EVOLUTION OF THE TGF-BETA SUPERFAMILY WITH EMPHASIS ON NODAL

Yuan Shen

2013

Degree Sought: M. Phil. Computer-based Biology

SCHOOL OF LIFE SCIENCES

UNIVERSITY OF NOTTINGHAM

Supervisor: Chris Wade

Advisor: Matt Loose

Abstract

Nodal is a ligand of the TGF-beta superfamily. It has the function of determining the left-right axis and inducing the endoderm and mesoderm. Nodal signals can also act as morphogens. Although it has been detected for 20 years, the relationships between different species within Nodal are still unclear. The purpose of this study is to investigate the evolution of the TGF-beta gene with the main focus on Nodal. That is: (1) to determine the relationships within the Nodal family; (2) to examine whether Nodal is duplicated or not during evolution. To achieve this, whether Nodal is monophyletic or not and the relationship of Nodal with other ligands in the TGF-beta superfamily will be examined first. The phylogenetic trees to examine the relationships among the ligands are built under software PhyML with the Maximum Likelihood method. As a result, Nodal is monophyletic, but its neighbour ligand or ligand group is nonetheless uncertain. This study demonstrates that the fish sequences are all in the group in which the bird Nodal is located. Duplication of Nodal has occurred when vertebrates evolved from Urochordata. In addition, deletions have occurred in birds and mammals.

i

Acknowledgements

I would like to express my sincere thankfulness and grateful appreciation to my supervisor Chris Wade and my advisor Matt Loose for giving me valuable advice and great support throughout the research.

I would also like to say thank you to the participants of my colleges whose thoughts and insights allow me to obtain rich information and many help for this study.

And thanks for my friends that have gone back to their countries to give me a happy life during these years.

At last, I would like to thank my family for their support throughout my study in the United Kingdom.

Table of contents

Chapter 1 Introduction
1.1 The TGF-beta superfamily1
1.1.1 General background1
1.1.2 The TGF-beta signalling pathway
1.1.3 Characteristics of the TGF-beta superfamily ligand sequences10
1.1.4 Four groups of subfamilies in the TGF-beta superfamily11
1.2 Nodal14
1.2.1 General background14
1.2.2 Nodal signalling pathway15
1.2.3 Extracellular antagonists, convertases and Nodal signals17
1.2.4 Number of copies of Nodal in different species
1.3 Aims and Objectives20
Chapter 2 Methodology
2.1 Assembling a dataset
2.2 Multiple sequence alignment
2.3 Choice of the datasets used23
2.4 Saturation test
2.5 Phylogeny Reconstruction
2.6 Calculation of Distances
2.7 Bootstrap analysis
2.8 Presenting the Figures

Chapter 3 Phylogenetic Analysis of Nodal Within the TGF-Beta
Superfamily
3.1 Introduction
3.2 Materials and methods
3.2.1 Sequence analysis35
3.2.2 Multiple sequence alignment
3.2.3 Phylogeny Reconstruction
3.3 Results
3.3.1 Saturation Test
3.3.2 Phylogenetic Trees46
3.4 Discussion
3.4.1 Examination of whether Nodal is monophyletic
3.4.2 The position of Nodal within the TGF-beta superfamily53
3.4.3 Comparison of the function of Nodal and other ligands54
3.4.4 Relationships within the TGF-beta superfamily
3.4.5 Future work
3.5 Conclusion57
Chapter 4 Phylogenetic Tree of Nodal To Test the Evolutionary Relationships
of Nodal Genes from Different Species
4.1 Introduction
4.2 material and method61
4.2.1 Sequence analysis61

4.2.2 Phylogeny Reconstruction	69
4.3 Results	71
4.3.1 Saturation Test	71
4.3.2 Phylogenetic trees	74
4.4 Discussion & Conclusion	78
4.4.1 The relationships within Nodal	78
4.4.2 Duplication of Nodal in different species	79
4.4.3 Further examination of the Nodal locus in fish groups	80
4.4.4 Future work	81
4.5 Conclusion	82
Chapter 5 Summary	87
Appendix	99
Appendix 1. Sequence Imformation	99
Appendix 2. Command Lines	135
Neighbor-Joining tree using PAUP	135
Neighbor-Joining tree using Phylip	137
Likelihood tree using PhyML	140
Likelihood tree using MrBayes	142
Appendix 3. Tips	144

List of Figures

Figure 1.1 Overview of the TGF-beta signalling pathway7
Figure 1.2 The 7 conserved cysteine residues in the TGF-beta superfamily10
Figure 1.3 The Phylogenetic relationships between the TGF-beta superfamily
of ligands
Figure 1.4 Nodal signalling pathway16
Figure 1.5 Left-right patterning model by lefty and Nodal18
Figure 2.1 Transition and transversion vs. uncorrected distance method25
Figure 2.2 Transition (ti) distance vs. transversion (tv) distance model
Figure 3.1 Phylogenetic relationships among the TGF-beta superfamily of
ligands
Figure 3.2 Different models from other researchers
Figure 3.3 Saturation test for all three codons of Nodal with some other TGF-
beta superfamily members44
Figure 3.4 Saturation test for the 1st and 2nd codon positions of Nodal with
some other TGF-beta superfamily members45
Figure 3.5 Maximum likelihood amino acid phylogenetic tree showing the
phylogenetic position of Nodal within the TGF-beta superfamily47
Figure 3.6 Maximum likelihood 1st and 2nd codon nucleotide phylogenetic
tree showing the phylogenetic position of Nodal within the TGF-beta
Figure 3.6 Maximum likelihood 1st and 2nd codon nucleotide phylogenetic tree showing the phylogenetic position of Nodal within the TGF-beta superfamily
Figure 3.6 Maximum likelihood 1st and 2nd codon nucleotide phylogenetic tree showing the phylogenetic position of Nodal within the TGF-beta superfamily
Figure 3.6 Maximum likelihood 1st and 2nd codon nucleotide phylogenetic tree showing the phylogenetic position of Nodal within the TGF-beta superfamily
Figure 3.6 Maximum likelihood 1st and 2nd codon nucleotide phylogenetic tree showing the phylogenetic position of Nodal within the TGF-beta superfamily

Figure 4.3 Saturation test for all three codons of Nodal72
Figure 4.4 Saturation test for 1st and 2nd codon positions of Nodal73
Figure 4.5 Maximum likelihood amino acid phylogenetic tree of Nodal75
Figure 4.6 Maximum likelihood 1st and 2nd codon position phylogenetic tree
of Nodal76
Figure 4.7 Maximum likelihood nucleotide phylogenetic tree of Nodal77

List of Tables

Table 3.1 Number of markers in each dataset.	39
Table 3.2 Deleted sequences	42
Table 4.1 125 Nodal sequences included in the phylogenetic analyses	69

CHAPTER 1 INTRODUCTION

In a novel by Louis Cha, *The Deer and the Cauldron*, the protagonist of the story, Wei Xiaobao, was forced to kill Duolong (who was the head of the imperial Praetorians but also a friend of Wei in the Qing Dynasty) to save his trapped rebel friends by stabbing a sharp dagger into Duolong's heart. However, without knowing who attacked him, Duolong escaped the call of Death because his heart was on the right side of his body!

Duolong's condition is called dextrocardia in medical science. There are two types of dextrocardia: isolated dextrocardia and dextrocardia situs inversus (Abbott and Meakins, 1915). Those individuals who have situs inversus will have their heart on the right, while their liver is on the left. Moreover, the position of their stomach is also changed. What makes some organs be set on the left side while some are on the right side? What is the mechanism of the asymmetry? These questions of general interest have long intrigued biologists and anatomists. With the development of molecular genetics, it has been recognized that a gene called *Nodal* plays an important role. This gene is a member of the transforming growth factor-beta superfamily (TGF-beta superfamily), a family of extracellular signalling molecules.

1.1 THE TGF-BETA SUPERFAMILY

1.1.1 General background

The TGF-beta superfamily is a large family of cell regulatory proteins that have sequence similarity. TGF-betas are produced by a variety of cells and are

composed of a large number of ligands, including TGF-beta1, TGF-beta2, TGF-beta3 and bone morphogenetic protein (BMP), etc. The first TGF-beta gene was cloned in 1985 (Derynck, et al. 1985). It was found that some TGF-beta genes exist in animals such as nematodes, flies, vertebrates, etc. Members of this superfamily have the function of controlling cellular processes such as growth regulation, embryo development, and tissue and immune system homeostasis. (Herpin, 2004) The TGF-beta superfamily is named from the first member found in this superfamily. The TGF-beta is named as a transforming growth factor because it can transform normal fibroblast phenotypes; that is to say, if an epidermal growth factor (EGF) exists, it can change fibroblast cell wall growth characteristics creating the ability to grow in agar (Serra & Chang, 2003). TGF-beta signalling is mainly known for its role in morphogenesis. In addition, it also plays an important role in dorsal-ventral patterning in both deuterostomes and protostomes (Pang, 2011).

TGF-beta superfamily ligands are cytokines. A Cytokine (CK) is a type of protein or small peptide that can transmit information between cells and has immune regulation functions. It is soluble with a small molecular weight, and is actively secreted by immune system cells and other cell types. It is the core factor of contact between immune system cells and other types of cells. Cytokines can change the characteristics of secretory cells. They also affect cellular processes through regulating specific cell membrane receptors (Zhang, 2008).

2

According to their major functions, cytokines can be grouped in different categories such as Interleukin (IL), Colony-stimulating factor (CSF), Interferon (IFN), Tumour necrosis factor (TNF), the transforming growth factor-beta superfamily (TGF-beta superfamily), Growth factor (GF) and the chemokine family (Zhang, 2008). Among the groups of cytokines, the TGF-beta superfamily is the one that this project focuses on.

1.1.2 The TGF-beta signalling pathway

The TGF-beta signalling pathway is the pathway that the ligands in the TGFbeta superfamily mainly follow, which was first identified over 30 years ago. It is a pathway where secreted proteins transform cells and tissues (Pang, 2011). During organ development, the TGF-beta family is required for dorso-ventral patterning, mesoderm induction and patterning, limb bud formation, bone and cartilage formation, neuron differentiation and the development of a variety of different tissues and organs. Ligands of the TGF-beta superfamily produce dimers that bind to heterodimeric receptor complexes composed of type I and type II receptor subunits having serine/threonine kinase domains. After the ligands are bound, the type II receptor phosphorylates and activates the type I receptor to create a Smad-dependent signalling cascade that induces or represses transcriptional activity. This pathway evolved in the early evolution of metazoans (Pang, 2011).

The TGF-beta superfamily signalling pathway includes TGF-beta superfamily ligands, receptors and SMADs (Herpin, 2004). A ligand is a kind of biomolecule that has its own bioactivity and is able to bind to a biomolecule

(which is called a receptor) and form a complex with it to express a specific biological effect. A ligand can be a peptide or other small molecules, such as a neurotransmitter, a hormone, a pharmaceutical drug or a toxin. After binding to a receptor, a ligand will cause the change of cell interstitials to let signalling factors pass between cells and amplify the signalling (Zhang, 2008). This project focuses on the ligands of the TGF-beta superfamily which interact with serine/threonine-specific protein kinase receptors and SMADs.

A receptor is a kind of biomolecule that is located in the plasma membrane or the cytoplasm of a cell, and is attachable to one or more specific kinds of biomolecules (the singular of which is called a ligand) (Zhang, 2008). Usually a cell has many different kinds of receptors. There are a limited number of receptors in the body. If the number of ligands that occupy the available receptors has reached the maximum number, no matter how many ligands are further added, the number of the ligands that are affected with receptors will not change. Each kind of receptor can only bind certain ligand shapes. After forming a complex, the ligand and receptor can dissociate from each other. The structure of ligands and receptors will not be changed after binding and dissociation. According to where the receptor is located, it can be divided into three categories. One is the transmembrane receptor which is embedded in the plasma membrane, such as cholinergic receptors, adrenergic receptors and insulin receptors. The second, called the cytosolic receptor, is in the cytoplasm, such as hormone receptors and glucocorticoid receptors. The third, whose name is the nuclear receptor, is located in the nucleus, e.g. thyroid hormone receptors (Zhang, 2008).

4

Upon ligand binding, the receptor passes the signal through downstream substrates, which are called signalling molecules, to the effector proteins such as transcription factors or other functional proteins. SMAD is a kind of biomolecule that acts as an intracellular signalling molecule and is able to regulate the activity of ligands in the TGF-beta superfamily (Heldin et al. 1997; Derynck et al. 1998). After being activated by a ligand-bound receptor, a SMAD often forms a complex with other SMADs/CoSMAD, then translocation into the nucleus occurs and it acts as a transcription factor to regulate the expression of target genes (Dijke and Arthur, 2007; Massagué et al. 2005).

There are three kinds of SMAD: the receptor-regulated Smads (R-SMAD), the common-mediator Smads (co-SMAD) and the inhibitory Smads (I-SMAD, which are also called antagonistic Smads). R-SMAD includes SMAD1, SMAD2, SMAD3, SMAD5 and SMAD8/9. SMAD2 and SMAD3 are effectors for TGF-beta or Activin signals. SMAD1, SMAD5 and SMAD8 are effectors for BMP signals (Wu et al. 2001). Co-SMAD only includes SMAD4. It binds to activated R-SMADs and forms a complex to accumulate in the nucleus and regulate the expression of target genes (Shi et al. 1997) I-SMAD including SMAD6 and SMAD7. They act as inhibitors of R-SMADs and Co-SMADs by competing with SMAD4 to bind to R-SMADs. By so doing, I-SMADs can block the activation of R-SMADs and co-SMADs (Itoh et al. 2001).

5

As shown in Figure 1.1, TGF-beta superfamily signalling is initiated when the ligands bind to cell surface receptor serine/threonine kinases (type II and type I receptors). First, the ligands bind to a type II receptor. Then the type II receptor recruits and phosphorylates a type I receptor to make it activated. After that, the type I receptor then phosphorylates and activates receptor-regulated SMADs (R-SMADs). The Phosphorylated R-SMADs form complexes with the coSMAD (e.g. SMAD4). Next, the complexes accumulate in the nucleus. Finally, the complexes act as transcription factors and cooperate with transcription factors, co-activators and co-repressors to regulate the target gene expression. Inhibitor molecules can work at every stage of the signalling pathway. If Smads entered the nucleus, the specific transcriptional co-repressors would prevent the response to TGF-beta (Powers et al. 2010).

Figure 1.1 Overview of the TGF-beta signalling pathway.

Signalling is initiated by the binding of the Type II receptor and ligand. Activation of the receptor-Smad (Smad2/3, Smad1/5) is triggered by the sequestering of Type I receptors. This complex, in combination with Co-Smad, (Smad4) activates a transcription of target genes after entering the nucleus. The intercellular or extracellular antagonists can inhibit the pathway through SMURF ubiquitin ligase or Inhibitor-Smad (Smad6/7).

The TGF-beta precursor protein is divided into three main distinct regions, namely the signal peptide, the propeptide or latency associated peptide and the mature peptide. Each region has different functions; for example, the signal peptide is responsible for targeting TGF-beta to the endoplasmic reticulum and secretion. Essentially, the mature peptide is cleaved from the precursor protein and is responsible for signal transduction. Unlike the propeptide, the mature peptide is conserved across different families. The mature peptide is mainly cleaved by Furin, which is a convertase, at a dibasic arginine-X-X-arginine site (RXXR). The Homodimer or heterodimer is formed by an active peptide and

binds to a specific TGF-beta Type II receptor. Then, the TGF-beta Type I receptor is recruited by the TGF-beta Type II receptor, wherein its phosphorylated sites are activated by threonine/serine kinase. Following this, phosphorylated TGF-beta Type I receptors phosphorylate and activate receptor-associated Smad proteins (R-Smads), Smad2/3, and Smad1/5 (Pang, 2011). R-Smad proteins are divided into two major functional domains, namely Mad-homology domains 1 and 2 (MH1 and MH2). TGF-beta-like signalling is associated with Smad2/3, while BMP-like signalling is primarily associated with Smad1/5. Membranes are associated with inactive R-Smads through a Smad anchor for the receptor activation (SARA) protein. The Smad anchor for receptor activation contains the FYVE domain, which is a zinc finger domain. After activation, R-Smads are released into the cytosol for interaction with the common-mediator Smad (Smad4 aka Co-Smad). It is later translocated into the nucleus. TGF-beta target genes are thereafter regulated by the heteromeric complex through interaction with transcription factors, including Myc, Fos/Jun or co-activators such as Creb-binding protein (CBP). The MH1 domain can interact with DNA while the MH2 domain can interact with Type I receptors. The target gene is also involved in the protein-protein interactions, for instance Co-Smad/R-Smad binding (Derynck & Zhang, 2003).

TGF-beta signalling inhibition can occur at different levels, for instance in the nucleus, cytoplasm and extracellular matrix. Receptors binding with ligands are impaired by the extracellular diffusible antagonists, due to the fact that they act as ligand traps, for example Follistatin, Noggin, Chordin, and the CAN family (Gremlin/DAN/Cerberus). Thereafter, zinc metalloprotease Tolloid is

activated to cleave to Chordin, and in so doing releases BMPs. This process shows that there are numerous regulation levels of TGF-beta signalling. Apart from cleaving Chordin, Tolloid also cleaves pro-collagens of the extracellular matrix and other proteoglycans. Furthermore, some Tolloid is also involved in the binding of TGF-beta ligands (Pang, 2011). SMURF may also degrade Type I receptors after being recruited by I-Smads in the membrane. TGF-beta signalling can also be regulated in the nucleus as when co-repressors Sno/Ski bind (Liu, et al. 2001). These proteins can recruit repressors to block TGF-beta target gene activation.

In a cell, the TGF-beta signalling pathway can also be inhibited at different levels. For instance, at the receptor level the GS domain binding with Type I receptor phosphorylation can be blocked by FKBP12 (Chen, et al. 1997). A second example is the formation of a receptor complex, which is caused after Type II and Type I receptors bind. In this example, a pseudo receptor, BAMBI, may prevent Type I and Type II receptors from binding (Onichtchouk, et al. 1999). Furthermore, Inhibitor-Smads (Smad6/7, I-Smad) can also cause pathway modulation because they have an MH2 domain, and can bind with Type I receptors to prevent phosphorylation and binding of R-Smad. Co-Smads binding with R-Smad can also be hindered due to competition from I-Smads binding with Co-Smads. TGF-beta signalling can also be regulated by the E3 ubiquitin ligase, SMURF, which targets R-Smads for degradation (Zhu, et al. 1999).

9

1.1.3 Characteristics of the TGF-beta superfamily ligand sequences

Whether a protein is a family member or not is determined by the presence of the RXXR cleavage site, and the 7 cysteine residues in the mature domain. All the TGF-beta superfamily ligands have a dibasic or RXXR cleavage site. The pro-domain before the cleavage site of TGF-beta is poorly conserved across different family members, although it is well conserved within a particular family member from a different species. The mature domain is more highly conserved than the pro-domain. It contains most of the sequence landmarks. In the mature region, there are 7 cysteine residues that are highly-conserved and hardly changed through all the family members (Figure 1.2). The Cysteine site is missing in GDF-3 and GDF-9.

Figure 1.2 The 7 conserved cysteine residues in the TGF-beta superfamily

1.1.4 Four groups of subfamilies in the TGF-beta superfamily

There are dozens of families belonging to the TGF-beta superfamily, which can be divided into two major classes: a protein-like bone morphogenetic class (BMP class) and a TGF-beta-like class. The former includes the following members: Bmp5-8, Bmp2/4/Dpp, Gdf2, Bmp3, ADMP, Nodal, Univin/Vg1 and Gdf5-7, whereas the latter includes lefty, TGF-beta sensu stricto, inhibin/activin and Gdf8/Myostatin (Pang, 2011).

In Herpin's review, the author gave a general review of the TGF-beta superfamily. He introduced the ligands, SMADs and reporters of the TGFbeta superfamily. In the ligand section, he grouped the TGF-beta superfamily into 4 groups according to ligand functions. Figure 1.3 illustrates the phylogenetic relationships of the TGF-beta superfamily in Herpin's review (Herpin et al. 2004).

As shown in Figure 1.3, when grouped by functions, the ligands of the TGFbeta superfamily can be divided into four major subfamilies: (1) The decapentaplegic-Vg-related (DVR) related subfamily – also known as the BMP subfamily. (2) The activin/inhibin subfamily. (3) The TGF-beta sensu stricto and related factor subfamily. (4) A group of various divergent members. (Herpin et al. 2004).

Figure 1.3 The Phylogenetic relationships between the TGF-beta superfamily of ligands.

The 4 square brackets within the TGF-beta superfamily in the diagram represent the four major distinct ligand subfamilies of the TGF-beta superfamily. The first group is the DVR subfamily, which includes GBB/BMP5-8, DPP/BMP2/4 and Divergent DVR. The second group is the activin/inhibin subfamily. The third group is TGF-beta sensu stricto and related factor subfamily, which includes the TGF-beta sensu stricto and related TGF-beta ligands. The last group is a group representing various divergent members in the superfamily which illustrates distant TGF-beta. In this diagram, the numbers at each branch node represent the percentage values given by bootstrap analysis. Protostome sequences are indicated in bold. The GDNF (Glial Derived Neurotrophic Factor) is used as an out group. The tree is based on 120 amino acids. In this figure, the branches drown with dashed lines show a list of TGF-Beta superfamily ligands not included in Herpin's phylogeny but included in other researchers' assumptions. Derriere, ADMP and DBL-1 are said to be in DVR subfamily, Neurturin, Artemin and Persephin are said to be with GDNF.

(1) The decapentaplegic-Vg-related (DVR) subfamily

This subfamily comprises growth and differentiation factors (GDFs) which consist mainly of GDF3, GDF4 and GDF1, Nodal, Gbb, Dpp, Dorsalin, Decapentaplegic-Vg-related (DVR), Screw and most of the bone morphogenetic proteins (BMPs). Derriere, ADMP and DBL-1 are also in this subfamily, but they are not included inHerpin's theory. Among the ligands listed above, Nodal is the ligand that the present project focuses on.

(2) The activin/inhibin subfamily

The activin subfamily includes Activins and Inhibins. There are two kinds of Activin sub-units: sub-unit ßA and sub-unit ßB. Depending on their sub-unit, there are three types of activins: Activin A (composed of ßA ßA), Activin B (composed of ßB ßB) and Activin AB (composed of ßA ßB) (van Zonneveld et al. 2003). Both activins and inhibins are para/autocrine regulators of cell function (Chen et al. 2006).

(3) The TGF-beta sensu stricto and related factor subfamily

The TGF-beta sensu stricto includes TGFB 1-5, whereas the TGF-beta related factor includes the Maverick (Mav), GDF2, Myoglianin and Myostatin. TGFB is involved in embryogenesis, cell differentiation, extracellular matrix neogenesis, immunosuppression, apoptosis as well as other processes (Nguyen et al. 2000).

(4) A group of various divergent members

Proteins included in this group are less similar to other members in the TGFbeta superfamily, but bear the typical architecture of the ligands. In Figure 1.3, the divergent members include the Anti-Müllerian Hormone (AMH, or Müllerian Inhibiting Substance, MIS), Lefty, Daf7, Unc-129 and GDNF (Glial cell-derived neurotrophic factor). It is additionally shown in Figure 1.3 that some activins, inhibins, BMPs and GDFs also fall into this group.

Neurturin (NRTN, NTN), Artemin (ARTN, Enovin) and Persephin (PSPN, PSP) are also divergent members of the TGF-beta superfamily, but they are not included in Herpin's review. GDNF together with NRTN, ARTN and PSPN belong to the GDNF family of ligands (GFL). GFLs affect internal cell survival, neurite outgrowth, cell differentiation and cell migration. The members of the GDNF family belong to the TGF-beta superfamily, but the amino-acid sequence homology is less than 20% of GDNF family members with other members of the TGF-beta superfamily (between the members of the GDNF family, the amino-acid sequence homology is between 40 and 50%) (Airaksinen et al. 2002; Saarma, 2000).

1.2 NODAL

1.2.1 General background

Nodal is the ligand that this project focuses on in the TGF-beta superfamily. It plays an important role in the formation of the left-right axis in the development of vertebrates. It is additionally essential to the formation of the mesoderm and anterior-posterior axis. Nodal is first found expressed in the

node (the organizer for gastrulation in vertebrates), so this gene was named Nodal (Garcia-Fernàndez, et al. 2007; Zhou, et al. 1993). Nodal is primarily found in chordates, but not in ecdysozoa, for example, the nematode or fruit fly. It has also been proved that it is found in deuterostomes such as sea urchins and Chordates and the protostome group, such as Lophotrochozoa. Nodal protein consists of a mature ligand domain and prodomain, and is translated as proproteins (Schier, 2009; Bianco, et al. 2010). Nodal signals are part of the TGF-beta superfamily, and are essential for the determination of the left-right axis and induction of the endoderm and mesoderm. Nodal signals can also act as morphogens because they have concentration-dependent effects and are able to act at a distance from the production source (Schier, 2009). Nodal regulates FoxH1 gene expression and induces the transcription of mRNAs that are involved in cell differentiation, left and right axis specification and mesoderm and endoderm induction(Hamada, et al. 2002). In most species, Nodal gene expresses on the left side of the body in the lateral plate mesoderm and brain region (Ito, et al. 2006).

1.2.2 Nodal signalling pathway

Figure 1.4 shows the Nodal signalling pathway. Nodal ligands, as with other TGF-beta signals, activate threonine/serine kinase receptors which are responsible for the phosphorylation of Smad proteins. Nodal signals are mainly received by EGF-CFC co-receptors and Type II and I Activin receptors. The activation of receptors is followed by the phosphorylation of transcription factors Smad3 and Smad2. This further leads to the binding to the nuclear translocation factor, Smad4, and association with more transcription factors

that regulate target genes. This core pathway is mainly regulated by antagonists that process enzymes and extracellular proteins. Furthermore, Nodal signalling is also regulated by miRNAs. These are responsible for receptor trafficking and intracellular molecules, for example transcriptional cofactors. A more in-depth understanding of Nodal signal transduction's molecular basis enhances the understanding of regulation of Nodal morphogen activity (Schier, 2009).

Figure 1.4 Nodal signalling pathway.

After the convertases processes Nodal precursor, Nodal transfers signals via EGF-CFC co-receptors and activin receptors. Lefty and Cerberus mainly act as the extracellular inhibitors. Lefty mRNAs and Nodal are targeted by MicroRNAs that belong to the miR-430 family, and they are responsible for repression and degradation. The Type II activin receptor is repressed by Mir-15/16. Activin receptors are recycled by Rap2, while activin receptor complexes are targeted by Dapper 2 in the lysosome for degradation. Activation of the pathway is mediated by Smad2 phosphorylation and Smad4

association with Smad2 and Mixer, p53 and FoxH1 transcription. On the other hand, the PPM1A dephosphorylated Phospho-Smad4 is later exported by RanBP3 from the nucleus. Deubiquitinase FAM/Usp9x and ubiquitinase Eactodermin regulate the stability and activity of Smad4.

