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DETERMINATION OF SATELLITE ORBITS AND THE GLOBAL
POSITIONING SYSTEM

ABSTRACT

An artificial satellite orbit determination (OD) computer
program is the most essential tool in satellite geodesy. Such a
program has been developed at Nottingham as part of this research
and was tested with Satellite Laser Ranging (SLR) observations
of the Laser Geodynamics Satellite (LAGEOS).

This thesis describes the basic theory behind orbit
determination and the software development at Nottingham.
It includes details of the adopted force model, coordinate
reference frames, and numerical integration and interpolation
techniques. It is also explained how several geodetic parameters
can be determined. The thesis discusses the results of two
separate determinations of the LAGEOS orbit with an emphasis on
the solutions for station coordinates and for earth rotation and
polar motion.

The NAVSTAR Global Positioning System (GPS) is on schedule
to replace Transit as the most important satellite navigation
system. When fully operational, in 1988, it will consist of 18
satellites which will provide continuous global coverage. This
thesis describes the Global Positioning System and outlines the
theory behind the most accurate techniques of adjustment of the
CPS observables. It derives the equations for interferometric
techniques and shows that, by differencing the observations,
several undesirable unknowns can be eliminated.
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GPS data from the NAVSTAR Geodetic Receiver System (NGRS)
have been provided for Nottingham by the US Defence Mapping Agency
(DMA). The thesis describes the software development to analyse
these data and gives the results of several solution schemes to
derive the absolute coordinates of the NGRS antenna. It is also
shown how the software can be modified to incorporate interfero-
metric techniques. Significant improvements over the NGRS
solutions can be expected when GPS is fully operational, with
refinements in both receiver hardware and software.
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CHAPTER ONE

INTRODUCTION



1. INTRODUCTION

Geodesy has been defined by various people (Moritz, 1984) as
the science of measuring and mapping the surface and gravity field
of the earth. Traditionally, the techniques available to the
geodesist comprised terrestrial angle and distance measurements as
well as astro-geodeticandgravimetric methods. In 1957 George C.
Weiffenbach and William H. Guier of the Applied Physics Laboratory,
John Hopkins University, showed that they could determine the orbit
of the first Sputnik by making measurements of the Doppler shift of
the received signals from this spacecraft. From this initial concept
evolved the science of satellite geodesy which, in the last decade,
has shown sub-metre absolute positioning and sub-decimetre relative
positioning capabilities. Satellite techniques have also resulted
in global determinations of the earth's gravity field.

A large number of artificial satellites have been launched
over the last 25 years. Several of these have been used for geodetic
applications. The most notable are the Laser Geodynamics Satellite
(LAGEOS) and the satellites of the Navy Navigation Satellite System
(NNSS or Transit) and of the NAVSTAR Global Positioning System
(GPS). Each satellite is tracked by observations from a network
of globally distributed tracking stations. The observations are then
incorporated in an orbit determination (OD) process in order to
compute the satellite orbit and a number of geodetic parameters.

Orbit determination software is thus the basic tool in
satellite geodesy. It utilizes the tracking observations to derive
a number of unknown quantities. These can be the satellite orbital
elements, the locations of the tracking stations, earth rotation
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and polar motion values, tidal coefficients, and geopotential
coefficients. The choice of unknowns depends on the objectives
of the particular satellite mission and on the capabilities of the
tracking network. The most well known OD computer programs are the
CELEST program (O'Toole, 1976), which is used in the Transit
system, and the Geodyn program (Martin et aI, 1980),which is commonly
employed with Satellite Laser Ranging (SLR) observations.

The heart of an OD process is a force model which defines the
forces acting on the satellite. The model consists of constituents
arising from the gravitational attractions of the earth, moon, sun,
and planets, and from surface forces such as solar radiation pressure
and air drag. The vector sum of all these constituents gives the
resultant acceleration of the satellite as a function of its position
and velocity. The acceleration is then numerically integrated twice
to give the velocity and position of the satellite as a function of
time. The numerical integration is started by assuming some initial
values of the satellite position and velocity, the satellite starting
elements or state vector. These elements need only be approximate,
since they can be determined by least squares from the tracking data.
The least squares adjustment also determines a number of other
unknowns, as mentioned above.

Satellite Laser Range (SLR) observations are the most accurate
tracking measurements available. The present third generation SLR
facili ties are capable of ranging accuracies of 3 - 5 cm over distances
of the order of 7000 Km. Radio frequency (RF) observations are less
accurate and are affected by errors arising from ionospheric delays.
However, since SLR facilities are expensive and are limited by
atmospheric conditions (clouds), RF tracking is the most commonly
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used technique. Three types of RF measurements are possible:
the first type involve the measurements of the Doppler shift of the
received signals. The second type are range measurements similar to
SLR. The last type are termed pseudo-ranges and these are range
measurements which include a clock bias between receiver and satellite
clocks.

Orbit determination software has been developed at Nottingham
as part of this research. Since SLR is the most important technique
for precise geodetic applications, the software was written primarily
for use with range observations to LAGEOS. LAGEOS tracking data are
being provided for Nottingham by the Royal Greenwich Observatory and
have been used to test the software and to establish the capabilities
of OD. Special emphasis has been given to the use of the SLR data to
determine earth rotation and polar motion, in view of the present
international project to Monitor Earth Rotation and to Intercompare
the Techniques of observation and adjustment (MERIT). The accuracy
and repeatability of the tracking station coordinates has also been
investigated.

A most important application of satellite orbit determination
is in quasi-instantaneous positioning (navigation) and in the
computation of precise absolute or relative coordinates on the
surface of the earth (surveying and geodesy). The very first
satellite system designed primarily for positioning was the Transit
system. The first Transit satellite was launched by the US Navy
in 1960, and the system was made available to civilian users in 1967.
The basic principle of operation is for the satellite orbits to be
determined from observations by a network of tracking stations.
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The complex and computationally expensive orbit determinations are
performed by a central processing facility. The users of Transit
then employ this orbital information and observations collected by
their receiving equipment to determine their own positions. A set
of predicted orbital elements, the Broadcast Ephemeris, based on the
most recent tracking data, is transmitted by the Transit satellites.
A more precise post-mission ephemeris, the Precise Ephemeris, is
also available to certain bona fide user~.

In the twenty or more years that Transit has been in continuous
operation it has performed beyond all expectations. Three of the four
operational satellites were built from a 1963 design and are still
functioning after 10- 17 years in service. Transit observations
result in absolute positioning accuracies of 2 - 5 m after time spans
of 2 - 3 days. Specialized methods of adjustment (Gough, 1978 and
Sykes, 1979) yield relative positions to sub-metre accuracies over
baseline lengths of hundreds of kilometres. Transit, however, is
incapable of instantaneous navigation and, to satisfy US military
requirements, it is to be succeeded by a new system, the NAVSTAR
Global Positioning System (GPS).

GPS is presently in its Full Scale Engineering Development
Phase, with five operational satellites. When fully operational, in
1988, the system will consist of 18 satellites in circular orbits
at inclinations of 550 to the equator. These will travel at
altitudes of approximately 20000Km and will orbit the earth every
12 hours. A minimum of 4 satellites will always be in view anywhere
on the earth.
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The operational details of GPS are very similar to Transit.
The satellites are tracked by a network of Monitor Stations (MS's).
A master Control Station (MCS) computes the satellite orbits, based
on the most recent observations, and uploads these and other relevant
information to the satellites via a number of Ground Antennas (GA's).
The satellites, in turn, transmit their orbital elements to the GPS
users as part of the satellite navigation message.

The basic GPS observable is a pseudo-range, which is derived
by making use of coded ranging (timing) information modulated 00

the satellite signals. For an instantaneous solution, a navigation
receiver has to make at least four simultaneous pseudo-range measure-
ments to different satellites. These enable the receiver processor
to solve for the cartesian coordinates of the antenna and for the
receiver clock bias from GPS time.

Geodetic applications have no requirement for an instantaneous
capability. For this reason, techniques have been developed which
post-process the GPS observations to derive precise absolute
coordinates. Interferometric techniques utilize simultaneous observa-
tions from two or more receiver sites to compute even more precise
relative coordinates.

The first GPS geodetic receiver was the NAVSTAR Geodetic Receiver
System (NGRS), developed by the Naval Surface Weapons Center (NSWC).
It uses an atomic (cesium) clock but can only observe one satellite
at a time. NGRS data covering a time span of 10 days have been
supplied for Nottingham University by the US Defence Mapping Agency
(DMA). These have been used to develop and test GPS absolute posi-
tioning software. The software was written with the intention of
incorporating interferometric techniques after slight modifications.
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The NGRS is limited by its inability to track more than one satellite
at a time. It has not therefore produced accuracies which exceed
those attainable from the Transit system.

The present GPS geodetic receiver development is concentrated
on instruments capable of observing a number of satellites simultan-
eously. These receivers are the ones which are expected to show a
significant improvement in accuracy over Transit. One such receiver
system, the Macrometer, can operate without knowledge of the GPS
ranging codes. This feature is important since access to the codes
may be denied to non-military users.

This thesis covers two major topics; satellite orbit determin-
ation, and the Global Positioning System. Chapter 2 describes the'
basic theory behind the orbit determination process. The Nottingham
OD software is described in Chapter 3. Chapter 4 discusses the solu-
tions for various geodetic quantities from two determinations of the
LAGEOS orbit. The details of the Global Positioning System and the
theory behind the techniques of observation and adjustment are given
in Chapter 5. Chapter 6 describes the GPS software developed at
Nottingham and discusses the results from the NGRS data. The thesis
is concluded in Chapter 7.



CHAPTER TWO

SATELLITE ORBIT DETERMINATION
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2.1 Basic Concepts

Satellite orbit determination (OD) is the process through
which a set of satellite tracking data, observed by a number of
widely distributed tracking stations, is used to determine a precise
satellite ephemeris. Several other parameters can also be derived.
These include tracking station coordinates, values of polar motion and
earth rotation, geopotential (spherical harmonic) coefficients and
Love numbers. The flow chart in fig.2.1 illustrates the basic
principles involved in OD. A force model is used to accurately
describe the various forces acting on the satellite, which consists
of components arising from gravitational, surface and other forces.
The vector sum of the separate components gives the resultant force
and hence the resultant acceleration of the satellite. This is a
function of satellite position and, where drag is involved, of
velocity. The acceleration is numerically integrated, once to obtain
velocity and twice to obtain position, as a function of time. The
integration is extended to sufficient steps to cover the observational
time span. For the process to begin, a set of starting elements
comprising the satellite position and velocity at an initial epoch,
t , is required. This satellite state vector does not need to beo
precisely known. The observations taken by the network of tracking
stations are used to obtain improved values of the state vector, in a
least squares solution which can also determine various force model
parameters, as well as tracking station coordinates~ If the
corrections to the provisional values of the various unknowns
are large, the orbit determination is repeated until the values of
the corrections become negligible.
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The choice of unknowns depends on the objectives of the
OD process. When the satellite ephemeris is the only requirement,
as is the case for the US Navy Navigation Satellite System (NNSS or
Transit) (Anderle, 1974) and for the NAVST~R Global Positioning
System (GPS) (Varnum and Chaffee, 1982), then the tracking station
coordinates are held fixed and the main unknowns are the satellite
starting elements and polar motion values. For geodynamic and
geophysical applications such as crustal movements, earth tides,
and geopotential models, the solution can include tracking station
coordinates, Love numbers and various spherical harmonic coefficients.
Coordinate reference frame studies involve the determination of
polar motion and earth rotation values.

The numerical integration must be performed in an inertial
(non-rotating) reference frame (IF). However, the tracking station
coordinates and a number of components of the force model are known
in an earth-fixed (EF) frame. This chapter describes the different
reference frames and the relationships between them (Section 2.2).
The details of the constituents of the force model are also given
(Section 2.3). The numerical integration of the equations of
satellite motion is treated in Section 2.4, and the formulation and
solution of the least squares observation equations for the various
unknowns in the OD problem is described in Section 2.5.
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2.2 COORDINATE REFERENCE FRAMES AND TIME SCALES

2.2.1 Reference Frames and Time

The International Astronomical Union (IAU) has recently
(1976 and 1979) adopted a set of new resolutions regarding constants,
time scales and the new fundamental astronomical reference frame FK5.
These resolutions apply as from 1 January 1984. They include a new
equation for Greenwich Mean Sidereal Time (OMST) in terms of Universal
Time (UT1), and new precession and nutation models (Kaplan, 1981).

The standard epoch in FK5 is J2000.0 or January 1~50f the year
2000, which corresponds to Julian ephemeris date 2451545.0. For the
purposes of orbit determination the inertial frame (IF) is a right-
handed coordinate system (see Appendix B.1) with its origin at the
earth's mass centre and it is defined by the mean equator and equinox
of J2000.0. This is the frame in which the numerical integration is
performed. The fundamental ephemeris of solar system bodies, which
has been recomputed following the introduction of the new resolutions
and is now known as Development Ephemeris Number DE200/LE200
(Melbourne, 1983), is also in this reference frame, but with the
origin at the heliocentre.

The tracking station coordinates, as well as the geopotential
field, are given in terms of an earth-fixed (EF) reference frame.
This is also right-handed and is defined with its origin at the
geocentre, its Z-axis directed towards the CIO pole as maintained
by the Bureau International de l' Heure (BIH), and the X-axis
towards the BIH zero meridian. The complete procedure of trans-
forming IF to EF coordinates is explained in Sections 2.2.2
and 2.2.3 and summarized in Section 2.2.4.
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It is appropriate to define here the time scales that are
used in the OD process. These are required in order to compute the
various arguments needed for the coordinate transformations.

Greenwich Apparent Sidereal Time (GAST) is the hour angle
between the Greenwich meridian and the true equinox of date.
Local Apparent Sidereal Time (LAST), the local hour angle of the
true equinox of date, is determined by observations of stars at a
number of observatories and is related to GAST by

LAST = GAST + A (2.,)

where A astronomical longitude of local meridian, measured
positive east of Greenwich, in units of time.

The true equinox of date is derived by correcting for the effects of
precession and nutation '(see Section 2.2.2). Greenwich Mean
Sidereal Time (GMST) is the Greenwich hour angle of the mean equinox
of date, which is derived by correcting for the effects of precession
only.

Universal Time (UT) is the time scale that is most closely related
to the diurnal motion of the sun. It is determined by the observa-
tions of stars at a number of observatories (which make observations
of their LAST) and comprises four slightly different scales denoted
by VTO, UT', UT2 and UTC. UTO is calculated directly from the
observed sidereal time and has periodic and irregular variations due
to polar motion and the variable rate of rotation of the earth (see
Section 2.2.3). After each individual UTO has been corrected for
polar motion, a weighted mean of all participating observatories
results in the time scale known as UT1, which is maintained by BIH.
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This is the navigator's and astronomer's time scale, as it represents
a global determination of the rotation of the earth. It is connected
to GMST by a simple expression «2.20». UT2 is derived by correcting
UT1 for predicted values of seasonal variations in the rotation rate
of the earth.

The advent of highly stable crystal and atomic clocks has led
to the redefinition of the second as the basic unit of time by the
International System of Units (SI) (Blair, 1974). The present
definition is given in terms of a resonance of the cesium atom and
it supersedes the previous ones which were given in the first place,
in terms of the mean solar day and, until 1967, in terms of the
earth's orbit. This has led to the establishment of an atomic time
scale, namely International Atomic Time (TAl), which is based on the
SI second. TAl is maintained by the BIH and represents the weighted
mean of readings of several atomic'clocks functioning in various
establishments. However, TAl does not correspond with UT and there
is a requirement for a time scale which is based on the SI second

I

but which also keeps pace with changes in the earth's rotation rate.
This time scale is Coordinated Universal Time (UTC) and is such that
it differs from TAl by an integen number of seconds, but is adjusted
by whole second steps to keep within 0.9 seconds of UT1. These
adjustments are generally not predictable. The current value of
TAI-UTC , since July 1 1983, is 22 seconds. The BIH, in its monthly
Circular D and in its Annual Report (BIH, 1980), publishes values
of UT1-UTC and UT1-TAI as functions of Universal Time.
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UTe is the time scale that is most generally available through
television, radio and satellite transmissions (Blair, 1974). For
this reason it is specially suited to be the primary time reference
for an OD process. Most satellite tracking stations record their
observations in terms of UTe. Also, except for the leap seconds,
UTe time intervals are constant and can be used to define the step
size of the numerical integration procedures (Section 2.4.2).

The 1AU resolutions (Kaplan, 1981) define two new time scales.
Terrestrial Dynamical Time (TOT) is defined as

(2.2)

and is the time scale for an apparent geocentric ephemeris.
It replaces Ephemeris Time (E.S.A.E, 1977), and continuity is
maintained with the latter. Barycentric Dynamical Time (TDB) is the
time scale for the equations of motion relative to the Solar System's
barycentre. It differs from TOT by periodic relativistic terms.
The new precession and nutation models are given in terms of TDB.

2.2.2 Precession and Nutation

Several of the concepts that are discussed in this section are
illustrated in fig 2.11. This shows the celestial sphere at J2000.0.
EQ is the trace of the mean equatorial plane on the celestial sphere.
AB is the trace of the ecliptic, which is the plane of the earth's
orbit. The intersection of the equatorial and ecliptic planes is the
mean equinox of J2000.0 and defines the x - coordinate of the IF'.
The z-axis is defined by the pole of the equator through the
geocentre, and the y -axis completes the right-handed system. So,
the set of axes , x, y and z ,represents the 'Mean of J2000.0' or IF.
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The angle between equator and ecliptic is known as the obliquity of
the ecliptic ,e: •

The attraction of the moon, sun and planets on the earth
causes the equator and the ecliptic, and hence the equinox, to be
in a state of constant motion. The motion of the equator (or the
celestial pole) is due to the attraction of the moon and sun on the
earth's equatorial bulge. This consists of two components: the first
is a westerly motion of the mean pole of the equator round the pole
of the ecliptic, known as luni - solar precession. The second
component, nutation, is a short-period, rather irregular motion of
the true (actual) pole round the mean pole, with a main period of
18.6 years and an amplitude of about 9". The motion of the ecliptic
is due to the action of the planets on the earth as a whole, and
results in an eastward motion of the equinox of about 12" per century
and a decrease of the obliquity of about 41" a century, known as
planetary precession. The combined effects of luni - solar and
planetary precession, known as general precession, are described by
three angles, the equatorial precession parameters (Kaplan, 1981)
~A' zA and eA· These are illustrated in fig.2.I1 and they connect
the IF (Mean of J2000.0) to the Mean of Date reference frame.
For the purposes of OD, this date would be the epoch of the integra-
tion step or that of the particular observation to the satellite.
The transformation from IF to Mean of Date coordinates at a certain
TDB time, tTDB, is given by
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EQ equator at J2000.0
AB ecliptic at J2000.0
E obliquity of the ecliptic

IF (Mean of J2000.0) coordinate axesx, y, Z

XM'YM'ZM

eA' l;A,zA

Mean of Date coordinate axes
equatorial precession parameters

Fig 2.11 The Celestial Sphere and Precession
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rM = Q r (2.3)
T the IF coordinateswhere r (x, y, z) ,-

(xM ' YM T the Mean of Date coordinates~M ' zM) ,
and Q is the precession matrix :

Q (2.4)

with Rl (~), R2 (~), R,(~): rotation matrices for anticlockwise
rotations through an angle ~ about
the x, y and z axes, respectively
(see Appendix A)

The equatorial precession parameters are given by (Kaplan, 1981)

l;A = 2306: 2181 T + 0':30188T2+ 0':017998T'

zA = 2306; 2181 T + 1':09468T2 + 0:'018203T' (2.5)

eA = 2004;"3109 T - 0':42665T2
- 0;041833T'

where T the interval, measured in Julian centuries·of TDB,
between J2000.0 and the required epoch (of the Mean
of Date reference system), given by

T = (J- 2451545.0) 136525 (2.6)

and J is the TDB JUlian date of the epoch.
Normally the UTe time, tuTe' will be known and tTDB is required.
tuTe is first converted to TAI, using the BIH values of UT1- UTe
and UT1 - TAl,

tTAI = tuTe + (UT1-UTe) - (UT1-TAI) (2.7)

This, in turn, is converted to TDT (tTDT) using (2.2). The TDB
time is now given by
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tTOB = tTOT + 0~001658 sin (g + 0.0167 sin g) (2. 8 )

where g mean anomaly of the earth in its orbit,

g = (357~ 528 + 35999 ~ 050 T) x 21/3600 (2.9 )

From troB and the known date, the Julian date, J , is computed
and,from this, the values of the precession parameters are evaluated.
The interval,T, as defined in (2.6), is also used in the computation
of the nutation arguments. The above expressions for the equatorial
precession parameters have been adopted by the General Assembly of
the IAU at its 1976 meeting. They represent the first change since
1896, when Newcomb's values were adopted (E.S.A.E., 1977).

As mentioned above, nutation is the relatively short-period
motion of the true pole about the mean pole. It varies with the
position of the moon and the sun in their orbits round the earth.
The principal term of nutation depends on the longitude of the
ascending node of the moon's mean orbit on the ecliptic «(1) measured
from the mean equinox of date, and has a period of 18.6 years and an
ampli tude of 9 :'2025. Other terms arise, which depend on the mean
anomalies of the moon and the sun (1 and 1'), on the moon's mean
elongation from the node (F), and on the mean elongation of the moon.
from the sun. (D)• These fundamental arguments (1, 1 I, F, D and (1) are
illustrated in fig.2.III.

Nutation is described in terms of two angles, the nutation in
longitude, A~, and nutation in obliquity,Ae. These connect the Mean
of Date system, as defined above, to the True of Date reference frame
with coordinate axes xT' YT and zT' as defined by the true equator
and equinox of date. The relationship between the two systems is
illustrated in fig.2.IV. The nutation matrix, N, is given by
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Plane of mean
lunar orbit

/
/
/
/
/
/

E earth
M mean moon
S mean sun
N moon's ascending node
L moon's longitude (= 0 + F)

w' longitude of perihelion
L' sun's longitude (= w' + .e ')
D moon's mean elongation from sun ( = L-L')

P perihelion
Q perigee of moon's orbit
xM mean equinox of date

~ig 2.III The Fundamental Arguments
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z

Mean of Date equator

True of Date equator

nutation in obliquity
nutation in longitude
True of Date coordinate axes

Fig 2.IV The Nutation Angles
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N = R 1 (- e - 6£) R, (- 6<j1) R 1 ( e ) (2.10)
and the transformation from Mean of Date to True of Date coordinates
is given by

(2.11)

where T
(XT' YT' ZT) , the True of Date coordinates.

The nutation theory currently in use is the 1980 IAU Theory of
Nutation (Kaplan, 1981). This replaces the theory developed by
E. W. Woollard (E.S.A.E., 1977 ). The new theory was developed by
J. Wahr (Wahr, 1981b) based on work done by H. Kinoshita and on
geophysical model 1066A by F. Gilbert and A. Dziewonski (Melbourne,
1983). It uses a non-rigid model of the earth, without axial
symmetry, which includes the effect of a solid inner core and a
liquid outer core. Also,the reference pole is selected so that
there are no diurnal motions of this pole with respect to an earth-
fixed or a space-fixed reference frame. These are included
implicitly in the new nutation theory, which takes into account all
externally forced motions of the earth's spin axis. The nutations
in longitude (6 <jI) and in obliquity (6 £ ) are given by a series of
106 terms as

A.t. : Ii'0:6,( T)'" ( b' F d DO)&.1'1' Pi + qi san ai I. + it + ci + i + ei

6£ = I1~~(ri + si T)"cos (ail.+ bit' +ciF +diD+eiO )

where T is as defined in (2.6) and

(2.'2)

ai' bi, ci' di, ei : integer multiples of the fundamental arguments
( Pl' + ql' T)" '. ff )coe icient of sine argument (in seconds of arc
(r1,+ sl' T)" '. coefficient of cosine argument (in seconds of arc).
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All the terms (ai' bi ' etc) needed to computel:l <jJ and l:lc are
tabulated in Kaplan (1981) and in Melbourne (1983).

The fundamental arguments are given by:
t = 485866:'733+(1325r+715922:'633)T+31 :'310T2 +0:'064T' (2.13)

i. ' = 1287099 :'804+ (99r + 1292581 :'224)T- 0 :'577T2 - 0 ':012T' (2.14)

F = 335778 :'877+ (1342r + 295263 :'137)T - 13 :'257T2 + 0':011T' (2. 15)

D = 1072261 :'307+ (1236r + 1105601 :'328)T- 6':891T2 +0':0191' (2.16)

(2.17)

where 1 r = 3600•
The obliquity of the ecliptic is

e = 84381 :'448- 46':8150T- 0 :'00059T2 +0 :'001813T' (2.18)

2.2.3 Earth Rotation and Polar Motion

As mentioned earlier (Section 2.2.1), GMST, the Greenwich
hour angle of the mean equinox of date, can be expres~ed in terms of
UT1. This is because they are both measures of the earth's rotation,
relative to the mean sun in the case of UT1, and to the fixed stars
in the case of GMST. The UT1 time, tUT1' is obtained from the known
tUTC' using the BIH value of UT1-UTC:

tUT1 = tuTe + (UT1 - UTe) (2.19)

GMST at Oh UT1 of the day in question is given by

GMST(OhUT1) = 24110~54841 + 8640184~812866 TU
+ O~093104 T~ - 6~ 2 x 1O-'TU' (2.20)
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where TU: number of centuries of 36525 days of UT
elapsed since 2000 January 1, 12h UTl
(JD 2451545.0 UT1).

The exact GMST at the required epoch is

GMST = OOT (OhUTl ) + A GMST (2.21)

where

AOOT = (1.002737909350795 + 5.9006 x 10-n TU

and

_15 z)- 5.9 x 10 TU tUTl

UTl time elapsed from Oh to exact UTl epoch.

(2.22)

(i.e. UTl time of day)

GAST, the Greenwich hour angle of the true equinox of date, is
computed from GMST by

GAST = GMST + A4cos£ (2.23)

The transformation from a space-fixed reference frame to an earth-
fixed reference frame is by means of sidereal time. As shown in
fig.2.V, an anti-clockwise rotation about the ZT-axis (true pole)
through GAST transforms the True of Date coordinates, xT' YT' zT' to
the instantaneous terrestrial (IT) reference frame. The earth
rotation matrix,E,is defined as

E = R, (GAST) (2.24)

and the transformation to IT is given by

(2.25)

where
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zTrue
Pole

Y

Xp' Yp
xI' YI' Zr

X, Y, Z

polar motion angles
Instantaneous Terrestrial coordinate axes
EF coordinate axes

Fig 2.V Earth Rotation and Polar Motion
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The IT reference frame is not truly earth-fixed. The true pole
(instantaneous spin axis) moves relative to the body of the solid
earth, an effect called polar motion. It is caused by a number of
factors, the main ones being the non -parallelism of the earth's axis
of rotation with that of maximum inertia (Chandler wobble) and
meteorological effects (Bomford, 1980). This movement of the true
pole is described by means of two angles, x and y , relative to ap p

mean axis known as Conventional International Origin (CIO), as shown
in fig.2.V. The polar motion matrix is

(2.26)

and the transformation from IT to EF is given by

(2.27)

where R T(X, Y, Z) , the earth-fixed coordinates.

This EF frame is the system in which terrestrial coordinates are
given. CIO is defined as the mean spin axis of the years 1900 - 1905.
It was originally established by the five observatories of the
International Latitude Service (ILS) Mizasawa (Japan), Kitab (USSR),
Carloforte (Italy), Gaithersburg and Ukiah (USA). The adopted
latitudes of these observatories, located on the 3So8'Nparallel,
define CIO. The polar reotion values are obtained using techniques of
optical astrometry (Bomford, 1980) by the International Polar Motion
Service (IPMS), which publishes values of x and y based onp p

observations of the ILS stations. It also receives data and publishes
values from a number of other (about 50) observatories. The BIH, in
its role of determining Universal Time, also derives v~lues of polar
motion. Its origin of coordinates was made to coincide with CIO
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in 1968. Since 1913, the BIH values of x and y include ap p

contribution due to Doppler observations of Transit satellites
(Mccarthy, 1982). The Doppler pole coordinates are derived through
an OD process, in a solution which also determines the satellite
starting elements (see Section 2.5), by the United States Defence
Mapping Agency (DMA). The Doppler observations along with observa-
tions from other new techniques, such as Lunar Laser Ranging (LLR),
have suggested that systematic errors existed in the 1968 BIH system.
Subsequently the 1919 BIH system was introduced, which used Doppler
observations taken between 1912 and 1918 to eliminate systematic
effects of the classical astrometric methods. In 1980 the contribu-
tion of Transit Doppler tracking was 3~~ of the BIH polar motion
determination. The values of polar motion and earth rotation
(UT1 - UTC) are published monthly, with a delay of two months, in the
BIH Circular D, and yearl~ in the Annual Report. A weekly BIH Rapid
Service is also maintained. The Rapid Service values are reproduced
in the U.S. Naval Observatory (USNO) Time Service Announcement,
Series 1, along with those of the USNO.

With the advent of new precise techniques such as Satellite
Laser Ranging (SLR), Lunar Laser Ranging (LLR) and Very Long Baseline
Interferometry (VLBl), it has been found necessary to review the
methods currently in use in the determination of the Earth Rotation
Parameters (ERP's). Project MERIT isa program of international
collaboration to Monitor Earth Rotation and to Intercompare Techniques
of observation and analysis (Wilkins, 1980). It is based on a
proposal prepared by an IAU working group, that was endorsed by the
International Union of Geodesy and Geophysics (lUGG), and its aim is
to improve our knowledge and understanding of the variations in earth
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rotation and polar motion. A short, preliminary observational
campaign was held between August and October 1980 (Wilkins and
Fed.ssef, 1982). The main MERIT campaign is being held between
September 1, 1983 and October 31, 1984, with an intensive phase
between April 1 and June 30. A Joint Working Group of the
International Association of Geodesy (lAG) and the International
Astronomical Union (IAU) has also been set up, on the Establishment
and Maintenance of a Conventional Terrestrial Reference System- - .-
(COTES) (Mueller, 1983). The aims of this group are to prepare a
proposal for the establishment of a new conventional terrestrial
reference system and for the necessary international service(s)
needed to maintain it. It was agreed to consider ways in which
Project MERIT could be utilized to assist in the establishment of
this system. (Wilkins and Feissel, 1982). Specifically, during the
MERIT main campaign collocation of the VLBI, SLR and LLR systems
will be attempted, with the help of mobile systems wherever possible,
in order to detect systematic differences between the various IF
and EF references frames which are inherent in these systems.
Also, especially during the intensive phase of MERIT, it will be
attempted to identify whether the various systems can detect short-
period variations in the ERP"S(x , y and UT1 - UTC) and, if so,

p P
how accurately. Until new services are adopted, the BIH is to serve
as an interim system for all observational techniques.
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Fig.2.VI Coordinate References Frames and Time Scales

IF position vector
r at tuTe

Establish OT1 time:

tOT1 = tOTe + (OT1-OTe)

~
Establish TAl:

tTAI = tOT1 - (UT1-TAI)

Establish TDB:
s

tTDB= tTAI + 32.184 + periodic terms

Calculate GMST
GMST= f(tUTl)

~
Calculate dcpand dE from nutation series
and fundamental arguments I.,I.',F,D and

Cl,as f(tTDB)

~
Compute E=f(tTDB)

Form P matrix by:
P= Ra(-x )Rl(-y )p p

Form E matrix by:
GAST=m-1ST+ dCPCOSE

E = R, (GAST)

Form N matrix by:
N= R1(- £ - d €) R, (.;_dcp)Rl( e)

,~
Form Q matrix by:

Q = R,(-zA)Ra ( eA)R, (-l;A) where l;A' eA' zA = f(tTDB)

~
Calculate EF coordinates at tuTe : ~ = PENQ~



28

2.2.4 Coordinate Transformations

The flow chart in fig.2.VI summarizes the procedure of
transforming an IF position vector, r, to the corresponding EF
coordinates, ~, at a UTC time,tUTC• The complete transformation,
through a series of successive rotations, is

R = PENQ~ (2.28)

The various expressions required to evaluate the polar motion (P) ,

earth rotation (E), nutation (N) and precession (Q) matrices, are
given in Sections 2.2.2 and 2.2.3.
from EF to IF, is

The reverse transformation,

(2.29)

2.3 FORCE MODEL COMPONENTS

2.3.1 Introduction

The orbit of an artificial satellite around the earth is
governed by the forces acting on it. These are classified as
gravitational, surface and propulsion forces. Gravitational forces
comprise the attractions of the earth, moon, sun and planets, as
well as effects due to solar and lunar solid earth tides and ocean
tides. Surfaces forces act on the satellite's exterior and vary
according to its cross-sectional area, shape, mass and nature of
the surface. They include solar and albedo radiation, and air drag.
Propulsion forces are caused by thrusters which can occasionally be
activated in order to control the satellite's orbit. Additional
empirical accelerations, which would take into account any unmodelled
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forces, could be included as unknowns in the OD process.
A common example is an empirical along-track acceleration for
satellites which are at too high an altitude to be affected by air
drag.

All these forces are described in detail in the following
paragraphs. The various models are the ones adopted for the MERIT
Campaign (Melbourne, 1983). The sum of the individual components
gives the resultant acceleration of the satellite. This must be
computed in an inertial frame (IF), since the numerical integration
must be performed in a reference system that is independent of the
earth's rotation.

2.3.2 Earth Gravitational Attraction

The earth's gravity is the major component of the forces
acting on the satellite. It is defined by a geopotential expansion,
in terms of spherical harmonics, which gives the earth's external
potential, U, as a function of EF coordinates:

U= ~ [1 + ~=2 I~=o (~f ~ (sfn e) (C~ cosmA+S~ sinmA)]

where G

R ,A ,~

n,m

(2.30)

universal gravitational constant
M mass of the earth
a earth's equatorial radius

EF spherical polar coordinates (geocentric radius,
longitude and latitude) of point where potential is
computed (see Appendix B.2)
degree and order of spherical harmonic expansion
Legendre function (of sin ~).spherical harmonic coefficients \
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The Legendre functions are known as zonal, harmonics when m = 0,
tesseral harmonics when m < n, and sectorial harmonics when m = n.
They are given by (Bomford, 1980)

~ =
cosm ~ d(m+n)---.--(2n)n! dsin ~

(2.31)

and can be computed by recurrence relationships, for the case of
zonals as

Pno = .l.[(2n- 1)sin ~ po 1 _ (n-1) po ]n n- n-2 (2.32)

with P~ = 1 (2.33)

and Po .= sm ~1 (2.34)

for the case of tesserals as

pM = pM 2 + (2n-1) cos ~ pm-11n n- n- (2.35)

with P1 = cos ~1

and for the case of sectorials as

~ = (2n-1)cos ~ ~:~ (2.36)

There are currently various expansions of the geopotential which
have been derived by using combinations of satellite observations
and terrestrial gravity measurements. They generally consist of
the spherical harmonic coefficients, C m and S m, usually given inn n
their normalized forms, ~ and s-m. The relationship between an n

coefficient and its normalized form is

\
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Cm = Nm cm (2.37)n n n
and Srn = Nm Srn (2.38)n n n
where Nm is the normalizing factorn ,

Nm [(n-m)! (2n + 1) (2 - 00m )j2 (2.39)= (n+ m) !n

with °om : the Kronecker delta defined by

60m = 1 for m= 0 and 60m = 0 for m =1= 0 (2.40)

..The satellite EF acceleration vector, R, is given by
the gradient of the potential field at the satellite :

R = VU (2.41)

The individual components of the acceleration vector (X, Y, Z)
are computed as

au
R1.. = =BR·1.

(2.42)

where Ri anyone of the EF components of the satellite
position vector (X, Y, Z)

R. the corresponding EF acceleration component
1.

The partial derivatives of (2.42) are derived in Appendix C.1.
The satellite acceleration due to the earth's gravitational
attraction is obtained in the IF reference frame, using

(2.43)

where t (x, y, z)T, the IF acceleration vector

and the matrices P, E, Nand Q are derived in Section 2.2.
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The best known geopotential models to date are the European
GRIM models (Balmino et al, 1983), the Naval Surface Weapons Center
NSWC10Eused for the Transit system (Leroy, 1982), and the various
NASA Goddard Earth Models (GEM). In particular, GEM9 is based on
observations of 30 satellites, and GEM 10 on combining the GEM9 data
with surface gravimetry (Lerch et al, 1979). Several models have
been specially 'tailored' to suit particular satellite systems.
GEM- L2 (Lerch et aI, 1983),for example, combines all the data for
GEM9 with 2.5 years of SLR observations of the Laser Geodynamics
Satellite (LAGEOS). The most recent NNSS model, NSWC 10E- 1, is the
result of several revisions (Kumar, 1982) as more observations of the
Transit satellites became available.

All the expansions of the geopotential truncate the infinite
series of (2.30) after a finite number of terms. The OD process can
determine these terms by introducing the spherical harmonic
coefficients as unknowns in the least squares adjustment (see
Section 2.5 and Appendix C.2). The earth's gravitational constant,
GM, and equatorial radius, a, can also be determined.

\2.3.3 Moon, Sun and Planetary Attractions

The moon, sun and planets of our solar system exert a
gravitational pull on the .satellite. This results in an acceleration
component, rs' in a direction towards the 'third body', P., as shown

J
The earth, E, is also attracted by this third bodyin fig 2.VII.

(moon, sun or any planet), resulting in an acceleration, tE, of the
earth towards The IF acceleration vector of the satellite (S)
relative to the earth, caused by the third body attraction, is given
by a 'triangle of forces' as (see fig 2.VII)

(2.44)
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o

E

Triangle of forces:

~ = ~S - ~E

Fig 2.VII Third Body Gravitational Attraction



34

The potential at the satellite due to Pj is
GMj
[r- - r.1- -J

(2.45)

where mass of third body
G universal gravitational constant

r,r. IF position vectors of satellite and third body- -J
This gives the acceleration of the satellite relative to Pj as

(2.46)

resulting in
..rS =

- GM.
J (r - r .)(Ir-r.1>3 - -J

- -J
(2.47)

The potential at the earth arising from Pj is
GM.

U - ;---J:::.._---,-
E - IrE -r.- -J

(2.48)

giving the acceleration of the earth relative to Pj
-GM

~E = j (rE- r )
Clr - r . I>' - -j
-E -J

(2.49)

where IF position vector of the earth

Since the earth's mass-centre is the origin of coordinates,

rE = 0

so, (2.49) becomes

.. GMJrE = t'jr 'j
Substituting (2.47) and (2.51) in (2.44) gives

(2.50)

(2.51)
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r =
[

r - !:'j
- GM • ---___:::.,._

J 1!:'-:-jP'
+ r. ]_:_L

r .'J

(2.52)

where rj

For the evaluation of the IF satellite acceleration from (2.52), the

distance between third body and geocentre.

coordinates and masses of the bodies in the solar system are required.
The positions of the moon and the planets are given in a heliocentric
IF, for O~O TDB of each day, in Development Ephemeris Number
DE200/LE200 (Kaplan, 1981). Associated with this ephemeris are a set
of astronomical constants used in its creation. These include the
masses of the planets relative to that of the sun, as well as
geocentric and heliocentric gravitational constants. Firstly, all the
coordinates must be converted to the geocentric IF by subtracting the
coordinates of the earth from those of the other bodies. The position
vector of the sun is now given as that of the earth, multiplied by -1.
The coordinates of the required third body can then be interpolated,
using a suitable interpolation scheme (see Appendix E), to the required
epoch (of the numerical integration time step). Considerations of
computational effort"and required precision may result in a decision
to disregard the effects of the more distant or less massive planets.

