
AN INVESTIGATION OF THE DESIGN AND USE OF

FEED-FORWARD ARTIFICIAL NEURAL NETWORKS IN

THE CLASSIFICATION OF REMOTELY SENSED IMAGES

by

TA~KIN KAVZOGLU

MSc. Geographical Information Systems

Thesis submitted to the University of Nottingham for

the degree of Doctor of Philosophy

May 2001



ABSTRACT

Artificial neural networks (ANNs) have attracted the attention of researchers in

many fields, and have been used to solve a wide range of problems. In the field of

remote sensing they have been used in a variety of applications, including land

cover mapping, image compression, geological mapping and meteorological

image classification, and have generally proved to be more powerful than

conventional statistical classifiers, especially when training data are limited and

the data in each class are not normally distributed.

The use of ANNs requires some critical decisions on the part of the user. These

decisions, which are mainly concerned with the determinations of the components

of the network structure and the parameters defined for the learning algorithm, can

significantly affect the accuracy of the resulting classification. Although there are

some discussions in the literature regarding the issues that affect network

performance, there is no standard method or approach that is universally accepted

to determine the optimum values of these parameters for a particular problem.

In this thesis, a feed-forward network structure that learns the characteristics of

the training data through the backpropagation learning algorithm is employed to

classify land cover features using multispectral, multitemporal, and multisensor

image data. The thesis starts with a review and discussion of general principles of

classification and the use of artificial neural networks. Special emphasis is put on

the issue of feature selection, due to the availability of hyperspectral image data

from recent sensors. The primary aims of this research are to comprehensively

investigate the impact of the choice of network architecture and initial parameter

estimates, and to compare a number of heuristics developed by researchers. The

most effective heuristics are identified on the basis of a large number of

experiments employing two real-world datasets, and the superiority of the

optimum settings using the 'best' heuristics is then validated using an independent

dataset. The results are found to be promising in terms of ease of design and use

of ANNs, and in producing considerably higher classification accuracies than

either the maximum likelihood or neural network classifiers constructed using ad



hoc design and implementation strategies. A number of conclusions are drawn and

later used to generate a comprehensive set of guidelines that will facilitate the

process of design and use of artificial neural networks in remote sensing image

classification.

This study also explores the use of visualisation techniques in understanding the

behaviour of artificial neural networks and the results produced by them. A

number of visual analysis techniques are employed to examine the internal

characteristics of the training data. For this purpose, a toolkit allowing the analyst

to perform a variety of visualisation and analysis procedures was created using the

MATLAB software package, and is available in the accompanying CD-ROM.

This package was developed during the course of this research, and contains the

tools used during the investigations reported in this thesis..

The contribution to knowledge of the research work reported in this thesis lies in

the identification of optimal strategies for the use of ANNs in land cover

classifications based on remotely sensed data. Further contributions include an in-

depth analysis of feature selection methods for use with high-dimensional

datasets, and the production of a MATLAB toolkit that implements the methods

used in this study.
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CHAPTER I

INTRODUCTION

1.1 Overview

Land cover mapping is an important economic activity. At global scales,

knowledge of land cover is needed for the application of Global Climate Models

(GCM). At regional scales, governments seek to monitor crop production and the

spatial and temporal distributions of their natural resources, while at local scales

farmers may wish to use modem technology to assess the rate of growth of crops

in order better to manage their use of fertilisers and irrigation water.

Remotely sensed data are now widely used to provide the information required at

these different scales. New satellite-borne instruments carried by platforms such

as Terra and Landsat-7 provide multispectral data in the visible and near infrared

regions of the spectrum at resolutions ranging from lkm to 30m. Local areas are

imaged by the IKONOS sensors at a resolution of 4m in multispectral mode.

There is no doubt that the range and quality of data (measured by spatial and

radiometric resolution) will continue to improve in the coming years.

The work reported in this thesis focuses on the regional scale, at which crop

monitoring and crop inventories are the main concern. Since the launch of

Landsat-l (ERTS-l) in 1972, this field of study has attracted considerable interest

and substantial experience, both theoretical and practical, has been accumulated.
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In recent years, as Geographical Information Systems (GIS) databases have been

built up, spatial data in the form of digital maps and digital elevation models have

become more widely available to augment satellite image data. This in turn has

meant that information processing techniques have become more sophisticated.

During the past 20 years, statistical classification methods, such as the minimum

distance and the maximum likelihood classifiers, have been widely used.

However, these methods have their restrictions, related particularly to the

distribution assumptions and limitations in the input data types. In the past decade,

the artificial neural network approach, theoretically a more sophisticated and

robust method of image classification, has been introduced and employed in

remote sensing applications. Although this approach has been used in a wide

range of scientific disciplines for a variety of applications since the early 1980s,

their use in remote sensing area is relatively new, dating only from the early

1990s. Studies have shown that artificial neural networks (ANNs) are more robust

than conventional statistical methods in terms of producing classification results

with higher accuracies and requiring fewer training samples. The most important

characteristic of ANNs is perhaps their non-parametric nature, assuming no a

priori knowledge, particularly of the frequency distribution of the data. Because

of their adaptability and their ability to produce high-quality results, the use of

artificial neural networks has spread in the scientific community at large, leading

to an increasing amount of research in the remote sensing field. Currently, there

are a number of journals devoted to neural network research and a considerable

number of textbooks published illustrating their applications in a diversity of

fields.

One of the earliest studies discussing the use of artificial intelligence techniques

for remote sensing data was carried out by Estes et al. (1986) who suggested the

use of such techniques for intelligent onboard processing, advanced database

interrogation, and automated analysis of multispectral imagery. Researchers have

applied neural network classifiers to remotely sensed data for several different

purposes. For example; Benediktsson et al. (1990), Kanellopoulos et al. (1992),

Paola and Schowengerdt (1995a), and Bruzzone et al. (1997) compared the results

of maximum likelihood classification, which is the most elaborate statistical
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method of image classification, with artificial neural network classifiers, and

found that ANNs can produce more accurate results than a maximum likelihood

classifier. The use of radar images in classification was evaluated by Hara et al.

(1994) and Chen et al. (1996); multispectral data classification using ANN

techniques was reported by Bischof et al. (1992), Heermann and Khazenie (1992),

Civco and Waug (1994), and Abuelgasim et al. (1996), among others. Issues

related to the accuracy of ANN classifications are discussed by Paola and

Schowengerdt (1997), Kanellopoulos and Wilkinson (1997), and Foody (1999).

Articles by Paola and Schowengerdt (1995b) and Atkinson and Tatnall (1997)

review the use of artificial neural networks for remote sensing data.

1.2 Statement of Problem

Although various types of neural network models have been developed, the most

widely used model in the literature is the feed-forward neural network, also

known as the multilayer perceptron. In feed-forward neural networks, there are

three types of layers consisting of processing nodes that are fully interconnected

to each other, except that there are no interconnections between nodes within the

same layer. These layers are the input, hidden and output layers. A feed-forward

neural network (Figure 1.1) usually comprises one input layer, one or two hidden

layers and one output layer. The input layer nodes correspond to individual data

sources, such as the Landsat TM bands. Hidden layers are used for computations,

and the values associated with each node are estimated from the sum of the

InputLayer Hidden Layers
~

Output Layer

C
L
A
S
S
E
S

Spectral ~
Bands

+ ~
Ancillary

Data
~

Figure 1.1 A simple four-layer fully connected feed-forward neural network.
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multiplications between input node values and weights of the links connected to

that node. The output layer includes a set of codes to represent the classes to be

recognised. The most popular coding method for feed-forward neural networks is

that the value of the output node corresponding to a specific class is assigned to 1,

and others to O.For example, the second output class at a four-node output layer is

represented by 0 1 0 O.All inter-node connections have associated weights, which

are generally randomised at the beginning of the training process.

Despite their promising prospects, artificial neural networks (ANNs) suffer from

several deficiencies, basically related to the problems encountered in their design

and implementation. These deficiencies restrict their general acceptability,

particularly in the remote' sensing community. From the design perspective, the

specification of the size of the hidden layer(s) is critical for the network's

capabilities of learning and generalisation. However, the sizes of all layers in the

network are of importance as components of the ANN structure. As the size of the

input layer is often equal to number of features on which the classification is

based, and the size of the output layer usually corresponds to the number of output

classes, the hidden layer or layers are subject to adjustments in size. Despite the

fact that the effects of employing too small or too large network structures are

known in a general sense, the exact nature of the impact of the sizes of the hidden

layers on network performance has not been fully investigated. Although several

heuristics have been proposed, none is universally accepted for estimating the

optimal number of hidden layer nodes for a particular problem.

In the implementation of neural networks, one of the biggest difficulties

encountered is to define the most appropriate values for the parameters that have a

major influence on the success of the learning algorithm. In fact, until a number of

experiments have been done, it is unknown which parameter values will provide

optimum solutions. Therefore, a trial-and-error strategy is usually employed to

determine the appropriate values for these parameters. This results in the addition

of more time to the already slow process of learning. Significant parameters to be

defined are the range of initial weights, the learning rate, the value of the

momentum term, and the number of training phase iterations, all of which are

related to the question of when and how to stop the training process. Furthermore,
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specific encoding techniques are required for the representation of both input and

output information.

An appropriate number of training samples has to be measured to ensure a correct

presentation of the classification problem to the network. The number of training

samples required is mainly dependent on the network structure and the level of

complexity introduced by the problem. In addition to these uncertainties, it is not

known exactly how ANNs learn particular problems and apply the extracted rules

to new cases, or how conclusions can be drawn from the trained networks. As a

consequence, artificial neural networks are generally called 'black-box' methods.

The issues noted above have been pointed out by several researchers. For

instance, Paola and Schowengerdt (1995b) provide detailed information about the

issues to be carefully considered in the design and use of ANNs, as well as

reviewing their use for the classification of remotely sensed data. Wilkinson

(1997) lists the open questions in neurocomputing regarding Earth observation

and also discusses several neural network issues, including the simplicity of

training algorithms used, the 'overfitting' problem and their susceptibility to

chaotic behaviour under the heading of "Problems in Using Neural Networks".

Foody (1999), on the other hand, discusses more specific factors, such as the

number of hidden units and layers, the quality of the training data and the training

time, under the heading of "Limitations of the Conventional Neural Network

Approach". He describes them as being factors that the analyst may have control

over and that strongly influence network performance, especially in terms of

speed and accuracy. He also states that a major limitation associated with artificial

neural networks is that they are semantically poor. In other words, while an

artificial neural network may be able to perform a certain task it is difficult to

explain the results or gain any understanding about how the result was achieved.

Even though particular problems have been identified, a complete study has not

yet been carried out to determine the nature of the problems and their effects on

network performance, Motivated by the above mentioned studies, the present

study was conducted in order to gain some insights into understanding the

behaviour of artificial neural networks, thus facilitating the steps of network
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design and parameter setting. It is hoped that this research will help to disprove to

some extent the statement that artificial neural networks are semantically poor.

1.3 Research Aims and Objectives

The work reported in this thesis focuses on the use of multilayer perceptrons using

the backpropagation learning technique. It is noted in section 1.1 that the use of

such networks in the processing of remotely sensed data is widespread. However,

a number of issues that inhibit the successful use of ANNs in image classification

have been identified (Paola and Schowengerdt, 1995b; Wilkinson, 1997; Foody

and Arora, 1997; Foody, 1999). The main problems that have been recognised in

the literature include:

• Specification of network architecture (number of nodes in the input,

output, and hidden layers; number of hidden layers),

• Specification of the values of parameters that relate to the learning

process (initial weights, learning rate, momentum term, and number of

iterations),

• Determination of the optimum number and nature of samples used in

training the network.

Although individual studies have highlighted specific problems, such as the

influence of the initial weight configuration on the results produced by the

network, or have discussed these problems as a whole, no research study to date

has attempted to consider all aspects of network design and use in the context of

the' classification of remotely sensed images. The primary aim of this research,

therefore, is to investigate the nature of the issues reported to have significant

influence on the performance of the artificial neural network classifier.

The experiments reported in this thesis were mainly implemented to achieve the

following objectives, addressing a variety of issues that are extremely important

for successful applications of artificial neural networks:
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1) To critically evaluate conventional statistical classifiers and the techniques

that are used to evaluate classification results. An alternative way of

portraying the results is investigated, in particular to present variations in

the spatial domain and the level of confidence for pixel class assignments.

2) To conduct an extensive review of the theory and implementation of

artificial neural networks in remote sensing image classification and to

give details of the major problems encountered in their use.

3) To investigate the use of scientific visualisation techniques for exploring

the internal structure of high-dimensional data, and their suitability for

presenting remotely sensed image data employed in neural network

processing.

4) To make a comprehensive evaluation of the techniques of feature selection

that are utilised to reduce the dimensions of the datasets. As the volume of

multispectral, multitemporal and multisensor data continues to increase,

the most appropriate set of inputs often needs to be selected.

5) For the main objective of this study, a large number of experiments were

carried out to investigate the nature and the effect of the factors that have

significant influence on the network performance. The results are used to

construct guidelines for the efficient and effective use of neural networks.

These guidelines will provide the new or inexperienced user with clear

instructions on the use of ANNs in image classification, and will also

summarise the experience of previous users.

6) To develop a toolkit to perform the major tasks required in the

classification of remote sensing images using neural networks. The toolkit

is also used to apply data analysis and scientific visualisation techniques

with the aim of understanding each process performed. As there is no

software package available to date for this purpose, such a toolkit is

extremely useful for performing classification tasks and visualising the

data and results.
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1.4 Main Contribution to Research

The contributions made in this study can be divided into two main categories:

practical and theoretical contributions. The practical contribution is a visualisation

toolkit prepared in MATLAB (version 5.3). It is a menu-driven program that

includes a number of data analysis and visualisation tools. The main aim of

generating such a toolkit was, to a certain extent, to fulfil the requirements of

artificial neural network users in the remote sensing field, and perform the

necessary analyses required in this study. Unfortunately, no complete software

package allowing applications of a variety of visualisation techniques and neural

network classifiers for the analysis and the classification of land cover data is yet

available for remote sensing researchers. The toolkit developed in this study has

specific menus devoted to a priori analyses (mainly of training data), as well as a

posterior analyses, largely related to the evaluation of ANN results.

The theoretical contribution of this research is to examine in detail the factors that

influence the performance of ANNs in image classification. It is certainly one of

the user's expectations that the use of artificial neural networks should be easy to

use by means of understanding each step taken. Therefore, some guidelines with

sound foundations are required, describing the possible effects of various

configurations of the network structure and the parameter settings. Through

experimentation, a number of general guidelines have been established, and these

are presented.

1.5 Overview of the Thesis

The thesis consists of seven chapters, including this introductory chapter in order

to achieve the aims and objectives defined above. The early chapters mainly

provide background information about the theory of classification, the

fundamentals of artificial neural network models, and an overview of visualisation

of high-dimensional data. In other words, they describe the techniques that will be

employed in subsequent chapters. The following chapters include discussions and

reports of experiments related to the problem of the design and use of artificial

neural networks. A brief summary of each chapter is provided below:
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• Chapter II is concerned with the theory of classification with an emphasis

on its philosophy. As well as describing unsupervised and supervised

classification techniques, general knowledge on the incorporation of spatial

information in classification is presented. In the last part of the chapter, the

methodologies used to assess classification accuracy are described,

introducing the concept of accuracy maps that provide information about the

spatial distribution of classification error.

• Chapter III provides a summary of the theory of artificial neural networks.

The principles of the backpropagation learning algorithm are presented in

detail, as this particular algorithm is employed in all ANN applications

performed in this research. A special section is devoted to the problems

encountered in the use of artificial neural networks in remote sensing. These

problems will be the main concern of later chapters dealing with the

analysis of the effects of varying ANN parameters.

• Chapter IV presents an overview of the techniques used to visualise high-

dimensional data (or multivariate data). After a general introduction to the

topic, several simple graphical visualisation techniques are described and

examples using real-world data are presented. Projection techniques, which

can be either linear or nonlinear, are also discussed and the discussion is

supported by simple applications. This chapter is intended to provide a

guide to the fundamentals of scientific visualisation methods for high-

dimensional data. These methods will be used later to understand the

characteristics of training data and the behaviour of artificial neural
networks during training.

• Chapter V is concerned with the use of feature selection techniques to

choose the most appropriate number of inputs for a particular classification

problem. In this chapter, two datasets employed in this research are

described. The most popular class separability indices, namely the

divergence, transformed divergence, the Bhattacharyya distance and the

Jeffries-Matusita distance, and statistical tests (Hotelling's 12 and Wilks'

A), used for feature selection are described in detail. Conventional
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techniques employed to search for the optimum solution without evaluating

all possible solutions are outlined. The effectiveness of the feature selection

techniques are tested and evaluated for the two datasets. In the last part of

the chapter, the performance of a neural network is evaluated for these

datasets including pure pixels as opposed to mixed pixels.

• Chapter VI concentrates on the problems encountered in the design and use

of artificial neural networks, which is the primary aim of this study. Whilst

the design of ANNs is mainly related to the sizes of the network layers, the

effective use of ANNs is associated with the selection of appropriate rates

for the learning parameters. A good network solution can thus be obtained.

After providing an extensive literature review for these issues, discussions

and implementations are presented. Critical reviews and comparisons are

carried out for the heuristics (or rules of thumb) recommended by

researchers. The results are used to set out guidelines for users to be able to

apply neural networks effectively, knowing the nature of the parameters to

be defined.

• Chapter VII presents the conclusions drawn from this research. It

specifically comprises a number of guidelines for the use of artificial neural

networks extracted from the results produced and experience gained during

the research. Finally, this chapter gives suggestions for further research that

could be conducted on this specific research topic.

In addition to the chapters outlined above, Appendix A describes the visualisation

toolkit prepared to perform prior and posterior analyses as well as to run the

artificial neural network simulator, SNNS (Stuttgart Neural Network Simulator).

It was developed using MATLAB software package to analyse and visualise the

data and neural network results using scientific visualisation techniques. It is a

menu-driven toolkit facilitating a number of procedures from individual programs

written in MATLAB and Turbo C++. Note that since the toolkit is not designed

for commercial use, it has limitations in terms of the size and format of the

datasets. The appendix is written as a guide to describe the use of the toolkit.
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CHAPTER II

CLASSIFICATION

2.1 Introduction

Classification is a process of identification that is addressed and used in all

scientific disciplines as a way of comprehending and ordering a mass of data. It can

be viewed as the process of converting raw data to categorised meaningful

information. It is, in fact, a fundamental and everyday process carried out by

humans. It is, for example, practised when recognising somebody we know, or

looking at a group of objects containing any type of pattern. It is also practised in

communication where general terms are involved. It is unimaginable to restrict

languages to proper names only; that would make communication extremely

difficult. Consequently, it can be stated that classification is one of the basic tools

we use in dealing with the world around us. As stated by (Harvey, 1969, p. 326),

classification is a higher level intellectual activity necessary to our understanding of

nature. Overall, classification is a basic process we perform instinctively, and we

thus give meaning to a vast amount of information existing around us.

Classification of land cover features from remotely sensed image data has been

one of the main applications in the remote sensing field. It is an important and

difficult task, since such images are high-dimensional and complex in nature. As

the number of categories and the amount of data involved increases, so does the
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complexity of the classification problem because it becomes more difficult to

determine the characteristics of the categories and allocate a pixel to one of the

categories. The highest classification accuracy to be produced is, therefore,

usually stated to be around 80%. In order to increase this figure, two key factors

must be considered. One is the use of representative datasets and employing more

powerful classification techniques, such as artificial neural networks. Another

factor with a positive effect on the classification accuracy is to incorporate spatial

information, such as texture and context. Incorporating such information may

result in a considerable increase in the classification accuracy.

The classification process has two main stages. In the first stage, the number and

nature of the categories are determined, whilst in the second stage every unknown

element is assigned to one of the categories according to its level of resemblance

(or similarity). These stages are often called classification and identification,

respectively. In the context of remote sensing, the categories could be land cover

features or cloud types, and the assignment to one of the categories is carried out

by assigning numerical labels, corresponding to the classes, to individual pixels.

Hence, for a researcher working in the remote sensing field, classification

basically means determining the class membership of each pixel in an image by

comparing the characteristics of that pixel to those of known categories.

2.2 Definition

Classification has been defined by many scientists in different fields of study with

a wide diversity of meanings (i.e. with many ambiguities), which sometimes

causes confusion. Some of these definitions are given as follows:

Classification is the ordering of organisms (or objects) into groups (or

sets) on the basis of their relationships. The term relationship simply

indicates the resemblance or overall similarity as judged by the

characters of the organism without any indication as to their

relationship by ancestry.

(Sneath and Sokal, 1973, p.3)
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IClassification means a way of grouping objects, on the basis of some

relationship between them. 2The term classification refers to the

placing of objects into groups in such a way that the members of the

groups bear a closer relationship to other members of the same group

than they do to members of other groups.

(pankhurst, 1991, p.l ', p.442)

IClassification is the basic procedure by which we impose some order

and coherence upon the vast inflow of information from the real

world. By sense-perception data into classes or sets we transform a

mass of unwidely information so that it may be more easily

comprehended and more easily manipulated. 2Classification is

essentially a means to a given end, a filter through which we

transform sense-perception data for a given purpose.

(Harvey, 1969, p.3261, p.3482)

Classification analysis addresses itself to the problem of assigning an

object to one of a number of possible groups on the basis of

observations made on the object.

(James, 1985, p.3)

The classification process may be considered as a form of pattern

recognition, that is, the identification of the pattern associated with

each pixel position in an image in terms of the characteristics of the

objects or materials that are present at the corresponding point on the

Earth's surface.

(Mather, 1999a, p.167)

When the above definitions are considered, it can be seen that some of them are

specifically associated with the author's field. For example, Sneath and Sokal

(1973) consider classification in the context of biological science, and Mather

(1999a) makes the definition specifically related to remote sensing.
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According to James (1985, p.1), 'each time a discipline has re-invented the

subject of classification, it has introduced its own jargon, its own notation, and its

own favourite methods. For example, classification is known as pattern

recognition, discriminant analysis, decision theory, and assignment analysis'.

Furthermore, the word 'classification' has been used with many different

meanings, and to refer to a certain stage of the classification process as well as the

whole process. For instance, Sneath and Sokal (1973, p.3) state that classification

has been used for the end product of the corresponding process. Thus, the result of

classification is a classification.

2.3 Philosophy of Classification

In the literature, terms of taxonomy, identification and recognition are frequently

used to refer to classification. The Cambridge International Dictionary of English

defines taxonomy as a system for naming and organising things, especially plants

and animals, into groups which share similar qualities. This definition appears to

be unsound (inexact), as it fully defines a classification or identification system.

Sneath and Sokal (1973, p.3) differentiate classification from taxonomy in that

they precisely define taxonomy as the theoretical study of classification, including

its bases, principles, procedures and rules.

They also define identification as the allocation or assignment of additional

unidentified objects to the correct class once a classification has been established.

This means that identification is a secondary step following the classification

process. On the other hand, Pankhurst (1991, p.1) states that verbs of 'identify'

and 'recognise' carry the same meaning of 'classify' in a general sense, and

therefore can be used interchangeably. He, however, also makes a distinction

between classification and identification by remarking that 'for a biologist,

identification usually means finding the name of a specimen of animal or plant,

and the specimen to be identified is usually assigned to a species'. In this remark

the assignment of an unknown specimen to a known species is emphasised. It is

also assumed that the exact natures of species are known a priori. Therefore, for

him, identification is again the second step of the classification process. The
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statement also suggests that supervised classification is an identification process,

which is also pointed out by Hand (1997, p.4). Pankhurst (1991, p.l) also states

that 'whatever sort of object is in question, it cannot be identified unless there is

already a classification of like objects with which the new object can be

compared'. So here, he suggests that the word 'classification' is being used for the

first step of the classification process, which at the same time corresponds to the

result of an unsupervised classification exercise. However, when the general

definition of classification, which is the assignment of unknown elements to

known classes, is considered and strictly applied, it can be argued that

unsupervised classification is not a proper classification method because there are

no known or pre-specified classes involved in the process.

Despite the remarks of the above mentioned authors regarding the stages of the

classification process, Cole and King (1968, p.574) state that a preliminary

ordering of many data prior to their analysis can be termed 'empirical

classification', and representation (or conclusions) of the analysis results can be

called 'genetic classification'. In other words, they call the first stage of the

classification process 'empirical classification' and the second stage of the process

'genetic classification'.

James (1985, p.3) notes that in classification analysis the existence and the

structure of the groups to which the object is to be assigned are of secondary

importance. It is the assignment of new cases that concerns us. He also states that

classification analysis is sometimes confused with cluster analysis. If one has a

mass of currently undifferentiated data and is curious as to whether it has any

natural group structure, the method that should be employed is cluster analysis.

Basically, cluster analysis attempts to determine any possible groupings in the

data. It is not concerned with the problem of classifying new objects into existing

groups, as this is the case in classification. It should be highlighted that

classification analysis itself is not concerned with identifying any possible (or

inherent) groupings that might be contained within a mass of data.

Another problem is pointed out by Harvey (1969, p.326), is that classifications

have been produced without its ever being quite clear what purposes they are
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designed for. The geographic literature is replete with complex classifications of

towns, land uses, climates, regions, and morphometric features, which appear to

have been devised with no particular purpose in mind. It is scarcely surprising that

many of these classifications have never been used for anything. Geographers

have not been alone in their misconduct, and indeed their misuses appear minor

compared with those of sociologists and political scientists.

One of the problems of classification in geography is concerned with objects that

are unique. All objects are unique in some respect and cannot be classified on this

basis, for by definition, each unique object would require a separate class. The

Earth might be considered to be a unique object and in many respects this is

indeed true, as it lies at a unique distance from the Sun and is the home of the

human race. On the other hand, the Earth is one of a series of planets that move

round the Sun and thus it can be classified as a planet. Any unique object is rarely

incapable of being subdivided. It is the unique combination of its several

elements, which give it its unique character (Cole and King, 1968, p.576).

The generality of the classes used in a classification differs depending upon the

geographical scale and the purpose for which the classification is intended. For

example, if a classification is performed to identify a forested region, the

classification could be based on discriminating several forest types including

deciduous and conifer forests; if a classification is carried out to discriminate

general land cover features, one might use the general class of forest with other

land cover features, such as sugar beet, grass and peas; and if a classification is

performed on a global scale, then more general class types, including vegetation,

soil, and water, are needed. It can be noted that class subdivisions are totally

related to the nature of the data, the classification method and the purpose of the

study.

Conceptually, scale represents the window of perception, the filter, or the

measuring tool through which a landscape may be viewed or perceived (Levin,

1992). The scale issue is of considerable importance in remote sensing studies in

that it refers to spatial resolution of the imaging instrument. As each scene

contains different sized objects, the use of a single scale may not be relevant to
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identify the objects. The problem of determining the most appropriate scale for a

particular study is one of the concerns discussed by a number of scientists in

different fields. It should be noted that conclusions drawn at a specific scale are

valid only for that scale and should not be used to reach conclusions at other

scales. Several articles, including Woodcock and Strahler (1987), Foody and

Curran (1994), Marceau (1999) and Marceau and Hay (1999), have discussed the

issue of scale in geographical studies.

Another issue pointed out by Harvey (1969) is that in geographic literature the

difference between classification and ordination is not usually recognised.

However, it can be said that classification can include ordination when used in a

broad sense. Ordination techniques, also known as dimensionality reduction

techniques, are used to reduce the dimensionality of hyperdimensional data for

visualisation purposes. Specifically, they search for a configuration in a low-

dimensional Euclidean space in such a way that inter-point relationships, usually

distances, are preserved with the minimum error. Dimensions are usually reduced

to two or three to display the data, typically on a computer screen, and visually

evaluate the internal structure of the data. Ordination techniques, details of which

can be found in Chapter Four, are particularly useful to determine the outlying (or

atypical) elements, clusters of similar elements and other inherent data structures.

The primary purpose of such techniques is to project high-dimensional datasets

onto two or three-dimensional space, not to concentrate on locating clusters and

allocating pixel memberships.

2.4 Taxonomy of Classification Techniques

Classification techniques may be categorised in terms of four criteria. Firstly, they

can be classified as supervised and unsupervised depending on the involvement of

a training dataset. Supervised classification techniques require training areas to be

defined by the analyst in order to determine the characteristics of each category.

Each pixel in the image is, thus, assigned to one of the categories using the

extracted discriminating information. Problems of diagnosis, pattern recognition,

identification, assignment and allocation are essentially supervised classification
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problems since in each case the aim is to classify an object into one of a

prespecified set of classes (Hand, 1997). Unsupervised classification, on the other

hand, searches for natural groups, called clusters, of pixels present within the data

by means of assessing the positions of the pixels in the feature space. They are

automated procedures and therefore require minimal user interaction. Details of

such procedures are given in following sections.

Another distinction among classification methods can be made by considering the

underlying philosophy and assumptions of the techniques. By this, they can be

classified into two groups: statistical classification and non-statistical

classification. Statistical classification procedures employ purely statistical

estimations to derive some rules from the data, which leads to some assumptions.

The most common assumption of this kind is that the frequency distribution of the

data is in Gaussian (or normal) form. However, non-statistical methods do not

make any assumptions about the frequency distribution of the data used, and do

not use the statistical estimates. The minimum distance and maximum likelihood

classifiers can be given as examples of statistical classification methods, whilst

the artificial neural network approach and knowledge-based methods can be given

as examples to non-statistical classification methods. Detailed information about

major statistical and non-statistical classification methods is also given in

following sections.

Researchers also categorise classification techniques as being either 'hard' (or

crisp) or 'soft' (or fuzzy). In a 'hard' classification (also called one-pixel-one-

class classification) each individual pixel is given a single, unambiguous label.

This methodology is ideal for cases such as crop classification where agricultural

fields are homogenous in terms of the land cover feature they contain. For this, the

fields should be large relative to the instantaneous field of view (!FOV) of the

sensor, otherwise, it cannot be assumed that a single pixel comprises only a single

land cover type. For example, in the case of AVHRR images that have a spatial

resolution of 1 km, pixels are likely to be mixed (including more than a single

land cover type). The effect of spatial resolution is all dependent upon the nature

and scale of variation ofthe land cover features within the scene. For example, for

areas covered with semi-natural vegetation, a spatial resolution of 20 metres
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would not guarantee pure pixels and it is most likely that a pixel could contain

several land cover types, including herbs, bare soil, bushes and trees. It should be

noted that if there are large number of mixed pixels in the image under analysis,

then the scale or the resolution of the image selected is not relevant for the

purpose of the study. As stated by Mather (1999a, p.189), the question of scale is

one that bedevils all spatial analysis; and also fuzziness and hardness,

heterogeneity and homogeneity are properties of the landscape at a particular

geographical scale of observation that is related to the aims of the investigator.

Major drawbacks of 'hard' classification are low classification accuracy levels

and poor extraction of information. In addition, this classification methodology

can be an oversimplification of the structure of the dataset; in particular, it may be

that there are some objects, which definitely do belong to certain groups, but other

objects whose group membership is much less evident (Gordon, 1981, p.58).

If one is interested in determining the memberships of pixels unambiguously, that

is, the relative level of presence of different classes is in question, 'hard'

classification methods are clearly irrelevant. For this purpose, the idea of 'soft' or

'fuzzy' classification was introduced. In 'soft' classification, instead of assigning

a pixel to a certain class, the probability of membership of the pixel (called its

membership grade) for each class is estimated. The decision relating to the

labelling the pixel is left to the investigator. In addition to the use of fuzzy

classifiers, it is possible to soften the output of conventional 'hard' classifiers to

derive a fuzzy land cover representation (Foody, 1996). This methodology

provides more detailed membership information, which allows greater

understanding of the nature of each individual pixel. Although 'soft' techniques

are relatively new, they have been favoured and used by many researchers. In fact,

compared to 'hard' classification, 'soft' classification methodology is more

suitable to the classification problem of land cover features that are generally in a

continuous form in nature. The main problem with their use is that it is difficult to

perform accuracy assessment on the output. The most commonly used 'fuzzy'

classification method in remote sensing is the fuzzy c-means algorithm, which can

be used either in unsupervised or supervised classification fashion. More

information on 'fuzzy' classification can be found in Wang (1990a, 1990b),

Foody (1996), Mather (1999a, 1999b).
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Another categorisation is made by considering the fundamental unit to be

considered as the basic element in the classification. This brings out two

classification models: per-pixel and per-field classifications. Per-pixel

classification is applied as the general method of classification in which each pixel

is considered and classified individually. The result of such a classification can be

noisy, with a "salt-and-pepper" appearance, resulting from the fact that some

pixels can be atypical, mixed or unknown features, that were not included in the

training dataset. Moreover, an increase in spatial resolution increases the internal

variation within land parcels. Although it is possible to get detailed classification

results using such techniques, the noisiness in the output could be unacceptable in

some cases. In per-field classification, each individual field, as opposed to a single

pixel, is the basic spatial unit, equivalent to the operational taxonomic unit (or

OTU) in taxonomy (Sneath and Sokal, 1973). The term field, in this context,

refers to a parcel of land, such as different types of agricultural fields and urban

areas. It is expected that, using this approach, the noise in the image can be

averaged out, which should lead to improvement in the classification accuracy. It

should be noted that in this approach it is assumed that every pixel in a field

belongs to the same class, which is sometimes not the case. Also, the problematic

pixels within the fields are ignored. Although employing such an approach could

be useful to depict the field boundaries and to better analyse the results visually,

an accurate interpretation cannot be made to determine the total behaviour of the

fields. For instance, per-field classification may give misleading results for crop

yield estimation.

It should be always borne in mind that the most suitable classification method for

a particular classification problem is totally dependent upon the nature of the data

available and the purpose of the classification to be performed.

2.4.1 Unsupervised Classification

In some cases, ground information concerning the characteristics of individual

classes is not available. In such circumstances, an unsupervised classification
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technique is used to identify a number of distinct or separable categories. In other

words, an unsupervised method is used to determine the number of spectrally-

separable groups or clusters in an image for which there is no a priori or

insufficient ground truth information available. Such unsupervised methods can

be viewed as techniques of identifying natural groups, or structures, within

multispectral image data. While applying an unsupervised method, the analyst

generally specifies only the number of spectral groups to be discriminated, and the

method generates the specified number of clusters, in feature space, that

corresponding to spectrally-separable land cover features. Determination of the

clusters is performed by estimating the distances between the pixels in feature

space. These automated classification methods are expected to delineate (or

extract) the land cover features that are desired by the analyst. As stated by

Mather (1999a), this philosophy is like fishing in the pond of data and hoping to

come up with a suitable catch.

After the specified number of groups is determined, they are labelled by allocating

pixels to land cover features present in the scene. However, some groups may be

inappropriate since they represent either irrelevant features for the purpose of the

study or mixed classes. Therefore, the spectral characteristics of the area of

interest should be sufficiently well known by the analyst to allow him/her to

correctly label the clusters representing actual land cover features. Unsupervised

classification techniques generally require user interaction in specifying the

number of groups to be recognised and in labelling the correctly identified areas

with the individual feature (or class) label. Owing to the minimal amount of user

involvement, they are usually considered as automated procedures. Two of the

most popular unsupervised classification methods are the Chain and ISODATA

methods, which are not discussed here as they are beyond the scope of the study,

but can be found in numerous text books including Jensen (1996) and Mather

(1999a).

Although the description of these methods as automated procedures sounds

complicated and powerful, the results of such methods are generally inferior to

those achieved by supervised methods. This is partly because most real-world

features exhibit complexity in their nature, and therefore they are not easily
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separable in terms of their spectral characteristics. In addition, the assumption,

forming the basis of the unsupervised approach, that the pixels belonging to a

particular class will have similar spectral values in feature space, and all classes

are relatively distinct from each other in feature space is difficult to satisfy in

practice. Consequently, the accuracy of the results obtained by unsupervised

classification methods is limited.

2.4.2 Supervised Classification

Supervised classification may be defined as the process of identifying unknown

objects by using the spectral information derived from the training data provided

by the analyst. The result of the identification is the assignment of unknown pixels

to pre-defined categories. The main difference between unsupervised and

supervised classification approaches is that supervised classification requires

training data as input. The training data is used to extract the properties of each

individual class within the training data. In remote sensing, the ground reference

data for training, is generally derived from fieldwork, aerial photography, or from

the study of appropriate maps.

Supervised classification methods may be grouped into two general categories:

statistical and neural algorithms. In the statistical supervised approach, the

information required from the training data varies from one algorithm to another.

For example, the parallelepiped classifier requires only the minimum and

maximum spectral values for each class in each band, whereas the maximum

likelihood classifier requires the mean vector and variance-covariance matrix for

each class. In contrast, supervised neural network models do not use any statistical

information to identify unknown pixels present in an image. Instead, they use all

the training data available. This is the principal feature that makes supervised

neural network models more powerful than their statistical counterparts. As a

result, no assumption is made about the frequency distribution of the data in

supervised neural network models. However, the effect of any incorrect definition

of training pixels is more considerable in the neural network models than in the

statistical models. This is due to the fact that neural network models take every

22



individual training pixel into consideration, whereas statistical models use only

the overall properties of the data. For example, in the estimation of the mean, the

effect of misidentified pixels is smoothed by averaging.

As mentioned earlier, supervised classification is performed in two stages; those

of training and classification. In the training stage, the analyst defines the regions

that will be used to extract training data, from which statistical estimates of the

data properties are computed. In the classification stage, every unknown pixel in

the test image is labelled in terms of its spectral similarity to specified land cover

features. If a pixel is not spectrally similar to any of the classes, then it can be

allocated to an "unknown" class. As a result, an output image, or thematic map,

showing every pixel with a class label, is produced.

The characteristics of the training data selected by the analyst are of considerable

importance for the reliability and the performance of a supervised classification

process. The training data must be defined by the analyst in such a way that they

accurately represent the characteristics of each individual feature used in the

analysis. Two features of the training data are of key importance. These are the

representativeness (or objectiveness) and the size of the training data. In order to

have a representative set of data, the sample selection must be performed by

selecting pixels that correctly represent the spectral diversity of each class, so that

variations in planting times, seed properties and soil conditions are considered.

Therefore, samples should be taken from each of such fields to include all spectral

sub-classes. The best sampling strategy is to select training pixels randomly from

the whole test image. Unfortunately, this is generally not possible in practice, as

the ground data for the whole area is generally not available. On the other hand,

one way of testing the representativeness of the training set is to examine the

number of pixels left unclassified. If there are large numbers of such pixels then it

is likely that the training data are not representative of the whole study area, and

further samples should be added to the dataset.

The size of the training dataset is also very important if statistical estimates are to

be reasonable. Sample size is mainly related to the number of features whose

statistical properties are to be estimated. According to Mather (1999a, p.175), 'the
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size should be at least 30p pixels per class where p is the number of spectral

bands, and preferably more'. On the other hand, Campbell (1987, p.311) states

that the operator should assure that several individual training areas for each

category provide a total of at least 100 or so pixels for each category.

Although supervised classification methods requrre more user interaction,

especially in the collection of training data, they generally give more accurate

results compared to unsupervised classification techniques. Therefore, they are

mostly favoured by researchers. It should be noted that the current trend is to

employ supervised artificial neural network models rather than statistical ones in

the classification of remotely sensed image data.

2.4.2.1 The Parallelepiped Classifier

The parallelepiped classifier, also known as the box classifier, is the simplest

statistical supervised classification method used in remote sensing studies. The

decision rule of the classifier is based on constructing a parallelepiped for each

class with its dimension defined by the minimum and maximum values for each

feature. These extreme values are provided by the user at the beginning of the

classification process. Sometimes the dimensions of the parallelepiped are

calculated by adding and subtracting a multiple of the standard deviation (usually

2 or 3) from the mean for each class and for each feature. The extreme values are

used to construct the boundaries of the parallelepipeds. Pixels lying inside the

region defined by a parallelepiped are assigned to the class associated with that

parallelepiped. Ifa pixel (e.g. pixel 4 in Figure 2.1) is outside all of these regions,

it is labelled as unknown.

An example illustrating the parallelepiped classification philosophy for a two-

dimensional feature space and four land cover features is given in Figure 2.1. The

parallelepipeds (or boxes) are drawn in such a way that they cover the area of

feature space occupied by pixels belonging to the same class. It is certain that

pixel 1 and 2 can be correctly classified as "forest" and "peas", respectively. Pixel

4 is left unclassified since it does not lie within any of the rectangular boxes.

However, the parallelepiped classifier assigns pixel 3 to the class linseed as the

24



method uses rectangular decision boundaries that are defined without considering

the covariance of the classes, resulting in a complete failure for this pixel. If the

spectral distribution of sugar beet and linseed is assessed, it is clear that pixel 3

should belong to the class "sugar beet".
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Figure 2.1 Schematic diagram illustrating the principles of the parallelepiped

classification method. The boundaries of the parallelepipeds are determined from

training datasets.

The main problem with the parallelepiped technique occurs when a pixel lies

inside two or more overlapping parallelepipeds, which makes the labelling

process difficult. Classifying such pixels correctly is of great importance, as

overlapping parallelepipeds are common in situations where remotely sensed

image data are used. Several suggestions have been made to overcome this

problem. The first and simplest decision rule is to assign the pixel to the first

parallelepiped that the pixel was allocated to. The second solution is to employ

another, generally more complicated, decision rule to allocate only such multiply-

labelled pixels to a specified class. Thus, most of the pixels are classified by the

parallelepiped classifier, and only a limited number of pixels are classified by the

additional decision rule. The secondary decision rule, used to resolve the problem
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of multiple labels, is generally another statistical classifier, such as the maximum

likelihood classifier. Another method proposed by Lillesand and Kiefer (1994) is

based on modifying the parallelepiped by introducing stepped borders. It is

assumed that these borders are more likely to better describe the boundaries of the

distribution of pixels in a given class.
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Figure 2.2 More accurate definition of decision regions using stepped borders.

When the idea of stepped boundaries is applied to the problem of Figure 2.1,

Figure 2.2 is produced. The stepped boundaries method labels pixel 3 as

"unknown" since it is outside all of the boxes, despite the fact that it is very close

to the border of the sugar beet class - closer to the boundary of sugar beet

compared to that of linseed. This example shows that in the use of the

parallelepiped classifier, the representativeness of the training data is of

considerable importance. If the training data includes a pixel situated in a similar

location to pixel 3, resulting in a larger boundary definition, then the pixel could

have been classified as sugar beet.

The parallelepiped classification technique is easy to program and

computationally fast because it is based on a very simple concept. However, there

are some difficulties relating to the technique. The main problem stems from the
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assumption that a particular spectral class can be represented by a rectangular

region of feature space. This is not always the case, especially for remotely-sensed

data. Moreover, the technique is based on only the minimum and maximum pixel

values (or estimates derived from means and standard deviations) computed from

the training data to represent the training data. As a result, this simple

classification procedure often gives misleading results, that may not be

representative of the actual spectral distribution of the land cover classes. It

should be also noted that the technique requires a high degree of human

interaction.

2.4.2.2 The Minimum Distance Classifier

A simple and popular classification method is that using the minimum distance

classifier (also called minimum-distance-to-means classifier, centroid and k-

means classifier). It employs the minimum distance or nearest-centre decision rule

to label unknown pixels. As it uses the Euclidean distance in calculations, it is

sometimes called the Euclidean distance classifier. This classification method uses

the Euclidean distance in multidimensional feature space to measure the degree of

dissimilarity between pixels and class centroids computed from training data. The

pixel is assigned to the least dissimilar class centroid. Like the parallelepiped

classifier, this algorithm does not take all the training data into consideration. It

considers the mean (or average) spectral value in each band for each class. The

mean centre of each class is estimated from the training dataset, which results in a

mean vector. In order to assign a pixel to a specified class, Euclidean distances are

calculated for each mean (or centroid) centre, and then the minimum value, i.e. the

shortest distance, is determined. As a result, the pixel is allocated to the class that

is the closest in terms of the estimated multidimensional Euclidean distance from

mean centres.

Figure 2.3 shows the mean centres of four clouds of pixels representing four

specific classes. These centres are marked with crosses. In order to illustrate the

idea of the minimum distance classification, lines are drawn from pixel 4 to each

mean centre to search the closest centre. The shortest distance from pixel 4 is to

the mean centre of the forest class, so this pixel can be classified as "forest".
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However, if a threshold distance is employed in the algorithm as described below,

then pixel 4 is most likely to be labelled as "unknown" since it lies far away from

the boundaries of the forest class. The same philosophy can be applied to

determine the membership of other pixels marked on the figure.
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Figure 2.3 Schematic diagram illustrating the classification of pixel 4 usmg

minimum distance classifier. Crosses represent the mean centres of each group.

One problem with the method is that all the pixels are assigned to classes, which

may not be realistic or relevant, especially in the presence of outlying and atypical

pixels. A modification to the technique uses a threshold distance measure. The

threshold distance can either be defined by the analyst at the beginning of the

process, or calculated for each class in terms of its standard deviations. Using the

standard deviation helps to reflect the nature of the data more effectively. Thus,

the condition for a pixel being a member of a class is to have the shortest distance

that is at the same time less than the threshold distance estimated for that class.

Any pixel lying further than the threshold distance is left unclassified.

The principal limitation of the method stems from the use of a simple distance

measure. The Euclidean distance does not take the spectral distribution of the data
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in the feature space into consideration. However, an extension of this method that

employs the Mahalanobis distance instead of the Euclidean distance, overcomes

this limitation by considering the variance-covariance matrices for the classes

present in the training data. The Mahalanobis distance classifier is discussed in

Chapter Five.

The minimum distance classifier is mathematically simple and easy to program. It

can give results that are comparable to more sophisticated methods, such as the

Maximum Likelihood Classifier and Artificial Neural Networks in cases where

the classes are well-defined in feature space. Efficient use of the technique also

requires user involvement.

2.4.2.3 The Maximum Likelihood Classifier

The maximum likelihood classifier, which is the most elaborate and most popular

statistical supervised classification method used in remote sensing analysis, is

based on the idea that the geometrical shape in feature space of the pattern of

pixels belonging to a given class can be represented by an ellipsoid. The locations,

shapes and sizes of these ellipsoids are derived from the mean vectors and

variance-covariance matrices of the individual classes. While the mean vector is

used to determine the position of the centre of an ellipsoid in multidimensional

feature space, the variance-covariance matrix, representing the variability of

brightness value within a particular class, defines the shape and the size of the

ellipsoid. Specifically, the shape of the ellipsoid is defined by the relative

dimensions of the axes of the ellipsoid as well as its orientation. The maximum

likelihood classification method can be thought of as an extension of the

Mahalanobis distance classifier because it is also based on the estimation of

Mahalanobis distances between the positions of pixels and mean centres.

A series of concentric ellipses centred on the mean vector of a given class is used

to evaluate pixels to be classified in terms of likelihood probabilities. These

concentric ellipses represent the probability of membership of a class with

contours in such a way that the probability declines away from the mean centre.

Basically, the maximum likelihood function describes ellipsoidal 'equi-probability
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contours', which can be viewed as probability zones. Unlike the rmrumum

distance classifier, distance from the centre is not the only criterion to judge the

membership of a pixel, as the shape and the size of the ellipsoids are important in

determining the probabilities of membership. As noted earlier, the size of the axes

of the ellipse is related to the variance of the training set, while the orientation of

the axes is related to covariance.

As the maximum likelihood classification method represents a cloud of pixels

forming a class as a multidimensional ellipsoid, the centre, size and shape of

which are derived entirely from the training data, it is expected that the method

should yield better results than either the parallelepiped or the minimum distance

classifiers. As more information is extracted from the training data and is used to

identify new data, one might expect more accurate classification results.

In order to classify an unknown pixel, the membership probabilities for the

specified classes are estimated through the probability density functions and the

label of most likely class (i.e. having the highest probability value) is assigned to

the pixel. If the highest probability value of a pixel is lower than a threshold set by

the analyst, then the pixel is left unclassified.

The mathematical theory underlying the maximum likelihood classification

technique is outside the scope of this study, but can be found in Thomas et al.

(1987a), Jensen (1996) and Mather (1999a).

The classification problem presented in Figure 2.2 and 2.3 is also used to illustrate

the maximum likelihood classifier. Figure 2.4 shows equi-probability contours

drawn around the mean centre of each class. In other words, the locations and

shapes of the ellipses are determined entirely by the training data. Pixel 1 and 2

can be again easily classified as forest and peas, respectively, and pixel 4 is left

unclassified. On the other hand, pixel 3 seems to be a member of sugar beet class

as it is situated very close to the largest ellipse around the sugar beet class

showing the lowest probability. Surely, this pixel is assigned to sugar beet class if

equi-probability contours are slightly enlarged. This should be, in fact,
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implemented in practice since the training data cannot always depict the exact

boundaries of the classes, especially when only pure pixels are involved.
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Figure 2.4 Schematic diagram illustrating the idea of maximum likelihood

classifier. Concentric ellipses represent equi-probability contours.

