
Advanced document analysis and
automatic classification of PDF I

documents

by William LQvegrove, BSc.

Submitted to the University of Nottingham for the degree of Doctor of PhUosophy, December, 1996

Acknowledgements

I would like to thank the following persons for their help and contributions
towards this thesis.

My supervisor, Leon Harrison, my research group leader, David Brailsford
and my advisor, David Elliman, for expert advice in the domains of electronic
publishing and artificial intelligence.

My parents, Gillian and Michael for their constant support and
encouragement.

My colleagues in the Electronic Publishing Research Group at the University
of Nottingham for all the advice they have given me over the years: Paul, Phil,
Steve, Dave, Peter, Wendy and Eddie.

Liz McQuarrie and the Acrobat Engineering Team at Adobe Systems for
introducing me to the finer points of the PDP document model.

William Lovegrove,
16/9/96

Contents

CHAPTER 1, INTRODUCTION ••••••••.••••••••.•.••.......•••..•••.•.••• ~•••••.•.•...••....•.•••••••• 10

CHAPTER 2, CONTEMPORARY ELECTRONIC DoCUMENT FORMATS ••••••••18
2.1 INTRODUCTION 19
2.2 ELECTRONI~ DocUMENT DEFINITIONS 19
2.3 LOGICAL DOCUMENTS 21

2.3.1 SGML 22
2.3.1.1 The document type definition 23

2.3.2 HTML 23
2.4 GEOMETRIC DocuMENTS 25

2.4.1 PAGE DESCRIPTION LANGUAGES 25
2.4.2 POSTSCRIPT 26
2.4.3 nm PORTABLE DocuMENT FORMAT 26

2.4.3.1 The PDF document model 28
2.5 OFFICEDocuMENT ARCHITECTURE. 29

CHAPTER 3, DoCUMENT ANALYSIS ••32
3.1 INTRODUCTION 33
3.2 LITERATURE SURVEY 33

3.2.1 DocUMENT IMAGE PREPROCESSING 34
3.2.2 PAGE SEGMENTATION AND SEGMENT CLASSIFICATION 35

3.2.2.1 Top-down segmentation strategies 36
3.2.2.2 Bottom-up segmentation strategies 40
3.2.2.3 Hybrid segmentation strategies 43
3.2.2.4 An assessment of Page Segmentation strategies 51

3.2.3 SEGMENTED GEOMETRIC REGION CLASSIFICATION TECHNIQUES 54
3.3 INVESTIGATIVE DOCUMENT ANALYSIS RESEARCH 58

3.3.1 DIRECTEDK-CLUSTERING - RECOG 59
3.3.1.1 Discussion of the RECOG results 59

3.3.2 EXAMINATION OF TIIE PIXEL PROFILES OF CHARACTERS 60
3.3.3 BASIC DocUMENT ANALYSIS OF PDF 64

3.3.3.1 Typeface comparison 64
3.3.3.2 Prototype segmentation techniques 66

CHAPTER 4, DoCUMENT UNDERSTANDING 72
4.1 INTRODUCTION 73
4.2 LITERATURE SURVEY 75

4.2.1 ISlDTANI's FORM UNDERSTANDING 75
4.2.2 WATANABE'S DOCUMENT DEFINITIONS 76

4.2.2.1 Understanding Form documents 77
4.2.2.2 Understanding Library Cards 78
4.2.2.3 Understanding Japanese newspapers 78

4.2.3 NIYOOI'S NEWSPAPER UNDERSTANDING SYSTEM 83
4.2.4 DENGEL'S BUSINESS DOCUMENT PROCESSING 86
4.2.5 SEMANTIc NET STRATEGIES 87

iii

Contents

4.2.6 TAYLOR'SDOCUMENfCLASSIFIER 87
4.2.7 EsPOSITo's LOGICALRULEBASE 89
4.2.8 SAITOH'STEXTAREAORDERINGSYSTEM 91

4.2.8.1 A discussion of Saitoh's approach 91
4.2.9 LAM's ADAPTIVEREADINGFRAMEWORK ' 93

4.3 UNDERSTANDING PDF DOCUMENTS: THE PROTOTYPE APPROACH 95
4.3.1 CLASSIFYINGBLOCKS 96

4.3.1.1 Finding main text blocks 98
4.3.1.2 Finding peripheral blocks 98

4.3.2 TAGGINGTITLEBLOCKSANDFINDINGLOGICALDEPENDENCIESBETWEENBLOCKS 99
4.3.2.1 Finding title blocks 1()()

4.3.3 PROTOTYPEDOCUMENfUNDERSTANDINGDlSCUSSION 106
4.4 SUMMARY 107

CHAPTER 5, FINAL SYSTEM DEVELOPMENT AND ENGINEERING •••••••••••109
5.1 A PRECISE DEFlNmON OF THE TASK 110

5.2
5.1.1 AFORMALHYPOTHESIS 112
SYSTEM DETAILS 114
5.2.1 THE STASIS INrERFACE 115
FINAL SYSTEM DOCUMENT ANALYSIS OF PDF 116
5.3.1 INvEsTIGATINGPDF GRAPIDCS 117
5.3.2 PROCESSINGTEXTLINES 118

5.3.2.1 'Democracy units' 119
5.3.3 ANALYSINGA BLOCK'S'LEADINGEDGES' 119

5.3.3.1 Segmenting a block using 'leading edge' values 121
5.3.4 ANALYSINGA BLOCK'SINTER-LINESPACING 122

5.3.4.1 Segmenting a block using inter-line spacing values 123
DEVELOPMENT AND DESIGN OF THE BLACKBOARD ARCHITECTURE 126
5.4.1 BLACKBOARDSYSTEMS 127

5.4.1.1 Knowledge sources 129
5.4.1.2 Blackboard data structures 129
5.4.1.3 The Controller 130
5.4.1.4 Problem solving behaviour and knowledge application 130
5.4.1.5 Example blackboard systems 130

5.4.2 OBJECT-ORIENfEOSYSTEMDESIGN 132
5.4.2.1 Analysis of the knowledge sources 133
5.4.2.2 Design of the blackboard 134
5.4.2.3 Design of the knowledge sources 135
5.4.2.4 Design of the controller 137
5.4.2.5 TailOring the blackboard framework to the document processing problem 138

ADVANCED DOCUMENT ANALYSIS: THE GENERATION OF DOCUMENT FEATURES 144
5.5.1 EXTRACTIONOFMEANINGFULDOCUMENfFEATURES 145
5.5.2 KNOWLEDGESOURCEALGORITHMS 150

5.5.2.1 Block KS ..: 151
5.5.2.2 Text Frequency KS 152
5.5.2.3 Graphic KS 153
5.5.2.4 Structure KS 153
5.5.2.5 Title KS 158
5.5.2.6 Super-title KS 161
5.5.2.7 Image KS : 161
5.5.2.8 Caption KS 162
5.5.2.9 Footer KS 163
5.5.2.10Header KS 163
5.5.2.11Peripheral KS 164
5.5.2.12Column KS 166
5.5.2.13DocumentClass KS 166

DEVELOPMENT OF A DOCUMENT CLASSIFlER •...••............•.. _. 167

5.3

5.4

5.5

5.6

iv

Contents

5.6.1 SPECIFICATIONOFTIlE TARGETLOGICALDOCUMENTCLASSES 168
5.6.1.1 Logical newspapers 169
5.6.1.2 Logical academic documents 169
5.6.1.3 Logical brochures 170
5.6.1.4 Logical forms l 170

5.6.2 CLASSIFICATIONTECHNIQUES 171
5.6.2.1 Basic classifier requirements 171
5.6.2.2 Production rule expert systems 171
5.6.2.3 Neural Net Classifiers 174
5.6.2.4 Development of the STASIS neural net classifier 177

5.7 SYSTEM OUTPUT 179

CHAPTER 6, ANALYSIS OF SYSTEM REsULTS 182
6.1 INTRODUCTION 183
6.2 DocuMENT ANALYSIS RESULTS 183
6.3 DocuMENT-ANALYSIS ERRORS 185

6.3.1 BAD API LINES 185
6.3.2 AsSIGNINGPOORLINEATTRIBlITES 186
6.3.3 BAD GEOMETRICBLOCKFORMING 187
6.3.4 DROPPEDCAPS 192

6.4 ADVANCED ANALYSIS RESULTS 193
6.5 ADVANCED ANALYSIS ERRORS 194

6.5.1 LINKINGERRORS 194
6.5.2 COLUMNFORMINGERRORS 195
6.5.3 BLACKBOARDDIAGNOSISERRORS 196

6.5.3.1 Hanging headers 196
6.5.3.2 Captions of diagrams 197
6.5.3.3 Peripheral entities 197

6.6 NEURAL NET CLASSIFICATION RESULTS 199
6.6.1 ACADEMICDOCUMENTS 199
6.6.2 NEWSPAPERDOCUMENTS 201
6.6.3 BROCHUREDOCUMENTS 202
6.6.4 FORMDOCUMENTS 204
6.6.5 SUMMARY 206

6.7 NEURAL NET CLASSIFICATION ERRORS 207
6.7.1 NEURALNETSHORTCOMINGS 211

6.8 A STATISTICAL ANALYSIS OF STASIS 212
6.8.1 EVALUATINGTIlE STATISTICS 213
6.8.2 EVALUATINGTIlE RUN-TIMEEFFICIENCYOFSTASIS' STRATEGY 216

CHAPTER 7, DISCUSSION AND CONCLUSIONS 219
7.1 RESEARCH SYNOPSIS 220
7.2 AN ANALYSIS OF STASIS' DOCUMENT PROCESSING STRATEGY 222
7.3 A UNIVERSAL DOCUMENT PROCESSING SYSTEM 226
7.4 CLOSING REMARKS AND CONCLUSIONS 233

REFERENCES••.••.•.....•.•.......•.••••••..•••.............••••.......................... ccxxxv

ApPENDICES •••.•••••.••..•..••••••••••••••••••••~••.•..••••••••••..•.••••••••••••••••.•.•.•••.•••..•..•. CCXI.,VI
APPENDIX I: STASIS SCREEN SHOTS CCXLVII
APPENDIX II: AN EXAMPLE DID CCLXVIII
APPENDIX III: RECOG CCLXX

v

List of Tables

CHAPTER 1, INTRODuCTION

CHAPTER 2, CONTEMPORARY ELECTRONIC DoCUMENT FORMATS

Table 1: Some portable document elements and their geometric attributes........................ 29

/

CHAPTER 3, DoCUMENT ANALYSIS
Table 2: Pavlidis' rules for merging column blocks.. 45
Table 3: Essential properties of the manhattan layout style.. 45
Table 4: Sivaramakrishnan's zone classes... 56
Table 5: Useful attributes of fonts 61

CHAPTER 4, DoCUMENT UNDERSTANDING
Table 6: Niyogi's physical newspaper structure.. 84
Table 7: Niyogi's logical newspaper structure 84
Table 8: Examples of Niyogi's rules from different knowledge hierarchies....................... 85
Table 9: Examples from Esposito's knowledge languages 90
Table 10: A list of the tags used in the prototype.. 97
Table 11: Rules for linking block A to block B 101

CHAPTER 5, FINAL SYSTEM DEVELOPMENT AND ENGINEERING

Table 12: STASIS knowledge sources and the knowledge they 'encapsulate' 133
Table 13: STASIS blackboard objects... 134
Table 14: STASIS processing stages 140
Table 15: Document features and their indexes. 145
Table 16: The number of documents used to train the STASIS classification net 177

CHAPTER 6, ANALYSIS OF SYSTEM REsULTS

Thble 17: The STASIS report for the STELLA.PDF document.. 200
Table 18: The STASIS report for the document SPAINO.PDF 202
Table 19: The STASIS report for THOMBRAD.PDF 203
Table 20: The STASIS report for TAXI1.PDF 205
Table 21: STASIS document analysis and classification statistics...................................... 213
Table 22: Run-time performances of STASIS... 217

CHAPTER 7, DISCUSSION AND CONCLUSIONS

vi

List of Figures

CHAPTER 1, INTRoDUCTION
Figure 1: The traditional document processing Venn diagram 15
Figure 2: A new approach to document processing 16

CHAPTER 2, CONTEMPORARY ELECTRONIC DoCUMENT FORMATS

CHAPTER 3, DoCUMENT ANALYSIS
Figure 3:
Figure 4:
Figure 5:

The projection profiles of a lower case 'u' in Times-Roman font...................... 62
The projection profiles of a lower case 'u' in Helvetica font. 63
Typical output from the prototype PDF processing system 70

CHAPTER 4, DoCUMENT UNDERSTANDING
Figure 6: The influence range of Saitoh's blocks... 92

CHAPTER 5, FINAL SYSTEM DEVELOPMENT AND ENGINEERING
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

Part of the tree of logical documents .
The Acrobat Exchange UJ. with the STASIS UJ .
A flow chart of the segmentation routine based on inter-line gap values .
A prefabricated multi-column page of text segmented by STASIS .
A blackboard framework .
The blackboard and blackboard object class diagram .
The STASIS knowledge source class diagram ..
The controller mechanism .
STASIS object diagram .
A flow chart of the main text style finding algorithm .
Parts of characters .
Various umbrellas of influence .
A decomposed page and its column histogram ...
A two layer neural network .
The Sigmoidal Activation Function .
The STASIS document data structure .

110
115
124
125
129
135
137
138
138
154
156
157
167
175
176
180

CHAPTER 6, ANALYSIS OF SYSTEM REsULTS
Figure23: A page portion of 'Le Figaro' showing a single API text line definition error. 186
Figure 24: A text line with invalid geometric attributes 188
Figure 25: Bad block forming example 'N 189
Figure 26: Bad block forming example 'B' 190

vii

List of Figures

Figure 27: A paragraph formatted with a dropped cap style 192
Figure 28: A document formatted with 'hanging headers' 197
Figure 29: A document portion with a mis-classified header block 198
Figure 30: A document portion showing the a mis-classified footer block 199
Figure 31: An academic document, STELLA.PDF 200
Figure 32: A newspaper document, SPAINO.PDF 201
Figure 33: A brochure document, THROMBRAD.PDF 203
Figure 34: A form document, TAXll.PDF 205
Figure 35: A page of a logical brochure 208
Figure 36: The front page of a logical form document.. 209
Figure 37: The back page of a logical form document 210
Figure 38: STASIS statistics charts.. 214

CHAPTER 7, DISCUSSION AND CONCLUSIONS
Figure 39: The first tier of the universal document processing system 231
Figure 40: The second tier of the universal document processing system........ 232

ApPENDICES

Figure A: An SGML mark-up for a figure.. cclxviii
Figure B: SGML DID declarations for a figure mark-up cclxviii

viii

Abstract

This thesis explores the domain of document analysis and document classification
within the PDF document environment The main focus is the creation of a document
classification technique which can identify the logical class of a PDF document and so
provide necessary information to document class specific algorithms (such as document
understanding techniques).

The thesis describes a page decomposition technique which is tailored to render the
information contained in an unstructured PDF file into a set of blocks. The new
technique is based on published research but contains many modifications which enable
it to competently analyse the internal document model of PDF documents.

A new level of document processing is presented: advanced document analysis. The aim
of advanced document analysis is to extract information from the PDF file which can be
used to help identify the logical class of that PDF file. A blackboard framework is used
in a process of block labelling in which the blocks created from earlier segmentation
techniques are classified into one of eight basic categories. The blackboard's knowledge
sources are programmed to find recurring patterns amongst the document's blocks and
formulate document-specific heuristics which can be used to tag those blocks.

Meaningful document features are found from three information sources: a statistical
evaluation of the document's esthetic components; a logical based evaluation of the
labelled document blocks and an appearance based evaluation of the labelled document
blocks. The features are used to train and test a neural net classification system which
identifies the recurring patterns amongst these features for four basic document classes:
newspapers; brochures; forms and academic documents.

In summary this thesis shows that it is possible to classify a PDF document (which is
logically unstructured) into a basic logical document class. This has important
ramifications for document processing systems which have traditionally relied upon a
priori knowledge of the logical class of the document they are processing.

ix

Chapter 1,
Introduction

Document image -processing (DIP) can be defined as electronically managing

information which has previously been distributed on paper. This vague description

washes over the many component areas within the field of document image processing

yet it has served as a metaphorical compass to all researchers, both academic and

commercial, who have worked towards the machine comprehension of document

images.

Initially, Optical Character Recognition (OCR) was seen as the most important aspect

of document processing. Consequently, it is the oldest of the document processing

research areas. Contemporary OCR packages produce reliable results when presented

with a wide spectrum of character fonts and handwritten text [Clark95, Ellim90). Early

document processing packages extracted the text using OCR algorithms and then stored

the text with the original image. A user could then search the text files for keywords and

call up the appropriate document image if the search returned a match. This was a

primitive attempt to present the user with the esthetic feel of the document plus the

power of computerised search.

This partial solution is weak for a variety of reasons. From an esthetic viewpoint a

bitmap is a poor document storage medium. Bitmaps are large, resolution dependent

files. From a practical viewpoint, the user cannot perform complex text searches which

take advantage of a document's structure, for example, a librarian may want to view all

documents which have been written by a certain author. With a structured document all

10

Introduction

the computer need do is search the author fields in the document's structure for a match

with the author's name. A crucial aspect of document processing is the re-creation of the

Original document's structure. Without structure, the text extracted from a document

image by a simple OCR package will not always follow the natural reading flow of the

original document, particularly if the original document is multi-columned. More

importantly, the computer usability of a document's unstructured text is extremely

limited.

Document structure and appearance

In a local system, for example a small company, there will be thousands of documents

generated in a single year. These documents will range from loosely structured and

resthetically pleasing managing director reports, to highly structured tax return forms.

The ideal storage format for these documents should have the capacity to hold both

appearance and structural information with equal gravity.

This research presents no such file format, but emphasizes a point that is becoming more

and more important as document technology advances: the logical structure of a

document is as important as the geometric (or layout) structure of a document. When

one thinks of a document one must think of both these aspects. Appearance denotes the

feel and presentation of a document, plus hidden or implicit information which is

decoded cognitively by our minds to unfold the logical structure. The logical structure

of a document must be stored to help computers traverse, recall and understand the

document without the need to process the documents with complex cognitive based

structure recognition programs. Some authoring packages, for example

FrameMaker+SGMLTM, cater for structure and appearance within their documents.

A more pressing issue is the recognition of logical structure from a legacy document. A

legacy document is the term used to describe a paper document which can only be

converted to an electronic format by a document image processing system. Libraries, the

military, large companies and Universities all have legacy documents that require

structural recognition processing. Only recently has research been directed to

11

Introduction

identifying the logical structure oflegacy documents as well as their textual content, and

yet to be brought up to date and stored electronically as efficiently as contemporary

documents are, their structure must be recognised and recorded.

Documents that only exist as page description languages (POLs) traditionally have no

concept of structure, since sending a document's structural information to a printer is

redundant work [Adobe90, Oakle88]. Recently, technology has advanced to a position

where POLs have been purposely designed for electronic storage, electronic display and

electronic dissemination. Consequently, POLs can be added to the list of sources of

legacy documents which require the identification of structure,

Human perception of document layout

Newspapers have extremely complex page layouts, for example, multi-column pages,

multi-font text and different sized colour images. The purpose of a page's layout is to

transfer Implicit information about the document's content to the reader. A good

example can be found on the front page of a tabloid newspaper. The use of exaggerated

text sizes draws the eye to the primary story, thus implicitly creating a hierarchy of

articles. In essence the appearance of the newspaper is helping us to understand its

structure,

This transfer of implicit information is not limited to newspapers. Studies of readers'

perceptions of journal articles and software manuals by Dillon et al. [Dillo93] have

shown that such readers conceptualise documents as possessing a prototypical form of

structure that aids location of material. Dillon suggests that this structure can be viewed

from three different perspectives.

• Structure can be imposed on what is browsed by the reader. Therefore, the reader

builds a structure to gain knowledge from the document.

• Structure is a representation of convention. It occurs in a text form according to the

expected rules a writer follows during document production.

12

Introduction

• Structure is the conveyor of context. There is a naturally occurring structure to any

subject matter that holds together the raw data of that domain. The context is

conveyed so the reader grasps the organisation of the text.

These concepts apply with varying degrees of relevance to different document classes.

The notion of structure as convention seems to be perceived by readers of journal

articles. The notion of structure supporting contextual inference seems pertinent to users

of software manuals. Research in the domain of linguistics and discourse

comprehension lends strong support to the concept of structure as a basic component in

the reader's mental representation of a text.

Van Dijk and Kintsch [vanDi80], linguists, suggest that readers acquire schemata, or

superstructures, through experience. The schemata facilitate the comprehension of

material by allowing readers to predict the likely ordering and grouping of constituent

elements of a body of text.

"a superstructure is the schematic form that organises the global

meaning of text. We assume that such a superstructure consists of

functional categories ...[and} ... rules that specify which category may

follow or combine with what other categories" Van Dijk [vanDi80]

On the other hand Johnson-Laird [Johns83], a psychologist, proposes what he terms

mental models as a further level of representation that facilitates document

understanding. The mental models are based on the perception of structure by the reader.

They offer a possible explanation to human document understanding from a

psychological perspective.

It is not clear exactly how humans perceive and utilise a document's structure. However,

it is widely acknowledged that humans have excellent pattern matching abilities.

Humans can tell (to a certain degree) the type of a document they are looking at without

semantically processing the content of the document. The only information used to

make the classification is the layout of the document, coupled with experience of

previous examples of the same document class.

13

Introduction

The field of document understanding encompasses the field of structure recognition. By

representing structure in a file format the author is dissecting the document and stating

the relationships between the logical component parts for the sake of the computer. As

humans we do not need to look at the file format to know these component parts, or their

relationships. We can recognise the structural relationships in a document thanks to the

layout and appearance of the document and our own previous experiences and cognitive

abilities.

Document processing

The task of automated document processing can be divided into two fundamental parts:

document analysis (the segmentation of a document image) and document

understanding (the logical structuring of the segmented image). This thesis includes two

chapters which research these parts ("Thesis structure" on page 16 provides more

information on these chapters). Document processing also demands a wide variety of

other problem solving techniques, for example, diagram analysis, technical drawing

recognition, table recognition, and optical character recognition. This research does not

discuss any of these topics but they can be thought of as existing inside the realms of

document processing.

Figure 1 is a Venn diagram showing the relationships between document analysis and

document understanding for the majority of contemporary document processing

techniques. There are elements of both analysis and understanding which are

independent of each other. There are also elements which are both analysis and

understanding and which lie in a 'grey' area between them, for example, OCR. OCR

systems can utilise segmentation techniques (document analysis) and contextual

analysis techniques (typically dictionary look-up) to help locate logical words [Ellim90).

The majority of document understanding systems have one thing in common. They all

assume apriori knowledge of the logical class of document they are processing and are

designed to only process examples from that one class of document. Lam [Lam95)

describes these document understanding systems as being "closed" systems due to their

14

Introduction

Document
Processing
Techniques

Figure 1: The traditional document processing Venn diagram

inability to process documents from more than one class. Engineering a document

processing system to logically understand a document from a single class of documents

is an extremely complex problem because of the variance that can exist between one

document and another within the same class, for example, two different newspapers

may have different layouts but they are still newspapers.

This research has concentrated upon finding a method of identifying a document's

logical class using only the appearance of the document as a starting point. The practical

use of this method extends to helping to create a universal document image processing

system which can construct the logical structure of a document from an unclassified

document image. The method presented extracts document features from the image

using a mixture of established document processing techniques and new algorithms. The

features are then used to classify the document. After classification one can apply tried

and tested document understanding techniques which are engineered for one particular

class of documents.

Figure 2 shows the correct place in the document processing Venn diagram for the

proposed classification technique. Aspects of document analysis and document

understanding are drawn upon in order to help extract meaningful features. The

document understanding techniques used by the system are very basic. They do not

require document class specific knowledge and consequently they can be used on all

classes of document.

15

Introduction

Document
Processing
Techniques

Figure 2: A new approach to document processing

Exploring PDF

Traditional document processing has always started with a bitmap image of the

document. Adobe™ Systems Inc. have developed an electronic file format which

presents documents to the user in exactly the same format as that in which they were

created by the author: the portable document format (PDP) [Adobe93]. However, PDP

contains no logical structural information about the document, other than defining

logical words. Theoretically, PDP can be thought of as a bitmap. Adobe export an

application programme interface (API) with PDP which can be utilised under a licensed

agreement with Adobe. The API allows programmers to access the basic components of

a PDP document in much the same way as one can access the components of a

segmented and decomposed document bitmap image. Whilst achieving the major goal

of document classification, this research also documents the experiences of using PDP

as the starting point of a document processing system.

Thesis structure

In Chapter two the spectrum of electronic document formats is described. The definition

of a purely logical document is introduced by examining the ISO Standard Generalised

Markup Language [lS086]. Various document formats, which become less structured

and increasingly geometrically oriented, are discussed. PDP is described, together with

PostScript™, as a document format which contains no capacity for logical structure but

which can give a document's author perfect control over the presentation of his or her

document, The chapter ends with a review of the Office Document Architecture which

attempts to combine logical structure and page appearance in one format.

16

Introduction

Chapter three defines the concept of document analysis as a sub goal of document

processing. A literature review is included which describes the fundamental

requirements of a document analysis system as well as discussing contemporary

document analysis research. Early research work which contributed to the author's

comprehension of document analysis is included in this chapter.

Chapter four reviews contemporary document understanding research. The goals and

objectives of document understanding systems are discussed whilst examining the

methodologies which other researchers have adopted to reconstruct a document's

logical structure. A description of a PDF document processing prototype is included in

this chapter. The prototype allowed the author to experiment with a variety of document

processing strategies whilst gaining experience from the PDF document model and from

approaching the practical problems of document understanding.

Chapter five describes the design and engineering of the fmal system. The creation of a

blackboard framework within the system is documented together with an object-

oriented breakdown of the design process. The algorithms used to segment and analyse

a PDF document are also explained. This chapter describes the definition of a new level

of document processing: advanced document analysis. Advanced document analysis

helps extract document features which can be passed to a pre-trained document

classifier. The design and development of the document classifier is also described in

this chapter.

Chapter six examines the results that the system produces, for a variety of different

documents, at each different stage of document processing. Positive and negative

document processing results are discussed and classified. Results of the document

classification algorithms are included together with a discussion of the strengths and

weaknesses of classifying a document based purely on its geometric features.

Finally, the summary restates the major achievements Ofthis research and discusses the

practical and theoretical limitations of STASIS's document processing strategy. This

chapter .also contains the outline of a proposed strategy for universal document image

processing in which STASIS's ability to automatically classify documents is vital.

17

Chapter 2,
Contemporary
Electronic Document
Formats

This chapter introduces the concepts of logical and geometric electronic

documents by examining contemporary examples of both classes of

document. In doing so, the goal of many document image processing

systems (a purely logical document) is compared and contrasted with the

starting state of this research (a purely geometrical document). The ISO

Standard 8613 Office Document Architecture (ODA) is discussed and

evaluated as a format which is capable of containing the logical structure

and geometric structure of a document.

18

Contemporary Electronic Document Formats

2.1 Introduction

This chapter is not intended to be an exhaustive review of document models, formats

and typesetting systems. Instead, this chapter aims to clearly define some basic concepts

of electronic publishing which are necessary in order to comprehend this thesis. There

are many models, formats and typesetting systems which are not discussed in this

chapter but which have played a significant role in the evolution of electronic

publishing. They are omitted in order to restrict the content of this chapter to the

essential items.

2.2 Electronic Document Definitions

"Knowing the structure of a document is the key to successful

computer processing of a document. From different points of view

there exist different definitions of document structure" Tang [Tang93]

Document structure can be realised as two types: geometric (layout) structure in terms

of its geometric characteristics (for example, the posttion and size of each document

object), and logical structure due to its logical properties [Tang93].

There are ISO standards for both geometric and logical structures which are taken from

the ISO Standard 8613 for ODA [lS089]. Geometric or layout structure is the result of

dividing and subdividing the content of a document into smaller parts on the basis of

presentation. A geometric object is an element of the specific layout structure of a

document. The following types of layout object are defined:

• a 'block' is a basic geometric object corresponding to a rectangular area on the

presentation medium containing a portion of the document content;

19

Contemporary Electronic Document Formats

• a 'frame' is a composite geometric object corresponding to a rectangular area on the

presentation medium containing one or more blocks or other frames;

• a 'page' is a basic or composite geometric object corresponding to a rectangular

area. It is a composite object, containing one or more frames or one or more blocks;

• a 'page set' is a set of one or more page sets and/or pages;

• the 'document layout root' is the highest level object in the hierarchy of the specific

layout structure.

According to ISO standard 8613 (ODA), the logical structure of a document can be

defined as

"... the result of dividing and subdividing the content of a document

into increasingly smaller parts on the basis of human perceptible

meaning of the content, for example, into chapters, sections,

subsections, paragraphs." [IS089]

A logical object is an element of the specific logical structure of a document For a

logical object, no classification other than 'basic logical object', 'composite logical

object' and 'document logical root' is defined. Logical object categories such as

'article', 'chapter' and 'section' are application dependent.

Most documents such as newspapers, journals, books, and reports are organized

hierarchically. Both the geometric and logical structures can be represented as trees. The

geometric relationships between blocks can be described by a geometric tree while the

logical properties of the document can be represented by its logical tree. Building both

the geometric tree and the logical tree is a major task of a document image processing

system [Tang93].

The geometric structure and logical structure provide alternate but complementary

views of the same document, for example, a document can be regarded as consisting of

20

Contemporary Electronic Document Formats

chapters containing figures and paragraphs, or alternatively, as consisting of pages that

contain text blocks and/or graphics blocks. Correspondence between geometric objects

and logical objects may exist, but in general there is no one-to-one correspondence

because a logical structure corresponds to a number of geometric structures.

The geometric structure and the logical structure are independent of each other because

they have different creation processes. The logical structure of a document is determined

by the author and embedded in the document in the editing process. The geometric

structure is usually determined by a formatting process. The formatting process may be

controlled by attributes associated with the logical structure, for example, each chapter

has to start on a new page, or that a section title and the first two lines of its first

paragr~ph are present on the same page [Tang93].

2.3 Logical Documents

A logical document contains content elements (text, images, sound, movies) and tags

which provide logical markup. According to Goldfarb [Goldf90] these tags have two

purposes:

• separating the logical elements of the document;

• specifying the processing functions to be performed on those elements.

SGML (Standard Generalised Markup Language, ISO Standard 8879) [IS086] will be

used as the definitive meta-language for creating a logical document The markup

language HTML (Hypertext Markup Language) will be analysed as an example of

SGML's power to create new logical document languages. HTML is a good example to

use as it is the 'cornerstone' document format of the World Wide Web. Consequently,

HTML has been pressurised and distorted from its original logical definition by users

who demand both structure and appearance from the documents they use.,

21

Contemporary Electronic Document Formats

2.3.1 SGML

SGML is an international standard for the description of marked up electronic text. It is

a meta-language that defmes the syntax of generalised markup languages [Barr089,

Goldf90, IS086]. HTML is an instance of a markup language. A markup language is a

set of markup conventions used together for encoding texts and other document

elements. A markup language must specify what markup is allowed, what markup is

required, how markup is distinguished from text and what markup means.

SGML can describe logical objects and the structure of a document. It is orientated

towards textual data, but provides constructs for identifying the notation of non-textual

objec~. SGML provides the language to model objects and structure, known as a

document type definition (DID) and the language to identify these objects within a

document instance. Logical objects or elements can have additional characteristics

associated with them called attributes. Other capabilities exist for handling non-

structural portions of a document known as entities, reducing the amount of markup

required in a document.

It is worth noting that the document style, semantics and specification language

(DSSSL) is designed to specify formatting and other transformations of SGML encoded

documents [Roisi93]. For formatting, a DSSSL specification language can create a style

sheet language that can be mapped into the DSSSL typographic characteristics and other

composition and layout semantics. Additionally, DSSSL [lS096] includes a language

for writing a general transformation specification that allows the user to transform

documents from one SGML application into another.

SGML provides the ability to distinguish between the intrinsic content and structure of

a document and the specifications for processing that document. With DSSSL,

formatting and other processing spectffcations can be interchanged with SGML

documents in a standardised form, while still preserving that essential distinction.,

22

Contemporary Electronic Document Formats

2.3.1.1 The document type definition

Within the abstract syntax of SGML there is defined a standard way of specifying the

document type definition (DID). The DID defines the logical structure of a document

in terms of the elements that comprise it (for example, paragraphs, headings, footnotes

and so on) and their relationships (for example, the case where a second level heading

can only occur within the scope of a first-level heading). It also associates a generic

identifier with each element, thus defining the tags that will be used for the descriptive

markup of a document [Barro89].

In order to show how a DID defines the structure of a document an example used by

Barron is provided in "Appendix II: An example DID". Barron originally took this

example from Annexe A of the ISO SGML standard [IS086].

2.3.2 HTML

HTML is a markup language developed at CERN, the European Laboratory for Particle

Physics in Switzerland [Graha95]. It allows hypertext links to be followed between

documents which can reside anywhere on the internet and are identified by a universal

resource locator (URL). It is not the place of this research to investigate or evaluate

collective HTML documents together with the hypertext transfer protocol as a hypertext

system. What is of more interest is the acceptance and evolution of a structured

document language that operates in, and is influenced by, the internet community.

HTML designers have had to serve two audiences: people and computers. The HTML

language is geared towards creating machine readable documents rather than !esthetically

pleasing documents [Statc96]. There is increasing pressure, coming from users, to evolve

HTML from consisting of mainly semantic tags to including capabilities which SGML never

set out to accomplish, for example, giving the author the power to define how the document

is to be presented to the reader [Sperb94]. HTML document authors have always had the
\

ability to markup bold and italic text and in its latest revision (HTML 3.2), they now

23

Contemporary Electronic Document Formats

have the ability to set table widths. Good SGML documents should be totally

independent of any formatting process.

Web browsers have tried to improve the situation for document designers by offering

their own custom tags. Browser companies add more functionality to their browsers

with the hope that if their own browser is the only one capable of correctly displaying

pages, their product will prevail. This competitiveness continues to alter the definition

ofHTML.

There are HTML solutions to the problem of appearance in logical documents.
/

W3MAGIC provides a set of HTML tags which enhance web pages and are independent

of the browser [W3Mag96]. The software required to interpret the tags is held in a plug-

in! which is accessible over the internet When the user downloads a document which

contains the special tags, the browser notifies the user that a plug-in is required and asks

permission from the user to locate and download the specific plug-in.

From an electronic publishing point of view a more satisfying solution is HTML style

sheets. They allow authors to clearly split content and structure from form and

appearance. The web browser companies must implement the style sheets into their

browsers. DSSSL can be used to formulate these style sheets [IS096].

The WWW is on the brink of expanding its content base and this may save HTML from

corruption. Soon, Adobe AcrobatTM, the virtual reality markup language (VRML),

Java™, Macromedia Director™ and other data formats will take hold as support for

them in popular browsers emerges. There will be less pressure on HTML to be all things

to all people [Behle95].

,
1. A "plug-in" is portion of code that can be 'loaded' by a parent application and which

increases the functionality of the parent application.

24

Contemporary Electronic Document Formats

2.4 Geometric Documents

A pure geometric document is a document which contains only appearance information,

and no logical information. Page descriptlon languages (POLs) [Oakle88] and bitmap

formats (JPEG, TIFF, GIF, BMP) [Keyes94] are examples of this class of document

Bitmaps are the traditional input media to document processing systems. Although

POLs, particularly POF [Adobe90] and PostScript [Adobe93] may contain letters

arranged in such a way inside their file format that they form logical words they equally

have the capability to be arranged in a totally non-logical formation. Consequently

POLs cannot be thought of as containing any logical information.

2.4.1 Page Description Languages

Traditionally page description languages were intended as printer languages. They were

designed to facilitate the integration of complex text and graphics for use with laser

printers. They can be considered as a communication of an already formatted page or

document description from a composition system to an output device, either screen or

printer [Oakle88].

POLs have evolved beyond the printer and are now being used to electronically

disseminate documents. POF [Adobe93] and Digital PaperTM [Commo96] are two

examples of POLs designed for electronic display rather than printing. All forms of POL

have one aspect in common; none contain the capacity to store logical structure. In fact

the only geometrical structure they are guaranteed to contain extends to the page level

in the geometric structure hierarchy. POLs are at the other end of the document spectrum

from SGML. Oaldey gives a good description of the evolution of POLs into the late

eighties [Oakle88].

25

Contemporary Electronic Document Formats

2.4.2 PostScript

PostScript was designed at Xerox™ in the late 1970' s by John Warnock. PostScript was

and is developed and promoted by Warnock's company Adobe Systems Inc. and is

today the de facto PDL standard PostScript is a programming language which was built

for expressing graphic images. Powerful typesetting features are built into PostScript for

sophisticated handling of characters as graphics, PostScript programs are created,

transmitted and interpreted in the form of ASCII text which is device independent. The

interpreter executes the PostScript program by manipulating a stack of procedure calls

which manage other stacks containing operands and dictionaries. Graphics are normally

handled as vectors and curves although bitmaps may be specified. As execution

proceeds, the interpreter's painting or imaging functions use graphics state variables to

calculate where dots should be placed on a page and set the corresponding bits of a page

bitmap stored in the printer controller memory. PostScript has a mathematical

foundation allowing commands such as scale and rotate. This ensures resolution

independent fidelity [Adobe90, Oakle88].

2.4.3 The Portable Document Format

The Portable Document Format (PDF) was developed by Adobe Systems Incorporated

specifically to aid in the transfer of documents across platforms. PDF is a file format

used to represent a document in a manner independent of the application software,

hardware, and operating system used to create it [Adobe93, Adobe96].

Based on the PostScript language, PDF allows for device independence and resolution

independence. Using Adobe Type ManagerTM (ATM) and Multiple Master font

technology}, PDF allows for font substitution across platforms. PDF font substitution

does not cause docurnents to reformat Substitute fonts created from special serif and

1. Multiple Master fonts attempt to duplicate the appearance of the original font used in
the document by adjusting certain attributes of their font metrics.

26

Contemporary Electronic Document Formats

sans serif Multiple Master fonts retain the width and height of the original font. PDF

supports standard compression filters to help reduce file size for images, text, and

graphics.

A PDF file contains a PDF document and other supporting data. A PDF document

contains one or more pages. Each page in the document may contain any combination

of text, graphics, and images in a device and resolution independent format. This is the

page description (Adobe96).

The Portable Document Format is based on the PostScript language. Although PDF and

the PostScript language share the same basic imaging model, there are several important

differences between them.

The PostScript language is a complete programming language. To simplify the

processing of page descriptions, PDF omits programming constructs. PDF files contain

information such as font metrics, to ensure viewing fidelity. PDF files may also contain

objects such as hypertext links that are useful only for interactive viewing. PostScript

language files do not contain font metrics or hypertext objects. PDF enforces a strictly

defined file structure that allows an application to access parts of a document randomly.

PostScript language files are linear. Unlike PostScript language files, PDF files cannot

be downloaded directly to a PostScript printer for printing.

Adobe has developed the Acrobat'>' suite of products to produce and view PDF. PDF

can be generated from a printer driver, distilled from a PostScript program via a

specialised PostScript interpreter or generated from a bitmap image using Adobe

Capture™: a document image processing program. It can be viewed by either Acrobat

ReaderTMor Acrobat Exchange™. Only the latter program has the capacity to modify

the original file, and even then only in terms of deleting and adding entire pages or

editing peripheral navigational aids to the document. The navigational aids include

electronic bookmarks, hyper-jumping from hotspots to page images and sticker notes

which allow the user to comment on the document [Smith93]. Adobe have provided an

27

Contemporary Electronic Document Formats

application program interface (API) to the Exchange viewer through which third parties

can develop their own specialised functionality to Exchange.

PDP, thanks to its PDL ancestry has no capacity for structure. This has its disadvantages.

All of the capabilities of SGML are lost, for example logical hypertext, the presence of

logical objects and a logical reading order. Furthermore, its critics claim a lack of

compatibility with internet search robots (the automatic, behind the scenes cataloguing

ofHTML documents by internet search engines), a lack of comparable functionality (for

example, interactive form technology and Java™ applet technology) and an increased

file size over similar IITMt. documents. PDP's champions claim that the current content

expansion of the internet will solve the indexing problem, functionality is being

continuously added to Acrobat (the PDP viewer) with each new release and that PDP

fiie sizes are not significantly larger than 'equivalent' HTML files in the average case.

Some of PDP's advocates claim to have found cases in which PDP has a significantly

reduced file size compared to alternative HTML documents, thanks to the inbuilt ability

of PDP to compress text and graphics. There are other contemporary electronic PDLs,

notably Digital PaperTM,from Common Ground™ Inc. [Comm096]. Digital paper is to

Common Ground as PDP is to Acrobat: a platform independent electronic format that

reproduces the document as an exact representation of the original.

2.4.3.1 The PDF document model

Although PDP is a pure geometric document format, its internal structure does not

exactly match that of the geometric structure tree outlined by the ISO ODA standard

(IS089). The similarity between PDP and ISO standard 8613 extends only to the storage

of page objects and a document root. The PDP document model does not store frames

or blocks in the same sense as the ISO ODA standard defines them. Instead PDP

contains streams of information. Typically large images are stored as separate data

streams, although PDP does have the capacity to store small images in standard streams

containing text and graphics. The streams correspond neither to geometric blocks or

frames nor to logical content. They simply contain the 'soup' of PDP operators and text

elements which make up the content of the document.

28

Contemporary Electronic Document Formats

Through the AP[, Adobe allow the software developer to access logical words. Adobe

have developed an in-house algorithm which processes the text and graphic operator

'soup' in the streams and reconstructs logical words based on the geometric positions of

characters and the legality of the generated words. There is no guarantee that the words

created will be logically correct Through trials conducted during the development of the

final system presented in this thesis, various invalid logical words were detected in a

variety of different documents (see section 6.3.1, "Bad AP[lines" for more details).

Table 1 lists the most commonly used PDF document model information accessible

through the AP[. Adobe use a naming convention whereby all elements in the PDF

document model are prefixed with the letters PD which stands for 'page description' .

PDElement U8eful attributes of that PD element

PDWord Bounding box of the word on the page

Point size

Font name and metrics

Textual content

POImage Bounding box of the image on the page

POGraphic Bounding box of the graphic on the page

Nature of the graphic, (Le. line or curve)

A set of control points for the graphic operator.

Table 1: Some portable document elements and their geometric attributes

2.5 Office Document Architecture

If, as predicted, browser companies introduce style sheet implementations into their

browsers there will be a joining of separate formats for structure and appearance for

internet documents. In this way HTML documents will start to resemble ODA

documents. ODA was designed as an interchange format for word-processor

documents, and is intended for software-to-software communication rather than for

direct use by a human user [Barr089].

29

Contemporary Electronic Document Formats

ISO standard 8613 ODA [lS089] has the capacity to represent fully both structure and

appearance. The definitions for geometric structure and logical structure described

earlier in this chapter were taken from this standard. Both dimensions of an ODA

document are stored as trees [Nicho84]. The specific logical structure corresponds to the

document's logical view. An ODA document may have a generic logical structure,

corresponding roughly to the DID in an SGML document, which indicates for a given

logical document object which other logical document objects may appear as its

subordinates. The layout view is represented by the specific layout structure, which

conforms to a generic layout structure in a similar manner to their logical counterparts.

ODA was designed for transparent stand alone document interchange, yet its acceptance

Into the pre-internet boom computer user society was severely hampered by the

dominance of corporate de/acto standards such as Microsoft Word™. ODA may see a

revival as the internet content base expands.

There is clearly an overlap between SGML and ODA and it has been claimed that

SGML subsumes ODA. This is not completely true, since SGML does not have

anything to match the layout structure of ODA. The logical structures that can be

described in SGML are much more complex than the simple hierarchies of ODA, and it

is unlikely that one would want to use the power of SGML in the context for which ODA

was intended [Barro89]. Similarly, ODA does not have the descriptive power of PDF or

PostScript. By trying to create a format for both structure and appearance ODA makes

compromises to the natural abilities of SGML and PDF.

