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Abstract

Modulation of DNA base excision repair (BER) has the potential to enhance
response to chemotherapy and improve outcomes in tumours such as
melanoma, glioma and pancreatic cancer. APEl, a critical protein in BER that
processes potentially cytotoxic abasic sites (AP sites), is a promising new
target in cancer. In the current study, my aim was to develop small molecule
inhibitors of APE1 for cancer therapy. An industry-standard high throughput
virtual screening strategy was adopted. The SYBYLS8.0 (Tripos, St Louis, MO,
‘'USA) molecular modelling software suite was used to build inhibitor
templates. Similarity searching strategies were then applied using ROCS 2.3
(Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically
related subsets of compounds from a chemically diverse database of 2.6 million
compounds. The compounds in these subsets were subjected to docking against
the active site of the APEl model, using the genetic algorithm-based
programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were
ranked on the basis of several scoring functions. The top virtual hits with
promising pharmaceutical properties underwent detailed in vitro analyses using
fluorescence-based APE1 AP-site cleavage assays and counter screened using
endonuclease IV AP-site cleavage assays, fluorescence quenching assays and
Whole cell extract AP-site cleavage assays. Biochemical APE! inhibitors were
then subjected to detailed cytotoxicity analyses. Several specific APEl
inhibitors were isolated by this approach. The ICs, for APE1 inhibition ranged
between 50 nM and 25 puM. I also demonstrated that APE1 inhibitors lead to
accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of

alkylating agents in melanoma, glioma and pancreatic cancer cell lines. I have



also shown that APEI inhibitors induce delay in cell cycle progression and
caused delay in cancer cell growth. I also demonstrated that APE1 knockdown
by shRNA results in decrease cancer cell growth and enhanced cell killing by
alkylating agent in Glioma cell line. This PhD project provides evidence that
APE1 is an emerging drug target and could have therapeutic application in

patients with melanoma, glioma and pancreatic cancer.
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Chapter 1

Introduction




1. Introduction

Cancer is a leading cause of mortality worldwide and accounts for
about 13% of all deaths in 2004[1]. World Health Organisation (WHO)
estimates that 84 million people will die from cancer between 2005 and
2015[2] with Lung, gastric, colorectal, hepatic and breast cancers accounting
for more than 50% of cancer related deaths[2].

Chemotherapy and radiotherapy are important treatment modalities
currently available to improve outcomes in patients with advanced tumours.
The cytotoxicity of these agents is directly related to their ability to induce
genomic DNA damage. However, the recognition of damage induced by these
agents and the initiation of DNA repair are important mechanisms for

therapeutic resistance which negatively impacts upon therapeutic efficacy [3].

1.1 DNA repair pathways and cancer

Genomic DNA possesses an inherent instability and at risk of damage
by endogenous (e.g. reactive oxygen species) and exogenous (UV, ionizing
radiation and chemotherapeutic agents) DNA damaging agents. When left
unrepaired, this damage could result in highly cytotoxic lesions or non-
canonical base pairing during replication, leading to the propagation of
potentially mutagenic lesions or induction of apoptosis. A number of DNA
repair mechanisms have evolved to ensure genomic integrity can be preserved.
In response to DNA damage normally cells respond by either (a) tolerance to
damage (b) activation of DNA damage checkpoints and subsequent modulation
of cell cycle progression to allow time for repair and to prevent transmission of
damaged or incompletely replicated chromosomes; (c) initiation of DNA repair
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and removal of damage; (d) transcriptional response that may be beneficial to
the cell survival and (e) induction of apoptosis.

DNA damaging agents can induce a broad spectrum of DNA damaging
lesions. Therefore, multiple DNA repair pathways exist in cells to repair these

harmful damaging lesions. (Figure 1.1).

Oxygen radicals Pelyoydic
Satsimonss —— UV Jight -
]
ydrolysis hydmwcarbons st

Cell cycle

tional 3

Tolerance check points DNA repair Tn::?”:n Apoptosis

activation

Figure 1.1 DNA damage responses in mammalian cells.

These pathways include: (a) direct repair of alkyl adducts by O6-



alkylguanine DNA alkyltransferase (AGT); (b) repair of mismatches and
insertion/deletion loops by DNA mismatch repair (MMR); (c) repair of double-
strand breaks by homologous recombination (HR), non-homologous end
Jjoining (NHEJ) and single-strand annealing (SSA); (d) repair of bulky DNA
adducts by nucleotide excision repair (NER) (e)repair of cross-links by DNA
inter-strand cross-link repair; (f) repair of base damage and single-strand
breaks by base excision repair (BER) [4-11].

Several enzymes involved in DNA repair are conserved throughout
evolution, suggesting their essential role in the maintenance of genome
stability. Moreover, mutations in several of the DNA repair genes is the cause
of cancer predisposing syndromes associated with inherent chromosome
instability in man[12]. In addition, polymorphisms in DNA repair genes that
confer suboptimal DNA repair capacity in normal cells may increase genomic
instability and may increase risk of development of cancer to environmental
carcinogens[13, 14]. Polymorphism of the DNA repair genes may also effect

the natural history of cancer, alter prognosis and treatment response[15-19].

Pharmacological inhibition of DNA repair, has the potential to enhance
cytotoxicity of a diverse range of anticancer agent[20]. Moreover, the recent
use of inhibitors of DNA repair or DNA damage signalling pathways in
synthetic lethality strategy exploiting genetic difference in cells is an exciting

new treatment modality[21, 22].

In this thesis, I detail the work that I have done in targeting human

Base Excision Repair (BER) for cancer therapy. The major human



apurinic/apyrimidinic endonuclease (APEl), a key player in base excision
repair (BER), was the focus of my research. The pioneering work from my
group recently resulted in identification and characterization of first generation
small molecule inhibitors of APE1[23]. The main aim of this project was to use
the first generation APE1 inhibitor templates to design and identify novel,

drug-like second generation of APEL1 inhibitors.

In this chapter, I will provide an overview of the general features of
BER in mammalian cells. A detailed description of individual components of
BER, their interactions and the coordination of BER process in mammalian
cells will be reviewed next. I will then focus on APE1, provide evidence as to
why APELl is a viable drug target and review studies on the development of
APE]1 inhibitors. Finally I will describe the aims and scope of my research

work.

1.2 Base excision repair

1.2.1 Overview of BER pathway

BER is required for the accurate removal of bases that have been
damage by alkylation, oxidation and ring saturation as well as in handling
deaminated bases and DNA single strand breaks (Table 1.1).

There are at least two sub-pathways in BER: the short-patch pathway and long-
patch pathway (Figure 1.2). These sub-pathways differ from each other in the
number of nucleotide incorporated during the repair process and in the subsets

of enzymes involved. However, both pathways are initiated by a damage



specific DNA glycosylase, which recognize and excise the damaged base
leaving an abasic site (apurinic/apyrimidinic, AP site). An AP endonuclease
then hydrolyses the phosphodiester bond at the 5’ end of the AP site. This
results in a single strand break (SSB) with a 5’ deoxy sugar phosphate (dRP)
and a 3'-hydroxyl group. DNA polymerase B incorporates the first missing
nucleotide to the 3'-end of the incised AP site. Normally, the reaction continues
through the short-patch repair pathway (Figure 1.2) where Pol p removes the
dRP residue by the process of B-elimination. DNA ligase III-XRCCI

heterodimer (or DNA ligase I) then completes the repair.
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Figure 1.2 DNA base excision repair (BER). BER is initiated by damage
recognition and excision by monofunctional DNA glycosylases that excise the
damaged base leaving abasic site (left side of green box). APE1 then cleave 5' to the
abasic site leaving single strand break leaving 5' OH and 3’ phosphate hanging at the
single strand break. Bifunctional glycolsylase can perform B or B/3 elimination 3’ to
the abasic site leaving a strand break with a/p- fragmented sugar derivative [phospho
/B -unsaturated aldehyde (PUA)] or a phosphate group (P) respectively at the 3'- side
and phosphate group (P) at 5" end (right side of green box). (PUA) is then excised by
APE] and (P) by polynucleotide kinase (PNK) leaving 3’ OH group and 5’ Phosphate
group. The repair process continues by either short patch (SP-BER) (pink box) or long
path (LP-BER) (yellow box).

If the 5'-sugar phosphate is resistant to B-elimination, then a longer fragment of
DNA is synthesized and the repair process proceeds through the long patch
pathway. In the long patch pathway, Replication Factor C (RF-C) loads
proliferating cell nuclear antigen (PCNA) onto the DNA. PCNA acts as a DNA

sliding clamp for DNA Pol 8/e which performs DNA synthesis displacing the

5'-sugar phosphate as part of a flap. The flap is then removed by structure



specific flap endonuclease (FEN1). DNA ligase I completes the repair pathway
by ligating the DNA ends (Figure 1.2).

An alternative branch within the short-patch pathway also exists. It involves
processing of a damaged base by a bifunctional glycosylase with AP lyase
activity. AP lyase cleaves the phosphodiester bond 3’ to AP site (Figure 1.2).
This cleavage of the AP site by B or /6 elimination reaction leaves either an
o/B- fragmented sugar (PUA) derivative or a phosphate group respectively at
the 3'- side of the resulting strand break (Figure 1.2). This polymerase-blocking
lesion requires removal by a phosphodiesterase and phosphatase in order for
Pol B to fill in the gap (the 3’-phosphodiesterase and phosphatase activities of
APEL! and polynucleotide kinase (PNK) performs these functions). DNA ligase
III-XRCC1 heterodimer then completes the repair process. In vitro studies have
shown that the rate limiting step in monofunctional glycosylase mediated short-
patch BER is the removal of deoxyriboncleotide phosphate (dRP) i.e. dRP
lyase, catalyzed by the amino-terminal domain of Pol B. However, for the
bifunctional glycosylase mediated BER, APE1 was found to be rate limiting[4,
6, 33-37]. Although in vitro recognition systems have provided some insight,
the mechanism of switching among multiple BER pathways is largely

unknown([38].
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1.2.2 BER Proteins

1.2.2.1 DNA glycosylases

BER is initiated by recognition and excision of a damaged base by a
DNA glycosylase. DNA glycosylase hydrolyze the N-glycosylic bond between
a damaged base and the sugar moiety thus releasing the free damaged base and
giving rise to an AP site. DNA glycosylases are relatively small (~ 30-50kDa)
monomeric proteins and belong to an extensive family of enzymes. They do
not require cofactors for their activity. Some glycosylases show a very narrow
substrate specificity, while others recognize a wide range of different base
derivatives [33, 37, 39, 40].

DNA glycosylases have been broadly classified into monofunctional
and bifunctional DNA glycosylases. The monofunctional DNA glycosylases
operate by a base flipping mechanism in which the damaged base is flipped out
from the DNA helix into the active site pocket of the enzyme. Hydrolytic
cleavage of the N-glycosylic bond leads to the damaged base release and the
formation of an AP site which is the substrate for an AP-endonuclease. The
mechanism of action of monofunctional DNA glycosylase is not associated
with the formation of covalent intermediates or phosphodiester backbone
interruptions and hence an intact AP site is generated. On the other hand,
bifunctional DNA glycosylases bind to the base lesion and catalyze the flipping
of the damaged deoxyribonucleotide into the active site where a basic amino
acid residue, generally a lysine or an N terminal proline, displaces the modified
base by a nucleophilic reaction. A transient Schiff base intermediate is

generated by the reaction between the C1 of deoxyribose sugar moiety and the
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e-NH, group of the lysine or proline. The covalent intermediate catalyzes the
B-elimination or B/8 elimination reactions at 3'-side of the AP site by an
associated lyase activity generating a 3’ a,B-unsaturated aldehyde (PUA) or 3'
phosphate respectively and a 5’-phosphate product. Gapped products are then
further processed and fully repaired by the sequential action of a 3'-
phosphodiesterase or phosphatase, DNA polymerase and DNA ligase (Figure
1.2). A detailed description of individual DNA glycosylases is beyond the

scope of this thesis. However, a brief overview will be provided below.

1.2.2.1.1 DNA glycosylases for alkylated bases

Alkylating agents are commonly uséd in the treatment of cancer. They
induce covalent modification for DNA bases. Alkylating agents react with both
oxygen and nitrogen atoms of DNA bases with quite different efficiency
although the nitrogen moieties of DNA bases are the main target. N7-
methylguanine (7MeGua) and N3-methyladenine (3MeAde) are the primary
DNA lesions accounting for 70-80% and 10-15% of the total DNA alkylation
lesions respectively. 7MeGua appears to be harmless while 3MeAde is quite
cytotoxic and can block DNA replication and transcription. N3-methylguanine
and N7-methyladenine are also formed as minor products. Alkylation of
oxygen moiety is induced to a significant extent by SN1-type alkylating agents
(e.g. MNU, MNNG and others). O6-Methylguanine (06-MG) and O4-
methylthymine (O4-MA) lesions are highly mutagenic. SN2-type alkylating
agents (¢.g. MMS) induce a very limited alkylation of oxygen moieties[37, 41-

43].
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Of note in this context, direct repair mechanism is initiated by the O6-
Methylguanine-DNA-methyltransferase (MGMT) protein which removes
methyl group from O6 position of guanine (06-MG) [formed by
temozolomide, streptozotocin, procarbazine and dacarbazine], as well as O4-
methyl thymine, O6-ethylguanine [formed by ethylnitrosourea and
diethylnitrosamine and related compounds] and O6-chloroethylguanine adducts
[formed by bis-(2-cholorethyl)-nitrosourea (BCNU) and 1-(2-chloroethyl)-3-
cyclohexyl-1-nitrosourea. CCNU]. MGMT transfers the alkyl group from the
target base to a cysteine residue within its active site and thereby inactivates

itself in the process[5].

N-alkylpurine-DNA-glycosylase (ANPG): The alkylpurine-DNA-
glycosylase, also know as alkyl adenine glycosylase (AAG), is the repairing
enzyme for N-alkylpurines such as hypoxanthine and 1,N6-ethenoadenine.
7MeGua (7-methyl G) is considered potentially harmless as it does not
interfere with DNA replication and it has no miscoding properties whereas
3MeAde (3-methyladenine) is both cytotoxic and mutagenic in mammalian

cells [24].

1.2.2.1.2 DNA glycosylases for deaminated bases

Spontaneous deamination of DNA bases by hydrolytic reactions under
physiological conditions can occur and result in highly mutagenic lesions such
as uracil, hypoxanthine and xanthine in the DNA[44]. For example, the most

frequently encountered deamination DNA product is spontaneous hydrolysis of
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cytosine leading to the formation of uracil. This spontaneous deamination, if
not repaired, can generate a promutagenic U:G mispair, which leads
subsequently to GC > AT mutations. However, uracil can also occur in a U:A
base pair by occasional incorporation of dUTP (an intermediate in the de novo
biosynthesis pathway for TTP) instead of TTP, by replicative DNA

polymerases. U:A base pairs are non-mutagenic.

Uracil-DNA-glycosylases (UDG): is a highly specific monofunctional
DNA glycosylase that is conserved in evolution. In mammals, there are two
uracil DNA glycosylases, UNG and SMUG]. There are two UNG uracil DNA
glycosylases. The mitochondrial form (UNG1), and the nuclear form (UNG2).
Both result from transcription of UNG gene by different promoters[45]. UNG2
removes the misincorporated uracil in the nascent DNA chain during
replication, suggesting a main role in replication-associated BER[25]. UNG2 is
also required to introduce DNA break necessary for class switching
recombination in immunoglobulin gene diversification in lymphocytes [46].
SMUG] has a similar activity to UNG and acts on both single- and double-
stranded DNA. SMUG] is active against uracil in U:G mismatches resulting
from genome-wide hydrolytic deamination of cytosine in vivo [26]. It is also
active against a subset of oxidized Uracil residues; 5-hydroxyuracil, 5-
hydroxymethyl uracil and 5 formyluracil and it also removes 5-flourouracil
residues [27, 28]. SMUGI also catalyses the excision of oxidised pyrimidines

such as 5-OH cytosine.

Thymine-DNA-glycosylase:  Human  thymine-DNA-glycosylase
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(TDG) is a monofunctional DNA glycosylase with broad substrates specificity.
It has been shown to excise thymine and uracil from G/T and G/U mismatches.
Its range of substrates also includes ethenocytosine which arise as a by-product
of lipid peroxidation , 5-fluorouracil paired with a guanine or an adenine, 5-

OH-U and 5 hydroxymethyluracil mispaired with guanine [29].

Methyl-CpG binding endonuclease 1: Methyl-CpG binding
endonuclease 1 (MED1, MBD4) has preferential activity against methylated
DNA and also recognizes thymine, uracil and 5-fluorouracil mispaired with

guanine, preferentially at CpG sites[30].

1.2.2.1.3 DNA glycosylases for oxidised bases

Reactive oxygen species (ROS) are continuously generated during
cellular aerobic metabolism as respiration by-products. They are responsible
for the production of more than 50 products of purine/pyrimidine oxidation.
ROS also produce DNA lesions through the radical attack on the C1’ and C4'
atoms of deoxyribose sugar moiety giving rise to oxidised abasic sites.
Oxidation of C1 and C4 of the deoxyribose can generate DNA SSBs with 3'-
phosphate and 3'-phosphoglycolate termini respectively. Some of these lesions
are toxic whilst others are strongly mutagenic. Specific DNA glycosylases are
involved in the recognition and removal of oxidised bases [47].

Oxidised base-specific DNA glycosylases were first discovered in
Escherichia coli [endonuclease (Endo) III, Endo VIII, formamidopyrimidine-

DNA glycosylase (Fpg/MutM), and MutY]. Human (functional) homologues
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of these enzymes have now been identified.

NEIL1 and NEIL2; are bifunctional glycosylases with a broad range of
substrate specificity. They belong to Nei/Fpg superfamilies and exhibit B, 5 AP
lyase activity. NEIL1 and NEIL2 act on reactive oxygen species modified
pyrimidines. NEIL1 has also been shown to act on ring open purines, namely
formamidopyrimidines (Fapy-A and Fapy-G)[31, 32]. NEIL1 is also active
against thymine glycol formed by oxidation of thymine. On the other hand
NEIL2 appears to have preferential activity against cytosine derived lesions
such as 5-OH uracil and 5-OH cytosine[32]. NEILs have recently been shown
to have high activity in excising base lesions from ss DNA and unrepaired
damages in bubble DNA substrates suggesting their possible roles in base
excision repair of oxidative damages during transcription and/ or replications.
Additional human NEIL3 have also been identified with no glycosylases
activity [48].

hNTH1 is a bifunctional DNA glycosylase, with an associated B AP
lyase activity. It belongs to Endo I superfamily. It recognizes a wide range of
substrates including thymine glycol, 5-OH cytosine, 5-OH uracil and other
types of oxidized pyrimidines.

hOGG1 is a bifunctional DNA glycosylase with an associated § AP
lyase activity. Structurally it belongs to the Endo III superfamily rather than
the Endo VIII/Fpg family, but is nevertheless a “functional” homologue of
Fpg. It functions on oxidised purine residues such as 8-oxoguanine (80x0G)
and FapyG.

hMYH is a monofunctional DNA glycosylases and a homologue of E.
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coli MutY. hMYH main function is to remove A that is misincorporated
opposite 80x0G in the template, therefore, preventing G:C—T:A transversions.

It also excises 2-hydroxyadenine paired with G.

1.2.2.2 DNA Polymerases in BER

DNA Polymerase B (Pol B) is the primary DNA polymerase in base
excision repair pathway. DNA Pol B is a 39 kDa protein consisting of two
domains connected by a protease sensitive hinge region: the 8-kDa N-terminal
domain is responsible for the 5'-dRP lyase activity through B-elimination. The
N- terminal domain is also essential for DNA binding. The 31-kDa C terminal
domain performs the nucleotidyltransferase function of Pol B. Although the
DNA synthesis by Pol B is devoid of any intrinsic proofreading activity, it
performs a moderately high fidelity DNA synthesis compared to other
poylmerases[49].

Mice nullizygous for the Pol B gene are non-viable and die early in
embryogenesis. Histological examination of the embryos revealed defective
neurogenesis, indicating that Pol B is vital for embryonic neural development.
Embryonic fibroblast cell lines derived from these embryos are hypersensitive

to the toxic effects of the methylating agent, MMS. The dRP lyase, rather than
the polymerase activity of Pol B is required to revert MMS sensitivity [50]. In
human tumours Pol B variation are frequently seen (30%) compared to
surrounding normal tissue, implying that Pol B variation are involved in
pathogenesis of tumours[51].

Mammalian Pol 8 is a 125kDa protein enzyme. It consists of four
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subunits, (p125, p68, p50 and pl12). These subunits are responsible of the
polymerase activity and the 3'-5' exonuclease proofreading function. The low
activity and processivity of Pol 8 is strongly stimulated by the auxiliary factor
PCNA which interact with p50 subunit of the Pol §[52].

Mammalian Pol ¢ consists of four subunits (p261, p59, p17 and p12)
and interacts with PCNA. Pol &€ may be involved in the long-patch pathway of

BER[53].

1.2.2.3 Replication Factor C (RFC)

RFC is a heteropentameric protein complex composed of five subunits (RFC1,
RFC4, RFCS, RFC2 and RFC3) respectively. Apart from its role in DNA
repair (BER and NER), RFC plays a central role in chromosomal DNA

replication and may have additional roles in cell cycle checkpoint control[54].
1.2.2.4 Proliferating cell nuclear antigen (PCNA)

PCNA is a ring-shaped protein and consists of three identical subunits of
29kDa. These subunits are joined in head-tail arrangements forming a
homotrimer. It forms a sliding clamp function on DNA by making a trimeric
ring that encircles the DNA strand without any contact with it. At least 30
proteins are known to interact with PCNA including Pol 8, Pol € and RFC that
are involved in BER. PCNA is involved in several cellular processes including,

DNA replication, repair and cell cycle control [55].
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1.2.2.5 Flap Endonuclease 1 (FEN1)

FENI is a 40-kDa multifunctional, Mg?"“dependent metallonuclease
with structure-specific activity to cleave branched DNA structures with an
overhanging, single-stranded 5' flap. It also has a 5'-3’ exonuclease activity
that removes mononucleotides at nicks and at gaps. FENI1 is highly conserved
among different species and is essential for lagging-strand DNA replication by
processing the 5’ end of Okazaki fragments. The active-site structure of the
enzyme suggests that DNA binding induces FEN1 to clamp onto the cleavage
junction to form the productive complex. The enzyme also tracks along the flap
from the 5’-end to the cleavage site. FENI activity is modulated by its
interaction with PCNA through a conserved motif. PCNA enhances stability of
FEN1 allowing for a higher cleavage activity, irrespective to the flap size. The
interaction of FEN1 and PCNA is disrupted by p21, which bind competitively
to PCNA displacing FEN1 from the replication fork and resulting in cell cycle
arrest in response to DNA damage. Displacement of FEN1 from replication
fork switches its function from DNA replication to DNA repair. In BER, FEN1
functions in long patch where it removes the dRP residue, along with several
additional residues from the 5'-terminus. Mice homozygous for FEN1 mutation
are embryonically lethal. Mice that are heterozygous for FEN1 mutation are
viable and show a mild tumour predisposition phenotype. Moreover, Fenl—/—
blastocysts exhibit hypersensitivity to ionizing radiation[56].

1.2.2.6 DNA Ligases
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DNA nicks generated during DNA replication, recombination and
repair need to be sealed in order to maintain genomic integrity. DNA ligation is
accomplished through series of complex biochemical reactions and include
enzyme adenylation and transfer of AMP moiety to the 5'-terminus at the site
of a nick. Subsequently, the 5'-terminus is activated to attack the 3’-OH end in
the final phosphoryl transfer step thereby sealing the nick [57]. Three
mammalian ligase genes have been identified: LIG I, LIG III and LIG IV.

DNA ligase I, is the main replicative ligase of eukaryotes, encoded by
the LIG I gene. It is involved in BER and other repair pathways. In BER, DNA
ligase I directly interacts with Pol . An association between DNA ligase I and
PCNA has also been established[58].

LIG I interaction with Pol f and PCNA is mediated by its non catalytic
N terminal domain. The human DNA ligase I activity is enhanced by PCNA
which also enhanced its DNA binding ability to the ligation site[59]. In vitro
studies from mammalian cell extracts defective in DNA ligase 1II-stabilizing
factor XRCC1 demonstrated that XRCC1/ligase I1I complex is dispensable for
long-patch repair, indicating that that the sealing step is performed by DNA

ligase I [60].

The LIG III gene encodes several polypeptides that appear to have

distinct cellular functions. An alternative splicing event results in two forms of
DNA ligase III, o and B that differ in their C-terminal domains [59]. The DNA
ligase Illa variants, but not DNA ligase I1IB, forms a stable complex with the
DNA repair protein XRCC1 [61]. This interaction occurs between a BRCT

motif that resides within the unique C-terminus of DNA ligase Illa and a
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BRCT motif at the C-terminus of XRCC1. This interaction provides a physical
link between this DNA ligase and Pol . DNA ligase IIla. is primarily involved
in the short-patch BER pathway [60].

LIG 1V is a specialized ligase that is required for non-homologous end

joining[62].

1.2.2.7 X-ray cross complementing-1 (XRCC1)

XRCCI1, a 69.5 kDa protein interacts with Pol § and DNA ligase Illa in BER
[63, 64]. In addition, XRCC1! also interacts with APE1[65]. XRCC1 acts as a
scaffolding and adapter protein. XRCC1 may be involved in the coordination
of short-patch BER. The disruption of XRCC1 in mice leads to embryonic
lethality [66]. In human, polymorphism in the XRCC1 gene may be related to

cancer predisposition[67].

1.2.2.8 Poly(ADP-Ribose)Polymerase-1 (PARP-1)

PARP-1 is a DNA-binding enzyme, that gets activated upon
encountering DNA strand breaks. Upon activation by strand breaks, PARP-1
undergoes homodimerization and catalyzes the cleavage of NAD+ to ADP-
ribose and nicotinamide. ADP-ribose is then used to synthesize poly(ADP-
ribose) nucleic acid polymers that are covalently attached to acceptor proteins
such as histones, transcription factors, topoisomerases, DNA ligases and
polymerases [68]. However, the major target of poly(ADP-ribosyl)ation is

PARP-1 itself. This Poly(ADP-ribosyl)ation not only alters the function of
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target proteins, but also alters chromatin structure in a way that is essential for
repair. In addition, decreased cellular NAD+ levels alter the NAD/NADH ratio,
redox state and deplete ATP, which is required for cellular metabolism [69].

