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Abstract 

This thesis describes theoretical investigations into the dynamics of super­
fluid films and the effects of disorder on the roughening transition of crystal 
surfaces. The dynamic theory of superfluid helium films, due to Ambegaokar 
et al., is refined to improve the precision of the predictions made. A detailed 
comparison is made between the predictions of the modified theory and the 
results from experiments on helium films and on superconducting systems. 
It is found that, despite the modifications in the theory, agreement with 
experiments on helium films remains only qualitative. 

Consideration is then given to the effects on the roughening transition of 
disorder arising from screw dislocations. A crystal surface which is threaded 
by screw dislocation pairs may be in one of three different states depending 
on the temperature of the system and the way in which screw pairs are 
distributed. At high temperatures the interface is rough: it is not pinned to 
the lattice. At low temperatures the state of the interface depends on how 
the screw dislocations are distributed: when distributed as closely spaced 
pairs they lead to a faceted state with a single ground state energy; when 
distributed randomly they lead to a state of the interface which, though 
pinned to the underlying crystal lattice, has a degenerate ground state. 

It is then shown that the dynamic sine-Gordon formulation of the roughen­
ing transition can be used, via a Hubbard-Stratonovich transformation, to 
model the dynamic behaviour of superfluid systems. This method provides a 
renormalization group framework within which the a.c. linear response can 
be studied. The ways in which the approach could be extended to study the 
effects of disorder and atomic layering are also discussed. 
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Chapter 1 Introd uction 

This thesis describes theoretical work on the dynamic properties of the su­
perfluid transition in thin films of helium and the effect of disorder on the 
roughening transition of crystal surfaces. The two strands are closely con­
nected because both of the transitions are continuous in nature and occur 
in effectively two-dimensional systems. Furthermore, these two phase tran­
sitions lie in the same universality class: that first described by Kosterlitz 
and Thouless [1, 2, 3]. 

The theory of continuous phase transitions represents one of the most suc­
cessful developments in Physics of the last thirty years. Modern methods are 
based around the renormalization group and have been applied with great 
effect to a wide range of phase transitions. Indeed, it is beginning to be 
appreciated that the methods used to describe critical phenomena are also 
of great value in fields of study traditionally thought of as far from Physics. 
The renormalization group was initially developed to provide a framework 
in which the effects of thermal fluctuations on critical systems could be ac­
counted for accurately. Previous methods, such as mean field theory, proved 
inaccurate for systems in three dimensions or less because they neglected 
the effects of fluctuations. In two dimensions fluctuations are even more 
important than in three and so a renormalization group approach becomes 
essential. The work presented here is both an extension and an adaptation 
of the various renormalization group methods that have been applied in the 
past, with mixed success, to superfluidity in thin films and to the roughening 
transition. 

It was first realized that the theory of superfluidity in thin films must differ 
from that in bulk helium-four when Hohenberg, Mermin and Wagner showed 
that long range order was destroyed in two-dimensional systems with con­
tinuous symmetries [4, 5]. Their work left the scientific community with 
a puzzle: how could the superfluidity of helium films exist in the absence 
of long range order? The answer, which was both elegant and physically 
appealing, was provided by Kosterlitz and Thouless [1, 3], almost simulta­
neously with Berezinskii [6]. They focused attention on the behaviour of 
the topological defects of the system, the vortices, and showed that a lesser 
kind of order, known as quasi-Iong-range order, was sufficient to permit su­
perfluidity. They described the superfluid system in terms of the unbinding 
of vortex/anti-vortex pairs, leading to a finite density of free vortices and 
hence the destruction of all order in the system. 

Attempts to verify the theory proved frustrating as the principal experi­
ments available had to be performed in the linear response regime and at 
finite frequency, leading to a strong broadening of the transition which could 
not be described accurately using the equilibrium Kosterlitz-Thouless the­
ory. What was required was an extension of the theory to finite frequencies. 
Just such an extension was provided by the phenomenological theory of Am-
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1 Introduction 2 

begaokar, Halperin, Nelson and Siggia (AHNS) [7,8]. Qualitative agreement 
was obtained between the theory of AHNS and the results of torsional os­
cillator experiments and so the Kosterlitz-Thouless theory was accepted as 
the correct explanation of two-dimensional superfluidity. 