In the maximum likelihood method, it is assumed that frequency distribution of a

cloud of pixels representing a class is Gaussian, that is, multivariate normally

distributed. This assumption of normality is generally reasonable for common

spectral response distributions (Lillesand and Kiefer, 1994) and the method can

give good results even in situations where slight departures from the Gaussian

assumption are encountered. The maximum likelihood classifier gives good

results if the assumption of multivariate normal distribution for the training data is

fulfilled. The reliability of the results declines when the distribution of the data

departs from the normality, especially when the distribution is bimodal. For

extreme cases, the multivariate normal assumption does not properly describe the

data distribution in feature space and results are misleading. Prior to the use of the

maximum likelihood classifier, the histograms of the training data can be analysed

to verify that they follow a normal (or Gaussian) shape, a bell-shaped curve.
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The maximum likelihood classifier normally assumes equal weights for each

class. An extension of the maximum likelihood classifier is the Bayesian classifier

that applies two weighting factors to the probability estimated. The first weighting

factor is the 'a priori probability' specified by the analyst for each class, and the

second weight relates to the 'cost of misclassification', for each class. The

Bayesian classifier is preferred when the necessary information for the two

weights is available.

The main drawback of the method is the computational cost required to classify

each pixel. This issue is particularly important in circumstances where data to be

classified are in a large number of spectral bands, or include many spectral classes

to be discriminated. It should be also noted that the maximum likelihood

classification method is much slower than the previous techniques described

above. The use of categorical data is not feasible as the procedure assumes that the

data forming each class are normally distributed.

The maximum likelihood classification method is available in almost all remote

sensing and image processing software packages, and it is generally used as a

standard supervised classification method. Therefore, there exist, in the literature,

many papers comparing the results of maximum likelihood method to those of

others. Some of these papers are Belward and De Hoyos (1987), Benediktsson et

al. (1990), Wilson (1992), Paola and Schowengerdt (1994), and Alpaydin and

Gurgen (1998).

2.5 Artificial Neural Networks

One of the most significant recent developments in the theory of classification of

remotely sensed images has been the introduction of artificial neural networks

(ANNs). The principal theory of ANNs is originated from the desire to create

processing systems that behave like the human brain. The brain is extremely

complex, consisting of billions of neurons and inter-neuronal connections. It is not

exactly known how the brain works, but it is thought that information is processed

using a complex network of neurons that work in a parallel manner. ANNs are
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designed to mimic such a structure and processing philosophy in a computer

environment. In the implementation of ANNs, parallel computation and high

computing power are required to perform a particular learning task. Perhaps one

of the reasons for the recent popularity of ANNs is the development of new

generation computers with increased computing power. Such development is

particularly important to reduce the time required by an ANN to learn the

characteristics of sample data, which is one of the biggest difficulties in the use of.
artificial neural networks.

ANNs have been found to be effective in identifying patterns and other underlying

data structures in multidimensional data, such as the remotely sensed data. They

have some unique advantages, such as their non-parametric nature, arbitrary

decision boundary capabilities, and ability to generalise from training data. In

addition, unlike traditional statistical methods, such as the maximum likelihood

classifier, ANNs permit the use of a range of data types, including categorical

data. It has also been reported that artificial neural networks can classify small

training datasets better than conventional statistical classifiers. Although many

studies have been carried out for a number of years using artificial neural

networks in several fields including speech and image recognition, the application

of such techniques to remotely sensed image data is quite recent.

Numbers of neural network models have been introduced, along with their

learning strategies, which define the methodology of updating the inter-neuron

weights associated with interconnections between the neurons so as to improve

the performance of the network. In the field of remote sensing, the most popular

ANN model has been the multilayer perceptron (MLP), also known as feed-

forward neural network (Figure 2.5). It should be noted that the self-organising

map (SOM) and learning vector quantization (LVQ) are also widely used in

research investigations.

The robustness of artificial neural networks rests on their uruque structural

representation in that processing units are connected in such a way that every

input is locally processed among neighbouring units. Therefore, if any "damage"

is experienced by a few of these elements, the effect is compensated by changes in
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the neighbouring units. The effect of "damage" is thus minimised, and does not

affect the overall performance of the network. ANNs are therefore thought to be

tolerant to noise present in the data. On the other hand, this unique structure

provides a degree of robustness by taking advantage of slight variations in the

data to establish better boundaries between the features.

Input Layer

Hidden Layers
__ ~A..__ __
r , Output Layer

Figure 2.5 A four-layer feed-forward neural network containing three input nodes,

four hidden nodes in each hidden layer and three output nodes.

The characteristics of artificial neural networks are discussed in detail by a

number of authors, including Pao (1989), Paola (1994), Bishop (1995), Paola and

Schowengerdt (1995b), Ripley (1996) and Atkinson and Tatnall (1997). Chapter

Three of this thesis provides a detailed review of artificial neural networks and

their uses in remote sensing image classification.

2.6 Incorporation of Spatial Information

Although spectral information provides useful information to determine the

characteristics of land cover features, the addition of a different kind of

information may assist in the discrimination of classes that are not easily

distinguished using spectral data alone. Spatial information, including texture and

context, can be used to provide such additional information, which can be
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extracted from image data, digital elevation models (DEMs) and also from

thematic maps, such as soil and geology maps.

2.6.1 Texture and Context

Humans can identify patterns far better than computers, because we, by nature,

can easily observe the spectral, textural and contextual features of objects in our

field of view. While the spectral nature ofa pixel is defined by the colour (hue) of

a pixel in different bands (visible and infrared), textural characteristics are related

to the spatial (statistical) distribution of tonal variations within a neighbourhood.

Contextual information is, on the other hand, derived from blocks of pictorial data

surrounding the area under analysis.

For the purposes of classification, only the spectral features (i.e. grey-scale pixel

values taken from different spectral bands) are generally used to identify ground

cover features. A ground cover feature generally covers a region of spectrally

similar pixels, with a range of variation in grey levels. Considering the entire

region, as opposed to a single pixel, could certainly provide better definition of

features, which may result in an improved classification. Thus, the spectral

variation within a specific region could be taken into consideration along with

spectral values in order to classify each pixel in the image. Since textural

properties of images appear to carry useful information for discrimination

purposes, it is important to incorporate such information in the classification

processes. In remote sensing applications, 3 by 3 windows have mainly been used

to characterise texture, by considering the spectral (grey level) values of the eight

neighbouring pixels. Taking larger neighbourhoods (as large as 64 by 64) into

account may give a better description of the texture.

Despite its importance and ubiquity in image data, a formal approach or precise

definition of texture does not exist. Texture discrimination techniques are, for the

most part, ad-hoc (Haralick, 1982). However, texture can be described as the

variation in grey-level tone within a neighbourhood, representing the pattern of

spatial relationships among adjacent pixels. Texture features are usually described
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as being fine, coarse, or smooth. As noted by Mather (1999a), the observation of

texture depends on two factors. One is the scale of the variation that we are

willing to call "texture" - it might be local or regional. The second is the scale of

observation.

Many textural measures have been proposed, including the grey-level co-

occurrence matrix, autocorrelation functions, optical transforms, digital

transforms, textural edgeness, grey-tone run lengths and auto-regressive models.

More recently, more sophisticated texture models have been developed with the

benefit of recent improvements in computer technology. The characteristics of

these texture measures and their theoretical comparisons can be found in several

review articles, including Haralick et al. (1973), Haralick (1982) and Augusteijn

et al. (1995).

A considerable amount of research has been carried out to investigate the

effectiveness of texture features for the classification of remotely sensed images.

For example, Weszka et al. (1976) perform a comparative study of texture

measures including the Fourier power spectrum, second-order grey-level statistics

and the first-order statistics of grey-level differences in a study aimed at

identifying three geological terrain types. Augusteijn et al. (1995) evaluate the

performance of texture measures, including co-occurrence matrices, grey-level

differences, texture-tone analysis, features derived from the Fourier spectrum and

Gabor filters, using a Landsat TM satellite image for the delineation of a variety

of vegetation types. Paola and Schowengerdt (1997) employ texture features in

the classification of land-use categories in a neural network based classification

using the grey-scale values of the eight neighbours of the pixel to be classified

(i.e. using a 3 by 3 window). Mather et al. (1998) investigate the effectiveness of

spectral and textural information in the identification of surface rock type in an

arid region using Landsat TM and SIR-C SAR image data.

Gurney and Townshend (1983) suggest that one disadvantage of textural measures

is that there is an effective reduction in the spatial resolution of the final classified

image because an area has to be defined within which the measurements of texture

are made. According to Mather (1999a), 'with few exceptions, texture measures
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have not been found to be cost-effective in tenns of the improvement in

classification accuracy resulting from their use. Two reasons could be proposed to

account for this: (i) the difficulty of establishing the relationship between land

surface texture and scale in terms of the textural feature on the ground relative to

pixel size, and (ii) the cost of calculating the texture feature'.

The context of a pixel is derived from the spatial relationships between that pixel

and the others in the image. Contextual information can be used either to classify

the raw image, or to manipulate the classified image. Contextual information is

normally used to modify the classified image. Thus, not only might classification

error be reduced by the use of contextual information, but also additional classes

could be recognised by separating pixels with the same spectral properties into

additional classes according to their context (Gurney and Townshend, 1983).

Contextual models can be grouped into four categories in tenns of the type of

spatial relationship involved; namely, distance, direction, connectivity and

containment. Many procedures have been developed to extract contextual

information, but a simple way of incorporating contextual information into the

classification is to use a form of majority filter window. One of the popular

procedures proposed recently is to use geostatistical methods to determine the

contextual characteristics of a pixel. Sharma and Sarkar (1998) group the

approaches used to incorporate context in the classification of remotely sensed

data as follows:

• Methods based on the classification of homogenous objects,

• Techniques based on probabilistic relaxation,

• Methods derived using compound decision theory and sequential

compound decision theory, and

• Methods derived based on a stochastic model for the distribution of

classes in the scene.

Even though incorporating contextual information has not been as popular as

incorporating texture information in the classification, a number of research

results have been reported in the literature. For example, Wilson (1992) compares

the effect of using pure and mixed pixels in the classification of simulated datasets

37



employing mnumum distance, maximum likelihood and penalised maximum

likelihood classifiers. He comes to the conclusion that incorporating contextual

information, using a smoothing filter and adding a penalty to the likelihood

function, produced much improved solutions with an increase in classification

accuracy of as much as 9 percent; Sharma and Sarkar (1998) propose a method to

incorporate contextual information using high resolution (e.g. a few metres) or

low resolution (e.g. a few hundred metres) data depending on the ratio of region

size to pixel size for each class in the classification of a large number of land

cover features from three different subscenes. They conclude that the contextual

model is superior to other methods in two out of the three examples considered.

Despite the fact that contextual information has been found to be effective in

improving the classification accuracy, the selection of the most suitable contextual

procedure is the key to produce improved classification results. This selection is

totally dependent on the characteristics of the data used. The computational power

required for the estimations is also important for the applicability of such

techniques.

2.6.2 Using Ancillary Data

As each additional source of information contributes to the characterisation of the

objects under analysis, the use of ancillary data is of significant importance. Such

data are generally map-based, using themes such as topography, geology, soils

and vegetation. Two groups of ancillary information exist: continuous and

categorical. Slope and aspect maps extracted from digital elevation models are

continuous forms of ancillary information, whereas soil, vegetation and geology

maps are in categorical form. One problem in the use of such sources of

information is that some of them, such as the vegetation and land use maps, are

produced much earlier than the acquisition date of the image. Therefore, they may

not represent the reality, causing matching problems between the sources. Another

problem is that they are generally in paper form and need to be digitised, which

requires considerable amount of time.
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The incorporation of such data in the classification can be performed in three main

stages: before, during or after the classification. These stages are also known as

stratification, classifier operations and postclassification sorting respectively, and

are comprehensively described by Hutchinson (1982). He also concludes that

using ancillary data can improve the accuracy of the classification when used

during any of the stages.

2.7 Classification Accuracy Assessment

Results produced by any classification process applied to remotely sensed data

must be quantitatively assessed in order to determine their degree of reliability or

accuracy. For this purpose, accuracy assessment is carried out to determine the

degree of error in the end-product, which is typically a thematic map or image in

remote sensing studies. It is with these accuracy measures that such maps gain

meaning. For example, Lillesand and Kiefer (1994) state that a classification is

not complete until its accuracy is assessed.

A common way of describing the classification accuracy is by a single percentage

value (e.g. 80%) that is calculated by comparing the areas covered by each

category in classification map and ground reference data. Such a non-site specific

description disregards locational accuracy. In other words, nothing is known about

the agreement or disagreement between the ground truth and classification results

in any specific location. Therefore, the use of non-site specific accuracy

assessment can be misleading.

A comparison between the map generated by a classification process and the

ground reference data is necessary. It should be noted that the ground reference

data do contain some degree of error, yet it is assumed that the "ground reference"

map is correct. This comparison is usually carried out using a confusion matrix,

also known as an error matrix or contingency matrix. The term "confusion" comes

from the fact that such matrices show the confusion between categories through

misclassifications.
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Accuracy assessment of classification results usmg confusion matrices has

become a convention, and is therefore used by most researchers. A confusion

matrix is a square matrix containing the number of pixels assigned to each class

by the. classifier being employed. The number of rows and columns in the

confusion matrix is equal to the number of categories. Such matrices thus consist

of both the ground reference and classification data, with ground reference data

represented by the columns of the matrix, and the classification results are

represented by the rows. Hence, correctly classified pixels for each class are

located along the principal diagonal of the confusion matrix.

A confusion matrix is a very effective way of representing accuracy in that the

accuracies of each class are described along with both the errors of inclusion

(commission error) and errors of exclusion (omission error) present in the

classification. A commission error, represented by off-diagonal row elements of

the confusion matrix, occurs when a pixel is included in a category to which it

does not belong. On the other hand, an omission error, represented by off-

diagonal column elements of the confusion matrix, is the error that a pixel is

excluded from the category that the pixel belongs to. Every error is an omission

from the correct category and a commission to a wrong category (Congalton and

Green, 1999). As well as showing the errors of commission and omission,

confusion matrices can be used to compute a number of descriptive and analytical

statistics, such as overall accuracy, producer'S accuracy and user's accuracy.

2.7.1 Overall Accuracy

The overall accuracy can be computed by dividing the total number of correctly

classified pixels (Le. the sum of the diagonal elements of the confusion matrix)

into the total number of pixels in the training dataset (not the total number of

pixels classified as there may be some pixels left unclassified). The overall

accuracy can be viewed as an average of individual class accuracies. It can only

show the overall effectiveness of a classification over the entire scene, not the

effect of the classification on individual classes. As emphasised by Story and

Congalton, (1986), the categories could, and frequently do, exhibit drastically
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differing accuracies, and yet combine to produce equivalent or similar overall

accuracies. Therefore, individual class accuracies should be computed and

presented together with the overall accuracy. However, the proper way of

representing the results of a classification is to present the error matrix so that

other accuracy measures can be calculated when needed.

Individual land cover class accuracies can be calculated by dividing total number

of correctly classified pixels for each class by the corresponding column or row

totals (marginals). As a result, two accuracy measures, producer's accuracy and

user's accuracy, can be calculated.

Producer's accuracy is computed by dividing the number of correctly classified

pixels in each category by the number of pixels in the training set for that

category, which corresponds to a column total. This measure of accuracy shows

the classification performance for the pixels of a particular class in the training

set. User's accuracy is estimated by dividing the number of correctly classified

pixels by the number of pixels that were classified in that class, corresponding to a

row total. User's accuracy gives the probability that a pixel allocated to a

particular class actually belongs to that class on the ground.

It should be remembered that such procedures only indicate how well the statistics

extracted from these areas can be used to categorise the same areas. If the results

are good, it means nothing more than that the training areas are homogenous, the

classes are spectrally separable, and the classification strategy being employed

works well in the training areas. This aids in the training set refinement process,

but it indicates little about how the classifier performs elsewhere in a scene. One

should expect training area accuracies to be overly optimistic, especially if they

are derived from limited datasets (Lillesand and Kiefer, 1994, p. 613).

The accurate interpretation of accuracy measures derived from confusion matrices

is of great importance to understand the efficiencies and deficiencies of a

classification being carried out.
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Table 2.1 Example confusion matrix (from CongaIton and Green, 1999).

Row
Deciduous Conifer Agriculture Shrub

Total

Deciduous 65 4 22 24 115

Conifer 6 81 5 8 100

Agriculture 0 11 85 19 115

Shrub 4 7 3 90 104

Column
75 103 115 141 434

Total

Overall Accuracy = (65+81+85+90)/434 = 3211434 = 74%

Producer's Accurac:r User's Accurac:r

D = 65/75 =87% D = 65/115 =57%

C = 811103 =79% C = 811100 =81%

AG = 85/115 =74% AG = 85/115 =74%

SB = 90/141 =64% SB = 90/104 =87%

Considering the confusion matrix shown in Table 2.1, there exist considerable

differences between the user's and producer'S accuracies for corresponding

classes. These values also show a significant variation from the overall accuracy

(74%). If the overall accuracy is solely taken into account, it can be concluded

that the classifier has an average accuracy of 74%, without giving the

effectiveness of the classification on a particular class, which could be misleading

(or inexact). If the overall accuracy and one of the individual class accuracy

measures are considered, the analyst could again reach to some misleading

conclusions. For example, a producer's accuracy of 87% is achieved for the

deciduous class, which is quite high when compared to the overall accuracy. The

analyst can conclude at this stage that, although the overall accuracy is average,

the deciduous class can be classified with higher accuracy (87%). Drawing such a

conclusion could be a serious mistake because the user's accuracy of the

deciduous class is only 57%. This means that although 87% of the deciduous

areas have been correctly identified as deciduous, only 57% of the areas called

deciduous on the classification map are actually deciduous on the ground. A

problem can be clearly noticed from the row corresponding to deciduous class in

that there is a confusion between the deciduous class and the agriculture and shrub

.,.
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classes. It can be concluded from the above statements that careful analysis of the

confusion matrix is always necessary to present the results and conclusions in a

meaningful way.

2.7.2 Kappa Coefficient

A statistical measure of accuracy that can be computed from the confusion matrix

is the kappa coefficient (K). It is a measure of difference between the actual

agreement and chance agreement, in that actual agreement is evaluated between

ground reference data and classification results, whereas the chance agreement is

assessed between the ground reference data and the results of a random classifier.

Due to numerous papers using and recommending the kappa coefficient as an

accurate measure of accuracy, it has become the conventional way of analysing

the confusion matrices. The kappa coefficient is defined by:

observed accuracy - chance agreementK=------__:_-----=----
1- chance agreement

(2.1)

and can be computed from the formula:

K = _.!.:;=:!...I _ __:1::;.:'=Ic._ _

r

N2
- L(x;+ .x+J

;=1

(2.2)

The Xii are the diagonal elements of the confusion matrix, Xi+ and X+i are the

sums of row i and column i respectively. N is the number of pixels in the

confusion matrix, and r is the number of rows, which is equal to number of

columns.

The kappa coefficient assumes that the data are randomly sampled from a

multinomial distribution. Confidence intervals around the kappa value can be

estimated using the approximate large sample variance, which is computed using
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the Delta method, described by Congalton and Green (1999). In the estimation of

the variance it is assumed that the kappa statistic is asymptotically normally

distributed. The value of 1C generally ranges from 0 to 1. However, in some

extreme cases it can have a negative value. A kappa value of zero indicates that

the classification performed is no better than a random classification of pixels,

whilst a kappa value of 1.0 shows perfect agreement between the classification

results and the ground reference data. On the other hand, a kappa value of 0.72

can be interpreted as an indication that the classification performed is 72 percent

better than one resulting from chance (random assignment of pixels to categories).

Although overall accuracy only incorporates the major diagonal elements of the

confusion matrix and excludes omission and commission errors, the kappa

coefficient indirectly incorporates the off-diagonal elements using row and

column marginals. Therefore, the kappa coefficient can be viewed as an adjusted

overall accuracy in that the estimated contribution of chance agreement is

subtracted. Kappa is a powerful measure because it can not only be used to assess

a single confusion matrix, but can also be used to statistically compare matrices. It

can therefore be stated that the kappa coefficient is conceptually a more robust

accuracy measure than the overall accuracy. For testing the significance of a

single error matrix or two independent error matrices resulting from different

dates of images and classification techniques, a Z test statistic is used.

Mathematical details of significance tests can be found in Congalton and Green

(1999).

Unfortunately, there is no agreement among researchers about which accuracy

measure should be preferred in any particular condition. As highlighted by

Congalton (1991), each accuracy measure incorporates different information

about the error matrix and therefore must be examined as different computations

attempting to explain the error.

The estimation of the kappa coefficient estimation can be carried out for the

confusion matrix listed in Table 2.1 as follows:
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rz-, =65+81+85+90=321
;=)

rL(x;+ .x+;) = (115. 75)+ (WO.103)+ (115.115)+ (104.141)= 46,814
;=)

K= 434·321-46,814 = 92,500 =0.65
4342 -46,814 141,542

Individual class accuracies can also be computed using the underlying philosophy

of the kappa coefficient. Such an accuracy assessment can be performed using the

conditional kappa coefficient. For each category (the ith), the conditional kappa

can be estimated from:

(2.3)

Similar statistical tests to those described for the kappa coefficient are also

available for conditional kappa estimates computed for each class.

Considering the confusion matrix given in Table 2.1, the conditional kappa for the

deciduous class, which is the first class, can be computed as:

K = 434·65-115·75 = 19,585 = 0.47
) 434·115-115·75 41,285

When the formula is applied to other classes (conifer, agriculture, and shrub) in

the confusion matrix, conditional kappa values of 0.75, 0.64 and 0.80 are found,

respectively.

To standardise reporting procedures for static thematic maps, the confusion matrix

must be presented in addition to percent commission error by category, percent

omission error by category, the overall accuracy, number of points sampled, map
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accuracy (at a specified confidence interval), and the kappa coefficient (Lunetta et

al., 1991).

2.7.3 Accuracy Maps

The accuracy measures described in section 2.7.2 are derived from confusion

matrices and consider the pixels belonging to a certain class as a whole. The error

is computed for individual classes and for the overall performance of the

classifier. Clearly, they disregard the spatial distribution of classified pixels and

the error attached to them. They can be, therefore, viewed as methods that take the

generalised error into consideration. These methods cannot give any measure of

error to represent the variations in the accuracy of pixels because all the pixels

having membership rates over a threshold value defined by the analyst are

assigned to discrete classes as a result of a hard classification. However, there is a

need to present the class membership levels for each classified pixel to the final

user of the remote sensing data products so as to provide an indication of spatial

distribution of the accuracy. Such information could be extremely useful, since

different regions of thematic maps have varying accuracies, due to the nature and

complexity of remotely sensed image data.

Two methodologies presented here are proposed to produce special (unique)

output images to display the spatial distribution of the accuracy (reliability of each

pixel). Both methodologies portray the spatial pattern of commission and

omission errors. The first approach shows the membership probabilities associated

with each pixel in terms of using tones of a specific colour attached to a particular

class. In other words, the results of a classification are displayed using several

colour tones for each class, with tone depending on the membership probabilities,

where each class was represented by a distinct colour. Such representation clearly

provides a better way of representing the results of a classification in that both

class allocations and levels of reliability are given. A sample thematic image from

an ANN classification is shown in Figure 2.6. The classification involved seven

land cover classes that are presented in four colour tones depending on the output

activation value.
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Reliability of Pixels as Colour Shades

50

100
onion

Figure 2.6 ANN output activation levels presented with colour tones for each

class. High activation values are represented by darker colour tones, while low

activations are shown by lighter colour tones. Unclassified pixels are displayed in

white.

sugar beet

The second methodology is based on displaying all the pixels on a grey scale

depending upon the membership probabilities. As the artificial neural network

classification method is mainly employed in this study, membership probabilities

of pixels are the output node activation levels. Output activations lower than 0.5

are set to black, whilst an output activation of 1.0 is set to white. Activation values

in between 0.5 and 1.0 are displayed in grey tones. Thus, the areas that were not

recognised by the ANN classifier and the effect of spectral variations can be easily

recognised. It is also possible to outline the boundaries of the fields, because

mixed pixels (mostly appearing in the borders) are classified with low probability

of membership; they are, therefore, darker than those pixels within the field. The

result of this process is shown in Figure 2.7.

200

250

50 100 150
Column

200 250
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Reliabilrt~ of pixels in terms of output activation levels

Column
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Figure 2.7 ANN output activation levels presented as a grey scale. Unclassified

pixels are shown in black. Boundary pixels are clearly evident.

It is possible to display the results given in Figure 2.7 in a colour spectrum since

there are a variety of colourmaps available in MATLAB. In addition to the grey-

scale colourmap, a colourmap described as 'hot' can be used to make the figure

clearer with hues of red and yellow. The result of this process is shown in Figure

2.8. It is also possible to present solely problematic areas, which are the areas left

unclassified, in the output image. This process can be also performed using the

visualisation toolkit written for this study.

Having the two types of thematic images described above, one can evaluate each

pixel and observe the effect of spectral variation in individual fields. It should be

noted that spectral variations are basically due to the variations in soil type, the

amount of fertilisers used within a field, soil characteristics, different planting

dates and different seed properties. Both methodologies are implemented using

programs written in MATLAB, and the programs can be run via the visualisation

toolkit produced for this study and described in Appendix A.
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Reliability of pixels in terms of output activation le...els
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Figure 2.8 Output activation levels presented using another colour spectrum (hot).

As emphasised by Vieira and Mather (1999), the fmal product of a classification

process, typically a thematic map, should be provided together with confusion

matrix, statistical error measures and accuracy (reliability) maps, which give the

fmal user a better understanding of the potential error sources associated with

remote sensing data products.

2.8 Summary

The concept of classification is discussed in this chapter. The philosophy

underlying classification is discussed extensively, assessing different views about

the issue. Classification techniques, categorised using four criteria, are discussed

with an emphasis on supervised classification techniques. The advantages and

disadvantages of the techniques are given in detail. The most appropriate

classification technique is dependent partly upon the characteristics of the data

used and partly upon the nature of the classifier to be employed, in particular on
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its underlying assumptions. The issue of accuracy assessment is discussed; this

has in general been overlooked by many researchers. Together with the

conventional accuracy measures, new measures of accuracy are introduced to

represent the spatial pattern of classification accuracy. It should be noted that

using such accuracy measures results in a better understanding of possible

problems in the datasets, and gives an opportunity to users to visually observe the

performance of the classification, which is impossible if a single percentage value

is used.

In this review chapter, the importance of incorporating spatial information

(texture and context) is emphasised, and the potential benefits of using such

information are presented, along with problems in their current use. It should be

emphasised once again that the choice of the most appropriate texture and context

measures is difficult, but is vital for achieving high classification performance.
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CHAPTER III

ARTIFICIAL NEURAL NETWORKS

3.1 Introduction

A new mathematical model that has emerged recently, and which has made a

great impact in the scientific community is the artificial neural networks (ANNs).

ANN has attracted increasing attention from researchers in many fields during the

last decade, resulting in studies aiming to solve a wide range of problems. ANN

has been proved to be more robust compared to conventional statistical classifiers

in recognising patterns from noisy and complex data and in estimating their

nonlinear relationships. In short, it is known to be good at learning the internal

representation of data in any form.

Artificial neural networks are heuristic algorithms, in that they can learn from

experience via samples and can subsequently be applied to recognise new data.

These systems are intended, in an extremely simple way, to imitate the behaviour of

the network of neurons in the human brain. The primary aim of the ANNs is to

improve the performance of computer recognition processes by simulating the

superior characteristics of the human brain. According to Civco and Waug (1994),

'the powerful capabilities for knowledge acquisition, recall, synthesis, and problem

solving of the human brain have inspired scientists from different disciplines to

attempt to model its operations. Based on the biological theory of the human brain,

artificial neural networks are models that attempt to parallel and simulate the

functionality and decision making processes of the human brain'. ANN methods
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have been developed and used in a wide range of fields including geography

(Hewitson and Crane, 1994), medicine (Dickson et al., 1997), finance (Swingler,

1996b; Giles et al., 1997), manufacturing (Sutton, 1992; Monostori and

Barschdorff, 1992), and speech recognition (Hennebert et al., 1994;Altun, 1998).

The power of artificial neural network techniques rests in their unique advantages

that may be listed as follows:

• they are non-parametric,

• they have arbitrary decision boundary capabilities,

• it is easy to incorporate different types of data and input structures,

• they yield fuzzy output values that can enhance classification,

• they can generalise better, especially in the use of multiple images,

• they are tolerant to noise.

Of the advantages of ANN techniques, the most important one may be their non-

parametric nature. In other words, there is no underlying assumption about the

frequency distribution of the data. They learn the characteristics of the training

data (or the internal structure of these data), typically in an iterative way, so they

may be called data-dependent techniques. It is also worth noting that artificial

neural networks can give considerably better results for small training datasets

compared to conventional statistical classifiers (Hepner et al., 1990; Blamire,

1994; Paola, 1994 and Foody, 1995). A survey of neural network research and

applications can be found in Kemsley et al. (1992).

Although artificial neural network classification methods are more robust than

conventional statistical approaches, they have a number of drawbacks, related in

particular to the long training time requirement, determining the most efficient

network structure for a particular problem, and inconsistent results due to the use

of random initial inter-node weights. Most importantly, the structure of the

network has a direct effect on training time and classification accuracy. There are

also problems stemming from the nature of steepest-descent based learning

algorithms. All of these problems, which can be encountered in the use of

artificial neural networks, are discussed in detail in section 3.9.
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Many kinds of neural network model and learning algorithms have been

developed as a result of different interconnection strategies. The exact number is

uncertain. It is possible to categorise neural network models in terms of two

criteria. The first one is based on whether the model employs a supervised or an

unsupervised learning strategy. While in supervised models input and output

information is provided to adjust the weights in such a way that the network can

produce the given outputs from the inputs, only input information is provided in

unsupervised models to find out possible classes in the dataset. Major

unsupervised neural network models are Kohonen Self-Organising Map (SOM),

Adaptive Resonance Theory Networks (ART), Hopfield networks, and Grossberg

networks, whilst most common supervised models are the Perceptron, Multilayer

Perceptron (MLP), Radial Basis Function Network (RBF), Recurrent Networks,

and Learning Vector Quantization (LVQ). The second criterion relates to the

directionality of the learning method associated with the network model. If the

information advances from input layer to output layer, the learning method is

called "feed-forward". Conversely, if the information proceeds from output layer

to input layer, the network is termed "feed-back".

The most common neural network model is the multilayer perceptron (MLP), an

extension of the original Perceptron model that included only an input and output

layer. MLP-type networks work in a feed-forward direction where information

progresses from an input layer to an output layer in the learning phase. Such

networks contain an extra layer or layers termed the hidden layer(s) to overcome

the problems of the Perceptron. Due to the involvement of one or more extra

layers and the use of nonlinear rather than linear transfer functions, the MLP can

approximate and map any kind of problem. Bostock (1994) emphasises that the

major reason for the popularity of MLP models is that whilst some problems are

more efficiently modelled by other more specialised networks, such as radial basis

function networks or binary tree structures, the multilayer perceptron is a good

general learning tool for a wide range of applications.

In this study, the MLP that has been the most popular network model for remote

sensing studies is employed to accomplish the research objectives. In the remote

sensing field, ANNs have been used for various classification problems including
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land-cover classification, rainfall estimation, sea ice classification, geological

mapping, multisource data classification and cloud-cover classification.

3.2 History of Artificial Neural Networks

Warren McCulloch and Walter Pitts conducted a pioneering study of simple logic

circuits composed of interconnected neuron-like elements. They also made the

first formal definition of the ANN approach in 1943. Nonetheless, it was several

years before suitable network architectures and learning algorithms were

developed and ANNs gained a great deal of attention.

Donald Hebb, a psychologist, correctly postulated that it was the connections

between neurones in the human brain that stored memories. He published his

pioneering work 'The Organisation of Behaviour' in 1949. Although subsequent

research has shown that memory formation as a result of learning is more

complex than Hebb had initially postulated, his concept is still the starting point

for most modem artificial neural network theories. The statement was very

important and had a strong influence on researchers, especially on two of Hebb's

high-school classmates: Frank Rosenblatt and Marvin Minsky. Minsky embarked

on the problem of building synthetic networks that functioned like the brain, and

he managed to build a complex hardware simulator with tubes and mechanical

servos in 1951. However, Rosenblatt studied the mathematical side of Hebb's

ideas, and produced a technique that he called the Perceptron. He summarised his

work in 'Principles of Neurodynamics', published in 1962. Perceptron is a very

simple model including only input and output layers and their interconnections,

and trained in a supervised manner. A learning algorithm systematically modifies

the weights (links or interconnections) between the neurones until the output

converges to a minimum. Perceptron also employed a 'threshold' concept,

originally suggested in 1943 by Warren McCulloch and Walter Pitts.

In 1969, Marvin Minsky and Seymour Papert published their book 'Perceptrons',

charging that simple two layer networks had strict limitations and could not solve

even some simple logical problems, specifically the Exclusive-OR problem. As a
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result of this criticism, many researchers gave up working on neural networks,

and Minsky and Papert have been blamed for the cut-off in neural network

research. Despite their criticism, they proposed the solution of adding an extra

layer that contains nonlinear functions. However, the problem was that no

learning algorithm existed at that time to train such networks.

Paul Werbos, a PhD student at Harvard University, demonstrated the feasibility of

the backpropagation of errors technique in his PhD dissertation in 1980, but his

findings were unnoticed until independently redeveloped in 1982 by David Parker

at Stanford University.

Parker's work came to the attention of David Rumelhart at the University of

California and James McClelland at Carnegie-Mellon University. The two have

worked together, along with their 'Parallel Distributed Processing Research

Group', to improve the technique, and introduced the 'backpropagation learning

algorithm', which is currently the most popular learning algorithm for multilayer

perceptrons. The back-propagation algorithm uses a learning rule that is mainly

derived from the Widrow-Hoff rule, also known as the 'delta rule'. Hence, the

backpropagation learning algorithm is also called the 'generalised delta rule' as it

is an extension of the delta rule. The backpropagation algorithm estimates the

output values from a set of input values associated with input nodes and a set of

randomly determined weights associated with interconnections in the network.

These output values are compared to the actual outputs and the error is propagated

backward from output layer to the internallayer(s), and then to the input layer.

The performance of networks trained using the backpropagation learning

algorithm has shown that the limitations of the original perceptron introduced by

Rosenblatt were exaggerated in the 1960s.

Two researchers, Teuvo Kohonen and Stephen Grossberg, who are among the few

researchers to have continued their studies on neural networks after the

publication of Minsky and Papert's criticisms, have had great influence in the

development and recent popularity of neural network research by developing

several neural network structures and learning algorithms. Kohonen proposed the

Self-Organising Map (SOM) that became the most popular neural network
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architecture using unsupervised learning. Stephen Grossberg together with Gail

Carpenter introduced and developed a network structure known as adaptive

resonance theory (ART).

More information about the development of artificial neural networks can be

found in Pollack (1989), and Eberhart and Dobbins (1990), in which the history of

neural network development is divided into four segments: the Age of Camelot,

the Dark Age, the Renaissance and the Age ofNeoconnectionism.

3.3 Network Structure

The basic element of an artificial neural network is the processing node (Figure

3.1) that corresponds conceptually to the neuron of the human brain. Each

processing node receives and sums a set of input values, and passes this sum

through an activation function providing the output value of the node, which in

tum forms one of the inputs to a processing node in the next layer of the ANN.

i)

i2

Node
Inputs • Node Output

•
ij

Figure 3.1 A neural network processing node.

Processing nodes make up a set of fully interconnected layers, except that there

are no interconnections between nodes within the same layer in the standard feed-

forward backpropagation neural networks. The structure of a feed-forward

artificial neural network includes three types of layers: input layer, output layer

and hidden layer (Figure 3.2). The input layer introduces the distribution of the

data for each class to the network. The output layer is the final processing layer

that has a set of values (or codes) to represent the classes to be recognised. The
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layers between the input and output layer are called hidden layers. These hidden

layers, of which there may be only one, perform the basic calculations. It is

through these layers that the internal representations of the input patterns can be

produced. A typical neural network consists of one input layer, one or two hidden

layers and one output layer. The structure of a typical three layer neural network is

given in Figure 3.2. Some researchers prefer to refer to three-layered networks,

including one input, one hidden and one output node, as two-layered networks

excluding the input layer since there is no processing carried out on this layer.

Unfortunately, there is no universal agreement on this matter.

1

OutputLaver

o
U
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Figure 3.2 A simple three layer feed-forward neural network structure (Paola and

Schowengerdt, 1995b).

InputLaver HiddenLaver
1

Each neuron in the input layer represents one of the input features, such as SPOT

HRV Band 1,while each neuron in the final layer corresponds to one of the output

classes. All inter-node connections have associated weights, which are usually

initially randomised. When a value passes through an inter-connection, it is

multiplied by the weight associated with that inter-connection. The weights in the

network determine class boundaries in the feature space. However, there is

<,....

2
Multispectraldata .

.__----_.,~m+.__.,
Ancillarydata
(elevation,
temperature,
other sensordata,etc.) m+k

o

Note:Manyinterconnectionsleftout for clarity.

57



evidence that the initial values of the weights may influence the final

classification accuracy significantly (Blamire, 1996; Ardo et al., 1997 and

Skidmore et al., 1997).

3.4 Learning Algorithms

A learning algorithm is the core of an artificial neural network (ANN) application

as it is necessary to make the network neurons and weights capable of performing

a useful task by understanding the internal structure of the data. There are many

learning strategies developed for different neural network models and the major

ones are given in Figure 3.3. However, for training feed-forward neural networks

the most popular technique is the backpropagation algorithm introduced by

Rumelhart et al. (1986). According to Werbos (1995), it has been used in about

70% of ANN applications. He defines backpropagation as a procedure for

efficiently calculating the derivatives of some output quantity of a nonlinear

system, with respect to all inputs and parameters of that system, through

calculations proceeding backwards from outputs to inputs.

Learning Algorithms

I
+ +

I Unsupervised I Supervised

I I

+ ~ + 1
I Feed-back ] I Feed-forward I I Feed-back ] I Feed-forward 1

ARTl
ART2
Hopfield
SOM

LAM
FAM
CPN

BM
RCC

Perceptron
Backpropagation
CasCor
LVQ

ARTl-2: Adaptive Resonance Theory 1-2, SOM: Self-organising Maps, LAM: Linear
Associative Memory, FAM: Fuzzy Associative Memory, CPN: Counterpropagation, BM:
Boltzmann Machine, RCC: Recurrent Cascade Correlation, CasCor: Cascade Correlation, LVQ:
Learning Vector Quantisation.

Figure 3.3 Major neural network learning algorithms.
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The backpropagation algorithm, also called the generalised delta rule, is an

iterative gradient descent training procedure. It is carried out in two stages. In the

first stage, after all the network weights have been randomly initialised, the input

data are presented to the network and propagated forward to estimate the output

value for each pattern set. In the second stage, the difference (error) between

known and estimated output is fed backward through the network and the weights

are changed in such a way that the difference is minimised. The whole process is

repeated with weights being recalculated at every iteration until the error IS

minimal, or else lower than a given threshold value.

A processing node sums the inputs multiplied by the weights of interconnections

and then estimates the output of the node using the activation function:

(3.1)

oPj = [(net Pj ) (3.2)

where net Pj is the sum of the inputs, Wji is the weight vector, iPi is the value of

the ith element of the input pattern, 0 Pj is the output of the node j for pattern p,

and[(·) is the activation function, which is usually a nonlinear function. The

most common activation function used is the sigmoid function.

The algorithm minimises the error that is the sum of the differences between the

actual and calculated output values. The error for pattern p is estimated from:

(3.3)

where tPj is the target input forjth component of the output pattern for pattern p,

oPj is the jth element of the actual (calculated) pattern produced by the

presentation of input pattern p. The total error of the network can then be

estimated from:

59



(3.4)

New weights are estimated by updating the weights with /::"Wji:

(3.5)

(3.6)

where 17is a term called the learning rate that must be initially set by the user. It

is used to control the degree of the change in the weights in response to errors in

the output during each cycle.

The mathematical theory underlying the backpropagation algorithm is presented

only briefly above, as the details are beyond the scope of this study, but can be

found in numerous sources, such as Rumelhart et al. (1986), Pao (1989), Paola

(1994), Bishop (1995) and Ripley (1996).

Training a feed-forward neural network using the backpropagation algorithm

involves setting several initial parameters including network structure, learning

rate, momentum term and activation function. Of these parameters, two (network

structure and activation function) are discussed in later sections. The value of the

learning rate has a great impact on the success of ANN applications. If the

learning rate is set too high, the learning algorithm may not reach the global

minimum, and an increase in error can be observed. If the learning rate is too

small, then the process of searching the minimum error will be slow, resulting in

long computation times.

The momentum term is added to new (adapted) weights as a fraction of the weight

change calculated in the previous iteration. It is used to speed up the process of

learning, leading to faster convergence towards the global minimum, and

preventing the network from getting stuck into a local minimum by pushing the

network away from that point. It also prevents networks oscillating between two
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points by forcing the weights to change in the same down-hill direction.

Unfortunately, it is difficult to set the optimum values for learning rate and

momentum term, as these optimum rates may change during training; therefore,

they are sometimes altered during the learning process. Such strategies are called

adaptive learning strategies. The effect of learning rate and momentum term is

presented in Figure 3.4.

c

Figure 3.4 The descent in weight space. a) for small learning rate; b) for large

learning rate, and c) with large learning rate and momentum term added (Krose

and Van Der Smagt, 1996).

Another important issue is to define a stopping criterion for the learning process,

as it is unusual for real-world problems to train a network until the training error

is zero. A convergence criterion must be defined to prevent overtraining. This can

be considered as a threshold value. When the network reaches this value, training

is stopped and the trained network is tested for its performance. There are two

methods that have been suggested to find out the best time to terminate the

learning process in terms of best generalisation performance. The first method

involves employing a validation set for testing the performance of the trained

networks during the learning process. Learning is stopped when the error on the

validation set starts to rise. According to Ripley (1996, p.l54), 'this is dangerous

as it is often encountered examples in which, after an initial drop, the error on the

validation set rises slowly for a large number of iterations, then falls dramatically

to a small fraction of its previous minimum'. Another problem of using a

validation set occurs in cases that there are a limited number of data available that

are only enough to form the training and test sets.
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The second solution, which has lately been discussed at length in the literature, is

early stopping (Wang, 1994a; Wang et al., 1994 and Sarle, 1995). Wang et al.

(1994) state that a network has better generalisation performance when learning is

stopped at a certain time before the global minimum of the empirical error is

reached. In addition, for a fixed number of learning examples, the larger the ratio

d/ n , where d is the number of weights (or nodes) and n is the number of samples,

the larger is the improvement in generalisation error if the algorithm is stopped

before the global minimum is reached. In this philosophy, it is assumed that when

the learning reaches the global minimum, the network loses its generalisation

capabilities as it becomes too specific.

Despite its simplicity, it has been reported by researchers that the backpropagation

algorithm gives reasonably good results for many problems including those

involving complex and noisy data. It is also easy to implement computationally,

compared to others. The main drawback of the backpropagation learning

algorithm is that there is no guarantee of convergence to minimum error. It is also

likely to become trapped into a local minimum, as illustrated in Figure 3.5.

global!minimum

I Emin

I network weight (w)

Figure 3.5 Typical error surface with local minima (one dimensional weight

space). A and C are the local minima, B is the global minimum.
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Another problem is that it is possible for the backpropagation process to oscillate

between two points. This behaviour is generally observed when the learning

algorithm reaches a flat region in the error surface. In addition, because of its

gradient descent nature, it is a very slow technique. Details of the inefficiency of

backpropagation algorithm and their possible solutions suggested in the literature

are discussed in section 3.9.

At the end of the training process the decision boundaries defining the classes are

formed in the feature space. Determination of the decision boundaries is

dependent on some factors, one of which is the number of hidden layers. An

excellent discussion about the decision region capabilities related to the number of

hidden layers (Table 3.1) is given by Lippmann (1987). He shows that a

Multilayer Perceptron (MLP) with one hidden layer can implement arbitrary

convex decision boundaries. Cybenko (1989) has also pointed out that a network

with one hidden layer can form an arbitrarily close approximation to any

continuous non-linear mapping, assuming only that the transfer function

computed by a neurone is nonconstant, bounded, continuous and monotone

increasing. However, these conclusions do not suggest that there is no benefit

having more than one hidden layer. For some problems a small two hidden layer

network can be used where a single hidden layer network would require large

number of nodes.

Chester (1990) underlines the fact that the problem with a single hidden layer is

that the neurons therein interact with each other globally, making it difficult to

improve an approximation at one point without worsening it elsewhere. However,

with two hidden layers this problem is overcome. According to Hand (1997), 'a

network with two hidden layers allows convex regions to be combined, producing

nonconvex, even disconnected regions. Thus, in principle, two hidden layers are

sufficient for any problem. However, in practice, it may be advantageous to use

more than two layers as increasing the complexity of the nodes can have dramatic

advantages'. In a recent study based on land cover classification, Kavzoglu (1999)

draws some important conclusions about the effects of the network size on the

learning and the performance of the classifier. Some of these conclusions are:

large networks learn tasks more quickly but not necessarily better, large networks
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do not always improve the accuracy of the classification, and a network that is

large enough to learn the characteristics of the data is usually sufficient.

Table 3.1 Types of decision regions that can be formed in the input data space by

two, three, and four layer neural networks with hard limiting activation functions

and one output node. Regions for networks with sigmoid activation functions and

multiple outputs will be more smooth but have similar properties (modified from

Paola and Schowengerdt, 1995b).

Network
Structure

Type of Decision Classes with
Regions Meshed Regions

Two layer

>
Three layer

Four layer

half plane
bounded

by
hyperplane

convex
open
or

closed
regions

arbitrary
(complexity
limited by

number of nodes)

3.5 Activation (Transfer) Functions

Most General
Region Shapes

Any differentiable nonlinear function can be used as an activation function, the

role of which is to activate the training process. Therefore, there are many

possible functions to choose from. For the Multilayer Perceptron (MLP) the

activation function must be a nonlinear one; otherwise, it can only discriminate

linearly separable objects (classes) like the Perceptron that includes only input and

output layers. As they transfer their input values to another value, they are also
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called transfer functions. An activation function must be chosen at the beginning

of a learning process. The activation function used for hidden nodes may often be

different from those used for the output nodes as they have different roles in the

learning. The use of an activation function on the output nodes provides such

output values that can be used as a posterior probabilities. According to Civco

and Waug (1994), 'an activation function is required to avoid saturation of a

processing node, caused by extremely large positive or negative internal

summations'. Whilst activation functions are employed in order to decrease the

number of iterations, they introduce non-linearity into the network, and thus

improve the performance. A sigmoid function, also called a logistic function, is

generally used for this purpose. The sigmoid function (Figure 3.6) is formulated

as:

1
f(NED = -NETl+e

(3.7)

where NET is the sum of weighted input values to the processing node.
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Figure 3.6 The sigmoid activation function.

The sigmoid function has some characteristics that are very important for network

performance. As can be seen from the Figure 3.6, output values of zero and one

are only possible for input values of ±oc. Instead of the minimum and maximum
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values, values 0.1 and 0.9 are generally used. The activation function has a nearly

linear input/output relation in between these two extreme values. But as the

outputs of a node approach these values, the derivation of the activation function

decreases, and since the change in weights is proportional to the derivative value,

only very small changes will occur in the weights. The derivative has a maximum

value when the output is 0.5. Since the change in weights is proportional to the

derivative value, the weights will change rapidly in this case and help influence

the node to commit to a high or low value. This feature probably contributes to the

stability of the learning stage (Paola and Showengerdt, 1995b).

The second most widely-used activation function is 'tanh' function (Figure 3.7).

Although the sigmoid and the 'tanh' functions are similar, it is often found that

using the 'tanh' activation function gives rise to faster convergence of the training

algorithms than the sigmoid function (Bishop, 1995). The 'tanh' function is in the

form given below:

eNET _e-NET
f(NET) = tanh(NET) = NET -NET

e +e
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Figure 3.7 The 'tanh' activation function. NET is the weighted sum of the inputs

to the processing node.
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The main difference in the use of these activation functions is that whilst for

sigmoid input data and output classes are coded in the [0 1] range, for the 'tanh'

function they are given in a [-1 1] range. As can be noticed, the 'tanh' function

represents the data in a broader range, which may have positive effect in the

performance of the network.