PARP-1 automodification is strongly activated upon strand cleavage by
APE1 [70]. This automodification promotes its interaction with several
components of the BER including Pol B, XRCC1 and FEN-1. PARP-1 may be
involved in the coordination of BER. In addition, PARP1 has also been shown
to be involved in other DNA repair mechanisms including DNA double strand
breaks repair such as non-homologus end joining repair (NHEJ)[71, 72].

Moreover, PARP-1 is also involved in several other cellular processes
such as DNA replication, transcription, apoptosis, and genome stability [68,
73]. Although PARP-1 knockout is not embryonic lethal in mice, PARP-2 has
overlapping function and knockout of both enzymes is lethal to the cells. The
mice and the cells derived from PARP-1 knockout mice are highly sensitive to
DNA damaging agents [74].

It has long been shown that PARP inhibition leads to persistence of
single strand breaks, causing stalling of replication forks and formation of
lethal double strand breaks[75]. PARP-1 is overexpressed in many human
tumours[76-79] while its depletion potentiates the cytotoxicity of alkylating
agents and ionizing radiation [80, 81]. Several potent and specific small
molecule PARP inhibitors have been synthesized [82-84]. Blocking of PARP-1
by such inhibitors results in chemosensitisation and radiosensitisation[85]. The
first clinical trial on PARP was started in 2003 with a potent tricyclic indole

inhibitor (AGO14699) in combination with temozolomide [86]. Since then
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several more PARP-1 inhibitors have entered clinical trails and showing
promising results in combination with chemotherapeutic agents[87].

PARP inhibitors have shown particular promise in the setting of
BRCA-deficient breast and ovarian cancers that have a dysfunctioning
homologus recomnination repair pathway. In these mutated cancer cells,
blocking the second/rescue BER pathway with PARP inhibitors results in
accumulation of DNA damages and cell death. Synthetic lethality is an

important new therapeutic concept in cancer (discussed later in this chapter).

1.3 Human APE1 in BER

1.3.1 Formation and consequence of AP sites

Under physiological conditions spontaneous formation of AP sites can
arise from the spontaneous hydrolysis of N- glycosyl bond and subsequent
depurination. AP site formation occurs at a substantial rate and estimated to be
responsible for around 10,000 AP sites generated per day in each human cell
[88-90]. Moreover, DNA glycosylase activity in BER generates additional AP
sites and adds more to this burden. In some studies it has been estimated that
the steady-state level of AP lesions may be much higher, approaching 50,000
or more per cell[91, 92]. AP sites that are generated by DNA glycosylases as a
repair interﬁlediate are termed ‘regular’ AP sites. In addition, alkylating agents
can also induce the release of bases, often by introducing base modifications
that destabilize the N-glycosyl bond [90]. AP sites generated as a result of

attack on the DNA sugar-phosphate backbone by ionizing radiation or by
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oxidizing DNA damaging agents represent a different structural class from that
of the 'regular' AP site. Here abstraction of proton from the deoxyribose sugar
results in the formation of oxidised sugar AP site. Several sites on the
deoxyribose skeleton are prone to this type of oxidative damage. In particular,
the C-1’s C-2’ and C-4' positions are prone to such attack. Each agent generally
produces only one form of oxidized AP site. For example Cu(Il) phenantholine
selectively targets the C-1' position to generate 1' oxidized AP sites, whereas

bleomycin, generates 4' oxidized AP site via attack on the C-4' position.

Figure 1.3 Structure of various AP sites. A=o- Hemiacetal, B = 8- Hemiacetal, C =
Aldehyde, D= Hydrated aldehyde, E = Tetrahydrofuran, F = Reduced AP site, G = 1’-
Oxidized AP site, and H= 4’- Oxidized AP site. Yellow circle indicates the sites where
the normal bases have been modified.

AP sites are obligatory intermediates in the pathway for repair of
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alkylated and oxidized DNA bases[93]. The structures of various forms of AP
sites are shown in (Figure 1.3). Spontaneously generated AP sites exists as an
equilibrium mixture between four species: 99% as two hemiacetal enantiomers
(a- and B-2-deoxy-D-ribofuranose) and ~ 1% as ring-opened aldehyde and
hydrated aldehyde forms[94]. The ring open type of AP site is a highly reactive
variants, and is believed to be responsible for at least some of the biological
effects of AP sites[90].

AP sites are cytotoxic and mutagenic. AP sites represent a major threat
to the integrity and survival of the cells. Although the exact mechanism behind
the cytotoxicity of AP sites is not completely clear, the cytotoxicity may be
related to an ability to interfere with replication fork progression. The ring-
opened AP site variant may be cytotoxic by virtue of an ability to react with
nuclear proteins resulting in protein-bound DNA lesions that may also interfere
with DNA replication. Upon encountering an AP site, DNA (and RNA)
polymerases pause and dissociate, which leads to the formation of replicative
chromosome strand break (or abortive, non-productive transcriptional events)
which, when produced at high enough frequency, result in lethality or cellular
dysfunction[94]. Furthermore, the cytotoxicity of AP sites may also be related
to their ability to promote or inhibit (depending on their proximity to the
cutting site) the DNA cleavage activity of topoisomerases[95], and/or to
irreversibly trap topoisomerase- DNA covalent complex[96].

Several in vitro studies have shown that excessive production or
impaired repairing of AP sites result in enhanced cell death. For example a
severe depletion of APE1 by RNA interference in human cells leads to an

accumulation of unrepaired AP sites, retards cell proliferation and activates
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apoptosis [97]. Similarly, ANPG overexpression in CHO cells leads to
enhanced sensitivity to the toxic and mutagenic effects of MMS [98]. It was
proposed that abundant ANPG causes excessive formation of AP sites and this
imbalance in BER induces cell death [98]. In addition, in mammalian cells, a
methoxyamine (MX) bound AP site is not a substrate for APEl and the
relatively stable MX bound AP site enhances the cytotoxicity of alkylating
agents[99].

Non-coding AP sites are also potentially mutagenic. It was shown
previously that DNA and RNA polymerases, if they are able to bypass the AP
lesion, they preferentially incorporate an adenine opposite the abasic site both
in vitro and in vivo. This is referred to as the “A-rule”. Therefore, , it has been
postulated that in E. coli the apurinic sites are responsible for the G:C — T:A
transversions associated with SOS activation[94]. However, a precise
eukaryotic mutagenic pattern has not yet been shown. Yeast lacking efficient
AP site repair preferentially inserted guanine opposite the apurinic lesions
which results in increased frequency of A:T to C:G transversions. In addition
the stalling of transcription at abasic sites is highly mutagenic in yeast[100]. In
mammalian cells, adenine, cytosine, thymine or guanine can be inserted
opposite the abasic lesion. Translesion synthesis polymerases have been
proposed to be involved in the induction of mutagenesis at AP sites[94].

Apurinic/apyrimidinic (AP) endonucleases are the critical enzymes

involved in recognition and processing of AP sites in BER.
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1.3.2 APURINIC/APYRIMIDINIC (AP)

ENDONUCLEASES

AP endonuclease proteins can be broadly classified into two classes;
Class 1 (AP Lyases), Class II (AP endonucleases). The class II AP
endonucleases are further classified into two distinct families based on
homology to the endonucleases in E coli, namely, exonuclease III and
endonuclease IV family. In E. coli, the major activity is encoded by the xzh
gene (exonuclease III) and a minor activity is contributed by the nfo gene

(endonuclease IV) (Figure 1.4).

AP ENDONUCLEASES

/N

CLASS|(APlyase)  CLASSII

/N

Exonuclease Il family Endonuclease IV family

DNA repair domain
265 residues 300 residues

Humans S. cerevisiae

Arabidopsis C. elegans TOSH10

I
il

Drosophila M. leprae Z14314

S. pneumoniae F. coli EndolV

E. coli

Figure 1.4 Different family classes of AP endonucleases are shown here. AP
Endonucleases are divided into two classes: Class I endonucleases are also called AP
lyases. Class Il is divided in to two families namely, exonuclease 111 and endonuclease
IV family. Members within each family share structurally similar DNA repair
domains.
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The exonuclease III and the endonuclease IV families have structural
and functional homologues in different species. Although they share similar
enzymatic activity there is no structural homology between both families [101].
The exonuclease III homologues include exonuclease III (E coli), APEX
(mice), rAPE1 (rats), BAP1 (bovines), and APE1 (human). The endonuclease
IV homologues include endonuclease IV (E Coli), APN1 (S. cerevisiae),
TOSH10 (C elegans) Z14314 (M. Leprae) [102]. Studies on the X-ray crystal
structure on AP endonucleases from bacteria and human cells has revealed that
members of the exonuclease I1I [103, 104] and endonuclease IV [105] families
are structurally unrelated, despite being able to catalyze similar endonuclease
reactions yielding similar products.

The E. coli exonuclease III is a 265 amino acid protein [106] and a
prototypical member of this family of AP endonucleases. The repair domain of
Exonuclease 1II is highly conserved (Figure 1.4) [107]. Exonuclease III is a

Mg2+ dependent AP endonuclease which has 3'-exonuclease, 3'-phosphatase,

AP endonuclease, 3’-phosphodiesterase and RNase H activities [104].

The E. coli endonuclease IV is a Zn®* dependent AP endonuclease that
shares functional similarity to exonuclease III. Both enzymes possesses AP
endonuclease, 3' phosphatase and 3' phosphodiesterase activity[108]. However,
endonuclease IV lacks the exonuclease and RNase H activities characteristic of

exonuclease III (Figure 1.4) [108].

1.3.3 Human apurinic/apyrimidinic endonuclease (APE1)

Human apurinic/apyrimidinic endonuclease (APE1/HAP1/Ref-1) is a

multifunctional protein. The human APE1 gene (~ 2.6 kb in size) is located on
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chromosome 14 q11.2-12 and consists of four introns and five exons (Figure
1.5). The human APEl1 cDNA is about 1441 nucleotides in length and
encompasses 205 nucleotides in the 5’ non-translated region, 954 nucleotides in
the coding region, and 216 nucleotides in 3' non translated region and poly(A).
The coding region encodes a 318 amino acid protein with a molecular mass of
approximately 36.5 kDa. APEI is a globular a/B protein that possesses both
DNA repair activity and redox regulatory activity[102, 109, 110]. The C-
terminal is responsible for the endonuclease activity and is essential for the
DNA repair function of APEI[111]. The N-terminal domain is mainly
responsible for the redox regulatory activity, by the amino acid Cystein at 65
position.

The repair and redox functions’of APE1 are completely independent from each
other. This is evident by the observation that cys-ala65 mutation abolishes the
redox function without affecting the repair function[112] whereas mutation of
amino acids required for DNA repair activity, such as Histidine 309 (H309)
and others[1 ll3], do not affect the redox function. While the DNA repair active
site of APE1 has been clearly delineated requiring the amino acid residues
between 61-80 of the N terminus and all the C-terminus[114], the redox
domain is much less defined. The only Cys residue required for full redox
function is Cys 65,which is located deep inside the APE1 protein[103]. The
importance of Cys65 for the redox function was confirmed by a study in zebra
fish AP endonucleasel (zAPEL1). In this study, point mutation of Thr58 to a
Cys located at the same position of the Cys in the mammalian APE], resulted

in the acquisition of redox activity of the mutated protein[115).
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APE1/Ref1 gene

(3kb chromosome 14)

NH2 COOH

AP-Endonuclease (36.5kDa)

1 Cys-65 Asp-90 Glu-96 Asp-219 Asp-308 318

NN

Redox Function DNA binding/AP-Endonuclease activity

Figure 1.5 Structures of human APE1 gene and protein are shown here. The gene
encoding the 36.5 kDa APE/Ref-1 protein is about 3 kb in length and is located on
chromosome 14. The 6 kDa N-terminal region of theAPE! protein, in particular Cys-
65, is important for its redox activity. The repair activity of the protein is located in the
C-terminus. Functional relevant amino acids are outlined in the structure of the APEI
protein. Mutational disruption of these amino acids results in loss of repair/redox
function. , introns:..., coding exons :&, untranslated exons [116].

In addition to the redox regulatory function, the N-terminal domain also
contains the nuclear localization sequence [117]. A study by systematic
deletion analysis has showed that the first 7 residues and residues 7-18 can
independently promote nuclear transport of APE1. Moreover, the subcellular
distribution of APEI protein may be regulated by both nuclear import and
export signals [for example, the first 20 N-terminal residues interact with
nuclear importins (Karyopherin ol and 2)][118]. In addition, a recent study by
Li et al has described an APEl mitochondrial translocation sequence that
include amino acids 289-318 in the C-terminal domain which is normally being
masked by intact N-terminal domain. This sequence was identified by

evaluating the interaction between APEl and three purified translocase
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receptors of mitochondrial outer membrane, using peptide array

screening[119].

1.3.4 Functions of APE1

1.3.4.1 DNA repair function of APE1

APEl is a member of the highly conserved exonuclease III family of AP
endonucleases, named after the E. coli homologue of APE1[101]. It accounts
for over 95% of the total AP endonuclease activity in most cultured human cell
lines[109, 110, 120, 121]. Upon encountering an abasic site in the DNA, the
DNA repair domain hydrolytically cleaves the phosphodiester bonds 5 to the
abasic site leaving a 3'-hydroxyl group and a 5’-deoxyribose phosphate group
flanking the nucleotide gap. The subsequent repair process can be
accomplished either in the short-patch or the long-patch pathway as discussed
previously. Site directed mutagenesis analyses has revealed that APE1 repair
function requires at least 10 evolutionarily conserved amino acids, D70, D90,
E96, Y171, D210, N212, D219, D283, D308 and H309 (Figure 1.5)[122-127].
Beside AP site processing, APE1 protein performs additional roles in DNA
repair [107]. In common with exonuclease III and endonuclease IV, APE1
exhibits a 3'- phosphodiesterase activity for removal of fragmented sugar
moieties that are formed at the 3’ end of DNA strand breaks induced by certain
DNA damaging agents such as bleomycin and ionizing radiation[128]. APEI
enzyme also exhibits a weak 3'-phosphatase, 3'-5' exonuclease and RNaseH
activity (i.e. the ability to degrade the RNA strand of an RNA-DNA hybrid
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complex). The functional significance of these additional activities of APEL1 is
unknown and is an area of ongoing investigation[107]. All of these activities of
APEl apparently utilize a single active site in the DNA repair domain of
APEI, which is the region of the protein that is conserved in exonuclease III.
The 3'-5' exonuclease activity of APE1 may also be involved in the fidelity of
repair synthesis by removing mispaired nucleotides[129-131]. In addition, the
exonuclease activity of APEl was shown be involved in the removal of
nucleoside analogues from the DNA and therefore, influence the
pharmacological effects of the nucleoside analogue L-OddC (also known as
troxacitabine) [132]. APE1 has a weak 3'-phosphatase activity that removes 3'-
phosphate blocking groups, but is less efficient than polynucleotide kinase
(PNK) in the repair of such lesions produced by bifunctional glycosylases such
as NEIL1 and NEIL2[133, 134]. APE]1 also play a role in nucleotide incision
pathway (NIR)[135] where APEI initiates the repair process by creating a nick
5' to oxidatively damaged DNA leaving a 5' hydroxyl group and 3'
deoxyribose sugar moiety carrying the oxidatively damaged base.
Subsequently repair then progresses through the loﬁg patch pathway as
described above. The substrates processed in NIR include alpha anomeric
deoxynucleotides aT, adA, and adC, DHT, 5 OH-uracil, me-FapyGua and 5-

OH cytosine[11].

Structural studies of APE1 and its interaction with the AP site suggests
a mechanism for AP site binding which involves the recognition of the
deoxyribose moiety in an extrahelical conformation rather than the base

opposite the AP site [103]. The efficiency of this reaction is limited by the rate
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by which APE1 enzyme diffuse to damage site and the completion of which
might be slowed down by the chemistry of resultant cleavage products[136].
The crystal structure suggests that APEl has a preformed DNA binding
interface which undergoes little conformational change upon AP-DNA
complex formation and includes a hydrophobic pocket that accommodates the
abasic sugar while excluding normal bases. However, a recent study, using the
intrinsic tryptophan fluorescence indicated that upon encountering AP site,

APE! may undergo at least 4 conformational transitions[137].

1.3.4.2 APEY’s role in the co-ordination of BER

Studies from reconstituted systems suggest that APE1 is involved in the
coordination of BER by interacting either directly or indirectly with other BER
factors. This coordination not only provides a defense mechanism against the
accumulation of potentially toxic repair intermediates but also increases the
overall efficiency of the repair process.

In reconstituted systems, APEl interacts directly with MYH
glycosylase and enhances the formation of efficient MYH-DNA complexes by
decreasing the MYH-DNA substrate dissociation constant, resulting in 10-folds
increasing its activity [138]. However, other glycosylases appear to interact
indirectly with APE1, by competing for DNA binding sites. Alkyl Adenine
Glycosylase (AAG) [139] Ogg1[140], Nth1 [141], Uracil DNA glycosylase
[142], and thymine DNA glycosylase [143] display product inhibition, binding
tightly to their processed DNA products. This tight binding is thought to recruit
APEI to the damaged site and at the same time help to protect the AP sites or

single-strand breaks until APE1 continues the repair process. APE! displaces

33



the glycosylases from their substrate binding by its stronger association with
the DNA[143].

Yeast two-hybrid and electrophoretic mobility shift assay suggest a
direct interaction between DNA-bound APE1 and DNA polymerase B [144].
The presence of APE1 at the damage site enhances Pol B removal of 5’ dRp by
the lyase activity. This stimulation and consequent repair synthesis enhances
APE]1 endonuclease activity by removing, through DNA repair synthesis, the 3’
terminus product inhibition of APE1[145]. In addition, XRCC1 which acts as a
scaffold has also shown to bind directly to APE! in yeast two-hybrid, far
western, and affinity chromatography assays[65]. This interaction increases
APEl endonuclease activity, and 3’-phosphodiesterase activity. CHO cells
Extracts defective in XRCCI1 activity show a low APE1 endonuclease activity
which could be rescued by the addition of XRCC1. A direct binding between
APE1 and other factors such as PCNA, polymerases 8, polymerase &, and
FENI1 has also been demonstrated [146]. In addition APE! stimulates flap
cleavage activity of FEN1 and DNA ligase I activity by up to 10 folds, without

affecting substrate specificity[147].
1.3.4.3 APE1 interaction with other DNA repair factors

Several studies suggest a possible role for the tumour suppressor pS3 in
BER. p53 binds directly to APE1[148] and stimulates BER, although the
relationship of the binding and stimulation is unknown[149]. p53 also directly
stimulates BER [150]. It was also shown that APE] enhances specific DNA

binding of p53 by promoting pS3 tetramerization[151]. A recent study has
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shown that APE1 subcellular distribution may be controlled by p53 through
ubgitination of APE1 N-terminal lysines [152]. APE1 also interacts directly
with double-strand break repair proteins Ku 70/80[153] and a functional
interaction with WRN helicase has also been demonstrated[154]. The
synthesis of heat shock protein 70 (HSP70) is enhanced by stress induced by
heat shock, oxidative insults, and ionizing radiation many of which also
damage DNA. A direct interaction between HSP70 and APEl has been

demonstrated in which HSP70 stimulates APE1 activity[155].

1.3.4.4 Redox regulation by APE1

Normally the cells maintain a reduced intracellular environment in the
face of a highly oxidizing external environment. An oxidized environment is
very harmful for the cell because of the generation of the free radicals and
subsequent lipid peroxidation, DNA cross link and formation of disulfide
double bond within the protein.

APE1 represent a novel redox component of the signal transduction
process that regulates the eukaryotic gene expression. The redox regulatory
function of the APE1 is performed by the N-terminus and it is unrelated to the
DNA repair function of APEl. APEl accomplishes this function by
monitoring the redox state of Cys residues present in the DNA-binding
domains or within regulatory regions of transcription factors such as c-Jun and
several others [111, 156-158] (Figure 1.6).

For proper binding to specific DNA target sequences, the transcription
factors require that critical Cys residues are in a reduced state. Therefore, by

maintaining these cysteines in the reduced state, APE1 provides a redox-
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dependent mechanism for the regulation of target gene expression. The
presence of a reduced Cys residue within the DNA binding domains of
transcription factors is essential for binding to specific DNA targeting
sequence which activates the transcription of several key genes essential for
cell survival and in cancer promotion and progression[102, 158].

APEI contains two cysteine residues located within the redox-active
domain (Cys65 and Cys93). Many studies showed that Cys65 was essential for
redox activity of APE1. In addition, it was also proposed that Cys93 could
regulate the redox activity of APEl through its interaction with Cys65.
Oxidized APE1 protein may contain a disulfide bridge between Cys65 and
Cys93 and the disruption of this interaction is essential to expose the sulfhydryl
group of the active site cysteine residue[159]. Further studies have
demonstrated that Cys65 is the essential residue for the redox function of

APEl. Mutation of Cys65 abolish the redox function of APEl while

maintaining a normal DNA repair activity[112]. The cysteine residues may be
reduced by thioredoxin that interacts with the redox domain of APE1 [160,

161].
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Figure 1.6 Molecular model showing the redox regulation function of the N-
terminal domain of APE1. APE] exerts a transcriptional coactivator function inside
the cells. For proper binding to specific DNA target sequences, the transcription
factors require that critical Cys residues in the DNA binding domain (DBD) in a
reduced state. APEl provides a redox-dependent mechanism of regulation by
maintaining these cysteines in a reduced state.

.

Several transcription factors have been shown to be activated by APE1 through
the redox activation mechanism including AP-1, NF-xB, CREB, ATF, HIF-1,
HLF, NF-Y, P53, MYB, PAX, and PEBP2. These transcription factors play
crucial roles in cell growth, differentiation and stress response [162]. A recent
report indicated a possible important role of the redox domain and not the
DNA repair domain of the APEI in the normal embryonic haematopoiesis

development [163].
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1.3.4.5 Acetylation-mediated gene regulation function of APE1

Another important function of APE! protein is its role as transacting factor, in
which it monitors the target gene expression in a Ca?" dependant manner.
APE] was first identified as a trans-acting factor involved in Ca®*- dependent
repression of the parathyroid hormone (PTH) gene where an increase in Ca®
due to elevated PTH level triggers down-regulation of the PTH gene. In this
gene regulatory function, APEl1 was found to be a component of protein
complexes that bind to a negative calcium responsive element (nCaRe-A and
nCaRe-B) that is found at the PTH promoter [164]. Similarly APEl was also
later found to regulate the human renin gene, via CaZ*-dependent down-
regulation of the human rennin gene [165]. Moreover, it is possible that the
negative calcium response elements may also be present in other genes [166].
Further studies indicated that acetylation of APEI at Lys-6 or Lys-7 by the
histone acetyltransferase (HAT) p300 enhances APEl binding to nCaRe-B
element[167]. Acetylation of APEI as a post-translational modification may
stimulate the co-repressor activity of APE1 as suggested by the interaction of
APE1 with HDAC (histone deacetylases) that deacetylate histones, leading to
chromatin recondensation and inhibition of transcription[167] as well as APE1
acetylation might even impact its role in BER by regulating APEI catalytic
activity at abasic sites and its interaction with other BER factors[168].

In two recent studies, acetylation of APE1 has been shown to be involved in
early growth response (Egr-1) mediated activation of phosphoinositol
phosphatase and tensin homologue (PTEN) expression. In addition acetylated
APE1 stably interacts with YB-1 protein and enhances its binding to Y-box

element that results in activation of MDR gene expression[169, 170]. These
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findings suggest further roles for APE! in regulation of genes expression. In
one recent study APEl down-regulation sensitized MDR overexpressing
tumours to cisplatin and doxorubicin[171]. APE1 was also shown to interact
with RNA transcription factor II on the MDR1 promoter factor in association
with the P300 cofactor. This indicates the importance of acetylated APE1 on

the transcription regulated drug resistance[171].

1.4 Functional pre-clinical studies on APE1

1.4.1 APE1 DNA repair activity is critical for cell viability

APEl is essential for viability and survival of cells. Three groups
independently demonstrated that knockdown of APEX in mice cause a post-
implantation embryonic lethality between days ES and E9 [172-174]. Although
these studies demonstrate that APEl is essential for early embryonic
development, it was difficult to address the biological significance and
contributions of each of the three different functions of APE1 (namely, DNA
repair, redox activation and acetylation-mediated gene regulation) to
embryonic lethality in mice. Recent data from several groups has suggested
that the DNA repair function of APE1 may be crucial for cell survival. In one
study by Fung et al, down-regulation of APE1 using an siRNA approach was
shown to correlate with AP sites accumulation and induction of apoptosis with
reduced cell proliferation. In that study, expression of yeast Apnl (that lacks
redox regulatory activity but has intact DNA repair function) in APEIl
knocked-out cells reversed some of the deleterious effects [97]. Another study

by Ordway et al, showed that mice homozygous for APE1 mutation at

39



Cys64Ala and hence lack redox activity are viable and survive normally
without obvious phenotype [175]. Izumi et al. established APE1 nullizygous
MEF (mouse embryonic fibroblast) cells expressing floxed human APEl
transgene. They could demonstrate that cell survival required DNA repair
function and acetylation-mediated gene regulation functions of APE1[176].

Although homozygous deletion of the APEX is embryonically lethal in mice
[172, 173], APEX™ heterozygous mice are viable and are hypersensitive to

oxidative stress [174].