Nodal signals are assembled by receptor complexes, and they consist of both type II and type I activin receptors (ActRIB; ActRIIA/B), which function as serine/threonine kinases (Schier, 2009). EGF-CFC proteins are linked to GPI factors, which are required for Nodal signalling and embryogenesis. For example, an absence in the EGF-CFC protein in one-eyed pinheads renders an embryo resistant to Nodals and inactivates the pathway. Moreover, it is thought that EGF-CFC proteins serve as co-receptors by binding type I activin receptors and Nodals. Recent tissue culture studies have highlighted the need for ligands acting in conjunction with receptor trafficking in Nodal signalling. For example, the mammalian EGF-CFC protein Cripto may be used effectively to promote Nodal signalling through linking the processing and trafficking of Nodal. Cripto can be used to form a complex in conjunction with convertases and Nodal precursors on the surface of cells that will respond by facilitating Nodal and translocation to early endosomes and processing (Schier, 2009).

1.2.3 Extracellular antagonists, convertases and Nodal signals

A model developed by Serra and Chang to show how Nodal and lefty affect left-right patterning is shown in Figure 1.5. Most Nodals express on the left side because of the regulation of other ligands and inhibitors. On the left side, Nodal is regulated by Vg1/GDF1 and early BMP and is inhibited by BMP and Lefty. Oversecretion of Nodal will lead to the expression of Lefty on the left side to downregulate Nodal. There are Lefties expressed on the midline. There, the Lefties act as a midline barrier to stop Nodal moving into the right side of the body. If Nodal appears on the right side, both the Activin/ActRIIA and BMP/ALK2 can stop it (Serra & Chang, 2003).

Figure 1.5 Left-right patterning model by lefty and Nodal.

On the left, an early signal from the node causes the expression of Nodal and Lefty in the left lateral plate mesoderm. Vg1/GDF1 is expressed on both sides, but it can only be activated early on the left to regulate Nodal expression. Caronte is a BMP inhibitor. It is also expressed on the left side and antagonizes the function of BMP of inhibiting Nodal. Downstream of Nodal signalling pathway on the left side, transcription factor Pitx2 is turned on and Snail is inhibited. Midline expression of lefty is necessary to prevent Nodal going into the right side. On the right side, BMP signals through ALK2 and Activin through Activin A type II receptors will inhibit Nodal signalling. Downstream of Nodal signalling pathway on the right side, Snail is activated and Pitx2 is shut off.

1.2.4 Number of copies of Nodal in different species

The number of Nodal genes in different species is varied. Nodal paralogs are

described as "Nodal-related" in the zebra fish, frog, Japanese newt and

Japanese killifish. Mice and humans possess only one Nodal gene, but the

zebra fish has three Nodal paralogs: squint, cyclops and southpaw (SPAW). In

the African clawed frog, there are six Nodal genes, known as xnr (*Xenopus laevis* Nodal-related) 1~6 (Swiers, 2010). And in the Western clawed frog, 2 kinds of xtnr (*Xenopus (Silurana) tropicalis* Nodal-related), Xtnr1 and Xtnr3(which has three forms: 3-A, 3-B, and 3-C) were discovered (Haramoto, et al. 2004; Klein, et al. 2002). In Japanese killifish (also known as the Medaka or Japanese rice fish), there are two: onr (*Oryzias latipes* Nodal-related) 1 and 2. (Soroldoni, et al. 2007). In the Japanese fire belly newt, Nodal-related gene is called CyNodal (*Cynops pyrrhogaster* Nodal) (Ito, et al. 2006).

Nodal homologs in different species are very similar in terms of their amino acid sequence structure, yet they have different effects. In the zebra fish, Squint and Cyclops are important for mesendoderm formation, while SPAW plays a vital role in asymmetric heart morphogenesis and visceral left-right asymmetry (Baker, et al. 2008). In the frog, Xnr1, Xnr2 and Xnr4 have mesoderm induction activity. Xnr3 cannot induce mesoderm, but Xnr3 has neural induction activity (Takahashi, et al. 2000).

In the support material for The Genome of the Western Clawed Frog *Xenopus tropicalis* (Hellsten, 2010), the author indicates that there are two Nodal loci in vertebrates. One is between eif4ebp2 and ash2l, and the other is between eif4ebp1 and paladin. In some species such as frogs or fish, the Nodal gene may be amplified and show several copies. In some species such as mammals or birds, one of the loci may be deleted. The bird loses the Nodal locus adjacent to paladin, while the mammal loses the Nodal locus adjacent to ash2l.

Other transcription factors that relate to mesoderm and endoderm development also have multiple copies.

1.3 AIMS AND OBJECTIVES

The purpose of this study is to investigate the evolution of the TGF-beta superfamily with the main focus on the Nodal gene. That is: (1) to determine the relationship within the Nodal family; (2) to examine whether Nodal is duplicated during evolution. To achieve this, whether Nodal is monophyletic and the relationship of Nodal with other ligands in the TGF-beta superfamily will be examined first.

CHAPTER 2 METHODOLOGY

Summarized in this chapter are general methodologies that are referred to in the succeeding chapters. A brief description, along with some basic concepts, will be shown in this chapter. Sequences used in this project were downloaded from GenBank and Ensembl and aligned within the Genetic Data Environment 2.4 Macintosh Edition (MacGDE) (Smith et al. 1994). The sequences were then checked for saturation before being subjected to phylogenetic estimation. To this end, the optimal model that best fitted the dataset is first identified, and then a phylogenetic tree is constructed by using that model with the Maximumlikelihood method.

2.1 ASSEMBLING A DATASET

The DNA sequences used in this analysis were obtained from GenBank and Ensembl through a detailed search of every member of ligands of the TGF-beta superfamily. The analysis tried to include as many Nodal sequences as possible. The DNA sequences were translated into amino acid sequences to provide protein information for building amino acid trees.

Ensembl is a joint project between the European Molecular Biology Laboratory (EMBL), the European Bioinformatics Institute (EBI) and the Welcome Trust Sanger Institute (WTSI). The aim of this joint project is to automatically annotate the selected eukaryotic genomes and to maintain and provide the information in the form of an on-line database (Flicek, 2011). GenBank is a general genetic sequence database run by the National Center for Biotechnology Information (NCBI), which collects genes from all publicly available DNA sequences. It is a commonly used on-line gene database (Benson, et al. 2009).

Nodal sequences from GenBank were identified by reviewing the literature to ascertain whether they were proven by experiments or only by BLAST searching. It should be noted that as Nodal sequences from Ensembl were automatically annotated with high confidence and no literature information was provided, in this analysis Nodal sequences from Ensembl were not manually checked.

2.2 MULTIPLE SEQUENCE ALIGNMENT

The dataset was aligned through a combination of automatic and manual methods. The on-line MUSCLE service on the EBI website was used to automatically align the dataset. Based on the results of the automatic alignment, the manual alignment was done through the program Genetic Data Environment 2.4 Macintosh Edition (MacGDE). After the alignment, marker files were made to inform which sites were unambiguously aligned that could therefore be used in building the phylogenetic trees.

Multiple Sequence Comparison by Log-Expectation (MUSCLE) is a multiple alignment program for both amino acid and DNA sequences, which is more accurate and efficient than Clustal and T-Coffee (Edgar, 2004). MacGDE is a multiple phylogeny platform for alignment and phylogenetic analysis which can read a wide range of file formats (Smith et al. 1994).

2.3 CHOICE OF THE DATASETS USED

After the alignment, a dataset that will be brought into phylogenetic analysis needs to be chosen. It needs to contain sufficient sites to build a tree, and needs to contain enough ligands from different subfamilies to show the relationships within the TGF-beta superfamily. Then, the dataset will be brought into a saturation test and further phylogenetic analysis.

2.4 SATURATION TEST

After the dataset was chosen, a saturation test is taken to test the accuracy of the results. Saturation is caused by multiple changes at one site in the alignment (Farrell, 2011). Testing for saturation can be done in different ways, for instance transition distance vs. transversion distance, and transition and transversion distance vs. uncorrected distance, among others (Morisson, 2006; Tsigenopolous et al. 2002).

A transition (ti) refers to the change of a purine nucleotide to another purine $(A\leftrightarrow G)$ or pyrimidine nucleotide to another pyrimidine ($C\leftrightarrow T$). A transversion (tv) is a nucleotide-pair substitution type that involves a purine replacement with a pyrimidine, or a pyrimidine replacement with a purine. (Collins & Jukes, 1994). Transition (ti) occurs more frequently than transversion (tv).

There are different ways to determine whether a dataset is saturated. There are two tests used in this project: the transition (ti) and transversion (tv) distance plotted against uncorrected distance, and transition (ti) distance plotted against transversion (tv) distance. These methods use different ways to determine the saturation of a dataset.

In the test with the Transition (ti) and transversion (tv) distance vs. the uncorrected distance method, if there were no saturation, there would be two straight lines, as shown in Figure 2.1(a). Due to the fact that transition is more frequent than transversion, the line of the transition will be higher than that of transversion in the saturation test of transition (ti) and transversion (tv) distances against pairwise total uncorrected distances. This is because of the following points: firstly, the saturation is caused by the multiple changes at one site in the database; secondly, transition happens more frequently than transversion. That means for one site, transition is more likely to happen than transversion. When saturation occurs, the transition line is usually a curve in the diagram, while transversion is depicted as a straight line (Figure 2.1 (b)). As a curve is equated with saturation in this dataset, the result based on the dataset may not be accurate. The earlier the ti line crosses the tv line, the more saturation there will be. (Morisson, 2006)

24

Figure 2.1 Transition and transversion vs. uncorrected distance method.

The diagram illustrates the saturation test results obtained from an uncorrected pairwise transition (ti) and transversion (tv) distance against the total uncorrected distance. (a)The diagram above shows a straight line for both transition and transversion. This indicates that no saturation is observed in the dataset. Both transition and transversion are not saturated, reflecting accuracy in the results. (b) The diagram clearly shows a straight line for transversion, whereas a curve for transition. This indicates that the dataset is saturated. In the case that the dataset is saturated, it can be interpreted that the results may be inaccurate.

In the test with transition (ti) distance vs. transversion (tv) distance model, with

the points on the midline y=x it can be interpreted that transversion (tv) and

transition (ti) are equal. It can also be observed that if one point is above the line, transversion (tv) distance is shorter than the transition (ti) distance. The points are most likely to appear above the y=x line because transition (ti) occurs more frequently than transversion (tv). Generally, saturation is observed in the dataset in the case that there are multiple points under the y=x line, which may give inaccurate results (Tsigenopolous et al. 2002).

Figure 2.2 Transition (ti) distance vs. transversion (tv) distance model.

The above diagram illustrates anticipated results from a saturation test by using a transition (ti) distance vs. Transversion (tv) distance model. There are different observations expected. For instance, all points along the midline y=x suggest that transversion (ti) and transition (ti) are equal. One point above the midline y=x suggests that transversion (tv) distance is shorter than the transition (ti) distance. Furthermore, most points above the midline y=x indicate that transversions are less frequent than transitions. In this case, the points are most likely to appear above the midline y=x, which shows that transitions are greater than transversions, and it can be interpreted that the dataset is not saturated. On the other hand, if most of the points are below the midline y=x, it can be interpreted that the dataset is saturated.

During the saturation test, Phylogenetic Analysis Using Parsimony (and Other

Methods) 4.0 Beta (PAUP) (Swofford, 1998) was used to calculate the

uncorrected distances and the transversion/transition distances. Then, the diagrams are generated from the distance data by using Microsoft Excel.

2.5 PHYLOGENY RECONSTRUCTION

After conducting the saturation test, the datasets chosen are used to build phylogenetic trees. Neighbor-joining (NJ) is a distance method that works quickly. In this method, the evolutionary distance is calculated between sequences, the distance data is collated to form a distance matrix and then a tree is drawn from the matrix. It assumes that the distances are additive, but does not require the data to be ultrametric (Saitou and Nei, 1987). With this method, a general view of the tree could be shown quickly, but the result may not be as accurate as the character - state methods. Maximum Likelihood (ML) is a character - state method that considers the probability of each nucleotide changing in sequence alignment in each group. Then, the tree that gets the largest sum of the probability is that which most likely reflects the true situation of the phylogenetic tree (Cavalli-Sforza and Edwards, 1967; Felsenstein, 2004). It has more statistical flexibility than Maximum Parsimony (MP). In addition, compared to the Bayesian Inference, ML can provide satisfactory, accurate results although will take a longer time. Thus, ML is chosen to be the method used in this project.

27
2.6 CALCULATION OF DISTANCES

Uncorrected p distances, in which distances were calculated as the number of substitutions divided by sequence length with no correction for multiple substitutions, were calculated in PAUP.

Corrected distances in which distances were corrected to account for multiple hits at the same site leading to an underestimate of the actual amount of change, were calculated using GTR models in PhyML. The GTR model is short for the general time-reversible model. It requires 6 substitution rate parameters and assumes that all six pairs of substitutions have different rates and the base frequencies are not equal. But it considers that all nucleotide sites are equally likely to change, all nucleotide sites change independently and the base composition is at equilibrium among all sequences (Tavaré, 1986; Rodríguez, et al.1990). According to Yang and Kosakovsky's work, this model is considered to be the most complex model that fits for the appropriate set of characters (Yang and Nielsen, 1998; Kosakovsky, et al. 2007).

In different packages, the GTR model may have different names. For example, in the nucleotide package in PhyML, it is called the GTR model; while in the amino acid package in PhyML, it is called the REV model. The MtRev model, which was utilised for protein sequences in this project, is a special GTR model. In order to account for rate variation between sites the Gamma-distribution (G) and invariant sites (I), can be added to the GTR model. In this project, "GTR+G+I" means using the chosen model with a Gamma-distribution, along with invariant sites.

2.7 BOOTSTRAP ANALYSIS

After a phylogenetic tree was built, bootstrap analysis was used to test the confidence. Bootstrap analysis is a resampling technique used to estimate the confidence level of hypotheses in a phylogenetic tree. It was raised by Bradley Efron in 1979 to test the possibility of variation of results. It was a simple but effective method, and it generated random samplings from the original dataset with replacement. A measure of support for the branches in the tree is provided by bootstrap values. Each time a random sample of sites from the original data set is taken, the sample is subjected to the phylogeny estimation procedure, so that, for example, 100 trees are generated from 100 re-sampled data sets. A bootstrap value shows the number of trees, from this 100, which contain that particular branch of the tree. Usually the bootstrap value was underestimated. >95% was the confidence interval, which meant with a value within this interval, the result might hardly change and it had the highest credibility to be believed as the true structure. Usually >70% was a satisfactory result and the structure was stable (Graur & Li, 2000; Zvelebil & Baum, 2008).

2.8 PRESENTING THE FIGURES

After the phylogenetic reconstruction, the results as well as the bootstrap values are presented as figures. The programs used for generating tree pictures were: Tree Explorer, Archaeopteryx, Photoshop and PowerPoint. Tree Explorer was used to modify the trees with branches only. Bootstrap values and node names can be added by using PowerPoint. In this stage, a ligand or group of ligands are selected to be the root of the phylogenetic tree.

When building the phylogenetic tree, BioEdit Sequence Alignment Editor (Version 7.0.5.3 10/28/05), MacGDE and Geneious were used to change file formats for different programs.

CHAPTER 3 PHYLOGENETIC ANALYSIS OF NODAL WITHIN THE TGF-BETA SUPERFAMILY

3.1 INTRODUCTION

Previous work by Herpin et al has divided the TGF-beta superfamily into four main groups (Herpin et al. 2004): the DVR subfamily, the activin/inhibin subfamily, the TGF-beta sensu stricto and related factor subfamily and a group of various divergent members, Nodal is in the DVR-subfamily. The phylogenetic tree shown in Herpin's review is shown in Figure 3.1 in this chapter. The phylogeny shows the relationships among the genes in the TGFbeta superfamily. In Figure 3.1, Nodal remains unaccompanied on a single branch. However, the low bootstrap values suggest that the structure of the tree may not be that reliable. A bootstrap value of 54% supports the position of Nodal within the DVR subfamily. This hints to the fact that Nodal may shift around subfamilies (Herpin et al. 2004).

Figure 3.1 Phylogenetic relationships among the TGF-beta superfamily of ligands.

The 4 groups in the diagram represent the four major distinct ligand subfamilies of the TGF-beta superfamily. The first group is the DVR subfamily which includes GBB/BMP5-8, DPP/BMP2/4 and Divergent DVR. The second group is the activin/inhibin subfamily. The third group is TGF-beta sensu stricto and related factor subfamily which includes the TGF-beta sensu stricto and related TGF-beta ligands. The last group is a group representing various divergent members in the superfamily which illustrates distant TGF-beta. In this diagram, numbers at each branch node represent the percentage values given by bootstrap analysis. Protostome sequences are indicated in bold. GDNF (Glial Derived Neurotrophic Factor) is used as an out group. The tree is based on 120 amino acids.

What's more, findings from other researchers (Figure 3.2) are somewhat

incompatible with Herpin's review about the position of Nodal in the TGF-

beta superfamily. In the paper that first reported Nodal, the author states that

Nodals are detached externally to a group of GDFs, BMPs, DPP and VG-1

(Zhou, et al. 1993). According to Bengtsson (2001), Nodal is an out-branch of a group of BMPs and GDFs. Similar to the position of Nodal in Figure 3.1, Bengtsson's paper suggests that Nodal does not abide with the Activin subfamily and TGFB subfamily (Bengtsson, 2001). In Newfeld's work (Newfeld, et al. 1999), Nodal is with DBL-1 and the group of Nodal and DBL-1 remains with the DVR subfamily with a quite low bootstrap number of 10, which suggests that structure may change. Next, in Ponce's study (Ponce, et al. 1999), Nodal stays with DBL-1 on a branch - but the relationship of this branch with other ligands is unclear. In Nguyen's paper (Nguyen, et al. 2000), Nodal forms a group with GDF10, BMP3 and Maverick. Figure 3.1 shows Nodal is in the DVR subfamily, Maverick is in the TGFB subfamily and BMP3 is a divergent TGF-beta superfamily member. The research to date therefore indicates that the position of Nodal within the TGF-beta superfamily remains uncertain, and there is no clear answer about which ligand or group of ligands is closest to Nodal. Moreover, although research on Nodal suggests that it is a monophyletic group, whether Nodal is truly a monophyletic group still needs to be ascertained. In most of the research mentioned above, the author only used one single Nodal sequence or Nodal sequences from one species to show the phylogeny of ligands of the TGF-beta superfamily. In this way, whether Nodal is monophyletic cannot be tested. Therefore, this project aims to: (1) try to bring as many Nodal sequences as possible to show if Nodal is monophyletic. (2) further study the Nodal gene in order to offer more information on the TGF-beta superfamily.

Figure 3.2 Different models from other researchers.

Those 4 figures illustrated the other researchers' theory of the location of Nodal within the TGF-beta superfamily. (A) Bengtsson's theory. Nodal is a single branch in DVR subfamily. (B) Newfeld's theory. Nodal stays along with DBL-1. (C) Nguyen's theory. Nodal stays with GDF10, BMP3 and Maverick. (D) Ponce's theory. Nodal stays with DBL-1 without support.

Based on the fact that in different researchers' work the position of Nodal in the TGF-beta superfamily may change, a phylogenetic tree which contains Nodal and other ligands of the TGF-beta superfamily will be produced to show the position of Nodal among the whole superfamily and determine relationships among ligands. This tree can provide answers to the following two objectives: (1) to examine whether Nodal is monophyletic; (2) to determine the relationship of Nodal with other ligands in TGF-beta superfamily.

3.2 MATERIALS AND METHODS

3.2.1 Sequence analysis

The nucleotide sequences used in this project were collected from GenBank and Ensembl through a detailed search of all the members of the ligands of the TGF-beta superfamily. In practice, the aim was to include as many Nodal sequences as possible. In this project, the DNA sequences were translated into Amino Acid sequences to provide protein information for building Amino Acid trees by the Mac Genetic Data Environment (MacGDE).

In this analysis, 711 sequences from the TGF-beta superfamily were brought into the alignment. 659 of the sequences were downloaded from GenBank and 52 of them were from Ensembl. 142 of them were Nodal sequences. The typical length of the nucleotide sequences in the whole TGF-beta superfamily was about 1000 to 1200bp. The common length of the nucleotide sequences of Nodal was about 800 to 1200bp.

3.2.2 Multiple sequence alignment

The dataset was aligned through a combination of automatic and manual alignment. First, the on-line Muscle service on the EBI website was used to automatically align the dataset. Then, based on the results of automatic alignment, the dataset was manually aligned through the program MacGDE. During the alignment, Nodal sequences were first brought into the database. Then, the ligand most similar to Nodal was brought in and aligned, then the

next most similar. And this was repeated until all the sequences were brought into the dataset and aligned.

After alignment, the sequences and the sites to be used in phylogenetic analysis were carefully selected. In this stage, sequence alignment markers were made to distinguish which sites were to be used in building phylogenetic trees. After the alignment, there are groups where sequences within a group are more similar than between groups. For example, TGFB1, TGFB2, TGFB3 and TGFB5 sequences show high similarity, so when making marker files they are seen as one group and together as one marker file. The marker file is used to show if the site marked will be included to build a phylogenetic tree. Only the unambiguously aligned sites were decided to be used in the further analysis.

3.2.3 Phylogeny Reconstruction

i. Choosing suitable datasets to build a phylogenetic tree

After making the marker files, a dataset that keeps a reasonable amount of the available sites was chosen to undertake analysis. In order to show the position of Nodal within the TGF-beta superfamily, the dataset must also contain a suitable number of ligands as well.

After choosing the dataset, before building the phylogenetic tree, some partial sequences were deleted from the dataset, because if those sequences were kept in, a large number of sites would be lost in tree reconstruction. In this stage, some sequences that would make long branches in the phylogenetic tree would also be removed.

ii. Saturation test

After the datasets were chosen, datasets used to build phylogenetic trees were tested for saturation. For nucleotide sequences, dataset 13 in Table 3.1 excluding the UNC-129 sequences was chosen to build trees. UNC-129 was removed because it would make a long branch in the phylogenetic tree. Before building trees, saturation tests were carried out for all three codon positions and only the1st and 2nd codon positions of the dataset sequence.

iii. PhyML

After the saturation test, the chosen datasets were used to build the final phylogenetic trees under maximum likelihood methods by PhyML. In practice, the MtRev model was utilised for protein sequences and GTR model was utilised for nucleotide sequences.

In PhyML, the model for nucleotide sequences was set as GTR+G+I. For amino acid sequences the model was MtREV+G+I.

If the dataset including all the ligands in the TGF-beta superfamily could be used in further phylogenetic analysis, the tree would be rooted at GDNF as Herpin did in his review (Herpin et al. 2004). This was done because the members of the GDNF family belong to the TGF-beta superfamily, but the amino-acid sequence homology is less than 20% for GDNF family members with other members of the TGF-beta superfamily (Airaksinen et al. 2002; Saarma, 2000).

If the dataset including all the ligands in TGF-beta superfamily was not used in further phylogenetic analysis. Then, since in Herpin's review (Herpin et al. 2004), Nodal was in the DVR subfamily, members from another subfamily other than the DVR subfamily could be chosen as the root. For example, if the dataset containing the DVR subfamily, the TGFB subfamily and some other ligands that were not included in Herpin's review (such as ADMP, DBL-1, UNC-129 and so on) were used to build a phylogenetic tree, that tree could be rooted on the TGFB subfamily. In this situation, all the other sequences are either in the DVR subfamily or not included in Herpin's review, so whether Nodal is monophyletic and its position could still be tested.

iv. Bootstrap

After building the phylogenetic trees in PhyML, bootstrap analyses were used to test the credibility of the result. The number of replicates of the nonparametric bootstrap analysis was set as 100 for both amino acid sequences and nucleotide sequences.

3.3 RESULTS

Sequences of the TGF-beta superfamily were aligned after being downloaded. As mentioned in Chapter 3.2.2, during the alignment, the whole database was divided into groups. The whole dataset was divided into 21 datasets, and each of the datasets had a marker file indicating the alignable sites for that dataset. The situation of ligands and numbers of aligned sites are shown in Table 3.1.

Dataset	Number of	Number	Ligands included
number	aligned	of aligned	
	nucleotide	nucleotide	
	sites	sites after	
		removal	
		of UNC-	
		129	
1	462	462	Nodal
2	393	393	ADMP
3	372	372	GDF5, GDF6
4	318	Removed	UNC-129
5	279	315	DBL-1, DPP
6	279	300	VG1, Derriere, GDF9, GDF10
7	261	273	DVR1
8	261	273	GBB
9	261	273	BMP2-8/10/15
10	261	273	SCREW
11	243	255	GDF1, GDF2, GDF3, GDF7
12	240	240	DAF-7
13	240	240	TGFB1, TGFB2, TGFB3, TGFB5
14	234	234	MYOGLIANIN, Myostatin, GDF11
15	234	234	Maverick
16	234	234	GDF15
17	228	228	Activin/Inhibin
18	144	144	GDNF
19	84	84	АМН
20	63	63	TGFB4, LEFTY
21	9	9	MGDF

Table 3.1 Number of markers in each dataset.

Column "Dataset number" shows the serial number of the dataset. Column "Number of aligned sites" shows the number of nucleotide sites to be used in the phylogenetic analysis if that dataset is chosen. Column "Ligands included" shows the ligands included in addition to those in the previous dataset. The first ligand to be included is Nodal. In this table, dataset number k contains all the genes listed in row k plus all the ones listed in earlier rows i<k.

The dataset that will be used to build the phylogenetic trees to show the relationships within the TGF-beta superfamily then needs to be selected. Obviously it is better to use the whole TGF-beta superfamily to build a tree when examining the relationships within the superfamily, but as shown in

Table 3.1, if all the ligands are included to make a tree, it would present too few sites to build a useful tree (as shown in Table 3.1, Dataset No.20 or No.21). In order to keep a balance of including as many ligands as possible while including a reasonable amount of sites, Dataset No.13 was chosen to build a tree showing the relationship of Nodal and other TGF-beta superfamily members. Based on Table 3.1, the amount of sites is not so few as Dataset No.20 or No.21 in Table 3.1, and based on the reference tree shown in Figure 1.3, all genes that are added into the datasets above dataset 13 except GDF9 are either in the DVR subfamily in Figure 3.1 or not included in Herpin's review (such as ADMP, DBL-1, UNC-129 and so on). In Figure 3.1, the author groups the whole superfamily into 4 groups: the DVR subfamily; TGFB subfamily; Activin/Inhibin subfamily; and distant TGF-beta ligands. In dataset 13, Nodal, DPP, DVR1, GBB, SCREW, BMP2-8/10, VG1 are in the DVR subfamily in Figure 3.1; TGFB1, TGFB2, TGFB3, TGFB5 are in TGFB subfamily in Figure 3.1; GDF9 is in the distant TGF-beta ligands group; ADMP, GDF5, GDF6, UNC-129, DBL-1, Derriere, BMP15, DAF-7, GDF1, GDF2, GDF3, GDF7, GDF10 are not included in Herpin's review. So to use dataset 13, the position of Nodal among the whole superfamily could be found and the relationship of Nodal with the DVR subfamily and TGFB subfamily can be observed. Furthermore, a tree based on dataset 13 can show whether Nodal is monophyletic as well as showing the ligand that is closest to Nodal.

In this situation, the final tree of Nodal with some other TGF-Beta superfamily members would be rooted at the TGFB subfamily. In this tree, all the other sequences except the root groups would be either in the DVR subfamily or not

included in Herpin's review. Then whether Nodal is monophyletic and its position could still be tested.