2.3.4 Solid Earth Tides

The potential at any point, A (see fig 2.VIII), on the surface
of the earth (E) due to either the moon or the sun (Pj) is

GMj
p= (2.53)

where mass of moon or sun.



36

The distance from Pj to A, P, can be computed using the cosine
rule as

= r2 + r .2 - 2 r r. cosz
J J

(2.54)

where r distance from A to geocentre
rj distance from geocentre to centre of mass of moon or sun

The angle, z, is the angle AOPj in fig 2.VIII and is approximately the
zenith distance of the moon or sun at A. Equation (2.53) can be
written as

GM· (2.55),
(r2 + r.2 _ 2rr.cosz)2

J J

This can be expressed as an infinite series in terms of Legendre
functions, as

GM. ()nU = __ J I_ Cl) .!:_
A rj n=O r j

Pn (cosz) (2.56)

The tide raising potential is then

Pn (cosz) (2.57)

The only significant effect is that of the second harmonic (n = 2),
giving

(2.58)

The earth responds to this tidal potential by deforming, as shown by
the dotted line in fig 2.VIII. It bulges out in directions towards
and away from the moon (or sun), and caves in at right angles to these
directions. The additional potential, due to the deformed shape, is
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\, ./,_ ......

Fig 2.VIII Earth Tides
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itself a second harmonic of the form

H (a)2U = r r P2 (COSZ) (2.59 )

where H constant
a earth's equatorial radius
r distance from geocentre to point where potential is

evaluated (eo.g.atthe satellite)

On the earth's surface r = a, giving

The potential due to the deformed earth on the earth's surface is
also given from (2.58) as

GMj a2

r s-
j

P2 (oosz) (2.61)

where k2: Love number (nominal value = 0.3)

Equating (2.60) to (2.61) gives
GM. as

H = k 2 ____;J:::...:-_r.s
J

(2.62)

and substituting this in (2.59) gives the potential of the tidal
bulge at the satellite (or any other pOint), as

GM. as
U = k2 J P2 (cosz)r Jr s

j
(2.63)

The Legendre function, P2 (cosz), is given by

with
P2(COSZ) = ~ cos2z - ~

r . r.-J

(2.64)

cosz = (2.65)

where r
r rj

(x, y, z), IF position vector of satellite
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The potential of the tidal bulge at the satellite becomes

U = k, GMj as [3(!" !:'j)a- 1J
2r'r,' ~ r ,2

J J

(2.66)

and the IF acceleration of the satellite is grad U (yU), giving

r=""GMja' 1_15<COCj)'r +6e:o!:j)r.+3r]
2r5rj L~rja - r rj -J -

This acceleration is evaluated for both the moon and the sun, the

(2.67)

coordinates of which are derived from DE200/LE200 as explained in
Section 2.3.3.

The Love number, ka,is a measure of the response of the earth
to the tidal potential, UT' However, ka is not constant but varies
for tides of different frequencies. The effect of the frequency
dependent Love numbers is best included as corrections to the
normalized spherical harmonic coefficients (CW and ~ in (2~37) and
(2.38» of the geopotential expansion. A two-step procedure is
therefore used to compute the effect of earth tides on the satellite.
In the first step a nominal value of k2 = 0.3 is used in equation (2.67).
The second step involves the evaluation of corrections l1C ~ and ~:S~,
due to the difference of the actual value of ka from the nominal one,
for tides of different frequencies. The corrections for step 2
recommended for the MERIT campaign are (Melbourne, 1983)

(

COS e ) n +m even~Cmn = AM I ( 6 k H ss n,m) s s sines n +m odd (2.68)

i1Smn (
-sin e )n +m even

= AM Is(n,m) 6k H S
S s cos e n +m ecd

s

(2.69)

where eks difference between Wahr model (Wahr, 1979 and 1981a)
value of ks and nominal value of k a = 0.3, in the
sense ks - ka
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H amplitude (in metres) of tide s, taken froms
Cartwright and Tayler (1971)

AM = a (4 It (2 - () ») ~om
( _1)m (2.70)

where ().om Kronecker delta
a earth's equatorial radius

and e = n. B =s __ (2.71)

where (" s, h,p, N', Pl)' the vector of Doodson variables

multiples of the Doodson variables (Cartwright and
Tayler, 1972)

The vector n is sometimes given in coded form, known as Doodson's
notation, as

(2.72 )

where
and di = ni + 5 for i = 2, 3, 4, 5, 6

The components of ~ are related to the fundamental arguments of
nutation (see Section 2.2 ~2 .and fig 2.III) by

s = F + n

h = s - D

P = s - I.

N' = - n

Pi = s - D - I.'

• = GMST + 1( - S

(2.73)
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-12Using a cut-off amplitude of 9 x 10 for the product Am ()ks Hs in
(2.68) and (2.69) for tides of each frequency, only six diurnal tides

-1 -1 -2(for flC2 and flS2) and two semi-diurnal tides (giving AC2 and
AS ~ ) need to be considered.

Apart from their effect on the satellite, solid earth tides
also change the coordinates of the tracking station as the earth
deforms. This movement can be up to 32 cm for lunar tides and 15cm
for solar tides, and has to be taken into account in precise orbit
determination. The components of the IF displacement vector (d )-p

of station p, in spherical coordinates, are

(2.74)

dAp 1.2 aUT
= "5A"gcos'PP P

d !!. aUT
= ~'PP g P

(2.75)

(2.76)

where g acceleration due to gravity
components of the IF displacement vector, 2p ,of
station p, in spherical coordinates
Love number
Shida number

r A mp' p'Tp IF position of station p expressed in spherical
coordinates

From (2.58) it can be seen that

= -- r
(2.77)



Substituting this in (2.74) gives

(2.78)

The IF station displacement vector becomes

(2.79)

where unit vectors in the directions of rp' Ap and 'p
Also, in spherical polar coordinates, the gradient of the tidal potential
at p is

1

(2.80)

Combining (2.79) and (2.80), and substituting (2.77), gives
tar h2 - 2tad ......._E

~UT UT
..

= + r-p g g -p

Also,

g GM= a2

(2.81)

(2.82)

The IF displacement of station p due to lunar or solar earth tides
is now given by

d-p
M a4

= _J__
M r 'j

(2.83)
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The Love and Shida numbers (ha and £a)vary for tides of
different frequencies. If nominal values of 0.6090 and 0.0852 are
used respectively, and a cut-off amplitude of 0.005m in radial
displacement (the biggest effect) is required, the EF geocentric
radius of the station has to be corrected by

6.R = -0.0253 sin ~ cos III sin(GMST + A )
P P P P

(2.84 )

EF geocentric radius, longitude and latitude of p

6.Rp correction to geocentric radius, in metres

The above expression is for the K1 frequency, where ha from
Wahr's theory (Wahr, 1979) is 0.5203, and this correction has a
maximum amplitude of 0.013m.

Earth tides also affect the earth's rotation rate. This is
because the tidal deformation changes its moments of inertia, thus
changing UT1, the duration of the day and the earth's angular velocity,
w (Woolard, 1959). This effect has to be removed if earth rotation
results obtained at different epochs are to be compared. The procedure
for computing this correction is given in Melbourne (1983).

2.3.5 Ocean Tides

The surface of the open ocean is an equipotential surface, except
for effects due to temperature, pressure, salinity and currents.
This surface is in constant motion because of the tidal potential of
equation (2.58). The ocean tide contains a large number of frequencies,
and this fluctuating ocean level results in a variable load on the solid
earth which responds by deforming. The additional potential outside
the earth, arising from this deformed shape, can be expressed as a
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series of spherical harmonics (Cazenave et aI, 1977) as
1 + k ' ( n+ 1 m
-:O:-_T-n;) (D cos rnA + E sin rnA)Pn2n + 1 n s,n,ms, n ,m

(2.85)

where p
w

R,A,t
density of sea water
EF spherical coordinates of satellite (or any other point

k'n load deformation coefficients
a earth's equatorial radius

Ds,n,m = (c+ + c" ) cos a + (s+ + S- ) sin as,n,m s,n,m S s,n,m s,n,m s

(2.86)

Es,n,m = (s+ - s: ) cos a - (c+ - C- ) sin ass,n,m s,n,m s s,n,m s,n,m

(2.87)

where e± s± : ocean tide coefficients for the tides,n,m' s,n,m
constituent, s

a argument of the tide, s , as defined in (2.71)s

On comparing equation (2.85) with (2.30) for the geopotential, it can
be seen that the ocean tide potential can be expressed as corrections
to the normalized spherical harmonic coefficients, as

AC m
4. et p 1 + k 'w n

Is(n,m) D=n
M~ 2n + 1 s,n,m

ASm
' 4. al p 1 +k'w n I E=n

M tf! 2n + 1 s(n,m) s,n,m
n

••• (2.88)

••• (2.89)

where M earth's mass
N~ normalizing factor as given in (2.39)
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Th C+ and S+e s,n,m s,n,m in (2.86) and (2.87) denote prograde waves,
while the C- and S- denote retrograde waves. The effects,n,m s,n,m
of the retrograde waves can be ignored if the long period (m = 0)
prograde terms are doubled. +The values of the coefficients, Cs n m, ,
and S+ , needed to compute the ocean tide correction, are givens,n,m
in Melbourne (1983) for the (MERIT recommended) Schwiderski ocean
tide model (Schwiderski, 1980). The adopted load deformation
coefficients (k~) to degree n = 6 are also given, and corrections can
be evaluated up to degree 6 and order m = 2. Ocean tide coefficients
are given for the long period tides (m = 0) Ssa' fin and Mf, for the
diurnal tides (m = 1) Q1, 01, P1 and K1 and for the semi-diurnal
(m= 2) N2, M2, S2 and K2.

As for solid earth tides, there is an ocean tide effect on
station coordinates. The magnitude of this on the height of the
tracking stations is generally of the order of 1cm, but it can have a
range of up to 10 cm. Care must be taken to apply this correction if
it is within the accuracy requirements of the OD process. It has
been evaluated for 25 SLR and VLBI sites and is given in Melbourne
(1983) •

2.3.6 Empirical Accelerations

These accelerations are sometimes required in order to account
for any deficiencies of the force model in specified directions.
They are of the form

i" = Cn (2.90)

where C constant
..n unit vector in required direction
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The most conmon empirical accelerations are in the along - track,

..r = --r-
r (2.91)

in the radial

r =
r

C
r r (2.92)

and in the cross - track directions:
.r x r..

r = (2.93)

where .
!:', !:', r IF satellite position, veloci ty and acceleration vectors
. ..r, r, r magnitudes of these vectors

The coefficients Ca' Cl" and Cc can be given known values, or
they can be adjusted parameters in the least squares solution
(see Section. 2.5 and Appendix C.2).

2.3.7 Air Drag

The IF acceleration of the satellite arising from air
drag is

r = -,!. CD(!) P v v (2.94)
t::. m a r-r

where satellite drag coefficient
A,m satellite cross-sectional area and mass
Pa air density at the satellite
!r IF velocity vector of the satellite relative

to the atmosphere

The velocity, !r,is given by a vector triangle as (see fig 2.IX)
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(2.95)
.where r (x, y, z) IF satellite velocity vector

IF velocity vector of the atmosphere

s

I
I
I _'"
I ..-"--_
I _-
t--

Fig 2.IX Satellite Velocity Relative to Atmosphere

The atmosphere is assumed to rotate at the same rate as the earth.
This gives its True of Date (see Section 2.2.2) velocity at the
satellite, as the vector cross product

= (2.96)

where ~ (0,0, u;)T the earth's True of Date rotation rate vector
(xT' YT' 'ZT)T, the satellite True of Date coordinates.

This results in

T
( - wy T ' wXT ' 0) (2.97)

and the atmosphere's IF velocity vector v needed in equation, "a'
(2.95) is obtained by rotating the True of Date vector, using the
nutation (N) and precession (Q) matrices, as
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(2.98)

A model is now required to give the air density CPa) at the
satellite. Such a model can be found in CIRA (1972) based mostly
on work by L. G. Jachia. The atmospheric density is computed from
the known date, satellite and sun positions,and solar flux and
geomagnetic data. The model assumes that the atmosphere is
composed entirely of nitrogen, oxygen (molecular and atomic), argon,
helium and hydrogen. The density is given primarily as a function of
height and temperature, and it is corrected for effects arising from
geomagnetic activity and seasonal-latitudinal and semi-annual varia-
tions. The temperature is itself a function of height, solar and
geomagnetic activity and diurnal variations.

CIRA (1972) gives a complete atmospheric density model for use
at altitudes between 110 and 2000km. It also includes a FORTRAN
subroutine to evaluate this density. For altitudes higher than
2000kmthere are currently no valid models, as the effect of air drag
is very small. It can be best taken into account as an empirical
along-track acceleration (see Section 2.3.6) with a scaling constant,
Ca' that can be adjusted in the OD process. The drag coefficient, CD '
in equation (2.94) can also be a solve-for parameter when this
equation is used (at altitudes less than 2000Km). The magnitude of
the drag acceleration is directly proportional to the satellite's
cross-sectional area-to-mass ratio (AIm). So the drag effect can be
minimized if this ratio 1s kept small. On the other hand, for such
cases as studies of the upper atmosphere it may be desirable to have
a satellite that is significantly affected by air drag, in which case
this ratio is maximized (e.g. balloon-type satellites).
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Drag is classified as a surface force because it depends on
the particular satellite, unlike gravitational forces which only
depend on its position vector and time. The nature of the satellite's
surface will determine CD and, as mentioned above, the Aim ratio
will determine its sensitivity to drag and other surface forces
(see also Section 2.3.8). This ratio is a constant only for a
spherical satellite or one whose orientation relative to the atmos-
pheric velocity vector v is constant. So an added complication, -a'
arises when the satellite has an awkward shape, especially when there
are moving solar panels which have to be kept pointing towards the sun.
Because of this ,and of uncertainties in the existing air density
models and in the value of CD' drag, in common with other surface
forces, cannot be modelled as accurately as the gravitational forces
described earlier in this chapter.

2.3.8 Solar and Albedo Radiation

The sun constantly emits radiation whose intensity obeys the
inverse square law with varying distance from its centre. At one
astronomical unit (the distance equivalent to the semi-major axis of
the earth's orbit) this intensity (power per unit are~is approximately

(2.99)

and at the satellite, it is

I =
10 ~ r ~rjr

one astronomical unit (,.4959787 x 1011 m)

(2.100)

where A

r satellite IF position vector
.. IF .position vector of sun (from DE200/LE200)
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Since force is power divided by velocity, the force per unit area
(or solar radiation pressure) on the satellite due to incident
radiation is

I= c (2.101)

where c speed of light in vacuo (2.99792458 x 10' m/s).

Multiplication by the ratio AIm (see equation (2.94» converts the
solar radiation pressure (Ps) into an acceleration whose direction
is away from the sun. The IF satellite acceleration vector arising
from direct solar radiation is then

r = (2.102)

A fraction of the incident radiation is reflected, while the rest
is absorbed by the satellite, raising its temperature, and is

.
subsequently re-radiated (Lucas, 1974). This effect depends on the
nature of the satellite'ssurface. A"part of the reflected radiation
is reflected specularly (angle of incidence = angle of reflection)
and the remaining is reflected diffusely. This again depends on the
outer surface of the satellite, which can be coated with special
materials to control its reflectivity. By Newton's third law the
additional force arising from the reflected radiation is opposite to
its direction. So the shape of the satellite determines the
resultant force. It is obvious from all this that the solar radiation
acceleration; like drag, cannot be accurately modelled and, unlike
drag, it affects satellites at all altitudes. As in the previous
section, the area-to-mass ratio (AIm) is again an important
parameter. This must be minimized if solar radiation effects are to
be kept small. In contrast, studies of solar radiation have required
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the deployment of large balloon-type satellites like PAGEOS and
DASH 2 (Lucas, 1974), with a high value of AIm. This ratio is
constant only for spherical satellites. In general, it varies
with changes in the satellite orientation relative to the sun.
In addition, the intensity of the radiation varies with solar
activity, which is itself largely unpredictable.

To take account of all the effects mentioned above, a solar
radiation reflectance coefficient, CR, is introduced as a scaling
parameter in (2.102). The satellite IF acceleration vector is
now given as

(2.103)

CR can be introduced as an unknown in the OD process, thus
absorbing any uncertainties in the model. Its value is generally
greater than unity because of the additional force arising from the
reflected radiation. Equation (2.103) gives the acceleration in a
direction away from the sun. For satellites with a non-spherical
shape, especially when they are equipped with solar panels, the
reflected radiation may result in a force that deviates significantly
from this direction. This is the case for the NAVSTAR GPS satellites,
where solar radiation accelerations are modelled in two directions
(Varnum and Chaffee, 1982).

A satellite in its orbit round the earth is not always in
sunlight. It occasionally goes into the earth's shadow (umbra),
where the solar radiation pressure is cut off. In addition there is
a penumbra effect (see fig 2.X) resulting in the radiation pressure
diminishing slowly. In order to determine whether or not
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Earth

Fig 2.X Umbra and Penumbra

the satellite is in shadow, the rays from the sun are assumed to be
parallel. This results in a cylindrical shadow of diameter 2am,
where am is the earth's equatorial radius modified to account for
penumbra effects. The angle,e , in fig 2.XI is the angle subtended
at the centre of the earth (E) between the sun and the satellite (S).
This is given by a vector dot product, as

cos e (2.104 )

If cos e is greater than zero (e < 90°) then it can be seen from
fig 2.XI that the satellite is in sunlight. However, if it is less
than zero (e > 900), then if

(2.105 )

the satellite is in shadow.

\~en the satellite enters the earth's shadow the
solar radiation pressure has to be diminished slowly.
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There are two reasons for this. In the first place, the reality
of the situation is that this radiation 'does decrease gradually,
because of the penumbra. Secondly, the numerical integration
procedures (see Section 2.4) that are used to integrate the
acceleration and compute the satellite velocity and position as
functions of time are not suited to sudden changes in the force
model, which can result in the accumulation 'of large errors.

Albedo radiation is the radiation that is reflected by
the earth. This affects the satellite for the same reasons as
direct solar radiation, but it decreases, according to the inverse
square law, with incr'easing altitude. In its evaluation the
earth is assumed to reflect radiation diffusely and a numerical
integration is performed to determine the components of the total
albedo flux for the entire earth. The resulting flux haE its
largest component directed radtally outwards, away from the earth.
The second component, perpendicular to the first and in the plane
defined by the centres of mass of the earth, sun and satellite, is
one order of magnitude smaller (Prior, 1972).

Albedo radiation is even less predictable than solar radiation
because of temporal ~hanges in the reflective properties of the earth.
If its effect is found to be,significant, and in the absence of an
adequate model, it may be taken into account as an empirical radial
acceleration with an adjusted scaling parameter (see Section 2.3.6).



2.3.9 Satellite Thrust

Thrust is available on some satellites in order to enable them to
perform a limited number of orbital manoeuvres. The model to account
for this acceleration depends on the directions of the jets and on
the particular thrust profile (magnitude of thrust as a function of
time). The most common case is for along-track, radial and cross-
track-accelerations, and these are modelled in the same way as the
empirical accelerations in Section 2.3.6. They are scaled according
to the known thrust profile for the satellite.

A system called DISCOS (Disturbance Compensation System) is
deployed on some satellites, which uses thrust to compensate for all
non-gravitational forces (John Hopkins University and Stanford
University, 1974). It consists of a proof mass placed in a vacuum
inside the satellite 'and shielded from all surface forces. Any
relative displacement of this mass with respect to the walls of the
cavity in which it is enclosed is sensed by the satellite and it
fires thrusters in order to restore it to its original position.
The primary purpose of DISCOS is to eliminate the need to account
for the largely unpredictable surface forces, so that the orbit can
be determined more accurately. This is even more important when a
satellite orbit is predicted for some time in the future, based on
the most recent observations. For this reason, DISCOS has found an
immediate use in navigation satellites where, for real time navigation,
the satellite ephemeris must be predicted as accurately as possible.
It is used on the NOVA1 satellite of the Transit system (Malyevac
and Anderle, 1982), where it compensates for all surface forces in
the along-track dIrection.
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2.4 NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

2.4.1 Equations of Motion

The resultant IF satellite acceleration is the sum of all
the components described in the previous section. Some of these may
be ignored if they are deemed to be insignificant, depending on the
satellite which is being tracked. The equations of motion are 2nd

order differential equations, generally given as functions of time,
position and velocity, as

r = r (t, ~, t) (2.106)- -
where e (~, y, ~) , the resultant IF acceleration

r (x, y, z) , the satellite IF velocity vector

c (x, y, z) , the satellite IF position vector

t UTe time

Orbit integration consists of evaluating the satellite position and
velocity vectors as functions of time, ret) and ret), using known- -
initial values, Co and to'
by

at initial epoch t • These are giveno

r (t) . + Jt r dt (2.107 )= r
-0 to -

!: (t) t r dt= r + Jt (2.108 )-0 0 -
The above integrations are performed numerically using the methods
described in Section 2.4.2. The satellite ephemeris 1s computed at
discrete time intervals, according to the integration step size, h.
The required position and velocity vectors can then be interpolated
to the exact appropriate epoch (of the satellite observation) through
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some interpolation scheme (see Appendix E). The satellite state
vector (r , r ) need not be accurately known, as it can be determined

-0 -0

in the least squares adjustment (see Section 2.5).

2.4.2 Numerical Integration of Differential Equations

To simplify the discussion here, a variable, s, is considered
which is given by the first order differential equation

. ds ()s = or = ft,s (2.109)

where f (t, s ) denotes some function (Iftime, t, and the
variable, s. Successive values of s can be obtained in the same
way as in equations (2.107) and (2.108), by

s (t) = So +1~ f (t,s ) dt
o

(2.110)

where

(2.111)

the initial value of s at time to.

There are two types of methods which can evaluate (2.110)
numerically: the first type; known as single-step methods, obtain
the next value of the variable in one step, by making use of the
current value. The (i+ 1) th value is given by

t +hIi f(t,s)dt
ti

(2.112)

where

(2.113)

and h : integration step size
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A single-step method evaluates the integral

t.'" h
F = ft~ f (t,s) dt

l.
(2.114)

by only making use of si' So,starting from so' values of SI , S2,

etc., can be computed in successive applications of the method. The

second type is the iterative methods, a special case of which are

the predictor - corrector methods. In an nth order predictor-

corrector scheme the predicted (i + 1)th value of the variable,

sr + l' is obtained by somenumerical formula making use of the

previous n + 1 values. This is nowused, along with the previous

n values, to evaluate a corrected value, sr: l' If the difference

between sr + 1 and sr:, exceeds a certain limit, the corrector

formula is re-applied using the most recently available value of

s. 1. Before the predictor-corrector formulae can come into
l.+

operation, the first n + 1 values of s must be available. These

can be computed by using a single-step method, starting from the

knownvalue of s at to' so.

A comnonfamily of single-step methods, knownas Runge-Kutta,

have the form

(2.115)

where a Runge-Kutta coefficients

m order of the method

The second order Runge-Kutta formulae are given by

(2.1,6)

with Kl = hf (t1'si)

K2 = hf (ti + 8h, Si + "'( K1 )

(2.117)

(2.118)
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The Taylor series expansion of si + 1 about si gives:

(2.119)

where
(2.120)

Expanding Kz in terms of a Taylor series gives

(2.121)

Substituting (2.121) :in (2.116) leads to :

+0 (h') (2.122)

Equating coefficients for (2.119) and (2.122) gives three equations
in four unknowns :

(2.123)

Assigning a value for one of these unknowns determimes the other three.
A common choice is B = 1, giving the second order Runge-Kutta formulae
as

(2.124)

with
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(2.125)

It was seen that these formulae have been made to agree with the
Taylor series expansion of (2.119) to order 0(h2), and terms of
O(h') and higher orders have been ignored. Similarly, there are
3rd and 4th order Runge-Kutta formulae, which agree with the
Taylor series to O(h' )and 0(h4) respectively. The standard set of
4th order formulae is

si + 1 = si + ~ r~+ 2:~ + 2K, + K,,) (2.126)

with

Kl = hf (ti, si)

1\2 h ~)= hf (ti + 2 ' Si + 2

K' h K2 )= hf (ti + '2 ' si +s 2 (2.127)

K" = hf (ti + h , si + K J )

The manner in which these are applied to the OD problem is
described in Appendix D.1.

A disadvantage of the Runge-Kutta methods is that there is no
way in which the error associated with each step can be evaluated.
An estimate of the cumulative error can be obtained if it is assumed
that this is proportional to hm, where m is the order of the

(1 )
method. A value of Si' s1' is obtained after i computations with
a step size of h. The true value of Si is then given by

(1) Ahmsi = 5 i - (2.128)

where A : a constant
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(2) . iAnother value, s. , 1S computed after /2 calculations with a
1

step size of 2h. The true value is now given as

(2.129)

Combining (2.128) and (2.129) gives the error for the former as
(2) (1 )
si _ simE = An = (2.130)

For the 4th order method the error, E, is

E = (2.131)

So, for an error estimate to be evaluated, the numerical integration
has to be repeated, after halving the step size, until equation
(2.130) gives values lying within acceptable bounds. The fact that
only one value, si' is used in order to generate the next one,
s. l' means that, for sufficient accuracy, the step size of the1+

Runge-Kutta methods has to be kept small. Also, equations (2.127)
show that for the 4th order method there are four, usually time-
consuming function evaluations per step. For these reasons the
Runge-Kutta methods are used only until sufficient values have been
calculated, after which a predictor-corrector method takes over.

Predictor-corrector methods replace the function f{t,s) in
(2.112) by an interpolation or extrapolation furmula which is
integrated instead. The Adams-Bashforth method (Spencer et a1, 1971)
uses the Newton backward difference formula, given by

(2.132)
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where

t - ti
P = h (2.133)

and

fi: as given in (2.120)

Vn: the nth backward difference, where, for example:

Vfi = f i - f i + 1 (2.134)

and V2 f i = Vfi - vti _ 1 = f i - 2fi _ 1 - f i _ 2 (2. 135)

Substituting (2.132) into (2.112) and integrating from p = 0 to

p = 1 gives the predicted value

...) (2.136)

The predicted value of f i + 1'

* *fi + 1 = f (ti + l' si + 1) (2.137 )

is nowevaluated. The corrector formula is obtained by replacing

f (t,s) in equation (2.112) with

~ q,( q + 1 )(q+ 2) V' f* + •• •
':>' i + 1

(2.138 )

where

t-t
q = i+ 1

h
(2. , 39)

Integrating from q = -1 to q = 0 gives the corrected value. as

** h (f* 1 * 1 2 1, )
si + 1 = si + i + 1- '2" Vfi ....1 - ~ V f i + ,. - ~ V 'f; + 1 - •••

(2.140)
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In practice, equations (2.136) and (2.140) are truncated to some
order, n, which is the order of the last backward difference to be
taken into account. The second order predictor formula, for
example, will have ~ v2 fi as its last term. This requires that
the values fi' fi _ 1 and fi _ 2 be available. The first three
values,needed before this formula is applied, can be obtained by

a single-step method such as the 4th order Runge-Kutta, from the
known initial value of s at to' so'

The error involved in the truncation of the Adams-Bashforth
formulae is proportional to the coefficient of the next backward
difference. For the second order predictor formula the error is

£* = s~ 1 - s. 1 = ~ Cl.+ 1+ 0
(2.141)

where c a constant

The error in the corresponding corrector is

1£** = sr~1 - si+1 = -~C (2.142)

Eliminating C between (2.141) and (2.142) gives

(2.143)

In general, the error involved in a truncation after the thn

backward difference is
cn+1 (2.144)

b - cn+1 n+1

where bn+1 coefficient of the (n + 1)th backward
difference from the predictor formula
«2.136»
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cn+1 corresponding coefficient from the
corrector formula «2.140»

From (2.144) it can be seen that an error estimate can be calculated
at each step from the difference between the predicted and
corrected values. The disadvantage of the Adams-Bashforth method
is that the step size, h, cannot be altered if this error estimate
is too high (insufficient accuracy) or too low (too many comput-
ations). In the former case, the corrector formula can be applied
repeatedly, with the most recently available values, until
successive values converge. If convergence is slow the order of
the formulae can be increased, provided sufficient terms have been
evaluated. But if the error estimate is too small, the only
efficient method to reduce the number of computations is to alter
(increase) the step size. This can only be done if the single-step
procedure is re-invoked. However, as can be seen from equations
(2.127), the 4th order Runge-Kutta requires 4 fUnction evaluations
per step, compared to two for the Adams-Bashforth method. In
addition, the step size of the single-step method is, in practice,
a fraction of that for the predictor-corrector, resulting in even
more computations which may outweigh any subsequent saving from the
increased step size of the latter method. For all these reasons
it is important to choose carefully, in advance, the step size and
order of the Adams-Bashforth formulae. The full formulae, as applied
to orbit determination, are given in Appendix D.2.
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2.5 LEAST SQUARES ADJUSTMENT AND PARTIAL DERIVATIVES

2.5.1 The Satellite Observations

For a precise orbit determination, the satellite must be
observed by a network of globally distributed tracking stations.
The requirements of this network are peculiar to the individual
satellite, but it is desirable that it should be observed contin-
uously throughout its orbit. There are various types of observations
which can be used in OD. The most important for precise work are
range, range rate and range difference. Optical observations of
the satellite against the background of stars are also used, but
for less accurate work.

Range observations can be made in a number of ways. The most
common is for a pulse of electromagnetic radiation, either visible
or Radio Frequency (RF), to be bounced off the satellite. The time
interval between transmission and reception at the tracking station
is a measure of the distance travelled or two-way range. This
principle is used in Satellite Laser Ranging (SLR) (Ashkenazi,
Agrotis and Moore; 1984), where pulses of laser light are bounced
off a number of satellites which are equipped with corner-cube
retroreflectors. It will also be used in the proposed NAVSAT
satellites (Diederich et al, 1984) which will carry transponders
capable of relaying RF signals. This technique generally requires

•complex tracking facilities; but relatively simple equipment on
board the satellite. In a variation of the method, the two-way
range measurements are made by the satellite, which subsequently
transmits them to a central processing facility on earth. The
operation of the tracking stations is thus made simpler, but the
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satellite has to carry far more complex equipment.

Another commonly used ranging technique is for the satellite
to transmit signals which are modulated with coded timing
information about their transmission. The difference between this
time and the time of reception is a measure of the range. However,
this range is corrupted by errors in the satellite and tracking
receiver clocks, which have to be calibrated or determined in the
OD process. A range measured in this way is termed a pseudo-range
and is the principal type of observation for the NAVSTAR GPS
satellites (see Chapter 5).

Range rate, that is the rate of change of the range with
respect to time, is a function of the relative velocity between
satellite and tracking site. It can be observed, if the satellite
transmits signals on a stable, continuous radio frequency, by
measurements of the Doppler shift of the received frequency. If the
Doppler frequency (the difference between received and transmitted
frequencies) is integrated between times t and t+6t, the number
of cycles, or Doppler count, is obtained. This is a measure of the
range difference between the two times. Range rate and difference
observations are routinely used for tracking the Transit satellites
(O'Toole, 1976).

The tracking observations have to be corrected for various
system and propagation effects before they can be used in the OD
process. The system effects are determined by calibrating against
other systems or techniques. Propagation effects arise because of
variations in the speed of electromagnetic waves as they enter the
ionosphere and troposphere, which cause delays in the arrival of



67

these signals at the tracking site. The observations have to be
corrected to whatever their values would have been, had the signals
travelled entirely in vacuo. Ionospheric refraction, which does
not affect visible frequencies, is frequency dependent and can be
corrected by using dual frequency measurements. Tropospheric
refraction is separated into 'ory' and 'wet' components and can be
modelled by using surface measurements of atmospheric pressure,
temperature and relative humidity, at the time of observation.
There are various available tropospheric correction models, the
most famous ones being the Hopfield model used for RF observations
(Hopfield, 1977), and the Marini and Murray model used for visible
frequencies (Marini and MUrray, 1973). A more detailed account of
ionospheric and tropospheric corrections, as applied to the GPS

satellites, is given in Chapter 5.

The technique of least squares adjustment,to determine the
most probable values of the various unknown parameters using the
satellite tracking data, is outlined in Section 2.5.2. The deri-
vation of the OD observation equations for range observations
is treated in Section 2.5.3.

2.5.2 Least Squares Adjustment

The observations taken in order to determine a number, k,
of unknown parameters are given as functions of these parameters, as

= f. (Xl' xz, ••• , Xk)1. . (2.145)

where .th b t· ( i OD)1. 0 serva 1.on eg range, n
Xl' Xz, ••• 'Xk unknown parameters (eg tracking station

coordinates)
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The true values of the observations are given by the true values
of the unknowns, as

= f.
1.

..., (2.146)

If approximate values of the unknowns are assumed, the computed
observations will be

= ..., (2.147)

and the true observations become

= (CCfix 1 + h.x1 , X 2 + h.x2' ••• , (2.148)

where approximate (computed) values of
the unknowns

h.x1 ,h.x2 , ••• , h.~ corrections to the computed
values, to give the true unknowns

However, in practice the observations are subject to random errors,
and the true observations are replaced by:

o= qi + Vi (2.149)

where q~
l.

Vi residual term
observed value of observation

The Taylor series expansion of (2.148), ignoring second order terms,
is

h.x2 + •.. + ••• (2.150)

where

=
c cc)(x 1 , X 2 , ••• , xk

(2.151)
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Substituting (2.147) and (2.149) in (2.150) gives the least squares
observation equation, linearized about the approximate values, as:

l1xl +
aq7

"'1' sx z + ••• +
8xz

o c(g. - q.) + v.
1. 1. 1.

(2. 152)

c
The partial derivatives,8qi , are known as the observation equationaXj
coefficients. A set of n observation equations, similar to (2.152),
can be expressed in matrix form as

Ax = b+v (2.153)

where A (nx k ) natrix of observation equation coefficients
x (nx 1) vector of the unknown corrections to the

. t 1 c c capproXl.mae va ues, Xl' Xz, ••• , ~

b (nx 1) vector of the observed minus computed
. 0 cvalues of the observations (qi - qi)

v (nx 1) vector of residual terms,vi

These observation equations can be weighted by dividing each one in
turn by the estimated (a priori) standard error of the corresponding
observation. The purpose of weighting is twofold: in the first
place it converts all the terms to dimensionless quantities, making
it possible to mix different types of observations. Secondly, it
provides a method of attaching more importance to the more accurately
observed values. It is also possible to hold certain quantities
fixed, by introducing observations with very high weights (low
standard errors). There is no need to apply weighting if all observ-
ations are of the same type and have identical accuracies. The
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weighted observations are given in matrix form, by:

, "W2 Ax = W2 b + W2v (2. 154)

where

1 0 0
°1

0 1
°2, (2.155)W2 =

o o 1
on

and 0i: a priori standard error of ith observation.
The least squares solution of (2.154) is that which minimizes the
sum of the squares of the weighted residuals. In other words

vTWv = minimum (2.156)

The values of the unknowns which satisfy (2.156) are given by
(see Appendix F.1 for derivation)

(2.157)
This can be expressed as

Nx = d (2.158)
where

N (kx k ) normal matrix (ATWA)
d (kx 1) right hand side sector (ATWb)
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Equations (2.158) are known as the normal equations, and can be
solved by a number of methods to give the vector of unknowns,
x (Ashkenazi, 1967 and 1969). The matrix, N, is symmetric and
positive-definite (see Appendix F.2) and an appropriate method is
Choleski's method of symmetric decomposition described in
Appendix F.3.

The covariance matrix of the vector of unknowns is defined as :

(1 =xx

where (1 2xi

(2.159)

C1 2
Xl

(1
X1X2 (1x i xk

(1 2
XIC1X2Xl (1x s xk

(1 2
xk

variance of the ith unknown,

covariance of the pair of elements, xi

and Xj

This matrix is given by (Ashkenazi, 1970)

where (1 2
o

C1 =xx
(1 2 N -1
o

(2.160 )

unbiased estimate of the variance of an
observation of unit weight, computed from

(2.161)
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r'J!
A derivation of this formula can be found in Ashken~i (1970). The
value of the unit variance, 0 , is an indication of whether the

o

a priori standard errors have been estimated correctly and, in
theory, it should take a value of unity. If however no weighting
has been applied, 00 is an indication of the magnitude of the
root-mean-square (rms) residual of the adjusted observations.

The covariance matrix, apart from giving the variances and
covariances of the unknowns, can also be used to compute the a
posteriori (after adjustment) variances of the observations and of
other important quantities. This can be done by making use of
Gauss's propagation of error theorems, which give the variance of
th .th b t'e 1 0 serva 10n as

8q. )
~ 0 + •••
uX2 XlX2

(2.162 )

and the covariance of observations i and j, as

(2.163)

From (2.162) and (2.163) it follows that, for

...
'0 = Ax (2. 164)

where b: (n x 1) vector of a posteriori observed minus computed

values

then

0...
bb

= A 0 ATxx (2.165)
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and 0bb is the covariance matrix of the adjusted observations.
It should be noted here that the covariance matrix of the observa-
tions is the same as that of the observed minus computed values.
The variances and covariances of all other quantities which are
functions of the unknowns, can be obtained by deriving expressions
similar to (2.162) and (2.163).

2.5.3 The Orbit Determination Observation Equations

It was explained in Section 2.5.1 that the satellite can be
tracked using a number of observation types. The equations that
will be presented here are only for range observations, but a similar
treatment can be easily applied to other types, such as range rate.

A range between station s and the satellite is independent
of reference frame and is given by

,
1 = [(x-x ) 2 + (y _ y ) 2 + (z _ z ) 2 ] ~

S S S
(2.166 )

or by

1 = [(X-X ) 2 + (y _ y ) 2 + (z- z ) 2 ] ls s s (2.167)

where
/ r R (x, y, z) and (X, Y, Z), the satellite IF and

EF coordinates respectively

r-s ' Bs: (xs' ys' zs) and (Xs' Y s'Zs)' the IF and EF
coordinates of station s.

All these position vectors must be known at the time of observation.
This is the instant at which the signal reaches (or leaves) the
satellite, for satellite coordinates, and the instant at which it
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leaves (or arrives at) the station, for station coordinates. The
satellite coordinates are given at discrete intervals according to
the numerical integration time step (see Section 2.4), and can be
interpolated using a suitable interpolation scheme (see Appendix E.2).
The full least squares observation equation for an observed range,
linearized about some approximate values, is (see Section 2.5.2).

6 al I::.rt:?
1:np 81 1:ne al1:.1 + l!.Pi+ l!.Ui+ I~= art:? ~ i=1 ap. i=1 au.