1.4.2 APE1 depletion hypersensitises cells to DNA base

damage (table 1.2)

While induction of apoptosis in response to APE1 downregulation has been
confirmed in numerous cell types and in vivo in rats and mice [102, 177], the
response to knockdown may vary between cell types. In ovarian cancer cells,
APE1 knockdown causes S phase prolongation rather than apoptosis,
manifested in tumour xenografts as a reduced growth rate associated with
impaired glucose metabolism that is suggestive of reduced cellular
proliferatioﬁ[178]. Heterozygosity for APEl in mice is associated with
hypersensitivity to oxidative stress[174]. HeLa cells transfected with anti-sense
APE1 RNA were sensitive to killing by MMS, H,0; as well as menadione and
paraquat which induce oxidative DNA damages [157]. Similar antisense
approaches in lung cancer and human glioma cell lines resulted in increased
sensitivity to ionising radiation, MMS, temozolomide and nitrosurea [179,

180]. Rat glioma cells transfected with antisense RNA for rAPE also showed
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increased sensitivity to MMS and H,0, [181]. Moreover, in human myeloid
leukaemia cell lines and murine cell lines, down-regulation of APE1 has been
correlated to apoptosis[102, 177]. Similarly, APE1 down-regulation using
siRNA was associated with enhanced cytotoxicity and induction of apoptosis to
alkylating agents, H,0, and other DNA damaging agents in
osteosarcoma[182]. In another study, siRNA-mediated APE1 depletion led to
an accumulation of AP sites, reduced cell proliferation and induced apoptosis
in the absence of any other treatments[97]. Xiang et. al. showed that APE]
knockdown using siRNA approach validated by decreased mRNA expression
resulted in significant decrease in growth of pancreatic cancer cells and
increased in apoptotic rate and sensitisation to cell killing by gemcitabine[183].
Wang et. al. showed that down-regulation of APE1 using siRNA approach

sensitise non small cell lung cancer cells (NSCLC) to cisplatin[184].
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1.43 APE1l overexpression protects cells from DNA

damage and is implicated in treatment resistance (table 1.2)

Upregulation of APE1 has a protective effect against agents causing DNA
damage. In AP endonuclease-mutant E. coli and Apnl-deficient yeast,
transfection of hAPE1 restored resistance to the effects of DNA damaging
agents [109, 120, 185]. Co-expression of hAPE1 as a chimeric protein with
MGMT conferred resistance to hydrogen peroxide and MMS in AP
endonuclease-deficient E. coli. In HeLa cells overexpression of the chimeric
protein had a similar protective effect [186]. Overexpression of APEl in
human teratocarcinoma cells[187] in melanocytes[188] and in ependymoma

[189] conferred resistance of radiation and chemotherapy.

Upregulation of APEI can be induced by chemotherapy agents, contributing to
treatment resistance. In non small cell lung cancer cells, cisplatin treatment
induces a dose-dependent increase in APEl expression. When APE!l is
downregulated using antisense methods, cisplatin cytotoxicity is significantly
increased [184] suggesting that combining inhibitors of APEl1 with

chemotherapeutic agents may overcome treatment resistance.

42



1.5 APE1 and human cancer

 1.5.1 APE1 polymorphisms and cancer susceptibility

Polymorphic APEl variants have been reported and correlated to cancer

- . susceptibility. In an analysis of seven APEl1 polymorphisms, namely

(Leu104Arg, Glul26Asp, Aspl48Glu, Arg237Ala, Gly241Arg, Asp283Ala,
| and Gly306Ala,) reduced repair activity was noted in four (LeulO4Arg,
Glul26Asp, Arg237Ala, and Asp283Ala) [190]. In a study by Lu et al. a
Thr141Gly promoter polymorphism was associated with reduced levels of
APE1 mRNA in blood and lung tissue, possibly due to reduced affinity for
Oct-1 transcription factor, thought to be activated by DNA damage.
Homozygosity for the Gly allele was associated with a 40% reduction in lung
cancer risk [191]. Asp148Glu, a variant which exhibits normal repair activity,
is associated with an increased risk of cancer development [192], including
melanoma [193], pancreatic [194], cervical [195] and lung cancer susceptibility
[196]. The Asp148Glu variant may also be associated with hypersensitivity to
ionising radiation [197], although it has also been demonstrated to have a
protective effect against acute radiation toxicity reactions in normal skin [198].
Further studies are required to elucidate how APE1 polymorphisms might

impact response to treatment.

1.5.2 APE1 overexpression in human cancers

APEL1 expression is cell cycle dependent, with highest levels seen during early

and middle S-phase [199]. Immunohistochemical analysis of many human
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cancers has demonstrated elevated levels of APE1 (table 1.1). For example,
APE] protein expression is increased in human gliomas, and pancreatic cancer
and is positively correlated with AP endonuclease activity [200, 201]. AP
endonuclease activity was also found to be positively correlated with tumour
grade, and with the fraction of S-phase cells, suggesting that APE1 activity is
related to level of proliferation [200]. APEL1 is also elevated in prostate cancer,
with immunohistochemical staining levels increasing from low in benign

prostatic hypertrophy to intense in prostatic carcinoma [202].

1.5.3 APE1 subcellular localisation in cancer

APEl expression and subcellular localisation demonstrates complex and
heterogenous patterns that vary between tissue types (tablel.l). Nuclear
localisation is common, and is thought to reflect functions in DNA repair.
Cytoplasmic localisation is commonly seen in cell types exhibiting rapid
metabolic or proliferative rates, particularly when under high oxidative stress.
Cytoplasmic localisation is predominantly within the mitochondria and
endoplasmic reticulum, in keeping with the role of mitochondria in cellular
response to oxidative stress, and may relate to APE1’s role in mitochondrial
DNA repair and redox regulation of transcription factors [158]. In non-small
cell lung cancer, APE1 dysregulation is common, with upregulation in the
cytoplasm contributing to global overexpression and associated with increased
superoxide production and lipid peroxidation [203].

Alterations in subcellular distribution of APE1 compared to normal tissue have
been seen in a number of human tumours. In normal colorectal mucosa, the

less differentiated cells in the lower part of the crypt show nuclear staining
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whereas, the more differentiated superficial mucosal epithelium shows
predominantly cytoplasmic staining. In colorectal adenomas and carcinomas
there is a complete disruption for this staining pattern. The nuclear restricted
pattern is lost and they display both nuclear and cytoplasmic localization with a
predominance of the latter [204]. Increased cytoplasmic staining is also seen in
thyroid [205], hepatocellular [206], epithelial ovarian [207] and prostate
carcinomas [202]. In contrast, melanomas display an increased level of APE1
expression which is predominantly localised to the nucleus, compared to
cytoplasmic staining in normal skin [188]. Increased levels of APE1 expression
with nuclear-specific localisation are also seen in cervical carcinomas [208],
bladder cancers [209], rhabdomyosarcomas [210], and squamous cell head and
neck cancers [211]. Some tumour types have shown variance of APEI
localisation between studies. There is consensus regarding elevated levels of
APEl in non-small cell lung cancer, but different groups have found

predominantly cytoplasmic [184] or nuclear [212, 213] localisation.

1.5.4 APE1l expression and localisation as marker of

prognosis and treatment response (tablel.2)

Alterations in APE1 expression may be of prognostic significance. In non-
small cell lung cancer, elevated APEl expression is an independent poor
prognostic factor, associated with reduced disease-free and overall survival
[212]). Similarly, elevated APEl is suggestive of poor prognosis in
medulloblastoma [214], ovarian, gastro-oesophageal and pancreatico-biliary

cancers [215]. Alterations in APE] localisation may also be of prognostic
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significance. Breast cancers display heterogenous localisation, compared to
predominantly nuclear distribution in normal breast tissue. Localisation
appears to be correlated to patient outcomes, with nuclear localisation being
associated with better prognostic features such as differentiation, reduced
angiogenesis and negative lymph node status [216, 217]. Similar prognostic
correlations are also seen in osteosarcoma [182], where cytoplasmic staining is
associated with poor survival outcomes. Conversely, in ovarian and
pancreatico-biliary cancers, nuclear APEl1 expression is associated with

aggressive tumour biology and poor overall survival [215].
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1.6 Synthetic lethality strategy

The early promise of PARP inhibitors suggested the potential of BER proteins
as therapeutic targets [224, 225]. PARP inhibitors have shown particular
promise in the setting of BRCA-deficient breast cancers, indicating an
important therapeutic concept that may be applicable to inhibitors of APEL.
Synthetic lethality utilizes the inter-gene relationships where the loss of
function of either of two related genes is non-lethal, but the loss of function of
both causes cell death. This offers the potential to specifically target cancer
cells through inhibition of a gene known to be in a synthetic lethal relationship
with a mutated tumour suppressbr gene [226]. BRCA-1 and -2 have long been
identified as tumour suppressors, being mutated in an inherited cancer
predisposition that increases susceptibility to breast and ovarian tumours [227].
Both gene products have a role in the homologous recombination (HR) DNA
repair pathway, which repairs double strand DNA breaks (DSBs) [228]. A
degree of redundancy exists between the BER and HR pathways, allowing cells
to compensate for the loss of one pathway. The BER enzyme PARP1, which
binds to single strand DNA breaks and recruits other repair proteins, can be
successfully targeted for inhibition, leading to failure of the BER pathway,
replication fork stalling, and acquisition of double strand breaks. In normal
cells, these double strand breaks are repaired via HR. However, in BRCA-
deficient cells loss of effective HR leads to DSB persistence and cell death. As
heterozygosity at a BRCA allele is associated with effective HR, PARP
inhibition specifically targets only tumour cells with acquired BRCA™

homozygosity [21, 22]. PARP inhibitors demonstrated favourable efficacy and
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limited toxicity in BRCA-related breast and ovarian cancers in phase I and II

trials [226] and currently phase III trials are underway.

Other potential synthetic lethal relationships in PARP inhibition are currently
being explored. ‘BRCAness’ refers to a subset of breast cancers, including
‘triple negative’ (oestrogen-, progesterone- and HER2-negative) and ‘basal
phenotype’ cancers, that possess molecular and histopathological similarity to
BRCA-deficient tumours, that may successfully be targeted by PARP
inhibition [229, 230]. There is also developing interest in PTEN (phosphatase
and tensin homolog), which is mutated in many sporadic cancers and, like

BRCA mutations, causes a defect in homologous recombination [231, 232].

Recent evidence suggests that other BER factors may also be targeted by a
synthetic lethality approach. Mismatch repair (MMR) is responsible for the
repair of DNA damage occurring during replication, and shares a degree of
overlap with BER function. For example, 8-oxoguanine base lesions, which are
induced by metabolic ROS and can cause mutagenic GC—TA transversions if
unrepaired, may be processed by both BER and MMR. Mutations in the
mismatch repair (MMR) genes MLH] or MSH2 are implicated in human non-
polyposis carcinoma coli (HNPCC) and some sporadic colorectal cancers.
siRNA inhibition of the BER constituent DNA polymerase B/y is selectively
lethal in MLHI/MSH2 mutant cell lines, suggesting a synthetic lethality
relationship. Given the potential for BER inhibitors as a synthetic lethality
target, it remains to be established if additional factors such as APE1 may have

arole in this capacity[233].
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1.7 Combination therapy

Chemotherapeutic agents and ionizing radiation are the main
therapeutic modalities currently available for treatment of cancer. The
cytotoxic effects of these agents are directly related to their ability to induce
DNA damage. The ability of cancer cells to recognise and repair DNA damage
contributes significantly to therapeutic resistance. Therefore, pharmacological
inhibition of DNA repair pathways has been explored as a useful strategy to
enhance sensitivity for chemotherapy and radiotherapy and to reverse drug
resistance. Different agents have shown excellent results in preclinical studies
in combination with radiation or chemotherapy. BER is centrally involved in
processing base damage induced by alkylating agents and ionising radiation.
One of the mostly studied enzyme target is PARP-1 protein which protect the
single strands intermediates during the BER [68]. Preclinical studies have
shown that the presence of PARP inhibitors potentiated the cytotoxicity of
temozolomide by 1.5 - 4 fold in lung, colon, ovary, and breast cancer cell lines
[234]. Similar results were obtained in glioma and human colonic
adenocarcinoma xenograph models, where the combination of PARP inhibitors
and temozolomide resulted in marked decrease in cancer cell growth compared
to temozolomide alone[235]. Early phase clinical trials on PARP-1 inhibitors
showed promising results in combination with chemotherapeutic agents such as

temozolomide [86, 87].
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1.7.1 APE1 is a promising anticancer drug target

APEl is a critical protein in BER. In pre-clinical studies APEl
depletion reduces cell viability and sensitises cells to DNA damaging agents.
Overexpression of APE1 confers resistance to DNA damaging agents. In
human studies APE1 expression has predictive and/or prognostic significance
in patients. Given the successful paradigm of PARP inhibitors and the pre-
clinical and clinical evidence about APEls’ roles in cancer, APE1 became a

tempting enzyme to target for cancer therapy.

1.8 Current status of APE1 repair domain inhibitors

(Figure 1.7)

Preclinical and clinical studies described above confirm that modulation of
BER resulted in enhanced sensitivity to DNA base damaging agents.
Therefore, inhibition of various DNA repair proteins is a logical target to
combat therapeutic resistance and to increase sensitivity of cancer cells to
conventional therapy. APE1 is a key enzyme in BER and is centrally involved
in the initiation and coordination of BER. In addition, APE1 plays additional
roles in BER and DNA strand break repair.Therefore APE! is considered as
logical target for drug design in cancer therapy. Over the past few years several
APEIl inhibitors have been described and in the following section 1 will

provide an overview of these APE1 inhibitors in development.
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1.8.1 Methoxyamine (MX)

Methoxyamine is an alkoxyamine derivative and blocks the APEI cleavage
activity by binding irreversibly to the AP site[236]. It is an indirect inhibitor of
APEL since it blocks APE1 from processing cytotoxic AP sites. Methoxyamine
potentiates the cytotoxicity of base damaging agents such as Temozolomide
(TMZ) in vitro and tumour xenograft [237-239]. It also potentiates
radiotherapy cytotoxicity in combination with the potent radiosensitiser 5-iodo-
2’-deoxyuridine[240]. Methoxyamine has undergone phase I clinical trials in
combination with pemetrexed and temozolomide in patients with advanced

refractory cancer [241, 242].

1.8.2 Lucanthone

Lucanthone is a topoisomerase II inhibitor (Figure 1.7) [243, 244]. It was later
shown to have a direct APE1 inhibitory activity and to induce a dose dependant
AP sites accumulation in cells[245]. Lucanthone treatment in cell culture
induces an increase in abasic site accumulation[246] and potentiates the
cytotoxic effects of MMS and temozolomide[245]. Clinically, lucanthone
treatment accelerates regression of brain metastases following whole brain
radiotherapy[247]. However, it is unclear whether this effect is mediated via

APE! inhibition, or due to lucanthone’s effect on topoisomerase[248].

1.8.3 CRT0044876 (7-Nitroindole-2-carboxylic acid) (CRT)

CRT0044876 was identified by our group, using a high-throughput screen of a

5000 drug like chemical library (Figure 1.7). It specifically blocks AP
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endonuclease, 3’ phosphatase, 3’ phosphodiesterase and 3'-5' exonuclease
activities of APE1 enzyme at low micromolar concentrations (ICsp= 3 uM). At
a relatively non toxic concentration, CRT0044876 potentiated the cytotoxicity
of a number of DNA base damaging agents such as methyl methanesulfonate
(MMS), TMZ, H,0; and Zeocin (which intercalates between DNA strands and
induces DNA strand breaks) in HT1080 human fibrosacrcoma cell cells[23].
This effect was not replicated when the DNA damaging agents used induced
damage repaired by mechanisms other than BER, suggesting BER-specific
inhibition[23]. It also enhances cell death of glioma cell lines treated with
radiation, though not as much as Lucanthone [221]. CRT0044876-induced
BER inhibition has been reproduced -elsewhere[249, 250] including
cytotoxicity potentiation with ionising radiation[251], although another group
were not able to replicate the results [248].

Because of the poor drug like properties, including its water solubility and
membrane permeability as well as the presence of nitro-aromatic feature
CRT0044876 is not druggable. Although providing proof of principle, it is
clear that further work will have to be done before a genuine lead APE1

inhibitor can emerge.

1.8.4 Arylstibonic acid compounds

Seiple et al. have identified the potential of arylstibonic acids as APE1
inhibitors [252]. Arylstibonic acids ability to block APE1 cleavage activity
may be caused by their arylstibonic core that mimic the phosphonate
derivative. The investigators felt that this pharmacophore is not suitable for

further development [253]. Although arylstibonic acids have very low ICso
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against APE1 in vitro, they did not show any cellular activity. This may be

related to poor transmembrae transport and cellular uptake [252].

1.8.5 Pharmacophore guided isolation of APE1 inhibitors

Using in silico pharmacophore models-based screening, Zawahir et al
performed a virtual screening of a 365,000 small molecule chemical library and
identified 21 potent and specific inhibitors [254]. They share common features
of carboxylate groups arranged around a hydrophobic core, bearing structural

similarity to the 3’- and 5°- deoxyribosephosphate groups on abasic DNA[254].

1.8.6 AR03

Using a high throughput screening of 60,000 chemical library, Bapat ef al were
able to isolate four potential APE1 inhibitor, named AR01, AR02, AR03 and
ARO6 all of them have an ICsp < 10 pM[255]. Of these inhibitors, AR03 was
further screened using a radiolabelled assay and a human whole cell extract
assay and was shown to have partial specificity against APE1, It potentiates the
cytotoxicity of MMS and TMZ in SF767 glioblastoma cell line. AR0O3 showed

a high intrinsic toxicity with LDsg around 1 pM[253].
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Figure 1.7 Chemical structures of different APE1 inhibitors described up to the
time of where this thesis was written. (Read the text for more details)
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1.8.7 6-Hydroxy-DL-DOPA, Reactive Blue 2, and myricetin

A recent work by Simeonov et al has isolated several specific APEI inhibitors
using a high throughput florescence screening of a commercially available
pharmacologically active library of 1280 chemical compounds representing 56
pharmacological classes [256]. Hits identified by the primary screening were
then counter screened for the ability to inhibit Endonuclease IV and tested
further for their APEI inhibition on HeLa whole cell extracts. Three inhibitors
were identified using this approach (6-OH-DL-DOPA, Reactive blue, and
myricetin). The inhibitors were able to potentiate the cytotoxicity of MMS in

HeLa cell lines[253].

It was evident that current APEl inhibitors do not have promising
pharmaceutical properties. However these APE1 inhibitors represent important
guides for future attempts to design, test and to isolate drug-like APEI
inhibitors. The appearant tendency of the above inhibitors to share common
features, like their relative small sizes, aromatic hydrophobic cores with a
negative ionisable group (mostly carboxylate group) establish a reasonable
guideline for what future potential inhibitor skeletons should include.
Moreover, the appropriate use of in silico approach that utilizes these common
features together with the study of APE1 active site morphology would likely
facilitate the design and subsequent identification of APE1 inhibitors with

more selectivity and drug-like properties.
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1.9 Conclusion

Genomic integrity is constantly challenged by damage inflicted from a variety
of endogenous and exogenous sources, including spontancous deamination,
reactive oxygen species, ionising radiation, ultraviolet light and chemical
agents. Highly conserved pathways of DNA repair have evolved to maintain
stability within the genome. Base excision repair (BER) processes and repairs
damage to individual bases induced by alkylation, oxidation or ring saturation.
Human apurinic/apyrimidinic endonuclease 1 (APE1) is a critical BER enzyme
that recognises and processes the site of excised base damage (an ‘abasic’ site).
APEl is of considerable interest as a potential predictive and prognostic
biomarker in cancer. Polymorphisms causing variable APE1 activity may alter
cancer susceptibility and treatment response. APE1 expression is upregulated
in response to treatment with DNA damaging agents such as chemotherapy and
ionising radiation, and is frequently associated with resistance to treatment and
poor prognostic outcomes in patients.

Overexpression of APEl is induced by DNA damaging agents and is
associated with treatment resistance. Constitutional or engineered down-
regulation of APE1 confers sensitivity to treatment, and can overcome
chemoresistance. Preclinical and clinical studies have confirmed that APE1 is
an emerging therapeutic target in cancer. A number of inhibitors of the APE1
DNA repair domain are currently under development. These inhibitors show
promise in vitro in their ability to potentiate the actions of agents causing

alkylating or oxidation damage. However development of these inhibitors is at
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a very early stage and isolation of clinically-relevant compounds is an

important and expanding area of research.
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Aims of the study

1

2)

3)

4)

5)

6)

Identify drug-like patentable second generation APE]

inhibitor hits for drug development.
Virtual screening approach to design APEI inhibitors that
can achieve APEI inhibition with desirable pharmacological

properties.

Using the pre-optimized screening strategy to identify

candidate APE1 inhibitors.

Examining the ability of APEI inhibitors to potentiate the

cytotoxicity of the base damaging agents in a panel of cancer

cell lines.

Structure based analysis and hit series selection.

To evaluate biological consequences of APEl depletion

using shRNA in cancer cell lines.
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Chapter 2

Material and methods
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2. Material and methods

2.1 Enzymes, antibodies, chemicals and oligonucleotides

Human APE!1 and E. coli endonuclease IV were obtained from New England
Biolabs, USA. D148E APEI polymorphic variant protein was a gift from Dr
David Wilson III, National Institute on Ageing, NIH, Baltimore, USA. Pst I
restriction enzyme was obtained from New England Biolabs, USA. The rabbit
polyclonal anti-APE1 (IgG fraction) and mouse anti B Actin primary antibodies
were obtained from Novus Biologicals Ltd, Newmarket Suffolk, UK. Infrared
dye labelled, IRDye 800CW Donkey Anti-Rabbit IgG (H+L) and IRDye
680CW Donkey Anti-Mouse IgG (H+L), secondary antibodies were obtained
from LI-COR Bioscience Ltd, Cambridge, UK.

Dimetheyl sulfoxide (DMSO), Methyl methanesulphonate (MMS) and
Mitomycin C were purchased from Sigma-Aldrich. Doxorubicin was obtained
from Pharmacy, City Hospital, Nottingham, UK. Temozolomide was a gift
from Dr Tracey Bradshaw, University of Nottingham. Stock solutions of
potential APE1 inhibitors were dissolved in DMSO. MMS, mitomycin C,
temozolomide were dissolved in PBS. All stock solutions were maintained at 4
°C.

Oligonucleotides, b} F-
GCCCCCXGGGGACGTACGATATCCCGCTCC 3 and 3 Q-
CGGGGGCCCCCTGCATGCTATAGGGCGAGG 5' [where F = Fluorescein,
Q = Dabcyl and X is Tetrahydrofuran (abasic site)] were custom made by

Eurogenfec Ltd.
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2.2 Potential small molecule inhibitors of APE1

A total of 160 compounds were investigated in this project. Compounds
were purchased from Maybridge Chemicals (Tintagel, UK), ChemBridge
corporation (CA, USA), ASINEX intelligent chemistry (Laan van Vredenoord,
Netherlands), Life Chemicals (Braunschweig, Germany), Enamine Ltd (Kiev,
Ukraine), Specs Chemicals (Delft, Netherlands), ChemDiv Inc. (CA, USA),
Ukrorgsynthesis Ltd (Kiev, Ukraine) and Sigma-Aldrich. All compounds were

dissolved into 10 mM in 100% DMSO stock solutions.

2.3 Molecular modelling (Figure 2.1)

The modelling work was conducted at the molecular modelling lab, Centre of
Biomolecular Science, School of Pharmacy, University of Nottingham. This
work was supervised by Dr Charlie Laughton, Reader in Molecular

Recognition, School of Pharmacy, University of Nottingham.

Publicly available coordinates of the high resolution crystal structure of
APEl, namely 1BIX was downloaded from the protein data bank

website http://www.pdb.org/pdb/home/home.do.

e Commercially available chemically diverse ZINC 2008 database was
obtained online from http://zinc.docking.org/.

e VMDL1.8.6 (visual molecular dynamic), a program for displaying,
animating, and analyzing large biomolecular systems such as proteins
using 3-D graphics and built-in scripting[257], was obtained from
theoretical and computational biophysics group, University of Illinois,

USA.


http://www.pdb.org/pdblhome/home.do.
http://zinc.docking.orgl.

SYBYLS.0, a general molecular modelling programme that provides a
computational tool kit for molecular design and analysis which was
obtained from Tripos A Certara ™ Company, Missouri, USA.
GOLD?2.7 (Gene Optimisation for Ligand Docking) a package of
programmes for structure visualisation and manipulation was obtained
from Cambridge Crystallographic Data Centre, Cambridge, UK.
ROCS2.3 (Rapid Overlay of Chemical Structures) a powerful shape
similarity and comparison application used for conducting virtual
screening to identify potentially active compounds that are similar to a
known lead compound or template[258] was obtained from OpenEye

sceintific software®, New Mexico, USA.
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GOLD2.7 to Select potential
pharmacophores based on
fitness scores

Figure 2.1 Molecular modelling approach used to shortlist potential APEIl
inhibitors. Modelling was conducted using a UNIX supercomputer system at the
Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham,
UK.
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2.4 Virtual screening (Figure 2.1)

2.4.1 APE1 active site localization

The chosen APE1 structure (1bix) [103] was downloaded from the protein data
bank (PDB) and the Sm®" ion located at the active site was replaced manually
with Ni** . This step was essential since most of the programimes used for
molecular modelling do not recognise Sm*>* ion.

VMD 1.8.6 was used to visualize APE1 with its active site as below; The
APE1 *pdb file was uploaded to VMD 1.8.6. The graphic option in the
programme was set to (the drawing method and colouring method) Surf and
ColourID 10 respectively. The material was set to be transparent. These
selections enabled viewing the protein in 3 dimensions and facilitated the
localization of the APE! active site. A new superimposed representation of
IBIX was then created, this time 1 selected to drawing method VDW,
colouring method ColourID 0 and material to be opaque and fine tuned the
protein selection to include only Sm** ion (serial number 2192 in the protein).
Although this ion is known to be localized at the active site of APEI, however,
to confirm the active site pocket localization, 10 evolutionally conserved DNA
repair domain amino acids residues (D70, D90, E96, Y171, D210, N212,
D219, D283, D308 and H309) (see above) were used for localization. This was
performed by choosing the analysis option in the programme to localize these
amino acids. Subsequently, the APE1 active site was localized and the shape of

the active site pocket was viewed.
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2.4.2 APE1 inhibitors template design

Sybyl8.0 was used to build new template pharmacophores designed to fill the
APE1 hydrophobic active site pocket. The programme was run in the following
steps;
¢ Using Sketch Molecule Menu, GRID was selected to ease the sketching
of the template.

o The template was then energy minimised and stored in *.mol; format.

2.4.3 GOLD2.7 (Gene Optimization for Ligand Docking)

The templates, and the potential hits from the ZINC database (see below) were
docked onto the APE1 active site using GOLD2.7. GOLD2.7 was used to
calculate the docking pose of the binding mode of chemical structures onto the
APE1 active site pocket using different scoring functions.

The programme was run as below:-

o APEI protein was uploaded onto the programme.

e H;0 molecules situated in the active site pocket were removed to
prevent their interference with docking interaction between APEI
protein and the selected ligand.

e To identify the active site pocket for GOLD2.7, the Ni** atom within
the protein active site was selected and GOLD2.7 was set to
automatically detect the active site cavity within a radius of 11°A of

Ni*" atom.

o The ligand was then uploaded onto GOLD2.7.

68



e The scoring function was later set to be either ChemScore or
GoldScore.

e GOLD?2.7 was set to perform 100 docking runs and the output was set
to retain only the top pose based on the scoring functions discussed

below.