3.6 Encoding

One of the most important issues with neural networks is encoding. This is the

representation of real data values in the network as inputs and outputs. Encoding

techniques may be divided into two groups; input encoding and output encoding.

There are several input data encoding approaches comprising coarse coding

(Bischof et al., 1992), Gray coding (Benediktsson et al., 1990) and binary coding

(Benediktsson et al., 1990; Heermann and Khazenie, 1992). Coarse coding is a

type of interpolation method in which an arbitrary number of input nodes is used

to represent the input data. Basically, input data are converted to floating point

values using a Gaussian response function. The technique has the advantage of

employing continuous-coded values instead of discrete-coded values. On the other

hand, whilst in binary coding each output code is converted to the binary codes,

such as 0=00, 1=01,2=11, where for 8-bit band values 8 inputs are required, the

Gray code representation, which is a modified version of binary coding, can be

derived from the binary code representations as follows:

Assuming that bi, bz. .... bn is an n-digit binary code, the corresponding Gray

codes g], g], .... gn can be obtained from:

k~2 (3.9)

where EE> is modulo-two addition (Benediktsson et al., 1990).
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Although it has been claimed that binary representation of the input data help the

network to detect the small differences between the pixels, it requires many

inputs; for instance, four band data require 32 input nodes, which is the main

disadvantage of the method. However, the most widely used technique used in

this study is to scale data to the range from 0 to 1 for the sigmoid and -1 to 1 for

the 'tanh' activation function. According to Paola and Schowengerdt (1995b),

'although this representation is not a mathematical requirement, it avoids the use

of a scale or shift factor every time the sigmoid activation function is evaluated,

thus reducing floating point computations'. To prepare remotely sensed data for

the network the values of the pixels in each band are simply scaled to this range

by setting the minimum value to 0 (or -1) and the maximum value to 1 for each

band. Each band is represented by a node in the input layer with the scaled values.

The simplest form of data input is to use one pixel to represent each band, which

is called per-pixel based classification. This technique has been used in most

applications such as Paola and Schowengerdt (1995a), Dreyer (1993), Bischof et

al. (1992) and Benediktsson et al. (1990).

An extension of the per-pixel approach is to use a window (generally 3 by 3) of

pixel data from each band of the image as input. This helps the network use

textural information to better learn and classify the data by using neighbourhood

information. Researchers have attempted to use texture information to improve

their ANN classification performances. For example, Hepner et al. (1990)

reported that using 3 by 3 windows of input pixels allowed the network to

assimilate data relating to spatially adjacent pixels in both the training and

classification operations. Paola and Schowengerdt (1994) also highlight the fact

that using texture in the network significantly reduced the number of iterations to

train the network. Unlike conventional statistical techniques, texture information

can easily be incorporated into ANN for classification tasks. However, there are

two major problems in the use of such information in ANN classifications. Firstly,

in order to incorporate texture into feed-forward networks trained with

backpropagation algorithm, a large dataset relative to network size is required to

estimate the texture accurately. Using larger window sizes would further increase

this requirement (Blamire and Mineter, 1995). Secondly, more processing time is
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required to train such networks as the size of the network increases (more weights

will be adjusted).

One output node is generally used for each ground-cover class to encode the

output classes. One of the most widely used approaches is that desired values are

assigned to be 1 at only one node and 0 at other output nodes in the output layer to

represent output classes. For example, the first output class for a six-node output

layer is represented by I 0 0 0 0 0, as the second one is represented by 0 1 0 0 0 O.

One of the advantages of this approach is that although the sum of the output

activations is rarely equal to 1, they are interpreted as a posterior probabilities of

the pixels being a member of each class in practice. The higher the output value,

the greater the confidence that a pixel is a member of that class. The opposite also

holds true. Binary coding has also been used for output encoding, which results in

extremely slow convergence. Another type of output coding suggested by

Benediktsson et al. (1990) is temperature coding. In this coding scheme the

representation for n has 1 in its first n digits and -1 in the rest (e.g., 4 = 11 1 1 -1

-1 -1).

Benediktsson et al. (1990) conclude in their comparative study that using Gray-

coded inputs and temperature-coded outputs gave higher accuracies and required

fewer learning cycles than using binary-coded inputs and outputs.

The continuous output values resulting from the classification process can be

interpreted in different ways, including a measure of classification confidence,

class mixing and a posterior probabilities. According to Bischof et al. (1992) and

Paola (1994), results of artificial neural networks are a posterior probabilities but

the probabilities are different from the ones produced by the maximum likelihood

classifier. Foody (1996, 1997, 1999) also states that the activation level of an

output unit indicates the strength of membership of a pixel to the class associated

with the output unit. This feature of ANNs is very important particularly for fuzzy

land cover classifications from remotely sensed data.

The simplest way of assigning a pixel to an output class is to choose the class of

the output node with the highest probability of membership. For example, if the

69



output of the network for a given pixel is 0.25 0.01 0.01 0.70 0.02 for a five

output-class problem, then this pixel is assigned to class four as it has the highest

output layer activation value in the fourth output node. In some cases, this

assignment would be misleading as the probability of being a member of a class

may be lower than 0.5, which could be the highest output value. Therefore, a

modified version of this scheme including a threshold parameter in decision

making is generally applied. In such cases, in order to be assigned to an output

class the maximum probability of membership for a pixel must be higher than the

user defined threshold value. This scheme is employed in the present study.

3.7 Generalisation

The power of the network depends on how well it describes new data after

completion of the training process. This is the main criterion for judging the

performance of a network. Generalisation may be defined as the ability of a neural

network to interpolate and extrapolate to data that it has not seen before (Atkinson

and Tatnall, 1997). There are three factors affecting the generalisation capabilities

of a neural network. These factors are the size of the training data, training time,

and the architecture (structure) ofthe network.

Approaches developed to discover the proper size of the neural networks are

called dynamic network design strategies, and they can be divided into three main

groups. The first group starts with a small network and iteratively increases the

number of nodes in the hidden layer(s) until satisfactory learning occurs. This is

known as the constructive approach. The most widely used constructive method is

the cascade correlation algorithm developed by Fahlman and Lebiere (1990). The

cascade correlation algorithm starts the training process with no hidden layer.

Only the input and output units are fully connected to each other. The network is

trained for a user defined number of times, and then a hidden layer with a single

node using a sigmoid activation function is added to the network. The new hidden

node has connections to all the input and output nodes. The values of the weights

of the hidden units are determined before adding the hidden layer. These weights

are calculated so as to maximise the correlation between the output of the unit and
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the residual error of the network outputs. The network is then trained with the new

hidden layer to reduce the error. Each time a hidden layer with a single node is

added and retrained. Training is performed in a way that only the new weights are

trained, with the value of all the previous weights left unchanged. It is assumed

that each node thus learns the characteristics of a particular feature or class, acting

like a specialised feature detector, and training the network only for these new

links preserves this special relationship. It has been claimed that the cascade

correlation algorithm can provide a small network to solve a variety of problems.

Since such techniques employ a number of small networks that are more sensitive

to initial circumstances and learning parameters than larger networks, they are

more likely to become trapped in local minima ending in failure of training.

Furthermore, a number of networks must be trained to find the optimum network

structure, resulting in long processing time.

The second approach is to begin with a larger network and make it smaller by

iteratively eliminating nodes in the hidden layer(s) or interconnections between

nodes. These types of algorithms are called pruning algorithms and will be

discussed in detail in the next section.

There also exist some techniques that employ both constructive and pruning

strategies. These techniques couple the pruning and constructive techniques in a

way that the size of a small network is increased during training until a reasonable

solution is reached and then the size of the network is reduced using pruning

methods to make a smaller and faster network that also has higher generalisation

capabilities. Such an algorithm is introduced by Hirose et al. (1991). In their

algorithm, training starts with a network including only a single hidden node, and

a new node is added to the hidden layer whenever the network is trapped in a local

minimum, which is detected by checking the change in the training error after

every hundred iterations. If the change (improvement) in the error is less than one

percent of the previous error, and the error is higher than a user defined value,

then it is assumed that the network is trapped into a local minimum. Therefore, a

new node is added to hidden layer. When the error is below the user defined

value, the network is pruned by eliminating the last inserted hidden node. After
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each node pruning, the network is retrained to restore the loss of the node. Once

the final network solution does not provide enough power to generalise, the

previous network structure is adopted, which is thought to be the optimum

network structure for the problem under consideration. The main problem in the

use of such techniques is the long training time requirement.

An extensive survey study of the techniques used to determine the optimum

network structure is carried out by Alpaydin (1991), who also introduced a

learning algorithm called GAL (Grow and Learn) that involves a pruning method.

GAL learns an association at one-shot due to being incremental and using a local

representation. Details of the dynamic network design strategies can also be found

in Bostock (1994).

3.8 Pruning Algorithms

Pruning is the name given to the process of examining a network, determining

which units are not necessary to the solution and removing those units (Sietsma

and Dow, 1988). For example, Figure 3.8(b) shows a link-pruned version and

Figure 3.8(c) shows a node-pruned version of Figure 3.8(a), which is a fully

connected network structure. Several nodes and a number of connections between

the nodes have been removed. The use of pruning algorithms is relatively recent,

and experience of their use has not been widely reported in the remote sensing

literature (Kavzoglu and Mather, 1999).

After a network is trained to a desired solution with the training data, hidden layer

nodes or inter-connections are analysed to determine their level of participation in

the solution. There are several ways to determine the identity of non-contributing

units. A widely used approach uses a form of sensitivity analysis to locate non-

essential neurons, involving the setting of the value of a specific neuron to zero

for all training set inputs and noting the effect on the network output. Thus,

neurons that have only a minor effect on the performance of the network can be

identified and removed (Reed, 1993 and Kamin, 1990). An alternative approach,
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introduced by Sietsma and Dow (1991) and known as Noncontributing Units, is

an interactive two-stage method in which the analyst examines a trained network

(a) (b)

(c)

Figure 3.8 (a) A fully connected artificial neural network. (b) Interconnection

pruning (seven links removed). (c) Node pruning (two nodes removed).

and decides which neurons are to be removed. Criteria used to identify

unnecessary nodes in the first stage are as follows:

1) If a neuron has a constant output over all the training patterns then it is not

contributing to the solution and can be removed,

2) If a number of neurons have highly correlated responses (e.g. identical or

opposite) over all patterns then they are redundant and can be combined

into a single unit. All their output weights should be added together so the

combined unit has the same effect on following units.
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In the second stage, nodes that are linearly independent from the other nodes at

the same layer, which are not strictly necessary, are removed.

Ske1etonization, proposed by Mozer and Smolensky (1989a, 1989b), is also used

to reduce the network size by eliminating nodes in the input and hidden layer

sections using first-order derivatives of the error function. In this technique, the

relevance of a node to a network is estimated as the change of the error function

when the unit is removed. In other words, the effect of each individual node in the

input and hidden layers on the performance of the network is computed. As a

result, the least relevant nodes can be trimmed to construct a skeleton version of

the network. They describe their technique as a technique for trimming the fat

from a network. The skeletonization technique has been tested using several

sample applications and proved to be effective and reliable to reduce the size of

neural networks. Dreyer (1993) used the technique for land cover classification

using SPOT HRV data. The study led to the conclusion that even if the

improvement in classification accuracy following pruning is minor, optimisation

with skeletonization still results in increased network efficiency.

Castellano et al. (1997) introduced a pruning method to reduce the size of trained

feed-forward neural networks by iteratively removing hidden layer neurons and

then adjusting the remaining weights in a way that preserves overall network

behaviour. This method is formulated in terms of a system of linear equations, and

an efficient conjugate gradient algorithm is used to solve the system in the least-

squares sense.

There are three major pruning methods used to remove the least effective

interconnections (or links) in neural networks, namely, magnitude-based pruning,

optimum brain damage, and optimum brain surgeon. Magnitude-based pruning,

the simplest pruning algorithm, is based on deleting inter-connections having

small magnitudes. It is assumed that the interconnections whose magnitude is

small will have a minor effect on the performance of the network. Hassibi and

Stork (1993) report that this simple and naively plausible idea may lead to the

elimination of the wrong weight, and they point out that some small weights may

be necessary for low error.
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The optimum brain damage (OBD) pruning algorithm, introduced by Le Cun,

Denker and Solla in 1990, is based on the second order derivatives of the error

function. According to Le Cun et al. (1990), 'the basic idea ofthe OBD is that it is

possible to take a perfectly reasonable network, delete half (or more) of the

weights (interconnections) and wind up with a network that works just as well or

better'. The aim is to delete, in an iterative fashion, the weights associated with

inter-node connections whose removal will result in the least increase of network

error (E). The method requires the calculation of the Hessian matrix, which can

become very large and thus increase the computational cost of the procedure;

consequently, several simplifications have been proposed. The main

simplification (or assumption) is that the Hessian matrix is a diagonal matrix, in

that there are values only in the diagonal section of the matrix. However, Hassibi

and Stork (1993) report that the Hessian matrices for problems that they have

considered are strongly non-diagonal, and this may lead the OBD algorithm to

eliminate the wrong weights.

The optimum brain surgeon (OBS) pruning algorithm, introduced by Hassibi and

Stork (1993), can be thought of as the extension of or a slightly more complex

form of optimum brain damage (OBD). Although the OBS and OBD methods are

based on the same theoretical approach, the OBS technique does not make any

assumption about the form of Hessian matrix. Therefore, the OBS method may be

expected to be both more complex and more robust than the OBD. It is claimed by

its proponents that the OBS is significantly better than either the magnitude-based

and OBD techniques, and that the OBS approach permits the pruning of more

weights than other methods (for the same error on the training set), and thus yields

better generalisation on test data. The drawback of the method is that the inverse

of the Hessian matrix has to be computed to judge saliency and weight change for

every link. Therefore, the method is quite slow and takes much more computer

memory than the other methods discussed.

As the main objective of pruning techniques is to improve the generalisation

capabilities of the network, instead of defining the saliency as training error,

Pedersen et al. (1995) proposed to use the generalisation error as the weight
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saliency. This idea resulted in the extension of two most widely used pruning

techniques, OBD and OBS, to yOBD and yOBS. The only difference between the

counterparts is the use of saliency measure as different error criteria.

3.9 Problems in the Use of Artificial Neural Networks

Although the Multilayer Perceptron (MLP) trained with the standard

backpropagation learning algorithm is a good general learning tool, and used

intensively in research, it has some inherent limitations that may have a great

impact on the performance of the classifier. Perhaps the most important one is that

the MLP is not guaranteed to converge to the optimum solution, the global

minimum, even when one exists. Furthermore, the MLP is computationally

demanding and slow. In general, the use of ANNs requires some critical decisions

on the part of the user, specifically a remote sensing researcher, which may affect

the accuracy of the resulting classification. In terms of the factors involved, these

decisions may be divided into two main groups: external factors and internal

factors. External factors include the image resolution (spatial and radiometric

resolution) and sample choice. However, internal factors are the choices of an

appropriate network size (structure), initial weights, number of iterations, transfer

function, and learning rate. While internal factors result from the limitations of the

MLP and the backpropagation learning algorithm, external factors given here are

specifically caused by the issues associated only with remote sensing related

studies. These parameters need to be understood and adequately resolved in order

to produce good results using ANNs.

The user of ANNs should, first of all, consider all the external factors which may

affect the success of subsequent processes before beginning to prepare training

and test data for neural network classification. The choice of the number of

classes is related to the resolution (spatial and radiometric) of the data, as well as

to the overall aim of the project. Spatial and radiometric resolutions are the two

major characteristics describing an imaging remote sensing instrument. In

addition, the scale of the study and the accuracy required from the classification

process should also be taken into consideration. If the aim is to produce a general

classification map of the USA or Europe using four major categories (water,
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vegetation, urban area, and ice), then there would be no point in using high

resolution images such as 20m spatial resolution SPOT HRV data, but AVHRR

data would be relevant for such an application. On the other hand, if the aim of a

project is to produce detailed information about a specific agricultural crop, even

SPOT HRV data would not be appropriate, as a spatial resolution of a few metres

would be necessary. As summarised by Woodcock and Strahler (1987), 'the

choice of an appropriate scale, or spatial resolution, for a particular problem

depends on several factors. These include the information desired about the

ground scene, the analysis methods to be used to extract the information, and the

spatial structure of the scene itself.' As emphasised, the factor of scale is very

important in remote sensing applications and it must be investigated very

carefully due to the cost and efficiency of the application.

Radiometric resolution is also important in the sense that high radiometric

resolution sensors give more detailed information than low resolution, which is

very important to distinguish features. It has considerable effect on the

performance of the classification. A study carried out by Tucker (1979) showed

that a few percent overall accuracy improvement occurs in the classification

performance when using 256 (8 bit) rather than 64 (6 bit) level imagery.

In order to get reliable and accurate classification results, a representative set of

samples is necessary. If the training data are not representative then the network

may fail to classify new data that are dissimilar to all of the training data. How

best to estimate the volume of training data that is required in order to achieve a

required level of generalisation is a crucial question that is discussed by Foody

(1995) and Hepner et al. (1990).

Sample size for each class and sampling methodology used are the two key issues

which have been investigated. A small sample size is not enough for a neural

network to recognise all classes and to determine the class boundaries in the

feature space precisely, whereas a large number of sample patterns can make the

network overspecific and requires more computation time for training. In the

learning process, the same number of patterns are usually employed for each class

in order to avoid any bias. However, the number of samples for each class should
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be appropriately defined to reflect the class complexity. Therefore, in the training

process, a larger number of samples should be used for broadly defined classes

compared to more tightly defined classes. In such cases, analysing the variation of

pixels in the feature space using two and three dimensional scatter plots is of great

importance. It has been pointed out by Blamire (1994), Blamire and Mineter

(1995) that the relative sample size has a considerable effect on the performance

of a neural network solution. The effect of training sample size on error rate of

learning (training) and testing sets is given in Figure 3.9.

test set

--------------------------------------------------------
learning set

number of learning samples

.Figure 3.9 Effect of the learning set size on the error rate. The average error rate

and the average test error rate as a function of the number of learning samples

(Krose and Van Der Smagt, 1996).

The literature contains a number of discussions of sampling methods and

optimum sample size. Different methods have been tested and various conclusions

have been drawn, but there is no general agreement on these issues. However, the

general tendency is to use random sampling techniques (simple and stratified

random sampling methods) and to choose a minimum of 50 or 100 elements per

sample depending on the complexity and heterogeneity of each class. It has been

reported that the selection of the training data is more important than the size of

the training dataset.
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Samples are generally chosen via random n by n windows rather than by the

choice of random pixels. This causes spatial correlation problems due to the

correlation between nearby points. It is reported that autocorrelation is related to

the interaction between adjacent pixels, the pixel dimensions and the effects of

data preprocessing. It should be borne in mind that the validity of a classification

is dependent upon the sample size and the representativeness of the sample. As

stated by Mather (1999a), 'it is very easy to use an image processing system to

pull out "training samples" from an image but it is a lot more difficult to ensure

that these training samples are not contaminated either by spatial correlation

effects or by the inclusion in the training sample of pixels which are not "pure"

but "mixed" and therefore atypical of the class which they are supposed to

represent' .

Another issue in preparing sample data is to detect and eliminate atypical pixels to

get pure data for classification. There are two methods suggested by Mather

(1999a), which are estimation of Mahalanobis distances and using hierachical

cluster analysis method on each training sample. Visualisation of the

corresponding band values of each pixel can also help to overcome this problem

by projecting the multi-dimesional data to two or three dimensions.

While sampling the input images, one should consider the internal variation of the

classes by looking at the spectral characteristics of the area under analysis. The

variation in fields results from the effects of factors such as variations in soil

moisture, seed characteristics, topographic position, and different planting dates.

This variation should be reflected in training samples to get reliable results from

artificial neural network classification. If an area of interest contains only one

spectrally uniform field for a class, then a subset region would be adequate to

train the network. If, however, the same area includes spectrally different regions

or the image includes several spectrally distinct regions, then it would not be

appropriate to use only one sample area. The most acceptable solution might be

choosing samples from spectrally extreme areas.

As stated earlier, there are five main internal factors affecting the accuracy of an

ANN classification. These are the network size, choice of initial weights, number
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of iterations, type of transfer function and learning rate. Understanding these

factors and choosing their appropriate values are key issues for a successful ANN

classification. Firstly, in the case of layered neural network architectures like

MLP, network size is not only related to the number oflayers but is also related to

the number of nodes for each layer and the number of connections between these

nodes. For a given dataset there may be an infinite number of network structures

capable of learning the characteristics of the data. The question is: what size of

network is optimum for a specific dataset. Unfortunately, it is not easy to answer

this question. In the light of current knowledge, the neural network architecture

that gives the best result for a particular problem can only be determined

experimentally (Paola and Schowengerdt, 1995b; Kanellopoulos et al., 1997). The

quality of the solution found by a neural network is strongly dependent on the

network size used. In general, the network size affects network complexity, and

learning time, but most importantly, it affects the generalisation capabilities of the

network and, as a consequence, the classification accuracy.

As the size of input layer is generally equal to the number of image bands and that

of output layer is equated to the number of output classes, the adjustable part in

the neural networks is the middle section, the hidden layer(s). The input layer can

be expanded by simply adding new data sources as additional neurons, but this

increases the computation time by the order of 11 (Heermann and Khazenie,

1992). In other words, if the size of input data is doubled, the time required to

train the network would increase by a factor of four. New datasets should be

added only if they contribute to an improved classification.

It is sometimes necessary to use more than one hidden layer to train a network

properly, whereas in some cases it is a luxury to use extra hidden layers which can

make the network too specific and use more training time. While the use of

multiple hidden layers provides some potential benefits, it does not solve the

problem of determining the appropriate number of hidden nodes. It simply

extends the problem from one to multiple layers. However, it is known that more

hidden layer nodes make the neural networks more powerful in determining the

location of complex decision boundaries in feature space. The network can thus

learn the characteristics of more complex data. However, such networks tend to
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'memorise' the patterns in the training set, become overspecific to the data, and

hence give poor performance for patterns that are not included in the training data.

The effect of number of hidden units on the error rate of learning set and testing

set is presented in Figure 3.10.

learning set

number of hidden units

Figure 3.10 The average learning set and the average test set error rate as a

function of the number of hidden units (Krose and Van Der Smagt, 1996).

On the other hand, since there is an almost linear correlation between the number

of samples required for the training process and the number of hidden units, large

networks generally require more training samples than small networks to achieve

good generalisation performance. In many applications, a limited number of

samples is available. Consequently, using large networks for such datasets may

lead the network to produce unsatisfactory results.

If too few hidden units are used then the network will fail to achieve a satisfactory

performance since it cannot learn the underlying data structure. It should be noted

that a smaller network is more likely to generalise well, since it extracts the

essential and significant characteristics of the training data. The advantages of

using small networks are summarised by Kamin (1990) as follows:
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• The cost of computation, measured by the number of arithmetic

operations, grows (almost) linearly with the number of synaptic

connections. Hence, a smaller network is more efficient in both forward

computations and learning.

• Neural network learning is usually based on a finite (often small) set of

training patterns. A network that is too large will tend to memorise the

training patterns and thus have poor generalisation ability. This

phenomenon is also known in classification theory as 'tuning to the

noise', and it occurs whenever the number of free parameters of the

classifier is large relative to the training data.

• There is always the hope that a smaller network will exhibit a behaviour

that can be described by a simple set of rules.

However, there are problems for small networks being sensitive to initial

conditions and learning parameters. These networks are also more likely to

become trapped in a local minimum as the error surface of a smaller network is

more complicated and includes more local minima compared to the error surface

of a larger network (Bebis and Georgiopoulos, 1994). Therefore, the best

generalisation performance is obtained by trading training error against network

complexity (Le Cun et al., 1990).

Paolo (1994) states that the choice of the number of hidden nodes is not a

significant problem as in the experiments hidden layer sizes greater than three

produced adequate classification results after a similar number of iterations.

Furthermore, a hidden layer equal in size to the output layer was adequate for all

the classifications attempted. This was true even for those using a few hundred

input nodes. Ardo et al. (1997) also state that no significant difference was found

between networks with different numbers of hidden nodes, or between networks

with different numbers of hidden layers. However, there are some reported

studies, such as Krose and Van Der Smagt (1996), Lawrence et al. (1996), and

Bebis and Georgiopoulos (1994) that contradict these optimistic statements. The

effect of hidden layer and hidden layer nodes therefore needs further

investigation. For current studies, a general rule, as underlined by Wang (1994a)
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and Kavzoglu (1999), could be that as long as the network size is large enough to

learn the characteristics of the data, the size of the network does not have a

significant effect on network performance.

The nature of the input data is also related to the size of hidden layers in the sense

that the separability of the classes present in the data determines the degree of

difficulty of the problem, as the neural network establishes hyperplanes in feature

space to distinguish the classes based on the data characteristics. Another factor is

the number of output classes. A large output layer makes the problem more

complex since the network will be determining more complex class boundaries in

the feature space. It is thus important to choose the number of output classes

appropriate to the scale and nature of the study region to avoid unnecessary

training, as noted above.

Initial weight values, which are defined by the user at the beginning of a learning

process, also affect the solution found by the learning algorithm in that they define

the starting point of the search for global minimum. As no learning happens when

all the weights are set to zero, a uniform range is defined for the weight values,

generally plus and minus 0.5 or less. It is reported by Blamire (1996), Ardo et al.

(1997) and Skidmore et al. (1997) that the initial values of the weights affect the

accuracy of the classification significantly. However, there is currently no solution

other than trial and error to prevent an ANN from becoming trapped in a local

minimum by changing the initial weights, which is the rule of thumb. The reason

to begin the search for global minimum each time from a set of randomly-

determined weights is to start from different parts of multi-dimensional error

surface, the dimension of which is defined by the number of weights in the

network. Due to the effect of random initial weights, required training times and

the resulting classification accuracies could be different. This problem has been

investigated by some researchers, but there is currently no universal solution for

this problem.

Another crucial question is the number of iterations required for a particular

problem. On the one hand, fewer iterations than the required number lead to a

network that cannot learn data well and thus produce accurate classification
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results. On the other hand, more iterations than the required number tends to make

the network overspecific and thus the network loses its generalisation capabilities,

in that it cannot classify data outside the range of the training data with high

accuracy. The solution for determining the optimum number of iterations is to

employ a convergence (or stopping) criterion, such as using a validation set or

employing an early stopping rule, as discussed earlier. Another solution to this

problem could be to systematically save networks during the training stage. Thus,

it will be possible to test the performance of these networks and decide the most

appropriate one.

Another choice that has to be made at the beginning of an application is the nature

of the transfer functions for the hidden and output layers. There are many

functions available for this purpose, but none of them is found to be superior to

the rest. Although the sigmoid function has been mainly preferred and used in the

literature, recent studies show that using 'tanh' gives better and faster

convergence. The impact of transfer functions on network learning is not exactly

known, and also needs further examination.

.The learning rate is another internal parameter affecting the performance of the

network. It plays a major role in determining the magnitude of the alterations

made to the weights in the network at each iteration. There are no clear

descriptions in the literature of the exact nature of the learning rate. If the learning

rate is not suitable for an application, it may increase the time for the network to

learn from the training data and result in failure to learn the characteristics of the

data.

There is no doubt that the biggest disadvantage of artificial neural networks

(ANNs) is the computation time necessary for training the network. The reason

for being computationally demanding and slow is that iterative gradient descent

algorithms, such as backpropagation, are employed. The backpropagation method

gets much slower if input units are highly dependent on each other (correlated) so

that adapting one disturbs the other. Another reason for a long training process is

using. non-optimum learning rate and momentum values. To speed up

backpropagation three remedies are recommend in the literature: using a 'tanh'

84



activation function instead of a sigmoid, employing an adaptive learning rate

instead of constant one, and rescaling the input variables. Three most successful

variants of backpropagation learning are QUICKPROP (Fahlman, 1988), RPROP

(Riedmiller and Braun, 1993) and CEN-BP (Joost and Schiffmann, 1998). In

order to reduce the long training time for multilayer perceptrons, some new

learning techniques have also been introduced, for example fast learning by

Dawson et al. (1994), genetic learning by Zhou and Civco (1996), and dynamic

learning by Chen et al. (1995a, 1995b).

In order to prevent neural networks from taking an excessively long time to train

due to the presence of some atypical pixels, a low-pass filter, such as a 3 by 3

mean filter, can be used to eliminate the negative effects of those pixels. This

filter also introduces texture information to the network. Using texture

information can also help to improve the accuracy of the classification. For

example, Paola (1994) found that using a median filter increased the accuracy of

the maximum likelihood classifier from 89.5 to 92.4%, and of the neural network

classifier from 96.2 to 98.5%. Also adding texture resulted in fewer iterations and

faster convergence times. Similar results are reported by Bruzzone et al. (1997).

However, despite speeding up the convergence and reducing noise effects, the

network will be more powerful if it is trained with raw data including some noisy

pixels as recommended by Sietsma and Dow (1991). Moreover, adding texture

information increases the number of computations significantly; for example, if a

3 by 3 window is used, instead of one node, nine input nodes will be employed in

the input layer.

3.10 Summary

The fundamentals of artificial neural networks (ANNs), particularly the multilayer

perceptron (MLP), are discussed in this chapter. The main components of an

ANN, such as learning algorithms and transfer functions, are described in detail. It

is emphasised that, although the ANN approach can give considerably better

results than conventional statistical classifiers, it has some handicaps (or

problems) that should be taken into consideration. These handicaps are described
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in detail so as to provide clear definitions of the problems that users can face. This

may certainly help to get some insight into the behaviour of artificial neural

networks. Since the major drawback of artificial neural networks for new users is

to determine the optimum network structure for a particular problem, emphasis

has been placed to network design strategies, constructive and pruning techniques.

The information given in this chapter is important in order to understand the

concepts to be discussed in following chapters.

As the artificial neural network approach is relatively new and many

characteristics of them are still unknown or under investigation, there are some

open questions with regard to utilising them efficiently. These questions are

summarised by Wilkinson (1997) as follows:

• Do neural networks really offer significant advantages compared to other

pattern recognition and data transformation algorithms?

• Classification has been the main application for neural networks in Earth

observation but has research on classification reached an impasse

imposed by extraneous factors such as quality of ground data, or lack of

possibility of precise class definitions?

• Is it necessary or even possible to construct a very large modular neural

network (VLNN) to encode landscape characteristics of the whole of

Europe (i.e. to create a 'pan-European classifier' which can describe

local conditions and avoid the generalisation problem) ?

• Is special purpose hardware really needed to exploit neural networks in a

realistic way in remote sensing in an operational context?

• Should new or less common neural network models and architectures be

explored for use in remote sensing or can the existing commonly-used

models such as MLP offer as much functionality as is likely to be

required for most practical purposes ?

• Are there any novel applications of neural networks in remote sensing

that have so far not been considered ?

86



Some authors, such as Duguay and Peddle (1996) and Ardo et al. (1997) claim

that ANNs do not give significantly better results than other classification

techniques, whereas most authors have reported that ANNs give better results.

This brings the question of whether ANNs are best for all classification tasks or

not. This question should be answered, especially by comparing ANN-based

methods to new, powerful, techniques such as genetic algorithms and evidential

reasoning (Davis, 1987) as well as the decision trees. It is obvious that ANNs will

be saved from their black-box definition when all the above questions are

answered. In the next chapters of this thesis their behaviour in terms of the effect

of network structure and the learning parameters, which are set at the beginning of

the learning process, are thoroughly investigated. In order to perform these

investigations a number of visualisation techniques are put into practice through

programs written in MATLAB software package. In other words, an attempt is

made in this study to answer some of the important questions by carrying out

many analyses on networks using scientific visualisation techniques.
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CHAPTER IV

VISUALISATION OF HIGH-DIMENSIONAL DATA

4.1 Introduction

Many applications require data that are inherently multi-dimensional in nature.

Specifically, in the area of remote sensing, the analysis of remotely sensed image

data requires processing of multi-band and multi-temporal data, which are

described by a large number of features. The representation and processing of

such data demand large memory and processing time in a computer. On the other

hand, visual analysis of such data can greatly help analysts understand the internal

structure of the data by exploring patterns, identifying trends, and comparing

complex information.

Understanding the structure of a dataset is often a difficult task, especially when

the data represent complex phenomena, characterised by many variables. If such a

dataset is to be explored, one of the first steps is to visualise it on a plane

(typically on a computer screen) either in a two or a three dimensional

representation in order to gain some insight into the data structures and to

understand the relations present in the data. In fact, by mapping the data onto a

low-dimensional space it is usually possible to recognise some important

relations, such as finding clusters of related data points and detecting outlying or

atypical points.
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Visualisation and analysis of three (or higher) dimensional data is more difficult to

implement and interpret than the case of two-dimensional data. In the case of three

(or higher) dimensional data, a viewer is asked to construct a three (or higher)

dimensional mental image of the space containing the data points, which are

mapped onto a two-dimensional screen. Since we live in a three-dimensional

environment, it is not possible for us to imagine and to visualise the geometric

relations in higher dimensions.

Two groups of techniques are described in the literature to visualise multi-

dimensional data. The first group is designed to map the data with their original

values onto a plane. These techniques are called graphical analysis techniques as

they are generally based on some sorts of graphical representation. Chernoff faces,

parallel coordinate plots, and Andrews' plots are the major methods that are used

to depict multi-dimensional data. By using these techniques it is possible to

exactly represent each pattern as a picture with n degrees of freedom. The second

group of techniques is based on the reconstruction of high-dimensional data in a

lower dimensional subspace by reducing the number of dimensions to two or three

while minimising some error function. These techniques are called projection

techniques, or mapping algorithms. They aim to determine a new configuration of

points in a lower dimensional subspace that represents the structure of the original

data as faithfully as possible. Both groups of visualisation techniques are

discussed in the following section.

4.2 Graphical Visualisation Techniques

4.2.1 Chernoff Faces

Chernoff (1973) brought up the idea of using cartoon faces as symbols to

represent data values coded into the facial characteristics such as curvature of

smile, angle of eyebrow, shape of the face, location of eyes and mouth. In other

words, each dimension of the data determines the size, location and shape of some

component of a cartoon face. According to Chernoff (1973), 'the purpose is to
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allow viewers to draw conclusions on their vast experience by interpreting facial

expressions at glance'. The representation of high-dimensional data by using faces

may be more useful than others, since people are used to studying and reacting to

faces, and they are able to ignore insignificant characteristics and focus on the

potentially important features.

One major advantage of using faces is their inherent meaningfulness. For

example, in an economic data analysis the curvature of the mouth may be used to

represent the richness of a country, and so one could easily recognise rich

countries as being represented by faces with a broad smile, whereas poor countries

will be depicted by sad faces. Comparative studies have shown that the faces are

more easily memorised. It has been also pointed out that faces form more

memorable stimuli in a paired-associate learning task than polygons or arrays of

numbers.

Discussions of the use of Chernoff faces for representing multi-dimensional data

indicate that, firstly, it is a fact that some features of the face may be more

informative than others. For example, certain observers may concentrate on the

eyes, while others focus on the chin. Secondly, different observers may use

different features of the faces to judge their similarity. Moreover, certain features

are more readily seen than others are and so these will obviously be more

informative. These issues indicate the subjectiveness of the observer's judgement.

A possible procedure recommended to overcome such problems is to produce

several sets of faces for the data. Detailed information and applications can be

found in Chernoff (1973), Everitt (1978), Everitt and Dunn (1991) and Everitt and

Nicholls (1975), in which Chernoff faces, Andrews' plots and Sammon's

Nonlinear Mapping algorithm are compared.

The data in Table 4.1, adopted from Hartigan (1975), shows the number of crimes

of different types per 100,000 population in some US cities. A representation of

these data as cartoon faces is illustrated in Figure 4.1. As can be seen,

representation using Chernoff faces gives greater insights and allows the analyst

to effectively interpret the dataset.
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Table 4.1 Crime data of US cities (from Hartigan, 1975).

City Murder Rape
Robber

Assault Burglary Larceny Auto thefty
Atlanta 16.5 24.8 106 147 1112 905 494
Boston 4.2 l3.3 122 90 983 669 954
Chicago 11.6 24.7 340 242 808 609 645
Dallas 18.1 34.2 184 293 1668 901 602
Denver 6.9 41.5 173 191 1534 l368 780
Detroit 13.0 35.7 477 220 1566 1183 788
Hartford 2.5 8.8 68 103 1017 724 468
Houston 16.8 26.6 289 186 1509 787 697
Kansas C. 10.8 43.2 255 226 1494 955 765
LA 9.7 51.8 286 355 1902 1386 862
New Orleans 10.3 39.7 266 283 1056 1036 776
New York 9.4 19.4 522 267 1674 1392 848
Portland 5.0 23.0 157 144 1530 1281 488
Tucson 5.1 22.9 85 148 1206 756 483
Washington 12.5 27.6 524 217 1496 1003 739
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Figure 4.1 Chernoff faces for US city crime data.

The correspondence between face features and each variable, crime type, is as

follows:

1) Murder: area of face,

2) Rape: shape of face,

3) Robbery: length of nose,
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4) Assault: location of mouth,

5) Burglary: curve of smile,

6) Larceny: width of mouth,

7) Auto theft: separation of eyes (length between eyes and eyebrows).

4.2.2 Parallel Coordinate Plots

The parallel coordinate display can be thought of an extension, or generalisation

of a two-dimensional Cartesian plot. The idea is to set all the axes as parallel to

each other in a two-dimensional Cartesian plot such that the whole dataset is

displayed. Thus, a planar diagram, in which n-dimensional data points are

represented in a unique way, is obtained. Wegman (1990) discusses the details of

the technique together with its extensions.

In parallel coordinate plots, a vector (Xl' X2'······ Xn ) is created by plotting each X

value on a different axis. Then, these points are joined together by a line. In other

words, every multi-dimensional data point is represented by a line in terms of its

value for each dimension. Figure 4.2 illustrates two points plotted in parallel

coordinate diagram. The main advantage of the method is representing each multi-

dimensional data point in the same planar system. This considerably helps the

observer to examine the characteristics of the data.

","2

1--~""""""---------
4 ,,,,,,,
n --___:_,------'-----

Figure 4.2 Parallel coordinate representation of two n-dimensional points.

It is easy to determine uncorrelated data points in a parallel coordinate

representation, since they are displayed as distinct lines compared to overall trends
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of inherent clusters. One-dimensional projections of the data are obtained by the

individual parallel coordinate axes. Therefore, separation on any axis portrays a

view of the data that allows the detection of clustering. Owing to the high

reliabilityofthe multidimensionalparallel coordinate plot, it is generally easy to see

whether the clustering propagates through other dimensions.

Some of the data analysis features of the parallel coordinate representation include

the ability to diagnose one-dimensional features such as marginal densities, two-

dimensional features, such as correlations, and nonlinear structures, and multi-

dimensional features such as clustering, hyperplanes, and the modes (Wegman and

Luo, 1997). These issues and some extensions of parallel coordinate plots are

discussed in detail in Wegman (1990).
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Figure 4.3 Parallel coordinate representation ofElveden dataset.

The main drawback of the technique appears when a large number of dataset

including large number of clusters is to be visualised. In such a case, it is hard

to distinguish clusters, as in Figure 4.3, which is the parallel coordinate
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representation of the Elveden dataset containing 700 pixel values in SIX

dimensions, and seven distinct classes. To overcome this problem, one solution

discussed by Wegman (1990), Miller and Wegman (1991), and Wegman and Luo

(1997) is the use of parallel coordinate density plots where the parallel coordinate

plot is replaced with its density, estimated using average shifted histograms.

4.2.3 Andrews' Plots

A very simple technique, introduced by Andrews in 1972, has been used to obtain

a visual representation of multivariate data in which each multi-dimensional data

sample is mapped into a function that is in an orthogonal sinusoidal form. This

technique has been used for many applications and found useful for identifying

inherent clusters and atypicals in multi-dimensional data. In this technique, every

coordinate of a data point is mapped into a Fourier series, resulting in a curve.

Then, all the curves are superimposed on a single curve for visual interpretation.

Each observation is presented by a linear combination of sine and cosine

functions, whose coefficients are determined by the values of the data points.

Andrews (1972) defines his simple plotting procedure as below function,

X(t) = Xl /..fi + x2Sin(t) +X3COS(t) +x4Sin(2t) +xsCos(2t) + (4.1)

where x'=[xpx2, ...... xlI] each point in a n-dimensional space. This function is

plotted over the range -rr :S t :S 7t.

Andrews shows that this particular function has many properties that make it

particularly useful in the exploration of multi-dimensional data. Perhaps the most

important of these is that this representation preserves Euclidean distances. As a

consequence, points that lie close together in the original n-dimensional space will

be presented by lines on the plot that are close to each other, whilst distant points

will be represented by lines that remain apart for at least some value of t. This

property enables the plots to be used for the possible identification of clusters,

atypical points, or other peculiarities of the data.
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A problem that arises when using this technique is that only a fairly limited

number of data may be plotted on the same diagram before it becomes too

confusing. Various procedures might be adopted in order to overcome this

problem. For example, first, a plot of all the data could be produced to assess the

general characteristics of the data. This could be followed by separate plots of

each set of subset plots of 10-20 points; then, these plots can be examined and

compared to the whole. Alternatively, selected quantities or percentage points of

the distribution of the n values could be plotted along with the curves of selected

individual data points. Gnanadesikan (1977) suggests such an idea, based on using

only selected quantiles or percentage points (e.g. median, upper, and lower

quartiles) and calls it a quantile contour plot.

When the form of the function involved in Andrews' plots is examined, it can be

easily observed that the original variables are not equally weighted. Some are

associated with cyclic components having a high frequency, others with

components having a low frequency. Since in these plots low-frequency

components are more informative than those with high frequencies, it may be

useful to associate Xl with the variable considered, in some sense, to be the most

important, x2 with the second most important, and so on. In the absence of any

firm ideas as to such an order of variables, it may be useful to apply Andrews's

technique not to the raw data but to the transformed variables obtained for

example from principal components analysis, since these will automatically be in

order of decreasing importance in a particular sense (Everitt, 1978).

Another problem with Andrews's technique is that, due to the composite structure

of each point's function, it is not possible to observe the effects of variables

separately. While Figure 4.4 shows five points in eight dimensional space, Figure

4.5 displays the result of Andrews's plot for Elveden dataset. It is very easy to

interpret the characteristics of the data from Figure 4.4, whereas Figure 4.5 is hard

to understand due to the complex structure of the curves, and the difficulty of

recognising individual curves within the general pattern.
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The main disadvantage of all graphical multivariate data representation techniques

is that they are limited by the size of the datasets. They can work well with

Figure 4.4 Andrews' diagram of five eight-dimensional data vectors.
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Figure 4.5 Andrews' diagram for Elveden dataset.
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relatively small datasets. They can be, however, confusing (not useful) when they

are applied to large amount of data. It is difficult to imagine a large image having

multi-band and multi-temporal data being adequately represented by Chernoff

faces. Using subsets of the datasets would be the natural solution for the problem.

The methods could, however, be quite useful in gaining some overall view of the

data.

4.3 Projection Methods

The methods that are used to map multi-dimensional data onto a lower

dimensional subspace are called projection methods. Such methods can be

considered as dimensionality reduction methods as well as mapping algorithms.

They help to visualise any underlying structure present in the data, and examine

the characteristics of the dataset. The main objective of the projection methods is

to preserve the geometric relationships among the patterns in the original space as

much as possible.

Projection techniques can be divided into two groups, termed the linear and

nonlinear projection techniques. The main difference between these techniques is

that, while linear methods search a linear subspace such as a line or a plane for

projection, nonlinear methods try to find a nonlinear subspace. In addition,

nonlinear methods are based on some kinds of preservation criteria such as

preservation of all the distances between points. Figure 4.6, adapted from

Pekalska (1998), illustrates the difference between linear and nonlinear projection

methods for two-dimensional case.

As can be seen from Figure 4.6, points are at equal distances from each other,

but the linear method projects them onto a line and does not preserve distances

between points. Conversely, in the case of nonlinear projection, a nonlinear one-

dimensional curve is used and as a result, nearest neighbour distances are

preserved.
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Linear techniques are generally used because of their simplicity, generality and

speed. Furthermore, these methods are mathematically well defined. On the

other hand, the mathematical basis of nonlinear techniques is generally more

complicated and their implementation uses mostly heuristic algorithms. These

techniques are used when linear methods are unable to preserve inherent

complex data structures. Perhaps the most important characteristic of these

techniques is that they are data-dependent and they do not make any

assumptions, specifically about the frequency distribution of the data. On the

other hand, they have some drawbacks, the most important of which is that new

data cannot be placed into the low-dimensional subspace without recomputing

all of the pattern coordinates.

•
projection curve

The mam linear projection methods that are discussed below are: Principal

Components Analysis and Factor Analysis, while the major nonlinear techniques

discussed are Multidimensional Scaling, Sammon's Nonlinear Mapping, Self-

Organizing Map, and Auto-associative Feed-forward Artificial Neural Networks.

linear projection •

•

----------------------------------RESULT

nonlinear projection

------~----------------RESULT

Figure 4.6 The difference between a linear and nonlinear projection method.

98



4.3.1 Linear Projection Techniques

4.3.1.1 Principal Components Analysis

Principal Components Analysis (PCA) is one of the oldest and perhaps the most

commonly used technique for analysing multi-dimensional and multivariate data.

It has been implemented mainly for feature extraction, data compression, and

multivariate data projection. It has been used as a standard tool in many areas,

such as communication, signal and image processing, pattern recognition and data

analysis (Everitt and Dunn, 1991; Azimi-Sadjadi et al., 1993; Bateson and Curtiss,

1996). Specifically, PCA is a widely used technique in the analysis of remotely

sensed images. A principal components transformation of a multi-spectral image

is performed to remove or reduce the amount of redundant information resulting

from the correlation between the spectral bands (Mather, 1999a; Lillesand and

Kiefer, 1994). PCA is also used for change detection and land cover

characterisation of multi-spectral images (Fung and LeDrew, 1987; Hirosawa et

al., 1996; Picchiotti et al., 1997).

PCA is a linear orthogonal transformation that projects an N-dimensional input

space to a d-dimensional space, where d :::;;N. The coordinate vectors produced by

PCA for the d-dimensional space are uncorrelated since coordinates axes are set to

be orthogonal. By using PCA, it is possible to represent large amount of variance

of the original data in a smaller number ot dimensions. The most important

advantage of the technique is that original values can be reduced to new

components, which are fewer in number, with the least possible loss of

information.

In applications of PCA, a set of data is redescribed to get a smaller number of

components, which can be thought of as composite variables. The estimated

principal components are normally ranked in decreasing order of importance. In

other words, the first component shows the most important dimension of variation

in the dataset, whilst the second component describes the most important
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dimension of variation in the data after the effects of the first principal component

have been removed. Components can be interpreted by examining the component

loadings, which identify the relative positions of the variables along the new

component axes. The 'descriptive power' or 'strength' of a component is defined

by the corresponding eigenvalue, which can be described as the percentage of

variability in the dataset that can be accounted for by the component.

In PCA applications, the user has a choice of basing the analysis on the correlation

matrix or the covariance matrix. It is very important to understand the difference

between these alternatives. If the correlation matrix is chosen, as the basis for a

PCA, then the variables are standardised to zero mean and unit standard deviation.

Thus, the same weight, regardless of their actual variability, is assigned to all

variables. If the covariance matrix is selected, different weights are assigned to the

variables with respect to their variances. If the variables are measured in different

units, or scales, the only choice is to use the correlation matrix for principal

components analysis. If all the variables are measured in the same units, then the

user can choose to base the PCA either on the correlation or the covariance matrix.

However, care must be exercised as the fundamental aim of PCA is to partition

the variance of a dataset, and the use of the covariance matrix implies that the total

variance around the mean of each variable is included.

The identification of principal components is to some extent arbitrary in that

completely different results may be produced by analysing the covariance matrix

rather than correlation matrix. This indicates that it could be misleading to try to

allocate too much meaning to components in many situations. Therefore, it may

be more helpful to use PCA for reducing the dimensionality of the data in order to

provide a starting point for further investigations.

