting fibres from moisture, oxidation and chemicals

• Providing shear, transverse tensile and compression properties

• Governing the thermo-mechanical performance

Epoxy and polyester resin systems are favoured by rotor blade manufacturers for their

widespread existing working knowledge, availability, performance and ease of

production. They are general purpose resins with Inapplicable alternatives selected for

their fire and chemical resistance. Polyester resins offer versatility, good physical and

mechanical properties, are readily available and cost effective [20]. Polyester resins

were once the most popular resin type for rotor blade manufacture. However, their use

has declined in all but one leading supplier of rotor blades, generally due to the Increase

In performance demands and the reduction In cost of superior epoxy resins.

Additionally, polyester resins are Incompatible with desirable higher modulus carbon

fibres with mainstream surface treatments. A major contribution to the decline In

polyester use can be attributed to health and safety risks [21]. Epoxy resins now

dominate consumption, superior In most respects to polyester resins, which are

generally preferred simply on the grounds of cost [22]. They are typically tougher than

polyesters, shrink less and have good reststence to heat distortion. The ability of epoxy

resins to be partially cured so that prepregs can be supplied offers Increased flexibility In

manufacturing. A direct comparison of properties (Table 1-1) highlights the advantages

of epoxy.

Table :1.-:1. A comparison of the two resins most commonly used in wind turbine blades

Crlterl. Epoxy Polyester

Estimated use in turbine rotors 70% 30%

Availability and expertise Excellent Excellent

occupational contact allergy Regulated volatile organic

Health and safety Issues (OCA) dermatltls[23] compound emlsslons[21]

(minor) (major cost Implications)

Common forming processes
Prepreg lay-up Wet lay-up

vacuum Infusion vacuum Infusion

Common curing processes
Elevated temperature under Ambient or elevated temperature

Vacuum with or without vacuum

Non - compatible fibres Some CSMbinding agents Mainstream carbon
Shrinkage on cure 3-4% [24, 25) 4-8% [22]
Density (p)[22] 1.1-1.4 Mg/ml 1.2-1.5 Mg/ml

Young's modulus (e)[22] 3-6 GPa 2-4.S GPa
Tensile strength (0')[22) 0.03S-0.1 GPa 0.004-0.09 GPa
Failure strain (£)[22] 1-6% 2%
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Fibres

Fibres carry the majority of the structural load. Consequently, the essential property of

a fibre is defined as the elastic modulus. It must be significantly stiffer than the matrix,

which allows It to carry and transfer the load applied to the composite [20]. Since the

fibre is the main load bearing component It must also have sufficient strength to avoid

failure. Glass fibres are the most popular fibre reinforcement utilised by all of the

leading rotor blade producers [26]. There are several types of glass fibres available each

with a unique chemical composition and favourable properties. Although E-glass was

originally designated by Its excellent electrical Insulation properties it also offers

relatively high mechanical strength, durability at low cost with good availability and

working knowledge [27]. Therefore, E-glass dominates consumption in both the rotor

blade and general composite market. S-glass is deSignated for its increased strength

and is likely to be limited to local reinforcement of highly stressed areas due to higher

cost. S-glass Is mostly used by manufacturers using polyester resins since those using

epoxy are likely to prefer superior carbon fibres which are not compatible with polyester

resins [28]. Carbon fibres are the predominant reinforcement material used to achieve

high stiffness and strength. These fibres offer superior mechanical and fatigue

properties In comparison to glass fibre [20]. At present, due to increased cost, carbon

fibres are restricted In use to local reinforcement of highly stressed areas. However,

recent large blade designs with complete carbon slender spars have been produced

[28]. Therefore, the focus of wind energy carbon fibre has been on moderate to low

stiffness and high failure strain properties, which better conform to the glass fibre

properties of which they are to be integrated [11]. An extensive range of commercially

available fibre types exist. For comparison, more general published data is also available

(Table 1-2) [20].

Tabl. 1.-2 A comparison of typical fibre reinforcements used In turbine blades [201

EGlass S2 - Glass T300 carbon Tl000G carbon
Fibre

Std. grade High strength Low grade High grade
Density [Kg/ml] 2570 2470 1760 1800
Modulus [GPa] 72.5 88 230 294

UT Strength [MPa] 3331 4600 3530 6370
UTStrain [%] 2.5 3 1.S 2.2

Fibre volume fraction and orientation

Fibre volume fraction and orientation also affects the overall strength and stiffness of

the finished laminate [22, 29]. It is desirable to achieve a high fibre volume fraction to

maintain the overall high strength provided by the fibres. The volume fraction that may
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be achieved Is typically dependent on the fibres and forming process [30]. Recently

implemented vacuum infusion processes offer superior VF of 50-60% when compared to

40% achievable by hand lay-up. Mechanical performance is also effected by processing

defects such as voids, resin rich or dry fibre areas [31]. The highest fibre volume

fraction and laminate mechanical performance Is typically achieved using continuous

unidirectional fibres. Short fibre composites generally have reduced performance due to

reduced volume fraction and alignment [22]. The prediction of composite strength in

transverse and shear loading is also possible [22]. These predictions and experimental

results indicate that composite materials are considerably stronger in the fibre direction.

Fibre architecture is therefore chosen carefully to suit loading conditions with a range of

commercially available formats:-

• Unidirectional (UD), Continuous fibres lie in a single direction held In position by

a minimal amount of cross stitching or a binding agent. Ideally suited for polar

axial loading conditions the finished composite Is highly anisotropic. This fibre

orientation Is utilised In the spar cap region of the rotor blade well suited to the

Intensive loads which run along the blade length.

• Bidirectional (Biax), Continuous fibres are situated normal to each other achieved

by either a woven fabric or by layering unidirectional fabrics. Bidirectional fabrics

are used In two dimensional and shear loading conditions to avoid transverse

loading of the fibres. They may be utilised In shear webs and within laminates of

other blade components. Biax and UD fibres may also be combined to produce a

tri-axial (trlax) fabric with Improved strength in the UD fibre direction.

• Random, Fibres are randomly orientated and can be either continuous or

chopped, known as chopped strand mat (CSM). This type of fibre alignment

typically results in Inferior mechanical properties. Randomly orientated fibres

have the advantage of being In plane IsotropiC facilitating simpler stress

predictions with lower material costs. They may be utilised In non-structural
areas.

Manufacturers typically use a range of fibre orientations In a lay-up sequence to give the

required mechanical performance at specific areas of the blade (Fig 1-4).

Sandwich core

Core materials are used by all wind turbine manufacturers typically within trailing edge

panels and shear webs to prevent buckling. Core sandwich constructions produce a stiff,

light economic structure [20]. Using a low density core material increases flexural

rigidity with no significant weight penalty. The core supports lateral loads experienced

by the laminate component through shear, therefore the relevant properties are shear
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strength and modulus [27]. The sandwich concept relies on the laminates being kept at

constant thickness under loading, a small degree of compression of the core material

causes a significant decrease in flexural rigidity [27]. Traditional methods for calculating

the flexural rigidity of sandwich beams and shear stress of their core material are well

defined [20]. Four types of core materials exist; honeycomb, corrugated, foam and

balsa. Corrugated and honeycomb cores are not typically used in turbine blades due to

their high cost and incompatibility with vacuum resin infusion methods. Mostly foam or

cellular plastic cores are utilised. Any polymer, thermoset and thermoplastic alike can be

expanded in several different manners. The density ranges available signify that a

nearly limitless scope of properties are achievable to suit any application [27]. Two

common foam materials used in the manufacture of blades are Poly Vinyl Chloride (PVC)

foam and Polyurethane CPU) foam [16]. PVC is usually favoured due to its superior

mechanical properties and temperature tolerance. Both balsa and foam may be used

depending on the material cost and availability. Foam is usually favoured as it is in line

with expertise and supply chain. Similarly, manufacturers utilising wood hybrids are

likely to prefer balsa.

IUOl21 Plies (12 18t)

[UOI 3 Piles (1.74t)

t.;r ;;;;~<J~~5=~::::;;~~=~=' IUOl2 Plies (1.16t)

} rUDI 8 PII" (4.~t)

[UO}8 Piles (4.~t)

(UO)1 Ply (0.58t)

[UO}5 Plies (2.91)

1. "CQ # = ;_-- [UO} 1 Ply (0.58t)

(UO)2 Ply (1.16t)

IUOI 2 Ply (1.16t)

Fig 1-4 Typical fibre lay-up sequence for a 23m blade [17J
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Components

To maintain aerodynamic shape and withstand the required loads, a typical blade design

will have several distinguishable areas within an assembly which have significant

differences in material usage (Fig 1-5):-

1. Outer coating, an aerodynamically significant smooth surface resistant to soiling,

environmental weathering and UV corrosion. Typically a gel coat.

2. Sandwich shell, responsible for maintaining the blade's aerodynamic shape,

resistant to panel buckling, lightning and bird strike. Typically, thin (>3mm)

multi-axial E-glass fibre laminates with a lightweight foam or balsa core.

3. Laminate spar caps, structural components carrying high flapwise bending

moments caused by aerodynamic loading. Typically a thick (>20mm) E glass

continuous unidirectional fibre in the laminate which may incorporate high 5

glass or carbon fibres. It is critical that the fibres are laid along the blade length.

4. Shear webs, structural components to carry shear forces developed from

flapwise bending moments and gravitational loading. Typically, thick (>10mm)

multi-axial E glass fibre laminates with a lightweight core.

Fig 1.-5 Typical components of a wind turbine blade cross section determined by

composite material usage
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Assembly

The type of process chosen for component construction generally dictates blade

assembly. Two major design variations have emerged. A blade manufacturer who

utilises filament winding (FW) will typically separate the main structural loading

component to produce a central closed box section which is better suited to this method

(Fig 1-6). The central box section may be integrated with foam cores and unidirectional

material in the shear web and spar cap regions. Manufacturers who utilise vacuum

infusion (VI) will typically integrate the spar cap material into the blade shell with

separate shear web components. Production of a central box spar may also be carried

out by VI.

Vacuum infused aerodynamic shell

V Integral foam core

Vacuum infused aerodynamicshell

Integral continuous unidir ctio al fibres
~~

Vacuum infused shear webs

Integral foam core

Fig 1.-6 Two typical blade designs incorporating either a box section produced by FW

(top) or shear webs (bottom) typically produced by VI
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1.3 Existing production methods

Prepreg and vacuum Infusion (VI) have mostly replaced wet lay-up as the mainstream

manufacturing process for rotor blade production. These methods are flexible but rely

on the manual positioning of materials. Filament winding is the most successful

historical attempt at automation. However, difficulties in forming the trailing edge

prevented large scale production of the full blade component. Despite this drawback,

many blades with filament wound structural box section spars have been produced.

Therefore, fibre winding is included within existing production methods.

Wet/ay-up

Until recentJy wet Jay-up techniques, used traditionally in the boat building Industry

[11], were favoured for turbine blade production. Wet Jay-up production suffers from

poor repeatability, high labour content and health Issues. This process has now been

replaced by vacuum resin Infusion or prepreg methods In all of the top ten suppliers.

Low volume production may stili continue In smaller companies or to cover excess

production. Wet lay-up Is the simplest method used for forming composite materials.

The fibres are laid out over a mould and wetted out with a premixed resin by hand using

a brush or roller. This method demands longer curing times as the resin needs to

remain viscous throughout the lengthy rolling process. The quality and strength of the

laminate relies heavily on the skill of the workforce. It has no guaranteed repeatability

and produces relatively low fibre volume fractions [32]. A typical cycle time for using

wet lay-up techniques on a 40m blade Is 2 days [33] with increased scrap and re-work

due to human error. The wet lay-up process results In parts with Inconsistent fibre

orientations with strands separating from the fibre preform mat due to excess handling.

The process also results In an uneven surface on the Inner skin resulting In poor bonding

of the blade shells In final assembly [32].

Significant health and safety risks are associated with polyester wet lay-up techniques.

Harmful Volatile Organic Compounds (VOCS), primarily styrene, are released during the

curing process [21]. New and Increasingly tightening legislation exists limiting the

styrene content In air. The clean air requirement for workshops has offset the cost of

Investing In Improved forming methods against the cost of newly required ventilation

equipment [32]. Despite Its drawbacks the process remains attractive for Its simplicity
and low cost (Table 1-3).
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Table 1.-3 A summary of the wet lay-up forming process

Advantages Disadvantages

Low investment cost

Simple to learn

Wide choice of materials

and resins

Poor repeatability

Labour intensive

Quality is worker skill dependant

Costly ventilation equipment required to meet health and safety legislation

Low fibre volume fractions (30 - 40%)

Long cure times (48hr cycle time)

Uneven bonding surface

Vacuum infusion

Vacuum infusion moulding has recently increased in popularity in turbine blade

production due to desires to improve working conditions, increase structural integrity

and repeatability. A number of acronyms, patented technologies and processes have

evolved relating to differences in the technical approach to resin infusion. Vacuum

assisted resin transfer moulding (VARTM) has been used to describe the infusion

process without reference to tooling. Resin infusion under flexible tooling (RIFT) is used

to define a resin infusion process which involves a flexible surface such as a bagging

film [34]. All such processes may be referred to as vacuum infusion (VI). VI turbine

production involves arranging the dry fibres in a female mould tool (Fig 1-7) which may

include channels or porous layers to facilitate resin flow. The mould tool and dry fibres

are then covered with a sealed bag. The air between the bag and mould tool is removed

creating a vacuum which draws the resin into the mould (Fig 1-8). The resultant

component will have a single quality surface matching the mould tool and an inner

surface suitable for bonding internal structural components.

Fig 1.-7 Hand lay-up of dry fibres in a turbine blade mould [LM GlassfibreJ
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Fig 1-8 Resin impregnation during VI of a turbine blade shell [Tygavac]

Individual processes are distinguished by the methods used to ensure resin flows evenly

to all areas without voids. The dominant impregnation mechanism is through thickness

flow, thus the flow path through the relatively low permeability reinforcement is very

short, and a high vacuum is relied upon to ensure that voids are reduced [30]. As the

resin no longer needs to remain fluid throughout the lay-up process faster curing times

can be achieved. Therefore, an overall cycle time of 24 hours is obtainable for a 40m

blade [33]. The VI process has a reasonable level of flexibility with a novel approach

being adopted by one manufacturer using a closed mould bladder process (Fig 1-9).

Fig 1-9 Hand lay-up of the laminate material in the open mould which is then closed

ready for inflation of the bladder type vacuum bag [Siemens Wind]

In comparison to wet lay-up, VI processing has improved; cycle times, repeatability,

working conditions, volume fractions and component quality. However, several

difficulties remain (Table 1-4). In particular ensuring all fibres are fully wet-out by the

resin [11]. Other negative attributes such as a high labour content and component

inconsistencies result from the hand assembly of dry fibres which can also move during

resin infusion.
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Table 1-4 Characteristics of the Vacuum resin infusion process [34]

Advantages Disadvantages

Compatible with epoxy and polyester resin systems.

Compatible with most conventional fabric
reinforcements.

Lower cost materials compared to prepreg.
Fewer health and safety Issues.

Relatively low tooling costs.
Faster cure and cycle times (24hr).

Superior repeatability to hand lay-up (HLU).
Superior achievable volume fraction to HLU.

Microstructure Is more uniform with reduced void
content compared to HLU.

Complex process with additional skills required

compared to HLU.
Sensitive to leaks.

Low viscosity requirements of resin may
compromise mechanical and thermal properties.

Uneven flow may result In dry fabric areas and

expensive scrap parts.

Poor repeatability due to hand positioning of
fabrics which may move during resin flow.

High labour content.

The prepreg process

Prepreg hand lamination involves cutting plies into the required shape, removing the

backing paper and placing them into a mould. Pressure is manually applied to ensure

the ply conforms to the mould surface. Tack levels are formulated such that the material

will remain In place throughout the lamination process but can be repositioned If

necessary.

Prepreg Is typically manufactured by laying fibres and resin between sheets of silicone

paper or plastic film. The layers are then pressed or rolled, to ensure consolidation and

wetting of the fibres, then partially cured to produce a flexible pre-impregnated

aggregate [22]. The additional processing leads to an increased cost. Nevertheless,

prepreg Is stili favoured for guaranteed resin matrix fibre compatibility, optimum volume

fractions, reduced variability, ease of handling and improved placement accuracy [35].

Prepreg use is generally associated with high performance applications In the aerospace

Industry, which require high pressure and temperature cure in an autoclave [22]. An

autoclave suitably sized for wind turbine rotor blades would incur excessive costs.

Therefore, prepregs used by wind turbine manufacturers are cured under vacuum In a

similar arrangement to vacuum resin infusion without gross resin flow. The prepreg

material is laid up by hand, held In place due to Its tacky consistency. Curing takes

place at 80-1200C under vacuum. Limited harmful emissions are associated with

prepreg, health concerns over occupational contact allergy dermatitis can be easily
overcome [23].

Prepreg materials effectively begin to cure slowly at room temperature, limiting the

shelf life. Therefore, freezer storage is required at additional cost. Prepreg material use
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is somewhat restricted in blade production due to the associated additional costs (Table

1-5). However, prepreg offers the advantage of good fibre alignment during processing

resulting in parts with lower fibre flaws and excellent predicted properties [32]. Again,

this process suffers from a high labour content and inconsistencies associated with hand

placement of fabrics.

Table 1-5 A summary of the prepreg forming process [11, 35J

DllIlIdvantllll_

Consistency in resin quality and material properties.
Improved repeatability.

Optimum fibre volume fractions.
Easler to cut and place accurately.

Minimal health and safety Issues.

Increased materials cost compared to VI and hand
lay-up.

May require freezer storage at Increased cost.
Hand assembly leading to high labour content and

repeatability issues.

Traditional filament winding

Filament Winding (FW) Is primarily used in the fabrication of vessels and tubes. In this

process the continuous strands of fibre are submerged In a resin bath and then spun

around a cylindrical driven mandrel of the required shape [32]. FW use in the wind

turbine industry is restricted to the production of a spar box section due to its Inability

to form the sharp trailing edges of aerofoils (Fig 1-10). FW box sections lack structural

efficiency due to the inability to place longitudinal fibres [32]. This deficiency was

overcome initially by simply Increasing thicknesses consequently leading to excessive

blade mass and material costs which become increasingly detrimental as blade length

Increases. Fully mechanised 38m rotor blade production was conducted using filament

winding techniques in the 1980's. These glass polyester blades were said to be some of

the heaviest ever produced [9]. This excessive mass together with the cost of materials

and machinery lead to its withdrawal from use.

CSM = Continuous Strand Mat

TFT wound spar

CSM/polycsler
~PVCfoam

~ CSM/polycster
Gel coat

Fig 1-10 A typical blade with a filament wound box section spar [16J
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1.4 Automated forming processes

With hand lay-up, considerable time is spent in the manual positioning of plies and

accuracy Is subject to the laminator's skill. Therefore, the process Is labour intensive,

lacks consistency and would benefit considerably from automation [36] (Table 1-6).

Automated ply lamination (APL) seeks to resolve these issues by automated cutting,

picking and placement of complete plies. Considerable technical difficulty Is attributed to

the prepreg tack level which must be low to allow backing paper removal but remain

high enough to hold the lay-up together [37]. In general slow and complex development

of automated lay-up has been attributed to the tacky and flexible nature of prepreg
[36]. The APL method Is unsuitable for the large curved surfaces of wind turbine blades

and still requires significant manual intervention. Continuous lamination processes

Involve feeding prepreg from a roll and cutting and placing prepreg whilst traversing the

mould surface in a layer by layer process. These processes are suitable, since the

laminating head is able to follow the contours of the mould surface and remove backing

paper In-situ. A suitable automated process would Ideally meet the following criteria

(Chapter 1.2):-

• Capable of producing components above 42m in length

• Capable of complex curved and twisted geometry

• Ability to lay unidirectional fibres along the length

• Capable of incorporating foam cores

• Ability to lay multiple fibre types in multiple directions

• Capable of achieving a high fibre volume fraction

A number of automated methods which have potential to produce turbine blade

components are outlined (Table 1-7).

Tilble 1-6 The advantages of automat/on /n turbine blade production

Reduced cycle times

Increased deposition rates through mechanisation

allowing 24hr production

Improved alignment, compaction pressures

Using a single machine operator

Increased accuracy of material placement

Elimination of human error

Integrated tool paths In design analysis

Future possibility of In-situ curing

Reduced lay-up times

Increased fibre volume fractions
Reduced labour content and cost

Improved component repeatability
Reduced scrap rates

R 1 Crossley 25



Chapter 1 - Introduction

Table 1.-7 Automated methods with potential for turbine blade production

Typical size Geometric flexibility
Method Typical product

(S,M,L)

Automated Tape Laying (ATL) ALL Curved surfaces /

Automated Fibre Placement (AFP)
Aerospace structural

hollow sections

Automated tape or tow winding
components S,M

Smooth hollow

Filament winding Pressure vessel ALL sections only

Automated Tape Laying (ATL)

The ATL process is used for the production of high performance parts in the aerospace

industry [27]. The process involves robotic placement of relatively narrow (lS0-300mm

[38]) strips of prepreg. Typically, the prepreg is heated and its backing tape is removed,

it is then positioned and cut accordingly. These operations occur continuously within a

material delivery head. The delivery head is robotically manoeuvred along an overhead

gantry with multiple axis of travel (Fig 1-11). The working envelope is relatively large

(20x4x3m [38]) and can be extended in the X axis to accommodate longer components

such as turbine blades. The option of multiple heads working on a single gantry is also

available. The material head will perform multiple passes in alternating directions to

build up laminate layers of the required thickness and direction.

4 X

Mold

Mold

Extend the X-axrs travel
in 12 ' increments

Fig 1.-1.1. A typical ATL gantry system and working envelope [38]

The typical ATL configuration is most suitable for producing flat or gently curved

surfaces and has been utilised by the aerospace industry to produce wing skin sections

[27]. Sections of 9m length, 2m width and up to 22mm thickness have been produced
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by Airbus [38]. Typical deposition rates are relatively high for aerospace production,

between 16-26 kg/hour [38, 39]. ATL has the ability to form the gently curved profile of

the blade and deposit unidirectional fibres along the blade length with increased

accuracy. However, modifications would be required to increase deposition rates and

reduce raw material costs in order to ensure success in turbine blade production. A

comparison is made between the current ATL process and the hand VI methods for

blade production (Table 1-8).

Table J-8 ATL in comparison to VI hand Jay-up methods

Advantages Disadvantages

Reduced labour content.

Improved repeatability.

Improved accuracy of fibre placement.

Reduced scrap rate.

High fibre volume fractions.

High initial investment costs.

Increased material costs.

Additional programming costs.

Low relative deposition rates in comparison to VI

hand lay-up.

Automated Fibre Placement (AFP)

AFP involves the robotic placement of individual fibre tows in a similar machine

configuration to ATL. Cutting and placing individual tows offers the advantage of a

variable tape width, with increments equal to one tow width [40]. The material delivery

head layout (Fig 1-12) is similar to the ATL head with the exception of independent

cutting and restarting of individual tows.

Fig 1-12 Typical AFP material delivery head configuration [40J

The robotic configuration is generally similar to ATL and can be tailored to suit

manufacturer's requirements. Therefore, AFP has similar characteristics to ATL (Table

1-8) with additional flexibility in the ability to vary lay-up width which comes with
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increased cost. The additional flexibility of AFP allows the production of more complex

parts with increased machine and programming complexity which results in a reduced

deposition rate for larger components.

Automated tape winding (ATW)

ATW is essentially ATL with a mandrel mould configuration and is often not

distinguished as a separate process. ATW allows lay-up over a numerically controlled

rotating mandrel to form closed hollow sections (Fig 1-13). Prepreg tape is laid using a

material delivery head similar to that of ATL with the exception that material may be

mounted away from the head accommodating larger rolls. The rotating mandrel allows

continuous lay-up with fewer cuts resulting in improved deposition rates. Once the

mandrel has been layered sufficiently thick, it is then cured in a secondary autoclave or

vac bag process. The ATW process exhibits similar characteristics to ATL configured to

produce tubular parts rather than flat panels. However, the ATW process performs

faster deposition rates than ATL due to the reduced number of cutting operations with

the exception of longitudinal directions. For longitudinal fibre direction cutting is still

required resulting in deposition rates similar to that of ATL. Therefore, ATW offers no

advantage over ATL for producing open curved surfaces or closed sections with a

significant amount of longitudinal fibre placement, as found in blade components.

Fig 1-13 Typical automated tape winding process [41J

Modern filament winding

Production of the aerodynamic shape of a blade using traditional filament winding (FW)

was eventually considered inefficient and problematic (Chapter 1.3). However, FW

remains suitable for the production of a box section structural spar provided fibres can

now be laid in an almost longitudinal direction. Recent advances have been made using

the FW process which increase its potential [42]:-

• Increased precision resin baths for improved 'wet out' of fibres.
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• A pin ring system to improve low winding angles (near longitudinal fibre

directions).

• Online monitoring of fibre resin volume fractions.

Recent innovations allow the continuous filament winding (CFW) of thermoplastic glass

reinforced tubing with a higher allowable strain, impact resistance and improved

robustness [42]. Innovations have also allowed the inclusion of optical fibres for data

transmission, strain and damage monitoring. CFW equipment (Fig 1-14) is readily

available for the production of up to 4m diameter tube. The CFW process utilises a

thermoset matrix with UV cure, reporting production rates of up to 50 meters per hour

[43, 44]. Despite these recent advances in FW the problem of longitudinal fibre

placement and inability to form sharp edges continues to limit this method to closed

hollow gently rounded structures under radial and hoop stress loads.

Fig 1-14 Modern fibre winding equipment capable of producing 48m/hr of (2J600mm

GFRPtube

Summary

Winding processes appear limited to the production of closed hollow sections.

Development of winding processes for blade production should only be pursued if the

manufacturer is content to be constrained to a structural box section spar design.

Additionally, successful rapid production of the spar component requires an equally

rapid method of shell production to be developed. AFP is considered a flexible process

capable of producing all WTRB components. The process is very similar to ATL with the

ability to lay individual tows resulting in a material delivery head with extra flexibility.

However, such flexibility incurs additional cost and reduced deposition rates.

ATL is considered to have the most potential in satisfying the demands of automated

turbine production; an exlstlnq technology with known material attributes offering the
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flexibility to produce all blade components. ATL has proven capability In producing

similar geometry aerospace components. However, the typical wind turbine component

size and material thickness has yet to be achieved. Increased deposition rates and a

reduction In material costs are required for the successful Implementation of ATL in

turbine blade production. Successful development has predicted cost savings of 8% per

annum [45] In addition to; reduced labour content, Improved repeatability, improved

accuracy of fibre placement, reduced scrap rate and higher fibre volume fraction in

laminates.

1.5 Alms and objectives

The primary aim of this project was to develop ATL for wind turbine blade production,

requiring:-

• A reduction In material cost, switching from high cost toughened aerospace

resins with carbon fibres to low cost simple epoxy BPAresins with E-glass fibres.

• Wind turbine compatible materla/s, Using low exotherm resins to allow the curing

of thick laminates.

• An increase in deposition rates, Facilitated by increasing the FAW thickness of
prepregs.

• A reduction In tooling cost, To produce low cost fibreglass tooling using typical

wind turbine industry methods suitable for ATL.

Alms and objectives evolved with the project In reaction to problems which occurred in

satisfying the primary aim. During the trials of these new materials tack and stiffness

properties of the ATL prepreg were found to significantly affect lay-up performance.

However, a reliable method of quantifying tack limited the understanding of the process

and the ability to develop new materials. Therefore, a number of secondary aims

emerged:-

• Develop a new method to quantify prepreg tack and stiffness
• Characterise existing prepreg

• Study the effects of variables

Throughout the experimental study results were occasionally confusing and

contradictory to current composites Industrial experience. However, greater

understanding of tack was found within the Pressure Sensitive Adhesives (PSA) field

where results were often related to polymer melt behaviour and rheology. These

additional alms were then set to establish the applicability of PSA and polymer melt

theories to prepreg tack and stlffness:-
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• Relate results to PSA research

• Relate results to resin rheology

• Establish the applicability of the tlme-temperature-superposltlon principle

• Relate results to molecular theory

1.6 Themeof this work

The work presented here has formed part of a TSB funded research project entitled

AIRPOWER. Several publications have resulted from this thesis (Appendix A). The

project was concerned with the development of rapid automated techniques for the

production of large scale off shore turbine blades with the Integration of optical fibre

sensors. The aim of this thesis was the development of ATL for wind turbine blade

production. New low cost low exotherm ATL materials were developed but proved

problematic in production and feasibility trials (Chapter 4.1). A review of the ATL

process Indicated that the success and performance of ATL is particularly sensitive to

the tack and stiffness properties of prepreg materials (Chapter 5.6). However, the lack

of a reliable method for quantifying tack limits the understanding of the process and

ability to develop new materials. Therefore, a new test was developed which quantifies

tack and stiffness during a simulated ATL application process (Chapter 3.3). The new

tack and stiffness test was then used to investigate the effect of process and material

variables (Chapter 3.5).

Greater understanding and explanation could be found In the comparison of results to

those found in Pressure Sensitive Adhesives (PSA) research where results are related to

polymer melt theory and rheology. The time temperature superposition principle, found

applicable to PSAs, was also discovered to be applicable to the tack and stiffness of

prepregs (Chapter 4.5). The theoretical implications of this relationship and

rationalisation of results are then discussed (Chapter 5.4.3). Tack and stiffness results

were then related to material tack performance during ATL lay-up in experimental trials.

The application of the new characterisation method and newly discovered time
temperature relationship for prepreg speCification and ATL performance are discussed

(Chapter 5). Major conclusions are then drawn on all aspects of this work suggesting

standardisation of prepreg tack characterisation and significant Improvements to

automated prepreg procesSing may now be possible (Chapter 6 at 7).
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2 Literature review

Review of literature and commercial experience regarding prepreg and the ATL process

indicates that tack to the mould surface is considered to be a major component of

successful lay-up. The ATL feasibility study confirms that both tack and stiffness of the

prepreg playa vital role. Tack Is also considered of equal Importance in AFP and to a

lesser extent In prepreg hand lay-up and fibre winding processes. Therefore, existing

commercial and scientific back ground literature is reviewed for both prepreg tack and

stiffness. The results and methods applied in the study of prepreg tack appear to have

stemmed from the study of pressure sensitive adhesives (PSA) where tack has been

studied more Intensely. In the study of PSAs tack has been related to the rheological

and molecular properties of the resin. An important relationship between the effects of

time and temperature on PSA tack has been observed during cohesive failure which

allows tack to be rationalised based on molecular theory. A background to molecular

theory Is required to discuss results from tack testing which are difficult to explain on

the macro scale.

2.1 Prepreg materials

An overview of prepreg component materials and production processes utilising prepreg

are available In the introduction (Chapter 1.2.3 and 1.3). The details of prepreg resin,

Impregnation methods and specification are discussed here.

2.1.1 Production

Prepreg Is produced by impregnating reinforcement fibres with resin to form a pre-

Impregnated, hence 'prepreg', fabric which can be cut and positioned easily. Four types

of prepreg production methods are typically utilised [46]; solution dip, solution spray,

direct hot melt coat and film calendaring. Filming processes are said to be faster and

cheaper, with solution methods utilised only when certain resin formulations prevent

filming [46]. In each of the methods the resin is partially reacted, termed beta or b-

stage, to give the correct degree of tack [46]. The hot melt film Impregnation method
was utilised for the production of prepregs used In this study. Hot melt film transfer
prepregging consists of four basic operations [47]:-

1. A resin film of uniform thickness is produced on backing paper. Precise control

of film thickness Is essential to control final prepreg resin content.

2. The resin matrix Impregnates the fibres in the Impregnation zone (Fig 2-1).

Pressure, temperature and line speed must be controlled to maintain the desired
resin distribution.

R J Crossley 32



Chapter 2 - Literature review

3. The prepreg temperature Is quickly reduced using a chili plate. Resin viscosity Is

reduced preserving fibre positions and resin distribution.

4. The prepreg may be slit to the required roll width and collected onto a take up

reel and placed In cold storage.

rhSin Film
on Releos.e

Fig 2-1 The hot melt film transfer prepregging process [47]

Stage two Is considered the most Important for maintaining Impregnation quality [47].

Due to the nature thin films and fibre porosity Impregnation may be subject to capillary

and surface tension effects. Pressure Is said to provide the driving force, temperature

controls the resin viscosity and line speed controls the Impregnation time where the

temperature-pressure-veloclty superposition principle between dimensionless variables
is considered valid [47].

Resin content

High fibre content Is beneficial In obtaining the highest mechanical properties. However,

the resin matrix Is required to transfer load between fibres. Therefore, when fibre

loadings exceed 70% (by volume) a reduction In mechanical properties Is generally

observed, attributed to fibre to fibre contact [46]. A standard loading of 60-65% Is said

to attain the best compromise. It has been standard practice to produce prepregs with

50:50 ratio and Induce a 10% bleed out during the vacuum bagging process, also

benefiCial in handling properties and washing out trapped air. However, this practice has

been criticised for excessive waste In resin and ancillary bleed soak materials [46].

2.1.2 Specification and supply

Manufacturers tend to specify prepreg materials using a series of designations

corresponding to material components, fibre areal weight (FAW) and architecture (Fig

2-2). Hand lay-up materials are typically supplied In rolls of one to 1.6m In width

covered on both sides with embossed polythene film. ATL materials are generally

supplied in rolls of 75, 150, 300 mm width, dependant on machine requirements, with a
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wax coated release paper on the reverse (Fig 2-3). Tack values are specified as high,

medium or low on datasheets relating to the tack level of the infused resin. Tack levels

are measured by a combination of probe and subjective methods. Uncured prepreg

stiffness is not specified.

Fibre architecture

aerial weight
g/m2

/UD268/IM7--
Fig 2-2 Typical manufacturer's prepreg designation and specification

Fig 2-3 ATLprepreg tape roll (left) in comparison to hand lay-up prepreg

ATL aerospace prepreg

Existing aerospace ATL materials typically utilise a high cost high performance

thermoset resin system (Table 2-1). A typical aerospace resin is described by

manufacturers as amine cured, toughened epoxy recommended for structural

applications requiring high strength, stiffness and damage tolerance. Resin content is

kept low (typically 32% by wt., 40% by vol.) to ensure the overall mechanical

performance is maintained.

High cost high strength carbon fibres (e.g. 1M7IAS4) are typically utilised to give the

highest strength to weight ratio. FAW rarely exceeds 200 g/m2 resulting in a ply

thickness of less than 0.2mm, suitable for the thin laminates required in aerospace

panels. Only unidirectional (UD) fibres are utilised since the ATL is capable of placing

fibre angles accurately to recreate multidirectional fabrics.
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Table 2-1 A comparison of aerospace 8552 and wind energy prepreg resin

Designation Description
Tensl'e propertl ..

Strength Modulu.

8552
High performance amine cured toughened

epoxy resin system
120 MPa 4.67 GPa

M19.1/M9.1F (High tack) Low exotherrn, versatile cure temperatures (SO-

M19.6/M9.6F (Medium tack) 160°C) and pressures (0.5-5 Bar) suitable for 85 MPa 3.2 GPa

M19.6LT/M9.6FLT (Low tack) vacuum bagging of thick components.