~ ~ ~

1:,3 81 llRsi = (10 - lC) + v (2.168)i=1 aRsi

where one of the six IF components of the satellite
state vector (ro' ro)

Pi one of the np force model unknowns to be
-mincluded in the solution (eg CR, CD' Ca' Cn '

S~, GM, as defined in Section 2.3)
u. one of the ne earth rotation parameters (ERP's),
~

which could be xp, yp or UT1-UTC (see
Section 2.2.3)

Rsi one of the components of the EF position vector,
R of station s-s'

l'°,lc:values of observed and computed range respectively

The actual observation equations do not need to include all the terms
mentioned above, and any quantities which are known in advance can
be excluded. In addition, it is possible to constrain a number of
unknowns by introducing observation equations of the form
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(2.169)

where q anyone of the unknowns in (2.168)
qO observed (required) value of the unknown
qC computed value which is usually the same as qO

and attributing to them appropriate weights. The observations from
all the ns tracking stations are assembled, observation equations
are formed and then solved using least squares, as described in
Section 2.5.2, for the required unknown corrections ArC: , 6p. ,

l. l.

AUi and ARsi• For the formation of the observation equations,
the coefficients 81 01

au.
l.

and 81-- need to beaRsi
evaluated. The rest of this section will deal with the computation
of the observation equation coefficients for each type of unknown.
The most straightforward are those for tracking station coordinates,
and they are given by differentiating equation (2.167), as

(2.170)

where Ri one of the EF components of the satellite position
vector, B

The coefficient for an ERP unknown, assuming that these only affect
station (and not satellite) coordinates, is

The derivatives

al =aui
at
1rn'Sj

01 oRsj
m:r:- oUl.'sJ

are computed as in (2.170).

(2.171 )

The partials
oRSj-- are given in vector form, asaUi
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aR ax ay azs-s s , s )au. = ( au. aUi au.
l. l. l.

But, from (2.28 )

R = PE NQ r-s -s

and

aR-s _L (PE NQ rs)=aUi aUi

(2.172)

(2.174)

Taking the polar motion component, xp' as an example,

(2.175)

where

ap
axp

(2.176)

and

- sinxp 0 cosxp

a~ [R 2 (-Xp) ]
0 0 0 (2.177)=p

0 - sinxp- cosxp

The observation equation coefficient for yp is derived similarly.
When UT1 - UTe is being determined, the observation equations are
set up in terms of a correction, l1GAST,to Greenwich Apparent
Sidereal Time (GAST). The required coefficient, ~~AST' is computed
from (2.171), using
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aR~s
aGAST = p

aEaGAST . NQ rs (2.178)

where E is the earth rotation matrix (see Section 2.2.3).
The correction, ~GAST, is subsequently converted to its Universal
Time equivalent, ~UTl (= ~ (UT1-UTe», by making use of (2.22).

The coefficient for a satellite state vector unknown is

al 3 al arj
ar<? = I . 1J= arj ar~1

and for a force model unknown,

al 3 al er j
ap. = I . 1 arj ap.
1 J= l.

For example

al al ax al ay al az
axo = ax axo + ay ax + az ax

0 0

(2.179)

(2.180)

(2.181)

The partial derivatives 2!_ in equations (2.179) and (2.180) arearj
easily evaluated by differentiating (2.166), as

al
ar.

J
= (2.182)

but the derivatives of satellite position with respect to the state
ar ar

vector and force model unknowns, _.J. and 21., have to be
ar~ aPi

obtained by numerical integration. The acceleration partials are
integrated once to give the velocity partials, and twice to give
the position partials as functions of time, as

= [::~ 1 +
o

(2.183)
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arj
ar?
l.

[
ar. ]= _J_ +

ar~ to

ar.
J dtarci (2.184)

er jwith similar expressions for -- The acceleration derivativesapi •
with respect to the state vector unknowns are

ar.
_J =
ar?
l.

(2.185)

and those with respect to the force model parameters are:

of'j 3 at'. ark 3 at' o~k afj* (2.186)= Ik=1 _J -- + Ik=1
_j -+-op. ark ap. 01\ °Pi apil. l.

.where rk one of the components of the IF satellite velocity.vector, r, at observation epoch
t'j one of the components of the satellite IF

acceleration vector, t' , at observation epoch

.. *at" .
_J derivative obtained by direct differentiation of
api

the constituent of the force model which contains
Pi (see Appendix C.2)

For example, in

aj{ ax ax ax ay ax az aj{ a*
aCR = ~R + ~R + ~R + a* ~Rax ay az

ox ay ax ai 6x* (2.187)+ ay aCR
+ az - +-aCR aCR

the term ox* is obtained by differentiating equation (2.103),OCR
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for the satellite acceleration arising from solar radiation, with
or. or.

respect to CR. The partial derivatives or~ and ot~ are

computed by differentiating the various components of the force
model in turn, and summing the corresponding partials for all the
components (see Appendix C.2)

Equations (2.185) and (2.186) can be combined and expressed
in matrix form, as

(2.188)

where Am o x (6 + np ) matrix of acceleration partials

or:. or:.
__J_ and __J_

oor.
l.

op.
l.

ol"j
(3 x (6 + np ) matrix of velocity partials - andaroi
orj
ap.
l.

ar.
Ox (6 + np ) matrix of position partials ~ andori
6rj (see equations(2.179) and (2.180»
api

or *
(3 x (6 + np) matrix of direct derivatives, ?Pi
(see Appendix C.2)

D1 : Ox 3) matrix of af'j
ark

D2 : Ox 3)
or[!'latrixof _J.
ork
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In the absence of drag, along-track and cross-track accelerations,
the satellite acceleration is not a function of velocity and the

8""
rj are all zero. D2 is then a zero matrix. The computation of
8rk

equations (2.188) is explained in more detail in Appendix C.2.
These give the acceleration partials, Am' as functions of the
position and velocity partials, X and V. There are 18 + 3npm m
second order differential equations, and they are similar to (2.106)
which gives the satellite acceleration as a function of position and
velocity. A numerical integration scheme, as outlined in Section 2.4
and Appendix D, gives the matrices V and X as functions of time.m m
To start the integration, the matrices of initial values, XO andm
V~ , at initial epoch to' are required. These are given by

1 0 0

XO = 0 1 0m
0 0 1 0

and

0 0 0 1 0

Vo = 0 0 0 0 1 0m
0 0 0 0 0 1 0

o

(2.189)o
o

o
(2.190)o

o

To explain (2.189) and (2.190) take, for example, the first
element of the first row of X ~. This is

= 1= (2.191)
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The second element is

=
axo
ay

o
= o (2.192)

because a change in one component of the state vector (e.g. Yo)
does not produce any change in the other components (e.g. xo).
For the same reason, for a force model unknown

=
axoap.

~
= o (2.193)

As least squares provides only a first order correction, it
may be possible to ignore some of the components of the force model
when evaluating D 1 and D 2 . In the initial solution, if the
corrections to the approximate values of the unknowns are large, the
adjustment is repeated with the most recent values until they
converge (i.e. corrections become negligible). The omission of the
less significant constituents of the force model when computing the
partials should not adversely affect the rate of convergence.
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2.5.4 Orbit Determination Adjustment Requirements

When all the required satellite tracking data have been
collected, a set of observation equationssimilar to (2.168) is
solved by least squares (see Section 2.5.2), in order to determine
the various unknowns described in the previous section. The total
number of unknown parameters is

= 6 + 3ns + np + ne (2.194)

where ns number of tracking stations
np number of force model unknowns
ne number of earth rotation parameters (ERP's)

The set of tracking stations constitutes a three-dimensional network.
In any 3-D adjustment, the normal equations (equations(2.158» are
singular unless a number of constraints is imposed. There are seven
such constraints : three to locate the origin, three to orientate
the coordinate axes, and one to provide the scale for the network.
The rank deficiency of the normals is the number of such conditions
which are not satisfied.

In orbit determination, the three origin conditions are
satisfied by the gravity field. The spherical harmonic coefficients
C~, C~ and S~ represent the first moments of mass of the earth
about the origin of coordinates. These coefficients are set to zero
in the geopotential expansion of (2.30), thus locating the origin at
the earth's mass centre. The scale of the network is provided by
the adopted values of the speed of light, c, and of the earth's
gravitational constant, GM. These two quantities must be compatible,
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and if the speed of light is held fixed the value of GM can be
determined in the adjustment. There are now the three orientation
deficiencies left. Two of these are satisfied by the polar motion
values, xp and yp , which locate the Z-axis of the EF reference
frame with respect to the earth's instantaneous spin axis. This
still leaves the X-axis free to rotate, and it is defined by fixing
the longitude of one of the tracking stations. This is achieved
by introducing an observation equation, similar to (2.169), given by

(2.195)

where ).s EF spheroidal longitude of station s (see Appendix B.3)

From equation (B.18),

(2.196)

The observation equation (2.195) can be expressed in terms of

= (2.197 )

where

6), -ys s=6X- X 2+ Y :IS S s

6), XsS =-6Ys X2 + y2
S S

(2.198)

(2.199)

and AXs and ~Ys are the unknown corrections to the provisional
values of the X and Y - coordinates of station s. Equation (2. 197)

is the 'observation' equation that, when given a sufficiently high
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weight (small standard error) fixes the longitude of the station to
the required value, )..0 •s

The seven parameters described above define the Er reference
frame. It is clear that .since the polar motion values, xp and yp'
are two of the orientation constraints, it is not possible to solve
for all the station coordinates and for polar motion simultaneously
(see Section 4.2.4). If x and yare being determined, thenp p
the latitudes of two stations, in addition to the fixed longitude,
have to be constrained. In practice it is better to fix a number of
tracking stations and use their coordinates in order to define the
orientation of the EF reference frame. Initially, these coordinates
can be derived by using externally provided (e.g. by the BIH) polar
motion values. This process will 'align'the network to the external
values, removing the biases that would otherwise exist between the
two systems.

It was seen earlier (Section 2.4) that the satellite coordinates
are derived in the IF. This is related to the EF reference frame by
the rotation matrices described in Section 2.2, and in particular by
the earth rotation matrix, E, of equation(2.24). E represents a
rotation about the X-axis through GAST. In Section 2.2.3 it was
shown that GAST is equivalent to universal time, UTl. This implies
that absolute values of UTl-UTC (see Section 2.5.3) cannot be
determined at the same time as the satellite state vector, because
they would allow the satellite orbit to rotate to any arbitrary
'inertial frame'. The OD process is thus not suited to determining
absolute values of UT1-UTC. However, it is possible to compute
changes in UTl-UTC (or GAST) from any initial value. The problem
now arises of how one would go about determining earth rotation from
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satellite tracking data (see Section 4.2.5). One approach is to
determine a satellite orbit over a long arc, say one month, using
externally provided values of UT1-UTC and an appropriate set of
observations. This orbit can then be held fixed in a number of
adjustments with smaller portions of data, spanning 1-2 days, in
order to determine values of UT1-UTC for the mid-epochs of the new
data sets. The disadvantage of this approach is that it is
difficult to maintain continuity over successive long arcs.
A better method is to determine the satellite orbit over a number
of days, in an adjustment which also incorporates a number of,
say daily, UT1-UTC unknowns. The singularity that exists between
these and the satellite state vector can be overcome by fixing the
first UT1-UTC unknown at any chosen value. All the other unknowns
are determinable, because the fixed value determines the relationship
between the IF and EF references frames, and the subsequent
solutions for UT1-UTC represent the changes in the earth's rotation
that have occurred since the beginning of the data set. Continuity
can be maintained in this approach by overlapping successive long
arcs, and fixing the first UT1-UTC unknown of the present solution
at the value derived from the previous adjustment. Another advantage
of this method is that all the unknowns can be determined in a single
adjustment rather than the two-stage process of the first approach.



CHAPTER THREE

UNIVERSITY OF NOTTINGHAM ORBIT DETERMINATION
SOFTWARE
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3.1 Introduction

Orbit determination software was developed at Nottingham in
order to process SLR observations of the Laser Geodynamics
Satellite (LAGEOS), and the models used are specifically suited for
this satellite. However, with some alterations, the programs can
be used in conjunction with other satellites and types of data.

LAGEOS was launched in 1976 in a near-circular orbit, at an
altitude of 5900 km and an inclination of 1100 to the equator.
At this altitude it orbits the earth every 225 minutes. It is a
spherical satellite with a mass of 408 kg and a diameter of 60cm,
and its surface is completely covered with corner-cube retro-
reflectors. Its low area-to-mass (Aim) ratio minimizes the effects
of surface forces and its high altitude· eliminates the need to
model air drag (see Section 2.3.7). Gravitational forces need to
be modelled very accurately, and the software allows for the direct
attractions of the moon, sun, Venus, Mars, Jupiter and Saturn (see
Section 2.3.3). Lunar and solar solid earth tides (Section 2.3.4),
ocean tides (Section 2.3.5), solar radiation (Section 2.3.8), and an
empirical along-track acceleration (Section 2.3.6) are also
modelled. The latter takes into account any unmodelled drag-like
effects. A choice of two geopotential models, GEM 10 and GEM-L2
(see Section 2~3.2), truncated to degree and order 20, is available.

The software package was written in FORTRAN 77 for the
IeL 2977 computer of the Unive·rsity of Nottingham. It consists of
four program modules, ORBIT, CHEBPOL, SOAP and DATPAK, which are
illustrated in the flow chart in fig 3.I. Of these, ORBIT and
CHEBPOL were developed by the author, SOAP was written jointly with
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Mr. T. Moore of Nottingham University, and DATPAK was developed by
Mr. T. Moore with the author's assistance.

ORBIT is the program that performs the numerical integration
of the orbit. It takes the satellite state vector and, using an
appropriate force model (Section 2.3) and numerical integration
procedures (Section 2.4), computes and outputs the satellite
ephemeris ( ret) and ~(t» and the required observation equation
partial derivatives (matrices X and V in Section 2.5.3) asm m
functions of time. The program was tested by comparing it with
the output of a similar program, developed independently by
Dr. A. T. Sinclair of the Royal Greenwich Observatory.

The Satellite Orbit Analysis Program (SOAP) takes the output
from ORBIT and the pre-processed (filtered) SLR observations and
performs the least squares adjustment (see Section 2.5) for a
specified number of unknowns.

The third program, CHEBPOL, serves two functions: in the
first place, it avoids the need to evaluate a large nutation series
for every integration step (in ORBIT) and for every observation
(in SOAP). This is because it derives interpolation coefficients
for each day, for the elements of matrix B, where

(3.1)

and Q and N are the precession and nutation matrices respect-
ively (see Section 2.2.2). It also computes interpolation
coefficients for the nutation in longitude, A~, the planetary
coordinates of DE200/LE200 (see Section 2.3.3) and the ERP'S
(Xp' YP' UT1-UTC). Secondly, it makes this data available to both
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ORBIT and SOAP by storing it in a random access file.

This chapter documents the main features of progr-ams

CHEBPOL (Section 3.2), ORBIT (Section 3.3) and SOAP (Section 3.4).
DATPAK is a pre-processing program, which filters and compresses
the SLR data. It will not be described in detail, but its main
features are:

(2) A 10th order polynomial is fitted by least squares
to each LAGEOS pass, and the rms residual of the
fit, a, is calculated.

® All observations with residuals greater than 20 are
rejected.

CD If 0 is greater than 10m, steps (2) and 0 are
repeated up to four times.

~ The observations are separated into small sets,
spanning intervals of one minute, and a 7th order
polynomial is fitted to each set using least squares.

~ If the rIDS residual of this fit is greater than
one metre, the minute of data is rejected.

~ A point is taken near the middle of each accepted
polynomial, which is called the 'normal point'.
These normal points are used as the data input in SOAP.

The strategy outlined above (Ashkenazi, Agrotis and Moore, 1984)
eliminates noisy observations and reduces considerably the amount of
data that is handled in SOAP. The use of normal points produces
solutions which are, to all purposes, identical to those obtained
with the full set of contributing observations, at a fraction of the
cost.
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3.2 CHEBYSHEV POLYNOMIAL PROGRAM (CHEBPOL)

3.2.1 Data Input

CHEBPOL evaluates polynomial coefficients for 30 days,
starting from a specified start date. It requires as input:

(i) seven sets of 5-day xp' yp and UT1-UTC values from
BIH Circular D (see Section 2.2.3) •

(ii) the heliocentric IF lunar and planetary coordinates
from DE200/LE200 (see Section 2.3.3). These are given
in Astronomical Units (AU) for O. hO TDB of each day and
they are stored on magnetic tape for the years 1979 to
2006. To reduce filestore requirements, a portion of
this ephemeris covering the years 1980 - 84 has been
transferred to a random access file, and this is used as
the input in CHEBPOL.

(iii) the year and day of year, from which to start evaluating
coefficients. This must coincide with the first day for
which the ERP's are given.

(iv) the output mode. This varies the amount of line printer
output.

A simplified flow chart of CHEBPOL, showing the different types of
input, is given in fig 3.11.

3.2.2 Program Description and Output

CHEBPOL evaluates Chebyshev polynomial coefficients for
each day, for:

(I) the 9 elements of matrix B, defined in equation (3.1)
(see Section 2.2.2)
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(ii) the nutation in longitude, 6q, (see equations (2.12 )).
This is required in order to convert GMST to GAST,
which is used in the computation of the earth rotation
matrix, E (see Section 2.2.3).

(iii) the geocentric IF coordinates of the moon, sun, Venus,
Mars, Jupiter and Saturn. These are required by ORBIT
to allow for third body gravitational effects and for
solar radiation pressure on the satellite (see Sections
2.3.3 and 2.3.8), and by both ORBIT and SOAP to
evaluate tidal corrections (Section 2.3.4).

eHEBPOL also evaluates linear interpolation coefficients for the ERP's,
from the 5 - day BIH values.

The output is on a random access file and spans 30 days from
the specified start day. This file is subsequently used as input to
both ORBIT (Section 3.3) and SOAP (Section 3.4). Each output record
contains all the coefficients for one day. The first number on the
record is the JUlian day number (JD) of the day in question. This is
defined such that

2000 January 1 at 12~ 0 UT = JD 2451545.0 lIT (3.2)

and one Julian day corresponds to one solar day. So, for example,

1980 September 2, O~O UTe = JD 2444484 .5 UTe (3.3 )

The Julian day number provides an unambiguous and easy way of
specifying the date. The interpolation coefficients are referred
to O~O Ute of the particular day, and for any known UTe epoch,
tuTe' and Julian date, JD, all the required values can be computed.
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The Chebyshev representation of a function, f(t), of a
variable, t, (see Appendix E.1) consists of evaluating coefficients
ao, a1, ••• , an' where n is the order of the Chebyshev polynomial.
These coefficients are valid for the interval, At, for which they
are computed.

In CHEBPOL, the variable is UTC time since O~O of the day
in question, tUTC' and the interval, At, is 24~0. Any value of a
function (eg A~) within this interval is given by

f(tUTC) = (3.4)

where

e = cos-1 [tUTC - 12~0 ]
24~0

(3.5)

The Chebyshev coefficients are evaluated for degree n = 10, but they
are truncated in (3.4) to I. = 4. Five coefficients, ao' a1, Qa, as
and a., for each function, are output in the random access file.
Since there are 18 (6 x 3) planetary (and lunar) coordinates,
9 elements of matrix B, and one value of A~, the total number of
Chebyshev coefficients per day is 140. For the computation of these
coefficients, each function has to be evaluated at 11 (n+ 1) data
points (see Appendix E.1) within the 24-hour interval. The data
points are defined by equations (E.3) and (E.4). They present no
problem for the elements of B and for A~, since the precession and
nutation angles (see Section 2.2.2) are given as continuous functions.
The planetary and lunar coordinates, however, are given at discrete

hintervals, at 0.0 TDB of each day. They first have to be inter-
polated to the UTe epochs that are specified by the Chebyshev data
points. This interpolation is performed using Everett's formula
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(see Appendix E.2) up to the fourth central difference.
The coordinates are subsequently converted to the geocentric IF
(see Section 2.3.3), and from Astronomical Units to metres
(1 AU = 1.4959787 x 10 11m).

The ERP's are given for any UTC time by linear interpolation.
For example

(3.6 )

and the output of CHEBPOL consists of coefficients 8 and 81 for
• 0

x y and UT1 - UTC, for each day. These coefficients arep , p

derived by linear interpolation of the 5 - day BIH values of
Circular D.

A simplified flow chart of CHEBPOL is given in fig 3.II.
The main advantage of using this program is that it avoids the need
to compute a large nutation series of 106 terms for every integration
step (in ORBIT) and for every observation (in SOAP). It also makes
the last two programs far less complex, because they do not need
to incorporate the precession and nutation theories (Section 2.2.2).
For these reasons, CHEBPOL is also being used in the University of
~ttingham Very Long Baseline Interferometry (VLBI) software package.

3.3 TIiESATELLITE ORBIT INTEGRATION PROGRAM (ORBIT)

3.3.1 Numerical Integration and Force Model Definition

Orbit performs the numerical integration of the IF satellite
acceleration, r, (see Section 2.4),andacceleration partial derivatives,
A (see Section 2.5.3). A total of [3 + 3 x (6 + np)] second orderm
differential equations (np = number of force model unknowns) are
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integrated to give the satellite IF position and velocity vectors,
~ and t, and the position and velocity partials, Xm and Vm,
based on the initial elements, .

r r-0' -0' The integra-
tion output is obtained at discrete UTe time intevals, according
to the specified step s~ze. The numerical integration methods used
in ORBIT are :

(i) a 4th order Runge-Kutta (R-K) starting procedure
(see Appendix D.1), followed by

(ii) an 8th order Adams-Bashforth (A-B) predictor-corrector
method (see Appendix D.2).

The step sizes of these two methods, HI and Ha respectively, are
supplied by the user. To start the predictor-corrector computation,
the R-K formulae have to be used to provide 8 steps,in addition to
the starting elements,at intervals of Ha. This is equivalent to a
total number of R-K steps, of

N Ha 8
1= 'I17x

From the above equation, it is clear that the ratio Ha/HI
represents the number of R-K steps per single A-B step, and this
number must be an exact integer, since HI must be smaller than Ha
(see Section 2.4.2).

The step sizes must be chosen so as to obtain all'the values
(integrals) to the required accuracy. There is a stricter accuracy
requirement for the satellite ephemeris than for the partials,
therefore if the satellite positions are satisfactory, there is no
need to check on the accuracy of V and X. A pair ofm m
appropriate step sizes have been established by trial and error
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for LAGEOS, as

= 15 seconds
<3.8 )

= 120 seconds

On halving these step sizes and repeating the numerical integration,
the satellite IF coordinates changed by less than 1 em after a
four-day arc. The advantage of the Adams-Bashforth method is now
obvious. Here, one step of 120 seconds requires only two function
evaluations (see Section 2.4.2), while in the R-K method the
equivalent 8 steps of 15 seconds (=120 seconds) require 32 (8 x 4)
function evaluations. So the predictor-corrector method is
computationally up to 16 times cheaper than the R-K method. At the
step sizes of (3.8), the number of R-K steps, N1, is 64 (from
equation (3.7)), after which the predictor-corrector takes over.

In ORBIT, a check on the truncation error (£i) of the Adams-
Bashforth routine is maintained at each integration step. Applica-
tion of equation (2.•144) for n = 8, gives,

= (r** - r *)i i

where ri *, ri**: predicted and corrected component of IF
satellite position vecto~ r, at ith integration
step.

This gives

= (3.10 )

ORBIT evaluates £i for all the components of the satellite
position vector, and outputs a warning message when its value
exceeds 1 J.1lIl.
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The force model used in ORBIT is specially suited for LAGEOS
(see Section 3.1). It consists of the following constituents
(see Section 2.3), which are in accordance with the standards for
the MERIT Campaign (Melbourne, 1983):

(i) GEM 10 or GEM-L2 gravity model, truncated to degree
and order 20

(ii) third body attractions of moon, sun, Venus, Mars,
Jupiter and Saturn

(iii) lunar and solar solid earth tides (Wahr model)
(iv) solar radiation pressure
(v) an empirical along track acceleration

(vi) ocean tides (Schwiderski model)

The approximate magnitudes of each of these constituents on LAGEOS,
and their overall effects after 4 days, are tabulated in fig 3.111.

LAGEOS passes through the earth's shadow, and there is a
facility in ORBIT to perform a shadow test (see Section 2.3.8) and
switch off the solar radiation acceleration. If this facility is
used it introduces sudden changes in the force model, which result
in unacceptably high truncation errors (£i) in the Adams-Bashforth
method. There are two possible solutions to this problem: in the
first place, the solar radiation could be altered gradually. This
would also represent more accurately the physical reality of the
situation, as the satellite goes into the earth's penumbra.
Secondly, the Adams-Bashforth corrector formula could be applied
more than once. In this case the error expression in equation (3.10)

would not apply, but it could still be used in order to ensure
that successive 'corrected' values converge to a specified limit.
The above two suggestions should be the subject of further study
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Force M::>del LAGEOS Effect After
Component Acceleration 4 rays

(m/s" ) (m)

Earth Attraction 2.64 1.6 x 1011

M::>onAttraction 2 x 10-6 1.2 x 105

Sun Attraction 9 x 10-7 5 x 104

Lunar Earth Tides 2 x 10-8 1.2 x 103

Solar Earth Tides 1 x 10-8 600

Solar Radiation (eR = 1.2) 3 x 10-9 200

Along-Track Acceleration 3 x 10-12 0.2

Planetary Attractions :

(a) Jupiter 3 x 10-12 0.2

(b) Venus 6 x 10-13 0.04

(c) Saturn 2 x 10-13 0.01

(d) Mars 3 x 10-14 0.002

Ocean Tides 2 x 10-12 0.1

,
Fig 3.III Typical Magnitudes of LAGEOS Force Model Constituents
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(see Chapter 7). In the present situation the solar radiation
cut-off is not used and, by making CR an adjusted parameter, it
is hoped to average out any errors arising from this.

The force model is also used to compute the derivatives of
satellite acceleration, Am (see Section 2.5.3 and Appendix C.2),
with respect to the satellite state vector and force model para-
meters, from the position and velocity partials, Xm and Vm
(equation (2.188» •This requires the evaluation of matrices 01,
D2 and Af. Since there is no need to account for air drag at
the LAGEOS altitude, the only force model constituent which
contributes to 02 is the along-track acceleration. This is very
small (see fig 3.III) and it has been decided to ignore its effect
on the partials and set the elements of D2to zero. Equation (2.188)
then becomes

= (3.11)

In Section 2.5.3 it was argued that the less significant components
of the force model can be ignored in the evaluation of 01 ,without
affecting the rate of convergence of the least squares solutions.
The components contributing to 01 in ORBIT, are:

(i) all the terms of the geopotential,
(ii) the third body attractions of the moon, sun, Venus,

Mars, Jupiter and Saturn, and
(iii) ocean tides.

The effect of ocean tides is insignificant, but these are included
in the geopotential as corrections to the spherical harmonic
coefficients (see Section 2.3.5),prior to the computation of 01.
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In the evaluation of matrix Af, the first six columns,
which correspond to the elements of the state vector, are all zero.
Each subsequent column corresponds to a force model parameter, Pi
(see Appendix C.2), and the total number of these, np, is specified
by the user. There are options for computing partials for CR,
Ca' GM and for up to 12 normalized spherical harmonic coefficients,
-m -Cn and S~.

3.3.2 Input Requirements

ORBIT requires input f'r-om up to 7 separate files, which are
illustrated in fig. 3.IV. These contain the following information:

(i) the input mode of the starting elements (INMOD). There are
three available input modes:

1 satellite state vector in IF coordinates. X~ and
V~ given by (2.189) and (2.190).

2 satellite state vector in EF coordinates. X~ and
vg as above.

3 this mode operates as a continuation of a previous
run of ORBIT. The last nine steps of the IF
satellite ephemeris and of the matrices ~ and Vm
from the previous run are input, and the R-K routine
is by-passed. The partials in matrices Xm and Vm
refer to the starting elements of the first run.
This mode enables the user to perform several 'small'
runs of the program, instead of one long run, and
avoids the use of very large files.
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(Li ) the UTe epoch, to' of the starting elements. The year,
day number (of year), and time in hours, minutes and
seconds is required.

(iii) the satellite state vector in the appropriate reference
frame (see (1».

(iv) the last nine integration steps of the previous run
(only ifINMOD= 3).

(v) the earth's angular velocity. This is required in order
to convert the satellite IF velocity to the EF reference
frame, relative to a set of rotating axes. Equation (2.95)
gives the IF velocity relative to the rotating axes (v),~r

and this is rotated to the EF frame by (see section 2.2.4)

v = PE NQ v~r -r <3.12)

Yr is used in the computation of air drag (see
Section 2.3.1), when an appropriate model is available.

(vi) the satellite mass and cross-sectional area. These are
only used in the computation of the solar radiation

r

acceleration (see Section 2.3.8).

(vii) the line printer output mode. This controls the amount
of output supplied to the user.

(viii) the integration step sizes, HI and H2 (see Section 3.3.1),

and the total number of steps, NT' at intervals of H2•
The number of R-K steps, N 1, is given by (3.1). The number
of A-B steps is

(3.13)
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(ix) flags for the required force model partials (CR, Ca'
-m -GM, Cn , Srn )n

(x) the degree and order of each of the spherical harmonic
coefficients for which partials are needed

(xi) the polynomial coefficients from the CHEBPOL file
(see Section 3.2)

(xii) polar motion and each rotation flags. There are three
options here:

1 : xp' yp and/or UT1-UTC are linearly interpolated
from the CHEBPOL file

2 ERP's are read from the CHEBPOL file, but
they are treated as constant throughout the
program run

3 daily values of x ,y .and/or UT1-UTC are input fromp p
separate files. This avoids the need to run CHEBPOL
for a second time if the ERP's need to be updated

(xiii)solar radiation cut-off flag. This operates the shadow
test (see Section 2.3.8).

(xiv) the values of CR, Ca and GM

(xv) the load numbers, k', and the Schwiderski ocean tiden
coefficients for the tides described in Section 2.3.5
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3.3.3 General Outline

This section summarizes the various tasks performed by ORBIT,

and the reader is referred to fig 3.V which gives a simplified
flow chart of the program.

After the various flags are input (see Section 3.3.2), the
satellite starting elements are read according to the value of INMOD,
and the numerical integration is started. There are two options at
this stage:

(a) if the current run is a continuation of a previous
program run, the R-K routine is by-passed and the predictor-corrector
.integration is started immediately. Nine consecutive values of r, t ,
Xm and Vm, from the output of the previous run (see Section 3.3.4),
are input. The partials in matrices X and V are given, in this. m m
option, with respect to the elements of the state vector which
started the numerical integration of the very first program run.
The input of the nine steps is from two random access files (see
fig 3.IV). The first file consists of nine records, each containing
the elements of the satellite IF position and velocity vectors for
one integration step. The first number in each record is the UTe.
time, At., elapsed since the epoch of the state vector. This is

l.

used to establish the UTe time at each subsequent integration
step of the Adams-Bashforth routine (see fig 3.V). The epoch of the
first step, for example, is given by

(3.14)

where to epoch of state vector

Atg time elapsed from toto the epoch of the last ephemeris
record of the previous run
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Hz integration step size of A-B method

The second file also consists of nine records, each holding
the elements of matrices X and V for one integration step.m m

(b) if this is the first run of ORBIT with a particular set
of starting elements, the Runge-Kutta routine is initiated. This
routine is allowed to progress for NI steps, computed using
equation (3.7), at a step size of HI. It computes the equivalent
of eight steps at a step size of Hz, which are then used to start
the Adams-Bashforth integration scheme.

The CHEBPOL data is initially read for the date of the
satellite state vector. At each integration step a check is
maintained on the date and when this changes, a new set of poly-
nomial coefficients is retrieved. The coefficients enable ORBIT
to compute the precession-nutation matrix, B, the nutation in
longitude, ~~, the planetary and lunar coordinates, and the ERP's,
from the known UTC time (see Section 3.2.2). Daily values of xp'
y and UT1-UTC can also be read from disk, without having top
generate a new CHEBPOL file, if there is a need for them to be
updated.

In the transformation between IF and EF reference frames,
the rotation matrices P, E, Nand Q are required (see Section 2.2).
Since Nand Q are combined into one matrix, B, the complete
transformation from IF to EF coordinates (see Section 2.2.4),
is

R = D r (3.15)
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where

D = PEBT (3.16)

The reverse transformation is

r = (3.17)

ORBIT computes matrices D and DT at every step, because they
are both required when deriving the satellite acceleration and the
partial derivatives which depend on the geopotential (see Section
2.3.2 and Appendix C). The normalized spherical harmonic

-m -mcoefficients, Cnand S n , are held in a BLOCK DATA segment. There
are currently two identical versions of ORBIT, one with the GEM10
and the other with the GEM-L2 (see Section 2.3.2) coefficients.

At every integration step the IF satellite acceleration,
r and acceleration partials, Am (see Section 2.5.3), are computed
as follows:

(i) the normalized geopotential coefficients are corrected
for ocean tides and for frequency dependent Love
numbers (see Sections 2.3.4 and 2.3.5).

(ii) the IF planetary and lunar coordinates are evaluated
from the Chebyshev polynomials. These are used, along
with the IF satellite position vector, !:', to compute
the satellite acceleration arising from third body
gravitational attraction (Section 2.3.3), solar
radiation pressure (Section 2.3.8) and solid earth tides
(Section 2.3.4). The elements of matrix D1 (see
Appendix C.2) which depend on third body gravitational
effects, are·also computed. If required, the
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a" *derivatives ag in matrix Af are evaluated.
R

(iii) the IF satellite coordinates are transformed to the

EF reference frame, using equation (3.15), and from a
cartesian to a polar representation (see Appendix B.2)

(iv) the polar satellite coordinates and the geopotential
coefficients are used to compute the EF acceleration,

~, and deri vati ves, D1E, arising from the earth's
attraction (see Appendix C). These are rotated to the
IF by making use of matrices D and DT.

(v)

atf.ves.

a specified number of the geopotential partial deriv-
8~* 8R* 8R*
8G"M - and ~ (see Appendix C.2).acm 8Snn

are evaluated and rotated to the IF. These constitute
consecutive columns of matrix Af

(vi) the IF satellite velocity vector is used to compute
the empirical along-track acceleration (Section 2.3.6)

8f"*and partials ~
a

(vii) the program now calculates the resultant satellite

acceleration, ~, and matrix D1, from all the appropriate

force model constituents

(viii) the acceleration partials, A ,are derived from them

posi tion partials, Xm, and from D1 and Af, using equation
(3.11 )

The program execution stops when the required number of
integration steps have been computed •. Details of the final output
of ORBIT are given in .the next section.
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3.3.4 Program Output

ORBIT produces a variable amount of line printer output and
six random access output files (see fig 3.IV). These satisfy the
present requirements of the Satellite Orbit Analysis Program (SOAP)
for range data (see Section 3.4), as well as those of any future
modifications of SOAP to deal with other types of data (see Section
2.5.1). The six files are:

(i) the IF ephemeris file. This contains the IF satellite
position and velocity vectors at UTe time intervals of
H 2. Each record is tagged with the time elapsed since the
epoch of the starting elements.

(Lt ) the EF ephemeris file. This is the same as (I ) but the
ephemeris is in the EF reference frame.

(iii) the file of position partials. Each record contains
successive values of matrix X~ , at the same time
intervals as (i)

(iv) the file of velocity partials. This contains successive
values of matrix Vm•

(v) the IF ephemeris file containing the last nine
integration steps. This constitutes the last nine records
of (i).

(vi) the file of partials containing the last nine integration
steps. Each record contains consecutive values of
matrices X and V from the last nine integration steps.m m

Files (v) and (vi) are the ones used as input in a continuation
run of ORBIT, based on the previous set of starting elements (see
Section 3.3.2). The current version of SOAP makes use of files (L)
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and"(iii). Range is not a function of satellite velocity, so the
velocity partials, V , (file (iv», are not used. For the samem
reason, the satellite velocities in file (i) are ignored. The EF
ephemeris file (file (ii» would be essential in any future develop-
ment of programs which only solve for station coordinates. Here
the adjustment is performed entirely in the EF frame, avoiding
the need to incorporate the rather complex precession and nutation
theories.

3.3.5 Software Debugging

In any software development, the programs have to be
exhaustively tested and debugged. In ORBIT, tests were conducted
in order to answer the following three questions:

(a) What is the effect of using Chebyshev polynomials?

(b) What is the precision of the partials, Xm ?

(c) How accurate is the ephemeris?

ORBIT was initially developed using an exact evaluation of
matrix B, without making use of Chebyshev polynomials. This enabled
the testing of two versions of the program, after the Chebyshev
representation had been implemented. Comparison between the
ephemeris output of the two programs showed no appreciable
differences.

To test the precision of the partials, Xm, they were
approximated by

(3.18)
Ar91
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where small shift in an element of the satellite state

vector ( r .t: )
'''0 -0

Arj change in one of the components of the satellite

position vector, caused by 6r~

ORBIT was first executed using a typical set of LAGEOS starting
elements. Six subsequent runs were performed, introducing shifts
in each of the components of the satellite state vector in turn,
of 1 m for r and of 1mm/s for r . The numerical derivatives

-0 -0

of (3.18) were computed, and the agreement between these and the
actual partials, X , was good to 3 significant figures.m

The precision of the numerical integration was tested by
halving the integration step sizes and repeating the run (see
Section 3.3.1). Unfortunately there can be no internal checks to
detect gross errors in the formulation of the force model and the
computation of the ephemeris. However, an excellent check was
provided by the comparison of the ephemeris output of ORBIT with
that of an orbit integration program developed by Dr. A. T. Sinclair
of the Royal Greenwich Observatory. This uses a similar force model,
but different numerical integration procedures. A common set of
LAGEOS starting elements was used to independently generate a
satellite ephemeris spanning four days~ The maximum difference
in any of the components of satellite position between the two
programs was less than 1.5cm. A final check was provided, with
the use of ORBIT in an adjustment with SLR observations of LAGEOS.
The solutions for tracking station coordinates were in good agreement
with those obtained by the NASA Goddard Space Flight Center (see
Section 4.2.3).
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3.4 THE SATELLITE ORBIT ANALYSIS PROGRAM (SOAP)

3.4.1 Program Input and Output

SOAP uses the SLR tracking observations and the output of
ORBIT and CHEBPOL in order to perform the least squares adjustment.
It treats the observations as two-way ranges (see Section 2.5.1) and
can work either with the full data set or with normal points from
DATPAK (see Section 3.1). The input-output configuration is
illustrated in fig 3.VI. The main input requirements of SOAP are:

(i) the mode of operation of the program. There are three
available modes:

1 the program reads the observations and performs
the least squares adjustment,

2 the program forms the observation equations and
stores them in an unformatted file,

3 the observation equations from a number of runs
under mode 2 are retrieved and the program
performs the least squares adjustment.

Modes 2 and 3 are necessary for large data sets where, to
avoid dealing with very big files, the adjustment is
performed in stages. The data is first divided into
smaller (say 4-5 day) batches. ORBIT is then executed by
initiating successive continuation runs from one set of
starting elements (see Section 3.3.3), each run covering
the duration of one batch of observations. The observa-
tion equations for each batch are formed and stored
(mode 2) and, when the whole data set has been processed,
they are retrieved and adjusted for the various unknowns
(mode 3).



s::0 (I)..... c+>0 ~«I."" (l)N>+> ._- -- ist.. «IQ) :3(1)0'
gQ)

c0 (I)..... c
~ +l0

(I)
(/)\0 «I.""

c ..... >+>
0

Cl t.. «I
..... Q) :3

o::+> ~ (/)0'

...l~ --- Cl) .... gQ)

C/)t.. is
Q)
(/)
.0
0

115



116

(ii) the output mode. This controls the amount of line
printer output.