There are other document formats which successfully combine structure and

appearance. The most prominent of these is Adobe's Framemaker+SGMLTM.

Framemaker+SGML has all the formatting power of a WYSIWIG document editor

coupled with the structural capability of SGML. One needs a Framemaker+SGML

application in order to view these documents and the format is not directly internet

compatible (for example, one cannot create 'URL-type' hypertext links). In terms of the

electronic document spectrum with SGML at one end and PDF at the other, there is a

30

Contemporary Electronic Document Formats

multitude of document formats which lie in between these extremes and which

incorporate different degrees of control over document structure and document

appearance. TROFF, 1flI'EX, Microsoft Word™, Word Perfect™ and PageMaker™

are all examples of electronic document authoring packages which handle the balance

between geometric structure and logical structure differently. Probets [Probe94]

provides a gooddescriptionof various formatting languages and hypertext models in his

PhD thesis.

This chapter has defined and provided examples of the starting point of

this research (geometric documents) and the desired goal of document

image processing research (logical documents). The next chapter will

outline the initial stage in document image processing: document

analysis.

31

Chapter 3, Document
Analysis

This chapter includes a 1iterary review of contemporary document

analysis research. It will continue with a brief synopsis of early research

conducted by the author into the decomposition of monochrome TIFF

bitmap images. Bitmaps contain no font or typesetting information but

with the help of vectorisation software, outlines of black pixel connected

components can be isolated and treated as basic geometric components.

Inspection and analysis of individual character outlines are also explored.

32

Document Analysis

3.1 Introduction

Document image processing is a relatively young subject and as such there has been no

de jure or international ISO standards established to provide guidelines and defmitions

in this area of research. Work by Cambell-Grant [Cambe95], who helped define ODA,

is currently addressing this situation. For clarity this thesis will follow the terminology

outlined by Tang [Tang91] in his survey paper of document understanding and

document analysis systems.

Document processing is divided into two phases: document analysis and document

understanding. Document analysis is defined as the extraction of the geometric structure

from a document image; document understanding is defined as mapping the geometric

structure into the logical structure. Once the logical structure has been captured its

meaning can be decoded by artificial intelligence or other techniques. Tang and Suen

[Tang95] acknowledge that the boundary defmition between document analysis and

document understanding is not clear in all cases but their definitions are applicable to

this thesis.

Various methods of image segmentation were researched during early stages of the

thesis research. The literature survey represents a synopsis of all the algorithms and

techniques which were considered by the author; however, only the "Document

Spectrum Plot" (described on page 41) was experimented with.

3.2 Literature Survey

Analysing the geometric structure of a document takes place one page at a time. Each

page is a geometric element which may contain various layouts of text (of varying point

sizes and fonts), images and graphics. It is the task of document analysis to decompose

that page into its geometric components and extract the geometric structure. There are a

range different techniques which accomplish this task.

33

Document Analysis

3.2.1 Document image preprocessing

The traditional source of document images (which are supplied to document analysis

systems) are provided by electronically scanning pages into a bitmap format. Frequently

the pages to be scanned are photocopied so that the tone of the image can be increased

and so make fainter text marks bolder. Additionally the photocopied sheets can be fed

into an automatic document feeder to the scanner. However, this process can enhance

image noise and increase the chance that the document image will be skewed either at

the photocopy stage or the scanning stage.

There are several well known image enhancement algorithms which can be applied to

the do~ument image to help improve the clarity of the image. Noise detection and

removal is often performed before document analysis begins [Gonza92].

Many document analysis systems integrate skew detection algorithms with other aspects

of document analysis and so take advantage of the attributes of geometrical objects

which have been found previously and which may help in the determination of the skew

angle. These systems typically employ bottom-up or hybrid strategies such as white

space analysis [Pavli92], white space tiles [Anton95], k-clustering [O'Gor93] and the

Hough transform [Hinds90].

Skew has a detrimental effect upon document analysis, particularly if the analysis

system is top-down or model-driven. Column recognition algorithms always assume

that the columns are perpendicular to the horizontal; similarly, line fmding algorithms

assume that lines are formatted parallel to the horizontal. In a skewed document image

these assumptions would be incorrect.

Several algorithms to detect the skew angle of a digitised image have been published.

One of the major factors in detecting the skew angle is looking at the angle of the base

line of text to the horizontal. Baird [Baird87] exploits this feature in an algorithm which

examines the power spectrum of abstract points taken from clumps of data from the

34

Document Analysis

image which are presumed to be text characters. Due to the algorithm's reliance upon

text the efficiency of this algorithm is lower in images which have an increased page

percentage devoted to non-textual matter. Ishitani [Ishit93] acknowledges the presence

of multi-composite documents and adds a new parameter based on the document image

complexity which is obtained from the number of transitions from white to black pixels.

Ishitani claims this parameter helps to estimate skew correctly. This global feature is

known as 'crossing counts' , and can be used as a guide in the classification of segmented

areas.

3.2.2 Page segmentation and segment
ctassttlcanon

Page segmentation is the process by which a geometric document is decomposed into

its geometric component elements and those components labelled, typically into one of

three classes: image blocks, text blocks and graphic blocks. Graphic blocks differ from

image blocks in that graphic blocks consist of graphic operators such as lines, ellipses

and rectangles. Image blocks are typically bitmap images, for example, photos.

The goal of page segmentation and classification is to prepare the document to enable

the execution of algorithms specifically designed for a particular geometric element, for

example, isolating and labelling a text portion enabling OCR algorithms to be directed

at it, or, isolating and labelling a graphic block and applying an Engineering Drawing

recognition system to try to identify logical entities. Text regions should not really

contain more than one text style unless they are of a significantly low percentage of the

overall text in that geometric object. This statement increases the complexity of page

segmentation and classification algorithms as font recognition is required to

discriminate text styles accurately. Yet this discrimination is vital for successful

document understanding.,

35

Document Analysis

A fuzzy, vague boundary lies between document analysis and document understanding.

OCR is definitely part of document understanding but font recognition can be

considered document analysis, and typically both are merged into one process. One

thing is certain: document understanding takes the output of document analysis (basic

geometric page components) and forms high level logical components and the

relationships between them.

Most document analysis methods can be described as one of three broad categories: top-

down (or model-driven), bottom-up (or data-driven) or hybrid. Top-down algorithms

proceed with an expectation of the layout characteristics of the document and are fast

and effective for processing documents which always have a specific layout. Bottom-up

approa~hes progressively refine the data by layered grouping operations which can be

time consuming, yet it is possible to develop algorithms which are applicable to a variety

of documents [Tang91]. The hybrid approach attempts the best of both worlds.

3.2.2.1 Top-down segmentation strategies

A top-down page decomposition strategy starts by hypothesising a series of

interpretations at a high level and attempts to verify each by searching the tree of implied

hypothesis at a lower level of detail finally consulting evidence at the lowest level

(characters or pixels). The tree search is typically depth first and fully back tracking

[Tang91].

Hu and Ingold [Hu93] describe a very pure top-down strategy. They give as input to

their processing system not only the document images but a complete document

description. This description contains details of the geometric proportions of layout

objects and which page they can be found on. This complete document breakdown is

extremely document-specific and would require the creation of an individual document

description for every document instance. Such a system is inefficient in terms of

processing unknown documents. Therefore, this section will focus on more flexible

model-driven strategies which have a greater degree of 'artificial intelligence' in them.

36

Document Analysis

Projection Profile Cuts

Projection profile cuts is a popular top-down decomposition method. 'Projection' refers

to the mapping of a two dimensional region of an image into a wave form whose values

are the sums of the values of the image points along a particular direction, commonly

either horizontal or vertical. A projection profile is obtained by determining the number

of black pixels that fall on a particular axis. The profiles represent global features of the

document and play an important role in skew normalization, character segmentation and

font recognition. The general document composition rule is that every object in the

document is contained in a rectangular area. Blank areas are placed between these

rectangles. The horizontal document image projection profile will be a wave form

whose deep valleys correspond to the blank areas above and below element rectangles.

Because a document generally contains several blocks in the horizontal and vertical

directions, the projection profile cut should be executed recursively until all blocks have

been located [Tang91].

XYCut

Sylvestor and Seth [Sylve95] present a trainable single pass algorithm for column

segmentation. In their approach the document image is initially segmented into large

layout elements. Sylvestor and Seth use the XYCUT based upon horizontal and vertical

projection profiles of the image to produce an XY tree representing the column structure

of a page of a technical document. These larger frames are then repeatedly decomposed

to produce lines in a depth first, back tracking manner. Sylvestor and Seth's system

produces poorer segmentation results with any image not of the technical document

layout model. Errors such as over segmentation and under segmentation occur. An

example of over segmentation is when a word gap is recognised to as a column gap. An

example of under segmentation is when a column gap is recognised as a word gap.

Run Length Smoothing Algorithm

The run, length smoothing algorithm (RLSA) was first used to separate text from

graphics. Wong et al. [Wong82] extended this research to obtain a bitmap of white and

37

Document Analysis

black areas representing blocks containing various different types of data. The basic

RLSA idea is applied to a binary sequence in which pixels are represented by O's and

black pixels by 1's. The algorithm transforms a binary sequence X into an output

sequence Y according to the following rules:

• O's in X are changed to l's in Y if the number of adjacent O's is less than or equal to

a predefined limit C;

• l's in X are unchanged in Y.

When applied to pattern arrays, the RLSA has the effect of linking together

neighbouring black areas that are separated by less than C pixels. With an appropriate

choice of C, the linked areas will become regions of a common data type. The degree

of linkage depends upon the value of C, the distribution of white and black in the

document, and the resolution. The RLSA is applied row-by-row as well as column-by-

column to yield two different sets of results. Different values of C may be applied in

different directions. The two sets of results are then combined with a logical AND

operation. Wong found that if smoothing thresholds are chosen correctly the blocks of

different content will be smeared into regions with differing features. A shortcoming of

this algorithm is the calculation of the constant value, C. Too great a value will produce

blocks which contain regions of differing content within them. Too small a value will

produce blocks which are too small.

Hough transform

The Hough Transform can be used to detect lines at any angle. It consists of mapping

points in Cartesian space (X,Y) to sinusoidal curves in rq space by the transformation

r = xCOS(q} + ySin(q}. Each time a sinusoidal curve intersects another at a particular

value of r and q, the likelihood increases that a line corresponding to that rq coordinate

value is present. An accumulator array is used to count the number of intersections at

various r and q. The cells in the accumulator array with the highest count will

correspond to lines in the original image.

38

Document Analysis

For the best results, the resolution of q should be selected such that the pixels

comprising the height of a character should be mapped to a single row in the

accumulator array. Roughly this means setting q to the point size of the text in question.

The Hough transform approach exploits the fact that documents have significant

linearity. There exist straight lines in tables and diagrams. Centroids of connected

components corresponding to text also line up.

Srihari et al. have shown that the Hough transform is a representation of the projection

profiles of the document in every possible orientation [Sriha89]. The analysis of the

accumulator array has an added advantage in that it can provide the angle of skew in the

document.

Form Definition Languages

Higashino et al. proposed a top-down document analysis method where the document

layout structure knowledge is effectively utilized to parse the two dimensional physical

document structure [Higas86]. They devised a knowledge representation called Form

Definition Language (FDL), to describe the generic layout structure of a document. The

structure can be represented in terms of rectangular regions each of which can be

recursively defmed in terms of smaller regions. The basic concept of the form definition

language is that both the geometric and logical layout structures of a document can be

described using these rectangles. These generic descriptions are then matched to the

preprocessed input document images. This method is powerful but entirely reliant upon

the efficiency of the matching algorithm. This technique sits between the boundaries of

document analysis and document understanding.

Yu et al. [Yu93] have extended Higashino's idea with their Document Architecture

Language (DAL) approach to document processing. The DAL supports both regular and

irregular document blocks and organises the document blocks in terms of the block

relations. However, DAL inherits all of the disadvantages as well as the advantages of

Higashino's Form Defmition Language.

39

Document Analysis

3.2.2.2 Bottom-up segmentation strategies

Bottom-up, or data-driven decomposition starts at the lowest level of detail (pixel

clumps or characters) and merges groups of basic geometric components with similar

characteristics into larger groups. The features of the data are continually processed as

the analysis continues, consequently the classification and segmentation processes are

usually one and the same in bottom-up document analysis methods. Neighbourhood line

density and connected component analysis are the two commonly used bottom-up

methods. Neighbourhood line density (NLD) indicates the complexity of characters and
/

graphics. NLD peaks on character areas are higher than peaks on graphic areas.

Character sizes can also be predicted from NLD peak values [Tang91].

Connected Component Analysis

A connected component is a set of 8-connected black or white pixels. There is an 8-

connected path between any two pixels in every component. Different contents of the

document tend to have connected components with different properties. Generally,

graphics consist of connected components with a large size [Loveg95a, Tang91]. Text

consists of smaller, regular components. By analysing these connected components,

graphics and text in the document image can be identified, grouped together into a block

and separated from each other.

Connected component analysis is a very popular starting point for a variety of bottom-

up strategies. The connected components themselves can be detected and stored by a

variety of different methods.

Toyoda et al. [Toyod82] uses a four tuple! to represent the size and location of the

connected components. The content of Japanese newspapers is classified into five

regions: text, abstract, article body, picture and figure. During image analysis the four

tuples are merged and classified into these regions according to the features of the

regions.

1. A tuple is a set. A four tuple is a set of four elements.

40

Document Analysis

A widely used alternative is the creation of skeletal vector outlines which trace the

boundary of connected components reducing them to a series of vector loops. Pavlidis

proposed an algorithm in 1986 which detects groups of similar length run lines on

adjacent scan lines, which overlap [Pavli86]. Work at the University of Nottingham has

developed a variation of Pavlidis's method which looks at pixel runs in the vertical

direction as well as horizontal run lengths. A good description of these variations is

described by Clarke [Clark95]. Similar work based on contours and skeletons of pixel

connected components is described by Hori et al. [Hori93].

/

Drivas and Amin [Drivas95] argue that a bottom-up approach is much better suited to

the segmentation of composite documents which contain graphics intertwined with text,

since o~e can distinguish between the two types before the page is reconstructed.

Drivas uses connected components and a grouping process to determine the skew and

form the segmentation algorithm. After the connected components have been

determined, neighbouring connected components are grouped together if they have

similar dimensions. The grouping algorithm takes one connected component at a time

and tries to merge it into a group from a set of existing groups.

Sauvola and Pietikainen [Sauv095] adopt a similar approach but base their segmentation

upon feature classification of connected components.

Document Spectrum Plot

The document spectrum plot, or 'Docstrum' plot, was developed by Lawrence

O'Gorman [O'Gor93]. It is based on the nearest neighbour clustering of connected

components. The doc strum is a representation of the document page that describes

global structural features of the page and can be used for page analysis. The k-nearest

neighbours are found for each page element. Each nearest neighbour pair {i ,j} is

described by a two tuple Dij(d,q) of the distance d and the angle q between centroids

of the two components. A character might make two or three pairings in a word and
,

across word boundaries within the same line, as well as pairings with characters on

41

Document Analysis

upper and lower lines. The docstrum is the plot of Dij(d,q) for all nearest neighbours on

the page. It is a polar plot with its origin at the centre; radial distance from this is d and

the counter clockwise direction from the horizontal is q. The docstrum is so termed

because of its similarity in appearance to the two dimensional power spectrum and its

analogous utility in globally describing an image. Orientation (skew) and text line

information can be determined directly from clusters on the doc strum plot.

0' Gorman uses a value of five for k. Ideally neighbours would be found to the left, right,

above and below each component. The extra neighbour is found for redundancy. The

disadvantage of picking a [argervalue of k is the extra computational time required to

compute the neighbours. Other values of k may be chosen for different purposes, for

exampl~, if text lines are ultimately desired then between line pairs are not needed and

a value of two or three for k is sufficient.

A transitive closure is performed on the 'line' nearest neighbour pairings to obtain

groups on the same text lines. A regression fit is then made to centroids of each group

component to fmd text lines. This fits a strength line to the centroids in each group by

minimizing the sum of the squares of errors between the centroids and the line.

O'Gorman uses these text lines and the doc strum plot to make a final estimation of the

skew of the page.

He groups lines into blocks based upon three properties to determine if two lines are in

the same particular group: a test to see if both lines are parallel, perpendicular proximity

and overlap. A feature of the doc strum is that spacing parameters are not required from

the user. The doc strum automatically determines dominant spacings from peaks on the

histograms of nearest neighbours distances and then uses multiples of these for text line

and block detection. The doc strum is also independent of page orientation and the line

detection is very robust. However, O'Gorman admits that block detection is less robust

and that the whole procedure can be computationally expensive on a image full of text.

42

Document Analysis

3.2.2.3 Hybrid segmentation strategies

Both top-down and bottom-up document analysis techniques have weaknesses which

have caused some researchers to question the strict application of either strategy within

document analysis [Pavli92]. In top-down strategies, verification must fmally depend on

statistical information and so top-down strategies must unreliably descend to the lowest

possible level of detail without triggering frequent backtracking which would increase

computation time. Top-down techniques are also widely acknowledged to be weak with

highly complex geometric images. Bottom-up strategies are forced to make earlier

decisions using evidence from the smallest samples, and so they may suffer from a rapid

accumulation of mistakes. According to work by O'Gorman [O'Gor93] and Okamoto

[Okam?93] the use of bottom-up strategies only is not enough to guarantee the

robustness of segmentation.

Bounding Box Projections

Ha et al. [Ha95] can extract words, text lines and text blocks by analysing the spatial

configuration of bounding boxes of connected components in a given document image.

They recognised the reliance of this particular top-down method upon skew detection.

The recognition rate degraded dramatically if a skew angle greater than 0.5% was

present. This method is not pure pixel projection technology but it applies the same

techniques on a greater scale. Consequently, this method is faster than pixel projection

but requires connected component detection beforehand. Connected components are

basic data blocks but the bounding box projection reveals larger global structures; in this

sense this strategy is hybrid.

Pattern Classification

Iwane et al. [Iwane93] propose a layout analysis algorithm based on a pattern

classification scheme. They combine the segmentation of an image with the

classification of the blocks to help geometrically divide up a page. The classifier defmes

the feature space in terms of low level image processing features such as connected

43

Document Analysis

components and projection profiles. In this manner the strategy is data-driven. Iwane

targets technical journals and gives the classifier a dictionary that holds reference

vectors. In this sense the classifier has a high level model of the page to be decomposed.

For a different class of document a different dictionary must be substituted. The basic

idea behind the approach is that the layout analysis is put into a pattern classification

perspective by treating logical layout components as categories of input patterns. An

input pattern is then mapped to a vector in the feature space and classified as a certain

category.

White Space Analysis

Pavlidis and Zhou [Pavli92] propose a method that is independent of skew, unlike

RLSA and XY recursive cuts. Their method identifies wide white spaces on adjacent

scanlines. The goal of white space analysis is to identify column frames which are as

large as possible. The skew angle of the page is estimated from these white streams and

the blocks are located as regions between the white streams. The isolated blocks are then

placed in accordance with the skew angle.

Pavlidis' algorithm requires a small region elimination process to prune away fragments

caused by printing defects. A refining process is employed to merge adjoining regions

into very narrow blocks such as those produced by isolated text characters. Pavlidis

merges column blocks according to the rules set out in Table 2. The blocks that are

narrow in the vertical direction usually contain only a fragment of a single text line and

must also be refined. Akindele and Belaid [Akind93] have devised a white space related

algorithm. Their method converts the inter-column and inter-paragraph gaps into

horizontal and vertical lines and builds an intersection table from the lines. The entries

of this table are used to construct simple polygon blocks with the aid of four connected

chain code and a direction table.

Another variation of the white space algorithm is given by Antonacopoulos and Ritchings:

the representation and classification of complex shaped printed regions using white tiles.

White tiles are the representation of the white space in segmented regions [Anton95].

44

Document Analysis

1. P and Q are very close in the vertical direction

Notation: Block P and Block Q are column blocks, Q is merged into P when the fol-
lowing three conditions are satisfied. [Pav1i92]

2. The centre of column block Q is not far away from the central V-axis of P

3. The widths of P and Q are approximately the same.

Table 2: Pavlidis' rules for merging column blocks

Ittner et al. [Ittne93] describe a hybrid layout technique that first analyses white space

to isolate blocks and then uses projection profiles to find lines. The page must have a

manhattan layout. A manhattan layout is briefly described in Table 3. This restrictive

definition excludes some types of advertising documents, forms and some broadsheet

newspaper layouts. Generally speaking, top-down layout analysis strategies require a

manhattan style page layout.

1. Pages contain blocks of text and lines of symbols.

2. All symbols are printed upright

3. Non textual graphics do no occur

4. Text lines are either horizontal or vertical

5. Manhattan layout possesses a single transformation that describes skew and
shear alignment over the entire Image.

Table 3: Essential properties of the manhattan layout style

Ittner et al. use projection profiles (see "Projection Profile Cuts" on page 37) to further

segment text blocks which have previously been segmented using their hybrid system

[Ittne93]. Normally for an image of height i, the horizontal projection Pi represents the

number of black pixels at height i. Ittner et al. differ slightly from many published

methods in that they project their components abstracted as rectangular boxes of the

same centre and area in order to reduce implementing system dependent details of

symbol shape. From the projection profiles of segmented page zones, the dominant line

spacing D is estimated from the derivative of P, which is compounded by taking the

square roots.

, "D is used as a heuristic to segment blocks into lines motivated by

the diversity of text profiles encountered." Ittner [Ittne93]

45

Document Analysis

A smoothed projection is then convolved from P using a Gaussian kernel with a

standard error taken from the dominant line spacing, D. With this profile and D the

original block is partitioned horizontally by assigning each component to the text line

region in which the majority of its area lies.

Ittner et al. also attempt to segment lines into words but only after symbol recognition

within the line zones. The algorithm then asks the user for confirmation that words are

delimited by word spaces. If there are no word spaces then no segmentation is attempted

at all. If word spaces are present a scaleable word threshold is inferred from each text

block separately. The threshold/must be independent of text size and the text size is

estimated from the symbol or font set being used by the document. Consequently,

symbol recognition must be utilised before word recognition. However, in attempting to

automate language free layout analysis, Ittner has simply reduced the problem to symbol

dependent layout analysis.

Okamoto [Okamo93] presents a hybrid algorithm that resembles the recursive XY cut

but analyses white spaces as a whole. Okamoto noticed that columns are either separated

by white spaces or thin black lines. Through horizontal and vertical scanning of the page

he detects these lines and separators. The block connected components are merged in

the direction of the separators to complete the segmentation. Okamoto intends his

method to be independent of the orientation of the text lines, although they must be

either horizontal or vertical. His algorithm shows that a very simple global analysis of a

page can produce a good segmentation result.

Model matching

Although model based analysis immediately suggests that the strategy should be top-

down or model-driven by definition, the model is stored separately and used in

conjuction with bottom-up techniques to provide evidence to help with the choice of

model. The recognition of a document is realised by an analysis system with the help of

a model, A model that contains general information about a group of documents is a

generic model. Liu-Gong et al. claim that with only a few generic models an analysis

46

Document Analysis

system (which uses a model recognition system) can analyse and recognise many

different types of document [Liu95].

Lin-Gong's generic model definition (which should not be confused with the ODA's

generic layout structure) is a tree structure containing the characteristics of the layout

objects and indicates whether or not a layout object must be present in specific layout

structures. Thus while analysing a document the analysis system travels through the

hierachical tree of a model and at the same time it uses the attributes and the methods

contained in the class-objects to identify the specific layout objects. Liu-Gong employs

histogram analysis and Hough' transform skew correction techniques to achieve

segmentation. His model matching techniques effectively breaks down any theoretical

barriers ,between document analysis and document understanding as Lin-Gong attempts

to logically label his component elements using his generic model.

Farrow et al. have researched another model based hybrid system [Farr095]. Feature

tokens are generated from the original image using bottom-up processes. Processing

proceeds in a bottom-up manner via a Forward Production System in which production

rules utilise the low-level evidence available and detect designated object types in the

original image. These objects types are designated high level feature tokens. Farrow

uses a matching method to associate the tokens with nodes in his model. In essence

Farrow's objective is to fill a defmed column area with tokens that have been previously

detected: he calls this a column tiling process.

A global-to-Iocal approach to layout analysis

Lam has developed a 'local to global' approach to complex document layout analysis

which addresses some of the problems that have troubled other white space analysis

segmentation algorithms:

• documents have complex layouts, for example, the white gaps between regions are

usually small and some of the regions are non-rectangular;

47

Document Analysis

• documents are degraded, for example, the detection of white space regions becomes

difficult when the white gaps are corrupted by noise.

Lam uses no prior layout knowledge of the document being processed. This is a

deliberate strategy on behalf of Lam so that he may use this segmentation technique

within an "open" document understanding system. An "open" system is not restricted to

processing only one class of document [Lam94a, Lam94b].

Lam's approach utilises the strength of both top-down and bottom-up strategies and tries

to compensate each strategy's weakness with the other's strength. The strength of his

approach lies in its ability to locate and combine white gap candidates into white space

regions. Top-down analysis first divides the page into four equal sized sub-images. Each

sub-image is then divided again into four smaller sub images. The partitioning stops

when the sub-images are smaller than a predefined threshold. White space zones are

identified in the sub-images by looking at the vertical and horizontal pixel profiles of the

sub-image. Pixel profile analysis is a top-down strategy. Lam states that

"top-down analysis does not provide reliable segmentation on noisy

and complex documents at the layout level, it can hypothesize

probable [white space] candidates when it only focuses on a small

area of the page." Lam [Lam94b]

The white space zones are then combined in a pair-wise merging operation. The

merging operation is performed horizontally and then vertically in two separate stages.

The separate sets of results are then' aligned' to see if rectangular regions can be formed.

Hirayama's hybrid column segmentation technique

Hirayama [Hiray93] has devised a block segmentation method for a document

recognition system. His technique is designed specifically for text-segmentation and

acts as an input tool for creating electronic databases of various printed Japanese

documents.

48

Document Analysis

The block segmentation process has four stages: detection of character strings; grouping

of character strings by height-distance relation; page segmentation using border lines

and block unification.

The first stage uses a form of RLSA (see "Run Length Smoothing Algorithm" on

page 37 for more details) to group runs of connected black pixels which are separated

by an interval of white pixels. The length of the interval is determined by a predefmed

threshold. The neighbouring lines of black pixels are merged together to form blocks

which are then classified (see section 3.2.3, "Segmented geometric region classification

techniques" for more details) as ~ither horizontal lines, vertical lines, picture elements

or character strings. Character strings can be thought of as lines of text.

Hirayama observed that the character strings were arranged regularly and exploited this

feature in order to merge each text area into groups in stage two.

"The regularity is in the spacing, where the distances between

adjacent character strings in a vertical direction within a text area

are almost the same" Hirayama [Hiray93]

Hirayama calculated a threshold value which he used to guide the string merging

process. The threshold value is calculated from the analysis of two histograms: a

histogram of the heights of the character strings and a histogram of the distances

between baselines of adjacent character strings in a vertical direction. Once the

threshold has been calculated, two adjacent string lines are merged into the same group

if the distance between them is less than or equal to the threshold.

In stage three, the border lines of columns are detected by linking the edges of the text

groups. Again, Hirayama bases his strategy upon a key observation:

"Text areas consist of mainly columns, therefore, the column

structure (in other words the edges of the columns) ...can be detected

'by analysing the edges of text groups." Hirayama [Hiray93]

49

Document Analysis

Hirayama does not give any more implementation details for this stage other than this

statement:

"if the left or right edges of two or more text groups are in the same

vertical column they are linked to one another." Hirayama

[Hiray93]

He does expand into little more detail when he describes the precautions he has

implemented in order to preserve the identity of figures which are formatted within, or

in between, columns. Essentially, Hirayama over segments his page of text in order to

increase the chance of keeping the page's images intact. This over segmentation

generates small text areas which are subsequently 'unified' in the fourth stage of the

algorithm.

The 'unification' stage is not documented in any detail by Hirayama other than an

outline of an algorithm which tracks left to right across the page and top to bottom down

the page and unifies text blocks based on their 'spatial relations'.

The most important point which can be concluded from Hirayama's work is that the

method of analysing the height-distance relationships between text strings allows text

areas to be segmented without predetermined threshold parameters (with the exception

of the predefined RLSA-type threshold which is used to segment text lines).

Additionally, once the text lines have been extracted, the algorithm is mainly bottom-up

or data-driven and can, therefore, be applied to documents which have diverse layout

models. The only stipulations that must be observed are that the document is formatted

into text blocks and that those blocks form columns. As Hirayama has used a RLSA-

type algorithm (which is model-driven) and based his algorithm upon the presence of

blocks and columns, his algorithm has inherently taken on some of the characteristics of

a model-driven strategy and must be considered as a hybrid strategy.

50

Document Analysis

3.2.2.4 An assessment of Page Segmentation strategies

If the document style is manhattan with a simple geometric layout then a top-down

strategy would be fast and effective. The top-down approach is successful when the

recognition procedure can interpret the document structures logically. Inother words the

analysis system can recognise document images with the knowledge about layout

structures by invoking image processing routines as subroutines [Watan93, Tang91,

Sylve95].

If the document image is geometrically rich and diverse then a bottom-up strategy would

be advisable. The data-driven approach may be used effectively on documents not

designed explicitly on the basis of layout structures. If the document style is unknown

then a possible solution would be to use white space analysis techniques which produce

the best all round performances as they draw on both strategies simultaneously. Each

one of the methods described in this section has advantages and disadvantages. All

produce errors in certain contexts. It is reasonable to base the choice of a document

analysis strategy on the logical class of the document. This statement can be made with

a certain amount of confidence thanks to the consistent ad hoc formatting rules which

exist for certain classes of document.

Chenevoy and Belaid [Chene91] engineered their system, 'Graphein: hypothesis

management for structure document recognition', to take advantage of these ad hoc

rules to form layout models. Graphein is a blackboard based system which attempts to

identify the structure of a document from a generic model based upon the ISO standard

for ODA. The system deals with different hypotheses of structure. The system adopts

different segmentation procedures according to the hypothesis extracted from the

model. A top-down method is applied when a hypothesis is sure enough. A hybrid

method is applied when the model is not directly usable and a bottom-up strategy is

engaged when the model is unusable.

51

Document Analysis

The blackboard has several levels of geometric abstraction ranging from page through

to character. The hypothesised or found objects are stored as nodes in the corresponding

levels, described with attributes and links. The specific structure of the document is

expressed in the links which express the hierarchy. In this way Graphein expresses

document understanding whilst segmenting the page. This is an attractive system which

integrates both aspects of document processing within itself: document analysis and

document understanding. However, the document understanding stage is still model

based, and like other model based systems it requires a priori information regarding the

logical structure of the document)

Kise et al. [Kise93] have a developed a system for the incremental acquisition of

knowledge about document layouts from example documents. The knowledge

comprises symbolic descriptions of general layout structures which aid document

analysis. The method is incremental in that knowledge is modified using additional

examples to cover previously unseen layouts. Counter examples (generated as errors)

are reflected in the knowledge so that the system makes no repetitive errors.

Kise's knowledge base contains data on one family of documents; in his paper he uses

title pages of journals as an example family. Kise copes with the problem of multiple

layout structures for one logical structure by representing each unique layout structure

encountered as a class of layout structures.

"A class description consists of two sub-descriptions: a structure

description and a feature description. The former is a description of

the nesting relation among layout objects as a tree, while the latter

is a description of geometrical features of each layout object and

spatial relation between layout objects." Kise [Kise93]

His system has three phases which are summarised as follows.

• Phase 1, example layout objects are transformed into an instance description.,

52

Document Analysis

• Phase 2, the instance description is matched to each of the existing class

descriptions. If a matching class description is found it is generalised using the

instance description. Otherwise the instance description is stored as a new class.

• Phase 3, the example image is analysed using the generalised class description to

generate counter examples of layout objects (erroneous hypotheses). Then the class

description is specialised to exclude the counter examples so that the analysis

system may not generate them.

Kise has attempted to cover the potentially endless number of layout variations that a
/

single logical class of documents may have by modelling. each instance that it

encounters. The advantage of this system is that it is able to guide document analysis

using knowledge already acquired from previous experience. This system is well suited

to modelling classes of documents which have little variation in geometric layout, for

example journal title pages. The disadvantages of such a system would be the continual

learning required of class description after class description for documents which have

a wide variation in geometric layout for only one logical structure, for example

newspapers. This system integrates document understanding knowledge (logical

structural knowledge and logical labelling) back into the document analysis processing

in an attempt to minimise error creation in the image segmentation.

Akindele and Belaid [Akind95] have built upon the theories put forward by Kise and

developed a system for constructing the generic model for a document class from

document samples belonging to each class. They intend to use these models to guide the

document analysis processing and improve performances with their Graphein system

[Chene91]. For each image sample, the system constructs the corresponding specific

physical structure in the same fashion as Kise. The constructed structures are used either

to construct an initial model or to infer the generic model. The construction of the initial

model is made by combining and transforming nodes in the trees representing the

specific structures. The generic model is generated using a method of inference from

tree grammars. Akindele states that the reduction of rules resulting from the inference

process helps to eliminate redundancy and repetition in the final model.

53

Document Analysis

3.2.3 Segmented geometric region
classification techniques

Once a document page image has been geometrically segmented it is necessary to

classify the segmented regions. Some segmentation techniques use classification

features to help segmentation and so the classification stage cannot be separated from

the segmentation stage. These techniques are more often than not bottom-up or data-

driven strategies in which close examination of the image's base components is of

fundamental importance. Typically top-down and hybrid strategies have to employ

classification techniques after segmentation. The factors influencing the choice of

classification algorithm are the same as those influencing the choice of a document

image segmentation technique: class of document; variety of data classes, and the

presentation of the input data's segmented regions.

Top-down strategies require classification techniques to help direct the next level of

segmentation. Obviously, there is no "next level" of segmentation for half-tone regions

of the original image and so the decomposition algorithm must never attempt to perform

further decomposition on these zones. However, once text regions have been identified,

the decomposition of these regions into lines can commence. Once the lines have been

isolated, they can be segmented into regions containing logical words. The

decomposition of these regions leads to the isolation of the connected components

which represent the glyphs and symbols of characters. Commonly, this continuation of

the top-down strategy is not so straight forward. The identification of word regions from

line regions is particularly difficult. Many algorithms will identify connected

components from the line regions without attempting word region identification.

Subsequent OCR of these regions renders the characters within the line. With this extra

information algorithms can adopt more sophisticated word identification algorithms

such as n-grams (probabilities assigned to specific letter combinations), syntactic

analysis and semantic analysis. An early review of word recognition techniques is given
, .

by Elliman and Lancaster [Ellim90].

54

Document Analysis

If the document analysis system is competent and thorough it should identify regions in

which graphic elements are present, for example, lines, rectangles, arcs and circles. The

isolation and recognition of these graphic areas is non trivial due to the vast variation in

combinations of graphic operators and layout appearances.

Many graphic region classification techniques have been proposed. One of the most

useful is Fourier analysis, but this is too slow to be attractive [Pavli92]. Wahl [WahI82]

analyses the geometric properties of connected components. The method uses

measurements of border-to-border distance within a connected component. These

measurements provide a fairly g~od estimate for the mean line thickness of line shaped

patterns, and consequently it has proved to be very powerful in distinguishing line

drawings from text. This method cannot efficiently be applied to half tone regions

without complex and time consuming calculations.

Other methods use features (measurements of quantity thought to be useful in

distinguishing members of different classes) to classify regions. The ratio of black to

white pixels within the image provides some useful information. Line drawings such as

diagrams have a much lower ratio of black to white pixels than text, while half tones

usually have the highest ratio. Yet because of the variability of the ratio in half tones,

this feature cannot be used with confidence except to decide that something cannot be

text or diagrams.

Pavlidis uses the field of statistical pattern classification to categorise regions of

document images that he had previously segmented using white space analysis. His

method is reasonably fast and efficient [Pavli92]. Pavlidis looks at the correlation

between scanlines at y and yH, and defines them as follows. L is the number of pixels

in a scanline and p(y,k) is the value of the kth (binary) pixel of scanline y. The quantity

in brackets equals 1 if the two pixels have the same value and -1 otherwise. Thus if two

scanlines disagree over length k and thus agree over length L-k then the sum is L-2k

and C(r,y) equals 1-2k1l. The key observation is that 'for lines of text and diagrams

C(r,y) is a rapidly decreasing function of r, at least for small values of r, and C(1,y) is

quite high. For half-tones C(r,y) is quite flat and even exhibits periodicity.

55

Document Analysis

Another researcher who used white space related techniques to decompose document

images continues to use white space related techniques to classify image zones.

Antonacopoulos [Anton95] noticed that segmented areas of interest corresponding to

different classes of elements have distinct textual characteristics.

"Text regions contain significant numbers of white tiles which are

distributed evenly inside the region and the white area covered by

them is large in proportion to the total area of the region."

Antonacopoulos [Anton95]

He found that half-tone regions contained less white space than other regions, that the

size of the tiles varied considerably and they were not evenly distributed. Regions

containing line art diagrams were characterised by the relatively large amounts of space

they contained in the form of wide tiles.

Sivaramakrishnan et al. [Sivar95] classify zones into nine classes. By increasing the

number of possible zone classes, Sivaramakrishnan et al. have made the classification

process more detailed and refmed than it would normally be. The advantages of this

increase in detail is the increased information which can be relayed to the document

understanding phase of document processing. A simple disadvantage is the increased

likelihood of error given the increased number of classes. Sivaramakrishnan's zone

classes are displayed in Table 4.

Text with font < 18pt.

Text with font> 19pt.

Math

Table

Halftone

Map/drawing zone

Ruling

Logo

Others

Table 4: Sivaramakrishnan's zone classes

56

Document Analysis

Belaid and Akindele [Belai93] also used an expanded set of possible block classes, but

this section will concentrate on Sivaramakrishnan' s block classifying algorithms as they

attempt a more detailed block classification system.

A feature vector is created for each zone in which the properties of that zone are

recorded. Statistical pattern recognition is used to classify each zone on the basis of its

feature vector [Sivar95]. A decision tree classifier is constructed using a training set of

feature vectors with true class labels. The features which comprise the feature vector are

as follows:

• the number of runs on the foreground and background are calculated by adding up

the number of runs along each line in the zone. When calculated in all four

directions (horizontal, vertical, left-diagonal and right-diagonal) these add up to

eight features in the feature vector;

• the total run length for all runs along the background is calculated and divided by

the total number of background runs to give the run length mean of the background.

This is repeated for the foreground. When carried out in all four directions this

provides another eight features in the feature vector;

• run length variance in all four directions for both foreground and background pixels.

This provides another eight features;

• spatial mean in all four directions. This gives another four features;

• spatial variance in all four directions. This gives another four features;

• autocorrelation of the line projection, number of foreground runs, spatial mean and

run length mean with the line number provides an index r. This feature is calculated

for all four functions and in all four directions giving a further sixteen features. The

process is repeated to create another sixteen features by examining the tangent to

the autocorrelation function when r approaches zero;

57

Document Analysis

• the ratio of black pixels to the total number of pixels in the zone provides a single

feature;

• the area of the zone (height x width) provides a single feature;

• the quotient of the zone width and the width of its column is calculated providing a

further single feature.

Sixty seven features are calculated in total for every zone vector. The purpose of

describing the nature of these features in this thesis is to illustrate their reliance upon

pixel information. Although the- classification of zones into detailed classes can be

viewed as the creation of additional information and in that sense is good, the

implementation is anchored to the document processing of bitmap images and cannot be

transferred to page description technology.

PDF documents store the type of an element within the document model. Consequently,

there is never a need to perform classification algorithms upon elements of PDF

documents. The algorithms outlined in this section are only applicable to document

analysis algorithms which process bitmap images. They are still included in this thesis

as they formed an important part of the early research undertaken by the author. In

particular, the creation of a feature vector by Sivaramakrishnan to help classify

geometric zones was influential upon the decision to create a feature vector to help

classify an entire document. See section 5.5, "Advanced document analysis: the

generation of document features" for more details on the document feature vector.

3.3 Investigative document analysis
research

The following subsections describe the practical research undertaken by the author into

document analysis and the detailed analysis of character components. Although this

research has little practical bearing on the algorithms used in the fmal system it provided
,

good document processing experience.

58

Document Analysis

3.3.1 Directed K-clustering - RECOG

The RECOG, or block recognition, system was based upon the "Doc strum plot"

algorithm by L.O'Gorman (see "Document Spectrum Plot" on page 41). Modifications

were made to O'Gorman's algorithm which rendered good results at identifying

paragraphs and lines in particular. The algorithm implementation has a graphical

interface which portrays the state of the algorithm during the process of decomposition.

A paper describing in the algorithm was presented at a symposium for document image

analysis and multimedia environments [Loveg95a]. An original copy of the paper is

included in "Appendix III: RECOG".

RECOG decomposes a page image into its component blocks based upon a nearest-

neighbour clustering algorithm. The blocks which this clustering algorithm produces are

classified into text and non text types. The text type blocks are then processed by an

adaption of the clustering algorithm presented by O'Gorman which is tailored to fmding

logical paragraphs, lines and words in the text blocks.

3.3.1.1 Discussion of the RECOG results

RECOG produced good results on a variety of different page layouts including multi-

column format. The text decomposition technique is designed to be a preparation

technique prior to processing the image with other specialised algorithms: optical

character recognition; diagram recognition; table recognition; logical structure

realisation. The algorithm implementation effectively filters out and partially classifies

areas of the image.

There are two separate stages to the modified "k-clustering" algorithm: block isolation

and decomposition of text blocks into lines and words -.Processing of text blocks into

lines is effective and efficient. However, the three neighbour clustering is

computa~onally heavy. Furthermore, the worst case occurs when a full page image (for

example a large photo) is passed to the three neighbour clustering algorithm for page

59

Document Analysis

decomposition. The number of neighbour comparisons is immense given that the

vectorisation technique divides the page up into relatively small loops.

A decomposition technique based upon white space layout would nullify the worst case

and improve the computational time. However, the "k-clustering" technique is robust

and produces sound results.

3.3.2 Examination of the pixel profiles of
characters

The RECOG system created geometric blocks based solely on the positions of the

geometric vector outlines on the page. It became clear that after the segmentation and

classification of geometric blocks of vector loops, closer inspection of a block's

component loops was required. A closer inspection would reveal more detailed

geometric properties, for example characteristics of the typeface of character vector

loops. These detailed attributes could be used to further segment large blocks into blocks

containing vector loops of similar attributes. Furthermore, it was hoped that the

information that the detailed geometric attributes of text loops provided would enable

geometric blocks to be compared with one another in terms of geometric prominence on

the page. Table 5 lists geometric attribute features of fonts which can be used in font

comparison algorithms. In order to fmd some of these attributes research was conducted

into the analysis of character vector loops. This section documents the methods, results

and conclusions of that research.

Analysis of normalised loops was used to achieve independence from point size. The

algorithm took the loops that made up a character and scaled them to 100 pixels by 100

pixels. The normalised loops were then plotted on an integer grid and the character body

was filled in with a simple flood-fill algorithm. Once the character had been normalised,

vertical and horizontal projection profiles were created: a method originally proposed

by Zramdin! and Ingold [Zramd93].

60

Document Analysis

These profiles are essentially bar charts of the pixels in the normalised character

projected in either the vertical or horizontal plane. This technique was used by Zramdini

and Ingold as they looked at groups of characters on a text line. They discovered that by

looking at the first derivative of the horizontal projection they could easily tell whether

a character was italic or not. Further research was undertaken to find out (from a

character's projection profile) whether or not that character was serif or sans serif.

Type (serif/sans serif)

x-Height

Slant angre of cross strokes.

Contrast between thick and thin strokes.

Axis curves

Serif type, bracketed - non bracketed.