Discrepancies between the actual predictions of Ambegaokar et al. and ex­
periment were largely (but not completely) obscured by the large number of 
fitting parameters that were allowed; their work appears in the text books 
along with that of Kosterlitz and Thouless as the theory of superfluid films 
[9, 10, 11, 12]. This thesis contains a detailed description and critique of 
the theory of Ambegaokar et al.: excellent though their work was, it failed 
to provide anything more than qualitative agreement with experiment. Fur­
thermore, recent experiments on superfluid systems have shown that there 
are two important physical effects which are not accounted for by the theory 
of AHNS. The first is a strong dependence on the degree and type of disor­
der that exists in the substrate; the second is a systematic variation in the 
dynamic response with the number of atomic layers in the films. 

The work of Kosterlitz and Thouless did not provide a complete description 
of the eponymous class of transitions: the recursion relations they derived are 
valid under only a limited range of circumstances. However, several groups 
have subsequently derived groups of recursion relations to describe the crit­
ical behaviour which are more generally valid [13, 14, 15]. One such set, due 
to Timm [13], is used here as the basis of a more refined dynamic theory. 
This approach remains within the general framework of Ambegaokar et al., 
but leads to the prediction of a universal property which is readily compared 
with experiment, requiring at most one fitting parameter [16]. Nevertheless, 
even using the refined version of the dynamic theory the agreement with 
experiment remains qualitative. 

The idea that the roughening of a crystal surface as the temperature is 
raised should be accompanied by a distinct phase transition, the roughen­
ing transition, was first suggested by Burton and Cabrera [17]. It is now 
widely accepted that the transition lies in the Kosterlitz-Thouless univer­
sality class and can be accurately described using renormalization group 
methods [18, 19, 20, 21, 22]. In particular, a renormalization group the­
ory has been developed by Nozieres and Gallet to describe the roughening 
transition in the linear response regime [19], the details of which have been 
confirmed by a series of experimental tests. 

However, if the substrate on which a crystal is grown is strongly disordered 
then the crystal undergoes a different type of phase transition. This new 
transition is called the super-roughening transition and, in contrast to the 
roughening transition, is not of the Kosterlitz-Thouless type [23, 24]. Re­
cent work has shown that the transition which a crystal surface undergoes, 
as the temperature is raised, is sensitive to the strength of the disorder in 
the underlying crystal lattice [25, 26]. If the lattice is disordered by screw 
dislocations then when they are distributed at random the surface under­
goes a super-roughening transition, but if they are distributed as closely 
spaced pairs then the roughening transition remains, though the critical 
point is shifted slightly. In contrast, if the surface of a crystal is threaded 
by thermally generated dislocation loops then the roughening transition is 
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essentially the same as that for a perfect crystal. 

The fact that a highly successful linear response theory for a transition in 
the Kosterlitz-Thouless universality class exists does not seem to be widely 
appreciated in the literature. However, because the roughening transition 
is in the same universality class as the superfluid transition in thin films, it 
may be possible to adapt the Nozieres-Gallet theory to describe the dynamic 
response of superfluid films. A well known mathematical transformation 
can be used to 'translate' from the language of the roughening transition 
to that of superfluid films. A quantity analogous to the external driving 
field for films is identified in the context of the roughening transition so that 
when the Nozieres-Gallet dynamic renormalization procedure is applied the 
response function of the superfluid system can be calculated accurately. An 
important advantage of this approach is that it is readily extended so that 
the effects of disorder and atomic layering on superfluid film systems can 
be investigated. It is hoped that these new methods will provide a more 
accurate description of the dynamic experiments on superfluid films. 