Hand lay-up wind energy prepreg

Existing wind energy prepregs typically consist of cost effective general epoxy resins

suitable for a low pressure moulding process. In comparison to aerospace resin systems

they are Inferior in strength and modulus (Table 2-1). However, they are low cost and

have a low exotherm Ideally suited to the production of thick laminates using vacuum

bag techniques. A range of low cost fibres and architectures are available to suit the

various wind turbine components (Table 2-2). The Inferior performance of wind energy

grade prepregs (Table 2-3) Is tolerated In return for significantly lower material cost,

high deposition rates, low exotherm and the suitability for low pressure forming

techniques.

Table 2-2 Wind energy prepreg fibre architecture and usage

DesIgnation DeKrlption Component u..".
BB600/G 600 g/m2 Biaxial E glass (300 glm2 at + and -45°)

Aerodynamic Shells, Shear

webs

LBB1200/G
1200 g/m'1.Trlax Eglass (566 glm'1.at 0°,297 g/m2 at

All
+ and -45°)

UD1600/G Unidirectional E glass 1600 glm'1.at 0° Spar caps

UD600/CHS Unidirectional high strength carbon fibre 600 91m2 at 0° High performance spar caps

Table 2-3 ATLaerospace and wind energy prepreg mechanical properties

Industry. procea I4lJterlal
Ten.,1e propertIa (Roll angle)

Strength (MPa)(O) Modulus (GPa)(O)

Aerospace, ATL and S552/34%/UD268/IM7 2570 160
autoclave 8552/34%/UD194/AS4 1900 135

M9.6/45%/BB600/G 112(0), 514(45) 11(0), 21(45)
Wind, Hand lay-up and M9.6/38%/LBB1200/G 512(0),276(45) 23(0), 13(45)

vacuum bag M9.1F/32%/UD1600/G 1312 51

M9.6FLT/32%/UD600/CHS 1600 130
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2.1.3 Resin chemistry and cure

Epoxy resins are polymers consisting of Blsphenol A (BPA) which takes Its name from Its

constituents of two moles of phenol and a single mole of acetone [48]. BPA resin Is

produced by dehydrohalogenatlon reactions of Blsphenol A and chlorohydrlns [49]. BPA-

eplchlorhydrln resins cannot be cross-linked by heat alone, even heating at 200°C has

little effect. In order to convert the resins into cross-linked structures It Is necessary to

add a curing agent. For prepregs the curing agent Is added at the time of prepregging.

The curing reaction Is then ongoing at the time of manufacture. The reaction tends to

obey the kinetic rate equation [50] and therefore the reaction may be slowed by

reducing temperature. A prepreg will then have Its storage life specified as typically one

month at ambient (23°C) and one year at freezer (-18°C) temperatures. The prepreg

storage life Is mostly limited by the loss of tack with age which may prevent hand

lamination [51]. Therefore, shelf life Is often referred to as tack life by manufacturers

[52]. Although the handling properties may be reduced due to loss of tack, the finished

laminate mechanical performance does not necessarily suffer until long after the tack

life has expired [53].

Epoxy prepreg resin has a viscosity which allows forming at room temperature. Once

positioned Into the desired mould shape the prepreg Is subjected to elevated

temperatures, known as a cure cycle, where It solidifies or cures to form the required

structure. Curing Is the result of cross-linking which Is the covalent bonding between

polymer molecules. This curing process Is Irreversible and therefore the resin Is known

as a thermoset. The reaction results In a transition from a melt to a glass state where

the process Is exothermic [49]. Therefore, differential scanning calorimetry (DSC),

which measures the heat flow of a sample, can be used to study cure kinetics and

measure cure enthalpy [50]. An Increase In cure enthalpy Is assoclated with an

Increased reaction and therefore degree of cure [54].
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2.2 Automated tape laying

The following section gives an in depth review of automated tape laying (ATL) and

similar automated lamination methods, a general overview of the automation and the

ATL process can be found in the introduction (Chapter 1.4). The ATL machine consists of

a Gantry and tape dispensing head (Fig 2-4), where the gantry is responsible for the

positioning of the tape head. The tape head is responsible for cutting and placement of

the prepreg (Fig 2-5).

Fig 2-4 Typical gantry mounted ATL equipment [55].

Compaction
assembly

u-axls
feedback device

u-axis
take-up
reel

Compaction
roller

Dual tape cutter
d, e, v, q axes

Tool surface

Fig 2-5 Typical ATL material dispensing head [56].
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Cutting

Older machines such as the one used In this study utilise pneumatically operated fixed

blades. Prepreg is held against a wear resistant plate by tape tension and cut from the

prepreg side. The blades require accurate depth settings such that the prepreg Is cut

but the backing paper remains Intact. Newer machines utilise ultrasonic cutting knifes
for Improved performance [36, 57].

Lamination

In the lay-up process prepreg tape Is guided off the spool and under a compaction tool

head with the uncovered surface facing the mould. The compaction tool then holds the

tape against the mould surface under a compaction force. The release paper Is then

removed onto a take up spool In a continuous process. Sufficient tack to the mould

surface and subsequent plies is considered essential for successful lay-up [55, 58, 59].

It Is also suggested that 'the tack levels should remain constant through the thickness

of the ATL tape to ensure splitting does not occur' [55]. However, it is more sensible to

define tape splitting as a result of poor impregnation leading to dry fibre bulk failure

rather than 'Internal tack failure'. Trapped air during lay-up Is considered detrimental,

related to Increase void content within the finished laminate resulting in reduced

mechanical strength [60]. Temperature, feed rate and compaction pressure are

controlled throughout the process and are thought to influence the tack level and

lamination quality. The ATL lamination process may be likened to other continuous

placement methods like AFP, with subtle differences, such as the lack of backing paper

[59] (Chapter 1.4). Similarities are also drawn with the laminating of thermoplastic

tapes which occur at higher temperatures.

Temperature

Lay-up temperature may be Increased 'Iocally at the point of tape application. For

thermoset aerospace prepreg a typical fixed temperature of 26-43°C [55] Is used to

Improve tack [61, 62]. It Is recommended that temperature Is reduced (low tack) for
cutting operations and Increased (high tack) for lay-up operations [58]. Special

temperature conSiderations have been made for low tack prepregs where tape

temperature was slightly increased (37-43°C) proportionately with feed rate. Lay-up

temperatures on such occasions were found by experimentation using the ATL machine.

Excessively low temperatures resulted In lack of tack and overheating was said to result

In tape splitting [63]. The tack of AFP fibre tows are also controlled using temperature

where tow guide chutes are chilled to prevent tack but heated using a gas torch at the

point of lamination [59]. Again, there are no guidelines for appropriate temperature
settings.
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Feed rate and performance

Increased feed rate Is generally desirable as It Is directly proportional to deposition rate,

where deposition rate may be used as an Indicator of performance. Typical lay-up rates

are between 16-26 kg/hour [39, 55]. However, there Is said to be a critical minimum

contact time which places a practical upper bound limit on the lay-up speed, greatly

limiting the cost effectiveness of automated machines [64]. However, the author does

not Identify any changes in the critical contact time which may occur with changes In

material temperature. Feed rate Is adjusted throughout lay-up (Typical range 1-47,900

rnm/rnln) to suit the difficulty of the particular operation and Is usually reduced during

cutting and at the start of lay-up. Dwelling or reducing feed rate over the ends or start

of tape Is recommended for Improved tack performance [64].

Compaction force

A significant compaction force Is applied using a roller or segmented shoe normal to the

mould surface which Is believed to Increase tack and remove trapped air [61]. The

compaction force Is typically fixed throughout lay-up but may change between

machines. A compaction force of 265-1300N Is typical for a 150mm wide segmented

shoe or roller [55]. Two lay-up behaviours have been Identified as pressure and surface

tension driven, where conformed or tacked area Is dependent on either the applied

contact pressure or the surface tension of the resin or rigid surface. In pressure driven

lay-up a force velocity superposition principle Is established, however, in the surface

tension driven behaviour the applied force Is considered unimportant [64]. In AFP the

compaction roller Is said to perform the function of bonding, tacking and de-bulking

which prevents residual stresses, voids and warping by squeezing out trapped air
pockets and Increasing contact area [59].

Mould tooling

High cost, high tolerance (:l::0.035mm [65]), stiff alloy tooling Is typically utilised which

can withstand the compaction pressure of the ATL head. Mould contour angles may be

limited to 15° from the horizontal which could easily be Improved by demand since It Is
a mechanical configuration constraint Imposed by the rotation limits of the delivery

head. Surface energy of the mould Is also considered applicable, since surface tension

driven lay-up behaviour has been Identified where It Is suggested that lay-up on a low

energy surface could be problematic [64]. The thermal properties of the tool material

should also be considered If Increased temperature lay-up Is required. It Is

recommended that materials which act as a heat sink are best avotded. Such mould

materials are blamed for rapid COOlingof the relatively thin matrix preventing good
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lamination. An epoxy mould tool was considered acceptable but a steel tool required

thermal insulation using Mylar sheet [63].

Humidity & prepreg age

Humidity changes unintentionally based on local and seasonal climate conditions and

has been found to effect tack and therefore lay-up performance in some cases [66]. The

age of prepreg is also known to effect tack, where tack level appears to be the principal

property determining the shelf life of prepreg [53]. Therefore, humidity and prepreg age

appear to be two uncontrolled variables which are present in the ATL process and, along

with prepreg batch variations, are occasionally thought responsible for failed or

inconsistent lay-up.

2.3 Prepreg flexural rigidity

It has become necessary to quantify uncured prepreg stiffness to assist with the

development of ATL for wind turbine blade production. Uncured flexural rigidity is most

applicable as it reflects the bending of ATL tape as it is fed around the compaction shoe

and forced to conform to the mould surface. A standard ASTM 01388 test (Fig 2-6) has

been utilised previously in research [51]. No load is required since the uncured prepreg

deforms significantly under its own weight. However, this does not allow a constant load

comparison of materials with differing FAWs. The stiffness in bending or forming

complex shapes may be affected by fibre weave and direction resulting in wrinkling

[67]. Wrinkling is considered detrimental to mechanical performance and is not

accepted by manufacturers using ATL, therefore it should be avoided and considered as

a material failure if found during testing.

fabric specimen

Fig 2-6 The ASTM 01388 uncured prepreg flexural rigidity test [51}.
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2.4 Prepreg tack

It has become necessary to quantify prepreg tack to assist with the development of ATL

materials for wind turbine blade production. A complete review of existing resin,

prepreg, and adhesive characterisation methods Is undertaken In order to find a suitable

method to quantify prepreg tack and stiffness which will allow a comparison of prepreg

materials.

2.4.1 Definition

The term tack Is used In the composites Industry to describe Instantaneous adhesion

before the resin has set or cured with the study of tack said to be one of the open

problems In adhesion science [68]. The definition of adhesion tends to be dependent on

the discipline and scale of study. Adhesion may occur In all materials In any phase.

However, only certain adhesive forces are relevant on the scale under Investigation. On

an atomic scale the smallest known particles of matter are believed to be held together

by four forces, or fields, of nature. They are known as strong, weak, electromagnetic,

and gravitational [69]. Fully understanding these fundamental forces Is one of the

greatest modern scientific challenges [70]. It Is generally understood that the effects of

the weak and strong forces are confined to the nucleus of the atom. Only the effects of

gravity and electromagnetism are thought to extend Into the realms of adhesion [71].

Since gravity Is considered weak on a molecular scale It may be Ignored. The

electromagnetic forces, carried by the electron, are manifested In covalent bonds,

coulomb force, Ionic bonds and Van der Waals forces [71]. Covalent bonding Is

responsible for the chemical bonds which join elements to create molecules and

polymers [72] studied Intensively In the field of chemistry rather than adhesion.

Therefore, the remaining lower energy non-covalent bonds are generally thought

responsible for adhesion [71]. Adhesion Is often studied In physics by bringing solids

Into Intimate contact, where It Is shown that all atoms display measurable adhesion

provided their true contact distance Is small (typically below O.lnm) [73]. In this case

extremely polished surfaces enable Intimate contact such that a secondary adhesive Is
not required.

In the adhesives Industry a liquid adhesive Is used to give Intimate contact which then

hardens or cures to form a solid covalent bond within Itself with mechanical Interlocking

at surfaces [73]. This type of adhesive requires the surface to be wetted out. Surface

wetting is also a type of adhesion experienced by liquids. However, In this case the

cohesive adhesion of like molecules and adhesive forces are comparable allowing the

observation of the surface tension phenomenon.
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The greatest appreciation of tack comes from the pressure sensitive adhesives (PSA)

Industry, where multiple definitions of tack are offered, generally defined as the

resistance of an adhesive film to detachment of a substrate [74]. This resistance

includes the effects of cohesive separation of the adhesive itself and adhesive

separation of the resin and the substrate surface. PSA tack is regarded to be

Instantaneous adhesion occurring with short application times that generally result In

adhesive rather than cohesive failure. For this reason tack Is more likely to be

associated with the probe test because of short application times [75]. Names such as

quick stick, wet tack, finger tack, thumb tack, quick grab, quick adhesion and wettability

have also been used In an attempt to better define tack as an Instantaneous attractive

force obtainable under light pressure application conditions [74].

The definition of prepreg tack originates from Its handling characteristics, which are the

prepregs ability to adhere to the mould and Itself. However, tack should not be so

overwhelming that a misplaced ply cannot be relocated easily [76]. Perceived tack may

also be related to the ability of the prepreg to deform to the mould shape due to the

presence of the fibres [77]. Historically, tack has been defined from a human

perspective to describe adhesion which occurs quickly at room temperature, without

special surface preparation, under finger application pressure. The term tack Is now

extended to Include Instantaneous adhesion which occurs within the ATL production

environment.

2.4.2 Commercial characterl.atlon

A search of International standards reveals the absence of a standardised method for

determining prepreg tack [51]. However, several simple British standard methods exist

relating to PSAs (Fig 2-7), with mechanised commercial versions also available at

Increased cost. These existing standardised methods bear little resemblance to the ATL

process with the exception of the floating roller method. However, this method requires

a separate application stage. The separate application stage signifies that only long

contact times can be Investigated, unreflective of the ATL process. A commercial

prepreg tack testing machine Is available from Accutac Inc. USA, which claims to be the

Industry standard for aeronautics utilised by Boeing [78]. However, there Is an absence

of published material detailing the operational method and supporting such claims. The

excessive cost (>$100k) of this machine also excludes It from use due to budget

constraints.
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Fig 2-7 as EN 1464:1994 Floating roller method for determining peel resistance (top

left), as EN 1721:1999 rolling ball tack (top right), the as EN 1719:1999 Determination

of loop tack (bottom left) and mechanised (bottom right) [79]

2.4.3 Experimental characterisation

Experimental prepreg tack research is conducted mostly to assist with prepreg

development. Studies tend to use modified versions of British standard methods or

established techniques from the PSA industry. The floating roller peel method (Fig 2-7)

has had minimal use due to the lack of a defined application process. This method has

been utilised to develop prepregs and demonstrate the effect of level of cure on tack

[51].

The probe method taken from PSA testing has been favoured by most prepreg tack

studies for its ability to achieve a controlled short application time and pressure. Such

tests have concluded that the viscoelastic properties of the material are key to

understanding tack along with the effects of the voids created by fibre surface patterns

[80]. Tack has been modelled as a bulk viscoelastic property of the prepreg, with

predictions of experimental results [77]. The effects of prepreg aging have been

investigated using this method, showing the apparent decrease in energy of separation

with increased age [54]. Prepreg tack has been found to be dominated by surface

effects at low temperatures and viscoelastic mechanical properties at higher

temperatures [81]. The effects of prepreg production variables such as impregnation

temperature, pressure and line speed have been shown to affect resin content and

uniformity of impregnation with a subsequent effect on prepreg tack [82]. The results
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then allow prepreg manufacturers to adjust tack accordingly In a controllable scientific

and experimentally verifiable manner correlated by selecting probe test settings verified

by the study of human tack perception [76, 82]. Recent studies distinguish the effects

of fibres on prepreg tack In comparison to resin films such as surface roughness caused

by fibre patterns, Irregular resin layer thickness and lack of cavitation [83].

2.5 Pressure sensitive adhesives

The Pressure Sensitive Adhesives (PSA) Industry Is thought to be worth $26 billion [84];

major competitors such as BASFand 3M offer products with a range of applications from

packaging to surgical tapes [85]. Generally, a greater depth of research Is carried out,

since the product performance Is dictated by tack properties. PSA tack Is studied using

adhesive resin films and flexible backing substrates. PSAprobe, peel and shear tests are

the most commonly used experimental methods for tack testing. Each method Is used

to determine a particular property relating to the function of the product. PSA tack is

considered to be the ability to stick to a surface with light applied pressure and contact

times, therefore, the probe test is favoured [75] (Chapter 2.5.1). Peel tests are used to

quantify the ability of a tape to be peeled easily and cleanly or retained depending on

the Intended application [74, 75] (Chapter 2.5.2). Shear resistance Is considered a

purely cohesive property and is used to determine holding power under constant force,

considered a creep property of the bulk resin [74] (Chapter 0).

2.5.1 Probe testing

The probe test has emerged as a popular analytical tool to evaluate the adhesive

properties of PSAs. A thin resin layer Is placed between two typically flat cylindrical

parallel surfaces under quantified pressure and deflection (Fig 2-8). The tack and

extension Is then recorded during the separation of the two surfaces under a constant

rate. Early versions of the test suffered from surface misalignment resulting in poor

reproducibility. Alignment problems were improved In the mid 1980's. The ability to

visualize the probe surface using a transparent contact and 45° mirror gave greater

Insight In the late 1990's.
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Approach
Force

Debonding

Fig 2-8 Probe test showing contact and debonding forces [75J.

Three mechanisms of failure have been observed under tensile loading. When the

interface between the resin and the surface is sufficiently weak, failure may occur by

crack propagation from the edge. Failure may also occur by initiation and propagation of

an internal crack. Cavitation and fibrillation of the resin is also considered a separate

failure mode [86] (Fig 2-9). Results are presented as a stress strain curve. Stress is

typically calculated using the probe surface area. The actual contact area of the resin is

difficult to define using traditional methods. Complex optical methods have been used to

measure the initial adhesive contact area [87]. As cavitation and fibrillation progresses

the actual cross sectional area of the resin under strain remains unknown.

Edgecrack
propagation

Internal crack
propagation

Cavitation

_J//

Fibrillation
detachment

Fibrillation

Fig 2-9 Adhesive failure modes observed in a flat probe tack test
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The deformation of an adhesive layer under tensile stress has been divided into four

main stages; homogeneous deformation, cavitation at the interface between the probe

and adhesive, lateral expansion of the cavities and finally growth of a fibrillar structure

[75]. An initial peak stress (omax) has been observed at the onset of crack propagation

or cavitation. In the case of cavitation a reasonable stress may be maintained

throughout cavity growth and fibrillation until detachment of the fibrils occurs. The work

of adhesion (Wadh) is expressed as the integral of tensile stress to failure (Fig 2-10). The

shape of the curve also gives additional information regarding the type of failure. A

single peak followed by a sharp drop in force after the peak indicates weak adhesion

and interfacial crack propagation. As the level of adhesion increases the stress decrease

after the peak is less pronounced and forms a distinct shoulder, which then reaches a

plateau. This plateau in stress has been observed to form a second peak at higher

elongation immediately preceding fibril detachment [75].

c"""
0.2 Wadh = hoJ cr( )dE Detachment

~o~..?2e_n~o_u~ 0 .9UlPQ.l~ __
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o 2 8 104 6
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ho

Fig 2-.10 A typical probe test result for a sample exhibiting fibrillation [75J

A sharp peak appears to accompany failure at the surface and is therefore referred to as

interfacial failure. Stress maintained at high extensions, sometimes resulting in a

second peak, typically accompanies failure within the bulk of the resin, termed cohesive

failure. Interfacial failure has been described as elastic due to the material behaviour

during the test. Typically interfacial failure occurs fast with no residual resin remaining

on the test surface. In contrast, cohesive failure occurs slowly with the formation of

resin columns and fibrils. This failure mode is described as viscous, again due to the
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material behaviour. Cohesive failure results in the deposition of resin on both test

surfaces [68, 88]. The energy of adhesion has been found to be dependent on mode of

failure, with significant adhesion energy only obtainable when bulk cavitation occurs.

Adhesive energy of cohesive failure is dependent on the volume and deformation of the

resin. Interfacial failure is limited to the total energy required for crack propagation

[89].

Variable effects

The parameters of the probe test are usually specified to suit the product. Typical

application pressure, contact time, feed rate and temperature reflect conditions of quick

application under light pressure with moderate removal speeds at room temperature.

Therefore, the majority of studies focus on changing resin properties and characterising

performance under these conditions. However, a limited number of studies go on to

adjust these variables in order to increase understanding.

Temperature

The temperature effect on tack appears linked to the effect on viscoelastic properties.

As temperatures approach the glass transition point (Tg) the resin appears mostly

elastic and much stiffer. Interfacial failure tends to occur at shorter extensions. At

temperatures significantly above Tg the resin becomes viscous and shifts towards

cohesive failure. This shift in regimes causes a change in results where stress is

maintained at higher strain (Fig 2-11).
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Fig 2-11. Probe stress (a) strain (e) curves for a number of polymer blends at 25°e

(left) and -10oe (right) where Tg';:j-50oe [90]

The work of adhesion (W) has also been recorded over a temperature range for a

number of polymer resins. In this case a peak was found to occur at roughly 40-60oC

above Tg, for samples with a wide range of Tg (Fig 2-12). The rising tack was attributed

to the Increasing ability to deform and flow. A strong relationship was also observed
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between Wand creep compliance [91]. Temperatures approaching the Tg appear to

show an Interfacial brittle failure attributed to lack of adhesion and apparent incomplete

contact. At temperatures higher than Tg the viscous behaviour of the resin allows good

flow and complete contact. However, the resin itself now appears to fall in a cohesive

flow process resulting in fibrillation.
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Fig 2-12 Work of adhesion (W) and reciprocal compliance (D-1)(dashed) for three

polymers over a temperature (T) range [91]

Separation Rate

Under constant thickness, load and contact time, the strain rate at which the tensile

part of the probe test is conducted has also been found to affect tack. At low rates,

there is no interfacial debondlng and columns of polymer were observed not to break

until fibrillation had become advanced. This regime was described as cohesive failure. At

higher velocities interfacial failure was observed with no visible traces of resin on the

probe surface [68]. This was also confirmed by the change in the stress strain curves

obtained, with high strain rate samples showing a high peak stress with steep decline

until failure at low extension. Low strain rate samples show a less defined peak with

failure occurring at higher extensions (Fig 2-13).
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Fig 2-1.3 Stress (a) strain (z) curves for probe tests of various extension rates (V)[68J

When plotting peak tack (omax), work of adhesion (G) and separation rate transition

between failure modes appears clearly defined (Fig 2-14). It can also be seen that Omax

remains roughly constant in the interfacial failure regime. An intermediate regime is

also observed near the transition, described as adhesion energy enhanced by viscous

losses in the bulk. This third failure regime is only observable when considering work of

adhesion (G) (Fig 2-15). Therefore, the peak stress gives a simple criterion to

determine the failure type. However, it is said that the value of adhesion energy is more

sensitive to the fracture mechanism and gives a better characterisation of the process of

tack [68].
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Fig 2-1.4 Maximum tack stress ( (J'max) as a function of separation rate (V) [68J
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Fig 2-l5 Work of adhesion (G) as a function of separation rate (V) [68J

Resin properties

Resin viscoelastic properties have been found to dictate the ability to deform and flow. A

strong link between work of adhesion (W) and the glass transition temperatures Tg has

been found with polymer resins of almost equal molecular weights [91] (Fig 2-12). The

effect of molecular weight has also been found to significantly affect tack characteristics.

The mode of failure has been seen to shift from cohesive failure to interfacial failure
with increasing molecular weight, consistent with an increase in stiffness. The increase

in stiffness is attributed to a higher molecular weight where stiffness may be reduced by

the addition of a suitable low molecular weight component referred to as a tackifier
[90].

Contact conditions

Contact time, rate, pressure and surface finish are all considered together as their effect

appears linked to actual contact area. Poor adhesion at short contact times and light

pressure are observed, believed to occur through a decrease in actual contact area.

Other explanations include; lack of viscous flow, incomplete wetting and too high elastic

modulus [92]. Probe surfaces without special preparation typically have a microscopic

surface roughness resembling that of a hilly landscape [93] (Fig 2-16), Under constant

application conditions a smother surface has been found to Increase peak tack (Fig

2-17). However, the increase Is not simply explained as an increase in actual contact

area but as a complex interaction between the probes surface and the nucleation of

cavities [94]. The volume of air pockets trapped during the application stage and a

change In stress distribution near the surface have also been considered to have an
effect [95].

R J Crossley 50



2.5

2

E 1.5
:::1 1

0.5

0
0 16 32 48 64 80 96

11m

Chapter 2 - Literature review

Fig 2-16 Surface analysis of a visually smooth polished stainless plate (Ra=O.12J,JmJ

0.8

ie O.fi
<II
<IIe
'1ii 004
E
~j 0.2

0.0 L_--I_----I..._-L _ _l..__..I...-_I--_J.__J

o 20 40 sn 80 100 120 140

Average surface roughness of the probes (nm,)

Fig 2-17 Experimental tack peak stress as a function of surface roughness [95]

Tack energy has been shown to increase as a function of contact time and contact

pressure (Fig 2-18). Increased contact time may increase actual contact area through

creep relaxation. In a similar way, increased pressure may result in increased actual

area of contact through increased deformation of the resin. These results suggest that

tack force or energy is directly proportional to true area of contact provided that;

adhesion is contact limited, temperature and debonding rate are kept constant, and the

variation in contact area does not affect the debonding mechanism [92].
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Fig 2-18 Tack energy (G) as a function of contact time (t) and pressure (p) [92]

R J Crossley 51



Chapter 2 - Literature review

Studies including contact area measurement have been carried out using a prism probe

(Fig 2-19). Within this study, tack energy was found to be a function of wet area

squared (Fig 2-20) said to be In agreement with theoretical calculations of the fracture

energy between elastomers linked together by connectors. Therefore, suction and

macromolecular chain disentanglement are said to be the phenomena responsible for

tack properties [87]. The study concluded that results cannot be compared unless

experimental conditions, such as temperature, tearing rate and actual wet contact area,

are equal [87].
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Fig 2-19 An optical probe used for measuring actual contact area [87J
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Fig 2-20 Tack energy as a function of actual contact area [87J

Summary

The probe test is the most popular method used in studying the tack mechanism. Two

significant values are obtained during the test. Peak stress (Omax) is typically calculated

using probe surface area. Accuracy is increased when actual contact area is considered.
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However, this requires considerably more complex and expensive equipment and

analysis techniques. The work of adhesion (W) or tack energy (G) Is the Integral of the

tensile stress strain curve to failure. Two major failure types are observed. Interfacial

failure occurs at the probe surface through crack propagation leaving no visual resin

trace. Cohesive failure occurs within the resin typically resulting In cavitation and

fibrillation with resin deposition on surfaces. The failure type may also be distinguished

by the shape of the stress strain curve. A high peak stress with failure at low strain Is

typical of Interfacial failure. A low peak with a secondary shoulder at high strain Is

typical of cohesive failure.

Temperature, separation rate and resin properties have been found to effect peak tack

and adhesive energy, related to changes In viscoelastic properties. Highly elastic

properties typically lead to Interfacial failure through apparently poor surface contact.

Viscous properties result In cohesive failure of the resin where energy Is dissipated In a

flow process such as fibrillation. Contact pressure, time and surface roughness also

affect tack properties, particularly within the Interfacial failure regime, where Interfacial

tack Is believed to be a function of actual contact area. Vacuum effects along with

surface roughness are also considered to playa complex role In the formation of cavities

and fibrillation. The Industrial standardisation of this test and the ability to compare

results between studies has been limited due to numerous difficulties, Includlng:-

• Surface alignment.

• Inability to observe surfaces under test.

• A lack of consistency In presenting results.

• Failure to determine or specify failure type.

• A lack of repeatability In cavitation and fibrillation phenomenon.

• Inconsistency In controlling and specifying variables with a known effect Include;

separation rate, temperature, shear modulus, relaxation properties, actual

contact area, contact time, contact pressure, resin layer thickness, and surface

finish

2.5.2 Peel teatlng

Peel tests quantify the force required to peel a PSAproduct such as tape or a label from

a rigid substrate surface, known as peel resistance. Four types of peel tests have

emerged with a variety of surfaces and peel angles (Fig 2-21) [75]. Peel methods can

be classified Into two groups depending on the test surface. The most popular type Is

peel from a rigid substrate surface which may be a plate (a) or drum (b). Peel from a
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rigid substrate is then further defined by the angle which is generally constant

throughout the test. Near 900 peel (a) is utilised by the floating roller method (Fig 2-7)

and is typically considered the standard unless otherwise specified. For peel angles

approaching 1800 the method is occasionally defined as a strip back tack test (c). Peel

between two flexible backing substrates (d) is referred to as cleavage or T-peel.

..--....

t
PSAand
flexible
substrate

t

Fig 2-21 Common peel test methods, (A) 900 Standard (8) Drum (C) 1800 Strip back

(D) Cleavage or T-peel

The majority of testing is conducted at 900 or 1800 with a 25mm wide specimen. The

specimen is applied to a clean stainless steel plate without air bubbles by a constant

weight roller [75] or by following the manufacturer's application guidelines [96]. After a

specified bond time the sample is then clamped into the jaw with the plate constrained

in a way which allows peel to proceed (Fig 2-22).

Fig 2-22 Typical 1800 strip back (left) and 900 (right) Peel test apparatus [75J
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A reasonably constant force is usually recorded over the length of peel. At least 115mm

of peeling is recommended with the first 20-25mm disregarded [96]. An average force

over the peel distance Is taken as the value for peel force. Peel resistance is expressed

as an average load per unit bond width, typically N/25mm CEq2-1) [75].

Eq 2-1. Peel resistance

F
p=-

b

P = Peel Resistance
F = Average peel force (N)

b = Tape width (mm)

Further definition of peel resistance is said to be difficult due to the many mechanisms

operating in unequal proportions and direction. Contributions are said to include surface

energy due to the creation of new surfaces, potential energy due to the movement of

the applied force and elastic deformation [97]. 90° peel resistance is said to be a simple

composition of bending and adhesive forces [98]. The adhesive forces appear to be a

summation of the phenomena seen In probe testing such as cavitation and fibrillation

occurring at differing positions along the peel front (Fig 2-23). Stress distributions show

similarities to that of a probe test (Fig 2-10). Despite the complex relationship between

bending and adheslon several predictions of peel strength have been made for particular

substrate adhesive combinations with varying degrees of success [74, 98, 99].
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Fig 2-23 The peel front and recorded stress distribution [100J
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Four types of failure have been observed in peel testing which Include cohesive,

interfacial, stick slip and glassy fracture and are believed to relate to rheological resin

behaviour [lOl](Fig 2-24). Cohesive failure occurs within the resin when flow is

possible. As the stiffness of the resin Increases interfacial failure occurs. These failure

conditions can be related to those seen in probe testing. The stick slip and glassy

fracture conditions are unique to peel testing. The stick slip condition exists around the

transition of failures where the constant peel rate is said to be Insufficient to maintain

peeling with fast interfacial mechanisms, reverting to a slow flow failure mechanism

[75]. The inability of the resin to deform at high stiffness is said to result in glassy

fracture separation of adhesive from the backing substrate.
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Fig 2-24 Peel Test failure classifications in comparison to shear storage modulus [75]

Effect of Variables

A number of steps are involved in the preparation and peel testing of PSA tapes such as

preparing the PSA, coating onto the backing material, preparation of the strip, cleaning

of the substrate, bonding, peeling and data analysis. These processes can be effected by

several parameters (Table 2-4) which must be controlled to acquire meaningful and

comparative data [75].
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Tabl.2-4 Variables thought to affect peel resistance [75J

Peeling test

Parameters affecting peel .... IstanceProceu8tep
Chemical composition, molecular cross-linking nature and density,

miscibility of blend
Viscoelastic properties

-Coat-In-go-ntO-ca-rrl-erbacki-ng----------- StiffneSS-andthickness ofca.TIer materla-r---

Preparation of adhesive

Preparation of sample

Adhesive layer thickness

Surface properties of carrier
Sample width, uniformity

Surface energy 8Lroughness
Surface treatment 8Lcontamination

---- BOndln-g-s-te-p--- --------- Appifcatton pressure &t--Im-e-----------

Cleaning substrate

---------- Peellngangle,geometrY &rate---------
Temperature and humidity

Generally, studies have focused on changes In peeling angle, rate, temperature,

thickness, adhesive and flexible carrier substrate properties. These variables can be

Investigated with the peel test provided the application method remains constant. Resin

properties can be characterised by other established methods such as rheology. Studies

of preparation and contact conditions are uncommon since they require a separate

method of measuring and regulating the application stage conditions.

Temperature and peel rate

The majority of adhesives used In PSA are amorphous polymers which have been shown

to obey an empirical relationship between peel rate and temperature based on their

relaxation mechanism (Eq 2-2). This relationship has been validated many times for

peel testing [74, 75, 102] with shift factors obtained during peel comparable to those

found In oscillatory shear rheology [98].

Eq 2-2 The Wllllams-Landel-Ferry(WLF) time-temperature superposition equation [103J

a, = Time shift factor
T - T, = Temp.change
Cl & C2 = Empiricalconstants

This superposition principle can be used to construct 8 master peeling curve. Low log(at)

values Indicate relatively slow feed rates and high temperatures where adhesives show

mostly viscous characteristics resulting In cohesive failure. Conversely, higher values of

log (at) result In Interfacial failure (Fig 2-25).
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Fig 2-25 A peel master curve, constructed using the WLF equation, and observed

failure modes [104J

Peel angle

Experimental results have shown that peel resistance is affected by peel angle (Fig

2-26). Results appear to confirm a theoretical inverse relationship of r-eese, if the

summation of moments and tensional forces are unaffected and cleavage is the

controlling failure mechanism [105]. The sudden drop in peel adhesion at 121<40°is
attributed to a switch in the de-cohesion mechanism [75].
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Fig 2-26 The effect of peel angle on peel resistance at various peel rates [75J

Adhesive Properties

Changes in resin properties appear to affect peel resistance through changes in

viscoelastic properties. Increasing molecular weight has the effect of stiffening the resin

where a shift has been observed towards interfacial failure at lower peel rates [106](Flg

2-27). The shift In properties Is said to be related to the viscoelastic terminal region of

relaxation. Therefore, it has been demonstrated that peel rate, temperature and

adhesive formulations can be reduced to a single master curve on the basis of terminal
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relaxation time [98]. This technique is repeated with alternative polymer blends and

termed the 'super master curve' (Fig 2-28)[107]. The importance of the master

relaxation curve as an adhesive design tool is emphasised when considering the

sensitivity of relaxation times to molecular polydispersity and the sensitivity of viscosity

to molecular weight. The possibility of adjusting these parameters is key to improving

adhesive formulation [98].
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Fig 2-27 Effect of adhesive molecular weight (a < b < c < d < e < f) on peel resistance
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Fig 2-28 A peel resistance 'super master' relaxation curve for a range of adhesive blend

molecular weights [107J
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Adhesive layer thickness

The adhesive layer thickness has been shown to affect peel resistance where, at thinner

coating weights, the peel resistance increases with layer thickness [74, 108]. Peel

resistance as a function of coating weight has revealed an inflexion point associated

with a change in failure mechanism from interfacial at thin coating to cohesive with

thicker layers (Fig 2-29). However, for some adhesives increases in peel resistance is

minimal, although, a shift in failure mode is still observed (Fig 2-30).
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Fig 2-29 Peel strength as a function of peel rate and adhesive layer thickness where

solid markers indicate a change to interfacial failure mode [109J
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Fig 2-30 Failure mode as a function of adhesive layer thickness [106J
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Contact Conditions

A refined application process with regulated application force and speed has been used

with the peel test. Results are in agreement with those found during probe testing with

an increase in peel resistance relating to an increase in contact force believed to

increase actual contact area until full contact is achieved (Fig 2-31).