Weight (of stems and serifs)

Character/counter divergence

Stem height and width

Distinguishing font features

Table 5: Useful attributes of fonts

Figure 3, on page 62 was taken from a program that created vertical and horizontal

profiles. There are four drawing areas in the figure, the top left is the normalised

character (a Times font lower case 'u'), top right is the vertical projection of that

character, bottom left is the horizontal projection and bottom right is the 2nd derivative

of the horizontal projection profile. The second derivative profile was included to test

Zrandini and Ingold's claim that italic characters had a pronounced and different 2nd

derivative profile to normal characters.

By examining the horizontal projection profiles of both Figure 3 and Figure 4, on

page 63, a profound difference can be seen between serif and sans-serif character

profiles. A possible explanation of the difference is that serif characters typically have

a slope at the beginning and end of their horizontal projection whereas sans-serif

characters do not have this slope; their projections are not gradual. This summation

61

Document Analysis

Figure 3: The projection profiles of a lower case 'u' in Times-Roman font

applies only to characters that have pronounced stems on one or both sides of the

character. Characters such as '0' and 'e' have no such stems and thus the projection

profiles of these characters in serif and sans-serif fonts do not differ substantially.

By sampling the horizontal projection profile of any letter, an abstract version of that

character's profile was created, for example, a normalised horizontal projection 100

pixels in length could be sampled once every 5 pixels resulting in a projection of length

20. This form of sampling gives a richer profile than if the character had been originally

normalised to 20 pixels by 20 pixels. Using these sampled profiles, experiments with a

fuzzy pattern matcher were performed. A fuzzy logic inference engine was trained on a

number ?f abstracted projection profiles. The inference engine would classify a loop

62

Document Analysis

Figure 4: The projection profiles of a lower case 'u' in Helvetica font.

into one of three types: serif, sans serif or ambiguous. Fuzzy logic was proposed for two

reasons:

• projections for the same characters at different image resolutions are different. A

pattern matcher must be able to deal with patterns for all point sizes at all

resolutions for all characters;

• a fuzzy set pattern matcher would be able to accommodate all fonts (regardless of

whether they had been seen before) based on a. few well chosen abstracted

projections. Fuzzy logic theory has shown itself to be robust in dealing with

inconsistent and uncertain input data of this type [Klir88, Zadeh83].

63

Document Analysis

The character loop analysis system returned the correct result when the training data was

presented to it and also produced acceptable results when the input data was created

from character loops formatted in the same font. Tests with foreign (unknown)

abstracted profiles were not successful, returning an ambiguous result.

The analysis of character loop profiles plays no part in the final system, but the

development of a character analysis system helped the author to experiment with

extracting geometric attributes from geometric entities and start to think of ways in

which the attributes of fonts could be used to establish geometric relationships between

segmented text blocks.

3.3.3 Basic Document Analysis of PDF

Part of the development of the final system was the creation of a prototype system. The

prototype formed blocks and made basic logical associations between blocks based on

the blocks' geometric information. This section briefly describes the various algorithms

and routines which were used to segment the text blocks from the PDF and make

geometric comparisons between the blocks. The prototype also had elementary tagging

procedures and attempted a basic level of document understanding. A complete

description of the early PDF document understanding routines are described in Chapter

4 (see section 4.3, "Understanding PDF documents: the prototype approach") where

they are placed in the context of contemporary document understanding research.

3.3.3.1 Typeface comparison

An important aspect of PDF is that all the font information used to format the text is held

in the file format. Although in many cases the actual fonts themselves are not held in the

document, there is a unique set of metrics for every u~ique font present. Analysis of

these metrics provides useful information to the block segmenting routines.

Furthermore, the metrics can be compared with each other in order to fmd out which font

style is geometrically more prominent on the page. The results of this comparison

64

Document Analysis

provide essential data to the algorithms which create logical associations between text

blocks based on their geometric properties. Type 1 and TrueType fonts are rendered

onto the screen by mathematical operators using the information the metrics hold plus

the appropriate character widths. Unfortunately no such metrics exist for Type 3 fonts.

Type 3 fonts are 'user defined' fonts. Typically Type 3 fonts are bitmap fonts and cannot

be described by mathematical operators. No font style comparison routines exist in

either the prototype system or the final system for Type 3 fonts.

The prototype system compared font metrics using the following heuristics. For any

rendered text, the point size was the most important clue regarding geometric

prominence, for example, text formatted in twenty point is more prominent than text

formatted in twelve point. This heuristic is true in the majority of cases. However, there

were cases which failed this heuristic. If the point size of text block A was formatted in

a point size just larger than text block B but the font of text block B was artistically

designed to be extremely prominent, then text block B appeared to be more prominent

on the page even though it had an inferior text point size. The prototype metric did not

attempt to rectify the cases which broke this heuristic. However it did a have a number

of primitive heuristic rules which allowed it to make a more accurate diagnosis when

presented with two metrics in which the point sizes were identical.

Text formatted in bold italic text was considered to be more prominent than bold text.

Bold text was considered to be more prominent than italic text. Italic text was considered

to be more prominent than normal text. Sans-serif fonts were considered to be more

prominent than serif fonts. The nature of the font style was determined by analysing the

name of the font. A serif font was identified from the serif metric entry in the font metric

table. This was a poor heuristic but it functioned well enough for the purposes of the

prototype. A stronger heuristic based on more detailed metric entries was developed for

the final system (see section 5.5.2.4, "Structure KS" for more details).

65

Document Analysis

3.3.3.2 Prototype segmentation techniques

The text-segmentation strategy implemented for PDF documents was bottom-up. This

was decided partly because the system was designed to analyse any class of document.

No model-driven approach could have been adopted because no document model was

known beforehand.

The other reason for using a bottom-up strategy was that the API (which Adobe exports

with the Acrobat Exchange PDF file viewer) gives the programme developer the words

of the document as logical entities. Furthermore, the API attempts to give the user the
/

lines in the document. However, the lines cannot be accepted as being always valid".

Infrequently in geometrically complex documents the API does not fmd the true end of

a line, for example in newspapers where the column guttering (inter column gap) is

shallow and could be misinterpreted as an inter-word gap. The prototype and the fmal

system naively assume that each line is valid and accepts the API definition of the line

without question. It was felt that the infrequency of the API errors did not warrant either

an implementation of a new text-segmentation algorithm or a complete error context

identification and rectification analysis sub-system.

The input to the prototype block forming system were lines of text. The blocks were

formed on a page by page basis. The lines were sorted into a vertically increasing order.

They were presented to the block forming routine starting with the line occurring at the

top of the page and fmishing with the line occurring at the bottom of the page. Each

line's geometric properties were examined and it was either added to the block currently

being segmented by the system, or if no compatibility with the geometric properties of

that block was made, the current block was sealed off and a new block was formed

containing the current line. This algorithm was efficient when processing documents

that had been formatted with a single column but further processing was required when

processing a multi-column document.

1. This conclusion is drawn from the results of experiments conducted with Adobe
Acrobat Exchange version 2.1

66

Document Analysis

The algorithm which established whether a line was compatible with a block started its

analysis by looking at the style of the line. If the line had the same point size and font

metrics as the block, further analysis was made, otherwise the line was rejected. Every

block in the system kept a record of the last line added to it. The position of the candidate

line was compared with the last line accepted by the block. The position of the candidate

line was said to be compatible with the current parameters of the block if one of the

following conditions was satisfied:

• the start coordinate of the line approximately matched the 'leftmost' value of the

block's bounding box and the-end coordinate of the line approximately matched the

'rightmost' value of the blocks bounding box;

• the start coordinate of the line approximately matched the leftmost value of the

block's bounding box and the end coordinate of the line was less than the

'rightmost' value of the bounding box;

• the centre of the line approximately matched the centre value of the block's

bounding box and the start coordinate of the line was either greater than or

approximately equal to the 'rightmost' value of the bounding box and the end

coordinate of the line was either less than or approximately equal to the 'leftmost'

value of the bounding box;

• the end coordinate of the line approximately matched the 'rightmost' value of the

block's bounding box and the start coordinate of the line was greater than the

'leftmost' value of the bounding box.

The term 'approximately matched' represents a 'degree of leniency' rather than the

absolute conformity which 'equals' implies. The degree of leniency was implemented

as a range either side of the target value into which the argument value was successfully

accepted as being 'approximately equal to'.

67

Document Analysis

The use of the degree of leniency was extremely important to the performance of the

system. For simplicity, it was decided that the degree of leniency should be a constant

value. In other words the degree of leniency should not change from block to block, page

to page or document to document. Initially, it was felt that the optimum value for the

degree of leniency should be calculated from a function involving the point sizes of the

two blocks involved. However, good results were obtained using a constant value.

The magnitude of the degree of leniency was decided upon after a series of tests on

sample documents. Care was taken not to make the magnitude too large and thus risk

accepting lines into blocks when the lines were not suitable (under segmentation).

Similarly, care was taken not to make the magnitude too small and thus risk rejecting

lines that were valid members of the block (over segmentation).

If the line was deemed to be in the correct horizontal position, an analysis was made to

determine whether it was in the correct vertical position to be a member of the block.

Essentially this was a test for compatibility between the existing inter-line value in the

block and the vertical gap between the last line to be accepted into the block and the

candidate line. Once both values have been calculated another 'approximate

comparison' was made. In amanner similar to the test carried out on the line's horizontal

position a degree of leniency was introduced. The magnitude of the degree of leniency

was engineered based on trials made on sample documents.

The analysis of the leading position was not carried out if there was only one line present

in the block. In this situation a heuristic was applied. The heuristic created a false

leading value for the block. The value of the fake leading was calculated at twice the

magnitude of the point size of the single text line present in the block. The fake leading

value was also used as a maximum threshold limit for any line's leading value which

was being analysed against the block's geometric properties. No text block would be

created in which the gap between lines was more than that of twice the point size of the

member lines.

68

Document Analysis

In practice, this algorithm was prone to error. The prototype system calculated the inter-

line gap for a block simply by looking at the gap between the first two lines in the block

(if the block had two or more lines). If the inter-line gap between the first two lines was

anomalous, then an anomalous inter-line gap value was set for the entire block. A better

algorithm should have 'looked ahead' and analysed the inter-line gaps of the other lines

on the page and not simply assigned the inter-line value for a block from the analysis of

the first two lines it had seen.

The algorithm outlined in the previous paragraphs will segment a page's text efficiently

if that page is single columned> For more complex page formats the algorithm may

produce over segmented results, for example, in a multi-columned document in which

the lines have been sorted in decreasing vertical order over segmentation will occur.

Many lines will not be allowed to join the text block currently held by the segmentation

routine as they are logically out of place thanks to being sorted based on their vertical

position.

To counteract the potential over segmentation problem a second pass was made over the

blocks created from the first segmentation pass. In the second pass, each block was

allowed to look down the page and examine the block positioned immediately

underneath it. This was a computationally inefficient algorithm as each block had to

check the length of the list once to ensure that it found the block which was directly

underneath it. The algorithm runs in n2 time, where n is the length of the block list

created from the first pass. Once the block (block A) had found the block (block B) lying

directly underneath it on the page, block A conducted tests upon block B in order to

determine whether or not block A could merge with block B. Ifblock A was confident

it could merge, it created a link to block B. After the second pass, all blocks with links

were merged together. The tests that the blocks carried out on each other consisted of

testing for font and point size compatibility and inter-line gap compatibility. The inter-

line gap of both blocks were compared as well as the gap between the blocks. If the gap

between the blocks matched the leading of both blocks then a link from the upper block

was made to the lower block.

69

Document Analysis

Figure 5 shows a page of a document which has been segmented by the prototype. The

page is geometrically simple. It has only one column of text and no images or graphics.

Figure 5 shows the geometric blocks created from the prototype text-segmentation

routines. Figure 5 also indicates the class of the blocks by using different coloured ink

on the bounding boxes: maroon indicates the document title; purple indicates a text body

block; green indicates a level-l-title (section) and blue indicates a level-2-title

(subsection). Different inter block relationships are represented using black lines of

varying thickness. The block classification techniques, the inter block relationships and

the block tagging routines are all explained in section 4.3, "Understanding PDF

documents: the prototype approach".

Figure 5: Typical output from the prototype PDF processing system

70,

Document Analysis

The TIFF bitmap decomposition algorithms outlined in this chapter

provided good experience of text line and text block construction which

will be shown to be productive in the context of PDF analysis in Chapter

5: "Final System Development and Engineering". The development,

research and results of the prototype PDF analyser will be shown to

contribute to the development of the final system's algorithms for PDF

analysis and PDF document classification.

71

Chapter 4, Document
Understanding

This chapter opens with a, literary survey of contemporary document

understanding research. This is included to give an overview of document

understanding to the reader, since elements of document understanding

are present in the proposed solution to the document claSSification

problem. This chapter goes on to give a description of a prototype PDF

document understanding system.

72

Document Understanding

4.1 Introduction

The term 'document understanding' is used in computer processing terminology to

describe the algorithms and routines which formulate the logical entities and logical

structure of a document from a document's geometric tree.

A document image which has been geometrically segmented into regions of

geometrically similar text, graphics and images, and then structured into a geometric

tree that is the input for a document understanding system 1•Whereas document analysis
/

systems could afford to process one page at a time, a document understanding system

must analyse the entire document as a logical entity. Document understanding must

accomplish a number of critical sub goals in order to achieve an understanding of the

logical document structure:

• identify the class of document being processed;

• attach a logically semantic label to the geometrical elements present in the

document which is appropriate to the class of document being processed;

• identify the logical structure of the document.

All document understanding systems must know what logical class of document they

are processing. Document understanding routines are document class specific. Many

document understanding systems are flexible enough to process documents from the

same logical class which vary in their page layout and overall design.

The class of document being processed not only dictates the set of logical tags that will

be used to tag the geometric blocks in that document, but it also dictates the choice of

strategies that will be used to tag the blocks with the labels and establish the logical

1. Some systems (notably the Graphein system [Chene91] and the system developed by
Kise [Kise93]) merge document understanding into the document analysis stage of
processing. Generally speaking however, document analysis and document
understanding have a minimal overlap.

73

Document Understanding

relationships between the tagged blocks. All document understanding systems rely upon

the presence of a strong document model to help them with the labelling process and the

logical structure fmding process.

Document understanding systems have developed in this fashion because the logical

document classification of a bitmap image is a complex problem for a computer to solve.

The information that a computer needs to know in order to establish for certain the

correct logical class of a document can only be found by applying model-driven

document understanding routines. Document understanding systems use highly focused

recognition algorithms which search for specific logical entities and specific logical

relationships between those entities. Identifying logical entities and their relationships

is the only guaranteed manner of identifying the precise logical class of a document.

This presents a circular argument to document understanding systems. The logical class

of a document can only be determined by processing the results of document

understanding algorithms. Document understanding routines can only be applied once

the logical class of a document is known. Researchers in this field have circumnavigated

this problem by assuming a priori knowledge of the class of document. Contemporary

document understanding systems are designed only to process one logical class of

documents. Lam calls these systems "closed" systems [Lam94a].

A priority goal of this research is to execute document understanding algorithms upon

documents whose logical class is not known before hand. Whilst researching

contemporary document understanding systems various shortcomings became clear.

The most significant of these shortcomings was the reliance upon a priori knowledge of

the logical class of the document image. The main attention of this research was then

directed towards creating a s~stem which would be able to find the correct logical class

of a geometric document whilst processing that document. Chapter 5, "Final System

Development and Engineering" outlines a proposed solution to the document

classification problem. The solution contains elements of document understanding

within it.'

74

Document Understanding

A literature survey of contemporary document understanding systems has been included

in this chapter for several reasons. A basic comprehension of document understanding

systems will highlight the problems such systems encounter. Furthermore, the role that

document understanding routines perform in the final system (and the PDF document

processing prototype) will become clearer.

4.2 Literature Survey

More research has been undertaken on document analysis than on document

understanding. As the document analysis field expands and matures the natural

progression of document image processing research will increase document

understanding research. This literature survey is structured by author rather than by

document understanding strategy.

4.2.1 Ishitani's Form understanding

Ishitani [Ishit95] applies a model based strategy for the specific document analysis and

document understanding of forms. Watanabe [Watan93] suggests that forms are

documents in which the logical structure is explicitly defined by the format of the

document. Graphic lines, text columns and text rows all explicitly define the logical

structure of tables and forms.

Ishitani is able to perform thorough document analysis of the ruled lines (in a form

document) and then apply a specific model matching technique to find the best form

model for the original document. Once the model has been correctly matched, document

understanding is completed, as all elements of the image will be known and their

relationships known if the model is detailed enough. The model matching problem is

translated into a problem of searching for the optimal match between two structural

descriptions: a formal model and the lines from the original image. Ishitani constructs

75

Document Understanding

an association graph from the two structural descriptions and then searches for sub-

forms and line matches.

Ishitani claims a robust and effective algorithm. This is due to the existence of very

strong dominant features (lines) in the forms upon which good pattern matching

techniques can be used.

4.2.2 Watanabe's document definitions

Watanabe [Watan93] defines four logical document classes and describes how the

different geometric features present in each class dictate the optimal document

understanding strategy.

• Class I: documents have their own inherent layout models which are rigidly

predefined on the document sheets. Element separators/boundaries are highly

visible and explicitly defined. Examples of this class of document include forms

such as those processed by Ishitani [Ishit95].

• Class 2: documents have geometric relationships among the items of the document.

The relative positions of the individual items are determined according to their

allocated states. Watanabe suggests that library cards are good examples of this

class of document.

• Class 3: although the documents have their own layout models the relationships

among individual items are determined by logical models. The meaning of each

item is determined by the logical model. Newspapers and magazines belong to this

class of document.

• Class 4: the documents do not conform to any layout or logical models. These

documents are designed by human perception. Advertisements are examples of

these highly unstructured documents.

76

Document Understanding

Watanabe goes on to attempt structure recognition for the first three categories of

documents. No structure recognition is made on the fourth class for obvious reasons.

There follows a brief synopsis of their procedures and fmdings. It is worth noting that

Watanabe's experiments at fmding structure did not include global document

classification, thus one can only presume that he applied his procedures with prior

knowledge of the document class.

4.2.2.1 Understanding Form documents

Watanabe, like Ishitani, acknowledges that the important information in a form

document is defined by vertical and horizontal line segments. The structure of a form

document is physically and explicitly defined in advance. Watanabe defmes this

structure using a binary tree. The tree represents the logical relationships among item

blocks. He defmes two such trees: a global structure tree and a local structure tree.

"The local structure tree specifies a cutting method for repeated

division of the reassigned block into two rectangular blocks, starting

at the upper left and working to the lower right corner. The global

structure tree represents the linking method among individual

rectangular blocks contained in the document, starting from the

upper left corner. Nodes in the global structure tree accompany

appropriate local structure trees. The global and local structure

trees establish a complementary relationship to specify logically the

structures of table form documents" Watanabe [Watan93]

He then applies a document analysis technique which is based on the decomposition of

the vertical and horizontal line boundaries. This stage consists mainly of binary

transformations, edge extractions and comer detection procedures. The result is a set of

points representing the block comers. The logical structure recognition module then

interprets the connective relationships among the extracted points to identify the

individu~l item blocks. The logical structure tree of the original image is built by

examining the positions and sizes of the individual item blocks.

n

Document Understanding

Watanabe uses a hybrid approach of feature extraction (bottom-up) and item-block

extraction (model-driven) to analyse and understand form documents. Thanks to the

explicit defmition of the structure of forms, he can tell from the resulting logical tree the

relationships between the logical elements without analysing the location or appearance

of those elements.

4.2.2.2 Understanding Library Cards

Library cards are less explicitly structured and contain more implicit information in their

layout than forms. As before, Watanabe defmes a logical specification for the class of

document being processed and, as before, he chooses a binary tree representation. The

branches point out the relationships between geometric elements present on the card.

Document analysis is performed using white space analysis and a geometric tree

structure is built up from the analysis. Watanabe extracts the image areas (including

document items) based upon their mutually neighbouring relationships rather than the

semantic content of the actual document items themselves. Consequently,

"the recognition procedure works successfully without difficulty

even if there are variations in the geometric configuration caused by

the lengths and numbers of items of data" Watanabe [Watan93]

4.2.2.3 Understanding Japanese newspapers

Whilst processing Japanese newspapers, Watanabe defmes his own physical

classification of document structure as well as a logical classification. This classification

has some aspects which are specific to Japanese newspapers and others which can be

applied to newspapers and magazines in general. After document analysis, Watanabe is

left with classified geometric blocks. The geometric blocks are said to belong to one of

four classes:

• Class L: The class of horizontal and vertical separators which typically divide

columns;

78

Document Understanding

• Class P: Physical blocks such as photos, tables and figures;

• Class T: Physical blocks of articles. These blocks are surrounded by blocks of class L;

• Class S: The set of physical blocks such as titles, subtitles. Additionally, class S

provides a default class for blocks which do not fit other class descriptions.

He represents the classified blocks using an adjacent relationship graph which models

logical relationships between blocks. In these graphs nodes represent blocks and the

edges indicate adjacent relationships. Three kinds of information are assigned to each

node: class identification, coordinate values, and upper/lower column numbers. Article

blocks (class T) are divided and sub classified in order to represent their detailed

structure. The divided article blocks are split into text strings which belong to one of the

following classes.

• NOR: the string is a standard line in which the number of characters is normal.

• PS: the string area is at the beginning of a paragraph.

• PE: the string is at the end of a paragraph.

• CEN: the string is in the centre of a paragraph.

• OTH: other - the default classification.

Watanabe acknowledges that the logical structure of Japanese newspapers is not

consistent with the geometric structure.

"The logical structure is defined by geometric relationships among

the components related to individual articles and spatial

relationships among individual articles on a page. They are different

from page to page" Watanabe [Watan93]

79

Document Understanding

Production rule expert system

In newspapers, the page layout is defmed by the number of articles and their size and

their importance as well as the mutual relationships among articles. To accommodate

this flexibility Watanabe uses a production rule system to recognise the logical structure

of a page. He devised two sets of rules. Rule set two interprets the logical structure of

the input page maintained by the adjacent relationship graph. Rule set two invokes rule

set one to interpret the detailed structures maintained by the characteristic relationship

lists under control of set two. Watanabe interviewed a newspaper editor in order to

compose these rules.

Rule set one is invoked to determine whether a physical block is a title, a subtitle or part

of an article by examining its detailed structure. In the following rules A represents the

block of interest. Th is a threshold value used to judge the height to width ratio of titles

and sub-titles.

[Title block] If A is class S and its dimensional ratio is greater than Th and

it covers two or more columns then A is a Title block.

[Text block] If A is class T then A is a Text block.

[Head block] If A is class T and its first string belongs to either CEN or OTH

then A is a Head block.

A Head block is a text block containing a minor title which fits in a column.

[Begin block] If A is class T and its first string area is attached to PB then

A is Begin block.

This rule determines the beginning line of a paragraph in the physical block of class T.

Rule set two is used to merge individual physical blocks into a news article. The

variables in square brackets refer to the activation of rule"set one. Current points to the

current physical block and Number keeps the label of a physical block.

80

Document Understanding

If A is [ritle block] and its left node is [Begin block] and Current is NULL

then add(Number), label (A), label (A's left node), move Current (A's left

node).

Once a title has been identified, the above rule tries to determine whether its left adjacent

node contains the first paragraph of the article or not.

If A is [Text block] and its right node is the same [ritle block] as Current and

A corresponds to the next column of Current, then label (A), move Current

(A).

Since a text block that is left of and adjacent to a title belongs to the article containing

the title, the rule stated above merges the block A into the article.

If Current is [rext block], then begin find next (Current); if there is a next,

then label (next), move Current (next), else NULL (Current); end.

This rule is used to merge an article with the current article. find next searches the

remaining columns in to fmd the next article block. It achieves this with a three step

algorithm.

• Step 1: search every edge from current to find the first nodes of class T.

• Step 2: find the first unlabelled node in the class T.

• Step 3: check the characteristics of current and the newly found node for

consistency. If the last string in current is labelled as PE and the first string of the

new node is labelled as NOR then they are incompatible. Otherwise, the new node

is the continuation of the article to which current belongs to.

If [Head block] and Current is NULL, then add (Number), label (A), move
current (A).

If A is [rext block] but neither [Head block] nor [Begin block], and Current
is NULL, then backtrack.

81

Document Understanding

If a major title is not used to start an article then either a minor title (Head block) or an

indented text line (Begin block) is used. Backtracking finds all nodes which may

possibly correspond to A's previous text sections. If backtracking fails then the logical

structure recognition fmishes.

The control strategy

The execution of the document understanding process is driven by the knowledge of the

composition rules for newspapers in the form of the production rules. The basic

recognition process has three phases.

• Step 1: match the rules of rule set two to the adjacency graph constructed from

document analysis. The selected rules are held as competitive rules.

• Step 2: select the first applicable rule. The first rule activated from the order in

which they were described previously has the highest priority. In cases of equal

priority the rule involving the block which is closest to the upper right hand comer

of the page is selected.

• Step 3: execute the right side of the selected rule. The adjacent relationship graph is

modified according to the interpreted results.

This is repeated until all the rules are exhausted or the back tracking fails. The logical

document tree composition process is controlled by a top-down or model-driven

approach.

By looking at three classes of document, which vary in degrees of geometric and logical

structure, Watanabe has shown that documents which are geometrically structured

(table forms and to a lesser degree library cards) can be logically represented in a binary

tree structure and that his framework for document understanding works well in both

cases. Newspaper documents are not as constrained in their layout as either of the other

classes and consequently a flexible document understanding strategy is required.

82

Document Understanding

Watanabe suggests that the concept of multi-level recognition layers can be applied to

various classes of documents. The main distinction between documents, he states, is

"...derived from the adjacent relationships among different item

blocks, allocated in two dimensional space" Watanabe [Watan93]

The basic knowledge representation tool in all of these strategies is knowledge about the

document logical structure. The importance of recognising the class of document being

processed is paramount in order to gain this knowledge and direct the correct logical

document understanding strategy.

4.2.3 Niyogi's newspaper understanding
system

Niyogi and Srihari have also developed a computational model for document

understanding in which a rule based control strategy is employed. A hierarchical rule

based system is used to guide block classification, grouping and reordering operations,

which is used in conjunction with a domain knowledge base which encodes rules

governing document layout [Niyog95, Niyog96]. Heuristics are used to infer the classes

and labels of the blocks and additionally the reading order of the blocks is inferred.

Niyogi only processes newspaper type documents. This class is geometrically diverse

and contains many layout rules and guidelines and may be considered as complex

geometric documents. Once again, by knowing beforehand the class of image to be

processed, model-driven processing can be utilised for document understanding.

Niyogi uses a top-down, rule based backward chaining strategy for document

processing. He uses O'Gorman's doc strum plot segmentation algorithm for document

analysis which is appropriate considering the complex geometry of the class of

document being processed (see "Document Spectrum Plot" on page 41 and section

3.2.2.4, "An assessment of Page Segmentation strategies" for more details). Niyogi

gathers a's much information about the geometric characteristics as he can from the

83

Document Understanding

document analysis stage. By examining the block size and the connected components

with his segmented zones he estimates the type of text in those zones and so builds up a

more detailed picture of the geometric document structure. Table 6 and Table 7 show

Niyogi's defmitions of a newspaper's physical syntax and logical syntax respectively in

Extended BNF notation.

<document> "- {<page>}

<page> "- {<block>}

<block> "- <large-text> I <medium-text> I <small-text> I <line-draw-
Ing> I <half-tones> I <boundary>

<boundary> "- <horizontal-line> I <vertical-line> I <line-rectangle>

Table 6: Niyogi's physical newspaper structure

<document-Info> "- { -euntts-}

<unit> "- <title> I..-
<graphical-area> I
<story> I
<photoblock>

-ephoteblcclo- "- [<title>] I <photo> <caption>

<graphical-area> "- <page-banner> I
<horizontal-band> I
<other-graphics>

<story> "- [<sub-story>] I
<title> [<sub-title>] { <text-para> }
[<photoblock>]
[[<title>] <table> <caption>]

<sub-story> "- <story>

Table 7: Niyogi's logical newspaper structure

Niyogi acknowledges that layout rules vary widely among different types of documents

and even among samples of the same type of document.

"Thus, a knowledge base of layout rules for document logical

structure derivation will contain some global rules that apply to a

majority of documents and some domain specific rules that apply

only to the type of document being analysed" Niyogi [Niyog95],

84

Document Understanding

In the case of newspapers a domain specific rule may be that multi-line headlines are

left-justified, or that a thin line rectangle around a set of blocks signifies an independent

story. An inference engine within the rule based system makes deductions about the

document using a hierarchical knowledge base that contains rules about identifiable

characteristics of document images. Niyogi's rule system closely follows other well

documented rule based strategies in that three levels of rules are implemented:

knowledge rules, control rules and strategy rules [Winst92, Jacks92J.

Knowledge rules contain all the domain knowledge for the system. All common

characteristics of different types' of document blocks as well as spatial constraints

commonly followed in document layouts (for example the positioning of captions

relative to images) are encoded here. These knowledge rules can be used for block

classification, block grouping and text block ordering as and when directed by the

control strategy. An example of Niyogi's knowledge rules is show in Table 8 (a).

IF a block Z is of type "large-text"

ELSE IF it satisfies the following three conditions:

{

it is of type "medium-text",

AND it is below another block W,

AND block W is not of type "large-text" or "medium text"

}

THEN block Z is a major headline.

(a) An example knowledge rule

IF the grouping mode is on,

AND a block has been selected,

THEN find all the immediate neighbours of the selected block

(b) An example control rule

IF any partially grouped units remain,

THEN apply all unit-related control rules for each of these units until
there are no more partial units

(c) An example strategy rule
,

Table 8: Examples of Niyogi's rules from different knowledge hierarchies

85

Document Understanding

Control rules regulate the invocation of the knowledge rules based on appropriate

processing states. An example of Niyogi's control rules is shown in Table 8 (b).

Strategy rules are general meta-rules. Strategy rules determine what control strategy is

to be followed for analysing the image. An example of Niyogi's strategy rules is shown

in Table 8 (c).

Niyogi's system is flexible enough to allow the addition of more knowledge rules to

facilitate the analysis of additional document features. Yet this is the system's weakness.

In order to be thorough the system must build up and maintain a comprehensive rule
/

base. Furthermore, for the system to be truly universal another layer of functionality

must be added to the rule base: document classification.

4.2.4 Dengel's business document
processing

There are an infinite number of formatting variations within instances of any document

class. There are also characteristics which remain consistent. Andreas Dengel and Frank

Dubiel [Denge95] have studied the class of business letter documents and noted that

"Although there is a common understanding how typical newspapers

or business letters look like, information presentation as well as its

logical composition is somehow fuzzy" Dengel [Denge95]

In order to overcome this fuzziness problem, Dengel identifies logical attributes within

business letters and clusters them into abstract structural concepts with which he

constructs a decision tree classifier. The level of abstraction is higher than that which

Niyogi utilises, and so Dengel can afford to construct more a detailed decision tree, for

example, Dengel can construct a concise set oflogicallabels with which to tag elements:

body, recipient, logo, salutations, footnote, subject, date, relation, sender and signature.

Dengel i~ able to achieve this level of detail because business letters are highly

86

Document Understanding

geometrically structured. There are standards and rules for laying out business letters,

and these layout guidelines are important aids when determining structure.

Dengel's attributes are renamed distinctive marks and are determined in such a way that

each geometric object located has at least one distinctive mark and that the number of

distinctive marks is a low as possible. The decision tree is constructed by using a training

set of forty business class documents and tested with a further forty business class

documents. This potential solution to the infmite instances problem seems positive, but

can only be applied with some confidence to one class of documents.

4.2.5 Semantic net strategies

Bayer and Walischewski have also researched structurally decomposing business letters

[Bayer95]. They choose to model business letters using semantic nets which describe

geometric properties, spatial relationships, lexical entities as well as lexical

relationships. This work stems from original research by Bayer which uses a semantic

net language (FRESCO) which is specifically designed to model knowledge about

structured documents and analysis techniques [Bayer93].

Their set of labels is not as detailed as Dengel's but it does contain all the fundamental

tags. From a set of one hundred and eighty one documents they trained their system with

twenty documents and achieved an average rejection rate of 0.4. Bayer et al. state that

the major advantage of their system is the decreased training time required by the

system, although this could be seen as simply a trade off between time and detail when

comparing this method with Dengel's system.

4.2.6 Taylor's document classifier

Taylor et al. have attempted to classify any image by document type [Tayl095]. They

suggest that reasonable classes of documents might be: newspapers, business letters and

technical ~ournals.

87

Document Understanding

"A document classifier plays two important roles in a document

analysis system: one to find particular class or classes of documents

and two, to sort all documents into classes." Taylor [Tayl095]

Their general classification process is a two layer hierarchy designed to classify multi-

page documents from their first few pages. Firstly, the document is sorted by the number

of columns and secondly, logical components are detected to determine the class. The

column detection stage is used to reduce the number of classes to be searched through

by the functional classifier, for example, it is very rare for a business letter to have more

than one column and equally rare (or a newspaper to have less than two columns. Taylor

states that logical features such as 'salutations' and 'inside address' are useful in

classifying business letters from other classes.

However, there are many question marks surrounding this method, not least of which is

the method of obtaining the logical features. Taylor admits that most of the rules for

determining logical features are content based. They require natural language

processing (NLP) technology. This wastes all the geometric information available such

as the spatial relationships and element attributes. Yet, the identification of detailed

logical elements such as 'salutations' (using geometric information only) would require

a priori document class knowledge. Consequently, in order to avoid this "Catch22"

situation Taylor has been left with no alternative but to reject all geometric information

and utilise content based heuristics which are far more susceptible to misinterpretation

and ambiguity without geometric information confirmation.

Inher paper, Taylor starts by claiming that newspapers, journals and business letters are

suitable classes to classify into, but they only present a classifier which has been

designed for business documents such as letters and memorandum. Presumably this is

because content based information is not good enough to determine logical elements in

newspaper type documents.

88

Document Understanding

Taylor's classification algorithm combines knowledge of a document's page layout with

knowledge of a document's logical structure and her method of processing the semantic

content of blocks in order to establish their logical role is fast but prone to mis-

interpretation.

The semantic understanding of text by a computer is an area of document processing and

artificial intelligence which can provide vital clues to a document's logical class and

structure. However, natural language processing (NLP) is an enormous field of research

which has not yet matured. Even if NLP could produce valid interpretations of a block's

semantic content, NLP alone would not be enough to establish the logical structure of a

document. The recognition of a document's logical structure demands the analysis of

logical entities and the relationships between those logical entities.

4.2.7 Esposito's logical rule base

Esposito et al. have approached the problem of document understanding from a Prolog

style rule acquisition system [Espos93]. With a training set of twenty documents

together with initial absolute truth user input, their system attempts to learn rules which

will recognize logical components of instances of the same document class. It is worth

noting that Esposito et al. acknowledge the importance and position of document

classification within the architecture of document image processing. They describe their

document classification process as

"... given a set of classes in which documents handled in a specific

office can be grouped, we use a process of supervised inductive

generalization in order to generate classification rules from some

significant documents of each class." Esposito [Espos93]

A representation language (LO) is defined which describes the geometric elements

present in the document image. Additionally, Esposito provides LB (a language of

background knowledge), LH (a language of hypotheses), 0 (a set of examples or

89

Document Understanding

observations described by LO) and B (some background knowledge described by LB).

The goal is to fmd hypothesis H, described in the language LH which is a subset of pure

Prolog. Table 9 (a) has examples of predicates used in LO. Esposito uses FOCL to learn

the hypothesis defined by the language LH. FOCL is an extension of FOIL which is a

learning system that implements a divide and conquer strategy to learn a rule or

hypothesis. FOCL allows predicates to be defmed intentionally and in this manner it

provides a way to introduce inference rules as background knowledge to use in the

induction process. For the application of document understanding, Esposito has defmed

several rules concerning the position of a block, the type of alignment between blocks

and the mutual position of blocks.Examples of these rules can be seen in Table 9 (b).

(a) Predicates from the observation language LO

width-very-very-small(X)

height-large(X)

type-text(X)

sender(X) ~ above(X,Y), type-picture(X,Y)

aligned-left-column(X,Y) ~ aligned-only-left-column(X,Y)

aligned-left-column(X,Y) ~ aligned-both-columns(X,Y)

(b) Inference rules from the background knowledge language LB

Table 9: Examples from Esposito's knowledge languages

Esposito et al. trained their system with twenty documents from the business letter class.

After two trials the system required some background knowledge in order to improve

the generalizations of some of the concepts. Although Esposito states that background

knowledge alone does not significantly improve the predictive accuracy of the whole set

of rules, she claims that better results can be achieved using "hierarchies of concept

dependencies" based upon the spatial contiguity of logical components, for example,

consider the logical "date" element on a business letter. The presence of this component

is dependent upon the presence of a logical "sender" element.

90

Document Understanding

4.2.8 Saitoh's text area ordering system

Saitoh et al. [Sait093] describe a system for document image segmentation and text area

ordering. Although this system is not pure document understanding it is worth

examining because Saitoh sets out to accomplish exactly the same goals as those

attempted by the PDF prototype document 'understander' (described in the next

section): classification of text regions and an ordering of these regions into a reading

path.

Saitoh uses well established imag€j segmentation techniques based on Pavlidis's white

space analysis segmentation algorithm [Pavli91]. Saitoh classifies text areas into

headers, footers, captions and text bodies. He uses the ordering of the blocks to create

an ODA'type layout tree [IS089]. Saitoh segments graphic lines and uses them to help

define blocks and create the reading paths through the document text blocks.

Text areas are connected together based on their influence range. He constructs a tree

from the blocks based on these ranges. He loosely defines an influence range as being

the width of a text block. If a node (a text area) is just underneath another node it is

assigned as a son and the son inherits the influence range of the father node. If the

influence range of a child is wider than its parents, the influence range is extended.

Figure 6 is a replication of a figure that Saitoh uses to clarify his definitions.

The nodes in the geometric tree constructed by this system are bubble sorted and the

reading order is extracted by traversing the tree from left to right in a depth first manner.

4.2.8.1 A discussion of Saitoh's approach

No algorithms are specified in his paper and as such it is difficult to gauge the accuracy

of Saitoh's results. The goal of the system was to find a reading path between blocks.

This is accomplished by ignoring logical title blocks and simply extracting "peripheral"

text blocks such as headers, footers and captions. If these blocks were to be included in

the text ordering they would break up the flow of the document. The peripheral blocks

91

Document Understanding

Text Area 1
Original
Influence Range~------~~----~

Text Area 2

Inherited influence
,---------, range

Node
Pointer

~ ~ ~ ~
Divided influence ranges

Figure 6: The influence range of Saitoh' s blocks

are attached to the root node of the page on which they reside. One can then traverse the

tree from the root without encountering any peripheral blocks until one returns to the

root node.

Saitoh's system seems robust. He has designed it in such a fashion that it will process

documents with simple page layouts (single column layout for example) and complex

documents (documents with multi-column page layouts and a large number of images

which break up the text flow). Nowhere is the problem of document classification

mentioned although the classification problem does lie outside the bounds of text region

ordering. However, Saitoh makes a number of remarkable statements which question

the necessity of extracting non-textual data and the necessity of 'OCR-ing' characters

which are over lcm in height. From a human cognition aspect, it is these features which

attract the most cognitive attention, and arguably, which help humans navigate through

a document.

92

Document Understanding

4.2.9 Lam's adaptive reading framework

Stephen Lam [Lam94a] states that there are two types of document understanding

systems: "closed" and "open". The majority of document understanding systems present

today are closed. They are designed for a particular class of document and employ

document-specific knowledge during their processing techniques. Alternatively, "open"

architectures are designed to process multiple classes of document [Sriha94].

Lam has designed and implemented an open framework for document image

understanding which has an adaptive capacity [Lam94b]. Input to Lam's system is the

document image (or images as his system has multiple page processing capabilities) and

document-specific domain knowledge. His architecture consists of three components:

control, knowledge base and tool box [Sriha92].

The tool box contains a set of generic document image processing tools that are

applicable to different documents. Tools developed for different conceptual levels are

coordinated by the control.

The knowledge base consists of two sub-components: document models and general

knowledge. A document model describes the aspects of a document domain or a group

of documents that share similar layout structure. General knowledge is shared by

different document domains. It describes the tasks that are needed to locate and identify

document components, such as text blocks and line segments.

The control selects the use of tools and is responsible for the intelligent combination of

data extracted from document sub-areas to generate a representation of the scanned

document. It examines the problem state in its working memory and uses the facts in the

knowledge base to determine which modules in the tool box should be used.

Lam's system can perform document analysis, document classification and document

understanding on four different document classes: postal mail pieces; forms; bills and

journals [Lam94a]. This is a significantly more open system than Niyogi's which was

designed 10 handle the layout variations amongst broadsheet newspapers.

93

Document Understanding

All the documents which Lam's system processes have radically different layout

models. Watanabe [Watan93] and Pavlidis [Pavli92] would suggest that bills, forms,

and postal mail pieces all define their logical structure explicitly through their layout

structure. There is little variation between one document instance in these classes and

another in terms of appearance. Journal structure is not explicitly defmed through its

appearance but there is significant information available to classify a journal if, as

Lam's system does, natural language processing (NLP) is used as a source of

information. Information obtained from NLP is termed content interpretation by Lam.

Lam's system is very much top-down or model-driven. The system executes a model-

driven classification process which is part of the document understanding technique.

The document understanding problem is reduced to a constraint satisfaction problem.

The control selects tools and strategies for processing the document image to satisfy

constraints defmed in the knowledge base. If one particular tool or strategy fails (by not

meeting a constraint) then another is selected. The control portion of the system utilizes

the knowledge base to select and re-select tools and strategies.

Model-driven document understanding is only as good as the models which are used to

guide it. There exist certain classes of documents for which the models (which are

necessary to describe the document in enough detail to perform model-driven document

understanding) become extremely complex, for example, the document models which

define the appearance and structure of magazines and broadsheet newspapers are going

to be very similar at an abstract level. The models would have to be highly detailed and

contain a deep level of logical and geometric information before significant differences

become identifiable. The more complex the document models become the more

complex the strategies used to detect their features become and the more detailed the

knowledge base needs to be. Lam's approach, therefore, is well suited to documents

with simple geometric models, in other words, documents with simple layouts.

94

Document Understanding

4.3 Understanding PDF documents:
the prototype approach

The remainder of this chapter is devoted to the description of a prototype PDP document

processing system, developed whilst the author was working as an 'internal student' at

Adobe Systems Inc.

Adobe required a program which would help make their PDP file format more

accessible to people with visual impairments. Adobe rationalised that the creation of text

blocks and the creation of a reading order for these blocks were the two priority goals.

In fact, a disabled user who downloads a PDP document would benefit greatly from

complete computer document understanding of that document and not just the extraction

of blocks and the creation of a reading order between those blocks [WWW96]. This is

a scenario in which a logical document classifier would be invaluable. The disabled user

would download a PDP document, engage a document processing system which would

analyse, classify and logically understand the downloaded document and then have the

resulting logical document read to them by a screen reader.

The development of this system marked the transition of the author's interests from

document analysis to document understanding. The prototype was used as a platform to

test and evaluate document understanding routines, although this was given a lesser

priority than the two main project goals.

Before attempting document understanding, the prototype segmented the PDP

document using analysis techniques which have already been described in section 3.3.3,

"Basic Document Analysis of PDP" in the previous chapter.

The discussion of the prototype has been included after the literary review in order to

highlight some of the issues and aspects which face contemporary document

understanding systems before examining an experimental system.

95

Document Understanding

The prototype attempted a very basic level of document understanding. It could only

apply document understanding routines to two classes of document: newspaper

documents and academic documents. It did not use any document classification

heuristics and instead "asked" the user via a dialog box to identify the class of document

being processed. The system achieved a basic level of understanding by finding simple

logical associations between blocks. The nature of these inter block associations is

different for each class of document [Watan93].

The process of classifying blocks and finding associations was very much a symbiotic

process. The logical associations)Veremade based on information provided from the

basic geometric properties of the blocks and block tag information; the block tagging

process used pattern fmding routines, geometric information and logical information.