If the first two or three components account for a large proportion of the total

variance, then these components can be projected onto a plane to produce two or

three-dimensional representations of the data. These plots may reflect the main

structure of the original data. An important question is how many components are

100



needed to provide an adequate summary of a given dataset. The general tendency

is to select components having corresponding eigenvalues greater than 1.0 if the

correlation matrix is used. The underlying idea of this choice is that a component

with a eigenvalue of 1.0 contains as much information (as useful as) anyone of the

original standardised variables. Therefore, there is no point in selecting

components that contain less information than a single original variable. Another

idea is that it is enough to use components having 70-90 percent of the total

variation. However, the best way to find out the appropriate number of principal

components to represent the inherent structure of the data could be using a 'scree

diagram', which is an eigenvalue plot. Starting with the first component, the line

connecting the eigenvalues of the covariance or correlation matrix is initially a

steeply downward one, then slowly becomes an approximately horizontal line. The

point where the curve first begins to straighten out is considered to indicate the

number of useful components. Figure 4.7 shows the scree plot of the eigenvalues

of the components for Elveden dataset.

4~--------------------------------------~

optimum number of
components

3

o~ ~~~~~~ ~

1 2 3 4

Component Number
5

Figure 4.7 Scree diagram of principal components for Elveden dataset.

As emphasised by Bailey and Gatrell (1995), there is no guarantee that the

directions which maximally separate observations in attribute space (as identified

by the principal components) will necessarily be those that correspond to the

configuration of observations in geographical space. Indeed, in general, this is
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unlikely. Therefore, PCA will not necessarily be of use if the objective of the

analysis is to determine which combinations of attributes demonstrate the most

significant spatial pattern.

Figure 4.8 illustrates the results of PCA applied to the Elveden dataset, which

consists of 700 pixel values in six dimensions representing seven land cover

classes.
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Figure 4.8 The result of principal components analysis for the Elveden dataset.
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peA has been used for the analysis of the neural networks, such as visualisation of

learning in neural networks (Gallagher and Downs, 1997), determining the

effective size of a neural network (Opitz, 1997), and fast pruning of neural

networks (Levin et al., 1994). There is an increasing interest in extending

unsupervised neural network learning algorithms to implement Principal

Components Analysis (PCA). These types of networks are called Principal

Components Analysis Networks, and a number of them are discussed in the

literature. Some of them are based on the "Oja rule", whereas the others are based

on an auto-associative bottleneck neural network.

o

Component 2
Componenl1
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The idea of using Hebbian unsupervised learning algorithm for peA networks

was first proposed by Oja and discussed in his several papers (Oja, 1995a, 1995b;

Oja and Karhunen, 1995; Oja et al., 1995). Because of Oja's primary work, the

main learning algorithm for such networks is called Oja's learning rule. It is

simply a procedure for Hebbian learning with constrained weight vector growth.

This procedure adds a weight decay proportional to the squared value of the

output. Oja's rule finds a unit weight vector that maximises the mean square

output. For zero mean data this is equivalent to principal components analysis. A

peA network is a two-layer linear feed forward neural network (it contains only

the input and output layers) which is able to extract the principal components of

the input vectors (Figure 4.9).

Input Vector x

Figure 4.9 The basic structure of a linear peA network (from Oja, 1995a)

The peA network has the ability to handle slowly varying statistics in the input

data, maintaining its optimality when the statistical properties of the inputs do not

stay constant. Such a network using a Hebbian learning algorithm is potentially

useful for signal characterisation, feature extraction and data compression. Several
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different versions and extensions of the peA network exist, each with different

learning strategies. These strategies are, however, all based on a form of Hebbian

learning, which is the basis of many unsupervised learning algorithms. The

general form for Hebbian learning is:

(4.2)

where '17n is a small update factor, y represents the node values of the output layer,

x represents the node values of the input layer, W represents the weights in the

network, and n is the iteration number.

In the field of neural networks, there has been a growing interest in extending the

unsupervised Hebbian learning rules in peA to nonlinear Hebbian learning rules.

Such techniques are often called nonlinear peA methods. The main reason for this

interest is that, even though peA is optimal in approximating the input data in the

mean-square error sense, the representation that it provides is often not the most

meaningful in describing some fundamental properties of the data. In PCA, the

data are transformed to an orthogonal basis that is determined only by the second-

order statistics (covariances) of the input data. Developments of PCA methods

take into account higher-order statistics and thus may better represent the data

(Oja and Karhunen, 1995).

Another type of neural network is the auto-associative neural network (AANN),

which learns a task using a back-propagation learning algorithm in unsupervised

auto-associative mode. By introducing nonlinearity to the process, such networks

are used for nonlinear principal components analysis, and they are also, as a result,

called nonlinear principal components analysis neural networks. The AANN

architecture consists of an input layer, three hidden layers, and an output layer

(Figure 4.10). These networks have the same number of nodes in input and output

layers, and are trained to reproduce the input values at the output nodes. The first

of the hidden layers is the mapping layer with a dimension (number of neurons)

greater than the number of input/outputs. The second hidden layer is called the

bottleneck layer and the dimension of this layer must be smaller than the number
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of inputs (and outputs), otherwise, the network would simply copy the inputs to

the outputs. The smaller hidden layer forces the neural network to learn any

relationships within the input data, and compresses the input data to a number of

parameters equal to the size of the middle layer. Therefore, of the three hidden

layers, the bottleneck layer plays the key role in identifying the mapping. The

third hidden layer is called the demapping layer and has the same dimension as

the first hidden layer. Kramer (1991) states that the five-layer neural network

structure is necessary to model non-linear processes. The mapping layer maps

from input data space to the non-linear principal component space (bottleneck

layer), and the demapping layer map from the non-linear principal component

space to the data space, which is the network output.

Xm Xm'

Input
Layer

Mapping
Layer

Bottle- De-
Neck Mapping
Layer Layer

Output
Layer

Figure 4.10 Architecture of a five-layer bottlenecked AANN. Note that some of

the links are left out for clarity.

This unique network structure forces the network to develop a compact

representation of the training data that better models the underlying system

parameters. The bottleneck layer works like a nonlinear principal component
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filter. Such networks use nonlinear activation functions, typically a sigmoidal

function, in the hidden layer section. It has been reported that AANN gives

considerably better results than linear networks using Oja's rule. On the other

hand, Oja (1995a) underlines that a five-layer fully nonlinear network may be

problematic to train by backpropagation, especially as the second and fourth

layers may have to be large. Also the generalisation ability of the five-layer

network may not be as good as that obtained by the linear PCA. Details of AANN

can be found in Kramer (1991) and Oja (1995a).

An interesting and useful extension of PCA is Independent Component Analysis

(ICA), which has been widely discussed in the past few years. ICA is a linear

transformation of data such that the components become statistically independent.

Instead of requiring that the coefficients of a linear expansion of the data vectors

be uncorrelated, in ICA the coefficients must be mutually independent or as

independent as possible. It has been reported that ICA provides in many cases a

more meaningful representation of data than PCA. Discussion of the principles

and use ofICA can be found in Comon (1994).

Two comparative studies carried out by Mao and Jain (1995) and De Backer et al.

(1998) compare some of the linear and nonlinear projection techniques discussed

above. In addition, Plumbley (1991) gives a mathematical description of major

learning algorithms for linear PCA networks. He also discusses the problems,

including information lost by PCA and scaling problems in PCA, inherent in the

statistical PCA method. The problem of scaling in PCA is also discussed in

Chatfield and Collins (1980).

4.3.1.2 Factor Analysis

Factor Analysis is also an orthogonal transformation method, which estimates an

optimum configuration for points of high-dimensional space into a lower

dimension. It has been mainly used for educational and business-related research,

such as analyses of questionnaire responses and test scores. The method is focused
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on whether the covariances or correlations between a set of observed variables can

be described with regard to a smaller number of unobservable, latent variables,

assuming that the correlation between each pair of observed variables results from

their mutual association with the latent variables.

Factor analysis is quite similar to principal components analysis in that they both

seek to project multi-dimensional data into a subspace of lower dimension, using

the correlation or covariance matrix. Due to similar types of processes and

outputs, factor analysis and principal components analysis are sometimes

confused. However, they differ both conceptually and mathematically. As

highlighted by Bailey and Gatrell (1995), factor analysis is based on an

assumption that the observed correlations between the attributes are mainly the

result of some a priori underlying regularity or structure in the data, rather than

one that is defined purely on the basis of mathematical criteria, such as

maxmusmg the variance or 'separation' of observations, as in principal

components analysis. More specifically, an a priori model is proposed whereby

each of the observed variables is assumed indirectly and partially to measure a

fixed number of pre-defined characteristics or latent factors, which cannot

themselves be directly measured. In short, factor analysis attempts to explain

correlations in the original variables with regard to a model that proposes a certain

number of unobservable 'common factors'.

The aims of the analysis are to identify the number of latent factors, their relative

order, and their relations with the observed data. After identifying the separate

dimensions of the data structure, factor analysis can be used for two purposes,

summarisation and data reduction. In summarising the data, factor analysis derives

underlying dimensions that describe the data with a smaller number of concepts

than the original individual variables. On the other hand, data reduction can be

performed by calculating scores for each underlying dimension of the subspace

and substituting them for the original variables.
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Once calculated, the results of factor analysis can be used in a similar way to the

results of principal components analysis. For example, two and three-dimensional

views of the data can be prepared by using two and three factor solutions

respectively.

It has been reported that factor analysis has probably attracted more critical

comment than any other statistical technique because of its limitations. Two of

these limitations are crucially important and are discussed shortly. The first

limitation comes from the fact that factor analysis is used to describe complex

matrices of correlations by factors chosen for completely mathematical reasons.

However, an understanding of the phenomena being investigated should be the

main criterion, as the mathematics alone cannot guarantee a 'correct' result.

Another critical comment on factor analysis is that since factor loadings are not

determined uniquely by the basic factor model, investigators can choose to rotate

or transform factors in such a way as to get the answer they are looking for.

4.3.2 Nonlinear Projection Techniques

4.3.2.1 Multidimensional Scaling

Multidimensional scaling (MDS) refers to a series of methods that are widely

used, especially in behavioural, econometric and social sciences, to identify key

dimensions underlying the data. The starting point of every MDS application is

the estimation of a matrix that consists of the set of pairwise dissimilarities of the

entities, or points. MDS searches a configuration of a low-dimensional

representation of the data in order to locate a global minimum of the error

(minL (d: - dJ2 ). The goodness of fit is estimated by a measure known as

'stress' that shows the relationships between the two rank orderings. All MDS

algorithms work by minimising the stress, or error. The calculation can be carried

out by using gradient descent, the simplex method, simulated annealing or some

other optimisation technique.
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There exist a variety of multidimensional scaling methods with slightly different

cost functions and optimisation algorithms. The algorithms designed to analyse a

single dissimilarity matrix can be grouped into two: metric and non-metric

multidimensional scaling methods. The idea of metric MDS is to approximate the

original set of distances by distances corresponding to a configuration of points in

a lower dimension. Original distances can be estimated from the Euclidean

distance or other types of distance measures. In other words, the aim of metric

MDS is to derive a new set of points in a low-dimensional space such that

corresponding inter-point distances are as close as possible to the original

distances. Thus, the error defined as the sum of the squared differences between

the true and approximated distances is minimised. Non-metric MDS was

developed to meet the needs of users of ordinal scale data. It can also be used for

data in a Euclidean space. In this case, instead of original distance values, MDS

then only tries to preserve the rank order of the distances between points.

The first MDS method for metric data was developed in the 1930s and later

generalised for analysing non-metric data. According to Everitt and Dunn (1991),

'the objective of MDS is to determine both the dimensionality of the model (that

is the value of d) and the position of the points in the resulting d-dimensional data,

so that there is, in some sense, maximum correspondence between the observed

proximities and the interpoint distances'. In other words, the larger the

dissimilarity between two points, or the smaller their similarity, the further apart

should be the points in the represented dimension.

A perfect reproduction of Euclidean distances may not always be the best possible

goal, especially if the components of the data vectors are expressed on an ordinal

scale. Then, only the rank order of the distances between the vectors is

meaningful, not the exact values. The projection should try to match the rank

order of the distances in the low-dimensional output space to the rank order in the

original space. The best possible rank ordering for a given configuration, or points

can be guaranteed by introducing a monotonically increasing function that acts on
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the original distances, and always maps the distances to such values that best

preserve the rank order (Kaski, 1997).

There are some problems in the use of MDS. For instance, between m data points

there are m- (m -1)/2 distance relationships. MDS processes require time

depending on m. In order to store the distances for 106 data points, more than 7

terabytes of memory (7 million megabytes) would be required. In addition, as data

dimensionality increases, so MDS has more trouble finding a global minimum of

the error function. To extend MDS so that it can be used with larger datasets, the

idea of using subset-MDS is suggested. As noted by Alt (1990), the concept of

similarity between objects is psychologically a difficult one that can lead to

considerable problems in interpreting the results derived from Multidimensional

Scaling.

4.3.2.2 Sammon's Nonlinear Mapping

Sammon (1969) describes a widely used nonlinear mapping algorithm that has

become very popular. In this algorithm the starting point is a random

configuration of n-points in d-dimensions that correspond to n-points in an N-

dimensional space (N ;:::d). The method of gradient descent is employed to

reconfigure the points in the d dimensional space so that the mean square error

between the original interpoint distances in N-dimensions and the interpoint

distances in d-dimensions is minimised. This iterative algorithm stops either when

the mapping error is below a user-defined threshold or when the user-defined

number of iterations is completed and no convergence has occurred. Sammon's

method involves a great amount of calculation, which results in the use of large

memory space in computers.

In terms of its mathematical formulation, non-metric Multidimensional Scaling

(MDS) and Sammon's nonlinear mapping (NLM) are similar. However, the

mapping criteria 'stress' for MDS and 'mapping error' for NLM are different.
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Another difference between the two is that MDS uses only the ordinal properties

of the similarities or distances being used.

Sammon's nonlinear mapping algorithm is applied to reduce the dimensionality of

the Elveden dataset, and to display seven land cover types in a three-dimensional

view. The result is presented as Figure 4.11.

As Sammon's nonlinear mapping algorithm (NLM) is used in this study to reduce

and map high-dimensional remotely sensed image data, the mathematical

foundations of the technique are given in detail in the following paragraphs.

Sammon's Nonlinear Mapping
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Figure 4.11 Result of Sammon's nonlinear mapping algorithm for Elveden data.
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Let the original data exist as a set of n vectors in an N-space. Let there also exist a

set of vectors in a d-space. The positions of the d-vectors are iteratively adjusted

until their interdistances approximate as closely as possible to the corresponding N-

space interdistances. The Euclidean distance between the vectors in the N-space is

defined as d;, whilst the corresponding distance in the d-space is defined by dij •
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The mapping error is then described as:

(4.3)

The error is a function of the dxn variables Ypq, where p = 1, n and

q = 1, d. The next step is to adjust the point locations (Le. change the

configuration in the d-space) in order to reduce the mapping error. A steepest-

descent procedure is used for this purpose;

Let E(m) be defined as the mapping error after the mth iteration.

1 ~ [d~- d..(m)]2
E(m)=-L.J !I ;

C i«] dij
(4.4)

where c = t[d;]
i-c]

The new d-space configuration at time m+ 1is given by:

Ypq (m+1) =Ypq (m) - (MF) . tlpq(m) (4.5)

where,

and MF is the "magic factor" (or step length) that was determined empirically to

be MF ~ 0.3 or 0.4 (Sammon, 1969).
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The main problem with NLM is its computational requirements. Since the

interdistance matrix, which contains n- (n -1)/2 elements (n is the number of

data points), must be computed and stored, a large computer memory is needed.

As a result, NLM gradient descent algorithms can be slow, especially for large

datasets. Several modifications to Sammon's algorithms have been proposed to

reduce the computational effort. Pykett (1978) introduced the idea of using of a

clustering archetype (one for each class in the data) and the adjustments are

carried out to only these archetypes rather than the entire set of pattern vectors.

The archetypes are defined as the centroids of each class. Thus, the computations

are considerably faster than original NLM. Niemann and Weiss (1979) show that

another difficulty with iterative methods like NLM is to find an algorithm with

good convergence properties. The "magic factor" for NLM is determined

empirically. Of course, a step size that is reasonable for one sample may be wrong

for another one. Therefore, they suggested an iterative descent algorithm using an

optimal step size in each iteration. This step size assures the convergence of the

algorithm.

Mao and Jain (1995) proposed an unsupervised backpropagation learning

algorithm to train a multilayer feed-forward neural network to simulate Sammon's

nonlinear projection. The proposed learning algorithm, which needs no category

information about patterns, is an extension of the backpropagation algorithm. The

number of input nodes is set to the input dimensionality of the feature space,

whilst the number of output units is specified as the dimensionality of the

projected space. The mathematical basis together with a comparison with other

neural network structures for projection methods can be also found in the study of

Mao and Jain (1995).

4.3.2.3 The Self-Organising Map

The idea of the Self-Organizing Map (SOM) was introduced in 1981 by Teuvo

Kohonen, who had a great influence on the development of Artificial Neural
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Networks (ANNs). Kohonen's Self-Organizing Map has become one of the most

popular artificial neural network models; in fact, it has been reported that the

SOM is the most widely used unsupervised neural network model. It requires only

an input dataset to learn and form its own output representation for a problem. The

idea underlying the SOM is based on a model of the human sensory system, which

works in such a way that spatial or other relations among stimuli correspond to

spatial relations among the neurons.

Various forms of the SOM have been used for applications in fields ranging from

engineering (including image and signal processing and recognition,

telecommunication, process monitoring, and robotics) to medicine, humanities,

economics, and mathematics. Kaski et al. (1998) compiled a list of all the

scientific articles (3,343 papers in total) in a classified bibliography on the theory

and the use of the SOM between 1981 and 1997. Unsupervised SOMs are found

useful, particularly for applications where no prior knowledge is available about

the input. The self-organizing map offers a number of very important attractions

as a neurospatial classifier (Openshaw, 1994);

1) simplicity in algorithmic design,

2) ability to handle complexity,

3) well-defined mathematical properties,

4) user induced flexibility,

5) a plausible degree of biological inspiration.

Kohonen's Self-Organizing Map (SOM) consists of two layers; the input and

output layers (Figure 4.12). The input layer is called the sensory cortex, which has

a number of neurons equal to the total number of input features. The output layer,

which is a competitive layer, is termed the mapping cortex, and is in n xm neurons

in size (generally 6x6 or 8x8 neurons). The mapping cortex is usually a two-

dimensional regular grid of nodes. The neurons in the input and output layers are

connected to each other by synaptic weights Wy where i and j refer to input

neurons and output neurons respectively. In addition, the nodes in the mapping
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cortex are locally interconnected as illustrated in Figure 4.12. The weights are

iteratively modified during the learning stage so as to identify and reflect the

characteristics of the data via the sensory cortex. Once a SOM is trained, the

weights define the clusters in the topological feature space.

A simple stochastic learning process, based on the competitive learning concept,

is employed to train a SOM. In the learning stage, the SOM units are adjusted by

small steps with respect to the feature vectors that are extracted from the data and

presented in a random order. One important characteristic of the SOM learning

process is that the learning algorithm takes into account not only a specific output

neuron but also the neighbourhood of that neuron. Thus, the weights associated

with these neighbouring neurons are modified simultaneously. As a consequence,

output neurons that are close to each other in the mapping cortex will maintain

similar characteristics. This means that these neurons are also close to each other

in the input space. At the end of the learning process, the weights connecting input

and output layers are estimated in a way that they represent the characteristics of

the input dataset.

Topological Feature Space
(Weights)

Mapping Cortex

Sensory Cortex

Figure 4.12 Kohonen's Self-Organizing Map.

The first step in unsupervised learning of the SOM is initialisation, which involves

definitions of the geometry, dimensionality, and the size of the mapping cortex
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(output layer). At this stage, all the weights wij in the network are set to small

random values. Next, for each input pattern, the squared distances d] between the

ith input neuron and the jlh neuron in the mapping cortex are calculated as

follows:

(4.6)

where Xi (t) is the input to sensory cortex neuron i at iteration t, and wij (t) is the

weight associated with the link from input neuron i to output neuron} at iteration

t. The selected output neuron is determined from: min {d] }, j E mapping cortex.

The synaptic weights of neuron} and its neighbouring neurons are adjusted by a

competitive Hebbian-type learning law:

Wij (t + 1)= wij (t) +a (t) .&j (0' (t» . (Xi (t) - Wij (t» (4.7)

where the learning rate a (t) is a time-decaying function expressed as;

t

(
amin) ' ....a(t)=a -max a

max
(4.8)

with the constraints 1~ a ; amin, amax ~ o. The neighbourhood function &j

determines a Gaussian neighbourhood range for all neurons) surrounding the

winning neuron}. The error&j is calculated by,

( (. .')2)- ]-]
&j = exp 20' (t)2 (4.9)

wherej' is neighbourhood of), and O'(t) is a time-decaying function, defined by:

(4.10)
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Usually, a value of O"min in the region of 1.0 is chosen, and O"max is set to a value in

the region of 8.0.

The values of the functions O"{t) and a{t) influence the learning mechanism.

Several studies (Erwin et al., 1992a, 1992b; Lo et al., 1993) have investigated the

effects of varying the values of the input parameters for both O"{t) and a{t). Their

conclusion is that if a suitable value of 0"max is chosen such that the

neighbourhood function covers the whole mapping cortex, then the SOM will

probably terminate in a well-ordered state. Also, researchers pointed out that the

learning rate should be large (of the order of 0.9) at the beginning of training and

should decrease during the training process to a value as small as 0.01 (Tso,

1997).

Kohonen's Self-Organizing Map (SOM) has a very important property of

topology preservation. At the end of training, this property allows the investigator

to obtain some insights into the data by looking into the activation of the neurons

in the mapping cortex. If the classes in the data are easy to distinguish, the

mapping cortex will be mapping some regions that correspond to clusters.

A SOM is also considered to be an effective tool for the visualization of high-

dimensional data. A SOM converts complex and nonlinear statistical relationships

between high-dimensional data points into more simple geometric relationships on

a low-dimensional display. This can be thought of as data compression in that the

most important features present are preserved while the dimensions of the data are

reduced. It may also be considered to produce abstractions. As these two aspects,

visualisation and abstraction, are the main purpose of many research projects, the

SOM has found a large variety of applications in many fields.

Several modifications and extensions to the SOM have been proposed. One of

these extensions is the use of a flexible map structure instead of a fixed grid to

improve the preservation of topology. Another is to reduce the computational

complexity of the SOM and, thus, speed up the learning process. Other

117



modifications are the use of a hierarchical clustering scheme and the use of an

additional layer, which is called the Grossberg layer, to achieve supervised

training.

4.4 Summary and Conclusions

The issue of visualising high-dimensional data, which are by nature complex, is

discussed in this chapter. As visualisation helps the user to understand, or gain

some insights into, the characteristics of such data, it is a particularly important

topic for remote sensing studies where a large volume of data is available from

many sources. The trend towards higher spatial and spectral resolution

instruments in recent years is resulting in greater volumes of higher-dimensional

data. Visualisation of multispectral, multitemporal, and multisensor data is thus of

great importance. The primary aim of this study is to efficiently use graphical and

projection methods in understanding the nature of the data at hand as well as to

gain some insights into the behaviour of artificial neural networks.

The techniques developed to display high-dimensional data are discussed here

under two main categories: graphical visualisation techniques and projection

techniques. Major techniques for each of the two categories are reviewed in detail.

Synthetic and satellite image data are used to demonstrate the advantages and

disadvantages of each method. Since Sammon's nonlinear mapping algorithm was

chosen to be the main technique to reduce the dimensions of the data into two and

three dimensions, only the underlying mathematical theory of this method is given

in detail.

In the toolkit, described in Appendix A, Sammon's nonlinear mapping algorithm

as a projection method, parallel coordinate plots and Andrews' plots as graphical

visualisation methods are available for use. In addition to these methods,

animations can be produced for displaying and assessing the ANN learning

process.
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CHAPTER V

FEATURE SELECTION

5.1 Introduction

New sensors carried by recent remote sensing satellites provide higher spatial

resolution and more spectral bands (or channels). The number of these spectral

bands varies from a few, such as SPOT HRV, Landsat MSS and TM, to more than

two hundred, such as MODIS (MODerate Resolution Imaging

Spectroradiometer), and AVIRIS (Airborne Visible InfraRed Imaging

Spectrometer). While each of these bands individually provides invaluable

information to aid understanding of the nature of the remotely sensed objects, the

data in many bands are highly correlated and therefore the dataset as a whole

contains a degree of redundancy. It is necessary to eliminate such redundancy in

order to produce more efficient methods of classification. In addition, some bands

are sometimes irrelevant for the purpose of the investigation. A well known

example is that thermal bands are not generally employed for delineation of land

cover features in remote sensing. While using a large number of spectral bands

increases feature space dimensionality, it gives rise to high performance costs and

low classification accuracy.

The use of high-dimensional data can also have a severe impact on statistical

classifiers. When the ratio of the number of training samples to the number of

features is decreased, the parameters estimated for statistical classifiers become

more variable and ambiguous. As a result, more samples are required to obtain

119



precise estimates of the parameters for high dimensional datasets. For a fixed

training data sample size, the variances of the estimators of Jl and L, the mean

vector and variance-covariance matrices for a particular class, will increase until a

point is reached such that the instability of the estimators is greater than the

increased information content of the additional features. This is often referred to

as the Hughes phenomenon or the peaking phenomenon (Hughes, 1968).

According to Landgrebe (2000) and Jimenez and Landgrebe (1998), there are two

important characteristics of high dimensional feature spaces:

• As dimensionality increases the volume of a hypercube concentrates in the

comers.

• As dimensionality increases the volume of a hypersphere concentrates in

an outside shell, away from the centre of the spheres.

These two unique characteristics of high dimensional feature spaces indicate that

higher dimensional space is mostly empty, which means that the multivariate data

in any case generally occupy a subspace of lower dimensionality. Therefore, a

high dimensional dataset can be projected to a lower dimensional space without

significantly losing the level of separability.

The issue mentioned above suggests the need to select the most appropriate

number of bands for a particular classification problem. The general tendency,

reported in the literature, is to search for possible feature subsets of the full dataset

in order to find one that is optimal in terms of a performance measure. The

process of searching a subset of the whole dataset based on some kind of

evaluation measure is called feature selection. Feature selection is a problem that

has to be addressed in various fields. The main goal is to eliminate those bands

that carry redundant or irrelevant spectral information.

There are three major advantages in using feature selection techniques. Firstly, the

performance of a classification can be improved by reducing the number of bands

to a new set of relevant and uncorrelated bands. In the case of artificial neural

networks (ANNs), this issue is quite important for improving the generalisation

capabilities of the network since, for a given number of training samples, a larger
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network may have poorer generalisation capability than one with fewer inputs.

Secondly, using a smaller number of bands reduces the time needed for

processing. It is a well-known fact that the long training time requirement is one

of the major drawbacks to the use of ANNs. Finally, due to the direct relationship

between the dimensions of the data and the size of the sample set, lower-

dimensional datasets would be more appropriate in cases where a limited number

of training data are available. The issue of feature selection is therefore an

important one, particularly where artificial neural networks are used.

As the evaluation of every possible subset drawn from the whole dataset is

generally infeasible because of the computational effort required, a variety of

search techniques has been developed and used for many research purposes.

Major search techniques are discussed in the following sections after the section

covering the feature selection techniques.

5.2 Test Sites, Data and Analysis Tools

In this study, in order to make objective judgements about the performances of

separability measures, an artificial neural network is applied to two classification

problems involving two datasets from eastern England. Both test sites are fertile

agricultural areas and rotational crop plantation techniques are inuse.

While for the first test site the ground data were produced by digitising the field

boundaries on a SPOT HRV image, the ground data of the second test site were

produced by digitising field boundaries from several Ordnance Survey maps,

which were published in 1987. The digitised polygons representing land cover

classes were labelled based on the information collected.

5.2.1 Test Site 1

Multisensor and multitemporal data including two Landsat TM and four SPOT HRV

images were used to classify seven agricultural crops, namely, wheat, fallow, potato,

sugar beet, onion, peas, and bulbs (daffodils). These crops cover the majority ofthe
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study area. A total of24 spectral bands (12 bands from Landsat TM images and 12

bands from SPOT HRV images) was available (Table 5.1). The study area (Figure

5.1) is located near the town of Littleport, in eastern England. The area selected for

study is about 73.1 km2 of fairly flat land (slope angles between 3° and 1O~.

The images were registered to the Ordnance Survey of Great Britain's (OSGB)

National Grid using the ERDAS Imagine image processing software (version 8.3)

by applying a first-order polynomial transformation, which is in fact a linear

transformation. The RMSE (Root Mean Square Error) values estimated for image

transformations were less than one pixel. In the resampling process, all images

were resampled at a spatial resolution of 30 metres, and 285-pixel by 285-pixel

portions of the images covering the study area were extracted for subsequent

analysis.

Table 5.1 Detailed information for the images used for the first test site.

Site Centre Centre Band
Date Time Sensor

PathlRow Latitude Longitude Order

27/06/94 10:10:50 Landsat- TM5 2011000 +52.41639 0.66084 1-6

20/07/94 10:16:11 Landsat- TM5 202/023 +53.10403 359.4584 7-12

13/05/94 11:15:17 SPOT-HRVI East Anglia +52.25277 0.60417 13-15

14/06/94 10:59:47 SPOT-HRVI East Anglia +52.25277 0.57222 16-18

30/07/94 11:15:11 SPOT-HRV2 East Anglia +52.25277 0.65888 19-21

14/08/94 11:26:44 SPOT-HRV2 East Anglia +52.25277 0.50889 22-24

The ground dataset (Figure 5.2) was generated from Field Data Printouts for the 1994

crop season, which provide details of the crop (or crops) growing in each field in the

study area. These printouts were collected from individual farmers or their

representative agencies. The boundaries of the land parcels in the study area were

digitised, and each polygon was labelled with a number corresponding to the crop it

contained.
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Figure 5.1 First area of interest near Littleport.
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Figure 5.2 Ground reference data for the first test site.
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Training and test data were generated from selected rectangular areas defined by rows

and columns, In order to include the variation of each crop in the fields, at least three

samples were taken for each land cover type to form the training data files. The

training pattern file included 2,262 pixels, whilst the test pattern file comprised 2,204

pixels. The number of pixels for each class in the training and testing files is given in

Table 5.2 below.

Table 5.2 Detailed information for the training and test files for the first site.

Number of Pixels
Class

Training Testing
Wheat 620 642
Fallow 159 145
Potato 495 468
Sugarbeet 431 387
Onion 215 219

Peas 160 158
Bulbs 182 185

5.2.2 Test Site 2

Multisensor data, including SIR-C SAR and SPOT HRV imagery, were used for

the delineation of land-cover classes for a study area of 57.26 km2 located near

Thetford, Norfolk, in the south-east part of England (Figure 5.3). Details of these

images are given in Table 5.3. The study area is owned by Elveden Farms Ltd, the

largest arable farm in the UK. The size of the farm is about 101 km", Total output

from the farm in 1994 included 9,084 tonnes of combinable crops and 49,129

tonnes of sugar beet. Other vegetable crops including potatoes, onions, carrots and

parsnips yielded 29,374 tonnes (Matthews and McWhirter, 1995).

A field boundary map (Figure 5.4) showing the crop distribution during late

spring/early summer 1994 was created by digitising 65 field boundaries from a

1:25,000 scale Ordnance Survey map produced in 1987. The class labels are based
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Table 5.3 Detailed information for the images used in the second test area.

Band
Date Time Sensor Site Latitude Longitude

Order

14/04/94 06:47:59 SlR-C Thetford +52.37000 0.76667 1-4

14/04/94 06:47:59 Filtered SlR-C Thetford +52.37000 0.76667 5-8

13/05/94 11:15:17 SPOT-HRVI East Anglia +52.25277 0.60417 9-11

14/06/94 10:59:47 SPOT-HRVI East Anglia +52.25277 0.57222 12-14

28/06/94 11:30:37 SPOT-HRVI East Anglia +52.25444 0.32250 15-17

30107194 11:15:11 SPOT-HRV2 East Anglia +52.25277 0.65889 18-20

14/08/94 11:26:44 SPOT-HRV2 East Anglia +52.25277 0.50889 21-23

Figure 5.3 Location of the second area of interest near Thetford.

on information from a previous study performed in the Geography Department of

Nottingham University. Quad-polarised L-band (~24cm wavelength) SIR-C SAR

data in four polarisation modes (HH: transmit horizontal and receive horizontal;

HV: transmit horizontal and receive vertical; VH: transmit vertical and receive

horizontal; and VV: transmit vertical and receive vertical) were acquired by the

NASAlJPL SIR-C (Shuttle Imaging Radar) system on April14, 1994. Five SPOT
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HRV images, acquired between May and August 1994, were also available. Due

to the short time difference between the acquisition dates, it is assumed that there

was no dramatic change on the types of ground cover classes. The extracted

section of the SIR-C SAR image for the study is given in Figure 5.5. As can be

seen from the figure, there are no data available for the lower right part of the

image due to the limited extend of the SIR-C SAR coverage.
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Figure 5.4 Ground reference data for second test site.

Figure 5.5 SIR-C SAR image containing the study area. The clipping ofthe image

in the lower right corner is due to the limited extent of the SIR-C SAR coverage.
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As radar systems generate images by the coherent processing of scattering signals,

they are highly susceptible to speckling effects. The presence of multiplicative

speckle noise in an image reduces the ability of the user to distinguish and

classify. Thus, pre-processing of the image is necessary (Chen et al., 1996). A 5

by 5 Lee filter was used to reduce the effects of speckle noise, as it was found

highly effective by Tso and Mather (1999). Filtering also leads to improvements

in the separability of the classes. This philosophy has been tested in this study by

comparing the separability of raw and filtered SIR-C images using six separability

measures, which are discussed in following sections. The result of this

comparison for two training data is given in Table 5.4.

Table 5.4 Separability comparison of raw and filtered SIR-C images.

Separability Raw SIR-C Image Filtered SIR-C Image
Index Elveden (1) Elveden (2) Elveden (1) Elveden (2)

Divergence 23.301 10.268 80.533 14.900

Trans. Divergence 1189.401 856.170 1545.857 1286.588

Bhattacharyya Dist. 0.731 0.976 4.765 1.413

J-M Distance 886.154 767.080 1168.203 1038.353

Wilks' A 0.258 0.288 0.054 0.122

Hottelings 'P 345.896 897.618 5178.119 1437.770

Elveden (1): training data with pure pixels, Elveden (2): training data with mixed pixels.

As can be seen from the above table, the use of the Lee filter considerably

improved the separability of the classes for all indices used. Please note that lower

values of Wilks' A criterion indicate better separation.

Both the raw and filtered SIR-C images were employed in the feature selection

process in order to observe the effectiveness of filtering for land cover class

discrimination. As either of RV or VH polarisation images is chosen for further

analysis in the literature, a cross-correlation table (Table 5.5), that can be used as

an index for the level of dependence between the images, was prepared for the

polarisation images available. Although the correlation between RV and VH

polarisation images is the highest, neither of these bands was excluded since their
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inter-correlation was not considerably higher than the others. Therefore, there is a

total of 23 spectral bands available (15 bands from SPOT images and 8 bands

from SIR-C images). SPOT and SIR-C images were then georeferenced to the

Ordnance Survey of Great Britain's National Grid using the ERDAS Imagine

image processing software (version 8.3) by applying a first-order polynomial

transformation. The RMSE values of the reference points chosen for image

transformations were less than half a pixel. A sub-image of size 228x436 pixels

covering the study area were extracted at a spatial resolution of 24 metre to be

used in subsequent analysis.

Table 5.5 Cross-correlation between SIR-C polarisation images.

RH HV VH VV
HH 1.0000

HV 0.7842 l.0000

VH 0.8285 0.8638 l.0000

VV 0.8597 0.7427 0.8118 1.0000

On the basis of a number of experiments, it was decided to use seven land-cover

classes, which included the bulk of the study area. ANN classification procedures

were applied to examine these seven classes (sugar beet, wheat, peas, forest,

winter barley, potato and linseed). Training and test datasets were produced using

a random selection method. For each of the seven land cover classes, 300 pixels

were randomly selected for training the network (a total of 2, 100 pixels for training),

and 250 pixels were randomly selected for testing the trained networks (a total of

1,750 pixels for testing). Although the training and test areas were selected to be as

homogeneous as possible, there was some heterogeneity within the areas.

Specifically, digitising exact field boundaries gives rise to the inclusion of

boundary pixels that are basically mixtures of adjacent pixels. As a consequence,

a 100% overall accuracy would not be expected from any classification method.

ERDAS Imagine image processing software (version 8.3) was used for preparing

the satellite data and selecting the training and testing data for the neural network
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classification. SNNS (Stuttgart Neural Network Simulator), developed by the

Institute for Parallel and Distributed High Performance Systems at the University

of Stuttgart, was used for neural network implementations. SNNS is an efficient

and portable neural network simulation environment for UNIX workstations, and

is used to generate, train, test and visualise artificial neural networks. PC version

of the SNNS program has been introduced recently, which can be run via the

visualisation toolkit written for this study. The toolkit, which is described in

Appendix A, and some programs written in Turbo C and MATLAB (version 5.3)

were used to prepare data for SNNS and analyse the results of SNNS.

5.3 Filters and Wrappers

A number of criteria can be used to categorise feature selection techniques. As

they can be classified on the basis of whether they are graphical or statistical in

nature (Jensen, 1996), so they can also be classified into two categories based on

whether or not they use classification algorithms to evaluate subsets (Figure 5.6).

Techniques that use classifiers to evaluate the performance of subsets are called

'wrapper techniques'. Otherwise, they are called 'filter techniques', in which no

classifier is employed to evaluate subset solutions.
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Figure 5.6 Two approaches to feature subset selection based on the incorporation

of a learning algorithm (Yang and Honavar, 1998).
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The filter approach is generally computationally more efficient; however, this

approach may not find the optimal subset solution for the classifier. The wrapper

approach is, on the other hand, based on the evaluation of the number of feature

subsets by executing a selected classification algorithm and selecting the best one

of the candidate subsets. The main problem with such methods is their

computational requirements. They are generally used when the classification

process employed is relatively fast.

A filter is defined as a feature selection algorithm using a performance metric

based entirely on the training data without reference to the classifier for which the

features are to be selected. The name is derived from the way in which the

features are filtered before the classification system is trained and tested (Scott et

al., 1998).

The most widely-used filter methods are based on class separability indices. Such

indices have been extensively used by researchers in the remote sensing area for

many investigation purposes (Goodenough et al., 1978; Thomas et al., 1987a,

1987b; Mather, 1999a; Jensen, 1996; Aha and Bankert, 1996; Dutra and Huber,

1999; Tso and Mather, 1999).

In the following discussion, the fundamentals of each separability measure are

given, and the classification results derived from the use of artificial neural

networks, whose input nodes correspond to best band combinations, are

presented. The best band combinations are reached as a result of a search process

in which separability measures are used as evaluation (or fitness) functions to

evaluate the performance of each subset solution. In the search for the best band

solutions, both sequential forward selection (SFS) and genetic algorithm (GA)

methods, which are discussed in subsequent sections, are employed. Best band

combinations found by separability measures and the Mahalanobis distance

classifier are used in a feed-forward artificial neural network to delineate land

cover classes.
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5.4 Class Separability Indices

The measurements associated with each class exhibit a statistical probability

distribution. Such probability distributions often overlap, to a greater or lesser

extent, and the class separability problem becomes a function of both the

separation of the means and statistical distribution of data points, within each

class, for each dimension (or spectral band). The evaluation of class separability

in multidimensional space from a combination of class separabilities in one-

dimensional spaces leads to errors because the correlations between the

dimensions must be considered in addition to the single-dimensional measures of

the distributions of the class data points, the variances, and the separations

between the class means (Thomas et al., 1987a).

The logic behind the separability indices is that the larger the separation between

the classes in the feature space the easier it will be to discriminate between the

features as a result of better decision boundary determination, thus a lower error

rate (better performance) can be achieved by the classifier following feature

selection.

A number of procedures that measure inter-class separability are described in the

literature. The best known are the Euclidean distance, the Mahalonobis distance,

the Divergence, the Transformed Divergence, the Bhattacharyya distance, and the

Jeffries-Matusita distance.

These indices with the exception of the Euclidean distance and the Mahalonobis

distance, which are theoretically and mathematically well-known distance

measures, are discussed in the following section.

5.4.1 Divergence and Transformed Divergence Indices

Divergence is based on the derivation of a measure of the difference between all

pairs of classes. It was one of the first separability indices used in remote sensing

and is still in use for processing of remotely sensed data (Goodenough et al.,
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1978; Swain and Davis, 1978; Mather, 1999a; Thomas et al., 1987a, 1987b;

Jensen, 1996).

Divergence is computed using the mean and variance-covariance matrices of the

data representing feature classes. For two feature classes (i andj), the divergence

between the classes is calculated according to the formula:

where the symbol tr[·] indicates the trace of a matrix, which is the sum of its

diagonal elements, ~ and Vj are the variance-covariance matrices for class i and

j, and MI and Mj are the corresponding sample mean vectors. In cases in which

more than two classes are involved, average divergence is computed. This

involves the estimation of divergence values for each pairwise combination of the

classes. The best subset band combination can be found by searching for the

highest D avg value from all the possible subsets. As the effect of several well-

separated classes may increase the average divergence value and make it

misleading, the transformed divergence is introduced, which can be expressed as:

[
-DU]

TDij =c l-e 8 (5.2)

where c is a constant that defines the range of transferred divergence values. In the

literature, c has been chosen as 100, 1000 and 2000. The transformed divergence

applies an exponentially decreasing weight as distance between the classes

increases, and also scales the divergence values between 0 and c. According to

Jensen (1996), if c is chosen as 2000, then values of TD above 1900 indicate good

separability while values below 1700 indicate poor separability. On the other

hand, it has been suggested by Mather (1999a) that when c is 100, transformed

divergence values can be interpreted in the same way as percentages. In this case,

values of 80 or higher indicate good separability between the classes.
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The main problem in the use of divergence as a measure of inter-class separability

is the assumption of multivariate normal distribution for the data representing the

classes. In other words, divergence estimation is based on the assumption that the

data used are normally distributed. Divergence values will be less reliable when

the data depart significantly from multivariate normality.

In order to determine the optimum number of features that can produce accurate

classification results, the sequential forward selection (SFS) search method is used in

conjunction with the divergence measure to determine the best feature combinations

ranging from 5 to 24 features for the first dataset and 5 to 23 features for the second.

These solutions are used to construct training and test files. All the network and

learning parameters were kept constant except for the number of input nodes in the

network. Networks were trained for 15,000 iterations using the backpropagation

learning algorithm. The classification accuracies produced for the test datasets were

plotted against the number of input features. This analysis showed that a minimum of

eight features is needed for the neural network to learn the characteristics of the

training data with around 90% overall classificationaccuracy.

The primary aim of the study is thus to determine the best eight bands for both

problems to distinguish seven land cover features. All the feature selection

techniques were used to accomplish this task. On the other hand, in order to

observe the effects of different network architectures and number of iterations,

results are given for three network structures (8-10-7, 8-15-7, 8-20-7, where 8

shows the number of input bands, 10, 15 and 20 indicate the number of nodes in

the hidden layer, and 7 is for the number of output classes to be identified) and for

every 2,500 iterations, for a total of 15,000 iterations. All the classification results

were assessed using contingency matrices to determine the overall, and individual

class accuracies. While assessing the results produced by the networks, pixels are

left unclassified ifnone of their membership values exceeds 0.5.

Divergence, like the other separability measures, is used in this study as a fitness

measure to determine the performance of each subset band combination in a search

process. For the first problem involving the selection of the best eight band

combination from 24 bands, the best subset solutions of6-21-19-13-11-18-24-12 and
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5-12-13-17-18-19-21-24 were found for the sequential forward selection (SFS) and

genetic algorithm (GA) search methods to be described in section 5.7, respectively.

Training and test data were created using these solutions to distinguish seven land

cover classes. Three network structures were trained with the training dataset and

later were assessed using the test dataset. The results of these analyses are given in

Table 5.6 and Table 5.7. The divergence, transformed divergence, the Bhattacharyya

and Jeffries-Matusita distances for the solutions are estimated and given below the

tables using the abbreviations D, ID, B, and 1M. It should be noted that the values of

the Kappa coefficient in Tables are represented by the values multiplied by 100.

Table 5.6 ANN classification results of the solution attained by divergence using

SFS for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 91.15 89.27 91.33 89.44 92.70 91.08

5000 90.70 88.73 90.79 88.81 92.11 90.38

7500 90.11 88.05 91.02 89.11 90.47 88.44

10000 89.88 87.82 90.43 88.41 90.02 87.91

12500 90.52 88.57 90.56 88.59 90.06 88.00

15000 90.29 88.33 90.34 88.31 90.20 88.16

D: 391.265 TD: 1999.926 B: l3.765 JM: 1413 .299

As can be seen from Table 5.6, the solution produced by divergence analysis

gives over 90% classification accuracy based on overall accuracy, and 88%

accuracy based on the use of the Kappa coefficient. These high accuracy values

suggest that using eight bands instead of twenty-four bands (16 out of 24

eliminated) is appropriate to delineate seven agricultural crops with a reasonably

high classification accuracy. This reduction also shortened the training and testing

processes and, more importantly, it produced a much smaller network with higher

generalisation capabilities.
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Table 5.7 ANN classification results of the best band combination found by

divergence using GA for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 87.48 84.90 90.29 88.14 89.52 87.27

5000 87.30 84.65 90.34 88.19 89.25 86.94

7500 86.71 83.93 89.88 87.63 89.38 87.12

10000 86.75 83.92 89.34 86.99 89.75 87.55

12500 86.03 83.03 89.11 86.72 89.16 86.85

15000 85.21 82.02 88.88 86.46 89.16 86.86

D: 478.471 ID: 1998.757 B: 14.162 JM: 1411.675

The results in Table 5.7 show that the genetic algorithm (GA) could not find a

better solution than the sequential forward selection (SFS) search method in terms

of the classification accuracy produced by neural networks. However, it should be

pointed out that GA, in fact, found a solution with higher divergence, but this did

not improve the accuracy of the classification. The main reason for this may be

that GA approach searches the best bands by considering only the average

divergence rate (mean of the divergences calculated for each possible pair of

bands), whereas the SFS program written for this study seeks the first four bands

to improve the average divergence, and then the next bands to improve the poorest

(lowest) divergence among the band pairs. Hence, it may be the reason that these

poor divergence correlations between the classes reduced the accuracy of resulting

classification. Another point should be made is that larger networks do not

necessarily provide higher accuracies, as can be noticed from Table 5.6 and Table

5.7.

The smallest network (8-10-7) trained (2,500 iterations) for the solution found by

SFS based on divergence was used to classify the test image and the result of the

classification was portrayed using four colour tones depending on output

activation values where each class was represented by a distinct colour. The result
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of this operation is presented as Figure 5.7. Such representation clearly provides a

better understanding of the classification results in that some kind of accuracy

assessment can be made visually.

Reliability of Pixels as Colour Shades
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200 250

onion

sugar beet

Figure 5.7 ANN classification of the test image for the solution found by SFS

based on divergence for the first test site. The output activations for each pixel are

shown in one of four levels of colour.

It is also possible to present the results of an ANN based classification using

only the output activation values, independent of land cover classes. Thus, one

can analyse each pixel, and observe the effect of spectral variation in individual

fields. Moreover, fields including different crops than the ones used in the

training process can be seen as totally dark. The membership levels of all pixels

are represented on a grey scale on which output activations lower than 0.5 are

set to black, whilst output activation of 1 is set to white. The result of this

process is shown in Figure 5.8.
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Reliability of pixels in terms of output activation levels
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Figure 5.8 Spatial pattern of output activations for the first test site.

Table 5.8 ANN classification results of the best band combination found by

divergence using SFS for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 89.66 88.13 89.66 88.16 90.51 89.12

5000 90.17 88.69 89.60 88.09 90.86 89.50

7500 90.11 88.62 89.71 88.23 90046 89.06

10000 89.54 87.99 90.51 89.10 90.91 89.56

12500 89.83 88.31 90040 88.96 90.91 89.56

15000 89.60 88.04 90.63 89.21 90.17 88.71

D: 130.641 TD: 1999.475 B: 4.834 JM: 1397.656
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When the SFS and GA search methods were applied to determine the optimum

band subsets for second dataset, the solutions of20-11-16-17-23-19-13-14 and 9-

11-14-16-17-19-20-23 band combinations were obtained. These solutions have

been used to form training and test pattern files for ANN classification. After

training, the three network structures were tested for every 2,500 iteration. The

results of these processes are given in Table 5.8 and Table 5.9.