244 ROCS23

ROCS2.3 was utilized to perform similarity searching in the ZINC 2008
database. The chemical hits identified were ranked based on shape and
chemical similarity to the originally designed template. The programme was
run as described below.

The parameters were set as follows :-

1- query file: (template or a chemical compound).

2- database: (ZINC 2008 database).

3- prefix: to designate a name for the output file.

4- besthits: to limit the results to include the top scoring hits.

5- oformat: to assign a format for the output file,(*.sdf format).

6- pvmconf: to distribute the ROCS search to include different processers of
the supercomputer in the modelling lab.

An example of a command to search for M1 template based similarity hits
from the ZINC data base is given below.

*ROCS —query Ml.sdf —dbase ZINC Purchasable druglike database -

besthits 500 —oformat *.sdf —pvmconf pvm.
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(This command implies that ROCS will use M1 template file to search ZINC
purchasable drug-like data file based on shape fit and chemical alignment,

keeping the top 500 hits and also that output file is saved in *.sdf format.)

2.5 Biochemical screening

2.5.1 Fluorescence based AP-site cleavage assay (Figure 2.2)

The assay was performed as described previously with some modifications
[23]. APEI1 (50 nM ) (New England Biolabs) was incubated in a buffer system
consisting of 50 mM Tris-HCl, pH 8.0, 1 mM MgCI2, 50 mM NaCl, 2 mM
DTT at 37 °C for 10 minutes. The total volume of the enzyme and the buffer
system was 30 pl.

5" F-GCCCCCXGGGGACGTACGATATCCCGCTCC 3’ and its
complementary Q labelled oligonucleotide 3 Q-
CGGGGGCCCCCTGCATGCTATAGGGCGAGG 5' were anncaled in a
buffer system containing 100 pM Tris-HCI, 50 mM NaCl and 1 pM EDTA by
mixing equal volumes of 250 uM from each oligonucleotide. The mixture was
then heated at 95 °C for 5 minutes and allowed to cool slowly to room
temperature. AP site cleavage was initiated by addition of 10 pl of the annealed
substrate (25 nM) to the reaction mixture in black 384-well plate in a 40 pl
total reaction. The Fluorescence readings were taken at 5 minute intervals
during 30 minute incubation at 37 °C using an Envision® Multilabel reader
from Perkins Elmer with a 495 nM excitation and a 512 nM emission filter.
Upon encountering the APE1 endonuclease activity the DNA is cleaved at the

abasic site at position 7 from the 5’ end and a 6-mer fluorescein-containing
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product will dissociate from its complement by thermal melting. Subsequently,
the quenching effect of the 3’ dabcyl (which absorbs fluorescein fluorescence
when in close proximity) is lost, and APE1 activity is measured indirectly as an
increase in fluorescence signal. Similar assays were generated for monitoring
the AP endonuclease activity of endonuclease IV using a buffering system
containing 10 mM HEPES-KOH, pH 7.4, 100 mM KCl and 60 ng of
endonuclease IV (New England Biolabs). The final DMSO concentration was

maintained at 1.2% in all assays.
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Figure 2.2 Primary screening. (a) Fluorescence based APE1 AP-site cleavage assay
is shown here. If the DNA is cleaved at the abasic site at position 7 from the 5’ end by
APEIl, the 6-mer fluorescein-containing product will dissociate from its complement
by thermal melting. As a result, the quenching effect of the 3’ dabcyl (which absorbs
fluorescein fluorescence when in close proximity) is lost, and APEI activity is
measured indirectly as an increase in fluorescence signal (b) A typical increase in
fluorescence in response to APE1 cleavage is shown here. For detailed protocol see
Materials and Methods section.

2.5.2 Screening and evaluation of potential APE1 inhibitors

To investigate the ability of a candidate inhibitor to block APE1 endonuclease
activity, APE1 was incubated with the candidate inhibitors at 100 pM (final
DMSO concentration 1.2%) prior to initiating the AP-site cleavage assay
described in the previous section. The candidates that showed more than 90%

inhibition of APE1 activity were then investigated further for ICs, calculations.
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Candidate inhibitors were subjected to serial dilution experiments for ICsq
calculations. This was carried out by plating 10 nM-100 uM of each inhibitor
onto black 384-well plates. The reactions were set up as before and
fluorescence intensity was measured at 30 minutes following reaction
initiation. Using the initial rate values from the assay, percent activity was
calculated for each sample relative to a negative DMSO only control. The data
was fitted to a sigmoidal dose-response model using Graphpad Prism3.0
software and ICsy values were determined using the formula: % Activity =

100/(1+100e (11108 1C50)y

2.5.3 Counter screening in endonuclease IV AP-site

cleavage assay

The basic principle of this assay was very similar to the AP-site cleavage assay
discussed previously. Endonuclease IV rather then APE1 was used in the assay
under different buffering conditions.

In this assay, endonuclease IV (60 nM ) (Trevigen, Abingdon, UK) was
incubated in a buffer system consisting of 10 mM HEPES-KOH, pH 7.4,
and 100 mM KCl at 37 °C for 10 minutes. The total volume of the enzyme
and the buffer system was 20 pl. The final DMSO concentration was
maintained at 1.2% in all assays.

The endonuclease IV AP site cleavage was initiated by addition of 10 pl of 25
nM of the annealed DNA substrate (see above) to the reaction mixture in black
384-well plate in a 40 pl total reaction. The fluorescence readings were taken at

5 minute intervals during 30 minute incubation at 37 °C using an Envision®
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Multilabel reader from Perkins Elmer with a 495 nM excitation and a 512 nM
emission filter.

100 uM of the candidate APE! inhibitors were incubated with endonuclease
IV. Any inhibitor that showed more than 25% inhibition to Endonuclease IV

cleavage activity was considered as a non specific inhibitor.

2.5.4 Fluorescence quenching assay

To exclude the possibility that a given compound might possess intrinsic
quenching activity, fluorescence quenching assays were performed. Briefly, the
oligonucleotides 5'-F-oligonucleotide (see above) and
3'CGGGGGCCCCCTGCATGCTATAGGGCGAGG-5' were annealed as
described previously. The double stranded oligonucleotide (5 nM) was
incubated with 100 pM of a potential APE1 inhibitor in a buffer consisting of
50 uM Tris-HCI, pH 8.0, 1 mM MgClI2, 50 mM NaCl, and 2 mM DTT at 37 °C
for 30 minutes. Fluorescence intensity was measured every Sminutes. Any hits
that showed a decrease of more than 50% in the fluorescence intensity were

considered as quenchers and discarded from further analyses.

APEI inhibitors isolated above were sent to Dr Wilson’s laboratory at

NIH, USA. for screening in a whole cell extract assay.
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2.5.5 Whole cell extract AP-site cleavage assay

This work was done in collaboration with Dr David Wilson III at NIH, USA.
Briefly HeLa cells — maintained in DMEM with 10% fetal bovine serum and
1% penicillin-streptomycin were harvested, washed with 1X PBS and the pellet
was resuspended in cold 222 mM KCl plus protease inhibitors (0.5 mM PMSF,
1 pg/ml each lof Leupepetin and Pepstatin A), incubated on ice for 30 minutes.
Then the cell lysate was clarified by centrifugation at 12 000 X g for 15
minutes at 4°C. The protein concentration was determined using the Bio-Rad
Bradford reagent, and aliquots were stored at -80 °C. AP endonuclease activity
assays using 18mer radiolabelled oligonucleotide substrates, 18FNMR 5'-
GTCACCGTGXTACGACTC-3' and 18GNMR 5'-
GAGTCGTAGCACGGTGAC-3' (Trilink Biotechnologies Inc., San Diego,
CA, USA and Midland certified reagent company, respectively) were
performed. In brief, potential APE] inhibitors were incubated at 100 uM
concentrations with 30 ng of HeLa WCE at room temperature for 15 minutes in
incision buffer consisting of 50 mM Tris-HCI pH 8, 1 mM MgCl2, 50 mM
NaCl, and 2 mM DTT. Following the incubation, 0.5 pmol 32P-radiolabeled
tetrahydrofuran (THF)-containing 18mer double-stranded DNA substrate was
added. Incision reactions were then carried out immediately at 37 °C for 5
minutes in a final volume of 10 pl after which the reaction was terminated by
the addition of an equal volume of stop buffer (0.05% bromophenol blue and
xylene cynol, 20 mM EDTA, 95% formamide) followed by denaturation of

samples at 95 °C for 10 minutes. The radiolabeled substrate and product were
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separated on a standard polyacrylamide denaturing gel and quantified by

phosphorimager analysis.

2.6 Cell based investigation

2.6.1 Cell lines and culture media

MeWo (melanoma), SK-Mel30 (melanoma), and PANCI (pancreatic) cancer
cell lines were grown in RPMI culture medium. USYMG glioma cancer cell
line was grown in DMEM culture medium. Culture media were supplemented
with penicillin 0.06 g/1, streptomycin 0.1 g/l pH 7.0, 10% foetal bovine serum
(FBS, PAA Laboratories Inc., Yeovil, UK). HUVEC cell line was grown in
Endothelial Cell Growth Medium supplemented with 2% FBS (Clonogenic ®
Verviers, Belgium). Only cultures with a plating efficiency of over 70% were

used for the analysis.

2.6.2 CellTiter 96 ® AQueus Non-Radioactive Cell

Proliferation Assay (MTS assay)

MTS assay (Promega) is a calorimetric assay for determining the
number of viable cells. It is frequently used in cytotoxicity and
chemosensitivity assays. MTS assay system consists of solutions of a
tetrazolium compound (3-(4,5-dimethylthiazol-2-y1)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium;MTS) and an
electron coupling reagent (phenazine methosulfate;PMS). MTS is bio-reduced

by cells into a formazan compound that is soluble in tissue culture medium.
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The conversion of MTS into formazan is accomplished by dehydrogenase
enzymes that are only found in metabolically active cells. The absorbance of
the formazan at 490 nm is then measured directly from 96-well assay plates
using a universal plate reader FLUOstar OPTIMA from BMG LABTECH Ltd.,
Aylesbury, UK. The quantity of formazan product as measured by the amount
of 490 nm absorbance is directly proportional to the number of viable cells in
culture.

To evaluate the intrinsic cytotoxicity and to evaluate the potentiation of
cytotoxicity of alkylating agents, the MTS assay was performed according to
manufacturer recommendations. 2000 cells per well were seeded into a 96-well
plate. For intrinsic cytotoxicity assessments cells were incubated with varying
concentrations of APE] inhibitors and the MTS assay was performed on day 5.
For potentiation experiments cells were pre-incubated overnight with a non
toxic concentration of APE1 inhibitors and then an increasing concentration of
a base damaging agents (MMS or Temozolomide) or doxorubicin (negative
control) was added and MTS assay was performed on day 5. For HUVEC cells,
S pl of 2% type2 gelatine (Sigma-Aldrich) was added to the wells and the
plates were pre-incubated for 20 min at 37°C before seeding of cells. The total
volume was maintained at 200ul per well in all assays. On day 5, 20 pl of the
reagent mixture consisting of 50 ul PMS and 1ml MTS was added to each well
(a ratio of 1:10 MTS to total well volume) and the plate was incubated for 4
hours at 37 °C before reading the absorbance at 490 nm. All assays were
performed in triplicates for each APE1 inhibitor and Glso were calculated for

each compound.
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2.6.3 Growth Curve

Tissue culture flasks (T25, FALCON®) were seeded with 10° cells and
maintained in media containing three different doses of APE! inhibitor (GI,,,
GI;s and Glsp that has been identified by the MTS assay). A negative control
was incubated with media. Cells were maintained in a humidified incubator at
37°C in an atmosphere of 5% CO; and 95% air. Cells were counted on days 1,

2, 3 and 4. Fold increase in cell number was calculated compared to day 1.

2.6.4 Clonogenic survival assay

Tissue culture plates (FALCON®) were seeded with 300 cells per well, and the
cells were maintained in a humidified incubator at 37°C in an atmosphere of
5% CO; and 95% air for 10-14 days. The medium was later aspirated, and the
cells were incubated at room temperature in 3 ml of fixing solution [(75% (v/v)
methanol, 25% (v/v) acetic acid)] for 30 minutes. The fixing solution was then
poured off and the cells were stained with crystal violet (1 mg/ml in distilled
water) for 4 hours at room temperature. The stain was poured off and the plates
were washed in running water to remove excess stain, before being left to air-
dry overnight. Blue stained visible colonies with > 50 cells were counted by
eye using a colony counter (Stuart Scientific, UK).

To evaluate the toxicity profile of APEI inhibitors cell cultures at
approximately 80% confluence were trypsinized, and 300 cells were seeded per

plate and allowed to adhere over 1 hour. Increasing concentrations (5 pM- 20

HM) of APE! inhibitor were added to the medium, and the plates were
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incubated. Visible colonies were counted after 10-14 days incubation as
discussed previously.

To evaluate the potentiation of the cytotoxicity of DNA damaging
agents by APE! inhibitors, 300 cells were plated with or without APEl
inhibitor and allowed to adhere to the plate for 1 hour. This was followed by
exposure to the DNA damaging agent MMS for 1 hour. The medium was then
removed, plates were then washed with PBS and culture medium with or
without APE! inhibitor was added and incubated for 10-14 days. Analysis of
colony formation and counting was performed as described above. All
experiments were performed in triplicates. The final concentration of DMSO
was maintained to less than 1% in all experiments (note: APE1 inhibitors were

dissolved in this solvent).

2.6.5 AP sites quantification assay (Aldehyde Reactive

Probe)

Aldehyde reactive probe (ARP) reagent, (N’-aminooxymethylcarbonylhydrazin
o-D-biotin) reacts specifically with the aldehyde group that is present in ring
open form of AP sites. This reaction allows detection and quantification of AP
sites. After treating genomic DNA containing AP sites with ARP reagent, the
AP sites are ‘tagged’ with biotin residues. AP sites are then quantified using an
avidin-biotin assay followed by a calorimetric detection of peroxidase
conjugated to the avidin.

The ARP site assay was performed according to manufacturer protocol.
Sub-confluent cells were exposed to MMS with or without APE1 inhibitor. The

cells were then trypsinized at various time points and centrifuged at 1000 rpm
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for 5 minutes. Genomic DNA was extracted from a pellet of 1x 10 6 cells using
the guanidine/detergent lysis method. Briefly, 0.5 mls of DNAzol® (Helena
Biosciences) was added to the pellet and the cell lysate was passed gently
several times through a pipette. The resultant viscous supernatant was
transferred into eppendorf tubes and centrifuged at 13,000rpm for 10 minutes
at room temperature. The viscous supernatant was then transferred to a fresh
tube and 0.25mls of 100% ethanol was added to the lysate to precipitate the
DNA. The tubes were gently inverted 5-8 times at room temperature for 1-3
minutes. The tubes were then centrifuged at 7000 rpm for 5 minutes, and the
100% ethanol was discarded. The DNA was washed by adding 0.4 mls of 75%
ethanol and the tubes were re-centrifuged for another 5 minutes. 75% ethanol
was then discarded and the DNA was then solubilised in TE buffer pH 8.0, and
its concentration was quantified using a GeneQuant pro spectrophotometer
from Biochrom Ltd, Cambridge, UK. All DNA samples were equalized to a
concentration of 100 pug/ml.

The AP site quantification was performed using the aldehyde reactive
probe assay kit and based on the protocol provided by the manufacturer
(BioVision Research product, CA, USA). 5 ul of purified genomic DNA
solution (100 pg/ml) was mixed with 5ul of 10 mM ARP solution in a 1.5 ml
eppendorf tube and the mixture was incubated at 37°C for 1 hour to tag the
DNA AP site. 88 pul of TE buffer and 2 pl of Glycogen were added to the
reaction solution. The samples were mixed well and 0.3 ml of 100% ethanol
was added and incubated at -20 °C for 10 minutes. The reaction solution was
then centrifuged at 14000 rpm for 10 minutes to precipitate the AP site tagged

DNA. The ARP labelled DNA was then washed with 70% ethanol and quickly
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spun to remove .traces of ethanol from the DNA. The samples were then
dissolved in 1 ml TE buffer so that the AP-DNA tagged concentration is 0.5
pg/ml. Meanwhile the ARP-DNA standards were prepared to generate 0, 8, 16,
24, 32 and 48 abasic sites/10° bp in microcentrifuge tubes. 60 pl of each of the
above ARP-DNA and ARP-labelled DNA samples were added into a 96-well
plate provided by manufacturer. To ensure accurate measurements three wells
were used per sample. 100 pul of DNA binding solution was added to both
samples and standards, and the plate was sealed and incubated overnight at
room temperature to allow binding of the tagged -DNA on to plate surface.
Next day the DNA binding solution was discarded and the wells were washed
5 times with 250 ul of washing buffer. 100 pl of horseradish peroxidise (HRP)
was added to each well and the plate was incubated for 1 hour. The HRP was
later discarded and the wells were washed 5 times with 250 pl of washing
buffer. Finally 100 pl of HRP developer was added to each well and the plate
was incubated for 1 hour at 37 °C. Absorbance of O.D. 650 was then measured
using FLUOstar OPTIMA from BMG LABTECH Ltd., Aylesbury, UK. The
data obtained from the standard ARP-DNA solution was used to construct a
calibration curve. The ARP numbers represented AP sites per 10° bp in the
genomic DNA samples. The number the AP sites were measured in samples

treated with APE1 inhibitor and untreated control.

2.6.6 FACS analysis

The cells were grown to sub-confluence in T25 tissue culture flasks and
harvested by trypsinization and centrifugation (1000 rpm for 5 minutes). The

cell pellets were fixed in 70% ethanol in PBS. The samples were then placed at

81



4°C for at least 12 hours to allow fixation. The samples were stored under these
conditions until required for FACS analyses. Prior to FACS analysis, 70%
ethanol fixed cells were harvested by centrifugation (1000 rpm for 5 minutes)
and the pellet was resuspended in PBS containing propidium iodide (4 pg/ml)
and DNAse-free RNase A (10 pg/ml). After incubation at 37°C for 30 minutes
the samples were analysed by flow cytometry using Cytomics F500 machine
(Beckman Coulter, Fullerton, CA, USA) with a 488 nm laser. Red fluorescence
(DNA) was collected for 20,000 cells for each sample. Data was analysed

using FlowJo7.6.1 software.

2.6.7 Migration assay

APEI1 inhibitors were evaluated in migration assays. The assay was performed
as below. On day 1 of the experiment, two parallel lines were drawn on the
back of 6-well plate, using a marker pen. Each well was seeded with 1X10°
cells so that they would become confluent next day. The cells were maintained
in a humidified incubator at 37°C in an atmosphere of 5% CO, and 95% air. On
day 2 the media was removed, cells were washed with PBS and then fresh
media with different concentration of APE1 inhibitor was added (0uM, 10uM
and 20puM). The plate was then incubated overnight in the humidified incubator
at 37°C in an atmosphere of 5% CO,. On day 3 of the experiment the media
containing the inhibitor was removed and cells were washed with PBS. A
wound perpendicular to the drawn lines was scratched using a p20 pipette tip,
then the cells were washed twice with PBS and a fresh media containing 10

pg/ml mitomycin C was added to each well. Addition of mitomycin C was to

82



allow measurement of thg wound healing induced by cell migration rather then
cell proliferation. Serial photographic pictures were taken to the wounds using
a photographic microscope (Nikon TS-100) on time points 0 hour, 2 hour, 4
hour, 6 hour, 8 hour, 16 hour, 24 hour, 36 hour and 48 hour.

The pictures were analysed, using image] analytical software
(http://rsbweb.nih.gov/ij/download.html). The surface area of the wound was
measured and the percentage of healing was calculated relative to the wound

area at time “0”.

2.7 APE1 knocked down studies
2.7.1 shRNA plasmid constructs and SurFECT transfection

reagents

shRNA plasmids designed to specifically knock down the expression of human
APE1 gene by RNA interference under antibiotic selection (SureSilencing™,
Catalog # KH02201) were purchased from SABioscience, MD USA, together
with one control plasmid. Each plasmid contains shRNA under control of Ul
promoter with neomycin gene for the selection of stably transfected cells
(Figure 2.3). SureFECT™ Transfection Reagent (SABioscience, MD, USA)
which is a high-efficiency, low-toxicity solution for the reverse transfection of
a wide variety of cultured mammalian cells was used to transfect sShRNA

plasmid into cancer cell lines as described below.
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Figure 2.3 SureSilencing™ shRNA APE1 Plasmid. The vector contains a short
hairpin RNA, or shRNA, under control of the Ul promoter and the neomycin,

resistance gene an (http://www.sabiosciences.com/Manual/shRNA.pdf).

2.7.2 Transformation and purification of SureSilencing

plasmid DNA

To amplify plasmids and to produce high quality plasmid ready for

transfection, pGeneClip™ Neomycin vector (promega®) carrying the
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targeting sShRNA sequence was transformed into BL-21(DE3) competent E.
coli cells as described below;

In pre-chilled 15mls (FALCON®) tubes 200 pl of cells were added and
1l of SureSilencing plasmid DNA was added and mixed gently by tapping.
The mixture was incubated on ice at 4 °C for 60 minutes and then heat shocked
at 42 °C for 2 minutes. The suspension was incubated on ice and incubated for
another 5min to allow the plasmid to be taken by BL-21(DE3) cells. 800 pl of
fresh LB broth medium was then added and incubated for 2 hours at 37 °C with
shaking. 100 pl of the liquid culture was used to inoculate LB Agar plate under
selection (Ampicillin 100 pg/ml) and incubated overnight at 37 °C. A single

Ampicillin resistant colony was used for further plasmid amplification.

2.7.3 Large-scale preparation of plasmid DNA (QIAGEN,

QIA prep® mini-prep protocol)

Large-scale preparation of plasmid DNA was performed according to the
protocol provided by the manufacturer (QIAGEN). Briefly, a single ampicillin
resistant colony was picked and inoculated into 5 m! LB broth under selection
and grown up for 8 hours at 37 °C with shaking. After the incubation, 250 ul of
liquid culture was inoculated into 200 mls of LB broth under selection in a 2
litre flask and incubated overnight at 37 °C with shaking. The culture was then
transferred into 50 mls tube and the bacterial growth was harvested by
centrifugation at 4000 rpm. The process was repeated until 200 mls of LB
broth was centrifuged. The harvested bacteria were then resuspended in 10 mls

of Buffer P1 (containing RNase A). Then 10 mls of buffer P2 was added and
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the tube was shaken vigorously and incubated at room temperature for 5
minutes. After incubation, 10 mls of pre-chilled buffer P3 was added and the
tube was inverted 5-6 times and the cell lysate was transferred directly to
QIAfilter cartridge and incubated at room temperature for 10 minutes.
Meanwhile, QIAGEN-tip 500 was equilibrated by adding 10 mls of QBT
buffer until it drained completely through the QIAGEN-tip 500. Following the
10 minutes incubation, a plunger was inserted into QIAfilter cartridge, and
clear lysate was passed into QITAGEN-tip 500. Once all the lysate drained from
the QIAGEN-tip, the tip was washed twice with 30 mls of QC buffer, and
transferre(i into 50 ml clean tube. 15 mis of QF buffer was then added to the tip
and DNA was eluted and collected into the clean 50 ml tube. To precipitate
DNA, 10.5 mls of isopropanol (at room temperature) was added to the eluted
DNA mixed rapidly and centrifuged at 4000 rpm for 30 minutes. Following
centrifugation the precipitated DNA was transferred to 1.5 mls eppendorf tube.
The DNA was washed by adding 1 ml of 70% ethanol and centrifuged for 10
minutes at 14000 rpm. Ethanol was then discarded, and the tube was then re-
centrifuged for 1 minute without closing the lid, to allow the ethanol to dry.
Finally the DNA was eluted by adding 500 pl of TE buffer, pH 8.0 and the
sample was left on bench overnight to allow the DNA to dissolve completely

prior to quantification, and then it was stored at -20 °C.

2.7.4 Determination of DNA concentration

The DNA concentration was determined by diluting the sample (1:100)
and measuring the absorption (ODzs) with a GeneQuant pro

spectrophotometer from Biochrom Ltd, Cambridge, UK. It was assumed that
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an ODyso= 1 was equivalent to 50 pg/ml of double stranded DNA and 33pg/ml

of single stranded DNA.

2.7.5 Restriction enzyme digestion

In order to verify that the amplified shRNA contained plasmid, a
restriction digestion of the amplified plasmid was performed. 1 pl of plasmid
DNA isolated by MaxiPrep was digested at 37 °C for 2-4 hours using 100U of
pst | restriction enzyme in NEBuffer 3 (100 mM NaCl 50 mM Tris-HClI 10
mM MgCl, 1 mM Dithiothreitol and pH 7.9at25 °C) and bovine serum
albumin (BSA), in a total reaction volume of 20 pl. The sample was then
loaded onto a 0.8% agarose gel (with ethidium bromide 0.03 ng/ul). The DNA
was electrophoresed at a constant current of 80 mA for 1 hour and imaged

under UV transillumination.

2.7.6 Selection of antibiotic resistance

The minimum concentration of neomycin needed to kill untransfected
cells, also called effective concentration, depends on type of cell line, rate of
growth, and state of confluence during growth. Therefore a dose response
curve for neomycin was generated as described below.

Cancer cells were seeded onto 12-well tissue culture plates at 10%
confluence and incubated in fresh media containing an increasing dose of
neomycin (0, 100, 200, 400, 600, 800, and 1000 pg/ml). The plates were then

maintained in a humidified incubator at 37 °C in an atmosphere of 5% CO; and

95% air. The media was replaced every 2 days with appropriate neomycin
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concentration. The minimum concentration of neomycin that kills all the cells

is the effective concentration used for subsequent selection.

2.7.7 Transfection of APE1 ShRNA plasmid

Mammalian cell transfection experiments were performed according to the
protocol provided by the manufacturer.

100 pl of Opti-MEM™ [ Reduced-Serum Medium (Gibco) was added to a 24-
well tissue culture plate. 0.4 pg of APE1 shRNA plasmid was then added. The
mixture was mixed by gently shaking the plate. 3 pl of SureFECT (that is 7.5
pul of SureFECT per pg of plasmid) was added and again mixed gently. The
plate was then incubated at room temperature for 20 minutes. Mammalian cell
line to be transfected (UBIMG) was prepared for transfection. The cells were
washed twice in Dulbecco’s PBS without Calcium and Magnesium, trypsinized
and harvested by centrifugation at 1000 rpm for 5 minutes.