The development of this symbiotic relationship was a major influencing factor in

deciding to implement the fmal system with a blackboard framework (see section 5.4.1,

"Blackboard systems" for a defmition of a blackboard framework) at the core of the final

system model (outlined in the next chapter). A blackboard framework can formalise the

flow of information between the two document structure models (logical and

geometric).

4.3.1 Classifying blocks

The prototype had to deal with the problem of tagging geometric blocks from a wide

variety of logical document classes. Two proposals were considered as possible

solutions:

Proposal1: store a database of detailed logical tags together with the conditions for their

application to a geometric block.

This proposal would provide an accurate level of document understanding thanks to the

specific nature of the tags. Unfortunately the overhead required to implement this

proposal ~ a practical working prototype was immense. The database of tags would

96

Document Understanding

need to have routines to update and maintain it. The system would need to have routines

to acquire document-specific knowledge from examples of classes of documents and

routines to store this knowledge as rules in the database. This option was not taken up

due to lack of time for developing the prototype whilst at Adobe.

Proposal2: create a basic set of tags which one would expect to fmd in the majority of

documents and use these tags to help create logical relationships between geometric

blocks in the document. Table 10 lists the tags used by the prototype system. The set of

tags is a mixture of logical tags (for example titles) and geometric tags (for example

header and footer).

Main Text. This tag represents the blocks in the document which con-
tain the document's content

. Title 1. This represents a title block. A structural hierarchy of title
blocks can be achieved by utilising the other two levels of title tags
when tagging blocks.

Tltle2

Tltle3

Super Title. This tag represents the title of the document.

Header

Footer

Unknown. Tags which could not be confidently classified were
tagged as 'unknown entities'.

Table 10: A list of the tags used in the prototype

The strongest criticism of this proposal is that by using a set of tags from a low level of

data abstraction the level of document understanding achieved by the system will be at

a low level. On the other hand, this weakness is also this proposal's advantage: the tags

can be applied to documents from different classes because the set of tags is not always

document class specific.

In certain cases, notably titles, the blocks are true logical entities. This is because the

geometric bounding box of these blocks encloses the entire logical block. This is not the

case for main text blocks. All text blocks are formed based upon the geometric

97

Document Understanding

properties of the text they contain; they are true geometric blocks. Most blocks tagged

as 'main text blocks' are not entire logical entities but fractured logical entities. Part of

the document understanding process is to reconstruct the fractured entities. In all 'real

world' documents there exist a certain amount of logical entities which are spread over

a number of pages, for example, newspapers typically have logical articles which are

spread over two or more pages. Pages are geometric elements not logical elements.

Consequently, any logical newspaper article which is spread over two or more

geometric pages will be fractured. No cross-page logical entity building is attempted by

the prototype partly because the level of document structure required by the prototype

did not demand it and partly because finding cross-page logical entities is an extremely

complex problem. Furthermore, the prototype does not attempt to split and re-group

'main text blocks' into logical paragraph blocks. The prototype treats each 'main text

block' as a 'pseudo' logical paragraph because for the limited purposes of the prototype

there was no reason to construct a 'perfect' logical paragraph.

The following sections provide a brief description of how the prototype classified and

tagged the geometric blocks it created.

4.3.1.1 Finding main text blocks

The prototype created a histogram of all the unique font and point size text style

combinations and found the mode text style value. Any block which has the same style

as the mode value was tagged as a 'Main Text' block. This was a very simple heuristic,

yet it was very successful.

4.3.1.2 Finding peripheral blocks

Header and footer blocks are both types of 'peripheral' blocks as they are always located

to the sides of the logical content of a geometric page. The.prototype peripheral block

tagging algorithms used a 'train and tag' system. The algorithms used a couple of simple

heuristics to locate candidate peripheral blocks with which to train themselves:,

98

Document Understanding

• blocks must be geometrically located within a certain distance of the horizontal

page boundaries. The distance threshold was established by trial and error testing by

the system implementor;

• blocks can only contain one or more text lines.

Once all the candidate peripheral blocks have been collected the prototype executed a

simple pattern fmding routine to locate recurring geometric features amongst the

candidate blocks. The pattern fmding routine looks at the horizontal position of the

blocks and their text style.

The pattern finding routine found the three most frequent unique position and style

combinations from the candidate blocks it was presented with. Three was thought to be

the maximum amount of peripheral blocks that would occur as either headers of footers;

one unique entry roughly corresponding to a left, right and centre justified header or

footer block. The prototype estimated the most frequent unique location and style

combinations by creating another histogram and extracting the three most frequent

entries. Subroutines were used to check for exception cases, such as there not being three

unique location and style combinations, or one of the unique combinations having such

a small frequency value compared to the total number of pages that it was highly

unlikely that that particular block was a peripheral block.

4.3.2 Tagging title blocks and finding logical
dependencies between blocks

Main text blocks, headers and footers were all tagged before the prototype tagged title

blocks or made any dependency associations between blocks. No logical block

dependency knowledge was required to tag main text blocks as the prototype's logical

model prevented main text blocks from making associations to other non-main text

blocks. Main text blocks could be dependent on other blocks, that is they could have

links made to them.

99

Document Understanding

Headers and footers are pure geometric entities and as such cannot be logically

dependent on other blocks or have other blocks logically dependent on them.

The extraction of peripheral blocks and main text blocks from the set of all geometric

blocks left a set of 'unknown' blocks. The set of title blocks is a subset of the set of

unknown blocks.

4.3.2.1 Finding title blocks

Title blocks were tagged by creating and analysing logical associations between certain

blocks and then analysing and comparing the geometric styles of the potential title

blocks. The logical associations were created using an algorithm which consisted of two

separate stages. Firstly, the algorithm made general associations between blocks based

on geometric properties. Secondly, the class of document was given to the algorithm and

class specific subroutines were engaged to tag the title blocks and create final logical

associations.

Making basic dependencies between blocks

The prototype created two types of dependency between blocks. The first class of

dependency existed between main text blocks only. This dependency finding routine

was an attempt to partially rectify the fractured logical entity problem outlined earlier in

this chapter. In summary, main text block A was allowed to link to main text block B,

if block B was located directly below block A and the horizontal coordinates of the

bounding box of block B were approximately equivalent to those of block A. This

technique was similar to the block merging algorithm outlined in section 3.3.3.2,

"Prototype segmentation techniques", except there was no analysis of the leading

properties of the two blocks and no block merging was performed. It was found that the

dependencies created by this routine were very secure and could be considered as

document class independent dependencies.

100

Document Understanding

The second type of dependency was made between unknown blocks and either other

unknown blocks or main text blocks. This type of dependency was not class independent

and had to be revised once the prototype knew the class of document being processed.

However, this algorithm did provide essential information to the prototype about

candidate title blocks and the nature of the dependencies that stemmed from those

candidate title blocks.

An unknown block (block A) was linked to another block (block B) using the rules

outlined in Table 11.

Rule 1: Block B cannot be a member of either the header or footer block class.

Rule 2: There must exist a line which perpendicularly intersects both the base line
of block A and the base line of block B without intersecting any other block's base
line. The 'base line' of a block is the bottom line of the block's bounding box.

Rule 3: Block B must be of a lesser geometric style. See section 3.3.3.1, "Typeface
comparison"

Table 11: Rules for linking block A to block B

If a block B became logically dependent on block A, then block A was tagged as a title

block. The prototype did not know which specific title tag to use as not all of the

candidate title blocks had been processed. No judgment could be made upon the

hierarchy of the title blocks until all the candidate titles had been processed.

After extracting the set of all titles from the set of unknown blocks, the prototype made

a guess at the title of the document. Generally speaking the title of the document lies on

the first page of the document and is formatted in a text style which is the most

predominant throughout the document. Furthermore, that text style is not found on any

other pages in the document.

In order to continue document processing with class specific document analysis

algorithms the prototype 'asked' the user to identify th~ class of document. The

prototype presented a choice between "newspaper" documents and 'non-newspaper'

documents .. The class 'newspaper' was loosely used to describe any document whose,

101

Document Understanding

logical structure was represented by a series oflogical articles, for example, newspapers,

magazines and newsletters. The class 'non-newspaper' was loosely used to describe any

document whose logical structure was composed of chapters, sections and subsections,

for example, books and academic journals. These defmitions are too simple to be useful

to normal document understanding systems but they meet the demands of the prototype.

Newspaper specific document understanding algorithms

The document understanding routines used to process a newspaper attempted to isolate

logical articles throughout the document. The prototype defined an article as consisting

of a title block and any combination-of main text blocks and sub-stories. A sub-story

consisted of a title block and some main text blocks. No strict document defmition

grammar was used to help construct the logical document because the prototype was

attempting to force a wide range of logical document classes into one logical class. The

use of a grammar would have been too restrictive. One heuristic which was strictly

applied was that the sub-story title block should have a lesser geometric style than the

article title block style.

An important difference between the document understanding routines used by the

newspaper understanding algorithm and the academic understanding algorithm lies in

the procedures which analyse the differences between title blocks in the two document

classes. In academic documents the geometric differences between title blocks are

calculated and the differences convey information regarding the logical status of the

blocks. Subsection title blocks always have a lesser geometric prominence than section

title blocks. In newspaper documents there are many different text styles for logically

equivalent entities. There is a great deal of inconsistency in newspaper documents

between article title block styles, although they are all logically equivalent. Typically

the differences are deliberate because the designer of the page wanted to ensure that one

article on the page (the headline article) was read before any articles which the designer

considered semantically inferior. The positions of articles on the page of a newspaper

dictates to the reader in which order he or she should read those articles, rather than any

logical hierarchy between articles (assuming that all the articles are logically equal).

102

Document Understanding

The differences in the relationship between the logical roles and the geometric

properties of the title blocks in both newspaper documents and academic documents are

realised in class specific variations of the typeface comparison algorithm. The academic

document understanding routines used the algorithm outlined in section 3.3.3.1,

"Typeface comparison". This is a straight comparison algorithm which compared the

geometric prominence of two blocks. The newspaper document understanding

algorithm adjusted the original algorithm so that it was more relaxed in its comparison.

The result of this leniency was that two title blocks which were approximately the same

size were considered logically equal in the context of newspaper document

understanding. A title block (block/ A) would only create a logical dependency to

another title block (block B), if block A was substantially more prominent on the page.

In this context block B became a sub-story title block.

The input to the document-specific prototype document understanding routines was a

set of tagged blocks together with a set of logical dependencies between the blocks. The

newspaper document understanding algorithm sorted these blocks into a vertically

increasing order (the first block is the lowest, the last block is the highest) and proceeded

to create logical dependencies amongst the blocks by examining the block's tags,

position and previously defined logical dependencies. Any main text blocks which had

not had a dependency created between themselves and a title block, searched up the page

for the first occurrence of a title block. A logical dependency was created between a title

block (block A) and a main text block (block B), if there was a vertical line which

perpendicularly intersects the base line of block A and the base line of block B without

intersecting the base line of another title block located between the baseline of block A

and the baseline of block B.

The results of the dependency-creating pass was a dependency tree. The root of the tree

was a node representing the class of document. Branches from the node represented

individual dependencies to article nodes, 'unknown' nodes and peripheral nodes. The

article nodes were ranked in order in which one would normally expect to encounter

103

Document Understanding

them by reading the newspaper from cover to cover, starting at the first page. Within the

article nodes were branches to title nodes, main text nodes and sub story nodes. All

branches within article nodes were sorted into a reading order in a similar manner to that

presented by Saitoh [Sait093].

The reading path of the document was found by traversing the tree left to right in a

depth-first manner. The prototype re-tagged the titles in the document by traversing the

tree in the manner described above. When the prototype encountered an article it tagged

the title of that article as a level-one-title. All the sub-story title blocks within that article

sub-tree were tagged with a title tag Which was one logical level lower than that of the

logical title level of their parent block, for example, an article would be tagged as level-

one-title, a sub-story within that article as a level-two-title and a sub-story within that

sub-story as level-three-title (and so on).

Academic specific document understanding algorithms

The routines used to establish a logical structure in academic documents operated in an

opposite manner to those used to process a newspaper document. Whereas the fmal

logical dependencies between blocks were created in the newspaper understanding

routines before the fmal block tags were set, in academic document processing the

opposite took place. The formatting rules were much stricter in academic documents.

Blocks which represented a certain logical entity, for example a section, were formatted

in a style which was consistent for all similar logical section blocks throughout the

document. Analysis of the styles of title blocks took place before the final logical

dependencies were found in order to take advantage of the consistency of the

relationships between the logical status of a block and its geometric text style.

All the blocks which were tagged as title blocks in the first pass of the understanding

algorithm were extracted and compared with one another. A hierarchy was established

between the title blocks which was based on strict comparisons between the text styles

of the title blocks. Given that the prototype already 'knew' the style of the document title

(or super title) and could therefore extract that style from the hierarchy Structure, all

104

Document Understanding

blocks formatted with the highest text style in the hierarchy were tagged as level-one-

title. All blocks which had a text style corresponding to the next two text styles in the

hierarchy were tagged as level-two-titles and level-three-titles respectively.

For each page in the document, the blocks were sorted into a increasing vertical order

and the dependencies amongst the blocks were found using the following rules as search

parameters.

• Main text blocks were allowed to search up the page and form a logical dependency

with either another main text block or a title block. 'Title block' refers to any block

which is tagged with one of the three levels of title tags. The rules for forming a

dependency between main text blocks were identical to those used by the newspaper

understanding algorithm (see "Making basic dependencies between blocks" on

page 100).

• Title blocks were allowed to search up the page and form dependencies with other

title blocks. In a similar fashion to the newspaper title dependency algorithm, there

had to exist a vertical line which intersected the base lines of both blocks and no

other title blocks' base lines.

• No title block was allowed to form a logical dependency with another title block

which was tagged with an identical title tag.

• No title block was allowed to form a logical dependency with another title block

which was tagged with a title tag that existed on a logically inferior level in the title

hierarchy.

The resulting logical dependency tree was parsed to ensure that a consistency amongst

dependencies was present, for example if a level-three-title tag was dependent on a

level-one-title tag the prototype would examine the context of this dependency because

it would expect a level-three-title block to be dependent on a level-two-title block rather

than a level-one-title block.

105

Document Understanding

4.3.3 Prototype document understanding
discussion

The PDF document prototype provided an excellent platform to test many of the

algorithms which were refmed, modified and improved before their inclusion in the fmal

system. The most important lesson learnt was that the level of document understanding

achieved by the prototype was far too 'general' to be of any practical use in a logical

document database. This shortcoming was a direct result of not knowing the specific

class of document being processed. However, it was noticed that this general level of

understanding could be used to help extract meaningful document features which could

help to classify the document.

The implementation of the prototype also provided experience with processing PDF

documents. The prototype was implemented over three months and during its

development it was clear that although certain avenues of research would be achievable,

they would be wasteful in terms of time spent developing them and the overall impact

they made on the performance of the prototype, for example, the handling of the

geometrically invalid text lines that the Acrobat Exchange API can give to the prototype

and the poor detection of hanging titles. Hanging titles are paragraph titles which are

formatted in a second column to one side of the body text of which they are the title. All

of the prototypes logical dependency fmding algorithms assumed that the title of a

portion of text would be formatted directly above that text.

There are many weaknesses to the prototype. All of the weaknesses arise because one

of the fundamental goals of the prototype was to extract a meaningful reading order from

the PDF document model rather than achieve good document understanding. Even so,

it was discovered that without document class knowledge, it was almost impossible to

achieve consistent results when attempting to rebuild articles or other logical entities

which were spread over one or more pages. Thus, the prototype extracted a meaningful

reading order of blocks from a mainly geometric perspective rather than from a totally

logical perspective.

106

Document Understanding

Figure 5, "Typical output from the prototype PDF processing system," on page 70

illustrates the graphical output obtained by processing an academic type document with

the prototype system. The example document is a simple, single columned document

with no headers or footers. There is a hierarchy of titles present in the document which

is represented in Figure 5 by colouring the bounding boxes with unique colours: green

for the first level of the hierarchy; blue for the second level and yellow for the third (not

shown in Figure 5).

Three types of relationships are modelled in the system: primary, secondary and tertiary.

The primary relationships exist between geometric blocks of text which are tagged as

main text blocks and title blocks. The prototype system displays these relationships as

thick black lines to and from the centres of the appropriate blocks. Secondary

relationship's are displayed as slightly thinner black lines. Secondary relationships exist

between title blocks. Tertiary relationships are not real logical relationships at all, but an

attempt by the prototype to extract a meaningful reading order from those blocks which

are not linked to by either primary or secondary relationships. The prototype uses a weak

heuristic which links blocks together in the order in which it finds them on the page. The

prototype searches from the top of the page to the bottom of the page, whilst traversing

the blocks on the page from left to right. This algorithm is satisfactory for finding the

reading order of blocks on a single page, yet, the prototype system did not attempt to

find cross page links (such as those found in a newspaper, for example) which are an

important feature of many documents.

4.4 Summary

The literary review and the development of the PDF prototype 'understander' have

shown that the most important aspect of document unde~standing is obtaining the

knowledge of the logical class of the document being processed. This fact is illustrated

by the need, in the PDF prototype 'understander', to ask the user to provide the

107

Document Understanding

document class information before choosing the appropriate technique with which to

establish the logical relationships within the document.

Of all the document understanding systems reviewed only Lam's attempted any type of

document classification. Lam's classification system identified categories of document

which had characteristic geometric layouts and vastly different logical models. Thanks

to the significant differences between any two document's geometric models, Lam

could afford to adopt a model-driven classification strategy in which a document was

identified by seeking out and recognising geometric features (which represent logical

entities) which could only be present in one class of document.

There are some classes of document for which the differences between the geometric

models of the two classes are subtle, for example, a brochure and a newsletter. Both

documents may well be multi-columned, have several images per page and be formatted

with a large number of fonts. Using a model-driven classification strategy on these

documents would be inefficient thanks to the lack of distinguishable geometric (or

logical) features which are unique to one particular class. An alternative document

classification strategy must be devised which is applicable to documents which have

geometric models which contain only subtle differences between them.

The experiences and results of the prototype PDF document

understanding system have preceded the final system implementation

details and algorithms which are detailed in the next chapter. It was felt a

review of the results of the prototype system was within the context of the

chapter on document understanding, as this would illustrate the problem

of document classification from the author's practical experience and

from the contemporary research in document understanding. The results

from the prototype have introduced the possibility of extracting

fundamental logical document characteristics from a PDF document. This

is a key aspect of the final system.

108

Chapter 5, Final
System Development
and Engineering

The chapter opens with a precise definition of the problem that this thesis

addresses and continues with a brief description of the system

development environment. The design and development of the obJect-

oriented blackboard architecture, which forms the underlying framework

of the system, is then provided. This chapter includes a detailed

description of the document analysis text block segmentation routines

used by the final system. A new stage of document processing is

introduced which incorporates aspects of document analysis and

understanding in order to extract meaningful features from a document

which could help classify that document. This level of processing is

implemented within the structure of the blackboard framework.

109

Final System Development and Engineering

5.1 A precise definition of the task

All logical documents can be represented as a tree [IS086, IS089, Tang91]. The

'leaves' of the tree are specific document instances. Nodes in the tree structure represent

abstract classes of logical documents. Figure 7 shows part of this tree.

Figure 7: Part of the tree of logical documents

The tree shown in Figure 7 is not comprehensive but is designed to show that the tree of

all logical documents can be structured hierarchically. There exist different levels of

abstraction for different classes of document. In Figure 7 only newspaper documents

and academic documents have a secondary layer of nodes beneath them. These nodes

represent more detailed (and thus less abstract) classes of document. It is possible to

trace 'The Times' (a leaf in the tree) back up the tree and see that it is a broadsheet

newspaper, which is a newspaper. Thus, 'The Times' inherits all the logical properties

of these classes of documents. 'SPE', on the other hand, is a journal which is an

academic document.

Just as all documents can be organised into a hierarchy tree based on their logical

content, so all documents can be organised into a hierarchy tree based on their geometric

110

Final System Development and Engineering

properties. Geometric attributes of documents are so diverse that the corresponding

hierarchy tree would contain many examples of multiple inheritance. There is no one

way of formatting a logical class of documents, in fact there are a limitless number of

ways of formatting a given document. The geometric tree would be extremely diverse

as all the resthetic and artistic choices of document designers and authors would have to

be modelled. Consequently, the geometric tree should be considered as a hypothetical

structure which is useful for clarifying that there is no one to one relationship between

a logical document (and logical nodes in the logical tree) and that document's

appearance (or the geometric nodes in the geometric tree) [Tang91].

/

Chapters three and four have shown that there is a relationship between the two trees.

Many document analysis and document understanding systems use the information held

in high abstract classes to infer document specific information from actual document

instances. For example, Niyogi's document understanding system for newspapers

expects the newspapers it encounters to display the geometric features of the abstract

broadsheet newspaper class and the logical features of the abstract logical newspaper

class.

How geometric document information relates to logical document information is

document class specific. This was illustrated by the need to implement two different

structure finding algorithms in the PDF prototype document processor. Many document

understanding systems are hardcoded with the knowledge of how the geometric

structure relates to the logical structure of the class of documents which they process

[Ishit95, Watan93].

There are basic geometric and basic logical attributes which the majority of documents

have. An example of a basic logical attribute is the presence of a main text body element

or a document title element. An example of a basic geometric attribute is the number of

pages that a document contains. These attributes can be raised through the abstraction

hierarchy to the appropriate node of the appropriate tree. Common logical attributes are

stored in the logical tree root and common geometric attributes are stored in the

geometric tree root.

111

Final System Development and Engineering

The level of detail of these document attributes is entirely dependent on their position in

the tree. Deeper into both trees the attributes become more detailed and less abstract. At

the leaves, the attributes become extremely specific, for example, the 'main text body'

of a business letter would be logically reclassified as a 'letter body'. A detailed

geometric attribute for a certain class of documents (for example business letters) would

be that they always have the senders address formatted with a right justification.

There is a relationship between certain nodes in the logical document and certain nodes

in the geometric document. This is known because as humans we can make assumptions

between nodes in both trees. We can take a broadsheet daily newspaper (a 'leaf' in the

geometric tree) and identify it with the abstract class oflogical newspapers (a 'node' in

the logical structure tree).

The exact nature of the relationships between the two trees is unclear. There are no

concrete rules for relating a logical document to the manner in which it is formatted. The

ad hoc document styles, which we are familiar with, have been built up over many years

and are intended to help us recognise the structure of what we are reading and to help us

navigate through the document [Dill093]. The first part of cognitive recognition is the

identification of the class of document we are reading.

5.1.1 A formal hypothesis

Ideally, a document classification system should take the leaves of the geometric tree

(which represent geometric documents) and classify them as leaves of the logical tree

(which represent purely logical documents).

In fact this is an unrealistic target for several reasons. Firstly, there are thousands of

'leaves' on both trees. Secondly, the only guaranteed way of identifying a logical

document is to search explicitly for the logical entities that' it contains. This would be

equivalent to taking a document and executing all known document understanding

systems on it and fmding the best set of results from the system's output. Essentially,

112

Final System Development and Engineering

this is what Stephen Lam's solution to document classification is: model-driven depth-

first search [Lam94a]. This is workable with a few, clearly identifiable, document

models to process. This technique becomes inefficient with many different document

models and diminishing differences between those document models.

A better solution would be to sacrifice the level of detail of logical recognition and

attempt to match nodes from the geometric tree to nodes in the logical tree. The search

for the specific 'leaf' document can be resumed using a logical node in the tree as a

starting point rather than the logical document root. This significantly reduces the search

space, for example, a geometric document could be taken and its geometric attributes

abstracted into some features which accurately and abstractly describe that documents

layout and general 'feel': then logical entities could be searched for in that document.

The logical entities would not be specific but instead hierarchically abstracted logical

components, for example, newspapers contain logical article-title elements and journals

contain section-title elements. These features can be abstracted to simply 'title' elements

and this attribute raised to the class of all logical documents. By abstracting the

information up the tree hierarchy the specific document instances have been replaced by

abstract document classes. Extracting abstract geometric information and abstract

logical information from a geometric leaf should be enough to classify that leaf into one

of the abstract logical document classes.

This hypothesis can be stated formally as:

given a geometric document, by extracting and using the abstract geometric and

abstract logical properties of that document It Is possible to Identify that

geometric document as a member of an abstract logical document class.

There are many questions surrounding this hypothesis. How abstract do the extracted

document properties (geometric and logical) have to be? How abstract does the abstract

logical target class have to be? Are there any classes of document for which this

hypothesis is not true?

113

Final System Development and Engineering

The remainder of this chapter is devoted to describing the design and development of a

system whose primary aim is to research the area defined by this hypothesis. Later

chapters describe the results of the system and draw conclusions about the validity of

the hypothesis based on the results produced by the fmal system.

5.2 System details

The system was developed on a PC running Microsoft Windows™ 3.11, and later

Windows95™, system software. The implementation environment was Microsoft

Visual C++TMversion 1.5. The PC platform was chosen because as the fmal system was

being developed and tested, the Acrobat API was available on PCs and Macintosh

platforms only; the PC was the preferred development platform. The Acrobat Exchange

API is implemented in C. Thanks to a degree of compatibility between C and C++, plug-

in developers can choose either of these two languages to implement their plug-in with.

C++ was chosen because it supports the object-oriented (00) paradigm of

programming; the author has more experience programming with C++ in an 00 style

than with C.

The acronym STASIS will be used to describe the fmal system. STASIS stands for

'System To Add Structure by inferenceS'. Throughout this chapter and the next, various

figures will be used to help explain and discuss various issues. The majority of the

figures are unedited (apart from cropping) screen. shots of actual STASIS output.

Figure 8 shows the interface to the STASIS system together with a typical PDF file. The

system was developed as a 'plug-in' to the Acrobat Exchange PDF viewer. A 'plug-in'

is a dynamically linked library from which the Exchange program can call functions

upon request

114

Final System Development and Engineering

5.2.1 The STASIS interface

Document
Understanding
Tool
Report generator

SGML generatorDebugging
Dialog
Window

Figure 8: The Acrobat Exchange V.I. with the STASIS V.I.

A number of different tools make up the STASIS system apart from the main document

classifying system. Figure 8 shows these tools in their position in the Acrobat interface.

In the following paragraphs each button icon is shown next to the description of its

functionality.

l~ The STASIS button activates the system. STASIS performs page decomposition,

geometric block tagging, logical relationship finding and document feature extraction in

that order before passing a feature vector to a neural net classifier for document

classification.

The report generator tool opens a report file which STASIS appends with

document information each time STASIS is executed. The report contains a breakdown

of all the features which STASIS has inferred or calculated from the current document.

115

Final System Development and Engineering

The drawing tool, once activated, recalls the geometric blocks present on the

visible page of the document and draws their bounding boxes onto the screen. Any links

which are present between the blocks are also drawn.

The debugging tool is used to check the results which the system produces. By

'clicking' with the mouse inside the bounding box of a block drawn onto the screen by

the drawing tool, the debugging tool 'pops' up a dialog window which lists the attributes

of the chosen block: the unique ID of the geometric block; the bounding box parameters;

the label of the block and the styJe identifier. The style identifier is a symbol

representing the style in which the majority of the text of the block is formatted.

Ii '" !he document understanding tool and the SGML generator are used to

activate a demonstration of PDP document understanding. The STASIS system

performs document analysis and document classification upon a given document. The

document understanding tool then maps onto the geometric structure tree (given to it by

STASIS) the appropriate logical document structure tree (defined by a DTD) using

document understanding routines. The SGML generator tool can then write a SGML file

to disk by extracting the text which lies inside the logical blocks and applying

appropriate logical tags.

5.3 Final System Document
Analysis of PDF

STASIS uses a blackboard architecture to label the text blocks segmented from the PDP.

The blackboard system has blocks provided to it by a 'Block Knowledge Source'. The role

of the Block Knowledge Source is to create, store and recall the geometric blocks of the

document, upon demand by the blackboard architecture controller routines (see section

5.4.1 for a description of blackboard frameworks). The creation of the geometric blocks

is equivalent to the traditional defmition of document image analysis in that geometric

blocks are created and then tagged as being one of three classes: text, image or graphic.

This section reviews the text block segmentation strategies employed by STASIS.~

116

Final System Development and Engineering

The test segmentation strategy which STASIS uses differs from the prototype's bottom-

up strategy (see section 3.3.3, "Basic Document Analysis of PDP" for details) in that it

is hybrid. Whereas the prototype built blocks from lines and then merged fractured

blocks together, STASIS uses the text lines (given to STASIS by the Acrobat Exchange

API which created them from words, which in tum were created from characters - a

data-driven technique) to create columns (implicitly assuming the existence of columns

- a model-driven strategy) which are then decomposed into blocks. The use of model-

driven and data-driven techniques in the same system is the defmition of a hybrid

strategy.

The block forming routines segment text blocks a page at a time. STASIS extracts all

the lines from the PDP page by using an Acrobat Exchange API function call. The lines

are given attributes stating their position on the page and the font and point size of their

text content. The lines are then sorted into decreasing vertical order.

5.3.1 Investigating PDF graphics

Research was conducted into using graphic lines on a page to help form valid text lines.

Knowledge of graphic lines and their role in forming text blocks has been used in many

document analysis systems [Sait093, Watan93].

The text lines provided by the Acrobat API are not always valid. It was hoped that the

STASIS system could use graphic lines to validate the text lines passed to it by the API.

Each text line could be checked to make sure that it did not intersect a vertical graphic

line. If it did, the text line could be segmented in two at the point at which the

intersection occurred. However, the generation of the graphic lines was too difficult to

achieve and in practice this technique was not used.

It may seem.strange that the graphic lines could not be identified easily in the PDP

model. They are, after all, easily extracted and analysed from the document model.

However, the identification of the valid graphic lines is almost impossible in the PDP

117

Final System Development and Engineering

model thanks to PDP's ability to layer and clip graphic operators. Simply extracting all

the vertical graphic lines on a page of a PDP document is not a guarantee that all the

graphic lines that one has extracted are visible. Many are clipped behind other graphics

including text and images. Consequently, without more detailed image processing

techniques, it is impossible to tell if a graphic line is visible by the document reader.

Using the graphics regardless of their visibility produces irregular and unstable results.

Text lines which do not appear to be formatted close to graphic lines become segmented.

Of course, this situation does not arise in the segmentation of document images. This is

one aspect of document image analysis in which analysing PDP is not advantageous.

5.3.2 Processing text lines

The text lines provided by the Acrobat API are analysed one by one and separated into

different lists based on their font and point size attributes. A unique list of lines is

generated for each unique font and point size combination. This step is based on the

hypothesis that geometric blocks consist of lines of text which have the same style. The

lists of lines are themselves placed into a list. For clarification the list of lists will be

referred to as the meta-list and a list of lines will be referred to as a block.

Each block in the meta-list is then subjected to further text-segmentation algorithms.

These algorithms were developed from Hirayama's work on column separation

techniques [Hiray93] (see "Hirayama's hybrid column segmentation technique" on

page 48) and the experiences gained from the prototype PDP analyser (see section 3.3.3,

"Basic Document Analysis of PDP").

The system required an algorithm which could segment a document's page which has

text formatted in either a multi-column style or a single column style. Hirayama's

algorithm initially analyses and segments blocks using the height-distance relationships

between character strings and then proceeds to segment the results by analysing the

border lines of the character strings. Whilst developing the STASIS system it was found

118

Final System Development and Engineering

that better results were achieved in the PDF model by analysing the leading edges of

blocks and then analysing the height-distance relationships of the blocks created from

the first stage of analysis.

5.3.2.1 'Democracy units'

From the experiences gained by developing the prototype document processor it was

predicted that a large amount of the information that the STASIS system would extract

from a document would arise from the analysis of the results of pattern recognition

routines. A special abstract dat~ type was developed to help manage the results of

pattern recognition routines. The ADT is called a 'democracy unit' thanks to its ability

to collect and handle 'votes'. A democracy unit stores numerical information given to it

and can apply a number of different statistical functions on the stored data. A democracy

unit can provide the mode, median and mean values of its stored data as well as

accessing the data values themselves. Democracy units were used to help segment text

blocks.

The following sections explain how a single block stored in the meta-list is segmented

into valid geometric blocks. The block being analysed and segmented is referred to as

the 'argument block'. The argument block is always taken and removed from the top of

the meta-list. The blocks created from the segmentation of the argument block are

always added to the end of the meta-list.

5.3.3 Analysing a block's 'leading edges'

The 'leading edge' of a block refers to the justification style of the text lines in the block.

The most common styles of paragraph justification are left justified, right justified,

centre justified and fully justified. Figure 10, on page 125, illustrates four columns

formatted in these styles which have been segmented by STASIS. If a page contains a

geometric block which is formatted with no justification (for example an advertisement)

then th~ STASIS system will 'over segment' the geometric block into lines. The

119

Final System Development and Engineering

STASIS system is designed to process all classes of document and in this case the extra

work required to check for no paragraph justification is not worth the effort as it occurs

extremely infrequently. STASIS adopts the policy that it is better to over segment

initially and attempt to construct new blocks by merging blocks (which have been

formed from over segmentation) later on in the processing cycle. This policy is an

extension of the bottom-up strategy of document analysis which builds up major

document components by merging together smaller components.

A new democracy unit is initialised for each argument block. Each line in the argument

block casts three votes to the democracy unit. One vote is cast for the horizontal

coordinate of the left most point of the line, one vote is cast for the right most horizontal

point of the line and one vote is cast for the horizontal value of the centre point of the

line.

The working hypothesis behind the voting system is that it should be possible to

segment blocks into sub-blocks representing columns by analysing the justification

attributes of the lines in the argument block. In theory the most 'popular' values that the

democracy unit records votes will represent the horizontal coordinates of the leading

edges of the columns. A threshold value is used to find the most popular values. The

threshold is calculated using the assumption that there will be at most four columns to

be found in any argument block. For every column there will be three horizontal

coordinate values; thus in the case of there being four columns there will be twelve

possible column leading edges. The total number of votes cast is extracted from the

democracy unit and magnified by a factor of ten. The magnification ensures that in

situations where there is only one column present and only a few lines in the argument

block that a reasonable threshold value is still arrived at. The democracy unit is then fed

the threshold value and asked to return all the values which have a magnitude equal to

or greater than the threshold. The results of the threshold function are used as the

parameters for the segmentation of the argument block.

120

Final System Development and Engineering

The segmentation system was designed using the premise that there would be a

maximum of four text columns on a page. This premise affects the assignment of the

threshold value and is false for most newspapers. However, whilst testing the system it

was discovered that there were no adverse effects encountered whilst segmenting pages

which contained more than four columns. In practice this algorithm is a good general

segmentation strategy for a page of text which has been formatted with anything up to

ten columns, yet in theory this algorithm was inapplicable to pages which had anything

over four text columns present.

A possible explanation for the snccess of this algorithm is as follows. Newspapers are

the only documents where text is commonly formatted in more than four columns.

Newspapers are a class of document in which the page format is extremely complex.

That is to say the flow of text is frequently broken up with captions, images, sub

headings, quotes and so on. The algorithm which segments a text block based on the

justification style of the paragraph is designed to accommodate the worst case scenario:

that each column will have three 'leading edge' values which accumulate enough votes

to reach the threshold set by the segmentation algorithm. This worst case scenario would

occur if there were five or more columns on a page which were are all formatted in the

fully justified style. The fully justified style is the only text format style which could

accumulate an equal number of votes for the left, right and centre coordinates of the lines

which made up its composition. Newspapers are the only class of documents in which

five text columns is a realistic possibility, but thanks to the complexity of the layouts of

newspapers the chance of five text columns being formatted in a fully justified style with

no interference from images, captions, quotes and advertisements is very small.

5.3.3.1 Segmenting a block using 'leading edge' values

For each value in the set of leading edge values found by the democracy unit, a new

block is created and associated with that value. Each ne_wblock will be filled with lines

which contain a match with the leading edge value associated with that block. For each

line in'the argument block the left most, right most and centre horizontal coordinate

121

Final System Development and Engineering

values are extracted. Each value searches the set of leading edge values; if a value finds

a match within the list of leading edge values the line is added to the block which has

been associated with that leading edge value.

In some instances a line will have more than one horizontal coordinate value which

matches up with a leading edge value. In such a case the following priorities determine

which new block the line is placed into;

• if there is a match with the left most coordinate value of the line, then the line is

added to the block associated with the matched leading edge value;

• else if there is a match with the centre coordinate value of the line, then the line is

added to the block associated with the matched leading edge value;

• else if there is a match with the right most coordinate value of the line, then the line

is added to the block associated with the matched leading edge value;

• if no match is made, then the line is added to a new block in which it is the only line

present.

After all the lines in the argument block have been processed the argument block is

removed from the meta-list. All the newly created blocks are added to end of the meta-

list.

5.3.4 Analysing a block's inter-line spacing

Segmentation based on the vertical spacing between the constituent lines of a block only

takes place after all the blocks in the meta-list represent the results of segmentation

based on leading edge values. The working hypothesis is that the leading edge

segmentation routine will have produced blocks which can be thought of as columns.

These columns need to be segmented into their component geometric blocks.

122

Final System Development and Engineering

The argument block to this segmentation algorithm is taken from the top of the meta-

list. The results of its segmentation are added to the end of the meta-list. A new

democracy unit is created for each block being analysed.

For an argument block in which the number of lines is greater than or equal to four, an

inter-line gap value is calculated for every consecutive pair of lines. This value is

submitted to the democracy unit. The democracy unit calculates the single most popular

value. This value is referred to as the inter-line value. The argument block is then

analysed using the inter-line value as a guideline for the expected leading value within

the block.

For blocks in which there are less than four lines present, the following rules are applied:

• for an argument block in which there are only three text lines present two inter-line

gap values can be calculated. The smallest value is chosen as the inter-line value;

• for an argument block in which there are only two text lines present the inter-line

value is calculated as being the point size of the first line in the block plus 5 points.

5 points were added to the inter-line value as a margin of error 'buffer';

• for an argument block with only one line present no segmentation takes place.

5.3.4.1 Segmenting a block using inter-line spacing
values

At the start of the routine a new block is created. The new block contains no text lines

and will be referred to as the 'current block'. The original block will be referred to as

the 'argument block'.

The lines of the argument block are processed one by one. The first line in the argument

block is taken from the argument block, labelled as 'current line' and added to the new

block. The distance between the current line and the next line in the argument block is

calcula'ted. If the distance matches the supplied inter-line value, then the next line is

123

Final System Development and Engineering

extracted from the argument block, added to the end of the current block's list of lines

and becomes the current line. If the calculated inter-line gap does not match the supplied

inter-line gap, then the current block is sealed and added to the end of the meta-list; a

new block is created, it becomes the current block and the first line in the argument

block's list of lines becomes the current line. The current line is added to the current

block and the algorithm continues. Figure 9 shows a flow chart which illustrates this

algorithm.

argument_block = an ar~ument block consisting of a list of lines
inter_line_value = an inter-line value

current block = new block()
current-line = argument_block.first_line
argument_block.remove-first-line()
current_block.add(current-line)

total_lines(argument_block)
> 0

NO

meta_list.add_block(current-block)

argument_block.get_first_line()next_line

NO inter_line_gap
(current_line,next_line)
== inter_line_gap

current_block.add-line(next-line)
argument_block.remove-line(next-line)r--- ~
current_line = next_line

meta_list.add_block(current-block)r-------------------------------------_j

Figure 9: A flow chart of the segmentation routine based on inter-line gap values

124

Final System Development and Engineering

Figure 10, on page 125, shows a page of text which has been formatted to provide a

demonstration of the capabilities of the text block segmentation algorithms outlined in

this chapter. Figure 10 shows, from left to right, a left justified text column, a right

justified text column, a fully justified text column and a centrally justified text column.

The text columns have also been broken into logical paragraphs by using blank lines.

This example is unusual in that typical multi-column page formats are not so simple, and

they do not provide such well defined columns. The next chapter ("Results") defines and

provides examples of error forming contexts and valid block forming contexts for the

document analysis algorithms outlined in this section.

rt:'~I'-lIftl'h'
l.tlU;oi:bd
(,~"."",*,i

.r;l!: 'n...
VOi'b'@i1J,kti
f<nuIi...J,.,,,
_"'UU¥n,'11 ihi,
~~'l'iliH
r.n;t,.u...J '" ,.
¢~}Iiiii"""j
- -;;';:.j~ "-

11n~~U1lQ'''I' b- .
:umU,Au:J U:. IU1.li.

1f1!l,!i<i'\i ;'0,*,,"1'
ih" ~""lIOI~,lt"
J('Il;w..:f ilk ililip.
JI.Imb."<Ie;m.tt
itli'I~-'f'I:,":
,m:m.lil i.I> _n ~
.:IIi!!il»-i~B
Th"r_'~IL,.,
,m~'l>."p
;!'Um~~J"
'fIri.•V"_·""
'm~u'~o$ll
.;, I -

,0' """J:'!!11i1
r.'t·I~;,atil'''iIi
(~~HIt«1
<lJ'I. 1~...
fJif.",h,
(~"' ..
~!IJti~
111i: 11m~"",,,,,..,,,/Il"

li:mJII:hd",,.
~.-" l'ttbb:!

.0':\1"

Figure 10: A prefabricated multi-column page of text segmented by STASIS

125

Final System Development and Engineering

5.4 Development and design of the
blackboard architecture

From the experience gained through the Adobe prototype implementation it was

deduced that the core of the non a priori document analysis and understanding problem

was that certain specific document understanding algorithms can only be applied once

the class of document being processed is known. This also applies in a limited fashion

to document analysis. If the analysis system has knowledge of the class of document it

is analysing then it can perform.a top-down analysis. Deprived of the document class

information, a document processing system such as STASIS can not make any local

definite decisions concerning the nature and properties of geometric blocks which it

constructs from traditional document analysis. Consequently it was decided to introduce

a new level of document processing abstraction; called advanced document analysis, in

which blocks were tagged with temporary block tags. These tagged blocks do not

represent the results of logical document understanding but they can be used to help

classify the document and to provide substantial information about the properties of the

blocks and document as a whole to the document understanding process.

The heuristics that are hard coded into the system to extract features are reliant upon the

document author's sense of style and presentation. As well as using a document's

appearance to implicitly convey structural information to the reader, some document

authors may need to format their documents in a manner that is resthetically pleasing to

the eye. This typically occurs for product brochures and presentation slides, less so for

newspapers and magazines, to an even lesser degree for academic documents and not at

all for form documents.

STASIS needed to have a framework which supports artificial intelligence type

reasoning and the handling of uncertain data in order to process a potentially limitless

set of documents, each of which could be formatted in a unique style. STASIS needed

to be able to sieve through the precise details of a document's design and extract general

126

Final System Development and Engineering

features based upon inferences made by knowledge sources which have knowledge

about de facto document formatting rules hard coded into their knowledge bases.

A blackboard architecture was decided upon because it provided the framework to

model the document classification problem in terms of abstract hierarchical layers.

These layers could be built up by individual expert knowledge sources co-operating to

solve sub goals with a variety of problem solving techniques. Furthermore, blackboard

systems are opportunistic: they react in an appropriate fashion when the appropriate

Opportunity arises. This suits a universal document processing system in which different

classes of document are to be processed. The different documents will present the

system with wide ranging problems which occur in different orders from document to

document. The system architecture needs to be flexible enough to handle the degree of

variance present in document layouts.

5.4.1 Blackboard systems

There follows a brief introduction to the blackboard framework which is intended to

describe the fundamental principles and theories behind a blackboard system.

In an opportunistic reasoning model, pieces of knowledge are put forward, or retracted,

at the most opportune time. The blackboard model of problem solving is a highly

structured, special case of opportunistic problem solving. As well as applying

opportunistic reasoning as a knowledge-application strategy, the blackboard model

prescribes the organization of domain knowledge and all the intermediate and partial

solutions needed to solve the problem at hand. Engelmore, Morgan and Nii describe the

blackboard problem solving model using the metaphor of solving a jigsaw puzzle.