Table 5.9 ANN classification results of the best band combination found by

divergence using GA for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 89.20 87.63 89.54 88.03 90.06 88.58

5000 89.43 87.87 90.00 88.54 89.94 88.45

7500 90.29 88.81 90.00 88.56 90.46 89.05

10000 90.23 88.75 90.11 88.69 90.11 88.65

12500 90.11 88.63 89.66 88.18 89.77 88.26

15000 90.51 89.09 89.77 88.30 90.17 88.69

D: 140.678 TD: 1999.125 B: 5.206 JM: 1398.213

Although GA found a solution with considerably high divergence rate, the

classification results of both search methods are comparable. It can be seen that

none of the network structures is superior to others despite the slight changes in

the accuracy. The overall accuracy of90% is achieved by both solutions.

Transformed divergence was also used to find out the best band combination for

discriminating the land cover classes for both test sites. Sequential forward

selection (SFS) method and genetic algorithm (GA) were employed for this

purpose using transformed divergence as the fitness measure. For the first test

dataset, the band combinations 11-21-18-19-5-24-12-2 and 2-5-11-12-13-18-20-

24 were found using SFS and GA, respectively. The results of these solutions are

presented here in Table 5.10 and Table 5.11.
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Table 5.10 ANN classification results of the best band found by transformed

divergence using SFS for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 87.52 85.01 89.34 87.16 86.39 83.77

5000 87.89 85.41 88.20 85.88 85.84 83.15

7500 87.30 84.75 88.25 85.96 85.48 82.71

10000 87.02 84.42 88.29 86.02 84.75 81.89

12500 86.84 84.19 88.43 86.18 84.53 81.61

15000 87.21 84.57 88.38 86.11 84.94 82.09

D: 352.246 TD: 1999.945 B: 12.772 JM: 1413.250

Table 5.11 ANN classification results of the best band found by transformed

divergence using GA for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 91.24 89.41 91.42 89.61 93.15 91.66

5000 90.29 88.30 87.75 85.30 92.70 91.10

7500 90.38 88.36 89.34 87.15 91.79 90.03

10000 89.56 87.40 89.70 87.54 92.20 90.51

12500 88.43 86.07 90.02 87.93 92.02 90.28

15000 87.89 85.40 90.29 88.24 91.97 90.22

D: 301.096 TD: 1999.961 B: 13.773 JM: 1413.467

The solution found by GA based on transformed divergence produced results with

over 92% overall accuracy and 90% Kappa coefficient whereas the solution found

by SFS gave results with around 88% overall accuracy and 86% Kappa

coefficient. One conclusion that can be drawn is that GA reached a better solution

in terms of both the transformed divergence and classification accuracy. Another

point should be made is that the best structure appeared to be 8-15-7 for SFS
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solution, and 8-20-7 for GA solution. The highest accuracy of93.15% overall and

91.66% Kappa coefficient was reached by network structure of 8-20-7 at 2,500

iterations.

For the second test site, SFS and GA procedures were also applied to find the

optimum subset band combination in terms of transformed divergence value.

Whilst the SFS technique reached the same solution that the divergence reached

(Table 5.8), GA found a solution containing 10-14-16-17-19-20-21-23 bands. The

solution found by GA was employed in ANN processes using the three network

structures and the results are shown in Table 5.12. It can be seen from the

comparison of two tables (Table 5.8 and Table 5.12) that although GA reached a

better solution in terms of the fitness measure, transformed divergence value,

classification results produced are slightly worse than those produced by SFS

procedures.

Table 5.12 ANN classification results of the best band found by transformed

divergence using GA for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 88.97 87.38 89.89 88.37 89.09 87.52

5000 89.60 88.09 89.09 87.50 90.06 88.60

7500 89.31 87.76 90.06 88.57 89.43 87.91

10000 88.91 87.31 89.66 88.12 89.49 87.95

12500 88.91 87.31 89.83 88.31 89.26 87.72

15000 89.26 87.68 89.71 88.20 89.66 88.15

D: 126.819 TD: 1999.519 B: 4.801 JM: 1398.494

The smallest network structure (8-10-7) trained for the solution (20-11-16-17-23-

19-13-14) found by SFS based on divergence for the second dataset was also used

to classify the test image, and the result is given in Figure 5.9. Grey scale

activation level analysis was also carried out to show problematic areas, and the

effect of spectral variations. It is also possible to define boundaries of fields since
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mixed pixels are classified with low possibility of membership, and therefore they

are darker than the pixels inside fields. The image produced by this process is

shown in Figure 5.10. The dark and considerably large area in the middle of the

image was not recognised by the ANN as it is belong to another class (possibly

grass) that was not included in the training set.

Reliability of Pixels as Colour Shades
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Figure 5.9 ANN classification of the test image for the solution found by SFS

based on divergence for the second site using bands 20-11-16-17-23-19-13-14.

Reliability of pixels in terms of output activation levels
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Figure 5.10 Spatial pattern of output activations for the second site.
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5.4.2 Bhattacharyya Distance

The Bhattacharyya distance is a widely-used class separability index. While

divergence measures statistical separability, the Bhattacharyya distance estimates

the probability of correct classification. The Bhattacharyya distance is calculated

from the formula below:

where M, and M j are the mean vectors, V; and Vj are the variance-covariance

matrices of classes i and j. The Bhattacharyya distance also assumes that two

feature classes (i and j) have a Gaussian distribution (i.e. they are normally

distributed). By values estimated from the above formula can range from 0 to +00.

Fu (1982) reports that the first term in the Equation 5.3 measures the difference

between the class means, and the second term measures the difference between

the within-class variance-covariance matrices.

Like the divergence, the Bhattacharyya distance is computed for feature pairs.

Therefore, the average By value for all k.(k-l)!2 feature combinations needs to

be calculated as an overall separability measure, which is used in searching for the

optimum subset. According to Kailath (1967), 'the Bhattacharyya distance is more

appropriate to interclass separability problems than is divergence when the class

probability distributions are broad'. It is also reported that, when the classes are

well separated, both the Bhattacharyya distance and the divergence measure give

similar results.

Swain and King (1973) analysed the three class separability indices, divergence,

transformed divergence and the Bhattacharyya distance, in their comparative study.

They found that transformed divergence and the Bhattacharyya distance performed

best. However, it should be pointed out that normally distributed artificial data was
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generated and used in their study. Therefore, the conclusion reached may be

misleading, especially in cases where the data are not normally distributed.

When SFS and GA methods were applied to determine best band combinations

based on Bhattacharyya distance, 24-11-18-23-16-5-17-20 and 5-11-13-15-17-18-

22-23 solutions were found for the first dataset, and 11-20-19-9-18-15-12-17 and

9-11-16-17-18-19-20-23 for the second dataset, respectively. Training and test

pattern sets were produced using these solutions. Then, the networks trained with

the pattern dataset and subsequently assessed using the test pattern sets. Results of

the solutions obtained for the first dataset are given in Table 5.13 and Table 5.14.

The comparison of two tables suggests that there is a slight improvement in the

classification accuracy for the solution attained by GA procedure. As it can be

noticed from the comparison of the tables, GA solution provided results with

consistency. However, the results in Table 5.13 show larger deviations in terms of

classification accuracy. Another point should be made is that the 8-15-7 network

structure for both cases produced the best results at 2,500 iterations (90.56% for

SFS solution and 90.70% for GA solution).

Table 5.13 ANN classification results for the band combination attained by the

Bhattacharyya distance using SFS for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 86.43 83.75 90.56 88.61 88.20 84.82

5000 87.93 85.50 88.16 85.73 88.38 85.63

7500 87.30 84.71 88.07 85.63 88.43 84.97

10000 86.48 83.70 88.11 85.67 88.48 84.60

12500 86.03 83.19 87.84 85.36 88.52 84.76

15000 85.53 82.60 87.66 85.13 88.16 84.81

D: 399.974 TD: 1999.796 B: 15.346 JM: 1413.010
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Table 5.14 ANN classification results for the band combination attained by the

Bhattacharyya distance using GA for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 87.70 85.28 90.70 88.73 87.93 85.49

5000 88.29 86.04 89.16 86.90 88.61 86.23

7500 88.70 86.49 88.88 86.54 88.16 85.64

10000 88.52 86.30 88.52 86.11 87.11 84.42

12500 88.61 86.37 88.79 86.44 87.84 85.22

15000 88.88 86.65 88.79 86.43 87.66 85.00

D: 396.771 TO: 1999.686 B: 17.822 JM: 1412.561

Table 5.15 ANN classification results for the band combination attained by the

Bhattacharyya distance using SFS for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 89.26 87.70 89.54 88.02 89.03 87.47

5000 89.77 88.26 89.66 88.13 89.60 88.11

7500 89.89 88.41 89.83 88.34 89.43 87.91

10000 89.66 88.15 89.43 87.89 89.94 88.47

12500 89.49 87.94 89.71 88.20 89.77 88.28

15000 89.31 87.78 89.83 88.32 89.83 88.36

0: 128.512 TO: 1997.236 B: 5.123 JM: 1396.055

SFS and GA procedures were also applied to determine the optimum subset band

combination for the second dataset. 11-20-19-9-18-15-12-17 and 9-11-16-17-18-

19-20-23 band combinations were found to be the best subset solutions by SFS

and GA, respectively. The results of applying these solutions to ANN

classification are given in Table 5.15 and Table 5.16. While an overall accuracy of

less than 90% and a Kappa coefficient of 88% were achieved by the solution
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obtained from SFS, around 91% overall accuracy and 89% Kappa coefficient

accuracy values were produced from the solution attained by GA method. In this

case, GA method reached a solution with both high Bhattacharyya value and high

classification accuracy. It should be also pointed out that the solution found by

GA also provides better estimates for other separability indices.

Table 5.16 ANN classification results for the band combination attained by the

Bhattacharyya distance using GA for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 89.37 87.83 91.03 89.67 91.03 89.70

5000 90040 88.97 90.74 89.38 91.14 89.82

7500 90.51 89.10 90.11 88.69 90.86 89.50

10000 90.06 88.59 90.23 88.80 90.63 89.25

12500 90.51 89.10 90.17 88.74 90.63 89.25

15000 90.17 88.71 89.94 88.47 90.80 89.44

D: 144.858 TD: 1998.845 B: 5.322 JM: l399.370

5.4.3 Jeffries-Matusita Distance

The Jeffries-Matusita distance separability index, often referred to as the J-M

distance, is very similar to the transformed divergence in terms of its formulation.

It is a saturating transformation applied to the Bhattacharyya distance. The J-M

distance between two normally distributed classes (i andJJ is given by:

(SA)

where Bij is the Bhattacharyya distance. Jij has a saturating behaviour with

increasing class separability and is more suitable as a measure of interclass

separability than is divergence. However, it tends to suppress high separability

values, whilst overemphasising low separability values.
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The I-M distance has been used in remote sensing for a variety of investigations.

For example, Dutra and Huber (1999) use the I-M distance to measure the

discriminating power associated with each set of features and to rank these

features, with the aim of deleting the four worst features from total 14 features

that are extracted from ERS112 SAR data. A comparative study reported by

Mausel et al. (1990) assesses the performances of separability indices for finding

the best subset of four bands from eight-band image data. Exhaustive search was

used to evaluate all 70 possible four-band subset combinations with respect to

supervised maximum likelihood classification. Transformed divergence and the

Jeffries-Matusita both found the best solution from the 70 subsets, which gave the

highest classification accuracy. On the other hand, the Bhattacharyya distance and

divergence picked the eleventh and twenty-sixth ranked four-band subset

solutions, respectively.

The Jeffries-Matusita distance was employed in a sequential forward selection and

genetic algorithm processes to determine the optimum eight bands for the test

datasets. This process resulted in band combinations of 11-18-10-24-20-19-5-4

and 2-5-11-13-15-18-20-24 for the first dataset; 10-16-17-23-20-15-9-19 and 9-

10-16-17-18-19-20-23 for the second dataset employing SFS and GA

respectively. These solutions were then used to form pattern files by selecting the

bands in order. Next, the three network structures were trained using the training

set and then the generalisation capabilities of the trained networks were tested

using the test pattern file. The results are given in Table 5.17 and Table 5.18 for

the first dataset, and in Table 5.19 and Table 5.20 for the second dataset.

For the first dataset, the GA solution gave considerably better results than the SFS

solution in terms of classification accuracy. Specifically, the solution found by

GA yielded around 92% overall accuracy and 90% Kappa coefficient, whilst the

solution found by SFS gave results around 90% overall accuracy and 88% Kappa

coefficient. It should be noted that both tables suggest the optimum number of

iterations as 2,500.
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Table 5.17 ANN classification results for the band combination attained by the

Jeffries-Matusita distance using SFS for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 86.98 84.30 89.88 87.78 91.15 89.30

5000 85.80 82.98 87.88 85.43 90.74 88.87

7500 86.43 83.70 86.93 84.33 89.93 87.92

10000 85.66 82.82 86.48 83.83 89.70 87.66

12500 85.84 82.88 86.84 84.23 89.29 87.l9
15000 86.39 83.51 88.02 85.65 89.16 87.02

D: 322.154 ID: 1999.846 B: 14.898 JM: 1413.035

Table 5.18 ANN classification results for the band combination attained by the

Jeffries-Matusita distance using GA for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 92.24 90.55 93.28 91.82 92.42 90.80

5000 89.75 87.60 92.24 90.54 90.74 88.82

7500 90.38 88.37 92.42 90.77 91.70 89.93

10000 90.56 88.57 91.70 89.90 90.29 88.25

12500 90.84 88.90 90.79 88.82 92.15 90.46

15000 90.79 88.84 91.20 89.28 91.47 89.65
D: 356.669 TD: 1999.903 B: 14.783 JM: 1413.481

The results given in Table 5.19 and Table 5.20 include the accuracy assessment of

ANN classifications using sequential forward selection and genetic algorithm

search procedures for the second dataset. Although the highest accuracy achieved

is 90% in both tables, the results in Table 5.20 show consistency in terms of the

network structures involved. In other words, the solution found by GA provided
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almost the same accuracy (90% overall accuracy) for the three network structures

considered in this study. One again over-training reduced the classification

accuracy slightly. Therefore, it can be stated that 2,500 or 5,000 iterations are

relevant to produce a network with high generalisation capabilities.

Table 5.19 ANN classification results for the band combination attained by the

Jeffries-Matusita distance using SFS for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 88.29 86.62 89.89 88040 90.34 88.92

5000 88.69 87.07 89.94 88046 90040 88.97

7500 88.63 87.02 89.94 88046 90.29 88.85

10000 88.97 87040 89.83 88.33 90.23 88.76

12500 89.03 87046 89.54 88.02 90.34 88.89

15000 89.09 87.51 89049 87.95 90.11 88.63

D: 128.542 TD: 1999.177 B: 5.188 JM: 1399.968

Table 5.20 ANN classification results for the band combination attained by the

Jeffries-Matusita distance using GA for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 90.34 88.92 90.86 89.51 90.57 89.18

5000 90.86 89049 90.86 89.50 90040 89.00

7500 90.69 89.27 90040 88.98 90046 89.06

10000 90.69 89.28 90.51 89.10 90.17 88.74

12500 90.34 88.91 90.34 88.91 90.06 88.61

15000 90040 88.97 90.34 88.91 90.06 88.62

D: 138.215 TD: 1998.992 B: 5.352 JM: 1400.412
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5.5 Statistical Tests

Several multivariate statistical test techniques can be employed to estimate the

degree of discrimination between the classes in a dataset, using the means and

variance-covariance matrices of the classes. The two most popular statistics of

such techniques are Hotelling's T2 statistic and Wilks' A criterion. These

techniques assume that the data are multivariate-normally distributed. When they

are used as descriptive statistical tests, they estimate the discriminating power of a

feature (or relative importance of a feature) and when they are used as fitness

measure (evaluation function) they are used to stop the feature selection process.

5.5.1 HoteIling's T2

Hotelling's T2 statistic is used to test the null hypothesis that the multivariate

means of the two groups under study do not differ significantly. It provides a

multivariate generalisation of the Student's t test and is related to the problem of

how best to discriminate between two groups. T2is calculated from:

T2 = nln2 .D2

nl +n2

(5.5)

D2 (- - )TS-I(- -)= XI -X2 Xl -X2 (5.6)

where D2 is the coefficient known as Mahalanobis' D-squared. It is a measure of

the overall similarity between the two groups. s:' is the inverse matrix of the

pooled variance-covariance matrix S, and XI and x2 are mean vectors for the

groups, which contain nl and n2 individuals, respectively.

The value of Hotelling's T2 increases as inter-class separation increases. The

statistical significance of T2 statistic can be evaluated using a transformation to

the F distribution. It should be noted that the number of observations need not be

the same for the two samples, but the number of features must be the same.
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According to Overall and Klett (1972), Hotelling's r' statistic can be used in

following situations:

1) equivalence of multivariate mean vectors derived from two independent

samples,

2) equivalence of multivariate mean vectors for paired observations, such as

derived from test-retest situation,

3) equivalence of sample mean vector to hypothesised population mean

vector,

4) several types of tests that are peculiar to the multivariate situation.

Hotelling's P was also employed in the process of searching the best bands to

recognise land cover classes for two problems. For the first one 11-18-23-22-17-

13-15-24 and 6-11-13-17-18-21-22-23 band combinations were found as a result

of applying SFS and GA methods. These solutions were tested to determine their

performance, which are presented here as Table 5.21 and Table 5.22. As can be

seen from both tables, overall accuracy of over 92% and Kappa coefficient of over

90% have been achieved by the solutions, which are higher than all the previous

results produced by separability indices.

Table 5.21 ANN classification results for the band combination attained by

Hotelling's T2 using SFS for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 92.15 90.45 92.60 91.02 91.43 89.59

5000 91.56 89.72 91.02 89.15 90.65 88.65

7500 91.52 89.68 89.93 87.82 90.97 89.01

10000 91.92 90.16 90.38 88.36 92.70 91.06

12500 91.70 89.87 89.52 87.30 93.60 92.16

15000 90.97 88.98 90.84 88.87 94.01 92.67

'P = 20491.29
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The network structure of 8-10-7 trained for the solution found by SFS based on

Hotelling's P separability measure was employed to classify the image from

which the first test dataset was derived. The classified image is given in Figure

5.11 representing each class with four levels (tones) of the colour assigned to land

cover classes.
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Figure 5.11 ANN classification result for the solution found by SFS based on

Hotelling's P for the first test site using bands 11-18-23-22-17-13-15-24.

potato

unknown

The result file, used to generate ANN classification results (Figure 5.11) for whole

test image, was also used to produce the map of output activation levels in terms

of using tones of grey colour to represent spatial accuracy. The result is shown in

Figure 5.12. As can be noticed from the figure, there are some fields in black,

which are not known by the trained network. It is most likely that these fields

contain crops that are not included in the training set.
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Figure 5.12 Spatial pattern of output activations for the first test site.

Table 5.22 ANN classification results of the best band combination found by

Hotelling's 1'2 using GA for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 91.56 89.71 92.15 90.50 91.65 89.88

5000 90.34 88.28 92.29 90.68 91.92 90.18

7500 91.06 89.12 92.10 90.46 91.88 90.11

10000 91.29 89.40 92.10 90.47 92.15 90.43

12500 91.06 89.13 92.33 90.73 92.47 90.83

15000 90.20 88.13 92.15 90.51 92.33 90.67

P=20240.08

152



For the second set band combinations of 11-9-20-18-15-23-17-16 and 9-10-15-16-

17-18-20-23 were found by the SFS and GA approaches, respectively. Results of

applying these solutions to neural networks are given in Tables 5.23 and 5.24. The

accuracy values in these tables show that solutions found by Hotelling's T2 are

again better than the solutions found by separability indices.

Table 5.23 ANN classification results for the band combination found by

Hotelling's T2using SFS for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 89.43 87.91 91.20 89.90 91.43 90.16

5000 90.11 88.67 91.37 90.08 91.49 90.23

7500 90.51 89.11 91.09 89.76 91.60 90.42

10000 90.06 88.61 90.86 89.51 91.49 90.23

12500 90.40 88.97 90.86 89.50 91.71 90.48

15000 90.23 88.81 90.74 89.39 91.77 90.54

'P =4497.84

Table 5.24 ANN classification results of the best band combination found by

Hotelling's T2using GA for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 89.49 87.93 90.86 89.51 90.86 89.51

5000 90.17 88.69 91.14 89.83 90.57 89.20

7500 90.63 89.20 90.91 89.57 90.91 89.58

10000 90.57 89.14 90.97 89.63 91.14 89.83

12500 90.63 89.20 90.69 89.32 91.20 89.91

15000 90.80 89.40 90.86 89.52 91.26 89.97

'P = 4546.78
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An ANN-based classification process was applied to the test image for the second

test site to assign each pixel to a land cover class under the condition that the

output activation is higher than 0.5. If this is not the case, the pixel is labelled as

unknown. The classified image is shown in Figure 5.13, and the corresponding

grey scale activation level analysis is shown in Figure 5.14.
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Figure 5.13 ANN classification result for the solution found by SFS based on

Hotelling's P for the second test site using bands 11-9-20-18-15-23-17-16.
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Figure 5.14 Spatial pattern of output activations for the second site.
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5.5.2 Wilks' A Criterion

Wilks' A criterion, introduced by Samuel S. Wilks in 1932, is a basic multivariate

analysis of variance (MANOVA) test for equality of group means. It is also called

the Wilks' lambda likelihood-ratio criterion. It provides a measure of degree of

separation between groups. According to Grimm and Yamold (1997, p.284),

'Wilks' A criterion is MANOVA equivalent of the F tests for the presence of

effects in analysis of variance (ANOVA) models and test for differences between

the mean attribute vectors of the groups and for the presence of interaction effects

in MANOVA models'. This statistical measure decreases in value with increased

separation between the two groups of data, since lower values indicate large mean

differences. Wilks' A is an overall discrimination measure for datasets since it

considers all bands simultaneously instead of feature pairs. Wilks' A can be

calculated from:

(5.7)

K

B= Lnj(xj -x)(xj -xl
j=1

(5.8)

K nJ

T= LL(Xij -x)(Xij _X)T
j=1 i=1

and W=T-R (5.9)

where Iwl, the determinant of within-groups variance, measures the mean volume

of the different classes, IW +RI is the determinant of the sum of the pooled

within-groups and between-groups variances, and measures the volume of the

whole dataset. Also, K is the number of classes, nj is the number of samples in

class I. Xj is the mean vector for class j, X is the grand mean of all the values,

and X ij represents data values. As can be seen from the formula, the larger the

distance between the groups the larger the denominator. The value of A will,

therefore, reduce as inter-group separation increases. Wilks' A can have values

ranging from zero to one.
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When Wilks' A criterion was used in SFS and GA search methods as the fitness

measure, solutions of 18-11-24-13-16-17-8-19 and 10-11-13-16-17-18-19-20

were found respectively. The three network structures were trained and tested for

these solutions, and the results of testing these networks can be found in Table

5.25 and Table 5.26. The high accurate results, over 92% overall accuracy and

91% Kappa coefficient, indicate better definition for the optimum subset selection

problem than any other method used earlier. This goes to show the effectiveness
of the Wilks' A criterion for the particular problem considered.

Table 5.25 ANN classification results for the band combination attained by Wilks'
A using SFS for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 92.92 91.37 90.84 88.87 91.52 89.66

5000 93.42 91.97 91.56 89.75 91.52 89.70

7500 93.19 91.69 91.92 90.20 92.20 90.50

10000 92.79 91.20 91.83 90.11 92.29 90.60

12500 92.15 90.44 92.33 90.68 91.56 89.79

15000 91.97 90.20 91.92 90.21 91.83 90.09
A = 0.000097

The 8-10-7 network structure trained for the solution found by SFS using Wilks'
A criterion as the fitness measure was employed to classify the test image for the

first site. The result of this process is shown in Figure 5.15. A grey scale map

(Figure 5.16) showing the output activation levels was also produced for the same

site. Both figures comply with the accurate results given in Table 5.25 in that the

highest accuracy of 93.79% overall accuracy is achieved. It should also be noted

that the best results were produced by the smallest network structure (8-10-7).
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Figure 5.15 ANN classification result for the solution found by SFS based on

Wilks' A for the first test site using bands 18-11-24-13-16-17-8-19.
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Figure 5.16 Spatial pattern of output activations for the first site.
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Table 5.26 ANN classification results of the best band combination found by

Wilks' A using GA for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 91.74 89.93 91.61 89.80 92.56 90.91

5000 89.02 86.72 90.70 88.71 89.97 87.81

7500 89.93 87.80 89.97 87.88 88.52 86.16

10000 91.15 89.25 90.43 88.41 87.07 84.56

12500 89.88 87.74 88.88 86.60 86.21 83.57

15000 90.56 88.55 88.16 85.81 86.48 83.93

A = 0.000069

For the second dataset, both SFS and GA techniques reached the same solution (3-

9-11-14-15-16-17-23). The results of using this solution in the ANN classification

are presented in Table 5.27. These results are not as good as those produced by

Hotelling's T2.However, they are similar to those found by separability indices.

Table 5.27 ANN classification results of the best band combination found by

Wilks' A using SFS and GA for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 88.17 86.51 88.97 87.38 88.63 87.04

5000 89.03 87.44 89.71 88.19 89.31 87.80

7500 88.69 87.09 89.77 88.26 88.40 86.82

10000 88.63 87.02 89.71 88.20 89.66 88.17

12500 89.49 87.96 89.37 87.82 89.60 88.11

15000 88.91 87.34 89.49 87.94 89.54 88.04
A = 0.0029998
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An ANN classification process was carried out using the trained network for the

test image of the second site, and the resulting image is shown in Figure 5.17. It

can be seen that the classifier could not recognise pixels in the lower right comer

of the image. This is due to the limited extent of the SIR-C SAR coverage that is

involved in the classification process. Also, output activation levels were mapped

using grey colour tones to observe the problematic areas as well as best classified

(clearly defined) areas. Output from this process is presented in Figure 5.18.
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Figure 5.17 ANN classification result for the solution found by SFS based on

Wilks' A for the second test site using bands 3-9-11-14-15-16-17-23.
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Figure 5.18 Spatial pattern of output activations for the second site.
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5.6 Mahalanobis Distance Classifier

As an example of the wrapper approach, the Mahalanobis distance classifier

(MDC), which is a supervised classification algorithm, is employed to determine

the most effective eight bands. The criterion to determine class membership of a

pixel is to find the minimum Mahalanobis distance between the pixel and the class

centres, in a way similar to the minimum distance classifier that is based on the

Euclidean distance. Compared to the minimum distance classifier, using the MDC

has the advantage of taking into account the class-specific variance-covariance

matrices. Thus, it measures and considers the frequency distribution of the pixels

belonging to training classes in n-dimensional feature space. As required in the

classification process, the mean spectral vectors for each class are estimated from

training datasets. Each pixel in the test dataset is then evaluated using the

Mahalanobis distance, and the label of the closest centroid is assigned to the pixel.

The Mahalanobis distance, D2, is a squared distance expressed in units of the

variance-covariance for that class, and is given by:

(5.10)

where Xi is the vector representing the pixel, x is the mean vector for all classes,

and V-I is the variance-covariance matrix of the given class.

The Mahalanobis distance classifier (MDC) is mathematically simple,

computationally fast and efficient, but the theoretical basis of the method is not as

robust as the complex classifiers such as those using the maximum likelihood

criterion or those based on artificial neural networks. A comparative study

(Benediktsson et al., 1990) concludes that the minimum distance classifier based

on the Mahalanobis distance performs significantly better than that based on the

Euclidean distance, but is slightly less powerful than the maximum likelihood

classifier. However, artificial neural networks gave the best results of all.
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In this study, while evaluating the results of the MDC, three accuracy criteria

were estimated so as to find the best one for improved ANN results. The first

criterion is the average accuracy, which is the mean of all individual class

accuracies. The main reason for using such a measure is to minimise the effect of

the highest individual accuracy, and maximise the effect of the lowest individual

accuracy. The second criterion is the overall accuracy, which is the most popular

accuracy measure used. It is estimated by dividing the total number of correctly

classified pixels by the total number of pixels used for testing. The third criterion

can be called the quality measure that aims to find minimum difference between

the highest and lowest individual class accuracies. The purpose of using such a

measure is to find a solution that somehow improves the poorest class accuracy.

This measure is calculated by:

qual = (max - min) / aver (5.11)

where max is the maximum individual class accuracy, min is the minimum

individual class accuracy and aver is the average accuracy obtained.

These three criteria were used as fitness measures to search for the best band

combinations for two datasets in both sequential forward selection (SFS) and

genetic algorithm (GA) search methods. The results of using MDC based on

average accuracy, overall accuracy and quality measure (Equation 5.11) in SFS

are given in Tables 5.28, 5.29 and 5.30, respectively. In addition, the results of

using these criteria in GA are presented in Tables 5.31, 5.32 and 5.33.

In order to portray the differences between MDC and ANN classification results,

result images are given for the first and second test sites for both techniques. The

solutions (5-13-10-15-1-18-6-3 and 14-10-16-17-23-11-21-15) found by SFS

method using MDC based on overall accuracy for both datasets were used to form

pattern files. For the classification of the test images MDC and ANN classifiers

were applied and the result images are given here as Figure 5.19 and Figure 5.20

respectively. Also, MDC and ANN classification results for the second test site

are shown in Figure 5.21 and Figure 5.22.
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The results given in Tables 5.28, 5.29 and 5.30 may indicate that the accuracies

achieved by MDC method were similar to (or even better than) those produced by

ANN method. This is because of the fact that no threshold is set for class

membership allocation in MDC method whereas a threshold of 50% is used in

ANN-based classifications. When no threshold is set for the class membership in

ANN method, at least 3% improvement is observed in the classification accuracy.

Table 5.28 ANN classification results of the best solution (18-11-15-10-12-21-4-

14) found by MDC based on average accuracy using SFS for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 89.79 87.67 90.61 88.67 90.47 88.42

5000 90.02 87.90 91.02 89.11 90.02 87.88

7500 89.43 87.21 90.65 88.66 90.20 88.07

10000 89.07 86.78 90.25 88.18 89.16 86.80

12500 88.97 86.65 90.25 88.17 89.02 86.65

15000 89.38 87.11 90.70 88.70 88.79 86.38

Av: 0.9131 Qv: 0.9183 Qu: 9.770

Table 5.29 ANN classification results of the best solution (5-13-10-15-1-18-6-3)

found by MDC based on overall accuracy using SFS for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 90.38 88.31 88.57 86.10 89.97 87.77

5000 88.11 85.63 87.84 85.20 88.66 86.20

7500 88.43 86.01 88.07 85.48 88.07 85.49

10000 88.16 85.67 87.21 84.46 87.11 84.36

12500 88.52 86.10 86.71 83.90 87.02 84.27

15000 88.66 86.24 85.30 82.22 87.25 84.58
Av: 0.9090 Qv: 0.9170 Qu: 9.792
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Table 5.30 ANN classification results of the best band combination (20-19-23-11-

4-7-8-9) found by MDC based on quality measure using SFS for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 83.44 80.43 84.48 81.62 86.48 83.86

5000 86.98 84.49 84.71 81.49 87.11 84.63

7500 86.16 83.51 84.71 81.90 87.21 84.71

10000 86.12 83.42 84.12 81.27 87.21 84.72

12500 86.57 84.04 84.57 81.72 87.02 84.45

15000 85.03 82.12 85.30 82.61 86.52 83.92

Av: 0.9130 Qv: 0.9074 Qu: 9.855

Table 5.31 ANN classification results of the best band combination (2-5-11-15-

16-17 -18- 23) found by MOC based on average accuracy using GA for the first

dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 84.85 82.01 87.52 85.04 86.12 83.43

5000 85.30 82.54 87.89 85.43 87.07 84.56

7500 84.80 81.94 87.43 84.82 87.16 84.63

10000 84.30 81.36 87.34 84.71 86.07 83.36

12500 84.53 81.58 86.16 83.35 86.34 83.52

15000 84.39 81.42 86.52 83.72 86.16 83.35

Av: 0.9247 Qv: 0.9283 Qu: 9.802
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The solutions found by the GA also suggest that MDC method performed well in

terms of producing high-accurate results. However, the involvement of the

threshold parameter in ANN-based classifications should be taken into

consideration when comparing the results produced by the two classifiers.

Table 5.32 ANN classification results of the best band combination (10-11-15-16-

18-19-20-21) found by MDC based on overall accuracy using GA for the first

dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 90.38 88.31 89.11 86.74 89.56 87.39

5000 91.79 89.98 89.07 86.67 88.75 86.47

7500 90.84 88.85 88.11 85.59 89.52 87.35

10000 91.11 89.16 88.02 85.49 89.84 87.70

12500 90.38 88.31 86.93 84.19 89.11 86.85

15000 90.34 88.26 86.34 83.51 88.29 85.90

Av: 0.9126 Qv: 0.9215 Qu: 9.787

Table 5.33 ANN classification results of the best band combination (2-5-6-11-12-
",

15-19-20) found by MDC based on quality measure using GA for the first dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 90.20 88.03 89.84 87.65 89.88 87.65

5000 88.25 85.74 88.84 86.50 87.57 84.98

7500 88.61 86.11 88.70 86.30 86.34 83.61

10000 87.98 85.36 88.93 86.54 86.57 83.88

12500 87.66 84.97 87.75 85.17 87.11 84.47

15000 87.66 84.96 87.84 85.21 85.84 83.01

Av: 0.8917 Qv: 0.9002 Qu: 9.787
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Figure 5.19 MDC classification results using the 5-13-10-15-1-18-6-3 solution for

the first site.
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Figure 5.20 Artificial neural network classification results using the 5-13-10-15-1-

18-6- 3 solution for the first site.
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It should be pointed out that the image resulting from a MDC process does not

contain any unknown pixels since no threshold criterion was employed in the

process. However, in the ANN classification pixels were classified as unknown

when their highest membership value, which corresponds to output node

activations, is less than 0.5.

Table 5.34 ANN classification results of the best band combination (14-10-16-17-

23-11-21-15) found by MDC based on overall and average accuracies using SFS

for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 88.40 86.75 89.71 88.22 90.29 88.85

5000 89.09 87.50 90.23 88.78 90.63 89.23

7500 89.83 88.35 90.34 88.90 89.89 88.39

10000 90.00 88.52 90.80 89.41 90.11 88.67

12500 90.34 88.92 90.63 89.21 90.40 88.96

15000 90.23 88.80 90.29 88.83 90.11 88.65

Av =Qv: 0.9091 Qu: 9.9208

Table 5.35 ANN classification results of the best band combination (18-12-9-22-

21-17-8-13) found by MDC based on quality measure using SFS for the second

dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 86.29 84.39 87.60 85.82 87.31 85.52

5000 86.63 84.76 87.20 85.36 87.66 85.89

7500 87.20 85.38 87.49 85.67 87.37 85.58

10000 87.43 85.62 87.43 85.62 87.54 85.75

12500 87.26 85.43 87.60 85.81 88.06 86.32

15000 87.26 85.42 87.14 85.32 87.71 85.94

Qv: 0.8857 Qu: 9.9548
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Please note that for the second dataset average and overall accuracy are the same

because the same number of samples (250 pixels) were selected for each class

unlike the first dataset. Therefore, search techniques were employed on the basis

of overall accuracy and the quality measure.

Table 5.36 ANN classification results of the best band combination (4-8-11-15-

16-17-20-23) found by MDC based on overall and average accuracies using GA

for the second dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 87.89 86.20 90.91 89.56 90.80 89.45

5000 87.94 86.26 91.14 89.80 91.20 89.88

7500 89.43 87.91 91.09 89.74 90.63 89.25

10000 89.54 87.99 91.03 89.67 91.03 89.68

12500 89.20 87.62 90.80 89.41 91.14 89.81

15000 89.37 87.81 90.91 89.54 91.03 89.69

Qv: 0.9097 Qu: 9.9209

Table 5.37 ANN classification results of the best band combination (9-10-12-13-

14-17-22-23) found by MDC based on quality measure using GA for the second

dataset.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 87.83 86.05 88.57 86.91 88.86 87.21

5000 88.51 86.82 88.63 87.00 89.49 87.91

7500 87.83 86.07 88.51 86.86 88.63 86.97

10000 87.89 86.13 88.06 86.36 89.09 87.48

12500 87.89 86.13 88.34 86.66 89.26 87.66

15000 88.34 86.63 87.89 86.15 89.20 87.61

Qv: 0.9017 Qu: 9.9689
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It can be observed from the results shown in Tables 5.34, 5.35 and 5.37 that the

performance of the ANN method was slightly better than the MDC method,

considering the involvement of threshold factor in the ANN process. The best

ANN performance against the MDC method was produced when the GA based on

overall accuracy was used to determine best eight-band combination (Table 5.36).

Mahalanobis Distance Classifier Results
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Figure 5.21 MDC classification results usmg the 14-10-16-17-23-11-21-15

solution for the second site.

Reliability of Pixels as Colour Shades

50

1(1)
~o
0::

150

2m

50 100 150 zn 250 ?£l0 350 400
Column

linseed

sugar beet

Figure 5.22 Artificial neural network classification results using the 14-10-16-17-

23-11-21-15 solution for the second site.
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5.7 Search Techniques

Separability measures help the analyst to determine the best band combination

that is the optimum set of q bands selected from all n bands. The number of

subsets of size q drawn from a set of n objects is given by:

(n) n!
q = q!(n-q)!

The symbol! indicates the factorial. For example, if subsets of size q = 12 are to

be drawn from a dataset with n = 24 features, then the number of subsets is

2,704,156. Computing and evaluating such a large number of combinations is

expensive.

Whether a filter or a wrapper approach is employed, a search technique (or

engine) is required to generate subsets and locate the optimum subset without

evaluating all possible solutions. The solution space of all possible subsets can be

represented as a lattice. As an example, a problem with four features is shown as a

lattice in Figure 5.23.

Figure 5.23 The solution space of the feature subset selection problem (from Scott
et ai., 1998)
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Each node in the lattice represents a feature subset, where the value one is used to

indicate inclusion and the value zero is used to show exclusion. For example, in

the case of six bands, the best subset of three bands found by the genetic

algorithms may be represented as 1 0 0 1 0 1. The meaning of this coded solution

is that the first, fourth and sixth bands may give best results when they are used

together, and the second, third and fifth bands can be ignored because of their

insignificant contribution.

Many search strategies have been developed to find the optimum subset.

However, there are three basic search approaches used to determine the optimum

subset without testing all possible candidate subsets. These are the exponential,

randomised and sequential approaches.

Exponential algorithms, such as the branch-and-bound and exhaustive search

techniques, have exponential complexity related to the number of features. In

other words, the number of possible subsets (;) grows exponentially depending

on the number of features (n) and the size of the subsets (q). In this approach, a

large number of candidate subsets (all possible candidate subsets for the

exhaustive search technique) are evaluated in terms of a performance measure.

These algorithms are time and computer power demanding, and are not, therefore,

preferred especially for high dimensional problems.

Randomised algorithms including genetic algorithms and simulated annealing use

randomised steps or sampling processes, and yield results with high accuracies.

However, they are not easy to implement as the parameters to be set by the analyst

play a crucially important role. Sequential search algorithms, on the other hand,

have polynomial complexity. They use simple addition and exclusion rules in

implementing the search process. The most popular sequential search techniques

are sequential forward selection and sequential backward selection. A taxonomy

of feature selection algorithms (search methods) is presented by Zongker and Jain

(1996), and is reproduced here as Figure 5.24.
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Figure 5.24 A taxonomy of feature selection algorithms (from Zongker and Jain,

1996). SPR: statistical pattern recognition, ANN: artificial neural networks.

5.7.1 Sequential Forward Selection and Sequential Backward Selection

The sequential forward selection technique (SFS) starts by finding the best single

individual feature and then evaluates the remaining features one at a time to find

the second best feature (i.e. the one that gives higher separability than other

candidate features). This process continues iteratively until a desired number of

features are selected. Unlike the SFS method, sequential backward selection

(SBS), also called the sequential backward elimination, starts with the whole

dataset and searches for the band that has the least effect when it is removed. In

other words, it excludes each band one at a time and finds the least effective one

by looking at the values of separability measures. This process is repeated until

the required number of bands are selected.

Neither of these procedures is guaranteed to find the optimal subset. It generally

produces a sub-optimal solution because of the so-called nesting effect, which
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results from the fact that in the forward selection process, selected features cannot

be discarded later and in the backward selection process, excluded features cannot

be reselected. In fact, both techniques may find different solutions, especially in

high dimensional cases. Another important point to be emphasised is that using

backward searches with classifiers as evaluation functions may cause high

complexity problems as more high dimensional data must be employed in the

process. This would also result in a greater computing time requirement compared

to SFS. This makes SBS techniques less attractive, especially when a classifier is

used for evaluation.

Some extensions of the sequential forward and backward selection approaches are

described in the literature. One of these extensions introduced by Pudil et al.

(1994) is the floating search method that keeps the feature sets flexibly changing

so as to approximate the optimal solution as much as possible. In other words, the

resulting dimensionality in respective stages of the algorithm is not changing

monotonically but is actually 'floating' up and down.

Mather (l999a) notes a study published in 1979 by R. Kumar who compared the

exhaustive search results with sequential forward and backward selections in his

study and found that the forward selection algorithms produced results as good as

exhaustive search and better results than those produced by the backward

elimination method. Similar results are also reported by Aha and Bankert (1996).

They analysed the use of variants of the forward and backward feature selection

techniques for the cloud classification problem, using a separability index and the

nearest neighbour classifier. Four important conclusions drawn from the study are:

1) feature selection improves the accuracy of the classification task,

2) backward elimination does not always outperform forward selection,

contrary to some claims,

3) using classifier accuracy as the evaluation function yields better results

than using the separability index,

4) the general pattern is that forward selection is preferred when the optimal

number of selected features is small, while backward elimination is
preferred otherwise.
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In a review study, Siedlecki and Sklansky (1988) underline the fact that both

forward and backward selection can be easily "derailed". For instance, the

forward selection algorithm can add two features that are subsequently the best

ones but which are bad if used together. In order to solve this problem, a bi-

directional search technique that combines forward selection and backward

elimination is proposed.

5.7.2 Branch-and-Bound Search Method

The only search algorithm available at present that is guaranteed to find the

optimal subset solution is the branch-and-bound search algorithm. The method is

based on the monotonocity assumption that adding new features is not going to

decrease the performance of the new subset. An evaluation (or fitness) function,

generally a separability index, has to be used to assess the subsets.

The fundamental idea behind the algorithm is that if a subset of size greater than

m has a performance value lower than an initially set threshold, all sub-subsets of

this subset are eliminated as they will have values lower than that of the main

subset. Thus, many subsets can be discarded without evaluating their fitness. This

is the main advantage of the technique. The threshold value used in the process is

either found by one of the simple search techniques, or set by the algorithm each

time the highest performance is found. If the solution space is thought of as a tree,

branch-and-bound prunes the tree step by step based on the fitness values.

Due to the superiority of the algorithm, branch-and-bound algorithm can also be

applied to search clusters and nearest neighbours. Details of the algorithm and

some of its application areas, such as restricted least squares, maximum likelihood

paired comparison ranking, and selection variables in regression, can be found in

Hand (1981).

It is worth pointing out that in many practical pattern classification scenarios, the

monotonicity assumption is not satisfied. For example, addition of irrelevant

information may significantly worsen the generalisation accuracy of a decision

173



tree classifier (Yang and Honavar, 1998). Moreover, feature subset selection

techniques that rely on the monotonicity of the performance criterion, although

they appear to work reasonably well with linear classifiers, can exhibit poor

performance with non-linear classifiers, such as neural networks (Ripley, 1996).

Another disadvantage of the algorithm, which should be noted, is that the branch-

and-bound search algorithm is slower than sequential search techniques.

5.7.3 Genetic Algorithms

The development of the Genetic Algorithm (GA) was inspired by hypothetical

mechanism of natural selection where the fittest individuals at one generation are

more likely to survive and produce the new generation. GAs are simulated in a

computer environment to carry out the process of biological evolution. Moreover,

GA approach, as an adaptive search technique, is utilised to find global maxima or

minima depending on the nature of the problem under investigation. They are

used to search for optimum solutions when the evaluation of all possible solutions

is too costly in terms of computing time. They are increasingly being used in

many fields, due to their unique advantages over random and local search

methods. Particularly, combining genetic algorithms with artificial neural

networks is one of the most popular research agenda for recent studies. GAs have

been applied to a wide variety of problems inherent in the ANN approach,

including the determination of optimum initial learning parameters, initial

weights, network structure (Kuscu and Thornton, 1994; Bebis et al., 1997),

training ANNs (Man et al., 1999) and analysis of the solution achieved by an

ANN. Details ofGA's involvement in ANNs can be found in Whitley (1995).

J.H. Holland developed the genetic algorithm as a programming technique in the

mid-1960s, after he discovered that the recombination of groups of genes by

means of mating was a critical part of evolution. Almost a decade later, he

managed to develop a classifier system based on a genetic algorithm to perform

particular actions every time its conditions are satisfied by some piece of

information (Holland, 1992).
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Genetic algorithms (GAs) differ from traditional search and optimisation methods

in several ways. The four most significant differences highlighted by Chipperfield

(1997) are:

• GAs search a population of points in parallel, not a single point,

• GAs use probabilistic transition rules, not deterministic ones,

• GAs work on an encoding of the parameter set rather than the parameter

set itself, except where real-valued individuals are used,

• GAs do not require derivative information; only the objective function and

corresponding fitness levels influence the directions of search.

The underlying idea behind GAs is that every solution can be represented by an

individual called a chromosome, and each parameter can be thought of as a gene

of that chromosome. Such a structure has a finite length and is symbolised

through a special coding technique, such as binary, integer, and real-valued. The

most commonly used representation for GAs is the binary form, in which 0 and 1

are used for exclusion and inclusion respectively.

The genetic algorithm process starts with the generation of an initial population,

generally selected randomly and sized typically between 30 and 100, depending

on the problem. It then evaluates all the members of the population by an

objective (or evaluation) function so as to determine their fitness in order to

determine the quality (or goodness) of the chromosome for the particular problem.

Definition of the objective function is very important, since a poor definition of

the objective function can mislead the search and, consequently, affect the

resulting solution. From the set of fitness values a subset of the highest

performing chromosomes is selected as "parents" by a selection procedure, the

most commonly used of which is the roulette-wheel selection method. The genes

of the parents are exchanged and recombined in a mating pool to form offspring

for the next generation. It is expected that new chromosomes not only reflect the

superior characteristics of their parents but also are improved versions of their

parents. While the "better" chromosomes are more likely to give improved

performance, they also have a higher chance to survive in the next generation.

Figure 5.25 shows the process of a simple genetic algorithm adapted to this study.
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A simple genetic algorithm consists of three operators, namely reproduction,

crossover and mutation, to produce new generations (or populations).

Reproduction is the process of copying the bits (genes) in the chromosomes.

Depending on the fitness value of the chromosome, it is copied a number of times.

The better the fitness value, the more likely is a string to reproduce and contribute

one or more offspring to the next generation. When a chromosome is chosen for

reproduction, a copy (or copies, depending on how many times the chromosome

has been chosen for reproduction) is entered into a mating pool for further genetic

operator action (Clark and Canas, 1995).

Generate random band combinations

Estimate their separability

Select two best combinations

Mate these combinations to
create two solutions

Use the solutions
to create new band combinations

Estimate their separability

No

Report the solution found

Figure 5.25 Process of Genetic Algorithms.

The crossover process, also known as recombination, is the basic operator for

producing new chromosomes in genetic algorithms. Crossover generates new
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individuals that carry the characteristics of both parents. This is done in two

stages. Firstly, chromosome couples are randomly chosen from the mating pool,

and secondly crossover points are selected randomly. Thus, genetic information is

exchanged between crossover points. There are several crossover types, such as

single-point, multi-point and uniform crossovers. The simplest type of crossover

is the single-point crossover that swaps the bits (genes) between the parents

around a randomly selected point (Figure 5.26).

Parents Offspring

Figure 5.26 Example of single-point crossover.

In the case of multi-point crossover, several bits of genetic information are

exchanged between parents (Figure 5.27).

I

I I

I I I I

Parents Offspring

Figure 5.27 Example of multi-point crossover.