E
E! 2

Applied contact force (N)

Fig 2-3J Peel fracture energy as a function of increasing application force [110J

The effect of the rigid substrate material type has also been investigated using a range

of surfaces from Teflon to glass with alternate surface energies (Table 2-5). Substrates

with a high surface tension mostly exhibited higher peel strength with anomalies

believed to be the result of a change in failure mode (Fig 2-32) [111].

Table 2-5 Substrate surface tension determined by contact angle measurement [lllJ

Substrate PVC Bakelite TeflonSt/Steel Polyethylene Polypropylene Glass

Surface tension

(yc)(mN/m)

Symbol

Na 31

0 0

_15000
E
E
L()
N
i;::
~10000
s:rn
c:
~u; 5000
Qi
Q)
n,

0co 0
0

(a)

18 7333 37 31

o <l C>

200 400
Rate (mm/min)

Fig 2-32 The effect of surface type on peel strength of a polymer blend [lllJ
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Summary

The peel test is relatively simple to conduct and analyse; adhesive tapes are applied

following manufacturer's instructions to a rigid substrate and then peeled at a constant

rate and angle. The peeling force is measured over a typical 115mm distance and the

average force is calculated. Peel resistance is expressed as the average force over bond

or tape width, typically N/25mm. The peel test is mostly applicable to PSA tapes and

labels where the peel reSistance and amount of residual resin are key characteristics

defining product performance. However, the peel test is less favoured as a research tool

as it does not offer a method of controlling application conditions and the force recorded

is a combined effect of complex bending and adhesive phenomenon. Cohesive,

interfacial, stick-slip, glassy fracture failure modes have been observed. As with probe

testing cohesive failure is a result of a liquid like flow failure occurring at low speeds and

high temperature. Interfacial failure is related to rubbery or glass like fracture at the

surface, associated with high feed rates and low temperature. Glassy fracture is unique

to the peel test and is a result of brittle resin separating from the backing film. Stick-slip

failure is also unique to the peel test and occurs during the transition between failure
modes where a lack of uniformity in the peel rate results in an oscillation between two

failure mechanisms. Peel resistance has been found to obey the WLF time temperature

super position principle In the cohesive failure regime allowing the construction of peel

master curves. The peel master curve allows prediction of peel force beyond

temperature and feed rate equipment limitations. Further dimensional reductions and

predictions can be made based on relaxation times of adhesives.

Only long contact times appear achievable with peel testing due to the separate

application method. Additionally, distinguishing the overall effects of processing

variables from multiple studies appears difficult due to:-

• Inconsistent application conditions and flexible substrates.

• An inability to separate stiffness and adhesive effects.

• Failure modes not being specified.

• Variability in interfacial peel especially during stick-slip failure.
• Failure to specify or control variables, Including; temperature, peel rate, shear

modulus, relaxation properties, actual contact area, contact time, contact

pressure, resin layer thickness, substrate surface finish and substrate material.
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2.5.3 Shear testing

PSAs In shear demonstrate creep behaviour that can lead to failure of the adhesive joint

[75]. The PSAshear test Is generally a measure of the adhesives rheological properties.

However, the test Is adapted to suit failures of PSA tape which occur over grater
deflection and time scales. Typically, a weight Is hung from an adhesive tape with the

deflection recorded over time. The behaviour of PSAs under shear has been

characterised using Maxwell and Kelvin-Voigt fluid models, using springs and dashpots

to account for the elastic and viscous behaviour of the fluid. However, other viscoelastic

models are available and are generally chosen to suit the experimental results [75, 98].

The loading conditions seen In shear testing can be compared to those found In plate
rheology. Therefore, PSA shear testing Is limited to Industrial applications with shear

research typically carried out using rheometers which offer greater flexibility and

accuracy In results and analysis.

2.6 Rheology

PSAs and polymer resins are viscoelastic materials possessing both flow and elastic
properties which playa key role In bond forming and debonding [74]. Comparisons

made with rheology, peel and probe results reveal that the adhesives solid or molten

state dictates tack failure type and magnitude [75, 101]. Rheology Is now a well

established laboratory method for determining viscoelastic properties. Many tack studies

and properties are related to the rheology of the adhesive component. Although stress

relaxation and creep experiments are used extensively, the small amplitude oscillatory

shear experiment Is the most commonly used method for determining the linear

viscoelastic properties of polymer melts [112].

Method

Typically a constant thickness disc of viscoelastic material is placed between a fixed

surface and a surface with a sinusoidal applied stress (Fig 2-33). A load cell and optical

encoder are used to measure force and displacement response. In steady state shear

the rate and stress are simply defined as a function of layer height, force and velocity

(Fig 2-34). Typically, parallel plate geometry Is used where the strain rate Is a function

of the radial position (Fig 2-35). However, small angle cone and plate geometry may be

used to achieve a constant shear rate throughout the specimen. This uniform flow Is

advantageous when working with non-linear materials which are strain rate sensitive

[113]. For viscoelastic characterisation the standardised small amplitude oscillatory

shear (SAOS) experiment is commonly used. A small oscillatory shear strain is applied
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to the substance and its response is recorded. The elastic and viscous components of

the response can then be calculated.

y=+Yo y=o r=-Yo

Fig 2-33 Sinusoidal strain of an adhesive in oscillatory Rheometry [l14J

S=F/A U S = Shear stress
y r=- F =Forceh

S=F
A =Area

h NonnaJ force
A U = Velocity

z x S h = Thickness
7]=-:- r = Strain rater

1] = Viscosity

Fig 2-34 Constant velocity 'steady state' shear [l15J

y(O,r)

(H-plane
section)

y(O)

(<I>-plane
section)

Fig 2-35 Parallel plate geometry with radius dependant strain rate (left) and cone

geometry (right) [l13J

Results

The motion of the driven plate and the force on the load cell are recorded. The two

sinusoidal signals are then compared for phase angle, stress and strain amplitude.

Stress amplitude is then calculated from force and specimen dimensions. Strain is

measured as displacement. A typical viscoelastic response is defined graphically with

y=yosincot defined as an input and a=O'osin(mt+o)as a response (Fig 2-36). The

ratio of stress to strain is defined as a modulus each with a different physical meaning
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(Eq 2-3). G' is stress (a') measured at maximum strain (aJt = 1C/2) divided by the

maximum strain amplitude(yo). At this point the strain rate is approaching zero,

consequently any response must be purely elastic as viscous materials respond only to

changes in strain. Therefore G' is often referred to as the elastic or storage modulus

due to the recoverability of elastic work. Alternatively G" is the stress (a") at zero

strain (OJI = 0) divided by maximum strain amplitude(yo). At this point the rate of

strain is at a maximum because a sin wave has its maximum rate of change at this

paint, thus the stress at zero strain is the result of a sample responding to strain rate as

would a purely viscous material. Therefore G" is often referred to as the viscous or loss

modulus due to the fact that flow is non recoverable work dissipated through friction

and heat loss [114, 116].

.... .. (To
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\
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(T= (TO sin (OJt + b1 "
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V'l
V'l

~-(/)

o wt = 1t/2 wt = 1t wt = 31t/2
Time x frequency, cot

wt = 21t

Fig 2-36 Viscoelastic response to sinusoidal strain [114]

Eq 2-3 Shear storage and loss modulus [114]

G' = (To / yO)coso

G" = (0-0 / l)sino

The values of phase angle, elastic and viscous modulus can be used to define a

materials state. A perfectly elastic material will have a zero viscous modulus and zero

phase angle. Alternatively, a perfectly viscous material or Newtonian fluid will have no

elastic modulus and a phase angle of 90° (Table 2-6). A polymer solution is found to

have a range of viscoelastic properties dependant on its temperature. Typically, at very

cold temperatures the polymer exhibits a brittle glassy state where low energy failure
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will occur through the creation of new surfaces (G" ~ 0). Increasing the temperature

typically causes transition to a rubbery state often called the rubbery plateau, where

properties of a viscoelastic solid are displayed. Further heating typically results in a

molten polymer state displaying the characteristics of a viscoelastic fluid (Fig 2-37). Two

distinct temperatures are usually defined to separate the regions (Fig 2-38). The glass

transition temperature (Tg) is the midpoint of the temperature range in which glass

transition takes place. The melting temperature (Tm) is the midpoint temperature

between transition from the rubber-elastic to molten state [117]. The transition

temperatures and dynamic modulus can be tailored to some degree by adjusting

molecular weight, branching, polydispersity and cross linking, explored in greater detail

in the field of polymer physics and engineering [U8].

Table 2-6 Viscoelastic behaviour in relation to modulus and phase angle [117J

Behaviour
Perfectly Perfectly Viscoelastic Perfectly

viscous flow
Viscoelastic liquid

Viscoelastic solid elastic solid

Phase angle 8=90° 90° > 0 > 45° 0=45° 45° > 0> 0° 0=0°
Shear modulus G'=O G">G' G"=G' G" <G' G"=O

GLASSY

Ne
~c...
"0

- 8
III~
oJ
:)

~
Cl 6
9

TRANSITION

Fig 2-37 The temperature dependence of viscoelastic states in polymers [116J
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Fig 2-38 Transition temperatures defined by shear modulus [117]

Relation to PSA tack

The viscoelastic properties have been observed to affect the shape of the probe tack

stress strain curve and govern the onset of failure phenomenon such as cavitation and

fibrillation (Chapter 2.5). Additionally, the peel resistance and failure type appear to be

governed by viscoelastic properties. Therefore, a number of attempts have been made

to determine the suitability of an adhesive as a PSA based on its viscoelastic properties.

The earliest rheological definition of an adhesive, known as the Dahlquist criterion,

requires that the shear storage modulus (G') must have a value below 105 Pa (at 1Hz,

ambient temperature) to display useful tack characteristics [75]. Suitable PSA materials

are considered 'contact efficient' with higher stiffness materials defined as 'contact

deficient non PSAs' [119]. PSAs are further defined using the viscoelastic windows

concept. Shear modulus values are taken at relevant application rates (0.01 rad/s) and

peel or tack test debonding rates (100 rad/s). The elastic and viscous modulus are then

plotted (Fig 2-39) to reveal the PSA's suitability for particular application depending on

its quadrant position (Fig 2-40) [119].
108~ "f1

G' (.01)
G"(1oo)

G"(P.)

Fig 2-39 Coordinate plot for shear modulus of PSAs [119]
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Fig 2-40 PSA type based on the viscoelastic windows principle [119J

The most convincing and quantifiable link between viscoelastic properties and tack

comes from a relationship between strain rate and temperature observed in the

rheology results of amorphous polymer melts [103]. An empirical equation has been

developed which links the effects of the two variables with an inverse logarithmic

relationship which requires two experimentally obtained constants (Eq 2-2). Essentially

the relationship infers that amorphous polymers will have similar viscoelastic behaviour

at high temperatures and low strain rates and vice versa. The effects on peel tack have

been directly linked with equal constants found by both rheology and peel tack testing

(Chapter 2.5.2) [98]. The relationship is also demonstrated less convincingly in probe

tack testing [120].

Summary

Small amplitude oscillatory shear (SAOS) rheology is a well established powerful tool for

determining shear modulus and phase angle. From these values it is possible to

determine materials viscoelastic state and transition temperatures. Such properties give

indications of material stiffness. Therefore, SAOS results have been used to determine if

a material will be useful as a PSA. Materials exhibiting high shear storage modulus are

deemed 'contact inefficient' according to the Dahlquist criterion. Further definition of a

PSA's suitability for certain applications can be found using the viscoelastic windows

principle. Modulus values are taken at frequency rates which reflect PSA application and

peeling rates. If the material is a useful PSA its properties will fall into a quadrant

determining its specific application. Provided the contact conditions remain constant and

the application and peel rates remain relevant SAOS rheology offers the ability to

classify resins based on their viscoelastic state and give an indication of tack

performance. However, since the sample remains in complete contact throughout the

test it does not allow the study of contact conditions. Changes in application and peel

rates add the additional task of relating actual rates to test frequencies. Additionally,
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the adhesive is never taken to actual failure limit. Therefore, SAOS rheology cannot be

considered a tack test but may give an indication of tack response to variables which

affect viscosity provided contact conditions remain constant. This is confirmed when

determining the effects of both temperature and peel rate. The same constants for the
WLF equation, which links the two effects, can be found by both peel testing and

rheology. Rheology Is in constant use by manufacturers during the development of resin

systems. Therefore, an ability to determine tack levels by rheology with minimal tack

testing Is considered benefiCial In reducing prepreg development time and costs.

2.7 Adhesivestheory

Typically any adhesive bond Is said to be the result of a combined effect of multiple

mechanisms [121]. However, certain mechanisms may appear dominant under certain

conditions. Therefore, many theories have been postulated to describe mechanisms of

adhesion, with each one supported by experimental evidence under certain conditions
(Table 2-7).

Table 2-7 Multiple theories of adhesion [121]

Traditional Recent Scale of action
Mechanical Interlocking Mechanical Interlocking Microscopic

Electrostatic Electrostatic Macroscopic
DiffUSion Diffusion Molecular

Adsorption/surface tension Wettability Molecular

Chemical bonding AtomiC
Weak Boundary Layer (WBl) Molecular

Mechanical Interlocking adhesion is mostly applicable to adhesives which cure. It occurs

by penetrating pores, cavities and other surface Irregularities of the rigid substrate

[121]. This theory has been formed Intuitively by observations of Increased adhesion of

cured adhesives with Increased surface roughness. However, significantly higher

molecular adheston has been achieved with two perfectly smooth surfaces [73].

Mechanical Interlocking is unlikely to playa major role In prepreg tack since the resin
remains uncured.

Electrostatic adhesion takes place due to electrostatic effects between the adhesive and

the substrate. Electron transfer Is believed to take place as a result of unlike electronic

band structure. Electrostatic forces in the form of an electrical double layer are thus

formed at the Interface. These forces account for the resistance to separation. The

electrostatic mechanism Is said to be a plausible explanation for polymer-metal

adhesion bonds. However, the contribution In non-metallic systems to adhesion has
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been calculated and found to be small when compared to that of chemical bonding

[121].

In diffusion theory, adhesion Is achieved through the interdiffusion of molecules
between the adhesive and the substrate. The diffusion theory is most prevalent when

both surfaces are relatively long chain dynamic molecules [121]. Interdiffusion of

molecular chain elements across a polymer-polymer interface (polymer healing) Is

considered to be the controlling factor for tack and green strength of uncured linear

elastomers. Variables which control molecular diffusion may also control adhesion.

Increasing temperature Increases the average interdiffusion length but also decreases
the stress required to pull the segment out [71].

Wetting theory proposes that adhesion results from molecular contact between two

materials and the surface forces that develop. The process of establishing continuous

contact between two substances is called wetting. For an adhesive to wet a solid

surface, the adhesive should have a lower surface tension than the critical surface
tension of the solid [121].

Chemical bonding Is a general term used to describe the molecular chemical Interactions

which may occur at the interface. Four interactions are thought to take place during

chemical bonding; covalent bonds, hydrogen bonds, lifshitz-Van der Waals forces and

acid-base interactions. The exact nature of the Interactions that hold the adhesive bond

depends on the chemical composition of the Interface [121]. Acid-base adhesion is

based on a chemical concept of polar attraction between lewis acids and bases due to
electron imbalances [121].

Weak Boundary Layer (WBl) theory dictates that any adhesive failure which is not

cohesive is the result of a weak surface layer. This layer can be caused by

environmental contaminates, impurities in or at the surface of the adhesive or

substrate. When failure takes place, it is the weak boundary layer that fails, although

failure may appear to take place at the interface [121]. Air, moisture, oxidisation may

all contribute to a WBl, therefore, exceptional adhesion occurring on spacecraft

components such as door hinges have been attributed to the absence of a WBL normally

present in earth's atmosphere [73].
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2.8 Polymer melts

Polymer melt studies generally consist of characterising the mechanical response and

relating behaviour, such as non-Newtonian flow and relaxation, to Individual molecular

structure and Interaction with neighbouring molecules. Therefore, since tack is believed
to be a product of such behaviour, a review of molecular principles and polymer melt

theory Is required.

2.8.1 Basic molecular principles

Temperature

Microscopically observable movement of particles, known as Brownian motion, Is

believed to be responsible for macroscopic temperature and heat flow In molecular-

kinetic theory [122], the study of which has become known as thermodynamics. In

kinetic molecular theory, heat energy Is a measure of molecular kinetic energy and

therefore velocity of molecular motion [123]. An Ideal gas Is the simplest form of

molecular modelling. It assumes that molecular Interaction takes place between the

molecules and container walls, where pressure and temperature can be measured, but

neglects Interactions between molecules. This approximation proves reasonably

accurate for simple gases at low pressures due to the relative volume of the gas

molecules believed to be small In comparison to the free volume. Therefore, the effect

of molecule to molecule collisions are considered negligible [124]. With negligible

collisions the diffusion between two perfect gases would be Instantaneous differing

Significantly from what is observed. Therefore, more complex modelling Includes

collisions with molecules modelled as hard spheres or abrupt repulsive forces Increasing

exponentially with approaching distance [125]. Van der Waals also considered the effect

of long range attractive forces despite the average effect of these forces within the bulk,

acting In all directions, being considered negligible [124]. The Inclusion of attractive

forces increased the accuracy of the state equation to model regions of condensation

and fluid states. The state of matter Is now considered to be a result of molecular

packing and motion which calculation of all free linear and rotational motions Is required

for accurate modelling [124]. Despite the Increased complexity assoclated with the

Increased molecular length of polymers generalised equations of state continue to be

formed based on such molecular principles [126].

Solid flow

Elastic deformation rationalised on an atomic scale Is believed to be the stretching of

atomic bonds which displays a linear response since only a small portion of the near

equilibrium bond Is tested (Fig 2-41). Despite the apparently rigid crystalline molecular

structure of most solids, flow can be observed under long periods of high loading. This
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flow, known as creep, is observed experimentally to be thermally activated. The rate at

which creep occurs depends on both stress and temperature and follows the empirical

Arrhenius rate equation. The Arrhenius equation is found by plotting a log of rate

against liT (OK) which typically results in a straight line. The equation then has a

comparative form to the high energy Maxwell-Boltzmann distribution for molecular

energies in gases. This analogy now includes an activation energy term [127].

ll-T,,"', ". specimen

t

Elon~alil,)ll

Fig 2-4J Relationship between atomic bond stretching and tensile mechanical

properties of a solid [127]

Eyring's solid flow model encompasses the idea that an atom or molecule must pass

over a thermally activated energy barrier in moving from one position to another in the

solid [128]. The jump rate is related exponentially to temperature and occurs randomly

in any direction. However, the addition of a load stress will increase the probability that

a jump will occur in the direction of loading, therefore, offering some rationalisation of

creep flow. Such theories have been used to predict strain rate and temperature effects

on the yield behaviour of polymers [129]. These molecular activation principles have

recently been applied as alternatives to free volume models in the theoretical derivation

of the WLF equation [130].
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2.8.2 Molecular description

A typical polymer melt consists of long chains where a number of chain lengths may

exist within the melt. The distribution of lengths within the melt is known as

polydispersity. Polymer chains such as epoxy are modelled traditionally using chemistry

diagrams and more recently with 3D diagrams (Fig 2-42). Polymer chains have now

been observed directly by atomic force microscopy (Fig 2-43). The polymers are

generally thought of as a long chain of atoms held together by covalent chemical bonds

[72]. Covalent chemical bonds are of short range order (0.1-0.2 nm) with high

dislocation energies [131]. Covalent bonds are formed by the sharing of electrons.

Atoms may also be joined by ionic bonding also of short range which involves the

swapping of electrons [132].

Fig 2-42 Chemical diagram (left) and 3D representational model of a typical BPA epoxy

resin molecule [133J

Fig 2-43 Poly 2-vinylpridine chain observed by atomic force microscopy [134J
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Covalent and ionic bonds are tightly held together and require a significant amount of

energy to break. Since the energy Involved In peeling Is relatively low, It Is assumed

that the polymer chain bonds remain unbroken. These bonds are however, flexible and

subject to deformation mainly through a variation In torsion angles [72]. Provided the

activation energy Is not reached they will return to their original bond length once the

force is removed. Non-covalent attractive bonds such as van der Waals are also believed

to be In effect between molecules. The van der Waals repulsive forces along with

thermal vibration motions are represented as an effective co-volume In the 'vaguely

defined concept' of free volume [135]. The attractive force receive little consideration

since, as with a fluid, the average effect of a completely surrounded molecule vanishes
[124].

2.8.3 Melt behaviour

Polymers typically have a complex mechanical behaviour resulting in strain rate, strain

history and temperature sensitivity [135]. Typical polymers are also subject to

relaxation processes with some polymers capable of returning to their original shape at

viSible rates and deflections. These properties and many others are known to relate to

Its molecular polymer chain structure and how the chains Interact within the melt or
solid state (Table 2-8).

Table 2-8 Typical polymer properties related to molecular structure [136J

+ Increase, - decrease, Oi little change, I ~ ele,
~

c
Hi passes through a maximum, *for e

~ ~ m i E i ~0
~

s
~
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amorphous polymers, B; result depends
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i e Cl 'iJ sttlIII E s: cu 'E c :::J

J! 1 ~ ,~ j s:
~ ~on melting point, C; temperature 't:J «I :!:! ~'iii w li 10 :: cu Ec I! :Edependant ~ >= cu

~ s::.
U

Increase molecular weight* + + + + + + + + + - + -
ReducepoIydlsperslty + - . + . . + + + . + 0

Increase branching I cross linking M - + . M + + + + - · M
Add polar chain units + + + + + + + B + + · +
Add polar side chains + + + + + + + + + + · +
Stiffen main chain + - + - + + . + + - + -

Increase crystallinity . . + - . + + + + - + -
Add crystallisable branches + + + + + + + 0 c 0 · +

Polymer melt theory Is concerned with relating viscoelastic properties to molecular

structure and dynamics. Viscoelastic polymers display both elastic and viscous

deformations under applied stress. Perfectly elastic deformation Is proportional to the

applied stress. Once stress is removed the structure will return to Its original position.

Perfectly elastic behaviour Is associated with high energy chemical bonds or constrained
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crystalline atomic structures where bonds are stretched but remain unbroken preventing

flow [127]. Perfect Newtonian fluids give a good example of purely viscous flow. Their

deformation rate increases proportionately to the applied force. For a Newtonian fluid

the viscosity remains constant affected only by temperature [115]. For a Newtonian

fluid, viscosity can be defined by flow activation energy using the Arrhenius model (Eq

2-4). A Newtonian fluid may also exhibit non-linear flow effects, such as an object

hitting water at high speed. However, these are due to inertia rather than complications

of the molecular structure. If inertia effects dominate over viscous forces the flow is said

to be turbulent. The ratio of inertial forces to viscous forces is commonly known as the

Reynolds number [137].

Eq 2-4 Viscosity as a function of activation energy

E = Activation energy
R = Universal gas constant
T = temperature in Kelvin

The majority of adhesives and prepreg resins consist of long chain polymer molecules,

e.g. a macromolecule of molar mass M=100,OOOg/mol has a length of approximately

Lum (1000nm) and a diameter of O.Snm. An illustrative example is an equivalent length

of spaghetti which is 1mm thick would be 2m long [117]. At rest, each macromolecule

can be found in the lowest level of energy consumption. Without external load it shows

the shape of a three dimensional coil. Each coil has an approximately spherical shape

and each one may be entangled many times with neighbouring macromolecules. During

steady state shearing the viscosity may exhibit a complex shear thinning response as

the molecules become aligned. Alternatively, shear thickening flow behaviour may occur

due to entanglements between molecule chains [117]. Newtonian, shear thinning and

thickening responses (Fig 2-44) may all be exhibited by a polymer melt depending on

its molecular configuration and loading condition.

\
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Fig 2-44 Newtonian (1), Shear thinning (2) and shear thickening behaviour(3) [117J
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2.8.4 Diffusion

Diffusion Is the term used to describe molecular movement within the melt. Many

theoretical molecular diffusion models exist which attempt to link experimental results

with molecular dynamics. The reptatlon or tube model Is one such theory used to
account for the sensitivity of viscoelastic properties to molecular length, branching and

polydisperslty [138]. The polymers are modelled as flexible 'snake like' objects moving

through tubes constrained to travelling along their own length. This 'reptation' motion

has now been observed directly within the melt using fluorescently labelled DNA [139]

and at the interface [140].

Certain adhesion theories exist, where adhesion Is believed to be developed through the

interdiffuslon of molecules between the adhesive and the adherent. The nature of

materials and bonding conditions will Influence whether and to what extent diffusion

takes place. The diffuse Interfacial layer typically has a thickness In the range of 1-100

nm. Solvent cementing or heat welding of thermoplastics Is believed to be due to the

diffusion of molecules [121]. Interdiffuslon of chain segments across a polymer -

polymer Interface are also considered the controlling factor for tack and green strength

of uncured linear elastomers [71]. The fracture mechanisms at polymer melt Interfaces

have also been found to depend strongly on the Deborah number, defined as the ratio

of strain rate to polymer molecular relaxation time which Is dependent on diffusion
[141].

Entanglement

An increase in 'strain hardening is attributed to knots or 'entanglements' within the

molecular chains which do not have time to break resulting in elastic behaviour. At large

times the knots open by Brownian motion: the chains can slide past each other resulting

In behaviour similar to a liquid [142]. This motion dictates the diffusion of the polymer

melt with the time taken for the polymer to move through the tube of its own length

known as the reptatlon time, analogous to relaxation time. The reptation time is

theoretically calculated to scale with the third power of molecular length, however

experimental results reveal an exponent nearer to 3.4 signifying that the theory may

not be complete [72, 138].

2.8.5 Time-temperature dependant behaviour

The time-temperature dependence of polymer melts has been related to an empirical

free volume concept [103]. Free volume Is defined as the space a molecule has for

internal movement, dictating Its ability to flow. Thermal expansion is therefore believed

to be responsible for the transition to a melt state (Fig 2-45) allowing greater molecular
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mobility [143]. The state of a material and its ability to flow is therefore believed to be a

function of molecular freedom. Polymers with great molecular freedom may crystallize

under favourable conditions when the cooling rate is slow. Crystallisation is a lower

energy form of matter with much tighter packing which requires an orderly structure.

Polymers which do not have time to reach this ordered structure, through Brownian

motion, due to rapid cooling are thought of as frozen in the molten state. Polymers

which do not crystallise even when cooled extremely slowly are known as amorphous.

..,
ee
1
~

As the space between
the chains increases,
the chains can move.

Temperature (OK)

Fig 2-45 Increase in free volume occurring around Tg [143J

The main effect of cooling the melt is to decrease the thermal agitation of the molecular

segments. In the melt, segments are believed to change place by thermally activated

jumps. The number of jumps per second is very large (106s-1). If cooling is continued, a

temperature is reached at which the rate of segmental movement is extremely sluggish,

and then further cooling finally stops the movement. The polymeric specimen then

consists of long molecules tangled in a liquid like manner, with the absence of rapid

molecular motion which is typical of a liquid. This glassy state is distinguished by the

immobility of the molecular backbones, which are frozen in crumpled formations. A

simple manifestation of this cessation of molecular motion is seen in the response of the

specific volume change to temperature (Fig 2-45) where, in the glassy state the

molecules simply move further apart through thermal expansion without changes in

molecular conformation. The thermal expansion increases through molecular jumps

throughout the transition range to reach that of a liquid on further heating [128].

Time-temperature-superposition

An empirical Williams-Landel-Ferry (WLF) relationship has been observed in the study of

shear rheology measurements of amorphous polymers [103] (Chapter 2.6). Explanatory

theories of the WLF relationship consider the polymer on a molecular level where
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Brownian motion and free volume concepts are used to link time and temperature of

amorphous polymer melt relaxation and glass transition. Essentially, increased

temperature is said to result in increased molecular freedom through thermal expansion

[135].

2.8.6 Mathematical models

A model consisting of springs and dashpots is conventionally used to represent a

viscoelastic material and analyse its response [144]. Increasingly complex models using

various configurations of springs and dashpots can be implemented to give increasingly

accurate mathematical predictions in comparison to experimental response [128]. In

such models the spring represents elastic deformation which will return to its original

position once the force is removed. The dashpots represent permanent deformation

having a resistance to flow but will not return to their original position once the force is

removed. Mathematical ladder models have been developed with relative success to

model viscoelastic response of undiluted polymer melt (Fig 2-46) and bear a remarkable

resemblance to an elastic polymer chain acted upon by mainly viscoelastic forces at

various points along its segment.

Fig 2-46 Marvin's modified ladder network for the prediction of viscoelastic properties

accounting for limiting modulus at high frequencies [135J

2.8.7 Molecular adhesion

Three general laws of molecular adhesion have been suggested [73]:-

1. All atoms and molecules adhere with considerable force, if two solid bodies

approach nanometer separations, they will jump into contact as a result of

molecular adhesion; this behaviour differs from ordinary engineering experience.

2. The effect of contaminant molecules is to reduce adhesion.

3. Molecular adhesive forces are of such short range that various mechanisms can

have large effects. Examples of such mechanisms are surface roughness,

Brownian motion, cracking, viscous deformation etc. These mechanisms lead to a

rich variety of adhesion phenomena which may cause macroscopic adhesion to

vary, even though the molecular adhesion remains constant.
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Further consideration of Brownian motion gives rise to a model of adhesion which Is not

static on a molecular scale. The crack tip In an adhesive system Is said to be wandering

kinetically as the molecules spontaneously break and rebond. Cracking is thus viewed as

a chemical reaction between molecules at the crack tip. The force applied to open or

close the crack is not the cause of the reaction, i.e. peeling or healing, at the crack tip.

The reaction happens spontaneously and equally In both directions, causing the crack to

open and close spontaneously at the molecular scale. Applying the crack driving force

merely shifts the chemical equilibrium in one particular direction, either opening or

closing the crack [73].

Lennard-Jones(V) potential

The two parameter U atomic model Includes attractive and repulsive forces which

operate over different distances (Fig 2-47). The repulsive force is short range, attributed

to electron to electron repulsion, related to the Pauli Exclusion Principle in the electron

shell [145]. The repulsive force is generally thought of as the atomic radius when the

atom Is modelled as a semi-solid sphere [73]. The adhesion term represents the

attraction between the protons In the nucleus to electrons of neighbouring atoms, which

extends beyond the electron shell. Since the repulsive and attractive forces operate over
different ranges then It is possible to see how atoms may position themselves together

In equilibrium between the two forces. This equilibrium position is represented as a

potential energy well. Once positioned within the energy well a certain amount of
energy is then required to escape it.
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Fig 2-47 The Lenard-Jones two parameter model of atomic adhesion [73J

2.8.8 Dynamic molecular modelling

Dynamic Molecular Modelling (DMM) has been used in wetting simulations of simple

liquids with reasonable results where simulation behaviour appears analogous to

experimental behaviour [146, 147]. DMM generally utilises individual atomistic elements

which are allowed to vibrate. The elements typically utilise a LJ type interaction in a

force field model [146, 148, 149]. The LJ system is shown to allow relaxation by an

increased number of molecular jumps with increasing temperature [150]. Atomistic

modelling of cross-linked epoxy resin (Fig 2-48) has also shown reasonable predictions

for Bulk, Young's and Shear modulus values (Table 2-9) where van der waals forces

were found to be predominant [151].
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Fig 2-48 A stick-ball molecular model of cross-linked epoxy (red=oxygen, gray=carbon,

white=hydrogen, blue=nitrogen) [151}.

Table 2-9 Mechanical predictions for cross-linked epoxy modelled using Compass [148}

in comparison to experimental results [151}.

Mechanical properties
Experimental

compass
results

Bulk modulus, B (GPa) 5.804 5.01
Young's modulus, E (GPa) 5.198 4.71
Shear modulus, G (GPa) 1.924 1.75

Poisson's ratio, n 0.3507

2.8.9 Molecular characterisation

GPC

Gel Permeation Chromatography (GPC) is a variant of size exclusion chromatography

used as an analytical procedure for separating small molecules by their difference in

size. Gel particles are used to form a porous stationary phase, the molecular material

which is dissolved in a solvent or elution flows through the gel bed. Smaller molecules

are retained longer due to their ability to penetrate the gel pores [152]. Molecular

weight averages (Mw, Mn) and information on the molecular weight distribution, termed

polydispersity (P), is obtained. The raw data GPC curve is a molecular size distribution

curve. When a concentration sensitive differential refractometer is used as a detector,

the GPC curve is really a size distribution curve in weight concentration. With

calibration, the raw data can be converted to a molecular weight distribution curve and

the molecular weight averages can be calculated [153].

Rheology

Dynamic melt viscosity results found by small amplitude oscillatory shear (SAOS)

rheology have also been used to characterise the molecular weight of mono and
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polydisperse polystyrenes in agreement with results found by GPC [154]. The weight

increase appears to shift the shear storage modulus (G') in the strain rate domain.

Therefore, an increase in molecular weight stiffens the melt at any given rate (Fig 2-49)

or temperature (Fig 2-37) provided transition to a glass state does not occur (Chapter

2.6).
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Fig 2-49 Dynamic storage modulus for monodisperse polystyrenes ranging in molecular

weight from 2-Mw=547 to 9-Mw=43.1 [154]
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3 Experimental methodology

The experimental work was carried out as part of a wider AIRPOWER project which

Incorporated the development of ATL for wind energy. The aims of the project were to

construct a 7m demonstrator component, representing a section of wind turbine blade,
with skins made by ATL.

3.1 General approach

The ATL machine used in this study was purchased specifically for the production of

aerospace components [65]. Having completed this and other tasks the ATL had

remained dormant for several months. A feasibility study was carried out which Included

the recommissioning of ATL using existing aerospace grade ATL tape and tooling. New

wind energy ATL materials were produced and laid up on a trial and error basis (Chapter

3.2). A material was found which allowed satisfactory lay-up of the experimental 7m

demonstrator component. Throughout the feasibility study lay-up with all materials was

problematic (Chapter 5.6). In addition to cutting problems, material development

appeared to be focused on finding the appropriate tack level where the material

remained on the mould and released easily from the backing paper (Chapter 4.1). Tack
was determined subjectively by touch, based on the experience of the prepreg

manufacturer and recommendations by the machine operator.