As mentioned in Chapter 3.2.3, UNC-129 was removed because it would make a long branch in the phylogenetic tree. UNC-129 is removed because although UNC-129 is a nematode TGF-beta gene, it is very different from other TGFbeta ligands both in its sequence and its functional pathway. Nematodes do not require conventional TGF-beta receptors and Smads and the TGF-beta pathway is different in nematodes from the TGF-beta pathway in other species. (Padgett & Patterson, 2006; Colavita et al. 1998). As shown in Table 3.1, to remove UNC-129 could bring in more sites in dataset 5~11, but did not affect the number of aligned sites in datasets 12 and 13.

Some fragmentary sequences, that only contained a short partial region which would sharply reduce the number of sites included in further analysis, were also removed from the dataset. The sequences removed from dataset No.13 were listed in Table 3.2. Those sequences were deleted because they were partial sequences or they could cause a long-branch problem.

	Sequence Name in		
Ligands	Dataset	NCBI ID	Ensembl ID
Nodal	frog_N_3		ENSXETG00000016778
Nodal	Sloth_N		ENSCHOG0000010347
Nodal	hedgehog1_N		ENSETEG00000013276
Nodal	Pig_N_3	AM072821.1	
Nodal	pig_N_2		ENSSSCG00000010265
Nodal	Alpaca_N		ENSVPAG0000002635
Nodal	Chicken_Nr1_1	AF486810.1	
Nodal	Onr1_3	AB116041.1	
Nodal	Onr2_3	AB116642.1	
Nodal	Onr1_1	EF206724.1	
Nodal	Onr2_1	EF206725.1	
Nodal	finch_NH	XM_002194155.1	
Nodal	CyNodal_2	AB114684.1	
ADMP	Mouse_ADMP	AF365876.1	
ADMP	Human_ADMP2	AF458592.1	
ADMP	Human_ADMP	AK312144.1	
ADMP	salmon_ADMP2	BT057114.1	
ADMP	salmon_ADMP	NM_001146504.1	
ADMP	wasp_ADMP	XM_001604676.1	
ADMP	tick_ADMP	XM_002402657.1	
ADMP	Junglefowl_ADMP	XM_422812.2	
	sea		
GDF5	anemone_GDF5_1	AY391717.1	
	sea		
GDF5	anemone_GDF5_2	AY496945.1	
	nematode_UNC-		
UNC-129	129_1	AF029887.1	
11010 120	nematode_UNC-		
UNC-129	129_2	NM_069165.4	
999	siudgeworm_DPP	AB192888.1	
		AJ843875.1	
	bug_DPP	AY899334.1	
DPP	butterfly_DPP	EU233806.1	
TGF-beta 2	nematode_TGFB2	AF104016.1	
TGF-beta 2	hookworm_TGFB2	AY942844.1	

Table 3.2 Deleted sequences.

The sequences listed were the sequences that were deleted after alignment because they were partial sequences or they could cause a long-branch problem.

The final dataset that would be used in the phylogenetic analysis was made based on dataset No.13 but removing some sequences listed in Table 3.2. The sequences that were included in the phylogenetic analysis were: 129 Nodal gene sequences, 16 sequences of ADMP, 12 sequences of GDF5, 11 sequences of GDF6, 29 sequences of DPP, 2 sequences of DBL-1, 8 sequences of VG1, 5 sequences of Derriere, 27 sequences of GDF9, 11 sequences of GDF10, 3 sequences of DVR1, 6 sequences of GBB, 5 sequences of BMP2, 5 sequences of BMP 3, 11 sequences of BMP 4, 8 sequences of BMP 5, 9 sequences of BMP 6, 4 sequences of BMP 7, 10 sequences of BMP 8, 5 sequences of BMP 10, 9 sequences of BMP 15, 2 sequences of SCREW, 10 sequences of GDF1, 18 sequences of GDF2, 12 sequences of GDF3, 11 sequences of GDF7, 5 sequences of DAF-7, 7 sequences of TGFB1, 3 sequences of TGFB2, 13 sequences of TGFB3, 3 sequences of TGFB5.

3.3.1 Saturation Test

After the dataset was selected, the dataset was examined for evidence of substitution saturation to analyse the accuracy of the phylogenetic tree. In the saturation test, uncorrected pairwise transition (ti) and transversion (tv) distances were plotted against pairwise total uncorrected distances, and uncorrected pairwise transition distances were plotted against transversion distances for all three codon positions and only the 1st and 2nd codon positions.

As mentioned in Chapter 2.4, when examining the uncorrected pairwise transition and transversion distances against pairwise total uncorrected

distances, if both the transition line and transversion line are straight lines, it suggests there is no saturation in the dataset. If either line is curved, it suggests that the dataset is saturated. Usually it is the transition line curved and crossing transversion line. When examining the uncorrected pairwise transition distances against transversion distances, if most points are set above the line y=x, it suggests there is no saturation in the dataset.

Figure 3.3 Saturation test for all three codons of Nodal with some other TGFbeta superfamily members.

(a)Uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for Nodal and other ligands in the TGFbeta superfamily. (b) Uncorrected pairwise transition (ti) distances against transversion (tv) distances for Nodal and other ligands in the TGF-beta superfamily. The diagonal stands for the line y=x.

Figure 3.3 (a) showed the saturation test result of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for Nodal and other ligands in the TGF-beta superfamily. In Figure 3.3 (a), the transition line formed a curve and crossed the transversion line. This suggested that the transitions are saturated. Figure 3.3 (b) showed the saturation test result of uncorrected pairwise transition (ti) distances against transversion (tv) distances for Nodal and other ligands in the TGF-beta superfamily. In Figure 3.3 (b), most points were in the area under the line y=x, which clearly showed that the dataset is saturated. As shown in the Figure 3.3,

the dataset of Nodal and other ligands was saturated. Trees developed from the dataset with all 3 codons may therefore be inaccurate.

Figure 3.4 Saturation test for the 1st and 2nd codon positions of Nodal with some other TGF-beta superfamily members.

(a)Uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 1st and 2nd codon positions of Nodal and other ligands in the TGF-beta superfamily. (b) Uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 1st and 2nd codon positions of Nodal and other ligands in the TGF-beta superfamily. The diagonal stands for the line y=x.

Figure 3.4 (a) showed the saturation test result of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 1st and 2nd codon positions of Nodal and other ligands in the TGF-beta superfamily. In Figure 3.4 (a), the transition line formed a curve and crossed the transversion line at quite an early stage. Figure 3.4 (b) showed the saturation test result of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 1st and 2nd codon positions of Nodal and other ligands in the TGF-beta superfamily. Figure 3.4 (b) showed that most points were in the area under the line y=x, which suggested that saturation happened. As shown in Figure 3.4, the dataset with 1st and 2nd codon positions was saturated; this suggests trees developed from this dataset with 1st and 2nd codon positions may also be inaccurate.

The saturation test showed that the two datasets of nucleotide sequences with all three codons positions and 1st/2nd codon positions were all saturated. The tree developed from those datasets may be inaccurate. But those datasets were still used to build phylogenetic trees for three reasons: First of all, a phylogenetic tree is still needed to show the relationships of Nodal among the TGF-beta superfamily. Secondly, using dataset 10 instead means removing the TGFB subfamily ligands and some of the ligands that were not included in Herpin's review but were included in dataset 13. Although it may bring in more sites and may have less saturated data than dataset 13, it would not be possible to tell whether Nodal is within the DVR subfamily or not. Third, the alignment used to make up the datasets is the best one that can be provided. However, the problems of saturated data can be reduced to some extent by using a more complex likelihood model (Farrell, 2011).

3.3.2 Phylogenetic Trees

After the saturation test, with the aim to examine whether Nodal was monophyletic and to find if there was a neighbour ligand or group of ligands for Nodal, phylogenetic analyses based on dataset No.13 in Table 3.1 were carried out. Phylogenetic trees were developed based on protein sequences, which were translated by MacGDE (Figure 3.5), 1st/2nd codon position (Figure 3.6) and all 3 codons of DNA sequences (Figure 3.7) through the maximum likelihood (ML) method, and these show the relationship of Nodal and other ligands in the TGF-beta superfamily. The relationships within Nodal will be discussed in the next chapter (Chapter 4).

Figure 3.5 Maximum likelihood amino acid phylogenetic tree showing the phylogenetic position of Nodal within the TGF-beta superfamily

This tree is built based on 79 amino acid sites. The scale bar corresponds to 50 changes per 100 nucleotide positions. Numbers on branches represent the bootstrap value of that branch based on 100 replicates. Only values higher than 50% are shown. The tree is rooted on TGFB subfamily.

In the phylogenetic tree built from amino acid sequences of Nodal and other ligands in the TGF-beta superfamily (Figure 3.5), Nodal forms a monophyletic group with a strong bootstrap value of 81%. Figure 3.5 also shows that although the bootstrap value is low (Nei & Kumar, 2000), Nodal is supported with a bootstrap value of 53% to be with the main DVR subfamily members DPP&BMP2/4, GBB&BMP5~8 and BMP10. However, there is insufficient evidence to reveal the relationship of Nodal among other ligands in the DVR subfamily. That is to say, all the other ligands within the DVR subfamily could be nearest to Nodal. So the nearest neighbour ligands cannot be found through this phylogenetic tree.

Figure 3.6 Maximum likelihood 1st and 2nd codon nucleotide phylogenetic tree showing the phylogenetic position of Nodal within the TGF-beta superfamily

This tree is built based on 158 nucleotide sites by using 1st and 2nd codon positions only. The scale bar corresponds to 20 changes per 100 nucleotide positions. Numbers on branches represent the bootstrap value of that branch based on 100 replicates. Only values higher than 50% are shown. The tree is rooted on TGFB subfamily.

In the tree built from nucleotide sequences with 1st and 2nd codon positions (Figure 3.6), Nodal is a monophyletic group with a low bootstrap support value of 62%. The relationship between Nodal and other ligands is still uncertain.

Figure 3.7 Maximum likelihood nucleotide phylogenetic tree showing the phylogenetic position of Nodal within the TGF-beta superfamily

This tree is built based on 237 nucleotide sites by using all three codon positions. The scale bar corresponds to 50 changes per 100 nucleotide positions. Numbers on branches represent the bootstrap value of that branch based on 100 replicates. Only values higher than 50% are shown. The tree is rooted on TGFB subfamily. *: The highlighted group of Nodal that named as Nodal Part 2 in Figure 3.7 is also marked by "*" in Figure 3.5 and Figure 3.6. Those sequences are Nodal of limpet, snail and sea slug.

In the tree of nucleotide sequences with all three codons (Figure 3.7), Nodal is not monophyletic. There are two groups of Nodal, one contains Limpet, Snail and Sea Slug sequences and another contains other Nodals. Again, bootstrap values of basic structures in the tree shown in Figure 3.7 are low.

From the 3 figures it can be seen that there is some support to indicate that Nodal is monophyletic (the value is 81% in amino acid dataset, Figure 3.5 and with a value of 62% in the nucleotide dataset included 1st/2nd codon positions, Figure 3.6). However, there is also limited support to suggest that Nodal is not monophyletic in the nucleotide dataset including all three codon positions (Figure 3.7). Moreover, as the 3rd codon positions will change more frequently than the 1st and 2nd codon positions, the 3rd codon positions will be more easily saturated. This suggests that the results of the phylogenetic tree with all three codon positions (Figure 3.7) may be more inaccurate than the one with 1st/2nd codon positions alone (Figure 3.6).

Lastly, it can be seen that Nodal appears more likely to stay in the DVRsubfamily; however, the position of Nodal within that subfamily cannot be tested from the phylogenetic trees (Figure 3.5, Figure 3.6 and Figure 3.7) because of the low support value.

3.4 DISCUSSION

3.4.1 Examination of whether Nodal is monophyletic

Both the Amino Acid tree (Figure 3.5) and the Nucleotide tree with 1st and 2nd codon positions (Figure 3.6) show Nodal is monophyletic. However, it is

only in the Amino Acid tree where there is a high support to state that Nodal is a monophyletic group (In Figure 3.5, the bootstrap value is 81%). In Figure 3.6, the value is lower than 70 % (the value is 62% in Figure 3.6).

However, the nucleotide tree with all 3 codons (Figure 3.7) does not support Nodal being a monophyletic group. In Figure 3.7, Nodal sequences are divided into two groups with low evidence. One of the groups contains the only three Nodal sequences that came from the gastropoda class, while the other group contains all other Nodal sequences. But considering that the 3rd codon positions may change more frequently than the 1st and 2nd codon positions, when including the 3rd codon positions (which means including all three codon positions), the phylogenetic result may be more inaccurate than the one with 1st/2nd codon positions.

Considering the following 2 points: (1) the result of the phylogenetic tree with all three codons of nucleotide sequences (Figure 3.7) may be more inaccurate than the one with 1st/2nd codon positions (Figure 3.6). (2) in the amino acid tree (Figure 3.5), the monophyletic group of Nodal is well supported, I suggest that Nodal is monophyletic.

3.4.2 The position of Nodal within the TGF-beta superfamily

There is some support to indicate that Nodal is in the DVR subfamily, but the support value for this is not high (the value is 53 in Figure 3.5 and lower than 50 in Figure 3.6 and Figure 3.7). Given the low bootstrap value, the exact position of Nodal in the DVR subfamily remains uncertain. Through the three

trees, the single ligand or ligand group nearest to Nodal remains uncertain. In Figure 3.5, DBL-1 seems to be the answer but with an extremely low support value. In Figure 3.6, the groups of GDF-9, BMP15, GDF10, BMP3 and ADMP are next to Nodal, but again with a support lower than 50%.

3.4.3 Comparison of the function of Nodal and other ligands

Nodal is involved in mesoderm differentiation in vertebrates. Nodal plays an important role in mesoderm formation, anterior-posterior axis formation and left-right axis formation in vertebrate development.

BMPs can induce animal or human mesenchymal cells to differentiate into bones, cartilages, ligaments, tendons and nerve tissues. GDFs perform functions predominantly related to development. They play a crucial role in cell differentiation regulation in both adult tissues (such as ovary, thymus and spleen) and embryogenesis. Dorsalin is one type of GDF2. DPP (decapentaplegic) is the skin growth factor of organisms. It affects the skin colour on the back of organisms. It is a functional ortholog of mammalian BMP-2 and BMP-4. Vg1 and DVR1 (decapentaplegic and Vg-related 1) are also named GDF1 in some researchers' papers to make terminology consistent (Helde and Grunwald, 1993). Daf-7 is important to control dauer larva development in Nematode (*Caenorhabditis elegans*) (Matt Crooka, et al. 2005). GBB (Glass bottom boat, 60A) regulates synaptic growth at the Drosophila neuromuscular junction. GBB is a functional ortholog of mammalian BMP5~8. Screw (SCW) is a DPP/GBB like gene. It affects specification of the Drosophila embryo dorsal cell. (Ongkar Khalsa, et al. 1998) Derriere is closely

related to Vg1. It is induced by VG1 in animal cap explants and can rescue the L-R orientation that is changed by VG1. It also plays a role in posterior development in Xenopus. Derriere is involved in earlier molecular pathways developing the L-R asymmetry (Hiroshi Hanafusa, et al. 2000; B.I. Sun, et al. 1999) ADMP (Anti-Dorsalizing Morphogenetic Protein) is most closely related to human BMP-3. From the phylogenetic trees in Chapter 3.3.2 it can be seen that GBB and BMP5~8 stay together to form a GBB&BMP5~8 group, DPP and BMP2/4 stay together to form a DPP&BMP2/4 group.

ADMP is induced by lithium chloride treatment or activin. It has the ability to inhibit the development of dorsoanterior structures and mitigate organizerassociated dorsalizing influences (M. Moos, et al. 1999). During the alignment, it can be seen that the gene structure of ADMP is quite similar to Nodal. But in the phylogenetic trees in Chapter 3.3.2, the relationship of Nodal and ADMP remained unclear because of the low supported branches.

Lefty is an antagonist of Nodal signalling which directly inhibits Nodal signalling by competitive binding to Nodal receptors and plays an important function in L-R patterning in early vertebrate embryos. It is found in the midline structures and serves as a barrier to prevent the crossing of left or right determinants. It is further found in the left lateral plate mesoderm (LPM) to be a negative feedback regulator of Nodal signals to determine the left side identity. Among the whole superfamily, Lefty has the most similar function of Nodal. But in Herpin's tree (Figure 3.1), it stays far from Nodal. In the alignment stage of this project, it also can be seen that Lefty sequence is very

different from Nodal. So the lefty sequences were excluded when building the phylogenetic tree to prevent losing sites.

3.4.4 Relationships within the TGF-beta superfamily

To determine the relationships among the ligands, it is shown in the reference tree in Figure 3.1 that in the DVR subfamily, DPP/BMP2/4 usually forms a group and stays close to the group of GBB/BMP5~8. However, in Figure 3.5, Figure 3.6 and Figure 3.7, the values that support the position of DPP/BMP2/4 and GBB/BMP5~8 were lower than 50.

VG1, DVR1, GDF1 and GDF3 are usually in a branch with good support together with the group of GBB/BMP5~8 and DPP/BMP2/4 in the DVR subfamily. However, this is not as Herpin described in Figure 3.1 where VG1, DVR1, GDF1 and GDF3 seemed to be more likely to be in a separate group instead of forming a group together within the group of Gbb/BMP5~8, however, again, the support of VG1, DVR1, GDF1 and GDF3 were in a separate group from Gbb/BMP5~8 was weak.

3.4.5 Future work

In the phylogenetic analysis in this chapter, the TGF-beta superfamily ligands sequences are downloaded and aligned without any selection in hope to show a full view of the whole TGF-beta superfamily. However, the varied amount of sequences from different species and different kinds of ligands makes the data

saturate and sharply reduce the sites that can be aligned through the whole database.

Based on the work in this chapter, it seems to be sure that Nodal is a ligand in the DVR subfamily. To find the exact position of Nodal within the DVR subfamily, the ligands that are contained in this chapter seems to be the minimum set. They only contained the DVR subfamily members, one other group of TGFB as the out-group to root the DVR subfamily tree and some ligands whose positions remain unclear. This means the sites are the most statistically powerful we can get in this situation. However, there is still insufficient evidence to support the structure within the DVR subfamily.

If a well-supported tree could be built in the future, both the position of Nodal and the neighbour ligand or group of ligands of Nodal could be determined. That may be helpful for further analysis to examine the relationships within Nodal.

3.5 CONCLUSION

In conclusion, according to the phylogenetic analyses presented here, Nodal seems to be a ligand within the DVR subfamily of the TGF-beta superfamily. Nodal is monophyletic but the ligand or ligand group next to it is uncertain.

CHAPTER 4 PHYLOGENETIC TREE OF NODAL TO TEST THE EVOLUTIONARY RELATIONSHIPS OF NODAL GENES FROM DIFFERENT SPECIES

4.1 INTRODUCTION

Previous research showed two ways of grouping Nodal in different species. One stated that there were three groups within Nodal as shown in Figure 4.1: Group C contained humans, the mouse, the opossum, the African clawed frog and the anole lizard; Group B contained 1 copy of bony fish; Group A contained the chicken, other 2 copies of bony fish and the other copies of the anole lizard and the African clawed frog. The base of the tree consisted of various divergent members such as the sea squirt and the lancelet (Kuraku & Kuratani, 2011). The other one demonstrated that there were two major groups of Nodals as shown in Figure 4.2. In this theory, Group B and Group C stayed on the same branch. The base of the tree consists of various divergent members such as the sea squirt and the lancelet (Fan & Dougan, 2007).

Figure 4.1 Kuraku's theory which suggests three groups within Nodal

Figure 4.2 Fan's theory which suggests two groups within Nodal

The summarised Latin names in this figure refer to: XI= *Xenopus laevis*; Hs= *Homo sapiens*; Rn= *Rattus norvegicus*; Mm= *Mus musculus*; Dr= *Danio rerio*; Tn= *Tetraodon nigroviridis*; Gg= *Gallus gallus*.

The research to date therefore suggests that the Nodal genes can be divided into two major groups, with various other divergent members at the base of the tree. Nevertheless, which species are in which group remains uncertain. Moreover, although in Hellsten's supplementary material, he mentioned there were 2 types of copies of Nodal, he didn't provide phylogenetic support to this hypothesis (Hellsten, 2010). So how Nodal is duplicated in evolution still remains to be ascertained. In the research referred to above, the authors use only some of the Nodal genes available to demonstrate the phylogeny of Nodal from some species. In this way, the relationship in Nodal genes across all species cannot be tested. This project attempts to bring in as many Nodal sequences as possible in order to establish a general view of the relationship among Nodal genes of different species, and to ascertain whether Nodal is duplicated in different species. Compared to the previous work, many species were included in this project, such as: three-spined stickleback fish, turkey, axolotl, limpet, snail, sea urchin and a large number of mammals such as hedgehog, pig, horse, monkey, chimpanzee, rhesus monkey, dog, cattle, tarsier, marmoset, cavy, armadillo, kangaroo rat, cat, gorilla, elephant, kangaroo, opossum, lemur, bat, rabbit, galago, orangutan, dolphin, alpaca, flying fox, shrew, rock hyrax and squirrel.

This study has the following objectives: (1) to determine the evolutionary relationship within Nodal; (2) to examine whether Nodal is duplicated in different species.

To achieve these objectives, a phylogenetic tree which contains all Nodal genes is used to determine the relationship among Nodal sequences.

4.2 MATERIAL AND METHOD

4.2.1 Sequence analysis

There were 142 Nodal genes that were found and downloaded from the online database. Among them, 90 sequences were from GenBank and 52 were from Ensembl. In the 90 Nodal genes from GenBank, 68 of them were proven to be Nodal sequences by an experiment that had been reported and published. 15 of them were predicted by a search engine, 22 of them remained unknown (3 of them were submission only, and 19 of them were unpublished).

After the alignment, some sequences that were included in the analysis in Chapter 3 would be excluded from further analysis in this chapter. Those sequences were excluded because they were partial sequences. In the analysis in Chapter 3, they would not have affected the number of aligned sites in dataset 13. However, in this chapter, if those sequences had been included, the number of sites would have been sharply reduced.

Finally, the genes of the dataset that would be used in the final phylogenetic analysis that were listed in Table 4.1 were: 42 mammalian Nodal genes, of which 5 were human, 3 were mouse, 2 were hedgehog, 5 were pig, 2 horse, 2 monkey, and 1 sequence for the chimpanzee, rhesus monkey, dog, cattle, tarsier, marmoset, cavy, armadillo, kangaroo rat, cat, gorilla, elephant, kangaroo, opossum, lemur, bat, rabbit, galago, orangutan, dolphin, alpaca, flying fox, shrew, rock hyrax, squirrel and rat; 3 bird Nodal genes, of which 2 were chicken and 1 turkey; 16 fish Nodal genes, of which 3 were three-spined stickleback fish, 6 were fugu, 2 were Japanese killifish and 5 were zebrafish; 52 amphibian Nodal genes, of which 49 were frog, 2 were axolotl and 1 newt; 2 gastropoda Nodal genes, of which 1 was from the limpet and 1 from the snail; 6 sea urchin Nodal genes, 2 lancelet Nodal genes and 2 sea squirt Nodal genes were included as well.

NCBI	Ensem	Name in			
ID	bl ID	tree	Class	Species	bp
NM_0					
01085					
796.1		Xnr1_1	Amphibian	African Clawed Frog	1515
U2944					
7.1		Xnr1_2	Amphibian	African Clawed Frog	1515
BC169					
388.1		Xnr2_1	Amphibian	African Clawed Frog	1338
BC169					
392.1		Xnr2_2	Amphibian	African Clawed Frog	1338
NM_0					
01087					
967.1		Xnr2_3	Amphibian	African Clawed Frog	1459
U2944					
8.1		Xnr2_4	Amphibian	African Clawed Frog	1459
U2599					
3.1		Xnr3_1	Amphibian	African Clawed Frog	1634
BC169					
689.1		Xnr3_2	Amphibian	African Clawed Frog	1388
BC169					
691.1		Xnr3_3	Amphibian	African Clawed Frog	1379
NM_0					
01085					
790.1		Xnr3_4	Amphibian	African Clawed Frog	1634
NM_0					
01088					
347.1		Xnr4_1	Amphibian	African Clawed Frog	1746
U7916					
2.1		Xnr4_2	Amphibian	African Clawed Frog	1746
NM_0					
01097					
061.1		Xnr5_1	Amphibian	African Clawed Frog	1606

AB219					
843.1		Xnr5_10	Amphibian	African Clawed Frog	1622
AB219					
845.1		Xnr5_11	Amphibian	African Clawed Frog	1593
AB219					
847.1		Xnr5_12	Amphibian	African Clawed Frog	1782
AB219					
848.1		Xnr5_13	Amphibian	African Clawed Frog	1634
AB219					
849.1		Xnr5_14	Amphibian	African Clawed Frog	1603
AB219					
850.1		Xnr5_15	Amphibian	African Clawed Frog	1621
AB219					
851.1		Xnr5_16	Amphibian	African Clawed Frog	1686
AB219					
852.1		Xnr5_17	Amphibian	African Clawed Frog	1616
BC169					
725.1		Xnr5_18	Amphibian	African Clawed Frog	1498
BC169					
/2/.1		Xnr5_19	Amphibian	African Clawed Frog	1500
AB219		V E . D	A		1000
855.1		Xnr5_2	Amphibian	African Clawed Frog	1606
NM_0					
		Ver 20	Amphihian	African Clawod Frag	1702
DC160		XIII'5_20	Amphibian	African Clawed Frog	1/82
822 1		Vnr5 2	Amphihian	African Clawed From	1/05
BC160		<u></u>	Amphibian	Anican Claweu 110g	1495
82/1 1		Xnr5 /	Amnhihian	African Clawed Frog	1/195
BC169		<u>/////_</u>	Ampinolan	Anican clawcu riog	1433
866 1		Xnr5 5	Amphihian	African Clawed Frog	1495
BC170		<u>/////////////////////////////////////</u>	7 (Inpinoidi)	Annean elawearrog	1433
152.1		Xnr5 6	Amphibian	African Clawed Frog	1495
AB219					1.00
846.1		Xnr5 7	Amphibian	African Clawed Frog	1648
AB038		_		<u> </u>	
133.1		Xnr5_8	Amphibian	African Clawed Frog	1589
AB219			-		
842.1		Xnr5_9	Amphibian	African Clawed Frog	1594
BC169					
659.1		Xnr6_1	Amphibian	African Clawed Frog	1233
BC169					
661.1		Xnr6_2	Amphibian	African Clawed Frog	1233
AB038	Ι Τ				7
134.1		Xnr6_3	Amphibian	African Clawed Frog	1137
NM_0					
01085					
564.1		Xnr6_4	Amphibian	African Clawed Frog	1137
BC170					
314.1		Xnr6_5	Amphibian	African Clawed Frog	1137
GU256		AxNodal_			
--------	-------	----------	-----------	---------------------	------
638		1	Amphibian	Axolotl	2109
GU256		AxNodal	·		
639		2 -	Amphibian	Axolotl	1559
AB212		CyNodal	·		
661.1		1 _	Amphibian	Newt	1616
	ENSXE				
	TG000				
	00009				
	008	frog_N_1	Amphibian	Western Clawed Frog	2569
	ENSXE				
	TG000				
	00016				
	779	frog_N_2	Amphibian	Western Clawed Frog	6722
	ENSXE		·	- ·	
	TG000				
	00025				
	789	frog_N_4	Amphibian	Western Clawed Frog	4619
	ENSXE		-		
	TG000				
	00023				
	748	frog N 5	Amphibian	Western Clawed Frog	7819
	ENSXE				
	TG000				
	00017				
	442	frog_N_6	Amphibian	Western Clawed Frog	1264
NM_0					
01016					
321.2		Xt_NH	Amphibian	Western Clawed Frog	1499
BC171					
037.1		Xtnr1_1	Amphibian	Western Clawed Frog	1466
AB093					
329.1		Xtnr3_1	Amphibian	Western Clawed Frog	1573
NM_0					
01112					
906.1		Xtnr3_2	Amphibian	Western Clawed Frog	1573
AB093					
327.1		Xtnr3_3	Amphibian	Western Clawed Frog	1619
AB093					
328.1		Xtnr3_4	Amphibian	Western Clawed Frog	1648
NM_2					
03533.					
1		Xtnr3_5	Amphibian	Western Clawed Frog	1648
XM_42		chicken_			
4385.2		NH	Bird	Chicken	875
	ENSGA				
	LG000				
	00003	chicken_			
	209	NR_2	Bird	chicken	963
	ENSM				
	GAG00	turkey_N	Bird	turkey	960