The third operator is mutation, which is performed after crossover. It is applied to

each offspring individually and randomly changes the selected bits with a low

probability, typically less than 0.1. The effect of mutation in binary GA is simply

to change 0 to 1 and 1 to 0 (Figure 5.28). The role of mutation is to prevent the

search process carried out by GA getting stuck into a local minimum (or

maximum).
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original chromosome 0 1 I 1 I 0 1 0 1 0

t
new chromosome 0 1 I 0 I 0 1 0 1 0

Figure 5.28 Bit mutation on the third bit.

The choice of crossover and mutation rates can be difficult, depending on the

nature of the problem under analysis and the evaluation function used. Some

recommendations on the selection of the parameters in practical applications of

genetic algorithms are made by researchers. According to Man et al (1999):

For large population size (lOO)

Crossover rate: 0.6

For small population size (30)

Crossover rate: 0.9

Mutation rate : 0.01Mutation rate : 0.001

Since genetic algorithms are stochastic search techniques, it is very difficult to

define termination criteria. Therefore, the GA process is usually run a pre-

specified number of times and then the best solution is tested. If the result is not

satisfactory, then either the process is restarted, or a new process is initiated with

different parameters.

In the implementation of the genetic algorithm in this study, all features were

represented by chromosomes, the length of which corresponds to the number of

features available. As noted earlier, a minimum of eight features is required to

achieve a satisfactory level of classification accuracy. Therefore, as an initial

population a number of eight-band combinations were generated randomly. New

combinations were then produced, employing mutation (0.01) and crossover (0.9)

parameters. In the production of new feature combinations, combinations

including more then eight features were penalised. The fitness of each solution,

measured by separability, was computed directly from the formulae given above

for separability measures.
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5.8 Using Artificial Neural Networks for Feature Selection

Parallel development to the other application areas, artificial neural networks

(ANNs) have recently been applied to the problem of feature subset selection, and

have been found to be effective in locating optimal or near optimal solutions. The

success of ANNs results from the nonlinear nature of the technique. Several

studies (Mao et al., 1994; Messer and Kittler, 1997; Leray and Gallinari, 1998)

have employed neural networks in feature selection through input node pruning.

Mao et al. (1994) proposed a node saliency measure to remove insalient input and

hidden nodes in the network. The saliency of a node in the network is defined as

the amount of increase in the cost if this node is removed from the network. In

other words, the effect of removing each input node is estimated and the least

effective nodes (insalient nodes) in terms of the accuracy of the results are

removed. After removing each node, the network is retrained for a small number

of epochs. This process is repeated until the test set error rate starts to increase

relatively faster. Thus, a parsimonious network (with a small number of

parameters) is created. This pruning technique is similar to the optimum brain

damage (OBD) and the optimum brain surgeon (OBS) algorithms, which are the

most popular inter-connection pruning techniques (Kavzoglu and Mather, 1999).

Whereas OBD and OBS remove the interconnections between nodes in the

network, Mao et al.'s (1994) technique removes the nodes in the network, like a

skeletonization pruning technique. Instead of first order approximation as in the

skeletonization algorithm, the second-order information of the cost function is

used. They concluded by underlining the fact that an advantage of the node-

pruning procedure over classical feature selection methods is that the node-

pruning procedure can simultaneously 'optimise' both the feature set and the

classifier, while classical feature selection methods select the 'best' subset of

features with respect to a fixed classifier.

Messer and Kittler (1997) compared a statistical feature selection technique to a

neural network method. The statistical feature selection method that they use is

the sequential floating forward selection algorithm (SFFS), developed by Pudil et

at. (1994). On the other hand, a new method of analysing the network weight
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values for feature selection problem is proposed. The neural network method

involves several stages. First of all, the neural network is trained using the

complete feature set on the specified query. The network weight values are then

analysed in an attempt to find the most important features. The importance of each

input node is assessed by estimating the sum of the weights connecting to that

input node to the hidden layer. The sums of the input nodes are then ranked, and

the lowest ones are eliminated, on the assumption that a high value implies that

the corresponding input feature is more important. Both methods used performed

equally well in the study. This suggest that artificial neural networks are very

good alternatives to conventional search algorithms. Leray and Gallinari (1998)

note that weights in the network cannot be interpreted easily since neural

networks capture nonlinear relationships between variables. Hence, more

sophisticated techniques are required to interpret the relationships between the

nodes and the weights in the network.

A comprehensive study by Leray and Gallinari (1998) assesses a large number of

neural network feature selection algorithms, including saliency based pruning

(SBP), automatic relevance determination (ARD), optimal cell damage (OeD),

and early cell damage (ECD). The neural network feature selection methods are

described and discussed in detail, and comparative performances of different

feature selection methods are presented for two problems using two different

synthetically produced datasets. The first problem is a three-class waveform

classification problem with 19 noisy dependent features, and the second problem

is a two-class problem in a 20 dimensional space, in which the classes are in

multivariate Gaussian distribution. Also, in this study, the neural network based

feature selection techniques are categorised into three groups:

• Zero order methods which use only the network parameter values,

• First order methods which use the first derivatives of network

parameters,

• Second order methods which use second derivatives of network

parameters.
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Whilst zero order techniques that involve simple interpretation ideas, are the

simplest techniques, second order techniques that employ advanced and

complicated procedures, are the most sophisticated methods.

In two recent studies carried out by Zongker and Jain (1996) and Jain and

Zongker (1997), a large number of search algorithms (including variants of the

forward selection and the backward elimination techniques, together with the

branch-and-bound search algorithm and genetic algorithms) were compared using

both synthetic and satellite image data. Reliability of feature selection methods

when only small amounts of training data are available is also investigated in that

study. It is found that there is a direct relationship between the number of training

patterns per class and the average quality of the feature subset selection. It was
concluded that the sequential forward floating selection (SFFS), proposed by

Pudil et al. (1994), was the best search algorithm of those tested. They also noted

that feature selection cannot only eliminate a large number of redundant features,

but also avoid the "curse of dimensionality" (Bishop, 1995).

5.9 Using Pure Pixels for Delineation of Land-Cover Classes in Test Site 2

The performance of an artificial neural network classifier is tested for the case

where only pure pixels are involved. To achieve this aim, a new field boundary

map (Figure 5.29) is produced through on-screen digitising of pixels in field

centres on a SPOT HRV image. The class labels were given for each digitised

polygon based on the information provided. For the training pattern set, 300 pixels

per class and for the test dataset 260 pixels per class were randomly selected,

giving a total of 2,100 training pixels and 1,820 test pixels.

The most effective eight bands in discriminating seven land cover classes were

searched using seven separability measures (divergence, transformed divergence,

Bhatacharyya distance, Jeffries-Matusita distance, Wilks' A, Hotelling's T2 and

Mahalanobis distance classifier). As the results are very similar to each other in

terms of the accuracy produced, only the result of ANN classifier for the solution

found by the divergence separability index is given as Table 5.38.
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Figure 5.29 Ground control data including 75 fields for Thetford site.

Table 5.38 ANN classification results of the best band combination (11-9-17-16-

13-20-19-23) found by divergence using sequential forward selection technique.

Networks

Iteration 8-10-7 8-15-7 8-20-7

Overall Kappa Overall Kappa Overall Kappa

2500 98.96 98.78 99.23 99.10 99.01 98.85

5000 99.29 99.17 99.29 99.17 99.18 99.04

7500 99.01 98.85 99.23 99.10 99.29 99.17

10000 99.23 99.10 99.23 99.10 99.40 99.30

12500 99.12 98.98 99.29 99.17 99.34 99.23

15000 99.18 99.04 99.23 99.10 99.18 99.04

D: 934.39 TD: 2000 B: 40.52 JM: 1413.17

The solution found by divergence was also applied to whole image so as to

observe and confirm the effect of such high accuracy on the image. The result of

ANN classification for the full image is given in Figure 5.30. The resulting image

reflects high accurate results found in that almost all the fields, especially the
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forested area, are clearly defined due to introducing pure pixels to the network for

better definition of class boundaries in feature space.

Reliability of Pixels as Colour Shades
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Figure 5.30 Result of ANN classification of the whole image using the network

trained for the best divergence solution.

Also, output activation levels produced by the classification process were mapped

using grey colour levels to acknowledge high accurate results derived from

accuracy assessment. The result of this process is shown in Figure 5.31.

Reliability of pixels in terms of output activation levels
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o
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Figure 5.31 Spatial pattern of output activations presented in grey scale.
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Although the figure clearly expresses high reliability (confidence) in defining the

fields containing the land cover types that are employed in classification, it would

be useful to portray only the pixels that are left unclassified. For this purpose, only

the pixels that have the highest output activation value of 0.5 or less need to be

displayed. Output from this process is presented in Figure 5.32. It is possible to

locate problematic areas for the classifier from this figure.

Problematic Areas

50 350 400100 150 200 250 300
Column

Figure 5.32 Spatial pattern of output activations lower than 0.5.

In order to confirm such high overall accuracy results produced by the first test

dataset including 1,820 pixels (260 pixels for each class), four more test datasets

were formed using random selection technique over whole image. Three of these

test sets included 250 pixels for each class and one of them contained 300 pixels

for each class. All the test sets were classified by the network (8-10-7) trained

with a set of2,100 pixels (300 pixels for each class), and the results are presented

in Table 5.39. It should be noted that the values of the Kappa coefficient in Table

5.39 are represented by the values multiplied by 100.
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Table 5.39 ANN classification of five test datasets using 8-10-7 network structure.

Test 1 Test2 Test 3 Test4 Test 5
Iteration

Overall (Kappa) Overall (Kappa) Overall (Kappa) Overall (Kappa) Overall (Kappa)

2500 98.96 (98.78) 99.14 (99.00) 98.91 (98.74) 99.31 (99.20) 98.62 (98.39)

5000 99.29 (99.17) 99.37 (99.27) 99.09 (98.94) 99.43 (99.33) 98.90 (98.72)

7500 99.01 (98.85) 99.26 (99.13) 98.97 (98.80) 98.97 (98.80) 98.81 (98.61)

10000 99.23 (99.10) 99.43 (99.33) 99.03 (98.87) 99.03 (98.87) 99.00 (98.84)

12500 99.12 (98.98) 99.20 (99.07) 99.09 (98.94) 98.91 (98.74) 99.05 (98.89)

15000 99.18 (99.04) 99.26 (99.13) 99.09 (98.94) 98.97 (98.80) 99.00 (98.84)

The reason for such high accurate results produced by the artificial neural

networks may be that the number of pixels available for ground data was limited,

that is, the actual class memberships of all the pixels in the test image are not

known. Therefore, training and test datasets were mostly selected from adjacent

pixels, which could certainly make the problem of determining the class

memberships of such pixels easy for the classifier. However, the positive effect of

employing pure pixels in the training cannot be ignored when it is considered that

almost the same amount of data were available in the application where mixed

pixels are involved.

Another confirmation was made by displaying individual pixels employed in

training and testing the network to ensure that randomly selected training and test

datasets do not include the same pixels, which could result in high performance.

While the pixels used in training are given in Figure 5.33, the pixels used in

testing (first test set) are shown in Figure 5.34. Also, all the pixels used for

training and testing are displayed in Figure 5.35 to easily observe the difference.
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Figure 5.33 Training pixels used (2,100 pixels in total).
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Figure 5.34 Testing pixels used (1,820 pixels in total).
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It can be easily observed by Figure 5.35 that more pixels have been selected from

some fields, making them darker. The reason for this is that a limited number of

fields, therefore pixels, were available to choose from. In the random selection

procedure the program was forced to select from a limited number of pixels. This

case can be seen clearly by comparing sugar beet fields to potato fields.

The most effective ten bands found by seven separability measures are 9 (G), 10

(R), 11 (NIR), 12 (G), 13 (R), 15 (G), 16 (R), 17 (NIR), 20 (NIR) and 23 (NIR),

where G symbolises the green band, R is used for red band and NIR is used for

near infrared band. When these bands are investigated in terms of their acquisition

date, it is found that in the early season all the bands seem to be effective, but in

the growing season between 28 June and 14 August only NIR bands are found to

be effective in discriminating the land cover classes.
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Figure 5.35 All the pixels used (training and testing pixels).
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5.10 Conclusions

This chapter reviews the major feature selection methods that are used to search

for the optimum subset in cases where many input bands are available. The

methods are discussed under two main categories; namely, filters and wrappers.

For the class separability indices using the filter approach, including the

divergence, the transformed divergence, the Bhattacharyya distance, the Jeffries-

Matusita distance and statistical tests, including Hotelling's T2 and Wilks' A

criterion, are considered and their underlying theoretical bases have been

discussed in detail. As an example of the wrapper approach, the Mahalanobis

distance classifier, a supervised statistical classifier, is considered. On the other

hand, major search techniques (or engines) that are used to generate subsets and

select the optimum subset without evaluating all possible subsets have been

comprehensively discussed.

In order to assess the performances of the separability measures considered, two

search techniques, sequential forward selection (SFS) and genetic algorithm (GA),

are employed. Solutions found by the search techniques using separability

measures as fitness measures were used to generate training and test datasets that

are later used to train and test three network structures (8-10-7, 8-15-7 and 8-20-

7). In this study, two datasets have been used to make objective judgements about

the performances of the methods used. Trained networks have been applied to

classify the test images and presented in a special way in which pixels are

represented by colour tones considering the highest output activations (class

membership rates). These activations are also represented as grey scale values that

are mapped to form an image of reliability. This representation provides accuracy

assessment for each pixel in the image. Another research objective to be

accomplished is determining the effect of the number of iterations on the learning

or generalisation capabilities of the network. For this aim trained networks have

been saved after every 2,500 iterations and the accuracy assessment has been

carried out on each trained network.

Before drawing conclusions from the vast amount of results given earlier, it would

be appropriate to present a summary that could help to ease the interpretation. For
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this purpose, Table 5.40 and Table 5.41 are generated for the first and second test

datasets, respectively. Optimum solutions found by sequential forward selection

and genetic algorithm procedures, and their values in terms of the corresponding

separability measure are given in both tables under the 'Value' heading.

Table 5.40 Solutions found by search techniques using nine separability measures

for the first dataset. The column header 'Subset Solution' shows the spectral

bands selected (1-24), as shown in Table 5.1.

Separability

Measure

Divergence

Tran. Div.

Bhatt.

J-M

Wilks' A

Hotel. 'P

MDC(A)

MDC(O)

MDC(Q)

Sequential Forward Selection Genetic Algorithm

Subset Solution Value Value

391.265

1999.945

15.346

1413.035

9.7E-05

20491.29

0.9131

0.9170

9.855

Subset Solution

478.471

1999.961

17.822

1413.481

6.9E-05

20240.08

0.9247

0.9215

9.778

Table 5.41 Solutions found by search techniques using eight separability measures

for the second dataset. The column header 'Subset Solution' shows the spectral

bands selected (1-23), as shown in Table 5.3.

Separability

Measure

Sequential Forward Selection Genetic Algorithm

ValueValueSubset Solution

Divergence 130.641

Tran. Div. 1999.475

Bhatt. 5.123

J-M 1399.968

Wilks' A

Hotel. 'P

3.0E-03

MDC(A,O)

MDC(Q)
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Subset Solution

140.678

1999.519

5.322

1400.412

3.0E-03

4546.78

0.9097

9.9689



These tables are particularly useful to compare the robustness of the SFS and GA.

It is also possible to derive the most effective bands from the subset band

combinations. It should be noted that lower values of Wilks' A measure indicate

better separability. Abbreviations of MDC(A), MDC(O) and MDC(Q) are used to

represent the Mahalanobis distance classifier based on average accuracy, overall

accuracy and quality measure in the search of best band combination.

Performances of all separability measures for both search methods in the case of

first and second datasets with 8-15-7 network configuration are shown in Figures

5.36 and 5.37, respectively. While these figures help to assess the relative

effectiveness of the measures, they reveal some important characteristics of the

behaviour of the neural networks.
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Figure 5.36 ANN evaluation of solutions found by SFS and GA procedures for the

first dataset using network structure of 8-15-7.
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The results presented in Figure 5.36 show that solutions attained using the MDC

method, in general, were inferior to others in terms of the classification accuracy

produced. Of the measures used for the MDC method, the quality measure

performed the worst. Hotelling' s P measure gave the most consistent and
accurate results. It should be pointed out that Wilks' /\..criterion also performed

well (around 92% overall accuracy and over 90% Kappa coefficient for the

network structure of 8-15-7). Although the Jeffries-Matusita distance measure

seemed to be effective in distinguishing the classes from each other for the

solution found by GA, it did not perform well for the solution reached by SFS.
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15000

Figure 5.37 ANN evaluation of solutions found by SFS and GA procedures for the

second dataset using network structure of 8-15-7. Note that lines for MDC(A,O)

represent the results of both MDC(A) and MDC (0) as equal number of patterns

were used for every class.
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Figure 5.37 showing the results for the second dataset also reveals some important

characteristics of the separability measures used in this study. Firstly, Hotelling's

P and the Mahalanobis distance classifier based on overall accuracy criterion

appeared to perform well in solutions determined by both SFS and GA

procedures. Secondly, the performance ofMDC based on the quality measure was

inferior for the solutions found by both search techniques (around 87.5% for SFS

and 88.5% for GA-found solutions). Finally, unlike the high-level of accuracy

achieved by Wilks' A criterion for the first dataset, the accuracies produced for

the second dataset were lower than others except for the MDC method based on

the quality measure. One important finding is that there was not any considerable

change in the network performances after 5,000 iterations. This suggests that the

size of the network was appropriate to learn the characteristics of the training data

at 5,000 iterations. Another point to be made is that classification accuracies

produced for the first dataset were slightly higher than those produced for the

second dataset. This could be the result of the degree of difficulty of the problem,

which can be noticed when the critical values of the measures in Tables 5.40 and

5.41 are compared.

Some important conclusions can be drawn from the results produced in this

chapter:

• Of the four separability indices compared, transformed measures, or

derivatives (transformed divergence and the Jeffries-Matusita distance) in the

genetic algorithm based search appeared to be more powerful than their

counterparts (divergence and the Bhattacharyya distance). However,

divergence gave the best ANN classification results (overall accuracies of

92.7% for the first dataset and 90.91% for the second dataset) for the solutions

found by sequential forward selection procedure.

• The genetic algorithm usually finds a better solution than the sequential

forward selection method in terms of the critical value of the measure

considered. However, these solutions do not always guarantee better

classification results. This behaviour could be attributed to the fact that GA

approach searches for the best bands by considering only the average
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separability. However, the SFS algorithm applied in this research locates the

first four bands on the basis of average separability and selects the next four

bands in such a way that each additional feature shows the greatest

improvement in the poorest interclass separability. It may be the reason that

these poor inter-class separabilities reduce the accuracy of resulting

classification.

• The methodology proposed and used to search subsets for separability indices

in SFS worked well in some cases. Comparable results are thus produced by

SFS and GA methods. This can be acknowledged by comparing results of the

subset solutions produced by SFS and GA. For example, the GA based on

divergence found a solution with higher divergence (478.5) than the solution

found by SFS (352.2) for the first site. However, the solution found by SFS

produced better classification results. It can be concluded that higher

separability does not guarantee better (more accurate) classification results.

• Employing the Mahalanobis distance classifier in the search process did not

result in any improvement in the classification accuracy compared to the

performances achieved by the solutions found by the separability indices. Of

the measures used in the MDC method, the overall accuracy criterion gave the

best results, and quality estimation gave the worst results. The failure of the

quality measure may be resulting from the fact that search methods try to find

closer pairwise accuracy instead of improvement in both overall and pairwise

accuracy.

• It has been observed that there is no need to train the networks 15,000 times.

For the first dataset, 2,500 iterations were generally found to be adequate for

the networks used in this study and, for the second dataset, 5,000 (or 7,500)

iterations were found to be adequate to perform. However, the number of

iterations is related to the problem under consideration. It can be observed that

overtrained networks give worse results.

• Of the three network structures considered, the 8-15-7 structure generally

appeared to be the most appropriate one. In general, it is observed that small

network structures generally gave better results.
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• Although 16 bands out of 24 were eliminated for the first dataset, and 15

bands out of 23 were eliminated for the second dataset, eight-band subset

solution has been found to be effective in identifying the land cover classes

with around 90% overall accuracy.

• In the analysis of statistical separability measures, it is found that Hotelling's

T2 measure is more effective than Wilks' A in terms of measuring the

separability between classes. In fact, the best classification accuracies were

generally produced by the use of Hotelling's T2. The performance of the

Wilks' A criterion, on the other hand, changes drastically depending on the

characteristics of the dataset.

• Separability measure values for different datasets do not directly represent the

accuracy that will be produced by an ANN-based classifier.

• Although SIR-C raw and filtered images were employed In the search

processes, their bands were rarely selected. This shows that SIR-C radar data

was not able to provide better separation for the selected land cover classes

than SPOT HRV data. The main reason for this could be the acquisition date

of the image, which indicates an early stage of crop development.

• It has been observed that setting the optimum rates for crossover and mutation

in the GA search is of great importance to reach a solution subset. However,

the rates that are recommended by Man et al. (1999) have been found to be

appropriate for all cases considered in this study.
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CHAPTER VI

ISSUES RELATED TO THE DESIGN AND USE OF

ARTIFICIAL NEURAL NETWORKS

6.1 Introduction

The training of a neural network requires user interaction in order to define the

network structure and set the learning parameters. These parameters are described

earlier as the internal parameters, and it has been reported that they have

considerable influence on network performance, Their importance and impact on

the network's performance were briefly discussed earlier in section 3.9,

"Problems in the Use of Artificial Neural Networks ". This chapter aims to expand

the discussion by providing detailed information about the issues concerning the

design and use of neural networks, and reporting on the results of experiments to

understand the nature of each parameter. A further objective of this chapter is to

provide heuristics (or rules of thumb) and to compare their effectiveness by

applying them to real-world problems.

Starting from the components of the network structure, all important factors

related to neural network training are considered. It is common in practice that

users design their networks using trial-and-error strategies, and employ pre-

defined rates for the learning parameters. In fact, most software packages offer

fixed rates for the learning parameters. It is well known that the optimum rates for
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the parameters and the size of the network required are problem dependent, and

should be determined individually for each dataset and network structure. A

comprehensive examination is thus required in order to enable new users to apply

neural network models confidently and successfully.

6.2 Number of Input Nodes

The number of input layer nodes in neural networks generally corresponds to the

number of independent variables. In the case of remote sensing applications, each

node represents a specific feature, such as a spectral band or a specific type of

information derived from image bands, such as context and texture. The size of

the input layer is also defined by the encoding technique used. For example, if the

binary-encoding technique is employed, 32 input nodes are required for four input

features.

There is evidence that introducing the training data in different orders results in

different classification performance. This is particularly valid for cases where data

samples are grouped according to the class type. There is a danger that just after the

network starts learning the characteristics of the first group, it may 'forget' these

characteristics when learning the details of the second group. This goes on in the

same way for other classes. The network is thus biased towards the last grouping.

An effective solution to this problem is to randomly shuffle the order in which

training samples are considered by the network. In the training processes employed

in this study, a shuffling facility was always utilised.

Since the number of spectral bands available for a particular location has

increased with the launch of satellites carrying instruments that provide more

spectral bands in higher spatial resolution, the representation of multispectral,

multitemporal and multisensor image data in artificial neural networks has

become a major issue. Selection of the most relevant image bands depending on

the nature of the problem or reducing the dimensions of the input data has become

unavoidable. The number of input layer nodes can be reduced using
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dimensionality reduction techniques, feature selection methods, or node pruning

methods.

Dimensionality reduction techniques are described in Chapter IV, and the use of

feature selection techniques is discussed and investigated for two datasets in

Chapter V. Although the theories underlying node pruning methods are given in

Chapter III, their use for feature selection purposes has not been investigated. Two

of the most popular node pruning methods, known as the Skeletonization and the

Noncontributing Units methods, have been applied to a dataset derived from the

image concerning the area near the town of Littleport, the characteristics of which

are given in Chapter V. For the test site there are 24 spectral bands available from

two Landsat TM and four SPOT HRV images. In this experiment, 4,000 pixels

were randomly selected and used in training, and 3,000 randomly selected pixels

were utilised to test the performances of the trained networks. Network weights

were initialised randomly in the range [-0.3, 0.3], and the learning rate was set to

0.2. A network structure of 24-25-7 was found to be adequate and trained 4,000

times reaching an MSE (Mean Square Error) of 0.07073. Once the training was

completed, the network was saved, and both node pruning techniques were

applied. In the pruning stage, the learning rate was set to 0.1 to avoid possible

oscillations, and 150 iterations were used to retrain the networks after pruning in

order to recover from the loss of the pruned unit.

The results of the pruning practices were analysed in two ways. Firstly, Mean

Square Error (MSE) values were recorded and analysed to observe the effect of

pruning in terms of the change in error, and, secondly, the pruned networks were

used to compute classification accuracy using a contingency matrix. Changes in

MSE and in the classification accuracies when the Noncontributing Units method

was applied are shown in Figures 6.1 and 6.2, respectively. Note that values in the

horizontal axis in Figure 6.2 show the eliminated bands at a particular pruning

stage.

As can be noticed from Figure 6.1, no significant change was observed in the

MSE values until number of bands was reduced from 24 to 13. This shows that, in

this example, half of the input nodes can be eliminated without causing any major
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problems in discriminating between classes. However, a sharp increase in MSE

occurred when the number of bands was reduced further. Figure 6.2, on the other

hand, suggests that number of inputs can be reduced to 9 with a slight reduction in

the overall accuracy. As indicated by MSE change, a sharp fall occurred in the

overall accuracy when the number of input bands was less than seven.
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Figure 6.1 Changes in MSE using the Noncontributing Units pruning method.
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Figure 6.2 Overall accuracy versus bands eliminated by the Noncontributing Units

method at each pruning step.

The Skeletonization pruning method was also applied to the same dataset using

the same values of the parameters. The results of the process are presented in

Figures 6.3 and 6.4. No significant change was observed in either MSE or overall

accuracies when the first six bands were eliminated. However, when the
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Skeletonization method eliminated band 7 to reduce the number of bands to 17, a

drastic increase in MSE and a corresponding sharp decrease in overall accuracy

were observed. It can be deduced that the method eliminated the wrong band at

this stage, hence the accuracy decreased considerably. Overall, it has been noticed

that sudden changes in MSE lead to abrupt changes in classification accuracies.
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Figure 6.3 Changes in MSE using the Skeletonization node pruning method.
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Figure 6.4 Overall accuracy versus bands eliminated by the Skeletonization

method at each pruning step.

The results presented for the techniques clearly suggest that the Noncontributing

Units node pruning technique performs better in terms of eliminating the least
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effective bands. This can be noticed from Figures 6.1 and 6.2, in that the MSE

values and overall accuracies vary smoothly. Whilst 16 input bands can be

eliminated with confidence using the Noncontributing Units method, only six

bands can be safely eliminated by the Skeletonization method. It is clear from the

results that the Noncontributing Units pruning method can be effectively used for

feature selection purposes.

Another important issue is the effect of the number of input nodes on the training

time requirements. It has been reported that a linear relationship exists between

the number of inputs and the time necessary to train a network. More input nodes

in the network require more time for training. This issue was investigated on the

solution found by the divergence separability measure for the first dataset

described in Chapter V. Divergence values of the best solutions (from 5 to 24) are

estimated and portrayed in Figure 6.5. The figure clearly shows a continuous

increase in the separability of the classes with respect to the divergence measure

as the number of bands increases. It is expected that as separability increases, the

learning process will be easier and the corresponding classification accuracy will

be higher.
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Figure 6.5 Relationship between divergence values and number of input bands.

In order to estimate the time required for each subset solution accurately,

networks with 20 hidden and 7 output layer nodes were trained ten times on a

system of the Sun Enterprise 450 Server configured with dual 400 MHz
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UltraSPARC2 CPU processors with 256 Mb RAM. CPU times were based on the

SNNS program (batchman) training the dataset 15,000 times. The result of this

process is shown in Figure 6.6. The details of the operation are, however,

presented in Table 6.1. In contrast to statements made in the literature on the

trade-off between the network size and the time required to train the networks,

Figure 6.6 does not suggest any linear relationship. However, it may indicate that

using certain bands together can help the network recognise patterns quickly. It is

likely that the time required for learning will increase when there is some

confusion (or conflict) among the input information. For example, subsets of 7

and 13 input bands needed much less time than other combinations due to the low

level of confusion among bands, which may be resulting from redundancy.

However, 12 and 15 subset solutions required more time than the subsets having

similar number of input bands due to a higher level of confusion. Another

observation is that, although it might be expected that adding two inputs to an

existing set of 5 inputs would increase training time (as there is more information

to process), the CPU time actually reduced from 7675.74 sec to 2725.42 sec. This

also indicates that adding two more spectral bands into the input layer facilitated

learning by increasing the separability of the classes.
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The last analysis in this section involves the investigation of the effect of the

number of inputs on the classification accuracy produced by the trained networks.

The networks trained for CPU time estimation were saved at every 5,000-iteration

period. Trained network performances were evaluated using a test dataset

including 2,204 patterns. The results are shown in Figure 6.7.
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Figure 6.7 Change in overall accuracy with respect to the number of inputs and

number of iterations used for training.

Several conclusions can be drawn from the results presented in Figure 6.7. First,

the highest classification accuracy was achieved for the 23-band subset solution. It

should be also noted that the subset solution including ten input bands also

produced highly accurate results at 5,000 iterations. Second, considerable changes

in the overall accuracy were noticed for different subset solutions, ranging from

89 percent to 93 percent. However, reducing the size of the input layer in the

network did not result in a definite decrease in accuracy; on the contrary, similar

results were obtained. Finally, in terms of the effect ofthe number of iterations on

the performance, it is observed that 5,000 iterations generally produced the best

results for the problem considered here. It can be easily seen from the figure that

with the increased number of iterations slightly lower classification accuracies

were produced.
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The main conclusions reached in this section can be given as follows: relationship

between the number of input nodes and the training time required is not linear,

more input features do not necessarily produce more accurate results, and

Noncontributing Units pruning method outperforms the Skeletonization method.

6.3 Number of Hidden Nodes

A major task in designing a neural network is to determine the number of hidden

layers and the number of nodes in those layers. In essence, the number of nodes in

the hidden layers defines the complexity and power of the neural network model

to be used to delineate underlying relationships and structures inherent in a

dataset. The number of hidden layer nodes has a considerable effect on the

classification accuracy and training time requirements. The level of classification

accuracy that can be produced by a neural network is related to the generalisation

capabilities of that network. Basically, the number of nodes in the hidden layer(s)

should be large enough for the correct representation of the problem, but at the

same time low enough to have adequate generalisation capabilities. While

networks that are too small cannot identify the internal structure of the data

(known as underfitting) and therefore produce lower classification accuracy

results, networks that are too large are likely to become overspecific to the

training data (known as overfitting). Such overspecificity also results in low

classification accuracies and longer training time requirements. That is, such a

network would perform well on the training data, but may fail to classify new data

outside the range of the training data. For all these reasons, determination of the

optimum number of hidden nodes has always been a serious concern to neural

network users. This has posed a major difficulty and obstacle for new users, and

thus undermines the popularity of artificial neural networks.

The question is not only to find the optimum number of hidden layer nodes but

also to determine the optimum number of hidden layers. It has been reported by

several researchers (Lippmann, 1987; Cybenko, 1989) that a single hidden layer

should be usually sufficient for most problems, especially for classification tasks

(Garson, 1998). However, some benefits arise from the use of a second hidden
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layer, as discussed by Chester (1990) and Hand (1997) in terms of minimising the

interaction between the neurons and allowing convex regions to be combined. In

cases where the optimum number of hidden nodes on a single layer is large, two

hidden layers with a smaller number of nodes on each layer could be more

appropriate. Kanellopoulos and Wilkinson (1997) state that where there are 20

output classes (or more) it is advisable to use a second hidden layer. In such a case

the second hidden layer should contain a number of nodes equal to two or three

times the number of output classes.

As noted in Sarle (2000), the problem of determining the optimum number of

hidden layer nodes is not an easy one since it depends in a complex way on:

• the numbers of input and output units,
• the number of training cases,
• the complexity of the function or classification to be learned,
• the amount of noise in the targets,

• the architecture,
• the type of hidden unit activation function,
• the training algorithm, and

• regularization.

While the number of inputs to the network defines the complexity of the problem,

the number of output nodes determines the difficulty of separation of the classes

in the feature space. Therefore, these two components of the network are vitally

important and together they determine the optimum number of hidden layer

nodes. Hence, most of the rules of thumb have been proposed using a function of

numbers of input and output nodes.

Several strategies and heuristics have been suggested to estimate the optimum

number of hidden layer nodes. However, none of these suggestions has been

universally accepted or used. Note that the strategies utilised to build neural

networks, namely pruning, constructive methods, and the hybrid techniques

coupling both methods, are described in section 3.7 of Chapter III.
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Most of the rules of thumb result from the experience of individuals using trial-

and-error methodology. However, it should be mentioned that there are two rules

of thumb that are exceptional since they are based on mathematical theories. The

first, introduced by Hecht-Nielsen (1987), uses Kolmogorov's theorem, which

states that any continuous function of n variables can be represented by the

superposition of a set of 2n + 1 univariate functions. From this theorem, he

suggests that any function can be implemented in the single hidden layer neural

network having 2Nj + 1 nodes in the single hidden layer, where N, represents

the number of input nodes. Secondly, Paola (1994) derived the formulae, shown

in Table 6.2, by making the number of parameters necessary for neural networks

equal to the parameters required by the maximum likelihood classifier. Whilst the

parameters in neural networks are the network weights, those in the maximum

likelihood classifier are the mean vectors and variance-covariance matrices for

each class. Other heuristics used to determine the number of hidden layer nodes

are listed in Table 6.2.

Table 6.2 Heuristics proposed by researchers to compute the optimum number of

hidden layer nodes. See text for explanation.

Heuristic Source Optimum Nodes
for the Datasets

2Nj or3Nj Kanellopoulos et al. (1997) 16 or 24

3Nj Hush (1989) 24

2N; +1 Hecht-Nielsen (1987) 17

2N;/3 Wang (1994b) 6

(N; + NJ/2 Ripley (1993) 8

N p /[r(N; + No)] Garson (1998) 15-30

2+No ·N; +!No(N;2 +Nj)-3 Paola (1994) 212
Nj+No
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In Table 6.2, numbers of input and output layer nodes are represented by N, and

No respectively, and the number of training samples (or patterns) is represented

by Np' The symbol r used in Garson's (1998) formulation is a constant set by

the noise level of the data. Typically, r is in the range from 5 to 10. Garson

(1998) mistakenly states that r might be as high as 100 for very noisy data and as

low as 2 for very clean data, whereas the reverse is the case.

The number of hidden layer nodes is also dependent upon the number of training

samples available. Huang and Huang (1991) suggest that one should never use

more hidden layer nodes than training samples. In fact, the number of hidden

layer nodes should always be much smaller than the number of training samples,

otherwise, the network can memorise the training samples, which leads to failure

in classification of new and unseen data.

In neural network models, the weights are the free parameters. It is extremely

important that a sufficient number of training samples is available to estimate

these parameters accurately. A generally accepted guideline is to use at least five

to ten times the number of training samples as free parameters (Klimasauskas,

1993; Messer and Kittler, 1998). For example, a network structure of 8-20-7 has

300 free parameters that require at least 1,500 training samples (3,000 samples

would be optimal). If it is not possible to provide this number of training samples,

the network will not be able to classify new data outside the training data with an

acceptable level of accuracy. Since, in remote sensing studies, the volume of

training data available is generally limited, this issue becomes quite important for

applications. This limitation can be overcome by eliminating some irrelevant

parameters from the network. Such parameters, which could be both input and

hidden layer nodes, are the ones that are not contributing to the solution. It should

be also noted that when the number of training samples is limited, it is expected

that three-layer networks, which have a single hidden layer, perform better than

four-layer networks. According to Hush (1989), 'this can be attributed to the fact

that the four-layer networks provide too much flexibility. When the number of

training samples is large the four-layer networks are forced to learn the same

solution as the three-layer networks so their performance is about the same'.
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Not only the size of the training samples but also the content of these samples is

important. For example, for the same numbers of input and output nodes and

training data size, many different networks would be optimal with respect to the

characteristics of the training samples. Training data including a large amount of

noise with similar characteristics among the classes would require more hidden

layer nodes. Therefore, the heuristics considering the training data characteristics

in some way should be favoured.

Another issue that should be considered is the type of strategy that will be used to

end the training process. If an early stopping strategy is going to be employed, a

large number of hidden layer nodes is needed to reduce the danger of arriving at a

poor local minimum (Sarle, 1995). The general purpose of the project is also an

important factor in defining the number of hidden layer nodes. For example, if the

network is aimed to be used for feature extraction purposes, then fewer hidden

layer nodes than input nodes are required.

In order to produce networks with high generalisation capabilities, node pruning

techniques can be applied. A large network is trained initially, and later the least

effective hidden layer nodes are eliminated. Such a methodology has the

advantage of using a large network for training that prevents convergence to a

local minimum and of producing a small network that has high generalisation

capabilities and which is less complex and faster.

If the training error does not decrease to an acceptable level, then the number of

hidden nodes should be increased. If the training error reaches an acceptable level

but the classification accuracy on test data is low, then the size of the hidden

layers should be reduced.

For the analysis of the effect of numbers of hidden layers and nodes on the

performance of a neural network classification the two datasets described in

Chapter V were employed. The network weights were initialised in the range

[-0.5, 0.5]. The learning rate was set to 0.2 and reduced to 0.1 after 750 iterations.

Trained networks were saved after every 2,500 iterations and tested on

independent datasets. For a single hidden layer network, the number of nodes
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varied from 1 to 25, and for the network with two hidden layers six network

structures (5-5, 5-10, 10-10, 10-20, 16-14, 24-21) were considered. The results for

both test sites are shown in Figures 6.8 and 6.9. It should be noted that both

figures show the results produced at 15,000 iterations.
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Figure 6.8 Effect of number of hidden nodes on classification accuracy for the

first test site (Littleport dataset).
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Figure 6.9 Effect of number of hidden nodes on classification accuracy for the

second test site (Thetford dataset).

It is clear that three and more nodes on a single hidden layer and the two hidden

layer configurations produced acceptable levels of accuracy (the variation was

less than 5% overall accuracy). However, networks having smaller number of

hidden layer nodes produced poor results, as low as 23% overall accuracy. Close

analysis of the results reveals the nature of the failure of the small networks.
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Whilst the 8-1-7 network structure could only recognise wheat and potato classes

for the first dataset, it could only recognise peas and forest classes for the second

dataset. Similarly, the network structure of 8-2-7 was ineffective in learning the

characteristics of all the classes and therefore missed out a specific land cover

type for both cases. For the first test site it was peas, and for the second site it was

the linseed class.

The use of two hidden layers did not have any significant effect on the network's

performance; in fact it produced slightly worse results. The results produced

confirm the statement made by Hush (1989) regarding the sensitivity of a neural

network classifier to small network sizes and insensitivity to large network sizes.

When the size of the network is too small for the problem at hand, a significant

reduction is noticed in the performance of the classifier. The reason for this may

be that the network does not have the capability to distinguish classes from each

other. On the other hand, when the network size is too large for the problem, the

performance of the classifier stays almost unchanged.
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Figure 6.10 Comparison of the performances of the heuristics for the first (upper)

and the second (lower) test datasets.
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When the heuristics listed in Table 6.2 are compared in Figure 6.10 with respect

to their effectiveness and reliability towards the determination of the optimum

number of hidden layer nodes, it can be seen that all heuristics except for the one

proposed by Wang (1994b) produced similar results. It should be noted that the

classification problems considered in this study can be categorised as easy or

moderate, therefore the lower bounds of the suggested heuristics were used. The

smallest number of hidden layer nodes required seems to be 8 for both problems,

which is pointed out by the heuristic given by Ripley (1993). The heuristic

proposed by Hush (1989) suggests quite large number of nodes. Of the other

heuristics, the one put forward by Garson (1998) can be favoured as it considers

the difficulty of the problem using a noise-in-the-data coefficient. It should be

also noted that the heuristic proposed by Paola (1994) also produced highly

accurate results for both test datasets.

On the whole, instead of estimating the exact number of hidden layer nodes, the

given heuristics should be used to compute a number that can be used as a starting

point for the search towards the optimum number of hidden layer nodes. In

addition, since networks having more hidden layer nodes than a critical number

produce similar results, a rule of thumb of using a reasonably large network

structure for a particular problem can be recommended.

6.4 Number of Output Nodes

Another component in the design of a neural network structure is the size of the

output layer, which also defines the complexity of the neural network model. The

size of the output layer is mainly dependent upon image characteristics, the scale

of the study, the nature of the study, and the availability of ground data. Similar to

the determination of the size of the input layer, the output layer size is also

influenced by the encoding technique employed. In essence, the greater the

number of output classes to be delineated, the more difficult the problem will he,

due to the separation of input space into more specific regions. When there are the

same numbers of input and output nodes, the network is called auto-associative
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and performs a kind of mapping or encoding of inputs to outputs. When there are

fewer output nodes than input nodes, the network model performs a type of

compression of inputs into output. Such networks are used to implement principal

components analysis.

6.5 Learning Rate and Momentum

The main disadvantage of the backpropagation learning algorithm is its slow

convergence, which is largely related to the appropriateness of the learning rate

chosen. The learning rate, also referred to as the step size, determines the size of

the steps taken towards the global minimum of the error throughout the training

process. It can be considered as the key parameter for a successful ANN

application because it controls the learning process. If the learning rate is set too

high, large steps will be taken, the system will be unstable, oscillating and failing

to converge. If it is set too low, small steps will be taken, resulting in longer

training times and a greater likelihood of becoming trapped in a local minimum,

or a plateau area in the error surface. The momentum term, on the other hand, uses

the previous weight configuration to determine the direction of the global

minimum of the error. The learning rate with or without a momentum term is used

to update the inter-node weights. A careful selection of the two parameters is

often necessary for smooth convergence to a global minimum, leading to

successful training.

Many configurations of the learning rate and momentum have been favoured in

the literature, some of which are presented in Table 6.3. However, most of them

are determined experimentally for a particular dataset or problem. As well as

setting a constant learning rate value, a methodology varying the learning rate

during training can be employed. For example, Swingler (1996a) suggests that

starting with a large value for the learning rate (-0.75) and reducing to 0.25 and

then to 0.1 as the network starts to oscillate is a good way of reaching the global

minimum of the error.
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In Table 6.3, Np and N represent the number of training patterns and the total

number of nodes in the network respectively, and Co is a coefficient that is set to

10 based on the experience of corresponding researchers. In the formula given by

Eaton and Olivier (1992), N"N2,. •• Nm are used to represent the sizes of m

numbers of classes included in the training data.

Table 6.3 Heuristics for optimum learning rate and momentum term. Rates given

in brackets are recommended by Eberhart and Dobbins (1990) for large datasets.

Learning rate Momentum term Source

0.01 0.00005 Paola and Schowengerdt (1997)

0.05 - Lawrence et al. (1996)

0.05 0.5 Partridge and Yates (1996)

0.1 - Haykin (1999), Gallagher et al. (1997)

0.1 0.3 Ardo et al. (1997)

0.1 0.9 Foody et al.(1996), Pierce et al.(1994)

0.15 (0.04) 0.075 (0.02) Eberhart and Dobbins (1990)

0.2 - Bischof et al. (1992)

0.2 0.6 Gong et al. (1996)

0.25 0.9 Swingler (1996a)

0.3 0.6 Gopal and Woodcock (1996)

0.5 0.9 Hara et al. (1994)

0.8 - Staufer and Fischer (1997)

1 1
C-- - Heermann and Khazenie (1992)oN N

p

1.S/~NI2 + N~ + ...N! 0.9 Eaton and Olivier (1992)

In addition to the rates given in Table 6.3, some sophisticated methodologies have

also been developed to determine the optimum rates of the learning rate and

momentum. These methods adapt the learning rate during the training process,

213



considering different characteristics of the error surface and error gradient. Such

strategies are widely known as adaptive learning strategies.

Heermann and Khazenie (1992) propose an adaptive learning algorithm

considering the training error. The algorithm increases the learning rate if the last

training iteration results in a decrease in the error summed over all training

patterns. Conversely, the learning rate is reduced (but not allowed to converge to

zero) and the momentum tenn disabled if the error rises. Once the error begins to

decrease again, the momentum tenn is included and the learning rate is increased

with each good step. It is claimed that this technique speeds up the training

process by a factor of 5 to 10 compared to methods using a fixed learning rate,

without any loss in classification accuracy.

A number of methods have been proposed to set the learning rate and the

momentum term for each weight in the network for better convergence.

According to Haykin (1999), 'all neurons in the network should ideally learn at

the same rates. The last layers usually have larger local gradients than the layers at

the front end of the network. Hence, the learning rate parameter should be

assigned to a smaller value in the last layers than in the front layers. Neurons with

many inputs should have a smaller learning rate parameter than neurons with few

inputs so as to maintain a similar learning time for all neurons in the network' . On

the other hand, Le Cun (1993) suggests that for a given neuron, the learning rate

should be inversely proportional to the square root of synaptic connections made

to that neuron. A similar approach proposed by Hush and Home (1993) sets the

learning rate for each node to be inversely proportional to average magnitude of

vectors feeding into the network. Kanellopoulos et al. (1992) state that by setting

the learning rate for each layer of the network to be n/number of inputs to each

node in that layer and setting the momentum term to zero, convergence was

obtained more easily. Several attempts have been also made to adapt the learning

rate according to the local curvature of the surface (Becker and Le Cun, 1988;

Jacobs, 1988).

An extensive review performed by Moreira and Fiesler (1995) describes a large

number of methods for learning rate and/or momentum term adaptation. They
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categorise the techniques into several groups in terms of their theoretical basis, as

follows:

• Based on numerical optimisation procedures using second-order information

• Conjugate gradient

• Quasi-Newton

• Using a second-order calculation of the step size

• Based on Stochastic Optimisation

• Heuristic-based

• Adaptation based on the angle between gradient direction In

consecutive iterations

• Adaptation based on the sign of the local gradient in consecutive

iterations

• Adaptation based on the evolution of the error

• Prediction of a set of new values for the learning rate

• Searching for zero-points of the error function instead of zero-points its

derivative

• Adaptation using the derivative of the error function in relation to the

learning rate

• Using peak values for the learning rate

• Others
• Calculation of the optimal fixed values for the parameters before the

training

Moreira and Fiesler (1995) also apply five popular techniques of optimisation to

six real-world problems plus the Exclusive-OR (XOR) problem. The main

conclusion that they draw from the results is that there is no clear best method

among those that perform automatic parameter adaptation. Nevertheless,

comparing the fixed parameter methods with the adaptive ones, considerable

improvement has been made by the adaptation techniques.

It is also evident that optimum learning rate is dependent on the size of the

training samples. Eaton and Olivier (1992) tested two networks having identical
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topology with few training patterns (16) and with many patterns (192). They

observed that different values of the learning rate produce good results for the

networks. From this point they proposed a method (see Table 6.2) to compute a

fixed value of learning rate that yields rapid training when coupled with a

momentum term of 0.9 for a wide variety of networks.

A critical view of the use of adaptive learning rates, noted in Sarle (2000), is that

many algorithms try to adapt the learning rate, but any algorithm that multiplies

the learning rate by the gradient to compute the change in the weights is likely to

produce erratic behaviour when the gradient changes abruptly.

After a large number of experiments performed in this study, several observations

have been made regarding the nature of the learning rate and the momentum term.

As a result, a strategy similar to the heuristic given by Swingler (1996a) for the

learning rate setting can be recommended to reach the minimum error solution by

reducing the learning rate during the course of training. In this strategy, the

learning process is started with a large value of the learning parameter (Le. 0.7) to

avoid local minima and plateau areas in the error surface, and the rate was then

reduced gradually from 0.3 to 0.05 to reach the global minimum of the error

smoothly. Specifically, the learning rate is set to 0.7 for 1,000 epochs, then to 0.5,

0.3 and 0.2 for 500 epochs respectively, and lastly it is reduced to 0.1 and 0.05 for

250 epochs, totally 3,000 iterations. The process is more rapid than the one

employing a constant learning rate of 0.2 in terms of reaching to low error level.

The result is usually a line with steps. It can be observed that the error decreases

sharply at the points where the learning rate is reduced. The strategy appears to

perform better than the method employing a constant learning rate in terms of

quickly moving towards the global minimum of the error (Figure 6.11).