A method for quantifying prepreg tack and stiffness was developed (Chapter 3.3). The

method was then used to determine the effect process and material variables (Chapter

3.5). Time temperature superposition (ITS) of prepreg tack and stiffness was suspected

following the Investigation of variables. Although well documented for PSAs, ITS has not

been observed or applied In prepreg production and was considered a useful tool with

potential for regulating and controlling tack. Therefore, a further ITS Investigation was

carried out which Included other experimental methods for supportive evidence (Chapter

3.7). The findings from this study were Initially confusing and, due to progressive

deadlines, did not come quickly enough to be Incorporated Into the development of
demonstrator materials. The modification of ATL equipment to suit the findings and

recommendations was also beyond the scope of this project. However, an ATL

application study was conducted to ensure that experimental tack and stiffness results

and findings could be directly applied to ATL equipment (Chapter 3.8).
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3.2 ATL feasibility study

Feasibility trials were conducted to recommission ATL equipment which was not in

continual use (Table 3-1). Initial trials were conducted on a flat stainless steel plate

coated with Chemlease 41 release agent. To increase tack and reduce cleaning

operations a bagging film was vacuumed to the surface. An initial flat plate lay-up was

used to establish ATL ability to cut and place the prepreg tape (Fig 3-1). Trials then

progressed to lay-up over a double curvature surface using aerospace alloy mould

tooling (Fig 3-2). Once the demonstrator moulds became available, initial mould testing

was done using carbon aerospace material to conserve newly developed wind energy

material. Once acceptable lay-up was achieved a complete demonstrator lay-up of wind

energy ATL tape was conducted to produce the final component.

Table 3-1 Description of the individual trials carried out within the feasibility study

Location/MC Exp. Ref. Description Material Lay-up surface

BAE Cincinnati
ATLF-A01 Flat panel ATL recommissioning A-ATL-1 Flat St/St with Chemlease 41

V4 CTL

SABCA ATLF-W01 W-ATL-1

Cincinnati VS ATLF-W02
Initial wind energy prepreg trials

W-ATL-2 Flat surface
carried out at SABCA

CTL ATLF-W03 W-ATL-3

ATLF-W03 W-ATL-2

ATLF-W04
Flat panel wind energy tape

W-ATL-3 Flat surface covered with

ATLF-WOS
feasibility trials. Mostly

W-ATL-4 bagging film
overcoming cutting Issues

ATLF-W06 W-ATL-S

ATLF-W07 W-ATL-S
BAE Cincinnati Flat panel wind energy tape Flat polished composite panel

ATLF-W08 W-ATL-6
V4 CTL feasibility trials with Chemlease 41

ATLF-W09 W-ATL-7

Double curvature ATL (aerospace Curved alloy moulds with
ATLF-A02 A-ATL-2

moulds) Chemlease 41

ATLF-A03 Testing wind energy moulds A-ATL-2 GFRP wind energy moulds

ATLF-W08 Demonstrator component lay-up W-ATL-7 with Chemlease 41

Plo v e e a

.P.,:.)/ /
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Fig 3-1 Initial test panel ply lay-up used in ATL feasibility trials
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Fig 3-2 Double curvature al/oy aerospace mould tool used in recommissioning ATL

equipment

3.2.1 Materials

Recommissioning of the ATL and initial trials began with commercial aerospace ATL tape

(Table 3-2). Experimental wind energy ATL tapes were then produced in differing tack

levels to facilitate lay-up with increasing FAW. Due to a shortage of wind energy

material, aerospace material A-ATL-2 was initially used to assess the feasibility of wind

energy ATL tooling.

Table 3-2 Details of ATL prepreg materials used in the feasibility study

Ref. Manufacturer Ref. Fibre

A-ATL-1 8552/34%/UD268/1M7
268 g/m2 IM7

Carbon

A-ATL-2 8552/34%/UD1941 AS4
194 g/m2 AS4

Carbon

W-ATL-l M19.1/32%/UD200/E 200 g/m2 E-glass

W-ATL-2 M19.6/32%/UD200/E 200 g/m2 E-glass
W-ATL-3 M19.6/32%/UD400/E 400 g/m2 E-glass
W-ATL-4 M19.6LT/32%/UD300/E 300 g/m2 E-glass
W-ATL-5 M19.6LT/32%/UD400/E 400 g/m2 E-glass
W-ATL-6 M19.6LT/32%/UD600/E 600 g/m2 E-glass
W-ATL-7 M19.6LT/28%/UD400/E 400 g/m2 E-glass

Resin type

Low tack 8552 34

Low tack 8552 34

High tack M19.1 32

Med tack M19.6 32

Med tack M19.6 32

Low tack M19.6LT 32

Low tack M19.6LT 32

Low tack M19.6LT 32

Low tack M19.6LT 28

Content [%]

wt. Vol.
Use

41.4
Commercial

Aerospace
41.4

50.1

50.1

50.1
Experimental

50.1
wind energy

50.1

50.1

45.3

3.2.2 Equipment

The majority of trials were carried out using a Cincinnati 10-axis, gantry-type V4

contour tape laying (CTL) machine. Cutting consisted of two numerically controlled knife

blades capable of cutting angles from 0 to approaching 90°. Tape heating was available
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via an electric hot plate positioned against the backing paper. Compaction pressure was

provided by a segmented compaction shoe ~30mm In thickness. The machine was

configured to accept ls0mm wide prepreg rolls. The CTL was limited to a maximum

surface contour of 150 from the horizontal. Initial tests were also carried out at SABCA

In Belgium using a Cincinnati VS contour tape laying machine of a similar specification

with the exception of ultrasonic knife cutters.

Process variables

A number of process variables were identified which may affect ATL performance (Table

3-3). Ambient temperature was prevalent where the heater plate was not used. Tape

temperature could be increased via a hotplate against the backing paper. Feed rate was

regulated within the NC program, generally slowed for cutting and Intricate placement

operations. Changes to contact time appeared Inversely proportional to feed rate. Peel

angle was believed to remain constant since the deliver head Is maintained at an angle

normal to the tool surface. The tool material varied from alloy to composite with release

agents applied in both cases.

Table 3-3 Process variables found In ATL production which could affect performance

VlIrllIb/e I RlInge Desalptlon

Ambient Conditions;
Ambient conditions may change according to local

Temperature 0-400C
weather conditions

Re/ative Humidity 0-95%

Tape Temperature 0-800C
can be adjusted using a hot plate mounted just before

the compaction tool

Feed Rate 0-48m/mln
Completely adjustable following the NCprogram Is likely

to slow for Intricate cutting and placement operations

Application pressure
26S-1300N per The pressure applied by the compaction shoe Is

lSOmm wide shoe adjustable, limited by the rigidity of the mould tool

Too/material
Aerospace - alloy The mould tool can be constructed in a range of materials

Wind - compoSite from steel to glass fibre composite

Too/ surface finish Typically smooth
Variability In tool surface finish is likely, dependant on

mould tool Quality and material

Too/ surface The use of release agents is likely to reduce tack
treatment

Typically release agent
significantly

Wind energy A TL moulds

The feasibility of low cost low stiffness wind energy ATL tooling in comparison to high

cost high stiffness aerospace tooling was also considered within the trials. The

dimensions represented the upper surface of a FFA-W3-241 typical wind turbine aerofoil

[155] mirrored with a symmetrical taper for simplicity (Fig 3-3). The composite moulds
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with steel lattice structure are typical of those used in the wind turbine industry with the

following novel exceptions:-

• Low energy heating elements embedded within the mould laminate.

• Facility plates and blocks for post automation forming operations to overcome

the 15° angle limitation of the ATL machine.

Novel low energy heating elements were used to improve temperature control and

reduce thermal lag in comparison to traditional externally mounted elements. Facility

plates and blocks were used in post ATL manual handling operations to form leading and

trailing edge features which exceeded the 15° surface limitation. Lay-up was firstly

carried out on a gently curved surface not exceeding angle limitations then blocks were

inserted under the laminate to post-form the leading and trailing edge geometries (Fig

3-4).

45m 2MW typical commercial blade

\\__ - - -- - ,.---
" -J

I'

-- -,
- - _ _.. ~.=--::::;J

Tipsection from
35 to 42m blade
radius with
FFA-W3-210
aerofoils

Symmetrical uniform taper
demonstrator component

J

with mirrored FFA-W3-210

\

7m

Fig 3-3 The demonstrator component which is a representative section of a typical

commercial 45m turbine blade

All rights reserved

Fig 3-4 Demonstrator moulds with plates to allow ATL lay-up on surfaces below 15°

(left), blocks are then inserted to form leading and trailing edges (right)
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3.3 Tack and stiffnesstest

3.3.1 Operation

The new peel test is a development of the floating roller method (Chapter 2.4.2). Spring

loaded rollers were added to allow a regulated application method. The prepreg sample

could then be instantaneously applied and peeled in a single continuous motion. Contact

time is inversely proportional to feed rate which simulates the ATL process. The prepreg

sample is pulled through the spring loaded rollers which provide an application force

against a rigid substrate which represents the mould surface. The first rollers are used

to guide the plate. The second rollers provide the peel and application force. 90° peel

occurs instantaneously against the fixed top roller as the compaction force is applied by

the spring loaded bottom roller.

Results were recorded for two sections in a continuous test. Stiffness was recorded for

the first section of the test where the sample had a thin film covering both surfaces. The

covering film was absent for the second section of the test where peel resistance was

recorded (Fig 3-5). By subtracting the average stiffness from the average peel

resistance a value for tack could be calculated with minor adjustment for the absence of

the covering film (Appendix B).

Guide rollers

Rolling resistance
and extension
(Recorded by load cell)

Fixed peel roller

Prepreg material

Covering film

Rigid Substrate
Simulated mould surface

Compaction roller
Spring loaded application force

Bending resistance and peel
(Peel resistance)

Dynamic bending resistance
(Stiffness)

Fig 3-5 Operating principle of the new prepreg tack and stiffness test
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3.3.2 Equipment

Equipment was mounted to a universal test machine. Peel resistance and stiffness was

then measured continuously over a pre determined peel distance using a load cell.

Extension and load values were recorded for later analysis. To allow for temperature

changes the test rig was enclosed in an oven limiting the specimen size (Fig 3-6).

Fig 3-6 Peel test equipment mounted in a universal test machine

Design features allowed variables found in ATL production (Table 3-3) to be investigated

(Fig 3-7). Commercial ATL conditions could be recreated within reasonable limitations

imposed by test equipment (Table 3-4). Jacking screws were used to control the

compaction force. A force of 250N was possible across the length of the roller. This force

is within the lower region of the 130-650N specified by ATL manufacturers [156]. The

compaction force is limited by the size of the roller bearings, springs and the cost of

construction. Larger springs would require larger shaft and roller diameters resulting in

a deviation from British standard specifications [96] and increased construction costs.
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Fixed peel roller

Rigid substrate
(simulating mould
surface)

Spreader bar
(for easy
material loading)
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Material clamp

Jacking screws

Spring loaded
Compaction roller
(hidden below)

Guide rollers
with adjustable
clearance

To suit base mount holes

Fig 3-7 Features of the new tack and stiffness test

An environmental chamber was unavailable due to budget constraints. Therefore,

relative humidity was recorded but not controlled. Feedrate was adjusted via controlling

software, limited to a maximum of lOOOmm/min. The solid substrate plate could be

made from any rigid mould material and treated with release agents to simulate mould

conditions. Adjustable clearance between the rollers allows for up to 6mm thickness of

substrate and prepreg material.

Table 3-4 Production variables in comparison to test limitations

Production variable Test range Limitation
Production

range

Temperature Ambient-BOOC Ambient-150°C Oven capabilities

Environmental chamber

absent
Relative humidity

Feed rate

Application pressure

Mould surface

ATL tape thickness

5-95% uncontrolled

0.01-

1000mmlmin

25-250N

Any plate and

prep reg

Test mic

Springs, construction costs130-650N

Unlimited

0- >lmm
6mm total roller clearance
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3.3.3 Specimens

Specimens were prepared by cutting the prepreg Into 7smm wide strips, avoiding any

obvious flaws such as rips or bubbles, with the length chosen according to machine

clearance (Table 3-5). The ambient temperature test specimen length was chosen to

exceed the 11smm recommended for PSA continuous peel [96] and to maintain plate

stability. To save material and construction costs a specimen length of 300mm was

chosen requiring a 2s0mm test plate. For high temperature tests the length of the plate

was limited by the fore and aft clearance of the oven. Therefore, a 140mm long test

plate was the maximum length allowed, resulting In a 21smm long sample. For each of

the tests a partial length of the covering film was removed which gives the length of
continuous peel (Table 3-5).

A specimen width of 7Smm was chosen to exceed the 2smm British standard

recommended value. The extra wide sample minimises the effect of irregularities across

the width of the prepreg and increases the recorded load. The size Is also convenient as

ATL tapes are typically supplied in 75, 150 or 300mm wide rolls, therefore, any ATL

tape can be tested with a minimal number of cuts.

Table 3-5 Rigid substrate and specimen dimensions used in tack and stiffness tests

Temperature chamber? With Without Recommended

Siz_ [mm] L W L W For PSA [9.]

Rigid substrate (test plate) 140 80 250 80 W-25
Specimen 215 75 300 75
Results

Length of stiffness 11150 11160 Nla
Length of continuous peel 80 140 115

Total test extension setting 130 200 N/a

3.3.4 Accuracy

The accuracy of measurement devices exceeded that of equipment used In a production

environment (Table 3-6). The peel test rig was mounted In a Hounsfleld H25KS
universal test machine where measurements of force and extension were taken.

Ambient temperature and relative humidity was recorded In the room or oven chamber

during a temperature test. Prepreg temperature was taken using an IR thermometer

pointed In the centre of the peel area Immediately following the test.
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Table 3-6 Accuracy of measurement devices

Variable Instrument Range

Ambient relative humidity S-9S%

Ambient temperature
UEI DTH10 Pen type hygrometer

-10-80oe

Fabric temperature Fluke 62Mini IR Infrared thermometer -30-S00oe

Extension O-llOOmm
Hounsfield H.T.E H25KS Bench top

universal testing machine 0.001-
Feed rate

lOOOmm/min

Force SM-1000N-4S7 1kN load cell 0-1000N

Accuracy
±S%

±loe

±loe

±O.OOlmm or

±O.Ol%

±O.OOS%

±O.S%

The compaction roller was calibrated in order to quantify the amount of application force

applied to the prepreg. This was done by inserting a rigid L shaped plate connected

directly to the load cell using the fabric grips (Fig 3-8). The L shape plate rests directly

on the sprung roller. The spring jacking screws were then tightened to give the starting

point of the calibration. Further turns were made to give a force per number of screw

turns. The test was repeated to give a linear relationship. A chart was then produced to

give the number of turns for the required compaction force (Fig 3-9). During testing the

first sample was loaded and the screws pre-tensioned followed by the necessary number

of turns using an Allen key to give the desired compaction force.

Fig 3-8 Compaction roller force calibration using an L shaped bracket
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Fig 3-9 Compaction roller calibration results and jacking screw settings

Contaminates at the surface were found to affect adhesion, therefore the following

cleaning procedure was observed on all rigid test plates between all tests:-

a. Wipe heavy resin deposits using well soaked acetone cloth

b. Wipe remaining residue using a clean cloth lightly coated in acetone

c. Ensure rigid plates are streak free

d. Wash with soapy water

e. Wipe with clean dry cloth

f. Allow plates to fully dry and return to ambient temperature before testing

3.3.5 Analysis

Typical results for a medium tack prepreg showed an increase in rolling resistance at the

transition from stiffness to peel resistance sections of the test (Fig 3-10). Average

values for both sections of the test were calculated over the applicable area (Table 3-7).

Care was taken to exclude or avoid any unreasonable peaks resulting from surface

defects in the prepreg or backing paper such as bubbles or folds. The values for stiffness

and peel are expressed as force per unit width N/75mm. Standard deviation for a single

sample (Eq 3-1) is shown as error bars on line or scatter plots. Where possible, for

samples with high variability, batch testing was carried out using 3-5 samples. The

batch standard deviation (Eq 3-2) is displayed as error bars on bar charts. The sample

deviation gives an indication of the uniformity of peel in a single test. A lower value

indicates steady state peel and an exceptionally high value may indicate the stick-slip

condition. Batch deviation is expressed to determine the uniformity between samples,

but may also appear high during unsteady peel.
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Fig 3-1.0 A typical five sample test result where stiffness and peel resistance are

recorded aI/owing average tack to be calculated

Table 3-7 Typical extension range of measurement areas

Extension range

200mm

~20-50mm

~80-180mm

130mm

~10-35mm

~55-110mm

Ambient With oven

Total

Stiffness

Peel resistance

Eq 3-1. Standard sample deviation

where :-
a. = Standard deviation in a sample
fl. = Average tack or stiffness value
x =Tack or stiffness values
n =Number of values

Eq 3-2 Standard batch deviation

where: -
ab = Standard deviation in a batch
flb = Average batch tack or stiffness value
x = Average sample tack or stiffness values
n =Number of samples
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3.3.6 Repeatability study

A number of experiments were repeated to ensure that the newly developed tack test

gave consistent results. Initial settings were chosen based on typical ATL process

parameters at the start of lay-up (Table 3-S).

Table 3-8 Settings used for initial validation tests

Test Setting

200N
roomrn/mm

20°C

Value

Compaction Force

Feed Rate

Temperature

Nine epoxy glass fibre prepreg samples of the same stock with a tackier control prepreg

were supplied by the manufacturer and tested in batches of three samples (Fig 3-11).

The nine similar materials measured an average tack level of 4.SN with a O.SN (16%)

standard deviation, which was considered acceptable considering environmental

fluctuations of 20% RH and 1°C in temperature (Table 3-9). The tackier sample

registered a significantly higher reading of 17N consistent with expectations.

20 Stiffness Tack
,......,
E
E 15
Lt')
r-,-Z...._,
~ 10
u
~
a.s
III 5
III
Cl)
c:
t::p

0(.f)

co co co co co co co co co co
OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ~ ~ ~ ~ ~ ~ ~ ~ I"'+' I"'+'
(') (') (') (') (') (') (') (') (') (')
~ tr ~ :J' :J' :J' :J' :J' :J' :J',_.. N W ~ V1 Cl' -...J ce 1.0 ,_..

0

Fig 3-11 Results of a repeatability experiment (Batch 1-9) which successfully identified

a tackier control sample (Batch 10)
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Table 3-9 Results of the repeatability study

Sample 1 2 3 4 5 6 7 8 9
10

(Control)
Test Date 29/05/2008 30/05/2008
Temp °c 19.2 19.4 19 19.2 19.2 19.5 19.3 18.5 18.8 19.8

%RH 44 43 43 42 42 49 46 47 57 59

Stiffness 13.69 14.86 15.19 14.9 14.69 14.3 12.8 14.97 14.36 15.91

(J sample 1.53 0.67 1.53 1.98 1.73 1.17 0.92 1.3 2.16 1.65

Tack 3.58 3.94 5.14 5.2 4.16 5.96 4.81 4.71 5.62 17.2

(J sample 1.2 0.16 0.25 1.26 1.24 1.58 1.01 1.02 1.12 3.5

Av. Tack 4.791

aba/ch 0.786 16.4 Ofo

Av. stiffness 14.418

aba/ch 0.756 5.2 Ofo

3.3.7 Controlling uncertainty

Observations during the test development revealed potential sources of error which

were controlled to improve the reliability of results (Table 3-10). Cleaning and handling

procedures were found to significantly affect experimental results. Therefore, a rigorous

cleaning schedule was followed. Rubber gloves should be worn at all times as sweat

residue deposited by finger prints on test plates before the test were seen to have a

detrimental effect during the peel test (Fig 3-12). Any residue left by solvents or

cleaning agents was removed from the rigid plates. Handling of the prepreg was

minimised before the test to reduce body heat transfer to the sample and plate. The

position of the rigid plate in relation to the prepreg appeared to cause fluctuation in

results. Leaving an excessive plate overhang could cause the plate to lift and drop

within the clearance of the guide rollers leading to oscillations in the recorded force.

Therefore, the rigid plate was consistently positioned approximately 5-10mm from the

end of the prepreg sample.

Fig 3-1.2 Finger print residue on the rigid substrate prior to testing was revealed in

resin deposition patterns after peel
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Samples where resin remained attached to the backing paper after peeling were

discarded. Patches of lost resin can be seen as an area where tack is reduced in a visual

inspection of rigid plate after testing (Fig 3-13). Defects in the prepreg material are

seen to have a detrimental effect on results, with lumps, bumps, folds or tears showing

up as artificial peaks in force as they pass through the rollers (Fig 3-13). Therefore,

uniform samples with the absence of defects were chosen where possible.

Fig 3-13 Dry resin patches on the prepreg (top left), were seen to reduce tack levels

during the test, observable by lost resin patches on the test plate (top right). Bubbles

and folds in the backing film (bottom) appear as artificially high levels of tack

Table 3-10 A summary of observed sources of experimental error

Cause Effect Control
Environmental

Temperature fluctuations

Relative humidity fluctuations

Severe Use a temperature regulated room or environmental

Low chamber.

Setup and procedure

Temperature fluctuations through
excessive handling

Sweat or grease residue on rigid
plates

Excess resin on test rig

Severe
Minimise handling, use rubber gloves, allow sample to

cool after handling.

High Avoid skin contact with rigid plates, use rubber gloves.

Med Clean with acetone.
Ensure the rigid plate is always positioned only lOmm

from the end of the prepreg.
Plate oscillations during testing Med

Material

Uncontrolled sample roll location
Uncontrolled sample face

Rips, tears, folds or defects

Severe

High

Only samples cut from the same position along the

width and on the same face should be compared.

Chose uniform samples in good condition.

Reject samples where resin remains on the backing

paper after peeling.
Resin remains on backing film Severe
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Dwell time

Once the prepreg is loaded it is allowed to rest on the rigid substrate until the start of

the test. This dwell time could potentially affect results since contact occurs. Therefore,

a dwell time test was conducted over three levels; zero, two and ten minutes. The

results show no noticeable effect on prepreg tack and stiffness exceeding experimental

error (Table 3-11). However, a negligible rise in compliance is attributed to the

formation of excess resin squeezed out in front of the compaction roller during the dwell

period. A raised pull force was recorded during this initial compliance stage which is

mostly outside the area of analysis but may affect the results. Therefore, although

significant effects are not observed, dwell time is minimised during testing.

Table 3-1.1. Dwell Time Results

Dwell Time (Mins) 0 2 10 [%]

Stiffness [N/75mm] 34.06 37.2 38.32 Effect 11.1

a 1.77 1.33 1.33 a 4

Tack [N/75mm] 65.42 50.07 56.9 Effect 23.5

a 24.73 21.14 23.76 a 40.4

Radius of bending

Previously, separating material stiffness from peel resistance required a significant

number of calculations and additional measurements [98]. However, in the new test,

stiffness was measured during the first stage of the test where a thin film covers the

tack surface. The radius of bending was seen to change between the stiffness and peel

sections of the test when the peel force is high. For the stiffness section the sample

typically followed the radius of the roller. During the peeling section the prepreg may be

retained on the plate surface extending away from the roller, resulting in a reduced

bending radius (Fig 3-14). The presence of the fibres ensures that the change in radius

remains small in all but the highest tack situations, in which the bending force is

considerably lower than tack. The effects of a change in radius are therefore considered

negligible in the comparison of prepregs with similar stiffness.

Fig 3-1.4 Deviation in bending radius from the roller radius during high tack peel
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Negative tack

Negative tack values for very low tack materials were recorded. A portion of the

negative tack value Is attributed to the bending resistance of the covering film which Is

present In the stiffness section but absent from the peel resistance. Therefore, when

stiffness is removed from peel resistance a negative value could be found. To account

for the bending stiffness, films were calibrated (Appendix B) and the relevant value

(Table 3-12) added to the average peel resistance.

Table 3-12 Backing film calibration values

4N/7Smm
·IN/7Smm

O.3N/7Smm

Embossed polythene

Red Polythene

Clear PET

A small negative value, less than 2N, for tack may still be observed In extremely low

tack results after the backing film correction has been made. Negative tack values

appear illogical, signifying that the surfaces are repelled, which is observed as zero tack

In practice. Therefore, all negative tack values are considered negligible and regarded as

zero tack. These additional small negative tack values are attributed to:-

• Unusually high average stiffness values attributed to imperfect bending or folds,

most often seen in stiff samples. Efforts should be made to avoid anomalous

peaks in rolling resistance when analysing results.

• A small frictional interaction between the film and the prepreg during bending

which is not Included in the calibration of the films.

• Changes in the bending radius between the stiffness and peel section.

3.4 Commercial prepreg tack characterl.atlon

Several wind energy materials of various resin types, fibre weights and architecture

were characterised to determine the reliability and applicability of the new tack and

stiffness test to hand lay prepregs. Testing existing prepregs also allowed tack values to

be compared with the 'high', 'medium' or 'low' tack levels published on accompanying

datasheets.

Batches of five samples were tested for each material (Table 3-13), repeated three

times, with 60 samples In total (Table 3-14). Each repeat represents testing on a

different day where the rig was removed and replaced on the test machine between

each occasion to Include set up deviations which may occur. The position of each sample

within the roll was recorded to allow for the distribution of prepreg tack across the roll

width to be Investigated (Fig 3-15). A further 24 experiments were carried out to
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determine if tack and stiffness are dependent on the face tested. Three samples from

each face (Fig 3-15) were tested for each of the four commercial prepregs, 24 samples

in total. Experiments were carried out at ambient temperature (20°C), 100mm/min feed

rate with lOON of compaction pressure.

l.5m wide prepreg roll

Inner face

E

Row number
(Batch number)

Column letter
(sample letter)

Fig 3-15 Specimen location for analysis of tack and stiffness variability as a function of

roll position and face

Table 3-13 Specification of tested Hexcel commercial prepregs

Fibre Resin Hanf. Specified
Ref. Supplier ref. Fibre direction

weight cont. tack level

GB600 M9.6/45%/BB600/G 600 g/m2 Biaxial :1::450 45% Medium

GT1200 M9.6/38%/LBB1200/G 1200 g/m2 Triax 0:1::450 3S% Medium

GUD1600 M9.1F/32%/UD1600/G 1600 g/m2 UD 0° 32% High

CUD600 M9.6FL T/32%/UD600/CHS 600 g/m2 UD 0° 32% Low

Table 3-14 Experiments carried out in the characterisation of commercial prepregs

Test Type
Test ref. Samples

(variable) Haterial Details

Tack and stiffness PP-TT1 GB600 15
(characterisation PP-TT2 GT1200

3 samples from each roll position, 1 sample
15

and roll width PP-TT3 GUD1600
between each set up for each material at 200C,

15

position) PP-TT4 CUD600
100mm/min, 200N compaction force

15

PP-TT5 GB600 6
Tack and stiffness PP-TT6 GT1200 3 samples from each face for each material, 6

(roll surface) PP-TT7 GUD1600 200C, 100mm/min, 200N compaction force 6

PP-TTS CUD600 6
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3.5 Effect of variables on tack and stiffness

3.5.1 Tack and stiffness tests

The new test method was used to investigate the effect of ATL process variables and

prepreg material variables. Variables were initially investigated using single variable

experiments with minimal levels (Table 3-15). Single variable experiments were then

repeated with extended levels or alternative materials following results which

contradicted expectations. Following the observation of two failure mode types, a

number of experiments were then extended to dual variable investigations which

consisted of a temperature sweep at a number of levels (Table 3-18). Single level

experiments were carried out uSi~g; GUD1600 and CUD600 hand lay-up prepregs

(Table 3-17). These hand lay-up prepreg materials were shown to contain a significant

degree of variability (Chapter 4.2) and were therefore tested In batches of three to five

samples at each level. ATL materials appeared of better quality and uniformity

producing results with greater consistency. Therefore, temperature sweeps of 10-11

different temperatures at each level with a single sample for each data point was found

to give reasonable results. Variables not under observation were controlled at

reasonably constant values. These were chosen to represent typical ATL lay-up

conditions in a UK machine shop (Table 3-16). Following feed rate experiments the feed

rate constant was increased to 500mm/min in some GUD1600 experiments to maximise

the measurable tack. Humidity and ambient temperatures were found to vary on a daily

and seasonal basis dependant on local climate. Therefore, comparison of results

between experiments was done with caution. Uncontrolled humidity and material supply

constraints prevented large scale full factorial experiments.
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Table 3-15 Values used in the investigation of variables

Variable Levels Values Units
Single 16 18.3 22.3 27 ·30.1

Temperature °CExtended 10-70 variable
Single 50 250 500 750 1000Feed rate mm/mm

Extended 1 2 5 10 20 50 100 200
Surface finish Single 0.12 0.18 0.95 1.92 Ra
Release agent Single None 3 solvent based 3 water based -
Surface type Dual Glass Stainless steel GFRP -

Single 100 200 300 N/80mmCompaction force
Dual 25 80 215 wide roller

Dwell time Single 0 2 10 Minutes
Resin type Single Low Med High Tack level
Fibre weight Single 200 300 400 g/m2

Fibre type Both E-glass Carbon -
Resin content Both 30 40 50 %

Fibre architecture Both UD TRIAX

Table 3-16 Constant values used in single level investigations

Variable Fixed Value Estimated variance
Temperature 20°C :l:1.5°C

Relative Humidity 40% :UO%

Feed Rate
loommlmln

:1:0.005%
5OOmm/mln

Compaction force lOON ±5N
ReleaseAgent None NIA
Dwell time lOs ±5s

Table 3-17 Hexcel prepreg materials used in the investigation of process variables

Industrial
"'aterlal Reference

application

1600 g/m2 Unidirectional E-glass fibres with M9.1F 32%
GUD1600

Hand lay wind energy
resin content epoxy resin prepreg

600 91m2 Unidirectional carbon fibres with M9.1FLT32%
CUD600

Hand lay wind energy
resin content epoxy resin prepreg

400g/m2 Unidirectional E-glass fibres with M19.6LT 28%
WE-ATL

Newly developed wind
resin content epoxy resin energy ATL tape

1949/m2 Unidirectional AS4 carbon fibres with 8552 34%
A-ATL

Existing aerospace ATL
resin content toughened epoxy resin tape
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Table 3-18 Summary of experiments undertaken in the investigation variables

Variable Test Ref Material Levels
Samples

TotalDescription
per level

TOI GUD1600 5 5 25

T02 CUD600
Temp sweep

4 3 12
Temperature

T03 WE-ATl Extended temp sweep 11 1 11

T04 A-ATl Temp sweep 8 1 8

FROl GUD1600 5 5 25
Feed rate Feed rate sweep 8FR02 WE-ATL 8 1

SROl iuomm/mm 3 5 15
Surface GUD1600

SR02 Extended levels 500mm/min 4 5 20
roughness

SR03 WE-ATl Dual level temperature sweep 4x10 1 40

RAOI GUD1600 Single level 6 5 30
Releaseagent

RA02 WE-ATl Dual level temperature sweep 2XI0 1 20

CFOl 100mm/min 3 5 15
GUD1600

5 5 25Compaction CF02 Extended levels 500mm/min

Force CF03 A-ATL loomm/min 3 3 9

CF04 WE-ATl Dual level temperature sweep 3Xll 1 33

Surface type STOl WE-ATl Dual level temperature sweep 3X11 1 33

Contact 2xlO 1 20cror WE-ATl Dual level temperature sweep
temperature

M19.1 (high tack), M19.6

Resin Type RTOI Custom (med), M19.6lT 32% content 3 5 15

resins in 200g/m2 FAWprepreg

Fibre areal 200/300/400 g/m2 FAWIn
3 5 15FAWOl Custom

weight (FAW) 32% M19.6 med tack resin

200g/m2 FAWcarbon AS4/E-

FTOl glass M19.6 30/32% resin 2 5 10
Fibre type Custom

content.

FT02 Dual level temperature sweep 2x11 1 22

RCOl
200g/m2 E-glass with

3 5 15
Resin content Custom 30/40/50% resin content

RC02 Dual level temperature sweep 3X11 1 33

Fibre 2oo/1200g/m2 UD/Trlax 32% 1 16FAOl Custom 2x8
Architecture content M19.6 resin

3.5.2 Control of variables

Temperature

The test rig was enclosed within a temperature controlled chamber to Increase accuracy.

Samples and rigid substrates were allowed to dwell at the required temperature for

three minutes before testing. Temperature measurements were taken at the prepreg

tack surface using an IR laser thermometer immediately after testing.
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Feed rate

The feed rate of the new test determines both the peel rate and contact time, where

contact time is inversely proportional to peel rate. Therefore, the effect on tack will be

the combined effect of an increase in peel rate with a subsequent reduction in contact

time which simulates the ATL process. Feed rate is varied by adjusting test parameters

within the controlling software.

Surface finish

Surface finished was adjusted by subjecting test plates to varying degrees of polishing

or abrasion. Ra=0.12 finish was achieved using polish and a mechanical buffing wheel.

Ra=0.18 is the brushed finish of the stainless steel plate as supplied by the

manufacturer. Ra=0.95 was produced using rough sand paper. Ra=1.92 was achieved

using a bastard file. Surface roughness values were measured using a Mitutoyo Surf test

SV-600. Results were found to be in good agreement with observed roughness (Fig

3-16).

Ra0.12

Fig 3-16 Rigid plate simulated mould surfaces with alternate surface finishes

Release agent

Test plates were coated with a range of commercial release agents (Table 3-19).

Release agents were applied following manufacturers guidelines. Typically three to five

coats were applied, allowing drying for 10 minutes between coats and 30 minutes after

the final coat. An untreated stainless surface was also tested as a benchmark. Dual level

tests were carried out using a composite test plate coated with Chemlease 41 release

agent in comparison to an untreated surface.

Table 3-19 Details of the release agents used in the single level experiment (Ref.RA01)

Name Manufacturer Carrier Base

Chemlease PMR-90 Chemtrend Solvent

Watershield Zyvax Water

Multishield Zyvax Solvent

Enviroshield Zyvax Water

Composite Shield Zyvax Solvent
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Compaction force

Compaction force was varied by adjusting the tension of the springs connected to the

compaction roller using jacking screws. The total force acting over the 7Smm wide

02Smm roller was calibrated using the load cell (Chapter 3.3.4). To Improve

repeatability the jacking screws were set using the first sample and remained in a fixed

position for the duration of the experiment. The test rig allowed the springs to be spread

for sample loading without tension adjustment.

Contact temperature

Contact temperature was adjusted by pre-applying prepreg samples to the test plates

using the test rig without peeling. This was achieved by placing a thin film into the jaws

of the test rig and through the rollers. The test plate and sample were then loaded into

the rig without clamping onto the prepreg. The plate and sample and test rig were

contained within the oven heated to 40°C. A dwell time of 10 minutes was allowed for

the sample to reach the required temperature. The film was then pulled at SOOmmlmin

using the universal testing machine. The result was 40°C, SOOmmlmin applied samples

under lOON compaction force without peeling. Samples were then allowed to cool to

ambient temperature before testing proceeded as normal. Samples were compared to

standard testing where application is instantaneous under the compaction roller at the

time of and temperature of peeling.

Surface type

Additional test plates were manufactured from tempered glass and glass fibre reinforced

epoxy composite. Composite plates were constructed and finished to match the mould

surface typically found with wind energy mould tools. Test plates were compared with

stainless steel plates used throughout other experiments.

Resin Type

Prepreg samples were prepared by the manufacturer using unidirectional E-glass 200

g/m2 Impregnated with 32% SPA epoxy resin content with varying degrees of S stage

reaction. Three resin types, distinguished by their tack properties, were Impregnated

using similar methods and equipment; M19.6LT (Low tack), M19.6 (Medium tack) and
M19.1 (High tack).