Kosterlitz and Thouless were initially concerned with developing an under­
standing of superfluidity in thin films. However, they recognized that their 
work provides the appropriate description for the critical properties of a wide 
range of two-dimensional systems. The Kosterlitz-Thouless universality class 
is now known to include phase transitions in the following systems: supercon­
ducting sheets and wire networks [27, 28, 29]; the two-dimensional Coulomb 
gas model [14, 2]; the XY model of planar magnetism [2]; the roughening 
transition of crystal surfaces [30, 19]; the smectic-A to smectic-C transi­
tion in liquid crystal films [31]; the melting of two dimensional crystals (e.g. 
electrons on helium) [32, 33] and sand pile models displaying self-organized­
criticality [34], though the list is not exhaustive. 

Here attention is focused on just two of these systems: superfluidity in helium 
films and the roughening of crystal surfaces, but the hope is that the meth­
ods developed with these two systems in mind will be broadly applicable to 
many of the systems in the Kosterlitz-Thouless universality class. The moti­
vation for studying the dynamics of superfluid films is straightforward: such 
a theory is an essential prerequisite for the interpretation of experimental re­
sults on films which were performed to test whether the Kosterlitz-Thouless 
approach is the correct description of superfluidity in thin films. Although 
such dynamic theories do already exist, they are unsatisfactory because they 
do not provide good quantitative agreement with experiment. The reason 
for investigating the effect of disorder on the roughening transition is rather 
different. Unlike the case with superfluid films, the dynamics of crystal sur­
faces close to the roughening transition is well understood [19]. However, it 
has been argued that the transition is destroyed by certain types of disorder 
[35, 36] and so the opportunity was taken to clear up what was in effect a 
dispute in the literature. 

This work is organized as follows. Chapter 2 contains a description of the 
theoretical background to the thesis. It begins with a review of the ba­
sic ideas of the renormalization group theory, on which much of the fol­
lowing work is based. Next there is a discussion of the peculiar proper­
ties of two-dimensional phase transitions. Then the sine-Gordon and two-
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dimensional Coulomb gas models, which are both used to describe systems 
in the Kosterlitz-Thouless universality class, are introduced. Finally, the 
original derivation of the Kosterlitz recursion relations is outlined using the 
language of the two-dimensional Coulomb gas. 

Chapter 3 reviews the way in which Kosterlitz-Thouless theory can be ap­
plied to superfluid films. It begins with an explanation of how superfluid 
films can be modelled by the two-dimensional Coulomb gas model and goes 
on to describe in detail the dynamic theories of superfluid films due to AHNS 
and Minnhagen [14]. There is also a discussion of the results from early dy­
namical experiments on superfluid films with which the dynamical theories 
can be compared. 

Chapter 4 describes the refined dynamical theory of superfluid films devel­
oped by Roger Bowley, Keith Benedict and myself [16]. It starts with an 
outline of how Timm obtained his generalized recursion relations, before go­
ing on to show how they can be used to improve on the theory of AHNS. 
The chapter concludes with detailed comparisons of the refined theory with 
Minnhagen's approach and the results of experiments carried out by the 
groups lead by John Reppy and John Saunders. 

In the next two chapters the subject matter shifts to the roughening tran­
sition. Chapter 5 reviews the current theories of the roughening and super­
roughening transitions, then chapter 6 describes recent investigations into 
the disordering effect of dislocations on crystal surfaces carried out by Roger 
Bowley, Philippe Nozieres and myself [26,37]. The modification in behaviour 
of a crystal surface caused by screw dislocations in the limit of weak cou­
pling to the underlying lattice is considered in detail and then a qualitative 
description of the behaviour in the strong coupling limit is given. 

Then in chapter 7, attention returns to the dynamics of superfluid films and 
the recent work I have been doing in collaboration with Roger Bowley. The 
way in which the dynamics might be analysed using the methods developed 
to study the roughening transition is described along with some preliminary 
results from renormalization group calculations. This is followed by outlines 
of how the method could be extended to model the effects of atomic layering 
and disorder in the substrate. The chapter concludes with a summary of the 
current position and a discussion of some interesting questions which have 
not yet been fully addressed. Finally there are several appendices which 
outline the mathematics required to derive some of the important results 
used in the text. 



Chapter 2 Critical Phenomena 

This chapter introduces some of the basic ideas in the modern theory of crit­
ical phenomena. It starts with a description of the renormalization group 
method and then goes on to summarize the special properties of phase tran­
sitions in two-dimensions. Attention is focused on the Kosterlitz-Thouless 
transition which is the basis of the material described in later chapters. 