"Imagine a room with a large blackboard and around it a group oj

people each holding oversize jigsaw peices. Wl! start with volunteers

who put on the blackboard (assume it's sticky) their most

\ 'promising' pieces. Each member oj the group looks at his pieces

127

Final System Development and Engineering

and sees if any of them fit into the pieces already on the blackboard.

Those with the appropriate pieces go up to the blackboard and

update the evolving solution. The new updates cause other pieces to

fall into place, and other people go to the blackboard to add their

pieces. It does not matter whether one person holds more pieces than

another. The whole puzzle can be solved in complete silence,· that is,

there need be no direct communication among the group. Each

person is self activating, knowing when his pieces will contribute to

the solution. No a priori established order exists for people to go up

to the blackboard. Th: apparent cooperative behaviour is mediated

by the state of the solution on the blackboard. If one watches the task

being performed, the solution is built incrementally (one piece at a

time) and opportunistically (as an opportunity for adding a piece

arises), as opposed to starting systematically from the top left comer

and trying each piece." Engelmore [EngeI88]

The solution space is organized into application dependent hierarchies. The hierarchies

may be an abstraction hierarchy, a part-of hierarchy or any other type of hierarchy

appropriate for solving the problem. A similar flexibility is shown towards the choice of

inference methods available. At any stage of the processing either forward, backward,

event driven, goal driven, expectation driven or data driven reasoning may be applied.

Figure 11 illustrates that the blackboard framework consists of three elements: a

blackboard, multiple knowledge sources and a controller that mediates amongst the

knowledge sources. The hierarchies present on the blackboard are shown in Figure 11

as object relationships. Figure 11 is an adaptation of Booch's blackboard framework

diagram [Booch91].

128

Final System Development and Engineering

Blackboard Knowledge Sources

Figure 11:A blackboard framework
"

5.4.1.1 Knowledge sources

The knowledge required to solve the problem is partitioned into knowledge sources that

are kept separate and independent. The objective of each knowledge source is to

contribute information that will lead to the solution of the problem. Each knowledge

source is responsible for knowing the conditions under which it can contribute to a

solution; each knowledge source has pre-conditions that indicate the condition on the

blackboard that must exist before the knowledge source is activated. The knowledge

sources can only modify the blackboard or control data structures which lie on the

blackboard.

5.4.1.2 Blackboard data structures

The blackboard can be thought of as a global database. Interaction between knowledge

sources takes place solely through changes to the blackboard. The blackboard holds

computational and solution state data needed by and produced by the knowledge

sources. Typically, blackboard objects include input data, partial solutions, alternative

solutions, final solutions and control data. The objects are hierarchically organized into

levels of analysis. Information associated with objects ~n one level serves as input to a

set of knowledge sources which, in tum, place new information on the same or other

levels fEngel88].

129

Final System Development and Engineering

5.4.1.3 The Controller

Control routines monitor the changes which take place on the blackboard and decide

what actions to take next. Various kinds of information are made available to the control

routines. The control routines establish where the 'focus of attention' of the system is.

The focus can either be the knowledge sources (i.e. which knowledge sources to activate

next); blackboard objects (i.e. which solution goals to pursue next), or a combination of

both (i.e. which knowledge sources to apply to which blackboard objects). The solution

is built one step at a time. Any type of reasoning can be applied at each stage of the

solution formation, Thus the sequence of knowledge source invocation is dynamic and

opportunistic rather than fixed and preprogrammed [EngeI88].

5.4.1.4 Problem solving behaviour and knowledge
application

The problem solving behaviour is determined by the knowledge-application strategy of

the control modules. The choice of the strategy is dependent on the characteristics of the

application task and on the quality and quantity of the domain knowledge relevant to the

task. A commitment to a particular reasoning process is a commitment to a particular

knowledge-application strategy. STASIS is committed to data-driven problem solving

as it is trying to find the logical class of a document by analysing large geometric

document components which have been constructed by studying smaller geometric

components. Therefore, the knowledge application strategy that the STASIS system

should adopt dictates that a knowledge source should be selected which only places data

on the blackboard on an equivalent hierarchical level or a greater level.

5.4.1.5 Example blackboard systems

Two blackboard systems which solve image processing problems solutions using two

different knowledge application strategies are presented. A data-driven blackboard

based scheme was developed by Draper et al. [Drape88] for understanding images or
,

pictures. Nagao et al. [Naga088] have written a blackboard system which Structurally

130

Final System Development and Engineering

analyses complex aerial photographs from a model-driven approach. Both systems

provide relevant information to the development of the STASIS system and are worthy

of discussion.

Draper's system attempts the enormous task of recognising objects in everyday

photographs. He has developed an extension to the normal blackboard problem solving

paradigm which uses schemas to help split up the global problem. Schemas can be

thought of as knowledge sources which are 'intelligent' and 'autonomous'. The

centralised control techniques which are typical of most blackboard systems are rejected

in favour of running parallel schemas. Knowledge sources still exist in this system but
/

their role in the system is slightly different due to the increased power the schemas have

in directing their own reasoning processes.

The manner in which Draper handles uncertainty is extremely relevant to the STASIS

system. Draper acknowledges that local errors are created by imperfect knowledge

sources (he states segmentation and line grouping processes as examples) and incorrect

heuristics. Draper incorporates numerical and symbolic uncertainty reasoning

techniques in his system. Numerical techniques include Bayesian probability theory

[Stutz94], fuzzy set theory [Zadeh83] and the Shafer-Dempster theory of evidence

[Jacks92, Shafe76]. Draper claims that numerical techniques may suffer from a loss of

information in the domain of artificial intelligence. Symbolic approaches, on the other

hand,

"explicitly record the sources of uncertainty in order to facilitate

situation-specific combination methods and recovery from errors."

Draper [Drape88].

One of the possible problems with the symbolic approach is that it is so flexible that

analysing every situation-specific error combination could be potentially inefficient for

a system. Draper issues a reassurance claiming that only a few combinations will be

relevant and that using numerical and symbolic techniques together produces good

results.

131

Final System Development and Engineering

Nagao's system [Nagao88] attempts to locate houses, forests, crop fields, bare soil,

roads and cars from the analysis of aerial photographs. The advantage that Nagao's

system gained from being implemented with a model-driven knowledge application

strategy is that the properties of already recognised objects can be used in order to

analyse unrecognised areas and to fmd context-dependent objects. It should be noted

that Nagao's system searches for certain well defined shapes in the image.

Consequently, it can benefit from a model-driven search technique which is traditionally

more accurate when presented with suitable data.

5.4.2 Object-oriented system design

The basic principles of designing a blackboard system in an object-oriented fashion are

outlined by Booch in a chapter devoted to solving a 'cryptanalysis' problem [Booch91].

The underlying structure of a blackboard system does not change from problem domain

to problem domain; thus the following sections are based on Booch's design processes

with regards to developing a blackboard system. The biggest difference between the

system developed by Booch and the STASIS system is the handling of dependencies,

assumptions and inference engines by the knowledge sources. The STASIS system is

solving a similar problem every time it is activated. Consequently, there is no need to

encode a sophisticated inter-knowledge source assumption and dependency Protocol as

the knowledge sources will each perform a well defined function at various stages of the

system execution regardless of the document being processed. Booch's example is a

general blackboard framework which is designed to help the reader's understanding of

the principles of object-oriented programming rather than the principles of a working

blackboard architecture.

132

Final System Development and Engineering

5.4.2.1 Analysis of the knowledge sources

The requirements of the knowledge sources have been built up from a variety of sources.

The most influential source was the PDP document processing prototype. The

development of the prototype helped to identify and encapsulate the knowledge sources

which infer knowledge from the document. Other knowledge sources were deemed

relevant by analysing the cognitive processes which help us classify documents, for

example, looking at the number of columns, or the distribution of images throughout the

document. The creation of the majority of the knowledge sources was done during the

design process. However, thanks to the 'reusability' of the object-oriented paradigm

coupled with the abstract and encapsulated nature of the role of knowledge sources

within the blackboard framework, new knowledge sources were designed, implemented

and added throughout the evolution of the system. Currently, the STASIS system uses

eleven knowledge sources. They are listed together with the knowledge they

'encapsulate' in Table 12.

Knowledge Source Encapsulated Knowledge

Text Block The geometric parameters of all the geometric blocks in the
document.

Text Frequency Which text blocks make up the body of the document.

Super Title Which text block(s) is the document title.

Title Which text blocks are logical titles within the document.

Image Which blocks are image blocks.

Footer Which text blocks are footer blocks.

Header Which blocks are header blocks.

Graphic Knowledge of the straight graphical lines in the document.

Caption Which text blocks are image captions.

Column The parameters of the text columns on all the pages.

Document Class The class of document being processed.

Table 12: STASIS knowledge sources and the knowledge they 'encapsulate'

133

Final System Development and Engineering

Each knowledge source represents a possible class in the object-oriented system

implementation. Booch declares that

"... each knowledge source embodies some state, each exhibits

certain class-specific behaviour and each is uniquely identifiable."

Booch [Booch91]

5.4.2.2 Design of the blackboard

The STASIS blackboard is a simple global data storage object. Only blackboard objects

can be placed on the blackboard/or removed from it. The blackboard objects are used to

contain information which is useful in achieving the goal or sub-goals of the system. The

STAS!S system has seven blackboard objects which are listed with their role and

functionality in Table 13.

Blackboard Role and Functionality
Object

List of blocks A list object which contains geometric blocks which are examined by
the knowledge sources.

Page Number The number of the page which is being processed.

Total Number of (self explanatory).
Pages

Utility List A miscellaneous data structure which can be used by knowledge
sources to keep partial results.

System State This isa flag which the controller can use to pass Information to
Marker various elements in the system regarding the current state of the

system.

Document Vector This is a binary vector value which is gradually filled in by the
knowledge sources during the processing. It is passed to a neural
classifier for document classification.

Document The is a variable which stores the result of the neural net
Identifier classification process.

Table 13: STASIS blackboard objects

134

Final System Development and Engineering

Figure 12 shows an inheritance diagram which illustrates the relationship between the

blackboard object base class and the classes which inherit from it. Figure 12 indicates

that there is no restriction on the number of blackboard objects which can be placed on

the blackboard.

Figure 12: The blackboard and blackboard object class diagram

5.4.2.3 Design of the knowledge sources

The analysis of the knowledge sources lead to the identification of eleven separate

knowledge source classes. In a similar manner to the development of the blackboard

objects, a base class was developed to elevate the common features and functions of the

knowledge sources. A certain subsection of the knowledge sources operate purely on

text blocks. However there was not enough common functionality between these

knowledge sources to justify creating another layer of abstraction. Consequently, all the

knowledge sources bar three inherit directly from the knowledge source base class.

A description of the implementation of the knowledge sources' algorithms is provided

in section 5.5.2. The remainder of this section outlines the knowledge sources which are

virtual base classes for other knowledge sources.

135

Final System Development and Engineering

The Structure Knowledge Source is used to create relationships between blocks. The

STASIS system makes geometric relationships between main text blocks and logical

dependency relationships between title blocks and other blocks. A geometric

relationship is created between main text blocks which STASIS believes relate to one

another based on their geometric positions and attributes, for example two blocks may

be directly above one another, in the same column, in the same text style and with the

same inter-line gap value. This much evidence would be enough for STASIS to assume

that there is a relationship between these two blocks. The relationship is not logical but

geometric in its nature.

A logical dependency relationship exists between a title block and the blocks under that

title block's umbrella of influence. The title block is logically dependent on the blocks

within its influence; without their presence it would not be a title. The Structure

Knowledge Source 'knows' the criteria for making both these types of relationship. It is

called upon to create these relationships after the geometric blocks have been labelled.

The Title Knowledge Source inherits from the Structure Knowledge Source so that it

may benefit from the knowledge of how to make logical relationships between title

blocks and other blocks. This knowledge is useful in justifying labelling a candidate title

block as a bona fide title block.

The Footer and Header Knowledge Sources have very similar roles and responsibilities

within the system. They both search for recurring patterns amongst blocks, with which

they can identify headers and footers. An abstract class entitled 'peripheral' was created

to elevate the common attributes of these knowledge sources. The name peripheral

refers to the position that headers and footers have in any geometric document; they are

always found on the perimeter of the pages.

Figure 13 is the knowledge source class diagram which also describes the role of the

'KnowledgeSources' class as a container for the knowledge sources.

136

Final System Development and Engineering

Figure 13: The STASIS knowledge source class diagram

5.4.2.4 Design of the controller

Figure 14 shows how the controller and the individual knowledge sources interact. The

square 'F' blocks on the objects indicate a 'friend'! relationship. At any stage in the

system execution cycle a particular knowledge source may decide that it has something

useful to add to, or learn from the contents of the blackboard and it will give a hint to

the controller. Once all the knowledge sources have been given a chance, the controller

selects the most promising hint and allows the appropriate knowledge source access to

the blackboard. Each hint is given a weighting by the knowledge source which owns it.

The value of the weighting can be thought of as a confidence factor. The controller has

a variety of methods of selecting which hint to follow which depend on the current

working state of the system. These methods will be explained in the next section.

I. "A non-memberfunctionwhich is allowedaccess to the privatepart of a class
. (without requiringmembership]is called a friend of the class" Stroustrup,pl61
[Strou91]

137

Final System Development and Engineering

The
Knowledge
Sources

evaluate-blackboard

Figure 14: The controller mechanism

5.4.2.5 Tailoring the blackboard framework to the
document processing problem

Figure 15 is an object diagram which illustrates the relationships between the topmost

objects in the STASIS system. This diagram should be compared to the generic structure

of a blackboard framework illustrated in Figure 11, on page 129.

Figure 15:STASIS object diagram

138

Final System Development and Engineering

Two of the classes which are present in Figure 15 are the DemocracyUnit (DU) and the

DiskStorageSystem (DSS). The DU is a simple abstract data type class which keeps a

tally of entities given to it by creating a histogram. The DU has various data

manipulation routines which provide the user with statistical information regarding the

data. A description of a working example of a DU is provided in section 5.3, "Final

System Document Analysis of PDF". The DSS is another abstract data class which

maintains a database of all the geometric objects which are handled by the system. The

database is stored on disk. Objects are recalled either a page at a time, or individually,

when required. All the knowledge sources have access to instances of both these classes.

The STASIS class encapsulates the blackboard, the knowledge sources and the

controller. It is a simple class whose operations are to:

• connect the blackboard, the controller and the knowledge sources;

• restart the system;

• solve the document classification problem by activating the system.

The knowledge sources are allowed to see the blackboard and the blackboard objects.

This relationship is represented by a single connection from an individual knowledge

source to an individual blackboard object.

The STASIS system controller has access to both the knowledge sources and the

blackboard. This is unusual for most blackboard systems but not unheard of. The

controller can receive hints from the knowledge sources and change the particular

blackboard object which indicates the current state of the STASIS system: the state

indicator (SI).

The presence of the SI allows the STASIS system to cut out a number of routines which

the architecture of the generic blackboard framework enforces. This increases the

efficiency of the system at the expense of diluting the traditional blackboard,

139

Final System Development and Engineering

architecture. There are five processing states in the document classification strategy

which STASIS adopts; all of which are clearly defmed and incremental. Table 14

identifies those stages and describes the major activity of the stages.

Processing Stage Stage Activity

1: Train Create the geometric blocks and present them to the knowledge
source for training.

2: Label Tag the geometric blocks based on the knowledge embodied in the
knowledge sources.

3: Structure Find logical relationships between tagged blocks.

4: Infer Extract document features from the document.

5: Classify Classify the document by feeding the document features to a neural
net.

Table 14: STASIS processing stages

Although the document classification problem can be partitioned into stages and sub

goals which follow each other in an incremental order, the processes and routines 'Which

need to be performed within the stages require the flexibility of a blackboard

framework.

The knowledge sources and the controller have different responsibilities during

different stages of processing. By examining the State Indicator (SI) and the status of the

blackboard objects the knowledge sources can decide whether or not to send a hint to

the controller. STASIS uses relatively few individual blackboard objects. Consequently,

without the SI it would be impossible to for a knowledge source to unambiguously

interpret the state of the system from the configuration of the blackboard objects.

The controller adopts a different hint selection policy at different processing stages.

Frequently in stage one, more than one knowledge source sends a hint to the controller

asking to be activated. In stage one (knowledge source training) every hint should be

acted upon, without preference. Thus the controller. simply activates all the hints,

effectively granting access to all the knowledge sources who request it.

140

Final System Development and Engineering

Stage two (block labelling) asks the knowledge sources to tag the geometric blocks in

the document based on the embodied knowledge they carry in themselves. This

knowledge is either hard coded or inferred during the training stage. Frequently, more

than one knowledge source will wish to tag a block with a certain tag. However, the

controller can only grant one knowledge source the right to activate itself and tag the

block; 'conflict resolution' is the term used to describe the choice the controllor makes

in this situation.

The STASIS controller uses two techniques for conflict resolution among knowledge

sources. There are two types ofknowledge source conflicts: those that involve the Title

Knowledge Source and those which do not.

The Title Knowledge Source is the only knowledge source which requires information

about the blocks which are formatted beneath the block which it is trying to tag. This

information can be thought of as contextual information. The Title Knowledge Source

can assert with varying confidence that a block is a title if it has knowledge of the

geometric context of that block.

All other knowledge sources in the STASIS system do not require this contextual

information. In this case the controller a numerical method of reasoning about

uncertainty. The controller can resolve conflicts between knowledge sources which do

not involve the Title Knowledge Source by simply comparing the confidences of the

knowledge source's assertions.

The controller resolves conflicts between knowledge sources which involve the Title

Knowledge Source by using symbolic uncertainty methods. Symbolic reasoning is

described by Draper [Drape88] as being effective in limited environments, for example,

in contexts in which the number of possible uncertainty scenarios is small. The STASIS

system has twelve knowledge sources in total.

141

Final System Development and Engineering

The following equation shows a formula, derived from a series, which calculates the

number of possible combinations of two or more knowledge sources. X is the number of

knowledge sources.

X=

i={x-2)

L
i = 0

x! n
= 2 - (n + 1)

(x- i)!i!

When X is twelve there are 4083 possible conflicts. However, of those twelve

knowledge sources only six are involved in the labelling process. When X is six there

are 57 conflicts.

This is still too many possible conflict scenarios. Fortunately, one can discount the super

Title Knowledge Source and the Text Frequency Knowledge Source from the problem

as both these knowledge sources produce assertions which are invariably correct. When

X is 4 there are 11 conflict scenarios which is much more acceptable. The four

knowledge sources still left are the Title, Footer, Caption and Header Knowledge

Sources. The Header and Footer Knowledge Sources are derived from the same base

class (the Peripheral Knowledge Source), and it is this base class which handles the

assertion oflabelling confidences. Thanks to the hierarchical raising of this functionality

there are effectively only three knowledge sources which produce conflicts. This

generates four possible scenarios. As all these conflicts involve the Title Knowledge

Source the description of their resolution will described later together with the

functionality of the Title Knowledge Source in section 5.5.2.5.

Faced with having to resolve a conflict, the controller simply selects the hint which has

the highest activation weighting. The activation weighting can be seen as a confidence

factor, set by the knowledge source, representing the level of confidence that the

knowledge source has in its own judgement.

142

Final System Development and Engineering

In situations in which two hints have the same confidence factor, the controller simply

picks the last hint it sees with the appropriate confidence factor. This situation is

avoidable by engineering the confidence factors that the knowledge sources give to their

hints. For each knowledge source, one can:

• assess the effectiveness of the training strategies employed by the knowledge

source;

• assess the difficulty of the sub-goal the knowledge source is attempting;

• build up the total confidence factor of the knowledge source's hint by attributing

partial confidences to the positive results of certain tests which the argument block

is subjected to.

Stage three (structure inferring) is a unique stage in that only the structure knowledge

source's hints can be executed during this stage. The Structure Knowledge Source

cycles through the document's pages, extracting all the blocks, and fmding logical

relationships between the blocks based on their geometric attributes and their semi-

logical tags. Initially, this stage was designed to fmd the 'reading order' (see section

section 4.2.8, "Saitoh's text area ordering system" for a defmition of 'reading order')

amongst the blocks. However, during the system development it was decided that such

a task was primarily the responsibility of a document understanding system.

Consequently, this stage was not developed thoroughly.

In stage four all the knowledge sources infer document features from the knowledge

they have accrued from examining the blocks and the relationships between the blocks

during the previous three stages. The controller activates any knowledge source which

wishes to be activated during this stage. No conflict resolution technique is required.

Stages one to four are collectively termed advanced document analysis.

143

Final System Development and Engineering

Stage five (document classification) is similar to stage three in that only one knowledge

source sends a hint to the controller in this stage. Only the Document Class Knowledge

Source requires activation, as it needs to copy the document feature vector blackboard

object into itself and feed it to the neural net.

This section has provided an overview of the internal structure of the system and a high

level view of the workings of the system. The next section describes in some detail the

algorithms for training the knowledge sources, labelling the blocks and extracting and

generating the document features.

5.5 Advanced document analysis:
the generation of document features

Traditional document analysis algorithms do not provide enough geometric information

to clearly pinpoint the document's logical class. Detailed analysis algorithms such as

Sivaramakrishnan's [Sivar95], which can state with confidence some of the attributes of

the text present in the document, do not provide sufficient information to help recognise

the logical class.

This research has produced an algorithm which can classify a geometric document's

logical class if the geometric features in the document follow the patterns found in other

documents of the same logical class. The blackboard framework subjects the geometric

blocks extracted from the traditional document analysis routines to further geometric

analysis. The geometric blocks are also analysed from a logical perspective. The

abstraction level of the logical analysis is low; it has to be low in order to be applicable

whilst the class of the document is still unknown. The blackboard framework does not

perform the classification itself but provides a document feature vector to a neural net

classifier.

144

Final System Development and Engineering

5.5.1 Extraction of meaningful document
features

The feature vector was continually engineered during the development of the fmal

system. Some of its features are purely geometric and were simply extracted from the

PDP document model, for example, the number of pages in the document. Newspapers

and magazines typically have a large number of pages; forms typically have less then

ten pages. Other features are found using basic logical analysis, for example, the number

of unique title block styles within the document is a good guide to the number of

different logical title levels in the document. Newspapers usually have a large number

of title block styles; academic documents have relatively few title styles.

The majority of the features are extracted from the geometric analysis of the PDP

document, for example the relationship between a document's images and its text

columns. These features are designed to represent attributes of the document layout

which would be typical of documents from the same logical class and yet have a

different state in documents from a different logical class.

There are forty nine features in total. Each feature is represented as a binary value.

Table 15 lists the document features and their indices.

Index Feature Descriptor Heuristic Description

1 DOUBLE SIDED True if document Is double sided

2 NUM OF PAGES_1_TO_ 4 True if 1 to 4 pages present

3 NUM_OF _PAGES_5_TO_9 True if 5 to 9 pages present

4 NUM OF_PAGES_1 O_TO_20 True If 10 to 20 pages present

5 NUM OF_PAGES_20_PLUS True if more than 20 pages present

6 MAIN TEXT 1 True if one main text style present

7 MAIN TEXT 2 True if two main text styles present

8 MAIN_ TEXT _3 True if three main text styles present

9 MAIN_ TEXT _3_PLUS True if more than three main text styles
present

Table 15: Document features and their indexes.

145

Final System Development and Engineering

10 TEXT_STYLES_1_TO_4 True if 1 to 4 total text styles present

11 TEXT_STYLES_5_TO_9 True if 5 to 9 total text styles present

12 TEXT_STYLES_10_TO_19 True if 10 to 19 total text styles present

13 TEXT_STYLES_20_TO_40 True if 20 to 40 total text styles present

14 TEXT_STYLES_40_PLUS True if more than 40 text styles present

15 HEADERS True if headers present

16 HEADER_STYLE_CONSISTENCY True if style of headers is consistent

17 HEADERS_25 True if headers present on 25% of p~ges
or more

18 HEADERS_50 True if headers present on 50% of pages
or more

19 HEADERS_75 True if headers present on 75% of pages
or more

20 FOOTERS True if footers present

21 FOOTER_STYLE_CONSISTENCY True if style of footers is consistent

22 FOOTERS_25 True if footers present on 25% of pages or
more

23 FOOTERS_50 True if footers present on 50% of pages or
more

24 FOOTERS_75 True if footers present on 75% of pages or
more

25 CAPTIONS True if captions present

26 CONSISTENT _CAPTIONS True if style and position of captions is
consistent

27 CONSiSTENT_CAPllON_POSITION True if position of captions consistent

28 CONSISTENT _CAPTION_METRIC True if style of captions consistent

29 TITLES_O_TO_3 True if 0 to 3 titles present

30 TITLES_ 4_TO_9 True if 4 to 9 titles present

31 TITLES 10_TO_20 True if 10 to 20 titles present

32 TITLES 20 PLUS True if more than 20 titles present

33 COLUMNS_1 True if one column is maximum throughout
document

34 COLUMNS_2 True if two columns are maximum
throughout document

35 COLUMNS_3 True if three columns are maximum
throuqhout document

Table 15: Document features and their indexes.

146

Final System Development and Engineering

36 COLUMNS_3_PLUS True if more than three columns is
maximum throughout document

37 INCONSISTENT_COLUMNS True if column style is inconsistent

38 IMAGES_O True if no images present in document

39 IMAGES_5 True if less than 0.5 images present per
page

40 IMAGES_5_ TO_9 True if 0.5 to 0.9 images present per page

41 IMAGES_10_PLUS True if more than 1.0 images present per
page

42 IMAGES_CONSISTENCY True if image styles are consistent

43 IMAGES_STRADDLE True if some images straddle columns

44 IMAGES_IN_L1NE True if some images are in line with
columns

45 IMAGES_NEXT_TO True if some images are next to columns

46 L1NE_60 True if average number of straight lines per
page is greater than 60

47 L1NE_40 True if average number of straight lines per
page is greater than 40

48 L1NE_20 True if average number of straight lines per
page is greater than 20

49 L1NE_10 True if average number of straight lines per
page is greater than 10

Table 15: Document features and their indexes.

There follows a description of the document features plus their expected values in

certain classes of document.

(1) Feature 1 is set to true if the system detects headers or footers which it

suspects may be formatted with a double sided page layout. Newspapers and

magazines usually have a double sided page layout. The knowledge source

responsible from inferring this feature is the Peripheral KS.

(2-5) Features 2 to 5 are used to record the number-of pages in the document. They

are mutually exclusive. Feature 2 is true if there are less than 4 pages present.

• Feature 4 is true if there are 5 to 9 pages present. Feature 4 is true is there are

10 to 20 pages present. Feature 5 is true if there are greater than 20 pages

present.

147

Final System Development and Engineering

(6-9) Features 6 to 9 are used to record the number of main text styles detected in

the document. Respectively, features 6, 7, 8 and 9 are set to true if there is 1

main text style, 2 text styles, 3 text styles or more than 3 text styles present in

the document. They are mutually exclusive. Newspapers and magazines are

more likely to have more than 1 main text style.

(10-14) Features 10 to 14 record the total number of unique text styles present in the

document. Respectively, features 10, 11, 12, 13 and 14 are set to true if there

is less than 5 text styles present,S to 9 styles, 10 to 19 styles, 20 to 40 styles

or greater than 40 text styles. Newspapers and magazines have a large number

of unique text styles.

(15-19) Features 15 to 19 describe the geometric properties of the headers present in

the document. Feature entry 15 is true if any geometric blocks are tagged with

the header tag. If feature entry 15 is set to false, implying no headers exist,

then features 16 to 19 are set to false. Feature 16 is set to true if all the headers

are formatted in the same text style. Features 17 to 19 describe the number of

pages which have headers present on them. Respectively, features 17, 18 and

19 are set to true if there are headers on over 25% of all pages, over 50% of

all pages and over 75% of all pages. Features 17 to 19 are mutually exclusive.

(20-24) Features 20 to 24 describe the geometric properties of the footers present in

the document. Feature entry 20 is true if any geometric blocks are tagged with

the footer tag. If feature entry 20 is set to false, implying no footers exist, then

features 21 to 24 are set to false. Feature 21 is set to true if all the footers are

formatted in the same text style. Features 22 to 24 describe the number of

pages which have footers present on them. Respectively, features 22, 23 and

24 are set to true if there are footers on over 25% of all pages, over 50% of all

• pages and over 75% of all pages. Features 22 to 24 are mutually exclusive.

148

Final System Development and Engineering

(25-28) Features 25 to 28 describe the geometric properties of the captions present in

the document. If there are no captions present all these features are set to false.

Otherwise feature 25 is set to true. Features 26 to 28 are mutually exclusive.

Feature 26 is set to true if all the captions detected have the same text style

and are in the same position relative to the image they are a caption of: above,

below, left of or right of. Feature 27 is set to true if all the captions are

formatted in the same text style. Feature 28 is set to true if all the captions are

positioned in the same ylace relative to the image that of which they are the

caption.

(29-32) Features 29 to 32 indicate the number of different title block text styles

present in the document. Respectively, features 29,30, 31 and 32 are set to

true if there are less than 4 title styles present, less then 9 styles, less than 20

styles and 20 or more unique title text styles. Features 29 to 32 are mutually

exclusive.

(33-36) Features 33 to 36 state the maximum number of columns found on any of the

pages in the document. Respectively, features 33, 34, 35 and 36 are set to true

if 1, 2, 3 and more than 3 columns is the maximum present in the document.

All these features are mutually exclusive.

(37) Feature 37 is set to true if the number of columns found on each page of the

document differs from page to page. Newspaper documents generally have

inconsistent column styles from page to page.

(38-41) Features 38 to 41 describe the average number of images per page. They are

mutually exclusive. Respectively, features 38, 39, 40 and 41 are set to true if

the average number of images per page is 0, between 1 and 5, between 6 and

49, and greater than or equal to 10. Newspaper documents typically have a high

frequency distribution of images per page.

149

Final System Development and Engineering

(42-45) Features 42 to 45 describe the geometric properties of the image blocks with

respect to the columns present in the document. Feature 43 is set to true if

there are images present which straddle more than one text column. Feature

44 is set to true if there are images present which are in line with a text

column. Feature 45 is set to true if there are images present which are

positioned to the side of a text column. Feature 42 is set to true if all the

images are positioned in one of the styles described above. Newspapers

generally have image~ which straddle text columns. Academic documents

generally have images which are in line with the text columns.

(46-49) Features 46 to 49 describe the graphic line operators present in the document.

Respectively, features 46, 47, 48 and 49 are set to true if the average number

of straight lines per page in the document is greater than 60, between 40 and

59, between 20 and 39, and less than 20. Typically form documents have a

large average number of straight lines per page. All these features are

mutually exclusive.

5.5.2 Knowledge source algorithms

The knowledge sources supplement their 'hard coded' knowledge with knowledge

inferred from a single pass of all the geometric blocks the document contains. The

knowledge sources find the geometric patterns which the document's blocks (which lie

inside their domain of expertise) form and then infer specific block classification rules

using a combination of the patterns they have detected and the hard coded knowledge

they were given to start with. In this manner, the knowledge sources can efficiently

classify geometric text blocks from a wide variety of -document layouts, without the

need for a vast data base of document layout knowledge.

150

Final System Development and Engineering

Each knowledge source has an individual activation requirement and an individual set

of algorithms to execute once it is activated. Within the blackboard architecture there is

a paradigm of hierarchical abstraction. Knowledge sources at the highest level of

abstraction work from the results and conclusions of the knowledge sources at lower

levels of abstraction. All the knowledge sources work to a two pass system. On the first

pass they examine all the blocks that they know are relevant to their domain of expertise.

In between the first and the second pass they train themselves upon the data they have

seen and devise rules, heuristics and statistical facts about the data. During the second

pass they apply the rules and heuristics and tag the blocks that they had previously

trained themselves on. After the second pass the knowledge sources examine the results

of their tagging and infer a feature (or features) from the document which can then be

used to classify the document with the help of a neural net.

The following sections document the algorithms that the individual knowledge sources

use to train themselves, to tag blocks and to infer document features.

5.5.2.1 Block KS

The Block Knowledge Source is responsible for creating the geometric blocks from the

PDF document. The geometric blocks are the basic input to the system. The act of

creating these blocks is document analysis.

The algorithms which describe the document analysis process are presented in section

5.3, "Final System Document Analysis of PDF". The Block Knowledge Source

executes these algorithms when it detects that the system is ready for more blocks.

The text blocks are created for every page within the document and then presented to the

blackboard one by one. After a page of blocks has been presented to the blackboard (and

thus the other knowledge sources) they are stored to disk using the storage system

described in section 5.4.2.5.

151

Final System Development and Engineering

Image blocks are easily found in PDF documents as they are already segmented and

classified within the PDF document model. The Block KS will not allow any image

block below a certain threshold in both the horizontal and vertical dimensions to be

passed on to the analysis system as an image block. This is an attempt to stop smaller

insignificant image blocks confusing the heuristics used by the Caption KS ro identify

caption blocks for bona fide images.

5.5.2.2 Text Frequency KS

The Text Frequency KS uses the information provided by the Block KS. It can be

considered as existing on a higher hierarchical level than the Block KS. It studies every

geometric block which is placed upon the blackboard and builds up a histogram of

textual styles and the frequency of their occurrence within the document.

A 'style' is defined as a unique combination of font type and point size. The font is

represented in the PDF document model (exported as an API by Adobe) as a font metric.

This knowledge source is also responsible for inferring the main text body style within

the document. It does this using a recursive function upon the constructed histogram,

after all the blocks in the document have been seen. The knowledge source expects at

least one text style to be dominant but has the capacity to infer multiple main text styles

depending upon the histogram and the pre-defined thresholding functions which it

applies to the histogram.

Finding the main text styles

Figure 16 presents a flow chart which represents the main text style fmding algorithm.

The Main Text Knowledge Source executes this code in its training phase. The

algorithm examines the histogram produced by analysing the text styles present in the

document and the frequency of their occurrence. The frequency is calculated as a

percentage of the document's total word content. The knowledge source initially sets the

'main text threshold' at 80%. If no text style is found which represents eighty percent of

152

Final System Development and Engineering

the formatted text then the threshold is lowered by 5% and the algorithm is repeated. If

a text style is found when the threshold has been lowered to less than or equal to 30%

the knowledge source reasons that there may be another text style which could represent

the main text of the document. It searches for the next highest text style in the histogram.

Once it has found the next highest, it makes sure that this text style represents at least

20% of the text in the document before accepting it as a bona fide main text style.

5.5.2.3 Graphic KS

The Graphic KS simply looks at the number of graphical elements upon each page and

calculates the average number of straight line graphic operators per page throughout the

document. This simple document feature is the lowest abstraction that the graphical KS

can infer. No details of how the graphical elements are used upon the page is inferred by

either this knowledge source or the Block Knowledge Source when it segments the text

blocks within the document. Graphical elements are used to create boxes in tables,

define page boundaries and define article or text block boundaries within a document

but none of this information is used by this system. This is not an oversight on behalf of

the system implementor but a deliberate policy of not to be confused by a very complex

area of document processing.

5.5.2.4 Structure KS

The Structure Knowledge Source plays a very limited role in the STASIS system. It has

been incorporated into the system to provide the functionality that the Title Knowledge

Source requires to fmd candidate titles based on a block's geometric 'influence' over

other blocks. A Structure Knowledge Source would be fully utilised in a document

understanding system. In such a system once the class of document is known the

Structure Knowledge Source could apply class specific document structure finding

algorithms,

153

Final System Development and Engineering

INPUT:
A Histogram of all the text styles and their frequency
A threshold, set to 80
A List, textStyles, to be filled

Are there histogram
entries which are greater
than the threshold

threshold
<= 30

mainStyles.length
> 1

threshold -= 5

NO

YES

Find the highest histogram
entry which is not above
the threshold: nextBest

Histogram entry
of nextBest
> 20

NO

Add nextBext
~------~ to mainStyles

Figure 16:A flow chart of the main text style finding algorithm

154

Final System Development and Engineering

The STASIS system was designed with a structure knowledge source so that any

additional structure recognition could be accommodated by the system. In actuality the

most important use of this knowledge source is to find a text block's umbrella of

influence, although STASIS does allow the Structure Knowledge Source to create

relationships between blocks after the tagging process has been completed.

Saitoh [Sait093] describes the range of influence that a geometric block has over other

blocks as just being the width of the block. The definition of a block's umbrella of

influence is the same as that used to link blocks together in the PDF document

understanding prototype, see Table II, "Rules for linking block A to block B," on

page 101 for a precise definition. The only difference is that the typeface comparison

algorithm used in rule three (of Table 11) is more advanced in the STASIS system.

Comparing block text styles

The STASIS block style comparison algorithm uses the information held by the font

metrics, which the PDF document model uses to store the generic features of the fonts.

A font metric does not hold information on the point size of the text; this is block

specific information.

Figure 17 shows a variety of letters, all set in the same point size, but which have

different metrics. Figure 17 identifies the component parts of the metrics used in the

comparison algorithm and illustrates the variance of some of these metrics between

different fonts. The advantage of working with the font metrics, rather than font name

and point size, is that a more sophisticated comparison algorithm can be developed

which produces a more accurate result.

The comparison algorithm examines two text blocks and finds the block which has the

more dominant geometric appearance on the page. The comparison algorithm takes into

accountt?e point sizes of both blocks and the font metrics of both blocks. The following

paragraphs describe, in abstract terms, the workings of the block text style comparison

algorithm.

155

Final System Development and Engineering

Horizontal
Stem
Width

cap height _t_

T!lTTxix d vi
__j L x-height--I ,--. Italic Angle

Vertical
Stem
Width

Figure 17: Parts of characters

If both blocks have identical metrics (in other words they have exactly the same font)

the point sizes of the text blocks are used to differentiate the blocks. If the metrics are

not identical, then two confidence values are set up. One value is assigned to each text

block. Various individual comparison tests are carried out on the metrics and the

appropriate confidence is incremented by a pre-calculated amount depending on the

results. By incrementing the confidence value of a block the algorithm literally increases

the confidence that that block is the more geometrically dominant of the two.

The individual comparison tests examine the font attributes of the two blocks (some of

which are illustrated in Figure 17), for example cap height. If block A has a greater cap

height than block B, then the confidence value assigned to block A is incremented by

0.2 whilst the confidence value of block B remains the same (and vice versa). The

magnitude of the increment is proportional to the contribution which that attribute

makes to the geometric appearance of the font. The same process is repeated for the

following attributes of the font metrics (the confidence increment magnitude is shown

in brackets after the attribute): vertical stem width (0.5); horizontal stem width (0.5); x-

height (0.2); italic angle (0.2) and point size (0.6) although point size is an attribute of

the text block and not the font metric.

156

Final System Development and Engineering

The confidence value which is greatest at the end of all these tests represents the

geometrically dominant text block. A block must be geometrically superior than the

block(s) over which it has a geometric influence.

Locating blocks in the umbrella of influence

Figure 18 shows various examples of blocks inside and outside of an umbrella of

influence. A block is said to have an umbrella of influence if it has an influence over one

or more blocks. An analogy that may be useful is that the block can be considered as a

"rain cloud which is raining onto the blocks beneath it. If a block can feel rain on its head

then it is under the influence of the block which is raining. The rain cannot pass through

the blocks. Refer to Table l Lon page 101 for a precise definition of the rules used to

link blocks together in the STASIS system.

Key:
Argument Block
A block inside the argument block's umbrella
A block outside the argument block's umbrella
The region of extending influence

Figure 18: Various umbrellas of influence

157

Final System Development and Engineering

5.5.2.5 Title KS

The job of the Title KS is to infer which blocks are potential titles within the document.

The Title KS examines every text block which is placed upon the blackboard and

extracts as much information as it can from the blocks it has seen. The Title Knowledge

Source initially establishes whether or not a given block has an umbrella of influence

over other blocks on the same page. It does so using functionality obtained by inheriting

from the Structure Knowledge Source class. The Structure Knowledge Source can

determine if a given block has an umbrella of influence by examining that block's

position on the page and the position of other blocks beneath it.

If the Title Knowledge Source fmds a text block with an umbrella of influence it tags

that block as a 'candidate title'. This is so that when the Title Knowledge Source has

trained itself and is ready to tag blocks with the 'title' tag it need not re-test the

document's blocks to see if they have an umbrella of influence.

Once a candidate title is found, the Title Knowledge Source records its discovery by

registering that block's text style. The purpose of maintaining a list of styles is so that

the Title Knowledge Source can still reason that a text block is possibly a title block even

if it has no umbrella of influence. Umbrellas of influence can only be established

between text blocks. If a bona fide title block happens to be positioned above an image

then the umbrella of influence algorithm will not be able to state that the title block has

an umbrella of influence. In this situation the Title Knowledge Source will be able to

look up the block's text style in the style list and assert that this block is a candidate title

as it is formatted in a style which is common to other candidate titles in the document.

Tagging title blocks

The Title Knowledge Source requires no training stage. it already has all the information

it can find at this stage to tag the text blocks with the title tag. When the Title Knowledge.
Source examines a block during the labelling stage it checks to see if the block is tagged

with the 'candidate title' tag. If the block is appropriately tagged the Title Knowledge

Source asserts that the block is a bona fide title with a confidence of 0.4.

158

Final System Development and Engineering

The magnitude of the confidence of this assertion was set after inspecting how the title

knowledge source and other knowledge sources behaved during tests on trial

documents. 0.4 was chosen because it accurately represented the confidence that the

Title Knowledge Source had in its assertion (at this point in the system execution cycle).

The process of setting and adjusting the confidence values of the assertions made by all

the knowledge sources fall into the category of system engineering. Considerable care

was taken not to engineer the system to assign too great a confidence value to an

assertion after examining weak eyidence for that assertion and similarly, care was taken

not to let the system assign too small a confidence value to an assertion after examining

strong evidence for that assertion.

If the text block being examined is formatted in a text style which the Title Knowledge

Source recognises as one of the more prominent text styles in the document, the

confidence of the assertion is increased by 0.1. The Title Knowledge Source

'recognises' the text style by looking up the font metrics associated with the text block

style and comparing them to the list of candidate title text styles which it collected as it

was being presented with the training data. Prior to the labelling stage, the Title

Knowledge Source ranks the list of styles in a decreasing order of geometric

prominence. If the text style is placed in the top third of the list, the confidence of the

assertion is increased by 0.1 again.

This algorithm is designed to decrease the chance of a document header being mis-

tagged as a title. In heuristic terms, the knowledge source 'knows' that headers are

unlikely to be formatted in a text style which is one of the document's most prominent

geometric styles.

The magnitude of these confidence values is assigned after a process of trial and error.

During the trials, test documents are fed to the system and the results of the tagging

process are recorded. The accuracy and reliability of the systems classifications are

assessed and the confidences adjusted so that they are a true reflection of the confidence

of the systems assertions.

159

Final System Development and Engineering

Resolving conflicts with other knowledge sources

The Title Knowledge Source is the only knowledge source which requires knowledge

of a geometric text block's context on a page before it can assert a statement with any

confidence about that block's eligibility to be a title. The Title Knowledge Source needs

to know the features of the blocks which can be found beneath the block which the Title

KS is considering to tag; paramount among the required features of the surrounding

blocks are their tags.

/

During the labelling stage of advanced document analysis, if a conflict arises between

the Title Knowledge Source and any other knowledge source(s), the Title Knowledge

Source does not have all the information available to make a confident assertion

instantly, as the blocks beneath the block being considered by the Title Knowledge

Source have not yet been tagged. In this situation, the controller records a 'blue print' of

the conflict. The controller records the knowledge sources which are conflicting and the

block which they are conflicting over. The controller pushes this information onto a

stack data structure. Once this is done the controller allows the tagging process to

proceed with the next block.

Once all the blocks (which can be tagged without involving a Title Knowledge Source

conflict) on a single page have been tagged the controller processes the recorded

conflicts which involve titles. Title Knowledge Source can then use more detailed

heuristic routines which use contextual information provided by the blocks which

surround the candidate title block being tagged. Appropriately, the controller then asks

the Title Knowledge Source to re-submit its assertion with a newly calculated

confidence.