	00000				
	ENSTN				
	10000		Pay finned	Eugu (Croop Spottad	
	00015 227	Eugu2 1	Fich	Puffer)	1591
	ENSTN	Tuguz_1	1 1511		1301
	00015		Ray-finned	Fugu (Green Spotted	
	847	Fugu2 2	Fish	Puffer)	1607
	FNSTN	1 4842_2			1007
	IG000				
	00005		Rav-finned	Fugu (Green Spotted	
	578	Fugu2 3	Fish	Puffer)	2545
	ENSTR				
	UG000				
	00010		Ray-finned		
	779	Fugu1_1	Fish	Fugu (Takifugu)	1704
	ENSTR				
	UG000				
	00012		Ray-finned		
	437	Fugu1_2	Fish	Fugu (Takifugu)	2505
	ENSTR				
	UG000				
	00012		Ray-finned		
	942	Fugu1_3	Fish	Fugu (Takifugu)	2659
	ENSOR				
	LG000				
	00011		Ray-finned		
	275	ONr1_2	Fish	Japanese Killifish	1320
	ENSOR				
	LG000				
	00009	01-2 2	Ray-finned	lananaaa Killifiah	2000
	098	UNFZ_Z	FISN	Japanese Killitish	3986
	ENSGA	Inree-			
	00002	spilleu	Pay finned	Three spined	
	333	k 1	Fish	stickleback Fish	3089
	ENSGA	Three-	11511		5005
	CG000	spined			
	00008	sticklebac	Rav-finned	Three-spined	
	499	k 2	Fish	stickleback Fish	1895
	ENSGA	_ Three-		-	
	CG000	spined			
	00017	sticklebac	Ray-finned	Three-spined	
	712	k_3	Fish	stickleback Fish	1473
NM_1					
39133.			Ray-finned		
1		Znr1_1	Fish	Zebrafish	1514
U8775			Ray-finned		
8.1		Znr1_2	Fish	Zebrafish	1506

NM_1					
30966.			Ray-finned		
1		Znr2_2	Fish	Zebrafish	1480
	ENSDA				
	RG000	le ve fi e le	Davidianad		
	200	Zebransn	Ray-Inneo	Zahrafich	6059
	309	_SPAW	FISH	Zebralish	6958
AF056		7.5.11	Ray-finned	Zahvafiah	1 4 9 0
327.1		Znr1_3	FISH	Zebralish	1480
	00017	armadilla			
	00017	N	Mammal	Armadillo	2222
			Iviaiiiiai	Armaumo	2373
	00015				
	297	bat N	Mammal	hat	7312
	ENSEC	but_it	ivia ilia	501	7512
	AG000				
	00001				
	230	cat N	Mammal	cat	4728
XM 60		Cattle N			
9225.2		H	Mammal	Cattle	1041
	ENSCP				
	OG000				
	00025				
	772	Cavy_N	Mammal	Cavy	6526
XM_52		chimpanz			
1502.2		ee_NH	Mammal	Chimpanzee	2330
XM_54					
6146.2		Dog_NH	Mammal	Dog	1047
	ENSTT				
	RG000				
	00003	Dolphin_			
	182	N	Mammal	Dolphin	6642
	ENSLA				
	FG000				
	00021	Elephant_			
	867	N	Mammal	Elephant	7819
	ENSPV				
	AG000	FI :			
	104	Flying		Elving Fox	6600
	104	FOX_N	Iviammai	Flying Fox	6693
	ENSO				
	00000				
	571 <i>6</i>		Mammal	Galago	0716
			ividiiiiidi	Galago	9240
	00000	Gorilla/An			
	581		Mammal	Gorilla(Ape)	9782
	101	C/_IN	wannid	Gorma(Ape)	5105

	ENSEE UG000 00011 834	Hedgehog 2 N	Mammal	Hedgehog	9015
	ENSEC AG000 00017				
XN4 00	055	horse_N	Mammal	horse	6898
XIVI_00					
15037 37.1		Horse_NH	Mammal	Horse	1047
BC039		Human_N			
861.1		h_1	Mammal	Human	1372
NM_0 18055.		Human_N			
4		H_2	Mammal	Human	2086
BC104		Human_N			
976.1		H_3	Mammal	Human	1284
BC112		Human_N			
025.1		H_4	Mammal	Human	1296
BC033		Human_N			
585.1		h_5	Mammal	Human	1680
	ENSM EUG00 00001 1841	kangaroo _N	Mammal	kangaroo	3017
	ENSDO RG000 00011 307	Kangaroo Rat N	Mammal	Kangaroo Rat	1775
	ENSMI CG000 00015				7050
	080	Lemur_N	Mammal	Lemur	7859
	ENSCJ AG000 00016 288	Marmose	Mammal	Marmoset	1683
XM 00	200	<u>`_</u> ''	aiiiiiiai		
11080		Monkey			
74.1		NH 1	Mammal	Monkey	1551
XM 00				/	
		Monkey			
37.1		NH 2	Mammal	Monkey	1709
BC128		 Mouse N			
018		1 –	Mammal	Mouse	1070
NM 0					
13611.		Mouse N			
3		_2	Mammal	Mouse	1065
X7051		Mouse N			
4.1		_3	Mammal	Mouse	2160

	ENSM				
	ODGO	000000			
	12158	N	Mammal	onossum	6699
	ENSPP		Ivianina	00033011	0055
	YG000				
	00002	oranguta			
	370	n N	Mammal	Orangutan	8635
	FNSSS				0000
	CG000				
	00010				
	269	pig_N_1	Mammal	Pig	7348
XM_00					
19280					
24.1		Pig_NH_4	Mammal	Pig	1047
XM_00					
19278					
51.1		Pig_Nh_5	Mammal	Pig	1047
	ENSOP				
	RG000				
	00015				
	824	Pika_N	Mammal	Pika	6605
	ENSOC				
	UG000				
	00008	Dalah Iran		D. L.L.Y	6506
	085	Raddit_N	wammai	Raddil	6506
NIVI_U					
20/ 1		Pat N	Mammal	Pat	2024
354.1	ENSM		Iviailiilai	Nat	2034
	MUGO	rhesus			
	00000	monkey			1034
	23170	N	Mammal	rhesus monkey	5
	ENSPC				
	AG000				
	00015	Rock			
	506	Hyrax_N	Mammal	Rock Hyrax	6935
	ENSSA	-			
	RG000				
	00000				
	846	Shrew_N	Mammal	Shrew	7400
	ENSST				
	OG000				
	00012	squirrel_			
	946	N	Mammal	Squirrel	6799
	ENSTS				
	YG000				
	00005	-		-	2010
	226	Tarsier_N	Ivlammal	Tarsier	2818
AB097		Lancelet_	Looks say di	Lancolat	2404
411.1		N	Leptocardii	Lancelet	2481

AY083	Lancelet_				
838.1	Nr	Leptocardii	Lancelet	1931	
NM_0					Tab
01078					le
532.1	Squirt1_N	Ascidiacea	Sea Squirt	1367	<u> </u>
AB069					125
969.1	Squirt2_N	Ascidiacea	Sea Squirt	1676	125
AY442	Urchin_N				INO
295.1	_1	Echinozoa	Sea Urchin	2210	dai
DQ017	Urchin_N				seq
963.1	_2	Echinozoa	Sea Urchin	2326	ue
EU812	Urchin_N				nce
569.1	_3	Echinozoa	Sea Urchin	1227	S
EF036	Urchin_N				incl
514.1	_4	Echinozoa	Sea Urchin	1353	ud
NM_0					ed
01098	Urchin_N				in
449.1	_5	Echinozoa	Sea Urchin	1353	the
EU812	Urchin_N				phy
568.1	_6	Echinozoa	Sea Urchin	2322	
EU394					005
708.1	Limpet_N	Gastropoda	Limpet	1471	ene
EU394					uc
707.1	Snail_N	Gastropoda	Snail	1329	ana
					lys

es

4.2.2 Phylogeny Reconstruction

i. Choosing suitable datasets to build the phylogenetic tree

To illustrate the relationships within Nodal, dataset No.1 in Table 3.1 was accessed to build the phylogenetic tree. After choosing the dataset, before building the phylogenetic tree, various partial sequences were deleted from the dataset; had those sequences been kept in, a large number of sites would have been lost in the tree reconstruction.

ii. Saturation test

After choosing the dataset, the dataset used to build phylogenetic trees was tested for saturation. In the saturation test, the uncorrected pairwise transition (ti) and transversion (tv) distances , plotted against the pairwise total uncorrected distances, as well as the uncorrected pairwise ti distances against tv distances, were tested for DNA sequences with all three codon positions and the 1st and 2nd codon positions of the chosen dataset No.1 in Table 3.1.

iii. PhyML

After the saturation test, the chosen datasets were used to build phylogenetic trees under maximum likelihood methods by PhyML. In practice, the MtRev model was utilised for the protein sequences and the GTR model was utilised for the nucleotide sequences.

In PhyML, the model for the nucleotide sequences was set as GTR+G+I. For amino acid sequences the model was MtREV+G+I.

The analysis in Chapter 3 shows that there is not a ligand or a group of ligands in the TGF-beta superfamily that definitely constitute an out-group for Nodal. In the amino acid tree showing the phylogenetic position of Nodal within the TGF-beta superfamily (Figure 3.5), DBL-1 is nearest to Nodal with low support. In the nucleotide tree of Nodal and other ligands in the TGF-beta superfamily using the 1st and 2nd codon positions only (Figure 3.6), the group formed by GDF9 & BMP15, GDF10 & BMP3 and ADMP seems nearest to Nodal with low support. In the nucleotide tree of the TGF-beta superfamily

members using all three codon positions (Figure 3.7), Nodal is not monophyletic. As there is not a ligand or a group of ligands in the TGF-beta superfamily that definitely constitute an out-group for Nodal tree, the Nodalonly tree needs to be rooted by Nodal itself. In the analyses in Chapter 3, the group of sea slugs, snails and limpets is the most distantly related group of species within Nodal. This suggests that the group of sea slugs, snails and limpets could be chosen to be the root of the Nodal tree in the analysis in this chapter.

iv. Bootstrap

After building the phylogenetic trees in PhyML, bootstrap analyses were used to test the credibility of the results. The number of replicates of the nonparametric bootstrap analysis was set as 100 for both the amino acid sequences and the nucleotide sequences.

4.3 RESULTS

4.3.1 Saturation Test

After the dataset had been chosen, the dataset was examined for evidence of substitution saturation to ascertain whether the phylogenetic tree would be accurate.

Figure 4.3 Saturation test for all three codons of Nodal.

(a)Uncorrected pairwise transition (ti) and transversion (tv) distances against the pairwise total uncorrected distances for Nodal only. (b) Uncorrected pairwise transition (ti) distances against transversion (tv) distances for Nodal only. The diagonal stands for the line y=x.

Figure 4.3 (a) shows the saturation test results of the uncorrected pairwise transition (ti) and transversion (tv) distances against the pairwise total uncorrected distances for Nodal only. In Figure 4.3 (a), the transition line forms a curve and crosses the transversion line. This suggests that the transitions are saturated. Figure 4.3 (b) shows the saturation test results of the uncorrected pairwise transition (ti) distances against the transversion (tv) distances for Nodal. In Figure 4.3 (b), most points are in the area under the line y=x, which clearly shows that the dataset is saturated. As shown in Figure 4.3, the dataset of Nodal with all three codon positions is saturated. Trees developed from the dataset with all three codons may therefore be inaccurate.

Figure 4.4 Saturation test for 1st and 2nd codon positions of Nodal.

(a)Uncorrected pairwise transition (ti) and transversion (tv) distances against the pairwise total uncorrected distances for the 1st and 2nd codon positions of Nodal only. (b) Uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 1st and 2nd codon positions of Nodal only. The diagonal stands for the line y=x.

Figure 4.4 (a) shows the saturation test results of the uncorrected pairwise transition (ti) and transversion (tv) distances against the pairwise total uncorrected distances for the 1st and 2nd codon positions of Nodal. In Figure 4.4 (a), the transition line forms a curve and crosses the transversion line. Figure 4.4 (b) shows the saturation test results of the uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 1st and 2nd codon positions of Nodal. Figure 4.4 (b) shows that most points are in the area under the line y=x, which suggests that saturation occurred. As shown in Figure 4.4, the dataset with the 1st and 2nd codon positions is saturated; this suggests that trees developed from this dataset with the 1st and 2nd codon positions may also be inaccurate.

The saturation test showed that the datasets of nucleotide sequences with all three codon positions and the 1st/2nd codon positions were all saturated. The tree developed from those datasets may be inaccurate. Nevertheless, these datasets were still used to build phylogenetic trees for two reasons: Firstly, a

phylogenetic tree is still needed to show the relationships of Nodal. Secondly, the alignment used to make up the datasets is the best one that can be provided. However, the problems of saturated data can be reduced to some extent by using a more complex likelihood model (Farrell, 2011).

4.3.2 Phylogenetic trees

After the saturation test, with the aim of examining the relationships within Nodal, phylogenetic analyses based on dataset No.1 in Table 3.1 were carried out. In the analysis, phylogenetic trees were developed based on protein sequences (Figure 4.5), the 1st/2nd codon position (Figure 4.6) and all 3 codon positions of the DNA sequences (Figure 4.7) through the maximum likelihood (ML) method to determine the relationship among Nodal genes from different species.

Figure 4.5 Maximum likelihood amino acid phylogenetic tree of Nodal

This tree is built based on 137 amino acid sites. The scale bar corresponds to 20 changes per 100 amino acid positions. The numbers on branches represent the bootstrap support for that branch based on 100 bootstrap replicates. Only bootstrap values higher than 50% are shown. The tree is rooted on snail and limpet Nodals shown in the base of Nodal tree in earlier analysis (chapter 3).

In the phylogenetic tree built from amino acid sequences of Nodal (Figure 4.5), Nodal falls in three main groups. Group A is supported with a bootstrap number lower than 50%. Group B, which contains Fish 1, is supported with a bootstrap number of 98%. In this figure, Group B stays with Group A with a support lower than 50%. Xnr4, Axolotl 2 and the Mammal Nodal form a Group C with a support lower than 50%. The base of the tree is lancelet, sea urchin, sea squirt, snail and limpet. The tree is rooted on the group of snail and limpet.

Figure 4.6 Maximum likelihood 1st and 2nd codon position phylogenetic tree of Nodal

This tree is built based on 276 nucleotide sites by using the 1st and 2nd codon positions only. The scale bar corresponds to 10 changes per 100 nucleotide positions. The numbers on branches represent the bootstrap support for that branch based on 100 bootstrap replicates. Only bootstrap values higher than 50% are shown. The tree is rooted on the snail and limpet Nodals shown in the base of Nodal tree in earlier analysis (chapter 3).

In the tree built from nucleotide sequences with the 1st and 2nd codon

positions (Figure 4.6), Nodal falls into three main groups. Group A is

supported with a high bootstrap value of 94%. The bootstrap value to support

Group B is 100%. In Figure 4.6, Group B also stays with Group A with a support lower than 50%. Group C contains the same members as shown in Figure 4.5, with a support of 62%. The base of the tree is lancelet, sea urchin, sea squirt, snail and limpet. The tree is rooted on the group of snail and limpet.

Figure 4.7 Maximum likelihood nucleotide phylogenetic tree of Nodal

This tree is built based on 414 nucleotide sites by using all three codon positions. The scale bar corresponds to 50 changes per 100 nucleotide positions. The numbers on branches represent the bootstrap support for that branch based on 100 bootstrap replicates. Only bootstrap values higher than 50% are shown. The tree is rooted on the snail and limpet Nodals shown at the base of the Nodal tree in earlier analysis (chapter 3).

In the tree of nucleotide sequences with all three codon positions (Figure 4.7),

Nodal falls in three main groups. Group A is supported with a high bootstrap

value of 88%. The support value of Group B is 99%. In this figure, Group B stays with Group A with a bootstrap value of 57%. In Figure 4.7, Group C contains the same members as shown in previous two figures with a support lower than 50%. The base of the tree is sea urchin, sea squirt, snail and limpet. The tree is rooted on the group of snail and limpet.

From the 3 figures it can be seen that there is evidence to indicate that Xnr1/2/3/5/6, newts, axolotl 1, fish 2 and 3 and birds form a group which is shown as group A in the tree figures. It is probable that Group B may stay with Group A with a low support. Xnr4, axolotl 2 and mammals form a Group C. There is only one copy of Nodal gene in mammals, birds, sea squirts, sea urchins and gastropoda, but there are two or more copies in amphibians and fish. In the three figures, the branch is separated when the species evolve from lancelet to vertebrates.

4.4 DISCUSSION & CONCLUSION

4.4.1 The relationships within Nodal

It can be seen from the results that there are six copies of Nodal in the frog, two copies in urodele amphibians, three copies in fishes and only one copy in mammals, birds, sea squirts, lancelets, sea urchins, snails and limpets. Among them, birds form a group which is called group A in the result section, with one copy of amphibians, one group of copies of frog (which is Xnr1/2/3/5/6) and two copies of fish with a valid support. However, previous work of Fan showed two groups of Nodal (Fan & Dougan, 2007). But in this project a

converse result shows that Group B (Fish 1) stays with Group A instead of Group C.

In Fan's paper (Fan & Dougan, 2007), the authors suggest that Group B along with group C forms a group which contains Fish 3, Xnr4 and the Mammal. In Kuraku's study (Kuraku & Kuratani, 2011), Kuraku's Nodal tree looks like Nodal trees in this project (Figure 4.5, Figure 4.6 and Figure 4.7). They suggest that Group B departs from group C. Although this structure has limited support in this project, the structure is supported well in Kuraku's study (Fan & Dougan, 2007. Kuraku & Kuratani, 2011).

4.4.2 Duplication of Nodal in different species

As outlined in Chapter 1.2.4, the number of Nodal genes in different species is varied. In some species, such as mammals or birds, one of the loci may be deleted. In some species, such as amphibians, fishes or lizards, there may be several copies of Nodal. In this project, there exists some evidence to support that there is duplication within Nodal. Although there are low bootstrap values for group B, there is valid support for the assertion that group A stays alone and does not combine well with the other copies of vertebrates' Nodal sequences. It can be seen that duplication occurred when vertebrates evolved from Urochordata (which is the sea urchin in this chapter). In most vertebrates, Nodal genes can be grouped into two groups. However, deletion occurs in birds and mammals, so there is only one copy of the mammal Nodal and the bird Nodal.

4.4.3 Further examination of the Nodal locus in fish groups

In the support material for The Genome of the Western Clawed Frog *Xenopus tropicalis* (Hellsten, 2010), the author indicates that there are two Nodal loci in vertebrates. One is between eif4ebp2 and ash2l, and the other is between eif4ebp1 and paladin. The bird loses the Nodal locus adjacent to paladin, while the mammal loses the Nodal locus adjacent to ash2l. In the analyses in this chapter, Group C contains Nodal genes near paladin and Group A contains Nodal genes near ash21.

As discussed in Chapter 4.4.1, the researcher of this project initially envisaged Group B (Fish 1) being with Group C, as Fan described in his study. However, the result is that Group B seems to be much closer to Group A than Group C. Thus, it is particularly interesting to look into the 3 fish groups.

As checked in Ensembl, Fish 1 is located near paladin, the locus of the Nodal gene of Group Fish 2 is between DGUOK and ANK1 (1of2) and the Group Fish 3 is near CLDN23 (usually between eif4ebp1/ANK1 (2of2) and CLDN23). The loci of Fish 2 and Fish 3 are not far apart, but the location of Fish 1 is far from Fish 2 and 3. The loci of Nodal of those fish groups seems to suggest the Group B may be with Group C, because their loci are all located around paladin. Nevertheless, this hypothesis is not supported by the phylogeny results in this chapter.

4.4.4 Future work

For the analysis of Nodal phylogeny, since the sequences are well aligned and the sites are chosen carefully, the trees shown in this chapter may be the best results based on that number of sequences. To remove snails, limpets, sea urchins and lancelets to construct a vertebrates' Nodal tree and to root that tree on the sea squirt may be worthwhile in order to view the relationship specifically within the vertebrates' Nodal. Nevertheless, it seems unlikely that it would make a great improvement to the structure and bootstrap support by simply removing 10 sequences.

Conversely, it may well be interesting to use one sequence from each class to build a Nodal tree. Nevertheless, as the amphibian group (which contains newts and axolotl 1 in this chapter) and the Fish 2 group are not so strongly supported, it is doubtful whether that tree would show a true picture.

Because Lefty has the most similar function to Nodal and ADMP has the most similar sequence structure to Nodal, it may also be interesting to download as many sequences of ADMP and Lefty as possible in order to construct an ADMP tree and a Lefty tree. Then, the relationship of species within ADMP and Lefty can be determined, and that result can be compared with the Nodal tree to ascertain whether they have the same situation as Nodal, for example duplication and deletion during evolution.

4.5 CONCLUSION

In conclusion, according to the phylogenetic analyses presented in this chapter, there are two different types of Nodals in vertebrates. Duplication occurred when vertebrates evolved from Urochordata. Furthermore, deletion occurred in birds and mammals.

CHAPTER 5 SUMMARY

Nodal is a ligand of the TGF-beta superfamily. It has the function of determining the left-right axis and inducing the endoderm and mesoderm. Nodal signals can also act as morphogens (Schier, 2009). In Herpin's review, the TGF-beta superfamily is divided into four subfamilies: the DVR subfamily, the TGF-beta subfamily, the activin/inhibin subfamily, the TGF-beta subfamily and a group of divergent members. Furthermore, Nodal is in the DVR subfamily (Herpin et al. 2004). As Hellsten described in his study (Hellsten, 2010), there are two loci of Nodal in vertebrates, and deletion occurs later in birds and mammals. Previous studies show two different views of the relationships within Nodal. One suggests that the fishes are divided into two groups, as are most other vertebrate species. The other suggests that all fish Nodal genes are in the group in which the bird Nodal is located (Fan & Dougan, 2007; Kuraku & Kuratani, 2011).

In this project, the phylogeny of the TGF-beta superfamily was investigated further, using 407 taxa based on nucleotide sequences and amino acid sequences. This study demonstrates the monophyly of Nodal, but its neighbour ligand or ligand group is nonetheless uncertain. According to the phylogenetic analyses presented in Chapter 3, Nodal seems to be a ligand within the DVR subfamily of the TGF-beta superfamily, as Herpin demonstrated in his study, but the bootstrap value to support it is limited (Herpin et al. 2004).

In this project, the phylogeny of Nodal was also investigated, using 131 taxa across 46 species based on nucleotide sequences and amino acid sequences.

This study demonstrates that the fish sequences are all in the Group A in which the bird Nodal is located, but the support is not particularly valid. In addition, when checked by gene loci, Fish 1 group seemed to be within Group C because their loci were all near the paladin gene. According to the phylogenetic analyses presented in Chapter 4, duplication occurred when vertebrates evolved from Urochordata. In addition, deletion occurred in birds and mammals.

There are several limitations in this project. Firstly, this research was limited to include Nodal genes from all species, due to the need to obtain a certain amount of sites. Partial gene sequences are the biggest limitation to the data collection. For example, some representative Nodal genes such as lizard Nodal genes were excluded in the test of Nodal-only tree because they were partial sequences. Secondly, this project was limited to include all TGF-beta superfamily ligands to show the whole view of the relationships between the members of the whole superfamily. This was also due to the need to obtain a certain amount of sites. When trying to include all members, only very limited sites could be used in the phylogeny. Thirdly, this project tries to include all Nodal sequences found online, therefore there may be several sequences from one species. For example, there were 5 human Nodal sequences included in this project. If one was to choose one sequence from each group of species based on the suggested tree in chapter 4, more sites would be provided and a more valid supported tree may exist. Finally, this research has demonstrated the relationships of species within Nodal and Nodal with other ligands in the DVR subfamily. It is recommended to further research a comparison of Nodal

with those ligands that have sequence similarity (such as ADMP) or functional similarity (such as Lefty).

References

Airaksinen M, Saarma M (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002 May; 3(5):383-94.

Alexander F. Schier. Nodal Morphogens. Cold Spring Harb Perspect Biol. 2009 November; 1(5): a003459. doi: 10.1101/cshperspect.a003459

Amaury Herpin, Christophe Lelong, Pascal Favrel (2004). Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Developmental and Comparative Immunology 28 (2004) 461–485.

Antonio Colavita, Srikant Krishna, Hong Zheng, Richard W. Padgett, Joseph G. Culotti (1998). Pioneer axon guidance by UNC-129, a C. elegans TGF-beta.. SCIENCE VOL 281 31 JULY 1998.

B.I. Sun, S.M. Bush, L.A. Collins-Racie, E.R. LaVallie, E.A. DiBlasio-Smith, N.M. Wolfman, J.M. McCoy and H.L. Sive (1999). Derriere: a TGFbeta family member required for posterior development in Xenopus. Development 126, 1467-1482 (1999).

Baker K, Holtzman NG, Burdine RD. (2008). Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. Proc Natl Acad Sci U S A. 2008 Sep 16; 105(37):13924-9. Epub 2008 Sep 10.

Behringer RR. (1994). The in vivo roles of müllerian-inhibiting substance. Curr Top Dev Biol. 1994; 29:171-87.

Benson D, et al. (2009). "GenBank". Nucleic Acids Research 37 (Database): D26–D31. doi:10.1093/nar/gkn723. PMC 2686462. PMID 18940867

Caterina Bianco, Maria Cristina Rangel, Nadia P. Castro, Tadahiro Nagaoka, Kelly Rollman, Monica Gonzales, David S. Salomon. Role of Cripto-1 in Stem Cell Maintenance and Malignant Progression. Am J Pathol. 2010 August; 177(2): 532–540. doi: 10.2353/ajpath.2010.100102

Cavalli-Sforza LL, Edwards AW. (1967). Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet. 1967 May;19(3 Pt 1):233-57.

Chapman SC, Bernard DJ, Jelen J, Woodruff TK.Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors.Mol Cell Endocrinol. 2002 Oct 31; 196(1-2):79-93.

Chen D, Zhao M, Mundy GR. (2004). Bone morphogenetic proteins. Growth Factors. 2004 Dec; 22(4):233-41..

Chen YG, Liu F, Massague J (1997) Mechanism of TGFbeta receptor inhibition by FKBP12. EMBO J 16: 3866–3876.

Chen, Pinjian. Zoology. Science Press China (2001).

Christien Weenen,, Joop S.E. Laven, Anne R.M. von Bergh, Mark Cranfield, Nigel P. Groome, Jenny A. Visser, Piet Kramer, Bart C.J.M. Fauser and Axel P.N. Themmen. Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Molecular Human Reproduction, Vol. 10, No. 2, pp. 77-83, 2004.