The cells were then counted by haemocytometer, centrifuged and suspended (1
X 10° cells per well) in fresh DMEM medium [containing 10% fetal bovine
serum and 1% Non essential amino acids (NEAA)]. 500 pl of cell suspension
was added into the wells containing the SureFECT-plasmid complexes. The
suspension was mixed gently by rocking the plate back and forth and the cells
were then incubated at 37 °C in a CO2 incubator for 48 hours. Following
incubation, the cells were harvested ’by passaging and transferred to a 6-well
tissue culture plate and seeded at 10% confluence. Media containing neomycin
(at the effective concentration) was added, and the cells were maintained in
humidified incubator at 37 °C and 5% CO, for 6-7 days week. The media with

neomycin was replaced every 72 hours.
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2.8 Western blot

2.8.1 Preparation of cell lysate

70-80% confluent cells were washed with PBS, trypsinised and counted
using haemocytometer. The cells were then resuspended in a fresh media at a
concentration of 10° cells per ml. 1 ml of cell suspension was pipetted into 1.5
ml eppendorf tube and washed ones with PBS and lysed using 100 pl of RIPA
buffer (20 mM Tris, 150 mM NaCl, 1% Nonidet p-40, 0.5% sodium
deoxycholate, 1 mM EDTA, 0.1% SDS) containing 1 pl of protease inhibitor
(Sigma-Aldrich) and 1 pl of phosphatase inhibitor cocktail 1 and 2 (Sigma-
Aldrich). The lysate was then incubated overnight at 4 °C and then centrifuged
at 13000 rpm for 20 minutes at 4 °C. The supernatant was then stored at -20

°C.

2.8.2 Cell lysate protein quantification (Bradford assay)
The concentration of cell lysate protein was determined using the
BioRad coomassie assay with BSA as a standard. Briefly, 10pl of protein were

mixed with 250 pl diluted and filtered assay solution in 96-well plate.
Subsequently, ODsgs was determined within 1 hour using FLUOstar OPTIMA

from BMG LABTECH Ltd., Aylesbury, UK.
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2.8.3 Denaturing polyacrylamide gel electrophoresis

20 pg of protein samples were mixed with an equal volume of sample
loading buffer (1x 50 mM Tris-HCl, pH 6.8, 10%(v/v) glycerol, 2% (w/v)
SDS, 0.01% (w/v) bromophenol blue, 1% (v/v) B-mercaptoethanol) and
denatured at 98 °© C for 5 minutes before loading onto SDS-polyacrylamide
gels. 10-15% Tris-HCI pre-poured ‘Criterion’ gels (Bio-Rad) were run in SDS
electrophoresis buffer (25 mM Tris-HCI, pH 8.3, 190 mM glycine, 0.1% (w/v)
SDS) at a constant voltage of 200 V, using ‘Criterion’ (Bio-Rad) gel
equipment. Proteins were transferred to a nitrocellulose membrane for western
blot analysis. Electroblotting was performed at 25V for 90 minutes in transfer
buffer [20% (v/v) methanol, 50 mM Tris-HC], 380 mM glycine]. The
membrane was then blocked by incubation with PBST (PBS, 0.05% Tween 20)
containing BSA/milk for 60 minutes with swirling. Then the membranes were
incubated with primary antibody at 4 °C overnight. [Rabbit polyclonal APE-1
antibody, Novus Biologicals Inc, Littleton, CO 1:250 dilution and mouse
monoclonal B-Actin (Abcam) 1:5000 dilution] and infrared dye labeled
polyclonal secondary antibody (Li-cor) (IRDye 800CW Donkey Anti-Rabbit
IgG (H+L) and IRDye 680CW Donkey Anti-Mouse IgG (H+L) in the dilution
of 1:15000 for 60 minutes. Protein expression was determined by scanning the
membranes on Licor-Odyssey’s Scanner from LI-COR Bioscience Ltd,
Cambridge, UK, at the pre-defined intensity fluorescence channel (700 nm and

800 nm).

90



Chapter 3

Molecular Modelling
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3. Molecular modelling

3.1 Introduction

Drug desigﬂ is an iterative process that begins with the identification of
a compound that displays an interesting biological profile and culminates in the
optimisation of both the biological activity profile and the chemical synthesis
of the newly identified compound. Recent advances in the development of
mathematical models that describe chemical phenomena and the development
of more intuitive programme interfaces together with the rapidly progressing
computer technology has allowed the use of virtual approaches to study the
structural properties of compounds. In addition, it has allowed developing and
testing hypotheses and correlates to observed biological activities and utilizes
these correlations to predict properties and activities of new chemical entities.
Molecular modelling is now an industry-standard approach for drug design and
discovery.

The biological activity of a given chemical (a ligand or a drug) is the
result of its binding to a pocket of another molecule (the receptor). The
receptor is usually a protein. Geometric and chemical complementarity of
ligand-receptor binding is essential for potential drug activity. In drug
discovery, the biological activity of a given ligand is highly dependent on the
three dimensional placement of specific functional groups (the pharmacophore)
into the active site of target protein. A variety of molecular modelling
softwares are now available for both academic and industrial use that allow
drug discovery researchers generate and present molecular data to facilitate the

drug discovery process.
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Molecular modelling studies generally utilize two distinct strategies for
drug design. The first strategy is the direct drug design approach. Here the 3D
structure of the target protein is known from X-ray crystallographic data and
the active site can then be utilized to design primary pharmacophores. This is
usually followed by a series of docking experiments and to predict binding
strength between ligand and target protein.

The second approach is the indirect design of pharmacophore by
analysing the structural feature of known active or sometimes inactive
molecules that are complementary to the active site protein. In my PhD project
I utilized both the direct and indirect approaches to identify potential APE1
inhibitors. APE1 protein structure can be obtained from the protein data bank.
The active site of APE1 can be precisely localized and allowed me to directly
design potential inhibitors for APE1 repair domain. Moreover the existence of
previously characterised specific APE1 inhibitors was a useful starting point
for identifying more specific and drug-like pharmacophores. By analysing the
shape of active site pocket of APEl as well as the chemical structure of
existing inhibitors, I was able to predict the most suitable template for APEI
inhibition.

Molecular modelling softwares, such as VMDI1.8.6, SYBYLR.0,
GOLD2.7 and ROCS2.3 were used to achieve these goals. In this introduction I
will give an overview of each programme specification and its importance for
my virtual screening work.

The first step in virtual screening and drug design is the visualisation of

target protein using software programmes to display molecules as ball and stick
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models, surface display or space filling display model. The active site is
localized and then used for structure based design studies.

VMD1.8.6 software was used to display, animate, and analyze APE1 in
this project [257]. VMD1.8.6 was developed by Theoretical and computational
Biophysics Group, University of Illinois, USA in 1992 and first released in
1995. A Microsoft windows platform version was released in 1999 and since
then a regular updates have been released to improve graphical simulation.
VMD1.8.6 includes tools for working with volumetric data, protein sequence
analysis and arbitrary graphics which makes it ideal for analysing target protein
structures and localising their active sites.

SYBYLS.0, is a computational tool kit from Tripos'™ available for
molecular design and analysis. This software allows building dynamic models
of cbmpounds and visualisation of geometry. SYBYLS.0 is also a powerful
tool for new lead design as well as optimisation of existing lead series.
SYBYLS8.0 also allows other life science experiments such as modelling a
protein structure by introduction of mutation in its amino acids sequence.

The process of utilising computer programmes to perform ligand-
protein interactions and to test their fitness both geometrically and
energetically into the binding site of a protein is called molecular docking. The
computational docking of small molecules into the structures of
macromolecular targets and “scoring” of their potential complementarity is a
widely used approach in hit identification and lead optimization in the drug
discovery process [259]. The computerised docking studies aim accurate
structural modelling and prediction of biological activity. However, the

intermolecular interaction is complex and influenced by hydrophobic,
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dispersion, Van der Waals, hydrogen bonding, electrostatic, metal ion binding
interactions. Docking is a multistep process that begins with the application of
the docking algorithms that pose small molecules into the active site of target
protein. The algorithms are complemented by scoring functions that are
designed to predict the biological activity through the evaluation of interactions
between compounds and target protein.

One of the key aspects of molecular modelling is the calculation of
energy of conformations and interactions. In the context of docking, energy
evaluations are usually carried out with the help of a scoring function. A large
number of current scoring functions are based on forcefields that were initially
designed to simulate the function of proteins. A forcefield is simply an
empirical fit to the potential energy surface in which the protein exists and is
obtained by establishing a model with a combination of bonded terms (bond
distances, bond angles, torsional angles, etc.) and non-bonded terms (Van der
Waals and electrostatic). The relative contributions of these terms are adjusted
for the different types of atoms in the simulated molecule by adjusting a series
of parameters. Some scoring functions used in molecular docking have been
adapted to include terms such as solvation and entropy.

Most of the docking methods used in academic and industrial research all
assume a rigid protein. GOLD2.7 is one of the docking programmes which is
able to conduct a rigid protein docking study, with an additional option of
selecting partial protein flexibility, including protein side chain and backbone
flexibility for up to ten user-defined residues.

GOLD2.7 programme is provided as part of the GOLD Suite and designed to

calculate the docking modes of small molecules onto protein binding sites. In
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addition GOLD2.7 allows visualisation of docking results. GOLD2.7 offers a
choice of scoring functions, GoldScore, ChemScore, ASP (Astex Statistical
Potential), PLP (Piecewise Linear Potential). GoldScore and ChemScore are

the most widely used scoring function in docking experiments.

The GoldScore fitness function is made up of four components: a)
Protein-ligand hydrogen bond energy (external H-bond), b) Protein-ligand Van
der Waals (vdw) energy (external vdw), c) Ligand internal vdw energy
(internal vdw), d) Ligand torsional strain energy (internal torsion) and a fifth
optional component, ) Ligand intramolecular hydrogen bond energy (internal
H-bond). The fitness score is taken as the negative of the sum of the
component energy terms, so that larger fitness scores are better. The GoldScore
fitness function has been optimised for the prediction of ligand binding
positions rather than the prediction of binding affinities although some

correlation with the latter has been found.

ChemScore fitness function was derived empirically from a set of 82
protein-ligand complexes for which measured binding affinities were available.
It estimates the total free energy change that occurs on ligand binding as

follows;

Equationl
AG binding = AGy+ AG ppona+ AG meta + AG lipo + AG o

Each component of this equation is the product of a term dependent on the
magnitude of a particular physical contribution to free energy (e.g. hydrogen

bonding) and a scale factor determined by regression.
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Equation2
AGo=Vo, AG hoond=V 1P nbonds A G metad =V 2P metaty A G 1ipo=V3 P jp,

AGu=V4P o

The ¥V terms are the regression coefficients and the P terms represent the
various types of physical contributions to binding. The final ChemScore value
was obtained by adding in a clash penalty and internal torsion terms, which
militate against close contacts in docking and poor internal conformations.
Covalent and constraint scores may also be included. The final ChemScore is

the results of
Equation3

AG binding +P clash +€ internat P internat H(€ covatent P covatent +P constraint)-

ROCS2.3 (Rapid Overlay of Chemical Structure) is a powerful virtual
screening tool designed for fast shape comparison application. ROCS2.3 can
rapidly identify potentially active compounds with a similar shape to a known
hit/lead compound. ROCS2.3 is based on the principle that molecules have
similar shape if their volumes overlay well and any volume mismatch is a
measure of dissimilarity. It uses a smooth Gaussian function to represent the
molecular volume, so it is possible to routinely minimize to the best global
match. ROCS2.3 allows screening of entire multiconformer corporate
collections in a single day using a single processor. The alignment and fitness
of the query molecule used for similarity search to a given chemical hits can be
expressed as a shape fitness score called Tanimoto score. Moreover, ROCS2.3
provides an option to use a chemical alignment as well as a shape alignment to

assess a similarity between the two molecules, the query molecule and the hits
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molecule. This is called combo score, which is used by default in ROCS2.3 for
scoring of similarity.

The previous identification of CRT0044876 as specific small molecule
inhibitor of APE1 in our laboratory as well as the availability of APE1 3D
crystal structure in the protein data bank was my starting point for the virtual

screening strategy in the current project.

3.2 Results
3.2.1. APE1 crystal structure selection and active site

localization

There were seven publicly available coordinates of crystal structure of the
APE] protein at the time of initiation of this project. APE1 crystals had been
generated either alone or in complex with DNA. The crystals available include
1DES, 1DE9, 1IDEW, 1HD7, 1BIX, 1E9N and 2ISI. As molecular modelling
requires precise definition of the ligand binding site in the target protein, an
APEL1 protein crystal with moderate to high resolution with open binding site
not bound to DNA substrate was essential to provide a clear view to the
hydrophobic active site pocket.

As 1DES, 1DE9, IDEW and 2ISI were bound to DNA, they were excluded
from further analysis [260, 261]. 1HD7 was crystallised at low pH and does
not represent APE]1 shape under physiological condition [262]. Therefore
1HD7 was also excluded from further analysis. 1EIN was crystallised at
neutral pH, but it has two Pb®* ions at its active site[262]. This was not
considered to be ideal for molecular modelling and hence excluded from

further analysis.
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1BIX is a relatively high resolution crystal structure of APE1 and the protein
has been crystallised unbound to a DNA substrate at a relatively neutral pH.
1BIX has 4 metal ions in its structure namely three samarium ions (Sm**) and

one platinum ion (Pt*") (see Figure 3.1). 1BIX was chosen for molecular

modelling in this study.
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Figure 3.1 Molecular modelling. 3D simulation of the crystal structure of APEI
showing the metal ions present in 1BIX *pdb file. The four white spheres represent the
Samarium ions (Sm’") while the yellow sphere represents the platinum ion (Pt™).

IBIX crystal structure was downloaded from the protein data bank website

http://www.pdb.org/pdb/home/home.do. and the file was saved in *.pdb file

format. As most of the modelling programmes do not recognise Sm’" ion and
consider it as a dummy atom (i.e. unidentified atom that behave neutral and
does not participate in any virtual interaction), *.pdb file format of 1BIX was
modified so that Sm>* was replaced with Mg®" and Ni*" wherever necessary.
These modified *.pdb files where then used in molecular modelling.

The next step was to locate different APE1 domains in 3D space and specify our

domain of interest namely, the DNA repair domain. VMDI1.8.6 was used to
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localize the DNA repair domain. The previously reported ten critical amino acid
residues that are essential for the AP endonuclease activity of APE1 (D70, D90,
E96, Y171, D210, N212, D219, D283, D308, and H309) were located to identify
the DNA repair domain of APE1 (Figure 3.2 A) [122-127]. This localization
identified a well-defined deep V-shaped active site cleft with a Mg®* ion at its

‘elbow’ (Figure3.2 B).
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3.2.2. Design of pharmacophore model

VMD1.86 was used to conduct manual docking of the first
generation APE1 inhibitor, CRT0044876, onto the active site cleft of the
APE]1 protein [23]. CRT0044876 was visualised to be able to dock very
neatly on either sides of the V shaped hydrophobic cleft (Figure 3.3). To
design promising pharmacophores models, CRT0044876 template was
utilized to generate potential chemotypes that are able to fit the active site
model as shown in figure 3.4 and figure 3.5.Three prototypical scaffolds
named M1, M2 and M3 were built using SYBYL8.0. The templates have
indole carboxylic acid as the primary building block and represent
structures with shape complementarity to the active site of APEl. Ml
Template features a central tetrahedral centre bearing a potential Mg?*-
interacting carboxylate group plus two heteroaromatic branches that have
dimensions and relative orientations designed to fit snugly into the active
site groove. M2 template bears similar features and the heteroaromatic
substituents were extended to increase interaction with amino acids
residues. M3 template was designed to bear an additional heteroaromatic
side chain that can access a subsidiary cleft in the ligand-binding groove
(Figures 3.4). Docking studies of M1, M2 and M3 templates by GOLD 2.7
revealed a near complete filling of the active site clefts ensuring the desired
shape complementarity of the templates to the active site of APE! (Figure

3.5).
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Figure 3.5 Molecular modelling. 3D simulation of the crystal structure of APEI
protein. (B) The 3D structure of APEI repair domain in pink showing the deep
binding pocket active site. (B). The designed molecules M1, M2 and M3 docked into
hydrophobic active site. The two clefts of the active site are filled by the M1, M2 and
M3 butterfly shaped templates, with the structure of each template aligned in parallel
with its docked 3D block.,

3.2.3. Pharmacophore guided similarity search analysis

M1, M2 and M3 templates were used to conduct a virtual similarity search of
the ZINC 2008 database (http://zinc.docking.org/). The ZINC 2008 database is
a library of 2549387 commercially available drug-like chemical structures.
This database was downloaded and saved in 3D file format. A rapid structure-
based similarity search using ROCS2.3 (OpenEye Scientific) was performed
in a computational costly process where the 3D pharmacophore models of M1,
M2, M3 templates and the CRT0044876 templates were queried. The search

was based on shape and chemical similarity. The programme was set to
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retrieve the best 500 hits that match the templates shape and chemistry and set
a cut-off point for shape similarity (which is represented by the Tanimoto score
described previously) as follows; 0.75 for CRT00876, M1 and M2 and 0.6 for
M3. Setting a cut-off value for shape similarity was important to direct
ROCS2.3 to focus on the shape similarity search and to a lesser extent
chemical similarity (represented by Color Scale). Therefore, the search was
directed to mine the ZINC database for chemical compound similar in shape to
the templates. This results in structural hits that have chemical similarity to the
templates. This was important to ensure that hits will maintain shape
complementarity_ to APE1 active site clefts. The hits in each template were
scored according to their shape similarity (Tanimoto Score) and chemical
similarity (Color Scale). The summation of the two scores called ComboScore
was used to rank these hits [range from most similar to least similar]. The data
is presented in tables 3.1, 3.2, 3.3 and 3.4 and in Figure 3.6.

CRT0044876 template retrieved 359 hits M1, M2 and M3 templates retrieved
373, 459 and 488 hits respectively (tables 3.1, 3.2, 3.3 and 3.4). A total number
of 1679 hits were identified (0.066% of the total of Zinc database) and is a
highly selective collection of potential pharmacophores. The conformations of
these 1679 compounds were then subjected to further virtual screening by

docking against the active site of the APE1 model as described below.
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Figure 3.6 The chemical structure of the templates used for ROCS2.3 simialrity
search analyses are shown here. The left panel shows the templates CRT
(CRT0044976), M1, M2 and M3 respectively. The right panel side shows the top hits
obtained from the ZINC data base for each corresponding template. The strong shape
and chemical similarity is evident from comparing the two corresponding structures.
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3.2.4. Virtual docking studies of potential APE1 inhibitor
hits

To validate the binding affinity of 1679 potential hits a computationally costly
process of virtual docking using GOLD2.7 programme was performed [263]. A
3D pharmacophore file format was used to conduct docking and the
programme was set to perform 100 runs per hit. Assessment of the binding
affinity of hits onto the active site of APE1 was made by using ChemScore and
GoldScore functions described previously. The programme was set to keep the
top score out of 100 runs per each scoring function. The top score was taken as
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the best binding affinity for a given hit. Plotting the results of GoldScore
against ChemScore for each template hits showed a significant similarity in the
scoring patterns as demonstrated in figure 3.7.

The scores were then imported into Microsoft Excel and results were as shown
in table 3.5. A consensus score was generated by taking the sum of the
ChemScore and GoldScore. The hits with the best consensus score were
predicted to be potentially promising biochemical inhibitors of APE1 (Figure
3.8).

Therefore we chose top 25% of hits from the consensus plot for future
biochemical analysis. A collection of 420 hits were shortlisted and examined
by Professor Peter Fischer, Professor of Medicinal Chemistry, School of
Pharmacy, University of Nottingham. 250 (of the 420 hits) with drug-like
chemical characteristics were selected for biochemical analysis described in the

next chapter.
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Table 3.5 Gold docking results of 1679 hits onto APE] active site cleft. GoldScore
and ChemScore were used to measure the binding affinities. The Summation of the
two scores was termed Consensus score. The table shows the top 40 and the last 10
hits.

Rank Ligand GoldScore ChemScore Co;::::esus
1 'ZINC05225031 I’ 62.43 37.23 99.66
2 'ZINC01215578 1 393' 61.55 36.57 98.12
3 'ZINC00780173 1 152 58.55 37.52 96.07
4 'ZINC01229958 1 12' 67.63 28.25 95.88
5 'ZINC05628180 1 62' 59.62 34,12+ 93.74
6 'ZINC02073144 1 48 60.59 32.98 93.57
7 'ZINC03196143 1 44 56.87 36.41 93.28
8 'ZINC03356675 1 186' 56,29 36.06 92.35
9 'ZINC06740382 1 23' 60.09 32.11 92.2
10 'ZINC06141145 1 329 57.82 34.34 92.16
11 'ZINC06150767 1 313 59.99 32.14 92.13
12 'ZINC05216611 1 245 53.33 38.6 91.93
13 'ZINC01357069 1 309' 54.85 37.01 91.86
14 'ZINC05234891 1 140' 51.33 40.5 91.83
15 'ZINC04195895 1 341" 5743 34.13 91.56
16 'ZINC02030125 1 267 56.86 34.55 91.41
17 'ZINC00904848 1 220’ 52.57 38.82 91.39
18 'ZINC06061053 1 168' 58.66 32.56 91.22
19 'ZINC04492943 1 172' 55.64 35.44 91.08
20 'ZINC05938287 1 354 54.2 36.85 91.05
21 'ZINC02641767 1 19' 49.2 41.83 91.03
22 'ZINC02721718 1 340’ 59.27 31.69 90.96
23 'ZINC01032476 1 33" 54.2 36.4 90.6
24 'ZINC00929241 1 192" 51.21 39.36 90.57
25 'ZINC04023605 1 16' 59.87 30.55 90.42
26 'ZINC02492440 1 52.19 38.07 90.26
27 'ZINC01102617 1 368' 61.21 29 90.21
28 'ZINC02624389 1 237 0.07 34.98 35.05
29 'ZINC00938318 1 248 7.6 26.73 34.33
30 'ZINC05062899 1 328 1.25 32.63 33.88
31 'ZINC03404599 1 395' 2.03 30.47 32.5
32 'ZINC04118499 1 358' -5.99 34.82 28.83
33 'ZINC04872743 1 79' -11.72 28.54 16.82
34 'ZINC00236768 1 149' -18.12 32.7 14.58
35 'ZINC00236781 1 148" -23.38 35.92 12.54
36 'ZINC06701391 1 388 -18.36 29.9 11.54
37 'ZINC02254324 1 75' -26.62 35.31 8.69
38 'ZINC04672982 1 328' -26.97 31 4.03
39 'ZINCO03269861 1 137" -24.42 27.58 3.16
40 'ZINC03269866 1 194" -22.37 25.29 2.92

1673 'ZINC04118554 1 344 -43.34 31.28 -12.06

1674 'ZINC04118498 1 98 -50.49 34.73 -15.76

1675 'ZINC03251742 1 304 -48 30.91 -17.09

1676 'ZINC00843594 1 139" -53.89 28.08 -25.81

1677 'ZINC03889391 1 44 -65.01 35.59 -29.42

1678 'ZINC00843580 1 69' -58.84 26.14 -32.7

1679 'ZINC00841532 1 25 -89.19 32.92 -56.27
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3.3 Discussion and conclusion

The process of identification and development of a novel drug is
complex. The high cost of research and human clinical trials made the drug
discovery process potentially expensive. To minimize cost and to accelerate
drug discovery, the current approach in modern drug discovery is to initiate
investigation using virtual screening strategies based on computationally
simulated ligand-protein interactions. The aim of this screening is to evaluate
orientation of the ligands relative to the protein. In addition, virtual screening
aims to achieve a scoring function that measure how strongly a given ligand
will interact with the target protein. Moreover, virtual screening allows
screening of a large chemical library, even chemicals that have not yet been
synthesised. Therefore virtual screening reduces the initial number of
compounds that will undergo primary biochemical screening and subsequently
reducing the total cost of the drug discovery process.

Almost all the APEL! inhibitors identified to date where isolated by
direct screening of chemical libraries that includes several thousands of
chemical compounds [253]. However, none of the inhibitors described to date
showed pharmacological properties optimal for therapeutic application [253].
A recent study by Zawahir et al. utilized a virtual strategy to design a set of
pharmacological models based on the unique interaction between APE! active
site with the abasic DNA. These templates used for identification of APE1
inhibitors from a 365000 chemical library. However the biological efficiency

of these inhibitors was not fully evaluated [254].
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In the current PhD project, an industry standard virtual screening approach was
adopted to develop novel drug-like chemotypes. The architecture of the active
site of APE1 in the absence and presence of bound abasic DNA indicates that
there is little or no remodelling of the active site upon substrate binding, a
feature that is suitable for a virtual screen [103, 104]. The structural feature of
APE1 was exploited to develop an enhanced virtual screening strategy and I
identified several novel small molecule inhibitors for further drug
development. Three new pharmacophore templates were designed in silico
(M1, M2 and M3) and a total of 1679 virtual hits with similarities to the
templates were identified (CRT template = 359, M1 template = 373, M2
template = 459 and M3 template = 488). These hits were designed to achieve
maximum geometrical and chemical complementarity to APEI active site. The
structures of these hits show that they have relatively small size and comprise
an aromatic hydrophobic core. In addition, they tend to have a negative
ionisable group mostly carboxylate similar to CRT0044876. The top 25% hits,
i.e.,, a collection of 420 compounds were shortlisted based on their APE]
binding affinity. 250 chemical were then selected based on structural and
pharmacological features for biochemical analysis described in the next

chapter.
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Chapter 4

Biochemical screening
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4. Biochemical screening

4.1. Introduction

Modulation of base excision repair (BER) has the potential to enhance
the cytotoxicity of several DNA damaging agents used in cancer therapy.
APEl is a key protein in BER. Several biochemical, preclinical and clinical
studies have confirmed that APE1 is an attractive target for anti-cancer drug
development.

In chapter 3, I described the virtual screening approach to isolate
potential APE1 inhibitors. Using molecular modelling softwares three
templates M1, M2, and M3 were designed. These templates and the
CRT0044876 template were used to search a large chemical library. This
approach made it possible to screen a large drug-like chemical library.
Although virtual screening reduces costs and enhances the efficiency of drug
discovery process, biochemical screening is an essential step to directly
evaluate the ability of the ligand to alter protein function in vitro. This primary
screening could identify genuine APE1 inhibitors. Therefore, compounds
selected from virtual screening were tested in a series of biochemical assay.
The main aim was to identify specific and potent APE1 inhibitors.

420 compounds identified from virtual screening were initially
shortlisted. These chemicals were then examined by Professor Peter Fischer,
Professor of Medicinal Chemistry, School of Pharmacy, University of
Nottingham. 250 compounds were selected for the biochemical screening. The
compounds were selected based on structural novelty and drug-like properties.