The confidence of the assertion made by the Title Knowledge Source depends on the

tags of the blocks lying around it on the page. The Title Knowledge Source is most

confident when the candidate title block lies over a main text block. The Title KS is less

confident when the candidate title block lies over another title and the least confident

when the candidate title block lies over an unknown block.

160

Final System Development and Engineering

The controller records the conflicts on a stack and then processes the conflicts by

popping the stack. The blocks on the blackboard are always ordered so that the first

blocks encountered are the blocks are the top of the page. By maintaining a stack of the

conflicts and pushing new conflicts onto the stack, the controller can work up the page

by processing and popping the conflicts from the stack. By working up the page the

controller can tag blocks which may be under other candidate title block's umbrellas of

influence. This ensures that the controller never has to ask knowledge sources to make

assertions about untagged block~ based on the status of other blocks which are waiting

to be tagged.

5.5.2.6 Super-title KS

The role of the Super-title KS is unique among the knowledge sources in that it is hard

coded with a number of specific heuristics to find the title of the document currently

being processed. The super-title of a document can be easily deduced by analysing the

text styles within the document and finding the largest and most geometrically

prominent. If this style occurs only once in the document and this occurrence is on the

first page then that block is tagged as a super-title. The confidence of this assertion can

be made relatively high as document layout designers normally always make the

document title the largest piece of text on the first page of the document. The Super-title

KS has a set of subsidiary heuristics which allow the super-title to link to other text

blocks on the first page which lie in close proximity to it. In this way the full title of the

document can be protected from the remaining advanced analysis algorithms.

5.5.2.7 Image KS

The Image KS analyses every image block which it sees upon the blackboard. It then

calculates the average number of images per page throughout the document.

161

Final System Development and Engineering

5.5.2.8 Caption KS

The Caption KS communicates closely with the Image KS to find captions for the

images in the document. The Caption KS obtains a list of all the images on a page prior

to analysing the text blocks upon that page. Then it stores a copy of every text block

which is within a certain distance of any image block. That distance is calculated for

each image as being 30% of either the height or width of the image.

The 30% threshold was implemented to speed up the calculations made by the Caption

KS by reducing the number of candidate captions it analysed. A value of 30% was

chosen after several tests were made on sample documents. The tests ensured that the

threshold was great enough to contain all the credible candidate captions (including the

bona fide caption) and yet small enough to exclude the improbable caption blocks.

After all the blocks in the document have been seen once, the Caption KS attempts to

find patterns amongst the potential caption blocks it has collected. For every image on

the page all the blocks which lie within the 30% zone around that image are placed into

one of four categories. One category for each direction away from the image: north (up);

south (down); east (right) and west (left). The physically closest block to the image

within a specific direction category is retained whilst all others are discarded. Potential

caption blocks are also discarded if they have a greater area than the image to which they

are associated with. The result is potentially four (or less) blocks which pertain to being

that image's caption. This algorithm is executed for every image in the document.

The Caption KS then looks for recurring patterns amongst the blocks that are associated

with the image. Two types of patterns are looked for: position and style. If every image

in the document (which has at least one potential caption) has a potential caption in a

particular dimension (for example, below the image) then the Caption KS can assume

that this is a bona fide choice of style from the author (or designer) of the document. If

every im~ge has a potential caption which has a particular text style, then the Caption

KS can assume that this is another bona fide choice of style from the author of the

document.

162

Final System Development and Engineering

The Caption KS will calculate the confidence in its self inferred heuristic from the

percentage of image blocks which conform to the heuristic, for example, it will have

100% confidence if all images conform and 50% confidence if only half do. In situations

where the only potential captions for an image conform to neither a position based

heuristic or a style based heuristic, the potential captions are ranked according to their

physical proximity to the image. The creation of these heuristics takes place in the

training phase of the Caption KS life cycle. When the Caption KS wants to tag a

particular block with a caption t~g, the confidence with which it hints to the controller

that it wishes to tag the block is directly proportional to that blocks conformity to the

self generated heuristics.

After tagging, the Caption KS can state concrete facts about the captions present in the

document based on style and position pattern recurrences. The Caption KS can easily

detect and analyse the consistency of the recurring caption styles.

5.5.2.9 Footer KS

During training, the Footer KS examines every block which it sees on the blackboard

and retains a copy of the blocks which lie in the bottom ~th of the page. It uses this

information to generate heuristics based on inferred patterns about the geometric

properties of the blocks which it has seen. The training and tagging routines are

abstracted to the Peripheral KS class from which the Footer KS inherits.

5.5.2.10 Header KS

The Header KS operates in a similar manner to the Footer KS, except that it retains a

copy of all the blocks which lie in the top ~th of the pa~e. The Header KS also inherits

functionality from the Peripheral KS class.

163

Final System Development and Engineering

5.5.2.11 Peripheral KS

The Peripheral KS is the base class for both the Footer and Header Knowledge Sources.

Many of the pattern finding algorithms which are used to locate potential headers and

footers are abstracted into this class. The Header and Footer KS classes simply collect

the blocks which could form part of a header or footer. The Peripheral KS looks for

blocks which recur in approximately the same position page after page and have the

same geometric style. The confidence in its findings are based on the length of the

document and the regularity o(the pattern recurrences. The Peripheral Knowledge

Source knows about relative peripheral positioning upon a page (most headers and

footers either occur left, right or centre justified).

No knowledge about the content of the peripheral blocks has been incorporated into the

system because of the desire to leave the system language independent. Furthermore,

this type of association (i.e. realising that the text content of a header relates to the text

content of the current section heading or news article) is typical of document

understanding algorithms and so it does not need to be realised at this point in the

document processing cycle.

The Peripheral KS can make a guess as to whether the document is single sided or

double sided based on peripheral geometric block analysis. By assuming that the

document is single sided the Peripheral KS risks creating a weaker heuristic for

peripheral tagging than if it considers the possibility that the document is double sided.

Once the Peripheral KS has finished creating heuristics (and the confidences in those

heuristics) for a single sided document, it can explore the possibility that the document

is double sided in the following manner. By taking the blocks which it knows about from

every other page and reflecting them in the vertical axis which runs down the centre of

the page, the Peripheral KS has in fact taken a double sided document and transferred

the coordinates of the peripheral blocks to represent a single sided document. If the

heuristics (created from analysing this new transformation upon the peripheral blocks)

164

Final System Development and Engineering

are stronger than the heuristics created from analysing the document when it was

assumed that the document was single sided, then it is reasonable to suggest that the

document is double sided.

The Peripheral KS tagging routine

Peripheral KS calculates how much it believes a block to be a bona fide peripheral block

based on the analysis of the length of the document and the number of lines in the block

being tagged. This code is invoked by either the Header or Footer Knowledge Sources
,

once it has seen a block on the blackboard (during the labelling stage) which is

positioned in the appropriate part of the page: either the top or bottom !th of the page
8

respectively.

The assertion confidence is given an initial value of 0.1 because the block is placed in

the correct part of the page to be a peripheral. 0.55 is added to the confidence if the

position and style of the block matches that of a pattern which has been inferred by the

Peripheral KS as possibly being a header or footer pattern.

The assertion confidence is then either added to or reduced based on the length of the

document. This qualifies the reliability of the pattern finding algorithms. If the

document is short then the pattern finding algorithms will not have had much input data

to work with; if the document is long then the pattern finding algorithms can be trusted

more.

Finally the peripheral knowledge source looks at the number of lines in the argument

block. If there is only one line in the block the assertion confidence in increased by 0.1;

if there are two lines in the block the assertion confidence remains the same. From then

onwards, for every extra text line detected 0.1 is knocked off the assertion confidence.

These statements are based on the assumption that the more lines there are in the block

the less likely it is to be a header or a footer block ..

165

Final System Development and Engineering

5.5.2.12 Column KS

The Column KS finds the location of text columns on a page. The high level features

that can be inferred from such knowledge include the number of columns per page, the

consistency of the column format throughout the document and the consistency of the

position of the images in the document with regard to the columns. The- Column

Knowledge Source can tell if the images in the document straddle more than one column

or if they are always in line with the bounding boxes of the columns or if they are to the

side of the bounding boxes of the-columns. It can also tell if any of the formatting styles

mentioned above exist together in a document.

The Column KS uses the information found by the Block KS and the Text Frequency

KS to extract all the body text blocks from a document after the process of tagging. Left

with only the text blocks it performs a vertical projection of their bounding boxes to

create a histogram. Then by analysing the resulting histogram for maximas and minimas

the KS can accurately estimate the number of columns and their bounding boxes.

Figure 19 (a) shows an actual page of a newsletter which has been decomposed by the

STASIS system. The boxes which have been tagged as main text blocks have been

covered with a black rectangle by hand. Figure 19 (b) shows the bounding boxes of the

main text blocks stacked up on one another to form a histogram. The dimensions of the

columns can be deduced from this histogram.

5.5.2.13 Document Class KS

The Document Class KS takes all the features that the other knowledge sources have

inferred from the document's geometric properties and classifies the document into one

of four different classes. It accomplishes this using a pre-trained neural net. This is

explained further in the next section.

166

Final System Development and Engineering

(a)

-

~
~

(b)

Figure 19:A decomposed page and its column histogram

5.6 Development of a document
classifier

The blackboard system can extract information from a document which describes the

geometric properties and to a limited extent the logical properties of that document. This

information is extracted as document features. These features allow the STASIS system

to classify documents into logical classes. When used without the other, neither

geometric features nor basic logical features provide enough information to accurately

classify a document.

167

Final System Development and Engineering

The system has been engineered to classify a geometric document into one of four

general logical classes: academic documents; newspaper documents; form documents

and brochure documents. The attributes of these document classes are described in more

detail in the next section.

The working hypothesis of the system is that documents from unique logical classes,

which share the same base logical class, will exhibit similar logical traits on a

fundamental level, for example, newsletters, newspapers and magazines are documents

which all have basic logical features which are common to a base class which describes

documents as consisting of articles. The STASIS system can identify some of their basic

logical features as well as their common geometric features.

Whilst designing the system, it was hoped that STASIS would be able to classify

documents into a fifth logical class: business letters. Business letters have no distinct

basic geometric features or distinct basic logical properties. STASIS could have be re-

programmed to detect high level logical business letter features such as addresses and

signature, in a similar manner to Lam's model-driven classification approach [Lam94a].

The re-programming would involve the creation of model-driven routines which would

be specifically designed to detect business letters and which could not be used on other

types of document. This solution was rejected in order to keep STASIS' classification

strategy purely data-driven.

5.6.1 Specification of the target logical
document classes

A description of the target logical document classes is presented in this section together

with the detectable geometric and logical attributes associated with each class. All the

attributes listed in the next four sections are not always present in every instance of each

document class. Some documents may contain only a sub-set of these features.

168

Final System Development and Engineering

5.6.1.1 Logical newspapers

The logical newspaper class is the base class for broadsheet newspapers, magazines and

newsletter documents. Each of these documents can be described by a basic logical

document class which consists mainly of logical articles. Logical articles consist of

article title blocks, paragraph blocks and logical sub-stories. Sub-stories consist of sub-

story title blocks and more paragraph blocks and potentially more sub-stories. This

definition is closely related to the definition presented by Niyogi in Table 7, on page 84.

The general characteristics of this class of documents include:

• a high proportion of images per page;

• multi-column page layouts which, with the exception of newsletter documents, vary

from page to page;

• a double sided layout;

• a large number of text styles containing a large number of title styles;

• possibly more than one style of main text.

5.6.1.2 Logical academic documents

The logical academic document is the base class for all documents which are partitioned

into chapters, sections, subsections and so on. Books (fiction and non-fiction), journals,

technical documents and conference proceedings are specific examples of this type of

document. General characteristics of this class include:

• few text and title styles of which only one text style is the main text style;

• a consistent page layout style which is typically single columned (although many

papers and journals are double columned);

• headers and footers which are formatted in a consistent style;

• consistent caption styles.

169

Final System Development and Engineering

5.6.1.3 Logical brochures

A logical brochure is a document which is devoted to a single topic matter. It is the

container of a single logical article. Although there is a certain amount of similarity

between the logical classes of the newspaper and brochure classes, the geometric and

base logical features found in both classes are diverse enough to confuse the document

class recognition routines if they were grouped into one target class. Brochure

documents typically exhibit the following features:

• a complex page layout similar in style to a newspaper;

• very short in length. This causes the absolute number of text and title styles to be

closer to the characteristics of an academic document rather than a newspaper;

• a large average number of images per page.

5.6.1.4 Logical forms

Logical forms represent documents in which the majority of the document is formatted

as a table. The table can either be empty or full of data. Typical examples of documents

in this class include tax forms, questionnaires and invoices. All of these documents

exhibit the following characteristics:

• fairly short documents which are rarely over ten pages in length;

• few text styles and few title styles;

• hardly any images and an irregular column style caused by the absence of any

substantial main text blocks;

• an extremely high number of straight lines per page. This is arguably the most

important feature STASIS extracts from form documents.

170

Final System Development and Engineering

5.6.2 Classification techniques

So far this chapter has described the techniques used to extract meaningful features from

a PDF document and has described the desired target categories of the classification

process. The following section summarises the various classification techniques that

were considered and justifies the eventual choice of a neural net classification system.

5.6.2.1 Basic classifier requirements
.,

The STASIS system is designed to classify any document into one of four logical

categories based entirely on data generated from the analysis of a document's geometric

properties. In practice this is a problem which does not have a sound solution. The

STASIS system is reliant upon the document author's judgment (and the judgement of

the author of this thesis) of document formatting and document style. Furthermore,

certain documents do not have geometric features which are unique to their class of

logical document. There is, unquestionably, a large amount of 'uncertain' data present in

the STASIS system. The classification technique must be able to handle uncertain data.

The magnitude of the document classification problem demands that the classification

algorithms must learn from the data presented to it and be flexible enough to recognise

a wide variety of document features of which anyone feature, or any combination of

features, can provide vital classification information for one class of documents, but be

useless or ambiguous for another class of documents.

5.6.2.2 Production rule expert systems

Expert systems are programs which specialise in solving problems within a certain

domain of expertise. The name 'expert system' reflects the fact that these systems are

usually based on knowledge obtained from people who are experts in a specified

discipline [Gonza92, Jacks92]. Many expert systems employ a rule based deduction

system, which stores knowledge in the form of rules which follow the syntax:. ifX then Y.

171

Final System Development and Engineering

Typically, the rules are fired in either a forward chaining strategy or a backward

chaining strategy. Forward chaining is the process of moving from the if patterns of the

rules to the then patterns of the rules, using the if patterns to identify situations for the

deduction of a new assertion. Alternatively, the backward strategy initially forms a

hypothesis and uses the knowledge encoded in the rules to work backwards to find

assertions which support the hypothesis [Winst92].

Production rules are usually created for systems which seek to emulate human decision

making processes. Human da.cument class recognition probably relies upon a

combination of cognitive analysis of the page layout plus semantic knowledge of the

document content. Humans are good at identifying documents which have an easily

identifiable page layout. Humans can identify newspaper documents as newspapers

simply because of the style of the document regardless of the language the newspaper is

written in. Documents which do not have such a unique and easily identifiable

appearance require a certain degree of semantic processing in order for humans to

successfully classify them. The STASIS system performs no semantic processing of the

logical content of a document. This was a deliberate decision made in order to keep the

system relatively language independent. Consequently, the STASIS system is deprived

of a large aspect of human cognitive decision making.

Niyogi's document understanding system is based on a production rule system

[Niyog94, Niyog95, Niyog96]. Niyogi's system does not address the problem of global

document classiftcation and it restricts itself to the classiftcation of newspaper

documents. A production rule system for global document knowledge would be an

enormous system with many rules at a variety of different levels of abstraction. The task

of maintaining and engineering such a system would be equally large. 'Engineering' a

production rule is the term used to describe the tuning of the rule's uncertainty factors.

Uncertainty factors represent the same thing as confidence factors: the magnitude of

confidence an expert system has in an assertion. Uncertainty factors are a good way of

modelling uncertain data in systems in which a diagnosis is being performed. By using

uncertainty factors, the production rule system can apply rules which will lead the

system down a certain avenue of investigation.

172

Final System Development and Engineering

There are several techniques for modelling uncertainty in production rule systems. Each

has its own advantages and disadvantages and each is suitable for one type of problem

solving and not for another. Leaving aside symbolic uncertainty reasoning, which is

inappropriate given the size of the problem and the number of features involved (see

section 5.4.1.5, "Example blackboard systems" for an example of symbolic uncertainty

reasoning), the most popular numerical methods of modelling uncertainty in production

rules are Bayesian probability [Stutz94] and fuzzy logic [Zadeh83].

From a mathematical perspective, fuzzy sets and probability exist as parts of a greater

generalised information theory which includes many formalisms for representing

uncertainty (including random sets, Demster-Shafer evidence theory [Shafe76],

probability intervals, possibility theory, general fuzzy measures and interval analysis, to

name a few) [Jacks92].

In semantic terms, the distinction between fuzzy logic and probability theory has to do

with the difference between the notions of probability and a degree of membership.

Probability statements are about the likelihoods of outcomes. Fuzzy logic cannot say

unequivocally whether an event occurred or not and instead tries to model the extent to

which an event occurred [Klir92].

The largest problem in using a rule based system for classifying documents is that it is

not obvious how humans cognitively classify documents. There is no model which can

be used to help create the knowledge rules. Famous expert systems such as MYCIN and

Prospector have solved problems in domains of expertise in which the translation of

human knowledge to production rules has been straight forward [Jacks92].

The task of creating the knowledge rules, 'tuning' them with an uncertain data handling

strategy and constantly modifying them with knowledge built up from processing

examples is difficult enough when the classification problem space is easily defined and

explained by human experts. As the classification problem the STASIS system is

attempting to emulate is cognitive in nature, it was felt that the level of 'knowledge

engineering' required to competently complete this problem was. too high.

Consequently, a production rule classification system was not chosen.

173

Final System Development and Engineering

Instead STASIS uses a neural net. Neural nets are based on biological neural

connections and are proven to be able to 'see through' uncertain data and extract

underlying patterns. However, STASIS is liable to the disadvantages of a neural

network. A neural network builds up its classification abilities through training cycles

using examples which it assumes are correct. The document classification problem is

difficult to rationalise. If the neural net is trained with features extracted from

documents which one believes exhibit the geometric and logical properties of a specific

class of documents, but which in actuality do not (or worse they exhibit the properties
/

of a different class), then the neural net will have been badly trained and documents will

be incorrectly classified.

5.6.2.3 Neural Net Classifiers

Artificial neural networks were inspired by the elementary functions of the biological

neuron. They can modify their behaviour in response to their environment. Shown a set

of inputs and desired outputs they can self adjust to produce consistent responses

[Wasse89]. Neural networks display a surprising number of the brain's characteristics,

for instance, they learn from example, they generalise from previous examples to new

ones and they abstract essential characteristics from inputs containing irrelevant data.

Once trained, a network's response can be (to a certain degree) insensitive to minor

variations in its input. Networks have the ability to see through noise and distortion to

the pattern that lies within the input. This ability makes the neural network applicable to

real world pattern recognition problems.

Multi-layer networks have computational abilities beyond single layer networks

[Wasse89]. Multi-layer networks are formed by cascading a group of single layers. The

output of one layer provides the input to the subsequent layer. The set of inputs X has

each of it~ elements connected to each artificial neuron in the first layer with a separate

weight. The weights should be considered as elements of a matrix W. The dimensions

of the matrix are m rows by n columns, where m is the number of inputs and n the

174

Final System Development and Engineering

number of neurons. Figure 20 shows a two layer neural network. The circles on the left

is a replication of a diagram used by Wasserman [Wasse89].

hand side of the diagram represent inputs. The squares are working neurons. Figure 20

weight
Array
K

Figure 20: A two layer neural network

•••

Each neuron sums the products of all the input units and their weights to produce an

output value that is known as NET. The net signal is further processed by an activation

function to produce an output signal, known as OUT. Single layer networks have linear

activation functions. Double layer neural nets require non-linear activation functions in

order to prevent them being restricted to the computational capabilities of a single layer

network.

Before the invention of the backpropagation algorithm there was no theoretically sound

way of training multi-layer neural networks. The backpropagation algorithm uses the

Sigmoid activation function. The Sigmoid function compresses the range of NET so that

OUT lies between one and zero. For small signals (NET near zero) the slope of the input!

output curve is steep which produces a high gain. For large values the gain decreases. Thus

large signals can be accommodated without saturation and small signals are allowed to pass

through without excessive attenuation. Figure 21 shows the Sigmoidal activation function.

175

Final System Development and Engineering

OUT t
1

OUT - F(NET) = -NET
(l + e)

F'(NET) = aOUT = aUTO - OUT)
aNET

o NET __.

Figure 21: The Sigmoidal Activation Function

The backward propagation algorithm is well documented by Wasserman [Wasse89] and

Winston [Winst92]. A brief description of the principles of the backward propagation

algorithm follows.

The back propagation training method computes the changes to the weights in the final

layer first, reuses much of the same computation to compute changes to the weights in

the penultimate layer and ultimately goes back to the initial layer. Back propagation

makes a large change to a particular weight, W, if the change leads to a large reduction

in the errors observed at the output node. For each input combination the output's

desired value is considered, d, together with its actual value, 0, and the influence of a

particular weight, W, on the error, d-o. A big change to W makes sense if that change

can reduce a large output error and if the size of that reduction is substantial. If a change

to W does not reduce any large output error substantially, little is done to change w.

Like the human brains they mimic, neural. nets retain a degree of unpredictability.

Unless every possible input is tried, there is no way of being certain of the precise

output.

The neural net used in the STASIS system was developed by Professor D. G. Elliman at

the University of Nottingham. It is a multi-layer network which uses the backward

propagation technique of pattern recognition together with the Sigmoid non-linear

activation function.

176

Final System Development and Engineering

5.6.2.4 Development of the STASIS neural net classifier

The neural net employed by STASIS has four output nodes (corresponding to the four

target document classes), 49 input nodes (one node for each component of the input

feature vector, described in Table 15 on page 145) and 20 nodes in the hidden layer. The

magnitude of the hidden layer was arrived at by selecting a value approximately equal

to the mean of the input and output layer magnitudes.

The neural net was trained .manually using documents whose features were

characteristic of their logical class. Table 16 lists the number of different documents

from each target class which have been used to train the net.

Forms have been trained with relatively few documents. Forms have dominant

geometric characteristics, thus the neural net requires few example form documents in

order to establish the recurring characteristics of form documents. More importantly, it

became clear during the engineering of both the neural net classifier and the advanced

analysis feature extraction system that form documents were not being processed

efficiently. There are a combination of factors which are present in form documents

which produce an ambiguous set of document features. For this reason it was decided to

suspend further training with form documents.

Document Class Number of Examples Used

Form 6
Newspaper 40

Academic 54

Brochure 56
Total 156

Table 16: The number of documents used to train the STASIS classification net

Certain t~pes of forms (typically those which consist of only single table with many

graphic lines) are classified well by STASIS. However, the vast majority of form

documents have explanation notes, or guidelines, in the document. The more regular

177

Final System Development and Engineering

text the form document contains, the more STASIS believes it is processing a brochure

or an academic document. Furthermore, it could be argued that the document features

which STASIS has extracted from form documents contain ambiguous and

contradictory patterns. A possible solution to this problem is the creation of good

graphic analysis routines which can detect specific graphical features present in forms:

boxes, corners and so on. This would help locate specific features and thus help the

classification process. Forms are not well suited to the feature extraction and document

classification strategy utilised by STASIS and should, instead, be detected by a model-
e;

driven classification strategy such as that presented by Lam [Lam94a, Lam9S].

The tr~inand test cycle

Initially the neural net was trained with a couple of documents from each target class.

These documents were chosen because they displayed the characteristics of their class.

This established a balanced foundation for the classifier. This foundation was built up

by downloading and training the neural net with PDF documents from the internet. The

use of working documents in the training process gives some credibility to the

classification results.

Each PDF document was processed by STASIS and then classified by the neural net.

The full results of the neural net classification (including a list of all the net's output

nodes final weights) were written to the document report (see section 5.2.1, "The

STASIS interface" for more details on the document report). Generally, the results of

the classification fell into one of three categories. Depending on the category, a different

training strategy was adopted.

In the following category descriptions, the term 'unambiguous' refers to the magnitude

of the difference between the final weights of the output nodes. A small difference

between two nodes can be interpreted as an ambiguous decision even though one of

those nodes may be numerically larger.
• Category 1. The document classification was correct and unambiguous. In this

situation the neural net was not re-trained.

178

Final System Development and Engineering

• Category 2. The document classification was correct but ambiguous. If the report

listed good characteristics for the class of document being processed, the net was

trained with the features of this particular document appended to the list of features

stored by the net for training purposes. If the report listed poor or uncharacteristic

features, no action was taken.

• Category 3. If the classification was incorrect. In this case the document report was

examined. If the report contained features which were not characteristic of the

logical class of the document being processed, no action was taken. Training the

neural net with misleading data would reduce the efficiency of the net. The

confidences in its classifications would drop as the error values calculated in the

classification process would increase. If the report contained features which did

display characteristics of the desired logical target class it was assumed that the net

had mis-classified because it had not seen an example document of this particular

kind before; the net was duly trained with the new document features.

5.7 System output

Having classified the document, the system constructed its own internal representation

of the document using a tree structure which contains nodes which are logical (for

example title nodes) and nodes which are geometric (for example, header nodes). The

structure contains geometric pages, logical links, geometric blocks and a logical

document classification, all of which are held in a tree structure which when traversed

gives an approximate reading order of the document. The reading order is not a true

representation of a logical document's reading order, particularly if that logical

document is a newspaper. Newspapers have complex geometric structures in which

logical articles normally span one or more pages. The reading order the STASIS system

provides is a reading order that one would fmd if one were to read a single page at a time.

Even this is not complete; for example, academic journals typically have footnotes.

179

Final System Development and Engineering

Logically, one would read the footnote when the reference is made to it in the main text

body. Footnotes are formatted at the bottom of pages, therefore they will be 'read' last

by the STASIS system.

Figure 22 illustrates the data structure which STASIS builds after completing its

processing. The document class attribute is associated with the document root and is

identified as an attribute by its rectangle box. The arrows should be described as

'possibly link to'. Images 'possibly link' to captions but they do not have to. Captions

on the other hand can only exist if they are linked to by images. The STASIS data

structure does allow a title to link to other titles and so create a chain of titles. A title

block in the chain will always have a lesser geometric text style than its parent title block

and equally, it will have a greater geometric text style than its children. In order to create

a link to a child, the parent title block must establish an umbrella of influence over the

potential child block. An umbrella of influence demands that the geometric text style of

the child block is geometrically inferior than their parent's text style.

Figure 22: The STASIS document data structure

180

Final System Development and Engineering

The structure knowledge source could attempt to make more intuitive links between

blocks after the classification but it was decided that the system should only represent

links between blocks which it was confident existed logically and not speculate on inter-

block relationships. The resulting data structure may not represent much of the

document's logical structure, but it will not pass on to any document understanding

system inter-block links which are suspect or mis-leading

This chapter has provided a detailed explanation of the development and

internal workings of the final system. The output of this system is a high

level description of the document from a mainly geometrical perspective.

The inclusion of the advanced document analysis routines incorporates a

basic level of document understanding into this output.

181

Chapter 6, Analysis of
System Results

There are three types of results produced by STASIS: results of the text-

segmentation algorithm, results of the geometric block classification

system and the results of the neural net document classifier. Detailed

analysis of these results are included in this chapter, along with a

thorough explanation and classification of the errors each sub-system

produces and the context in which the errors occur.

182

Analysis of System Results

6.1 Introduction

The STASIS system can produce invalid results at various different stages of processing

a document. The nature of these errors depends on a variety of factors and contexts.

From a software engineering perspective there are certain exception cases ill the text

block segmentation routines which are not implemented. There are also weaknesses in

the block tagging routines and column forming routines. From a theoretical perspective

there are certain classes of documents which cannot be classified using the algorithms

put forward in this thesis. This section identifies error generating contexts, explains the

nature of the errors and discusses the various options available to rectify the invalid

results. Juxtaposed with the discussion of error forming contexts are examples of

STASIS' valid results in similar contexts.

6.2 Document analysis results

The algorithm used by STASIS to segment the text of a PDF document is a hybrid

algorithm. Research into document analysis has suggested that hybrid strategies produce

good results but rely on the presence of certain high level geometric features such as

columns and text blocks (see section 3.2.2.4, "An assessment of Page Segmentation

strategies" for a review of hybrid text-segmentation techniques).

There are aspects of the document analysis segmentation algorithm which have not been

thoroughly addressed:

• the algorithm does not acknowledge the presence of graphical lines. This is an

important issue which is required when segmenting form documents;

• there are rare, or special cases which the algorithm's general purpose routines do not

handle well, for example, if a page contains text with an abnormally large leading

then the algorithm may not form blocks well. Text typeset with Type 3 (bitmap)

183

Analysis of System Results

fonts are ignored altogether by the algorithm; no font metric information is held by

Type 3 fonts.

Even with these weaknesses the segmentation algorithm still produces acceptable

enough results upon which to base further document processing stages. The algorithm

produces optimal results when the text is well formatted and the paragraphs have a

normal and consistent leading.

Whilst refining and modifyin ...g the segmentation algorithm and simultaneously

engineering the blackboard architecture (which STASIS uses to tag text blocks), it

became clear that the segmentation algorithm should have been incorporated into the

blackboard framework. The blackboard framework can provide the flexibility to easily

model all the exception cases which occur infrequently in the segmentation of PDP

documents (and bitmap document images). Knowledge sources such as "word KS",

"line KS", "leading KS" and "paragraph justification KS" could all combine to help

produce valid text blocks. These knowledge sources would exist on a level of

abstraction below that of the block tagging and page layout analysis knowledge sources.

STASIS' segmentation process was not incorporated into the blackboard framework

because this research focused on finding a method of classifying documents; the

blackboard framework was developed for this purpose and the segmentation algorithm

was always seen as a 'data provider' for the classification process. The segmentation

algorithm used by STASIS was based upon the prototype's segmentation algorithm

developed at Adobe and this system was notblackboard-oriented.

There are specific error cases (as opposed to weaknesses) in the STASIS document

analysis technique which are identified and discussed in section 6.3, "Document

analysis errors".

"Appendix I: STASIS Screen Shots" presents twenty example documents which have

been segmented successfully by the STASIS system. Each screen shot has been saved

as an image. Each image has been marked up with the tags of various blocks. segmented

by STASIS. Discussion notes accompany each image.

184

Analysis of System Results

6.3 Document analysis errors

Two classes of invalid results are produced by STASIS' document analysis processes.

In a sense the first class is not an invalid result but a failure of the system to analyse

graphical elements. Figure 30, on page 199, shows a PDF document whichhas been

segmented by the STASIS system. From this figure, it can be seen that the graphical

diagram has not been recognised by STASIS as a logical entity. Furthermore, the text

components of the logical diagram are not associated with that diagram but are

considered separate text blocks.

The second class of invalid results arises from forming bad geometric text blocks. They

are known as segmentation errors. Segmentation errors arise from one of four different

contexts. A statistical analysis of the frequency of occurrence of these errors is provided

at the end of this chapter in section 6.8, "A statistical analysis of STASIS".

6.3.1 Bad API lines

Creating geometric text blocks in the PDF model could be achieved by taking each word

as a separate logical entity and constructing lines and then blocks using anyone of the

bottom-up algorithms described in the document analysis literature survey (section 3.2,

"Literature Survey"). Yet each of these algorithms has a number of contexts in which

they do not function well and so produce invalid results. STASIS uses the text lines that

the Adobe API produced with its in-house line building functions. There are contexts in

which the API text lines are invalid, however, STASIS does not check the validity of

these lines. These contexts occur at an acceptably infrequent level for the purposes of

the STASIS system. If STASIS was to check each line's validity it would dramatically

increase the processing time of the segmentation routines.

Figure 23 shows part of a PDF document which has been decomposed by the STASIS

system; the figure shows a page of a newspaper. STASIS has drawn boxes around the

perimeter of the geometric blocks it has formed using its segmentation algorithm.

185

Analysis of System Results

A Bad Text Line

Figure 23: A page portion of 'Le Figaro' showing a single API text line definition error.

Figure 23 is an example of an API line definition error. At the top of the central image

(showing part of a child's head) there is a single geometric block which is one text line
,;

in height. This block contains two separate text lines which are formatted inside the

columns either side of the central picture. The API line finding algorithm has misjudged

the layout of the page and wrongly grouped both of these lines into one line. API type

errors rarely occur in documents in which the page layout is simple.

6.3.2 Assigning poor line attributes

One of the first processing techniques that the segmentation routine uses to create text

blocks is to separate all the lines into lists based on a style identification key formed

from the line's font and point size attributes. Each line is given a font and point size key

by analysing one word from the line; the line is given the point size and font attributes

of that word. That word is chosen by taking the total number of words in the line and

dividing the total by three. The result is the index (in the line) of the word which will

dictate the geometric properties of the line. The problem with this approach is that the

chosen word may not accurately represent the font and point size of the majority of the

words in the line, or in the geometric block in which the line resides.

Previous attempts to rectify this algorithm's shortcomings included building up a

histogram of the word styles in the line and picking the most frequently occurring style.

However, this technique also had drawbacks. Consider a line in which three quarters of

the line is set in an italic font, the remainder of the line is set in a plain font and the

geometric block in which the line resides is set in a plain font. This particular line would

186

Analysis of System Results

be given the font attributes of the italic font instead of the plain font. Both classes of

errors occur at approximately the same frequency; thus it was decided to use the '3rd

word' technique because of the increased overhead generated by creating and analysing

the histogram.

When a line is assigned poor geometric attributes over segmentation occurs: The true

geometric block is typically over segmented into three portions: the top section of the

block; a section containing the single line with the different attributes; and the bottom

section of the block. A specific block merging operation could be developed which

would merge together the geometric blocks involved in this error context, but the

heuristics involved in developing such an algorithm may produce invalid text blocks in

other contexts. Generally, over segmentation occurs when the word which represents the

style key of the text line is formatted in a bold or italic font style. Subsequent processing

by the advanced level of document analysis will make this single line block a title block

because of the increased prominence the font of the block has over the text styles of the

blocks beneath it. A more serious repercussion would arise if the system the merged a

real title block into a text block. This could occur in other contexts as the system

attempted to rebuild over segmented blocks.

Figure 24 illustrates the consequences of assigning poor geometric attributes to a text

line. The figure shows a portion of a page in which three blocks are present. The central

block has been assigned the geometric attributes of the third word in its one and only

member line. Consequently, it has been segmented out of the geometric block in which

it should be placed and is considered by the system to be a more prominent block than the

text blocks surrounding it.

6.3.3 Bad geometric block forming

There are certain contexts in which the STASIS block forming algorithms will

misinterpret their input and produce invalid output even when they have been presented

with bonafide lines by the Acrobat Exchange API line building routines. These contexts

187

Analysis of System Results

~. ~~~~~~~~~~~~~~~r'~ ('4:l1pOrnl:<'jd~nmyan e- t
E'liM. to your dCl'JTIiIim and deli,- to the c'O:rrectWil!t'.If A Bad Text Line
iI.HII,dlCt'k thl!' kKtwltlliing ..d it) H~ u4d 1... d,x~m&'!l'lt .•
nmmClf) lTli~t..1u> wieh fnm.r;:mrl'

Figure 24: A text line with invalid geometric attributes

are rare and have little effect on-the document classification process, but they should be

acknowledged. Figure 25 and Figure 26 both show instances of this problem context.

The symptoms of the problem can be seen in both diagrams: the creation of small

geometric blocks inside a larger geometric block. In actuality, the smaller blocks are not

present 'inside' the larger block. The larger block has been created by merging various

blocks together following the rules set out in section 5.3, "Final System Document

Analysis of PDF". The presence of the individual smaller blocks indicates that they were

rejected by the merging algorithm. The primary cause of the rejection is because of their

geometric position on the page. For all the individual smaller blocks shown in Figure 25,

there is a degree of incompatibility with the geometric parameters of the larger block.

In Figure 25 the problem paragraph is left justified. The column it resides in is small in

width and the style of the paragraph dictates that the first line of the paragraph must be

indented. Furthermore, because the column width is small, there is a high percentage of

hyphenated words. The API word finding routines are good at locating the 'second' half

of logical words which have been separated by line breaks. STASIS does not check to

see if logical words have fractured bounding boxes. Consequently, the bounding box of

the line on which the second half of the hyphenated word resides starts with the start of

the next logical word after the finishing hyphenated word. These factors all contribute

to a larg~ degree of variance in the geometric positions of the bounding boxes of the

individual lines inside one logical paragraph. The STASIS system is reluctant to check

for fractured bounding boxes within a single logical word because of the overhead

188

Analysis of System Results

required to do so for each word in a document.

M~ t,f,H."" ~f.l,~ ",~,~",aWC"l,~'m, Vi$ r" ' "nM~'"

",,,,,put,,,, "",.,.:.J",., ,In,." T" I,",lImU" (8, ~ "",Ail)' "~'

11th ~'" ~ha ia n.."tt ·~.n "WlU tn.n'.uJt.Jilu:1 !II"I,f~

Figure 25: Bad blockforming example 'A'

Figure 26 illustrates the same problem as that illustrated in Figure 25, but which arises

from a slightly different context. In this specific case, three blocks have been segmented

from the text, another larger block (containing three lines) overlaps them. The three lines

were not granted membership into the other blocks during the segmentation routines, as

they each have an indent. The indent was enough to give the segmentation routines

reasonable doubt regarding their claim to membership of the other blocks. Later in the

block forming process the three lines were merged into one block. This can happen

because the vertical distance between the three lines is constant. This has confused the

merging algorithm. It has mistakenly thought that the constant vertical distance is a bona

fide block inter-line value.

This is a very dangerous error context which can occur to candidate title blocks, if they

have been formatted at a constant distance from one another and lie approximately in

line with ,each other on the page. STASIS applies a heuristic which attempts to prevent

the creation of illegal blocks in this manner. The heuristic makes sure that the leading

value of any block is never more than a set limit above the point size of the text in that

189

Analysis of System Results

block. All heuristics have weaknesses and there are certain contexts in which this

heuristic cannot identify illegal blocks as they are created.

Figure 26: Bad blockforming example 'B'

Adjusting the existing block forming routines to prevent the creation of invalid blocks

in these contexts could be a poor software engineering decision for a three reasons.

Firstly, these error cases are infrequent. In the majority of instances the combination of

factors required to create these error forming contexts rarely occur. Adjusting the

existing algorithm may have an adverse effect on the majority of contexts in which the

existing algorithm works perfectly.

Secondly, the computational overhead would be significantly increased in all cases, not

just the error forming contexts.

Thirdly, there is an easy method for detecting the presence of bad blocks. The invalid

geometric blocks shown in Figure 25 and Figure 26 can be recognised by examining

their bounding boxes. If there is an overlap, then an error has occurred in the block

forming routines. This simple check can be abstracted into the following axiom:

190

Analysis of System Results

there should be no overlap between any of the bounding boxes of segmented image

regions created by a document analysis segmentation and decomposition

algorithm.

In practice, within the PDF document model, there is an exception to this axiom. The

exception is restricted to PDF document processing and does not apply to traditional

document image processing techniques. The exception occurs with PDF documents

which have been created using a WYSIWYG word processing package (such as

Framemaker or QuarkXPress) a~d which include bitmap images. WYSIWYG packages

allow the user to import separate image files in the document he/she is working on. The

imported image files are usually placed inside a frame of some description. The frame

serves a double purpose. The frame helps position the image on the page and allow text

to flow around the image. The frame also allows the user to crop the image to the desired

size. However, if the author of a document imports and crops an image into his/her

document and then prints to PDF via a special printer driver known as 'PDFWriter', the

resulting PDF file contains the entire bitmap image and not just the area of the image

visible to the reader. When the document is viewed, all one sees is the cropped image

(or visible bounding box), but when one extracts that image from the PDF document

model the entire original image is retained. A direct consequence of this shortcoming of

PDFWriter is that the actual bounding box of the image resource is not the same as the

visible bounding box. Typically the actual bounding box will extend over the image's

visible bounding box and start to overlap with the bounding boxes of surrounding

geometric blocks.

Using the axiom stated previously and the know ledge that the bounding boxes of images

do not contribute to the creation of the type of error illustrated in Figure 26, one can

simply locate bad blocks by checking for overlaps amongst text blocks. Once an overlap

has been detected, one should carefully examine the context of the problem and check

the geometric parameters of the invalid geometric blocks and the attributes of their text

lines. This solution is a hypothetical suggestion which has not been implemented in the

191

Analysis of System Results

STASIS system. No implementation of this solution is provided because of a lack of

implementation time coupled with a low priority weighting assigned to this problem by

the author.

6.3.4 Dropped Caps

STASIS does not seek out dropped caps in documents. It was felt that this would be

paying too much attention to an insignificant detail. In retrospect they should have been

looked for as an exceptional case of paragraph formatting. Recognising multiple

instances of dropped caps in a single document could help document understanding

algorithms identify logical entities within a document. A more immediate advantage of

recognising dropped caps would be the ability to stop the dropped caps dominating the

text blocks around it. Dropped caps are only intended to draw the reader's eye. They

have no logical role in the documents structure. Yet, by not formally acknowledging

dropped caps, the STASIS system lets them form geometric blocks of their own which

are then processed normally by the system. Figure 27 shows the implications of not

recognising the dropped cap as a geometric feature of a logical paragraph: inappropriate

links to other blocks and a divorce from its true logical paragraph.

Web are also discussed.

s a non-academic member of the Electronic
Publishing Research Group in the
Department of Computer Science at the

~HIWflIiH· sty of Nottingham I have been using Capture
ut 4 months in my role as Electronic Documen

Figure 27: A paragraph formatted with a dropped cap style

192

Analysis of System Results

6.4 Advanced analysis results

The advanced analysis of PDF documents performed by STASIS is extremely

successful. Advanced analysis can be defined as the recognition and classification of

low level document elements and the recognition of low level logical dependencies

between these elements. Only in form documents did the block classification process

produce poor results. This is partly because form documents have their logical structure

explicitly defined by their layout. The logical components of form documents are

defined by their exact position in the form, for example, logical column titles are found

at the top of columns. Another reason is that STASIS does not process graphic lines.

Graphic lines are an extremely important source of geometric information in form

documents.

The examples in Appendix I illustrate the results of the tagging process. There are

accompanying notes with the examples which discuss the relevant issues. The error

forming contexts which occur in the process of advanced analysis are discussed in

section 6.5, "Advanced analysis errors".

The algorithms which the knowledge sources use to gather information and then infer

from that information are surprisingly simple. Many are simply statistical, others find

patterns amongst the data they see by applying basic pattern matching techniques. The

consistency of recurring patterns is an important feature that many knowledge sources

rely on and yet it is so simple to check for.

One of the major advantages of the blackboard framework is that basic algorithms can

be applied (when they are needed) and their results combined hierarchically to produce

a powerful system, for example, the text frequency knowledge source 'guesses' at the

style of the document's main text style by statistically processing the text styles and their

frequency of occurrence in the document. This is very simple and yet very successful.

Similarly, the image knowledge source simply finds the positions of all the images in

the document. The column knowledge source then uses both these sources of

193

Analysis of System Results

information (through the medium of the blackboard) to find a vast amount of

information about the document that is vital to the document classification process.

6.5 Advanced analysis errors

The STASIS system was originally designed to be able to process documents from any

logical class. This is an extremely ambitious goal. The problem is compounded by the
,

fact that the geometric styles amongst documents of the same logical class varies

immensely. The wide range of input documents forces the STASIS system to base its

taggingand feature finding algorithms on generalised page layout rules. By making the

algorithms general, STASIS achieves a good level of analysis in all classes of

documents it processes.

The disadvantage of being a general system is that STASIS cannot apply document-

specific recognition and classification routines to the documents it processes.