Phase transitions have traditionally been divided into two groups: first or­
der and continuous transitions. First order transitions are by far the most 
common and are characterized by a discontinuity in one or more of the 
derivatives of the free energy; in contrast, at continuous transitions there 
are only discontinuities in the second or higher order derivatives of the free 
energy. A first order transition is almost always accompanied by a latent 
heat; coexistence of phases can also occur and one phase may penetrate into 
another (e.g. superheating), particularly if nucleation is inhibited. In con­
trast, at a continuous phase transition the change is less dramatic: there is 
no latent heat, coexistence never occurs and superheating and supercooling 
are impossible. Instead, as a continuous transition is approached from below, 
the particular type of ordering which distinguishes the two phases becomes 
less and less pronounced until at the transition - at the critical point - it 
finally vanishes entirely. In quantitative terms this gradual disappearance of 
the ordering which distinguishes the two phases is usually modelled by an 
order parameter whose average value is finite below the transition and zero 
above it. 

Another important feature of a continuous phase transition is the behaviour 
of the correlation length of the system: it diverges at the critical point. A 
correlation length can be thought of as the length scale on which the be­
haviour of the constituent parts of a system begin to differ markedly from 
the average values for the whole system and so is related to the length scale 
over which different parts of the system interact with each other. Hence, 
when the correlation length is divergent the interactions between different 
parts of the system are by no means short range - each part of the system 
is interacting with every other part. It is the coupling of so many degrees of 
freedom that make critical point phenomena so interesting. Since both the 
roughening and superfluid transitions are continuous, attention is concen­
trated on the theoretical framework which has been developed to describe 
this subset of phase transitions. 

Traditionally the subject has been tackled by the formulation of a phe­
nomenological model which is in reality a caricature of the physical system 
which it is supposed to represent. Of course the huge number of degrees of 
freedom makes an exact formulation in terms a complete description of all 
the particles involved out of the question - the hope is that the physics 
responsible for the change in behaviour at the transition can be encapsu­
lated in the model. The first models of this type to be developed were for 
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magnetic systems and were written in terms of a discretised system of spins 
based on a lattice. In fact very similar methods can be used to describe a 
whole variety of systems when the spin variable is generalized to become the 
order parameter of the system - an approach known as Landau-Ginzburg 
theory. The models take the form of an expression for the energy of the sys­
tem which is known as a Hamiltonian. However, it is the classical behaviour 
which is modelled since the fluctuations that occur on a macroscopic scale in 
systems close to criticality drown their quantum counterparts. The Hamilto­
nian is written using a set of coupling constants to represent the interactions 
of neighbouring spins on the lattice, next nearest neighbours and so on. 

In very simple cases these models can be solved analytically for the parti­
tion function, though the solutions themselves are anything but trivial (the 
solution of the two-dimensional Ising model was a tour de force [38]), but 
in the vast majority of cases an approximate technique is resorted to. In 
the past mean field theory, low or high temperature expansions and transfer 
matrix methods were all popular choices [39]. Although it was found that 
the results obtained depended only very loosely on the details of any partic­
ular model (a property which could not be explained with these methods), 
the results obtained for the critical exponents by these diverse methods were 
only rarely in good agreement with experiment - as a cursory examination 
of any textbook on the subject that predates 1970 will show. 

Progress towards a deeper understanding was made in 1966 when Kadanoff 
introduced the concept of block scaling [40]. However, what was required 
was a comprehensive framework of ideas for handling the models of critical 
systems and in particular their equilibrium fluctuations. Such a framework 
- known as the renormalization group - was proposed by Wilson in 1971 
[41 ]. 

In this chapter only a broad outline of the philosophy of the renormalization 
group method is given as a large number of excellent reviews are available in 
the literature [42, 43, 44, 45, 46]. The modern theory of critical phenomena 
in two-dimensions is then considered. It represents a particular success of 
renormalization group theory because the strength of the typical fluctuations 
in two-dimensions is so large that mean field methods prove highly inaccu­
rate. Next the Kosterlitz-Thouless transition is discussed. It is a prime 
example of a two-dimensional phase transition and is thought to describe 
both the superfluid transition in two dimensions and also the roughening 
transition of crystal surfaces. 