Christophe Lelong, Michel Mathieu, Pascal Favrel (2000). Structure and expression of mGDF, a new member of the transforming growth factor-

beta superfamily in the bivalve mollusc Crassostrea gigas. European Journal of Biochemistry Volume 267, Issue 13, pages 3986–3993, July 2000.

Claudine Montgelard, Ellen Forty, Véronique Arnal and Conrad A Matthee, 2008. Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evolutionary Biology 2008, 8:321 doi: 10.1186/1471-2148-8-321

Collins DW, Jukes TH (April 1994). "Rates of transition and transversion in coding sequences since the human-rodent divergence". Genomics 20 (3): 386–96.

Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, et al. (1985) Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316: 701–705

Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature 425: 577–584.

Edgar RC (2004). "MUSCLE: a multiple sequence alignment method with reduced time and space complexity". BMC Bioinformatics 5 (1): 113. Doi:10.1186/1471-2105-5-113. PMC 517706. PMID 15318951.

Farrell, 2011. Saturation points & weighting. Harvard Entomology & the Farrell Lab.

Felsenstein, J. (2004). Inferring Phylogenies. Sinauer Associates, Sunderland, Mass.

Flicek P, Amode MR, Barrell D, et al. (November 2010). "Ensembl 2011". Nucleic Acids Res 39 (Database issue): D800–D806. doi:10.1093/nar/gkq1064. PMC 3013672. PMID 21045057

Garcia-Fernàndez J, D'Aniello S, Escrivà H (2007). "Organizing chordates with an organizer". Bioessays 29 (7): 619–24.

doi:10.1002/bies.20596

Gemma Swiers, Yi-Hsien Chen, Andrew D. Johnson, Matthew Loose (2010). Evolution of Developmental Control Mechanisms A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals. Developmental Biology 2010 (2010) 138–152.

Graur, D. and Li, WH (2000). Fundementals of molecular evolutioin, 2nd edn. Sinauer Associates, Sunderland.

Haramoto Y, Tanegashima K, Onuma Y, Takahashi S, Sekizaki H, Asashima M. (2004). Xenopus tropicalis nodal-related gene 3 regulates BMP signaling: an essential role for the pro-region.. Dev Biol. 2004 Jan

1;265(1):155-68

Helde, K.A., and Grunwald, D.J. (1993). The DVR-1 (Vg1) transcript of zebrafish is maternally supplied and distributed throughout the embryo. Dev Biol 159, pp. 418–26.

Heldin CH, Miyazono K, ten Dijke P (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390 (6659): 465– 71(December 1997). doi:10.1038/37284.

Henrik Bengtsson (2001). Bone Morphogenetic Protein Receptors in the Nervous System: Neurotrophic Functions with Emphasis on Catecholaminergic Neurons. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1104. Hiroshi Hamada, Chikara Meno, Daisuke Watanabe, Yukio Saijoh (2002). Establishment of vertebrate left-right asymmetry. Nature Reviews Genetics 3, 103-113 (February 2002).

Hiroshi Hanafusa, Norihisa Masuyama, Morioh Kusakabe, Hiroshi Shibuya & Eisuke Nishida (2000). The TGF-beta family member derrière is involved in regulation of the establishment of left–right asymmetry. EMBO reports 1, 1, 32–39 (2000).

Ito Y, Oinuma T, Takano K, Komazaki S, Obata S, Asashima M. (2006). CyNodal, the Japanese newt nodal-related gene, is expressed in the left side of the lateral plate mesoderm and diencephalon. Gene Expr Patterns. 2006 Mar;6(3):294-8. Epub 2005 Dec 27

Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S (2001). Promoting bone morphogenetic protein signalling through negative regulation of inhibitory Smads. EMBO J. 20 (15): 4132–42 (August 2001). doi:10.1093/emboj/20.15.4132. .

Joan Massagué, Joan Seoane and David Wotton (2005). Smad transcription factors. Genes Dev. 2005 19: 2783-2810.

K Tsuchida. (2008) Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice. Acta Myol. 2008 July; 27(1): 14–18.

Kalinovsky A, Boukhtouche F, Blazeski R, Bornmann C, Suzuki N, et al. (2011) Development of Axon-Target Specificity of Ponto-Cerebellar Afferents. PLoS Biol 9(2): e1001013. doi:10.1371/journal.pbio.1001013

Klein SL, Strausberg RL, Wagner L, Pontius J, Clifton SW, Richardson P. (2002). Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev Dyn. 2002 Dec; 225(4):384-91

Kosakovsky Pond SL, Mannino FV, Gravenor MB, Muse SV, Frost SD. (2007). Evolutionary Model Selection with a Genetic Algorithm: A Case Study Using Stem RNA. Mol Biol Evol. 2007 Jan; 24(1):159-70. Epub 2006 Oct 12.

Lee SJ. (2007). Sprinting without myostatin: a genetic determinant of athletic prowess. Trends Genet. 2007 Oct; 23(10):475-7. Epub 2007 Sep 19.

Liangyi Xue, Kaixian Qian, Hongqin Qian, Lu Li, Qiaoyi Yang and Mingyun Li (2006). Molecular Cloning and Characterization of the Myostatin Gene in Croceine Croaker, Pseudosciaena crocea. Mol Biol Rep. 2006 Jun; 33(2):129-

Liu X, Sun Y, Weinberg RA, Lodish HF (2001) Ski/Sno and TGF-beta signaling. Cytokine Growth Factor Rev 12: 1–8.

M. E. Abbott and J. C. Meakins (1915). "On the differentiation of two forms of congenital dextrocardia". Bulletin of the International Association of Medical Museums: 134–138.

M. Moos, S. Wang and M. Krinks (1995). Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer. Development 121, 4293-4301 (1995).

Marı´a R. Ponce, Jose L. Micol, Kevin J. Peterson and Eric H. Davidson (1999). Molecular Characterization and Phylogenetic Analysis of SpBMP5–7, a New Member of the TGF-beta superfamily Expressed in Sea Urchin Embryos. Mol. Biol. Evol. 16(5):634–645.1999. Marketa J. Zvelebil, Jeremy O. Baum, 2008. Understanding

Bioinformatics. Garland Science, 2008. ISBN: 0815340249, 9780815340249

Matt Crooka, Fiona J. Thompsona, Warwick N. Grantb and Mark E. Viney (2005). Daf-7 and the development of Strongyloides ratti and Parastrongyloides trichosuri. Molecular and Biochemical Parasitology Volume 139, Issue 2, February 2005, Pages 213-223.

Minh Nguyen, Louise Parker, Kavita Arora (2000). Identification of maverick, a novel member of the TGF-beta superfamily in Drosophila.. Mechanisms of Development 95 (2000) 201-206.

Morgan, T. H. (2001). Regeneration. Oxford: Oxford University Press. Morrison, D.A. 2006. Phylogenetic analyses of parasites in the new millennium. Advances in Parasitology 63: 1-124.

Nei M & Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York.

Ongkar Khalsa, Jung-won Yoon, Sonia Torres-Schumann and Kristi A. Wharton (1998). TGF-beta/BMP superfamily members, Gbb-60A and Dpp, cooperate to provide pattern information and establish cell identity in the Drosophilawing. Development 125, 2723-2734 (1998).

Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, et al. (1999) Silencing of TGF-beta signaling by the pseudoreceptor BAMBI. Nature 401: 480–485.

Pang K, Ryan JF, Baxevanis AD, Martindale MQ (2011) Evolution of the TGF-beta Signaling Pathway and Its Potential Role in the Ctenophore, Mnemiopsis leidyi. PLoS ONE 6(9): e24152.

doi:10.1371/journal.pone.0024152

Patrick C.H. Lo, Manfred Frasch (1999). Sequence and expression of myoglianin, a novel Drosophila gene of the TGF-beta superfamily. Mechanisms of Development 86 (1999) 171-175.

Pei-Yu Wang, Anna Protheroe, Andrew N. Clarkson, Floriane Imhoff, Kyoko Koishi, and Ian S. McLennan (2009). Müllerian inhibiting substance contributes to sex-linked biases in the brain and behavior. Proc Natl Acad Sci U S A. 2009 April 28; 106(17): 7203–7208.

Peter ten Dijke & Helen M. Arthur (2007). Extracellular control of TGFbold beta signalling in vascular development and disease. Nature Reviews

Philippe H, Sörhannus U, Baroin A, Perasso R, Gasse F, Adoutte A (1994). Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record. J Evol Biol 1994, 7:247-265.

Powers SE, Taniguchi K, Yen W, Melhuish TA, Shen J, Walsh CA, Sutherland AE, Wotton D. (2010). Tgif1 and Tgif2 regulate Nodal signalling and are required for gastrulation. Development. 2010 Jan; 137(2):249-59.

Rik Derynck, Ying Zhang, and Xin-Hua Feng (1998). Smads: Transcriptional Activators of TGF-b Responses. Cell, Vol. 95, 737–740, December 11, 1998, Copyright (C) 1998 by Cell Press.

Rodríguez F, Oliver JL, Marín A, Medina JR. (1990). The general stochastic model of nucleotide substitution. J Theor Biol. 1990 Feb 22; 142(4):485-501.

Rosa Serra, Chenbei Chang (2003). TGF-beta signalling in human skeletal and patterning disorders. Birth Defects Research Part C: Embryo Today: Reviews, Volume 69, Issue 4, pages 333–351, December 2003.

Saarma M. (2000). GDNF - a stranger in the TGF-beta superfamily? Eur J Biochem. 2000 Dec; 267(24):6968-71.

Saitou N and Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406-25.

Shi Y, Hata A, Lo RS, Massagué J, Pavletich NP (1997). A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388 (6637): 87–93 (July 1997). Doi: 10.1038/40431.

Shigehiro Kuraku and Shigeru Kuratani (2011). Genome-Wide Detection of Gene Extinction in Early Mammalian Evolution. Genome Biol. Evol. 3:1449–1462. doi:10.1093/gbe/evr120 Advance Access publication November 17, 2011.

Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W. and Gillevet, P.M. 1994. The genetic data environment, an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences 10: 671-675.

Soroldoni D, Bajoghli B, Aghaallaei N, Czerny T. (2007). Dynamic expression pattern of Nodal-related genes during left-right development in medaka.. Gene Expr Patterns. 2007 Jan;7(1-2):93-101. Epub 2006 Jun 6

Strandberg AKK, Salter LA. A comparison of methods for estimating the transition: transversion ratio from DNA sequences. Mol Phylogenet Evol. 2004; 32:495–503. doi: 10.1016/j.ympev.2004.01.013.

Stuart J. Newfeld, Robert G. Wisotzkey and Sudhir Kumar (1999). Molecular Evolution of a Developmental Pathway: Phylogenetic Analyses of Transforming Growth Factor-ß Family Ligands, Receptors and Smad Signal Transducers. Genetics, Vol. 152, 783-795, June 1999, Copyright © 1999.

Swofford, D., 1998. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, MA

Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto J, Asashima M. (2000). Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center.. Development. 2000 Dec;

127(24):5319-29

Tavaré S (1986). Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. Lectures on Mathematics in the Life Sciences (American Mathematical Society) 17: 57–86.

Tsigenopolous, C.S., Rab, P. Naran, D. and Berrebi, P. 2002. Multiple origins of polyploidy in thephylogeny of southern African barbs (Cyprinidae) as inferred from mtDNA markers. Heredity 88: 466-473.

Uffe Hellsten, Richard M. Harland, Michael J. Gilchrist, David Hendrix, Jerzy Jurka, Vladimir Kapitonov, Ivan Ovcharenko, Nicholas H. Putnam, Shengqiang Shu, Leila Taher, Ira L. Blitz, Bruce Blumberg, Darwin S. Dichmann, Inna Dubchak, Enrique Amaya, John C. Detter, Russell Fletcher, Daniela S. Gerhard, David Goodstein, Tina Graves, Igor V. Grigoriev, Jane Grimwood, Takeshi Kawashima, Erika Lindquist, Susan M. Lucas, Paul E. Mead, Therese Mitros, Hajime Ogino, Yuko Ohta, Alexander V. Poliakov, Nicolas Pollet, Jacques Robert, Asaf Salamov, Amy K. Sater, Jeremy Schmutz, Astrid Terry, Peter D. Vize, Wesley C. Warren, Dan Wells, Andrea Wills, Richard K. Wilson, Lyle B. Zimmerman, Aaron M. Zorn, Robert Grainger, Timothy Grammer, Mustafa K. Khokha, Paul M. Richardson, and Daniel S. Rokhsar (2010). Supporting Online Material for The Genome of the Western

Clawed Frog Xenopus tropicalis. Science 30 April 2010: Vol. 328. no. 5978, pp. 633 - 636

Van Zonneveld P, Scheffer GJ, Broekmans FJ, Blankenstein MA, de Jong FH, Looman CW, Habbema JD, te Velde ER. (2003). Do cycle disturbances explain the age-related decline of female fertility? Cycle characteristics of women aged over 40 years compared with a reference population of young women. Hum Reprod. 2003 Mar; 18(3):495-501.

W. Newton Suter, 2012. Chapter 12: Qualitative Data, Analysis, and Design. Introduction to Educational Research-A Critical Thinking Approach Second Edition. SAGE Publications, Inc. 2012

Wang H, Jiang JY, Zhu C, Peng C, Tsang BK. (2006). Role and Regulation of Nodal/Activin Receptor-Like Kinase 7 Signaling Pathway in the Control of Ovarian Follicular Atresia. Mol Endocrinol. 2006 Oct; 20(10):2469-82. Epub 2006 May 18.

Wang, J., Tokarz, R., Savage-Dunn, C. (2002). The expression of TGFbeta signal transducers in the hypodermis regulates body size in C. elegans. . Development 129, 4989-4998 (2002).

Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massagué J, Shi Y (2001). Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signalling. Cell 8 (6): 1277–89 (December 2001). Doi: 10.1016/S1097-2765(01)00421-X.

Xiang Fan & Scott T. Dougan (2007). The evolutionary origin of nodal-related genes in teleosts. Dev Genes Evol (2007) 217:807–813 DOI 10.1007/s00427-007-0191-y. Yang Z, Nielsen R, Hasegawa M. 1998. Models of amino acid substitution and applications to mitochondrial protein evolution. Mol Biol Evol. 1998 Dec; 15(12):1600-11.

Ye-Guang Chen, Qiang Wang, Shi-Lung Lin, C. Donald Chang, Jody Chung and Shao-Yao Ying (2006). Activin Signalling and Its Role in Regulation of Cell Proliferation, Apoptosis, and Carcinogenesis. Exp. Biol. Med. 2006; 231:534-544.

Zhang, Xiaolian (2008). Medical Immunology. Wuhan University Press, 2008.1 P61.

Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR (1993). Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation.. Nature. 1993 Feb 11; 361(6412):543-7.

Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400: 687–693.

APPENDIX

APPENDIX 1. SEQUENCE IMFORMATION

Change		NCBI classificati		EMBL classificati
Name	NCBI ID	on	EMBL ID	on
Squirt_N	AB069969.1	nodal		
Lancelet_Na	AB097411.1	nodal		
Pig_Nc	AM072821.1	nodal		
Urchin_Na	AY442295.1	nodal		
Mouse_Na	BC128018	nodal		
Urchin_Nb	DQ017963.1	nodal		
Urchin_Nd	EF036514.1	nodal		
Snail_N	EU394707.1	nodal		
Limpet_N	EU394708.1	nodal		
Urchin_Nf	EU812568.1	nodal		
Urchin_Nc	EU812569.1	nodal		
Urchin_Ne	NM_0010984 49.1	nodal		
Mouse_Nb	NM_013611. 3	nodal	ENSMUSG0000 0037171	Nodal
Mouse_Nc	X70514.1	nodal		
Human_Nhm e	BC033585.1	Nodal		
Human_Nhm a	BC039861.1	Nodal		
Human_NHm c	BC104976.1	Nodal		
Human_NHm d	BC112025.1	Nodal		
Xt_NHm	NM_0010163 21.2	Nodal homolog		
Rat_N	NM_0011063 94.1	Nodal	ENSRNOG0000 0000556	Nodal
--------------------	--------------------	--------------------	------------------------	--------
	NM 0100EE			
b	4 4	Nodal	6574	Nodal
	XM_0015037	Nodal		
Horse_NHm	37.1	homolog		
Pig_Nhme	XM_0019278 51.1	Nodal homolog		
Pig_NHmd	XM_0019280 24.1	Nodal homolog		
finch_NHm	XM_0021941 55.1	Nodal	ENSTGUG0000 0004739	Nodal
chicken_NH m	XM_424385. 2	Nodal		
Dog NHm	XM_546146.	Nodal	ENSCAFG0000	Nodal
	ZM 600225	Nedal	0011032	Itouui
Cattle_NHm	2 2	homolog		
Monkey_Nh ma	XM_0011080 74.1	nodal precursor		
Monkey_Nh mb	XM_0011081 37.1	nodal precursor		
chimpanzee_ NHm	XM_521502. 2	nodal	ENSPTRG0000 0002592	Nodal
SeaSlug_Nlik e	FJ616286.1	nodal like		
Xnr5ae	AB038133.1	xnr5		
Xnr6c	AB038134.1	xnr6		
Xtnr3c	AB093327.1	xtnr3		
Xtnr3d	AB093328.1	xtnr3		
Xtnr3a	AB093329.1	xtnr3		
Newt_CyNod alb	AB114684.1	CyNodal		
Onr1	AB116041.1	ONr1		
Onr2	AB116642.1	ONr2		

Newt_CyNod	AR212661 1	CyNodal
ala	AD212001.1	
Xnr5bb	AB219842.1	xnr5
Xnr5ad	AB219843.1	xnr5
Xnr5ai	AB219845.1	xnr5
Xnr5g	AB219846.1	xnr5
Xnr5ac	AB219847.1	xnr5
Xnr5af	AB219848.1	xnr5
xnr5ah	AB219849.1	xnr5
Xnr5aa	AB219850.1	xnr5
xnr5ag	AB219851.1	xnr5
Xnr5ba	AB219852.1	xnr5
Xnr5b	AB219855.1	xnr5
Znr2c	AF003699.1	znr2
Znr1c	AF056327.1	NDR2
Chicken_Nr1 a	AF486810.1	nodal- related
Lancelet_Nr	AY083838.1	nodal- related
Xnr2a	BC169388.1	xnr2
Xnr2b	BC169392.1	xnr2
Xnr6a	BC169659.1	xnr6
Xnr6b	BC169661.1	xnr6
Xnr3b	BC169689.1	xnr3
Xnr3c	BC169691.1	xnr3
Xnr5bd	BC169725.1	xnr5
Xnr5bc	BC169727.1	xnr5
Xnr5c	BC169822.1	xnr5
Xnr5d	BC169824.1	xnr5
Xnr5e	BC169866.1	xnr5

Xnr5f	BC170152.1	xnr5		
Xnr6e	BC170314.1	xnr6		
Xtnr1a	BC171037.1	xtnr1		
Onr1a	EF206724.1	onr1		
Onr2a	EF206725.1	onr2		
Xnr6d	NM_0010855 64.1	xnr6		
Xnr5ab	NM_0010855 85.1	xnr5		
Xnr3d	NM_0010857 90.1	xnr3		
Xnr1a	NM_0010857 96.1	xnr1		
Xnr2c	NM_0010879 67.1	xnr2		
Xnr4a	NM_0010883 47.1	xnr4		
Xnr5a	NM_0010970 61.1	xnr5		
Xtnr3b	NM_0011129 06.1	xtnr3		
Znr2b	NM_130966. 1	NDR1	ENSDARG0000 0057096	znr2
Znr1a	NM_139133. 1	NDR2	ENSDARG0000 0040299	znr1
Xtnr3e	NM_203533. 1	xtnr3		
Xnr3a	U25993.1	xnr3		
Xnr1b	U29447.1	xnr1		
Xnr2d	U29448.1	xnr2		
Xnr4b	U79162.1	xnr4		
Znr1b	U87758.1	znr1		

	NM_0010785			
Squirt_Na	32.1	Nodal		
anole_N			ENSACAG0000 0008399	Nodal
Marmoset_N			ENSCJAG00000 016288	Nodal
Cavy_N			ENSCPOG0000 0025772	Nodal
Sloth_N			ENSCHOG0000 0010347	Nodal
zebrafish_SP AW			ENSDARG0000 0014309	SPAW
armadillo_N			ENSDNOG0000 0017851	Nodal
Kangaroo Rat_N			ENSDORG0000 0011307	Nodal
Lesser hedgehog1_ N			ENSETEG0000 0013276	Nodal
horse_N			ENSECAG0000 0017055	Nodal
Hedgehog2 N			ENSEEUG0000 0011834	Nodal
_cat_N			ENSFCAG0000 0001230	Nodal
chicken_NR1	XM_424385		ENSGALG0000 0003209	Nr1
Gorilla(Ape)_ N			ENSGGOG0000 0002581	Nodal
Three-spined stickleback(fi sh)_Na			ENSGACG0000 0002333	Nodal

- , . ,			
stickleback(fi sh)_Nb		ENSGACG0000 0008499	Nodal
Three-spined stickleback(fi sh)c		ENSGACG0000 0017712	Nodal
Elephant_N		ENSLAFG00000 021867	Nodal
rhesus monkey_N	XM_0011080 74.1,XM_001 108137.1	ENSMMUG0000 0023170	Nodal
kangaroo_N		ENSMEUG0000 0011841	Nodal
Lemur_N		ENSMICG0000 0015080	Nodal
_turkey_N		ENSMGAG0000 0002207	Nodal
opossum_N		ENSMODG0000 0012158	Nodal
bat_N		ENSMLUG0000 0015297	Nodal
Pika_N		ENSOPRG0000 0015824	Nodal
Rabbit_N		ENSOCUG0000 0008685	Nodal
_Galago_N		ENSOGAG0000 0005716	Nodal
_medaka_N		ENSORLG0000 0006553	Nodal
medaka_Nr1		ENSORLG0000 0011275	Nr1

medaka Nr2	ENSORLG0000 0009098	Nr2
orangutan_N	002370	Nodal
RockHyrax_N	0015506	Nodal
	ENSPVAG0000	
FlyingFox_N	0000104	Nodal
	ENSSARGOOO	
Shrew_N	0000846	Nodal
	ENSSTOCODO	
squirrel_N	0012946	Nodal
	ENSSSCG0000	
pig_Na	0010269	Nodal
	ENSSSCG0000	
pig_Nb	0010265	Nodal
	ENSTSYG0000	
Tarsier_N	0005226	Nodal
	ENSTRUG0000	
Fugu1_Na	0010779	Nodal
	ENSTRUG0000	
Fugu1_Nb	0012437	Nodal
	ENSTRUG0000	
Fugu1_Nc	0012942	Nodal
	ENSTNIG00000	
Fugu2_Na	013237	Nodal
	ENSTNIG00000	
Fugu2_Nb	015847	Nodal
	ENSTTRG0000	
Dolphin_N	0003182	Nodal
	ENSVPAG0000	
Alpaca_N	0002635	Nodal
	ENSXETG0000	
frog_Ne	0023748	Nodal
	ENSXFTG0000	
frog_Na	0009008	Nodal

			ENSXETG0000	
frog_Nb			0016779	Nodal
_frog_Nc			ENSXETG0000 0016778	Nodal
Xtnr3	AB093328		ENSXETG0000 0009009	Nr3
_frog_Nd			ENSXETG0000 0025789	Nodal
Fugu2_Nc			ENSTNIG00000 005578	Nodal
frog_Nf			ENSXETG0000 0017442	Nodal
AxNodal-1	GU256638	AxNodal-1		
AxNodal-2	GU256639	AxNodal-2		
Human_GDN F15	AJ001897.1	GDNF		
Human_GDN F16	AJ001898.1	GDNF		
Human_GDN F17	AJ001899.1	GDNF		
Human_GDN F18	AJ001900.1	GDNF		
horse_GDNF	XM_0014971 80.2	GDNF		
Human_MGD F	U11025.1	MGDF		
chimpanzee_ MGDF	XM_0011365 18.1	MGDF		
opossum_MG DF	XM_0013768 01.1	MGDF		
horse_MGDF	XM_0014982 57.1	MGDF		
_eel_ACTA	AB025356.1	activin B		
sea urchin_ACTA	EU526314.1	activin B		

sea	NM 0011290			
2	68.1	activin B		
×				
X_ACTA2	D49543.1	activin D		
Finch_ACTA	XM_0021998 79.1	activin D		
		activin D		
X_ACTA	BC169414.1	precursor		
	NM 0010858	activin D		
X_ACTA3	64.1	precursor		
х аств	NM_0010905	Activin- beta B		
	00.1	Activin-		
X_ACTB2	S61773.1	beta B		
goldfish ACT		Activin-		
B	AF004669.1	precursor		
		Activin-		
	D0240764 1	beta B		
Сагр_АСТВ	DQ340764.1	Activin-		
rat ACTB2	AF089825.1	beta E		
		Activin-		
rat_ACTB	AF140032.1	beta E		
Human_ACT	45412024.1	Activin-		
В	AF412024.1			
Mouse ACTB	U96386.1	beta E		
rhesus				
monkey_ACT	XM_0011159	Activin-		
B	49.1	beta E		
rnesus monkey ACT	XM 0011159	Activin-		
B2	58.1	beta E		
	XM_0014887	Activin-		
norse_ACTB	90.1	beta E		
chimpanzee	XM 509161	Activin-		
ACTB	2	beta E		
	XM_595759.	Activin-		
cattle_ACTB	3	beta E		
	XM_844366.	Activin-		
UUY_ACID	1 1	Dela L		

Junglefowl_A DMP3	AF082178.1	ADMP	
Mouse_ADMP	AF365876.1	ADMP	
Zebrafish_A DMP4	AF418564.1	ADMP	
Zebrafish_A DMP2	AF420475.1	ADMP	
Human_ADM P2	AF458592.1	ADMP	
Zebrafish_A DMP	AJ315468.1	ADMP	
Human_ADM P	AK312144.1	ADMP	
X_ADMP2	BC130130.1	ADMP	
salmon_ADM P2	BT057114.1	ADMP	
Worm_ADMP 2	DQ431039.1	ADMP	
XT_ADMP	NM_0010456 92.1	ADMP	
sea squirt_ADMP	NM_0010785 17.1	ADMP	
X_ADMP	NM_0010883 23.1	ADMP	
X_ADMP4	NM_0010971 18.1	ADMP	
salmon_ADM P	NM_0011465 04.1	ADMP	
Worm_ADMP	NM_0011649 22.1	ADMP	
Zebrafish_A DMP3	NM_131876. 2	ADMP	
Junglefowl_A DMP4	NM_204822. 1	ADMP	
X_ADMP3	U22155.1	ADMP	
Platypus_AD MP	XM_0015067 33.1	ADMP	