147 out of 250 selected were commercially available and therefore underwent
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detailed analysis. A list of compounds analysed in this study is shown in table

4.1.

Table 4.1 List of chemical library compounds used for Fluorescence based AP-site

cleavage assay.

ZINC database 2008 Code Vendor Supplier code Lab Code Template
ZINC00040219 ChemBridge 5140421 Pl CRT
ZINC00177196 ChemBridge 5926401 P2 CRT
ZINC00193042 ChemBridge 5210777 P3 CRT
ZINC01211006 ChemBridge 5771747 P4 M3
ZINC01821694 ChemBridge 6623906 P5 CRT
ZINC02537038 ChemBridge 8929409 P6 CRT
ZINC02580950 AstaTech 59587 P7 CRT
ZINC03001624 ChemBridge 5253606 P8 CRT
ZINC04362893 ChemBridge 9031355 P9 CRT
ZINC05003907 ChemBridge 5556647 P10 CRT
ZINC05049941 ChemBridge 7926856 Pl CRT
ZINC06702569 ChemBridge 9021992 P12 CRT
ZINC04128392 Sim-AlMch 556890 P13 CRT
ZINC04798293 Alfa-Aesar 43899 P14 CRT
ZINC01661333 Alfa-Aesar B25627 P15 CRT
ZINC05225031 Alfa-Aesar A18548 P16 CRT
ZINC04253599 Apollo Scientific OR6746 P17 CRT
ZINC02168694 LOPAC1280 H8759 P18 CRT
ZINC03130439 Sigma-aldrich $235997 P19 CRT
ZINC02156420 Sigma-aldrich S688916 P20 CRT
ZINCO0081085 Maybridge RH00720 P21 CRT
ZINC0083028 Maybridge RH01182 P22 CRT
ZINC01554037 alfa chemicals Al3445 P23 CRT
ZINCO00156841 alfa chemicals A11018 P24 CRT
ZINC00156671 alfa chemicals B22645 P25 CRT
ZINC02027393 alfa chemicals A10278 P26 CRT
ZINC06467621 alfa chemicals B25307 P27 CRT
ZINCO01753102 alfa chemicals B21074 P28 CRT
ZINC00156343 alfa chemicals L12750 P29 CRT
ZINC04977184 www.ukrorgsynth.com PB-90178380 P30 M2
ZINC00127379 Enamine T0513-9472 P31 CRT
ZINC03498135 Enamine T5842095 P32 CRT
ZINC01641182 Enamine T0501-9967 P33 CRT
ZINC03196143 Enamine T5871233 P34 M1
ZINC00056465 Enamine T5883874 P35 CRT
ZINC00193177 ChemBridge 5211687 P36 CRT
ZINC01077004 ChcmBringg 7909184 P37 M3
ZINC00479857 ChemBridgL 7822043 P38 CRT
ZINC01109314 ChemBridge 7726917 P39 M3
ZINC00206678 ChcmBridge 7701580 P40 Ml
ZINC00308590 ChemBridgL 6435543 P41 Mi
ZINC00275159 ChemBridge 5212613 P42 CRT
ZINCO01218405 ChemBridge 6122609 P43 CRT
ZINC00345355 ChemBridge 6131881 P44 CRT
ZINC00168069 ChemBridge 6630522 P45 CRT
ZINC01215578 ChemBridge 6082170 P46 M3
ZINC01234763 ChemBridge 5107319 P47 CRT
ZINC01834823 ChemBridge 5624394 P48 CRT
ZINC02197289 ChemBridge 5269953 P49 CRT
ZINC00216961 ChemDiv 6228-0723 P50 CRT
ZINC01577022 Life Chemicals F0378-0062 P51 CRT
ZINC02484656 ChemBridge 5119306 P52 CRT
ZINC01693409 ChemBridge 5252868 P53 CRT
ZINC01576969 ChemBridge §252882 P54 CRT
ZINC01881604 ChemBridge 5550054 P55 CRT
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ZINC01783481 ChemBridge 5631104 P56 CRT
ZINC02446376 ChemBridge 5816568 P57 CRT
ZINC02593383 ChemBridge 7743810 P58 CRT
ZINC02709237 ChemBridge 7987841 P59 Ml
ZINC02012856 Specs AP-770/42745275 P60 CRT
ZINC04289696 Specs AG-690/12090344 P61 M2
ZINC00345371 Specs AE-562/12222005 P62 CRT
ZINC00651236 Specs AK-968/41171453 P63 M3
ZINC00345373 Specs AE-562/12222011 P64 CRT
ZINCO1102617 TimTec ST051641 P65 M3
ZINC04482340 TimTec ST4037676 P66 CRT
ZINC13658636 Maybridge HTS09008 P67 M1
ZINC15924031 Maybridge SPB07800 P68 Ml
ZINC05003653 ChemBridge 5109356 P69 M2
ZINC04755154 ChemBridge 5122037 P70 CRT
ZINC04012812 ChemBridge 5153927 P71 CRT
ZINC08656548 ChemBridge 5474011 P72 M2
ZINC02903501 ChemBridge 5572732 P73 M3
ZINC05926194 ChemBridge 5574725 P74 CRT
ZINCO01783481 ChcmBn'dge 5631104 P75 CRT
ZINC04469351 ChemBridge 5479114 P76 CRT
ZINC05017790 ChemBridge 5670158 P77 M3
ZINC05730977 ChemBridge 6327080 P78 M1
ZINC04717421 ChemBridge 7932719 P79 CRT
ZINC06747323 ChemBridge 9068997 P80 CRT
ZINC02875831 ChemBridge 7955265 P81 M2
ZINC02732054 ChemBridge 8928371 P82 CRT
ZINC04294570 ChemBridge 8928374 P83 CRT
ZINC02732020 ChemBridge 8928490 P84 CRT
ZINC04163878 ChemBridge 8882832 P85 CRT
ZINC02661072 Enamine T5252878 P86 M2
ZINC03263338 Enamine T0510-5174 P87 M3
ZINC03434925 Enamine T5330235 P88 M3
ZINC05415907 Enamine T0510-5395 P89 M2
ZINCO6787264 Enamine 15373986 P90 Ml
ZINC03257904 Enamine T0511-5029 P91 M3
ZINC13147800 Enamine T5415905 P92 M2
ZINC03277194 Enamine 15210153 P93 M3
ZINC04061877 Enamine T5434491 P94 M2
ZINC02649134 Enamine 15227191 P95 M3
ZINC02638090 Enamine T5234908 P96 M3
ZINC09367024 Enamine T5717818 P97 M2
ZINC01357069 Asinex ASN05673042 P98 M3
ZINC00780173 Asinex BAS04209407 P99 M3
ZINC00929241 Asinex ASN03270465 P100 M3
ZINC00904848 Asinex ASN03988707 P101 M3
ZINC02073144 Asinex BAS01516436 P102 M3
ZINC04195895 Asinex BAS00675915 P103 M3
ZINC02030125 Asinex BAS01279511 P104 M3
ZINC01405478 KeyOrganics 12N-3268 P105 M2
ZINC04025249 KeyOrganics 15-1302 P106 M2
ZINC00919531 Asinex ASN04196885 P107 M3
ZINC04061877 Asinex BAS07396170 P108 M2
ZINC00189065 ChemBridge 5147377 P109 M1
ZINC00035512 ChemBridge 5219225 P110 Ml
ZINC01029672 ChemBridge 5618929 P111 M2
ZINC03877685 ChemBridge 5694123 P12 M2
ZINC00102630 ChemBridge _ 5848776 P113 M)
ZINC04653992 ChemBridge _ 8884964 P14 M1
ZINC02925395 ChemDiv K292-1334 P115 M3
ZINC02975647 ChemDiv K284-5645 Pil6 M3
ZINC02721681 ChemDiv C176-0119 PIl7 M3
ZINC02721656 ChemDiv C176-0087 P118 M3
ZINC04061877 ChemDiv 7287-0980 P119 M2
ZINC00517811 ChemDiv 7602-0979 P120 M1
ZINC03655023 ChemDiv €071-0291 P12 M3
ZINC06150773 UkrOrgSynthesis PB20177232 P122 M3
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ZINC06428067 UkrOrgSynthesis PB-04511045 P123 M2
ZINC01354011 UkrOrgSynthesis PB228048608 P124 M3
ZINCO08685966 UkrOrgSynthesis PB-90362471 P125 M2
ZINC02322284 UkrOrgSynthesis PB-90122293 P126 M3
ZINCO06428375 Enamine-REAL ZT-5787893 P127 M2
ZINC05781327 Enamine-REAL ZU-8667769 P128 M2
ZINCO05754351 Enamine-REAL ZU-8116949 P129 M3
ZINC03239779 Enamine-REAL ZT-0067825 P130 M3
ZINC03240290 Enamine-REAL ZT-0144444 P131 M3
ZINC04959904 Enamine-REAL 7251136441 P132 M3
ZINC06428148 Enamine-REAL ZU-8256558 P133 M2
ZINC00622770 Life Chemicals F0790-0053 P134 M3
ZINC02721656 Life Chemicals F0586-0116 P135 M3
ZINC02721681 Life Chemicals F0586-0162 P136 M3
ZINC04248413 Life Chemicals F1837-0024 P137 M3
ZINCO04583861 Life Chemicals F2617-0316 P138 M3
ZINC04583882 Life Chemicals F2617-0616 P139 M3
ZINC04583893 Life Chemicals F2617-0796 P140 M3
ZINC04583965 Life Chemicals F2617-1636 P141 M3
ZINC04289694 Specs AG-690/12090337 P142 M3
ZINC04180015 Specs AK-918/12392039 P143 M3
ZINC04115900 Specs AG-690/40721859 P144 M3
ZINCO03877685 Specs AG-690/12090297 P145 M3
ZINC00186360 ChemDiv 3253-0243 Pl46 M3
ZINC00186724 Asinex BAS01808853 P147 M3

4.2 Fluorescence based APE1 AP-site cleavage assay

The fluorescence-based APE1 AP-site cleavage assay is based on the
principle of ‘proximal quenching’ also known as ‘collisional quenching’. A 30
mer oligonucleotide (5' F-GCCCCCXGGGGACGTACGATATCCCGCTCC
3') was custom made to contain an abasic site analogue (tetrahydrofuran ring;
‘X’) at the seventh position and was 5’ labelled with fluorescein (‘F’). This was
annealed with its complementary 30 mer oligonucleotide that was 3' labelled
with Dabeyl (‘Q’) (3' Q-CGGGGGCCCCCTGCATGCTATAGGGCGAGG
5. In its native state, Dabcyl which is in close proximity to fluorescein
quenches the fluorescence emitted by Fluorescein. However, in the presence of
AP Endonuclease activity the oligonucleotide is cleaved 5' to the abasic site,

and the 6 mer, fluorescein-containing single stranded oligonucleotide is free to
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melt into solution at 37°C. As a result the quenching effect of the 3' Dabcyl
molecule in the complementary strand is lost, and APE1 activity is measured as
an increase in fluorescence signal (Figure 2.2). The absence of fluorescence
emission in the assay containing a screening compound would indicate a
potential APE! inhibitor. This assay was optimised and adapted to a 384-well
format. Hits identified from this primary screening were then taken to counter

screening assays.

4.3 Counter screenings
4.3.1 Fluorescence based endonuclease IV AP-site cleavage

assay

Hits isolated from the primary screening using APEl1 enzyme were
counter screened against endonuclease IV. Endonuclease IV is a Zn*-
dependent AP endonuclease that has functional similarity to APE1, but has a
structurally distinct active site although both enzymes share AP endonuclease,
3' phosphatase and 3' phosphodiesterase activities [108]. Therefore a specific
inhibitor that blocks endonuclease activity of APE!1 should not have any
inhibitory activity against endonuclease IV. A fluorescent based endonuclease
IV AP-site cleavage assay was developed. The assay was optimized and
buffering conditions were as provided by the supplier of the endonuclease IV

(TREVIGEN 9).
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4.3.2 Fluorescence quenching assay

Compounds were then investigated for the possibility that they might possess
intrinsic quenching activity. This was developed to exclude false positive
results. The oligonucleotides 5' F-
GCCCCCXGGGGACGTACGATATCCCGCTCC 3 and
3'CGGGGGCCCCCTGCATGCTATAGGGCGAGG-S' were anncaled as
described previously. The double stranded oligonucleotide (5 nM) was
incubated with 100 pM of potential APE1 inhibitor in a buffer consisting of 50
uM Tris-HCI, pH 8.0, 1 mM MgCl2, 50 mM NaCl, and 2 mM DTT at 37 °C
for 30 minutes. Fluorescence intensity was measured every 5 minutes.
Compounds that caused more than 50% decease in the fluorescence emission

were considered as quenchers and excluded from further analyses.

4.4 Whole cell extract (WCE) AP-site cleavage assay

To further confirm AP-site cleavage inhibition in vitro, a whole cell extract
based screening was conducted. This work was performed in collaboration
with Dr David Wilson III, Laboratory of Molecular Gerontology, Biomedical
Research Centre, National Institute on Ageing, NIH, Baltimore, USA.

In the WCE assay 100 uM of a given inhibitor was incubated in the presence of
30 ng of HeLa WCE at room temperature for 15 minutes in an incision buffer
containing 50 mM Tris-HCI pH 8.0, 1 mM MgCl,, 50 mM NaCl, and 2 mM
DTT. After incubation, 0.5 pmol **P-radiolabeled THF-containing 18 mer

double-stranded DNA substrate was added to the reaction mixture. The mixture
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was then incubated for 5 minutes at 37 °C and the reaction was terminated by
the addition of stop buffer (0.05% bromophenol blue and xylene cynol, 20 mM
EDTA, 95% formamide) followed by denaturation of samples at 95 °C for 10
minutes. The radiolabelled substrate and product were separated on a standard

polyacrylamide denaturing gel and quantified by phosphorimager analysis.

4.5 Results
4.5.1 Development of Fluorescence based AP-site cleavage

assay

4.5.1.1 Optimisation

A valid screening assay needs to be optimised to generate robust data.
Therefore several component of the assay had to be optimised prior to
screening of compounds. These included:

e Optimisation of concentration of oligonucleotide substrate:
Minimum concentration of oligonucleotide required for measurement
of fluorescence emission signal was identified. In its native state the
oligonucleotide DNA substrate emit fluorescence signal that can be
detected by the multi- plate reader machine even in the presence of
Dabcyl quenching. This signal is directly related to the amount of DNA
substrate included in the assay. The minimum concentration of the
DNA substrate that resulted in significant difference in fluorescence
signal emission compared to the background signal was considered as

the optimal concentration.

126



e APEl concentration: Once the DNA substrate was optimised, the
minimum éoncentration of APE1 (or) endonuclease IV required for
efficient AP-site cleavage and fluorescence emission was estimated.

¢ Incubation time: The time needed to complete the assay was another
variable that needed to be taken in consideration. The minimum
incubation time that results in significant increase in fluorescence
emission for a given concentrations of APE1 and DNA substrate was
estimated.

e Buffering condition: The buffer used consists of 50 mM Tris—-HCl (PH
8.0), 1 mM MgCl,, 50 mM NaCl and 2 mM dithiothreitol (DTT). As
Mg?* is essential for AP-site cleavage activity, I used the pre-

optimised Mg®* concentration for the assay [23].

4.5.1.1.1 DNA substrate

Serial dilution of the annealed double stranded DNA substrate stock
solution was made. The fluorescence emission of reaction mixtures containing
substrates at concentrations 1, 5, 10, 20 and 40 nM was performed (Figure 4.1).
5 nM was identified as the minimum substrate concentration that will give a

significant fluorescence signal compared to background signal measurement (P

<0.05).
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Figure 4. 1 Optimisation of oligonucleotide DNA subatrate concentrations for
AP-site cleavage assay. A histogram showing fluorescence emission at different
DNA substrate concentrations. 5 nM of DNA substrate was the lowest substrate
concentration that gave a significant fluorescence signal compared to background
signal. This concentration was therefore used in the subsequent assays. All
experiments were performed in triplicates and the results represent the Mean + S.E.

4.5.1.1.2 APEI1 protein concentration

APE1 was quantified using NanoDrop 2000c spectrophotometer (Thermo
Scientific). The stock protein concentration was 5 pM. Serial dilutions of the
protein stock was made and mixed with 5 nM of substrate to give a final
concentration of 25, 50, 75, 100 and 125 nM of APEI protein. Protein and
substrates were incubated in the buffering condition mentioned above at 37 °C
for a total time of 30 minutes. Serial measurement of the Fluorescence
emission was detected every 5 minutes. A concentration of 50 nM was the
minimum APE] concentration required to produce a significant increase in
fluorescence emission compared to negative control at 30 minutes (P <0.01)

(Figure 4.2).
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Figure 4.2 Optimisation of APE1 concentration for fluorescence based APE1 AP-
site cleavage assay. Increasing amounts of APEl was mixed with 5§ nM
oligonucleotide DNA substrate under buffering condition described in the Materials
and Methods. A concentration dependent rise in fluorescence indicated AP-site
cleavage activity by APEl. 50 nM of APEl enzyme was able to give a highly
significant increase in fluorescence signals after 30 minutes incubation with DNA
substrate (P<0.01). All experiments were performed in triplicates and the results
represent the Mean + S.E.

4.5.1.1.3 Incubation time

Although 30 minutes in previous studies seemed optimum, I tested further
incubation time as follow: 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 minutes. As
shown in figure 4.4 fluorescence emission at 30 minutes was judged to be
acceptable although emission at 50 minutes was more compared to 30 minutes.
As an efficient assay not only has to be robust but also has to be time efficient,

[ decided to run the assay with incubation time at 30 minutes (Figure 4.3).
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Figure 4.3 Optimisation of incubation time for fluorescence based APE AP-site
cleavage assay. 50 nM of APEl was mixed with 5 nM oligonucleotide DNA
substrates under buffering condition described in the Materials and Methods. Serial
measurements of fluorescence intensity were taken every 5 minutes intervals for 50
minutes incubation time. 30 minutes incubation resulted in a highly significant
(P<0.01) increase in fluorescence signals compared to a negative control. All
experiments were performed in triplicates and the results represent the Mean + S.E.

4.5.1.1.4 Positive control

As a final validation of the AP-site cleavage assay 100 uM CRT0044876, a
specific APEL inhibitor was used as positive control to confirm APEI]
inhibition in the cleavage assay. Figure 4.4 shows a typical result for
CRT0044876 (100 puM). The percentage of APE1 inhibition was calculated as
the percentage of net fluorescence signal measured in the presence of inhibitor
relative to net fluorescence signal in absence of inhibitors. A complete
inhibition of fluorescence emission confirms the inhibition of APE! activity in

the assay system.

Hits screened in the AP-site cleavage assay were classified according to the

percentage inhibition of APE1 activity into five groups:

* Non inhibitor: were the APEI retains 100% of its cleavage activity.
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e Mild inhibitor: the inhibitor blocked <25% of APEI cleavage activity.

e Moderate inhibitors: the inhibitor blocked 25-50% of APE1 cleavage
activity.

e Strong inhibitor: the inhibitors blocked 50.1% - 75% of APEI1 cleavage
activity.

e Potent inhibitor: >75% of APEIl cleavage activity is blocked by the

inhibitor.
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—— APE1 (50 nM)
—— CRT0044876 (100 uM)
Ju o
2
S 4004
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£ 300
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Figure 4.4 Fluorescence based APE1 AP-site cleavage assay. 100 pM of
CRT0044876 was used as a positive control and incubated with 50 nM of APE1 and 5
nM DNA oligonucleotide substrate under the pre-optimised buffering condition.
CRT0044876 demonstrates inhibition of APE1 activity in the fluorescence assay. All
experiments were performed in triplicates and the results represent the Mean + S.E.

4.6.2 Optimization of fluorescence quenching assay (FQA)

To exclude the possibility that inhibitors may be quenchers of fluorescence
emitted by the fluorescein tagged oligonucleotide substrate, a fluorescence
quenching assay was developed. In this assay the 5' F-

GCCCCCXGGGGACGTACGATATCCCGCTCC . 3 and
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3'CGGGGGCCCCCTGCATGCTATAGGGCGAGG-5' were annealed to
generate the substrate. 5 nM of this DNA substrate was incubated with 100 uM
of potential inhibitor under similar buffering conditions as the AP-site cleavage
assay. Serial measurements of fluorescence intensity were taken every 5
minutes intervals for a total of 30 minutes. An inhibitor was considered as a
quencher if it caused a decrease in Fluorescence intensity by >50%.

CRT0044876 was used to validate this assay and the result is shown in figure

4.5
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0 5 10 15 20 25 30 35

Minutes
Figure 4.5 Fluorescence quenching assay. 100uM of CRT0044876 was incubated
with 5 nM oligonucleotide DNA substrate for 30 minutes. CRT0044876 did not show
any quenching effect on the substrate fluorescence signal. All experiments were
performed in triplicates and the results represent the Mean + S.E.

4.6.3 Optimization of Endonuclease IV AP-site cleavage

assay
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Potential hits that blocks APE1 and are non-quenchers were then counter
screened against endonuclease IV. The substrate concentration and inhibition
time were set as before and the minimum concentration of endonuclease IV
required was optimised. Endonuclease IV was purchased from Trivigen™ and
its concentration was quantified using the NanoDrop 2000c spectrophotometer.
The concentration of endonuclease IV was found to be 6 pg/ml. The buffer
system was as supplied by the manufacturer and it consisted of 10 mM
HEPES-KOH, pH 7.4, 100 mM KCL

The percentage of endonuclease IV inhibition was calculated as the percentage
of net fluorescence signal measured in the presence of inhibitor relative to net
fluorescence signal measurement in the absence of chemicals. Any inhibitor
that shows inhibition of endonuclease IV activity at 100 uM was considered as

non specific and was excluded from further analysis.
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Figure 4.6 Fluorescence based endonuclease IV AP-site cleavage assay. Increasing
concentrations of endonuclease IV were mixed with 5 nM oligonucleotide substrate
under conditions described above. A concentration dependent rise in fluorescence
indicated AP site cleavage activity was seen. 60ng of Endonuclease IV resulted in a
highly significant increase in fluorescence signal compared to negative control
(P<0.01). This concentration was used in the subsequent counter screening of
chemical library. All experiments were performed in triplicates and the results
represent the Mean + S.E.
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Different concentrations of endonuclease IV were used to run AP-site cleavage
assay (Figure 4.6). It was evident that at 60 ng, endonuclease IV activity
resulted in a significant increase in fluorescence emission compared to negative
control (P <0.01).

A typical counter screening was set as follow: 100 uM of the potential inhibitor
was incubated with 60 ng of endonuclease IV and 5 nM of DNA substrate in a
buffering condition consisting of 10 mM HEPES-KOH, pH 7.4, 100 mM KCl
at 37 °C for 30 minutes. Serial measurements of fluorescence emission were
taken every 5 minutes for a total of 30 minutes. Figure 4.7 shows a typical
result for testing CRT0044876 tested at 100 uM in the endonuclease IV AP-
site cleavage assay. As CRT0044876 is a specific inhibitor of APEI, it does

not block endonuclease IV activity.
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Figure 4.7 Fluorescence based Endonuclease IV AP-site cleavage assay. 100puM of
CRT0044876 was incubated with 60ng of Endonuclease IV and 5 nM DNA
oligonucleotide substrate under the optimised buffering condition. CRT0044876 did
not inhibit endonuclease IV activity in this fluorescence based assay suggesting that it
is a specific APEI inhibitor. All experiments were performed in triplicates and the
results represent the Mean + S.E.
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4.6.4 Identification of hits (table 4.2)

The fluorescence based assays were performed in a 384-well format.
Initial screen of 147 compounds were performed at 100 pM in triplicate. Figure
4.9 shows typical read outs for potential APEl inhibitors. P115 completely
blocked APE1 mediated AP-site cleavage activity (Figure 4.8 a) whereas P17
did not inhibit APE1 mediated AP-site cleavage activity (Figure 4.8 b).
Although P118 showed potent inhibition of APEl it did not inhibit
endonuclease IV activity (Figure 4.8 c¢) implying that P118 is specific inhibitor
of APEL. P34 on the other hand not only inhibited APE1 but also endonuclease
IV (Figure 4.8 d). P34 is likely to be a non-specific inhibitor or DNA binder.
31/147 compounds screened were potent APE1 inhibitors. These hits were
therefore further tested for intrinsic quenching activity. 7/31 were shown to
possess intrinsic quenching activity and were excluded from further analysis
(Figure 4.9).
24/31 compounds were then counter screened against endonuclease 1V. 17/24
did not block endonuclease IV activity implying that they are specific APEI
inhibitors, whereas the other 7 hits were considered as non specific inhibitors
of AP-site cleavage activity (Table 4.3).
In summary, 17/147 (11.6%) compounds screened were specific APEI
inhibitors. Therefore these compounds were taken for detailed ICso value

estimation.
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Table 4.3 Summary of counter screening and ICs, estimation of APE! inhibitors. N.A
means the result is not available as the compound was excluded from counter

screening.
Fluorescence Endonuclease 1V
Compound ID quenching assay inhibition APEL 1Cs
P4 - - 400 nM
P22 - - 10 pM
P30 - - 4 uM
P34 - N.A
p46 - - 25 uM
P65 - - 1.6 pM
P69 - + N.A
P72 + N.A N.A
P88 - + N.A
P89 + N.A N.A
P91 - + N.A
P93 - - IuM
P95 - - 500 nM
P96 - - 500 nM
P97 - + N.A
P101 + N.A N.A
P102 + N.A N.A
P103 + N.A N.A
P107 - + N.A
P111 - - 3uM
P113 N.A N.A
P115 - - 20.5 uM
P116 - - 15 yM
P117 - + N.A
P118 - - 11 uM
P124 + N.A N.A
P125 - - 3IuM
P126 - - 15 yM
P128 - - 16 pM
P133 - - IpM
P147 - - 50 nM

4.6.5 Measurement

inhibitors

of I1Cs values

for specific APE1

Specific APE1 inhibitors were taken for ICso value estimation. ICsg is

defined as the concentration of a compound that results in a 50% reduction in

activity of the target protein of interest.

Serial dilutions were set up at 5 nM - 100 uM. The percentage of inhibition for
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each concentration was calculated by taking the net fluorescence signal of the
reaction containing the inhibitor relative to signal detected from reactions
containing no inhibitor. The results were then analysed using prism3.0
Graphpad software. A non-linear regression analysis was used to fit a Hill
curve on the data points using sigmoid dose-response. Figure 4.10 shows a
typical ICso measurement of an APEI inhibitor (P118) The ICso values ranged

from 50 nM to 25 uM (table 4.3).