2.1 The Renormalization Group 

2.1.1 The Scaling Hypothesis 

The divergence of the correlation length at criticality seems at first a serious 
complicating factor, implying as it does that all parts of the system are 
effectively coupled together. However, there is a powerful physical insight 
to be gained from the behaviour of the correlation length: it means that 
there is no longer any special length scale defined in the system, and so the 
system can be regarded as scale invariant. This way of looking at critical 
systems was first suggested by Kadanoff [40], who went on to show how 



2 Unt'tcal Yhenomena 7 

the critical properties of a system could be understood, to some extent,. 
by rescaling. He considered a lattice based spin system which was divided 
into blocks and described by a set of spins with an associated set of coupling 
parameters. The spins of each block were averaged over, each being replaced 
by a single new spin, and so a new spin system could be obtained for which 
a new set of coupling parameters could be derived. Thus, in effect, a scale 
transformation was performed; by comparing the two systems it was possible 
to make inferences about the nature of the coupling parameters at the critical 
point, based on the assumption that the system was scale invariant at the 
transition. 

The renormalization group method generalizes the idea of rescaling. There 
are three main steps in the procedure. Firstly, a small tranche of the degrees 
of freedom in the partition function are summed over (in real or momentum 
space), then the partially summed partition function is rewritten in the 
same form as the original one; finally the parameters in the old and new 
Hamiltonians are compared, leading to relations which describe how they 
change with scale. 

In the case of a Hamiltonian, H, describing the interactions of spins Si on a 
given lattice via a set of coupling constants {Kn}(which contain subsumed 
within them the factor l/kBT), the renormalization procedure maps the 
original lattice onto another one with a rescaled linear dimension and spins 
S~ related to the original ones by some linear function, S~ = f (Si) [44]. 
The probability of a given distribution of the spins, [S~], leads to the unique 
definition of a Hamiltonian for the rescaled system, H', which is related to 
the original Hamiltonian by the relation 

e-1i'[S~l = L II c5 (S~ - f (Si) liEn) e-1i [Sil. 

[Sil n 

(2.1) 

Thus given a configuration of the original spins [Si], there will be a unique 
configuration of the rescaled spins for which the delta function will be non-
zero; hence 

Z = L e-1i [Sil = L e-1i'[S~l. (2.2) 
[Sil [S~l 

The value of the partition function is preserved on rescaling. 

However, the values of the couplings are changed: if the scaling relations 
for the coupling parameters in the Hamiltonian are written as differential 
equations then a flow surface can be determined in the parameter space and 
the associated fixed points of the system calculated. These points represent 
the special sets of values of the coupling parameters, {K*}, which are un­
changed by further applications of the renormalization group, R, and so are 
described by the relation 

R [{K*}] = {K*}. (2.3) 

The parameters may flow towards, or away from, one or other fixed point 
as the renormalization group is successively applied; or they may follow a 
complex limit cycle in the parameter space. However, it is the fixed points 
which are of greatest interest as each one represents a critical point for the 
system. 
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It is now possible to see why complex real physical systems can be described 
to some effect using crude models and furthermore why such models, which 
differ in the number and size of the microscopic coupling parameters in­
volved, often show the same critical behaviour. These properties, which are 
known collectively as universality, arise because the critical properties of a 
system are entirely determined by the characteristics of the fixed points that 
exist in the parameter space of the model. The starting point in parameter 
space and even its exact dimensionality do not dictate the critical behaviour 
that a model describes: it is instead the fixed points and the flow of the 
parameters nearby which determine the critical properties. 