(iii) the centre of mass correction to the satellite. This
corrects the observed ranges to the centre of mass
of the satellite.

(iv) the semi-major axis and the reciprocal of the
flattening (}) of the spheroid in which the
tracking station coordinates are given (see
Appendix B.3)

(v) the number of tracking stations

(vi) the approximate coordinates of each station, in
longitude, latitude and height

(vii) the epoch of the satellite state vector used in
ORBIT (see Section 3.3)

(viii) the IF elements of the state vector

(ix) the step size, H2, of the predictor-corrector used
in ORBIT. The ephemeris and partials are given at
intervals of ~ 2 •

(x) the number and identity of each station to be held
fixed

(xi) the number and identity of each station whose
longitude is to be held fixed (see Section 2.5.4)

(xil ) a flag which allows the program to fix the satellite
orbit (starting elements)

(xiii) the IF satellite ephemeris file (from ORBIT)
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(xiv) the file of IF satellite position partial
derivatives, Xm, with respect to the starting
elements and to the required force model parameters
(from ORBIT)

(xv) the file of polynomial coefficients from CHEBPOL

(xvi ) the number of force model unknowns and their
provisional values. There are options for solving
for GM, CR' Ca and for a number of normalized
geopotential coeffiCients, Cm and :srn (seen n
Section 3.3.1). The program is only able to solve
for parameters for which partials have been evaluated
by ORBIT.

(xvi i ) the number of ERP unknowns. The program can solve
for x and y and/or UT1-UTC.P p

(xviii) the input mode of the ERP's. There are three options
similar to those used in ORBIT (see Section 3.3.2).
These are:

1 xp' yp and/or UT1-UTC are linearly inter-
polated to the epoch of observation from
the values in the CHEBPOL file

2 ERP's are initially read from the CHEBPOL
file and kept constant throughout the
adjustment. This is the mode that is used
when solving for the ERP's

(xix)

daily values of x, y and/or UT1-UTC arep p

input from separate files
the SLR tracking observations (if the program is

3

operating in modes 1 or 2)
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(xx) the file of observation equations (if operating
in mode 3)

When SOAP has been executed in modes 1 or 3, the following
output is available :

(i) a line printer output, which includes the values
of all the adjusted parameters with their a
posteriori standard errors. This can be varied
in accordance with the output mode to include the
normal equations and the full covariance matrix
(see Section 2.5~2)

(ii) a file of post-adjustment observation residuals,
which can be plotted using a specially developed
graph-plotting program

When SOAP has been executed in mode 2 the least squares adjustment
is not performed and the only output is an unformatted file
containing the stored observation equations (see fig 3YI).

3.4.2 General Description

SOAP performs the least squares adjustment according to the
principles outlined in Section 2.5. The SLR tracking observations
have already been corrected for tropospheric effects, using the
Marini and Murray model (Marini and Murray, 1973), by the indiv-
idual tracking facilities. This eliminates the need to include a
tropospheric model in SOAP, unless a different model is to be
adopted.

After reading the various input flags, if SOAP is operating
in modes 1 or 2 it enters a loop where the observations are input
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in chronological order. These provide the following information:

(i) the identify of the tracking station
(ii) the UTC time of firing of the laser pulse
(iii) the observed two-way range

The Chebyshev polynomial coefficients are initially read from the
CHEBPOL file for the date of the satellite starting elements.
For each observation, if the date changes, a new set of coefficients
is read (see also Section 3.33 ). These enable SOAP to compute the
coordinates of the moon and sun, in order to correct the tracking
station coordinates for the effects of earth tides (see Section
2.3.4).

The next task of the program is to iteratively establish the
time of observation, which is the epoch that the laser pulse reaches
the satellite, and the computed value of the two-way range. First,
the time of observation is assumed to equal the time of firing, tF•
The IF satellite position, from the ORBIT ephemeris file, is inter-
polated to this epoch by means of Everett's formulae (see Appendix
E.2) up to the fourth central difference. The range, 11, between
satellite and station is then computed using equation (2.166).
This requires that the station coordinates be rotated to the IF
by making use of matrix D (see equation (3.16», for the epoch of
firing. The range, 11, gives a second approximation of the epoch
of observation, by

(3.19)

where c speed of light in vacuo.

The new time, tJ, is used to derive a new IF satellite position
vector and a new range, 12 , which in turn gives

(3.20)
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The process is repeated until successive values of t. agree to
1

a specified limit, which is determined by the satellite speed. For
example, since LAGEOS travels at 5700 mIs, the time must be known
to within 200 nanoseconds for an ephemeris accuracy of 1mrn. When
the time of observation has been established, the process is
reversed and an iterative procedure adopted in order to estimate
the time of return, tR, of the pulse to the tracking station.
The difference between tR and tF, scaled by the speed of light,
is the computed value of the two-way range.

SOAP now computes the observation equation coefficients
(partial derivatives) of equation (2.168). These are evaluated
for the various unknowns according to the principles outlined on
Section 2.5.3. In SLR the measurement is a two-way range and, to
account for this, the observation equation coefficients are
multiplied by 2. The coefficients for the satellite state vector
and for the required force model unknowns are derived from the
partials in matrix X , which are interpolated to the observationm
epoch (from the ORBIT file) using Everett's formulae up to the
second central difference.

At this stage, the program can follow one of three routes:

(i) if it is operating in mode 1, then the contribution of
each observation is added to the normal equations and
the observation equation placed in a temporary store

(ii) in mode 2, the observation equations are stored in an
unformatted file and the program execution stops

(iii) in mode 3, the observation equations are input from the
unformatted file, and the normal equations are formed.
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The observation equations are not weighted, thus implying an a
priori standard error of 1 m for each normal point.

When all the satellite tracking observations have been
processed, and if the program is in modes 1 or 3, artificial
observation equations similar to (2.169) are introduced in order
to hold certain quantities fixed. Options exist to fix the satellite
orbit (starting elements) and the coordinates of any of the tracking
stations. A selected number of station longitudes (see Section
2.5.4) can also be held fixed.

The normal equations are solved using Choleski's method of
triangular decomposition and the solutions are output on a line
printer. It is also possible to output the normal equations and
the full covariance matrix. After the solution, the observation
equations are recovered from the temporary store and the least
squares residuals are evaluated. These are output in a file and
can be used by a plotting program to produce graphs, in order to
study any residual trends (see Section 4.2.2).

It is worth noting that in the OD observation equations
(Section 2.5.3) the satellite unknowns are in the IF, while the
tracking station unknowns are in the EF reference frame. This
requires that, in order to form the observation equations, the
satellite and station coordinates must be available in both
reference frames. For this reason, at every observation epoch
SOAP evaluates matrices D and DT from the polar motion, P,
earth rotation, E, and precession-nutation, B, matrices. The
elements of B for the UTC observation epoch are derived from the
Chebyshev coefficients, as described in Section 3.2.



CHAPTER FOUR

ANALYSIS OF SATELLITE TRACKING DATA
AND APPLICATIONS OF ORBIT DETERMINATION
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4.1 Introduction

LAGEOS tracking data are being provided for Nottingham
University by the Royal Greenwich Observatory, which receives them
from the NASA Goddard Space Flight Center (GSFC). For the purposes
of the OD software development, two four-day sets of data were
used in order to achieve the following aims :

(i) to test the software and detect any errors,

(ii) to establish the precision with which the unknown
quantities can be determined,

(iii) to establish the effects of the various force model
parameters (see Section 4.2.2),

(iv) to test the suitability of different geopotential
models (see Section 4.2.2),

(v) to recover tracking station coordinates and to compare
the solutions with those of other computing centres
(see Section 4.2.3),

(vi) to test the ability of the OD process to recover
the ERP's (see Sections 4.2.4 and 4.2.5).

The last point is important in view of the MERIT main campaign
(Wilkins, 1980) and the hope that the Nottingham software (see
Chapter 3) will be used to analyse and report on the data collected
from it.

A discussion of the various applications of orbit determination
is given in Section 4.3.
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4.2 RESULTS OF ANALYSIS

4.2.1 LAGEOS Tracking Data

The results in this chapter are based on two sets of LAGEOS
tracking data, observed between 2 - 5 September and 2 - 5 December,
1980. The contributing tracking stations and their geodetic coordin-
ates, from the GSFC SL5geodeticsolution (Christodoulidis et aI,
1982), are listed in fig 4.1. The locations of the stations are also
shown on a map in fig 4.11. A station-by-station and day-by-day
breakdown of the normal points (see Section 3.1) derived from the
two data sets is shown in fig 4.111. The total number of 'raw'
observations in the eight days was 41769. After DATPAK, these
observations were reduced to 1001 normal points (see fig 4.111), each
representing a one minute set of data. This amounts to a data
compression of approximately 40 : 1 and illustrates the advantage of
using normal points. The lasers used to take these observations were
generally 2nd generation, with a firing rate of around 1 pulse per
second and a measurement accuracy of 10 - 20 cm. A typical firing rate
of the most advanced, 3rd generation laser tracking facilities is
around 10 pulses per second, with a measurement accuracy of 3 - 5 cm
(Sharman, 1982). The use of normal points with these most recent
systems is even more important, since there is a ten-fold increase
in the amount of data generated.

The observations were corrected for tropospheric delays
according to the Marini and MUrray model (Marini and Murray, 1973).
This has an estimated accuracy of between 1 - 3 cm. The other
correction applied to the data was a centre of mass correction. This
is necessary since the measurement is made to the retroreflectors on
the surface of the satellite, while the ephemeris refers to its centre
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of mass. For LAGEOS (diameter 60 cm), the value of this correction
was found, after calibration, to be 24 cm.

From the table in fig 4.111 it can be seen that only a small
part of the 4-day LAGEOS arcs is covered in each data set. In the
most optimistic case, assuming that the observations were not
simultaneous and bearing in mind that each normal point represents
one minute of data, only 11% of the 4-day arc was covered by Data
Set 1 (DS 1) and only 6% by Data Set 2 (DS 2). It is also seen that
station YARR 7090 dominated both data sets, contributing 43% of the
normal points in DS 1 and 500~in DS 2 • It can be argued that since
the coverage of the satellite orbit was not continuous, the data
is not very suitable for a precise orbit determination. This would
be especially true for a low altitude satellite which is signifi-
cantly affected by air drag. However, since LAGEOS is in a high
and stable orbit, it was considered that the data was sufficient to
give an indication of the capabilities of orbit determination and to
achieve the objectives listed in the previous section.

4.2.2 Effect of Force Model Parameters and Geopotential Models

The first adjustments of the LAGEOS data were performed with
the version of ORBIT (see Section 3.3) which uses the GEM 10
(Lerch et al, 1979) geopotential model. The values of the most
important parameters used in the orbit integration are listed below:

Geocentric gravitational constant (GM)
Earth's equatorial radius (a)
Solar radiation coefficient (eR)
Along - track acceleration (Ca)

398600.5 km' ,s-I
6378137m
1.11

2 9 10- 12 ms-a-. X

All the remaining force model constituents were in accordance with
the MERIT standards (Melbourne, 1983) and they are summarized in
Section 3.3.1.
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Two sets of approximate LAGEOS IF satellite starting elements,

for the two data sets, were provided by the Royal Greenwich
Observatory. These elements were for O~O UTCof 2nd September and
2nd December, 1980. Using the starting elements, two 4-day LAGEOS
arcs were generated by ORBIT with the integration step sizes of
equations(3.8). Various solutions were performed by SOAP, and post-
adjustment residuals were plotted. In the solutions described in
this section the BIH values of x, y and UT1-UTCwere linearly

p p

interpolated to the observation epochs. The only other constraint
was a fixed longitude of station STAL1063at the value given in
fig 4.1.

In the first adjustment the unknowns were the EF coordinates
of the six tracking stations and the IF elements of the satellite
state vector. The least squares residuals were found to exhibit
systematic trends, and a typical plot from OS1 is given in fig 4.IV.
This graph shows that the residuals from the normal points of station
STAL1063 exhibited a parabolic trend. It also shows that the normal
pOints from HAYS1091 were rather noisy, with a scatter of around
30cm. The root-mean-square (rms) residual of all the normal points,

OR' was 21cm.

To obtain the full precision of the orbit determination, it is
necessary to isolate the causes of the systematic trends and find
suitable models in order to remove them. The next adjustment solved
for GM, in addition to the station coordinates and to the elements
of the state vector. Fig 4.V shows that the parabolic pattern from
STAL1063 was removed, but was replaced by a linear trend in the

residuals. There was also a drop in oR' to 21cm, implying an
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improvement in the solution. It is obvious that the value of GM
in the first adjustment was incompatible with the speed of light
(299792500 ms- 1) that was used to scale the ranges (see Section
2.5.4), resulting in the parabolic trend of fig 4.IV.

The causes of the linear trend in the residuals had now to be
established. TWo additional parameters, CR and Ca' were allowed
to adjust. Fig 4.VI shows that most systematic trends from STAL7063
were removed, and this is reflected by a drop in oR' to 17cm.

The residuals from most other tracking stations in the same
adjustment still exhibited some systematic patterns, as shown by the
plots in figs 4.VII and 4.IX. At this stage, any residual trends
could be explained by deficiences in the geopotential model. A new
satellite orbit was thus integrated, this time by replacing GEM10
with the specially derived LAGEOS model, GEM-L 2 (Lerch et al , 1983).
Another adjustment was performed, solving for the station coordinates,
the satellite starting elements, GM, CR and Ca' and the residuals
were plotted. Figs 4.VIII and 4.X show the plots from the new
adjustment for the same satellite passes as in figs 4.VII and 4.IX
respectively. It is clear that most systematic trends have now been
removed. This was also true of all other passes, and it can be
concluded that GEM-L 2 should be used in all adjustments with LAGEOS
observations. The rms range residual of all the normal points, oR'
was 10cm for both OS1 and OS2 with GEM- L2, which is within
the accuracy of the 2nd generation laser tracking facilities.

The final solutions for the various force model parameters,
from the two data sets, are tabulated in fig 4.XI. The values of
GM were highly repeatable and they depended on the adopted speed of
light. Similar values have been reported independently by other
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researchers. Lerch et al (1983) obtained 398600.601 Km' S-2 with
-1a speed of light of 299192500 ms in their derivation of GEM-L2.

The recently adopted speed of light of 299192458 ms-I (Kaplan, 1981)
has now been established as a fundamental quantity. This implies a
different value of GM (see fig 4.XI), and the MERIT campaign has
adopted 398600.448 Km' S-2 (Melbourne, 1983). This is very close
to the solutions given in fig 4.X1, which are also confirmed by
Christodoulidis et al (1982) and Lerch et al (1983) from adjustments
with LAGEOS data. With the new speed of light, holding GM fixed·
at 398600.448 did not seem to affect the solutions or the residuals.
In all subsequent adjustments GM was fixed at this value because
it was not desirable to solve for it, as this would introduce slight
changes in the scale of the network.

The values of CR and Ca in fig 4.X1 are of the same order
of magnitude as those obtained by other researchers (Christodoulidis
et aI, 1983 and Reigber et al, 1982). The solar radiation reflect-
ance coefficient, CR, is better determined than Ca' because the
acceleration arising from solar radiation is three orders of magni-
tude bigger than the along-track acceleration (see fig 3.111).
C is thus not an important parameter in 4 - day arcs but, since itsa
effect increases as the square of the time (10m after 30 days), it
becomes significant with longer arcs.

4.2.3 Solutions for Tracking Station Coordinates and Satellite
Starting Elements

The final solutions for the EF tracking station coordinates
from the two data sets are tabulated in fig 4.XII. These values
were derived in an adjustment which also solved for satellite
starting elements, CR and Ca. The geopotential model was GEM-L2
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8 3 - 2and the value of GM was 398600.44 ~ s . The new value of the
speed of light was used in order to scale the ranges (see Section
4.2.2). Polar motion and UT1-UTC were linearly interpolated from
the values given in the B1H Annual Report (B1H, 1981). The longi-
tude of station STAL 7063 was held fixed at 2830 10' 19:'800 (see'
fig 4.I). After adjustment, the rms residual, oR' was 10 cm with
both data sets.

Referring to fig 4.XI1, with the exception of PAGO 7096 all
the standard errors from DS 1 were less than 10 cm. The standard
errors of PAGO 7096 were of the order of one metre, and this was
because only one satellite pass was observed from that station (see
fig 4.111). The precisions of the station coordinates from DS2 were
generally worse than those from DS 1, because DS 2 consisted of
considerably fewer normal points and consequently the unknowns were
more weakly determined. The standard errors from the latter data
set were at the 20 cm level.

A comparison of the geodetic station coordinates between the
DS1, DS2 and SL5 (Christodoulidis et aI, 1982) solutions is given
in fig 4.X1I1. The coordinates of the four common stations in the
two data sets were repeatable at the metre level. In addition, the
DS 1 and DS 2 coordinates were in agreement with the SL 5 solutions
to within just over one metre. In all cases, the station heights
were more consistent than the corresponding longitudes and latitudes.
All the heights derived from DS 1 and DS 2, for the four common
stations, were within 10cm of each other. Furthermore, except for
PAGO 7096 (large standard errors), all the differences in station
heights in fig 4.XI11 were under 30cm. This seemed to suggest that
the larger differences in longitudes and latitudes could be due to
errors in the BIH values of polar motion. The next section (4.2.4)
describes the tests that were performed in order to isolate the
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effects of any inaccurancies in the BIH system.

The values of the IF LAGEOSstarting element from the two
adjustments are given in fig 4.IV. Their precisions were of the
same order of magnitude as those of the tracking station coordinates.
In general, the elements from DS 1 had smaller standard errors than
those from DS 2, because the greater number of observations in the
first data set resulted in a better determined satellite orbit.

4.2.4 Polar Motion Solutions

The rather large differences in station coordinates
(longitudes and latitudes) between 00 1, 002 and SL5 (see fig 4.XIII)
reflect the limit in the ability of the BIH to maintain the EF
reference frame. This is because the DS 1 and OS 2 coordinates
were determined using the BIH values of xp and yp' and the
coordinate differences of the four common stations in fig 4.X11I
represent, to a large extent, the inconsistencies in the BIH values.
To overcome this problem new polar motion values were derived.
The station coordinates were first held fixed at the SL5 values of
fig 4.1, and the observations of 001 were used in order to solve
for new polar motion components. The latter were used, in place of
BIH, to solve for a new set of 00 1 station coordinates. The four
common stations between the two data sets were subsequently held
fixed at the new DS 1 values, and a set of polar motion parameters
was derived with the 002 normal points. The new polar motion values
are tabulated in fig 4.XV, along with the corresponding B1H and
GEM- L 2 (Lerch et al , 1983) solutions. The standard errors of the
polar motion components in the Nottingham solutions were all under
0:" 001 (3 cm) •
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DA TE CHANGE

Dec - Sept

3/9/1980 3/12/1980

::E
x* -0::025 0::049 0::074

et:
p

sz
H

I:: y* 0;"354 0:'396 0::042

~
~ p

...l« x** -0::026 0::045 0::071> p

6 ~

ffi
~

0::378 0::0350 y** 0::343p

~ 0::036
j x** -0 ::017 0::019
0 p
a: ::c

H
III

y** 0::317 0::378 0::061
p

NOTES :

* : 4-day average values

** 5-day average values

Fig 4.XV Polar Motion Solutions
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In the maintenance of an EF reference frame, what matters
is the ability of a certain method to accurately detect changes in
polar motion. Absolute values of polar motion can never be
obtained, and if two methods detect the same changes then they can
be 'calibrated' to give the same values. Between the Nottingham
and the GEM-L2 solutions (see fig 4.XV), the difference in the
observed change in xp was 0:'003 (0.09m) and in yp it was
0:'007 (0.21 m). The corresponding differences between the BIH
and the Nottingham values were 0:'038 {1.18m} for x and 0:'019p
(0.59 m) for y.p

The new polar motion values of fig 4.XV were used to re-adjust
the tracking station coordinates. The new differences between OS1,
DS2 and SL5 coordinates are tabulated in fig 4.XVI. There was a
very significant improvement over the solutions which used the BIH
data, in fig 4.XIII. Coordinate differences between OS 1 and OS2,
which were previously at the metre level, were now about 40cm.
Agreement between the new OS 1 and the SL 5 coordinates was of the
order of 20cm. PAGO 7096 was the only exception, and in this case
its large standard errors in the adjustment (see fig 4.XII) could
explain the rather sizeable deviations from the SL 5 coordinates.
The DS 2 coordinates were slightly less consistent than OS 1, being
within 45cm of SL5, because of the smaller number of observations
in this data set.

The results in fig 4.XVI reflect the true accuracy of the
station coordinates in the orbit determination process, since any
errors from polar motion have been removed. Considering the limit-
ations of the two data sets (see Section 4.2.1), significantly
better results can be expected with more observations and with data
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1· d d 3rd t . 1 t k .from the recent y lntro uce genera lon aser rae lng
facilities. It would not be too optimistic to expect accuracies
of 2-5 em in station coordinates in the near future.

When solving for polar motion, a number of quantities have
to be held fixed. As mentioned in Section 2.5.~, the values of
xp and yp define the orientation of the Z-axis of the EF
reference frame with respect to the earth's instantaneous spin axis.
It is thus impossible to solve for absolute values of xp and yp
at the same time as solving for all the station coordinates, because
this would result in an ill-conditioned normal matrix. The minimum
constraint is that two station latitudes have to be held fixed in
addition to the fixed longitude. In practice it is preferable to
use externally derived values of polar motion (eg by the BIH), with
an appropriately large set of observations, in order to determine
the best possible station coordinates. These coordinates are then
held fixed, with additional sets of observations, in order to solve
for new values of xp and yp for each data set. The polar
motion values then refer to the mid-epoch of the data set from
which they were derived.

More investigations are needed in order to determine the
optimum observation span for which polar motion values can be assumed
to be constant. The current thinking is that 5-day sets of data are
most suitable, and this is the interval used by the BIH. In the
analysis of DS 1 and DS 2 there was no improvement in the solutions
between using fixed polar motion values, or interpolating the BIH
values to the exact observation epoch. So it appears that xp and
yp can be taken as constant over the 4-day intervals, and this
should also be true for 5-day intervals. However, it would be
desirable to have the greatest possible resolution in the polar
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motion determination in order to be able to observe any short-term
changes. The potential of 12-hourly or even 6-hourly determinations
should thus be investigated. Such solutions would require signifi-
cantly larger numbers of observations than those in the data sets
described in Section 4.2.1.

When using observations covering a long time span, it is
possible to solve for all the station coordinates and for polar
motion. This can be done, as explained for UT 1 - UTe in Section
2.5.4, by incorporating a number of, say 5-day, sets of xp and yp
unknowns, and holding the first set fixed. In a single orbit
determination all the station coordinates, the satellite starting
elements, and all subsequent sets of 5-day polar motion values can
be derived. The solutions for successive sets of x and yp p
represent changes from the initial fixed values. The latter are
necessary in order to define the EF reference frame and they can
be the BIH values (initially) or the values derived from a previous
orbit determination with an appropriate overlap (say 5 days).

TWo methods of obtaining polar motion values have been
described. The first method is suitable for quick results, and it
uses small sets of tracking data, holding all the station coordinates
fixed. The second method is suitable for periodic revisions of the
tracking station coordinates, and it uses longer (monthly or yearly)
data spans, solving for a number of sets of polar motion values.
Both methods are necessary in the maintenance of the EF reference
frame, with routine determination of xp and Yp (first method), and
occasional revisions of the station coordinates in order to account
for real movements such as plate motions (second method).
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4.2.5 Effect of Earth Rotation

Unlike polar motion, absolute values of UT1-UTCdo not affect
the repeatability of station coordinates in separate orbit determin-
ations. The reason is that one can use any values of UT1-UTC and
still get identical station coordinates, as long as changes of
UT1-UTC are modelled accurately. As already explained (Section
2.5.4),different values of UT 1-UTC only affect the solutions for
the satellite starting elements, by transforming the orbit to
different inertial frames. It is not therefore sensible to solve
for both the satellite state vector and for earth rotation in one
adjustment. One such solution was attempted with the normal points
of OS 1 and, while the station coordinates were well determined (with
standard errors similar to those given in fig 4.XII), the satellite
starting elements were very weak. The standard errors of the
components of the initial satellite position vector were of the
order of 1km, while those of the components of the satellite
velocity vector were of the order of 1 ms-le

Orbit determination is very sensitive to changes in UT1-UTC,
which are generally termed as changes in the length of day (l.o.d).
These can be derived (see Section 2.5.4) either by fixing the sate-
llite orbit and solving for a number of, say daily, UT1-UTCvalues,
or by fixing an initial value of UT1-UTC and solving for subsequent
(daily) values, along with the satellite state vector. The former
method was used in the derivation of earth rotation with the
observations from OS1 and 032. TWo sets of satellite starting
elements were initially determined, using the BIH values of
UT1-UTCwhich were linearly interpolated to the observations epochs,
and using the full data sets, OS 1 and DS 2 (see Section l.i.2.3 and
fig 4.XIV). The normal points were then divided into 8 smaller
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sets, each containing the observations for one day. A new adjust-
ment was performed for each day, solving only for UT 1 - UTC and
holding everything else fixed at the values that were derived 1n
the two adjustments which used the full data sets. The daily
solutions for UT 1 - UTC and their standard errors are tabulated 1n
fig 4.XVII. The UT 1 - UTC values were differenced to give the
changes in'the l.o.d. ,and these changes are also given in
fig 4.XVII.

The changes in the l.o.d. were of the order of 0:002 (1 m)
per day (see fig 4.XVII). This implies that UT 1 - UTC cannot be
assumed to be constant for periods longer than a few hours without
a significant loss of accuracy. However, solutions for UT 1 - UTC
with only a few hours' observations are generally weak, necessitat-
ing the use of data covering at least 24-hour intervals. Indeed,
most researchers solve for 5-day average earth rotation values
(Lerch et aI, 1983). Such solutions lead to increased least
squares residuals, because 5-day intervals are clearly too long to
assume a constant value of UT1 - UTC. To demonstrate this paint,
a constant UT 1 - UTC value was used in an adjustment with OS 1 •

The rms residual, oR' increased to 28 cm, from the 10cm (see
Section 4.2.3) that were obtained when using the linearly inter-
polated 8IH values, illustrating a significant loss of accuracy.

From the above discussion it is obvious that a better method
for determining earth rotation has to be established. With the

rdmore accurate 3 generation laser tracking facilities it may be
possible to have resolutions in the UT 1 - UTC determinations of
as little as 6 hours. Another approach would be to solve for a
drift term, in addition to a constant value of UT 1 - UTe, for each
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STANDARD CHANGE IN
DATE UT1 - UTe ERROR LENGTH OF' DAY

(msec ) (msec) (msec)

2/9/1980 99.95 0.4
-2.28

3/9/1980 97.67 0.6
..... -1.77
~

4/9/1980 95.90 0.5
-2.57

5/9/1980 93.33 0.6

2/12/1980 -127.56 0.4
-2.43

3/1211980 -129.99 0.8
N

~ -2.79
4/12/1980 -132.78 0.6

-2.04
5/1211980 -134.83 0.7

F'ig 4.XVII Daily Earth Rotation Solutions
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day. In a single orbit determination with observations spanning a
number of days, daily UT 1 - UTC values and daily dri ft terms can
be determined. The satellite starting elements can also be
included in the list of unknowns, provided the initial (first
day'S) UT1-UTC value is held fixed (see Section 2.5.4).

The average changes in l.o.d. over the two data sets, derived
from the daily solutions in fig 4.XVII, are tabulated in
fig 4.XVIII. These are compared with the corresponding BIH
(BIH, 1982) and GEM-L2 (Lerch et al, 1983) values. The agreement
between the Nottingham and GEM-L2 solutions was better than
0.3msec/day (0.15m/day). However, contrary to the polar motion
comparison (see Section 4~2.4 and fig 4.XV), the Nottingham values
showed better agreement with the BIH than with GEM-L2. In:this case the
changes in l.o.d. were within 0.1 msec/day (5cm/day) of the
Nottingham solutions.

4.3 Applications of Precise Orbit Determination

Satellite orbit determination has a great number of
potential applications, depending on the satellites being tracked
and on the accuracy of the observations. The discussion given
here will concentrate mostly on geodetic applications, with an
emphasis on the most recent and precise techniques available.

Clearly, the most obvious application of OD is the
computation of the satellite ephemeris. The accuracy with which
this is required depends on the aims of the individual mission.
The precision requirements are particularly stringent for
altimetry satellites, like the European Space Agency's ERS - ,
(Dow and Klinkrad, 1982) which is due to be launched in 1988.
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The ephemerides of navigation satellites, like Transit and GPS,
(see Chapter 5), also need to be computed very accurately. Such
determinations are made from data collected by networks of
dedicated tracking stations. The most up-to-date observations are
used in order to derive predicted ephemerides, which are stored
on board the satellites and are subsequently transmitted to the
users for instantaneous navigation. Post-mission ephemerides are
also computed, and made available to bona fide users, for more
precise applications like geodetic positioning.

In order to compute a satellite ephemeris a suitable
geopotential model must be used (see Section 2.3.2). The deriva-
tion of such models is a very important application of orbit
determination. The observations from several satellite missions
have been adjusted to determine geopotential coefficients, and a
number of models are currently in use. Some of these have been
derived by combining the satellite tracking data with surface
gravimetry (Lerch et aI, 1979) in order to obtain higher
accuracies in selected regions of the world. In particular, all
the even-numbered GEM models utilized surface gravity data.

Satellite observations have been used in the derivation
of atmospheric density models (elRA, 1972) and in studies of solar
radiation. Such investigations have necessitated the deployment
of specially suited spacecraft. For example, PAGEOS and DASH 2
(Lucas, 1974) were large balloon-type satellites, with high
area-to-mass ratios, which were sensitive to drag and solar
radiation forces (see Sections 2.3.7 and 2.3.8).
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Another important application of precise orbit determination
is in geophysics and geodynamics. Satellites have been used in
order to test and verify models for solid earth and ocean tides
(Cazenave etal, 1977). In addition, the projected accuracy
of the tracking station coordinates with SLR observations to
LAGEOS of 2 - 5 cm (see Section 4.2.4), provides a powerful
technique to investigate tectonic plate motions and local crustal
movements. The US National Astronautics and Space Administration
(NASA) is currently running a Geodynamics Program (NASA, 1981),
based largely on SLR observations to LAGEOS and on VLBI.' The
Program's main objectives are to improve our understanding of
the solid earth and particularly of the crustal processes
associated with natural hazards and resources, to develop
geopotential and geomagnetic models, and to facilitate the
establishment of new geodynamics measurement services requiring
precise positioning. To achieve these objectives a Crustal
Dynamics Project (CDP) is responsible for the development of the
SLR and VLBI systems, and for the analysis of the data acquired
by them. Laser ranging to LAGEOS is also to be used in a
European project, Project WEGENER, to investigate the plate-
tectonic activity of the Eastern Mediterranean (Haworth, 1984).
The analysis of the SLR observations in all the above projects
is performed using the techniques or orbit determination that
have been described in this thesis.

Orbit determination is an invaluable process in the
definition and maintenance of a conventional terrestrial
coordinate reference system. COTES (Mueller, 1983) 1s a joint
IAG/IAU working group which has been set up in order to prepare
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a proposal for the establishment of such a system and for the
service(s) necessary to maintain it (see Section 2.2.3). The
definition of an EF reference frame is implicit in the adopted
values of the coordinates of a set of globally distributed
'primary' stations which can, for example, be the satellite
tracking stations. This system is maintained by routine
determinations of polar motion values, holding the station
coordinates fixed, as explained in Section 4.2.4. The current
thinking is for additional determinations of the station
coordinates, as they become necessary, in order to account for
real movements between them. Since there are a number of
available techniques for the computation of the polar motion
values, the MERIT Campaign will intercompare them and try to
remove sources of systematic differences between them.

In the maintenance of the Conventional Terrestrial System
(eTS), the determination of earth rotation (UT1-UTe) is also of
paramount importance. Although, as discussed in Section 4.2.5,
absolute values of UT1-UTe are not required for artificial
satellite orbit determination they are essential in other
techniques such a VLBI or optical astrometry. These techniques
are based on observations of the inertially fixed extra-galactic
radio sources and stars, resulting in their respective EF (or eTS)
reference frames being defined in relation to the inertial frames
that are'implicit in the adopted coordinates of the various
celestial bodies. In orbit determination, on the other hand,
the IF is defined relative to the EF reference frame, and
different values of UT 1 - UTe simply transform the satellite
coordinates to different inertial frames, but they do not affect
the solutions of any of the EF unknowns (eg station coordinates).
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However, as the ERP's are to be determined by a combination of the
most accurate techniques available, namely SLR, LLR and VLBI, it
is necessary to remove systematic biases between the inertial
frames, as well as the EF reference frames that are inherent in
each technique. COTES therefore will also formulate proposals
for the establishment of a Conventional Inertial System (CIS).

Satellite orbit determination is the only method that
provides geocentric station pOSitioning. This, and the low cost
and availability of satellite receivers, has led to the use of
Transit Doppler observations for a wide range of geodetiC applic-
ations. In the UK, for example, Transit observations have resulted
in the re-adjustment of the primary triangulation and in the
Ordnance Survey Scientific Network OSSN80 (Ashkenazi et aI, 1981).

Satellite techniques can provide global, as well as local,
geodetic control and they are used extensively in worldwide
mapping. A future global geodetic network will probably consist
of a number of 'primary' stations, whose CTS coordinates will be
determined by the most pre9ise techniques available (SLR, LLR,
VLBI). Other less precise techniques, like Transit and GPS, will
provide densification of the network by establishing the coordin-
ates of a far greater number of 'secondary' stations, which will
make the CTS widely accessible to all potential users.



CHAPTER FIVE

THE GLOBAL POSITIONING SYSTEM
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5.1 Introduction

The Navigation Satellite Timing ~d Ranging Global Positioning
System (NAVSTAR GPS) isa new satellite navigation system which is
currently under development by the US Department of Defence (OOD).
GPS will succeed the present satellite navigation system, Transit
(Gough, 1978 and Sykes,1979), and should be fully operational by
late 1988. It is designed to provide instantaneous, highly accurate
position, velocity, and time information to users anywhere in the
world. •

The GPS development started after a decision by the US
Defence Systems Acquisition Review Council (DSARC) in 1973. Prior
to this, two separate projects, the Navy's TlMATION Program and
the Air Force Project 621B, had been undertaken. With the decision
to deploy GPS these two programs were merged and a Joint Program
Office (JPO) was established. The Air Force was designated to lead
GPS through its phases, which would result in a single system to
serve the vast majority of defence pOSitioning and navigation
needs (Parkinson and Gilbert, 1983).

GPS consists of 3 segments (see Section 5.2); the Space
Segment ~ the Control Segment and the User Segment. The Space
Segment comprises the satellites t which transmit signals and coded
navigation information (see Section 5.3). The original proposal
was for the deployment of 24 satellites in 3 orbital planes but
this has since been changed to 18 satellites in 6 orbital planes.
The User Segment consists of an infinite number of properly
equipped users who are able to receive the satellite signals and
perform real-time navigation. The Control Segment is responsible
for the tracking, orbit determination, upload,and monitoring
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functions needed to control the satellites and to provide a
continuous and reliable service to the users.

The GPS development program is in three phases, which will
lead to an operational system in 1988. Phase I was termed the
Concept Validation Program, and took place between 1973 and 1979.
Phase II, the Full Scale Engineering Development and System Test,
requires the maintenance of a 5-satellite constellation in order to
allow maximum coverage at the Army Proving Grounds in Yuma,
Arizona. This phase includes the development of a prototype
operational satellite, an operational Control Segment,and prototype
user equipment. The satellite build-up in Phase III, the Full
Operational Capability, will start in 1986, when the 5-satellite
constellation will very quickly be extended to the operational
18-satellite configuration with an additional 3 on-orbit spares.
As GPS becomes operational, the DoD will cease supporting other
navigation systems. Transit, in particular, will be phased out
by 1992.

GPS will be available to civil, as well as military users.
Currently there are provisions for two navigation services.
The Precise Positioning Service (PPS) will utilise the P code
(see Section 5.3.3) in order to provide the highest attainable
accuracies, but will probably be restricted to military users.
The Standard Positioning Service (SPS) will provide degraded
accuracies (of about 100m) using the CIA code (see Section 5.3.2)
and will be made available worldwide to civilian users (Porter
et aI, 1984). It is envisaged that an annual user charge may
have to be paid in order to use either of the above services.
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This.chapter describes the GPS segments (Section 5.2). It also
explains in detail the GPS signals (Section 5.3) and outlines the
theoretical background behind the use of GPS for both instantaneous
navigation and for high precision geodetic applications (Section 5.4).
Section 5.5 gives details of some receiver systems that are currently
under development.

5.2 GENERAL SYSTEM DESCRIPTION

5.2.' Space Segment

The operational GPS Space Segment (after 1988) will consist
of 18 satellites in 6 orbital planes inclined at 550 to the
equator. The satellites will be placed at altitudes of approximately
20180 Km and will travel in circular orbits with a period of half a
sidereal day ("h58m). This implies that each satellite will repeat
exactly the same ground track every two revolutions, thus ensuring
that it is visible from a single control station (see Section 5.2.2)
at least once a day.

The 6 orbital planes will be equispaced around the equator
and the satellites will be placed at 1200 intervals in each plane.
In addition to the 18 operational satellites there will be 3

active on-orbit spares which will be placed in every other orbital
plane and will be manoeuvred to replace any satellites that fail.
The phasing of the satellites from plane to plane will be such that
each satellite will be 400 ahead of one in the plane directly to
the west and 400 behind one directly to the east (see fig 5.1).



161

H•
L.('\

tID
-.-4u..



162

The satellites transmit signals on two L-band radio frequencies
(RF): L1 at 1575.42 MHz and L2at 1227.60 MHz. These signals carry
modulations from two pseudo-random noise (PRN) codes, the P (Precision)
code at 10.23 MHz and the CIA (Coarse/Acquisition) code at 1.023 MHz.

\

The PRN ranging codes (see Sections 5.3.2 and 5.3.3) provide specific
timing marks on the carrier frequencies and enable the GPS user
equipment to carry out the pseudo-range measurements by recording the
time of arrival of identifiable satellite signals. The GPS codes
are modulated with a data message at a rate of 50Hz, which supplies
the users with essential ephemeris, timing,and almanac information
(see Section 5.3.4).

The GPS navigation technique (see Section 5.4.1) consists of
making simultaneous pseudo-range measurements to 4 satellites and
formulating observation equations for the 4 unknowns of the receiver
antenna geocentric coordinates and the clock bias from GPS time.
For this technique to work, at least 4 satellites must always be in
view anywhere in the world. The configuration of the operational
satellites (fig 5.I) provides for global 4-satellitecoverage, but in
certain regions there will be periodic (once or twice daily) degrad-
ations of the 3-dimensional accuracy arising from poor geometry
(Porter et al, 1984). Navigation solutions will still be possible but
in some cases it may be preferable to perform 2-dimensional solutions
by providing a height input to the GPS receivers.