Also, it has been observed that the momentum term can show erratic behaviour

for small training samples. In order to portray this behaviour, a network was

trained using 2,100 and 175 training samples. For this application, the learning

rate was set to 0.2 and the weights in the network were initialised in the range

[-0.3, 0.3]. Rates of 0.1 and 0.9 for the momentum term were applied with a

constant learning rate to train the network. Training was continued for 1,000
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Figure 6.11 Comparison of using constant and varied learning rates. The

undeviating line is resulted from the constant learning rate of 0.2 and the stepped

line is a result of using 0.7, 0.5,0.3,0.2,0.1 and 0.05 in order.

iterations and repeated a number of times to minimise possible bias caused by the

effect of weight initialisation. The results of the processes are given in Figures

6.12 and 6.13. Note that the horizontal axes show the number of iterations and the

vertical axes represent the MSE values. As can clearly be seen, for the small

training dataset, a value of the momentum term of 0.9 caused unstable learning,

which could result in unreliable classification performance. It can be concluded

that small values of the momentum term should be employed to train small or

limited number of training samples.

.......... ,. ... _J_
momentum = 0.1

o.
o.
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Figure 6.12 Training process for 2,100 samples at 0.1 and 0.9 momentum rates.
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momentum = 0.1 momentum = 0.9

Figure 6.13 Training process for 175 samples at 0.1 and 0.9 momentum rates.

To investigate the effect of different learning rates and momentum terms on the

network performance, a number of experiments was carried out employing the

heuristics given in Table 6.3. These experiments can be divided into two parts. In

the first part, six heuristics using only a constant learning rate in the training

process were taken into consideration, and the combinations of the learning rate

and the momentum term were considered in the second part. For the experiments

two datasets were utilised. A network structure of 8-15-7 was trained using the

backpropagation learning algorithm The weights in the network were randomly

initialised in the range [-0.3, 0.3]. All the parameters except for the learning rate

and the momentum term were kept constant for all training experiments. The

performance of the networks for different values of the learning rate at each

I ,ODD-iteration is shown in Figures 6.14 and 6.15.

Several conclusions can be deduced from the Figures regarding the effect of the

learning rate during the training process. It has been noticed that small learning

rates produced consistent and high accurate results, whereas large learning rates

appeared to cause oscillations and inconsistent results. As can be seen in Figure

6.14, the network using a learning rate of 0.2 produced the highest accuracies.

However, good performances were also produced using learning rates of 0.05 and

0.1. Although the learning rate of 0.5 initially performed well, it did not maintain

this performance. The opposite behaviour was observed from the use of a learning
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Figure 6.14 Overall accuracies produced for different learning rate configurations

for the first dataset.
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Figure 6.15 Overall accuracies produced for different learning rate configurations

for the second dataset.

rate of 0.8. Unlike the situation shown in Figure 6.14, the overall accuracies

produced for the second dataset, presented in Figure 6.15, are quite close to each

other. However, it is possible to notice the consistency in performance produced

using small learning rates. Large values for the learning rate (i.e. 0.5 and 0.8)

resulted in oscillations around the global minimum, producing large deviations in

the overall accuracy for nearby iterations. These oscillations sometimes led the

network to work well at certain stages. Although the learning rate of 0.2 produced



the best results for the first dataset, it performed poorly in the second dataset. This

shows that the optimum learning rate is dependent on the problem presented by

training data. However, the positive effect of employing small learning rates

should not be disregarded.

For the second part of the study, seven combinations of the learning rate and the

momentum, listed in Table 6.3, were employed for the classification problems

used for the constant learning rate experiments. Again, except for the learning

parameters, all the parameters were kept constant, and the networks were saved at

every 1,000 iteration period. The results for the first and second datasets are

shown in Figures 6.16 and 6.17, respectively. Best results were overall produced

by the combinations that use small learning rates, such as 0.05 and 0.1. In fact, for

both cases, consistently good results were produced by the 0.05-0.5 and 0.1-0.3

combinations.

The 0.15-0.075 combination suggested by Eberhart and Dobbins (1990) failed to

produce accurate results. In fact, for the first dataset it seemed to become stuck in

a local minimum, perhaps resulting from the selection of a small momentum term.

Whereas the 0.2-0.6 combination produced consistently highly accurate results, it

was not successful for the second dataset. The worst performances for both cases

93.00
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1000 3000 5000 7000 9000 11000 13000 15000
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Figure 6.16 Overall accuracies produced for different configurations of the

learning rate and the momentum for the first dataset.
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Figure 6.17 Overall accuracies produced for different configurations of the

learning rate and the momentum for the second dataset.

were produced by the 0.5-0.9 combination. The reason for this could be that when

such large learning rate causes oscillations, the use of large momentum term

increases the effect of oscillations by extending the steps taken in faulty direction.

One important observation was made: the addition of the momentum term to the

training considerably slows down the learning process.

6.6 Initial Weight Range

The initial values of the weights have to be set by the analyst at the beginning of a

learning process. Selection of initial weight values has a considerable influence on

the learning rate and the quality of the solution reached by the network. By setting

the initial weights to a set of random values, a starting location on the multi-

dimensional error surface is defined. The aim of the learning process is to move

from this location towards the global minimum of the error (or as near as possible)

as quickly as possible without becoming stuck in a local minimum. Naturally,

each random initialisation of weights defines a different starting location on the

error surface and requires a different route to the global minimum of the error.

When all weights are set to zero, no learning takes place due to the formulation

provided for the backpropagation learning algorithm.
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When large initial values are assigned to weights, it is likely that the neurons in the

network will be driven to saturation. In this case, the local gradients in the

backpropagation algorithm assume small values, which in turn will cause the

learning process to slow down. However, if the weights are initially assigned small

values, the backpropagation algorithm may operate on a very flat area around the

origin of the error surface; this is particularly true in the case of antisymmetric

activation functions, such as the hyperbolic tangent function. Unfortunately, the

origin is a saddle point, which refers to a stationary point where the curvature of the

error surface across the saddle is negative and the curvature along the saddle is

positive. For these reasons the use of both large and small values for initialising the

synaptic weights should be avoided (Haykin, 1999). It is also suggested that

the mean value of the initial weights should be zero and the variance should be

equal to the reciprocal of the number of synaptic connections of a neuron.

Although several investigations, which are discussed in the following section,

have been carried out in order to examine the effect of different initial weight

configurations, to date there is no method (or guideline) universally accepted for

the determination of an optimum range. The problem is not only to determine the

range for initial weights, but also to investigate the replicability of the solution

when the process of random weight initialisation has been performed a number of

times. It is reported that the biggest problem is the significant effect of different

initial weight configurations over the same range.

Kolen and Pollack (1990) explore the effect of initial weight selection on feed-

forward networks learning simple functions with a backpropagation learning

algorithm. The results of their experiments show the extreme sensitivity of the

backpropagation algorithm to the initial weight configuration. From this point,

they suggest that when theoretical claims are made from experience regarding the

power of an adaptive network to model some phenomena, the initial conditions

for the network need to be precisely specified or filed in a public scientific

database. Blamire (1996) and Ardo et al. (1997) also report significant differences

in the accuracy produced by the neural networks when the weights in the

networks are randomly initialised. Specifically, Blamire (1996) observes that the
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overall accuracy of the classification ranged between 86 percent and 90 percent,

and the Kappa coefficient varied from 0.72 to 0.80. Unfortunately, he does not

provide any information about his choice of weight range. The effect was more

severe for the classification problem considered by Ardo et al. (1997). Test data

accuracy ranged from 59 percent to 70 percent when the weights were initialised

30 times between 0 and 1. From the results they conclude that the use of random

initial weights makes it impossible to repeat the learning part of a neural network

application. Due to such behaviour observed by researchers, it is recommended

that the learning process is repeated a number of times each with different initial

weights over the same range. The advantage of this proposal is that each time the

search for the global minimum of the error is started from different parts of the

error surface. The solution that produces the best accuracy is chosen and used for

further analysis.

The effect of employing different initial weight ranges in the learning process was

also investigated by Skidmore et al. (1997) where the network parameters were

held constant, except that the starting weights were randomly adjusted by ±5

percent. The resulting five classification maps were visually different and a large

variation was noticed in training and test accuracies. While the overall accuracy

on training data was ranging from 90 percent to 97 percent, that on test data was

ranging between 42 percent to 55 percent. Such results seem to have negative

effect on the applicability and usefulness of neural networks.

Approaches used to determine optimum initial weights can be grouped into two

main categories. The first group uses different distributions for the weights.

However, the second group of approaches is based on Thimm and Fiesler

(1997b):

• the steepness of the sigmoidal function,

• the number of connections feeding into a neuron (called fan-in of a

neuron), (

• (analysis of) the dataset on which the network will be trained,

• the number of connections in the network, and

• constants that emerged from experiments.
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Several sophisticated approaches based on the above criteria, described in Thimm

and Fiesler (l997a), have been developed to determine the best initial weight

range for a successful neural network application. Wessels and Barnard (1992)

suggest two methods of weight initialisation. The first method initialises the

weights in the range [- 3/K,3/K] where s; denotes the number of

weights leading to a particular node. In this method it is assumed that the output

of the network and the output patterns have the same variance. The second

method initialises weights in such a fashion that the following conditions are met:

1) the decision boundaries of the hidden nodes should be positioned well within

the region occupied by the training samples; 2) the orientations of the decision

boundaries of the hidden nodes have to be as varied as possible; and 3) every part

of the sample region needs at least one hidden node which is active for samples

occupying that region. In their comparative study using three datasets, they found

their second technique more robust than the first one in terms of generalisation

performance.

In an approach similar to that adopted by Wessels and Barnard (1992), Boers and

Kuiper (1992) propose that the initial weights of each node to be in the range

[-3/K,3/ K], where din is the number of connections feeding into a

neuron (or fan-in). They note that if this range is used to calculate the random

initial weights, the network will always have a reasonable initial weight setting no

matter what the size of the network may be. Smieja (1991), on the other hand,

initialises weights using a uniform distribution and having a magnitude of 2Id;" .

Denoeux and Lengelle (1993) introduce a technique that relies on the use of

reference patterns, or prototypes, to determine initial weights. Their simulations

have shown that the method yields drastic reductions in training time, and

considerably improves robustness with regard to local minima. Experimental

results also suggest that networks initialised with prototypes show better

generalisation properties. de Castro et al. (1998), on the other hand, propose a

method that uses a genetic algorithm to analyse the space of weights, in order to

achieve good initial conditions for supervised learning. They find the proposed
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method more robust and better in terms of the convergence speed. Two important

conclusions they draw from the results are: (i) initialising the weights

predominantly in the approximately linear part of the activation function makes

the training faster and less subjective to numerical instability (ii) the weights have

to be well distributed around the origin in the weight space in order to generate a

broad coverage of the search space.

A comprehensive study carried out by Thimm and Fiesler (1997a) tests major

sophisticated methods used for random weight initialisation using eight real-world

benchmark datasets and a broad range of initial weight variances. Several

conclusions are drawn from a large number of results. Firstly, the weight

initialisation method (the first one) proposed by Wessels and Barnard (1992)

performed best, on average. Secondly, a fixed weight variance of 0.2, which

corresponds to a weight range of [-0.77, 0.77], gave the best mean performance

for all the applications tested. Finally, the experiments show that the best initial

weight variance is determined by the dataset. Therefore, some reasoning on the

dataset has to be included in the determination of this value.

In the remote sensmg literature, the use of constant initial weight ranges,

determined empirically, have been usually suggested and used for a variety of

problems. However, the underlying ideas behind these choices are not usually

presented. As one of the proposers, Eberhart and Dobbins (1990) state that initial

weight range should be set to [-0.3, 0.3]. The justification they give for their

choice is that there is no better reason than 'it works'. A list of initial weight

ranges employed by researchers is shown in Table 6.4.

The heuristics given in Table 6.4 suggest quite different ranges of initial weights.

Determining the most appropriate one is fundamentally related to several factors,

including the network size, number of training samples and the learning

parameters. The relationships between these factors and the initial weight range

have not been explored in detail to date. In this study, these issues are considered

and a large number of experiments have been performed to derive some ideas

concerning the selection of most appropriate initial weight range prior to neural

network training process.
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Table 6.4 Initial weight ranges used by some researchers.

InitialWeightRange Source

[0, 1] Ardo et al. (1997)

Paola (1994), GopalandWoodcock(1996), Lawrenceet
[-0.1 ,0.1] al. (1996), Bebiset al. (1997), Paolaand Showengerdt

(1997), StauferandFischer(1997)

[-0.15,0.15] Vuurpijl(1998)

[-0.25,0.25] GallagherandDowns(1997)

[-0.3,0.3] Rumelhartet al. (1986), EberhartandDobbins(1990)

[-0.5,0.5] SietsmaandDow (1991), Huurnemanet al. (1996),
PartridgeandYates(1996)

[-2/din, 2!din] Gallant(1993)

l-2/K,2/K] Smieja(1991)

[- 3/K,3/K] BoersandKuiper(1992), WesselsandBarnard(1992)

A network structure of 8-10-7 was selected for the implementation as it was found

to be adequate to produce accurate classification results. The learning rate was

initially set to 0.2, and reduced to 0.1 after 750 iterations. For the Littleport

dataset, 2,262 samples were used to train the networks, and 2,204 samples were

used to test the network performances. For the Thetford dataset, while 2,100

samples were employed to train the networks, 1,750 samples were used to test the

networks. Six initial weight ranges were employed with different configurations

in terms of network size, training data size, and learning parameters. During the

training, networks were saved after 2,500 iterations to allow the observation of the

trend in the network performance. The results of the process for the datasets are

presented in Figures 6.18 and 6.19, respectively. It should be noted that whilst the

horizontal axes represent the number of iterations performed, the vertical axes

show the overall accuracy achieved. In the figures, the component defined as

original represents the results produced when the above conditions were set. The

line called pattern was produced for the datasets having only 350 patterns for

training. On the other hand, the network line shows the results when the network

size was reduced to 8-4-7 (4 hidden layer nodes as opposed to 10). Moreover, four
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configurations were established to investigate the effect of learning parameters.

While 0.05 line represents the results for the learning rate of 0.05, lines for 0.05,

0.5 and others are given for the combinations of the learning rate and the

momentum term.
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Figure 6.18 Variations in the overall accuracy depending on the initial weight
range for the Littleport dataset. Initial weight ranges are (a) [-0.1,0.1], (b) [-0.15,

0.15], (c) [-0.25, 0.25], (d) [-0.3,0.3], (e) [-0.5,0.5], (t) [0, 1].
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Several conclusions can be drawn from Figure 6.18. First, the original set-up for

the network and learning could not perform optimally for all cases, but only for

the range [0, 1]. Reducing the number of training samples did not cause serious

problems except for the [0, 1] weight range. In fact, in the use of this particular

weight range produced the lowest accuracies for almost all configurations.

Reducing the network size resulted in worse classification performances although

the classification accuracies were better for small initial weights (i.e. [-0.1, 0.1]

and [-0.15, 0.15]). This goes to show the ineffectiveness of small networks to

learn the characteristics of the data.

When the configurations of the learning rate and the momentum term are

examined, it can be seen that a learning rate setting of 0.05 performed quite well

in all cases; the combination of the learning rate of 0.05 and the momentum term

of 0.5 performed better for large initial weight ranges; combination of the learning

rate 0.1 and the momentum term of 0.9, on the other hand, performed better for

small initial weight ranges; and the combination of 0.2 and 0.6 performed best for

[-0.1, 0.1] and [-0.3, 0.3] weight configurations. However, this combination

seemed to produce inconsistent results.

Examination of the results presented in Figure 6.19 also reveals some important

characteristics of different initial weight ranges. The original set-up for network

training was not the best choice for the second test site (Thetford dataset). This

brings up the question of whether the value of the learning rate was appropriate

for the problem. Attention should be also drawn to the poor performance of the

network for the [0, 1] initial weight range.

The use of a small number of training samples resulted in a catastrophic

performance of the network. This could result from the fact that the number of

training samples was not sufficient for the networks to learn the data. It can be

also related to the selection of patterns in terms of their representativeness.

Similar to the results reported for the first test site, reducing the network size

resulted in lower classification accuracies. The results verify once again the

importance of network size on the network performance.
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Figure 6.19 Variations in the overall accuracy depending on the initial weight

range for the Thetford dataset. Initial weight ranges are (a) [-0.1, 0.1], (b) [-0.15,

0.15], (c) [-0.25, 0.25], (d) [-0.3, 0.3], (e) [-0.5,0.5], (t) [0, 1].

The effect of combinations of the learning rate and the momentum term in

conjunction with different initial weight ranges over the network performance can

also be examined from Figure 6.19. Whilst a learning rate ofO.05 performed well

in all cases, a learning rate 0.05 and a momentum term 0.5 combination performed
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slightly less well. The 0.1-0.9 combination did not produce consistently good

results as it was yielding fluctuating results. Finally, the 0.2-0.6 combination

seemed to perform well overall, except for the initial weight range [-0.1, 0.1].

6.7 Number of Training Samples

The number of training samples employed at the learning stage has a significant

impact on the performance of any classifier. This issue is perhaps more important

for neural networks than for conventional statistical classifiers since their

performance is totally dependent upon the characteristics of the training data

presented. Because of this fact, neural network models are sometimes called data-

dependent methods. Although the size of the training data is of considerable

importance, the characteristics and the distributions of the data as well as the

sampling strategy used are crucial. This brings the issue of representativeness of

the samples collected for a study area. The more representative samples

introduced to a classification process, the more accurate and reliable results that

can be produced. In short, the quality and the quantity of the training samples are

crucially important for a successful neural network application. Whilst too few

training samples are not sufficient for neural networks to derive the characteristics

of the classes, the use of too large a number of training samples may cause

networks to overfit to the data, as well as requiring more time for learning.

However, it should be pointed out that a larger number of training data should be

always favoured as opposed to a smaller number. The main reason for this is that

when the network cannot delineate the characteristics of the classes in the training

data, classification of new data would definitely fail. In the case of a large number

of training samples, the outcome is only a degree of reduction in the performance.

Hush and Home (1993) state that the more training we have, the more incorrect

functions we are able to reject, and the more likely we are to find the correct

function.

As discussed earlier, using more features (Le. spectral bands) requires more

training samples. This relationship can be thought of as a linear one. As in most

remote sensing studies, the size of training samples is limited, the design of a
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neural network is partly based on the number of training samples. However, in

most cases the question is how many training samples are required to produce

optimal (or near-optimal) classification results. The answer to this question is

difficult as it depends on many factors, including the difficulty of the problem,

training data characteristics, and the neural network structure. In a study where the

error surfaces for Multilayer Perceptrons (MLP) are analysed, Hush et al. (1992)

observe that when the number of training samples is small, the error surface

includes stair steps, one for each training sample. When the number of training

samples is increased, the surface becomes smoother as the steps smear together.

Staufer and Fischer (1997) report that their experimental results clearly indicate

that the generalisation performance measured in terms of total classification

accuracy generally increases with increasing training set size. Moreover, the

surface appears more complex when there is overlap from different classes.

Similar results are also reported by Ahmad and Tesauro (1989). They find that,

for a fixed network size, the failure rate decreases exponentially with the size of

the training set. In addition, the number of patterns required to achieve a fixed

performance level was shown to increase linearly with the network size.

A study performed by Zhuang et al. (1994) investigates the number of training

samples, in terms of the percentage of the study area used (10.36 km"), required

by neural networks to classify six features using a Landsat TM scene. They

conclude that using approximately 5-10 percent of the image data was adequate to

train the neural network. This conclusion seems to be incomplete and misleading

since it is fully dependent on the size of the study area, and does not consider the

difficulty of the problem defined by the numbers of inputs and outputs.

There have been several attempts in the literature to estimate the optimum number

for training samples in relation to the network size and the accuracy level desired.

The heuristic, proposed by Klimasauskas (1993) and noted earlier, suggesting

using five training samples for each weight in the network can be applied to

determine the number of training samples needed. In this case, size of the training

data is estimated for a considered network. It is also worth noting that for

conventional statistical classifiers at least 30p pixels per class, where p is the

number of features should be used (Mather, 1999a). This rule can also be applied
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to neural networks as they are considered to be better in terms of handling the

small training datasets (Hepner et al., 1990; Blamire, 1994 and Foody, 1995).

In the performance analysis of neural networks for classification problems, Hush

(1989) observes from a series of experiments that at least 30Nj(NI +1) training

samples are required. In order to achieve near optimal performance he

recommends to use 60Nj (Ni +1)training samples. According to this formula, a

considerable number of training samples are required. For example, for a network

having ten input bands 6,600 training patterns are necessary to produce near-

optimal results. Another weakness of the suggested idea is that the sizes of other

elements of the network (i.e. the output and hidden layers) are not considered.

Garson (1998) presents several rules of thumb in order to determine the optimum

number of training samples to produce acceptably accurate results. Specifically, a

liberal rule of thumb is that the number of training samples should be at least 10

times the number of inputs. A conservative rule of thumb is that the number of

training samples should be at least 10 times the number of input and middle layer

neurons in the network. Another rule of thumb is to use 30 times as many input

patterns as network weights to avoid overfitting.

An approach to the problem of determining the optimum number of training

samples is to consider the generalisation error of the network, which is defined as

the difference between the generalisation on the training data and the

generalisation on the actual problem. In many cases, it is found that the difference

between the two generalisations can be bounded, and by increasing the number of

training samples this bound can be made arbitrarily small. This bound can be

established when the number of training samples exceeds the Vapnik-

Chervonenkis Dimension (VC dimension). Whilst Hush and Home (1993) define

the VC dimension as a measure of the capability of the system, Sontag (1998)

describes it as a quantity which characterises the difficulty of distribution-

independent learning. The VC dimension of a one-hidden-layer network with full

connectivity between the layers is in the range (Fu, 1994):

2[N It /2]N1 sVC dimension s2N w In(N,,) (6.1)
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where [.J is the floor operator that returns the largest integer less than its

argument, N" is the number of hidden units, N, is the number of input units, Nw

is the total number of weights in the network, and Nil is the total number of nodes

in the network. The upper bound holds no matter what the number of layers and

the connectivity are. As a rule of thumb, the number of weights can give a rough

estimate of the VC dimension. The above statement assumes that the network uses

a hard-limiting activation function. In the case of the sigmoid activation function,

Sontag (1989) suggests that the VC dimension is at least twice as large as the one

estimated for a hard-limiting activation function. Baum and Haussler (1989)

propose that if an accuracy level of 90% is desired, the number of training

samples should be about 10 times the VC dimension, or the number of weights in

the network.

In order to investigate the effect of number of training samples on the

performance, a number of training sample sizes, including the ones produced by

the heuristics mentioned above, were considered for two real-world datasets. A

network structure of 8-13-7, having 195 weights in total, was found to be

adequate for both problems. The learning rate was set to 0.2 and the network

weights were randomly initialised in the range [-0.3, 0.3]. While the test datasets

for both sites included 150 samples for each class type, the training sample sizes

varied between 250 and 5,850. In addition to the numbers estimated from

heuristics, shown below, training sample sizes were determined for certain

intervals. In the process of sample selection, after randomly selecting the test

samples from the image, training samples were randomly selected from remaining

pixels having ground truth information attached.

s-»; =975

30p =1680

10xNw=1950

30xNj x{Nj +1)=2160

60xNjx{Nj +1)=4320

30xNw =5850

Klimasauskas (1993)

Mather (1999a)

Baum and Haussler (1989)

Hush (1998) [at least]

Hush (1998) [optimal]

Garson (1998)
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During the training process of 10,000-iteration period, solutions reached at every

1,OOO-iterationwere recorded and later assessed using the test datasets. From

these solutions the one that yields the highest accuracy in terms of overall

accuracy and the Kappa coefficient was chosen to form Figure 6.20, in which the

results are given for the two test sites. For both cases, a gradual increase trend can

be initially observed starting from the least number of training samples employed.

However, after certain number of training samples, no significant improvement in

classification accuracy is observed. For the first classification problem 2,160

training samples appear to produce a higher level of accuracy compared to

experiments using fewer samples. Although this number was not apparent for the

second dataset, 1,500 samples appeared to be critical for the network's

performance. The heuristic that was proposed by Klimasauskas (1993) suggests

an insufficiently small number of samples, and the one presented by Garson

(1998) suggests an excessively large number of samples. Of the other heuristics,

the ones that were recommended by Baum and Haussler (1989), and Hush (1998)

indicate numbers that are close to the optimum numbers. The most important

result is that the effect of number of training samples on the classification

accuracy produced is not as severe as expected. This may be due to the fine

selection of representative samples for the classes under consideration.
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Figure 6.20 Effect of number of training samples on classification accuracy for
two datasets.
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6.8 Stopping Criterion for the Training Process

As it is generally impossible to train neural networks for real-world problems until

they classify all training samples correctly, indicating zero training error, a

stopping criterion has to be established. One of the difficulties in the use of neural

networks is to determine the point at which the learning process is to be

terminated before overfitting occurs. Underlying relationships in the training data

are usually determined in early stages of the learning process. As training

continues, the network tends to fit to the noise rather than the data structure.

Several suggestions have been made to help determine the point at which the

learning process should stop. The first group of suggestions is based on the

magnitude of the gradient of the error. The learning algorithm is stopped when the

magnitude of the gradient is small, assuming that the gradient will be zero at the

minimum of the error. However, there is a danger that the magnitude of the

gradient will also be small around local minima and plateau areas of the error

surface. Therefore, a careful design of this strategy is essential to reach the global

minimum of the error. Such a strategy is employed by Hara et al. (1994) in that a

network is trained until the total RMS (Root Mean Square) error remained

constant to at least three decimal digits.

The second group of methods terminates the training when the estimated error for

the training data is below a user-specified level. In order to apply this approach it

is essential to have a priori knowledge about the minimum error value that the

network can achieve, which could require several training experiments. It should

be noted that the training error to be reached is dependent, in a complex way, on

several factors, including network size, the learning rate, the momentum term, and

the training data characteristics. Whilst Abuelgasim et al. (1996) stop the training

process when MSE (Mean Square Error) is less than 0.01, Bruzzone et al. (1997)

terminate training in their application when MSE is less than 0.05.

A simple approach to the problem is to train the network a pre-defined number of

times, hoping that the network will reach the global minimum of the error. Whilst

fewer iterations than the required number do not guarantee a sufficient level of
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learning, too many iterations can cause network to overfit to the data. Even if the

network reaches the global minimum after a long training period, the performance

of the network may not be as satisfactory as stopping the training just before the

global minimum of the error, as reported by Wang (1994a). Paola and

Schowengerdt (1994), Thackrah et al. (1999) and Gong (1996) employed this

strategy to terminate the training process.

A more appropriate way of stopping the learning is to employ a validation dataset

to monitor the generalisation capability of the network at certain defined points in

the training process. This is known as cross-validation. In practice, the learning

process is terminated when the error estimated for the validation dataset starts to

rise. It is assumed that the network tested on a validation dataset will perform

equally well on the test data. During the learning, the performance of the network

tends to increase on the training data, whereas its performance on the validation

data increases up to a point, where the network starts to overfit the training data

and the generalisation capability starts to decrease. The main advantage of this

approach is that it does not suffer from the effects of network size and the choice

of values of the learning parameters. However, there are three drawbacks to cross-

validation. Firstly, it is computationally more demanding, and therefore requires

more time. Secondly, in addition to training and test datasets, a validation dataset

has to be prepared. This could be a potential problem for the cases in which only a

limited number of samples is available. Finally, it can be misleading to stop the

learning considering the first rise in the error on validation data since the error

usually continues to decrease after the first rise. Therefore, determining the best

point to stop using cross-validation is not straightforward, as it requires careful

design of the learning process. Several researchers, including Kanellopoulos et al.

(1992), Blamire (1994), and Blamire and Mineter (1995), employed cross-

validation in their studies.

The strategies described above are investigated in this study to determine the best

stopping epoch. Training and validation datasets were formed for both test sites.

For the first test site, the training dataset included 1,750 samples, and the

validation dataset contained 1,120 samples. For the second test site, 1,750 and 980

samples were taken for the training and the validation datasets, respectively. In
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addition, 4,000 samples were used for both sites to test the performance of the

trained networks. All datasets were randomly selected from the images of the test

sites. The network structure of 8-20-7 was chosen for the study. For the standard

backpropagation learning, weight values were initialised in the range [-0.3, 0.3]

and the learning rate was set to 0.2 for all experiments carried out. The

experiments were implemented through specific configuration files written for

batchman program provided by the SNNS software.

For the first and the simplest method, it was found that 5,000 iterations were

sufficient for the network to learn the characteristics of the data. Therefore,

training processes for both datasets were terminated when 5,000 iterations were

completed. The resulting networks were saved and later assessed on test datasets.

The second method of stopping the learning process was based on terminating the

process when reaching to a pre-defined MSE level for the training datasets. By

considering the difficulty of the problems, 0.13 and 0.09 MSE levels were set for

the first and second datasets, respectively. For the last method, a validation dataset

was employed to determine the best epoch at which the network can perform best

on the validation dataset, assuming that at this point that network has the best

generalisation capabilities.

Itwas observed that stopping the training process when the error on the validation

dataset starts to increase could be misleading, since slight fluctuations in error

during training are common. For the problems considered here, the first rises were

observed at 100 and 180 iterations for the first and second datasets, respectively.

Such a small number of iterations would not be sufficient for the network to

identify the patterns inherent in the datasets. There are two major reasons for this

behaviour. Firstly, the training and validation datasets do not represent exactly the

same characteristics of the problem. Secondly, oscillations around minima in the

error surface could be encountered for a short period of time. Therefore, a careful

design and special set-up is required, which is implemented in this study through

configuration files. In the methodology adopted here, MSE level for the validation

data was checked every 20 iterations. At the end, if any improvement over 0.001

was achieved by the network for the validation data, the network was saved and

the MSE level was set as a threshold for the next error rates. The reason for
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setting an improvement parameter (0.001 in this case) was to determine the

epochs from which significant improvements were attained. If no improvement

was achieved, the training process was continued for another 500 iterations to

ensure that the global minimum of the error was found. If in any stage of the 500-

iteration period a significant improvement encountered, the network was saved

again and the new threshold was set for the MSE level. The results of applying the

three methods with above considerations are listed in Table 6.5.

Table 6.5 Results of the three major training termination methods for two datasets.

MSE values in brackets are computed for the validation datasets.

Stopping First Test Site Second Test Site

Criterion Iteration MSE Overall Kappa Iteration MSE Overall Kappa

Fixed 5000 0.0864 86.52 0.8416 5000 0.0799 89.95 0.8797
Iteration

MSEon
Training 1860 0.1297 85.75 0.8337 2900 0.0898 89.18 0.8710

Data

Using 0.l432 0.1155
Validation 1140 86.88 0.8457 980 89.13 0.8702

Data
(0.155) (0.137)

Although the results produced are quite close to each other, comparisons can be

made regarding their characteristics and reliabilities of the methods. The use of a

fixed number of iterations produced slightly more accurate results for the second

dataset, and the least accurate results for the first dataset. Even though the

improvements in the classification accuracy were not substantial, the results show

the unstable nature of the method. As well as being extremely difficult to

determine the number of iterations required prior to any experiment, there is no

guarantee for preventing underfitting or overfitting.

Determination of the optimum number of iterations from the error level achieved

on a training dataset is always biased towards the characteristics of the dataset.

The error level that can be achieved by a network for a training dataset usually

decreases with the number of iterations. However, it should be borne in mind that
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the error level for the validation and test datasets can decrease up to a level and

then starts to increase, ignoring the fact that some small fluctuations should be

expected in the error level.

It appears that the most sophisticated method of the three is the method employing

the validation dataset in the training for monitoring the generalisation capabilities

during the process of learning. Using this method, the training processes for both

cases were terminated in early stages. A smaller number of iterations also

produced good results. In particular, for the first dataset the best performance was

achieved with the overall accuracy of 86.88%. The classification accuracy

produced for the second dataset was also comparable to others produced. Since

the number of iterations is small, the generalisation capabilities of the networks

are expected to be greater, and less time is required for training.

6.9 Output Encoding

Output encoding is another issue that must be considered prior to the training

process. With the output encoding the real world features or classes are

represented in the network in a special way. Encoding techniques for input and

output information are described in section 3.6 of Chapter III. However, output

encoding techniques suggested by researchers have not been fully investigated

and compared in terms of the classification accuracy produced. The conventional

way of representing the classes in neural networks is to allocate one output node

for each land cover type, and assign 1 to the node that corresponds to a particular

class and 0 to the nodes that represent other classes. For example, if there are four

classes to be classified, a code of 0 1 0 0 is used to represent the class 2 in the

network. The advantage of this approach is that the values of the output nodes

calculated for test data can be interpreted as a posterior probabilities of

membership since they are in the 0-1 range. It is argued that the use of such

encoding for outputs may be problematic as the values of 0 and 1 can only be

produced by the network when the weights have infinitively large positive and

negative values. The standard sigmoid activation function can only yield these
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extreme values for the inputs of ±oo.Therefore, ranges inside these extreme values

are recommended. Some of these recommendations are as follows:

0.003 0.99 0.003 0.003

Fitch et al. (1991) and Thrackrah et al. (1999)

Paola and Schowengerdt (1995a, 1997), Pierce et al.

(1994) and Skidmore et al. (1997)

Gong (1996)

0.01 0.990.01 0.01

0.100.900.100.10

It is claimed by Gong (1996) that using [0.003 0.99 0.003 0.003] encoding

approach as opposed to [0 1 0 0] encoding also speeds up the training process.

The main drawback of the truncated ranges is that the results can no longer be

interpreted as a posterior probabilities (percentage values) for the class

membership. However, they can be easily transformed to the 0-1 range.

In order to investigate whether the network performance is significantly affected

by the encoding approach employed in network training, the encoding approaches

described above are employed in two classification problems. For the experiments

the learning rate was set to 0.2 and the weights were initialised in the range [-0.3,

0.3]. A network structure of 8-15-7 was found to be sufficient to learn the

characteristics of both problems. During the training, networks were saved at

1,000 iteration intervals so as to observe the change in the classification accuracy

and eliminate the bias that could arise when interpreting the results produced at a

certain stage of the process. The results for the first and the second datasets are

shown in Figures 6.21 and 6.22.

For the first dataset, the [0.10.90.1] encoding approach performing best at 1,000-

iteration displayed a distinct trend, whereas the other approaches yielded similar

results. The classification accuracy achieved by the [0.1 0.9 0.1] set decreased

sharply, indicating that the network reached to the global minimum of the error

earlier compared to other approaches and therefore lost its generalisation

capabilities with more training. The other approaches led to networks to reach the

global minimum of the error around 8,000 iterations. This indicates that using the

encoding approach [0.1 0.9 0.1] may speed up the learning process.
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Figure 6.21 The effect of employing different output encoding methods on the

classification accuracy for the first dataset.
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Figure 6.22 The effect of employing different output encoding methods on the

classification accuracy for the second dataset.

The results for the second dataset, on the other hand, suggest different

conclusions. Firstly, the classification problem appeared to be more difficult,

therefore the performance of the networks increases with increased number of
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iterations. It can be said that the [0.01 0.990.01] encoding approach produced the

best results after 5,000 iterations. However, the use of [0.003 0.99 0.003]

encoding strategy resulted in good performance for the early stages of the

training. None of the encoding techniques appeared to produce significantly better

results. Therefore, it can be concluded that although using the [0 1 0] encoding is

theoretically inappropriate, in practice it can produce comparable results to other

approaches.

6.10 Validating the Conclusions

Some general conclusions have been drawn from the experiments performed in

the earlier sections of this chapter. However, it was noticed that there was a need

for validation using a new set of data. It is essential that the findings reported

should be proved to be valid and producing high-accurate results for other

datasets. In the classification of new datasets, network structure and the

parameters related to the learning process are determined from the heuristics that

are found to perform better than others. This will simplify the use of artificial

neural networks, speed up the entire process and eventually help new users to

build and apply networks to a variety of problems with confidence.

6.10.1 Test Site and Data

In order to validate the findings reported earlier in this chapter, a Landsat ETM+

image, acquired on 19 June 2000, covering the test site near the town of Littleport,

which is described in Chapter V, is used. The Landsat ETM+ image consists of

six spectral bands, one thermal band and one panchromatic band. For the

classification problem to be considered in this section, a combination of spectral

bands (excluding thermal and panchromatic bands) is formed. The test site covers

approximately 44.16 km' of rich agricultural fields. The classification problem

involved the identification of six land cover classes; namely, onion, wheat, sugar

beat, potato, lettuce and peas that cover the bulk of the area of interest.
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Figure 6.23 Ground reference data for Littleport site for the crop season of2000.

The image was registered to the Ordnance Survey (OS) of Great Britain's

National Grid using the ERDAS Imagine image processing software (version 8.4)

by applying a first-order polynomial transformation. The RMSE value estimated

for image transformation was less than one pixel. In the resampling process of the

co-registration stage, the spatial resolution (i.e. pixel size) of the image was

reduced to 20 metres. Ground truth information (Figure 6.23) was collected from

the farmers and their representatives by research staff of the School of Geography

Nottingham University. Field boundaries were digitised from 1:25,000 OS map ,

published in 1987, and the class labels were later assigned to those fields. In order

to disregard the mixed pixels located at the field boundaries, a buffer zone of 20

metres corresponding to the dimensions of a pixel, was constructed and the ar as

in this zone were labelled as unknown. A 286-pixel by 386-pixel portion of th

image covering the area of interest was extracted and used for further stages.
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6.10.2 Optimum Setting for Artificial Neural Networks

Image bands and major crop types were directly assigned to the input and output

layer nodes. In order to estimate the number of hidden layer nodes, the rule of

thumb (Np/[r.{Nj +NJ]), recommended by Garson (1998) and found superior

to other recommendations, was used. The coefficient or' in the formula was set to

10 considering the difficulty of identifying six land cover classes from a single

date image having only six bands relevant for the nature of the study. In order to

estimate this number from the formula, the number of training samples (N p ) must

be known a priori. On the other hand, in the estimation of optimum number of

training samples required for the classification, the heuristic given (lOx Nw) by

Baum and Haussler (1989) appeared to produce quite good results for the

classification problems considered earlier. This heuristic requires the total number

of inter-link weights in the network. Since the number of hidden layer nodes must

be known to apply the heuristic, it cannot be employed in conjunction with the

Garson's formula. This is certainly a 'catch-22' situation. Therefore, the heuristic

{60xN, x (Nj + 1» suggested by Hush (1998) for estimating the optimal number

of training samples is favoured. This heuristic suggests slightly greater numbers

than the one proposed by Baum and Haussler (1989).

For setting up the parameters employed the learning process, the initial weight

range was set to [-0.25, 0.25], as proposed by Gallagher and Downs (1997). It was
observed from the experiments reported earlier in this chapter that a learning rate

of 0.2 usually performs well in cases where no momentum term is added to the

process, as suggested by Bischof et al. (1992). Where a momentum term is

employed, learning rates of 0.1 and 0.2 performed well together with values of

momentum ofO.5 and 0.6. As the results suggest, one of the combinations of these

rates should be employed in ANN studies. Another important factor affecting the

performance of ANNs is the stopping criterion, which is used to terminate the

learning process. Itwas found that the use of a validation dataset for this purpose

results in acceptably good classification performance and shorter training period.

Therefore, 75 samples for each output class (450 samples in total) were selected

randomly from the areas of the image where ground reference data are available.
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Determination of this number is made on the grounds of experience. However,

around 100 samples for each class or a 80:20 rate for the training and validation

datasets can be used, depending on the availability of the ground reference data. It

should be noted that the use of more validation samples can provide more

accurate testing with the drawback of a slower training process. Finally, for the

encoding of the output classes the conventional way, [0 1 0] form, is employed

since no superiority was observed for the use of other recommendations. All these

considerations were implemented to build the network and define the learning

process. The configuration of the network and the learning process using the

above considerations is shown in Table 6.6.

Table 6.6 Optimum setting of network structure and learning parameters.

Parameters Choice

Number of input nodes 6

Number of output nodes 6

Number of hidden nodes 21

Initial weight range [-0.25, 0.25]

Learning rate without momentum 0.2

Learning rate with momentum 0.1 or 0.2

Momentum term 0.5 or 0.6

Stopping criterion for learning process Validation set of 450 samples

Number of training samples 2,520

Output encoding scheme [0 1 0]

A network structure of 6-21-6 was formed and trained with the parameters listed

in Table 6.6 using a training set of 2,520 pixels and a validation set of 450 pixels,

both of which are randomly selected. The training process was repeated five times

to apply the combinations of the learning rate and momentum term. During these

operations, all the parameters except for the learning rate and the momentum term

were kept constant. Trained networks were saved and their performances were

evaluated using a test dataset including 4,000 randomly selected pixels. The

results for the combinations are shown in Table 6.7.
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From the experiments performed, the longest training period (4,300 iterations)

was required for the one employing learning rate without the momentum term,

which is in fact an expected behaviour. The shortest training processes were,

however, attained from the combinations of 0.1-0.6 and 0.2-0.5 where the first

value shows the learning rate and the second indicates the momentum term. As

can be seen from Table 6.7, the lowest MSE values for training and validation sets

were achieved by the configuration employing learning rate of 0.2 without

momentum. This also led the network to produce the highest classification

accuracy (overall accuracy of 85.78% and Kappa coefficient of 0.8237). Other

combinations also produced similar results. The variation in overall accuracy was

1%, which can be considered insignificant.

Table 6.7 ANN results obtained from the configurations given in Table 6.6.

Abbreviations of 'lr' and 'm' are used to represent the learning rate and

momentum term, respectively.

Ir: 0.2 Ir: 0.1 m: 0.5 Ir: 0.1 m: 0.6 Ir: 0.2 m: 0.5 Ir: 0.2 m: 0.6

Iteration 4300 2660 1820 1820 1940

MSEon tr. 0.210073 0.223087 0.225862 0.225488 0.227824

MSE on val. 0.187221 0.195389 0.199553 0.194959 0.193532

Overall (%) 85.78 85.28 84.98 84.85 84.78

Kappa 0.8237 0.8175 0.8138 0.8122 0.8115

In order to verify the results obtained from neural networks and make sound

comparisons, the same training and test datasets were employed in the

classification process using the maximum likelihood classifier, which is the most

sophisticated statistical classification technique. This technique produced

classification results with overall accuracy of 81.77% and Kappa coefficient of

0.7740. It is clear that artificial neural networks could identify the crops with

around 4% more accuracy than the maximum likelihood classifier. Such a

difference can be regarded as considerable.
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It is likely that a slightly better classification performance could be produced by

means of making some adjustments to the network structure and the parameters

used in neural network classification. However, the results produced in this

experiment are promising since the aim here is to identify a set of rules that can

provide high-accuracy classification results in most cases without the need to

consider the many factors involved in the determination of the network structure

and the learning parameters.

6.10.3 A Worst-Case Scenario for ANN Design and Use

During the experiments described here, a number of heuristics and personal

choices reported by researchers were found ineffective and misleading. When they

are used together, performance of the networks can be affected severely,

producing even worse results than simple statistical classifiers.

For the determination of number of hidden layer nodes, Wang (l994b) used the

formula 2 xN, /3, which suggests very small numbers. The initial weight range of

[0, 1] used by Ardo et al. (1997) appears to produce the worst in the experiments.

A learning rate of 0.8 without the use of a momentum term, suggested by Staufer

and Fischer (1997) showed an abrupt behaviour. Hara et al. (1994) use the

combination of 0.5 and 0.9 for the learning rate and momentum. This combination

produced the worst results in the experiments. The training process can be stopped

after a pre-defined number of iterations instead of checking the change in the error

using a validation dataset. This methodology is extremely simple and potentially

troublesome for the learning process, as it is prediction-based. For the

determination of the number of training samples required for appropriate learning,

the heuristic (5xNw), proposed by Klimasauskas (1993), was found to suggest

too few samples, which are not sufficient for the network to learn the

characteristics of the data. Finally, as there was no clear indication for the worst

performing output encoding scheme recommended, the conventional scheme was

employed. All these considerations were also put into practice, resulting in the

configuration shown in Table 6.8.
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Table 6.8 Configuration of the network and the learning algorithm for the worst-

case scenario.

Parameters Choice

Number of input nodes 6

Number of output nodes 6

Number of hidden nodes 4

Initial weight range [0, 1]

Learning rate without momentum 0.8

Learning rate with momentum 0.5

Momentum term 0.9

Stopping criterion for learning process 5,000 iterations

Number of training samples 240

Output encoding scheme [0 1 0]

A 6-4-6 network structure was trained with the parameters listed in Table 6.8.

Training was performed with the training data 5,000 times in an iterative way

using the backpropagation learning algorithm. The training process was carried

out for the two learning rate and momentum combinations (i.e. 0.8 and 0.5-0.9)

and the resulting networks were saved. These networks were later tested using

4,000 randomly selected pixels. The results are presented in Table 6.9.

Table 6.9 ANN results obtained for the configurations given in Table 6.8.

Learningrate: 0.8
Learningrate: 0.5
Momentum:0.9

Iteration 5000 5000

MSEon tr. 0.255463 0.290819

Overall(%) 75.00 72.52

Kappa 0.6844 0.6576
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As can be seen from Table 6.9, the training process could not reach a good

solution in terms of MSE and classification accuracy. Overall classification

accuracies of 75.00% and 72.52% that are considerably less than those produced

by the network using optimum settings. The results are also inferior to the results

produced by the maximum likelihood classifier (MLC). This behaviour of ANNs

clearly indicates that the classification accuracies that can be achieved through

their use can differ significantly, depending on the selection of network structure

and parameters related to learning process. However, the MLC method can

produce similar results on the condition that there are sufficient numbers of

samples to estimate the variance-covariance matrix accurately and that the

frequency distributions of the classes are approximately Gaussian.

6.11 Summary

The major issues that have been reported to be of primary importance for the

performance of artificial neural networks are investigated in this chapter. Special

attention is paid to the components of the network structure (Le. input, hidden and

output layers) and the learning parameters (Le. initial weight range, the learning

rate and the momentum term). The strategies for output encoding and stopping the

training process at the most appropriate point are also studied. In addition, the

effect of the size of samples employed in the training process is explored. The

main purpose of this chapter is to provide both theoretical knowledge available to

date by referring to recent studies, and heuristics developed by researchers as a

result of their experience. The heuristics are usually combined in tables and their

effectiveness has been evaluated using real world datasets. The heuristics found to

be superior are then applied to a new dataset to verify the findings.

Although a number of conclusions and observations can be reported from the

results of the experiments, they will not be enumerated here in order to avoid

repetition. Instead, they will be given in the next chapter, Chapter VII, since this

particular chapter is intended to present some guidelines that will be largely

extracted from the results given in this chapter. Thus, one of the main objectives
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of this study, which is to prepare some guidelines for new users of artificial neural

networks, is achieved. It is hoped that such guidelines derived from a vast amount

of experiments will be useful and beneficial for a wide variety of artificial neural

network applications in remote sensing.
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CHAPTER VII

CONCLUSIONS

7.1 Introduction

Knowledge of the nature and spatial distribution of land cover types IS a

prerequisite for many regional to global scale studies. Production of such

information is mainly through classification using remotely sensed imagery.

Although a variety of statistical classification techniques have been developed and

used to identify land cover types, there has been a need for more sophisticated and

robust methods due to the restrictions of the statistical approaches, particularly

regarding the frequency distribution of the data. Artificial neural networks have

great potential in pattern recognition, and have recently been employed in a

diversity of applications in the remote sensing field. It should be noted that

choices of features and training data have as much influence as the classifier on

classification results. An unsophisticated classification technique can give a good

solution to a well-specified problem in terms of the scale of the problem relative

to spatial resolution, the selection of an appropriate number of classes, the

characteristics of the features, and the training data. This study is mainly

concerned with the application of neural networks to land cover classification, and

concentrates on their behaviour and the impact of individual parameters.

This chapter summarises the results presented in previous chapters, and elaborates

the conclusions that are later considered to form guidelines for designing and
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using neural networks efficiently. Within the thesis, the issues reported to have

significant effect on network performance are thoroughly investigated. The

general aim of this research was to understand the behaviour of artificial neural

networks and thus make some important suggestions for future work. However,

the ultimate goal was to make a contribution towards increasing the popularity of

neural networks in the remote sensing field in terms of simplifying their design

and application, and ensuring that they consistently produce reliable results. It is

believed that they can be thus considered as one of the basic and standard tools in

remote sensing studies.

7.2 Summary of the Thesis

The theory of classification and a number of classification methods used to

classify remotely sensed images are described and their classification abilities are

examined in Chapter II. The calculation and representation of classification

accuracy is also discussed, and specific attention is paid to the use of accuracy

maps showing the variations in the classification accuracy in spatial domain.