	XM_0016046	ΑΟΜΡ	
tick ADMP	XM_0024026	ADMP	
 Junglefowl_A DMP	XM_422812. 2	ADMP	
Junglefowl_A DMP2	XM_426514. 2	ADMP	
Japanese killifish_AMH	AB166790.1	AMH (MIS, MIF)	
flounder_AM H	AB166791.1	AMH (MIS, MIF)	
Japanese killifish_AMH 2	AB214971.1	AMH (MIS, MIF)	
Boar_AMH	AF006570.1	AMH (MIS, MIF)	
Alligator_AM H	AF180294.1	АМН (MIS, MIF)	
Possum_AMH	AF503621.1	AMH (MIS, MIF)	
mole_AMH	AJ550376.1	AMH (MIS, MIF)	
seabass_AM H	AM232701.1	AMH (MIS, MIF)	
seabass_AM H2	AM232703.1	AMH (MIS, MIF)	
seabass_AM H3	AM232704.1	AMH (MIS, MIF)	
turtle_AMH	AY235424.1	AMH (MIS, MIF)	
kangaroo_A MH	AY346371.1	AMH (MIS, MIF)	
Quail_AMH	AY633648.1	AMH (MIS, MIF)	

zebrafish_AM HAY677080.2(MIS, MIF)zebrafish_AM H2AY721604.1MIF)AY721604.1MIF)AMH (MIS, AMH (MIS, MIF)AMH (MIS, AMH (MIS, AY763406.2pejerrey_AM H3AY763406.2MIF)Japanese killifish_AMH 3AY881649.1MIF)Japanese killifish_AMH 4AY899282.1AMH (MIS, MIF)Japanese killifish_AMH 4AY904047.1AMH (MIS, MIF)Japanese killifish_AMH 4AY904047.1AMH (MIS, MIF)Japanese killifish_AMH 4AY904047.1AMH (MIS, MIF)Japanese killifish_AMH 4AY904047.1AMH (MIS, MIF)Japanese killifish_AMH 4AY904047.1AMH (MIS, MIF)Japanese killifish_AMH 4AY904047.1AMH (MIS, MIF)Japanese killifish_AMH 4AY904047.1AMH (MIS, MIF)Muman_AMH AY911505.1AMH (MIS, MIF)AMH (MIS, AMH (MIS, MIF)mouse_AMH 2BC150477.1AMH (MIS, MIF)AMH (MIS, AMH (MIS, MIF)
H AY677080.2 MIF) AMH zebrafish_AM AMH (MIS, AMH H2 AY721604.1 MIF) AMH salmon_AMH AY722411.1 MIF) AMH pejerrey_AM AY763406.2 MIF) AMH pejerrey_AM AY763406.2 MIF) AMH zebrafish_AM AY881649.1 MIF) AMH Japanese AY881649.1 MIF) AMH Japanese AY899282.1 MIF) AMH Japanese AMH (MIS, AY899283.1 MIF) Japanese AY899283.1 MIF) AMH AMH duck_AMH AY904047.1 MIF) AMH AMH AMH quail_AMH2 AY904049.1 MIF) AMH AM
zebrafish_AM H2AY721604.1MIF)AMH (MIS, salmon_AMHAY722411.1MIF)AMH (MIS, AAY763406.2MIF)pejerrey_AM HAY763406.2MIF)zebrafish_AM H3AY881649.1MIF)Japanese killifish_AMH 3AY899282.1AMH (MIS, AY899283.1Japanese killifish_AMH 4AY899283.1MIF)Japanese killifish_AMH 4AY899283.1MIF)Japanese killifish_AMH 4AY899283.1MIF)Japanese killifish_AMH 4AY899283.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese killifish_AMH 4AY904047.1MIF)Japanese AMH (MIS, 4AMH (MIS, 4AMH (MIS, 4
AUDINIST_ANIAY721604.1MIF)H2AY721604.1MIF)salmon_AMHAY722411.1MIF)pejerrey_AMAY763406.2MIF)pejerrey_AMAY763406.2MIF)zebrafish_AMAY881649.1MIF)Japanese killifish_AMHAY899282.1MIF)Japanese killifish_AMHAY899282.1MIF)Japanese killifish_AMHAY899283.1MIF)Japanese killifish_AMHAY899283.1MIF)Japanese killifish_AMHAY899283.1MIF)Japanese killifish_AMHAY899283.1MIF)Japanese killifish_AMHAY899283.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese killifish_AMHAY904047.1MIF)Japanese AMH (MIS, HAMH (MIS, AMH (MIS, HAMH AY911505.1Japanese AMH AY911505.1AMH (MIS, AMH (MIS, AMH (MIS, AMH (MIS, AMH AY911505.1AMH AMH (MIS, AMH (MIS, AMH (MIS, AMH (MIS, AMH AMH AMH AMH AMH <br< td=""></br<>
AMH (MIS, salmon_AMH AY722411.1 MIF) AMH pejerrey_AM (MIS, H AY763406.2 MIF) AMH zebrafish_AM (MIS, H3 AY881649.1 Japanese AMH killifish_AMH (MIS, Japanese AMH killifish_AMH AY899282.1 Japanese AMH (MIS, AY899283.1 MIF) Japanese AMH (MIS, AY904047.1 MIF) AMH (MIS, quail_AMH2 AY904047.1 AY904049.1 MIF) MIF) AMH Muss, AMH (MIS, AMH (MIS, AMH Muss, AMH Mirs, AMH Miss, AMH Miss, AMH Muss, AMH Miss, AMH Muss, AMH
salmon_AMHAY722411.1(MIS, MIF)Image: Constraint of the second secon
salmon_AMHAY722411.1MIF)Image: Constraint of the sector o
pejerrey_AM HAY763406.2AMH (MIS, MIF)AV763406.2zebrafish_AM H3AY881649.1MIF)
pejerrey_AM HAY763406.2MIF)Image: Constraint of the second s
InAT703400.2MIPImage: Constraint of the second sec
zebrafish_AM H3AV881649.1(MIS, (MIS, MIF)AJapanese killifish_AMH 3AY899282.1AMH (MIS, AY899282.1
H3AY881649.1MIF)Japanese killifish_AMH 3AY899282.1AMH (MIS, MIF)Image: Constraint of the second
Japanese killifish_AMH 3AMH (MIS, MIF)AMH (MIS, MIF)Japanese killifish_AMH 4AMH (MIS, AY899283.1AMH (MIS, MIF)Image: Constraint of the second
Japanese killifish_AMH 3AMH (MIS, AY899282.1AMH (MIS, AMH (MIS, AY899283.1AMH (MIS, AMH (MIS, AY899283.1AMH (MIS, AMH (MIS, MIF)AMH AY899283.1Japanese killifish_AMH 4AY899283.1MIF)
killifish_AMH 3AY899282.1MIF)Japanese killifish_AMH 4AY899283.1AMH (MIS, MIF)
3AY899282.1MIF)Image: Constraint of the second sec
Japanese killifish_AMH 4AMH (MIS, MIF)AMH (MIS, MIF)AV899283.1AMH (MIS, MIF)AMH (MIS, MIF)duck_AMHAY904047.1AMH (MIS, MIF)AMH (MIS, MIF)quail_AMH2AY904049.1AMH (MIS, MIF)AMH (MIS, MIF)mouse_AMHAY911505.1AMH (MIS, MIF)AMH (MIS, MIF)human_AMHBC049194.1AMH (MIS, MIF)AMH (MIS, MIF)mouse_AMHBC150477.1AMH (MIS, MIF)AMH (MIS, MIF)
killifish_AMH(MIS,4AY899283.1MIF)4AY899283.1MIF)4AY899283.1MIF)4AY904047.1MIF)4AY904047.1MIF)4AMH(MIS,4AY904049.1MIF)4AY904049.1MIF)4AMH(MIS,4AY911505.1MIF)5AMH(MIS,4AMH(MIS,4AMH(MIS,4AMH(MIS,4AMH(MIS,4AMH(MIS,4AMH(MIS,4MIF)4
4 AY899283.1 MIF) Image: AMH 4 AY899283.1 MIF) Image: AMH AMH (MIS, Image: AMH Image: AMH 1 AY904047.1 MIF) Image: AMH 1 AMH (MIS, Image: AMH 1 AY904049.1 MIF) Image: AMH 1 AY904049.1 MIF) Image: AMH 1 AY904049.1 MIF) Image: AMH 1 AMH (MIS, Image: AMH 2 BC150477.1 MIF) Image: AMH 2 BC150477.1 MIF) Image: AMH
Auck_AMHAY904047.1AMH (MIS, MIF)Instant AMH (MIS, MIS,quail_AMH2AY904049.1AMH (MIS, MIF)Instant AMH (MIS, MIF)mouse_AMHAY911505.1MIF)Instant (MIS, MIF)human_AMHBC049194.1MIF)Instant (MIS, MIF)mouse_AMHBC049194.1MIF)Instant (MIS, MIF)human_AMHBC049194.1MIF)Instant (MIS, MIF)mouse_AMH 2BC150477.1MIF)Instant (MIS, MIF)
duck_AMH AY904047.1 (MIS, MIF) AMH quail_AMH2 AY904049.1 AMH (MIS, (MIS, MIF)
duck_AMH AY904047.1 MIF) AMH quail_AMH2 AY904049.1 MIF) Image: Constraint of the second secon
AMH (MIS, (MIS, mouse_AMH(MIS, AY904049.1auail_AMH2AY904049.1AMH (MIS, MIF)AMH (MIS,mouse_AMHAY911505.1AMH (MIS, MIF)AMH
quail_AMH2AY904049.1MIF)quail_AMH2AY904049.1MIF)AMH (MIS, MIF)(MIS,mouse_AMHAY911505.1MIF)AMH (MIS, MIF)(MIS,human_AMHBC049194.1MIF)mouse_AMH 2BC150477.1MIF)
AdditionAMH (MIS, MIF)mouse_AMHAY911505.1AMH (MIS, MIF)human_AMHBC049194.1BC049194.1MIF)AMH (MIS, MIF)AMH (MIS, MIF)BC150477.1MIF)
mouse_AMHAY911505.1(MIS, MIF)human_AMHBC049194.1MIF)mouse_AMH 2BC150477.1MIF)
mouse_AMHAY911505.1MIF)AMH (MIS, human_AMHAMH BC049194.1AMH MIF)mouse_AMH 2AMH (MIS, BC150477.1AMH MIF)
AMH (MIS, MIF)AMH (MIS,human_AMHBC049194.1MIF)mouse_AMH 2(MIS, BC150477.1
human_AMHBC049194.1MIF)mouse_AMH 2BC150477.1MIF)
Inditial AMIT BC049194.1 MIF mouse_AMH AMH 2 BC150477.1
mouse_AMH (MIS, 2 BC150477.1 MIF)
2 BC150477.1 MIF)
nouse
Synthetic AMH
CONSTRUCT_A (MIS, MH BC167250.1 MIE)
(MIS,
Tilapia_AMH DQ257618.1 MIF)
AMH
Tilapia_AMH (MIS,
2 DQ25/619.1 MIF)
H2 D0441594.2 MIF)

	l	I	I	I
lananese		лмн		
killifish AMH		(MIS.		
5	DQ523689.1	MIF)		
		AMH		
		(MIS,		
carp_AMH	EU136185.1	MIF)		
		AMH		
		(MIS,		
carp_AMH2	EU136186.1	MIF)		
		AMH		
fox AMH	EU371740 1	(MIS, MIE)		
	20371740.1	лин)		
hamster AM		(MIS		
H	EU564707.1	MIF)		
		АМН		
boradllo_AM		(MIS,		
Н	FJ587489.1	MIF)		
		АМН		
stickleback_		(MIS,		
АМН	FJ773241.1	MIF)		
		AMH		
Human_AMH	NM_000479.	(MIS,		
2	3			
zobrafich AM	NM 0010077			
H4	79.1	MIF)		
		,		
Japanese		АМН		
killifish_AMH	NM_0011047	(MIS,		
6	28.1	MIF)		
		AMH		
salmon_AMH	NM_0011235	(MIS,		
2	85.1	MIF)		
		AMH		
Thouse_AMIT	NM_007445.	(MIS, MIE)		
5	<u> </u>			
	NM 012902	(MIS.		
rat_AMH	1	MIF)		
		AMH		
	NM_173890.	(MIS,		
cattle_AMH	1	MIF)		
		AMH		
	NM_205030.	(MIS,		
Chicken_AMH	1			
	NM 214210			
nia AMH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIF)		
	· ·			
chicken AMH		(MIS,		
2	U61754.1	MIF)		

		AMH	
		(MIS,	
	080853.1	миг)	
chicken AMH		(MIS,	
3	X89248.1	MIF)	
		AMH	
chimpanzee_	XM_0011729	(MIS,	
Амп	05.1	миг) амн	
opossum AM	XM 0013723	(MIS,	
H _	05.1	MIF)	
		AMH	
platypus_AM	XM_0015206	(MIS, MIE)	
11	02.1		
	XM_542190.	(MIS,	
dog_AMH	2	MIF)	
rhesus		AMH	
monkey_AM	XR_014624.	(MIS, MIE)	
11			
Junglefowl_B			
MP10A	AJ581667.1	BMP10	
human			
Synthetic			
construct_B			
MP10	AY890696.1	BMP10	
Finch BMP10	XM_0021965 74 1	BMP10	
	7 111		
Junglefowl_B	XM_417667.		
MP10	1	BMP10	
cattle_BMP1	XM_583418.	RMD10	
mouse BMP1	2	DMP10	
5A	AF082348.1	BMP15	
seabass_BMP			
15	AM933668.1	BMP15	
mouse_BMP1	BC055363 1	BMP15	
buman BMP	200000000000000000000000000000000000000		
15	BC069155.1	BMP15	
zebrafish_BM	BC124106 1		
ACTA	DC124100.1	כניויוס	
zebrafish BM			
P15	BC164703.1	BMP15	

	I	I	1	I
zebrafish BM	NM 0010204			
P15B	84.1	BMP15		
mouse_BMP1	NM_009757.			
5B	4	BMP15		
	NM_021670.			
rat_BMP15	1	BMP15		
chimpanzee	XM 5202/7			
BMP15	2	BMP15		
tetra_BMP2	DQ915172.1	BMP2		
Japanese				
	DO915174 1	BMP2		
2	00010174.1	DITIZ		
HUMBMP2A	M22489.1	BMP2		
Japanese				
killifish_BMP	NM_0011049	DMD2		
_2A	08.1	BMP2		
zehrafish BM	XM 0013420			
P2	61.2	BMP2		
salmon_BMP		BMP2		
2	BT059611.1	precursor		
human_BMP	D40402 1	BMD3		
5	049492.1	DMFS		
junglefowl B	NM 0010348			
MP3	19.1	BMP3		
	XM_0014947	D.4DD		
norse_BMP3	/3.2	ВМРЗ		
	XM 0021004			
Finch BMP3	52.1	ВМР3		
junglefowl_B		BMP3		
MP3A	DQ097308.1	precursor		
		-		
1				
Japanese killifish BMP				
Japanese killifish_BMP 4	AF538055.1	BMP4		
Japanese killifish_BMP 4	AF538055.1	BMP4		
Japanese killifish_BMP 4 zebrafish_BM	AF538055.1	BMP4		
Japanese killifish_BMP 4 zebrafish_BM P4B	AF538055.1 BC078423.1	BMP4 BMP4		
Japanese killifish_BMP 4 zebrafish_BM P4B	AF538055.1 BC078423.1	BMP4 BMP4		
Japanese killifish_BMP 4 zebrafish_BM P4B zebrafish_BM P4a	AF538055.1 BC078423.1	BMP4 BMP4 BMP4		

opossum_BM P4a	DQ192517.1	BMP4	
tetra_BMP4	DQ915173.1	BMP4	
duck_BMP4	EF540749.1	BMP4	
salmon_BMP 4	NM_0011398 44.1	BMP4	
zebrafish_BM P4	U82231.1	BMP4	
junglefowl_B MP4	X75915.1	BMP4	
opossum_BM P4	XM_0013625 54.1	BMP4	
Finch_BMP4	XM_0022004 11.1	BMP4	
salmon_BMP 4a	BT044754.1	BMP4 precursor	
mouse_BMP5	AK033362.1	BMP5	
C	BC100751.1	BMP5	
E E	BC100752.1	BMP5	
mouse_BMP5 A	BC100754.1	BMP5	
mouse_BMP5 D	BC141283.1	BMP5	
mouse_BMP5 B	L41145.1	BMP5	
rat_BMP5	NM_0011081 68.1	BMP5	
mouse_BMP5 F	NM_007555. 3	BMP5	
mouse_BMP6	AK041210.1	BMP6	
rat_BMP6	AY184240.1	BMP6	
mouse_BMP6 C	BC138593.1	BMP6	
mouse_BMP6 B	BC138595.1	BMP6	
mouse_BMP6 A	NM_007556. 2	BMP6	
rat_BMP6A	NM_013107. 1	BMP6	

	XM 0019258		
boar_BMP6	53.1	BMP6	
boar_BMP6A	XM_0019283 95.1	BMP6	
cattle BMP6	XM_869844. 3	BMP6	
zebrafish_BM			
P7	AF201379.1	BMP7	
XT_BMP7	BC063373.1	BMP7	
zebrafish_BM P7A	NM_131321. 1	BMP7	
XT_BMP7A	NM_203866. 1	BMP7	
mouse_BMP8 D	AK082895.1	BMP8	
mouse_BMP8	AK157978.1	BMP8	
mouse_BMP8 B	BC052168.1	BMP8	
mouse_BMP8 E	BC137890.1	BMP8	
zebrafish_BM P8	NM_0010449 71.1	BMP8	
rat_BMP8	NM_0011094 32.1	BMP8	
mouse_BMP8 A	NM_007558. 2	BMP8	
mouse_BMP8 F	NM_007559. 4	BMP8	
mouse_BMP8 C	U39545.1	BMP8	
rat_BMP8A	XM_0010547 75.1	BMP8	
Nematode_D AF-7	AY672707.1	daf-7	
Worm_DAF-7	DQ058687.1	daf-7	
Nematode_D AF-7A	EF514232.1	daf-7	
Nematode_D AF-7B	NM_064864. 3	daf-7	
Nematode_D AF-7C	U72883.1	daf-7	

X_DER	AF065135.1	derriere	
X_DER2	BC073508.1	derriere	
XT_DER	BC080341.1	derriere	
XT_DER2	NM_0010079 04.1	derriere	
X_DER3	NM_0010874 97.1	derriere	
Chicken_DO RSALIN	L12032.1	dorsalin	
cricket_DPP	AB044710.1	DPP	
spider_DPP	AB096072.1	DPP	
fly_DPP	AB121072.1	DPP	
sludge worm_DPP	AB192888.1	DPP	
oyster_DPP	AB379969.1	DPP	
Nematode_D PP	AF004395.1	DPP	
coral_DPP	AF285166.1	DPP	
Locust_DPP	AF374725.1	DPP	
sea snail_DPP	AF499914.1	DPP	
spider_DPP2	AJ518936.1	DPP	
millipede_DP P	AJ843875.1	DPP	
clam worm_DPP	AM114782.1	DPP	
sea anemone_DP P	AY391716.1	DPP	
bug_DPP	AY899334.1	DPP	
X_DPP	BC059286.1	DPP	
sea squirt_BMPb	D85464.1	BMPb	
butterfly_DP P	EU233806.1	DPP	

silkworm_DP P	FJ572058.1	DPP	
beetle_DPP	NM_0010394 51.1	DPP	
silkworm_DP P2	NM_0011453 29.1	DPP	
fruit fly_DPP	NM_057963. 4	DPP	
fruit fly_DPP2	NM_164485.	DPP	
fruit fly_DPP3	NM_164486.	DPP	
fruit fly_DPP4	NM_164487.	DPP	
fruit fly_DPP5	NM_164488.	DPP	
grasshopper _DPP	U23785.1	DPP	
bee_DPP	XM_0011228 15.1	DPP	
fruit fly_DPP6	XM_0013559 41.2	DPP	
wasp_DPP	XM_0016076 27.1	DPP	
mosquito_DP P	XM_0016541 03.1	DPP	
mosquito_DP P2	XM_0018463 64.1	DPP	
aphid_DPP	XM_0019441 12.1	DPP	
aphid_DPP2	XM_0019455 91.1	DPP	
aphid_DPP3	XM_0019459 75.1	DPP	
fruit fly_DPP7	XM_0019683 81.1	DPP	

fruit flv DPP8	XM_0020519 35.1	DPP	
fruit fly_DPP9	XM_0020778 49.1	DPP	
fruit fly_DPP10	XM_0020876 45.1	DPP	
louse_DPP	XM_0024277 61.1	DPP	
nematode_D PP2	NM_072308. 4	DPP/BMP like	
Zebrafish_D VR1	BC085547.1	DVR1	
Zebrafish_D VR1A	BC164172.1	DVR1	
Zebrafish_D VR1B	NM_130948. 1	DVR1	
zebrafish_DV R1C	U00931.1	DVR1	
fruit fly_GBB	M84795.1	GBB	
beetle_GBB	NM_0011143 41.1	GBB	
fruit fly_GBB2	NM_057992. 2	GBB	
aphid_GBB	XM_0019479 22.1	GBB	
fruit fly_GBB3	XM_0020499 12.1	GBB	
bee_GBB	XM_394252. 1	GBB	
Mouse_GDF1 A	BC079555.1	GDF1	
XT_GDF1	BC161554.1	GDF1	
Mouse_GDF1	M57639.1	GDF1	
10MAN_GDF	M62302.1	GDF1	
rat_GDF1	NM_0010442 40.2	GDF1	

MOUSE_GDF	NM_0011632			
1C	82.1	GDF1		
HUMAN_GDF	NM_001492.			
1	4	GDF1		
MOUSE_GDF	NM_008107.	005		
18	4	GDF1		
	VM 0012704			
opossum_GD	XM_0013704			
	VM 505260	GDF1		
1	אוז_300.00.	GDF1		
-	5	GDT1		
Human GDF				
10A	BC028237.1	GDF10		
Mouse GDF1				
0B	BC058358.1	GDF10		
Cattle_GDF1				
0A	BC123524.1	GDF10		
Mouse_GDF1				
0A	L42114.1	GDF10		
Cattle_GDF1	NM_0010761	00510		
0	67.1	GDF10		
Human_GDF	NM_004962.			
10		GDF10		
Rat GDE10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GDE10		
Mouse GDF1	MM 145741			
	2	GDF10		
Mouse GDF1				
0	S82648.1	GDF10		
Rhesus				
Monkey_GDF	XM_0011094			
10	75.1	GDF10		
Chimpanzee_	XM_0011352			
GDF10	81.1	GDF10		
	XM_848811.	00510		
Dog_GDF10	1	GDF10		
Zobrofich C				
	AF411500 2	GDF11		
	731 TIJJJ.Z			<u> </u>
Zebrafish G				
DF11	BC134028.1	GDF11		
Human GDF	NM_005811.			
11	3	GDF11		
Mouse_GDF1	NM_010272.			
1	1	GDF11		
	XM_0010715			
Rat_GDF11	74.1	GDF11		

Rhesus Monkey GDF	XM 0010961		
11	35.1	GDF11	
Boar_GDF11	XM_0019275 55.1	GDF11	
Rat_GDF11A	XM_343148. 3	GDF11	
Chimpanzee_ GDF11	XM_509122. 2	GDF11	
Human_GDF 15	AF019770.1	GDF15	
Mouse_GDF1 5	AF159571.1	GDF15	
Human_GDF 15A	AK291530.1	GDF15	
Human_GDF 15B	BC000529.2	GDF15	
Human_GDF 15C	BC008962.2	GDF15	
Mouse_GDF1 5A	BC067248.1	GDF15	
Mouse_GDF1 5B	NM_011819. 2	GDF15	
Rat_GDF15	NM_019216. 2	GDF15	
Rhesus Monkey_GDF 15	XM_0011143 75.1	GDF15	
Chimpanzee_ GDF15	XM_524157. 2	GDF15	
Mouse_GDF2	AF156890.1	GDF2	
Human_GDF 2	AK314956.1	GDF2	
Human_GDF 2B	BC069643.1	GDF2	
Human_GDF 2A	BC074921.2	GDF2	
Mouse_GDF2 D	BC103625.1	GDF2	
Mouse_GDF2 C	BC103679.1	GDF2	
Mouse_GDF2 A	BC103680.1	GDF2	
Mouse_GDF2 B	BC103681.1	GDF2	

rat CDE2	NM_0011060	CDE2	
Human GDF	NM 016204	GDF2	
2c	1	GDF2	
Mouse_GDF2	NM_019506.		
E	4	GDF2	
in a lateral C			
JUNGIETOWI_G	NM_205432.	GDE2	
rhesus	±		
monkey_GDF	XM_0011095		
2	23.1	GDF2	
horse CDE2	XM_0015006	CDE2	
	54.1		
Chimpanzee	XM 507775.		
GDF2	2	GDF2	
	XM_593677.		
GDF2	3	GDF2	
dog GDF2	XM_848793. 1	GDF2	
Human GDF	-	0012	
3	BC030959.1	GDF3	
Mouse_GDF3			
В	BC101963.1	GDF3	
Mouse_GDF3	RC101064 1	CDE2	
Mouse GDF3	DC101904.1	GDIS	
D	BC103565.1	GDF3	
rat_GDF3A	DQ372084.1	GDF3	
Mouse_GDF3	106442 1		
	LU0443.1	GDF3	
	NM 0011096		
rat_GDF3	71.1	GDF3	
Mouse_GDF3	NM_008108.		
A	4	GDF3	
Human_GDF	NM_020634.	CDE3	
JA	1		
Mouse_GDF3	S52658.1	GDF3	
	XM_0012541	0050	
cattle_GDF3	80.1	GDF3	
Chimnanzee	XM 508988		
GDF3	2	GDF3	
sea			
anemone_G			
DF5	AY391717.1	GDF5	

sea anemone G			
DF5a	AY496945.1	GDF5	
Human_GDF 5A	BC032495.1	GDF5	
Human_GDF 5	NM_000557. 2	GDF5	
horse_GDF5	NM_0010825 20.1	GDF5	
Mouse_GDF5	U08337.1	GDF5	
rat_GDF5	XM_0010663 44.1	GDF5	
rhesus monkey_GDF 5	XM_0010997 02.1	GDF5	
rhesus monkey_GDF 5A	XM_0010998 06.1	GDF5	
Chimpanzee_ GDF5A	XM_0011645 92.1	GDF5	
boar_GDF5	XM_0019294 05.1	GDF5	
Chimpanzee_ GDF5	XM_530287. 2	GDF5	
dog_GDF5	XM_542974. 2	GDF5	
cattle_GDF5	XM_588072. 3	GDF5	
Human_GDF 6	AJ537424.1	GDF6	
Mouse_GDF6 A	BC141339.1	GDF6	
Mouse_GDF6	BC141340.1	GDF6	
Human_GDF 6A	NM_0010015 57.2	GDF6	
rat_GDF6	NM_0010130 38.1	GDF6	
XT_GDF6	NM_0010160 77.2	GDF6	
X_GDF6	NM_0010903 64.1	GDF6	

Zebrafish_G	NM_0011599	CDEC	
MOUSA CDE6	94.1 NM 013526	GDF0	
B	1	GDF6	
	XM_0019155		
horse_GDF6	79.1	GDF6	
	XM_867875.	ODEC	
Cattle_GDF6	3	GDF6	
Tuman_GDF	AB158468 1	GDF7	
, Human GDF	7.8150100.1		
7A	AF522369.1	GDF7	
Mouse_GDF7	AF525752.1	GDF7	
Mouse_GDF7	NM_013527.		
A	1	GDF7	
Human_GDF	NM_182828.		
/D	2	GDF7	
	XM 0010637		
Rat GDF7C	24.1	GDF7	
	XM_0010675		
Rat_GDF7B	29.1	GDF7	
	XM_0010675	0057	
Rat_GDF7	81.1	GDF7	
Monkey GDF	XM 0010969		
7	70.1	GDF7	
	XM_345646.		
Rat_GDF7A	3	GDF7	
	XM_616701.		
Cattle_GDF7	3	GDF7	
		0050	
Cattle_GDF9	AB058416.1	GDF9	
Rat GDF9A	AF099912 1	GDF9	
Cattle GDF9	711055512.1		
A	AF307092.2	GDF9	
boar_GDF9	AY649763.1	GDF9	
Zebrafish_G			
DF9	AY833104.1	GDF9	
Maura CDF0		CDEO	
Human CDF	DCU32007.1	GUF9	
	BC096228 3	GDF9	
Human GDF	50050220.5		
9A	BC096229.3	GDF9	
Human_GDF			
9	BC096230.3	GDF9	