% APE1 Activi

10 9 8 -7 6 -5 -4 -3

Log (uM)

Figure 4.10 Measurement of P118 ICs) using Prism3.0 software. P118 1C5, was
found to be 11.6 uM. All experiments were performed in triplicates and the results
represent the Mean + S.E.

4.6.6 AP site cleavage using HeLa whole cell extracts

Specific and potent APEIl inhibitors isolated from the fluorescence
based assays were then screened further using HeLa WCE in a radiolabelled

oligonucleotide assay. All potent specific APE! Inhibitors (n=17) were tested
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in the HeLa whole cell AP-site cleavage assay and results are summarised in

table 4.4.
Table 4.4 AP-site cleavage assay using HeLa WCE.
Inhibitor Percentage cleavage activity St Error Template
P111 2.8 0.9 M2
P96 4.7 1.1 M3
P118 7.6 0.8 M3
P147 10.2 1.2 M3
P126 13.0 2 M3
P128 18.5 1.5 M2
P133 30.6 1.9 M2
P116 32.7 2.3 M3
P115 39.8 -+ M3
P95 46.9 3 M3
P46 50.7 3.1 M3
P4 55.6 3.2 M3
P22 57.5 33 CRT
P125 61.1 4 M2
P30 80.7 5.8 M2
P65 108.1 7.2 M3
P93 112.2 74 M3

6/17 (P111, P96, P118, P147, P126 and P128) showed more than 80%

inhibition of AP site cleavage in WCE implying that they are highly specific

and potent inhibitors. While 2/17 (P65 and P93) did not block AP site cleavage

activity using WCE. 9/17 (P133, P116, P115, P95, P46, P4, P22, P125, and

P30) exhibited mild to moderate inhibition (20-80% inhibition).
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4.6.7 Kinetic analysis of P118

To evaluate mechanism of action of APEI inhibitor, kinetic analysis was
performed. P118, a candidate inhibitor was taken for exploratory kinetics
analysis.

50 nM of APEI protein was incubated at room temperature for 30 minutes
without or with P118 (5 uM, 10 uM and 20 puM). DNA substrate was then
added to a final concentration of 100 nM, 200 nM and 500 nM (in 40 pl final
volume), and enzyme activity was allowed to proceed for 30 minutes at 37 °C.
The percentage APE1 cleavage activity at various concentrations was
calculated as the relative net fluorescence signal in the presence of inhibitor to
compare to reactions without inhibitor. Lineweaver-Burk plots and kinetic
parameters (ke and Kyy) were determined from 8 independent data points. The
results showed that Ky and k., decreased at each inhibitor concentration
(compared to no inhibitor) and the k. /Km decreased at increasing inhibitor

concentration (Figure 4.11).
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5 uM 375 994 27
10 uM 1654 1880 12
20 uM 600 457 0.76

Figure 4.11 Kinetics analysis of P118. Shown are the Lineweaver-Burk plots and
kinetic parameters determined from 8 independent data points (note: error bars are in
some cases too small to see). The APE] inhibitor was tested at three dose levels (5uM,
10pM, 20puM) and oligonucleotide substrate was evaluated at 3 different
concentrations (100 nM, 200 nM and 500 nM). The reaction was performed as
described in methods. Ky, ke decreased at each inhibitor concentration (compared to
no inhibitor and the k.,/Ky decreased at increasing inhibitor concentration. The data is
consistent with uncompetitive inhibition.

The data is consistent with the conclusion that P118 is uncompetitively
inhibiting APE1 enzyme. However, the possibility that P118 operates as a
weak uncompetitive inhibitor (meaning it binds the protein-DNA substrate
complex) cannot be excluded, as a reproducibly lower Ky in the presence of

the P118 is observed, though this is unlikely.
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4.6.8 AP-site cleavage assay using D148E polymeric variant

of APE1

The DI148E polymorphic variant of APEl has been implicated in cancer
predisposition including melanoma [192, 193, 195]. In addition, the D148E
polymorph may also alter ionising radiation sensitivity [197]. To test if isolated
inhibitors would have differential activity against the D148E variant compared
to the wild-type protein, AP-site cleavage activity of DI48E variant was
performed. In this assay 50 nM of DI48E APE1 polymorphic variant was
incubated in a buffer system of 50 mM Tris-HCI, pH 8.0, 1 mM MgCl, , 50
mM NaCl, 2 mM DTT at 37 °C, and 5 nM of DNA substrate with and without
the presence of P118. The incubation time was set to 30 minutes.

Although the AP-site cleavage activity of D148E variant was similar to that of
the wild type (Figure 4.12 a), consistent with a previous report [190], figure
412 b demonstrates that for P118, the ICso for APEl inhibition was

significantly reduced (by 50.5%) for the D148E protein (5.56 pM) compared to

wild type (11.6 uM).

144



(a)

—
N

-

-
f=3

% APE1 cleavage activity

D148E
"WT
(b) 0
i D148E
&
E 100
e
O
® 80
(1]
4
S 60
3]
@
T 40
w
o 20
<
X 0
100 50 10 5 0.1 0.05 0.005
P118 (uM)

Figure 4.12 Testing AP-site cleavage activity in wild-type and D148 polymorph.
(a) The figure shows that AP-site cleavage activity was similar in both wild-type and
the D148E polymorph. (b) DI148E was more sensitive to inhibition by P118 compared
with wild type. All experiments were performed in triplicates and the results represent
the Mean + S.E.
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4.7 Discussion

Biochemical screening described in this chapter identified several specific and
potent APEI inhibitors.

Primary screening against APEl identified 31 potential inhibitors. 7 were
quencher and were excluded from further analysis. Counter screening of the
remaining 24 hits against endonuclease IV isolated 17/24 specific APEl
inhibitors. Therefore 11.5% of the total compounds screened were specific
APE] inhibitors.

The ability of 7/24 compounds examined to inhibit the activity of endonuclease
IV provides presumptive evidence that the compounds indeed act by
interaction with DNA rather than by blocking the enzyme.

To assess potency and specificity, 17/24 inhibitors were screened in WCE
assay. WCE is a good system to screen for compounds that may have non-
specific binding to other cellular proteins. 6/17 (P96, P111, P118, P126, P128
and P147) exhibited more than 80% inhibition in the WCE assays, implying
strong potency and specificity. In addition, the inability of compounds P65 and
P93 to show AP-site cleavage activity in the WCE assay implies that these
compounds have ‘off target’ non-specific protein-binding effect and suggests
that they are unlikely to be a good development candidates.

Moreover, to provide an insight into the mechanism of action of the specific
inhibitors on APE1 protein, a kinetic analysis was conducted using P118.
Kinetic analysis has shown a decreased K, ko (compared with no inhibitor)
and decreased the kcy /Ky implying uncompetitive inhibition. Future co-
crystallization experiments in the presence of DNA are likely to provide further

information regarding the exact mechanism of action of this compound.
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D148E variant of APE1 was more sensitive to inhibition by P118. This
provides evidence that APE1 inhibitors may be more effective in blocking the
endonuclease activity of the DI48E polymorphic variant, a common

polymorph associated with cancer predisposition, compared with the wild type.
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Chapter 5

Cell based investigations
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5. Cell based investigations

5.1 Introduction

As discussed in chapter 3 and chapter 4, using virtual screening and
biochemical screening I isolated several specific and potent inhibitors of APEI.
Six specific APE1 inhibitors (P96, P111, P118, P125, P126, P128 and P147)
were taken for detailed cell based analyses.

Preclinical studies discussed in chapter 1 demonstrate that APEl
depletion enhance cellular sensitivity to a wide range of DNA base damaging
agents. The DNA base excision repair (BER) pathway is critically involved in
the repair of bases that have been damaged by alkylating agents such as
temozolomide that is routinely used for the treatment of patients with advanced
melanoma and glioma [12]. In addition, BER may also be involved in the
repair of damage induced by nucleoside analogues (such as gemcitabine) that
are commonly used in patients with pancreatic cancer [223].

The ability of the isolated APE1 inhibitors to potentiate chemotherapy
cytotoxicity was tested in MTS and clonogenic survival assays. The assays
were undertaken in a panel of human cancer cell lines: MeWo (Melanoma),
SK-Mel30 (Melanoma), US9MG (Glioma) and PANC1 (Pancreatic) cancer

cell lines. All experiments were performed in triplicates.

5.1.1 Alkylating agents

Alkylating agents are highly reactive electrophilic compounds that

interact chemically with nucleophilic centres in organic macromolecules such
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as DNA. Alkylating agents are broadly classified into; mono-functional and bi-
functional alkylating agents.

Monofunctional alkylating agents include methyl methane sulfonate
(MMS), temozolomide, dacarbazine, procarbazine and others. These agents
have single reactive group (such as methyl or other alkyl groups) and interact
covalently with single nucleophilic centres in the DNA. Such reactive sites are
present in all four bases, but they are attacked with different affinities and
specificities. Most reactive sites are in the ring nitrogen atoms, in particular N7
of guanine (N7mG) and N3 of adenine (N3mA). Moreover, alkylation can also
occur at the less nucleophilic oxygen atom such as O6 position of guanine
(O6mG). O6mG is predominantly carcinogenic because of its miscoding

properties and is processed by 06-alkylG-DNA alkyltransferase (MGMT) that

directly repairs O6mG the damage in single step. N7mG is the most common
lesion but is relatively non-toxic. N3mA is a more minor lesion but is highly
cytotoxic because it blocks DNA replication. N7mG and N3mA are repaired by
the BER machinery [41, 42, 264].

Bifunctional alkylating agents such as (BCNU [1,3-bis(2-chloroethyl)-
l-nitrosoureas], cyclophosophamide, mitomycin C, mechlorethamine
hydrochloride (nitrogen mustard), busulfan (methane sulfonic acid esters) and
others induce labile alkylated bases and more complex lesions including intra-

or inter-strand crosslinks[41].

S.1.2 Doxorubicin is an anthracycline antibiotic that is commonly used in

the treatment of solid tumours such as breast cancer. Doxorubicin intercalate in

between DNA base pairs leading to DNA cross linking and interfere with DNA
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unwinding, strands separation and helicase activity. As a result doxorubicin
blocks DNA transcription and replication. In addition doxorubicin also was
shown to inhibits topoisomerase II activity and it can also induce apoptosis
[265]. Since DNA damage induced by doxorubicin is not repaired by BER, it

was used as a negative control for cytotoxicity analysis.

5.2 Results

5.2.1 Western blotting analysis

SK-Mel30, MeWo, USOMG and PANCI cancer cell lines were initially tested
for APEl expression. Western blotting analysis showed robust APEI

expressions in these cell lines (Figure 5.1 and 5.2).

B-Actin
40KDa ==
APE1

30KDa ==

o
™
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s 3
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= =

Figure 5.1 \’_Vestc.rn blotting. APE1 expression in, SK-Mel30 and MeWo melanoma
cancer cell lines is shown here. APE] (36.5 KDa) is highlighted in green. B-Actin
(red) is shown as a loading control.
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Figure 5.2 Western blotting. APE] expression in US9MG (Glioma) and PANCI
(pancreatic) cancer cell lines is shown here. APEI (36.5 KDa) is highlighted in green.
B-Actin (red) is shown as a loading control.

5.2.2 Cytotoxicity of APE1 inhibitors in cancer cell lines

5.2.2.1 CellTiter 96® AQueous Non-Radioactive Cell

Proliferation Assay (MTS)

5.2.2.1.1 Intrinsic cytotoxicity of APE1 inhibitors

To investigate biological consequences of APEI1 inhibitors MTS cell
proliferation assay was initially undertaken. At the time of conducting this
research P125 and P126 were not commercially available and the previous stocks were
not sufficient to pursue the cell based investigations and therefore were excluded.
P96, P111, P118, P128 and P147 were tested for their intrinsic toxicity at

different concentrations. Glso (the concentration needed to reduce the growth



of treated cells to half that of untreated cells) were calculated from these
studies. Table 5.1 summarizes the results in MeWo, SK-Mel30, PANCI1 and
U8IMG cancer cell lines. P96, P111 and P147 consistently showed a Glso of
more than 40 pM in all the four cancer cell lines tested. P128 showed a
considerable difference in Glsp [8 pM for SK-Mel30 to around 35-40 uM to
other cancer cell lines]. P118 exhibited a Glso of 8-18 uM which is comparable
to its ICso (11.6 pM) measured in the biochemical assays. Figures 5.3 a, b, ¢
and d show examples of dose dependant inhibition of cellular proliferation by

P118 in cancer cell lines.
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5.2.2.1.2 Potentiation of cytotoxicity of base damaging agents by

APE]1 inhibitors

The ability of P96, P111, P118, P128 and P147 to potentiate the
cytotoxicity of DNA base damaging agents was tested. APE1 inhibitors were
tested well below Glso. Monofunctional alkylating MMS was used in these
studies.

Table 5.2 summarizes the results for all inhibitors. P118 demonstrated
consistent ability to potentiatt MMS cytotoxicity in all the four cancer cell
lines (see also Figures 5.4, 5.5, 5.6 and 5.7). Unlike P118, compound P96,
P111, P128 and P147 did not show any potentiation of cytotoxicity of MMS.
Figure 5.8 shows results of P96, P111, P128 and P147 potentiation experiments

in SK-Mel30 cancer cell line.

Table 5.2 This table summaries the results for potentiation experiments. (-) indicates
that potentiation was not observed even at Gl

Inhibitor | MeWo SK-Mel30 USOMG PANC1

P96 - - - -
P111 ~ - - -
P118 | 5uM 10pM 10uM 10uM
P128 - - - -

P147 - - o -
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Figure 5.4 MTS assay in MeWo cells. P118 (5 uM) significantly potentiated the
cytotoxicity of MMS in MeWo cell line. All experiments were performed in triplicates
and the results represent the Mean + S.E.
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Figure 5.5 MTS assay in SK-Mel30 cells. P118 (10 uM) significantly potentiated the
cytotoxicity of MMS in SK-Mel30 cell line. All experiments were performed in
triplicates and the results represent the Mean + S.E.
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Figure 5.6 MTS assay in PANCI1 cells. P118 (10 pM) significantly potentiated the
cytotoxicity of MMS in PANCI cell line. All experiments were performed in
triplicates and the results represent the Mean + S.E.
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Figure 5.7 MTS assay in US9MG cells. P118 (10 uM) significantly potentiated the
cytotoxicity of MMS in U8YMG cell line. All experiments were performed in
triplicates and the results represent the Mean + S_E.
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As P118 showed promising cytotoxicity potentiation in all the cell lines tested,
it was chosen for further analysis. The ability of P118 to potentiate the
cytotoxicity of temozolomide, a clinically relevant alkylating agent was then
tested.

P118 significantly potentiated the cytotoxicity of temozolomide in MeWo and
SK-Mel30 cell lines (Figures 5.9 and 5.10) and U8OMG glioma cells (Figure
5.11). These results were consistent with the potentiation effect noticed with

MMS alkylating agent (Figures 5.4, 5.5 and 5.7).
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—a— Control
100 —0—P118 (5uM)
80
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% Cell Growth
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Temozolomide (pM)

Figure 5.9 MTS assay in MeWo cells. P118 (5 uM) significantly
potentiated the cytotoxicity of temozolomide in MeWo cells. All
experiments were performed in triplicates and the results represent the
Mean £ S.E.
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Figure 5.10 MTS assay in SK-Mel30 cells. P118 (10 pM)
significantly potentiated the cytotoxicity of temozolomide in SK-
Mel30 cells. All experiments were performed in triplicates and the

results represent the Mean = S.E.
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Figure 5.11 MTS assay in US9MG cells. P118 (10 uM) significantly
potentiated the cytotoxicity of temozolomide in USOMG cells. All
experiments were performed in triplicates and the results represent the
Mean + S.E.
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To exclude non-specific activity and potentiation, I conducted toxicity
studies using doxorubicin. P118 did not potentiate the cytotoxicity of
doxorubicin in melanoma (SK-Mel30) and glioma cell line (U89MG) (Figures

5.12 aand b).
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5.2.2.1.3 Investigation in HUVEC endothelial cells

In order to investigate whether P118 was toxic to noncancer cells, toxicity
analyses were conducted in HUVEC endothelial cells. Figure 5.13 shows that
P118 was relatively non-toxic to HUVECs compared to MeWo, SK-Mel30,

U89MG and PANCI1 cancer cell lines.

. HUVEC
m SK-Mel30
[ PANC1
=8 UBOMG
MeWo

% Cell Growth

\
§
\
\
§
\

0 5 10 20
P118 (uM)

Figure 5.13 MTS assay in HUVEC, SK-Mel30, PANC1, USYMG
and MeWo cells. HUVEC, SK-Mel30, PANC1, USO9MG and MeWo
cells were exposed to increasing concentrations of P118. HUVEC was
much less sensitive to P118 compared to SK-Mel30, PANCI1, USOMG
and MeWo cells. All experiments were performed in triplicates and
the results represent the Mean + S.E.

Whereas P118 at 20uM produced 90%, 83%, 75% and 60% cell killing in
MeWo, PANCI1, U89Mg and SK-Mel30 cancer cell lines respectively, it
caused only 14% cell killing in HUVEC cell normal endothelial cell line.

These results imply selectivity of P118 on cancer cells (Figure 5.13).

5.2.2.2 Growth curve

Previous studies have shown that APE1 plays a vital role in controlling cell

growth. APE1 knockdown using siRNA results in a significant decrease in cell
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growth with increased apoptosis in cancer cell lines [178, 183, 201]. Moreover,
a recent study by Vascotto et al has shown that APE1 down-regulation by
siRNA can have a direct impact on cell growth interfering with RNA quality
control mechanism [266]. Blocking APE1 repair activity by chemical inhibitor
was also shown to block cell growth and proliferation in glioblastoma cells
[255].

Therefore I conducted a series of growth curve experiments in MeWo, SK-
Mel30, PANC1 and US9MG cancer cell lines. In these experiment, cells where
incubated with different concentrations of P118 and cell duplication times were
calculated over 4 days. In MeWo cell line, P118 at 5 uM and 10 pM caused a
significant decrease in the cancer cell growth rate (Figure 5.14 a). While at 20
M, P118 significantly impaired cancer cell growth. Similar results were also
seen in SK-Mel30 cell lines (Figure 5.14 b). P118 also showed a dose
dependent growth inhibition of PANC1 and U89MG (Figures 5.14 ¢ and 5.14
d).

Results obtained from the growth curve experiments imply that P118 interferes

with cancer cell growth and is consistent with results obtained in MTS assays.
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Figure 5.15 Clonogenic assay in PANCI cell line. The presence of 5
uM of P118 significantly potentiated the cytotoxicity of MMS in
PANCI pancreatic cancer cell line. Results are consistent with that of
MTS assay (Figure 5.6). All experiments were performed in triplicates
and the results represent the Mean + S.E.

5.2.2.3 Clonogenic survival assay

Initially plating efficiency was assessed for MeWo, SK-Mel30, US9MG and
PANCI cells. 300 cells were plated and allowed to grow for 10-14 days.
Following incubation, number of colonies were counted and the plating
efficiency was calculated as (number of colonies formed/ number of cells
inoculated) x 100. As the plating efficiency for MeWo, SK-Mel30, USOMG
was low [5-10%] they were not tested in clonogenic assays. PANC1 had a
plating efficiency of more than 60% and was taken for potentiation experiment.
To evaluate the potentiation of cytotoxicity of DNA damaging agents by P118,
300 cells were plated in the absence or presence of P118 and allowed to adhere
to the plate for 1 hour. Cells were then exposed to MMS for 1 hour. Cells were

incubated in the presence and absence of P118. P118 significantly potentiated
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the cytotoxicity of MMS in pancreatic cancer cell lines (Figure 5.15). This

result is consistent with MTS assay results (Figure 5.6).

5.2.2.4 Migration assay

Wound healing assay is a rapid assay for assessing the cell migration. It is
performed by wounding a confluent monolayer cell culture and observing the
movement of cells into the freshly scratched area. Images are captured at
regular intervals to capture cell migration. The images are then analysed to
measure the percentage of cell migration compared to untreated control cell
line.

PANCI1 cell line monolayers were exposed to two different concentrations of
P118 (10uM and 20pM) and a wound was induced. Analysis of images taken
over 48 hours showed a significant dose dependant reduction in PANCI cell
migration. At 20upM a significant reduction was seen compared to 10uM
(Figures 5.16, 5.17, 5.18 and 5.19). Trials to study the migration assay in SK-
Mel30, MeWo (Melanoma) and U89MG (Glioma) cancer cell lines were not
successful because of the difficulty to induce wounds on monolayer cell culture

of these cancer cell lines.
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Figure 5.19 A histogram showing percentage wound area in PANCI cells in a
migration assay. The presence of 20uM of P118 results in a significant decrease in
wound healing in PANCI cells.

5.2.3 AP site quantification

The aldehyde reactive ~ probe  (ARP)  reagent (N’-
aminooxymethylcarbonylhydrazino-D-biotin) reacts specifically with the
aldehyde group which is in the open ring form of AP sites. This reaction makes
it possible to detect DNA modifications that result in the formation of an
aldehyde group. In this assay treating genomic DNA containing AP sites with
the ARP reagent leads to AP sites being tagged with biotin residues. AP sites
can then be quantified using avidin-biotin assay followed by a calorimetric
detection of peroxidase conjugated to the avidin.

Fung et al. showed that APE1 down-regulation by RNA interference lead to an
accumulation of AP sites in the genomic DNA as assessed by the ARP assay

[97]. Therefore ARP assay was performed in US9MG and SK-Mel30 cells
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exposed to MMS in the presence or absence of specific APE1 inhibitor (P118).

All experiments were performed in triplicate.

Initially a standard curve for ARP assay was performed. The assay kit is
provided with DNA standards that contain a known number of AP sites (Figure
5.20). Quantification of the number of AP sites per 100,000 base pairs of DNA
in untreated cells, and in cells treated with P118 alone, MMS alone, or the

combination of P118 and MMS was then conducted.

Genomic DNA samples were extracted at 90 minutes after drug exposure as
discussed in the Methods. Using the same assay methodology as described by
Nakamura et al. [92], a significant increase in AP site accumulation was found
in U8YMG and SK-mel30 cancer cell lines treated with P118 alone. As
expected, MMS also caused an elevation in the level of AP sites. The
combination of MMS and P118 led to a further increase in AP site levels. This
data confirms that P118 inhibit APE1 activity in vivo (Figure 5.21 a and 5.21

b).
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Figure 5.20 Optimization of AP site quantification assay. Colorimetric assay for
DNA substrates with a known number of AP sites is shown here (a) and the data are
represented by x-y plot (b).
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5.2.4 Fluorescence activated cell sorting (FACS) analysis

APEL1 protein level was shown to be up-regulated during the S-phase of
the cell cycle [199]. This increase in APE1 allows efficient DNA replication
and helps ensure that the DNA template is free of mutagenic and blocking
lesions (such as AP sites) during the S phase. APE1 down-regulation by RNA
interference have been shown to promote apoptosis [97]. Therefore the ability
of P118 to alter the cell cycle response in cells was investigated. In this assay
FACS analysis was performed over a 48 hour time in SK-Mel30 melanoma
cancer cells. The cell cycle progression was monitored for the cell exposed to
10uM of P118 (Figure 5.22). Delayed S-phase progression and G2M
accumulation was noticeable at 24 hours, 36 hours and 48 hours time points.
Due to time constraints, [ was not able to undertake FACS studies in USOMG,

PANCI and MeWo cancer cell lines.
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Flgure 5.22 FACS analysis of SK-Mel30 cell line exposed to 10 pM P118. The
presence of P118 altered S-phase progression and led to G2M accumulation in SK-
Mel30 cells and was evident at time points between 24 hours and 48 hours.
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5.3 Discussion

The overall prognosis of advanced melanoma, glioma and pancreatic cancer
remains poor and strategies to improve tumour response to chemotherapy
remain a high priority. Blocking DNA repair may enhance cell kill in cancer
and improve outcomes [20, 267]. APE], a critical protein in BER, is involved
in the pathogenesis of glioma and melanoma. Elevated AP endonuclease 1
activity is frequently seen in human glioma tumours[200]. Moreover in
preclinical studies, -antisense oligonucleotides directed APE1 depletion in
SNB19, a human glioma cell line lacking O(6)-methylguanine-DNA-
methyltransferase, lead to potentiation of MMS and temozolomide cytotoxicity
implying that pharmacological modulation of APE1 is a promising strategy in
glioma [180]. A recent study has demonstrated that microphthalmia-associated
transcription factor (MiTF), a key transcription factor for melanocyte lineage
survival, regulates APE!l expression. MiTF-positive melanoma cell lines
accumulated high levels of APE1 [268]. In a separate study, down-regulation
of APE1 using antisense constructs promoted apoptosis in melanoma cell lines
[188]. A recent study by our group showed that a sub-cellular localization of
APEl in pancreatico-biliary cancer was correlated with poor prognostic
features such as perineural invasion, vascular invasion and poorly
differentiated tumours[215]. Therefore in the current project, APE1 inhibitors
were tested in glioma, melanoma and pancreatic cancer cell lines.

APEl expression was confirmed in all cancer cells. Intrinsic
cytotoxicity of APEI inhibitors was demonstrated in glioma, melanoma and
pancreatic cancer cell lines. This finding is consistent with the observation that

APE1 down-regulation in cancer cell lines promotes apoptosis, although non-
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specific toxicity at higher doses of these inhibitors cannot be excluded [188].
Interestingly, P118 was relatively non-toxic to HUVEC cells implying
selectivity to cancer cells. P118 was shown to potentiate the cytotoxicity of
DNA base damaging agents such as MMS and temozolomide. P118 did not
potentiate the cytotoxicity of doxorubicin implying that APE1 inhibitors
potentiate chemotherapy that only induce base damage and repaired through
BER and not by other pathways. P118 delayed cell growth consistent with
previous studies where APE1 knock down decreased cell growth rate[97, 183].
P118 also caused a significant inhibition of pancreatic cancer cell migration.
P118 led to accumulation of AP sites confirming target inhibition.
Accumulation of AP sites was seen with P118 alone or in combination with
MMS. This accumulation of AP sites results in delay of S- phase progression

and leads to G2-M accumulation.
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6. APE1 Knock down studies

6.1 Introduction

In chapter 5 it was shown the APEl inhibition by P118 potentiated the
cytotoxicity of DNA base damaging agents. The cytotoxicity of P118 was
associated with AP site accumulation in cells and resulted in S/G2M cell cycle
arrest. Moreover, P118 also inhibited cellular proliferation as well as cell
migration.