Consequently, a variety of invalid results are generated within the advanced analysis

stage of document processing in certain contexts. The nature of the errors vary from

tagging text blocks with incorrect tags to misinterpreting the logical role of a block

within a document.

6.5.1 Linking errors

The least significant of these errors occurs when a text block is made into a logical title

based on the evidence provided by a poorly formed logical link to another text block.

The purpose of the link is to provide some information tc?the system on the nature of the

logical role of the block in the document. Linking errors generally occur in documents

which have a complex page layout, for example, a newspaper. Ideally a title block.
should link to the body of text which it logically relates to.

194

Analysis of System Results

Newspapers have a large number of title blocks and the majority of these blocks are

correctly processed by STASIS. When an invalid title block is created (in a complex

document such as a newspaper) there is no significant effect on the features extracted

from the document in the classification process. An invalid title would have a more

profound effect on the document features of an academic document in which there are

few title blocks. However, because academic documents generally have simple page

layouts, linking errors in this class of document are extremely infrequent.

6.5.2 Column Forming errors

The Column KS algorithm which creates column bounding boxes on a page of a PDF

document is entirely dependent upon the validity of the decisions made by the Text

Frequency Knowledge source. The Column Knowledge Source only looks at the main

text blocks on a page. It is realistic to expect a page in a complex document such as a

newspaper to contain no blocks which are deemed to be main text blocks, for example,

the pages containing the classified advertisements. The column finding algorithm would

produce poor results when presented with such a page. This problem is generally found

in newspaper type documents only.

The document features which describe the attributes of the columns in a document are

designed in such a way that the effects of one poorly processed page are minimal. The

'maximum number of columns on a page' feature is unaffected by a single poorly

processed page. In a newspaper document this value will still be large and typically

greater then three. However, the feature which describes the 'consistency of column

styles throughout the document' will be affected. Even so, for a newspaper document

this has a minimal effect. One of the characteristics of a newspaper is that the column

style does vary dramatically from page to page. The Column Knowledge Source will, in

the worst case, recognise one or no columns on a page. This will be inconsistent with

the results of the column detecting routines on other pages and the 'consistent column

style' feature will be set to false. This is the expected result for a newspaper type

document.

195

Analysis of System Results

When this particular error making context occurs in a non-newspaper type document

then the consequences can be more serious. In trials held with the STASIS system it was

found that sometimes the Column Knowledge Source poorly diagnosed an academic

document has having an inconsistent column style. This invalid feature was not enough

to cause a invalid document classification, but it did reduce the 'clarity' of the decision.

6.5.3 Blackboard diagnosis errors

The STASIS system is weak at tagging blocks which are formatted in certain styles.

However, these styles occur infrequently and when they are present they have little

effect on the overall document classification result.

6.5.3.1 Hanging headers

All title blocks are formed in the STASIS system by analysing their umbrella of

influence over the text blocks which are formatted beneath them on the page. One

particular style of title does not extend an umbrella of influence over text blocks in the

vertical orientation: 'hanging headers'. Hanging headers is the phrase used to describe

text blocks which have a logical title capacity within the document but are formatted to

one side of the text blocks they are associated with. They hang off the text blocks. This

escapes the title detection routines used to help classify title blocks. This formatting

style is difficult to detect. If the system were to look horizontally from a text block to

check for possible logical associations, then documents in which hanging headers were

present would be processed correctly, but other documents would be processed

incorrectly. As hanging headers occur relatively infrequently in comparison with

traditional title blocks formats, it is inefficient to adopt a horizontal association search

algorithm.

196

Analysis of System Results

Figure 28: A documentJormatted with 'hanging headers'

Documents in which hanging headers occur are almost always documents with an

academic structure and never newspapers. The result of not associating a hanging header

with its text block is that the hanging header will not be classified as a title block. Instead

it will be tagged 'unknown'. STASIS will, therefore, not register the style of the hanging

title as a title style and the list of title styles that STASIS compiles during the processing

will be deficient. This does not have a detrimental effect upon the document

classification process as academic documents typically only have a few title styles

compared with newspaper documents. Figure 28 illustrates a document formatted with

hanging headers.

6.5.3.2 Captions of diagrams

Diagrams and pictures which are drawn with graphic elements are invisible to STASIS

because of the limited graphical analysis implemented in the system. Consequently, the

bonafide captions to these diagrams are difficult to detect as captions.

6.5.3.3 Peripheral entities

The STASIS system detects headers and footers based upon rules inferred from the

repetitive occurrence of blocks which are formatted in the same text style and set in the

same area of the page over a series of pages in a document. Rarely, a text block which

197

Analysis of System Results

is logically not a peripheral block will exhibit the same geometric properties as the bona

fide peripheral blocks in the document. In this case the text block will be incorrectly

tagged as a peripheral block. Without the semantic analysis of the content of a block it

is difficult to remedy this scenario.

Alternatively, a bona fide peripheral block can be mis-classified as a block of another

class. Figure 29 shows a block (which should have been classified as a header block)

linking into various text blocks in the page. The presence of 'linking' indicates a badly
..-

judged block classification. The mis-classification was brought about because not

enough instances of this type of header block were present in the document. The Header

Knowledge Source did not have enough information to generate, or infer, a specific

knowledge rule for this type of header block.

Mis-classified header block

....~ .

Figure 29: A document portion with a mis-classified header block

Figure 30 shows a footer block which has been poorly classified as a block of unknown

type. Consequently, a text block present in the diagram has inappropriately linked to the

misleading footer block. STASIS mis-classified this block because there was not

enough information present to infer a rule. In this instance, the document was only one

page long. This makes it extremely difficult for the STASIS system to generate rules
,

based on inference by example.

198

Analysis of System Results

A logical diagram Mis-classified footer block

Figure 30: A document portion showing the a mis-classified footer block

6.6 Neural net classification results

This section looks at PDF documents which have been classified correctly into a logical

category. A description of the geometric features of the documents which helped

identify their appropriate logical class is provided.

6.6.1 Academic documents

Figure 31 shows a page of a PDF document which STASIS has classified as a logical

academic document. Some of the features which the STASIS system detected cannot be

seen from a single page image. Table 17 shows the full report generated by STASIS for

this document. Many of the features stated in the report will not appear significant until

they are compared and contrasted with the reports created by processing other documents.

199

Analysis of System Results

..(11

Figure 31: An academic document, STELLA.PDF

+++
STASIS system report for document titled:
/C/USR/WSL/MYDOCU-1/NEURAL-1/TRAIN/ACADEMIC/STELLA.PDF
+++
There are 14 text styles of which 1 are deemed to be main text styles
Footers detected
There are footers present on 97.14% of the pages
There are 8 title styles
A Super Title has been detected
Results of graphics analysis
Total paths detected: 140
Total straight paths detected: 140
Largest number of straight paths on one page: 137
Average number of straight lines per page: 4.00

ColumnStyle Inconsistent throughout document
Image consistency
There are 19 images on 35 pages, which gives a ratio of 0.542857
NEWSPAPER == 0.0005
FORM == 0.0009
BROCHURE 0.0022
ACADEMIC == 0.9725

Table 17: The STASIS report for the STELLA.PDF document

The following features are of particular interest. There are under twenty text styles in the

entire document of which eight are candidate title styles. There are footers present on

the majority of pages. There is a relatively low average number of images per page and

there were no captions detected for these images.

200

Analysis of System Results

6.6.2 Newspaper documents

Figure 32 shows a processed page taken from a Spanish newspaper and Table 18

presents the report data for this document. Newspaper documents are much more

geometrically complex than many other types of document; they have complex column

layouts, a large number of text styles and a large number of title text styles. They also

contain a high frequency of images and graphics. STASIS has detected all of these

features in this example. The STASIS system has detected no footers in this newspaper,

but this anomaly has not affected the overall classification.

Figure 32: A newspaper document, SPAINO.PDF

201

Analysis of System Results

+++
STASIS system report for document titled:
/C/USR/WSL/MYDOCU-1/NEURAL-1/TRAINjNEWS/SPAINO.PDF
+++
There are 107 te%t styles of which 1 are deemed to be main te%tstyles
Headers detected
There are headers present on all pages
Captions have been detected
78.787880% of the captions are in a similar position: left of
All captions have the same font metrics
There are 73 title styles
A Super Title has been detected
Results of graphics analysis
Total paths detected, 5963
Total straight paths detected: 4670
Largest number of straight paths on one page, 1188
Average number of straight lines per page. 89.81

Columnstyle Inconsistent throughout document
No image consistency
There are 132 images on 52 pages, which gives a ratio of 2.538461
NEWSPAPER •• 0.9881
FORM •• 0.0006
BROCHURE •• 0.0180
ACADEMIC =. 0.0089

Table 18: The STASIS report for the document SPAINO.PDF

6.6.3 Brochure documents

Brochure documents are, for the purposes of this system, a document containing one

logical article. The class of brochure documents covers a wide range of geometric page

variations. Figure 35 illustrates a typical brochure which describes an artist's use of

Adobe Illustrator™ - a software program which specialises in creating graphic

illustrations. In heuristic terms, the brochure is 'tidier' than a newspaper, yet still more

geometrically diverse than an academic document. Translating this heuristic knowledge

into computable knowledge is difficult. Table 19 presents the extracted knowledge for

the brochure document presented in Figure 35.

STASIS acknowledges the presence of a more rigid structure than that present in the

newspaper example, through the detection of several document features. STASIS infers

that the column style is consistent throughout the document. There are less text styles

present. In fact, the number of text styles is closer to that of an average academic

document than that of a newspaper. There are captions present for some of the images,

and those- captions are consistent in their text style and their position relative to their

image.

202

Analysis of System Results

Figure 33: A brochure document, THROMBRAD.PDF

+++
STASIS system report for document titled:
/C/USR/WSL/MYDOCU-l/NEURAL-l/SGMLDE-l/THOMBRAD.PDF
+++
There are 12 text styles of which 1 are deemed to be main text styles
Headers detected
Header styles are consistent
There are headers present on 50.00% of the pages
Footers detected
There are footers present on all pages
Captions have been detected
All captions are in the same position relative to their image: below
All captions have the same font metrics
There are 7 title styles
A Super Title has been detected
Results of graphics analysis
Total paths detected: 37
Total straight paths detected: 31
Largest number of straight paths on one page: 21
Average number of straight lines per page: 15.50

Column style Consistent throughout document
No image consistency
There are 4 images on 2 pages, which gives a ratio of 2.000000
NEWSPAPER == 0.0000
FORM ,.= 0.0001
BROCHURE 0.9984
ACADEMIC == 0.0010

Table 19: The STASIS report for THOMBRAD.PDF

203

Analysis of System Results

However, there are more images per page and more graphics per page in the brochure

than in the academic document analysed earlier. This indicates a slightly more

'colourful' layout than that of an academic document. Academic documents, although

they are not forced to, generally have few images, few text styles and concentrate on

delivering their content rather than presenting it in a geometrically diverse layout.

6.6.4 Form documents

Form documents are the most difficult for STASIS to identify reliably. This is due to the

lack of graphic processing present in the system. Just as text lines are joined into

geometric text blocks, so graphical lines must be analysed and grouped together into the

abstract shapes which they were designed to represent. Just as the blackboard

architecture hierarchically builds up information about text regions, so it must also build

up information on graphical regions in order to locate abstract graphical entities.

Currently, the strongest feature which STASIS attributes to a form document being

present is the average number of graphic lines present per page on average. The results

of the classification technique have proven that this is not enough to unambiguously

identify form documents.

Figure 34 shows a page from a form document. Table 20 lists the features extracted by

STASIS during the processing of that document. It can be seen that there is a high

number of straight lines present in this document, but not as much as in the newspaper

example presented earlier. Ignoring the graphical features, the report that STASIS

generated for the form document resembles the report for the academic document.

Notably, there are few text styles, headers and footers are present and there are no

images. This similarity manifests itself in the classification process as the academic

node is the 'next closest' in terms of 'node weight' after the form node.

204

Analysis of System Results

Figure 34: A form document, TAXll.PDF

+++
STASIS system report for document titled:
/C/USR/WSL/MYDOCU-1/NEURAL-1/SGMLDE-1/TAX11.PDF
+++
There are 11 text styles of which 2 are deemed to be main text styles
Headers detected

Footers detected
There are headers present on all pages

There are footers present on all pages
There are 8 title styles
A Super Title has been detected
Results of graphics analysis
Total paths detected: 159
Total straight paths detected: 159
Largest number of straight paths on one page: 98
Average number of straight lines per page: 31.80

ColumnStyle Inconsistent throughout document
NEWSPAPER == 0.2070
FORM == 0.6247
BROCHURE 0.0052
ACADEMIC == 0.3552

Table 20: The STASIS report for TAXll.PDF

205

Analysis of System Results

6.6.5 Summary

The classification process works well for academic documents, brochures and

newspapers. There are some newsletter documents (which contain no images and few

text styles) which are mis-classified as academic documents, but other than this the

classification process for these types of documents is a success. See section 6.8, "A

statistical analysis of STASIS" for statistical information regarding the error rate of

STASIS' classification technique.

STASIS is biased towards fmding low level structural elements in these types of

documents, for example, headers, footers, body text blocks, titles and captions.

Academic documents, newspapers and brochures store structure implicitly in their

appearance. STASIS can find these low level structural elements easily and classify the

documents well from features generated from their analysis.

Certain types of documents do not use geometric information to implicitly store

structure. These documents are not classified efficiently by STASIS, for example, form

documents. Form documents use geometric information (in the form of graphic lines)

and semantic content to explicitly define the logical role of their composite logical

entities. Column headers, row headers and cell contents are logically defmed by their

exact position in the form and their semantic content. Typically, there are few low level

logical entities in form documents.

Early on in STASIS' development it was hoped that the system would be able to classify

business letter documents. Unfortunately there were no features (or groups of features)

with which STASIS could identify a business letter with. Business letters, like forms, do

not contain many low level elements. They have body blocks which STASIS could

identify and tag, but other than that, they consist of letter-specific entities such as 'sender

address', "sign-off' and 'salutations'. Without using model-driven letter document-

specific recognition routines it was impossible to classify letter documents. .

206

Analysis of System Results

6.7 Neural net classification errors

There are certain classes of documents which exhibit the geometric properties of

documents which are not of their logical class.

Figure 35 shows a logical brochure document which initially had been mis-classified as

a newspaper document. This document was processed by the system early in its

development. The neural net was still relatively 'inexperienced' and required more

examples of brochure documents to establish which document features (or combination

of features) could be used to unambiguously identify brochure documents. The

document illustrated in Figure 35 was ideally suited to train the neural net with, because

it displayed all the required geometric features of a brochure document (a large number

of type faces, a complex page layout, a fairly short document length and an average

distribution of images) without displaying many of the features which are present in

newspaper documents (a very large number of type faces, an extremely complex page

layout and a high frequency of images).

Newsletters documents are sometimes classified as brochures. Ideally, a newsletter

should be associated with the logical class of newspapers. They have the same logical

structure which comprises mainly of logical articles and sub-stories. However, they also

have geometric properties which are closely related to brochures, for example,

newsletters are less then ten pages in length, they have a consistent column format and

contain fewer text styles than broadsheet newspapers. Furthermore, newsletters may

have a smaller average number of images per page than a broadsheet newspaper. All

these geometric attributes are closely related to the geometric attributes of brochures.

The inverse of this scenario also exists; some brochures exhibit the geometric properties

of newsletters.

The layouts of some brochure documents are closely related to the layouts of some

academic documents. The possible page layout of a brochure is wide ranging. It may be

either rigidly formatted in only a few fonts and contain uniform headers and footers or

207

Analysis of System Results

Figure 35: A page of a logical brochure

complexly formatted with a wide variety of fonts, a large frequency of images and

irregular column formats with no headers and footers. Generally the layout of a brochure

lies somewhere in between these extremes. When a brochure does not exhibit these

'extreme' properties, STASIS can identify it as a logical brochure accurately.

Pages from documents which display the geometric attributes of more than one type of

logical document (which have consequently, confused the neural net) are displayed in

Figure 36 and Figure 37. These pages are taken from a logical form document which is

four pages in length. The first two pages of the document display the typical geometrical

and logical characteristics of a form document (Figure 36 shows the first page of this

document). The third and fourth pages of the document display the typical geometrical

and logical characteristics of either a brochure or an academic document (Figure 37

displays the fourth page of this document).

208

Analysis of System Results

In the classification process, the STASIS system declared the document to be a member

Figure 36: The front page of a logical form document

of the brochure class. However, the decision made by the neural net was ambiguous; the

weight of the node representing the brochure class of documents was not significantly

greater than the weight of the nodes representing the academic and form document

classes.

The difficulty of classifying a document which contains pages which display attributes

of distinctly different classes raises an interesting area of research. For a document of

the type illustrated in Figure 36 and Figure 37, it would be optimal to apply specific

document understanding routines to specific pages. In other words, a document

processing system should apply a form document understanding algorithm to the page

shown in Figure 36, and a brochure document understanding algorithm to the page

shown in Figure 37.

209

Analysis of System Results

Figure 37: The back page of a logical form document

The results which the STASIS system has produced have indicated that it is possible to

make inferences on the nature of individual page layouts. It should be possible to

recognise the presence of table and form Structures on a page if they represent a

significant portion of the page. This would not necessarily obstruct the global goal of

document class recognition. One could incorporate a flexible approach to logical

document class recognition and allow a document of one logical class (for example an

academic document) to have pages present in it which can be logically described as

belonging to another class (for example a table or a form or an advert). Currently,

STASIS does not attempt to classify individual pages.

210

Analysis of System Results

6.7.1 Neural Net shortcomings

The neural net classifier delivered all it promised; it learnt from examples and detected

patterns amongst the document features it saw. Judging by the statistical analysis of the

classification results (see section 6.8, "A statistical analysis of STASIS") it can be seen

that the application of a neural net classifier was a success.

However, nearly all the documents which were 'classified' with the neural net were

bona fide members of one of the four target classes of document. Letter documents, for

example, were rarely processed by STASIS. On the occasions when letters were

processed, the classification technique declared that the letters were brochure

documents. This was not because the letter document resembled a brochure but because

the neural net forced itself to make a classification and the target node for brochure

documents was the closest 'match' it could find. From this experimentation it can be

said that the neural net classifier is weak at detecting the presence of documents which

are not a member of any of the target output classes.

Another negative aspect of using a neural net classification system arises when one

analyses an output (or target) node's weight after a classification has been performed.

There is a tendency to relate the 'weight' of the node to a 'confidence' which the neural

net has in its classification, for example, if node A has a weight of 0.897 and node B has

a weight of 0.009, then one could be forgiven for associating the magnitude of the

weights with a magnitude of confidence in a classification decision. This assumption

does not become a problem until one wishes to look at the second and third 'choices' of

the neural net classifier. In such a situation, it is unreasonable to declare that the

weighting of a target node represents the neural net's confidence in that node being the

desired target node of the classification process.

211

Analysis of System Results

Typically, the output of a neural net classifier will be biased towards the node which has

the highest weight (this node will be referred to as the 'primary node', the node with the

next highest weighting will be referred to as the 'secondary node' and so on). The

magnitude of the difference between the primary node and the secondary node should

be acknowledged as a magnitude of the degree to which the neural net 'recognises' a

pattern and not as a magnitude of the degree to which the secondary node represents the

logical target class. From these observations, it is clear that neural nets are not accurate

at representing the degree to which the 'next best' node matches the profile of the input

vector.

The neural net classifier has proven that it is possible to classify a document from

meaningful features extracted from the document. Yet, the shortcomings of the neural

net technique (which have been outlined in this section) could have important

ramifications in a universal document processing system which should be designed to

process all classes of document. Such a system may wish to inspect the second choice

of a classification technique, particularly if there is a real similarity between the first and

second choices, for example, a newsletter and a brochure. The classification process

should provide a meaningful evaluation of the correlation between the document being

processed, all the target classes and the class of 'non-classifiable' documents.

6.8 A statistical analysis of 5TA515

Over three hundred documents were collected, primarily from internet resource sites,

and tested with the STASIS system (see section 5.6.2.4, "Development of the STASIS

neural net classifier" for more details). Three classes of errors have been identified: API

errors (those created by the Acrobat API), segmentation errors (created by STASIS

when decomposing a page) and document classification errors. This section presents

and discusses a statistical analysis of the frequency of these errors.

212

Analysis of System Results

The statistics representing API errors, segmentation errors and block tagging errors

were partly compiled from human judgement; the author examined the documents that

STASIS processed in order to identify these classes of errors.

The statistics concerning the recognition of a document's class were compiled by

comparing the logical class indicated by STASIS to the true logical class of the

document. This set of statistics is the most important of those compiled.

Table 21 lists the statistical information gathered from these tests. Figure 38 displays

these results as bar charts.

Class of Total API Errors Seg. Errors Tag Errors Class Errors
Document (%) (%) (%) (%)

Newspaper 45 4 (8.9%) 7 (15.5%) 2 (4.4%) 5 (11.1%)

Academic 136 4 (2.9%) 18 (13.2%) 9 (6.6%) 8 (5.8%)

Brochure 77 5 (6.4%) 12 (15.5%) 2 (2.5%) 4 (5.1%)

Form 53 4 (7.5%) 12 (22.6%) 4 (7.5%) 11 (20.7%)

Total 311 17 (5.4%) 49 (15.7%) 17 (5.4%) 28 (9%)

Table 21: STASIS document analysis and classification statistics

6.8.1 Evaluating the statistics

The data which makes up the bar chart showing the relative API errors was compiled by

identifying text lines which had been badly judged by the Acrobat API. If an invalid line

was present in the document then its presence was recorded. The chart shows that the

likelihood of an API error occurring is proportional to the complexity of the page layout.

Newspapers have the most complex layout of all; thus they have the highest number of

API errors on average. Form documents have an unusually high number of API errors

because each time an entire text line crossed a vertical graphic line, an invalid text line

was produced, Presumably the Acrobat API, like STASIS, does not take into account

graphic lines when creating the text lines.

213

Analysis of System Results

%

Bar Chart Showing Relative Acrobat API Errors

8
6
4
2

(Bar Chart Showing Relative Tag Error~

2

Bar Chart Showing Relative
Segmentation Errors 22.6%

Form

Bar Chart Showing Relative
Classification Errors

'Newspapers Brochures Academic Form

Figure 38: STASIS statistics charts

214

Analysis of System Results

The bar chart showing block classification (or tagging) errors has produced acceptable

results for all classes of document. The form documents produced the highest error rate

and this suggests that a specific document understanding system is required for the

processing of form documents if this error rate is to be lowered. The bulk of the tagging

errors occurred when blocks were incorrectly classified as either headers, "footers or

captions. This happened when there was not enough geometric information in the

document to help STASIS formulate tagging rules which could be applied with a high

degree of confidence. This explains the higher error rate in form documents as,

typically, they are short documents.

A possible explanation for the presence of a larger block tagging error rate in academic

documents is that academic documents, typically, have a less complex page layout than

brochure or newspaper documents. Whereas this geometric simplicity helps the

segmentation algorithm to create text blocks, it also limits the diversity of the geometric

information on a page that STASIS can examine. A less complex page layout could

account for the slight increase in block classification errors as there is less information

from which STASIS can infer patterns.

The barchart illustrating the segmentation error rates shows fairly even statistics for all

groups of documents. The percentages represent the frequency at which the error

forming contexts (which were described earlier in this chapter) occur in PDF

documents. Only form documents are slightly more vulnerable to segmentation errors

and this may be attributed to the fact that the segmentation algorithm is hybrid in origin

and is, therefore, reliant upon the presence of columns and text blocks. Furthermore

form documents have a higher Acrobat Exchange API error rate which would not help

the segmentation algorithm.

215

Analysis of System Results

The final bar chart displays the most significant results that STASIS produces. The

classification performance of STASIS for all academic documents, brochure

documents, and newspapers are excellent. The overall classification error rate for the

newspaper class is larger than the classification error rate for academic and brochure

documents because some newsletters were mis-classified (as either brochures or

academic documents).

Unsurprisingly, form documents are the hardest to classify. This is mainly due to the fact
"

that most of the form documents that exist in the world are not pure forms. Frequently

they contain instructions at the back of the form which explain how to fill in the form.

This has the effect of altering the form's logical and geometric document features to

resemble academic and brochure documents. This fact, together with poor API,

segmentation and block classification error rates have produced a significantly larger

classification error rate for form documents than in any other document class.

6.8.2 Evaluating the run-time efficiency of
5TA515' strategy

This section presents a breakdown of STASIS' run-times for analysing and classifying

a PDF document. Table 22 presents a brief verbal description of a document together

with statistics representing the time duration of STASIS' segmentation algorithms

(document analysis) and the time duration of STASIS' classification algorithms. For the

purposes of this section, the act of classifying a document includes both the advanced

analysis level of document process and the classification of the document's feature

vector by the neural net. There is little point in differentiating between these two

processes as once the neural net has been trained, the act of classifying the feature vector

is practically instantaneous.

STASIS i; built upon the PDF document model; consequently, the times given cannot

be accurately compared and contrasted against other document processing systems as

STASIS is reliant (to a certain degree) upon the efficiency of the Acrobat Exchange API.

216

Analysis of System Results

The durations listed in Table 22 were calculated from the execution of STASIS upon a

Pentium™ personal computer which operates at 133 MHz with 32Mb of RAM, using

the Windows95™ operating system. The times are rounded to the nearest second.

Document Document Description Document Advanced Total
Class Analysis Document Duration

Duration Analysis (seconds)
(seconds) Duration

(seconds)

Newspaper 3 columned, 8 pages long 15 4 19

3 columns, 12 pages long 16 8 24

3 columns, 6 pages long 9 5 14

6 columns, 52 pages long 312 186 498

6 columns, 39 pages 213 163 376

Brochure 3 columned, 2 pages long 2 1 3

2 columns, 4 pages long 5 2 7

2 columns, 4 pages long 2 2 4

3 columns, 8 page long 8 7 15

2 columns. 3 pages long 3 2 5

Academic 1 column, 2 pages long 1 1 2

1 column, 43 pages long 19 13 32

1 column, 34 pages long 28 19 47

1 columns, 18 pages long 9 5 14

2 columns, 5 pages long 7 3 10

Form 2 pages long 3 2 5

29 pages long 28 19 47

2 pages long 2 1 3

2 pages long 6 2 8

4 pages long 5 3 8

Table 22: Run-time performances of STASIS

It can be seen that the advanced document analysis level of processing is significantly

faster than"the traditional document analysis text-segmentation techniques and that the

overall time taken by STASIS to process a document is proportional to the length and

complexity of that document's layout.

217

Analysis of System Results

Analysis of the errors and error creation contexts has shown that

although the decomposition and classification routines can make bad

decisions, the data these routines pass to the neural net is often good

enough to correctly classify the document. This is very positive indeed.

When considering the full cycle of document processing, the document

understanding algorithms (which logically follow the classification of a

document) have the ability to reconsider (and correct) any decisions made

by STASIS which they beli~ve could be erroneous.

218

Chapter 7, Discussion
and Conclusions

This chapter draws upon the previous chapters of this thesis to

summarise the research that has been made (by the author) into

document image processing. STASIS is assessed as a PDF document

processing system which attempts to classify documents after building a

geometric tree representation of their layout. The practical and theoretical

limitations of STASIS are reviewed together with a proposed strategy for

universal document image processing in which STASIS' ability to classify

documents is vital.

219

Discussion and Conclusions

7.1 Research synopsis

The research presented in this thesis is unique in the field of document image processing

in that it has produced a system which takes a document described by a page description

language (and not a bitmap image) as its input. Throughout the development of the

prototype and the final system, research has been focused not only on document

recognition but also, implicitly, on the suitability of using PDP documents as a

document image substitute.

PDP has the ability to describe all the details of a document's layout, for example, the

exact position, font and point size of any word in the document. This information is

available to any program which can access the Acrobat Exchange API. The immediate

advantage that processing a PDP document has, over processing a document image, is

that there is a large amount of geometric information instantly available.

It can be argued that PDP is equivalent to a document image which has had its pictures

and line diagrams identified as separate entities within the textual content together with

the application of OCR and font recognition techniques to the text content portions. This

is exactly what Adobe Capture™ performs. It logically follows that this research

(particularly the advanced document analysis and document classification sub-systems)

is applicable to the field of traditional document image processing, given that a

document image is equivalent to a PDP document once a certain degree of pre-

processing has been applied to it.

STASIS attempts to identify the logical class of a PDP document, from its layout, in an

efficient manner. STASIS is divided into three processing stages: document analysis,

advanced document analysis and document classification.

The document analysis technique that STASIS uses to segment the textual content of

PDP documents is a hybrid strategy. STASIS takes the logical text lines .of a PDP

document (which have been formed from a purely data-driven strategy by the Acrobat

220

Discussion and Conclusions

Exchange API) and forms columns and text blocks from them. The assumption (by

STASIS) that there will be columns and blocks present within the document is model-

driven, but the model is extremely general and applicable to a wide range of document

classes. The union of both data-driven and model-driven strategies makes STASIS'

segmentation algorithm robust and reliable but produces greatest success when executed

upon documents whose layout consists of text already formatted into columns and

blocks.

STASIS uses the output of the document analysis stage as input to a new method of

document processing entitled advanced document analysis. The overall aim of advanced

document analysis is to extract meaningful document features from the document to aid

in the classification process. STASIS achieves this by using a blackboard framework

which allows knowledge about specific domains of document formatting to be

encapsulated within knowledge sources. The knowledge sources are coded with meta-

rules which allow them to infer new knowledge (regarding the specific layout of the

document which they are processing) each time they analyse a new document. The

knowledge sources train themselves by examining example blocks which lie within their

domain of knowledge; they infer document specific knowledge rules from the examples

and then apply those knowledge rules to the document by tagging blocks. The presence

of tagged text blocks helps with the inference of meaningful document features.

The advanced document analysis technique is partly model-driven because it demands

the presence of one or more of the following block types: header, footer, super-title,

main text body, title, image and caption. In other words, the presence of a document

model which contains these types of blocks. Although this strategy is partly model-

driven, the model is extremely general and applicable to a large number of document

classes.

There are 'data-driven algorithms present inside some of the knowledge sources,

particularly the Column Knowledge Source. The Column Knowledge Source constructs

the bounding boxes of columns from the analysis of main text body blocks, tagged as

221

Discussion and Conclusions

such by the Text Frequency Knowledge Source. This is a bottom-up strategy: the

building of larger entities from the analysis of smaller ones. It would be incorrect to state

that the Column Knowledge Source expects columns to be present because the very

purpose of its analysis is to test for the presence of columns. As there are two clearly

different strategies within the advanced analysis stage of document processing the

overall advanced document analysis strategy can be described as being hybrid.

The output of the advanced do~ument analysis is a vector containing the meaningful

document features inferred from the PDF document being processed. This vector is the

input to a pre-trained neural net classifier which matches the vector to one of four

abstract logical document classes: newspaper, brochure, form and academic document.

STASIS uses the neural net as a 'black box' classifier; no significant contribution to

neural net research has been made by STASIS.

The results produced by the classification sub-system have shown that STASIS can

classify brochure, newspaper and academic documents accurately using predominantly

hybrid document analysis techniques which extract general document features. This is

a significant finding, given that all the document understanding and document

classification techniques reviewed in this thesis have been model-driven techniques

which seek out and recognise specific logical document attributes.

7.2 An analysis of STASIS'
document processing strategy

One of the most positive aspects of STASIS' advanced .document analysis strategy is

that it extracts document features rapidly and efficiently whilst performing a level of

analysis which contributes to the accumulation of geometrical and logical knowledge

about the document. It can be argued that a document understanding system does not

need the information generated by STASIS (as a by-product of the document

classification process), for example, the elementary tags on the geometric text blocks.

222

Discussion and Conclusions

However, the author believes that the information provided by the tagged blocks (and

the realisation of some of the basic logical relationships between those blocks) can only

contribute to the document understanding process. Furthermore, in terms of

computational efficiency, advanced document analysis takes only a fraction of the

processing time required by the traditional document analysis text-segmentation

routines and the neural net (once trained) makes its classification almost instantly.

The advanced document analysis techniques have shown that geometric features (those
"

which describe the layout or format of the document) can be extracted at a basic level of

abstraction (for example, the number of pages in a document) or at an advanced level of

abstraction (for example, the format of the document's images with respect to the format

of the columns in the document) or at any level of abstraction in between these extremes

(for example, the number of text styles present in the document). Logical document

features, on the other hand, can only be extracted at an extremely basic level of

abstraction (for example, the presence of titles in the document). Searching for logical

entities of a more detailed nature (for example, a business letter's sender address) would

require executing model-driven recognition techniques. STASIS has been deliberately

implemented without any purely model-driven recognition techniques so that the results

of a non model-driven classification process can be assessed and analysed.

The previous section has highlighted the fact that there is a weak document layout model

present within the advanced document analysis strategy. This document model is

applicable to all documents which are formatted with images, text columns and text

blocks. It follows that STASIS' segmentation and classification techniques produce

optimal results when processing documents which correlate strongly with this model,

for example, magazines, brochures, newsletters, newspapers, technical documents,

journals, books and so on.

The author believed that engineering STASIS to classify documents into a wide range
"

of logical documents (such as those listed in the previous paragraph) would be too

difficult to achieve because the level of detail of the logical features extracted from the

document was low.

223

Discussion and Conclusions

Research into the field of document understanding has shown that the only reliable

manner of identifying a documents logical class is to seek out and recognise logical

entities which are unique to that class of document. Yet many documents have very

similar geometric layouts, for example a broadsheet newspaper and a magazine. One

could argue that these documents have a similar logical structure and also a similar

layout model. It would be very difficult to differentiate between these two document

classes using a model-driven approach.

This thesis has shown that a better approach to the classification of these sorts of

document would be, firstly, to analyse the document's layout model and secondly to

match that layout model to a general logical model. In order to achieve this the author

grouped various documents together based on the correlation between their layout and

document models, for example, newspapers, magazines and newsletters were grouped

into the abstract class of 'newspapers', technical documents, journals, books and

manuals were grouped into the class of 'academic documents' and product brochures

and pamphlets were grouped into the class of 'brochure' documents. It seems that the

documents within these groups exhibit similar traits from both a geometric and logical

perspective. A fourth class of document was experimented with: form documents. The

aim was to see how a document would be processed which theoretically did not correlate

strongly to STASIS' internal document model.

In practice, both the text segmentation strategy and the advanced document analysis

strategy were not suited to form documents. Typically and almost paradoxically, the

majority of the content in form documents is not formatted into text columns and blocks.

This did not match the general model of document layout which STASIS was

programmed with. As STASIS was not able to either segment form documents

efficiently, nor to tag the resulting (badly formed) blocks efficiently, the generated

feature vec.tor was ambiguous and not representative of the characteristics of form

documents. This seriously impaired the ability of the neural net classifier to make

accurate classifications.

224

Discussion and Conclusions

Furthermore, STASIS does not attempt to generate any useful geometric or logical

information from graphic lines. This is a continuation of the hybrid advanced document

analysis strategy's model-driven approach; because newspapers, brochures and

academic documents conform to the model present in the hybrid strategy, the feature

vector created by STASIS is unambiguous. Consequently, there is no need to look

elsewhere for further geometric information to help with the classification process.

Form documents, on the other hand, are not processed well by the current advanced

document analysis strategy, thus' their document feature vector is badly formed. Graphic

lines are important geometric features of form documents. By ignoring graphic lines,

STASIS has ignored a vital source of geometric information in form documents.

Once the target document classes had been chosen, the document feature vector was

created. The engineering of this vector was one of the most critical parts of the system

development. The feature vector had to be detailed enough to allow the neural net to

correlate patterns within the vector to the output classes and yet the vector had to be

abstract enough to make STASIS applicable to a wide range of documents. In particular,

STASIS had to be applicable to documents which did not correlate 100% to any of the

target logical document classes.

The choice of which logical features to put into the feature vector was straightforward;

because the target document classes were logical it made sense that all the logical

information that could be extracted from the document should be included in the vector.

In practice, although the logical features that can be inferred from a geometric document

(simply from analysing that documents layout) are extremely basic (essentially just the

information about the presence and number of titles in the document), they do exhibit

different characteristics for different document classes. .

The geometric features (within the document feature vector) represent the geometric

document attributes which the author believes accurately portray the layout model of the

target logical classes. Certain other features, notably the feature indicating the presence

of a document super title, were excluded from the feature vector because the value of

225

Discussion and Conclusions

these features would be consistent for all the document classes, thus making no

contribution to the classification process.

Perhaps the most significant difference between STASIS and other document image

processing systems (such as those presented by Niyogi [Niyog94] and Lam [Lam94aD

is that STASIS bases its classification process upon the existence of a correlation

between the layout models of certain classes of document and their logical models,

whereas Niyogi and Lam's classffication processes seek out and identify specific logical

attributes. STASIS relies upon the fact that de facto formatting rules will be used by the

designers of certain documents, for example, newspapers will always be formatted in a

multi-column style with many text formats and a high distribution of captioned images.

There is a drawback to this approach; some classes of document will have extremely

similar layout models even though their logical models are will be totally different.

Consider the following two documents: a newsletter (formatted with two text columns

per page, about 15 text styles throughout the document and approximately one image

per page) and a detailed product brochure which happens to be formatted in exactly the

same fashion as the newsletter. As STASIS relies entirely upon the features extracted

from the analysis of a document's layout it stands to reason that two documents which

have very similar layouts will have very similar feature vectors. In situations like this,

STASIS will fail to make a clear classification decision. Only detailed model-driven

logical analysis and semantic content analysis will fmd any significant differences

between these two documents.

7.3 A universal document
processing system

STASIS has shown that it is possible to logically classify certain sorts of document

based on the analysis of their layout model. STASIS has also shown that the class of

documents for which this statement is true is limited to documents whose layout model

226

Discussion and Conclusions

correlates strongly to the layout model which is hard coded into the STASIS system:

newspapers, brochures and academic documents. These findings raise two important

questions.

Firstly, how can STASIS allocate documents into document classes which are more

logically detailed than the current abstract logical target classes? For example, given that

STASIS can identify that a document is a member of the base class of newspapers, how

can STASIS make a more detailed classification and so state that the document is a,

magazine?

Secondly, how can the classification technology be integrated with existing model-

driven classification to produce a document image processing system which

automatically classifies all types of documents, for example, newspapers, letters, forms,

invoices, magazines and so on?

The remainder of this section is devoted to answering these questions by providing a

brief overview of a universal PDF document processing system which can take any PDF

document and reconstruct a logical document by inferring logical information from its

layout. The foundation of this universal system is provided by the STASIS blackboard

framework and is based upon the results of experiments conducted upon STASIS during

the course of this research.

As with all document processing systems, a universally applicable system must segment

and analyse the geometric components of the document into a geometric tree. Whereas

STASIS executed document analysis as a sub-system, a more appropriate technique

would be to integrate the document analysis techniques into a blackboard framework.

Knowledge sources should be created which know about characters, words, lines,

blocks and a variety of page layout models. The blackboard controller should be

programm~d with knowledge of a variety of text segmentation techniques (for example,

a range of data-driven, model-driven and hybrid strategies), together with knowledge of

which technique provides the optimal decomposition strategy in a given context.

227

Discussion and Conclusions

Furthermore, all aspects of graphic processing could be modelled within this structure.

Knowledge sources could be created which know about graphic operators, how graphics

are used in page layouts and how graphics are used within the PDF model.

The advanced document analysis stage of processing would remain practically the same

as that implemented in the STASIS system. The input to this level of processing would

be the geometric blocks and graphics created by the document analysis knowledge

sources. There would be only t~o fundamental improvements to this sub-system.

The first improvement would be the implementation of graphic analysis knowledge

sources. The knowledge sources could process the graphics and tag them as either

graphics which help define the structure of the page (for example, as inter-column

breaks) or graphics that exist as part of a form or as graphics which are a component of

a logical diagram.

The second improvement would be the implementation of knowledge sources which can

semantically process the content of blocks. In some cases this would involve the natural

language processing of textual content, in other cases it would simply be searching for

key words or a given text string. The practical drawback of natural language processing

is that the system would be restricted to documents written in the English language,

although theoretically the system could be implemented with knowledge of as many

natural languages as were necessary.

The document vector produced by incorporating the above techniques into the advanced

document analysis sub-system would be richer and more diverse thanks to the inclusion

of features describing the presence of logical graphics and the presence of more than one

kind of subject matter.

So far, the universal document processing system has not differed greatly from STASIS

apart fromthe inclusion of new knowledge about certain geometric elements, the

inclusion of new knowledge about the application of decomposition strategies and the

restructuring of the document analysis level of processing (in order for it to be integrated

228

Discussion and Conclusions

into a blackboard framework). However, in order for the universal document processing

system to successfully handle all classes of document, the technology which STASIS

has developed must be applied together with traditional model-driven logical

classification techniques. Once again, the blackboard framework provides a powerful

means to achieve this goal, thanks to its ability to model all types of reasoning (or

classification) strategies and apply those strategies in an opportunistic manner.

The proposed universal classification system is a two-tier system. Initially, the

document feature vector would be generated by the advanced document analysis (ADA)

stage of processing. The vector would be passed to a similar classification package to

the existing neural net classifier in the STASIS system, in other words a classification

system trained with documents from the logically abstract classes of newspapers,

brochures and academic documents. In this context a neural net classifier may not be the

most suitable classification system to apply as it neither gives a meaningful second or

third choice from the classification nor can it reason that the input vector was from an

unknown class of documents. It shall be assumed that a more suitable classification

system will make the classification and that the document can be classified into one of

the following categories: unknown, known-but-the-classification-was-ambiguous or

known-and-the-classification-is-unambiguous.

Before any further action is taken, the controller of the blackboard framework should

allow model-driven logical classification of the document to take place. Model-driven

classification involves the identification of one or more logical components of the

document which can support the initial hypothesis that a certain logical document model

is present: for example, searching for and fmding the sender's address an a letter, plus

the sender's signature, would be strong evidence that the document being processed is

a letter. However, there should be restrictions on how this is implemented.

Firstly, each document-specific model-driven classification strategy should be

implemented within a knowledge source and each of these knowledge sources should

have access to a unique knowledge base of rules which can be maintained (by that

229

Discussion and Conclusions

knowledge source) in a similar manner to Niyogi's model driven document processing

system. Each of these knowledge sources would represent a model-driven strategy for

identifying one, and only one, class of document. Each knowledge source should be

given the opportunity to analyse the document being processed and to make an

assessment as to how much that document correlates with the document model

represented by that knowledge source. Furthermore, only document classes which

cannot be confidently classified from the feature vector should be handled in this

manner, for example, forms, letters and invoices but not newspapers, brochures and

academic documents.

Figure 39 provides a representation of this tier of classification within the universal

document processing system. Figure 39 is not intended to be comprehensive; instead it

is designed to show that the document classes that STASIS cannot classify well can be

identified with the help of specialist document-classification knowledge sources.

STASIS exists within this system primarily as a classification sub-system. The

controller allows each classification system to inspect the blackboard and to execute its

own classification algorithms upon the document being processed.

After the activation of all the model-driven classification knowledge sources the

blackboard controller must decide which classifier made the best decision. The

controller should select that classification process which it believes has found the best

match. Since the advanced document analysis (ADA) classification system is in direct

competition with model-driven knowledge source (MDKS) classifiers (and vice versa)

their evaluations of how close a match they have with the document should be

comparable.

As the MDKS classifiers will tend to use highly detailed models within their

classification process, no further work is necessary if a MDKS classifier returns the best

match. However, the ADA classification technique simply categorises documents into

one of three quite abstract document classes: newspapers, brochures and· academic

documents. From the results of the experiments carried out with the STASIS system, it

230

Discussion and Conclusions

~
a document

Figure 39: The first tier of the universal document processing system

has been shown that the classification of documents into highly detailed logical

document classes (using the features extracted from the analysis of a document's layout)

is unsuccessful thanks to the lack of tangible logical attributes detectable during the

analysis process. Consequently, if the ADA classification system recognises that the

document being processed is either a newspaper or a brochure or an academic document,

some more work must be carried out in order to further classify the document into a

more detailed logical class. A second tier of model-driven classification knowledge

sources needs to be implemented in order to achieve this. The level of detail of the

classification is important; the more detailed the logical class of document is, the better

the document understanding of that document will be.