Fibre areal weight (FAW)

Three prepreg materials with M19.6 resin at 32% content were supplied. FAWs were

adjusted to 200, 300 and 400 g/m2• Five samples were tested for each fibre weight

variant. Error bars represent batch deviation within the five samples.
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Fibre Type

200g/m2 FAWAS4 carbon fibre M19.6 30% resin content prepreg and 200g/m2 FAW E-

glass M19.6 32%E were supplied by the manufacturer for comparison between glass
and carbon fibres.

Resin Content

200 g/m2 E-glass unidirectional fibre prepreg was supplied with M19.6 medium tack

resin with 30,40 and 50% content by weight.

Fibre architecture

A sample of triax LBB 1200 g/m2 (400@±45°, 400@Oo, 400@@±45°) E-glass M19.6

32% resin content was prepared for comparison with 200g/m2 unidirectional E-glass

M19.6 30% resin content. The limitations of the prepreg production method used by the

manufacturer meant that equivalent FAWscould not be produced.

3.6 Rheology

Small Amplitude OSCillatory Shear (SAOS) rheology was carried out on prepreg resin

samples (Table 3-20) using 025mm parallel plates at 3Hz with 500~m resin layer

thickness over a 10-40oC temperature range. Resin samples are generic to the resin

type, not specific to the prepreg batch, tested at the point of manufacture without aging

effects.

Table 3-20 SAOS rheology experiments conducted on prepreg resins

Ref Resin mati. Prepreg reference

VI-RHl M9.lF (High tack) GUDl600
VI-RH2 M9.6 (Med tack) GB600, GTl200
VI-RH3 M9.6LT (Low tack) CUD600
VI-RH4 8552 (low tack) A-ATL
VI-RH5 Ml9.l (High tack) WE-ATL& Custom
VI-RH6 Ml9.6 (Med tack) materials for variable
VI-RH7 Ml9.6LT (low tack) Investigation

Details

SAOS02Smm parallel plate, SOO~mgap,
frequency 3Hz, lO-40oC.

Generic resin samples supplied Independently
from prepreg.
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3.7 Time temperature superposition Investigation

Materials

Two ATL prepreg samples of the same specification (Table 3-21) from different batches

and with alternate storage histories (Table 3-22) were used. Each was supplied with a

separate resin sample taken immediately prior to impregnation which then experienced

an equal storage history as Its prepreg counterpart. Prepreg samples were tested using

GPC, tack and stiffness testing. Resin samples were tested using GPC, DSC and SAOS

rheology.

Table 3-21 Details of ATLprepreg used in the 7TSinvestigation

Prepreg component Description Designation

Resin type Low tack bisphenol-A epoxy M19.6LT

Fibre Type E-glass E

Fibre weight 400g/m2 400

Resin Content 28% by weight 28%

Table 3-22 Storage history and reference of the prepreg and counterpart resin

Batch
Prepreg Resin Sample

Days at -18°C Days at 20°C
sample Ref. Ref.

One 120+ 4-10 PP1 Ri
Two <30 3 PP2 R2

Tack and stiffness tests

Tack and stiffness of PPl and PP2 prepreg samples were measured using the new tack

test equipment and procedures (Chapter 3.3) In Isothermal feed rate sweeps (Table

3-23, Table 3-24). The accuracy of temperature was limited by the oven chamber,

which showed difficulty regulating near ambient temperatures due to its design

operating temperature being significantly above ambient. Therefore, equal Interval

Isothermal temperatures proved difficult. However, accuracy was maintained by

measuring prepreg temperatures at the prepreg peel surface Immediately following

completion of the test. The average temperature of all samples tested at each oven set

point was then used to indicate the temperature at each level.
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Table 3-23 PPI prepreg isothermal tack and stiffness test grid

Temperature
Feed rate {mm/mm)

(OC)

22.1 1 2 5 10 20 50 100 250 500 1000
27.1 5 10 20 50 100 250 500 1000
28.6 5 10 20 50 100 250 500 1000
32.6 5 10 20 50 100 250 500 1000
35.2 20 50 100 250 500 1000
41.5 50 100 250 500 1000

Table 3-24 PP2prepreg isothermal tack and stiffness test grid

Temperature
Feed rate (mm/mm)

(0C)

19.9 1 2 5 10 20 SO 100 250 500 1000
25.4 5 10 20 50 100 250 500 1000
28.2 5 10 20 SO 100 250 500 1000
30.9 20 SO 100 250 500 1000
34.4 20 SO 100 250 500 1000
38.6 100 250 500 1000
40.9 100 250 500 1000

Rheology

SAOS rheology experiments were carried out on a Bohlin C-VOR Rheometer with

temperature control using an ETC oven with liquid nitrogen cooling. Rl and R2 resin

samples were placed between 02Smm 2.5° cone and plate geometry with a 70l.lm gap

from the plate to truncated cone. Isothermal frequency sweeps of 0.1 to 30Hz, with 16

logarithmic Intervals, were carried out at temperatures from 10-400C at 3°C Intervals.

Gel permeation chromatography

All samples were analysed for molecular weight by Gel Permeation Chromatography

(GPC) using Polargel-M gel columns. Rl and R2 Resin samples were dissolved In

TetraHydroFuran (THF) with a concentration of 7.5-10 mg/ml. Resin was extracted from

PPl and PP2 prepreg by dissolving a patch In THF. The patch size was calculated based

on the manufacturer's quoted resin content to give the required resin concentration. The

difference In mass between prepreg and un-dissolved fibres was used to ensure the

correct solution was obtained. Three tests were run for each resin sample.

Differential Scanning CalOrimetry (DSC)

Rl and R2 resin samples were analysed using a TA Instruments Q10 DSC. Samples were

placed In open aluminium hermetic pans using SOml/mln Nitrogen detector sweeping
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gas. Samples of ~8mg were subjected to a 300°C temperature ramp at 5°C per minute
to determine cure enthalpy.

Summary

Four test methods were used for ten tests in total (Table 3-25).

Table 3-25 Experiments carried out in the investigation of time temperature

superposition in prepreg tack and stiffness

Test Type
MatI

(variable Ref Details Samples
investigated)

Tack and TIS-TIl PPl 45
stiffness TIS-TI2 PP2

Isothermal feed rate sweeps (Table 3-23, Table 3-24)
46

Rheology TTS-RHl Rl SAOS02Smm cone and plate, 70l.lm gap, isothermal
(Shear frequency sweeps of 0.1 to 30Hz, with 16 logarithmic <lOg

modulus) TIS-RH2 R2 intervals, 10 to 40°C at 3°C Intervals.
TTS-GPCl Rl

7.Sg/ml,GPC
(Molecular

TIS-GPC2 R2 3 samples from each material, resin extracted from
800ml

TTS-GPC3 PPl prepreg using THFweight) approx.
TTS-GPC4 PP2

DSC (Cure TIS-DSCl Rl Rl8mg
enthalpy) TTS-DSC2 R2

300°C temperature ramp at SOC/min
each

3.8 ATLapplicability study

WE-ATL material was characterised for tack and stiffness under simulated commercial

ATL lay-up conditions using the new test method. Test results were then used to

determine the feed rate which gave good tack performance at ambient temperature.

ATL lay-up then proceeded using a feed rate which was Increased with or without adding

temperature according to the WLF time temperature relationship. The aim of this test

was to determine If tack and stiffness results and the WLF time temperature relationship
are directly applicable to the ATL process.

Materials

Newly developed wind energy ATL prepreg tape (WE-ATL) was used throughout the

applicability study. The material was 400 g/m2 unidirectional E-glass fibres with batch

two M19.6LT resin at 28% by wt. content. Therefore, results and WLF equation

constants from the time temperature superposition Investigation could be used.
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Tack tests under ATL production conditions

The following production mould surface conditions were simulated and investigated

using the new tack and stiffness test (Table 3-27):-

• Untreated composite test plates replicated the mould material and surface

roughness. Rigid plates were cut from the actual ATL lay-up surface and used as

a baseline comparison. This surface Is not currently viable In production since a

release agent is needed for the removal of cured components (Ref. ATL-TT1).

• Chemlease 41 release agent was applied using the recommended application

method recreating production conditions without tackifier (Ref. ATL-TT2).

• Chemlease was applied as above. Plates were then brushed with

dichloromethane and allowed to dry. This test is used to assess the possible

degradation effects on release agent caused by dichloromethane (Ref. ATL-TT3).

• Chemlease was applied as above. Plates were then brushed with tackifier and

allowed to dry. Tackifier consisted of 0.16 g/ml of M19.6LT resin dissolved in

dichloromethane (Ref. ATL-TT4).

The exact compaction pressure of the ATL head was unknown. Therefore, a roller force

of lOON was used to allow for comparison between existing results. A feed rate of 500

mm/mln was used as an estimate of ATL speed and to give a comparison between

existing results. A temperature sweep of ~20-4SoC was carried out with a single sample

at each temperature, 10-12 samples in total per temperature sweep. Temperatures

were recorded at the peel surface using an IR thermometer immediately following the

test.

ATL trials

The lay-up of WE-ATL tape at ambient temperature proved problematic and required

mould surface tackifier. Tack testing at SOOmm/min revealed that a peak tack is

obtainable without tackifier at a higher temperature (~34°C) exceeding the tack

available with tacklfier at ambient (200C) temperature (Chapter 4.6.1). To validate the

tack and stiffness results ATL lay-up was attempted at this higher peak tack level

without tackifler. To validate the use of time-temperature superposition the WLF

equation with constants taken from rheology (Chapter 3.7) were used to determine this

peak tack feed rate at ambient temperature. Lay-up began at this feed rate increasing

until lay-up failure occurred by lack of mould tack. The experiment was then repeated

with temperature Increased according to the WLF relationship, where tack was expected

to remain constant (Table 3-27).
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A Cincinnati V4 contour tape layer was utilised. The ATL's heated shoe was not used,

considered wrongly positioned against the backing paper, since heating was required at

the mould surface side. Therefore, heating was provided by a digitally controlled heat

gun and monitored using an IR thermometer (Fig 3-17). Temperature measurements

revealed significant difficulties in maintaining a uniform temperature across the tape

using this method.

Peak tack was transposed to ambient temperature using the WLF equation (Eq 4-1) with

constants (C1=13.76 & C2=59.471) from rheology (Chapter 3.7). Peak tack without

tackifier was calculated to occur at ::::4mm/min (Table 3-26). Therefore, ATL processing

began at 4mm/min at ambient temperature. Feed rate was then increased without

heating. In a separate experiment feed rate was also increased with heating according

to the WLF relationship (Table 3-27).

Fig 3-17 ATL heating method using a heat gun and IR thermometer

Table 3-26 Peak tack feed rate at given ATL tape temperatures according to the WLF

relationship with constants found by rheology (Chapter 3.7)

Temp °C 20 22 24 25 26 27 28 29 30 31 32 33 34
Feed Rate 4.3 8.5 17 24 33 47 65 91 128 180 253 356 500

Table 3-27 ATL applicability trial experiments

Test Type Ref

ATL-TIl
Tack and

ATL-TI2
stiffness

ATL-TIl
test

ATL-TI1

ATL-1

ATL lay-up

ATL-2

Details Samples

Temperature sweep on a composite plate

Temperature sweep with Chemlease 41 release agent

Temperature sweep with Chemlease 41 and dichloromethane

Temperature sweep with Chemlease 41 and tackifier

11

11

11

11

Lay-up at 4, 20, 50, 100, 200 & 400 mrn/rnln on a composite

surface with Chemlease 41 release agent at 20°C fixed

Lay-up at 400 rnrn/rnin temperature increased according to WLF

relationship (34°C)

12m

12m
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4 Results and observations

Details of each test methodology can be found in Chapter 3 along with experiment

reference numbers and material details.

4.1 ATL feasibility trials

Flat panel BAE ATL recommissioning

Recommissioning the Cincinnati V4 ATL (Ref. ATLF-A01) began with existing aerospace

ATL tape at ambient temperature. Difficulties in lay-up were observed with an inability

to stick plies to the mould surface where prepreg was retained on the backing paper.

This became increasingly problematic in laying the small triangular pieces of the test

panel. Problems were associated with a low tack level to the mould surface. Covering

the mould with a vacuum bag surface allowed successful lay-up and recommissioning

(Fig 4-1).

Fig 4-1. Flat panel ATL lay-up of aerospace prepreg over bagging film

Wind energy ATLprepreg trials

The use of M19.1 high tack resin prepreg (Ref. ATLF-W01) was immediately ruled out by

the machine operator, considered unsuitable due to too high tack level. Concern was

raised over resin build up on ATL machine components, difficulty in unwinding the

prepreg roll and inability to remove and reposition misplaced plies.

Lay-up using M19.6 resin, 300 and 400 g/m2 E-glass prepreg was also attempted (Ref.

ATLF-W02 and 3). The FAW increase was initially minimised to 400 g/m2 due to

anticipated cutting problems. Positive lay-up performance was achieved, although the

tack levels were believed by the operator to be too high, with significant noise and

unwanted tack when unwinding the delivery roll. Difficulty in repositioning misplaced
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plies was also considered detrimental. No difficulty in cutting was experienced using the

Cincinnati VS standard equipped with ultrasonic cutter knives.

Wind energy prepreg trials

ATL lay-up using the Cincinnati V4 was attempted using 300 to 400g/m2 E-glass with

M19.6 (medium tack) and M19.6LT (Low tack) 32% resin content (Ref. ATLF-W03 to

W06). Lay-up of both materials was hampered by cutting problems (Table 4-1). The

problematic cutting was mostly associated with resin build up on the cutter blade (Fig

4-2).

Table 4-1 Cincinnati V4 A TL lay-up failures associated with cutting

Failure Cause Description

Cutter depth wrong setting Depth of cut not adequate

Incomplete cut
Resin build up

Clean cutting is prevented by blade

tip fouling

Fibres pulled from tape

edges

Small bundles of fibres are dragged

from the edges of the tape

Backing paper

failure
Cutter depth wrong setting

Backing paper breaks due to being

scored or cut

Fig 4-2 Resin build up on Cincinnati V4 blades believed to cause cutting difficulties

Cutting was not considered an issue warranting significant research since no problems

were found during the SABCA trials when using ultrasonic knives. However, the cutting

issue did need to be addressed in order to allow V4 trials to continue. Several changes

were implemented during subsequent trials to alleviate cutting difficulties:-

• Changes to the geometry of the cutter blade

• Reducing resin content to 28%

• Utilising M19.6LT low tack resin
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Wind energy prepreg trials

Changes to the cutter blade geometry were found to improve cutter performance

significantly allowing trials to continue (Ref. ATLF-W07 to 09). A build up of resin on the

cutter blade main body remained, however the actual cutting tip appeared to stay clean.

Concerns were raised over the excess resin dropping from the cutter blade Into the

laminate. Therefore, the ATL machine was paused at regular intervals to clean the

cutter blades. A low tack resin system (M19.6LT) and reduced resin content (28%) were

then preferred on the basis of a reduction in resin build up on the cutter. Other

observations were made on material performance. The 600 g/m2 prepreg was

attempted but proved too difficult to cut. Therefore, FAWwas limited to 400g/m2 based
on cutter performance. The M19.6 resin system displayed marginal difficulty In

separating from the backing paper indicating that tack to the backing paper was too

high. M19.6LT resin appeared to separate much easier from the backing paper. M19.6

showed moderately improved mould tack in comparison to M19.6LT. A number of

methods were then employed to improve mould tack:-

• The temperature of the hot shoe was increased. This appeared to increase tack

to the backing paper preventing release with little effect on mould tack.

• A homemade tackifier conSisting of prepreg resin dissolved in tetrahydrofuran

was applied to the mould surface. Lay-up performance was then considered

acceptable.

Despite poor mould tack performance M19.6LT 400g/m2 28% resin content (W-ATL-7)

material was selected for lay-up of the demonstrator component since the Issue of poor

mould adhesion could be overcome using tacklfier (Table 4-2).

Table 4-2 Summary of ATLmaterial performance in feasibility trials

Performance Effect of
Highest

Material Backing paper Mould Reposition Mould Increased
Cutting score

release tack -ability tacklfler temperature

A-ATL-1 Increased Increased
10 8 2 9 mould mould tack 34

A-ATL-2 tack to 7 to S
W-ATL-l IP IP lOP IP Unknown 1
W-ATL-2 4 S 3 19
W-ATL-3 6 S 3 21
W-ATL-4

5 (Resin build up) Reduced
2S7 2 6 Increased

W-ATL-S 8 mould
backing

262 6
paper

W-ATL-6 1 (FAW too high) NA tack to 7 1
release to 2

W-ATL-7
6 (reduced resin

28
build up)

9 2 6

Scale I-Unable to process, to 10-excelient no problems (p. Predicted result)
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Aerospace double curvature contour recommissioning

Successful lay-up of aerospace ATL tape was achieved on a double curvature high

stiffness alloy aerospace tool (Ref. ATLF-A02) (Fig 4-3). However, poor mould adhesion

was observed with the use of Chemlease 41 release agent. Improvements in mould

adhesion were achieved by utilising the hot shoe to increase prepreg temperature and

applying tackifier to the tool surface.

Fig 4-3 Aerospace ATL prepreg lay-up on a double curvature mould surface

Wind energy moulds

Wind energy moulds coated with Chemlease 41 release agent were tested using

aerospace prepreg materials (ATLF-A03). Tackifier was applied to the mould surface to

overcome issues of low tack (Fig 4-4). Full ATL lay-up could not be achieved for any ply

direction with a percentage of each ply finished by hand lay-up (Table 4-3). Full lay-up

was prevented by Z axis tracking machine errors. These errors are associated with

mould dimensions which do not match pre-programmed tool paths based on a 3D CAD

model of the mould. The mismatch is associated with:-

• Mould construction tolerances which exceed that of ATL limits

• Mould deflection caused by the compaction force of the ATL head

Fig 4-4 ATL aerospace prepreg lay-up on wind energy moulds
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Table 4-3 ATL lay-up achieved for each ply direction

75%

60%

60%

Ply direction Successful ATL Lay-up (approx)

Demonstrator component lay-up

A significant portion (Table 4-3) of each ply direction was laid successfully using ATL

(Fig 4-5) (Ref. ATLF-W08). Complete lay-up of each ply was prevented by machine

errors as experienced during the previous lay-up (Ref. ATLF-W07). Tackifier was applied

to the mould surface to relieve issues of low tack. Incomplete plies were finished by

hand to complete the lay-up of the 7m wind turbine representative blade skin (Fig 4-6).

Fig 4-5 Extent of ATL lay-up of wind energy prepreg plies

Fig 4-6 Hand finishing of plies (left) to complete 7m blade skin lay-up (right)
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4.2 Commercial prepreg characterisation

4.2.1 Roll position effects

The majority of commercial prepregs showed differences in stiffness across the roll (Fig

4-7) (Ref. PP-TIl to 4). The glass triax material showed the greatest increase with up

to lON stiffness towards the centre of the roll. Tack variability was also displayed across

most rolls, with the exception of CUD600 carbon sample which displayed insignificant

tack levels throughout (Fig 4-8). The GTl200 sample showed a significant increase in

tack towards the centre of the roll.

--CUD600

40 --GUD1600

E ~ GT1200
E
L.() ~GB600r-,
<, 30z
'" -__
'"(1)
c:.....~ 20......
L.()

10

A BCD
Sampleposition

E

Fig 4-7 Stiffness distribution across the commercial prepreg ro/l width

100
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E 40E /
LI'l
r--.-.. 20z
~
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--CUD600

--GUD1600

.. GT1200

-+-GB600

Fig 4-8 Tack distribution found across the commercial prepreg roll width
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4.2.2 Face position effects

When testing for differences in tack and stiffness between faces (Ref. PP-TTS to TT8)

stiffness values remained reasonably consistent for all materials (Fig 4-9). However,

tack values were found to vary significantly between faces in most prepregs. GT1200

triax sample showed the greatest variation between faces. CUD600 displayed little

variation due to its overall low tack properties.

CUD600 Inner Face
80 .. CUD600 Outer Face

• GUD1600 Inner Face
E Iii GUD1600 Outer Face
E 60 • GB600 Inner FaceIf'I
r-, Iii GB600 Outer Face-......
Z

'"'" 40(J)
c.....~
Vi
"C 20c
til
.:.:.
u
~

0
Stiffness Tack

Fig 4-9 Tack and stiffness values between alternate faces of the prepreg roll

4.2.3 Overall characterisation

When comparing prepregs in the characterisation of roll width position (Ref. PP-TT! to

4) stable and repeatable values were recorded for all stiffness values with minimal

standard deviation. Tack values appeared stable and repeatable for unidirectional

prepregs with reasonably low standard deviation. However, multidirectional prepregs

with increased resin content showed inconsistent tack results with significant deviation

between samples and batches (Fig 4-10). These prepregs also differed significantly from

manufacturers specified tack levels (Table 4-4).

100
Stiffness 1
Stiffness 2

E 80 Stiffness 3
E .Tack 1IJ'l

"z- 60 .Tack 2
VI • Tack 3
II'!
<I.J
C 40._._
....
Vl

o(l
.:.:. 20u
III
f-

0
CUD600 GUD1600 GB600 GT1200

Fig 4-J 0 Three batch repeatability experiment results (Ref. PP-TTl to 4)
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Table 4-4 Tack and stiffness characterisation results (Ref. PP-TTl to 4) for existing

wind energy prepreg in comparison to specified tack levels

Stiffness Tack Specified tack
Ref. a [ct,b] a[%]

[N/75mm] [N/75mm] level
GB600 14.4 7.4 60 56.2 Medium

GT1200 28.4 20.9 44.4 48.8 Medium

GUD1600 21.8 12.9 17.22 28.44 High

CUD600 32.2 11.9 0 37.9 Low

When comparing the two characterisation studies (Ref. PP-TTl to 4 and PP-TTs to 8),
the values for prepreg stiffness appeared logical and were consistent between roll

position and face studies (Table 4-5). The highest stiffness was measured for CUD600

due to the increased stiffness of carbon fibres In comparison to E-glass. It may be

logical for the stiffness of glass fibre prepreg to be directly proportional to material

weight. However, GT1200 showed increased stiffness in comparison to GUD1600.

Therefore, fibre architecture and Increased resin fraction also have an effect. The values

for tack are repeatable experimentally but are not always consistent with

manufacturer's specified values (Table 4-5). Manufacturers specify tack values based on

results of constituent resin tests without the presence of fibres. Multidirectional fabrics

display the highest deviation. Therefore, it is likely that fibre direction and resin content

also contribute to tack, possibly changing the surface resin layer characteristics,

consistent with the findings of prepreg probe test results [83].

Table 4-5 Commercial stiffness and tack results compared to manufacturers values

Stiffness Taele
Re.ln Fibre Hanufacturel'$

Hatl. Fibre [N/7SmmJ [N/7SmmJ
Specified tack

Ref. type Content weight
position Face position Face

level[%J [Si/mIlJ
study study study study

GB600 Glass 45 600 14.4 12 60 52.2 Medium

GT1200 Glass 38 1200 28.4 26.7 44.4 43.9 Medium

GUD1600 Glass 32 1600 21.8 21.9 17.22 18.6 High

CUD600 Carbon 32 600 32.2 33.7 0 0 Low
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4.3 Effect of tack variables

Results were analysed for consistency maintaining the definition for batch and sample

deviation (Chapter 3.3.5). Overall effects were calculated by comparing maximum and

minimum values obtained (Appendix C). Dual interaction effects of temperature were

found by comparing the integral of each temperature curve (Appendix D). The

experimental reference grid can be found in Chapter 3.5 along with details of method

and materials used.

4.3.1 Temperature

Results for single level experiments (Ref. T01) with GUD1600 prepreg show a reduction

in stiffness and tack with increased temperature (Fig 4-11). Values for standard

deviation reveal good levels of certainty (Table 4-6).

60
-e-Stiffness

E
E _Tack
II)

I' 40<,
Z
.:.t
U
ttl
I-
"0
c 20ttl

'"'"QJ
~
Vl 0

15 20 25 30
Temperature (OC)

Fig 4-1.1. Tack and stiffness response to temperature in GUD1600 prepreg (Ref. Tal)

Table 4-6 Standard batch deviation in the effect of temperature results

Temperature [0C] 16 18.3 22.3 27 30.1 [%]

Stiffness [N/75mm] 39.37 25.97 19.18 16.36 15.64 Effect 60.27

a 5.59 3.26 0.48 0.75 1.53 a 9.96

Tack [N/75mm] 55.73 35 14.49 2.68 3.93 Effect 95.2

a 3.26 2.98 1 1.12 0.16 a 7.62

CUD600 prepreg (Ref. T02) showed a similar stiffness decrease response to

temperature. However, a contradictory tack response was found showing a significant

increase in tack with a 97% effect compared to 23% error (Fig 4-12).
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Fig 4-1.2 Tack and stiffness response to temperature in CUD600 prepreg (T02)

The contradiction in temperature response between GUD1600 and CUD600 prepregs

was attributed to an observed change in failure mode (Fig 4-13). At room temperature

the CUD600 appeared to exhibit mostly dry failure at the surface whereas GUD1600 was

mostly wet viscous failure within the resin.

Fig 4-1.3 CUD600 (left) and GUD1600 (right) peel failure modes at ambient

temperature (20°C)

Newly developed wind energy ATL tape (Ref. T03) exhibited both failure modes and a

peak in recorded tack over a temperature range (Fig 4-14). The transition in failure

mode was evident by examination of the peeling process and rigid substrate following

the test. At low temperature surface failure revealed a mostly clean plate with little

resin deposition, but as the temperature was increased resin failure was observed with

significant resin deposition (Fig 4-15). The transition in failure mode appeared at a

temperature consistent with the peak in recorded tack.
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Fig 4-14 Tack and stiffness of WE-ATL prepreg (Ref. T03) temperature response

Fig 4-15 Resin deposition of WE-ATL prepreg (Ref. T03) with increasing temperature

Existing aerospace A-ATL tape (Ref. T04) revealed only a modest peak in recorded tack

with a transition in failure mode observed at a higher temperature. The transition in

failure mode observed by resin deposition on test plate again appears to correspond

with the peak in tack (Fig 4-16).
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Fig 4-16 A-ATL (Ref. T04) Tack and stiffness temperature response (left) and resin

deposition (right)

R J Crossley 122



Chapter 4- Results and observations

4.3.2 Feed rate

Feed rate was shown to have a significant effect on tack (96.8%) and stiffness (52.4%)

of GUD1600 prepreg (Ref. FR01) (Fig 4-17) with a reasonably low degree of standard

deviation which appears to increase with feed rate (Table 4-7).

Table 4-7 Effect of feed rate on GUD1600 prepreg

Feed Rate [rnrn/rnin] 50 250 500 750 1000 [%]

Stiffness [N/75mm] 21.39 29.74 36.15 38.78 44.9 Effect 52.4
a 0.85 1.56 1.19 1.34 2.83 a 4.5

Tack [N/75mm] 2.51 32.46 65.94 79.08 78.65 Effect 96.S
a 0.81 2.29 9.57 9.02 23.49 a 17.5

100
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.......z
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Fig 4-1.7 Tack and stiffness of GUD1600 prepreg in response to increasing feed rate

An increase in tack and stiffness with increasing feed rate was also recorded for WE-ATL

prepreg (Ref.FR02) (Fig 4-18). However, a peak in tack was reached which appeared to

correspond with a change in failure mode observed at the rollers and by resin deposition

on the rigid test plate (Fig 4-19). An increase in experimental error was also observed

during failure mode transition and interfacial failure at increased feed rates.
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Fig 4-1.8 WE-ATL prepreg tack and stiffness response to feed rate (Ref. FR02)

Fig 4-1.9 WE-ATL prepreg failure mode and deposition feed rate response (Ref. FR02)

4.3.3 Surface roughness

The results of the initial surface roughness investigation (Ref. SR01) showed no

significant effect. However, the Ra=1.92I.lm plate appeared to show a 20% rise in tack

with a 10% experimental error (Table 4-8).

Table 4-8 GUD1600 prepreg surface roughness response (ioomm/min) (Ref. FR01)

Av. Surface Roughness (Ra) [lJm) 0.12 0.18 1.92 [%]

Stiffness [N/75mm] 20.9 18.56 22.24 Effect 16.5
a 0.28 2.08 1.54 a 6.4

Tack [N/75mm] 10.72 10.03 12.79 Effect 21.6
a 0.39 1.89 1.39 a 10.9
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The experiment was repeated with an additional Ra=0.95 plate to investigate any

possible trend in increasing tack towards the increasingly rough surface (Ref. SR02).

The repeated experiment showed no obvious trend in tack levels. A 27% rise in tack

was again recorded for the Ra 1.92 IJm plate (Table 4-9) with 29% uncertainty. Both

tests showed large standard deviation in comparison to any effects. A minor trend was

observed, with an increase in tack levels for the 1.92IJm plate. However, effects did not

significantly exceed standard deviation. Resin failure was mostly observed at

100mm/min. At 500mm/min signs of a change in failure mode were beginning to occur,

but complete surface failure was never observed.

Table 4-9 Effects of surface roughness on GUD1600 prepreg at 500mm/min feed rate

(Ref. FR02)

Av. Surface Roughness (Ra) [urn] 0.12 0.18 0.95 1.92 [%]

Stiffness [N/75mm] 34.46 34.2 34.31 34.29 Effect O.S
a 3.46 1.94 3.02 1.61 a 7.3

Tack [N/75mm] 46.3 45.56 45.39 62.59 Effect 27.5
a 14 7.25 19.43 17.64 a 29.2

WE-ATL temperature sweeps (Ref. SR03) showed no significant stiffness (Fig 4-20) or

tack response to surface finish (Fig 4-21). A familiar peak in tack appeared to occur

alongside a change in failure mode at a consistent temperature for all surfaces (Fig

4-22). Increased error was observed with the polished plate around the transition in

failure mode, believed to be due to the onset of an unsteady 'stick-slip' peel condition.
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Fig 4-20 Effect of surface finish on stiffness of WE-ATL prepreg (Ref. SR03)
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Fig 4-21 WE-ATL tack response to surface finish over a temperature range (Ref.SR03)
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Fig 4-22 WE-ATL test plate resin deposition indicating a consistent change in failure

mode over a temperature range (Ref. SR03)

Further analysis (Appendix D) of the effects of surface finish on WE-ATL prepreg allows

a comparison of average tack and stiffness effect with standard deviation (Table 4-10).

The results show that surface finish has no significant effect over a temperature range

which includes both types of failure modes.
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Table 4-1.0 WE-ATL prepreg tack and stiffness response over a temperature range

including average standard deviation (Ref. SR03)

Av. Surface Roughness (Ra) [urn] 0.12 0.18 0.95 1.92 [%]

Tack [N/75mm] 4.77 6.32 4.71 5.22 Effect 25.5
a 1.19 1.30 0.88 0.79 a 19.8

Stiffness [N/75mm] 6.28 5.48 6.16 5.71 Effect 12.7
a 0.59 0.39 0.70 0.55 a 9.5

4.3.4 Release agents

The stiffness of GUD1600 prepreg at 20°C (Ref. RA01) appears unaffected by release

agents, with minor effect attributed to experimental error (Table 4-11). A significant

reduction in tack, with 99.5% effect, can be seen with all release agents indicating a

significant effect in comparison to 31.4% standard deviation (Fig 4-23). Additionally,

solvent based composite, Multishield and PMR-90 release agents showed a higher

residual tack than water based types. A change in failure mode was also observed.

Heavy resin deposition seen on untreated test plates is not present on those treated

with release agent.

Table 4-1.1. GUD1600 prepreg response to re/ease agents (Ref. RA01)

Release Water Hulti Enviro Composite PHR-
None {%]

agent Shield Shield Shield Shield 90
Stiffness 31.47 30.31 29.17 31.05 30.8 30.55 Effect 7.3

[N/mm] C1 2.53 1.84 0.61 1.77 0.82 4.94 a 6.8

Tack 58.29 1.38 8.62 0.27 8.78 3.95 Effect 99.5

[N/mm] C1 8.64 1.96 5.35 0.49 6.35 2.71 a 31.4
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Fig 4-23 GUD1600 prepreg tack and stiffness response to release agents (Ref. RA01)
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Temperature sweep experiments using WE-ATL prepreg (Ref. RA02) also show that

release agents have a significant effect on tack. The peak in tack appears to be

significantly reduced. The peak remains at a consistent temperature as the apparent

shift in failure mode observed by resin deposition for each temperature sweep.

However, the failure mode transition appears to occur at a higher temperature when a

release agent is used (Fig 4-24).

15
-Tack on a composite tool

surface

o
15

I-Tack on a composite tool
E 10 with chemtease41
E
Ln,...-Z
~
u
~ 5

25 3S
Temperature ("C)

Without release agent

4S

Start of resin deposition t
Fig 4-24 WE-ATL response to release agent over a temperature range with test plate

resin deposition observations

4.3.5 Compaction force

Testing GUD1600 at 100mm/min, 20°C (Ref. CF01) revealed a trend of increasing

stiffness with compaction force. A decreasing trend of tack was observed with a 40.5%

effect in comparison to 14% standard deviation (Table 4-12).
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Table 4-12 GUD1600 tack and stiffness response to compaction force at 20°C and

toomm/ratn feed rate (Ref. CF01)

ComPllction Force [N1 lOO :ZOO 300 [%]
Stiffness [N/75mm] 21.53 25.35 32.78 Effect 34.2

0 1.3 3.48 2.75 fI 9.5

Tack [N/75mm] 39.84 30.93 23.7 Effect 40.5
0 3.38 3.26 6.3 fI 13.7

Testing GUD1600 prepreg at 500mm/min, 20°C (Ref. CF02) showed a repeated trend of

increasing stiffness with increased compaction force. The trend of decreasing tack was

also repeated with 37% effect In comparison to 14% error (Table 4-13).

Table 4-13 GUD1600 tack and stiffness response to compaction force at 20°C and

SOOmm/min feed rate (Ref. CF02)

Comf'lldlon Force [N1 75 lOO 150 :ZOO :Z50 300 [%]
Stiffness [N/75mm] 19.59 20.17 24.9 27.65 29.16 30.78 Effect 36.4

0 1.24 1.62 1.21 1.53 2.81 4.25 fI 8.3

Tack [Nl75mm] 42.16 43.63 35.99 27.59 31.77 30.63 Effect 36.8

0 6.41 6.89 4.7 5.74 1.37 5.1 fI 14.3

Testing aerospace A-ATL prepreg at 100mm/min, 20°C (Ref. CF03) showed a confident

repeated trend of increasing stiffness with increased compaction force. The trend of

decreasing tack was also repeated with 44% effect, however, standard deviation

Increased to 45%.

Table 4-14 Aerospace A-ATL tack and stiffness response to compaction force at 20°C

and lOOmm/min feed rate (Ref. CF03)

Compaction Force [N1 lOO 200 300 [%]

Stiffness [N/7Smm] 9.56 12.19 14.89 Effect 35.8

0 0.24 0.19 0.55 fI 2.7

Tack [N/75mm] VI8 1.63 1.38 Effect 44.4

0 0.54 0.9 1.02 fI 44.S

Temperature sweeps using WE-ATL (Ref. CF04) show the familiar peak In tack at a

consistent temperature regardless of compaction force (Fig 4-25). An Increase In peak

tack was observed with Increasing compaction force. However, the Increase appears to

occur mainly within the failure mode transition region (~25-35°C). The temperature

sweep confirms the lack of compaction pressure effect at ambient (200C) temperatures.