The operational satellite payload will consist ,mainly of atomic
frequency standards for accurate timing (stability of 2-5 parts in
1013 per day), a processor to store navigation data, and a PRN signal
assembly and L-band antenna for generating and broadcasting the GPS
signals. Electrical power will be provided by two solar energy
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converting panels that will continually track the sun and charge
three batteries for use when the satellites cross the earth's shadow.
The Space Vehicles (SV's) will have a mission duration of 6 years
and a design life of 7.5 years.

The present (Phase II) satellite constellation of 5 SV's has
been designed for maximum 4-satellite coverage at the Yuma Proving
Grounds. These satellites are at an inclination of 630 instead of
the 550 specified for the operational Space Segment, due to
constraints imposed by the Atlas launch vehicle. FUture launches on
board the Space Shuttle will place satellites at 550 inclinations.
The initial Phase III Space Segment will thus be made up of satellites
at both inclinations. The build-up to the operational GPS constella-
tion of 18 satellites and 3 spares will start in late 1986 and is
expected to finish by the latter part of 1988.

5.2.2 Control Segment

The GPS Control Segment consists of : (a) a number of widely
distributed Monitor Stations (MS's) which passively track the
satellites, (b) a Mister Control Station (MCS) which uses the MS
data to compute satellite ephemeris and clock predictions, and
(c) a number of Ground Antennas (GA's) which upload these predictions
as well as any other Control Segment commands to the satellites and
receive telemetry data from them.

The Operational Control System (Des) will be responsible for
initiating sufficient satellite uploads, in order to ensure that the
satellite timing and ephemeris prediction user range error (URE) does
not exceed 6m (Payne, 1982). The MCS will be located at the
Consolidated Space Operations Center (CSOC) at Colorado Springs,
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Colorado. There are plans for five MS's, at Ascension Island,
Diego Garcia, Kwajalein, Colorado Springs and Hawaii (see fig 5.11).
The GA's will be located at 3 of the MS sites. Satellite uploads will
be performed at least three times a day per satellite, in order to
update the satellite ephemerides. The present (Phase II) Initial
Control System (ICS) h8s 4 MS's (see fig 5.11), at Guam, Hawaii,
Alaska and California. The MCS and single GA are both located at
Vandenberg Air Force Base, California.

The computation of each satellite's ephemeris is currently
performed in two stages (Varnum and Chaffee, 1982) : in the first
stage the Naval Surface Weapons Center (NSWC) derives a reference
trajectory spanning 40 days, based on one week's tracking data, using
the CELEST computer program (O'Toole, 1976). The reference
trajectories (satellite ephemerides and associated partial derivatives)
are posted to the MCS every 2 weeks. In the second stage the MCS uses
the reference orbits, along with the most up-to-date tracking data, in
a sequential least squares algorithm (Kalman filter) in order to derive
improved satellite ephemerides and clock correction polynomials. These
are immediately uploaded to the satellites via the Ground Antenna.
The above process follows the same principles as the Nottingham orbit
determination software described in Chapter 3. Here too, the orbit
determination is performed in two stages.through an orbit integration
program (ORBIT), followed by a least squares adjustment procedure
(SOAP). The GPS ephemeris is uploaded to each satellite as soon as

Ipossible after it becomes visible at Vandenberg, in order to allow the
maximum time for testing at the Yuma Proving Grounds.
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The MCS orbit determination solves for the six satellite starting
elements, two polar motion parameters, two solar radiation pressure
unknowns per satellite (see Section 2.3.8),and three satellite clock
states. The latter represent a clock drift, bias, and aging term of
the satellite with respect to the MCS clock. Two clock unknowns for
each of the MS's are also determined, but the MCS clock is held fixed
as it is the time base for the GPS system.

5.2.3 User Segment

GPS can support an infinite number of properly equipped users.
The task of the satellite receivers is to process the GPS signals
according to the users' requirements. Several types of equipment are
being developed for a variety of applications and receivers have been
built for High Dynamic (HD), Medium Dynamic (MD) and Low Dynamic (LO)
environments. These are capable of using the GPS signals in order to
perform instantaneous navigation. High precision geodetic receiver
systems have also been developed, with the facility to record and
post-process the GPS data (see Section 5.5).

The receivers are generally composed of an antenna, a pre-
amplifier, a receiver-processor unit (RPU),and a control-display unit
(COU). They vary in complexity and cost according to the specified
accuracy and the environment for which they are designed to operate.
Mllti-channel sets, suitable for HO environments, are the most
expensive and complex. The receivers become simpler with fewer
channels, and the most basic are the single-channel single-frequency
sets. A recent design innovation is for one receiver channel to
quickly multiplex up to four satellites in both frequencies (Ward, 1982),
thus emulating a multi-channel set.
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For a 3-dimensional instantaneous navigation solution, four
simultaneous pseudo-range observations are needed. These are used to
form observation equations to enable the receiver processor to solve
for the antenna WGS-72 coordinates and for the local clock bias from
GPS time. To form the observation equations the receiver needs to
compute the satellite coordinates from the Keplerian ephemeris
representation contained in the navigation message (see Section
5.3.4). Thus a receiver has to acquire and decode the satellite
navigation message, as well as to perform the navigation solution.

The GPS WGS-72 system is an earth-centred earth-fixed coordinate
system which is implicitly defined by the adopted ~scoordinates,
gravity field,and earth rotation parameters (see Section 2.5.4).
It has the unique advantage of being a global and universally
available (through GPS) reference system which should revolutionize
navigation, mapping,and geodesy in the not too distant fUture,
provided that the full GPS accuracy is released to all users.

5.3 GPS SATELLITE SIGNALS

5.3.1 Signal Structure and Receiver Measurement Sequence

The satellites transmit signals centred on two L-band carrier
frequencies, L1 at 1575.42 MHz and L2 at 1227.60MHz. Both frequencies
are modulated by a PRN code at a chipping rate of 10.23 Mbits s-1(~iz)
called the P (Precision) code. This is a one week-long binary
sequence which is unique for each satellite. The L1 carrier is also
modulated by a second PRN code, .the CIA (Coarse/Acquisition) code,
at a rate of 1.023 MHz. This is also a binary sequence, peculiar to
each satellite, which is 1023 bits long and repeats itself every
millisecond. Both frequencies and codes are derived from a single
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on-board 10.23 MHz oscillator. The L1 and L2 carriers are integer
multiples of this frequency, giving

fLl = 1575.42MHz = 154 x 10.23MHz (5.1)

fL2 = 1227.60MHz = 120 x 10.23MHz (5.2)

The reason for the two-frequency transmissions is to enable the users
to correct for first order ionospheric effects (see Section 5.4.5.1).
Before modulating the carrier frequencies, both PRN codes are
modulo - 2 added to a 50 bps (bits per second) data message (see
Section 5.3.4). The latter carries satellite ephemeris, almanac, and
timing information which the users require in order to perform a
navigation solution.

The Ll signal transmitted by the jth satellite at time,t, is

In the above equation, AL1j and BL1j represent the amplitudes of
the two signal components, Pj (t) and Cj (t) represent the ± 1 P and
CIA code sequences respectively, Dj(t) represents the ± 1 data
modulations, and, fLl the frequency of the L1 carrier. From (5.3)
it is seen that the phase of the P signal component leads that of
the CIA signal by 90°. The L2 carrier at time, t, is given by

(5.4)

In this case there are no CIA code modulations, although the
capability exists to transmit them, instead of the P code, if
required.
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The PRN ± 1 modulations take the form of 1800 phase reversals
of the carrier frequencies. These are illustrated in fig 5.111.
Diagram (a) shows a PRN code sequence which has to modulate the
'clean' carrier of diagram (b). The resulting signal is shown in
fig 5.111(c).

The power of the transmitted satellite signals is spread over a
frequency band of 20.46 MHz (=2 x 10.23 MHz) for the P code and of
2.046 MHz for the ClA code. A typical signal power spectral densi ty
plot for L1 (Spilker, 1980) is shown in fig 5.1V. This 'spread-
spectrum' technique results in weak signals, with power levels below
that of the thermal noise of the receiver. To perform pseudo-range
measurements a GPS receiver performs a cross-correlation operation
between the received PRN code and a locally generated replica code.
This operation concentrates most of the power of the spread-spectrum
signals from the specified satellite into the 100 Hz frequency band
of the data message, thus vastly improving the signal-to-noise ratio.
The signals from other satellites are further suppressed and inter-
ference effects are therefore minimized.

The receiver first acquires a signal from a given satellite
by cross-correlating the incoming CIA code with a replica code
generated by the local (receiver) oscillator. The replica CIA code
is shifted in time until it exactly matches the satellite code, and
the amount of shift is an ambiguous (by 1ms = 300 Km) measure of the
pseudo-range in units of time. The effect of this correlation is to
demodulate the satellite carrier from the CIA code. Equation (5.3)
then becomes
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where C: et) is the locally generated CIA code. The original ± 1
J

CIA modulations become + 1 as a result of the multiplication of the
two identical codes. The P code component and signals from other
satellites are further suppressed, while the receiver gains access
to the satellite data message , Dj(t ), on the Cl A carrier. This
provides it with enough information (see Section 5.3.4) in order to
generate the relevant portion of the replica P code and repeat
exactly the same procedure as for the Cl A code in order to make
precise and unambiguous pseudo-range measurements.

The above procedure is necessary for quick initial acquisition
of the P code. A P code search without the relevant data message
information would be a long process, since this code is one week long
( 6 •37 x 1012 bits).' In contrast, the length of the Cl A code is only
1023 bits. Any available satellite almanac information will
facilitate the starting operation by enabling the receiver to
determine which satellites are visible and by making it possible to
predict the doppler shift of the satellite signals.

After initial acquisition the receiver can continue tracking
the P code, making pseudo-range measurements at specified (local
or satellite) time intervals. The data message is available on both
L1 carrier components, enabling the receiver processor to compute
the satellite coordinates and clock correction polynomials and to
perform the navigation solution.

The cross-correlation process demodulates the satellite carrier
frequency and results in a 'clean' (reconstructed) sinusoid. The
cycles of the beat frequency between this reconstructed carrier and
a locally generated signal can be counted, giving a very precise
Doppler measurement (see Section 5.4.3) with a resolution of a
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fraction of the carrier wavelength (AL1 = 19cm). A Doppl.er (phase)
measurement can alternatively be obtained by measuring the shift
of the receiver replica code necessary to enable it to keep track
of the satellite code, after initial lock-on.

5.3.2 The CIA Code

The PRN codes of the Global Positioning System are binary
bit trains which modulate the carrier frequencies. A binary
sequence is normally regarded as a series of 1's and O's. The basic
operation in this discussion is modulo - 2 addition of binary numbers,
defined by:

1 G 1 = 0

1010 1 = 1

(5.5)

As mentioned in the previous section, the PRN modulations of the
GPS carriers take values of ± 1. In this case the + 1 is
equivalent to binary 0 and the -1 is equivalent to 1. The
operation that corresponds to modulo-2 addition is multiplication,
and equations (5.5) become

-1 x -1 = 1

(5.6)
-1 x -1 x .-1 =-1

The P and Cl A codes are produced by the modulo - 2 addition of
the outputs of a number of linear feedback shift registers (L F S R'e),
Before going on to explain the formation of the CIA code it is
appropriate to outline the main characteristics of L F S R t s,
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An n-stage LFSR can be represented by an array of binary
numbers with n locations. Fig 5.V illustrates the operation of
a 4-stage LFSR. At each clock pulse the state of the array changes,
so that all the numbers shift forward by one location. The output
of the LFSR is the number occupying the last location of the
previous state. As all the numbers shift forward, the first
location has to be filled by a new number. This number is derived
by the modulo - 2 sum of the numbers occupying specified positions
in the previous state. The 4-stage LFSR in fig 5.V has tapping
points at locations 3 and 4 and its initial (0) state is 0 1 0 O.
In the next (1) state the output of the register is the last 0,
while the first location is filled by the modulo - 2 sum of locations
3 and 4 of the initial (0) state. This process is repeated at every
clock pulse, resulting in the PRN output shown in fig S.V.

When the taps are properly assigned a LFSR cycles through
~-1 states. The PRN sequence at the output of the 4-state
register in fig 5.V thus repeats itself every 15 bits. It can be

seen that the 15th state is identical to the initial one and that
the LFSR cycles through all possible state vectors except the
all- zero state.

The properties of LFSR sequences are discussed in detail 1n
Spilker (1978). Briefly, if a sequence is modulo -2 added to 1tself
(autocorrelation) the result is all zeros (all ones in the ± 1
representation). If a sequence is added to a delayed version of an
identical sequence the result is another shifted version of the
same sequence.
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STATE 1 2 3 4 LFSR
OUTPUT

0 0 1 0 0 ....
<, <, <, r-,

01 0 010

2 1 0 0 1 0

3 1 1 0 0 1

4 0 1 1 0 0

5 1 0 1 1 0

6 0 1 0 1 1

7 1 0 1 0 1

8 1 1 0 , 0

9 1 1 , 0 1

10 , 1 , 1 0

11 0 1 , 1 1

12 0 0 1 1 1

13 0 0 0 , ,
14 1 0 0 0 1

15 0 1 0 0 0

Fig 5.V 4-Stage Linear Feedback Shift Register
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The CIA codes (Cj{t) in equation (5.3» are a family of
Gold codes (Gold, 1967) formed as the modulo-2 sum of two binary
sequences, G1 and G2. The latter represent the output of two
10-stage LFSR's. The length of the CIA code is thus 1023 (=210_1)
bits. There are 1025 possible CIA codes. Of these, 1023 are formed
by delaying the G2 sequence, relative to G1, by one bit at a time.
The remaining 2 are the G1 and G2 sequences themselves. Currently,
36 different CIA codes have been assigned in the GPS documentation
(ICD-GPS-200, 1981). They are formed by having different initial
conditions for the G1 and G2 registers. In practice, the G1 state
vector consists of all ones, while the state vector of the G2
register varies according to the Space Vehicle identity (SVID)so
that each satellite transmits its own unique code.

A GPS receiver has to have prior knowledge of which satellite
transmits a particular code. In other words it must be able to
generate all available codes in the GPS system. This enables the
receiver to identify the satellites whose signals it is processing.
The initial acquisition of the satellite signals is facilitated by
the use of the almanac information which is transmitted in the
'satellite data message (see Section 5.3.4). By knowing which
satellites are visible, the receiver can limit the CIA code search
(see Section 5.3.1) to the ones which provide the best geometry.

The CIA code is transmitted at a chipping rate (frequency) of
1.023 Mbits s-1 (MHz). Since the complete sequence is 1023 bits
long, each code repeats itself every millisecond. This implies
that the CIA pseudo-range measurements have a 300 Km ambiguity which
can easily be resolved by an initial estimate of the receiver's
location (e.g. from a map).
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5.3.3 The P Code

The P Code (Pj(t) in equations(5.3) and (5.4» is a PRN
ranging code which represents the modulo-2 sum of two binary
sequences, X1 and X2, and is transmitted at a chipping rate of
10.23 Mbits s-1. X1 is 15345000 bits long, while X2 is 37 bits
longer (15345037). The period of the combined sequence (P code) is

15345000 x 15345000 = 622094.65
37 10230000

(5.7)

The P code is thus slightly over one week long. In practice it
is reset at the beginning of each week for all satellites, so that
GPS time starts at midnight (UTe) every Saturday.

The X1 sequence is the modulo-2 sum of the output of two
12-stage LFSR's, X1A and X1B. These are short-cycled to 4092 and
4093 bits respectively. The X1 sequence is reset when X1A
completes 3750 cycles, that is to say after 15345000 ( = 3750 x 4092)
bits. At the 10.23 MHz chipping rate the X1 sequence repeats
itself every 1.5 seconds. The completion of a 1.5 second X1 cycle
is termed the X1 epoch or Z-count, and there are 403200 such
epochs in one week. The Z-count is transmitted in the satellite
data message (see next section) and assists the receiver in the
initial acquisition of the P code.

The X2 sequence is the modulo-2 sum of a further two
12-state LFSR's, X2A and X2B, short-cycled to 4092 and 4093 bits
respectively. The sequence is reset after 3750 cycles of X2A, but
at the end of each 1.5-second cycle the two LFSR's are forced to
remain at their final states for 37 additional pulses. This
results in an X2 sequence that is 37 bits longer than X1.
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At the start of the week, X1 and X2 begin their cycles
together. On completion of the first X2 epoch, X1 has already
generated an additional 37 bits. On completion of the second X2
epoch, X1 has generated 2 x 37 bits, and so on until just over one
week (equation (5.7» when the two sequences start their cycles
together again. However, the P code is not allowed to run to its
full length and it is reset at midnight (UTC) every Saturday.

There are 37 mutually exclusive P codes, formed by delaying
the X2 sequence by from 1 to 37 bits respectively, before the
modulo-2 addition with X1. They are assigned to each satellite
according to the $V ID, so that each one transmits its own unique
P code. Details of the present code generation and assignment to
individual $V's are given in ICD-GPS-200 (1981).

5.3.4 Satellite Data Message

The data message, Dj(t), is a binary bit stream at a rate of
50 bits s-1 which is modulo-2 added to the P and CIA codes
before they are used to modulate the GPS carriers. A complete data
frame (1500 bits) consists of 5 subframes of 300 bits and is
transmitted in 30 seconds. Subframes 4 and 5 are each divided into
25 pages, so the complete navigation message is transmitted in 12.5
minutes. The message includes satellite ephemeris and clock
correction information, as well as almanac and health data for all
the GPS satellites. The almanac enables the receiver to establish
the identities of all visible SV's and to select those which
provide the best geometry for a navigation solution.
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Each data subframe consists of ten words of 30 bit~. The
first two words are always a telemetry (TLM) and a handover (HOW)
word. The TLM word is transmitted first and contains information
that is used by the Control Segment. The HOW word is necessary
to facilitate the initial acquisition of the P code by the GPS
receiver. It enables the receiver to switch from the CIA to the
P code after receiving only one subframe (6 seconds) of data (see
sections 5.3.1 and 5.3.3). The HOW word contains a truncated
version of the Z-count (see Section 5.3.3) called the time-of-week
(TOW)count. The TOW count, if multiplied by 4, gives the Z-count
which occurs at the start of the next data subframe. It thus
enables the GPS receiver to generate the appropriate portion of the
P code and thus to quickly achieve the initial cross-correlation
with the incoming satellite P code. The relationship between
satellite time, ts' in seconds, TOW, and Z-count is given as :

t = 6x TOW = 1.5 x Z - counts (5.8 )

Since GPS time is reset every week, the TOW is a number ranging
from 0 to 100799, while the Z-count ranges from 0 to 403199.

All the satellite ephemeris and timing information is
transmitted in data subframes 1, 2 and 3. This means that after
initial acquisition of the satellite signals, the GPS receiver
need only spend 30 seconds per satellite (equivalent to one full
fr~ before it receives enough data for a pOSition determination.

The satellite clock correction parameters are contained in
data subframe 1. These are computed by the Control Segment as part
of the MCS orbit determination. The algorithms for correcting the
satellite time of transmission to GPS time are outlined in
Appendix G.1.
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Data subframes 2 and 3 contain the broadcast satellite
ephemeris. This is transmitted in the form of Keplerian - type
orbital elements. Each set of elements is derived by the MCS,
using a least squares fit to ~ hours of satellite cartesian
coordinates from the output of the orbit determination. The
elements are therefore valid for ~ hours, but they are updated
every hour in order to ensure that the users receive the most
recent values. Each set of elements is thus valid for the period
of its transmission and for 3 hours thereafter. The fit used in
the generation of the orbital elements ensures a user range error
(URE) of less than O.~ metres (one sigma). This means that the
range error involved in using the Keplerian representation rather
than the actual satellite cartesian coordinates (from the orbit
determination) will not exceed O.~ metres. The procedure for
computing the WGS-72 cartesian coordinates from the orbital
elements is outlined in Appendix G.2.

Data subframes 4 and 5, which are transmitted in 25 pages,
mainly consist of truncated ephemeris parameters (almanac) for
all the available GPS satellites. These enable the GPS receiver
to decide on which satellites are visible at the time of observa-
tion and which of these provide the best geometry for a navigation
solution.

Other parameters which are transmitted in the navigation
message include flags which give details on the health and
accuracy of the various satellites and which enable the receiver
to calculate parity for the data. In addition, there are para-
meters for correcting ionospheric delays (see Section 5.4.5j),
which can be useful for the single-frequency users. The relation-
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ship between GPS time as kept by the MCS and UTC is also
included in the navigation message, and this is very important in
time-transfer applications of GPS.

5.4 MODES OF OBSERVATION AND ADJUSTMENT FOR PRECISE POSITIONING

5.4.1 Instantaneous Navigation Principles

This research is aimed primarily at the most precise
applications of GPS. However, before going on to describe the
models used for precise positioning, this section will give a brief
account of the basic principles behind real-time navigation.

A GPS navigation receiver has to make at least four quasi-
simultaneous pseudo-range measurements to different satellites.
This can be achieved either by having 4 or more receiver channels,
or by using a receiver which can quickly sequence (multiplex) a
minimum of 4 satellites. thThe pseudo-range measurement to the j

satellite is defined as

(5.9)

where observed pseudo-range

local clock time of reception of a GPS signal
from the jth satellite

satellite time of transmission of received signal

c speed of propagation of electromagnetic waves in
vacuo (2.99792458 x 108 m/s).

In general, the satellite clock is not in phase with GPS time.
Therefore, the satellite time of transmission has to be corrected
to the corresponding GPS system time using
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6t .
sJ (5.10)

where GPS time of signal transmission

6t . correction computed from parameters in thesJ

satellite navigation message (see Appendix G.1)

The corrected pseudo-range observation becomes

l OJ = C (t . - tt. )rJ J (5. 11)

giving

(5.12)

The mathematical model for (5.12) is

(5.13)

where Clo clock bias between GPS and local clocks

Eion: (positive) error arising from ionospheric delays
(see Section 5.4.5.1)

Etrop: (positive) error arising from tropospheric delays
(see Section 5.4.5.2)

The true range between receiver and satellite is

R. = [( X. - XP + (Y - YP + (Z _ ZP] iJ J j j (5.14)
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where WGS - 12 cartesian coordinates of
satellite derived from the elements in the
navigation message (see Appendix G)

x, Y, Z WGS - 72 (unknown) cartesian coordinates of the
phase centre of the receiver antenna

At least four equations similar to (5.13) must be formulated
in order to solve for the receiver's WGS - 72 coordinates and for the
clock bias, a •o In practice, equation (5.13) can be linearized about
some approximate values of the receiver coordinates and clock bias,
resulting in the least squares observation equation (see Section
2.5.2) :

at 0 atj at 0 at 0

_J sx + flY + _J sz + _J flCl = (tO
j
_ tC

J
o)+ v .•. (5.15)ax ay a Z aa 0o

where fiX,6Y, fiX least squares corrections to the provisional
receiver coordinates

6a o
least squares correction to provisional value
of the clock bias

v least squares residual.

The observed pseudo-range, 0 is given in equation (5.12), whilet j ,
the computed pseudo-range is

t~ RC c Eion Etrop= + CCl 0 + + (5.16)J j

where Ca o
computed (provisional) value of the clock bias
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The computed true range, Rc .
. , 1S
J

R~ =J
[ (X. _ Xc) 2 +

J •••(5.17)

and XC, Y c, Z ~ provisional values of the receiver coordinates

The observation equation coefficients ~artial derivatives) are
derived by differentiating equation (5.13), as

XC - X. yC _ ccHI.. o£ . y. of . Z - z. •.•(5.18)_J J _J J _J = J= =ax R~ ay RC oZ R~
J j J

and o£ . (5.19)_J = coa
0

A minimum of four observation equations similar to (5.15)
can be solved by least squares to give the unknowns, ax, ~Y, ~Z and
Aa , according to the principles outlined in Section 2.5.2 and ino .
Appendix F. An error analysis can also be performed using the
covariance. matrix, a (equation (2.160»,wherexx

02 0 0 axtx xy xz

a a2 a °ytyx y yz
a = (5.20)xx

a a a2 aztzx zy z

°tx aty °tz 02t

variance of the receiver's X - coordinate

0xt covariance of the X - coordinate and the clock
bias, a o
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The covariance matrix can be used in order to select the
satellites which provide the best geometry, before any observations
are actually made. If in equation (2.160) is assumed to be
unity, the covariance matrix for any available satellite configuration
can be evaluated as

a =xx (5.21)

where N normal matrix (see Section 2.5.2).

Several measures of precision have been defined (Miliken and Zoller,
1978), which can be derived from the elements of a • (he suchxx
measure, the position dilution of precision (POOP), is given by

POOP = (a 2 + a 2 + a 2 ) lx y z (5.22)

If POOP is multiplied by an estimate of the user-to-satellite range
error it gives the estimated error in the user's position. So, the
higher the PDOP for a given satellite configuration, the poorer the
navigation solution will be. In order to select the satellites
which provide the best geometry the receiver has to choose the
configuration which ensures the minimum value of PDOP. The best
achievable 4-satellite geometry is provided by 3 satellites at 1200

intervals in the user's horizon plane (best 2-D intersection), with
tha 4 satellite directly overhead (best vertical position). Clearly,

there is a conflict between the best geometry and the need to
minimize refraction errors, because the low-elevation of the 3
satellites results in unacceptably high atmospheric effects. For
this reason it is normal practice to avoid using satellites at
below 50 elevations.
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5.4.2 Pseudo-Range Measurements

The previous section described the basic real-time navigation
technique using the CPS signals. The instantaneous accuracy is of
the order of 15 m using the P code and 20-30 m using the Cl A code
(Parkinson and Gilbert, 1983). For geodetic positioning it is
desirable to have the highest attainable accuracies. Such accuracies
can be realized by observing the GPS signals over a number of hours,
thus averaging out some of the errors that are inherent in the
instantaneous solution. The satellite signals can be observed and
processed in a number of ways, and the following three sections
describe these high precision techniques.

This section will develop the mathematical models for pseudo-
range measurements, since this is the main CPS observable. The
pseudo-range model will depend on the available receiver system.
TWo possibilities will be considered here. The first is a receiver
with a low-cost crystal oscillator which can observe 4 or more
satellites simultaneously and will be denoted by R1. The second is
a receiver system incorporating a highly stable atomic frequency
standard which can only observe one satellite at a time and will be
denoted by R2. The above receivers will also be considered in the
other modes of observation of the GPS signals, in Sections 5.4.3
and 5.4.4.

The pseudo-range model for R1 is the same as for real-time
navigation (see equation(5.13» and is given by

l. . = R + c'''< t ) + E + EJ j ...0 ion trop (5.23)

A number, n , of sets of 4s or more simultaneous pseudo-ranges is
(i)The unknowns are one clock bias, CL 0 'observed over a few hours.
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for each set of simultaneous observations and the receiver antenna

coordinates. There are a minimum of 4n observation equations fors
a total of

(5.24)

unknowns. These equations can be solved by least squares (see
Section 2.5.2).

The solution can be made easier and the storage of large
matrices can be avoided if a block-adjustment method of solution is
adopted (Gough, 1978). In this method the normal equations are
formed separately for each set of simultaneous observations. These
can be expressed in matrix form as

n11 n12 n13 n14 Aa (L) d10

n21 n22 n23 n24 AX d2
= •••(5.25)

n31 n32 n33 n34 AY d3
n41 n42 n43 n44 t:.Z d4

or as

N. x. = d.~ ~ ~
(5.26)

where Ni (4 x 4) normal matrix of the ith set of
simultaneous pseudo-ranges. This is the normal
matrix used for the navigation solution.

(4 x 1) vector of unknowns for the ith set of
simultaneous pseudo-ranges

di (4 x 1)right-hand-side vector
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Since the clock offset is the only unknown which is unique in each
set of normal equations, it can be eliminated by pre-multiplying both

sides of equations (5.25) by

o o o1

-n21 1 0 0
n11

K. = (5.27 )
1

-n31 , 0 1 0n11

-n41 0 0 1n11

giving

n11 n12 n13 n14 d1

I -- --
0 t:.X

I =
0 Mi AY f.

1

0 AZ

(5.28)

The reduced normals become

where Mi

x'

(5.29)

(3 x 3) reduced normal matrix for ith set of observations

(3 xl) vector of unknown corrections to the provisional
receiver coordinates
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fi (3 x 1) reduced right-hand-side vector

Equations (5.29) are summed together (accumulated) for all sets of
simultaneous observations, giving

x
ns

= L. 1 fl.'l.=
(5.30)

or

Mx' = f (5.31)

and the final solution for the receiver coordinates involves only the
(3 x 3) rnatrix, M, of the accumulated normals. If the values of the
clock biases are also needed, then the first equation in (5.28), for
each set of observations, must be stored. When the solutions for
the receiver coordinates (equation 5.31) have been obtained, these
can be back-substituted to each of the stored equations in order to
derive the clock biases. The maximum matrix size in the block-
adjustment method is only (~x 4), while an adjustment with all the
normal equations will involve a matrix of dimensions
[(ns + 3) x (ns + 3)]. The computer storage requirements are
therefore vastly reduced.

The pseudo-range model for R2 has to take into account the
behaviour of the receiver clock, because there are not enough
observations to solve for a clock bias at every epoch. The need for
a clock model implies that an atomic frequency standard is imperative
for precise positioning. Equation (5.23) is modified as

Ij=RJ.+cOt +COtl:(t-tO)+C0t2(t-t)2+E. +Eto 0 l.00 r~

(5.32)
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where (Xo clock bias at epoch to
(Xl clock drift

(X 2 aging term

In this technique a number of clock polynomials can be modelled.
Since only one satellite can be observed at a time, the observational
time span must be 4 times longer than for R1 in order to obtain a
comparable amount of data.

Both techniques developed above assumed that the satellite
clock predictions, ~t . (see equation (5.12)~ for correcting the

sJ
oobserved pseudo-ranges, Rj, were correct. In the model for R1

there is no flexibility to allow for errors in the satellite clocks.
In the model for R2 however, one can solve for a different clock
polynomial for each satellite pass and avoid the need to correct
the observed pseudo-ranges for the predicted satellite clock errors.

5.4.3 Phase (Doppler) Observations

A GPS receiver can make phase measurements of the carrier
frequency by beating the satellite 'reconstructed' (L1 or L2) carrier
(see Section 5.3.1) against a locally generated signal. At an
observation epoch, ~, the phase of the receiver signal at site A
is given by

(5.33)

where •A (~o): phase (in radians) of locally genera ted
signal at an initial' (arbitary) epoch, ~o
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phase of locally generated signal at epoch
of observation, ~ (including whole cycles)

fA frequency of locally generated signal at A

At the same instant, ~, the phase of the received signal from the
.th t ll·t .J sa e 1 e lS

~j (~) ~~ (to) + 2.f. (~-~ ) (RAo(tl) A ~A= - 2.f J _~._ •••(5.34)J J 0 J c 10n trop

where .~ (~o) arbitrary phase of carrier at the satellite (at ~o)

~j (~) received carrier phase from jth satellite at epoch
of reception, ~

carrier frequency from the jth satellite

range between receiver at A, and satellite at the
time of transmission of the received signal

c speed of electromagnetic waves in vacuo

phase arising from ionospheric and tropospheric
delays at A (see Section 5.4.5)

The receiver measures the phase difference between received and
locally generated signals as

= (5.35)

which gives

+ ~~l.on (5.36)
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A receiver normally outputs Continuously Counter Doppler Counts
(CCDe's), defined by

=
q,Aj (1:)

2n (5.37)

The CCOC is the main geodetic observable and will be referred to as
a phase measurement in this text. Equation (5.36) becomes

•••(5.38)

where NAj (1:) CCOC or phase measurement

and all the cycle counts, N (eg Nfon)' in equation (5.38) are
defined by

~
N = 21 (5.39)

For precise measurements the observations are all made on the L1
frequency. The L2 observations are used in order to correct for
first order ionospheric effects (see Section 5.4.5.1). The phase
measurement of equation (5.38) can be converted into a biased range
(similar to a pseudo-range) by multiplication with the wavelength of
the carrier frequency, where

cA. = ~
J Ij

(5.40)

This gives

(5.41)

where
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Equation (5.41) can be expressed in identical terms to
equation (5.32) for a pseudo-range, as

(5.42)

where
a clock bias ( =

NA (to) - NjA{TO) )
0 oj

fA - f.a1 clock drift ( = J )f.
J

An aging term, ca2 (T - TO)2, can also be introduced in equation
(5.42) if a frequency drift needs to be modelled.

Equation (5.42) is the appropriate mathematical model for
phase measurements with the R2 receiver system (see Section 5.4.2).
Its atomic clock can be adequately modelled by a constant frequency
offset (clock drift) over quite long time intervals. Stabilities of
1 - 2 parts in 1013 are conmon for cesium beam standards and these
would result in errors of 30 - 60 cm after 3 hours, which is the
approximate duration of a GPS satellite pass. R1 is a less
appropriate system for this kind of observation, because the
instability of the crystal oscillator will result in poor solutions
even though this receiver can track all the visible satellites
simultaneously.

The biased ranges of equation (5.42) are adjusted by least
squares in order to solve for a number of clock biases, ao' a number
of drifts, a1, and the receiver antenna phase centre WGS-72
coordinates. The observed biased ranges are given by

(5.43)
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oThe observed phase measurement, NAj (~ ), can take any initial
value, since the initial phases of the receiver and satellite
clocks, NA (~ ) and N~ (~ ), are unknown. This means that theo J 0

clock bias, a , is different for each satellite pass and for everyo

time that there is loss of lock on the signal phase. A number of
bias unknowns, a , have therefore to be introduced in order too
account for all the instances of initial signal acquisition.

The observed biased ranges can, if required, be corrected
for satellite clock errors using the information in the navigation
message (see Appendix G.1). The corrected biased ranges are given
by

= + cAt.
sJ

(5.44)

where Atsj correction derived from navigation message (see
equation (5.12»

If the corrected biased ranges are used, the drift term, a1, of
equation (5.42) represents the clock drift (frequency offset) of
the receiver oscillator with respect to GPS (predicted) time.
If the correction is not applied, the drift represents the frequency
offset between receiver and satellite oscillators. In the latter
case it is imperative to solve for one drift per satellite and in
fact it is wise to introduce a new drift term per satellite pass
in order to safeguard against changes in each satellite's clock.

In the formation of the observation equations (see ~ection
2.5.2) the computed biased ranges are derived from equation (5.42),
using the computed values of the receiver coordinates and of the
clock drift and bias terms. The observation equation coefficients
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for the receiver coordinates and for the clock bias unknowns are
given by equations ( 5.18) and (5.19) after replacing the pseudo-
range, lj' for the biased range, PAj (~). The observation equation
coefficient for the drift term is

= C ('t-'t) o (5.45)

For an adequate solution the receiver, R2, has to observe a
number of satellite passes. Simultaneous observations on both L1

and L2 frequencies enable the computation of the first order
ionospheric errors, E. (see Section 5.4.5.1), while measurementsl.on
of pressure, temperature and relative humidity can be used to
estimate the errors, Etrop' from tropospheric delays (see Section
5.4.5.2).

The only complication of the phase measurement (biased range)
technique is the need to establish the GPS time of transmission of
the satellite signals in order to compute the satellite coordinates
from the orbital elements in the navigation message (see-Appendix G).
The GPS time can easily be derived by making use of the pseudo-range
observations. If these are clocked at different local epochs from
the phase measurements, then they have to be interpolated to the
appropriate local times of reception. The GPS time of transmission
of a signal that was received at a local epoch, T, is given by

(5.46)

where pseudo-range observation corrected for satellite
clock errors and interpolated to local epoch of
reception, r,
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The biased range approach has been adopted at Nottingham in

order to process data from a geodetic receiver system which
utilized an ST1 5010 GPSreceiver (see Section 6.2.1). Chapter 6
gives the details of the software package and some of the results
that were obtained.

The need to model clock bias parameters in the least squares
adjustment can be eliminated if the phase measurements are converted
to Doppler count observations. At an epoch, T1, equation (5.38)
gives

(5.47 )

At a second epoch, T2 ( = T1 + flTJ, the phase measurement is

+ tt (2) + tft (T2)10n rop (5.48)

The Doppler count is the difference between the phase measurements
at T1 and T2, given by subtracting (5.47) from (5.48) as

(
RA· (T2) - RA· (T1»)NAj(1,2) = (fA-fj) (T2-T1) + fj J c J

+ N:on (1,2) + ~rop (1,2) (5.49)

where Doppler count between '[1 and '[2

~ ~ • ionospheric and tropospheric errorsion (1,2) , trop (1,2) •
in the Doppler count.
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Doppler count observations can be adjusted by least squares using
the mathematical model of equation (5.49). They result in identical
solutions to the biased range approach and have the advantage that
there are fewer unknowns. The phase measurements, however, can
easily be incorporated in interferometric methods of adjustment when
simultaneous observations from two or more receivers are available.
Interferometric techniques (see Section 5.4.4) eliminate common
errors between the two or more sites and result in very precise
relative coordinates •. The full accuracy potential of GPS can only
be realized when these techniques of adjustment are adopted.

5.4.4 Interferometric Techniques

The previous section described the biased range (phase meas-
urement) technique for single point positioning. It was then
explained that this technique is only suitable for receiver system
R2 (see Section 5.4.2). Interferometric methods of adjustment
provide relative coordinates between two sites (see fig 5.VI) and
are based on two or more receivers making simultaneous observations
to the same satellites (translocation). As will be seen in this
section, these techniques are suitable for both the R1 and the R2

receiver systems.

The mathematical models will be developed first for R2.

Equation (5.38) gives the phase measurement made by such a receiver
system at site A. The corresponding simultaneous phase measurement
from the same satellite at another site, B (see fig 5.VI), is

~ + NB+ ion trop (5.50)



197

Fig 5.VI Satellite Interferometry
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The main interferometric observable is the difference between the
phase measurements at the two sites at any epoch, t. This is called
a single phase difference and is defined by

(5.51)

which gives

+~n+~op (5.52)

Equation (5.52) is the mathematical model for a single phase
difference measurement made by two receivers of the R2 type. The
quantity

(5.53)

represents an initial unknown bias. This has a different value for
each satellite and also for when either receiver loses lock on phase
(see Section 5.4.3). All instances of initial signal acquisition
have therefore to be identified and bias unknowns introduced.

It can be seen in equation (5.52) that the phase difference
observable is independent of all satellite clock errors. It therefore
follows that there is no need for any corrections to be applied to the
satellite clocks. In the least squares adjustment the phase
difference observations from several satellite passes will be used in
order to solve for a number of biases, ~j' a drift term (frequency
offset), fB - fA' and the coordinate differences of the receivers at
A and B.
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The observation equation for a phase difference measurement,
derived from equation (5.52), includes corrections to the approxi-
mate coordinates of both receivers. The interferometric approach
is unable to derive absolute positions and thus it is necessary to
fix the coordinates of one receiver by introducing position
observation equations similar to equation (2.169). If absolute
coordinates are required they can be obtained either from a pseudo-
range or from a biased range adjustment (see Sections5.4.2 and
5.4.3). These solutions can then be used as the approximate
coordinates of the interferometric technique, holding one station
fixed.

The drift unknown, fB - fA' represents the difference in
frequency between the two receiver clocks. Its use is fully
justified only in receivers with an atomic oscillator (e.g.R2),
which can maintain a stable frequency. Any adjustments in either
receiver clock within the time span of the observations have to be

taken into account by the introduction of additional drift unknowns.