Since this thesis is mainly concerned with the use of artificial neural networks for

classification of land cover features, a specific chapter (Chapter III) is devoted to

a discussion of the theory of artificial neural networks, specifically the feed-

forward neural network model (also known as the multilayer perceptron) that is

employed in the analyses performed in this research. In addition, a critical

assessment of the problems encountered in their use is carried out. The following

chapters concentrate on the investigation of these problems with the aim of

understanding the effects of the most important issues involved in the design and

use of neural networks.

In order to understand the effects of major factors having significant effect on the

performance of neural networks, scientific visualisation techniques, described in

Chapter IV, are employed. A variety of techniques that are found useful for this

purpose and a number of analyses performed on the training data and the

classification results are combined in a toolkit (Appendix A) that is created in the
MATLAB software package.
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For the investigation of the use of neural networks for high-dimensional image

data, a particular chapter (Chapter V) is devoted to feature selection methods. This

issue has assumed more importance with the launch of new satellite sensors

providing information in large number of spectral bands and the availability of

image data from many sources. Landsat TM and ETM, SPOT HRV and SIR-C

SAR images are used to study this issue. In the search of most effective bands for

a particular problem, genetic algorithms are shown to be one of the most

promising methods. It is shown that number of input features can be reduced

using feature selection techniques without significantly affecting accuracy. It

should be noted that the number of features should be sufficient to correctly

represent the problem. The findings regarding feature selection methods are

presented in section 5.9 of Chapter V.

The most important factors and issues having impact on network performance

outlined in early chapters are examined, and heuristics (or rules of thumb) are

presented in Chapter VI. Their effectiveness is evaluated using two real-world

datasets. The conclusions derived from the results are tested on an independent

classification problem. Satisfactory results are produced in comparison with the

results produced both by the maximum likelihood classifier (MLC), and the neural

networks designed with the worst-case scenario that is constructed from the worst

performing parameters. The improvements achieved by the optimum setting are

more than 4% for MLC and 10% for the neural network designed with the worst-

case scenario parameters.

7.3 Conclusions

The conclusions reached from the experiments in this study using the two datasets

described in Chapter V are generally presented in the conclusions section of each

chapter. However, the most important conclusions matching the primary aims of

this study are collectively presented here for the convenience of the reader.

• Although transformed measures (transformed divergence and the

Jeffries-Matusita distance) produced better results than their counterparts
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(divergence and the Bhattacharyya distance) for the solutions attained by

the GA, the solutions attained using SFS based on divergence measure

yielded the best performances for both datasets.

• Of the feature selection techniques employed, Hotelling's T2 appears to

perform better than the others in terms of the classification accuracy

produced. Wilks' A criterion, on the other hand, produced largely

varying results considering the datasets used.

• The genetic algorithm generally reaches a better solution than the

sequential forward selection method in terms of the separability

measures considered. However, it should be noted that this does not

guarantee more accurate classification results.

• In the use of node pruning methods for input layer nodes, the

Noncontributing Units method is found more effective than the

Skeletonization method.

• It is observed that a non-linear relationship exists between the number of

input nodes and the training time required, contrary to the claims made

that this is a linear relationship. The results suggest that using some

particular band combinations helps the network better recognise patterns

in datasets and therefore speeds up the learning process.

• It is found that there is no significant benefit of employing more inputs

than a specific number. It can be concluded that the performance of the

network is insensitive to large sizes of the input layer. Unfortunately,

there is no way, except for evaluating different sizes of input layer, to

determine the critical number, smaller than which causes neural network

to lose its power and therefore produce less accurate results.

• Although a large number of heuristics have been recommended in the

literature to estimate the number of hidden layer nodes, only a few of

them are found to be applicable to the problems considered in this

research study. The one suggested by Garson (1998)

(N p /[r . (Ni +No)]) is found to be superior to other heuristics. One of
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the reasons for the superiority of this particular heuristic is that it has a

constant defined by the user relating to the noise level in the data and the

difficulty of the problem. This introduces a flexibility and robustness to

the determination of number of hidden layer nodes.

• Assessment of the effect of the number of hidden layer nodes on the

performance shows the extreme sensitivity of neural networks to small

network sizes and insensitivity to large network sizes. In other words,

whilst classification accuracy stayed almost the same for large networks,

a significant reduction in the classification accuracy is noticed when the

size of the network is too small for the problem under consideration.

• A number of combinations have been suggested for the learning rate

parameter and momentum term to accelerate the learning process and

reach the global minimum of the error. However, it is found that some of

these suggestions result in failure when they are employed. As a result of

an extensive number of investigations, it is concluded that a learning rate

of 0.2 where there is no momentum term employed, or a learning rate of

0.1 or 0.2 with a momentum term of 0.5 or 0.6 can lead the networks to

produce accurate classification results in most cases.

• Evaluation of six initial weight ranges under different conditions in

terms of network size, number of training patterns, and learning rate-

momentum values shows that small ranges of initial weights ([-0.1, 0.1],

[-0.l5, 0.15] and [-0.25, 0.25]) produced better results than large ranges.

However, the differences in classification accuracy were usually small.

Any of the small ranges can be chosen, but the range [-0.25, 0.25],

suggested by Gallagher and Downs (1997), is favoured in this research

since it usually maintains the level of accuracy under most conditions.

• Heuristics proposed to estimate the optimum number of training samples

were compared using two datasets involving the classification of seven

land cover classes for both cases. The results show that the heuristics

proposed by Baum and Haussler (IOxNw) and Hush (1998)

(30 or 60 x Ni X (Ni + 1)) are good choices.
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• It is noticed that ANNs can perform well for small training samples. In

the cases considered, the lower bound is appeared to be 975 samples in

total, indicated by the heuristic (5 x Nw) suggested by Klimasauskas

(1993). However, for the same problems a statistical classifier would

need at least 1,680 patterns to compute the variance-covariance matrix

accurately, according to the heuristic (30xp) given by Mather (1999).

• In the comparison of strategies used to terminate the learning process, it

is found that using a validation dataset helped to detect the best stopping

point in terms of the classification accuracy produced. With the use of a

validation dataset, the training processes were also terminated in the

relatively early stages ofthe learning process.

• Several suggested output encoding strategies were compared to the

conventional output encoding scheme [0 1 0] in that 1 is assigned to the

node corresponding to a particular class and 0 to the nodes that represent

other classes. The results produced were comparable to each other,

suggesting no superiority for a particular scheme. Therefore, the

conventional scheme [0 1 0] is recommended, although it is theoretically

inappropriate due to the impracticality of transfer functions to produce

these extreme values. Another reason to favour this scheme is that the

results produced using this particular strategy can be interpreted as a

posterior probabilities of class membership.

• Close examination of the learning process using animations created from

lower dimensional (2 and 3) representations reveals an important fact

that neural networks can, in fact, learn the major characteristics of the

datasets quite quickly (in about several hundred iterations). After that,

they attempt to identify the mixed and atypical pixels.

7.4 Guidelines for the Effective Use of Artificial Neural Networks

The conclusions produced and the experience gained during this study can be used

to form a number of guidelines that can greatly facilitate the process of design and

use of artificial neural networks. These guidelines are particularly useful for
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defining the network structure and configuring the learning algorithm. It should be

noted that they are valid for similar datasets and classification problems to those

used in this study. Some suggestions can be also made for post-processing to

improve the generalisation capabilities of networks. The list of the guidelines is

given as follows:

• Use feature selection techniques (e.g. Hotelling's P together with

genetic algorithm or divergence with sequential forward selection)

if there are large numbers of inputfeatures available.

• Estimate the number of hidden layer nodes required using the

expression N p /[r . (Ni +No)]'

• Define the number of output layer nodes by considering the nature of the

problem and the availability of ground reference data.

• Select training samples randomly, between 30 x NI X (NI + 1) and

60 x N, X (Ni + 1) in number, depending on the difficulty of the problem

under consideration.

• Set the initial weights to a small range (e.g. [-0.15, 0.15] or [-0.25,

0.25]) that has a mean value ofO.

• Set the learning rate to 0.2for the standard backpropagation algorithm

and to either 0.1 or 0.2 for backpropagation with momentum in

conjunction with the momentum term ofO.5 or 0.6.

• Employ a validation dataset to terminate the training process. The

validation dataset may include around 50-100 samples for each class.

• Use the output encoding scheme of [01 0] to represent output classes.

• Use a shuffling mechanism for the learning process to present the inputs

to the network in a randomly defined order.

• To improve the generalisation capability of a trained network, employ

inter-connection (e.g. Optimum Brain Surgeon) or node pruning
methods (e.g. Noncontributing Units).
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7.5 Future \Vork and Recommendations

Based on the research carried out in this study, there is considerable potential for

future work in extending the investigations to new datasets, particularly

hyperspectral image data, and to other neural network models and learning

parameters. In addition, more testing is needed to evaluate the applicability of

guidelines to other datasets to be able to make claims about their robustness. It is

recommended that the research reported in Chapter V involving feature selection

should be extended to hyperspectral datasets, such as CASI (Compact Airborne

Spectrographer Imagery) and MODIS (Moderate Resolution Imaging

Spectroradiometer) so as to validate the effectiveness of the conclusions reached

through multispectral, multitemporal and multi sensor datasets obtained from

SPOT HRV, Landsat TM and SIR-C SAR satellite images. It could be thus

possible to determine the most effective bands for the nature of the output classes

attempted to be identified.

In order to improve and extend the investigations reported in Chapter VI, in

addition to constant learning rates, the use of adaptive learning rate strategies

should be examined and their results should be compared to those produced by

their counterparts. Also, the effect of employing different transfer functions, such

as the sigmoid and tangent hyperbolic function, in the learning process, which is

also reported to have significant effect on neural network performance, needs

investigating. However, it should be noted that as a standard selection, the

sigmoid activation function is used in all experiments performed in this study. As

this study is limited to feed-forward artificial neural networks learning problems

with the backpropagation learning algorithm, it could be also beneficial to

investigate the effects of the network structure and the learning parameters on

other ANN models, including SOM and LVQ, with the aim of deriving some

general conclusions that can be used to construct some guidelines for users in the

use of these particular network models.
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7.6 Final Remarks

Artificial neural networks can be used for many investigation purposes. However,

the focus in this study is on land cover classification using satellite image data. It

is the case that artificial neural networks are more robust than conventional

statistical classifiers. Therefore, they are of great importance for remote sensing

studies. The research reported here aims to strengthen their importance by

providing extensive analyses on the effect of network structure and learning

parameters, as well as by presenting new ways to visualise and understand the

data and the results produced by neural networks. It is believed that neural

networks will continue to maintain their importance and validity for pattern

recognition problems in the future despite the advent of new and sophisticated

methods, such as decision trees and genetic algorithms. A current trend is to

incorporate fuzziness into the classification procedure with the aim of producing

more reliable and accurate information. It should be also stated that as their

nature, the implementation of artificial neural networks requires parallel

processing. If they are implemented on a massively parallel computing system,

the computational cost, which is recognised as one of the biggest drawbacks of the

technique, could be reduced significantly.

It is hoped that this study makes some contributions to the understanding of the

role of neural networks in remote sensing studies, and will be beneficial for their

design and use. By applying the suggestions made in this research, more accurate

classification results and shorter training times can be produced. Finally, by

evaluating the impact of the choices of network architecture, of initial weight

values, and of parameter values, it is hoped that users of artificial neural networks

will have a clearer idea of the way these networks function, so that they are no

longer considered to be 'black-boxes'.
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APPENDIX A

VISUALISATION TOOLKIT FOR ANALYSING

ARTIFICIAL NEURAL NETWORKS

A.I Introduction

This appendix is a guide to the visualisation toolkit, which is contained on the

CD-ROM accompanying this thesis. The toolkit and its application to some

specific problems are mentioned in previous chapters, where relevant. It is

recommended that before using the toolkit this appendix should be read

thoroughly to understand the use of the techniques available in the toolkit. Several

sample datasets are provided with the toolkit to help new users to practice

operations that will be fully discussed in following sections.

The toolkit basically provides the following facilities: sampling images to create

datasets (pattern files) for training, validation and testing; graphical analysis of the

datasets through Parallel Coordinate Display and Andrews' Plots; reducing the

dimensionality of datasets using Sammon's Nonlinear Mapping algorithm, and

feature selection methods including separability indices (the Divergence, the

Transformed Divergence measures, the Bhattacharyya distance, and the Jeffries-

Matusita distance), statistical tests (Wilks' A and Hotelling's T2) and Mahalanobis

Distance classifier; batch (configuration) file creation for Stuttgart Neural

Network Simulator (SNNS) batch mode processing; running SNNS in normal and

batch modes; testing the trained neural networks; visualising data in two or three

dimensions; creating new pattern files by eliminating some pixels using the

interactive tools available; preparing GIF animations to display the whole training
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process; analysing network weights using a line graph; assessing individual class

accuracies together with overall accuracy using a histogram; converting ANN

results to IDRISI image files; accuracy assessment of results files using

contingency matrices; visualising the result of the classification of a test image in

terms of the degree of output activation levels, and image classification using the

Mahalanobis distance (MDC) or the maximum likelihood (ML) classifiers.

The toolkit is written for PCs running the Microsoft Windows 95 operating

system. It is developed using MATLAB (version 5.3), which is a powerful,

comprehensive, and easy-to-use environment for performing technical

computations. MATLAB integrates computation, data analysis, visualisation, and

programming in a flexible, open, environment. Other versions of MATLAB may

demonstrate unexpected behaviour, particularly while running some of the

visualisation procedures. Therefore, no guarantee is given that the software will

run on other versions of MATLAB. Most of the facilities involving data analysis

and visualisation tasks and the structure of the toolkit, including menus and

buttons, are provided by the routines written in MATLAB, which have file

extensions of 'm'. However, some of the menu items performing essential

calculations and analyses are accomplished through C++ programs, which are

compiled in Turbo C (version 3.0).

The primary aim of developing this toolkit is to analyse the characteristics of the

data and the neural networks using scientific visualisation techniques.

Unfortunately, there is currently no available comprehensive software or toolkit to

perform all the tasks considered in this thesis. The toolkit has been developed

specifically to meet the objectives drawn up for this study.

The general structure of the toolkit is described in subsequent sections, with an

emphasis on menu items performing various data analyses, assessments, and

visualisation tasks. In addition to the default menu headings in MATLAB, there

are five menu headings covering all the facilities in the toolkit: Data Analysis

includes the analyses that are performed on datasets prior to neural network
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classification; Classification contains menu items related to network training

and testing, and displaying the results of ANN classifications; Evaluate mainly

consists of utilities to analyse the result of network training in various ways; the

utili ties section includes several routines to help the user to add information

into figures; the Savemenu is to save new pattern files and database files, which

are used to store and retrieve all information related to the pattern datasets. It

should be noted that special attention was paid to make the menu items and

program dialogue simple and clear to users, bearing in mind the difficulty of

understanding ANN terminology and wide variety of techniques employed in this

study. All menu items available in the toolkit are shown in Figure A.I.

A.2 Installing and Running the Toolkit

All the programs and sample files are provided with the CD-ROM attached to this

thesis. In order to install the toolkit to a desktop, all the files with exact directory

structure must be copied to the hard disc. Note that programs needed for genetic

algorithm applications are copied to a separate directory called gademo. It is

recommended that all sample files provided and new data files to be created

should be saved into separate directories to avoid the possibility of deleting files

accidentally.

Directories containing the files for the toolkit and Animagic GIF Animator must

be registered in MATLAB using the command 'addpath'. The use of the

command can be displayed by the MATLAB command 'help addpath'. As a

result, specified directories are added to the search path, and any file inside one of

these directories is automatically retrieved. The directories added to the list can be

displayed using the command 'path'. Once these steps are completed, the toolkit is

ready to run from any directory, in which all new files will be saved, using the

command 'phd'. Note that some help can be obtained from the text files

(Readme.txt) available in the CD-ROM.
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It is essential that, before starting any application, the header section of the file

'phd.m' must be edited so as to provide essential information, such as coordinates

of comer points, class labels and necessary image file names. The information is

later used to create co-registered figures with the correct class labels. Since the

toolkit is designed for a particular data format, it needs editing if different datasets

are used or more elaborate figures are desired. User interaction is mostly required

in the use of genetic algorithms, as different penalty terms and parameter values

may be defined for each dataset.

Two pushbuttons present on the Main Menu Window are labelled as Clear and

EXIT. When Clear is pressed, data loaded into memory in MATLAB are deleted,

all figures are closed, and the toolkit is reinitialised. It is recommended that the

user should use this facility after a series of experiments to speed up MATLAB by

freeing up memory. When the EXIT button is selected, memory is cleared and all

figures are closed, and the user returns to the MATLAB command line.

A.3 Prior Analyses

This section of the menu is mainly for analysing the characteristics of datasets,

reducing their dimensions to two or three, and visualising them. Using the

scientific visualisation tools provided, individual pixels and clusters can be

examined. In addition, if a large number of spectral bands available from different

sources then feature selection methods can be utilised by selecting appropriate

submenu items. This menu section is named Data Analysis since the menu

items are mainly concerned with the analysis of the characteristics of the datasets.

Using the menu items available, it is possible to determine aberrant pixels and

eliminate them. Aberrant pixels are those lying outside of the clusters. This

operation should result in better definition of the problem at hand and better

classification performance from artificial neural networks. Operations performed

under this menu section are shown in Figure A.2.
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Data Analysis

Sample Binary Image

Make NLM file from training fae
Make NLM fie from test file
Graphical Analysis • Paralel Coordinates
Reduce Dimensions (NLtYiJ Andrews Plots
Display NLM Result

Feature Selection • Make Feature Selection F~e

Make Database File
Separability Indices

Make Files for Visual Analysis
Statistical Tests
Mahalanobis Distance Classifier

Visualise 2D Data Genetic Algorithm
Visualise 30 Dala Make New Training and Test Flies

Set Boundary

Figure A.2 Items listed under Data Analysis menu heading.

A.3.t Preparing Pattern Files

Preparation of pattern files for ANN, MDC and ML classifications is the first step

that should be carried out with care, as the accuracy and the quality of all

subsequent analyses are highly dependent on the characteristics of the data

contained in these files. This procedure is selected by choosing Data Analysis

from the Main Window and clicking on Sample Binary Image. Once this

operation is selected, a new menu opens in a MS-DOS window with eight options

(Figure A.3).

***'attern File Preparation*** Taskin KRUZOGLU (19'8)
Create I Edit SaMple File••••••••••••••••••••••••••••• [1]Read Input InforMation fro~ Text Files [row-col)••••.-[2)Read Input InforMation fro~ Multi-layer Image.__••••••[]]S,steMatic SaMpling ••_•••••••••_••••• •••••••_••••••(4)RandOM Sampling •••••_••••.••••._.••••••••••••• _•••••••[5]
Create Test Pattern File for Whole IMage (11,)-•••••••[6]Check the Whole Data Set (SaMples) •••_•••••••••••••••• [1]
Exit frOM the prograM •••••••••••••••••••••••• -••••••••[8]

Please EHTER ,our choice ••:

Figure A.3 Menu for the program used for training and test pattern file creation.

Using the MS-DOS menu window, two types of sampling strategies can be

performed on images. The first, and simpler one is to select the pixels from user-
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defined rectangular windows defined with their rows and columns together with

the coordinate values of the left-upper comer of the window. Information for all

selected windows has to be stored in an ASCII text file by using the first option of

the program menu (Create/Edit Sample File). Text files for this purpose

can also be create in other text editors. An example of such a file is given below:

5 280 475 6 24
275 152 301 174 580514.007 276552.410 4
441 91 451 100 584497.257 278017.160 7
301 122 316 136 581136.882 277273.535 3
169 205 175 219 577968.882 275281.535 6

327 121 339 136 581760.882 277297.535 1

The first line, 5 280 475 6 24, shows the number of samples, number of rows

and columns in the image, number of bands and resolution in metres, respectively.

Thesecondline,275 152 301174 580514.007 276552.410 4,represents

the number of rows and columns in a rectangular area. and class number

respectively. The idea of definition of rectangular areas is shown in Figure AA.

which illustrates the second line of the text file given above.

275. 152

(
X :580514.0071~---
Y:276552.410)

'-----. 301. 174

Figure A.4 Illustration of rectangular area selection.

It should be noted that the X and Y coordinates can be derived from the Query Box

in the ERDASlImagine software package. Once these files are read by the program

by selecting the second option from the menu, all the required information from the

image is read using the specified row-and-column of rectangles. Coordinate values

of each pixel are also estimated. and all the information is stored in an array that is

later used in the sampling process. Note that the images used in this operation are

required to be in BSQ (Band Sequential) image format.
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The second strategy to produce samples (Read Information from Multi-

Layer Image) is to use an image having ground truth information as the first layer.

For this option, the image selected must be in BIP (Band Interlaced by Pixel) image

format, to allow the retrieval of all band values for each pixel in a sequence without

reading all the layers (or bands). In this procedure, there is no need to describe the

areas for the land cover classes. Some inputs, specifically coordinates of the image

comers, resolution of the image, and the number of bands that the image contains,

are requested by the program to be used in computing the coordinates of each pixel

selected. While reading the image, the program randomly searches for pixels having

class labels, reads pixel values for each image band, and writes them into an array.

In order to avoid the selection of an excessive number of patterns for a particular

class, the program calculates the number of patterns for each class and tries to select

approximately equal number of patterns for each class. Lastly, the coordinates of

each pixel are estimated and added into the array.

The program offers two options for sampling the data loaded into memory:

systematic sampling and random sampling. In systematic sampling, which is a

simple procedure, every nthdata item in the array is chosen to form a training data

file. Alternatively, random sampling, which is a more sophisticated procedure, can

be used. Two options are made available: The total number of patterns to be selected

from the image and the number of patterns that will be selected for each class. The

total number of patterns selected, resulting from the initial random pixel selection

process, is displayed and the number of patterns required for the pattern dataset is

requested. Then, the user-defined number of pixels is randomly selected from the

pixels placed in the array. The second option lists the number of patterns for each

class, and asks for the number of patterns that the user wishes to sample. Note that

this number must be equal or less than the smallest number of patterns selected for

any individual class. Next, the program randomly selects patterns in equal numbers

for each class. Once the sampling is completed, it is possible to save the training and

testing pattern files in SNNS format. Information about the selected pixels in terms

of their locations and DN (Digital Number) values for each band can be displayed

by choosing menu option 7.
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A.3.2 Graphical Analysis

This process can be initiated by selecting Data Analysis IGraphical

Analysis from the Main Menu. In this section, two popular graphical analysis

techniques, parallel coordinates and Andrews' plots, are available to visualise the

multi-dimensional data in their original dimensions. Whilst parallel coordinate

plots represent each data point with a broken line providing that each dimension is

characterised by an axis and all axes are parallel to each other, Andrews' plots

convert each multi-dimensional sample data point into an orthogonal sinusoidal

function. The underlying theory behind these techniques can be found in sections

4.2.2 and 4.2.3 in Chapter IV.

A.3.3 Reducing the Dimensions of the Dataset

In order to visualise multi-dimensional datasets on a computer screen, it is

essential to reduce the number of dimensions to two or three. For this purpose

Sammon's Nonlinear Mapping algorithm (NLM), discussed in section 4.3.2.2 in

Chapter IV, is selected and utilised in this study. The fundamental idea behind the

method is to iteratively search for new dimensions by preserving the distance

between the points as much as possible. Before running the process, pattern files

must be converted to a specific format that the NLM program requires. Therefore,

for training data files Data Analysis IMake NLMfrom training file and

for test data files Data Analysis IMake NLM from test file submenu

routines are executed from the Main Menu. Thus, an ASCII text file, which is in

the format shown below, is created.

7 6
0.435294 0.282353 0.333333
0.282353 0.222353 0.333333
0.317647 0.215686 0.341176
0.337255 0.200000 0.341176
0.384314 0.192157 0.360784
0.368627 0.227451 0.376471
0.407843 0.247059 0.509804

0.556863
0.576471
0.529412
0.529412
0.549020
0.549020
0.539804

0.854902 0.858824
0.870588 0.874510
0.870588 0.878431
0.862745 0.866667
0.870588 0.874510
0.862745 0.874510
0.870588 0.882353
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The C++ program to perform Sammon's Nonlinear Mapping algorithm is

converted from a Fortran program written by Prof. Paul Mather. The inputs

required by the program are the number of dimensions onto which the data are to

be projected, and the 'magic factor', which is the step length used in the

minimisation program. An error to stop criterion has to be also set to end the

iterative process. The program is limited to use 5,000 sample patterns with 25

dimensions. Although the original dimensions of the data can be reduced to any

dimensions lower than the original, two or three dimensions must be chosen to

enable the toolkit to visualise and analyse the data. The output of this operation is

a list of new coordinates in new dimensions. An example output file is:

0.316
0.174
0.214
0.227
0.268
0.269
0.430

-1.154
-1.183
-1.144
-1.136
-1.131
-1.132
-1.062

0.699
0.784
0.802
0.784
0.779
0.762
0.757

where the first column corresponds to X, the second column to Y and the third

column to Z coordinates.

It is also possible to reduce the dimensions of the datasets by using feature

selection techniques before processing with neural networks. By using this

module, the user can determine the least effective image bands in distinguishing

between classes and eliminate them so as to produce smaller neural networks. All

the techniques that are discussed in Chapter V, devoted to feature selection, can be

applied to datasets using the toolkit menus. After selecting Data Analysis I

Feature Selection from the Main Window, further selections can be made on

the type of separability measure and the search algorithm to be used. The first step

in the process is to create files in the suitable format. This can be done by

selecting Make New Training and Test Files from feature selection

menu. The methods based on Sequential Forward Selection (SFS) search

algorithm are shown in the submenu as Separability Indices,

Statistical Tests, and Mahalanobis Distance Classifier, while all

separability measures for Genetic Algorithm search method are initiated from
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Genetic Algorithm menu item. For all operations, the first question is whether

the data are already loaded into memory, or need to be loaded from a file. The

second question is how many bands for best band combination are required. Once

the program has run, the best subset band combination and detailed information

about that solution in terms of separability measures is displayed. The solutions

attained can then be used to form new training and test files for neural network

processing. This operation is optional at the end of all processes except for the GA

application. These files can be also generated at later stages by calling Make New

Training and Test Files item from the menu.

The Genetic Algorithm menu item runs a MATLAB program called gademo,

originally developed by Ron Shaffer from the Naval Research Laboratory,

Washington, USA, and available as a free demo program on http://chemdiv-

www.nrl.navy.miV6110/sensors/chemometrics/gademo.html. Version 1.2 of the

demonstration program has been adapted, and many changes and additions have

been made in order to apply feature selection techniques to satellite image data.

Once the program is called, the following menu appears:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Binary-coded Genetic Algorithm Demo
Ron Shaffer --> adapted by Taskin Kavzoglu
School of Geography, The University of Nottingham
Version 1.2

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Current GA Configuration

1 Chromosome Length
2 Population Size

24
20

3 Number of Generations 10
4 Mutation Rate 0.001
5 Crossover Rate 0.600
6 Crossover Type: Single
7 Elitist Operator: On
8 Evaluation Function: Divergence
9 Gray Coding: Off
10 Number of Bands in Subset 8
11 Start GA Optimization (Full Printout)
12 Start GA Optimization (Minimal Printout)
13 Quit GA Demo
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Enter Option (1-13) >
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Chromosome Length shows the number of genes present on the chromosome.

The default set for this parameter is 24, corresponding to the number of bands

available for the first test site. Population Size is the number of chromosomes

in the population. Although larger populations increase the amount of variation

existing in the population, they require more fitness function evaluations and this

leads to a considerable increase in computer time. Number of Generations

shows the maximum number of generations to be produced. Mutation Rate,

Crossover Rate and Crossover Type are the basic parameters of genetic

algorithms, which are discussed in detail in section 5.7.3 of Chapter V. The

Eli tist Operator determines whether the best chromosome for each

population is moved to the next generation unchanged. If the elitist operator is

turned on, the best fitness score from one population to the next will never

decrease. The default setting of the parameter is On.

The Evaluation Function shows the fitness function to be used for assessing

the performances of chromosomes. Once item 8 is selected from the menu, a list

of evaluation functions is displayed. These are the same separability measures that

are used by SFS algorithm. Gray Coding is used to convert binary chromosomes

to real valued variables. The Number of Bands in Subset shows the number

of bands that will be selected for the best subset solution. In the performance

evaluation stage, this value is utilised to penalise the chromosome solutions that

include more bands than required. The default is set to 8, which corresponds to

best eight-band subset solutions. Optimization with Full Printout

allows the program to display each chromosome with its performance and some

basic statistics about the generations produced. Optimization with Minimal

Printout, on the other hand, displays only the statistics for each generation.

Finally, Quit is used to end the process. After the genetic algorithm process is

completed, two figures are displayed. The first figure displays the fitness scores of

the best chromosomes and the mean for each generation, while the second figure

plots the number oftimes each gene selected (a value of 1) in a histogram.
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A.3.4 Visualising and Cleaning the Data

Prior to visualising datasets, a database file that includes all dataset-related

information must be created. Database files are loaded into memory at the beginning

of visual and quantitative analyses before being used in further analyses. A database

file basically contains DN values of pixels for image bands, X and Y coordinates of

the pixels, two and three-dimensional coordinates produced using the NLM

algorithm, and class labels of pixels. Creating a database file is an easy and

automated procedure, which is run by theMake Database File menu item.

Visualising and cleaning datasets are essential tools proposed in this study. After

reducing the dimensions of the data to two or three, using Sammon's Nonlinear

Mapping algorithm (NLM), it is possible to visualise the result of the process by

selecting Data Analysis IDisplay NLM Result from the Main Window.

Depending on the dimensions of the data, the display uses either a two or three-

dimensional coordinate system. However, the main visualisation operation is carried

out after an initial ANN classification is performed and class labels of pixels are

assigned. Thus, clusters for existing classes can be easily observed. The Make

Files for Visual Analysis menu item starts the process of combining the

results ofNLM and ANN classification. Once a file is created for visual analysis, it

can be displayed using eitherVisualise 20 or Visualise 3D,depending on the

data format. When the data are displayed in a figure, several facilities, including

zooming and adding legends, can be initiated using the submenu items under the

Utili ties menu heading. Exclusive to 3-D visualisations several additional

facilities are available. These include rotating all the axes using the mouse, rotating

X and Z axes by specific amount using azimuth and elevation slide bars, and having

a tour around the data by pressing Data Tour button. If the Data Tour button is

clicked, an information window appears with the message of To stop the

process Click on figure. Once you click on OK,this information window

will disappear, and the Z-axis is rotated between -90 and 90 degrees with 5 degree

increments at constant elevation of 30 degrees. If at any point of the process the

mouse is clicked on the figure, the process will stop at that azimuth and elevation
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configuration. It is also possible to switch to two-dimensional views of XY, YZ

and XZ by clicking the appropriate button available on the right side of the figure.

An example view of a 3-D view is given in Figure A5.

' .... inKAVZOGLU 119981

Cluslflcatlon Results In 3-0

0.2 0.4 0.6 0.8 1.2

OotaT... I
EXIT IE~ioo t •. 04_ 11.34

-so I. I \I I, I 90 -so EI'Ic:::rr:11 :::::::II:!]'I 90

Figure A5 Visualising classification results in three-dimensional form.

Another facility that is available in the toolkit is to define new boundaries for the

classes, and thus create new classes. This operation is invaluable for studies where

a general class, such as forest, includes several subclasses such as coniferous and

deciduous forests, and the analyst wants to separate the subclasses from each

other. The Data Analysis I Set Boundary menu item is used for this

operation. Once a boundary is drawn around a group of pixels, a label must be

assigned to the new class. Note that new boundary settings can only be performed

on two-dimensional views. If a 3-D view is on, the user is asked to switch to one

of the 2-D views. A view of the procedure of new boundary definition is shown in

Figure A6. When all the new classes are defined by drawing boundaries around

pixels, new pattern and visualisation files can be created from the Save menu

items. It should be noted that only the pixels located inside the boundaries are

assigned to new classes. If a pixel lies outside all boundaries, that pixel will not be

placed in any of the new files created.
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Figure A.6 New boundary determination for forest class.

A.4 Training and Testing

Cleal

ZOOM

EXIT

In this section of the menu, creation of files necessary for neural network training

using SNNS software, producing results from trained networks, and image

classifications using the Mahalanobis distance and Maximum likelihood classifiers

are carried out. Results of the operations, namely Classified Test Image,
Mahalanobis Distance Classifier and Maximum Likelihood
Classifier are classified images ofa test site. The submenu items of this menu

are shown in Figure A. 7.

Classification
Make Network File
Make Configuration (Batch) File

R~SNNS
R~ SNNS (batch mode)

Test Trained Net~
Oassified T est Image

Mah~ Distance Classifier
MaHitun Likelilood Oasslier

Figure A.7 Items listed under the Classification menu heading.
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A.4.1 Network File Creation

This utility is used to create network files that will be used in the ANN training

process. This program is supplied with SNNS software as a C program. It is

compiled by the Turbo C compiler to be used in desktop computers. Inputs to the

program are the number of nodes for the input, output, and hidden layers. A

network with a set of randomly selected weights is created. The main limitation of

the program is that it can only create three-layered networks, which include a

single hidden layer. In order to create networks with more hidden layers, the

'Bignet' function must be selected from the main SNNS menu.

A.4.2 Preparation and Running Batch Files

Instead of running the SNNS software directly and setting up all the parameters in

the program's control panel, it is possible to create a configuration (or batch) file

including all settings by choosing the submenu item Make Configuration

(Batch) File from the Classification menu heading. Once this item is

chosen, filenames and parameters for network training are requested via command

line input, and the configuration file is automatically created in the format that is

required by SNNS. Specifically, configuration files consist of learning parameters,

input files (network and training pattern files), and some options such as shuffling

the patterns. It is also possible to include a validation dataset in the training

process. In addition, the learning rate can be reduced after a certain number of

iteration determined by the analyst.

Configuration files are run from the Run SNNS (batch mode) menu item.

Information about the training error and the number of cycles is displayed in an

MS-DOS shell. Running SNNS in batch mode gives the advantage of fast

processing, easy and guided selection of options and parameters. The SNNS batch

processing language is called 'Batchman', which is described in Chapter 13 of the

SNNS Manual (ZeU et al., 1999). The format of a sample configuration file is as

follows:
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loadNet ("net1.net")
loadPattern("train.pat")
setlnitFunc("Randomize Weights",O.3,-0.3)
initNet() -
setLearnFunc("Std Backpropagation",0.2)
setUpdateFunc("Topological Order")
setShuffle(TRUE) -
while SSE> 0.1 and CYCLES< 15000do
for i:=l to 150 do
if CYCLESmod 150 = 0 then

print ("cycles = ",CYCLES," SSE= ", SSE," MSE= ",MSE)endif
trainNet ()

endfo:r;
saveNet("lnet" + CYCLESdiv 150 + ".net")
saveResult("lres" + CYCLESdiv 150 + ".res",l,PAT,TRUE,FALSE,"create")
endwhile

print("Cycles trained: ", CYCLES)
print("Training stopped at error(SSE): ", SSE)

A.4.3 Training and Testing Artificial Neural Networks

The toolkit provides facilities to train and test artificial neural networks. In

addition to training the networks in batch mode using configuration files,

described above, network training can be performed by running SNNS software

from Classification IRun SNNS.This menu item calls the Windows version

of SNNS, available from http://www-ra.informatik.uni-tuebingen.de/SNNS/.Asit

requires a local server to run the software, a server program, specifically

eXcursion (version 2.1), is installed and run beforehand. Although the Windows

version of SNNS provides the same features as the UNIX version, the UNIX

version of the software is found to be faster and more convenient to use. For the

use of SNNS, please refer to its on-line manual available.

In order to test the trained neural networks using test pattern files, the

Classification ITest Trained Nets menu item is clicked from the Main

Menu. One or more results files are produced by this option. In the case of a single

network file, a short configuration file, which is saved as 'bmanl.cfg', is written

to generate a single results file without initialising the SNNS software. The names

of network and results files, together with the test pattern file, are requested on the

MA TLAB command line. These filenames are used to create the configuration

file, a sample of which is given below:
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loadPattern("test_elv.pat")
loadNet ("ewrl. net ")
saveResult("ewrl.res", 1, PAT, TRUE, FALSE,"create")

If a series of networks is tested, then test pattern file name and name tags of

network and results files (in this case 1ewr11 for network and ewr for results

files) are entered in command line. From the information provided, a

configuration file similar to the one shown below is created. Note that the

configuration is written into the default file name of 'bman2.cfg'.

loadPattern("test elv.pat")
loadNet("lewr111.net")
saveResult("ewrl.res", 1, PAT, TRUE, FALSE,"create")

loadNet("1ewrlI2.net")
saveResult("ewr2.res", 1, PAT, TRUE, FALSE,"create")

loadNet("1ewrlI3.net")
saveResult("ewr3.res", 1, PAT, TRUE, FALSE,"create")

A.4.4 Displaying Classification Results for a Test Image

Another facility provided by the toolkit is the visualisation of the results of ANN

classifications using MATLAB functions. It is important that at the end of a

project to produce a classification map of whole area of concern. This facility is

provided to the users by the toolkit. This module is launched by selecting the

Classification IClassified Test Image from the Main Menu Window.

Several questions, including the names of the results file and the log file to store

the results of the process, and the threshold for class membership evaluation, are

asked by the program. The next question is whether the results are to be displayed

as a grey-scale image or a colour tone image. In a grey-scaled display, whilst the

pixels having a highest activation level less than the threshold value are set to a

grey level of 100, those pixels having a highest activation level greater than the

threshold are stretched between 100 and 300 so that value of 300 is allocated the

pixels having activation levels of 1.0. Thus, grey level of 100 indicate that the

ANN output is below a user-defined threshold level, while values of 101-300

indicate ANN outputs that exceed the threshold level.
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Colour tone images are created by both looking at the class memberships and the

highest activation levels of the pixels. Class memberships are determined from the

location (or position) of the output nodes having the highest activation levels. Once

this stage is completed, the next step is to find out how effectively the pixel is

classified by the ANN. Therefore, the range defined by the threshold and the highest

possible activation value, which is 1.0, is divided into four equal segments. For each

class, four tones of a specific colour are assigned to pixels so that the darkest tone

shows the highest probability of membership. It should be noted that the pixels

having a highest activation rate less than the threshold set by the user are left

unclassified, and in both images they are shown in white. At this point, the number

of columns and rows must be provided to allow the visualisation of the resulting

image. Outputs of both operations are written to log files defmed by the user. Since

they are inASCII text format, they can be viewed in any editor. Images created from

this process are presented inChapter V of the thesis.

A.4.5 Classifying Images Using the Mahalanobis Distance and Maximum

Likelihood Classifiers

The Mahalanobis distance (MDC) and maximum likelihood (ML) classifiers are

the two most popular conventional statistical classifiers used by researchers for

classifying satellite images. The underlying theories of MDC and ML are given in

section 5.6 of Chapter V and section 2.4.2.3 of Chapter II, respectively. These

techniques are made available in the toolkit so as to compare the results of the

techniques with those produced by ANNs. Whilst classification based on the

Mahalanobis distance classifier can be performed using the Classification I

Mahalanobis Distance Classifier function, classification using the

maximum likelihood classifier can be carried out from the Classification I

Maximum Likelihood Classifier menu item. After the selection of the

classifier, following enquires made by the programs are the same. Two options are

available at this stage of the programs, namely 'Calculate Classification Accuracy

for Test Files' and 'Classify Test Images Using Training Data'. By selecting the
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first option an accuracy assessment is performed using particular training and test

pattern files. Classification of the test images including whole test site can be

carried out by selecting the second option. Note that the test data must be created

for the whole test image in SNNS pattern file format. The next operation is to load

the training and test data from memory or from files, depending on the user's

choice. According to the response received, the data are loaded and an appropriate

program is run to classify pixels. Basically, the characteristics of the training data

are derived and later applied to classify test pixels or the image. For the test image,

the result of the programs is a classified image similar to those produced by the

ANN classifier.

A.5 Posterior Analyses

The Evaluate menu heading provides operations for analysing the result of ANN

classification. Results are assessed by several different methods, such as accuracy

assessment, class accuracy analysis, and reliability analysis. In addition, results are

converted to a format suitable for input to IDRISI GIS and image processing

software. It is also possible to analyse changes in the network weights and the class

memberships during the training process. All functions in the menu are shown in

Figure A.8.

Evaluate

Read Coordinates
Check Ground Truth

'INeight Analysis
Class Accuracy Analysis
AccUf acy Assessment
Reliabity Analysis lor Pixels

Make Images for IDRISI

Make a GIF Animation
Run Animator

Figure A.8 Items listed under the Evaluate menu heading.
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A.S.I Analysing Individual Pixels

The first menu item (Read Coordinates) is used to start the process of

analysing individual pixels in terms of location on the image and DN values in each

band compared to other members of the class. This utility is particularly useful in

the search for and elimination of mixed (if required) or atypical pixels. When the

user clicks on the image, the closest point is searched for and its coordinates are

displayed on the screen when found (Figure A.9). After that, for each press of the

enter key, the location of the pixel corresponding to the closest point is indicated

on ground truth and satellite images, which must be in TIF image format and

defined in the heading section of main program 'phd.m'. Figures A.IO and A.lI

show the location of a pixel selected on a ground truth image and a satellite image,

respectively. The characteristics of the pixel are also analysed by means of

histograms that portray the pixel values for the class to which the pixel belongs,

and the position of the selected pixel on the histogram (Figure A.12). This helps to

identify the pixels that lie away from others in the same class. If the analyst finds

that the pixel is atypical and should be removed, then he/she can click on the delete

button on the figure. Pixels marked for deletion are later excluded from the new

files being saved.
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Figure A.9 Locating the pixel closest to the clicked point on the figure.
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Figure A.IO Location of the selected pixel on ground truth image.
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Figure A.II Location of the selected pixel on the satellite image.
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Figure A.12 Analysing the characteristics of the selected pixel using histograms.
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A.S.2 Displaying Pixels Selected for Pattern Files

Pixels selected for training or test pattern files can be visualised according to their

exact positions in terms of X and Y coordinates. These pixels are chosen using

either the systematic or random sampling strategy discussed earlier in this

appendix. This operation is run by clicking the Evaluate ICheck Ground

Truth from the Main Menu Window. An example showing the pixels selected for

ground truth is shown in Figure A.13.

A.S.3 Analysis of Network Weights

Trained networks can be analysed using a graph representation of the network

weights (Figure A.14). In order to start the process, the item Evaluate IWeight

Analysis must be chosen from the Main Menu Window. For every certain

number of iterations, trained networks must be saved to produce graphs showing

the magnitudes of the weights. Red lines are used in the graphs to represent the

weights between input and first hidden layer; blue lines represent the weights

between first and second hidden layers (if any); and green lines are used for the
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weights between the second hidden layer and output layer. When the training

process is finished, these graphs are converted to GIF images, and later combined

to produce a GIF animation. Such animations considerably help to understand the

network training process and the behaviour of artificial neural networks. In

addition, displaying the network weights is useful in observing the effect of number

of iterations on the network weights.

Figure AI3 Pixels selected for ground truth.
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Figure AI4 Analysis of the weights in the network.
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A.S.4 Accuracy Assessment

Accuracy assessment is an essential step in any classification project. Two types of

accuracy assessment are proposed in this thesis. The first, initiated from the

Evaluate IClass Accuracy Analysis, provides a visualisation of individual

class and overall classification accuracies, together with the number of

unrecognised pixels in a histogram format. As the process can be performed on a

single results file, it can be also carried out using a number of results files. In the

case of multiple results files, histograms are produced for each results file and

saved as GIF images. All GIFs are later combined to form a GIF animation, which

is found to be very useful in analysing the behaviour of neural networks,

particularly with respect to investigating their learning strategy. A sample

histogram is portrayed in Figure A.IS.

100

Figure A.IS Accuracy assessment using a histogram. Horizontal axis shows the

classes and the vertical axis represents overall accuracy inpercent.

The second type of accuracy assessment performed by the toolkit is the standard

contingency matrix method. It is operated by choosing Evaluate IAccuracy

Assessment from the Main Window. Then, the window of the corresponding
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program appears, asking for two filenames and the threshold value to be used to

evaluate the membership of each pixel in the results file. Two files required by the

program are the SNNS results file and the ASCII text file, produced in the

sampling stage, including three types of information as described below:

w 642 1
f 145 2
t 468 3
s 387 4
0 219 5
P 158 6
b 185 7

w, f, t, S, 0, p, and b represent the classes of wheat, forest, potato,

sugar beet, onion and peas, respectively. Values of 642 I 145, 468 I 387 I

219 I 158 and 185 show total number of pixels belong to each class. 1, 2,

3, 4, 5, 6, and 7 correspond to the class number.

The program firstly assesses the memberships of first 642 pixels, which are known

to be wheat, and counts the number of pixels that are correctly classified as wheat

by the ANN classifier. This assessment is performed for each class individuallyand

the accuracy measures are computed according to the well-known formulae.
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Figure A.16 Accuracy assessment with contingency matrix.

A contingency matrix derived from the ASCII file listed above is given in Figure

A.16. It should be noted that the values of the Kappa coefficient are represented by
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the values multiplied by 100. Detailed information about contingency matrices and

accuracy measures derived from such matrices can be found in section 2.7 of

Chapter II.

A.S.S Reliability Analysis

Reliabilityanalysis is one of the most important analyses provided by the toolkit in

that it gives some insight into the reliability of the test data by investigating each

pixel's membership in terms of the output of different networks. Thus, the

performance of the classification can be analysed and improved by excluding

atypical pixels. In order to perform a reliability analysis (Evaluate I

Reliability Analysis for Pixels) several network configurations must

be used to learn the characteristics of the same training data. Next, the same

dataset must be tested using these networks. Image files in lDRISl ASCII format

must be created from the results files. They are later used to examine how many

times a pixel is assigned to the same class by the separate networks. The result of

this examination is portrayed in a figure similar to Figure A.I 7.

Reliability Analysis
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Figure A.17 Reliability analysis for each pixel used in testing. X and Y coordinates

represent Easting and Northing.
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As can be seen from the figure, the results of ANN classification using six

different network structures are assessed and the number of times that the pixel

was allocated to the correct class is calculated and displayed in different colours.

A.S.6 Creating IDRISI Image Files

This section describes the operation to generate IDRISI images from results files

produced by SNNS software. This module can be launched from

Evaluate IMake Images for IORISI menu item. With this module, a results

file is processed and class labels are written to an ASCII text file that is in a

format suitable for IDRISI software. The decision to allocate a pixel to one of the

classes is made by analysing the output node activation values. If the highest

output value for a given class is higher than a threshold value, then the pixel is

labelled as belonging to that class. After creating the ASCII image file, it is

essential to have a document file including image-related information, such as the

coordinates of the comer points, and number of rows and columns. This step can

be performed either inside the program by editing an existing sample file, or

inside the IDRISI software using the command 'DOCUMENT'.

A.S.7 Making a GIF Animation of a Training Process

Another facility available in the toolkit is the generation of OIF animations from a

series of results files produced by artificial neural networks. For this utility, results

file names include a sequence number, such as MYRESl.RES MYRES2.RES etc.

On the command line, only the filename extension (in this case MYRES) is entered.

The program will automatically add the numbers and filename extension (.RES) to

the tag. All result files are analysed and the classification results displayed on a

figure that is saved as a PCX image. Since MATLAB does not support OIF file

format, images are first saved in PCX format, They are later converted to OIF

format using MULTIOIF.EXE program, which is a freeware downloaded from the

internet (http://www.kfs.orgl-abw/code/mgifdl.html). At the end of the process, all
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GIF images are combined in a single GIF animation file. Animagic GIF animation

software is then used to read the GIF files. This software can be also used to create a

GIF animation from the GIF images that are available in the working directory.

Also, Animagic GIF Animator can be directly run by selecting Run Animator

from the menu. Several GIF animation files, provided on the CD-ROM attached to

this thesis, can be viewed using a GIF animator.

A.6 Summary

This appendix describes the use of the toolkit written for visualising multi-

dimensional data and analysing the results of artificial neural networks. The

toolkit is the main analytical contribution made in this study. A wide variety of

visualisation and analysis techniques can be applied to image data using the

toolkit. Its use requires minimal amount of background information about the

techniques that are employed. It is intended to help new users of neural networks

to apply the techniques of their choice to their problems. As it is not intended to

be a commercial product, it is not totally user friendly. It is recommended that

some practice should be carried out to understand the concepts presented in the

toolkit and discussed in this appendix in detail. It should be also noted that it is

always possible to use the functions available in MATLAB to apply new

techniques to determine the characteristics of the data used and to assess the

results of artificial neural networks.
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