A consistent Increase In stiffness was observed with Increasing compaction force
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independent of temperature (Fig 4-24), suggesting that this effect is likely to be due to

increased friction within the rig.
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Fig 4-25 WE-ATL tack response to compaction force over a temperature range (Ref.

CF04)
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Fig 4-26 WE-ATL stiffness response to compaction force over a temperature range

(Ref. CF04)

4.3.6 Surface material

Results of temperature sweeps using WE-ATL on alternate surface types (Ref. STD1)

revealed a peak in tack for all surfaces (Fig 4-27). However, peaks were shown to

change in magnitude and transition temperature. The peak in tack for each surface

appeared consistent with the change in failure mode observed by resin deposition (Fig

4-28). Effects over the temperature range (Appendix D) showed a 69% effect on tack

with 23% error and 25% effect on stiffness with 11.3% error (Table 4-15). Increased

stiffness for the composite plate remained consistent throughout the temperature range
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(Fig 4-29). Therefore, the effect on stiffness was mostly attributed to the rough lower

surface of the composite plate, believed to result in increased rolling friction.

......40
E
E
LI'I
!::. 30 -t-

Z......
.:.:.
u
~ 20

----Glasssurface (high energy)

_'_Stainlesssteel surface (med energy)

-Epoxy E-glass fibre surface (low energy)

50

10

o
19 24 29 34 39

Temperature rOC]

Fig 4-27 WE-ATL tack response to surface type over a temperature range (Ref. ST01)

Interfacial - Transition - Cohcsivc-

Fig 4-28 WE-ATL resin deposition response to surface type (Ref. ST01)

Table 4-15 Effect of surface type on WE-ATL prepreg tape (Ref. ST01)

Surface Type StjSt Glass Epoxy E-GF [%]

Stiffness [N/75mm] 5.48 5.39 7.22 Effect 25.3

a 0.39 0.38 1.27 a 11.3

Tack [N/75mm] 6.32 14.57 4.56 Effect 68.7

a 1.30 3.10 1.55 a 23.4
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Fig 4-29 WE-ATL stiffness response to surface type over a temperature range (Ref.

ST01)

4.3.7 Contact temperature

The contact temperature experiment (Ref. CT01) revealed a significant effect of 69%

overall average increase in tack with a 40°C, lOON, 500mm/min pre-application stage

(Table 4-16). A low standard deviation of 5.3% indicates a good degree of confidence in

the observed effect. Observations over the peel temperature range show that tack is

significantly increased mostly at a lower temperature. Both failure modes are observed

in the standard test. However, only cohesive failure was observed in the pre-applied

high contact temperature sample displayed which did not exhibit a peak in tack (Fig

4-30). No effect was observed on prepreg stiffness.

60

'\
~40°C, lOON compaction, SOOmm/min
pre-application using test rig

=-No pre-application
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Fig 4-30 Effect of a 40°C pre-application on tack over a subsequent peel temperature

range (Ref. CT01)
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Table 4-1.6 Effects of increased temperature application on WE-ATL (Ref. CT01)

No Pre- With Pre- Effect

application [N] application [N] (N) [%]
a[%]

Tack 7.6 24.6 17.0 69.0 6.5

a 1.5 0.6

Stiffness 5.7 5.3 0.4 7.9 7.8

a 0.4 0.5

4.3.8 Resin type

The testing of three custom made prepregs with matching fibre specification and

alternate resin types, formulated based on tack levels (Ref. RT01), revealed a moderate

effect (19.4%) on stiffness with 8% uncertainty (Table 4-17).

Table 4-1.7 Effects of resin type on prepreg tack (Ref. RT01)

Tack level Low Med High

Resin Type M9.6LT M9.6 M9.1F [%]

Stiffness [N/7Smm] 5.07 6.29 5.17 Effect 19.4

a 0.3 0.89 0.13 a 8

Tack [N/7Smm] 0.24 7.3 13.44 Effect 98.2

0 0.19 4.51 0.68 a 25.6

The tack response was shown to be in agreement with tack levels specified by the

manufacturer (Fig 4-31). A 98.2% effect with 25.6% uncertainty reveals a dominant

effect on tack at ambient temperature.
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Fig 4-31. Tack and stiffness response to resin type at ambient temperature (Ref. RT01)
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4.3.9 Fibre areal weight

The testing of three matching prepregs with increasing Fibre Areal Weight (FAW) (Ref.

FT01) revealed an almost proportional 57.3% increase in stiffness with 12.8%

uncertainty (Fig 4-32). A 46.8% effect on tack is overshadowed by 54.7% uncertainty

without a noticeable trend (Table 4-18).
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Fig 4-32 Tack and stiffness response to FAW at ambient temperature (Ref. FAW01)

200

Table 4-1.8 Effect of FAW on tack and stiffness (Ref. FAW01)

Fibre weight [g/m2] 200 300 400 [%]

Stiffness [N/75mm] 6.29 12.05 14.73 Effect 57.3

a 0.89 1.15 2.2 a 12.8

Tack [N/75mm] 7.3 3.49 3.88 Effect 46.8

a 4.51 1.36 2.16 a 54.7

4.3.10 Fibre type

A comparison of matching prepregs with alternate carbon and E-glass fibres (Ref. FT01)

was made at ambient (200C) conditions. The stiffness of carbon fibre prepregs was

shown to increase by 38% with 12% uncertainty in comparison to E-glass (Fig 4-33). A

significant 87.1% with 64.4% standard deviation effect on tack was observed with a

change in fibre type, with significantly increased tack in the E-glass fibre samples (Table

4-19) at ambient temperature.
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Fig 4-33 tack and stiffness response to fibre type at ambient temperature (Ref. FT01)

Table 4-19 Effect of fibre type at ambient temperature (Ref. FT01)

Fibre type Carbon E-glass [%]

Stiffness [N/75mm] 10.14 6.29 Effect 38

a 1.08 0.89 a 12

Tack [N/75mm] 0.94 7.3 Effect 87.1

a 0.8 4.51 a 64.4

Temperature sweeps (Ref. FT02) appeared to demonstrate a consistently higher

stiffness in carbon prepreg irrespective of the temperature effects on resin viscosity (Fig

4-34). A familiar peak in tack was observed with the E-glass sample. However, the peak

for the carbon sample appeared truncated (Fig 4-35). The temperature at which a

transition in failure mode occurs appears to be independent of fibre type (Fig 4-36)
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Fig 4-34 Stiffness response to fibre type over a temperature range (Ref. FT02)
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Fig 4-35 Tack response to fibre type over a temperature range (Ref. FT02)
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Fig 4-36 Resin deposition response to fibre type over a temperature range (Ref. FTD2)

4.3.11 Resin content

Testing alternate resin contents at 20°C 500mm/min (Ref. RC01) reveals a 25.8% effect

on stiffness with 6.1% deviation with no apparent trend (Table 4-20). A general trend of

increasing tack was observed with 64.6% effect. However overall tack levels are low,

resulting in relatively high experimental noise (0'=89.4%).

Table 4-20 Effect of resin content at 20°C 5DOmm/min (Ref. RCD1)

Resin Content 30% 40% 50% [%]
Stiffness [N/7Smm] 6.52 5.62 7.57 Effect 25.8

a 0.28 0.33 0.6 a 6.1
Tack [N/7Smm] 0.34 0.86 0.96 Effect 64.6

a 1.2 0.44 0.29 a 89.4
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Once again a familiar peak tack was observed in temperature sweeps (Ref. RC02)

consistent with a change in failure mode observed by resin deposition. The effect of

increased resin content on tack was shown to greatly increase within the peak tack

temperature range of 24-34°C (Fig 4-37). Analysis over the temperature range revealed

a significant 65.5% effect on tack with 24.2% standard deviation (Table 4-21). A 37.3%

increased effect on stiffness with 9.1% uncertainty was calculated (Table 4-21).
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Fig 4-37 Tack response to resin content over a temperature range (Ref. RC02)

Table 4-21 Effect of resin content over a temperature range (Ref. RC02)

Resin Content 30% 40% 50% [%]

Stiffness [N/7Smm] 3.39 5.41 5.15 Effect 37.3

0 0.19 0.41 0.67 a 9.1

Tack [N/7Smm] 5.05 6.52 14.63 Effect 65.5

0 1.16 2.28 2.88 a 24.2

4.3.12 Fibre architecture

A temperature sweep of 1200g/m2 tri-axial (triax) fibre and 200g/m2 Uni-Directional

(UD) fibre (Ref. FA01) showed a familiar peak in both tack levels. However, the triax

sample showed a significantly increased peak occurring at a lower temperature (Fig

4-38). Stiffness appeared to be consistently six times higher than unidirectional fabrics

(Fig 4-39) attributed to the six fold increase in overall prepreg areal weight. An average

overall tack increase effect of 81% with 25% uncertainty was observed (Table 4-22).
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Fig 4-39 Stiffness response to fibre architecture and FA W (Ref. FA01) (left) normalised

for a 6 times increase in FAW (right)

Table 4-22 Effects of fibre architecture and FA W on tack and stiffness over a

temperature range (Ref. FA01)

Fibre architecture UD Triax [%]

Av. Stiffness [N/7smm] 3.39 19.83 Effect 82.9

0 0.19 1.45 a 7.1

Av. Tack [N/7smm] 5.05 26.63 Effect 81.0

0 1.16 6.90 a 25.4
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4.3.13 Stiffness summary

A comparison of effects on prepreg stiffness In single level experiments at ambient

temperature show that temperature, feed rate and fibre weight have the greatest effect

(Table 4-23). The results are mostly confirmed when considering temperature

interactions (Table 4-24). However, certain variables could not be retested for

temperature Interaction effects due to material availability constraints.

Table 4-23 Summary of the effects of variables on prepreg stiffness at ambient 20°C

Variable
Exp.

Range
Stiffness [%]

Comments
Ref. Effect 0

Temperature TOl 16-30.10C 60.3 10 Noticeable trend of decreasing stiffness
Fibre Weight FAWOl 200-400 g/m2 57.3 12.8 Increases with Increased weight
Feed Rate FROl 50-1000 52.4 4.5 stiffening trend

Fibre type FTOl Eglass/carbon 38 12 Carbon prepreg Significantly stiffer
Compaction CPOl 75-300N 36.4 8.3 Increases may be due to Increased roller

force CP02 100-JOON 34.2 9.5 friction
Resin

RCOl 30-50% 25.8 6.1 Increases with Increasing content
Content

Resin type RTOl low-High tack 19.4 8 Minimal effect
Surface

SROl 0.12-1.92Ra 16.5 6.4 Frictional effects only
finish

Release
RAOl With-without 7.3 6.8 No effect

Agents

Surface
SR02 0.12-1.92Ra 0.8 7.3 No effect

Finish

Table 4-24 Summary of the effects of variables on stiffness over a temperature range

Variable
Exp.

Range
Stiffness [%]

Comments
Ref. Effect 0

Fibre weight & UD200/ Increase due to combined effect of 6x
FAOl 82.9 7.1

architecture Triax1200 FAW increase

Temperature T03 19.4-42.2°C 76.9 7.3
Apparent trend of decreasing stiffness with

Increased temperature

Feed rate FR02 1-250mm/min 73.1 12.9
Apparent trend of increasing stiffness with

increased feed rate
Fibre type FT02 Eglass/Carbon 70.9 6.1 Carbon significantly stiffer
Compaction

CP04 25-300N
Increases may be due to increased roller

65 8.2pressure friction
Resin content RC02 30-50% 37.3 9.1 Increases with Increased resin content

Surfaces STOl
Glass- Effect may be due to Increased surface

25.3 11.3
compcstte roughness underside of composite plate

Surface finish SR03 0.12-1.92Ra 12.7 9.5 Frictional effects only

ReleaseAgent RA02
Without-

5.1 16.2 No effect
Chemlease 41
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4.3.14 Tack summary

The effects of variables at ambient conditions show that resins, release agents, feed

rate and temperature have an overwhelming effect on tack with a significant degree of

confidence in comparison to standard deviation (Table 4-25). When temperature

Interaction effects are considered (Table 4-26) the dominant effects appear to be

temperature, feed rate and surface energy. Release agents appear much less effective.

Compaction force and surface finish appear to have the least significant effect.

Table 4-25 Summary of the single level effect of variables on tack at 20°C

Variable Ref. Range
Tack [%]

Comments
Effect a

Release Without - water Decreaseswith the addition of release agent.
RAO! 99.5 31.4

Agents & solvent based Failure mode changes to Interfacial

Resin type RTOl Low-High tack 98.2 25.6 Increases with Increased specified tack level

Feed rate FRO! 50-1000 96.8 17.5
Increases with Increasing feed rate until a

plateau Is reached

Temperature TOl 16-30.1oC 95.2 7.6 Decreases with Increasing temperature
Fibre type FTOl Eglass/carbon 87.1 64.4 Significant loss of tack In carbon

Resin
RCOl 30-50% 64.6 89.4 Inconclusive, slight Increase

content

Fibre weight FAWOl 200-400 91m2 46.8 54.7 No trend, negligible effect

Compaction CPOl 100-300N 40.5 13.7
Decreases

force CP02 7S-300N 36.8 14.3

Surface SROl 0.12-1.92Ra 27.5 29.2

Finish SR02 0.12-1.92Ra 21.6 10.9
No trend, negligible effect
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Table 4-26 Summary of the effect of variables on tack including temperature

interaction effects

Variable Ref. Range
Tack [%]

Comments
Effect 0

Increases with Increasing temperature during

Temperature T03 19.4-42.2°C 93.1 23.2 Interfacial failure then reaches a peak at
transmon, failing during cohesive failure

Increases with Increasing feed rate during

Feed rate FR02 1-250mm/min 88.6 20.2 cohesive failure, decreases during Interfacial

failure
Fibre weight

Increases with trlax, most likely due to
& FA01 UD200/ Trlax1200 81 25.4

combined effects of a 6x FAWIncrease
architecture

Glass-St/St-
Increases with increased surface energy, the

Surfaces ST01 6S.7 23.4 onset of cohesive failure is delayed with low
composite

surface energy surfaces

Resin Generally increasing with significant increase
RC02 30-50% 65.5 24.2

content between 40-50%

Release None-Chemlease Decreases with the addition of release agent,
RA02 61.3 51.9

agent 41 delays the onset of cohesive failure
Fibre type FT02 E-glass/Carbon 5S.S 29.5 Significant loss of tack In carbon prepreg
Compaction

CF04 25-300N 48.2 18.4
Increases with increased pressure around the

force peak only

Surface
SR03 0.12-1.92Ra 25.5 19.8 No trend, negligible effect

finish
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4.4 Rheology

The rheology results for shear storage modulus (VI-RHl to 7) of all the resin systems

used show that generally shear storage modulus is found to decrease consistently at all

temperatures above glass transition for each of the BPA epoxy resins (Fig 4-40). The

8552 resin system is shown to differ significantly in temperature response most

probably due to the inclusion of thermoplastic toughening additives.

BPA epoxy resin systems also show a decrease in shear storage modulus with increasing

specified tack level at temperatures above Tg. The reduction in modulus is consistent

with increased perceived tack levels for all M9/M19 BPA epoxy resin systems at ambient

(:::::20°C) temperature.
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Fig 4-40 Viscoelastic shear storage modulus response, of prepreg resin systems used in

tack testing, to temperature (Ref. VI-RH1 to 7)
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4.5 Time temperature superposition

4.5.1 Gel permeation chromatography

Three peaks were identified by GPC analysis software (Fig 4-41). The large low

molecular weight peak was attributed to the THF solvent which is not applicable to the

analysis. The three peaks considered are likely to relate to the differing chemical

components and polymerisation of epoxy Bisphenol-A resin. The exact components are

considered commercially sensitive by the manufacturer and not disclosed. These peaks

were consistent in all tests and were used to compare samples based on molecular

weight.

3:
&
'"..r(

RElemio Ii, e

Fig 4-41. Typical GPCresults showing three peaks with significant molecular weight

Results are presented in number average molecular weight (Mn), weight average

molecular weight (Mw) and polydispersity (P). Number average is the mass of the

specimen divided by the total number of moles present. Weight average is defined as

the molecular mass multiplied by the mass divided by the total mass of the mixture.

Polydispersity gives a measure of the range of molecular sizes and can be expressed as

Mn/Mw [128]. Results are presented as average values for Mn, Mw of peaks, with

standard deviation between the three tests. Mn, Mw and P results indicate no significant

differences between prepreg and resin samples (Table 4-27 to Table 4-29). However,

significant molecular changes are observed in peaks 1 and 2 between batches.
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Table 4-27 Molecular weight (MnJ[g/mol] of resin and prepreg samples found by GPC

Sample Peak 1. (J Peak2 (J Peak3 (J

Batch 1 resin (TTS-GPC1) 3792 :108 863 :21 286 :9
Batch 1 prepreg (TTS-GPC3) 3816 :53 865 :12 286 :5
Batch 2 resin (TTS-GPC2) 3431 :46 834 :11 284 :4

Batch 2 prepreg (TTS-GPC4) 3439 :11 842 :1 285 :0
Avg. batch diff. 369 26 1.5

Avg. resin-prepreg diff. 16 5 0.5

Table 4-28 Molecular weight (Mw) [g/mol] of resin and prepreg samples

Sample Peak 1. (J Peak2 (J Peak3 (J

Batch 1 resin (TTS-GPC1) 6613 :225 962 :23 304 :8
Batch 1 prepreg (TTS-GPC3) 6532 :125 967 :1:12 305 :5
Batch 2 resin (TTS-GPC2) 5582 :95 926 :11 302 :4

Batch 2 prepreg (TTS-GPC4) 5502 :64 934 :1:1 304 :0
Avg. batch dlff. 1030.5 34.5 1.5

Avg. resin-prepreg dlff. 80.5 6.5 1.5

Table 4-29 Polydispersity (PJ of resin and prepreg samples found by GPC

Sample Peak 1. (J Peak2 (J Peak3 (J

Batch 1 resin (TTS-GPC1) 1.74 :0.014 1.115 :0.0025 1.064 :to.0036
Batch 1 prepreg (TTS-GPC3) 1.711 :to.008S 1.119 :to.003 1.065 :to.001S
Batch 2 resin (TTS-GPC2) 1.627 :to.0069 1.11 :to.0021 1.062 :to.0026

Batch 2 prepreg (TTS-GPC4) 1.6 :to.013 1.11 :to.OO4 1.067 :to
Avg. batch dlff. 0.112 0.007 0.002

Avg. resin-prepreg dlff. 0.028 0.002 0.003
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4.5.2 Differential scanning calorimetry

Both resin samples displayed a similar cure profile when subjected to a SoC per minute

up to 300°C temperature ramp. Batch one (TTS-DSC1) displayed a lower cure enthalpy

of 182.1 J/g compared to 192.7 J/g in batch two (TTS-DSC2) (Fig 4-42).

Heat Flow [WIg]

0.6 --

0.4
Batch1

Cure enthalpy = 1B2.1J/g

0.2

_ _ _ _ Batch2

Cure enthalpy 192.7J/g

0.0

\ I /'

'------:-7~ :/

-0.2 0 10 20 30 40
Time [min]

50 60

Fig 4-42 DSC results showing cure enthalpy for batch one and two resin (Ref. rrs-
DSC)

4.5.3 Rheology

Batch one

The results for batch one (Ref. TTS-RH1) shear storage modulus (G') show increasing

apparent stiffness with increasing frequency (w) in the molten state (Fig 4-43). As

temperature is reduced further the stiffening effect is reduced as the material appears

to enter a glassy state.

rnc,
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o 16deg
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o 31de
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o 40de
-0.0o
.....J
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1 EIO __ -":~-

-1 EIO OEIO lEIO

Log( w )[Ra dis]

Fig 4-43 Shear storage modulus results for batch one resin (Ref rrS-RH1)
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The results indicate characteristics of time temperature superposition. Recently

developed Reptate [157] software was used to establish WLF parameters (Table 4-30)

for the WLF equation as presented by Reptate authors (Eq 4-1). Once shifted using

these parameters, a master curve could be compiled which indicates a molten to glass

transition within the strain rate and temperature range of the experiment (Fig 4-44).

Table 4-30 Batch one resin (R1) WLFparameters

Parameter Value

Cl 12.8

C2 46.8

To 20°C

Eq 4-1 The WLFequation as implemented by Reptate software [157J
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Fig 4-44 Viscoelastic master curve for batch one resin (R1) obtained by WLF time

temperature superposition

Batch two

The procedure was repeated for batch two (Ref. TIS-RH2) and showed similar results

(Fig 4-45). However, marginal differences in WLF constants are observed (Table 4-31).

Construction of a reasonable master curve using the WLF equation was again possible

(Fig 4-46).

R J Crossley 146



Chapter 4- Results and observations

o 13deg
o 16deg
o 19deg
o Z2deg
o .?5deg
o 2'8deg
o Jldeg
o deg
o J7d 9
o 40deg

680

__£r---

----,,--.-...-

_.e------
I _o---

- - - - - - - - -' - - ~~~- - - - - - -
.a--------~-.---

___1OT-----?

- - - - - - - - ,.i;.1(~-:~- - - - - - - - - - - ~ - - - - - - - - - - - - - -
. .-o-..--_..----

Fig 4-45 Viscoelastic modulus (G') results for batch two resin (Ref. TTS-RH2)
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Parameter Value

Cl 13.7

C2 59.4

To 20°C
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Comparison

A comparison of master curves reveals that batch one appears to have increased

stiffness at all polnts below glass transition (Fig 4-47).

6E+O

......, . ............. _ .
5E+O

'i
:- 4E+O
~
:!
Clg 3E+O -
oJ

2E+O

1E+O-

-3E+O -2E+O -1 E+O OE+O
Log(w)

1E+O 2E+O

Fig 4-47 Comparison of rheology master curves between batch one (TTS-RH1, dashed

line) and batch two (TTS-RH2, solid line) resins

4.5.4 Peel testing

The TTS shifting of peel results was conducted using the WLF equation and constants

obtained from rheology of the constituent resin (Chapter 4.5.3). To reduce error each

individual data point was shifted based on the prepreg peel surface temperature

immediately after the test.

Batch one results

Isothermal peel results (Ref. TTS-TT1) confirm the findings of the temperature and feed

rate investigation where a peak in tack is observed in near ambient temperature tests

(Fig 4-48). As temperature was increased a higher feed rate was required to initiate

peak tack and the transition from cohesive to interfacial failure. WLF TTS of results

using constants obtained from rheology (Ref. TTS-RH1) showed that prepreg tack

appears to follow the time temperature superposition principle with reasonable accuracy

(Fig 4-49). Tack results appear well aligned in both cohesive and interfacial failure

modes. The peak tack where failure mode transition occurs is also consistent. Time-

temperature equivalency was also observed in resin deposition patterns at equivalent

temperatures and feed rates (Fig 4-50).
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Fig 4-48 Isothermal tack results for batch one prepreg (Ref. TTS-TTl)
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Fig 4-49 Isothermal tack results for batch one prepreg (Ref. TTS-TTl) shifted by WLF

transposition using equation constants found by rheology (Ref. TTS-RH1)
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31.2 32.6 35.8 39.8

I
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Interfacial failure Transition Cohesive failure

Fig 4-50 WLF time-temperature equivalence observed by resin deposition on test plates

following peel (Ref. TTS- TTl)

The stiffness of batch one prepreg (Fig 4-51) (Pl) was also transposed using the WLF

equation and constants from resin rheology (Fig 4-52). The increasing stiffness appears

to be in good agreement with the time temperature superposition principle.
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Fig 4-51. Isothermal stiffness results for batch one prepreg (Ref. TTS- TTl)
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Fig 4-52 Isothermal stiffness results for batch one prepreg (Ref. TTS-TTl) shifted by

WLF transposition using equation constants found by rheology (Ref. TTS-RH1)

j j

The procedure was repeated for batch two prepreg (Ref. TTS-TT2) (Fig 4-53). Batch two

prepreg was also shown to obey the time temperature superposition principle with

reasonable accuracy (Fig 4-54).
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Fig 4-53 Isothermal tack results for batch two prepreg (Ref. TTS-TT2)
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Fig 4-54 Isothermal tack results for batch two prepreg (Ref. TTS-TT2) shifted by WLF

transposition using equation constants found by rheology (Ref. TTS-RH2)

The stiffness of batch two prepreg again showed similar results (Fig 4-55)

demonstrating conformity to the time temperature superposition principle (Fig 4-56).
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Fig 4-55 Isothermal stiffness results for batch two prepreg (Ref. TTS-TT2)
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Fig 4-56 Isothermal stiffness results for batch two prepreg (Ref. TTS- TT2) shifted by

WLF transposition using equation constants found by rheology (Ref. TTS-RH2)

Comparison

When transposed to ambient 20°C and compared the two batches display similar

stiffness and tack properties. However, batch one (Ref. PP!) appears marginally stiffer

than batch two (Ref. PP2) prepreg (Fig 4-57). Comparison of the master tack curves

also reveals that both batches have similar tack levels (Fig 4-58).
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Fig 4-57 Comparison of stiffness for batch one and two (Ref. TTS- TTl and TT2)

prep regs
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Fig 4-58 Comparison of tack batch one and two (TTS- TTl and TT2) prepregs

4.6 ATL applicability study

4.6.1 Prepreg tack in commercial conditions

Tack testing of simulated ATL lay-up conditions (Ref. ATL-TT1 to TT4) suggests that the

addition of Chemlease 41 significantly reduces available tack (Fig 4-59). The results for

tests involving release agent are subsequently low in comparison to experimental error.

Therefore, a statistical analysis (Appendix E) is performed to better access confidence

levels between these results (Table 4-32). The overall effect of release agent is a 61%

reduction in tack within a 99.5% confidence interval. The effect of dichloromethane is

16% in comparison to Chemlease alone with less than 80% confidence, indicating that

this effect is mostly due to experimental noise. The effect of tackifier is a 45% increase

in tack with 90% confidence.

The results also show that peak tack without tackifier occurs at 34°C and is greater than

tack with tackifier at ambient (20°C) temperatures. Therefore, provided tack results can

be directly related to ATL, 34°C, 500mm/min would be an optimum mould surface tack

operating point on a composite surface coated with Chemlease 41 release agent (Fig

4-59).

R J Crossley 154



Chapter 4- Results and observations

15
-----Composite

r-
-Chemlease 41

,,
\
\

\
\.
\

\.
\
\.
\
\

\'1------ -,

-Chemlease 41 + Dichloromethane

- -Chemlease 41 & tackifier

......10 ..L-

EE r
a.n

".......Z r

I-

,,,,
,,,

r,,,

o
J I 1----'

Peak layup tack'~4 -c
.LL._-,---l.L._-t- _j__J_ {__j_ --t----"-..L....J. _J_ +...LL......L._j_ L._,

15 20 25 30
Temperature [OC]

35 40 45

Fig 4-59 Comparison of the tack of WE-ATL prepreg tape under simulated ATL

production conditions (Ref. ATL- TT)
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Table 4-32 Comparison of simulated production conditions (Ref. ATL-TT) and statistical

analysis of the effects of release agent, dlchloromethane and tacklfler

Chemlease& Chemlease&
Surface Composite Chemlease

D/chloromethane tack/fier

Av. Stiffness 7.25 7.63 8.23 7.41

Av. a::f:: 1.30 1.11 1.36 1.36

Av.Tack 4.50 1.74 2.09 3.16

Av. a::f:: 1.55 1.69 1.37 1.72

Effect of release agent In comparison to composite plate

Effect 2.76 61%

O'e (estimated total standard deviation)

t-statistic

Confidence Interval

1.62 36%

3.989

99.5% (n=l1 OOF)

Effect of dich/oromethane In comparison to Chem/ease a/one

Effect 0.35 16%

0'e (estimated total standard deviation)

t-statlstlc

Confidence Interval

74%1.54

0.537

<80% (n=l1 DOF)

Effect of tacldfler In comparfson to Chem/ease alone

Effect 1.42 45%

a,(estimated total standard deviation)

t-statlstlc

Confidence Interval

54%1.7

1.95

90% (n=l1 OOF)
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4.6.2 ATL trials

The results of ATL trials showed good correlation with tack test results and use of the

time temperature superposition (TIS) principle (Table 4-33). Running at the TIS

transposed optimum tack operating point of 20°C, 4mm/min revealed significant tack to

the mould surface without the use of tackifier (Fig 4-60). However, edges of the prepreg

tape were seen to separate from the main body of the tape.

Table 4-33 Results of ATL applicability trials

ATL-1

Feed rate Temperature

[mm/mini [0C]
Lay-up mould tack performance

4 20
Excellent mould tack level, tape splitting at

edges

20 20 Good tack level

50 20 Acceptable, some tack available

100 20 poor

200 20 Lay-up failure, zero tack

400 20 Lay-up failure, zero tack

Good tack levels in patches, through thickness
400 :::l34

tape splitting

Experiment

ref.

ATL-2

o ~ STEMS2010. All rights reserv_e_d _'

Fig 4-60 ATL lay-up at ambient temperature (~20°C) and 4 mm/min feed rate

Increasing feed rate without increasing heat shows a progressive loss of tack with

negligible tack observed at 100mm/min resulting in lay-up failure (Fig 4-61). Laying up

at 400mm/min and attempting to reach a peak tack temperature of 33°C, according to

the WLF relationship, revealed an increase in tack. However, uniform heating using a

hand operated heat gun was unachievable. Patches with lower temperatures displayed

lack of adhesion compared to patches of correctly heated material. Overheated patches

were observed to fail cohesively leaving resin patches on the mould surface

accompanied by through thickness splitting of ATL tape in these areas (Fig 4-62).
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Fig 4-61. ATL lay-up at 200e and 100 mm/min feed rate (Ref. ATL-l)

Cohesive failure
through thickness surface resin layer

(residual resin)

©BAE SYSTEMS 2010.

Fig 4-62 ATL lay-up at a non-uniform optimised temperature of 25-45°e and 400

mm/min feed rate (Ref. ATL-2)
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5 Discussion

5.1 Tack and stiffness methodology

A standardised method for tack and stiffness testing of uncured prepreg is not apparent.

At present, commercial prepreg tack appears to be analysed by simple subjective

methods. Subjective specifications of low, medium and high tack are seen on product

datasheets. Experimental methods of quantifying tack exist within research, where

prepreg is quantified using methods taken from the pressure sensitive adhesives (PSA)

field. PSA methods are often complicated and affected by many variables. Therefore,

the lack of quantification of tack is possibly due to the lack of an easily understood

method of characterisation and standardisation of test variables. Further development is

therefore needed considering the importance of prepreg tack in lamination [36],

production [46] and shelf life [53].

PSA probe methods (Chapter 2.5.1) give force and extension values for a typically flat

circular probe surface and disc of resin. Normally, stress values are calculated using the

surface area of the probe without the actual resin contact area being known. Optical

methods for determining actual contact area are available at significantly increased cost

and complication. The probe test is typically favoured over other methods since the

application or compression stage can be carefully controlled during the test. The test

also has the advantageous ability to record force throughout the various stages of tack

increasing its analytical ability. Values for peak stress and work of adhesion can be

calculated from results. The work of adhesion appears to be analogous to peel strength

(Fig 5-1). However, during the peeling process the angle of each stage in relation to the

direction of peel is likely to change resulting in inconstant values between the two

methods.

I • I , , • I .,

U 01 04 0100 OJ 04 ot 01 10,2 I.

Fig 5-1. Comparison of probe results (left [75]) with measurements taken along the

peel front (right [lOO))
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Probe results may be complicated due to phenomenon such as cavitation and fibrillation,

thought to be effected by vacuum pressure and surface irregularities. The effects of

these complications are likely to be increased by surface patterns of fibres in prepreg

[83]. The probe method also appears to be Significantly affected by alignment issues
[158].

The peel test was favoured in this study mostly for its similarity to the ATL process.

However, the peel test Is considered inferior to probe testing as an analytical tool due to
an inability to:-

• control application conditions

• analyse individual stages of separation

• separate the effects of peel from bending stiffness

The newly designed peel method allows control of application conditions and has the

ability to isolate peel and bending stiffness effects. A single value for peel resistance,

considered analogous to work of adhesion in probe testing (Fig 5-1), was considered

acceptable since this study sought to compare the tack of materials rather than study
the tack mechanism.

The new peel method also allowed the investigation of a number of variables which are

found within the ATL process (Table 3-3). In addition to these variables humidity Is

believed to effect tack and the aging of prepreg materials [159]. An environmental

chamber was unavailable to control humidity and quantify its effect. The humidity was

found to change 15-80% R.H. depending on weather conditions. Therefore, tests for

establishing the effects of variables were carried out within the shortest time period

possible limiting full factorial experiments. Comparisons between variable Investigations

are therefore made with caution.

The level of repeatability was found to be good. Low rig friction was recorded >0.7N and

variability in rolling tests of thin films was less than 0.3N. The higher variability found in

tack testing was attributed to the material Itself and the nature of the peeling process.

Variability could be reduced somewhat by stringent handling and cleaning methods

(Chapter 3.3.4). However, variability was found to Increase when approaching the

interfacial failure domain and is believed to be an Inherent property of the InterfaCial

peeling process through the storage and sudden release of elastic energy. Overall,

results were comparable to perceived tack levels and the repeatability was considered
acceptable for materials characterisation.
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5.2 Effect of variables on tack and stiffness

5.2.1 Temperature

Initial findings using GUD1600 material showed a decrease In tack. This result was In

contradiction to manufacturer's expectations since low tack materials are often heated

to Improve tack. Therefore, the range of materials was extended to Include low tack

materials. Temperature was subsequently found to Increase the tack of low tack

materials. Further observations revealed a visual change In failure mode between the

two materials. An extended temperature sweep using WE-ATL material found that both

failure modes could be observed. At low temperatures a dry surface failure was

apparent and at high temperatures a wet fibrillation failure was observed. A peak in tack

force was also observed to be consistent with transition between failure modes for all

experiments.

The two failure modes appear analogous to interfacial and cohesive failure found in PSA

peel [75]. The additional interfacial failure modes found at the backing substrate in

PSAs [75, 104] are prevented In prepreg due to the fibres being gripped. Therefore,

peeling appears to occur between the fibres and surface Interfaces. Rationalisation of

the failure mode and tack response in PSAs Is found by comparing rheological data [75].

At lower temperatures the resin appears too stiff to deform to the surface Irregularities.

Therefore the resin is unable to achieve the Intimate contact required for adhesion,

resulting in Interfacial failure. The resin would be considered contact inefficient at this

temperature according to the Dahlquist criterion (DC), as the shear storage modulus lies

above 3x10s pa [119]. The rheology of prepreg resin appears to show good agreement

with the DC concept in some cases (Fig 5-2). The high tack resin meets the criteria at

ambient temperature where low tack resins require Increased temperature. The peak

tack found In WE-ATL (M19.6LT) appears to be at a consistent temperature with the

point at which the DC Is met. However, aerospace (8552) Is not consistent with the DC

and changes in prepreg architecture are shown later to effect the point of peak tack.