The observed value of the interferometric phase difference
is given by

(5.54)

wh~re ~j (T) and ~j (T) are the observed phase measurements
(CCDC's) of the two receivers at their respective local epochs, T.

If the biased range method is used first, it can be adapted to
correct the observed phase measurements for ionospheric and
tropospheric effects (see Section 5.4.5) and to identify the
instances where loss of lock on signal phase has occured. The
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output of the two separate single-point adjustments can include
the corrected phase observations, which are subsequently used as
the input in the interferometric approach. In this approach the
computed values of the phase difference observations can then be
derived from equation (5.52), after excluding the terms N~n and
~~op since these corrections have already been applied to the
observed values.

The single phase difference approach is also suitable for
receiver system R1, but a different mathematical model has to be
developed. With this receiver system the phase measurement at
site A is given by

NA• (-c) = NA h ) - rf. ('t ) + EA( r ) + (fA - f • ) ('t - '( )J 0 J 0 J 0

(
RAj ('t») A __A

+ f. + N. + retJ c 10n rop (5.55)

where £A ('t) error in phase measurement (CCOC) arising from
instabilities in the crystal oscillator at A

The simultaneous phase measurement at B is similarly given by

(
~j ('(») B NB

+ fj c + N ion + trop (5.56)

The single phase difference at any epoch, '(,is

(5.57)
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The receivers at the two sites make at least four simultaneous
phase difference observations at any epoch,~. The quantity

= (5.58 )

is common to all simultaneously observed phase differences and the
superscript, i, denotes the ith set of simultaneous observations.
The least squares adjustment uses a minimum number of 4 n observa-s
tions (where ns is the total number of sets of simultaneously
observed phase differences) to solve for a total of

(5.59)

unknowns. In the above equation nb is the number of initial bias
unknowns, ClABj , which equals the total number of initial signal
acquisitions, and ns is the number of local oscillator error
terms, B~ (~), which equals the total number of sets of simult-
aneous phase difference observations. The only other unknowns are
the 3 coordinate differences of the two receivers.

From the basic single phase difference observable of equation
(5.57), three fUrther approaches will be developed here for receiver
system R1. The first approach (Bossler et aI, 1980 and Goad and
Remondi, 1983) involves taking the differences between simultaneous
phase difference observations from separate satellites. The double
phase difference between satellites j and k is given by

(5.60 )

giving
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NABjk + NABjk
+ ion trop (5.61)

It can be seen from equation (5.61) that the double phase difference,
apart from the initial bias, is free from any satellite or receiver
clock errors. The only unknowns in this case are the nb bias
unknowns and the 3 coordinate differences between the two sites.
A further extension to the above technique is the triple phase
difference method (Goad and Remondi, 1983) which takes the differences
of the double phase differences from one observation epoch to the
next. It can be easily seen that by taking triple phase differences
the bias terms, QABk - QABj' are also eliminated and the only
unknowns are the three coordinate differences.

It should be noted that the double phase and triple phase
difference methods will, in theory, give identical results to the
single phase difference approach. The only advantage of taking
higher differences is the elimination of undesirable unknowns,
resulting in an easier least squares adjustment with the minimum of
manual interaction. However, it is often desirable to monitor the
behaviour of the receiver clocks, in which case the oscillator error
terms, ~~~), are required. These can only be obtained from the
single phase difference technique or from a new approach which is
described below.

In the final technique the interferometric observable is the
difference between the single phase differences from one epoch to
the next, which will be referred to as the Doppler count difference.
At 't 1 the single phase difference from the jth satellite is
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(5.62)

At a second epoch, 't2 (= 't1 + 6't),

(5.63)

The Doppler count difference observable is defined by

(5.64 )

which gives

+ N~(1,2) + NAB(1,2) (5.65)10n trop

Equation (5.65) is free of the bias terms, nABj• Two receiver
systems of type R1 can make at least 4 simultaneous Doppler
count difference observations to different satellites between any
two epochs, '(1 and '(2. All simultaneously observed'Doppler count
differences have the oscillator error term, BAB(1,2)' in common.
This suggests the use of a block-adjustment method of solution,

'.similar to that used for pseudo-ranges in Section 5.4.2. The normal
equations are first formed for each set, i, of simultaneous
observations. The error term, BAB(1,2)' is unique to each set and
can be eliminated from the normals, leaving a (3 x 3) matrix for
the unknown corrections to the approximate values of the coordinate



20~

differences. The reduced normals are summed (accumulated) for all
the observation sets (see equation(5.30» and the final solution
gives the required coordinate differences. Back-substitution of
the latter into the original normal equations can recover the
individual oscillator error unknowns, BAB(1,2)'

The interferometric techniques that were described above have
been applied to a number of GPS receiver systems. A brief account
of geoetic receiver development is given in section 5.5. The trend
is currently away from the R2 and towards the R1 receiver type.
This is because atomic oscillators are expensive and difficult to
maintain in the field and because the full GPS potential(strongest
geometry)is only exploited when making simultaneous observations to
all visible satellites.

5.4.5 Reduction of Observations

The received GPS satellite signals are subject to delays
caused by the earth's ionosphere and troposphere and to relativistic
frequency shifts. The ionosphere extends from an altitude of 40Km
to 400 Km and consists of ionized particles and electrons. The
electron density varies along the signal path from one epoch to the
next, introducing a variable delay to the satellite signals. This
delay is frequency dependent and can be corrected by making simult-
aneous observations of the same satellite on two or more frequencies
(see Section 5.4.5.1). The troposphere extends from the earth's
surface to an altitude of about 40Km. Its variable density causes
changes in the refractive index which result in additional delays
of the satellite signals. The models used for correcting tropo-
spheric delays are based on measurements of surface pressure,
temperature,and relative humidity at the time of observation (see
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Section 5.4.5.2). The GPS corrections to relativistic frequency
shifts are outlined in Section 5.4.5.3.

5.4.5.1 Ionospheric Corrections

A GPS signal arriving at a receiver experiences a delay
because of the ionosphere. This delay is of the form

E =ion
A B
~ + :"'3 + •••
f f

(5.66)

where A, B, ••• constants

Eion ionospheric range error

f frequency of transmitted signal .

The first order ionospheric term, A/f2, can be estimated by the
use of two-frequency measurements.

The ionospheric correction will be derived first for
pseudo-range observations (see Sections 5.4.1 and 5.4.2). The L1
pseudo-range is given by

where

A
:2
f L1

pseudo-range corrected for ionospheric delays

= (5.67)

fL1· 1575·42MHz

The simultaneous L2 observation is

A
f2L2

(5.68)

where fL2 1227.60 MHz

Subtracting (5.67) from (5.68) gives
2 2

_ (fL1 _ f L2)
- A 2 2

fL1• fL2
(5.69 )
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In the Global Positioning System the two frequencies are in the ratio

= 77
60 (5.70)

Substituting this in (5.69) gives the ionospheric range error at
L1 as

= (5.71)

The corrected L1 pseudo-range observation is now given by

(5.72)

In the least squares adjustment the pseudo-range observations could
either be corrected as in equation (5.72) or alternatively the term
A/f~1 (equation (5.71» could be added to the computed values as in
equation (5.16).

The ionospheric range error is largely unpredictable but at
the GPS frequencies it has a magnitude of the order of 10m. It
should be noted that since L2 is a weaker signal than L1, it is
often the case that the L2 pseudo-ranges are rather noisy. When
the ionospheric correction is applied this effect is magnified by
multiplication with the factor 1·54573 (see equation (5.72»,
resulting in larger residuals than would be obtained if the
uncorrected L1 pseudo-ranges were used.

In order to apply th~ ionospheric corrections to the phase
measurements, the latter have to be first converted to Doppler
counts (see Section 5.4.3). The observed L1 Doppler count (phase
difference) between two epochs, ~1 and ~2' 1s given by (see
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equation (5.49»

-c (5.73)

where AA = A ('1:2) - A ('1: 1) (5.74)

and ionospheric constants at '1:1 and '1:2
(see equation (5.66».

The L2 Doppler count between the same two epochs is

(AA) fL2+'2 C
L2

(5.75)

In most receivers the frequencies of the L1 and 12 local signals,
fAL1 and fA12' are at the proportions given by equation (5.70).
This gives

(AA) f12
+ '2 c

L2
Combining equations (5.73) and (5.76) gives

2 2
fL1 AA (f L2- f L1)N - ~ N -

L 1 112 12 - crL 1 f2
12

(5.76)

(5.77)

The corrected L1 Doppler count is given by

AA
CfL 1

(5.78)
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where the quantity ~:L1 is the same as N fon (1,2) in equation
(5.49). By making use of equation (5.77), the corrected Doppler
count becomes

(5.79)

and this reduces, using equation (5.70), to

N 4620 (77 N N)Aj(1,2) = ~ O(J L1 - L2 (5.80)

The corrected Doppler counts are either summed to give the corrected
phase measurements (CCDC's) or they are adjusted either as Doppler
counts (see Section 5.4.3) or as Doppler count differences (see
section 5.4.4)

In some receivers the quantity

(5.81)

in equations (5.73) and (5.75), which corresponds to the zero-
Doppler (zero range difference) case, is a constant for both
frequencies. In this case D is first subtracted from both L1 and
L2 Doppler counts to give

(5.82)

The new NL1 and Nr.2 are then used in place of NL 1 and NL2 in
equation (5.80) in order to obtain the corrected Doppler count.
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5.4.5.2 Tropospheric Corrections

The tropospheric correction model that will be given here
is known as the Hcpfield simplified model (Gough, 1978) and it is
mainly the result of work that was carried out by Helen Hopfield
(1969, 1972 and 1977). In this model the tropospheric range error
is given by

(5.83)

where Etrop tropospheric range error (metres) which has to
be subtracted from the observed range

6Sd range error component arising from 'dry'
troposphere

.6Sw range error component arising from the water
vapour content of the troposphere

The 'dry' component is computed from
6 -677. x 10 PhdsAs -d - 5T sin [ (E 2 + 2~5 2) 2 ]

(5.84)

where P atmospheric pressure in mb

T temperature in Kelvin

E satellite elevation in degrees

hds height in metres above the observing station
(receiver) where the refractive index for
the 'dry' component is exactly unity

The height, hds' has been determined by observations (Hopfield, 1977)

and is given by
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hdS = 40110.0 + 148.81 (T - 273.16) (5.85)

The satellite elevation is calculated from (Gough, 1978)

sin E = ~ [cosAcoscp(Xj-X)+ sinAsincp(Yj- Y)+sincp(Zj-Z)]

(5.86)

where A ,Cp geodetic longitude and latitude of receiver

X, Y, Z geocentric cartesian coordinates of receiver

Xj"Yj,Zj: geocentric cartesian coordinates of satellite at
the time of observation'

R : distance between receiver and satellite

The 'wet' component of the tropospheric range error is

Ils =w

77.6 x 4810 x 10-6ehws (5.87)

where e partial water vapour pressure in mb

hWS height (metres) above observing station where
the refractive index for the 'wet' component
is exactly unity

The height, hws' varies between 8 Km and 13 Km. This variation is
largely unpredictable and it is the major source of error in the
tropospheric correction, even though the magnitude of the 'wet'
component is only 10% of that of the 'dry' component. The value of
hwS is normally taken as

hws = 11000m (5.88)

The partial water vapour pressure, e, is related to relative
humidity or to wet-and-dry bulb temperatures by simple expressions
(Sykes, 1979).
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The maximum value of the 'wet' component, lls , is at the 2 mw

level (above 7° elevation) with a percentage error (uncertainty) in
the region of 30-40%. The maximum value of the 'dry' component,
llsd' on the other hand, is around 20 m but the percentage error is
only of the order of 1% (Black and Eisner, 1982).

The final value of the tropospheric range error, Et' is therop
sum of the two components, llsd and llSw. It is subtracted from the
observed pseudo-range or biased range measurements to give the
corrected observations. Alternatively it Can be added to the
computed values, as in equations (5.16) and (5.42). An observed
phase measurement (see equation 5.38) is corrected for tropospheric
delays by subtracting from it the quantity

= ~Ec trop (5.89 )

A Doppler count (see equation (5.49» is corrected by subtracting
from the observed count the quantity

N
A =trop(1,2) (5.90)

where N Atrop (T 1), N ~rop ('[2) tropospheric corrections to the
phase measurements at the start
('[1)and at the end ('[2)of the
Doppler count, from equation (5.89)
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5.4.5.3 Relativity
The GPS satellite clocks have to be corrected for drifts

(frequency shifts) which arise because the satellites are at
different gravitational potentials from the user (General Relativity),
and because they travel at different velocities (Special Relativity).
The variations in these frequency shifts with time, as they appear
to the user, consist of a secular (constant) term and of a periodic
term. The secular term is largely compensated by purposely setting
the satellite clocks at a slightly lower frequency than the nominal
10.23 MHz. In fact the satellite clock frequency is set low by a

4 4 -10factor of • 5 x 10 • Any remaining relativistic clock drifts are
implicitly included in the satellite clock correction polynomials
(see Appendix G.1).

The only other relativistic term is a variation in the
satellite clocks arising from the different orbits. This term, Atre,
is defined in Appendix G·.1and it varies in magnitude according to

5.5 GPS Geodetic User Equipment

GPS geodetic receiver development started early during Phase I
of the GPS program. Various US Government agencies, as well as a
number of industrial concerns, sponsored the development of receiver
systems which can process the GPS observables according to the
techniques described in Section 5.4. A significant part of the
receiver development effort has been focused on systems which do not
require knowledge of the GPS codes. These are intended for civil
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applications, in the event that future access to the P code is
limited to military users.

The first operational geodetic receiver was the NAVSTAR
Geodetic Receiver System (NGRS). This was developed by the Naval
Surface Weapons Center (NSWC) with Defence Mapping Agency (DMA)
sponsorship. The first unit, NGRS-1, was operational by February
1979, and an improved system, NGRS-2, was developed in 1980
(Hermann, 1981). The NGRS conforms with the R2 receiver type as
defined in Section 5.4.2. It is based on a Stanford Telecommunications
Inc.(STI) GPS receiver, connected to a cesium frequency standard, and
can track one satellite at a time on both L1 and L2 frequencies.
More details on this receiver system are given in Section 6.2.1.

The NGRS and another similar system developed by Sheltech
Canada (Lachapelle and Beck, 1982) were put through a series of
exhaustive tests. Lachapelle et al (1982) reported single point
positioning accuracies of the order of 5 - 10m, using pseudo-range and
Doppler (phase) observations over 10-15 hour time spans (see also
Chapter 6). Relative positioning tests resulted in sub-metre

.... " l-.At .accuracies for a 28 Km baseline, based on 1000 minutes of data
(Anderle, 1982). A long baseline experiment between two sites at
Mahe in the Seychelles and at Smithfield, Australia, resulted in
accuracies of the order of 1 part per million (ppm) (Evans and Hermann,
1982). In this experiment the major sources of error were shown to be

due to uncertainties in the satellite ephemeris. A serious limitation
was that only two satellites were used in the observations, resulting
in rather poor geometry that did not change from day to day.
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Secondly, they cannot decode the satellite navigation message.
Satellite ephemeris and timing information has thus to be input from
some other source.

The first interferometric receiver is called the Macrometer™
and it is manufactured by Macrometrics Inc. (Counselman and
Steinbrecher, 1982). It uses a crystal oscillator and makes phase
measurements (see Section 5.4.3) on the L1 frequency from up to 6
satellites simultaneously. It can perform absolute positioning to
accuracies of" 10m, or better if an atomic frequency standard is used
(Bock et al, 1983). The Macrometerwas however designed as an inter-
ferometric receiver and it is when using these techniques that
optimum geodetic accuracy can be achieved. It conforms to the R1
(see Section 5.4.2) specification of a GPS receiver system and can
utilize all the interferometric techniques of Section 5.4.4 that were
developed for this type of instrument. Extensive tests of the
Macrometer (Hothem and Fronczek, 1983, Bock et al, 1983, Goad and
Remandi, 1983) have repeatedly demonstrated relative positioning
accuracies of under 2 ppm over time spans of 2 - 3 hours. A two-
frequency instrument that can perform the first order ionospheric
correction (see Section 5.4.5.1) is currently under development for
the US Air F~rce Geophysics Laboratory. This is expected to provide
an order of magnitude improvement in the relative positioning
accuracies.

The second GPS receiver system that can operate without the
codes is known as SERIES, which is an acronym for Satellite Emission
Range Inferred Earth Surveying (MacDoran et al, 1982). It was
originally developed at the California Institute of Technology Jet
Propulsion Laboratory under NASA Sponsorship (MacDoran, 1979) and
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uses a 1.5muni-directional (dish) antenna and a rubidium frequency
standard. SERIES observes one satellite at a time on both L1 and
L2 frequencies. It sequences all available satellites, spending two
minutes on each one. The main SERIES observable is a 'pseudo-range'
(biased range). The difference between simultaneously observed
'pseudo-ranges' at two sites provides the interferometric observable
which is used in the least squares solution. The main drawbacks of
SERIES are the size of the dish antenna and the fact that it can only
observe one satellite at a time. Very little material has been
published on its accuracy. Melbourne (1g83a) reports an accuracy of
O.4ppmfor a 171 Km baseline. He also reports the development of a
new system, SERIES-X, which uses a small omni-directional antenna.

It should be emphasised that GPS geodetic receiver development
is still in its infancy. GPS is not yet operational and the full
benefits of continuous 4-satellite coverage and strong geometry will
only be available when the 1a-satellite constellation is deployed.
Major improvements in the accuracy of the satellite ephemeris compu-
tation, which is presently a large source of errors, are also
expected to be made. Bearing these facts in mind, it is still too
soon to speculate on the limits to the attainable relative positioning
accuracy of GPS.
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6.1 Introduction

The research work at Nottingham on the Global Positioning System
has been carried out in order to:

(i) write software to process both pseudo-range and
phase (Doppler) observations

(ii) test the software using real data

(iii) assess the accuracy of absolute positioning with GPS

(iv) establish the theoretical background behind the
interferometric techniques of adjustment (see
Section 5.4.4)

(v) be in a position to modify the software to use the
interferometric techniques (see Section 6.4.3)

GPS data have been provided for Nottingham by DMA (Macomber,
1983). They comprise pseudo-range and phase observations taken
at Dahlgren, Virginia, between 9 and 19 January 1981. The receiver
used was the NGRS-2, (see Section 5.5). Details of this receiver
system and of the GPS data are given in Section 6.2.

For several reasons the data could not be used in their
original form. A pre-processing program, DMAPROC, was thus written
in order to put the observations in a format suitable for further
processing. Section 6.3 describes the main techniques involved in
DMAPROC and gives a brief outline of the software. The GPS least
squaresaqDustmentprogram, GPSPROG, is described in Section 6.4.
This takes the pre-processed data from DMAPROC and performs the
solution for the receiver antenna coordinates and for a number of
clock unknowns. It can work either with pseudo-range or with
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phase observations. The results obtained from the Nottingham software
using the DMA data are presented in Section 6.5.

6.2 THE GPS DATA

6.2.1 THE NAVSTAR Geodetic Receiver System (NGRS)

The NGRS (Hermann, 1981) is a GPS geodetic receiver system
designed to operate primarily in the phase measurement (Doppler) mode.
It was developed by the NSWC with DMA sponsorship (see Section 5.5).
The observations that were provided for Nottingham were obtained by
the second version of this receiver system, NGRS-2.

The GPS receiver in the NGRS-2 is the STI5010, which is
manufactured by Stanford TelecommunicationsInc. It is a single-
channel instrument, capable of L1 and L2 pseudo-range and Doppler
observations from one GPS satellite at a time. NGRS-2 operates with
a Hewlett-Packard 5061A cesium clock. The receiver operation is
controlled by an Intel 80/10 microprocessor. According to cornrrands
entered by the operator, the microprocessor controls the duration of
the tracking period for each satellite.

The NGRS-2 observations are recorded on cassettes and are
subsequently transferred onto 9-track magnetic tapes. Two such tapes
have been delivered to Nottingham and the data contained in them are
described in the next section.
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6.2.2 Data Specification

The NGRS-2 data at Nottingham were recorded on two 9-track
magnetic tapes. The tapes consist of four separate files, each
containing the observations from one GPS satellite. The satellites
involved had SV identities 5, 6, 8,and 9. The data were observed
between 9 and 19 January 1981 and the observation schedule for each
satellite is shown in fig 6.I.

The NGRS-2 files are divided into a large number of one-minute
data blocks. Each block consists of five records, the contents of
which are as follows :

(i) record 1 contains the satellite and receiver
identities and a number of pre-processing indicators
which give information on the data contained in the
remaining records of the one-minute data block

(ii) record 2 consists of 10 sets of Ll and 12 pseudo-
ranges observed every 6 seconds (at the satellite).
The observations are time-tagged according to the
GPS time of transmission.

(iii) record 3 consists of 10 sets of Ll and 12 carrier
phase measurements (CCOC's) observed every 6 seconds.
This data has not been used in any of the adjustments.

(iv) record 4 contains one set of L1 and 12 Continuously
Counted Integer Doppler Counts (CCIDC's or phase
measurements) observed every 60 seconds. These are
time-tagged according to the local time of reception
and':are explained in more detail below. Record 4

also contains coded meteorological data for the
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tropospheric correction (see Section 6.4.5.2) and the
elements of the broadcast satellite ephemeris (see
Appendix G.2)

(v) record 5 gives the nominal local epoch of reception
of the 60-second phase measurement in record 4.
It also contains the satellite clock correction

coefficients (see Appendix G.1)

The 60-second phase measurement is given in integer cycle
units (see equation (5.38»). The time in seconds from the nominal
local epoch, Ti' to the epoch of the phase measurement (positive
zero crossing), m. .. d 4Ti ' as given m recor • The correct local epoch
of the phase measurement is

= (6.1)

where m'ti precise local epoch of phase measurement

'to nominal local observation epoch which coincides
1

with the integer minute of local time

~Ti time in seconds to positive zero crossing

The above relationship is illustrated in fig 6.11. In the Nottingham
software (see Section 6.3) the L1 and 12 60-second phase measurements
are interpolated to the integer minutes of local time, Ti. This
will assist future modifications of the software to utilize inter-
ferometric techniques (see Section 6.4.3). Successive phase measure-
ments are first converted to Doppler counts (see Section 5.4.3) by

m
N(i-1 ,i) =

m. . mN( 'ti_1
), N( 't

i
)

(6.2)

where successive phase measurements (CCIDC's)
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The average Doppler frequency in the interval between the two phase
measurements' is (see fig 6.II)

m
N(. 1 .)1- ,1= 60 + 8T. - 8T. 1

1 1-

(6.3)

The modified Doppler count between two successive nominal (integer
minute) local epochs is

= + (6.4)

where the average Doppler frequency, fDop' is given by equation
(6.3). Hermann (1981) estimated the maximum error in using the
average frequency, fDop' as not exceeding 0.04cm. The use of
equation (6.4) for both the L1 and L2 Doppler counts results in
these measurements being interpolated to common local epochs, thus
enabling the estimation of the ionospheric correction (equation
(5.80». The final (corrected) counts can be added together to
give the phase measurements at the integer minute intervals,
corrected for ionospheric delays.

Associated with the two DMA data tapes is a third 9-track
magnetic tape which contains the post-mission ephemerides of the
four satellites. It comprises a set of cartesian WGS-72 satellite
coordinates every 5 minutes. There are four files on this tape,
each containing the ephemeris of one satellite. These ephemerides
have been transferred onto random access files so that the
satellite coordinates for any epoch can be computed as quickly and
as easily as possible.
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6.3 NGRS DATA PRE-PROCESSING SOFTWARE

6.3.1 Aims of Pre - Processing

The four NGRS - 2 data files described in the previous section
occupy a total of 16 megabytes of storage. Clearly, it is not
practical to put such a large amount of data onto the computer's
disk store, especially since a large amount of the information
contained in the magnetic tapes is not required. In particular, the
6 - second phase measurements in record 3 (see Section 6.2.2) have not
yet been used. In addition, the elements of the broadcast satellite
ephemeris are repeated in everyone-minute block of data. These need
to be retained whenever they are updated which is only once every
60 minutes. A pre-processing program was thus written in order to

(i) vastly reduce the computer storage requirements by
transferring only the necessary data to disk

(ii) put the/observations in a form suitable for the least
squares adjustment program, GPSPROG (see Section 6.4)

A block diagram showing the main features of the GPS software
at Nottingham is given in fig 6.III. The pre - processing program,
DMAPROC, reads the NGRS-2 data files from the magnetic tapes and
transfers the pre-processed observations to disk. The output of
DMAPROC consists of a separate data file for each satellite. The
final stage of pre-processing is to put the observations from all
the DMAPROC files into a single file, in chronological order. This
is performed by a short routine called DMASORT (see fig 6.111). This
final file is the main data input for the adjustment program,GPSPROG.
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During the data pre-processing the broadcast ephemeris of each
satellite is put into a separate random access file. By only storing
the orbital elements whenever they are updated a significant reduction
in the amount of data is achieved. Each pre-processed observation
has an ephemeris record number associated with it. It is thus a
simple matter to subsequently retrieve the appropriate satellite
orbital elements from the random access file.

6.3.2 General Outline

The Nottingham GPS software (see fig 6.111) was written
entirely in FORTRAN 77. The programs operate independently in two
observation and adjustment modes. These are

1 smoothed pseudo-range mode
2 biased range (phase) mode

In mode 1 DMAPROC derives one smoothed pseudo-range measurement
for every 4 minutes of pseudo-range data. The details of this
mode and of the smoothing procedure are given in Section 6.3.2.1.
The representation of up to 40 observations by a single measurement
(normal point) results in a significant reduction in the storage
requirements and facilitates the interpretation of the results
(see also Section 3.1). In mode 2 DMAPROC converts the 60-second
phase measurements defined in Section 6.2.2 to biased ranges.
This mode is described in detail in Section 6.3.2.2.

The output of DMAPROC in either mode consists of one pre-
processed data file per satellite. These data are sorted in
chronological order into a single file by DMASORT (see fig 6.111).
The final file is then used by GPSPROG to compute the WGS-72
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coordinates of the receiver antenna, using the mathematical models
developed in Sections5.4.2 and 5.4.3.

The pre-processed biased range and smoothed pseudo-range files
together occupy a storage of 1 megabyte. This is a 16- fold reduction
in the amount of data after pre-processing. Further savings, probably
by a factor of 2, can be achieved by additional refinements in DMAPROC.

6.3.2.1 Smoothed Pseudo-Range Mode

The NGRS-2 pseudo-ranges are observed every 6 seconds. This
results in the accumulation of a large amount of data after tracking
periods of a few hours. It was thus decided to use smoothed pseudo-
ranges which are similar in concept to the normal points described in
Section 3.1. In this approach a polynomial is fitted by least squares
to a 4-minute span of pseudo-range observations. The smoothed
pseudo-range is a point on the polynomial taken near the middle of
the data span and it can represent up to 40 observations. In DMAPROC
the order of this polynomial is specified by the user. It was found
that a 5th order polynomial is best suited to the 4-minute data span
and this results in rms residuals of the order of 1 metre.

Simultaneous smoothed pseudo-ranges are derived from both the
L1 and L2 observations. An alternative approach would have been to
apply the ionospheric corrections, using the two-frequency observa-
tions, before fitting the polynomial. This approach was discarded
because it was found that a significant number of the L2 pseudo-
ranges were rather noisy. It was thus preferable to leave the
decision of whether or not to apply the ionospheric corrections until
the solution stage (in GPSPROG). This has the advantage that
solutions can be performed both with and without the ionospheric
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corrections (see Section 6.5).

The operation of DMAPROC when it is in the smoothed pseudo-
range mode is controlled by the input of a number of parameters.
These are

(i) the order of polynomial to be fitted to the pseudo-
ranges

(ii) the output mode. This varies the amount of line
printer output that is available to the user.

(iii) the dates and times between which data is to be
processed

(iv) the number of NGRS-2 files to be processed.

The NGRS-2 data files are processed in turn. Program
operation starts with the input of successive one-minute blocks of
data (see Section 6.2.2) from the first file on the magnetic tape.
As soon as four consecutive one-minute blocks are read, least
squares polynomials are fitted to both the L1 and the L2 pseudo-
ranges. Each polynomial is of the form

1 (t) = a + a1 (t - t )+ a2 (t - t )2 + ••• + a (t- t )n + vo 0 0 n 0

(6.5 )

where to
t

arbitrary initial epoch
satellite time of transmission of the pseudo-range
observation

let): pseudo-range observation at time t
a1,a2,•••,an: coefficients determined by least squares

v least squares residual
n order of polynomial
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It was found that a 5th order polynomial best suits the 4-minute
data span. A maximum of 40 observations are therefore used to

determine the 6 unknown coefficients, ao' a" a2, a3, a4,and a5.
The smoothed pseudo-range is then derived from equation (6.5) by
using a time argument, t, which is near the mid-point of the 4-minute
data span. This epoch is the same for both the L1 and the L2
polynomials to enable the estimation of ionospheric delays. The program
also calculates the rms residual, oR' of the fit of the observations
to the polynomial. With a 5th order polynomial the value of oR is
typically smaller than 1 metre. Noisy observations can be filtered
by excluding from the solution all smoothed pseudo-ranges with a value
of oR exceeding a certain limit.

While each one-minute block of data is being processed a check
is maintained on the parameters of the broadcast satellite ephemeris.
Whenever these are updated the new values are output in a random access
file. A separate ephemeris file is assigned to each satellite and
every record in this file contains all the necessary orbital and timing
parameters (see Appendix G). These have a validity period of one hour.
At the solution stage the appropriate satellite elements can be
retrieved because DMAPROC outputs the ephemeris record number which
corresponds to each smoothed pseudo-range.

The output of DMAPROC comprises one pre-processed data file for
every NGRS-2 file. The pre-processed data files contain one smoothed
pseudo-range observation per record and each record gives the
following information:

(i) satellite ID
(ii) GPS week number (week 1 starts at midnight UTC on

January 5 1980)
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(iii) the satellite time of transmission for the smoothed
pseudo-range. This is given in seconds from the
beginning of the week.

(iv) the L1 smoothed pseudo-range

(v) the simultaneous L2 smoothed pseudo-range
(vi) the value of oR for the L1 pseudo-ranges
(vii) the value of oR for the L2 pseudo-ranges
(viii) the appropriate ephemeris file record number
(ix) coded meteorological information

At the end of its run DMAPROC outputs a line printer listing
summarizing the work it has carried out. For each NGRS-2 data file
this listing gives:

(i) the number of one-minute data blocks that were
processed
the number of smoothed pseudo-ranges
the number of records in the resulting broadcast
ephemeris file

(iv) a printout of the ephemeris file

(Li )

(iii)

6.3.2.2 Biased Range (Phase) Mode

The biased range mode is the second mode of operation of
DMAPROC. Here, the program converts the 60-second phase measurements
(CCIDC's) defined in Section 6.2.2 to biased ranges (see Section
5.4.3).' The 60-second phase measurements are far less noisy than
the pseudo-ranges so it was decided to apply the ionospheric
corrections at the pre-processing stage. In NGRS-2 the phase
measurements are clocked at the local epochs of reception. However,
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the satellite times of signal transmission are also required in
order to enable the computation of the satellite coordinates from
the elements of the ephemeris. These times are obtained by making
use of the L1 pseudo-range observations. The pseudo-ranges are
interpolated to the epochs of the phase measurements by making use
of a least squares polynomial similar to the smoothing polynomial
described in the previous section.

The operation of DMAPROC is controlled by the input of a
number of parameters. These are identical to the ones listed in the
previous section for the smoothed pseudo-range mode. The only
additional information that is required by the program is a flag
whose value determines whether or not the ionospheric corrections
are to be applied. There are two available options here. The
normal practice is for these corrections to be applied. Alternatively,
the uncorrected L1 phase measurements can be used.

In the biased range approach (see Section 5.4.3) the observa-
tions at every initial signal acquisition can take any (arbitrary)
values. These values are justified by the inclusion of bias unknowns
at the solution stage (in GPSPROG). To easily identify the instances
of initial lock on signal phase, DMAPROC sets the corresponding
observed biased ranges to zero.

The program operation starts with the input of the first two
one-minute blocks of data from the first NGRS-2 data file. The two
consecutive L1 and L2 phase measurements (CCIDC's) are converted
to Doppler counts using equation (6.2). These Doppler counts are
then interpolated to the integer minutes of local time using
equation (6.4) (see fig 6.11). The reasons why this is necessary
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are twofold: firstly it results in the Ll and 12 Doppler counts
being interpolated to identical epochs of reception, thus enabling
the computation of the ionospheric corrections. Secondly, if simult-
aneously observed data from a second receiver are processed in the
same way, they will result in the observations being interpolated to
the same local epochs as those of the observations from the first
receiver. It will therefore be a simple matter to further process
the two data sets to obtain interferometric data types (see Section
5.4.4).

The NGRS-2 oscillator generates a local signal on both Ll and
L2 frequencies which is offset by 28750 Hz from the GPS carriers.
The 60-second zero-Doppler count (see equation (5.49»for either the
Ll or the L2 observations is thus

(6.6)

where fA local oscillator frequency (either L1 or 12)

fj carrier frequency from jth satellite (Ll or 12)
T l' T 2 : epochs of phase measurements (integer minutes)

In DMAPROC this zero-Doppler count of 1725000 cycles is subtracted
from both Ll and L2 Doppler counts to give (see Section 5.4.5.1)

NLl = NLl - D

NL2 = NL2 - D
(6.7)

where N Ll' N 12 60-second L1 and 12 observed Doppl.er'counts,
interpolated to integer minutes of local time
(see Section 6.2.2)
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The ionospheric correction is applied, if required, by substituting
NL1 and NL2 for NL1 and NL2 in equation (5.80). The corrected
Doppler count is thus given by

= 4620
2329 (6.8 )

The program automatically sets the first observed biased range
within a satellite pass, po ~1)' to zero. The second observed
biased range is given by

N
o () (1,2) c

p T1 + f L1
(6.9 )

If the ionospheric correction is not required, the second observed
biased range is obtained from

o NL1
p (T1) + ..,.-c

.1L1

(6.10)

After deriving the second biased range, DMAPROC reads the third
one-minute block of data and repeats the process described above to
obtain

No () (2, 3) c
p 't2 + f

L1
(6.11)

Successive biased ranges are similarly derived until all the one-
minute blocks of data have been processed.

For every 60-second Doppler count DMAPROC calculates

=

(6.12)

=
N'l2--c
fl2

L1 and L2 Doppler counts corrected for receiver
frequency offset using equations (6.7)
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Equations (6.12) are used to identify instances of loss of lock on

signal phase. It is assumed that the L1 phase measurement is
affected differently from the L2 measurement when loss of lock occurs.
The program then calculates the quantity

(6.13)

If lock is maintained between two consecutive phase measurements then
~ is dependent only on ionospheric delays and its value is thus very
small. So, when ~ exceeds a certain limit (arbitrarily set to 90m)
it is assumed that loss of lock has occurred. In this case the
observed biased range corresponding to the phase measurement of the
latest one--minute block of data is reset to zero.

The observation epochs of the biased ranges are the local times
of reception of the satellite signals. In DMAPROC the biased ranges
are processed so that the observation epochs coincide with the
integer minutes of local time (see Section 6.2.2). In order to
enable the computation of the satellite coordinates,the satellite
times of signal transmission are also required. These are obtained
from the pseudo-range observations by making use of equation (5.46).
For this equation to be valid, the times of reception of the pseudo-
ranges must be the same as the observation epochs of the biased
ranges. This condition is not satisfied with the NGRS-2 data. The
pseudo-ranges must therefore be interpolated to the appropriate
observation epochs and this is done by using a least squares poly-
nomial fit of the form

lL1 (T) = bo+b1 (T- TO) + b2 (T _To)2+ •••+ bn (T- To)n+V

(6.14)



235

where T
o arbitrary initial epoch
T local time of reception

lL1(T)

bo,b1, .••ibn:
L1 pseudo-range observation received at time T

coefficients determined by least squares
v least squares residual
n order of polynomial

The data spans for the polynomials are the same 4-minute intervals
that are used in the derivation of the smoothed pseudo-ranges. The
order, n, is specified by the user and, as in Section 6.3.2.1, a 5th

order polynomial has been chosen. The six coefficients, bo' b1, •••,b5,
are derived by least squares for each 4-minute data span (40 observa-
tions). These coefficients are then used to derive the required
pseudo-ranges by entering the appropriate observation epochs, T, in
equation (6.14). Each polynomial derives a maximum of four pseudo-
ranges (one every integer minute) within.the time-span of the observa-
tions that were used to compute it.

The accuracy of the pseudo-ranges in equation (5.46) depends
on the speed of the sat~llites and on the accuracy requirements for
the satellite coordinates. The GPS satellites travel at a speed of
approximately 3800 ms-1. So for an accuracy of 1cm in the satellite
coordinates the pseudo-ranges need only be known to within 2~s
(600m) • The L1 pseudo-ranges are therefore more than adequate for
this purpose and the L2 observations are ignored in the derivation
of the polynomials (equation (6.14».

The operation of DMAPROC in the biased range mode is very
similar to the program's operation in the smoothed pseudo-range mode
(see Section 6.3.2.1). Each NGRS-2 data file results in one pre-
processed biased range data file and in one satellite ephemeris
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random access file (see fig 6.111). Each record in the biased range
data files contains:

(i) the satellite ID
(ii) the GPS week number
(iii) the satellite time of transmission of the biased range.

This is given in seconds from the start of the week.
(iv) the biased range observation
(v) the corresponding L1 pseudo-range (interpolated to the

epoch of reception of the biased range)
(vi) the rms residual of the polynomial fit to the L1

pseudo-ranges (see Section 6.3.2.1)
(vii) the satellite ephemeris record number for the biased

range observation
(viii) coded meteorological data

The local epoch of reception, 't, for each biased range observation
is not output by DMAPROC. This can be easily computed from

c (6.15)

where the satellite time of transmission, t, and the L1 pseudo-
range, I L1 ('t) , are given in the pre-processed data files (see above).

The output of. DMAPROC includes a line printer listing which
summarizes the work that was carried out by the program. For each
NGRS-2 data file this listing gives:

(i) the number of one-minute blocks of data that were
processed

(ii) the number of biased ranges after pre-processing
(iii) the number of ephemeris records in the resulting
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random access file
(iv) a printout of the ephemeris.

6.4 GPS LEAST SQUARES ADJUSTMENT PROGRAM (GPSPROG)

6.4.1 Introduction and Data Input

The final stage of data pre-processing (see Section 6.3) is
the arrangement of all pre-processed observations in chronological
order into a single file. This task is performed by a short routine
called DMASORT (see fig 6.111). The two final data files, one for
smoothed pseudo-ranges and the other for biased ranges, contain the
pre-processed observations from all available satellites in the time
span between 9 and 19 January, 1981 (see fig 6.1). These data are
the main input for the least squares adjustment program, GPSPROG.

GPSPROG makes few distinctions between smoothed pseudo-ranges
and biased ranges since the mathematical models for both data types
are identical (see Sections 5.4.2 and 5.4.3). In both cases the
program solves for the NGRS-2 antenna coordinates and for a specified
number of clock (range) bias and clock drift unknowns. There are
generally more bias unknowns with biased range observations than
with smoothed pseudo-ranges because with the former data type the
program has to solve for one such unknown for every initial signal
acquisition.