Human_GDF	PC006221 1	CDE0		
90	BC096231.1	GDF9		
Zebrafish_G				
DF9B	BC108013.1	GDF9		
buffalo_GDF		CDF0		
9A	EF2021/1.2	GDF9		
Yak_GDF9	EU267798.1	GDF9		
Sheen GDE9	F1429111 1	GDF9		
buffalo GDF	15125111.1			
9	FJ529501.1	GDF9		
	CO204401 1	CDEO		
	GQ294481.1	GDF9		
A	L06444.1	GDF9		
hoar GDF9A	09 1	GDF9		
	05.1			
Zebrafish_G	NM_0010123			
DF9A	83.1	GDF9		
Sheep_GDF9	NM_0011428	GDF9		
	00.1			
	NM_0011659			
Cat_GDF9A	00.1	GDF9		
Human_GDF	NM_005260.	0050		
9D	3 NM 009110	GDF9		
B	2	GDF9		
	NM_021672.			
Rat_GDF9B	1	GDF9		
Cattle_GDF9	NM_174681.	0050		
В	2	GDF9		
Rat_GDF9	X81899.1	GDF9		
Chimpanzee_	XM_527008.			
Human CDN	۷	GUFY		
F	AF053748.1	GDNF		
Junglefowl_G				
DNF	AF176017.1	GDNF		
lunglefowl G				
DNF2	AF176018.1	GDNF		
rat_GDNF	AF205713.1	GDNF		
rat CDNE2	ΔF205714 1	GDNE		
	71 2037 14.1		I	

rat CDNE3	AE205715 1	GDNE	
Zebrafish G	AI 203713.1	GDINI	
DNF	AF329853.1	GDNF	
rat_GDNF4	AF497634.1	GDNF	
Human_GDN	41/052022.1	ODNE	
FZ	AY052832.1	GDNF	
monkey GD			
NF	AY288835.1	GDNF	
cattle_GDNF	AY382559.1	GDNF	
		0015	
carp_GDNF	AY646353.1	GDNF	
	AY893733 1	GDNE	
Human GDN	///055/55/1	GDIII	
F4	BC069119.1	GDNF	
Human_GDN			
F5	BC069369.1	GDNF	
Mouro CDNE	BC110031 1	CONE	
Human GDN	DC119031.1	GDINI	
F6	BC128108.1	GDNF	
Human_GDN			
F7	BC128109.1	GDNF	
Zahvafiah C			
DNF2	BC150163 1	GDNF	
	0010010011	GDIII	
X_GDNF	BC169813.1	GDNF	
Mouse_GDNF			
2	D49921.1	GDNF	
Human_GDN	DO235474 1	GDNE	
10	DQ255474.1	GDIN	
Rat_GDNF5	EU068467.1	GDNF	
Rat_GDNF6	EU068468.1	GDNF	
Rat GDNE7	FU068469 1	GDNE	
	20000405.1	GDINI	
Rat_GDNF8	EU068470.1	GDNF	
Rat_GDNF9	EU068471.1	GDNF	
Rat GDNF10	FU068472 1	GDNF	
	200007/2.1		
X_GDNF2	EU732590.1	GDNF	
X_GDNF3	EU732591.1	GDNF	
Human_GDN	NM_000514.	CONE	
	L _	GUNE	

	NM 0010067		
X_GDNF4	27.1	GDNF	
Human_GDN F10	NM_0011650 38.1	GDNF	
Human_GDN F11	NM_0011650 39.1	GDNF	
Human_GDN F12	NM_001495. 4	GDNF	
Mouse_GDNF 3	NM_010275. 2	GDNF	
Rat_GDNF11	NM_019139. 1	GDNF	
Human_GDN F13	NM_199231. 1	GDNF	
Human_GDN F14	NM_199234. 1	GDNF	
Mouse_GDNF 4	U37459.1	GDNF	
Mouse_GDNF 5	U66196.1	GDNF	
Rat_GDNF12	X92495.1	GDNF	
rhesus monkey_GD NF2	XM_0010947 14.1	GDNF	
Junglefowl_G DNF3	XM_425018. 2	GDNF	
_dog_GDNF	XM_546342. 2	GDNF	
cattle_GDNF 2	XM_615361. 4	GDNF	
rhesus monkey_IHN A2	AY574369.1	inhibin alpha	
Human- Synthetic construct_IH NA	AY889895.1	inhibin alpha	
Human_IHN A	BC006391.2	inhibin alpha	
cattle_IHNA	BC109837.1	inhibin alpha	
Human_IHN A4	BT006954.1	inhibin alpha	

buffalo_IHNAEU884446.1alphainhibin inhibinHuma_IINAM13144.1alphaBovine_IHNAM13273.1alphaBovine_IHNAM13273.1alphainhibinalphapig_IHNAM13980.1alphaHuma_IINHinhibinA2M13981.1alpharhesusmonkey_IHNNM_0010329inhibinA32alphaHuman_INHNM_001291.1inhibinA32alpharat_IHNA2alphamonkey_IHNNM_012590.1inhibinrat_IHNA1alphacattle_IHNA1alphaNM_012590.1inhibinrat_IHNA2alpharat_IHNA1alphaPorcine_IHNNM_0214189.1inhibinAX03265.1alphaMouse_IHNBEO026140.1beta Crat_IHNB32BA0.1beta Cmonse_IHNBNM_001159norse_IHNBNM_0014885horse_IHNBS.1horse_IHNBNM_0014885horse_IHNB3horse_IHNB3horse_IHNB3horse_IHNB1horse_IHNB3horse_IHNB3horse_IHNB3horse_IHNB3horse_IHNB3 <t< th=""><th></th><th></th><th>inhibin</th><th></th></t<>			inhibin	
Human_INH AM13144.1inhibin alphaInhibinBovine_IHNAM13273.1alphaInhibinBovine_IHNAM13273.1alphaInhibinpig_IHNAM13980.1alphaInhibinHuman_INH A2M13981.1alphaInhibinAS5.1alphaInhibinAS5.1alphaInhibinAS5.1alphaInhibinAS5.1alphaInhibinAYamaalphaInhibinAYamaalphaInhibinAYamaalphaInhibinAYamaalphaInhibinAYamaalphaInhibinAYamaalphaInhibinChimpanzeeNM_174094.inhibinInhibinCattle_IHNA2YamainhibinInhibinAYamaalphaInhibinAYamaInhibinInhibinAYamaInhibinInhibinASoceritHNBInhibinInhibinABC026140.1beta CInhibinrat_IHNB2BC089799.1beta CInhibinrat_IHNB3YamaInhibin-Inhibinrat_IHNB4YamaInhibin-Inhibin-rat_IHNB5AngInhibin-Inhibin-rat_IHNB3YamaInhibin-Inhibin-rat_IHNB4YamaInhibin-Inhibin-rat_IHNB5Inhibin-Inhibin-rat_IHNB5Inhib	buffalo_IHNA	EU884446.1	alpha	
A M13144.1 alpha inhibin inhibin inhibin inhibin pig_IHNA M13273.1 alpha pig_IHNA M13980.1 alpha human_INH inhibin alpha monkey_IHN M13981.1 alpha A 55.1 alpha monkey_IHN NM_0010329 inhibin A 55.1 alpha Human_INH NM_002191. inhibin A3 2 alpha NM_012590. inhibin rat_IHNA 2 alpha NM_174094. inhibin cattle IHNA2 3 NM_214189. inhibin porcine_IHN 1 A X03265.1 alpha	Human INH		inhibin	
Bovine_IHNAM13273.1inhibin alphapig_IHNAM13980.1alphaHuman_INHinhibinA2M13981.1alphahesusinhibinA2M13981.1alphahesusinhibinA32alphaNM_0010329inhibinA32alphaNM_012590.inhibinat_IHNANM_012590.inhibinalpharat_IHNANM_174094.inhibinalphacattle_IHNA23NM_214189.inhibinboar_IHNA1AX03265.1alphaPorcine_IHNXM_0011480AX03265.1alphaPorcine_IHNAAX03265.1alphaMOUSELINEIhnibinAX03265.1alphaBC026140.1beta Crat_IHNBBC089799.1beta Crhesusmonkey_IHNXM_001159nouse_IHNBA0.1beta Crhesusmose_IHNBXM_0014885horse_IHNBXM_609262.horse_IHNBXM_609262.horse_IHNBXM_609262.human_IHNBAAAAAAAAAAAAAAA	A _	M13144.1	alpha	
Bovine_IHNAM13273.1alphaInhibin inhibinpig_IHNAM13980.1alphaInhibinAM13981.1alphaInhibinA2_M13981.1alphaInhibinmonkey_IHNNM_0010329inhibinInhibinA55.1alphaInhibinA55.1alphaInhibinA75.1alphaInhibinA1inhibinInhibinA1alphaInhibinA2alphaInhibinA1alphaInhibincattle_IHNA2alphaInhibinboar_IHNA1alphaInhibinAX03265.1inhibinInhibinAX03265.1inhibinInhibinIHNA64.1alphaInhibinBC026140.1beta CInhibin-rat_IHNB2beta CMM_022614.Inhibin-rat_IHNB2beta Cmonkey_IHNXM_0011159BInhibin-rat_IHNBXM_001159BInhibin-rat_IHNBXM_0014885BInhibin-beta CInhibin-rat_IHNBXM_0014885BInhibin-beta CInhibin-rat_IHNBXM_0014885AInhibin-beta CInhibin-beta CInhibin-beta CInhibin-beta CInhibin-beta CInhibin- <tr< td=""><td></td><td></td><td>inhibin</td><td></td></tr<>			inhibin	
pig_HNAM13980.1inhibin alphaHuman_INH A2M13981.1alphaIHuman_INH ANM_0010329inhibin alphaIA55.1alphaIHuman_INH A3NM_002191. 2inhibin alphaIA55.1alphaIHuman_INH A3NM_012590. 2inhibin alphaIANM_012590. alphainhibin alphaIcattle_IHNA2alphaINM_214189. boar_IHNAInhibin alphaINM_202651. alphaalphaIPorcine_IHN AX03265.1alphaIAX03265.1alphaIInhibin alphaInhibin alphaIIHNA ASC026140.1beta CIrat_IHNB2BC089799.1beta CIBC026140.1beta CIrat_IHNB3NM_0011159 40.1Inhibin- beta CImouse_IHNB 40.1Inhibin- beta CImouse_IHNB 40.1Inhibin- beta CIMumon_IHNB 40.1Inhibin- beta CIMuman_IHNB 2XM_609262. andInhibin- beta CMuman_IHNB 2XM_609262. andInhibin- beta CMuman_IHNB 2AK075285.1Inhibin- beta CMuman_IHNB 3BC005161.2beta EMuman_IHNB 3Inhibin- beta CIMuman_IHNB 3Inhibin- beta CIMuman_IHNB 3 </td <td>Bovine_IHNA</td> <td>M13273.1</td> <td>alpha</td> <td></td>	Bovine_IHNA	M13273.1	alpha	
pig_IHNAM13980.1alphaImibin inhibinA2M13981.1inhibin alphaImibinA2M13981.1alphaImibinrhesus monkey_IHNNM_0010329inhibin alphaImibinA32inhibinImibinA32alphaImibinA32alphaImibinrat_IHNANM_012590.inhibin alphaImibincattle_IHN23alphaImibincattle_IHN23alphaImibinboar_IHNA1alphaImibinAX03265.1alphaImibinAX03265.1alphaImibinAX03265.1alphaImibinAM_0111480inhibin alphaImibinAX03265.1alphaImibinBBC026140.1beta CImibin-rat_IHNBBC026140.1beta CImibin-rat_IHNB3AllImibin-Imibin-rat_IHNB4AllImibin-Imibin-beta CImibin-Imibin-Imibin-rat_IHNB3AllImibin-Imibin-beta CImibin-Imibin-Imibin-rat_IHNB4XM_0011159Imibin-Imibin-beta CImibin-Imibin-Imibin-fmesus mouse_IHNBXM_0014885Imibin-beta CImibin-Imibin-fmesus horse_IHNBImibin-Imibin-fmesus mouse_IHNBImibin- <td< td=""><td></td><td></td><td>inhibin</td><td></td></td<>			inhibin	
Human_INH A2M13981.1inhibin alpharhesus monkey_IHNNM_0010329 55.1inhibin alphaHuman_INHNM_002191.inhibin alphaA32alphaMM_012590.inhibin alpharat_IHNA2NM_174094.inhibin alphacattle_IHNA23NM_214189.inhibin alphaboar_IHNA1Porcine_IHN AX03265.1AX03265.1alpha	pig_IHNA	M13980.1	alpha	
A2M13981.1alpharhesus monkey_IHNNM_0010329inhibin alpha	Human INH		inhibin	
rhesus monkey_IHN ANM_0010329 55.1inhibin alphaHuman_INH A3NM_002191.inhibin alphaA32alpharat_IHNA2alphacattle_IHNA2NM_174094.inhibin alphacattle_IHNA23inhibin alphaboar_IHNA1alphaPorcine_IHN AX03265.1inhibin alphaChimpanzee IHNAXM_0011480inhibin alphaChimpanzee Tat_IHNA2XM_0011480inhibin alphaBC026140.1beta C	A2	M13981.1	alpha	
monkey_IHN ANM_0010329 55.1inhibin alphaHuman_INH A3NM_002191. alphainhibin alphaA32alpharat_IHNANM_012590. 2inhibin alphainhibin alphacattle_IHNA2NM_174094. 3inhibin alphainhibin alphaboar_IHNA1alphainhibin alphaboar_IHNA1alphainhibin alphaPorcine_IHN AXM_0011480 64.1inhibin alphainhibin alphamouse_IHNB BSC026140.1beta C beta Cinhibin- alpharat_IHNB2BC026140.1beta C beta Cinhibin- alphamouse_IHNB BXM_0011159 albetaInhibin- beta Cinhibin- alpharat_IHNB3XM_001155 albetaInhibin- beta Cinhibin- alphamouse_IHNB BXM_0014885 allInhibin- beta Cinhibin- alpharat_IHNB3XM_0014885 albetaInhibin- beta Cinhibin- alphamouse_IHNB BXM_0014885 allInhibin- beta Cinhibin- alphagroup horse_IHNBXM_0014885 allInhibin- beta Cinhibin- alphagroup horse_IHNBXM_609262. alphaInhibin- beta Cinhibin- alphahorse_IHNB horse_IHNBXM_609262. alphaInhibin- beta Cinhibin- alphahorse_IHNBXM_609262. alphaInhibin- beta Cinhibin- alphahorse_IHNB horse_IHNBXM_609262. alphaInhibin	rhesus			
A 55.1 alpha Inhibin Human_INH NM_002191. inhibin alpha Inhibin A3 2 alpha Inhibin Inhibin rat_IHNA 2 alpha Inhibin Inhibin rat_IHNA 2 alpha Inhibin Inhibin cattle_IHNA2 3 alpha Inhibin boar_IHNA 1 alpha Inhibin boar_IHNA 1 alpha Inhibin A X03265.1 alpha Inhibin A X03265.1 alpha Inhibin A X03265.1 alpha Inhibin B EC026140.1 beta C Inhibin- rat_IHNB2 BC089799.1 beta C Inhibin- rat_IHNB3 2 beta C Inhibin- rat_IHNB3 2 beta C Inhibin- rat_IHNB3 XM_0011159 Inhibin- Inhibin- B A0.1 beta C Inhibin-	monkey_IHN	NM_0010329	inhibin	
Human_INH A3NM_002191. 2inhibin alphainhibin alphaA3NM_012590. alphainhibin alphainhibin alpharat_IHNA2alphainhibin alphacattle_IHNA2NM_174094. 3inhibin alphainhibin alphaboar_IHNANM_214189. inhibin Ainhibin alphainhibin alphaPorcine_IHN AXM_0011480 64.1inhibin alphainhibin alphaChimpanzee_ IHNB 3XM_0011480 64.1inhibin- alphainhibin- alpharat_IHNB2BC026140.1 beta Cbeta Cinhibin- alpharat_IHNB3BC026140.1 beta Cbeta Cinhibin- alpharat_IHNB3XM_0011159 3.01inhibin- beta Cinhibin- alpharat_IHNB3XM_0011159 3.1inhibin- beta Cinhibin- alphamouse_IHNB 4NM_010565. 3.1inhibin- beta Cinhibin- alphamouse_IHNB 4XM_0014885 3.1inhibin- beta Cinhibin- alphafurg_gitHNB 4XM_0014885 3.1inhibin- beta Cinhibin- alphagitHNB 4XM_609262. 3inhibin- beta Cinhibin- alphagitHNB 4XM_609262. 3inhibin- beta C precursorinhibin- alphagitHNB 4XM_609262. 3inhibin- beta C precursorinhibin- alphahuman_IHNB 2Ak075285.1beta Einhibin- beta Ehuman_IHNB 3BC005161.2beta E <td< td=""><td>A</td><td>55.1</td><td>alpha</td><td></td></td<>	A	55.1	alpha	
A32alphaImilian alpharat_IHNANM_012590. 2inhibin alphaImilian alphacattle_IHNA2NM_174094. 3inhibin alphaImilian alphaboar_IHNANM_214189. 1inhibin alphaImilian alphaPorcine_IHN AXM_0011480 64.1inhibin alphaImilian alphaChimpanzee IHNAXM_0011480 64.1inhibin- alphaImilian- alphaChimpanzee IHNB 3XM_0011480 64.1inhibin- alphaImilian- alphaRouse_IHNB 3BC026140.1beta CImilian- beta Crat_IHNB2BC089799.1beta CImilian- beta Cmouse_IHNB 40.1Inhibin- beta CImilian- beta Cmouse_IHNB BXM_0011159 3.1Imhibin- beta CImilian- beta Cmouse_IHNB AXM_00114885 3.1Imilian- beta CImilian- beta Cmouse_IHNB AXM_0014885 3.1Imilian- beta CImilian- beta Cmouse_IHNB AXM_0014885 3.1Imilian- beta CImilian- beta Cmouse_IHNB AXM_609262.Imilian- beta C precursorImilian- beta Cmouse_IHNB AXM_844076.Imilian- beta C precursorImilian- precursorhuman_IHNB AAK075285.1beta EImilian- peta E	Human_INH	NM_002191.	inhibin	
rat_IHNANM_012590. 2inhibin alphaImage alphaNM_174094. cattle_IHNA2NM_174094. 3inhibin alphaImage alphaboar_IHNA1alphaImage alphaPorcine_IHN A1alphaImage alphaPorcine_IHN AX03265.1alphaImage alphaChimpanzee IHNAXM_0011480 64.1inhibin alphaImage alphaMouse_IHNB 3BC026140.1beta CImage beta Crat_IHNB2BC089799.1beta CImage beta Crat_IHNB32beta CImage beta Cmouse_IHNB 40.1Inhibin- beta CImage beta CImage beta Cmouse_IHNB 8NM_001159 3.11Inhibin- beta CImage beta Cmouse_IHNB 8NM_0010565. 3.11Inhibin- beta CImage precursormouse_IHNB 4.0.1Image beta CImage precursorImage precursormouse_IHNB 8.3.1Image Image beta CImage precursorImage precursormouse_IHNB 4.0.1Image beta CImage precursorImage precursormouse_IHNB 4.0.1Image precursorImage precursorImage precursormouse_IHNB 4.0.1Image precursorImage precursorImage precursormouse_IHNB 4.0.1Image precursorImage precursorImage precursormouse_IHNB 4.0.1Image precursorImage precursorImage precursor	A3	2	alpha	
rat_IHNA2alphaImage in the image in the		NM_012590.	inhibin	
NM_174094. alphainhibin alphaCattle_IHNANM_214189. inhibin alphainhibin alphaNM_214189. Porcine_IHNinhibin alphainhibin alphaPorcine_IHNinhibin alphainhibin alphaAX03265.1alphaChimpanzee IHNAXM_0011480 64.1inhibin- alphaBC026140.1beta CBC026140.1beta Crat_IHNB2BC08979.1 beta CM_022614. rat_IHNB3Inhibin- beta Crat_IHNB32BC011159 monkey_IHN AInhibin- beta CM_0011159 AInhibin- beta Cmouse_IHNB ANM_0011159 alphaMore_IHNB ANM_0014885 peta CMore_IHNB AInhibin- beta Cmouse_IHNB ASMore_IHNB AInhibin- beta Cmouse_IHNB ANM_0014885 peta CMore_IHNB AInhibin- beta CMore_IHNB AInhibin- beta CM_0014885 AInhibin- beta CM_0014885 AInhibin- beta CM_609262. Cattle_IHNBInhibin- beta C precursorM_844076. AInhibin- beta CM_0014188 AInhibin- beta CM_844076. AInhibin- beta CMuman_IHNB AInhibin- beta CMuman_IHNB BBC005161.2Muman_IHNB AInhibin- beta EMuman_IHNB BInhibin- beta CMuman_IHNBInhibin- beta CMuma	rat_IHNA	2	alpha	
cattle_IHNA23alphaImage in the image in		NM_174094.	inhibin	
boar_IHNANM_214189. 1inhibin alphaPorcine_IHN A1inhibin alphaPorcine_IHN AX03265.1alphaChimpanzee_ IHNAXM_0011480inhibin alphaChimpanzee_ IHNAXM_0011480inhibin- alphaBC026140.1beta CBC026140.1beta CInhibin- at_IHNB2BC026140.1BC026140.1beta CNM_022614.Inhibin- beta Crat_IHNB32VM_022614.Inhibin- beta Crhesus monkey_IHN BXM_0011159Mouse_IHNB A0.1Inhibin- beta CMouse_IHNB A0.1Inhibin- beta CMouse_IHNB A0.1Inhibin- beta CMouse_IHNB A0.1Inhibin- beta CMugena AuInhibin- beta CAuInhibin- beta CAuInhibin- beta CAuInhibin- beta CAuInhibin- beta CAuInhibin- beta CAuInhibin- beta CAuInhibin- beta CAuInhibin- beta CAuInh	cattle_IHNA2	3	alpha	
boar_IHNA1alphaPorcine_IHN AX03265.1inhibin alphaChimpanzee IHNAXM_0011480 64.1inhibin alphamouse_IHNB 3BC026140.1beta Cat_IHNB2BC089799.1beta Crat_IHNB2BC089799.1beta Crat_IHNB32Inhibin- beta Crat_IHNB32beta Crat_IHNB32Inhibin- beta Crat_IHNB32Inhibin- beta Crat_IHNB32beta Crat_IHNB32Inhibin- beta Crat_IHNB32Inhibin- beta Crat_IHNB32Inhibin- beta Crat_IHNB32Inhibin- beta Cmouse_IHNB A0.1Inhibin- beta CInhibin- beta Cmouse_IHNB A0.1Inhibin- beta CInhibin- beta CfactureXM_0014885 s3.1Inhibin- beta CfactureXM_0014885 s3.1Inhibin- beta CfactureXM_609262. precursorInhibin- beta CfactureXM_844076. precursorInhibin- beta CfactureXM_844076. precursorInhibin- beta CfactureXM_844076. precursorInhibin- beta Chuman_IHNB 2AK075285.1beta Ehuman_IHNB 3C005161.2beta E	-	NM_214189.	inhibin	
Porcine_IHN AX03265.1inhibin alphaChimpanzee_ IHNAXM_0011480 64.1inhibin alphamouse_IHNB 3Inhibin- BC026140.1Inhibin- beta Crat_IHNB2BC089799.1beta Cmonkey_IHN BXM_0011159 40.1Inhibin- beta Cmouse_IHNB AXM_0011159 40.1Inhibin- beta Cmouse_IHNB AXM_001155. 3Inhibin- beta Cmouse_IHNB AXM_0014885 83.1Inhibin- beta Ck M_010565. AInhibin- beta Ck M_0014885 botaInhibin- beta Ck M_609262. 3Inhibin- beta Ck M_844076. 1Inhibin- beta Ck M_011HNB AK075285.1Inhibin- beta Chuman_IHNB 2AK075285.1human_IHNB AC005161.2human_IHNB BBC005161.2human_IHNB AInhibin- beta E	boar_IHNA	1	alpha	
AX03265.1alphaChimpanzee IHNAXM_0011480inhibin alphainhibin alphamouse_IHNB 3BC026140.1beta CaInhibin- beta Cinhibin- alpharat_IHNB2BC089799.1beta Cmouse_IHNB 3BC022614.1Inhibin- beta Crat_IHNB3BC022614.1Inhibin- beta Crat_IHNB3XM_0011159Inhibin- beta Crhesus monkey_IHN 40.1Inhibin- beta Cinhibin- beta Cmouse_IHNB 4NM_010565.Inhibin- beta CaJanabaraJanabaramouse_IHNB 4XM_0014885Inhibin- beta CaJanabaraInhibin- beta Cmouse_IHNB 4NM_0014865Inhibin- beta CaJanabaraInhibin- beta CaJanabaraInhibin- beta CbJanabaraInhibin- beta CbJanabaraInhibin- beta CbJanabaraInhibin- beta CbJanabaraInhibin- beta CbJanabaraInhibin- beta Ccattle_IHNBInhibin- beta CbJanabaraInhibin- beta Ccattle_IHNBInhibin- beta CbJanabaraJanabaraInhibin- beta CbJanabaraJanabaraInhibin- beta CJanabaraJanabaraJanabaraInhibin- beta CJanabaraJanabaraJanabaraJanabara	Porcine IHN		inhibin	
Chimpanzee IHNAXM_0011480 64.1inhibin alphainhibin alphamouse_IHNB 3BC026140.1beta CaInhibin- beta Crat_IHNB2BC089799.1BC089799.1beta Cinhibin- rat_IHNB3NM_022614.Inhibin- beta CInhibin- beta Crhesus monkey_IHN BXM_0011159Mouse_IHNB 40.1Inhibin- beta CMouse_IHNB 40.1Inhibin- beta CMouse_IHNB 40.1Inhibin- beta CMouse_IHNB 40.1Inhibin- beta CMouse_IHNB 40.1Inhibin- beta CMouse_IHNB 40.1Inhibin- beta CMultiple 40.1Inhibin- beta CMouse_IHNB 40.1Inhibin- beta CMultiple 40.1Inhibin- beta CMultiple 40.1Inhibin- beta CMultiple 40.1Inhibin- beta CMultiple 40.1Inhibin- beta CAtko75285.1Inhibin- beta CMultiple 40.1Inhibin- beta CM	A	X03265.1	alpha	
Chimpanzee IHNAXM_0011480 64.1inhibin alphainhibin alphamouse_IHNB 3BC026140.1beta CInhibin- beta Crat_IHNB2BC089799.1beta CBC089799.1beta CNM_022614.Inhibin- beta Crat_IHNB32beta CInhibin- beta Crat_IHNB3Inhibin- beta Crat_IHNB31nhibin- beta Crat_IHNB3XM_0011159Monkey_IHN BNM_010565.A0.1Inhibin- beta Cmouse_IHNB 40.1Inhibin- beta CMouse_IHNB 3NM_0014885AInhibin- beta CMorse_IHNBXM_0014885NM_609262.Inhibin- beta Chorse_IHNBXM_609262.Atta SantaInhibin- beta Crattle_IHNBXM_844076.AInhibin- beta Cbeta Cprecursorrattle_IHNBXM_85451.beta Cprecursoradog_IHNBInhibin- beta Chuman_IHNB 2AK075285.1human_IHNB 3Inhibin- beta Ehuman_IHNB 3Inhibin- beta Ehuman_IHNB 3Inhibin- beta Ehuman_IHNB 3Inhibin- beta Ehuman_IHNB 3Inhibin- beta Ehuman_IHNB 3Inhibin- beta Ebeta EInhibin- beta Ebeta EInhibin- beta Ebeta EInhibin- beta E			•	
IHNA 64.1 alpha mouse_IHNB BC026140.1 beta C Inhibin- 3 BC026140.1 beta C Inhibin- rat_IHNB2 BC089799.1 beta C Inhibin- rat_IHNB3 BC02614. Inhibin- Inhibin- rat_IHNB3 BC089799.1 beta C Inhibin- rat_IHNB3 SC089799.1 beta C Inhibin- rat_IHNB3 SC089799.1 beta C Inhibin- rat_IHNB3 SC089799.1 beta C Inhibin- rat_IHNB3 XM_0011159 Inhibin- Inhibin- B 40.1 beta C Inhibin- B YM_0014885 Inhibin- Inhibin- A S Inhibin- Inhibin- beta C precursor Inhibin- Inhibin- KM_609262. Inhibin- Inhibin- Inhibin- beta C precursor Inhibin- Inhibin- Modg_IHNB Inhibin- Inhibin- Inhibin-	Chimpanzee	XM 0011480	inhibin	
mouse_IHNB 3BC026140.1Inhibin- beta Crat_IHNB2BC089799.1beta Crat_IHNB3BC089799.1beta Crat_IHNB3NM_022614.Inhibin- beta Crat_IHNB32beta Crhesus monkey_IHNXM_0011159Inhibin- beta CMouse_IHNBNM_010565.Inhibin- beta C43beta Cmouse_IHNBNM_010565.Inhibin- beta C43Inhibin- beta C43precursor43Inhibin- beta C43Inhibin- beta C43Inhibin- beta C43Inhibin- beta C43Inhibin- beta C43Inhibin- beta C43Inhibin- beta C43Inhibin- beta C583.1Inhibin- beta C6XM_609262.Inhibin- beta C6XM_844076.Inhibin- beta C7AK075285.1beta E6Inhibin- beta E1Inhibin- beta E1Inhibin- beta E	IHNA	64.1	alpha	
3BC026140.1beta Crat_IHNB2BC089799.1beta CNM_022614.Inhibin- beta Crat_IHNB322beta Crhesus monkey_IHNXM_0011159A0.1beta Cmouse_IHNBNM_010565.43beta C	mouse IHNB		Inhibin-	
rat_IHNB2BC089799.1Inhibin- beta Crat_IHNB32beta Crat_IHNB32beta Crhesus monkey_IHNXM_0011159Inhibin- beta CMouse_IHNB 4NM_010565.Inhibin- beta CaXM_0014885Inhibin- beta Chorse_IHNB aXM_0014885Inhibin- beta CkXM_0014885Inhibin- beta CkXM_609262.Inhibin- beta Ccattle_IHNBXM_844076.Inhibin- beta CkXM_844076.Inhibin- beta CkXM_844076.precursorhuman_IHNBInhibin- beta Ehuman_IHNBBC005161.2human_IHNBInhibin- beta E	3	BC026140.1	beta C	
rat_IHNB2BC089799.1beta CImage: Constraint of the sector			Inhibin-	
NM_022614.Inhibin- beta Crat_IHNB32beta Crhesus monkey_IHNXM_0011159Inhibin- beta Cmouse_IHNBNM_010565.Inhibin- beta C43beta Cmouse_IHNBNM_0014885Inhibin- beta Ckmsse_IHNBXM_0014885Inhibin- beta Chorse_IHNBXM_609262.Inhibin- beta Ckmsse_IHNBXM_609262.Inhibin- beta Ckmsse_IHNBXM_609262.Inhibin- beta Ckmsse_IHNBInhibin- beta Chuman_IHNBInhibin- beta Ehuman_IHNBBC005161.2human_IHNBInhibin- beta Ehuman_IHNBInhibin- beta E	rat IHNB2	BC089799.1	beta C	
rat_IHNB32beta Crhesus monkey_IHNXM_0011159Inhibin- beta CB40.1beta Cmouse_IHNBNM_010565.Inhibin- beta C43beta CaJane Chorse_IHNBXM_0014885horse_IHNBXM_609262.cattle_IHNBXM_609262.cattle_IHNBInhibin- beta CMuman_IHNBInhibin- beta C2AK075285.1human_IHNBInhibin- beta Ehuman_IHNBInhibin- beta Ehuman_IHNBInhibin- beta Ehuman_IHNBInhibin- beta Ehuman_IHNBInhibin- beta E		NM 022614.	Inhibin-	
rhesus monkey_IHN XM_0011159 B 40.1 beta C mouse_IHNB NM_010565. Inhibin- beta C 3 beta C inhibin- beta C inhibin- beta C precursor inhibin- beta E inhibin- beta E	rat IHNB3	2	beta C	
Monkey_IHN BXM_0011159 40.1Inhibin- beta Cmouse_IHNB 4NM_010565.Inhibin- beta C43beta CaJinhibin- beta CInhibin- beta Chorse_IHNBXM_0014885 83.1Inhibin- beta C precursorkorse_IHNBXM_609262.Inhibin- beta C precursorkorse_IHNBXM_609262.Inhibin- beta C precursorkorse_IHNBXM_609262.Inhibin- beta C precursorkorse_IHNBXM_844076.Inhibin- beta C precursorkorse_IHNBInhibin- beta C precursorkorse_IHNBInhibin- beta C precursorkorse_IHNBInhibin- beta C precursorkorse_IHNBInhibin- beta C precursorkorse_IHNBInhibin- beta C precursorhuman_IHNB 2AK075285.1human_IHNB BBC005161.2human_IHNBBC005161.2	rhesus			
B40.1beta Cmouse_IHNBNM_010565.Inhibin- beta C43beta CaJhorse_IHNBXM_001488583.1Inhibin- beta C precursorkm_609262.Inhibin- beta C precursorcattle_IHNBXM_609262.cattle_IHNBInhibin- beta C precursorkm_844076.Inhibin- beta C precursorhuman_IHNBInhibin- beta E2AK075285.1human_IHNBInhibin- beta Ehuman_IHNBInhibin- beta Ehuman_IHNBInhibin- beta Ehuman_IHNBInhibin- beta Ehuman_IHNBInhibin- beta E	monkey IHN	XM 0011159	Inhibin-	
mouse_IHNB 4NM_010565. 3Inhibin- beta C43Inhibin- beta CAXM_0014885 83.1Inhibin- beta C precursorhorse_IHNBXM_609262. 3Inhibin- beta C precursorcattle_IHNBXM_609262. 3Inhibin- beta C precursorAdd_IHNBXM_844076. 1Inhibin- beta C precursorhuman_IHNB 2AK075285.1Inhibin- beta Ehuman_IHNB 4Inhibin- beta Ehuman_IHNB 4Inhibin- beta Ehuman_IHNB 4Inhibin- beta Ehuman_IHNB 4BC005161.2beta EInhibin- beta E	B	40.1	beta C	
43beta C43beta Chorse_IHNBXM_0014885 83.1Inhibin- beta C precursorkm_609262.Inhibin- beta C precursorkm_609262.Inhibin- beta C precursorkm_844076.Inhibin- beta C precursordog_IHNB1human_IHNB 	mouse IHNB	NM 010565.	Inhibin-	
horse_IHNBXM_0014885 83.1Inhibin- beta C precursorhorse_IHNBXM_609262.Inhibin- beta C precursorcattle_IHNBXM_609262.cattle_IHNBInhibin- beta C precursorXM_844076.Inhibin- beta C precursordog_IHNBInhibin- beta C precursorhuman_IHNB 2AK075285.1human_IHNB BC005161.2Inhibin- beta E	4	3	beta C	
Norse_IHNBXM_0014885 83.1Inhibin- beta C precursorNorse_IHNBXM_609262. 3Inhibin- beta C precursorInhibin- beta C precursorCattle_IHNBXM_609262. 3Inhibin- beta C precursorInhibin- beta C precursorMuman_IHNBXM_844076. 1Inhibin- beta C precursorInhibin- beta C precursorhuman_IHNBAK075285.1Inhibin- beta EInhibin- beta Ehuman_IHNBBC005161.2beta EInhibin- beta E				
XM_0014885beta C precursorhorse_IHNB83.1XM_609262.Inhibin- beta C precursorcattle_IHNB3XM_844076.Inhibin- beta C precursordog_IHNB1human_IHNBInhibin- beta E2AK075285.1human_IHNBInhibin- beta Ehuman_IHNBInhibin- beta Ebeta EInhibin- beta E			Inhibin-	
horse_IHNB83.1precursorhorse_IHNB83.1precursorXM_609262.Inhibin- beta C precursorInhibin- beta C precursorAtterInhibin- beta C precursorInhibin- beta C precursorM_844076.Inhibin- beta C precursorInhibin- beta C precursorMuman_IHNBInhibin- beta EInhibin- beta EAttorInhibin- beta EInhibin- precursorhuman_IHNBBC005161.2beta E		XM 0014885	beta C	
cattle_IHNBXM_609262.Inhibin- beta C precursoradog_IHNBInhibin- beta C precursorhuman_IHNBInhibin- peta Eadog_IHNBInhibin- precursorhuman_IHNBInhibin- beta Ebeta EInhibin- peta Ehuman_IHNBInhibin- beta Ebeta EInhibin- beta E	horse_IHNB	83.1	precursor	
cattle_IHNBXM_609262. 3Inhibin- beta C precursorcattle_IHNBInhibin- beta C precursorInhibin- beta C precursordog_IHNBInhibin- beta C precursorInhibin- beta C precursorhuman_IHNB 2AK075285.1beta Ehuman_IHNBInhibin- beta EInhibin- beta Ehuman_IHNBBC005161.2beta E				
XM_609262.beta C precursorcattle_IHNB3JJJInhibin- beta C precursordog_IHNB11Inhibin- precursorhuman_IHNBInhibin- beta E2AK075285.1human_IHNBInhibin- beta EAK075161.2beta E			Inhibin-	
cattle_IHNB3precursorCattle_IHNB3precursorXM_844076.Inhibin- beta C precursorInhibin- beta Chuman_IHNBInhibin- beta EInhibin- beta EAK075285.1beta EInhibin- beta Ehuman_IHNBInhibin- beta EInhibin- beta E		XM 609262.	beta C	
Image: constraint of the systemImage: constraint of the systemdog_IHNBImage: constraint of the systemhuman_IHNBInhibin-2AK075285.1beta EInhibin-human_IHNBInhibin-beta EInhibin-beta EInhibin-beta EInhibin-beta EInhibin-human_IHNBBC005161.2beta EInhibin-	cattle IHNB	3	precursor	
Image: stateImage: stateImage: statedog_IHNBXM_844076.beta C precursorhuman_IHNBImage: stateImage: state2AK075285.1beta Ehuman_IHNBBC005161.2beta E				
XM_844076.beta C precursordog_IHNB1human_IHNBInhibin- beta E2AK075285.1human_IHNBBC005161.2beta E			Inhibin-	
dog_IHNB1precursorhuman_IHNBInhibin-2AK075285.1beta EInhibin-human_IHNBBC005161.2beta E		XM 844076.	beta C	
human_IHNBInhibin-2AK075285.1beta EInhibin-Inhibin-human_IHNBBC005161.2beta E	dog_IHNB	1	precursor	
2AK075285.1beta EInhibin-Inhibin-human_IHNBBC005161.2beta E	human IHNB		Inhibin-	
human_IHNB BC005161.2 beta E	2	AK075285.1	beta E	
human_IHNB BC005161.2 beta E			Inhibin-	
	human IHNB	BC005161.2	beta E	