2.1.2 Scaling Variables 

In order to investigate the behaviour of the parameters of a particular model 
close to a fixed point the simplest method is to linearise about that point. 
Consider again a Hamiltonian for a spin system containing a set, {Kn }, of 
constants which couple various spins [45]. If the constants are transformed 
to the set {K~} by application of the renormalization group and have the 
values {K~} at the fixed point, then close to the fixed point, 

K~ - K~ = LTab(Kb - K;) (2.4) 
b 

where the matrix T has eigenvalues ),i, and eigenvectors ¢n, defined by: 

L ¢~Tab = ),i¢t . (2.5) 
a 

One may then define the scaling variables of the system, Ui, as linear com­
binations of the deviations of the coupling constants from their fixed point 
values: Ui - 2:a ¢~(Ka - K~). By definition then, the linearised renormal­
ization flow equations for these quantities are multiplicative and take one of 
the following three forms: 

(2.6) 

(2.7) 

(2.8) 

where 1 is a renormalization parameter which defines the change in length 
scale when the renormalization group is applied and an is always a positive 
number. The naming of variables in renormalization group theory can be 
said to be non-intuitive. In eqn (2.6) the scaling variable Ui reduces steadily 
and will eventually vanish as scaling proceeds: operators which couple to 
scaling variables with flow equations like this are known as irrelevant, their 
exact behaviour does not affect the criticality of the system. The system 
will eventually flow to the critical point irrespective of the initial values of 
irrelevant scaling variables. Eqn (2.7) illustrates a relevant scaling variable: 
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Critical Line 

Figure 2.1 Critical surface and flow lines of a system described by two pa­
rameters Kl and K2. The dotted line represents the trajectory in parameter 
space which is taken as one of the physical variables of the system is tuned 
(after [45]). 

these variables increase close to the fixed point and their presence tells us 
that a phase transition will not occur unless such variables are initially zero. 
Heuristically one may think of relevant variables as analogous to those quan­
tities which must be tuned in an experiment in order to reach a critical point. 
Finallyeqn (2.8) illustrates the behaviour of a marginal scaling variable: to 
first order it remains the same as the fixed point is approached. The lowest 
order (non-zero) behaviour of marginal variables is frequently crucial in de­
termining exactly when criticality occurs and the presence of such variables 
necessitates a higher order expansion about the fixed point. 

In practice when renormalizing a model Hamiltonian for a system one must 
include all operators which are marginal and those which have the potential 
to become relevant when variable parameters reach certain values. How­
ever, under certain circumstances one may omit seemingly relevant opera­
tors without altering the physics of the system. Such ignorable operators 
are known as redundant and can be removed from a Hamiltonian by a shift 
in the coordinates of the parameters [45]. 

For a system described by n' parameters, of which say n are relevant close to 
a given fixed point, there will be a (n' -n)-dimensional hypersurface of points 
where the flow is attracted to the fixed point: this is the critical surface of 
the system. In practice when an experiment is tuned by adjusting physical 
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variables such as the temperature or magnetic field, a particular trajectory 
is taken through the parameter space whose exact form is determined by 
the dependence of the parameters, {Kn }, on the physical variables. A phase 
transition occurs when the trajectory dictated by the change in the physical 
variables intersects the critical surface. Figure 2.1, shows this process in 
detail for a system described by two parameters, Kl and K 2 . The system can 
be analysed in terms of one relevant and one irrelevant scaling variable which 
are obtained from the parameters by an orthogonal transformation and lead 
to a critical surface which is simply a line. The dashed line represents the 
tuning of a single physical variable transformed into the parameter space -
criticality occurs when it crosses the critical surface. 

2.1.3 Landau-Ginzburg Theory 

The description of the mechanics of the renormalization group given so far 
has been in terms of lattice based spin models which can be rescaled in a 
very straightforward way. However, there is a more general way of writ­
ing down the Hamiltonian of a system close to a phase transition which is 
also suitable for a renormalization group approach. This method, known as 
Landau-Ginzburg theory, is based around the order parameter of the system. 
It leads to a representation of the critical behaviour of condensed matter sys­
tems in terms of continuous classical fields to which the whole framework of 
functional integration and Feynman diagrams can be applied. 