During its run GPSPROG has to use data from a number of files
(see fig 6.III). These are

(i) the pre-processed data file (either smoothed pseudo-
ranges or biased ranges)

(ii) the four broadcast ephemeris random access files
(one per satellite)
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(iii) the four post-mission ephemeris random access files
(iv) a disk file created by the user

The last file controls the operation of GPSPROG and contains:

(i) the data mode (either pseudo-range or biased range)
(ii) the ephemeris mode. The program can use either the

broadcast or the post-mission ephemeris.
(iii) the program output mode. This varies the amount of

line printer output available to the user.
(iv) a flag which determines whether the tropospheric

corrections are to be applied
(v) a flag which determines whether the L1 smoothed

pseudo-ranges are to be corrected for ionospheric
delays. If the biased ranges are to be employed this
flag is used to tell the program whether the observa-
tions have been corrected for ionospheric delays in
DMAPROC (see Section 6.3.2.2).

(vi) a flag which determines whether the observations are
to be corrected for predicted satellite clock errors.
These corrections are computed from the information
in the broadcast ephemeris (see Appendix G.1).

(vii) the maximum admissible value of the rrns residual, oR'
of the polynomial fit to the pseudo-ranges (see
Section 6.3.2). Observations with a value of oR which
exceeds this limit are rejected.

(viii) the input mode of the provisional receiver coordinates.
Cartesian or spheroidal coordinates can be chosen.

(ix) the semi-major axis and reciprocal of flattening of
the required spheroid (if geodetic coordinates are
chosen)
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(x) the provisional coordinates of the receiver (cartesian
or geodetic)

(xi) the number of bias unknowns
(xii) the number of clock drift unknowns
(xiii) the GPS epochs (week number and time of week) after

which the program is to start solving for each bias
unknown

(xiv) the GPS epochs after which the program is to start
solving for each drift unknown

(xv)
(xvi)
(xvi.i )

the provisional values of the bias terms
the provisional values of the clock drifts
the start and end epochs which define the time span
of the observations to be used in the solution.

6.4.2 Program Description

GPSPROG starts its run by reading the information contained in
the user-created disk file (see previous section). The data in this
file specify the observation mode and control the operation of the
program. A loop is then initiated where each pre-processed
observation (biased range or smoothed pseudo-range) is entered in turn.
For each data record the following tasks are performed:

(1) The program checks whether the observation is within
the required time span. If it falls inside this time
span then it is accepted for further processing.
Otherwise the next record is entered and the check is
repeated until either an observation within the specified
time span is found or the end of the data file is
reached.
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(2) When the program is in the smoothed pseudo-range mode
and if the ionospheric correction is to be applied then
the rms residuals of the polynomial fits to the L1
and L2 observations are compared with the limit
specified by the user (see Section 6.3.2.1). If either
value of oR exceeds this limit then the smoothed,

pseudo-range is rejected and the next data record is
entered. If the ionospheric correction is to be
ignored then the L1 smoothed pseudo-ranges are
employed and the above check is only performed for the
rms residual of the fit to the L1 observations.

(3) When the program is in the biased range mode then the
rms residual of the polynomial fit to the L1 pseudo-
ranges is also compared with the user-specified maximum
limit. In this case the limit can be significantly
larger than in (2) since the pseudo-ranges need only be
accurate to within 600 m (see Section 6.3.2.2).

(4) If required, the ionospheric correction is applied to
the observed L1 smoothed pseudo-ranges(equation 5.72).

(5) The broadcast satellite ephemeris record for the current
observation is entered into the program.

(6) The satellite time of transmission is corrected to the
GPS time frame using the parameters in the navigation
message (see Appendix G.1).

(7) If the broadcast ephemeris is specified then the
cartesian satellite coordinates are derived from the
orbital elements and from the GPS time of transmission
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(see Appendix G.2). If the post-mission ephemeris is
chosen then the satellite coordinates are interpolated
from the precise ephemeris random access file (see
Section 6.2.2) by means of an 8th order Everett
interpolation scheme (see Appendix E.2).

(8) The program calculates the computed value of the range
between the provisional location of the receiver and
the satellite at the observation epoch (equation (5.17)h

(9) The observation epoch is compared with the starting
epochs of the bias and drift unknowns. The program
then determines the locations of the coefficients for
these unknowns within the observation equation and it
locates the provisional values entered by the user (see
Section 6.4.1).

(10) The computed value of the observation is evaluated from

(6.16)

for a smoothed pseudo-range, or from

(6.17)

for a biased range, where

lC computed value of smoothed pseudo-range

pC computed value of biased range

RC computed value of range between receiver and
satellite (see (8) above)
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c speed of propagation of electromagnetic waves

Ca or provisional value of rth bias

a~s: provisional value of the sthclock drift

t T GPS and local starting epochs for sth driftos, os
unknown

t GPS time of transmission of smoothed pseudo-range

T local time of reception of biased range

(11) If the tropospheric correction is required, the
meteorological data are decoded to give the temperature,
pressure, and relative humidity at the observation epoch.
The tropospheric range error, Et ,is then evaluatedrop
from equation (5.83) (see Section 5.4.5.2) and added to
the computed value of the observation.

(12) If the observations are to be corrected for satellite
clock errors, the quantity c~t (see Appendix G.1 ands
equations (5.12) and (5.44» is subtracted from the
computed value.

(13) The program calculates the observation equation
coefficients for the receiver coordinates (equations
(5.18», for the clock bias (equation (5.19», and for
the drift term. The coefficient, for the clock drift
is given by

= c (t - t )os (6.18)

fer a smoothed pseudo-range, and by
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8p

8a1S
= c (6.19)

for a biased range. The coefficients are then placed
in the appropriate locations of the observation equation
vector.

(14) The right-hand side of the observation equation is
evaluated by taking the difference between the
observed and the computed values.

(15) The contribution of the observation equation is added
directly to the normal equations. The observation
equation is also placed in temporary store to enable
the computation of post-adjustment residuals.

(16) If the end of a satellite pass has been reached, the
accumulated normal equations are solved to give the
current solution.

(17) If the end of the data file or of the specified time
span (see Section 6.4.1) has been reached, the final
solution is performed. otherwise the next data record
is read and the above process, starting from (1), is
repeated.

The program output consists of the accumulated solution after every
satellite pass, and of the final solution when all the data have
been processed. The a posteriori standard errors of all the adjusted
quantities are also given.

In the solutions, the receiver coordinates and their standard
errors are given both'in cartesian and in geodetic (spheroidal)
representations. The ellipsoidal parameters for the latter (see.'
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Appendix B.3) are either supplied by the user or default values are
adopted. The default values are those of the WOS-72 ellipsoid,
given by

a = 6378135.0m (6.20)

1f = 298.26 (6.21)

GPSPROO'solves for the cartesian receiver coordinates and a posteriori
standard errors. The coordinates are then converted to the spheroidal
representation as described in Appendix B.3. The standard errors are
rotated to the spheroidal representation by applying Gauss's theorems
(see Section 2.5.2) on equation (B.22). These give:

(6.22 )

where °xx (3x3) covariance matrix for cartesian receiver
coordinates

S (3 x 3) matrix defined in equation (B.21)

Equation (6.22) gives the covariance matrix, 0GG' for the geodetic
(spheroidal) receiver coordinates. Its diagonal elements are the
variances, in units of length, along the directions of latitude,
longitude, and height.

GPSPROG also outputs, if required, the post-adjustment
residuals of the observations. These are given in a separate line
printer listing which includes :

(i) the satellite ID
(ii) the GPS week number
(iii) the observation epoch. This is the GPS time of

transmission for smoothed pseudo-ranges, or the local
time of reception for biased ranges.
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(iv) the observed smoothed pseudo-range or biased range
(v) the computed value of the observation
(vi) the 'observed minus computed' value
(vii) the least squares residual

6.4.3 Future Development

The next stage in the software development at Nottingham is the
extension of the GPS programs to incorporate interferometric
techniques of adjustment (see Section 5.4.4). GPSPROG has been
written with these techniques in mind and it can be easily modified
if interferometric data are available.

In the final version of the software, simultaneous observations
from two sites will be pre-processed by DMAPROC in exactly the same
way as described in Section 6.3. The single point solutions, in the
biased range mode, will then be performed independently for each site
by GPSPROG. These solutions can be used as the provisional coordinates
for the interferometric scheme. However, the function of GPSPROG will
not stop here. This program will also be used as the final stage of
data pre-processing. After each adjustment, GPSPROG will output the
observed biased ranges and the computed values of the true ranges.
It will also correct the data for all propagation delays.

The interferometric program will use the output of the two runs
of GPSPROG as its main data input. By taking the difference of the
simultaneously observed biased ranges between the two sites, an inter-
ferometric data type, the biased range difference, will be obtained.
Also, by taking the difference of the corresponding computed ranges
between the two single point solutions, the computed value of this
observable will be derived (see equation (6.24) below). With little
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extra work the program can thus obtain the right-hand side of the
interferometric observation equation.

The GPS satellite coordinates will be needed for the computation
of the observation equation coefficients. These are interpolated in
GPSPROG to the GPS time of transmission of each biased range
observation. They can then be output for use in the interfe~ometric
program, thus simplifying its operation by avoiding the need to
incorporate the ephemeris files and associated computational
procedures(see Appendix G).

The mathematical model for a biased range difference is
obtained by multiplying both sides of equation (5.52) by cIf., as

J

(6.23)

This can be written as

(6.24 )

where biased range difference between stations A and B

etop pth clock bias unknown

qth clock drift unknown

'toq starting epoch of qth drift unknown

range between receiver at A and satellite j, at
the epoch of transmission of the biased range
which was received at local epoch T at A

range between receiver at B and satellite j, at
the epoch of transmission of the biased range
which was received at local epoch T at B
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The computed values of the true ranges, R~j(t) and R~j(t), will
already have been corrected for tropospheric delays in GPSPROG (see
Section 6.4.2), while the biased range observations will have been
corrected for ionospheric delays in DMAPROC (see Section 6.3.2.2).
The interferometric program will use these data to solve for the
receiver coordinates at the two sites, for a number of bias unknowns,
and for a number of drift terms. The observation equation coefficients
are derived by differentiating equation (6.24) with respect to each
unknown (see Section 2.5.2). An interferometric adjustment only
provides relative coordinates and thus the coordinates of one of the
receivers will be held fixed by the introduction of appropriate
'observation equations' (see Section 2.5.3). The drift term in
equation (6.24) has a very small dependence on satellite clock errors
and it represents the frequency offset between the two receiver
oscillators (see equation (6.23». The biased ranges will not
therefore need to be corrected for satellite clock errors in GPSPROG
(see Section 6.4.2). A new bias unknown will have to be introduced in
the adjustment every time either receiver initially acquires the
satellite signals. MOst of these instances will be identified in
DMAPROC (see Section 6.3.2.2). Any cases of loss of lock on signal
phase which are not detected in DMAPROC will be identified by examining
the post-adjustment residuals from the single point solutions.

The GPS software at Nottingham has been developed for the NGRS,
which conforms to the R2 receiver type (see Section 5.4.2). Programs
have also been developed to process pseudo-range observations from
r~ceivers of the R1 type, such as the Geostar (see Section 5.5),
according to the models discussed in Section 5.4.2. Additional soft-
ware will be written to process interferometric data from R1 receiver
systems, using the models discussed in Section 5.4.4, when such data are
available.
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6.5 ANALYSIS OF THE NGRS-2 DATA

6.5.1 Introduction

The NGRS - 2 observation schedule is tabulated in fig 6.1.
Two antenna sites were occupied during this data span. The WGS - 72
coordinates of site A were given by DMA (M:icomber,1983) as

A = 2820 57' 21: 7110
0

CPo = 380 20' 2':5860 (6.25)

ho = -37.266m

Antenna site B was 2.000 m south and O.133 m east of site A.

The pre-processed NGRS-2 observations at Nottingham were
divided into 3 data sets which are summarized in fig 6.IV. Data
Set 1 consists of observations from 12 satellite passes taken at
site A between 23:30 UTe on day 9 and 20:40 UTe on day 14 (see
fig 6.1). Data Set 2 also consists of 12 satellite passes at
antenna site A. These were observed between 23:20 UTe on day 16
and 17:30 UTe on day 19. Data Set 3 consists of 8 satellite
passes at antenna site B observed between 23:20 on day 14 and
19 :30 on day 16. In each data set there are approximately 4 times
more biased range than smoothed pseudo- range observations. This is
because biased ranges are derived in DMAPROGat the rate of one
every minute, while smoothed pseudo-ranges are derived at the rate
of one every four minutes (see Section 6.3).

Single point solutions were performed, using the above data
sets, in both the biased range and the smoothed pseudo-range modes
of adjustment (see Section 6.4). The biased range solutions are
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presented in Section 6.5.2 and the smoothed pseudo-range solutions
in Section 6.5.3. Two different methods of modelling the receiver
clock were attempted : the first method introduced a new clock
drift (frequency offset) unknown for every satellite pass and did
not correct the observations for the predicted satellite clock
errors. Each drift parameter thus represented the frequency offset
between receiver and satellite oscillators (see equation (5.41».
The second method applied the satellite clock corrections and only
solved for one drift unknown for each data set. This unknown
represented the local frequency offset from GPS (predicted) time.

Solutions were performed either with the broadcast or with a
post - mission (precise) ephemeris (see Section 6.2.2). The latter
was generated by NSWC using new (1983) software and the original
Monitor Station data. A comparison between the two ephemerides is
given in the next section.

Since it is most probable that only the L1 frequency will be
available in the future for civilian use, solutions were attempted
using the uncorrected L1 observations. The effects on the station
coordinates of ignoring the ionospheric corrections are discussed
in Section 6.5.4.

6.5.2 Biased Range Solutions

The least squares adjustment program, GPSPROG (see section
6.4),adds the contribution of each GPS observation directly on to
the normal equations. GPSPROG performs the least squares solution at the
end of each satelli te pass.This solution contains the contributions of
all previous observations and enables the user to examine the effect
of each pass on the station coordinates.
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The pass-by-pass biased range solutions for the three data
sets, using the broadcast ephemeris, are tabulated in figs 6.V to
6.X. The station coordinates are given as corrections to the
provisional values of equations (6.25). In the first three tables,
figs 6.v to 6.VII, the adjustments included one drift unknown for
each satellite pass. The observations were not corrected for
satellite clock errors and thus the drift terms represented the
frequency offsets between receiver and satellite clocks (see
Sections5.4.3 and 6.4.2). In the next three tables, figs 6.VIII to
6.X, just one drift unknown was incorporated in each adjustment.
The observations were corrected for satellite clock errors and thus
the drift represented the frequency offset between local and GPS
clocks.

Fig 6.v shows the accumulated solutions after each pass for
Data Set 1. The first satellite, ID 9,produced standard errors of
the order of 30m and solutions which were within 300m of the DMA
coordinates (equations (6.25». The introduction of the biased range
observations'from the second pass improved the station coordinates
and their standard errors by approximately one order of magnitude.
The next significant improvement in the standard errors came after
the 4th satellite pass, which produced a drop of 1.2m in "cp'

accompanied by a 5 m change in latitude. Subsequently, there was
a very gradual drop in the standard errors up to pass 11. On the
final pass there was a drop of 20 cm in "~, accompanied by a
change of 5.8 m in the station longitude. Throughout the adjustment
the longitude was the weakest component (i.e. produced the largest
standard errors), and this weakness was reflected by the larger
fluctuations in this coordinate than in latitude or height.
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A feature of the CPS satellites is that they repeat the
same ground track every 24 hours. This meant that successive passes
of the same satellite in fig 6.V did not introduce any changes in
the geometry and thus there was little improvement in the standard
errors after pass 4. The rather large drop in 0A on the 12th
pass can be attributed to the fact that this was 40 minutes longer
than previous passes of satellite 5 (see figs 6.1 and 6.1V)
introducing some new geometry in the adjustment. When CPS is
fully operational the 18 satellites will provide a much stronger
geometrical configuration than was available at the time the NGRS-2
data were recorded. Significantly better solutions will then be
possible, in much shorter time intervals.

An important result from fig 6.Vis that the a posteriori
standard errors with biased range data were over-optimistic. Drops
of 10-20 cm in the standard errors reflected changes of 2-5 m in the
station coordinates, implying that the standard errors were under-
estimated by at least a factor of 10. This situation can be
rectified by using observations at less frequent intervals than the
one-minute intervals of the biased ranges (see Section 6.5.3).

Fig 6.V1 gives the pass-by-pass solutions for Data Set 2.
These followed a very similar pattern to the solutions in fig 6.V.
The only difference is that the longitude fluctuations were much
smaller in fig 6.V1. This was because the first 8 passes were
longer, on average, for Data Set 2 than for Data Set 1 (see fig 6.1V).
The full range of geometry was thus sampled in the first 6-8 passes
and there was little change in station coordinates or in standard
errors after pass 8.
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Fig 6.VII gives the solutions for Data Set 3 (antenna site B).
Here, the satellite passes were rather shorter than for either of
the other two data sets (see fig 6.IV). The standard errors after
8 passes did not therefore drop to the same "level as in figs 6.V
and 6.VI.

The drift values given in figs 6.V to 6.VII were the final
solutions after all the observations had been incorporated. Since
the observations had not been corrected for satellite clock errors,
the drifts represented the relative frequency offsets between
satellite and local oscillators (see equation (5.41». It can be
seen that the frequency offsets for successive passes of the same
satellite were highly repeatable, with fluctuations of 2- 3 psec/sec.
This suggests that all oscillators were stable over the whole 10-day
data span. TYpical drift values for each satellite, from the
satellite navigation message, were:

_,1-
",0

SV ID 5 . 152.5 psec/sec.
SV ID 6 31.5 psec/sec
SV ID 8 136.0 psec/sec (6.26)

SV ID 9 3.0 psec/sec

The above values were relative to GPS time and were within 2-3
psec/sec of the NGRS-2 solutions in figs 6.V to 6.VII. It can
therefore be inferred that the NGRS-2 clock drift relative to GPS
time was negligible. This is substantiated by the solutions in
figs 6.VIII to 6.X, where the observations were corrected for
satellite clock errors. The value of the single drift unknown in
each adjustment was very nearly zero.
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Fig 6.V!!! gives the pass-by-pass solutions for Data Set 1.
On comparing these with the solutions for the same data set in
fig 6.V, it can be seen that the standard errors were generally
lower. The solutions were almost identical for the first satellite
pass but after 4 passes the values of aA and a, were four times
smaller than in fig 6.V. This was because there were fewer unknowns
in the adjustment in fig 6.V!!!, resulting in stronger geometry.
After the 4th pass there was little change in the station
coordinates and in the standard errors with the introduction of
more observations. This was in contrast to the large longitude
fluctuations in fig 6.v.

Since GPSPROG does not weight the observations, an
a priori standard error of 1m is implied. The value of the
variance of unit weight, ao' is thus very nearly the value, in
metres, of the rIDS residu~ of the observations. This value is,
as expected, greater in fig 6.V!!! than in fig 6.V, because of
the smaller number of unknowns in the former adjustment. Sudden
jumps in the value of a would be indicative of changes in theo
validity of the adopted mathematical models. For example, if
there was a sudden increase in a after the inclusion of a newo
satellite pass in fig 6.V!!!, this could be due to:

(i) the satellite clock behaving differently from the
GPS clock predictions

(ii) a change in the frequency of the NGRS-2 clock,
which should necessitate the inclusion of a new
drift unknown

(iii) errors in the satellite ephemeris
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Fig 6.IX gives the pass-by-pass solutions with only one drift
unknown for Data Set 2. Again, the standard errors were generally
smaller than those from the same data set in fig 6.VI, while the
value of 00 was bigger. On comparing the repeatability between
Data Sets 1 and 2, the final coordinates in figs 6.v and 6.VI
agreed to within 2m, while the final coordinates in figs 6.VIII and
6.IX only agreed to within 9.5m, even though the standard errors in
the latter two solutions were smaller.

Comparison of the solutions between figs 6.VII and 6.X, for
Data Set 3, again shows the pattern of smaller standard errors with
only one drift unknown. The final longitude in fig 6.X agreed more
closely with the other solutions than with the longitude in fig
6.VII. This was probably due to the high value of 0A in
fig 6.VII, because not enough passes had been observed to justify
solving for one drift per pass.

From the above discussion it can be concluded that the
solution scheme of allowing for the predicted satellite clock errors
and solving for only one drift unknown is best for adjustments with
just a few satellite passes as, for example, in Data Set 3. In all
such schemes (figs 6.VIII to 6.X) there were relatively small
changes in station coordinates after the 4th pass. When a large
number of passes, with strong geometry, are available it is best to
model the drifts and ignore the GPS clock corrections. This also
safeguards the user from erroneous clock predictions made by the
Control Segment.

The final solutions for station coordinates from figs 6.V to
6.x are tabulated again in fig 6.XI. This table also gives the final
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solutions obtained using the precise ephemeris. If a is takeno
as a measure of the quality of the ephemeris used, it can be seen
that there was little to choose between the two ephemerides.
However, the variations between the different solutions were slightly
smaller with the precise ephemeris, with a maximum range of 12.5min
each coordinate. The corresponding maximum range with the broadcast
ephemeris was 17m.'

Fig 6.XI shows a significant longitude bias between broadcast
and precise ephemerides. The average coordinate differences between
the two ephemerides for the six solutions, and their standard errors,
were

6AB_ P = -32:039 ± 0;044

= 0;197 ± 0;023 (6.27)

= -0.61 m ± 0.99m

The above differences are in the sense 'precise minus broadcast'.
The large longitude bias can be justified by a different origin of
longitude having been adopted between broadcast and precise
ephemerides. As explained in Section 2.5.4 one'station's longitude
has to be held fixed during any orbit determination process. The
Naval Surface Weapons Center must therefore have changed the
orientation of the GPS system between the two determinations,
resulting in the 32" longitude bias.

With either ephemeris it was impossible to detect the 2 m
latitude difference between antenna sites A and B. However, if

more passes had been observed at site B it would have been possible
to obtain more consistent solutions than those shown in fig 6.XI.
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When GPS is fully operational, and with the advent of receivers
which can observe many satellites simultaneously, accuracies of
1-2mmay be achieved using only a few hours' observations. The
repeatabilities demonstrated by the NGRS-2 solutions, which can be
taken as a measure of the accuracy, were at the 5-10mlevel.

6.5.3 Smoothed Pseudo-Range Solutions

The same types of solutions that were presented for biased
ranges in the previous section were also attempted with the smoothed
pseudo-range data. With this data type there were fewer bias
unknowns since there was no requirement to keep track of signal
phase. It was decided to incorporate one bias unknown per satellite
pass.

Fig 6.XII gives the smoothed pseudo-range pass-by-pass
solutions for Data Set 1 in an adjustment which modelled one drift
per satellite pass. In this data set all the smoothed pseudo-range
observations from pass 10 were rejected. This was because the L2
pseudo-ranges were too noisy and were filtered out of the adjustment
(see fig 6.IV). The solutions can be compared with the corresponding
biased range solutions in fig 6.v. It can be seen that the standard
errors and the unit variance were always larger for the smoothed
pseudo-range data. However, the solutions in fig 6.XII appear to
have settled faster than the biased range solutions. After only
6 passes of the pseudo-range data there was no significant change in
the station coordinates with the addition of more observations.
In contrast, the longitude from fig 6.V changed by approximately 10m
between pass 6 and pass 12. The final solutions from both data
types agreed quite well in longitude and latitude but there was a
rather large, 13m, difference in height. The final solutions for the



_r::.0

I
_r::.

°r<

Q
H

,......
El
'-"

,......
El
'-"

,......
El........

,-..
El........

~
CO•
t'-
~

~
~
(\f
~
(\f

l!"I
0\
•

CO
t'-

(\f
~
•o

\0......
I

l!"I
('Y")·l!"Io
(\J
I

o
t'-
(Y)
.--

e-~.
~

oo
(Y)
.-

M
~
~
I

....
(Y)

\0....

o·o
(Y)

co
0\

0\
.:::T·(Y)

co
M·o.-

co..-
~..-

rf'l
~ ·t'-

l!"I..-
•

l!"I
C\J

..-o
(\f

co
~
•

(\f

~
(Y)

•
(\J

..-
t-

o

-=-

t-
CO·(Y).....

(Y)

-=-•
CO

(\J....
•

0\

(\Jo·(\J

0\
.:::T
•

C\J

M
(Y)·(\J

\0
~ •
-=-

CV')
(\f
•

CV')
..-

co
o

r--

l!"Io·C\J

0\
0:>

o
.--

o..-
•

C\J

co..-

~
0:>•
rf'l.-

C\J
t-

-=-

.~
o

t'-.--

l!"I

.:::T
C\J

CV')
o•
(\J

e-eo
•

0\
o•
C\J

l!"I.....
~

l!"I
CO
CV')......

(\J
t-

o

-=-

l!"Io•
t-.-

(Y)
o

CO

o.....

.....
•
t-
C\J

..........
o

(\J

o
l('\

o.--

....
-=-·(\J

'"CO•-=-

b•r--...

co·CO
~.-

CV')......
o

(\J

.-
l('\

•....

(\J
;;t
•.-

~o
o

(\J

CV')
o
CV')....

.....
.:::T

l!"I

M

'"o
t-....

(\J.....

0\
o·(\J

CV')
..-
(\J

o
0\

o
.-

0\
l('\

o
.-

o
t-

o
.-

t-
\0

o....

(\J
I.f)·C\J

;;t
;;t

o
(\J

CV')

'"oM......

o
(Y)

o
l!"I

o
C\J•
\0.-

....
l!"I•
t-....

Q)

§
........
........

265

{/J
(I)

~
I

~
I
(I)
(I)

~

H
H><o
\0

bO.....
[:w



266

co I..rI I..rI 0\ N .::r N 0 I..rI 0\ co
0 0\ co 0\ N N N (Y') CY'\ CY'\ CY'\
0 0 0 0 0 0

Cf)..- ..- N N N N N N N N C
0or-i
~::s
r-l

i1
0\ ..- t-- N co I..rI (Y') (Y') CY'\ CV') 0 Q).c:---- \.0 (Y') .::r CY'\ t-- t-- t-- l.!'I .::r .::t

~o El • • •.._. t-- (Y') N N N .- .- ..- e--' .- ....
~\.0
I
0
'0::s
(l)
Cl}
ll-.

(Y') .- t-- eo 0\ N .- 0 \.0 \0 l.!'I '0l.!'I 0\ co t-- t-- t-- t-- t-- \0 I..rI I..rI. . · . , · • · · · • .... (l)

e----- co 0\ 0 0 0 0 0 0 0 0 0 .... .s::
0 El \0 ~.._. 0

0
~

Cl} Cl)Q) Cl)Cl)
CU CU

.::r co co CV') l!) \.0 l!) 0\ l!) (Y) co .r-! p..
0\ t-- \0 .- .- 0 0 0\ 0\ co t-- Il:)

,
-< - 0 · • • • ~0 El .... .::r .::r .- .- .- .- 0 0 0 0 Cf) c......_. .::;r s, 0 I

N 0 Cl)

s, t.. Cl}

t.. i cu
Q)

p..

~
CJ
0

0 r-l .-.s:: co co N .- .- .:::t t-- t- o 0\ .- C)- ..- 0\ (Y) l!) co (Y) .- 0\ \0 co r- +JI El 0 0 . · • • • • Q)

~........ N co 0\ 0\ \0 r- t- \0 \0 co co +J.c: t- 'r-!
M CUM
Q) +J
+J ..... ~
~

CO 0 r- 0 0 0\ r- (Y) CV') ex:> (Y)

0 CO (Y') ..- .:::t .- (Y') ('I) CO .::T \0 l.!'I r.. He- o • • • • • • • e H- (Y') l!) (Y') (Y') (Y') N N N N 0 0 Cl)

~I El l!)

~
+J

'-" ..- " Cl)
e- I (l)

~
•

+J C \0
CJ § '0 bO(l) CUr.. 0 or-!
r.. r.. CL.

.::T t-- \0 t- CY'\ 0 0\ N .::r 0 0 8 +J !Xl
0 N .- ex:> (Y') 0 \0 l.!'I .::r .... ex:> I..rI c....

-< • • · · • • · · or-!.-.. .:::t .::r .::r (Y') CY'\ (Y') (Y') .::r IJ"\ N N Cl} lsI e 0 N N N N N N N N N N 5._, N
-< I or-! c.... Cl)

+J 0 or-!cu r..
E: r.. (l)

0
(l) _g ~
Cl)

~ &H B0\ ex:> \0 Lon l.!'I 0\ \0 l.!'I 0\ 00 1.0 I..rI

fI3

Cl) ~
Cl) .... N (Y') .::T I..rI \0 r- eo 0\ 0 ..... N 2< .- .... ....
p..

.:::t.
o

N

o
I

N

o,
t-

o
o,

....
o

o
.-.
o

....
o
o
I

o, oco
(Y')
I



267

drift terms were also very close and they were within 3-4 psec/sec
of the values given in the satellite navigation message (see
equations (2.26».

Fig 6.XIII gives the pass-by-pass smoothed pseudo-range
solutions for Data Set 1 in an adjustment which corrected the
observations for satellite clock errors and solved for only one
drift unknown. This can be compared with fig 6.VIII which contains
the corresponding biased range solutions. In this scheme there was
also good agreement in longitude and latitude and a 13m height

. difference between the two data types. The drift of the NGRS-2
clock relative to GPS time was again found to be negligible (see
Section 6.5.2).

The final station coordinates with the smoothed pseudo-range
data are tabulated in fig 6.XIV for all data sets. The same pattern
as in fig 6.XI, that is, of smaller standard errors and larger rms
residuals with the single drift unknown than with one drift per
pass, was repeated. The standard errors were always larger for the
pseudo-range, than for the corresponding biased range solutions in
fig 6.XI. This was because the smoothed pseudo-ranges were less
frequent (see Section 6.3) and noisier than the biased ranges.
However, fig 6.XIV shows that the smoothed pseudo-range solutions
were as consistent (repeatable) as the biased range ones. It can
therefore be inferred that the standard errors in fig 6.XIV were
more realistic than those from the biased range solutions. The
former were still rather over-optimistic and they were probably
under-estimated by a factor of 3.

Even though they were noisier, the smoothed pseudo-ranges
resulted in solutions which were almost as good as the biased
range solutions. The basic difference between the two data types

,
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is that the pseudo-ranges are independent observations while the
biased ranges are formed by summing successive Doppler-derived
range differences. Any small errors in the latter data type can
thus accumulate and result in unmodelled systematic effects.
Indeed, the residuals from the biased range solutions exhibited
systematic sinusoidal patterns which were not obtained with the
smoothed pseudo-ranges.

The average coordinate differences between biased range and
smoothed pseudo-range solutions are tabulated in fig 6.XVII. The
solutions for longitude and latitude agreed quite well. However,
there was a 10 m height bias between the two data types and the
heights from the biased range solutions were in better agreement
with the DMA value (equations (6.25». The average coordinate
differences in fig 6.XVII were almost identical for both ephemerides.
This means that the differences between broadcast and precise
ephemerides for smoothed pseudo-ranges were the same as for biased
ranges and are given by equations (6.27).

6.5.4 Single-Frequency Solutions

The NCRS-2 observations in the adjustments described in the
previous two sections had been corrected for ionospheric delays
(see Section 5.4.5.1). In the future, it is projected that the L2
CPS frequency may not be available for civilian applications. This
will necessitate the use of the L1 observations without iono-
spheric corrections. To study the effect of the ionospheric delays,
the adjustments were repeated using the uncorrected L1 biased
range and smoothed pseudo-range observations.
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The L1 biased range solutions are tabulated in fig 6.XV.
On comparing these with the solutions which applied the
ionosphericcol~rections,in fig 6.XI, it is seen that when solving
for one drift per pass the rms residuals (0

0
) from the uncorrected

observations were smaller than those from the corrected biased
ranges. This was probably because the drift unknowns were absorbing
the ionospheric effects and because the L1 observations were
less noisy than L2. When solving for just one clock drift in each
adjustment, the situation was reversed. In this case the rms
residuals in fig 6.XV were the largest. This was probably because
the single drift unknown could not adequately absorb the ionospheric
effects from the uncorrected observations.

The coordinate solutions from the L1 biased ranges were
different from those from the corrected observations. These
differences had a maximum range of 18m. On average, the height
component exhibited the greatest differences, with the L1 values
being 16-17msmaller than the corresponding heights in fig 6.XI.

Fig 6.XVI gives the solutions computed using the L1
smoothed pseudo-ranges. The rms residuals were smaller than those
from the adjustments which used the corrected smoothed pseudo-ranges,
in fig 6.XIV. This was because the L2 pseudo-ranges were noisier
than Ll, thus contaminating the ionospheric corrections. The
differences in station coordinates between figs 6.XIV and 6.XVI
were smaller than those between the corresponding biased range
solutions (figs 6.XI and 6.XV)~ The heights from the L1 pseudo-
ranges were on average 6.5mlarger than those from the solutions
which applied the ionospheric corrections. In this case the change
was in the opposite direction to that of the biased range solutions
(see above).



0::
0
0::
0::
W'
t:l .- ('Y) ('Y) .:::t CX) l!'I

1.0 l!'I 1.0 t-- t-- C\J
0:: . • . . • .
ex: .- .- .- .- .- C\J

~
Cl) ~z
0 Cl)

H
E-<
:::>
.....:l
0
Cl)

~
U Wz :::>w .....:l
::J ex:g :>
0:: C\J 0 ('Y) ('Y) l!'I 1.0
[%..,

~ l!'I .:::t C\J ('Y) lI' 0\. . • • • •
<C 0\ t- .- 0\ t- o

.- 0:: ('Y) ('Y)

.....:l W

~

0::
0
0::
0::~ \D l!'I .- t-- .- 0
0 ('Y) ('Y) l!'I ('Y) .:::t .:::t. . • . • •0:: .- C\J .- .- C\J ....

~ t5
0 Z

<CH E-<E-<
U Cl)

W
0::
0::

8
u
H
0:: g[iJ
:c
0... <C
Cl) :> 0 co C\J t- 0\ lI's .- r- r- ('Y) r- .:::t

• . . • • •
0 ~ .- ('Y) 0 .- ('Y) 0
H 0 .... ....

ex: I I

i=l 0::
W

H ~~

~
~

,..... ,..... ,..... ,..... ,..... ,.....
s s s s s S

H '-' '-' '-' '-' '-' '-'
Q
0:: -< 9- .c -< 9- .c
§ <I <I ~ ~ <I ~

Cl)
H
0::

~

fu lSV:xIVOHEI 3SI::l3Hd

273

(l)

~
Cl)
c

~
0'rl
.j..l

'0 ::s
(l) r-l
Cl)

~co'rl.o (l)
bO

Cl) C::s coc 0::
'g I

0
'0

(l) ::s
~

(l)
Cl)

co 0...
s,
I '0
0 (l)

'0 .c::s ~
(l) 8Cl)
0. m'0
(l) "0.c c+l co0

~
(l)
eo- ~

(l)
Cl) '0
C ID
ID Cl)
Cl) co'rl
ID tIl.c~ c

ID
C Q)

'rl 3
.j..l

Q)
~s,

co
C

Cl) 0
(l) Cl)
C) 'rl
C t..
(l) ~t..
~ 8c....
'rl
'0

H
(l) H
~ ~~ •'rl 1.0
'0

bet..

cS
'rl
[%..,

~
~



274

Fig 6.XVII gives the averange differences between the biased
range and the smoothed pseudo-range coordinate solutions. When the
ionospheric corrections had been applied, the only significant
difference between the two data types was 10-11m in height. With
the L1 observations there were significant differences in all
components but again the height deviated most, by an average value
of 31m. The other two components agreed to within 10m.

From the NGRS-2 data it appears that there was little loss of
accuracy in the solutions for longitude and latitude when the
ionospheric corrections had been ignored. However, there were
significant differences in the height component between corrected
and uncorrected observations. The effects of ionospheric delays
should be further investigated, with an emphasis on isolating
diurnal and seasonal variations and on establishing the maximum
changes in station coordinates when using uncorrected observations.



CHAPTER SEVEN
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7.1 CONCLUSIONS

7.1.1 Conclusions on Orbit Determination

1. Orbit determination software has been developed at Nottingham
and was successfully tested using observations of the LAGEOS
satellite. Two 4 - day sets ef data were fully analysed.

2. Station coordinates were computed with precisions of 10-20cm,
with only limited amounts of data.

3. Agreement in station coordinates cetween solutions from two
independent data sets and the SL5 solution was at the metre
level when the BIH values of polar motion were used. The
differences in station coordinates were reduced to under
40 cm after solving for polar motion.

4. The Nottingham polar motion solutions differed significantly
(about 1m) from those of the BIH. The former agreed to within
20cmwith the GEM-L2 polar motion values.

5. In separate orbit determinations, inaccuracies in the
absolute values of earth rotation do not affect the solutions
for station coordinates. It is important, however, to model
changes in earth rotation (length of day) very accurately.

6. The currently used 5-day data spans for earth-rotation
solutions are clearly inadequate, because UT1- UTe cannot be
assumed to remain constant over such long intervals.

1. The two LAGEOS data sets were used to derive daily changes
in length of day (l.o.d.) with precisions of 0:0001 (5cm).
The Nottingham values agreed to within 0:0003 (15cm) with

t

the GEM-L2 solutions and to within O~0001 with the BIH values.
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8. Determination of the geocentric gravitational constant, GM,
demonstrated a repeatability that was better than 0.01 km3s-2•
This was also the level of agreement between the Nottingham,
the SL5, the GEM-L2, and the MERIT values of the GM.

9. With the recently deployed 3rd generation laser tracking
facilities it may be possible to achieve significant
improvements in the attainable precisions of the orbit
determination unknowns. The projected accuracy of station
coordinates is 2-5cm, enabling the monitoring of plate
tectonic movements and of regional crustal deformations.

7.1.2 Conclusions on the Global Positioning System

1. This thesis has presented the theoretical basis for
positioning with the Global Positioning System (GPS). Several
models have been derived for the computation of both absolute
and relative coordinates. For high accuracy work a special
emphasis has been given to interferometric methods of
adjustment.

2. A software package has been developed which can process
pseudo-range and phase observations from the NGRS-2 receiver
system and compute the absolute coordinates of the receiver
antenna.

3. Various solutions were performed with NGRS-2 data. TWo
schemes of solution were attempted: the first corrected the
observations for (predicted) satellite clock errors and
solved for the clock drift of the local oscillator with respect
to GPS time. The second scheme did not correct the observa-
tions but solved for one drift unknown per satellite pass.
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It was seen that the first scheme was better for solutions
with few satellite passes and rather poor geometry, while
the second scheme was better for many passes and good
geometry. In the latter, the drift values were in close
agreement with those given in the satellite navigation
message.

4. Absolute positioning with biased ranges (phase measurements)
and either the broadcast or the post-mission (precise)
ephemeris was repeatable to within 5 - 10m in adjustments
which used data from 12 satellite passes. The a posteriori
standard errors, which were of the order of 0.5 m, were shown
to be over-optimistic. There was a 32 N longitude bias between
the broadcast and precise ephemeris reference systems.

5. Absolute positioning with pseudo-range data was almost as
good as with the biased ranges, even though the observations
were noisier. The solutions for longitude and latitude were
similar to the ones from the biased ranges but there was a
10m height bias between the two data types.