Therefore, this indicates that the actual value for a Dalqulst style prepreg criterion Is

likely to be a function of both shear modulus and surface conditions.

In summary, tack appears to be a function of Interface and cohesive resin strength.

Whichever Is the weaker will dictate the failure mode and tack force recorded. The effect

of temperature on each phenomenon Is contradictory. Temperature Increases Interfacial

but decreases cohesive strength, therefore the maximum tack value In a temperature

sweep will occur at the point where Interfacial and cohesive strength are equal. A
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reduction in prepreg stiffness is observed in agreement with the reduction in shear

storage modulus of the resin component with increased temperature.
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Fig 5-2 A comparison of prepreg resin shear storage modulus to the Dahlquist criterion

5.2.2 Feed rate

Prepreg materials appear to be equally responsive to changes in feed rate as changes in

temperature. Both the interfacial and cohesive failure modes are observed in a single

sample over a feed rate range of 1-1000mm/min and peak tack is evident at a

consistent point with the transition between failure modes. The prepreg resin is later

shown to obey the time temperature superposition principle found in rheology of

amorphous polymers [103] and PSA peel testing [98] (Chapter 4.5). The result is an

apparent stiffening of the resin at increased strain rates, or in this case feed rate.

The measured bending stiffness is consistent with an increase in apparent resin

stiffness. The increasing apparent stiffness increases tack in the cohesive failure

condition with increased feed rate. However, interface strength appears reduced

through reduced contact time and poor wetting. The peak is again observed at a point

where cohesive and interface strength is equal.
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5.2.3 Surface roughness

Interactions with the surface are not expected during the bending portion of the test

since both surfaces of the prepreg are covered. Therefore, the lack of effect of surface

finish on bending stiffness is unsurprising with minimal effect attributed to a change in

rolling friction between the surfaces.

Surface roughness was found to have a minimal effect on tack. This result were

considered surprising in comparison to the significant effect found in probe testing [95].

The lack of effect could be attributed to the change in surface roughness of the test

plate being low in comparison to the prepreg surface roughness (Fig 5-3). Surface

profiles of prepreg samples were also obtained. The tack of the prepreg samples

required that the samples be frozen or air cured to avoid damaging the test probe. A

comparison of prepreg and the roughest test plate reveal that the prepreg has a

significantly rougher surface. In practice, mould surfaces are typically much smoother

than Ra=1.92. Therefore, the variation in mould surface finish is now considered to be

insufficient to affect prepreg tack. However, effects due to changes in the surface finish

of the prepreg remain possible.

120 I-ROUgh (Ra=1.92) substrate surface

-GUD1600 prepreg (.\.
90 )1\

GUD400ATLprepreg / \

~ 60 I r/ \~f / \

~ 30 1 I J"\ r:" ~ t----J
~ ~~~~ V '.-J
~ oif'vJ

~ -30 1
-60 r

o 1000 2000 3000
Surface distance (XHl'mJ

Fig 5-3 A comparison of rigid substrate (Ra=1.92), WE-ATL and GUD1600 prepreg

surface profiles over 3mm

5.2.4 Release agent

No effect on prepreg stiffness was observed. This was considered a logical result since

the only available mechanism for release agent effect appears to be through reduced

friction on test plate, the effects of which are found to be minimal.
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A significant reduction in tack Is demonstrated with the use of release agent at ambient

temperatures. When considering temperature interaction effects, release agents also

appear capable of Increasing the transition temperature to cohesive failure. For cohesive

failure to occur adequate surface adhesion is required. The presence of a release agent

appears to effectively act as a weak boundary or contaminate layer preventing

Interfacial adhesion of the polymer resin to the rigid surface [73]. However, some

adhesion and cohesive failure may stili be observed, albeit Significantly reduced, at a

higher temperature (Fig 4-24) signifying that a minimal amount of penetration of the
layer may still be possible.

5.2.5 Compaction force

The apparent Increase In stiffness Is likely to be the result of increased friction in the

roller bearings and material due to the increased reaction forces. This Is most apparent

when considering a temperature sweep where the Increase in stiffness remains constant

throughout the temperature range. Therefore, stiffness values can only be compared

with those tested at equal compaction force.

Results at ambient temperature (Ref CFOl-3) show a decrease In tack levels which is

repeatable but not entirely understood. The result is also inconsistent with the generally

perceived increase In tack with increased pressure [61]. In the case of CF01 and CF02

fully developed cohesive failure Is observed, signifying that surface wetting is complete

and cannot be improved by additional force, consistent' with the suggestion that

application force is unimportant during certain lay-up conditions [64]. A reduction in

tack observed with a higher application force could be the result of a greater area of

resin being displaced to give fibre to surface contact reducing the resin layer thickness.

During experiment CF03 interfacial resin failure Is observed, here improved tack should

be observed with Increased compaction force due to Improved surface contact, however

no Increase is observed.

Testing over a temperature range (Ref. CF04) which included both failure modes gives a

clearer Indication of the effects of compaction force on tack, showing that Increased

compaction force is most effective within the failure mode transition region (2S-4S°C).

This appears logical for fully cohesive failure since full wetting has already occurred and

failure is reliant on resin strength which Is not improved by Increased pressure. During

interfacial failure it Is possible that the increase in compaction force is supported mostly

by the fibres and therefore does not improve resin contact.

R J Crossley 164



Chapter 5 - Discussion

5.2.6 Surface type

The significant increase in peak tack and overall tack levels (Fig 4-27) appear to be

consistent with the increase in adhesion energy found when comparing Epoxy-A to

stainless steel and glass surfaces (Fig 5-4). The maximum effect appears to be on the

interfacial failure mode where transition to cohesive failure is seen to occur at a lower

temperature with increased surface energy. This is consistent with the findings of PSA

peel experiments [111]. Once cohesive failure is initiated in all three surfaces the tack

values are relatively similar for the remainder of the temperature increase (Fig 4-27).

Since the resin rheology remains constant and only the surface is changed, it appears to

again indicate that overall tack is a measure of two components; an interfacial surface

component, which is a product of interfacial contact, and a cohesive viscoelastic

component, a product of resin cohesive strength. The peak tack appears to occur where

the two components are equal. The new test may offer an alternative simplified means

of comparing solid surface energy, considering the difficulty of existing methods [160].
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Fig 5-4 Adhesion energy between buffer solution and solid surfaces in petroleum ether

with different concentrations of naphthenic acids [160]

5.2.7 Resin type

A significant effect on tack was recorded at ambient temperatures. A change in failure

mode was also observed from cohesive failure in high tack resins to interfacial failure.

When shear storage modulus of the resin systems are compared the high tack resin is

shown to satisfy the Dahlquist criterion for contact efficiency. Tack appears to be

reduced in medium and low tack resin through a change in failure mode from cohesive

to interfacial failure as shear storage modulus is increased (Fig 5-5). The increased
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shear storage modulus of the resin is consistent with an increase in molecular weight

[116, 154]( Fig 5-5). The increase in molecular weight is consistent with the B-stage

reaction used during the prepregging process of simple BPA Dicyandiamide cured resin

systems [161] (Chapter 2.1.1) where the degree of reaction or polymerisation dictates

molecular weight, resin stiffness and therefore tack.
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Fig 5-5 The increased shear storage modulus of low tack resins consistent with a

molecular weight increase during b-staging resin [116J

5.2.8 Contact temperature

Significant increases in tack are found by applying materials at increased temperature

and then subsequently peeling at a lower temperature. Increasing the application

temperature appears to improve wetting and eliminates the interfacial failure mode for

subsequently lower temperature peel (Fig 4-30). The effects are seen to reduce with

increasing temperatures particularly after both samples enter the cohesive failure mode.

The difference between the two samples could be the loss of tack due to Incomplete

surface contact.

5.2.9 FAW

No significant effect on tack was found in comparison to experimental deviation for an

increase in fibre areal weight. Resin weight is increased proportionately with fibre

weight signifying that the resin layer on the surface would theoretically remain

unaffected. However, it is expected that tack would be affected by a change in

impregnation or resin distribution caused by a change in FAW, although it has not been

observed here.
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There appears to be a linear relationship between Increasing FAW and Increasing

stiffness. This relationship is not consistent with basic beam bending principles where a

cubed Increase In stiffness would be expected with Increased thickness. However, the

behaviour would be consistent with a membrane under tension and the parallel axis

theorem where the central plane of bending Is taken at the centre of the roller rather

than the centre of material thickness. Alternatively, since the problem Is dynamic rather

than static the measured stiffness Increase may be a result of Increased roller friction,

Increased Internal friction by shearing or, as with pipe flow problems, Increased reaction

forces due to the Increased mass flow according to Newton's second law.

5.2.10 Fibre type

The significant increase in measured stiffness is attributed to the increased stiffness of

carbon fibres. Typically a 1900MPaand 135GPa tensile strength and modulus Is found In

carbon fibres in comparison to the 1300MPa and 51GPa of E-glass. The effect of fibre

stiffness is further demonstrated In a temperature sweep covering a change in viscosity

of the resin where the Increase In stiffness of carbon fibre remains relatively constant

throughout the change In resin stiffness (Fig 4-34).

There is a significant reduction In tack for carbon fibre prepreg which Is apparent

throughout the temperature sweep. Both failure modes are observed In resin deposition

of both specimens with the exception that the carbon sample does not have a

corresponding distinct peak In tack (Fig 4-35). There are three possible hypotheses to

account for the effect:-

• Differing Impregnation and resin volume affecting the surface resin layer

• Electrostatic effect

• Failure at the fibre interface

Impregnation effects

Differences In resin deposition patterns on rigid test plates are observed between glass
and carbon prepregs. Carbon samples exhibit a more defined stripe pattern (Fig 5-6).

Microscopic Inspection of carbon and glass samples shows that carbon samples consist

of variably Impregnated resin-dry bundles with the majority of resin occupying trenches

between bundles (Fig 5-7) unlike glass samples which show less defined bundles and

greater resin layer uniformity (Fig 5-8). Therefore, It Is likely that difference In tack Is

due to a reduced actual contact area of the resin as the carbon fibre bundles support

the majority of the applied compaction load. The change In Impregnation Is most likely

due to a change In resin volume. Although resin content by weight Increases by only

2%, the volumetric ratio of resin Increases from 41.4% In the carbon to 50.1% in the E-
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glass due to the lower density of carbon fibres (1.78 g/cm3) in comparison to glass

(2.56 g/cm3). The resultant loss of resin volume appears to show a reduction in the

thickness of the surface resin layer indicating that a larger deformation is required in

carbon tapes for resin contact. This distance is not achievable until the resin becomes

viscous at higher temperatures at which point the cohesive strength of the resin is too

low to maintain the tack load.

Electrostatic effect

Despite the difference in impregnation between the two materials an additional

electrostatic effect is not completely ruled out since an electrostatic field is shown to

affect wetting and contact angle of fluids [162]. There are also suggestions that

electrostatic forces could be used as an independent means for controlling tack during

the ATL processing of glass-epoxy materials [64]. The glass prepreg is non conductive

and could allow a static potential voltage to form, favourable for electrostatic adhesion,

between the fabric and test plate. The electrical conductive properties of the carbon

fibres could allow this voltage potential to dissipate for the entire sample on initial

contact.

Interfacial failure at the fibre interface

Interfacial failure at the glass fibre interface is dismissed due to the high surface energy

of glass (Chapter 5.2.6) and evenly impregnated resin distribution. However, the lower

energy of carbon and poor impregnation may allow for failure at the resin-fibre

interface. In this case plate depositions would appear to show cohesive failure since the

resin layer remains on the ridged substrate. Therefore, this effect cannot be dismissed

completely as it is difficult to observe requiring microscopic images of the peeling

process.

M19.6/200g/rn' AS4 Carbon Fibre
32% Resin Content @32.4·C.
SOOmm/mln

8SS2/194g/m' AS4 Carbon Fibre
32% resin content @SS.6·C.
SOOmm/min

M19.6/200g/m' Eglass Fibre 32%
resin content @33.2·C.
SOOmm/mln

M19.6LT/400g/m' Eglass Fibre
32% resin content @30.2"C.
SOOmm/min

Fig 5-6 A comparison of E-glass and carbon fibre prepreg resin deposition pattern on

rigid substrates
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Resin sits in approximately
70~m deep grooves

Resin sparse carbon fibre
bundles

Carbon fibres 7 .Sum
diameter approx.

Fig 5-7 Resin impregnation of carbon fibre ATL prepreg tape

Uniform Resin impregnation
and layer

Resin sparse E-glass fibre (no
obvious bundles)

Resin layer with improved
uniformity

Fig 5-8 Resin impregnation of glass fibre prepreg

5.2.11 Resin content

A 64.6% increase in tack is observed between the 30 and 50% resin content prepreg.

However, 89.4% uncertainty dictates that no significant conclusion can be gained from

such results at ambient conditions (200C) (Table 4-20). A significant 65.5% effect with

24.2% uncertainty is observed on temperature sweeps where both cohesive and

interfacial failure modes are observed (Table 4-21). The discrepancy is likely to be due

to interfacial failure, mostly seen at ambient conditions (20°C), being less affected by
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resin layer thickness since it occurs at the surface (Fig 4-37). Tack is however,

significantly increased around the peak tack level for 40 and 50% resin content. This

sudden increase could be due to impregnation where the fibres may reach a saturation

point. At this resin content fibres become fully impregnated signifying that additional

resin may then reside on the surface (Fig 5-9). This may account for the sudden

increase in tack since it is mostly the surface resin layer which experiences peel.

Surface resin layer---.,

Fig 5-9 Impregnation of M19.6 200g/m2 30, 40 & 50% resin content prepreg

5.2.12 Fibre architecture

The effects of fibre architecture cannot be isolated completely using this experiment due

to a rise in fibre areal weight from 200 to 1200g/m2• This was the minimum weight that

could be produced for multidirectional fabrics on the prepreg pilot line that was used.

The stiffness was found to be consistently six times higher throughout the temperature

sweep (Fig 4-39) showing a proportional increase seen in FAW experiments. Tack was

also significantly higher throughout the temperature range (Fig 4-38). Although the

increase is consistent with an increase in surface resin layer a shift in the failure mode

transition temperature was also observed. The transition was seen to occur at a lower

temperature indicating that interfacial contact may have improved. This improvement

could be attributed to a vacuum effect caused by trapped air. The change in fibre

pattern, where fibres now run transverse to the rollers, allow air to be trapped rather

than escaping along the groves created by unidirectional fibres normal to the rollers.

The trapped air could be subject to a vacuum force at the early stages of peeling [94].

Such an effect is also experienced in probe testing of prepregs [83] and may account for

the significantly higher than expected tack of multidirectional commercial prepregs

(Chapter 4.2.3).
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5.3 Time temperature superposition Investigation

5.3.1 DSC

The initial cure enthalpy of both resins at the pelnt of manufacture is assumed equal

since both resins are formulated with matching ingredients, procedure, operator and

equipment. Excluding the effects of batch variation the 5.5% lower cure enthalpy of

batch one (Rl) in comparison to batch two (R2) is considered consistent with the

advancement of the cure reaction due to aging [54].

5.3.2 GPC

Molecular weight and polydispersity (Mw, Mn, and P) results Indicate Insignificant

differences in molecular weight between prepreg resins (PPl-2) and resins taken

directly before impregnation (Rl-2) (Table 4-27 to Table 4-29). Therefore, the

prepregglng process Is shown not to significantly alter the resins molecular state. Mn

results do however Indicate significant differences in molecular weight exceeding

experimental error between batch one (Rl and PP1) and batch two (R2 and PP2) (Table

4-27). Batch one is shown to have Increased molecular weight Indicating that the

polymers have advanced through cross linking, consistent with the effects of aging or

curing. This result is in line with expectation considering the extended storage history of

batch one samples (Table 3-22). Results are confirmed by increases In Mw, which Is

typically more sensitive to larger molecules (Table 4-28).

5.3.3 Rheology

Rheology results are in good agreement with the time temperature superposition (TIS)

principle (Fig 4-44 and Fig 4-46). The uncross-linked epoxy resin is therefore believed

to be an amorphous polymer melt. Therefore, It does not possess a crystalline structure

and may readily transition between a glassy and meit state without structural changes,

dependent upon temperature. This is provided that the effects of cross linking remain

negligible. Shifting of the isothermal curves in the strain rate domain allows constants

for the WLF equation to be calculated and a master curve to be constructed [103].

Comparison of batch one (R1) and batch two (R2) master curves show that batch one is

shifted marginally to the left consistent with the effects of a molecular weight Increase
(Fig 5-10).
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Fig 5-1.0 Effect of increasing molecular weight on shear storage modulus in

monodisperse polystyrenes (Left) [154J and epoxy BP-A (right) (Chapter 5.3.3)

5.3.4 Tack and stiffness results

Both prepreg tack and stiffness are found to obey the time temperature superposition

principle. The WLF equation, with constants found by rheology, is shown to give good

agreement between isothermal tests in both tack (Fig 4-49 and Fig 4-54) and stiffness

(Fig 4-52 and Fig 4-56). The convincing result is attributed to the new test setup, where

both the application and peel process is scalable in the time domain, since a change in

feed rate results in a directly proportional change in strain rate. TIS has also been

previously applied in PSA peeling [98] and with reduced accuracy in probe testing [120]

indicating that PSA principles are somewhat relevant to prepreg. Comparisons between

the two batches also show that both stiffness (Fig 4-57) and tack (Fig 4-58) are seen to

shift marginally to the left in the time domain consistent with the marginal increase in

molecular weight [154].

The TIS principle has also been demonstrated in thermoplastic polypropylene tapes

[163]. Additionally, the superposition of secondary variables, such as force-velocity,

have been observed in thermoset tape laying [64] and the superposition of

temperature-pressure-velocity in the prepregging production process [47]. The effect of

time, temperature and pressure on the behaviour of polymer melts of has been readily

demonstrated to be interchangeable following empirical based superposition formulas

with their theoretical origins based on free volume theory and molecular diffusion [135].

It is now believed that these relationships can be applied to the time scaling rate

dependant processing of polymer composites. Consistent laminate properties and tack

behaviour may be achieved by maintaining a constant polymer diffusion rate using

these relationships throughout changes in feed rate of the process.
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TTS also appears valid in the Interfacial failure domain (Fig 4-49 and Fig 4-54) which

has not been previously observed. This result is considered more difficult to explain

since It is believed that molecular diffusion through free volume within the melt is

responsible for TTS behaviour [135], yet molecular diffusion is not necessarily required

for contact adhesion to occur. A brief attempt at a satisfactory molecular explanation for

TTS without diffusion is presented later (Chapter 5.4.3).

5.4 ResultsSummary

5.4.1 Stiffness

Any variable which results in an increase in fabric, fibre or resin stiffness or thickness

results in an overall stiffer prepreg. Therefore, temperature, fibre weight, feed rate and

fibre type have a significant effect (Table 4-23). Typically, factors which affect only the

surface such as release agents and surface finish show no effect. This is logical since the

prepreg is covered with resin film preventing surface interaction during the stiffness

section of the test. Anomalous results such as compaction force, surface type (Table
4-24) and finish do show an unexpected effect on stiffness. However, this effect can be

attributed to an Increase in roiling friction caused by Increased reaction forces or

increasingly rough surfaces. This may signify that stiffness values are not comparable

between alternate plates and compaction pressures without correction. However, tack

values remain comparative since stiffness is removed from peel resistance highlighting

the self-corrective nature of the test with regards to quantifying tack. A linear increase

in stiffness has been observed with Increased thickness (Ref. FAW01 and FA01)

Indicating that stiffness Is a complex problem which better resembles a membrane,

shear, frictional or flow issue rather than a simple beam bending problem.

5.4.2 Tack

Throughout all of the tack tests two failure modes have become apparent and shown to

be affected differently by each variable (Table 5-1). The first failure mode Is

characterised by poor surface contact resulting In very low values of tack and negligible

resin deposition on the rigid test plate and is likened to Interfacial failure found In PSA's.

The second failure mode Is characterised by good surface contact and the formation of

resin fibrillations which eventually fail leaving significant resin deposition on the rigid

test surface. The second failure mode is likened to cohesive failure found In PSA's [75].

Other failure modes found in PSA's are generally essoctated with failure at the flexible

tape substrate interface [75, 104]. Since the fibres are gripped during prepreg peeling,
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failure at the fibre interface is considered as another possible failure mode. Fibre

interface failure is not suspected in all glass-epoxy samples due to the high surface

energy of glass and even resin Impregnation. However, this failure mode may play a

role in the reduction of tack due to carbon fibres (Chapter 5.2.10).

Table 5-1 Failure mode occurrence observations made by resin deposition throughout

prepreg tack testing

Variable
Cohesive

Failure mode type and occurrence
Interfacial

Temperature

Feed rate
Surface roughness

Releaseagent

Compaction force

Surface type

Resin type

Increased contact
temperature

Fibre areal weight
Fibre type

Resin content

Fibre architecture

Low
High

High

Low
Both, no effect

With without
Both, no effect

Low energy High energy

Low tack High tack

Not observed constantly

Both, no effect
Possiblecarbon fibre-resin Interface failure

Both, no effect
UD Trlax

Each failure mode appears to have a contradictory response to variables Indicating a

difference in mechanism between the two. This phenomenon often results in a peak in

tack when measured in a temperature or feed rate sweep. The peak is also found to

correspond with the change In failure mode Indicating that tack is a balance of good

contact and cohesive strength. The phenomenon becomes more obvious when variables

are investigated Including the interaction effects of temperature, which Increases the

likelihood that both failure modes are observed for each variable (Fig 5-11).
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Fig 5-11 A comparison of surface variables effects on WE-ATLprepreg including

temperature interaction effects

Essentially, increasing surface adhesion conditions, by increasing surface energy, causes

a shift to cohesive failure at lower temperatures where the resin stiffness is higher and

able to maintain a higher load. Once cohesive failure is initiated all samples appear to

show a similar tack load based on the volume of resin in shear. The introduction of a

weak boundary layer such as Chemlease is shown to prevent adequate contact initiating

apparent interfacial failure. The effect of humidity is likely to be the increased quantity

of water molecules at the surface acting in this way [73].

The time temperature superposition principle has been shown to apply indicating that

logarithmically inverse effects on rheology are demonstrated in the time domain.

Therefore, the effect of increasing feed rate and reducing temperature is to increase the

shear loss modulus of the resin, which has a stiffening effect. The stiffening is said to be

a result of reduction in free volume or allowed molecular diffusion time of the polymer

melt [135]. The increase of molecular weight of resin types is also shown to have a

stiffening effect (Chapter 4.3.8). This indicates that molecular weight, temperature and

feed rate all have interchangeable effects on tack. The interchangeable effects have also

been observed in PSAs where a 'super master curve' has been proposed as a useful tool

for materials development based on tack levels [107]. The effect of stiffening the resin
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results in inefficient contact according to the Dahlquist criteria and viscoelastic windows

principle commonly applied to PSAs [119]. The effective build up of contact is discussed

later in the context of molecular diffusion (Chapter 5.4.3).

The results indicate that tack is effectively a chain of components rather than a single

property and whichever component is the weakest at any given time will determine

failure. The number of interfacial and cohesive components may be increased to

accommodate the introduction of weak boundary layers which may also have cohesive

and interfacial components (Fig 5-12). However, caution should be taken when applying

bulk properties to thin films since the properties are expected to change as the film

thickness approaches the molecular length. The interface component has time

dependant mechanical properties which differ from that of the time dependant bulk melt

properties. Additionally, the actual cross sectional area for each component may vary

with time. The interfacial contact area appears to increase with time where as the bulk

resin cross sectional area reduces during formation and elongation of fibrils (Fig 5-13).

Total tack force

Interface

F; (t) = CT;lIW (t) • A, (t)
Cohesion

F.(t)=CT,IMX(t).A.(t) [ ~

Total tack force
n Cohesive components /Fta<t(I) = min(F.' (/),F: (m/

/F,,'(t)=o;mox(t).~(I) forncohClivcclc:mall:ll ~ r- :

I :: t----v/
I : i I

: :----~ /

/
/

n Interfacial components //

IF: (t) = u~""" (I). A! (I) for n intafacCiI

Fig 5-1.2 Tack force modelled as a chain with cohesive resin and rigid surface interface

components (above) which may increase in number with the addition of weak boundary

layers (below).
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Peel

Fig 5-13 Cross sectional area of tack components during peeling

A curve may now be constructed for the new peel experiment based on experimental

results and theoretical reasoning which gives some indication of the effects of variables

on tack (Fig 5-14). Molecular diffusion rate in comparison to experiment time, known as

Deborah number [141], is recognised as the primary variable with temperature and a

reduction in molecular weight resulting in increased relative diffusion rate. The curve is

valid only for a time scalable application and peel process. A perfectly uniform system

would be expected to follow red and blue lines (Fig 5-14) where variation in surface

finish and resin layer height results in patchy areas with mixed failure modes.

Therefore, actual tack level is expected to fall below ideal theoretical combined

interfacial and cohesive curves.
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0.. surface

Volumetric resin increase
...., Actual cross-section

contact area
Resin layer thickness

E Surface adhesion
! properties
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Resin layer variance

/
Surface roughness
thickness

Interfacial failure ICohesive failure Experimenttimescale
minimal resin deposition ISignificant resin deposition Molecular diffusion rate

-----' I (Temp, Molecular weight-i, FeedRate-1)

Fig 5-14 A tack curve based on empirical findings for use in predicting the effect of

variables on time scalable application and peel processes
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5.4.3 Molecular theory

Results indicate that tack is a product of both cohesive resin strength and surface

wetting phenomenon, both are observed in temperature and feed rate experiments to

be reasonably equivalent following the WLF relationship. The WLF relationship is

traditionally empirical. However, it may also be derived from free volume principles

which leads to an Arrhenius relationship with temperature [135]. The free volume

approach seeks to rationalise the relationship by introducing the concept of free space

between molecules. This space is thought to expand with thermal expansion increasing

molecular mobility, indicating that flow, or molecular jumps, only occur if it has

sufficient space [72, 143]. Free volume may explain the tack processes sensitivity to

diffusion by preventing molecular flow and therefore contact. However, experimental

results show that the effects of contact area variables on tack are low in comparison to

surface energy and thermodynamic effects (Fig 5-15). Additionally, free volume theory

(Chapter 2.8) wrongly implies that melts would diffuse into neighbouring gasses which

have greatly increased free volume. This inability to describe interfaces stems from the

omission of molecular adhesive forces which are considered negligible as they act

equally in all directions within the melt [124]. However, this is insufficient to describe

interfaces where intermolecular forces differ at the external face resulting in surface

tension.

60 -
l
t

---Increased contact temperature (Exp. crOl)

-Glass surface (Exp.ST01)

--Composite surface (Exp. STOll

--Release agent (Exp. ATL·TT2)

--Ra=O.12 st/st surface (Exp. SR03)

-&-Ra=O.95 st/st surface [Exp. SR03)

--Ra=1.92 st/st surface (Exp. SR03)

-Stainless steel surface Ra=O.lS, SON (Exp.ST01)

-21SN Compaction (Exp. CF04)

-25N Compaction st/st (Exp. CF04)

_ 40
E
E
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......
Z

18 23 28 33 38 43

Peel temperature [OC]

Fig 5-15 A comparison of increased diffusion rate at the point of contact (orange)

surface energy (red), surface roughness (Blue) and compaction force (green) effects on

prepreg tack including temperature interaction effects
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The Lennard-Jones (U) two parameter model is typically used to represent molecular

adhesion (Chapter 2.8.7). The U energy barrier is consistent with activation energy in

reactions and solid flow phenomenon such as Eyring's solid flow model and Gibbs free

energy [128]. Eyring proposes that 'molecules oscillate in a potential energy well and

occasionally, by random fluctuation, draw enough energy from the thermal bath to

escape' [128]. Such an oscillation is allowed within the U energy well by a constant

cycle of internal kinetic and potential energy (Fig 5-16), or enthalpy in a simplified one

dimensional system. The actual atomic positions are in constant flux oscillating around a

central position where kinetic energy is equal to attractive and repulsive potential

energy. Since the U forces are not symmetrical it can be seen that the central atomic

position would shift outward with increased amplitude of internal thermal energy,

observed macroscopically as thermal expansion, consistent with free volume theory.
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Fig 5-16 Thermal vibrations within a Lennard Jones potential energy well

Increased internal thermal energy also brings the peak radial distance of oscillations

closer to exceeding the total potential energy well and allowing separation which results

in flow. If the kinetic energy then exceeds that of the potential energy well then the

adhesion force is exceeded and a jump may occur. The magnitude of individual internal

thermal oscillations is likely to follow a statistical distribution. A high energy Maxwell-
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Boltzmann (MB) type distribution may be applicable and Is also comparable to the

Arrhenius equation from which the WlF equation may be derived.

The applicability of the MB distribution and Arrhenius equation to solid state kinetics Is

questionable since the molecules are thought to be Immobilized [164, 165]. However,

the dynamic U model allows thermal vibrations within the energy wells and effectively

Interactions without molecular jumps. The high molecular population will result In an

exceptionally large number of Interaction events, where rare Interaction events will

allow atoms to occasionally exceed the required activation energy to allow a molecular

jump. Following this probabilistic approach it Is possible to see that longer experiment

times will result in an increased number of jump events accounting for the time

dependant component.

This analogy Is greatly simplified since It Ignores rotational momentum, polar alignment,

thermal radiation and many other force field components. However, the visualisation is

generally consistent with modern dynamic molecular modelling of epoxies, where the

non covalent van der Waals Interaction dominates behaviour [151]. Reasonable results

have also been found in characterising fluids and interaction behaviour, particularly

wetting and surface contact angles [146, 147, 166]. Despite Its simplicity, the analogy

may be used to visualise strain hardening and thermally Induced flow under

mechanically applied stress. Most Importantly the theory Includes adhesion and can be

used to rationalise some of the more curious effects of variables. The exact details of

molecular Interactions are beyond the scope of this work.

In summary, adheslcn appears to be analogous to a reaction with an activation or bond

energy much lower than that of covalent bonds required to form molecules. Therefore, It

generally follows the same Arrhenius type reaction rate dependency. The low bond

energy signifies that molecules may react or jump at ambient energy levels allowing

flow and diffusion. Neglecting physical distance, adhesion may be a function of the

frequency of molecular jumps which Is In turn a function of Internal energy and

activation energy of the U relationship. The quantity of jumps Is probabilistic, Increasing

with time and thermal energy. A lack of molecular mobility results In Interfacial failure

through a lack of reaction with the surface. In this case molecules may rest against the

surface but remain In their U energy well until an Interaction event occurs which allows

It enough energy to escape to the next nearest well which may be the surface [167].

Excessive mobility results In a bulk melt with poor mechanical properties due to a high

frequency of jumps. Therefore, the whole process is determined by atomic motion of

which diffusion Is an accurate measure.
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Increased molecular weight (without branching)

Covalent bonds may also be modelled using the U equation. The atoms may share one

or more electrons allowing closer attraction before the repulsion term becomes

effective. As a result a higher potential energy well and shorter bond distance Is

achieved. Since the covalent bonds now require greater energy to escape they can

accommodate Increased thermal energy. The polymer chain Is considered to be a chain

of covalently bonded atoms immersed In non-covalent bonds. It Is then possible that

once a single atom in a chain reaches an energy state higher than the non-covalent

bonds of Its neighbours It Is held In position In a higher state of thermal oscillation by

the covalent bond. Once all atoms of the polymer chain exceed the non-covalent energy

of their neighbours the entire chain may jump. Allowing for a flexible backbone and

without applied stress, segments of the polymer chain are most likely to escape non-

covalent bonds by rotating and diffusing randomly around covalent bonds. Once stress

is applied, the polymers are now most likely to jump non-covalent bonds In the direction

of the applied stress. This would eventually lead to an aligned polymer which requires

all atoms to reach the required energy for the complete chain to make a non-covalent

jump.

Weak boundary layers

The dominant effect of release agents (Chapter 4.3.4) and surface contaminants

(Chapter 3.3.7) can be attributed to the weak boundary layer (WBL) principle. The U

attractive forces are most significant over a distance of a few atomic diameters.

Therefore, the presence of an apparently invisible atomically thin layer can significantly

affect tack. The atomic layer may work by positioning Itself over the surface creating a

layer with a low U potential energy. Alternatively, If the surface energy is suffiCient, a

sufficiently thick contaminant layer may fall cohesively. It may also be possible for such

molecular layers to be squeezed out or penetrated during molecular jumps [73]. This

offers some explanation as to why peak tack may be observed at higher temperatures,

with increased energy molecular jumps, where a WBL is present. The significant effect

of water molecules and oxide layers [73] may also account for some variability In tack

observed by manufacturers in climates with differing humidity.

Surface energy and finish

Dynamic molecular analysis using U interactions have been used to model surface

adhesion [73] with simplifications allowing an effective analysis [168]. It Is assumed

that the atomic radius at which the repulsive term becomes significant Is determined by

the electron shell which varies between atomic and molecular species [73]. The values

for the atomic radius, also known as the equilibrium distance, are believed to have a
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significant effect on the prediction of adhesion [169]. It can now be seen that surfaces

consisting of molecules with a greater attractive force may attract molecules and

subsequently retain them within a deeper potential energy well. Therefore, the

interfacial bond is achievable with reduced thermal energy.

5.5 Commercial prepreg

Production process variability

Variation in commercial prepreg stiffness along the width of the roll has been found to In

most samples (Fig 4-7). This is likely to be the result of variations in fibre tows

according to manufacturer's tolerances. The way in which fibre tows are spread across

the roll may also be subject to some degree of variance. However, variance appears to

be contained to the roll width rather than through thickness, since the prepreg

demonstrates minimal variance in stiffness between bending direction when faces are

reversed (Fig 4-9).

Minimal variance in tack is shown across the roll width for most specimens with the

exception of triax 1200g/m2 E-glass which shows significantly reduced tack towards the

edges of the roll (Fig 4-8). This could be due to poor wetting, uneven roller pressure or

resin bleed-out from the edges in the production process. The greatest variance In

prepreg tack comes from the testing of alternate faces shown In all samples (Fig 4-9).

The greatest effect in the change of tack between faces is seen In triax 1200g/m2 which

has alternate fibre directions at each surface Indicating that fibre pattern at the surface

also affects tack.

Characterisation

When the roll position and face position studies are compared an overall repeatable

value for tack and stiffness is found (Table 4-5). This indicates that the new test Is a

useful tool for quantifying tack and stiffness. However, these repeated values are not In

complete agreement with specified values. The 'low tack' CUD600 is In good agreement.

However, 'medium tack' multidirectional higher resin content prepregs exhibit a higher

value than 'high tack' unidirectional glass fabrics. Prepreg tack levels are specified based

on resin tack level. However, temperature, feed rate, fibre surface pattern, fibre type

and resin content have all shown some effect on tack over a temperature range

(Chapter 4.3). Therefore, tack would be better specified based on actual prepreg

measurements. The test has also shown sensitivity to prepreg quality Issues such as

rips, bubbles and resin layer Variations which result in lost resin on peeling of the

backing film (Chapter 3.3.7). Therefore, quality, or uniformity Is shown to affect tack

and may be quantified in terms of experimental noise over a larger sample base to fully
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characterise prepreg. In this case visible quality variations were screened out of the

sample group before testing to Increase the effect of variables in comparison to

experimental noise.