		Inhibin-	
mouse_IHNB	BC010404.1	beta E	
mouse_IHNB	NM_008382.	Inhibin-	
2	2	beta E	
human_IHNB	NM_031479.	Inhibin-	
3	3	beta E	
	NM_031815.	Inhibin-	
rat_IHNB	2	beta E	
	AD021200 1	Lofty	
floundar IEE	AD031390.1	Leity	
	AB232902 1	Lefty	
human LEET	AD232302.1	Leity	
	AF081512 1	Lefty	
zehrafish IF	A 001512.1	Lercy	
FTY	AF132444 1	Leftv	
	7.1321111	Lercy	
Junglefowl I			
FFTY11	AF179483.1	Leftv	
X LEFTY	AF209744.1	Leftv	
		~ ~ /	
X Lefty11	AF283563.1	Lefty	
		/	
mouse_lefty	AJ000082.1	Lefty	
human lefty			
11 .	AK129605.1	Lefty	
human_lefty			
22	AK222714.1	Lefty	
human_lefty			
33	AK313115.1	Lefty	
sea			
urchin_Lefty	AY442296.1	Lefty	
human_Lefty			
44	BC02/883.1	Lefty	
mouse_lefty		L offer	
11	BC050221.1	Leity	
V Loftv22	BC160650 1	Lofty	
n_Leily22	DC10202011	Leity	
1110use_Leity	083021 1		
	003921.1	Leity	
rabbit Lefty	FF112476 1	Leftv	
catshark Lof			
tv	EF174301 1	Leftv	
Japanese			
killifish_Lefty	EF206722.1	Lefty	
sea			
urchin_Lefty			
11	EU307282.1	Lefty	

sea squirt_LEFTY	NM_0010785 29.1	Lefty	
X_Lefty33	NM_0010885 74.1	Lefty	
_rat_lefty	NM_0011090 80.1	Lefty	
sea urchin_Lefty 22	NM_0011298 09.1	Lefty	
_XT_Lefty	NM_0011302 53.1	Lefty	
rabbit_lefty1	NM_0011630 90.1	Lefty	
mouse_Lefty 33	NM_010094. 3	Lefty	
human_Lefty 55	NM_020997. 2	Lefty	
zebrafish_Lef ty11	NM_130960. 1	Lefty	
rhesus monkey	XM_0010900 30.1	Lefty	
rhesus monkey_LEF TY	XM_0010929 88.1	Lefty	
chimpanzee_ Lefty	XM_0011380 66.1	Lefty	
chimpanzee_ Lefty11	XM_0011381 56.1	Lefty	
_cattle_Lefty	XM_0012536 85.1	Lefty	
_horse_Lefty	XM_0019150 14.1	Lefty	
horse_Lefty1 1	XM_0019150 19.1	Lefty	
dog_Lefty	XM_547508. 2	Lefty	
dog_Lefty11	XM_849632. 1	Lefty	
fruit fly_MAV	AF252386.1	maverick	

fruit	NM_0010146		
fly_MAV2	90.1	maverick	
fruit fly_MAV3	NM_0011443 84.1	maverick	
fruit fly_MAV4	NM_079887. 2	maverick	
bee_MAV	XM_0011221 18.1	maverick	
beetle_MAV	XM_0018113 82.1	maverick	
oyster_MGDF 1	AJ130967.1	MGDF1	
oyster_MGDF 2	AJ544883.1	MGDF2	
oyster_MGDF 3	AJ544884.1	MGDF3	
oyster_MGDF 4	AJ544885.1	MGDF4	
fruit fly_myogliani n1	AF132814.1	myogliani n	
fruit fly_myogliani n2	NM_079888. 4	myogliani n	
fruit fly_myogliani n3	NM_166786. 1	myogliani n	
fruit fly_myogliani n4	NM_166787. 1	myogliani n	
fruit fly_myogliani n5	NM_166788. 1	myogliani n	
human_MST N	AF104922.1	Myostatin	
tilapia_MSTN	AF197193.3	Myostatin	
salmon_MST N	AJ344158.3	Myostatin	
fugu_MSTN	AY445321.1	Myostatin	
bass_MSTN	DQ666527.3	Myostatin	
Scallop_MST N	EU563852.2	Myostatin	
cattle_MSTN	NM_0010015 25.2	Myostatin	

salmon_MST N2	NM_0011235 49.1	Myostatin	
salmon_MST N3	NM_0011236 34.1	Myostatin	
human_MST N2	NM_005259. 2	Myostatin	
mouse_MST N	NM_010834. 2	Myostatin	
Mouse_MST N2	U84005.1	Myostatin	
fruit fly_SCREW	NM_080124. 3	screw	
fruit fly_SCREW2	U17573.1	screw	
seabream_T GFB1	AF424703.1	TGF-beta 1	
carp_TGFB1	EU099588.1	TGF-beta 1	
grouper_TGF B1	GQ503351.1	TGF-beta 1	
zebrafish_TG FB1B	XM_0019236 18.1	TGF-beta 1	
zebrafish_TG FB1A	XM_0019236 22.1	TGF-beta 1	
zebrafish_TG FB1	XM_687246. 2	TGF-beta 1	
nematode_T GFB2	AF104016.1	TGF-beta 2	
zebrafish_TG FB2B	AY338730.1	TGF-beta 2	
hookworm_T GFB2	AY942844.1	TGF-beta 2	
sea squirt_TGFB 2	NM_0010783 70.1	TGF-beta 2	
zebrafish_TG FB2	NM_194385. 1	TGF-beta 2	
zebrafish_TG FB2A	XM_683088. 1	TGF-beta 2	

zebrafish_TG FB3C	AY338731.1	TGF-beta 3	
zebrafish_TG FB3B	AY614705.1	TGF-beta 3	
zebrafish_TG FB3A	BC081579.1	TGF-beta 3	
zebrafish_TG FB3	NM_194386. 2	TGF-beta 3	
Junglefowl_T GFB3	NM_205454. 1	TGF-beta 3	
platypus_TG FB3	XM_0015063 59.1	TGF-beta 3	
Finch_TGFB3	XM_0021999 58.1	TGF-beta 3	
dog_TGFB3A	XM_547918. 2	TGF-beta 3	
dog_TGFB3	XM_849026. 1	TGF-beta 3	
dog_TGFB3E	XM_863106. 1	TGF-beta 3	
dog_TGFB3D	XM_863109. 1	TGF-beta 3	
dog TGFB3C	XM_863112. 1	TGF-beta 3	
dog TGFB3B	XM_863118. 1	TGF-beta 3	
human_TGFB 4C	AF081513.1	TGF-beta 4	
zebrafish_TG FB4A	AF132445.1	TGF-beta 4	
X_TGFB4C	AF283562.1	TGF-beta 4	
human_TGFB 4A	AK027520.1	TGF-beta 4	
human_TGFB 4	AK304549.1	TGF-beta 4	
human_TGFB 4D	BC035718.1	TGF-beta 4	
mouse_TGFB 4A	BC066224.1	TGF-beta 4	
X_TGFB4	BC169590.1	TGF-beta 4	
X_TGFB4A	BC169594.1	TGF-beta 4	

rat_TGFB4	56.1	1GF-Deta 4	
X_TGFB4B	45.1	1GF-Deta 4	
human_TGFB	NM_003240.	TGF-beta	
4D	2	4	
zebrafish_TG FB4	NM_130961. 1	TGF-beta 4	
mouse_TGFB	NM_177099.	TGF-beta	
	XM_613627.	TGF-beta	
cattle_TGFB4	3	4 TGF-beta	
X_TGFB5	BC129720.1	5	
X_TGFB5B	J05180.1	TGF-beta 5	
	NM 0010878	TGE-heta	
X_TGFB5A	61.1	5	
nematode II			
NC-129	AF029887.1	UNC-129	
nematode II	NM 069165		
NC-129A	4	UNC-129	
X_VG1	AF041844.1	Vg1	
Chirping			
Frog_VG1	AF248497.1	Vg1	
Chirping Frog VG1A	AV251022 1	Val	
FIO <u>_</u> VGIA	A1251052.1	vgi	
X_VG1A	AY838794.1	Vg1	
X_VG1B	BC090232.1	Vg1	
lancelet_VG1	EU670255.1	Vg1	
	NM 0010055		
X_VG1C	91.1	Vg1	
Junglefowl_V		Val	
01	0120021	vyi	

Table 5.1 Sequences Downloaded

APPENDIX 2. COMMAND LINES

Neighbor-Joining tree using PAUP

Step1:

Run the first time ML without gamma distribution to make a sample tree

#nexus

begin paup;

set autoclose=yes warntree=no warnreset=no;

log start file=*.GTR.paupout;

execute *.PAUP;

set criterion=distance;

dset distance=ml;

dset ?;

lset nst=6 basefreq=estimate rmatrix=estimate rates=equal

pinvar=0;

lset ?;

nj;

end;

Step2:

Repeat ML

##Repeat

likelihoods /basefreq=estimate rmatrix=estimate rates=equal

pinvar=0;

lset nst=6 basefreq=previous rmatrix=previous rates=equal
pinvar=0; lset? nj; ## ##Repeat likelihoods /basefreq=estimate rmatrix=estimate rates=gamma shape=estimate ncat=16 pinvar=estimate; lset nst=6 basefreq=previous rmatrix=previous rates=gamma shape=previous ncat=16 pinvar=previous; lset? nj; ## Until the -ln L score remain the same likelihoods /basefreq=estimate rmatrix=estimate rates=gamma shape=estimate ncat=16 pinvar=estimate;

Step3:

Make the tree

#nexus

begin paup;

lset nst=6 basefreq=previous rmatrix=previous rates=gamma

shape=previous ncat=16 pinvar=previous;

lset ?

nj brlens=yes;

savetrees /fmt=phylip brlens=yes file=*.phy; savetrees /fmt=nexus brlens=yes file=*.nex; showdist; savedist /format=onecolumn file=*.distances.ml.model.1col; basefreq; bootstrap nreps=1000 method=nj keepall=yes file=*.treefile; end;

Neighbor-Joining tree using Phylip

Build Nj tree

 $Protdist \rightarrow *.prodist.outfile$

neighbor→*.nj.outtree, *.nj.outfile

Settings of each command:

Protdist.exe

Categories model JTT

Gamma distribution of rates among positions No

One category of substitution rate Yes

Use weights for positions No

Analyze multiple data sets No

Input sequences interleaved Yes

Terminal type IBM PC

Print out the data at start of run No

Print indications of progress of run Yes

neighbor.exe

Neighbor-joining or UPGMA Outgroup root No, use as outgroup species 1 Lower-triangular data matrix No Upper-triangular data matrix No Subreplicates No Randomize input order of species No. Use input order Analyze multiple data sets No Terminal type IBM PC Print out the data at start of run No Print indications of progress of run Yes Print out tree Yes Write out trees onto tree file Yes

Build Bootstraped NJ tree

seqboot→*.boot.outfile protdist→*.boot.prodist.outfile neighbor→*.boot.nj.outtree, *.boot.nj.outfile consence→*.boot.nj.consense.outfile, *.boot.nj.consense.outtree Settings of each command: seqboot.exe Sequence, Morph, Rest., Gene Freqs Molecular sequences Bootstrap, Jackknife, Permute, Rewrite Bootstrap

Regular or altered sampling fraction Regular

Block size for block-bootstrapp	ing	1 <regular bootstrap=""></regular>
How many replicates 1000		
Read weights of characters N	0	
Read categories of sites N	0	
Write out data sets or just weigh	nt	Data sets
Input sequences interleaved Y	es	
Terminal type IBM PC		
Print out the data at start of run		No
Print indications of progress of	run	Yes

Protdist.exe

Categories model JTT	
Gamma distribution of rates amon	ng positions No
One category of substitution rate	Yes
Use weights for positions No	
Analyze multiple data sets Yes	
Multiple data sets or multiple weight	ghts D (data sets)
How many data sets 1000	
Input sequences interleaved Yes	
Terminal type IBM PC	
Print out the data at start of run	No
Print indications of progress of run	n Yes

neighbor.exe

Neighbor-joining or UPGMA

Outgroup root No, use as outgroup species 1

Lower-triangular data matrix No

Upper-triangular data matrix No

Subreplicates No

Randomize input order of species No. Use input order

Analyze multiple data sets Yes

How many data sets 1000

Terminal type IBM PC

Print out the data at start of run No

Print indications of progress of run Yes

Print out tree Yes

Write out trees onto tree file Yes

consense.exe

Consensus type	Majority rull <extended></extended>	
Outgroup root No, use as outgroup species 1		
Trees to be treated as	Rooted No	
Terminal type IBM P	νC	
Print out the sets of sp	pecies Yes	
Print indications of pr	rogress of run Yes	
Print out tree Yes		

Write out trees onto tree file Yes

Likelihood tree using PhyML

Nucleotide sequences:

Data type DNA	
Input sequences interleaved	
Analyze multiple data sets no	
Run IDnone	
Model of Nucleotide/Amino-acid substitution GTR	
Optimise equilibrium frequencies model	
Proportion of invariable sites estimated	
One category of substitution rate no	
Number if substitution rate categories 16	
Gamma distribution parameter estimated	
Middle of each rate class mean	
Optimise tree topology Yes	
Starting tree BioNJ	
Tree topology search operations NNI	
Non parametric bootstrap analysis Yes	
Number of replicates 100	
Approximate likelihood ratio test no	
Amino Acid sequences:	
Data type AA	
Input sequences interleaved	
Analyze multiple data sets no	
Run IDnone	
Model of Nucleotide/Amino-acid substitution MtREV	
Amino acid frequencies model	

Proportion of invariable sites estima	ted			
One category of substitution rate	no			
Number if substitution rate categories 16				
Gamma distribution parameter	estimated			
Middle' of each rate class mean				
Optimise tree topology Yes				
Starting tree BioNJ				
Tree topology search operations	NNI			
Non parametric bootstrap analysis	Yes			
Number of replicates 100				
Approximate likelihood ratio test	no			

Likelihood tree using MrBayes

log start filename=(filename).(Temperature).mbout
execute (datasile).paup
lset nst=6 rates=invgamma ngammacat=16
help lset
mcmcp ngen=1000000 nruns=2 nchains=4 temp=(Temperature)
help mcmcp
mcmc

##Temperature is default set to 0.2, usually it is tried around 0.2, 0.1, 0.05,0.02 and so on. In this project, the temperature is usually about 0.02 to 0.03.

##When mcmc stopped, check the last 100,000. if the average standard deviation of split frequencies are lower than 0.01 and the chains are still swapping, it can be stopped. Type "y" to agree to stop running.

##Check the numbers shown in the table, if they are all between 0.1 and 0.7, following steps can be took place.

help sump sump burnin=X help sump help sumt sumt burnin=X help sumt

##X is the number that need to be deleted. X=(number of tree)+1-(number want to keep). (number of tree)=(total ngen)/100. 1 is the begining tree. (number want to keep), in this project it is 1000.

##The tree is saved as *.con.tre file.

University of Nottingham

APPENDIX 3. TIPS

On a Mac computer, MacGDE can change all formats needed. On a PC, Geneious can change PAUP format into other formats while BioEdit can change other formats to Fasta or Phylip.

BioEdit Sequence Alignment Editor Version 7.0.5.3 (10/28/05), MacGDE and Geneious were used to change the file format for different programs. On a Mac computer, MacGDE can be used to change different formats needed. On a PC, Geneious can be used to change the PAUP format into other formats whereas BioEdit can be used to change other formats to Fasta or Phylip.

144