6. The omission of ionospheric corrections resulted in station
coordinates which were within 20mof the solutions which
included these corrections. The biggest differences were in
the height component. The omission of ionospheric corrections
affected the heights from the two data types differently;
the biased range heights decreased while the pseudo-range
heights increased. The average height difference between
the two data types was 31m.
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7. The NGRS-2 observations were made to just 4 GPS satellites.
These repeated their ground tracks in successive passes.
The geometry was therefore not significantly improved by
the introduction of more than 4 satellite passes.
Better solutions are to be expected when more satellites are
available, thus providing a greater change in geometry. With
the advent of geodetic receivers which can observe a number
of satellites simultaneously, accuracies of 1- 2m should be
achieved within a span of just a few hours.

7.2

7.2.1

1•

SUGGESTIONS FOR FURTHER WORK

Suggestions for Further Work on Orbit Determination

The Nottingham orbit determination software has been developed
especially for LAGEOS. It should be extended to determine the
orbits of other satellites (e.g. STARLETTE) by the addition
of appropriate force model constituents, prdmar-Ll y air drag,
depending on the satellite being tracked.

2. The optimum intervals for which to solve for CR and Ca
should be investigated. When integrating long arcs it may be
necessary to introduce more than one value of each of these
parameters.

3. The effect of the solar radiation cut-off (when the satellite
crosses the earth's shadow) on the numerical integration
routines (see Section 3.3.1) should be the subject of further
study.

4. The analysis software (SOAP) should be modified in order to
enable it to solve for a number of, say daily, polar motion
and earth rotation values in one adjustment. This software
should be used in order to establish the minimum time spans
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for which the ERP's could be adequately determined.
Solutions should also be attempted which model drifts
in earth rotation.

5. The data of the MERIT Campaign should be analysed to derive
a good set of station coordinates and to compare the solu-
tions for the ERP's with those of other computing centres.

6. The various improvements that will be brought about by
using the 3rd generation laser tracking facilities should
be investigated.

7. As more data is collected, an attempt should be made at
improving the geopotential coefficients.

7.2.2 Suggestions for Further Work on GPS

1. The GPS software at Nottingham should be modified in order
to incorporate interferometric techniques of adjustment, as
described in Section 6.4.3.

2. Software should be written to process interferometric data
from receivers of the R1 type (see Section 5.4.2), which
can make simultaneous observations to a number of GPS
satellites. These receivers (e.g. Geostar and Macrometer)
can exploit the full potential of GPS to achieve the highest
accuracies.

3. The effects of the ionosphere should be investigated further.
For relative positioning, the indications are that
sufficiently high accuracies are possible without the need
for dual frequency measurements (Bock et aI, 1983).



280

4. The validity of the tropospheric models should be investigated.

5. NAVSTAR GPS is still in its early stages. Further work will
certainly be necessary in order to keep up with future
developments as the system evolves.
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APPENDIX A
ROTATION AND REFLECTION MATRICES

If a rotation about the ith axis of a right-handed coordinate
system through an anti-clockwise angle e, as viewed from the positive
end of the axis towards the origin, is denoted by Ri(e), then the
following expressions define the three rotation matrices (Krakiwsky
and Wells, 1971):

R, (e) =

1

o
o o

Rotation matrices do not commute. The product of several.rotations
is performed from right to left. For example in

cose sine

the rotations are performed about the 3 - axis of the original system,
the 2 - axis of the transformed system, and the 1- axis of the doubly

o -sine case

cose 0 -sine
o 1 o

sine 0 case

cose sine 0
-sine case o

1o o
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transformed system to yield the final system.

If a reflection of the ith axis is denoted by Pi' then the

following expressions define the three reflection matrices:

-1 0 0

PI = 0 1 0

0 0 1

1 0 0

P2 = 0 -1 0

0 0 1

1 0 0

Ps = 0 1 0

0 0 -1

Reflection matrices commute (e.g. Ps P2 = P2 ~). An odd number
of reflections changes the handedness of the coordinate system.
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APPENDIX B

COORDINATE REPRESENTATIONS

B.1 Cartesian Representation

A cartesian representation of the position vector of a point, P,
relative to an origin of coordinates, 0 (which could be the geocentre
for earth-centred systems) ,is given by

p = (X , y , Z )p p p (B.l)

where Xp' Yp' Zp: displacements from the origin, 0, along 3

mutually orthogonal axes X, Yand Z ( or 1, 2
and 3)

The coordinate axes can form either a right-handed or a left-handed
system, as shown in fig. B.I. Most of the commonly used coordinate
reference systems are right-handed, with the topocentric system being
the most notable exception.

B.2 Spherical Polar Representation

The spherical polar representation of the position vector of
a point, P, relative to an origin, 0, is illustrated in fig.B.II and
is given by

P = (R, A, t) (B.2)

where R distance from 0 to P
A angle measured anti-clockwise from the X-axis to OA,

the projection of OP in the X - Y plane (longitude)
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Fig B.I Cartesian Coordinate Systems
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z

x
~ = (R, A, t)

Fig B.II Spherical Polar Coordinates
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~ angle between OA and OP, measured from OA
towards the positive Z -direction (latitude).

The relationship between cartesian and spherical coordinates is
given by

x = R cos ~ cos A (B.3)
y = R cos ~ sin A (B.4)
Z = R sin ~ (B.5)

The inverse relationship is

R = (X2 + ya + Za )i (B.6)
A

-1 y (B.7)= tan X
~

• _1 Z (B.8)= sln ~

B.3 Spheroidal Representation

The reference surface that is most commonly adopted for
geodetic computations is an oblate spheroid (an ellipsoid of
rotation about its minor axis). This is such that the minor axis
of the ellipsoid coincides with the Z-axis of the cartesian
representation. A meridional plane (a plane which contains the minor
axis and the point, P) is shown in fig. B.III. The line PA is
at right angles to the tangent of the ellipsoid at B, the projection
of P on the spheroid, and is called the normal at P.
The X - Y plane which includes the major axis of the ellipsoid is
called the equatorial plane. The angle between the normal at P
and the equatorial plane is the geodetic latitude, " as shown in
fig.B.III. The angle between the meridional plane which includes
the X - axis (eg the Greenwich Meridian) and the meridional plane
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Meridional Section

y

lli!1.
Fig B.III Spheroidal Coordjnates
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at P, measured anti-clockwise from the X - axis, is the geodetic
longitude of P, A, and is illustrated in fig.B.III. The height, h,
of P above the reference spheroid is the distance BP along the
normal. The spheroidal representation of the position vector of
P is

P = (<p, ~ , h) (B.9 )

The equation of the spheroid in cartesian coordinates is

= 1 (B. 10)

where a semi-major axis
b semi-minor axis

The eccentricity, e, is given by

e2 = (B. 11)

and the flattening, f, by

f = a - b
a (B.12)

This gives

e2 = 1 - (1 _ f)2 (B.13)

The prime vertical at P is the plane perpendicular to the
meridional plane, which includes the normal. The distance AB is
the radius of curvature (N) in the prime vertical and is given
as (Bomford, 1980) :
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a
N = -------.,(1 - e 2 sin 2 cp) ~ (B. 14)

Referring to fig B.III, the transformation from geodetic to cartesian
coordinates is given by

x = (N+h) cos cp cos ~
Y = (N+h) cos cp sin x

Z = (N+h - Ne 2) sin ep

(B.15)
(B. 16)
(B.17 )

The reverse transformation is

A t -1 Y= an X

cp = tan - 1 [ Z + Ne2 sinep]
(X2 + y2)l

h X _ N= cos epcos A

(B. 18)

(B.19 )

(B.20)

Equation (B.19) can be evaluated iteratively by assuming an initial
value of ep,which could be the geocentric latitude as given by (B.9).

It is frequently required to map small shifts in geodetic
coordinates to corresponding cartesian displacements. These are
obtained by differentiating (B.15), (B.16) and (B.11) and are given
in matrix form as

DX = S DG

dX -COSA cos ep -sin A cos A cos ep (N-th)dcp
dY = -sin A sin ep cos·~ sin A cos cp • (N.f.h)cos cpd). (B.21)
dZ cos cp 0 sin cp dh

Matrix S is orthogonal, so the reverse transformation is
TDG = S. DX

N N

(B.22 )
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The values of (N+h)d cp , (N+h) coscpd A and dh, which are the
components of ~ in (B.22), represent the changes in latitude,
longitude and height, in units of length, due to corresponding
changes dX, dY and dZ in the cartesian coordinates of P.
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APPENDIX C

ORBIT DETERMIHATION PARTIAL DERIVATIVES

C.1 Evaluation of Satellite Acceleration due to Earth Attraction

The general component of the EF satellite acceleration vector
due to the earth's attraction is given by (2.42). This can be written
in matrix form as

v.
n = DS • QU (C.1)

where R .. .. .. T(X, Y, Z) , the EF acceleration vector

DU : (au , aU , au ) T ,aR aA a~ the first derivatives of the

geopotential (equation (2.30» with respect to the spherical
coordinates of the satellite.

us the (3 x 3) matrix of first derivatives of spherical
w.r.t. cartesian coordinates, as given by

aR aA a~- - -ax ax ax
aR aA a~

ts = ay ay ay (C.2 )

aR aA a~
az az az

The elements of ~U are derived by differentiating the expression
for the geopotential in equation (2.30). They are:
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au -GM
[1 + Ln:2

n (~ ) n(n+1) P~ (C ~ cosma» s;: sin rnA) ] .•(C.3)aR = AT Lm=O

au GM LCD L n (~)nm pffi (S~ cos rnA _ cm sinmA) ••(C.4)aA = R n=2 m=O n n

aU GM I n (~r ~+ 1 pm m
= R

LCD (n - m tan•. n ) (C m cos m A + S sin rnA) ••
at n=2 m=O - n n

(C.5 )

The elements of DS are computed by differentiating equations (B.6),
(B.7) and (B.8). They are:

aR X aR Y aR Z
ax = R , ay = R , 8Z" = 11

aA -Y aA X BA 0=;a = 2 , =ax ay s az

at -zx at -zY at .i (1 Zl
ax = 'SRI , aY = ""'S'R2 ' ~ = - Ri)s

(C.6)

(C.7)

(C.8)

with

(C.9)

C.2 Partial Derivatives-of Satellite Acceleration

The computation of the observation equation coefficients,
discussed in Section 2.5.3, requires the partial derivatives of the
IF satellite acceleration with respect to the state vector and force
model .unknowns. These derivatives are given in matrix form by
equation (2.188) which is repeated here, retaining the same
notation, as

(C.10)
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where
ax ax ax 8x
axo azo ap, . . . apnp

Am =
ay ay (C. , 1)
aXe aPnp
az az
ax apnp
0

ax ax ax ax
azo - .ax ap, Pnp

0. ay
Vm =

ay (C.'2)axo Opnp
az az
ax aPnp
0

ax ax ax 8x
axo Mo Tp, apnp

xm =
ay ~ (c.13)axo 8Pnp
Oz az
8xo aPnp

0 0 0 0 0 0 8x' 8x*
ep, • • • aPnp

Af = 0 0 0 0 0 0 ~' fL' (c. '4)
81', • • • 8Pnp

0 0 0 0 0 0 oz' 8z*Tp, • • • Opnp
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ax ax axax ay az

D1 =
ay ay ay

(C. 15)ax ay az
a!t a!t a:tax ay az

ax ax axa;t a'9' az

D2
ay ay ay (C. 16)= 15f 1ff at
a~ a:t a~
Bf 1ff 6i

The acceleration partials, Am' are integrated numerically to give
the velocity and position partials, Vm and ~, as functions of
time, with the initial conditions of equations (2.189) and (2.190)
(V~ and x~ ). To evaluate ~, the matrices D1, D2 and Af are
required, and the rest of this appendix explains the method to
compute them.

D1 is defined in (C.15) and it contains the partial derivatives
of the satellite IF acceleration with respect to the components of
the IF position vector. All the constituents of the force model,
with the exception of along-track acceleration, are functions of
position and therefore contribute to D1. By far the most important
contribution, for near-earth satellites, is the earth's gravitational
attraction (see Section 2.3.2). Equation (C.1) gives the satellite
EF acceleration vector arising from the geopotential, U, as a
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function of its EF coordinates. The required partial derivatives
are then, in the EF reference frame,

.. ..ax ax ax
8X" ay a!
.. .. ..

D1E = Oy aY aY (C.17)8X" ay a!
.. .. ..az az az

8X" ay a!

and these must be rotated to the IF, by

D1 = ( PEN Q ) T• D1E. (P E NQ ) (C.1S)

where P, E, Nand Q are defined in Section 2.2.4.
Since the geopotential is given in terms of spherical coordinates
(see equation (2.42»),the elements of D1E are computed as in the
following example :

a (au) aR= aX aR 'ax

(C.19)

where

.. (C.20)
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(C.21)

(C.22)

There are similar expressions for all other elements of D1E, which
can be expressed in matrix form as

D1E= DS. D2U.DST + U1. D2S1 +U2. D2S2+U3. D2S3

where DS: as defined in (C.2)

·. (C.23)

aaU alu OIU
aRT 6RaA aRat

D2U = alU a2u OIU (C.2~)
aA6R aA' 6A'6t

alu aaU a2u
6t6R 8i6A W

u, =

o

6U
aA

o o

o

U2 =

o

o o

6U
1m'

8Uax
o

6U
aT

• • (C.25)o

o

o

• • (C.26)6U
aT

o



297

U3 = o o o

o o o

·. (C.27 )

au
~

au
ax

aU
8i

a2R a2R a2R
ayr axay am

D2S1 = a2A a2 A a2 A (C.28
W my am
a2 t a2 t a2 t
W my axaz

a2R a2R aiR
6"Y8'l W W6Z

D2S2 = a2 A al A al A ·. (C.29)ayax W 0'YaZ"

aa t al t al t
aY8X W ayaZ

aiR aiR aiR
~ my W

D2S3 al A al A al A (c.30)= em 8Z6"i W ·.
alt alt alt
am, my oza

Matrices U1, U2 and U3 are computed from equations (C.3), (C.4) and
(C.S). D2U is derived by differentiating each of these equations with
respect to R, A and t.



298

For example:

a2u _ GM I CD I n
6JZ" - tf n =2 meo

m m a2 (pm)(Cn cosmA + Sn sin rnA )w- n

(C.31)

where
m 2 m+1 m+l m02 ( P ) = P m + _ (m + 1) tan t P - m tan t (P - m tan t Fn )~ n n n n

_ msec 2 t pm
n .. (C.32)

Matrices D2S1, D2S2 and D2S3 are evaluated by differentiating (C.6),

(C.7) and (C.8) with respect to the satellite EF coordinates, X, Y
and Z. For example :

(C.33)

(X) XY11 = - 1fT
(C.34)

Clax (-~) =sR,2
Z
S'RI (

Xi 2XI )-+-- 1SI Ra •• (C.35)

'Ihecontributions to D 1 arising from the other constituents
of the force model are easier to evaluate, since all other
components are given in terms of the IF cartesian satellite
position vector. However, for near-earth satellites it may prove
unnecessary to include the contributions of other forces if it is
found that their effect in the evaluation of the observation equation
coefficients is inSignificant (see Section 2.5.3).
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The elements of matrix D2 are defined in (C.16) and they are
obtained by differentiating the satellite IF acceleration vector
with respect to each of the components of the velocity vector, f' •-
D2 is non-zero only if drag, along-track and cross-track accelerations
are present, since these are the only force model constituents which
are functions of velocity. Even when these are present, D2 may
be set to zero if this does not adversely change the rate of
convergence of the least squares solution.

When the orbit determination unknowns include a number, np, of
force model parameters, the matrix Af has to be computed. As can
be seen from (C.14), its first six columns, which correspond to the
state vector unknowns, are all zero. Subsequent columns consist of
the vectors

a~* T
api ) (C.36)

and these are derived by directly differentiating the force model
components which contain the parameter Pi.

For the determination of unknowns in the geopotential expansion
of (2.30), the IF acceleration derivatives 8t'* at'*- , -

aCm 8Sm
n n

a~*
aGM

and

8t'*- may be required. Taking the derivatives with respect to the
Ba
spherical harmonic coefficients Cm as an example, these are givenn
in the EF reference frame by differentiating (C.1), as

..8R* = OS • ~ (QU)
8C~ .

(C.37 )--8Cm
n

where
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a
acmn

(DU) = (c.38)

The derivatives in (c.38) are given by differentiating (C.3), (C.4)
and (C.5) with respect to cnm, as in .

a2uaR6cm = -en + 1)
n

GM
Ra

(c. 39)

If the solution is in terms of normalized spherical harmonic
coefficients, (C.39) becomes

(C.40)

where Nnm is the normalizing factor defined in (2.39).

The EF acceleration partials must be rotated to the IF by

= (P E N Q) T
..aB'
a C m

n
(C.41)

The art for other force model unknowns are computed more
aPi

easily. For example, for the solar radiation reflectance coefficient
(equation 2.102),

= 10
c

(C.42)

and for the along-track acceleration (equation (2.91»,

(C.43)
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APPENDIX 0

METHODS OF NUMERICAL INTEGRATION FOR ORBITS

0.1. The Fourth Order Runge-Kutta Method

In this appendix the components of the IF acceleration,
velocity and position vectors at time

(0.1)

where to starting epoch
h integration step size
i any integer

are denoted by

~i = (xi' Yi' !ti)

.
(~i' . .

~i = Yi' zi) (Ui, vi' Wi)=

:i = (Xi' Yi' Zi)

tD.2)

(D.3)

(0.4 )

The acceleration components are computed as functions of time,
position and velocity, represented by (see equation (2.106»

~i = fl (ti, ui' vl'wi, xi' Y!' zi)

Yi = fl (ti, u!' vi'wi, xi' Yi' zi) (0.5 )

~i = f J (ti, ui' vi'wi' xi' Yi' zi)

The veloCity vector components are

v (dY), 1 = at t=ti = r, ,wi =(gr) t=ti = r,

(D.6)••
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The full 4th order Runge-Kutta formulae for the double integration
of the 2nd order differential equations (D.5) are:

u. 1 1 (K11 + 2K12 2K13 K14 )= ui +0 + +1.+
1 (K21 + 2K22 2K23 ~4)vi+1 = vi +0 + +

w. 1 1 (K31 + 2K32 2K33 K34) (D.7)= wi + 0 + +1.+
1 (K41 + 2K42 2 K43 K44)x. 1 = xi + "0 + +1.+
1 (Ks1 + 2K52 2K53 Ks4)Yi+1 = Yi + 0 + +

1 (K61 + 2K62 2K63 K64)zi+l = zi +"0 + +

where

Kll = hfl (ti, ui' Vi' Xi' Yi, zi) = h ~i

~1 = hYi

K31 = h!ti

K41 = hf. = hUi

Ks, = hVi

K61 = hWi
h K11 K21 K6,

K'2 = hr1 (ti + ~ , ui +~, Vi +~, ..., zi + ~)

h K" ~, K61
~2 = hr. (ti +~, ui +2' Vi +2' ..., zi + 2)

h K6,
K32 = hr, (ti +~, ••• , zi + 2)

K42 h K"= (ui + 2)

Ks2 h
K2,

= (Vi + 2)

K62 h
K3,= (Wi+T)
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K13 = hf 1
h K12 Vi + ~2, K62 ) (D.8 )(ti +~ , ui + , ..., zi +

~ 2 2

K23 = hfa h K12 K22 K62(ti+~ , ui + 2' vi +2' ..., zi + 2)

K33 = hf, h
(ti +~ ,

K43 = h K12 )(ui +2

K53 = h K22(vi+T )

K63 = h K32(wi +2 )

K34 = hf, (ti + h, ... , ~i + K63)

K44 = h (ui+K13)

K54 = h (vi+~3)

K64 = h (wi + K33)

The Runge-Kutta procedure starts with the initial satellite position
and velocity vectors, rand r, and computes the next ones,-0 -0

and ~·1. The latter are now used to compute ra and •rl
and so on, until sufficient values have been calculated for the
Adams-Bashforth procedure to take over.
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D.2 The Adams-Bashforth Predictor-Corrector Formulae

For simplicity, only the first components of the satellite
position and velocity vectors, x. and u., will be considered.l. l.
The Adams-Bashforth predictor formulae for the numerical integration
of (D.5) are:

* + hbo xi h n bj vj xiur 1 = ui + 1:. 1l.+ J=
n vj

(~. 9)

xr+ 1 = xi + hbo ui + h 1:. 1 bj uiJ=

where jth backward difference (see Section 2.4.2)

bj Adams-Bashforth coefficient for jth difference

n order of the predictor-corrector method.

The coefficients ,bj ,are derived from

b + 1 b
n 2 n-1

1 1+ j bn_2 + ....+ n+ 1 b0 = 1 (D. 10)

giving ba = 1 , b1
1= 2' h... _ 5

-~ - ~ etc.

The predicted acceleration vector is now evaluated from

(D.11)

and the corrector formulae are

** h u.* h n nj U. *ui +,. = ui + Co J\1 + 1 + 1:j = 1 Cj Y Al.+ 1
(D. 12)

x* * - x h c u* + h ~n c vj u~i+1 - i " 0 i+1 ~j=1 j l.+1



The coefficients ,cj ,can be derived from

1
+ j c 2 + ••• +n-

1
n+l

resulting in c = 1,o
c -1
1 = '2 ' c = -12 12 etc.

n=o

n=1 ,2,3, .•.

Equations (D.9) for the predictor formulae can be expressed in
ordinate form for any order,n, as

nut + 1 = ui + h I j = 0 8j Xi _ j

and the coefficients 8j are given by (Henrici, 1962)

where b1. coefficients from (D.9)

number of combinations of 1. things taken j

at a time, computed from

1.I
= j!(1.-j)1

Similarly, equations (D.12) for the corrector can be written as
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(D.13)

(D.14)

(D.15)

(D.16)
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u** + h'YO ..* h n xi _ j + 1= ui x. 1 + I. 1 'Yji+l 1+ J:

x** + h'Yo u~ 1 h n= xi + Ij:l 'Yj u. . 1i+l 1+ 1-J+

where

( - 1)j n (j )'Yj = I£ : j c£

(D.17)

(D. 18)

Cl coefficients from (D.12)

These ordinate forms of (D.14) and (D.17) are easier to evaluate
because there is no need to compute a difference table every time a
new value is obtained.
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APPENDIX E
POLYNOMIAL REPRESENTATION AND INTERPOLATION

E.l Chebyshev Polynomials

A function of a variable, t, can be represented in terms of
Chebyshev polynomials in the interval from ti to ti + ~t,as :

f (t) n
= lk = 1 '\ cos k e (E.1 )

where
-1 [(t-t.) -~ ]-e = cos __ 1. _

~t
(E.2)

and n order of the polynomial.

The coefficients ak are computed by evaluating the function at
n + 1 specific data points, f (tj)' which are given by

9j = (
2

~ :: ); j = 0, 1, ••• , n (E.3)

(E.4 )

The Chebyshev coefficients are

2
<i< = n+1

In practice, (E.1) can be truncated after l. « n ) terms, such
that

f (t) = ~ = 1 <i< cos k e (E.1)
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E.2 Everett Interpolation

where

A function, f(t), which is given at discrete data points at

..., t. 2' ti 1 ' ti ' t. l' t. 2'· .•1-,- 1+ 1+

t. = t. + m6t
1+m 1

(E.8 )

can be interpolated in the interval from ti to ti +' by using

the Everett central difference formula

with

(E.9)

u = (E. 10)

and

Eo = 1 - u

Ea = u (1-u) (2 - u) /3 ! (E.11)

E. = (-1-u) u (1-u) (2 - u) (3-u)/51

Fo = u

Fa = u (ua - 1) I 3 ! (E.12)

F.. = u (u2 - 1) (ua-4)/5!

The term 6 n f(t
i
) is the nth central difference of f(ti), such

that

oaf(ti) = f(ti_1) - 2 f(ti) + f(ti+1) (E.13)

64f(ti) = f(ti_2) - 4f(ti_1)+ 6f(ti) - 4f(ti+1)

+f(ti+2) (E.14)
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When (E.9) is truncated after the nth (even) central difference,
then n+2 discrete data points must be available, equally balanced
about the relevant interval.
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APPENDIX F

WEIGHTED LEAST SQUARES

F.1 Derivation of Normal Equations

Given the set of observation equations

Ax=b+v (F.1)

which are weighted to give
, 1 ,W~Ax = W2b + W~v (F.2)

the object is to obtain the most probable value of vector x.
This is the value of x which minimises the sum of the squares of
the weighted residuals, i.e.

v'tWv = minimum (F.3)

This gives

(F.4 )

From (F.2) :

(F.5 )

Squaring gives
't

V Wv (F.6 )

and multiplying out the bracketed terms, gives

Differentiating (F.7) with respect to x· gives, for a minimum,

ax
So, for a minimum,

(F.9 )

and equation (F.9)is the matrix form of the normal equations.
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F.2 Symmetric and Positive - Definite Properties of the Normal
Matrix

F.2.1 Symmetry

The normal coefficient matrix is given by

(F.10)

The transpose is

since W is symmetric.

F.2.2 Positive-Definiteness

Any matrix ,A ,of order (n x n) is positive-defini te if the
quadratic form

and y is any real non-zero vector.

For the normal coefficient matrix, given by

N = ATWA

the quadratic form is

yTNy = y't • (ATWA) .y

= yT • (ATWi • WtA) .y

= yT (WtA)'t.(WtA)Y

= (WtAy) T. (wtAy) > 0
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The above result is true since it is the sum of the squares of the
vector (W!Ay).

The positive-definiteness of the normal equation matrix is
the property which makes possible the solution of the normal
equations by using Choleski's method of triagular decomposition,
which is described in F.3.. This method involves obtaining the
square roots of the diagonal elements of the normal coefficient
matrix and would fail if any of these had values less than or equal
to zero. The fact that the normal coefficient matrix, N, is
positive-definite implies that the diagonal elements are positive,
since

for any real, non-zero vector y.

Choosing

y't = [ 1, 0, 0, ••• , ° ]
gives

where d1 is the first diagonal element of matrix N. Similarly,
choosing other suitable vectors y, gives

d a , d , , ..., dn > °
Thus the elements on the leading diagonal of N are all positive.
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F.3 Choleski's Method of Symmetric Decomposition

Choleski's method of symmetric decomposition can be used to
solve the normal equations in a least squares network adjustment
in the three steps outlined below :

1. Decomposition of the normal matrix N into

N = L L't (F.11)

where Land L't are lower and upper triangular matrices
respectively. An example of this decomposition for a (4 x 4)
rnatrix is given below:

N L

all a12 a13 a14 ,211 0 0 0 ,211 ,221 ,231 ,241

a21 a22 a23 a24 ,221 ,222 0 0 0 ,222 ,232 ,242
=a31 a32 a33 a34 ,231 ,232 ,233 0 0 0 !33 t43

a41 a42 a43 a44 !41 t42 t43 '44 0 0 0 ,244

By matrix multiplication this gives:

.ell
2

!11 J allall = =

a12 = ,211 ,221 t21 = a12/,211

a13 = ,2'1 t31 t31 = an Itl1

a14 = ,211 t41 !41 = a14/tll

2 2 2a22 = t21 + t22 .. t22 = ./(a22-t21)

a23 = ,221 • !31+,222·,232 .e32 = (a23-t2,l31 )/!22
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a24 = .221..241+.222.£42 £42 = (a24-R2i£41)/.222

222 2 2a33 = £31+£32+£33 .233 =./(a33-.231-.232 )

a34 = .231.£41+.232 •.242+£33.£43 .243 = (a34-.231·.241-.232·£42)/.233

2 222 222a44 = £41+.242 +£43+£44 .244 =./(a44-.241-£42-.243)

The general elements are given by the algorithms
I j-1 2s., = v(aj. - I .2

J
.k)JJ J k=l

•• (F.12) .

R... =~J

2. Forward Substitution

The normal equations can be written as

(F.14)

or, Lf = d (F.15)

The vector, f, is to be determined by forward substitution. Thus, for
the (4 x 4) matrix:

L f' = d

.211 0 0 0 f1 d1

.221 .222 0 0 f2 d2
=

t31 t32 £33 0 f3 d3

t41 t42 t43 .244 f4 d4

and
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d, £".f, · f, = d,/£"=

d2 £2,·f'+£22·f2 · f2 = (d2-£2,·f,)11.22=

d3 = 1.31·f1+£32of2+£33·f3 · f3 = (d3-£31·f1-1.32·f2)/£33

d4 £41·f1+£42·f2+£43·f3+£44·f4 · f4 = (d4-£41·f1-£42·f2-l43·f3)/£44=

The general element, fi' can be expressed as

•• (F.16)

3. Back Substitution

This determines the vector of unknowns, x, from the equation

L'tx = f •• (F.17)

where f was determined in step 2 above. Back substitution gives

L't X = f

£11 £21 £31 1.41 x1 f1

0 £22 £32 £42 x2 f2

0 0 t43 • = f3t33 x3

0 0 0 £44 x4 f4

and

f4 = t44•x4

f3 = £33·x3+£43·x4

f2 = t22·X2+£32·X3+£42·x4

:. X4 = f4li44

• x3 = (f3-143·x4)/133

:. x2 = (f2-t32·X3-t42·X4)/122
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The ground element, xi' is given by

x. = (f. - tn fk.Xk)/f.i1 1 k=i+1 1 1
(F.18)

The algorithms given in formulae (F.11) to (F.18) can be
utilized in a computer program for both solving the normal equations
and finding the inverse of the normal coefficient matrix. An important
storage saving characteristic is that once an element, fij, has been
determined in the symmetric decomposition of N into L and LT, the
corresponding element, aij, is no longer required, so that the program
need only operate on one matrix and replace old values by new ones.
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APPENDIX G
COMPUTATION OF GPS TIME AND SATELLITE COORDINATES

G.1 Correction of Satellite Time to GPS Time

A .pseudo-range measurement is the range equivalent of the
difference between the local time of reception and the satellite time
of transmission of a GPS signal. The satellite clock is not
synchronized with GPS time and so the satellite time of transmission
must be corrected to the GPS time of transmission by

tt = t - ~ts s (G.1)

GPS time of transmission in seconds
satellite time of transmission in seconds
correction computed from parameters in the
satellite data message (see Section 5.3.4).

The correction term, ~ts' is given by

(G.2)

where .. polynomial coefficients given in subframe

, of the data message

toe clock reference time in seconds, also
given in the data message

~tre relativistic correction to the satellite
clock (see Section 5.4.5.3)
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To account for beginning or end of week crossovers, if the term
(t - t ) in equation (G.2) exceeds 302400 seconds then 604800s oc
(1 week) must be subtracted from it. Alternatively, if it is less
than -302400 seconds then 604800 must be added to it.

The relativistic correction, ~t , is given by (ICD-GPS-200,re
1981)

(G.3)

where
F = -4 .443 x 10 - 10 srn -1 (G.4)

The eccentricity, e, and semi-major axis, A, in equation (G.3) are
given in the satellite data message. The computation of the
eccentric anomaly, Ek, is explained in the next section.

A parameter called age of data clock (AODC) is transmitted
in the navigation message in order to enable the user to assess the
quality of the satellite clock data. This gives the time, tLC' of
the last tracking observation which was used to compute the
satellite clock parameters, as

AODC = toe - tLC (G.5)

G.2 Satellite cartesian Coordinates from Orbital Elements

The orbital elements which are transmitted in subframes 2 and
3 of the satellite navigation message (see Section 5.3.4) are
listed in fig G.I. These are used in order to compute the WGS-12
satellite cartesian coordinates. The instantaneous position of the
satellite, referred to the WGS-12 coordinate axes (X, Y, Z), is
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SYMBOL EXPLANATION

io Inclination at reference time (radians)

w Argument of perigee (radians)

lOOT Rate of change of inclination (rad s-')

o Rate of right ascension (rad s-')

Cuc Amplitude of cosine correction term to the argument

Cus Amplitude of the sine correction term to the argument

Crc Amplitude of the cosine correction term to the

Crs Amplitude of the sine correction term to the

Cic Amplitude of the cosine correction term to the

Cis Amplitude of the sine correction term to the

e

oo

Mean anomaly at reference time (radians)

Mean motion difference from computed value (rad s-')

Eccentricity

Square root of semi-major axis (m!)

Right ascension of ascending node at reference time

(radians)

of latitude (radians)

of latitude (radians)

geocentric radius (metres)

geocentric radius (metres)

inclination (radians)

inclination (radians)
Fig G.I Ephemeris Parameters in Satellite Data Message
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described by 3 angles and a distance, as shown in fig G.II.
These are:

~ longitude of the ascending node of the instantaneous
orbit (radians)

ik inclination of the instantaneous orbital plane (radians)

uk argument of latitude of satellite in orbital plane
(radians)

rk geocentric radius to satellite (metres)

Before the satellite cartesian coordinates can be evaluated, the
4 parameters listed above have to be computed from the elements in
fig G.I. The computation of ~, ik, uk· and rk is explained in
the following steps :

(i) satellite mean motion:

(G.6)

where no t· . d -1mean mo ~on ~n ra s

GM WGS-72 value of geocentric gravitational
14 3 -2constant (3.986008 x 10 m s )

(ii) GPS time from reference epoch:

(G.7 )

where tt GPS time of transmission in seconds from
start of week (see Section G.1)

tk time elapsed from reference epoch, toe'
in seconds
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N ascending node
P perigee
S satellit.e
o geocentre

Fig G.II Instantaneous Satellite Orbit
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To account for beginning or end of week crossovers,if
tk is greater than 302400 then 604800 must be

subtracted from it, and if it is less than - 302400
then 604800 must be added to it.

(iii) correct mean motion:

n=n + 6no (G.8 )

where n: correct mean motion in rad s1

(iv ) mean anomaly:

l\ = Mo + n tk (G.9)

where l\ mean anomaly (radians) at time of
transmission

(v) eccentric anomaly:

(G. 10)

where Ek: eccentric anomaly in radians (see fig G~III)
Equation (G.10) is Kepler's equation and must be solved
iteratively. The simplest method is to make an initial
approximation of Ek' E(~), at the value of Mk.
A better approximation, E(~) , is then

E (~) = f\ + e sin E (~) (G.11)

E (k1) is similarly used in place of E (kO)to derive E (2)
, k'

and so on until successive approximations agree to a
specified limit. The above method works well with the
GPS nominally circular (small eccentricity) orbits.
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(vi) true anomaly :
.cos~-e

1 - ecos ~
2 '(l-e )~sin ~

1 - ecos El(

(G.12)

(G.13)

where vk true anomaly (radians)
The physical meaning of true anomaly is illustrated in
fig G.III. The proofs of equations (G.12) and (G.13)
are given in Section G.3.

(vii) provisional argument of latitude:

(G.14)

where "k provisional argument of latitude (radians)

(viii) corrected argument of latitude (see fig G.II) :

(G.15)

where

6Uk = C sin 2 "k + C cos 2 "kus uc (G.16)

(ix) provisional geocentric radius:

r = A (1 - e cos Ek ) (G. 17)

where r provisional geocentric radius in metres
(see fig G.III)

A proof of equation (G.17) is given in the next section.
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(x) correct geocentric radius (see fig G.II) :

(G. 18)

where

(xi) provisional inclination:

(G.20)

where i provisional value of the inclination of
the orbital plane (radians)

(xii) correct inclination (see fig G.II) :

(G.21)

where

eik = C. sin 2 'k + C. cos 2 'k1S . 1C . (G.22)

(xiii) longitude of the ascending node (see fig G.II) :

(G.23)

where be WGS-72value of the earth's rotation
-1)rate (7.292115147 rad s

From the instantaneous satellite parameters, ~, ik, uk' and rk,
the next step is to compute the satellite cartesian coordinates
in the plane of the orbital ellipse, referred to the axes XE, YE'
and ZE (see fig G.II). These are given as:
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=

(G.24)
=

= o

The coordinates of equations (G.24) are then rotated through a
clockwise angle, ik, about the XE-axis in order to bring the
ZE - axis into coincidence with the WGS-72 Z-axis (see fig G.II) •
This rotation is expressed as :

XT = XE
YT = YE cosik (G.25)

ZT = YE sinik
The final transformation is a clockwise rotation through 9k radians
about the ZT- axis, which gives the WGS-72 satellite cartesian
coordinates:

(G.26)

This section has outlined the steps in the computation of the
WGS-72 cartesian satellite coordinates from the transmitted orbital
elements of fig G.I. The only variable in the above process is the
GPS time of transmission, tt. All other parameters are derived
from the orbital elements, using tt.
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All angular quantities in this appendix have been given in
radians. However, most of the ephemeris values are in semi-circle
units (ICD - GPS - 200, 1981). These are converted to radians by
multiplication with I, where

I = 3.1415926535898 (G.27)

To enable the GPS user to assess the quality of the
satellite orbital elements, an age of data ephemeris (AODE) para-
meter is transmitted. This is similar to AODC, described in the
previous section, and gives the GPS time T

Le
, of the last tracking

measurement that was used in the determination of the satellite
ephemeris, as:

AODE = t - tLoe e (G.28)

The Control Segment will ensure that the AODE value shall equal
the AOne value defined in Section G.1.

G.3 Proofs of relationship Between Orbit Semi-major Axis
and Geocentric Radius and Between Eccentric and True
Anomalies

The mean orbital ellipse is illustrated in fig G.III.
From the geometry of the ellipse:

OQ = O'Q- Ae (G.29)

This gives:

rcos vk = Acos Ek - Ae (G.30)
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Orbital Ellipse

A

0 geocentre A semi-major axis
p perigee B semi-minor axis
S satellite Ek: eccentric anomaly

vk: true anomaly

Fig G.!!! Eccentric and True Anomalies
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where the eccentric anomaly, Ek, true anomaly, vk' and semi-major
axis, A, are as labelled in fig G.III. Also from geometry:

BQS = QK x A (G.31)

where B ellipse semi-minor axis
Equation (G.31) can be easily verified. The equation of the
ellipse gives:

+ = 1 (G.32)

The equation of the inscribed circle gives:

+ = 1 (G.33)

Eliminating 0'Q2 between (G.32) and (G.33) results in
A2

(G.34)

which is the same as (G.31). This gives:

rsin vk = AsinEk x i = BsinEk (G.35)

But

B = A (1 _ e2 ) 1 (G.36)

giving

rsinvk = A (1 - e 2 ) 1sin Ek (G.37)
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Squaring gives

r 2sin 2vk = A 2 (1 - e 2) sin 2 Ek (G.38)

Squaring (G.30) gives

(G.39)

Adding (G.38) and (G.39) gives

+ e2(1 - sin2~)]

Taking the square root of (G.40) sives

Ir • A ( 1 - ecos Eic) I

(G.40)

(G.17)

To establish the relationship between true and eccentric
anomalies, the geocentric radius in equation (G.30) is
substituted by the expression given in (G.17). This gives

A (1 - e cos ~) cos vk = Acos Ek - Ae (G.41)

which results in

=
cosEk - e
l- ecos ~

(G.12)

Equation (G.13) is easily derived from (G.37), using (G.11), as

A(l - ecos Fie) sinvk = A (1 -e a) i sin~ (G.42)

which gives:
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=
(1 - e 2 ) l sin Ek

1 -e cos Ek (G.13)
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