5.6 ATL feasibility and application

5.6.1 Performance observations

The feasibility study identified four key problem areas; cutting, backing paper release,

mould tack and repositionability (Chapter 4.1). The cutting performance was related In

some way to material properties, with increased fibre areal weight (FAW) proving more

difficult to cut due to the increased thickness. Fibre bundling, seen in early versions of

experimental E-glass prepreg, was also problematic where bundles were pulled from the

edge of the tape by the blade without being cut. This was relieved by improved tow

spreading during prepregging. The cutting configuration of the V4 machine limited

material weight (FAW:S400g/m2) with resin content minimised (28% wt.) to prevent

build up on the cutters. Overall, cutting was considered to be a mechanical design Issue

which could be remedied with the ultrasonic cutter knives of the latest machines.

Therefore, these material limitations were expected not to apply to newer machines and

further cutter Investigations were not warranted.

Reposltionability was considered to be a product of the materials tack level and

considered important only for manual handling, which is what automation seeks to

avoid. Lowering the tack level improves repositionabllity yet it also increases the

probability that manual intervention is required, since a ply Is more likely to move out of

position after being laid. Therefore, aiming for good material reposltlonability Is counter

Intuitive to the automation process. However, hand lay-up of the ATL material was

required to finish plies as a result of mould tracking machine errors. Therefore, for this

experimental program repositionabillty was considered favourable and preferred by

operators.

Backing paper release and mould tack are considered fundamental to the lay-up

process. However, the tack and removal mechanism and the Interaction of stiffness are

not clearly defined. Closer Inspection of the material head accompanied by a force

diagram (Fig 5-17) allows the following observatlons:-

• Peel appears to be the dominant removal mechanism.

• Application and peel appear Instantaneous In a continuous process.

• Contact time is inversely proportional to feed rate.

• Application pressure Is maintained by the tool head compaction shoe.
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• Tape stiffness is favourable in holding the tape to the tool surface and releasing

it from the backing paper.

• Additional shear forces may occur with incorrect spool tension.

Effectively the mould, or ply to ply, tack and the bending stiffness should always exceed

tack to the backing paper for successful lay-up. However, some tack to the backing

paper is required to hold prepreg tape in place for intricate cutting operations. These

require that the prepreg is wound past the compaction tool whilst cutting and then

wound back and positioned later. The ATL process is therefore a delicate balance of

reduced backing paper tack, stiffness and reasonable mould tack.

Returning
Backing'
Paper

Compaction
Tool

Incoming
;ATL Tape

.._,- ..

Fig 5-1.7 Force diagram of the ATL application process shown against the Cincinnati V4

CTL delivery head

5.6.2 Applicability results

Observations made during the feasibility trials (Chapter 5.6.1) show that the new tack

and stiffness test method is a good representation of the ATL process. However, exact

compaction pressures and tape tension is likely to differ. Therefore, the main aim of the

applicability trials was to show that results found in testing could be related to ATL lay-

up performance. Successful lay-up on a composite surface at 20°C had been previously

achieved only with the use of tackifier. Tack testing showed that a higher peak in tack

could be found at 34°C without the use of tackifier (Fig 4-59). Time temperature super
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position was used to find the equivalent feed rate at which this peak would occur (4

mm/rnln). Running the ATL at this feed rate was found to give good results, Increasing

the feed rate showed progressive loss of tack. Increasing the feed rate with heat added

according to TIS appeared to give Improved tack but unpredictability In the heating

method resulted in uneven tack levels and tape splitting. Splitting was believed to occur

In overheated sections of the tape which failed cohesively. Without cross-stitching the

resin is responsible for prepreg Integrity, therefore cohesive failure of the resin would be

expected to cause tape splitting.

The application study was believed to be a success since It showed that high tack

operating points found by tack and stiffness testing could be exploited on the machine

and that the results of testing could be applied directly to the ATL procedure. The test

also appeared to show the practical applicability of the time temperature transposition

principle, indicating that constant tack levels and possibly lamination conditions could be

achieved by regulating temperature according to the WLF parameters of the resin.

It has been known for some time that ATL lay-up benefits from Increased temperature

with increased feed rate [63]. However, the rate of Increase and Ideal lay-up

temperatures can now be found by tack testing and rheology, thereby significantly

improving the development process of prepreg materials. The relationship may also be

exploited to increase feed rates of processes which have previously been limited by

tack. Although lay-up and testing speeds have been limited to 1000 mm/mln, the WLF

relationship is logarithmic and appears valid for several decades of strain rate [135].

Therefore, it is expected that results will scale comfortably over the two decade increase

(from 500 to 50,000 mm/mm) to reach the maximum lay-up capability of ATL

machines. However, testing at Increased rates Is now recommended where any

discrepancy is likely to be the result of increased Inertial effects.

The consistency of lamination quality may also be regulated by this method since TIS

regulated lay-up Is effectively maintaining a constant polymer diffusion rate. TTS

regulated lay-up of thermoplastics may possibly yield Improvements since they have

demonstrated mechanical properties In agreement with the TIS principle [163].

Transposition of time-temperature variables have also been demonstrated In the
prepreg production process [47].
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5.6.3 Tape performance

A comparison of experimental ATL materials at ambient lay-up conditions shows that

'high' and 'medium' tack resins (W-ATL-l to W-ATL-3) are abandoned in favour of less

problematic lower tack high stiffness tapes (W-ATL-7) which better match the properties

of existing aerospace (A-ATL-l & 2) materials (Fig 5-18). The results of tack under

commercial conditions (Fig 4-59) show that limited tack is available at the mould

surface due to the use of mould release agent. Therefore, low tack stiff prepreg appears

to be preferred on the basis of improved release from the backing paper. The lack of

tack to the mould surface can then be overcome with the use of tackifier. Therefore, a

study of tack to the release paper would be beneficial. However, this would require

increased sensitivity in measuring equipment.
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Fig 5-1.8 Tack and stiffness of experimental wind energy ATL prep regs (W-ATL) in

comparison to existing aerospace (A-ATL) prepreg at ambient conditions

Temperature effect

Increased temperature of 40-50oC was found to be beneficial in the lay-up of 8552

aerospace (A-ATL1 and 2) tapes. Tack appeared to be moderately increased without

significant decrease in the material stiffness. When the same level of heat was applied

to wind energy tapes the tapes became overly flexible and showed difficulty releasing

from the backing paper. The effect is attributed to the resin shear storage modulus

response to temperature (Chapter 5.2.1). The position of the heater plate against the
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backing paper on the ATL machine was also considered to be detrimental. This could

cause tack to be improved at the backing paper rather than at the mould surface.

Both interfacial and cohesive failure modes were observed with wind energy ATL tapes.

Cohesive failure became apparent at higher temperatures leaving resin deposition or

causing through thickness splitting of the prepreg tape. The two failure modes are

consistent with the two distinctly different lay-up behaviours observed in previous

studies of ATL lamination [64].
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Fig 5-1 9 A comparison of tack response to temperature in aerospace and newly

developed wind energy ATL prep reg tape

Feed rate effect

Prepreg has also been shown to be sensitive to feed rate with a logarithmic relationship

to temperature effects through TIS. Therefore, the effects seen with temperature may

be repeated within the feed rate of the ATL. Essentially, higher tack and a shift to the

cohesive failure mode may be seen at increasingly lower feed rates. Interfacial failure

and a lack of tack consistent with cold temperature behaviour may be seen when feed

rate is increased. For consistent tack throughout feed rate a constant molecular

diffusion rate is recommended (Chapter 5.3) which is dependent on temperature and

resin molecular weight.

Release agents

Release agents appear detrimental to mould tack and the lay-up process. They

subsequently require the use of tackifier which significantly increases production times
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by increasing the number of mould coating and drying operations. The ATL process

would benefit from a speCifically designed mould release agent, which allowed residual

tack, or a gel coat with a high energy surface finish.

Compaction force

Compaction force was found to be ineffective at increasing tack outside of the failure

mode transition zone (2S-35°C) (Chapter 4.3.5). Significant levels of tack could be

found with BON compaction. This value is much lower In comparison to the 265-1300N

typically applied by the ATL [SS]. Therefore, compaction pressures could be reduced to

eliminate the mould deflection found when using low cost wind energy tooling provided

it Is not detrimental to laminate quality.

Contact temperature

Significantly higher tack could be found by hot application and cold peel of the backing

paper (Chapter 4.3.7). ATL equipment may be redesigned to take advantage of this

effect.
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6 Conclusions

6.1 Tack and stiffness

6.1.1 Method and observations

A new tack and stiffness test has been developed which Is an extension of the floating

roller peel method. Peel methods have been less favoured in the past due to lack of a

controlled application method and difficulty in Isolating adhesion and bending forces

from the results. This new method allows simultaneous application under a controlled

force. Bending and tack forces are also Isolated In separate stages of the test. The test

was originally designed to replicate the ATL application method but has also been used

to characterise hand lay-up prepregs. Consistent results were found In the

characterisation of wind energy grade prepreg materials despite an overall high level of

uncertainty. Repeatable results have also been produced with a standard deviation of

5.2% in stiffness and 16.4% in tack over 27 samples. A tackier control sample was

correctly identified. The test method may also be applied to PSA tapes and surface

adhesion with further refinement.

The new test method allowed for the Investigation of the effects of twelve variables on

both tack and stiffness. During this Investigation interfacial and cohesive failure modes

were observed. These failure modes appear analogous to those found In PSA peel

testing where any additional modes, not observed in E-glass prepreg, are believed to be

associated with failure at the flexible substrate prevented from occurring In prepregs

since the fibres are gripped. The equivalent failure In prepreg would be at the fibre

interface. However, this is believed not to occur in E-glass since the resin Is assumed to

be well Impregnated within the fibres resulting in a poorly defined interface. However,

the fibre-resin interface failure is one of the possible scenarios offered to account for the

reduction in tack found In carbon prepregs. Typical interfacial failure Is attributed to

failure at the interface between the polymer melt and the rigid test plate resulting In a

mostly clean surface. Cohesive failure appears to occur within the resin polymer melt

and Is attributed to the viscoelastic properties of the resin resulting In significant resin

deposition on the test plate. A patchy mix of failure modes can be observed over the

peel area, particularly around the point of transttton between failure modes. This Is

attributed to the variability in resin layer thickness and contact. Increased

unpredictability is also observed during interfacial failure attributed to the elastic

storage and sudden release of energy, known as the stick-slip condition when observed
in PSAs.
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In all experiments where a peak In tack was recorded, It was found to be consistent with

the transition point between failure modes. This is believed to be the point where

contact adhesion and cohesive resin strength are equal. This Indicated that tack Is a

function of two mechanisms rather than a property Itself. A chain model Is now

considered the most appropriate method to represent prepreg tack. The number of

interfacial and cohesive components will depend on the number of layers and Interfaces

within the boundary of the applied force. Relative molecular diffusion rate, often

referred to as the Deborah number, was found to have opposing effects on the two

failure phenomenon. An empirical tack curve has been produced for a two component

system to assist with the prediction of the response of prepreg tack to a number of

variables. Short relative diffusion times result in mostly Interfacial failure which may be

affected by surface conditions. Long relative diffusion times result In mostly cohesive

failure which Is affected mostly by resin properties. The variation found in the resin

layer and surfaces is likely to account for mixed or patchy failure modes. The whole

curve appears to scale upward depending on the volumetric Increase In resin Involved In

the peeling process.

6.1.2 Variable effects

Temperature, feed rate and resin type

The effect of changes In temperature on tack appeared to be dependent on the dynamic

shear storage response of the resin. The results are supportive of the PSA Dahlquist

criterion concept which states that the dynamic shear storage must fall below a value ~

3xlOsPa to become contact efficient. However, the actual value for prepreg contact

efficiency also appears to be a function of surface conditions, specific to each surface

and prepreg. Resln type Investigations show that with constant fibres, surfaces and

resin Impregnation, tack can be controlled by increasing molecular weight. The

molecular weight Increase is typically achieved through a secondary reaction which In

turn stiffens the resin and reduces tack at a particular operating temperature. Similar

effects were found with Inverse changes in feed rate leading to the discovery of time

temperature superposition applicability In prepreg tack and stiffness.

Re/ease agents

Release agents were shown to virtually eliminate all useful tack. They appeared to lower

surface energy and prevent the onset of cohesive failure. They appear to act by either

reducing surface energy or producing a weak boundary layer with low cohesive strength

that is easily sheared. Residual tack was observed to be higher at Increased
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temperature and with solvent based release agents in comparison to water based.

Humidity is also thought to affect tack in a similar manner.

Surface roughness and energy

Surface roughness was found to have minimal effect. This could be attributed to the

surface roughness of the prepreg which was found to be large in comparison to all the

substrate surfaces tested. Changes in surface energy were found to be significantly

greater, leading to the possibility that tack could be a thermodynamically molecular

adhesion controlled mechanism rather than a diffusion controlled physical mechanism of

surface contact spreading.

Fibre type

carbon fibre prepregs were found to have significantly reduced tack In comparison to

equivalent E-glass prepregs. The effect was attributed to a difference in Impregnation,

an electrostatic effect, failure at the fibre-resin interface or a combination of all three.

Fibre areal weight (FAW)

Increasing fibre areal weight showed no effect on tack. However, a proportional increase

in prepreg stiffness was observed.

Resin Content

Resin content was found to have minimal effect on tack during fully interfacial failure.

However, increasing tack was found with increasing resin content throughout the failure

mode transition region and during cohesive failure.

Fibre architecture

The fibre architecture effects were difficult to isolate due to an unwanted increase In

FAW imposed by the manufacturing process. However, early onset of cohesive failure

appears to have occurred which could possibly be attributed to a vacuum effect of
trapped air due to a change in resin layer surface pattern.

Contact temperature

Hot application cold peel was found to significantly improve tack by Improving Interfacial

strength. The interfacial failure mode appeared to be eliminated from peeling at a lower
temperature.

Compaction force

R J Crossley 191



Chapter 6 - Conclusions

Compaction force was found to have minimal effect on tack outside of the failure mode

transition region (2S-3S°C) where significant tack could be found with BON compaction

force.

General

Overall variables which were found to affect the apparent shear storage modulus and

therefore stiffness of the resin were found to show the greatest magnitude of effect on

tack. Changing the apparent shear storage modulus and subsequently diffusion rate of

the resin is able to affect both the build up of interfacial strength and the cohesive

strength of the resin. Yet changes to surface contact conditions are only able to affect

the Interfacial failure mode mostly by delaying the onset of cohesive failure. Therefore,

surface variables can also appear dominant at certain low temperatures but appear less

effective over a temperature sweep which encompasses both failure modes.

Stiffness was found to be unaffected by changes In surface conditions. Only variables

which affect the thickness of the prepreg or the stiffness of fibre or resin components

are shown to effect prepreg stiffness.

6.1.3 Time temperature superposition

The effects of feed rate and temperature on both tack and stiffness were found to

conform to the time-temperature superposition (TTS) principle using the Willlams-

Landel-Ferry (WLF) equation, previously observed in rheology and PSA peel testing.

Constants for the WLF equation can be found using rheology and used to superposition

prepreg peel and stiffness results. This method then allows for the construction of

prepreg peel and stiffness master curves and the prediction of feed rate response based

on temperature response and vice versa. A tack Investigation of resin formulation also

shows promising signs in supporting the 'super master curve principle' allowing tack

predictions to be made based on molecular weight.

6.1.4 Molecular theory

A thermodynamic Lenard-Jones (U) model, typical of that utilised In molecular

dynamics, Is proposed to descriptively rationalise results. Adhesion and flow Is

essentially envisaged as a reaction with a low activation energy and relatively long bond

length. Therefore, a molecular jump Is required for Initiation of both adhesion and flow

signifying that both processes are governed by an Arrhenius type relationship, such as

WLF. Surface energy, thermal expansion and thermally Induced flow under stress may

also be accounted for. A semi-empirical model based on the dynamic U relationship

may offer reasonable predictions for the future In the absence of true molecular

modelling, which may be limited by a lack of computational power and molecular
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information. Simplifications to the U relationship and increased time step Intervals,

useful in reducing computations, should be made with caution. They may result In an

Inability to capture the true nature of the molecular jump and associated thermal

vibrations.

6.2 Prepreg characterisation

The new tack test method is considered equally applicable to hand-lay and ATL prepreg

characterisation since It quantifies both tack and stiffness, giving an indication of its

ability to stick and be formed around the mould surface.

A degree of variability was found in the tack levels of commercial prepregs dependant

on roll position and which face was tested. Repeatable results for tack and stiffness

could be found in large batch sizes containing an equal number of samples taken from

each face and roll position. Tack levels were not always in agreement with specified

levels. The most significant discrepancies are found in prepregs with multidirectional

fibres. Therefore, the fibres are believed to playa complex role In determining tack.

Prepreg tack is typically specified as 'high', 'medium' or 'low' based on the tack level of

the constituent resin. Fibre type and resin content have also been shown to have an

effect. Therefore, testing of the prepreg is preferable to resin only tests.

GPC analysis of prepreg resin and constituent resin has shown that no significant

molecular changes have occurred during the prepregging process. Therefore, aging and

cross linking of the resin can be presumed negligible. This allows for the rheological

analysis of resin samples, taken immediately before the prepregging process, to be

compared to the properties of the prepreg. Molecular differences are recorded between

batches with alternate storage histories. Increased molecular weight and reduced cure

enthalpy is observed with longer storage, consistent with increased cross linking

through aging. A stiffening of the prepreg resin is observed with aging which appears

analogous to the stiffening seen in increasingly low tack resin formulations suggesting

that molecular weight Is used as a control of resin tack by manufacturers. Therefore, a

molecular diffuSion based time-temperature-super position principle could also apply to
resin formulation and aging.
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6.3 ATLdevelopment

6.3.1 Feasibility

The following material developments were made to facilitate the use of ATL as a wind

turbine production method:-

• An increase in fibre areal weight (FAW) from 200 to 400g/m2, Improving

deposition rates.
• High performance aerospace toughened epoxy 8552 resin has been replaced with

lowexotherm low cost epoxy M19.6LT resin system, allowing the cost effective

production of thick laminates using vacuum bagging.

• High cost carbon fibres have been replaced with cost effective e-glass fibres.

• High cost, high accuracy alloy aerospace mould tooling has been replaced with a

cost effective mould construction typical of that found In the wind turbine

industry.

ATL Materials were developed and evaluated based on cutting performance, tack to the

mould surface, backing paper release and repositionabillty. Cutting problems were

alleviated by changing the mechanical design of the cutter. Repositionabllity was found

to be a counterproductive method for evaluation since designing materials to be easily

repositioned results in an increase In the likelihood that they will move out of place after

lay-up. Observation and a force diagram of the ATL process reveal that:-

• Peel appears to be the dominant failure mechanism.
• Application and peel appear Instantaneous in a continuous process.

• Contact time Is inversely proportional to feed rate.

• Tape stiffness is favourable in holding the tape to the tool surface.

Therefore, backing paper release and tack to the mould surface are believed to be

fundamental In the lay-up process and subsequently a product of prepreg tack and

stiffness. A new peel method which simulates the ATL process was developed and used

to characterise tack and stiffness where values obtained were compared to ATL

performance. High tack levels were found to be detrimental due to poor release from

the backing paper and inability to be repositioned should an error occur. Existing

aerospace materials were shown to be much lower tack than that of wind energy

prepreg. A low tack stiff prepreg was eventually favoured by ATL operators with the use

of an In-house tackifier to alleviate the problem of poor mould adhesion
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Compatibility problems arose between low cost mould tooling typical of that used In

wind turbine blade manufacture and ATL machinery. The wind turbine blade moulds

were found to deform under the compaction pressure of the ATl head. The deformations

and large tolerances (±15mm) exceeded that of typical aerospace mould accuracy with

stiff high cost alloy tooling. These out of tolerance deviations from the programmed

surfaces caused the ATL to generate errors. The ATl was eventually reprogrammed

using actual surfaces measured from the mould, resolving the error. Therefore, a

reduction In compaction pressure and an ability to map actual mould surfaces In situ

would be benefiCial when using low cost mould tooling.

6.3.2 Application

Manufacturing conditions were recreated In tack and stiffness testing using a composite

mould surface rigid substrate coated with release agent. A peak mould tack was

Identified and considered an optimum lay-up point for increased tack. The optimum

point was recreated using ATl equipment and found to give increased tack. Increasing

feed rate showed loss of tack. Increasing feed rate with temperature Increases

according to the time temperature superposition principle showed signs that the

optimum tack conditions could be maintained. Therefore, results Indicate that tack and

stiffness test results can be directly related to ATl performance and the time

temperature superposition principle can be applied to stabilise tack levels throughout

the feed rate range.

Interfacial and cohesive failure modes observed In tack testing could also be observed

during ATllay-up and can be seen to correspond to pressure driven and surface tension

driven behaviours previously Identified [64]. Cohesive failure during lay-up was believed

to result in tape splitting due to low resin stiffness. Therefore, the optimum lay-up

condition appears to be in the interfacial failure domain at the point closely before

failure mode transttlon, when tack to the mould surface Is high. The ability to relate tack

and stiffness results to ATl performance allows the effect of variables on ATl to be
discussed based on tack and stiffness test findings.

Temperature, feed rate and resin type

Tack appears to be sensitive to shear storage modulus of the resin. The effect of

stiffening the resin by lowering the temperature, Increasing the feed rate or the

molecular weight of the resin results In a shift to Interfacial failure and a stiffer prepreg.

The three variables appear to be linked by the relative diffusion rate of the polymer. The

relative diffusion rate may be held constant during the change In one variable by
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adjusting another. For example, a higher molecular weight prepreg may display similar

tack properties as a low molecular weight polymer at higher temperatures. Additionally,

tack properties at low feed rates can be recreated at higher feed rates with Increased

temperature. Essentially, the effects of resin aging, which changes molecular weight and

changes in feed rate, required for various mechanical operations of ATL, could be

compensated for by changes in temperature to maintain consistent laminating

conditions. Resins such as that used in existing aerospace ATL tapes appear less

sensitive to changes in temperature and demonstrate Improved lay-up consistency.

Therefore, an alternative strategy would be to formulate resins which are less sensitive
to temperature and therefore feed rate changes.

Release agents

Release agents were found to significantly reduce available mould tack, which Is

detrimental to ATL performance. Therefore, development of an ATL friendly release

agent or gel coat would be benefiCial.

Compaction force

Compaction force appeared to be Ineffective at Increasing mould tack outside of the

failure mode transition region (2S-3S°C). Within this region significant tack could be

found with as little as BON. Therefore, compaction pressure could be reduced to

facilitate the use of reduced stiffness low cost mould tools.

Contact temperature

Hot application cold peel showed significantly Improved tack and could therefore be
utilised for future ATL designs.

Fibre areal weight (FAW)

Increasing fibre FAW results in a stiffer prepreg with no significant Increase in tack,

thought to be beneficial In Improving backing paper release.

6.4 Major conclusions

This section contains a summary of the major conclusions arising from the work
described In this thesls:-

I. Development of new wind energy E-glass fibre ATL tape has been achieved with

significant difficulty to produce a 7m representative section of a 4Sm commercial

wind turbine blade using ATL and low cost mould tooling.
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Ii. Tack and stiffness properties were found to be critical In achieving good ATL lay-

up performance. Tack to the mould surface combined with material stiffness

must exceed tack to the backing paper for successful lay-up.

III. A new prepreg tack and stiffness test has been developed. The test Is

advantageous due to a regulated application force, the ability to differentiate

between tack and bending stiffness, and a contact time which Is proportionate to

peel rate, simulating the ATL process.

Iv. The effects of temperature, feed rate, surface finish, release agents, compaction

pressure, surface energy, resin type, fibre weight, fibre type, resin content and

fibre architecture have been investigated with most variables demonstrating

significant effect on either tack, stiffness or both.

v, Tack variables were found to be effected either by changing surface properties or

the shear storage modulus of the melt.

vi. Two failure modes were observed. Interfacial failure appeared to occur at the

surface leaving little resin deposition on rigid test plates. Cohesive failure

appeared to occur within the bulk resulting in significant resin deposition and

fibril formation.

vii. During temperature or feed rate sweeps a peak in peel tack was recorded and

observed to occur at the transition between failure modes. The peak occurred

against a trend of falling stiffness for the resin component and was somewhat

supportive of the Dahlquist criterion concept. However, the actual value of the

criterion for prepreg is believed to be dependent on contact conditions.

viII. Both the tack and stiffness response of prepreg to feed rate and temperature

were found to follow the time temperature superposition principle using the WLF

equation. Consistent WLF constants could be found from rheology of the resin

component before impregnation.

ix. The impregnation process was found, by GPC and DSC, not to affect the

molecular size and distribution of the resin melt. Aging was found to Increase

molecular weight believed to be the result of cross-linking.
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x. Results from the tack and peel test were related directly to ATL performance.

Optimum high tack operating points were located by tack testing and recreated

on ATL equipment. Operating points were then transposed using the WLF

equation showing reasonable signs that the WLF relationship can be used to

improve ATL tack conststencv and increase feed rates.

xl. It Is proposed that engineering tack Is not a single property but a chain of

Interfacial and cohesive components. Each Is believed to have time dependant

properties and cross sectional area. Experiment time should begin at the point of
Influential molecular contact. Whichever component is weakest at any given time

will determine failure. To account for the effect of contaminates, the chain should

be extended to Include Interfacial and cohesive components of any weak

boundary layer.

xII. A descriptive engineering tack curve has been devised where tack Is normalised

against relative diffusion rate. Increasing Interfacial and reducing viscoelastic

curves are believed to meet at a point of peak tack where actual experimental

tack Is thought to fall below the lower of the two curves.

xiii. The apparent ability of an Arrhenius type equation to govern both viscoelastic

and interfacial properties has been discussed. The traditional free volume theory

was not considered satisfactory In accounting for Interface behaviour.

Alternatively, a thermodynamic Lennard-Jones molecular approach has been

proposed to account for experimental results.
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7 Recommendations and future work

7.1 Tack and stiffne ..

The tack and stiffness test is proposed for use In other fields such as PSAsand surface

energy studies. The study of polymers In accurate dimensionally controlled resin films

without fibre effects may allow for improved isolation of variable effects. Surface energy

may also be correlated using standardised resin films.

Uniform resin films with perfectly smooth surfaces could be investigated to confirm the

lack of surface finish effect observed here. The results may help to determine whether
tack is diffusion or thermodynamically controlled.

The electrostatic effect requires further investigation since It could yield a useful tool In

automated handling of prepregs. It would also be useful to quantify the effects of

humidity as it Is considered an Important factor effecting lay-up performance.

The effect of molecular length and configuration on viscoelasticity and tack could be

investigated. A number of molecular configurations and dispersions could be tested to

gain an accurate picture of how features such as molecular weight, branching and

polymeric disperslty effect tack. The differing melts may also be tested to confirm the

validity of the WLF time temperature relationship in both tack and rheology.

The effects of surface energy also require further Investigation. It Is likely that the

gradient at which Interfacial failure meets cohesive failure in a tack temperature sweep
may be directly correlated to surface energy.

Molecular changes during aging and Its effect on tack would also benefit from

investigation. The results may lead to the possibility of extending prepreg out life which
Is generally determined by useful tack.

Thermodynamic Lenard lones modelling Is recommended as the method most likely to

yield accurate results. However, this type of modelling requires accuracy on an atomic

scale Including contaminant layers. Prediction of WLF constants could offer a Simplified

test of bulk dynamic properties of the model before moving on to contact Simulations.

Testing In a vacuum may also offer a Simplified experimental comparison.
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7.2 Prepreg

The adoption and standardisation of the tack and stiffness test method for prepregs Is

recommended. For maximum benefit, resin manufacturers could include a tack and

stiffness to temperature plot using a standardised feed rate, application pressure,

humidity level, and surface. Inclusion of the resin's WLF constants, found by rheology,

would allow the superposition of tack and stiffness levels to suit the production

environment by adjusting lay-up feed rates or temperature. The standardisation of

measurement, calculation and specification of data is recommended and could lead to

the development of a British standard with the help of manufacturers and consumers.

The effects of aging would also require that tack properties be given some adjustment

depending on their storage history. Alternatively, Since tack appears to be the variable

limiting shelf life, manufacturers may wish to consider producing all prepreg at the

highest possible tack level and allowing it to age during transport and storage to give

the required tack level at the time of lamination. A time temperature indicator could be

Included in the packaging to show when the prepreg Is ready. Alternatively, customers

could perform their own b-staging within a short cycle in a low temperature oven

essentially accelerating the aging procedure. This method would take advantage of the

curing process, increasing the molecular weight to give the required tack level, and

could remove the need for freezer delivery and storage, further reducing the cost of

prepreg.

7.3 ATL

Modification of ATL equipment is proposed in an attempt to Improve performance.

Essentially, a favourable tack gradient through the prepreg thickness could be

attempted, where the tack to the mould surface exceeds that of the backing paper. The

tack gradient may be created by tailoring viscoelastic properties. This may be done by

resin formulation, where resin at the mould surface has a lower shear storage modulus

than that of the backing paper side. Alternatively, the favourable tack gradient could be

Induced by a temperature gradient with heat applied at the mould surface side which
would require repositioning of the heater element.

Significantly improved ATL feed rates could be attempted by exploring the limits and

application of the WLF relationship (Chapter 4.5). Control of the heater element via the

CNC program is recommended. Changing temperature with feed rate according to the

WLF relationship, and relevant constants for a particular material, should enable any

successful operating point to be maintained at a significantly higher feed rate,
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approaching that of the machines feed rate limit. For Example If M19.6LT 400g/m2 28%

resin content ATL prepreg was B-staged to give an optimum tack operating point of 100

mm/mm at 20°C then a temperature increase of 19.5oC Is required to maintain this

operating point at a maximum output of 50,000 mm/min. At this speed, approximately

1.4 kW of heat Is needed to achieve the required temperature. Therefore, a 3kW heater

element positioned against the mould side of the prepreg would be recommended based

on a heating efficiency of around 50%. The difficulty of delivering such a rapid

temperature increase may be overcome with the use of laser, microwave or electron

beam heating.

In addition to maintaining tack performance the constant diffusion rate may also

produce a laminate with more consistent mechanical properties and is recommended for

further investigation. An alternative strategy may also be employed in formulating ATL

prepreg resins with reduced response to temperature and strain rate changes.

Essentially a reduced gradient of shear storage modulus response to temperature Is

required for more reduced sensitivity to feed rate changes. More flexibility In tracking of

the mould surface and a reduced compaction pressure are also recommended to

facilitate the use of low cost mould tooling.
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B. Calibration of rolling friction and backing film

Calibration of films and rolling friction was done with a lOON compaction force. A thin

clear film strip with negligible bending stiffness was passed through the rollers to give

an average rolling friction of approximately 0.7N over 190mm extension at 500 rnrn/rnln

(Fig 8-1). The rig friction was then subtracted from the average rolling resistance of

backing films to yield the correction factors required to be added to the average tack

values to give the true tack value (Table 8-1).

Changes in rig friction and bending resistance of films are acknowledged with changes in

compaction force, feed rate and temperature. However, such changes are considered

negligible in comparison to the typical stiffness and tack forces recorded.
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Fig 8-1. Calibration of rig friction and backing films

Table 8-1. Rig friction and film calibration values

Film Value

Embossed Polythene 4 N/75mm

Red Polythene 1 N/75mm

Clear PET 0.3 N/75mm

narrow paper strip (Rig friction) 0.7 N
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c. Analysis of single level result.

In order to quantify the effect of multiple level experiments further analysis was

required. The effect of the variable under consideration was denned by the maximum

change In tack as a percentage of the maximum recorded value for tack (Eq C-l). This

method proved effective for results where large changes of tack were recorded -;

However, the value of the effect appeared exaggerated where very low values of tack

were recorded overall. Therefore,. for comparison the experimental error must also be

considered. The average experimental batch standard deviation Is taken for all levels

and then divided by the average value (Eq C-2). If the error value approaches or

exceeds the effect then result Is considered less conclusive.

Eq C-l Expression of effect

E~n; Max. val-Min. val 100°.1-weet = x 70
Max. val

Eq C-Z Expression of experimental error

E Avg. std. dev. 10001rror = x 70
Avg. val
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D. Analysis of temperature sweep results

In order to quantify the effect of multiple level experiments over a temperature sw p

range further analysis was required. The average tack level over a temperatur sw p

range encompassing both failure modes is considered (Fig 0-1). The av rage ck Is

expressed as the average integral of tack CEq 0-1). The overall experiment I rror Is

expressed in the same manner taking error values at y" and Y,,+1 ensuring that high

values of error which occur over a short temperature range are not over emphasised.

Tack (N175rmn)

Yntl _

y'l _

Temperature (0C)

X to X N (N = Range of points covering both failure modes)

Fig 0-1 Numerical analysis of results for temperature sweeps at a number of veri bl

levels

Eq D-1 The average tack of a temperature sweep experiment

Av.Tack =---. r~y.a·
XN - ll/l
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Appendix

The continuous tack data appears to follow a bell shaped normal distribution (Fig E-l).

The total variance is unknown, therefore, confidence intervals are calculated using the t-

distribution [170]. A comparison is made between two results to give an indication of

whether the observed effect is mostly due to chance through random fluctuation or

actual effect. Firstly the estimated true standard deviation a, is calculated (Eq. E-l).

Then the t statistic can be calculated (Eq. E-2) where XI - x2 is the difference in the

average results between the variable under investigation. The t value can then be

compared to critical values of Ie (Table E-1) to give the confidence interval where in this

case the degrees of freedom (n = no. of experiments at each level) is taken as the

lowest value of n for any of the levels under analysis.

c: 20.s
1;
:;
Q.o
Q. 10

10 15 20
Tack interval [O.SN)

30
c:
.2
~ 20
Q.
0...

10

0
25 0 2 4 6 8 10 12

Tack Interval [O.SN)

Fig E-1. Typical distribution of values recorded during a tack experiment

Eq. E-1. Estimated standard deviation for two datasets [171J

Eq. E-2 t-stetistic for the comparison of two variables [171J

I = _X.:_I _-_X..::,_2
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Table E-J Critical confld nee Int rvals for t

Confidence Interv.' (CM.> 80 to t, tt tt.5 tt." tt.tt, ",tH

1.89 2.92 4.3 9.92 14.09 31.6 44.7 100.14

1.64 2.J5 J.18 5.84 7.45 12.92 16.33 28.01

1.53 2.13 2.78 4.6 5.6 8.61 10.31 15.53

1.48 2.02 2.57 4.03 4.77 6.87 7.98 11.18

1.44 1.94 2.45 3.71 4.32 5.96 6.79 9.08

1.41 1.89 2.36 3.5 4.03 5.41 6.08 7.89

1.4 1.86 2.31 3.36 3.83 5.04 5.62 7.12

1.38 1.83 2.26 3.25 3.69 4.78 5.29 6.59

1.37 1.81 2.23 3.17 3.58 4.59 5.05 6.21

1.36 1.8 2.2 3.11 3.5 4.44 4.86 5.92

1.36 1.78 2.18 3.05 3.43 4.32 4.72 5.7

1.35 1.77 2.16 3.01 3.37 4.22 4.6 5.51

1.35 1.76 2.14 2.98 3.33 4.14 4.5 5.36

1.34 1.75 2.13 2.95 3.29 4.07 4.42 5.24
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