The second tier of the universal document processing system should be implemented in

much the same fashion as the first tier; the application of a set of knowledge sources

which applY model-driven classification techniques to the document on the blackboard.

The knowledge sources should encapsulate a certain document model and base their

entire classification process around proving the existence of that document model within

231

Discussion and Conclusions

the document they are processing. Let us consider the class of academic documents:

given that the advanced document analysis classification system has identified the

document being processed as an academic document, the controller can now apply the

knowledge sources for document models which are within the class of academic

documents, for example, technical documents, journal documents, fiction books,

encyclopedias, conference proceedings and so on.

Figure 40 illustrates the second tier of the universal document classification system. It
/

shall be assumed that STASIS has recognised that the document is a member of the class

of academic documents. The controller can subsequently invite all the knowledge

sources which contain knowledge about specific academic document classes

(symbolised in Figure 40 by the presence of a thesis KS, a technical document KS and

a journal KS) to examine (and classify) the document on the blackboard. In this manner,

STASIS helps the universal document processing system to identify efficiently the

detailed logical class of the document by narrowing the number of logical classes to

which it could belong.

~
a document

Figure 40: The second tier of the universal document processing system

232

Discussion and Conclusions

The universal document processing strategy is extensible and scalable. In the same

manner in which knowledge sources (which contain knowledge about classifying a

particular class of document) can be added to the universal system's blackboard

framework, other knowledge sources can be added which contain knowledge about

different model-driven processing strategies which are applicable to the same class of

document.

The fact that STASIS alone (as a classification system) has weaknesses is not a problem

for the universal system. Other classification techniques can be added to the blackboard

framework to complement those weaknesses.

7.4 Closing remarks and
conclusions

STASIS has proven that document image processing techniques are applicable to

documents described by page description languages. Furthermore, STASIS has shown

that the level of geometric information that page description languages provide is

extremely useful for developing detailed document processing algorithms.

Certain aspects of this research cannot be instantly translated to a traditional document

image processing system, for example, the analysis and comparison of font metrics. Yet

it is the accessibility of detailed geometric information such as this that has allowed

STASIS to:

• develop segmentation routines which can efficiently segment a document's text

content into geometric blocks;

• develop classification routines which can identify the detailed categories of text

blocks within a document without the need for a model-driven approach;

• develop a recognition system which can identify classes of documents which have

233

Discussion and Conclusions

traditionally been difficult to categorise thanks to the lack of logical and geometric

attributes which can verify the presence of a particular document type.

In conclusion, STASIS has shown that

• a hybrid structural analysis system is most suitable for documents which have a

loosely defined geometric (or layout) structure. Conversely, documents which have

a well defined geometric structure (for example, forms) are optimally processed by

a top-down analysis strategy. Consequently, the hybrid strategy employed by

STASIS is an effective document processing strategy, yet top-down strategies are

faster and more reliable (assuming that the class of document being processed is

known);

• the problem of universal document classification is an extremely complex problem

requiring knowledge of international formatting conventions (world knowledge),

the ability to use the most suitable document processing strategy on a certain type of

document (procedural knowledge) and knowledge of how to execute certain

document processing strategies (declarative knowledge);

• it is extremely difficult (and perhaps impractical) to classify a real world document

into one logical document category. Many documents have a "fuzzy" membership

with multiple document classes;

• the strategy developed and utilised (within this thesis) to process PDF documents is

commercially viable and that PDF is an excellent medium upon which to base a

wide range of new document processing strategies which can utilise the features of

PDF which are not instantly available within the medium of traditional bitmap

document images.

234

References

[Adobe90]

[Adobe93]

[Adobe96]

[Akind93]

[Akind95]

[Anony96]

[Anton95]

[Baird87]

[Barre89]

Adobe Systems Incorporated. "PostScript language reference manual, second

edition" Addison Wesley, 1990

Adobe Systems Incorporated. "Portable Document Format reference manual"

Addison Wesley, 1993

Adobe Systems Incorporated. "Adobe Acrobat FAQ" at http://

www.adobe.com/acrobat/acrofaq .html, November, 1996

O. T. Akindele and A. Belald. "Page segmentation by segment tracing" in

Proceedings of the Second International Conference on Document Analysis

and Recognition. Japan. October, 1993

O. T. Akindele and A Belaid, "Construction of generic godels of document

structure using inference of tree grammars" in Proceedings of the Third

International Conference on Document Analysis and Recognition. Montreal,

Canada. 1995

W3. "Web Style Sheets" at http://www .w3. org/pub/WWW/Style,

January, 1996

A. Antonacopoulos and R. T. Ritchings. "Representation and classification of

complex-shaped regions using white tiles" in Proceedings of the Third

International Conference on Document Analysis and Recognition. Montreal,

Canada. 1995

H. S. Baird. "The Skew Angle of Printed Documents" in SPSE 40th Annual

Conference and Syposium on Hybrid Imageing Systems. Pages 21-47,1987

D. W. Barren. "Why Use SGML?" in Electronic Publishing, Origination,

Dissemination and Design. Vol 2(1) John Wiley & Sons, Chichester. 1989

ccxxxv

http://www.adobe.com/acrobat/acrofaq

[Bayer93]

[Bayer95]

[Behle96]

[Booch91]

[Cambe95]

[Chene91]

[Clark95]

[Comm096]

[Denge89]

T.A. Bayer. "Understanding structured text documents by a model based

document analysis system" in Proceedings of the Second International

Conference on Document Analysis and Recognition. Japan. October, 1993

T.A. Bayer and H. Walischewski. "Experiments on extracting structural

information from paper documents using syntactic pattern analysis" in

Proceedings of the Third International Conference on Document Analysis and

Recognition. 1995

B. Behlendorf. "\Yhat Is Content Negotiation?" at http://
www.organic.com/staff/Brian/netscrape.htrnl. January,

1996

A. Belaid and o. T. Akindele. "A labelling approach for mixed document

blocks" in Proceedings of the Third International Conference on Document

Analysis and Recognition. 1993

G. Booch. "Object Oriented Design with Applications" Benjamin/Cummings,

Redwood City, California. 1991

I.R. Cambell-Grant. "Standards for document image processing in a

multimedia environment" in Proceedings of Document Image Processing and

Multimedia Environments. lEE, 1995

Y. Chenevoy and A. Belaid. "Graphein: hypothesis management for structure

document recognition" in Proceedings of the First International Conference

on Document Analysis and Recognition. Saint-Malo, France. September, 1991

E. Clarke. "A novel approach to handwritten character recognition" PhD

Thesis, University of Nottingham. 1995

Common Ground Software Inc. "What is Digital Paper" at http://
www.comrnonground.corn. January, 1996

A. Dengel and G. Barth. "ANASTASIL: A hybrid knowledge based system

for document layout analysis" in Proceedings of the 11th International Joint

Conference on Artificial Intelligence. Detroit, MI. USA. Pages 1249-1254,

IEEE, August 20th-25th, 1989

ccxxxvi

http://www.organic.com/staff/Brian/netscrape.htrnl.
http://www.comrnonground.corn.

[Denge93]

[Denge94]

[Denge95]

[Dillo93]

[Drape88]

[Driva95]

[Ellim90]

[Engel88]

[Espos93]

[Espos95]

A. Dengel. "The role of document anlysis and understanding in multimedia

systems" in Proceedings of the Second International Conference on

Document Analysis and Recognition. Japan. October, 1993

A. Dengel. "About logical partitioning of document images" in Proceedings

of the Third Annual Symposium on Document Analysis and Information

Retrieval. Las Vegas, Nevada. Pages 209-218, IEEE, 1994

A. Dengel and F.Dubiel. "Clustering and classification of document structure

- a machine learning approach" in Proceedings of the Third International

Conference on Document Analysis and Recognition. 1995

A. Dillon, C. McKnight and J. Richardson. "Space - The Final Chapter" in

HYPERTEXT, a psychological perspective. Ellis-Horwood, 1993

B. A. Draper, R. T. Collins, J. Brolio, A. R. Hanson and E. Riseman. "Issues

in the development of a blackboard-based schema system for image

understanding" in Blackboard Systems edited by Engelmore and Morgan.

Addison-Wesley, 1988

D. Drivas and A. Amin. "Page segmentation and classification utilising

bottom-up approach" in Proceedings of the Third International Conference on

Document Analysis and recognition. IEEE, 1995

D. G. Elliman and I.T. Lancaster. "A review of segmentation and contextual

analysis techniques for text recognition" in Pattern Recognition. Vol 23(3/4)

Pages 337-346, 1990

R. S. Engelmore, A. J. Morgan and H. P. NiL "Introduction [to blackboard

systems)" in Blackboard Systems edited by R. S. Engelmore and A. J.

Morgan. Addison-Wesley, England. 1988

F.Esposito, D. Malerba and G. Semeraro. "Automated acquisition of rules for

document understanding" in Proceedings of the Second International

Conference on Document Analysis and Recognition. Japan. October, 1993

F.Esposito, D. Malerba and G. Semeraro. "A knowledge based approach to

layout analysis" in Proceedings of the Third International Conference on

Document Analysis and Recognition. 1995

ccxxxvii

[Farr095]

[Goldf90]

[Gonza92]

[Graha95]

[Ha95]

[Higas86]

[Hinds90]

[Hiray93]

[Hori93]

[Hu93]

G. S. D. Farrow, C. S. Xydeas and J. P. Oakley. "Model matching in

intelligent document understanding" in Proceedings of the Third International

Conference on Document Analysis and Recognition. Montreal, Canada. 1995

C. F. Goldfarb. "The SGML Handbook" Clarendon Press, Oxford. 1990

R. C. Gonzalez and R. E. Woods. "Digital Image Processing" Addison-

Wesley, 1992

I. S. Graham. "HJML Sourcebook" John Wiley & Sons, Chichester. 1995

J. Ha, R. M. Haralick and I.T. Phillips. "Document page decomposition by

the bounding box projection technique" in Proceedings of the Third

International Conference on Document Analysis and Recognition. Montreal,

Canada. 1995

J. Higashino, H. Fujisawa, Y. Nakano and M. Ejiri. "A knowledge based

segmentation method for document understanding" in Proceedings of the

Eighth International Conference on Pattern Recognition. 1986

S. C. Hinds, J. L. Fisher and D. P. D'Amato. "A document skew detection

method using run length encodings and the Hough Transform" in Proceedings

of the Tenth International Conference on Pattern Recognition. Japan. Pages

464-468, 1990

Y. Hirayama. "A block segmentation method for document images with

complicated column structures" in Proceedings of the Second International

Conference on Document Analysis and Recognition. Pages 91-94, October,

1993

O. Hori and S. Tanigawa. "Raster-to-vector conversion by line fitting based on

contours and skeletons" in Proceedings of the Second International

Conference on Document Analysis and Recognition. Japan. October, 1993

T. Hu and R. Ingold. "A mixed approach toward an efficient logical structure

recognition from document images" in Electronic Publishing Origination,

Dissemintion and Design. Vo16(4) Pages 457-468, 1993

ccxxxviii

[Ishit93]

[lshit95]

[IS086]

[lS089]

[IS096]

[Ittne93]

[Iwane93]

[Jacks92]

[Johns83]

[Keyes94] ,

Y. Ishitani. "Document skew detection based on local region complexity" in

Proceedings of the Second International Conference on Document Analysis

and Recognition. Japan. Pages 49-52, October, 1993

Y. Ishitani. "Model matching based on association graph for form image

understanding" in Proceedings of the Third International Conference on

Document Analysis and Recognition. Montreal, Canada. 1995

International Standards Organisation. "Information processing - Text and

office systems - Standard Generalised Markup Language (SGML)" ISO

standard 8879, 1986

International Standards Organisation. "Information processing - Text and

office systems - Office Document Architecture (ODA) and Interchange

format" Parts 1-8, ISO Standard 8613, 1989

International Standards Organisation. "Information technology - Processing

languages - Document style semantics and specification language (DSSSL)"

ISO Standard 10179, 1996

D. J.lttner and H. S. Baird. "Language Free Layout analysis" in Proceedings

of the Second International Conference on Document Analysis and

Recognition. Japan. October, 1993

K. Iwane, M. Yamaoka and O. Iwaki. "A functional classification approach to

layout analysis of document images" in Proceedings of the Second

International Conference on Document Analysis and Recognition. Japan.

October, 1993

P. Jackson. "An introduction to expert systems (second edition)" Addison-

Wesley, 1992

P. Johnson-Laird. "Mental Models" Cambridge University Press, Cambridge.

1983

J. Keyes. "The McGraw-Hill Multimedia Handbook" McGraw-Hill, 1994

ccxxxix

[Kise93]

[Klir88]

[Klir92]

[Lam94a]

[Lam94b]

[Lam95]

[Liu95]

[Loveg95a]

[Loveg95b]

K. Kise, N. Yajima, N. Babaguchi and K. Fukunaga. "Incremental Acquisition

of Knowledge about layout structures from examples of documents." in

Proceedings of the Second InternationaL Conference on Document AnaLysis

and Recognition. Japan. October, 1993

G. J. Klir and T. A. Folger. "Fuzzy sets, uncertainty and information"

Prentice-Hall International Editions, 1988

G. Klir. "Probabilistic vs. possibilistic conceptualization of uncertainty" in

AnaLysis and Management of Uncertainty, Pages 13-25, Elsevier 1992

S.W. Lam. "A computational framework for adaptive reading in document

image understanding" PhD Thesis, Center for Excellence in Document

Analysis and Recognition, University of New York at Buffalo. October, 1994

S.W. Lam. "A local-to-global approach to complex document layout analysis"

in IAPR Workshop on Machine Vision Applications. Kawasaki, Japan. Pages

431-434, Dec. 13th-15th, 1994

S.W. Lam. "An adaptive approach to document classification and

understanding" in Document AnaLysis Systems edited by Spitz and Dengel.

World Scientific, 1995

Y. H. Liu-Gong, B. Dubuisson and H. N. Pham. "A General analysis system

for document's layout structure recognition" in Proceedings of the Third

InternationaL Conference on Document AnaLysis and Recognition. Montreal,

Canada. 1995

W. S. Lovegrove and D. G. Elliman. "Text block recognition from tiff images"

in Proceedings of the Colloquium on Document Image Processing and

MuLtimedia Environments. Institution of Electrical Engineers, London, 1995

W. S. Lovegrove and D.E Brailsford. "Document analysis of PDF documents:

methods, results and implications" in ELectronic Publishing, Origination,

Dissemination and Design. Vol 8(2 & 3) Pages 207-220, June-September,

1995

ccxl

[Loveg96]

[Nagao88]

[Nicho92]

[Niyog94]

[Niyog95]

[Niyog96]

[O'Gor93]

[Oakle88]

[Okamo93]

[Pavli86]

W. S. Lovegrove, D.G. Elliman and D. F. Brailsford. "Advanced document

analysis and classification of scanned images" in The Proceedings of the

Fourth European Congress on Intelligent Techniques and Soft Computing.

Aachen, Germany. 1996

M. Nagao, T. Matsuyama and H. Mori. "Structural analysis of complex aerial

photographs" in Blackboard Systems edited by Engelmore and Morgan.

Addison-Wesley, 1988

C. K. Nicholas and L. A. Welsch. "On the interchangeability of SGML and

ODA" in Electronic Publishing Origination, Dissemination and Design. Vol

5(3) 1992

D. Niyogi. "A knowlege based approach to deriving logical structure from

document images" PhD Thesis. State University of New York, Buffalo, NY.

1994

D. Niyogi and S. N. Srihari. "Knowledge-based derivation of document

logical structure" in Proceedings of the Third International Conference on

Document Analysis and Recognition. Montreal, Canada. 1995

D. Niyogi and S. N. Srihari. "Using domain knowledge to derive the logical

structure of documents" in Proceeedings of the IS&TISPIE Symposium on

Electronic Imaging. San Jose, CA. 1996

L. O'Gorman. "The document spectrum for page analysis" in IEEE

Transactions on Pattern Recognition and Machine Intelligence. Vol 15 1993

A. L. Oakley and A. C. Norris. "Page Description Languages: development

implementation and standardization" in Electronic Publishing Origination,

Dissemination and Design. Vol 1(2) 1988

M. Okamoto and M. Takahashi. "A hybrid page segmentation method" in

Proceedings of the Second International Conference on Document Analysis

and Recognition. Japan. October, 1993

T. Pavlidis. "A vectoriser and feature extracture for document recognition" in

Computer Vision, Graphics and Image processing. Vol 35 1986

ccxli

[pavli91]

[Pavli92]

[Probe94]

[Rice93]

[Roisi93]

[Sait093]

[Sauv095]

[Shafe76]

[Sivar95]

T. Pavlidis and J. Zhou. "Page segmentation by white streams" in Proceedings

of the First International Conference on Document Analysis and Recognition.

Saint-Malo, France. September, 1991

T. Pavlidis and J. Zhou. "Page Segmentation and Classification" in Graphical

models and Image processing. Vol 54 Pages 484-496,1992

S. G. Probets. "A block-based approach to document formatting and

hypertext" PhD thesis, 1994

S. Rice, J. Kanai and T. Narkter. "An evaluation of OCR accuracy" in the

University of Nevada at Las Vegas Information Science Research Institute

Annual Report. Pages 9-20,1993

C. Roisin and I.Vatton. "Merging logical and physical structures in

documents" in Electronic Publishing Origination, Dissemination and Design.

VoI6(4) 1993

T. Saitoh, M. Tachikawa and T. Yamaai. "Document image segmentation and

text area ordering" in Proceedings of the Second International Conference on

Document Analysis and Recognition. Japan. October, 1993

J. Sauvola and M. Pietikainen. "Page segmentation and classification using

fast feature extraction and connectivity analysis" in Proceedings of the Third

International Conference on Document Analysis and Recognition. Montreal,

Canada. 1995

G. Shafer. "A Mathematical Theory of Evidence" Princeton University,

Princeton 1976

R. Sivaramakrishnan, I.T. Philips, J. Ha, S. Subramanium and R. M. Haralick.

"Zone classification in a document using the method of feature vector

extraction" in Proceedings of the Third International Conference on

Document Analysis and Recognition. 1995

ccxlii

[Smith93]

[Sperb94]

[Sriha89]

[Sriha92]

[Sriha94]

[Statc96]

[Strou91]

[Stutz94]

[Sylve95]

[Tang9l]

P. N. Smith, D. F. Brailsford, L. Harrison, S. G. Probets, D. R Evans and P. E.

Sutton. "Journal publishing with Acrobat: the Cajun project" in Electronic

Publishing Origination, Dissemination and Design. Vo16(4) 1993

C. M. Sperberg and R F.GoldStein. "HTML to the max. A manifesto for

adding SGML intelligence to the WWW" in Proceedings of the WWW'94

Conference. Chicago. 1994

S.N. Srihari and V. Govindaraju. "Textual image analysis using the hough

transform" in International Journal of Machine Vision and Applications. Vol

2(3) Pages 141-153, 1989

S.N. Srihari, S.W. Lam, V. Govindaraju, RK. Srihari and J.J. Hull.

"Document Image Understanding" a Center of Excellence for Document

Analysis and Recognition Technical Report, University of New York at

Buffalo, 1992

S.N. Srihari, S.W. Lam, V. Govindaraju, R.K. Srihari and U. Hull.

"Intelligent data retrieval from raster images of documents" in Proceedings of

the First International Conference on the Theory and Practise of Digital

Libraries. College Station, Texas, USA. June 19th-21st, 1994

Statcom. "Life On the Bleeding Edge" at http://

www.stratcom.com/edge .html, January, 1996

B. Stroustrup. "The C++ programming language, second edition" Addison

Wesley, 1991

J. Stutz and P. Cheeseman. "A short exposition on bayesian inference and

probability" at http://ic-www .arc. nasa. govlic/projectsl

bayes-group/htm1/bayes-theorem-long.html, 1994

D. Sylvester, Seth and Sharad. "A Trainable, single pass algorithm for column

segmentation" in Proceedings of the Third International Conference on

Document Analysis and Recognition. Montreal, Canada. 1995

Y. Y. Tang, C. Y. Suen, C. D. Yan and M. Cheriet. "Document Analysis and

Understanding: A Brief Survey" in The Proceedings of the First International

Conference on Document Analysis and Recognition. St. Malo, France. 1991

ccxliii

http://www.stratcom.com/edge

[Tang93]

[Tang95]

[Tayl093]

[Tayl095]

[Toyod82]

[UOM96]

[vanDi80]

[W3Mag96]

[WWW96]

[WahI82]

Y. Y. Tang and C. Y. Suen. "Document structures: a survey" in The

Proceedings of the Second International Conference on Document Analysis

and Recognition. Japan. 1993

Y. Y. Tang, H. Ma, M. Xiaogang, D. Liu and C. Y. Suen. "A new approach to

document analysis based on modified fractal signatures" in Proceedings of the

Third International Conference on Document Analysis and Recognition.

Montreal, Canada. 1995

S. L. Taylor, M. Lipshutz, D. A. Dahl and C. Weir. "An intelligent document

understanding system" in Proceedings of the Second International Conference

on Document Analysis and Recognition. Japan. October, 1993

S. L. Taylor, M. Lipshitz and R.W. Nilson. "Classification and functional

decomposition of business documents" in Proceedings of of the Third

International Conference on Document Analysis and Recognition. Montreal,

Canada. 1995

J. Toyoda, Y. Noguchi and Y. Nishimura. "Study of extracting Japanese

newspaper articles" in Proceedings of the 6th International Conference on

Pattern Recognition. 1982

University of Maryland. "Document understanding and character recognition

WWW server" at http://documents . cfar. umd. edu, 1996

T. van Dijk. "Macrostructures" Lawrence Erlbaum Associates, Hillsdale: NJ,

USA. 1980

W3Magic. "What is W3Magic?" at http://www.clark.net.

January, 1996

"Workshop on WWW accessibility for disabled computer users" in

Proceedings of the Fifth International World Wide Web Conference. Paris.

May 6-10, 1996

F. M. Wahl, K. Y. Wong and R. G. Casey. "Block segmentation and text

extraction in mixed text/image documents" in Computer Graphics and Image

Processing. Vol20 Pages 375-390, 1982

ccxliv

http://www.clark.net.

[Wasse89]

[Watan93]

[Winst92]

[Wong82]

[Yu93]

[Zadeh83]

[Zramd93]

P. D. Wasserman. "Neural computing, theory and practice" Van Nostrand

Reinhold, New York. 1989

T. Watanabe, Q. Luo and N. Sugie. "Structure recognition methods for various

types of documents" in Machine Vision and Applications. Vol 6 1993

P. H. Winston. "Artificial Intelligence, Third Edition" Addison-Wesley, 1992

K. Y.Wong, R. G. Casey and F.M. Wahl. "Document analysis system" in

IBM Journal of Research Development. Vol 26 1982

C. L. Yu, Y. Y. Tang and C. Y. Suen. "Document architecture language (DAL)

Approach to document processing" in Proceedings of the Second

International Conference on Document Analysis and Recognition. Japan.

1993

L. A. Zadeh. "The role of fuzzy logic in the management of uncertainty in

expert systems" in Fuzzy Sets and Systems. Vol 11 1983

A. Zramdini and R. Ingold. "Optical font recognition from projection profiles"

in the Proceedings of the Fifth International Conference on Raster Imaging

and Digital Typography. 1993

ccxlv

Appendices

Appendix I provides twenty screen shots of the STASIS system

processing example documents. Each screen shot is accompanied by
,

explanatory notes.

Appendix II is an example OTO and an example of its use.

AppendiX III is "Text block recognition from tiff images" from the

Proceedings of document image processing and multimedia

environments, lEE, 1995

ccxlvi

Appendix I: STASIS
Screen Shots

Legend
Identification tag Identification tag, plus

name tag confidence

I ST 1°.71Super Title

IT 1°·71Title

IH 1°·71Header

IF 1°.71Footer

le 1°.71Caption

I UK 10.71Unknown

In 1°·71Body

ccxlvii

Screen Shot Title: Academic Example One

Classification: Academic
Confidence in Classification: 0.9
Notes

This is an academic document which has a multi-column page layout.

There are few text styles, few images, headers and footers are formatted in

a consistent manner and there is a consistent column layout throughout the

document.

ccxlviii

Screen Shot Title: Academic Example Two

Classification: Academic
Confidence in Classification: 0.9
Notes

This is a technical document with consistent headers and footers and a

consistent column style throughout. There are few text and title styles in

this document and no images.

ccxlix

Screen Shot Title: Academic Example Three

Classification: Academic
Confidence in Classification: 0.8
Notes

This is a typical journal document. It is formatted in a multi-column page

layout. It contains headers and footers (which are formatted in a consistent

style) and few text and title styles. The unknown blocks in this document

are high level journal specific entities such as author, abstract and address

blocks.

ccl

Screen Shot Title: Academic Example Four

Classification: Academic
Confidence in Classification: 0.9
Notes

This is a journal document which displays all the characteristics of an

academic document: consistent headers and footers; few text and title

styles; few images and a consistent column style.

ccli

Screen Shot Title: Academic Example Five

Classification: Academic
Confidence in Classification: 0.8
Notes

This is a page of a report which is logically divided into sections. It has few

title styles, a consistent column layout and headers and footers formatted

in a consistent manner. There are images in this document. STASIS has

found captions for these images and these captions are always formatted in

the same style with respect to their typeface and the position they occupy

relative to their image. Captions which are formatted in a consistent

manner are a feature of academic documents.

cclii

Screen Shot Title: Brochure Example One

Classification: Brochure
Confidence in Classification: 0.8
Notes

This is a brochure which contains an article on bitmap images in

documents. Note that the bounding box of the image on this page exceeds

the visible boundary of the image. The captions are formatted in an

inconsistent style and the document is short, which gives a high average

image per page ratio. These are typical features of brochure documents.

ccliii

Screen Shot Title: Brochure Example Two

Classification: Brochure
Confidence in Classification: 0.8
Notes

This is a classic example of a brochure which advertises a product. It is

only one page in length, with many images. The frequency of images per

page could be the most significant feature of a brochure. Two blocks in this

image deserve special attention. There is a footer block which has a

negative confidence. This is brought about by the lack of footer examples

in the document (because the document is one pagelong) which STASIS

can use to create rules for inferring footers. Thus STASIS is not confident

that it is a label. The other block worth mentioning is a title block on the

left of the image which has a tag confidence of 1.0. This has arisen because

the title knowledge source was asked to verify its tag assertion when the

controller was resolving a conflict between the title KS and the caption KS.

ccliv

Screen Shot Title: Brochure Example Three

Classification: Brochure
Confidence in Classification: 0.8
Notes

This is a brochure document which has many images and an inconsistent

column style. There are relatively few text styles and few pages. Notably

the major titles of the document have not been processed by STASIS. They

are in-line PDP images. In-line images occur infrequently and typically

contain textual information - as in this case. Processing these 'word'

bitmaps as images would be bad, as STASIS would' try and find captions

for them and the number of block mis-classifications would increase.

cclv

Screen Shot Title: Brochure Example Four

Classification: Brochure
Confidence in Classification: 0.6
Notes

This brochure contains a graphic bar chart which consists of text items and

graphic items. The text in the bar chart has been tagged as either unknown

or mis-tagged as footers, although the confidence of the mis-classifications

is low. This example illustrates STASIS' inability to process graphics

which form abstract logical entities. There are three blocks at the top left

hand comer of this example which ideally should have been segmented

into one block, but the document author incrementally increased the point

size of each line thus making them unique text styles. Only one of the three

blocks bas been correctly classified as a title.

cclvi

Screen Shot Title: Brochure Example Five

Classification: Brochure
Confidence in Classification: 0.8
Notes

This is a typical brochure document. There are many images throughout

the document. There are blocks tagged as unknown on this page because

there is another text style present in the remaining pages of the document

which has been declared as the main text style by the Text Frequency

Knowledge Source. The super title is '005' because of this block's

dominant typeface properties.

cclvii

Screen Shot Title: Newspaper Example One

Classification: Newspaper
Confidence in Classification: 0.7
Notes

This document is not a typical broadsheet newspaper. It is a newsletter with

the same logical structure as a newspaper: a document consisting of many

articles. This is the front page which contains the super title (although the

bounding box of the title is only the first quad of the word) and article, a

graphic diagram and 'leads' to other articles later in the document.The

diagram and the leads are beyond the recognition .capacity of STASIS.

They are either classified as unknown or in the case of the diagrams caption

mis-classified as a footer. These mis-classifications have not affected the

overall classification of the document.

cclviii

Screen Shot Title: Newspaper Example Two

Classification: Newspaper
Confidence in Classification: 0.9
Notes

This is a Spanish broadsheet newspaper which has been segmented and

classified by STASIS, thus proving STASIS' independence from language

and semantic content. This page shows 'leads' to other articles which have

been identified as titles. There is a mis-classification present. The main

image caption has been mis-classified as a title block. This is due to the

lack of a standard caption patterns throughout the document from which

STASIS can infer formatting rules. The inconsistency of captions, columns

styles and large numbers of text and title styles are all features of

newspapers.

cclix

Screen Shot Title: Newspaper Example Three

Classification: Newspaper
Confidence in Classification: 0.9
Notes

This is a page from the Evening Standard which illustrates STASIS' ability

to segment multi-column pages when given good text lines from the

Acrobat API to work with. The image captions in this document have been

correctly classified.

cclx

Screen Shot Title: Newspaper Example Four

Classification: Newspaper
Confidence in Classification: 0.6
Notes

This is a newsletter. It has slightly more geometric structure in its layout

than a newspaper or a magazine. It has consistent column layouts,

consistent headers and footers, fewer text and title styles and fewer images

than a newspaper. However, there are still enough differences in the

magnitude of these features from other documents to give a correct

document classification, albeit with a lesser confidence.

cclxi

Screen Shot Title: Newspaper Example Five

Classification: Newspaper
Confidence in Classification: 0.7
Notes

This example document has been prepared for the internet by removing all

the document's images in order to keep the file size down. The absence of

images has not affected the document classification, just the degree of

confidence of the classification. The column layout and the text and title

styles are enough to accurately classify this document. STASIS has been

trained with examples of newspapers and newsletters which do not have

images in them.

cclxii

Screen Shot Title: Form Example One

Classification: Form
Confidence in Classification: 0.8
Notes

This document has been classified as a Form document simply on the

strength of the feature which describes the number of graphic lines on the

page. Relying on a single feature is not a good manner of identifying an

entire class of document. The segmentation process has been confused as

this document was created in one orientation and then printed (to PDF) in

a second orientation. The bounding boxes of the words have all been

rotated through ninety degrees. Thus the top of the bounding box is the now

the left, the left is the bottom, the bottom is the right and the right is the top.

STASIS has not been programmed to handle this anomaly.

cclxiii

Screen Shot Title: Form Example Two

Classification: Form
Confidence in Classification: 0.1
Notes

STASIS has been programmed to look for document layout features

primarily in brochure, academic and newspaper type documents. This

document image shows poor block segmentation (the text lines cross

vertical graphic lines in places) and only a few blocks are not classified as

unknown. There are other features which are typical of forms: no images,

few text and title styles and an irregular column style. However, these are

features of many academic documents as well.

cclxiv

Screen Shot Title: Form Example Three

Classification: Form
Confidence in Classification: 0.9
Notes

This document is a typical form document found on the internet. Of

particular interest are the vertical text lines found on the left of the

document. STASIS does not segment or process vertical text well.

cclxv

Screen Shot Title: Form Example Four

Classification: Academic
Confidence in Classification: 0.3
Notes

This document was classified (correctly) as an academic document. The

image above shows a single page from this document. STASIS could, with

minor alterations, detect the presence of a form on this page and record this

information. This would be valuable information to pass on to a document

understanding system, for example, "this document is academic, but page

X is a form".

cclxvi

Screen Shot Title: Form Example Five

Classification: Form
Confidence in Classification: 0.9
Notes

This form is blank; it is not 'filled in'. Consequently, all the inferences that

STASIS makes regarding the class of the blocks (for example, if it is a title

or not) is made from data collected from analysing an empty form. Even

though many of these classifications are correct, they are made from

incorrect inferences.

cclxvii

Appendix II: An
exampleDTD

This appendix reproduces an example taken from Annexe A of the SGML standard

[IS086]. The aim is to define mark-up for a figure that might appear in a technical

document. The figure body may consist of artwork or text (which may include lists), and

the figure may have an optional caption. The tag that introduces the figure may include

an optional identifier attribute, so that the figure may be referenced from elsewhere in

the document, and if the figure consists of artwork the appropriate tag must include an

attribute specifying the size, so that the formatter can leave an appropriate gap in the text

for the figure to be pasted in. Figure A shows an example of the use of the tags, and

Figure B shows the SGML declarations necessary to define them.

<fig id=babel>
<figbody>
<artwork depth=3in>
<figcap>The Tower of Babel by Pieter Brueghel (1563)
</fig>

Figure A: An SGML mark-up for a figure

<lELEMENT fig -- (figbody, figcap?»
<lELEMENT figbody -0 (artwork I (p I 01 I ul)+»
<lELEMENT artwork -0 EMPTY> <lELEMENT figcap -0 (#PCDATA»
<lATTLIST fig id ID #IMPLIED>
<lATTLIST artwork depth CDATA #REQUIRED>

Figure B: SGML DTD declarations for a figure mark-up

In Figure B we see first declarations of the elements to be tagged in a figure. Line 1

declares an element fig (and hence the associated tag <fig» and asserts that it consists

of an obligatory figbody and an optional figcap. The two dashes indicate that both. open

and close tags are required for a fig. The next line defines a figbody as either artwork or

cclxviii

an indefmite number (at least one) of occurrences of a paragraph, ordered list or

unordered list. (It is assumed that there are already definitions for paragraph (cp»),

ordered list «01» and unordered list (cub-j). The characters -0 signify that the start-

tag is required, but that the end-tag can be omitted so long as its presence can be

unambiguously inferred from the context. Line 3 specifies that artwork has no content

(it is something that will be provided outside SGML), and line 4 defmes figcap as an

arbitrary string of characters. (PCDA TA indicates that the string will be parsed by the

SGML parser, and therefore may include entity references.) Finally we have two

declarations that specify attributes to tags. The first of these says that fig has an optional

attribute with name id, of type ID a code denoting a unique identifier. The second says

that artwork has an obligatory attribute named depth, whose value is a character string.

CDA TA indicates that this string will not be processed by the SGML parser.

cclxix

Appendix III: RECOG

cclxx

TEXT BLOCK RECOGNITION FROM TIFF IMAGES

William Lovegrove,David Elliman

Abstract

The reproduction of a scanned document should include not only the optical character recogni-
tion of text, but also the structure of that text dn the page and the appeamnce of that text itself
[i.e. font recognition). This is a paper that presents an algorithm which structumlly recog-
nises the text of a page image. The method is based upon the "Docstrum plot" algorithm by
L. O'Gorman[lj. Modifications have been made to O'Gorman's algorithm which render very
good results at identifying pamgmphs and lines in particular. The algorithm implementation
can, to a limited degree, describe the logical relationship of the text elements of the original
page. The limitations of the algorithm are due to the lack of information available without
O.C.R. and font technology incorpomted into the algorithm implementation. The algorithm
implementation has a gmphical interface which portmys the state of the algorithm during the
process of decomposition.

KEYWORDS DOCUMENT UNDERSTANDING, PAGE DECOMPOSITION, BLOCK RECOGNI-
TION, TEXT RECOGNITION.

1 Introduction

With the emergence of structured documents over the internet (HTML) and the subsequent
increased usage of logical hypertext links and logical text searcheswithin document databases,
there is an increasing need to recognise the logical structure of a document as well as the
semantic content of a document during the process of document analysis. The two areas of
document understanding are not reliant upon one another and have so far existed without
needing one another. To date the majority of research into document understanding has
been conducted in the field of character recognition with only a small emphasis dedicated to
looking at the logical models that exist today.

This paper presents an algorithm which decomposes a page into its component blocks
based upon a nearest-neighbour clustering algorithm. The blocks which this clustering algo-
rithm produces are classified into text and none-text types. The text type blocks are then
processed by an adapt ion of the clustering algorithm presented by O'Gorman which is tailored
to finding logical paragraphs, lines and words in the text blocks. .

The logical structure of a document is required prior to further complex processing in
documents which do not have a linear structural order: newspapers and magazines.

2 Page decomposition

2.1 Preprocessing by vectorisation

The images processed by this system are TIFFs!. A vectorisation technique developed at
the University of Nottingham by Prof. David Elliman reduces the image to a series of vector
loops. One vector represents the boundaries between pixels of different colour. These 'loops
are placed within a two dimensional linked list data structure which implicitly stores the
positional information of the loops within its structure. The letter 'g' consists of three loops.
At the top level the outer perimeter of the 'g' is represented by a single loop of vectors. Before
continuing on to look at the next character or blob on the page the vectorisation algorithm
looks inside the perimeter of the loop it has just found for other pixel value differences. In the
the case of a 'g' there are two more loops inside the outer perimeter, which are placed in the
second dimension of the data structure - accessible only through the vector loop representing
the outer perimeter of 'g'. All details known about the vector loops are stored with the loops:
lower left position, height and width.

By abstracting the results of the vectorisation programme the algorithm can place a point
on the Cartesian co-ordinates of the page for every loop it finds in the primary dimension
of the data structure. The inner loops of the data structure are not processed, reducing the
amount of redundant information to be processed.

In keeping with common O.C.R. page preprocessing practice the page is checked for skew
and corrected prior to further processing by the algorithm. Baird[2] suggests a skew detec-
tion algorithm with involves abstracting each character to reference point from which energy
points are calculated through a range of conceivable angles. This technique seemed the most
applicable after the vectorisation had already reduced the character on the page to abstracted
loops.

2.2 Block isolation

Page vectorisation produces a set of abstracted points in a Cartesian space. It would be highly
advantageous to identify regions of these abstracted points as regions of similar content. For
example a region consisting of text only. This process is known as auto zoning. Block
classification would allow the algorithm to execute later stages of the processing efficiently.
No time would be wasted attempting to apply text recognition techniques to half-tone images.
By using O'Gorman's algorithm loops can be clustered together based upon their physical
location within the Cartesian space in relation to their neighbours. Although O'Gorman's
algorithm searches for five neighbours in its clustering algorithm, it was found that this
amount of searching for neighbours was both computationally expensive and the information
provided by the fifth and fourth neighbours was never used.

The algorithm presented here looks for the three closest neighbours in any direction over
any distance. This was found to cluster together loops of a similar classification. The algo-
rithm is based upon the hypothesis that the three nearest neighbours in a vectorised document
are highly likely to be of the same "type" as the seed loop. Furthermore, there is a high prob-
ability that the three nearest neighbours are physically within the same logical area of the
page. This hypothesis is not as sound when four of five neighbours are considered.

At this stage of the algorithm the "k-clustering" technique works for both text and graph-
ics. The vectorisation process typically leaves images as clusters of "blob" loops. The vec-

1Tagged image file format

torisation technique thresholds the TIFF image to obtain a monotone image so that it can
easily identify the pixel boundaries.

2.3 Block classification

The blocks are classifiedby analysing the horizontal projections of the contents of the blocks.
Lines of text have a characteristic 'fingerprint' projection. This makes it easy to identify
blocks of text from other block types. The 'fingerprint' for images is not sufficiently unique
to differentiate image blocks from diagram blocks. Generally speaking the 'fingerprint' of line
diagrams are too varied to classify accurately from image 'fingerprints'.

Many other block classification techniques exist all of which look to extract features from
blocks to use in statistical classification methodsjd].

3 Tailored clustering for text blocks

The algorithm encompasses several passes in which subtle changes are made to the clustering
technique according to the logical level being extracted from the set of vector loops. Simply
by repeating the clustering algorithm presented by O'Gorman with a value of k=l or k=2 was
not enough to isolate lines of text. Knowledge in the form of restrictions upon the searching
for neighbours was imparted to the algorithm. In order to find lines, O'Gorman's algorithm
was adjusted in the followingmanner for each block identified as comprising of text.

1. X-sort all the vector loops within the block in X increasing order. Thus, once a loop
that satisfies the remaining criteria is found,it is possible to stop searching the list for
other candidate neighbours as it is guaranteed that the closest loop has been found.

2. Remove the first vector loop in the sorted list. This becomes the first 'seed'2 character
of the first line.

3. Search along the list (in X increasing order) for characters that are inside a search angle
of 15 degrees above and below the horizontal projection of the centre of the previous
'seed' character. The character being tested must also be within a certain vertical
distance of the previous 'seed' character. The vertical distance is set using the height
of the primary loop of the 'seed' character as a threshold.

4. Having found a suitable character the algorithm returns to step three using the recently
found character as the new seed and simultaneously adding it to the logical line.

5. If no suitable character loop is found the logical line is sealed and the first character
loop of the remaining list of loops is taken as the start seed loop of the next logical
line.3

It was found that isolating the next logical level in the page analysis (logicalwords) was
too difficult to achieve by the clustering technique. There are too many variables within the
distribution of words in a line to effectively find a sound algorithm to isolate words simply
using clustering. These variables include word gap distance, letter gap distance, letter width
and which point of the word to take a reference from: start, middle or end. Even a value

2A 'seed' character can be defined as a character that has already been found.
3There is no guarantee that the list of logical lines found within a text block will be in produced reading

order, but this is easily rectified by sorting the lines found based on their 's' coordinates.

of k=l with all the above constraints plus a horizontal distance threshold based on the
average word gap was not enough to achieve a high recognition success rate. Consequently,
typographical algorithms were used to isolate words, after OCR was performed upon the text
blocks. These typographical algorithms are summarised by Elliman[4].

4 Summary

We have produced good results on a variety of different page layouts including multi-column
format. Our text decomposition technique is designed to be a preparation technique prior to
processing the imagewith other specialised algorithms: optical character recognition; diagram
recognition; table recognition; logical structure realisation. The algorithm implementation
effectively filters out and partially classifies areas of the image.

Four figures are presented which show the system decomposing a page of text. Figure 1
displays the results of the vectorisation of the original TIFF image. In Figure 2 the vector
loops have been grouped together into blocks of text. Very little processing remains in order
to isolate logical paragraphs from this state. Figure 3 illustrates the lines found within the
blocks of text. Figure 4 shows the inconsistent results of trying to find logicalwords using the
k-clustering technique. The platform these results provide is a good start for the dictionary
look-up algorithms that can be used to supplement word recognition.

4.1 Performance

There are two separate stages to the modified "k-clustering" algorithm: block isolation and
decomposition of text blocks into lines and words. Processing of text blocks into lines is
effective and efficient. However, the three neighbour clustering is computationally heavy.
Furthermore, the worst case occurs when a full page image (for example a large photo) is
passed to the three neighbour clustering algorithm for page decomposition. The number of
neighbour comparisons is immense given that the vectorisation technique divides the page up
into relatively small loops.

A decomposition technique based upon white space layout would nullify the worst case
and improve the computational time[3]. However, the "k-clustering" technique is robust and
produces sound results.

References

[1] L. O'Gorman. The document spectrum for page layout aaalysis, IEEE Transactions on
Pattern Recognition and Machine Intelligence, 15(11):1162-1173,1993.

[2] H. S. Baird. The skew angle of printed documents. In SPSE 40th Annual Conference and
Symposium on Hybrid Imaging Systems, pages 2F24, 1987.

[3] T. Pavlidis and J. Zhou. Page segmentation and classification. CVGIP: Graphic Models
and Image Processing, 54(6):484-496, 1992.

[4] D.G. Elliman and LT. Lancaster. A review of segmentation and contextual analysis
techniques for text recognition. Pattern Recognition, 23(3):337-364, 1990. .

Figure 1: A normal vectorised document

Figure 2: A vectored document with paragraphs isolated

Figure 3: A vectored document with paragraphs and lines isolated

Figure 4: A vectored document with paragraphs, lines and words isolated