To complement studies using small molecule APE1 inhibitors and to provide
additional validation that APE1 depletion results in cytotoxicity potentiation, I
conducted APE1 knock down studies using shRNA technology.

The aim was to generate a stable APE1 knocked down glioma cell line and to
study the biological consequences of APE1 depletion.

shRNA Plasmids were purchased from SABiosciences, QIAGENE Company,
Frederick, MD, USA (table 6.1). These shRNA plasmids were designed by the
manufacturer to knock down the expression of APEl genes by RNA
interference. The plasmid vectors express a short hairpin RNA, or shRNA,
under control of the Ul promoter and the neomycin resistance gene (Figure
2.3). Neomycin resistance permits selection of stably transfected cells.

To generate a large quantity of plasmid ready for transfection into cancer cells
I initially amplified the plasmid in BL21(DE3) competent bacteria as described

below in methods.
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Table 6.1 A table showing the SureSilencing ™ shRNA kit components.

Component Specification Quantity
shRNA SureSilencing™ shRNA vector Four
NC Negative Control shRNA* vector One

6.2 Results

6.2.1 Transformation of BL21 (DE3) cells

The plasmids vectors carrying the APE1 shRNA knockdown sequence and the
scramble shRNA control were transformed into BL21(DE3) cells. The
transformation of these plasmid vectors were accomplished as follow:
Competent cells were incubated with plasmid DNA initially at 4 °C for 60
minutes and then heat shocked at 42 °C for 90 seconds. This procedure
facilitates the entry of the plasmid into the cell. Cells were then plated in agar
plates containing ampicillin for bacterial selection. The presence of ampicillin
resistant colonies would indicate successful transformation. To confirm
successful transfection the plasmids were extracted from ampicillin resistant
colonies using a maxiprep protocol (described in materials and methods).
Isolated plasmids were then restriction digested with Psz 1. Pst | generates two
bands of DNA containing 3827 and 991 base pairs respectively that can be
visualised in agarose gel electrophoresis (1%) (Figure 6.1).

The plasmid DNA was quantified by spectrophotometer (as described in

material and methods) and 0.40 pg of plasmid DNA was used in each

transfection experiments.
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6.2.2 Minimum effective dose determination

Prior to transfection, the minimum neomycin concentration (also called
minimum effective dose) that results in total cell killing of US9MG glioma
cancer cell line was determined. USOMG was exposed to increasing dose of
neomycin and a dose responses curve was plotted. As shRNA plasmids carry a
neomycin resistance gene mammalian cells transfected with this plasmid will
be resistant to neomycin compared to untransfected cells and should results in
neomycin resistance and normal cell growth. A dose response curve for

minimum effective dose of neomycin was generated as below.

UBIMG cells were seeded in 12-well tissue culture plates at 10%
confluence and incubated in a fresh media containing an increasing dose of
neomycin at concentrations 0, 100, 200, 400, 600, 800, and 1000 pg/ml. The
plates were then maintained in a humidified incubator at 37 °C and 5% CO,.
The media was replaced every 2 days with neomycin. On day 6, the plate with
neomycin reached confluence. The minimum concentration of neomycin that
kills all the cells is the effective concentration that will be used for the
selection. The cells in each well were counted and a dose response graph was
plotted (Figure 6.2). 800 pg of neomycin was demonstrated to be the minimum
killing dose of neomycin in US9MG cells. This concentration was used in the

subsequent experiments for selection after transfection.
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Figure 6.2 A histogram showing the minimum effective dose determination of
neomycin in glioma cell line. U8SOMG cells were seeded into each well of 12-well
plates to produce 10% confluence. A fresh media containing increasing dose of
neomycin was added to the well and plates were incubated at 37 °C. When the zero
dose well reached 100% confluence, cells were counted and a dose dependent toxicity
was demonstrated. 800 pg of Neomycin was the minimum dose that resulted in 100%
glioma cell death. This dose was considered as the effective dose and was used for
subsequent experiment as a selective concentration. All experiments were performed
in triplicates and the results represent the Mean + S.E.

6.2.3 APE1 knock down in US9MG glioma cell line

Out of 3 shRNA plasmids supplied by manufacturer a study by an MSc student
in the laboratory had identified one plasmid that was successful in knocking
down APEl in breast cancer cells. Therefore this plasmid was used in
transfection experiment in US9MG glioma cells.

The transfection of US89MG with shRNA plasmids was performed as below:
100 pl of Opti-MEM™ [ Reduced-Serum Medium was added into the
appropriate well of a 24-well cell culture plate to which 0.4 pg of APEI
ShRNA plasmid was then added and mixed by gently shaking. 3 pl of

SureFECT (transfection reagent) was added and mixed gently and the plate
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was incubated at room temperature for 20 minutes. US9MG cell line was
prepared for transfection by washing them with Dulbecco’s PBS without
calcium and magnesium. The cells were trypsinised and harvested by
centrifugation at 1000 rpm for 5 minutes, washed twice with Dulbecco’s PBS
without calcium and magnesium.

The cells were then counted by haemocytometer, recentrifuged and
resuspended in a fresh DMEM growth medium containing 10% fetal bovine
serum and 1% Non essential amino acids (NEAA), to a density of 1.6 X 10°
cells per ml. 500 pl of the cell suspension was added into the wells containing
the SureFECT-plasmid complexes. The suspension was mix gently and the
cells were incubated at 37 °C and 5% CO; for 48 hours. Cells were then
harvested and transferred to 6-well tissue culture plates. Two wells were used
per plasmid and each well was seeded at 10% confluent. A fresh media
containing neomycin at concentration of 800 pug/ml was added and the cells
were maintained at 37 °C and 5% CO; for 6-7 days. The media with neomycin

were replaced every 72 hours.

US9MG cells transfected with sShRNA plasmids were maintained under
neomycin antibiotic selection for about 6 weeks at a dose of 800 pg/ml. The
neomycin concentration was then lowered gradually from 800 pg/ml to 400
pg/ml and the cells were maintained under this selective concentration. In order
to confirm APEI knock down a western blot analysis was performed (Figure
6.3). Compared to wild type and cells treated with scrambled plasmids, cells
transfected with APE1 shRNA showed more than 90% knock down in APE1

expression,
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Figure 6.3 Western blotting showing shRNA knock down of APE1 expression in
U8SIMG cell line. The first lane is the wild type US9MG cell line where APE1 protein
is significantly expressed. The second lane is USOMG cell line transfected with
scrambled shRNA plasmid (negative control). APEl protein is still very well
expressed in this cell line. However, the last lane is US9MG cell line transfected with
APEI shRNA plasmid. APEI expression is decreased by more than 90% compared to

wild type control.

6.2.5 Biological consequence of APEl1 knock down in

USIMG cells

6.2.5.1 Growth curve

10° cells of wild type, scrambled and APE1 knocked down U8S89MG cells were
seeded into T25 tissue culture flasks and the cellular proliferation and doubling
time was monitored over four days incubation. The folds increase in cell
numbers compared to day 1 was plotted. APEl knocked down cells
demonstrated reduced cell proliferation compared to wild type and scrambled
control (Figure 6.4) this result is consistent with those seen with P118, a

specific inhibitor of APE1 (Figure 5.14 d , chapter 5).
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Figure 6.4 Hitograms shows the growth curve in wild type US9MG
and US9MG cell line transfected with scramled and shRNA
plasmids. 10° of USOMG wild type, and USOMG transfected with
screamled and shRNA plamids were seeded intoT25 tissue culture
flasks. The cell numbers were monitored over a period of four days
incubation and the folds increase in cell number compared to day 1
were calculated. APE1 knock down in US89MG glioma cancer cell line
results in significant decrease in the growth compared to wild type
cells and negative control. All experiments were performed in
triplicates and the results represent the Mean + S.E. (Note St Errors are
very small numbers)

6.2.5.2 CellTiter 96° AQueous Non-Radioactive Cell

proliferation and survival Assay (MTS)

To investigate whether knock down of APE1 in US9MG glioma cells line had
any biological consequence, MTS cell proliferation assay were undertaken and
compared to cells with normal expression of APE1. APEI knocked down cells
were significantly more sensitive to MMS compared to wild type and
scrambled USOMG (Figure 6.5). Similar sensitivity was also seen with
temozolomide (Figure 6.6). This result is consistent with those seen using

P118, a specific inhibitor of APE1 (Figure 5.7 and 5.11, chapter 5).
188



% Cell survival

% Cell survival

12

10

12

10

-@- Wild
-~ Scrambled

O~ Knocked down

0 100 200 300 400 500

MMS (1M)
Figure 6.5 MTS assay. APEl knock down in US89MG cell line
resulted in significant increase in MMS toxicity compared to wild cell
line and cells transfected with scrambled plasmid. All experiments
were performed in triplicates and the results represent the Mean + S.E.
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Figure 6.6 MTS assay. APE1 knock down in USOMG cell line
resulted in significant increase in temozolomide toxicity compared to
wild type cells and cells transfected with scrambled plasmid. All

experiments were performed in triplicates and the results represent the
Mean + S.E.
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6.3 Discussion
In the current chapter I have demonstrated APEI expression in US9MG glioma

cancer cell line and subsequently downregulated APE1 using shRNA. Down-
regulation of APEI not only inhibited the glioma cancer cell growth but it also
enhanced the sensitivity of U8IMG cancer cell lines to MMS and
temozolomide. These results are consistent with the results obtained in chapter
5 where P118 demonstrated decreased cancer cell growth and potentiation of
cytotoxicity. Moreover, the results presented here are also consistent with
previously published studies in other cancer cell lines [178, 183, 201, 266]. A
recent study by Naidu et al has shown that APE1 down regulation increases
sensitivity to ionising radiation in glioma cancer cells [221]. These studies,
including mine suggest that APE!1 inhibition could be promising strategy to

enhance chemotherapy and radiotherapy in glioma patients.
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Chapter 7

Biochemical analyses of P18
analogues
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7. Biochemical analyses of P118 analogues

7.1 Introduction

Structure-activity relationship (SAR) study is a key component to drug
discovery [269]. In the process of hit series generation, focus on compound series
with structureal similarities can generate analogues that can be tested for SAR
hypotheses. Computational models can be built to support the analogue design
process and predict the activity of test compounds [270].

In the previous chapters it was shown that virtual screening and
biochemical screening identified P118, a promising APE1 inhibitor. Structural
features and predicted pharmacological properties suggest that P118 is a potential
candidate for further drug development.

Furthermore, P118 resulted in decreased cancer cell growth, associated
with AP site accumulation and potentiation of cytotoxicity of MMS and
temozolomide in panel of cancer cell lines.

Therefore this PhD project was taken a step further to study P118
analogues

In virtual screening there are two types of techniques that can be used in
SAR studies: ligand-based design and structure-based design. Ligand-based
design methods capitalize on the fact that ligands similar to an active ligand are
more likely to be active than random ligands. Ligand-based approaches commonly
consider two- or three-dimensional chemistry, shape, electrostatic, and interaction
points (e.g., Pharmacophore points) to assess similarity. On the other hand
structure-based design attempts to use the 3D protein structure to predict which

ligands will bind to the target. Ligand similarity approaches require only a single
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active molecule, which may come from the literature, patents, or in-house
experimental data. P118 was therefore selected for a ligand-based similarity
search strategy.

Ligand-based Quantitative Structure-Activity Relationship (QSAR) approaches
require a number of active molecules spanning a wide range of activity against the
target receptor (three orders of magnitude is the minimum range). The quality of
the QSAR model depends to a large extent on the quality of the activity data, such
that they are reliable. QSAR models are usually built based on carefully acquired
binding or inhibition data.

To conduct the similarity search, the zinc search tool available online
(http://zinc.docking.org/choose.shtml) was used to sketch P118 structure in 2D. A
99% similarity search was chosen and the search resulted in fifty six P118

analogues.

7.2 Results

7.2.1 Biochemical screening

The structures of the fifty six P118 like analogues were physically examined by
Dr Charlie Laughton Reader in Molecular Recognition, School of Pharmacy,
University of Nottingham. Nine compounds were selected for biochemical
analysis (Table 7.1). Initial screening was conducted at 100uM.

Compounds were purchased and screened using the fluorescence based APEl AP-
site cleavage assay (as described in chapter 4). Compounds D, E, G, H and I
achieved more than 90% inhibition to AP endonuclease activity of APE1 (Figure
7.1 and Table 7.2). Compounds A, B and C could inhibit between 50-83% of the

total APE1 activity (table 7.2). Whereas compound F showed less than 40%
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inhibition of APE1 activity. The ICso was estimated by expanding concentration
as described previously (chapter 4). ICso ranged from 100 nM to more than 100
pM. Compounds D, E, G, H and I were more potent APE1 inhibitors and achieved
10-100 folds increase in APE1 inhibition compared to P118 (Table 7.2).

The compounds were then counter screened against endonuclease IV. All the nine
screened compounds had no inhibitory activity against endonuclease IV implying
that these compounds are specific for APE1 similar to P118 (Table 7.2). The
compounds were then tested for any intrinsic fluorescence quenching activity and
were all shown to be non quenchers (Figure 7.2). Therefore the data from the
biochemical assay confirm that the nine P118 analogues are specific APEI

inhibitors with ICsy ranging from 100 nM to >100 uM.
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Table 7. 1 A table shows the nine P118 analoques. XlogP = octanol/water partition
coefficient, Mwt. = molecular weight.

Compound

6.22 561.454

5.86 496.585

5.29 524.62

5.13 486.521

4.96 468.531
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7.3 Discussion

There were a large number of P118 analogues in the ZINC database and a 99%
similarity search identified 56 structural analogues.

Biochemical screening of the nine P118 analogues had shown that all the hits
were able to block APE1 (ICs0:100 nM - 100 uM). This confirms that the
pharmacophore of P118 is a consistent and potent APE1 inhibitor. Although
the mechanism of action of these analogues is currently unknown, their mode
of activity is very likely to be similar to P118. Kinetic analyses suggest
uncompetitive inhibition for P118. Co-crystalization studies, currently
underway in the laboratory, will provide further structural insights.

In conclusion, this small analogue series study provides convincing evidence

for further series expansion to enable further SAR studies.
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8. General discussion and conclusions

8.1 General discussion

Monofunctional alkylating agents are routinely used in the treatment of patients
with advanced melanoma and glioma. However, the response rate to
chemotherapy is modest and the overall prognosis is poor. The cytotoxicity of
alkylating agents is directly related to their propensity to induce genomic DNA
damage. However, the ability of cancer cells to recognize this damage and
initiate DNA repair is an important mechanism for therapeutic resistance that
negatively impacts upon therapeutic efficacy. Pharmacological inhibition of
DNA repair, therefore, has the potential to enhance the cytotoxicity of
alkylating agents and improve patient outcomes[20, 267].

The BER pathway is critically involved in the repair of bases that have been
damaged by alkylating agents such as temozolomide and dacarbazine [12].
Although there is more than one sub-pathway of BER, in most cases base
excision is initiated by a DNA glycosylase, which recognizes a damaged base
and cleaves the N-glycosidic bond, leaving a potentially cytotoxic AP site
intermediate [107]. This product is a target for the human APEl. The DNA
repair domain of APE] cleaves the phosphodiester backbone on the 5' side of
the AP site resulting in a single-strand break, which is further processed by
proteins of the BER pathway. APE! accounts for over 95% of the total AP
endonuclease activity in human cell lines[120]. In addition to its DNA repair
activity, APE1 also performs functions such as redox regulation (mediated
through a separate redox domain) and transcriptional regulation [156, 164,
167]. APE 1 is a member of the highly conserved exonuclease III family of AP

endonucleases, named after the E. coli homologue of APEl [101]. The
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endonuclease IV family of AP endonucleases, the prototypical member of
which is E. coli endonuclease IV [108], is structurally unrelated to APE1,
despite being able to carry out the comparable AP site incision reaction [103-
105].

Using either antisense oligonucleotides or RNA interference approaches,
several groups have reported that depletion of intracellular APE1 sensitizes
mammalian cells to a variety of DNA damaging agents [157, 179, 180]. In
melanoma cell lines, APE1 down-regulation led to increased apoptosis,
whereas APE1 overexpression conferred protection from chemotherapy- or
hydrogen peroxide-induced apoptosis [188]). Antisense oligonucleotides
directed APE1 depletion in SNB19, a human glioma cell line lacking O(6)-
methylguanine-DNA-methyltransferase, lead to potentiation of MMS and
temozolomide cytotoxicity [180].

In patient tumours, APE1 expression may have prognostic and/or predictive
significance. In a recent study by our group, APE1 expression was shown to
have prognostic significance in ovarian, gastrooesophageal and pancreatico-
biliary cancers [215]. APEl is also aberrantly expressed in other human
tumours and strong nuclear expression has consistently been observed in these
studies [271]. In head and neck cancer, nuclear localisation of APE1 was
associated with resistance to chemoradiotherapy and poor outcome [211], and
in cervical cancer, an inverse relationship between intrinsic radiosensitivity and
levels of APET has been demonstrated [218].

Preclinical and clinical studies suggest that APE1 is a viable anticancer drug
target. A drug discovery programme was initiated in our laboratory to identify

small molecule inhibitor-lead compounds of APE1 [23]. Fluorescence-based
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high throughput screening of a chemical library, as well as biochemical and
cellular investigations were undertaken. CRT0044876 (7-nitro-1Hindole- 2-
carboxylic acid) was identified and characterised by our group as the first small
molecule inhibitor of APE1 that potentiated the cytotoxicity of alkylating
agents such as temozolomide [23]. The ability of CRT0044876 to block BER
has also been demonstrated independently by other investigators [249, 251]. In
a recent study, BER inhibition using CRT0044876 was shown to confer
selectively enhanced cytotoxicity in an acidic tumour microenvironment [250].
However, the ability of CRT0044876 to block BER has not been consistently
demonstrated by other groups [248] implying that further work needs to be

done before a genuine lead inhibitor could emerge.

In the current PhD project I adopted a structure-based drug design
strategy to identify APEl inhibitors. In order to develop novel drug-like
chemotypes, a virtual screening approach was taken. The architecture of the
active site of APE1 in the absence and presence of bound AP-DNA indicates
that there is little or no remodelling of the active site upon substrate binding, a
feature that is suitable for a virtual screen [103, 104]. I have exploited the
structural features of APEI to develop an enhanced virtual screening strategy
and identified several novel small molecule inhibitors for further drug
development. Three new pharmacophore templates were designed in silico
(M1, M2 and M3) and a total of 1679 virtual hits with similarities to the
templates were identified (CRT template = 359, M1 template = 373, M2
template = 459 and M3 template = 488). Detailed biochemical screening

showed that 17/147 (11.5%) of the chemical library screened were potent
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APE] inhibitors in the biochemical assay. This confirms the validity of using
the virtual approach in identifying APEl inhibitors compared to direct
screening of a large chemical library approaches used in previous studies. In
these studies the APE1 inhibitor identified represented 0.02% [23], 0.5% [252],
0.005%[255] of the chemical library screened. However, the majority of the
compounds isolated in my PhD study belonged to the M3 template which bears
an additional heteroaromatic side chain that can access a subsidiary cleft in one
branch of the ligand-binding. Although the structural details of M3 template
binding to APEI active site is unknown, cocrytallization trials may provide
structural insight to guide a rational drug-design strategy.

My approach allowed the identification of several novel APE1 inhibitors. The
hits have potential for series expansion and further drug development. I have
also presented preclinical data to support APE1 modulation as a particularly
promising new strategy in melanoma and glioma where alkylating agents
remain an important treatment modality. In addition, APE1 modulation may
also be a promising strategy in pancreatic cancer.

In this study, I also provide evidence for the first time that certain APEl
inhibitors may be more effective in blocking the endonuclease activity of the
APEl DI148E polymorph a common polymorph associated with cancer
predisposition compared with the wild type. The inability of seventeen of the
twenty four compounds examined to inhibit the activity of endonuclease IV
provides presumptive evidence that the compounds indeed act by interaction
with APE1 rather than by obscuring the abasic site on the DNA substrate.
Moreover, the kinetics analysis has provided insight into the mechanism of

action of the inhibitor. I have shown that P118 decreased Ky, ket (compared
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with no inhibitor) and decreased the k.,/Ky implying uncompetitive inhibition.
Future cocrytallization experiments in the presence of DNA are likely to
provide further information regarding the exact mechanism of action of this
compound. To assess potency and specificity of our compounds, I screened
their ability to block AP-site cleavage activity using WCE. This is a good
system to screen for compounds that may have non-specific binding to other
cellular proteins. 6/17 (35.3%) specific inhibitors identified by fluorescence-
based APE1 AP-site, (P96, P111, P118, P126, P128 and P147), exhibited more
than 80% inhibition in the WCE assays, implying strong potency and
specificity.

In order to provide preclinical evidence that blocking the repair domain
of APEL1 is a potential treatment strategy, I have conducted studies in glioma,
melanoma and pancreatic cancer cell lines. I confirmed APE1 expression in
these cancer cell lines. I then confirmed accumulation of AP sites in vivo in
cells exposed to inhibitor, providing direct evidence of target inhibition in vivo.
Intrinsic cytotoxicity for several of the inhibitors was demonstrated in glioma,
melanoma and pancreatic cancer cell lines, a finding consistent with the
observation that APEl down-regulation in melanoma cell lines promotes
apoptosis, although non-specific toxicity at higher doses of the compound
cannot be excluded in our study [188]. Interestingly, the inhibitors were
relatively non-toxic to HUVEC cells implying selectivity to cancer cells.

In a recent study, BER inhibition using CRT0044876 was shown to confer
selectively enhanced cytotoxicity in an acidic tumour microenvironment [250]
suggesting a further novel opportunity to target tumours. I then showed

potentiation of MMS and temozolomide cytotoxicity in glioma, melanoma and
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pancreatic cancer cell lines. However, P118 did not potentiate doxorubicin
toxicity in these cell lines implying that APEl inhibitor potentiates
chemotherapy that induce base damage and repaired through BER. Moreover,
potentiation of cytotoxicity was not demonstrated in HUVEC cells, again
implying selectivity to cancer cells. These studies indicate that APEl
inhibitors, either alone or in combination with chemotherapy, may be a
promising strategy in cancer. To complement studies using small molecule
APE] inhibitors, APE1 knockdown in US89MG was performed using shRNA
approach. The results were consistent with previously published studies in
other cancer cell lines[178, 183, 201, 266]. Studies of P118 like analogues
showed that most of these analogues were consistent in their inhibition of
APE1 suggesting that P118 is a suitable target for further synthetic drug
design.

Following the initial identification of APE1 inhibitor by our group, a
number of other groups have been working on the development of APE1 DNA
repair inhibitors. Seiple et al. have identified the potential of arylstibonic acids,
which possess inherent inhibitory activity in a fluorescence-based high-
throughput screen [252]. Simeonov et al. utilized a similar fluorescence
screening assay to identify three compounds (6-hydroxy-DL-DOPA, Reactive
Blue 2 and myricetin) which potentiatt MMS cytotoxicity in HeLa cells
associated with a quantifiable increase in AP site accumulation. Modelling
studies of 6-hydroxy-DL-DOPA suggest that it docks to the APE1 active site in
a manner similar to CRT0044876 [256]. Bapat ef al. modified the previously-
described fluorescence assay to identify the novel inhibitor AR02, which is

able to selectively block APEl DNA repair function in glioma cells and
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potentiate cytotoxicity of alkylating agents [255]. Zawahir et al. performed an
in silico pharmacophore model-based screen to identify 21 potent and specific
inhibitors. It is interesting to note that APE1 inhibitors identified to date share
some common features such as one or two carboxylate groups arranged around
a hydrophobic core bearing structural similarity to the 3’- and 5’-

deoxyribosephosphate groups on abasic DNA [252, 254].

In conclusion, these studies including two reports from our group [215, 272],

confirm the validity of APE1 as an emerging anti-cancer drug target.
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8.2 Summary of key findings

1. Three potential APE1 inhibitor templates (M1, M2, and M3) were designed
based on APEl active site crystal structure and CRT0044876 (first
identified APE1 inhibitor).

2. Virtual screening of (2.6 million) chemical library identified 1679 hits with
similar structures to the designed templates.

3. 1679 hits were ranked based on their binding affinity calculated by virtual
docking onto APE1 active site.

4. The top 25% of hits (n = 420) were selected. 250/420 were shortlisted based
on their pharmaceutical properties. 147/250 chemical compounds were
available for biochemical analyses.

5. Biochemical screening of 147 drug-like candidates identified 38 potential
hits. 6/38 were potent and specific APE1 inhibitors (P96, P111, P118, P126,
P128 and P147). The ICs, for these hits ranged from 50 nM- 16 pM for
inhibition of APE1 activity.

6. Kinetic analysis conducted on P118 suggests an uncompetitive inhibition for
the DNA repair domain of APE1.

7. P118 potentiated the cytotoxicity of DNA damaging agents in a panel of
cancer cell lines.

8. P118 was relatively non toxic to HUVEC endothelial cells implying
specificity to cancer cell lines.

9. P118 did not have any effect on damaging agents that are repaired in
pathways other then BER (doxorubicin).

10.  Potentiation of cytotoxicity of base damaging agents was associated

with a delay in S-phase progression and G2M accumulation.
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11.  P118 alone caused significant accumulation of AP sites in the genomic
DNA compared to untreated cells. In combination with methylating agents,
P118 caused further accumulation of AP sites.

12.  P118 decreased pancreatic cancer cell migration in a dose dependant
manner.

13. Biochemical screening of P118 analogues confirmed that the
pharmacophore of P118 was consistent in blocking APE1 endonuclease
activity.

14. P118 and its analogues represent the second generation of APEl-
targeting compounds for blocking BER during cancer chemotherapy.

15. My PhD project provides further confirmatory evidence that APE1 is an

emerging anti-cancer drug target.
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8.3 Suggestions for future studies

. Synthetic chemical design of P118 analogues is necessary to create more
powerful structure—activity relationship profiles and subsequently high-
affinity selective compounds.

. Characterization of the binding mode of one or more of the current
inhibitors by X-ray crystallography to facilitate the rational design of
APE]1 inhibitors that enhanced potency.

e  Evaluate P118 inhibitor or its analogue in tumour xenograft models to
confirm activity in vivo.

o Evaluate APE1 inhibitors as radio-sensitizers in glioma and other cancer
models.

o Evaluate APE1 inhibitors as agents for synthetic lethality strategy in

tumours that are deficient in homologous recombination.
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