The first step in a Landau-Ginzburg theory is to identify the order parameter 
of the system - a step which in many cases proves non-trivial [47]. The low 
temperature phase almost always has a lower symmetry than the higher 
temperature phase and this is reflected in the nature of the order parameter 
which is uniform in the lowest energy state of the ordered phase. The order 
parameter need not be simply scalar; in fact except in the simplest cases it 
has two or more components, in particular the order parameter for superfluid 
helium was found to be a complex two-parameter field. Because it is the 
macroscopic fluctuations of the system which are of primary interest close to 
a phase transition, it is sufficient to define the order parameter as a classical 
field, that is as the continuous limit of a set of variables defined as the average 
of the parameter over cells which are large on an atomic scale. This method 
automatically introduces a minimum size for the fluctuations of the order 
parameter field, the size of the coarse graining cell, which is not defined 
exactly by the theory. The assumption is that close to a phase transition it 
is the long wavelength fluctuations which dominate the behaviour. 

Having identified the order parameter of the system the next step is to write 
down a phenomenological Hamiltonian [48]. This is done in two parts: firstly 
there is a gradient term which reflects the preference the system has for a 
uniform order parameter field (this is the 'free' part of the Hamiltonian) and 
secondly a series of terms in powers of the order parameter, represented here 
by f [¢(r)], which are invariant under application of the symmetry group of 
the ordered phase 

(2.9) 
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The functional f [¢( r)] models the coupling between the degrees of freedom 
in the system, whilst the gradient term describes the long wavelength fluc­
tuations in the order parameter field. 

The partition function can be written as a functional integral over the order 
parameter field weighted by the Boltzmann factor arising from the Hamil­
tonian: 

(2.10) 

Renormalization proceeds by performing a partial integration, that is by 
summing over a thin tranche of the degrees of freedom in the system. This 
is often most conveniently done by writing the expression for the partition 
function in terms of momentum space and then integrating out a narrow 
section at the high momentum end. When the gradient operator is the most 
relevant the system is in its disordered phase: physically the ordering is 
destroyed by the long wavelength fluctuations (Goldstone modes). However, 
when the coupling term is the most relevant the system is in a more ordered 
state whose properties depend on the exact form of the coupling. 

There is, however, a complication to this rather elegant scheme: the presence 
of defects or disorder in the order parameter field. Essentially a defect is a 
tear in the order parameter field. The most interesting cases are those tears 
which cannot be repaired by a continuous deformation of the field - the 
topological defects [47]. In order to understand the behaviour of a system at 
a continuous phase transition it is essential to identify the topological defects 
and decide whether they playa role in mediating the transition (as opposed 
to the Goldstone modes). If their behaviour is relevant then great care 
must be taken to include them explicitly in the phenomenological model. 
The Kosterlitz-Thouless transition in superfluid films is the best example 
of a defect mediated phase transition and the renormalization procedure 
described in this chapter explicitly includes the topological defects. 

The Landau-Ginzburg model also has the advantage that it may be extended 
to model the dynamics of systems close to equilibrium. This is usually done 
by formulating a Langevin type equation in which the order parameter re­
laxes to equilibrium under the action of a generalized potential, arising from 
the phenomenological Hamiltonian, and the effects of random fluctuations 
due to the presence of a heat bath. The exact form of the equation of mo­
tion chosen depends on whether or not the order parameter is conserved and 
whether the dynamics are purely dissipative or contain reactive coupling 
between dynamical variables. 

The simplest possible dynamical model is known as model A [49]. It is 
applicable to cases where there is no conservation law for the order parameter 
field. In this case the Langevin equation has the form 

. 81-£ [¢(r)] 
"l¢(r) = - 8¢(r) + R, (2.11) 

where R is a random noise term which has a Gaussian white spectrum, 

(R(r, t)R(r', t')) = 2D8(r - r')8(t - t') (2.12) 



2 Critical Phenomena 12 

and D is the diffusion constant. Models such as this may also be renormal­
ized though the procedure is less well known than those involving partition 
functions in the form of functional integrals. The principle advantage of 
these so-called time dependent Landau-Ginzburg models is that they may 
extended to explicitly include the effects of the external probing forces which 
are frequently used to study the behaviour of systems close to criticality. 

Landau-Ginzburg theory has provided the basic framework and language 
which is used to analyse the behaviour of systems close to a phase transition. 
However, the Landau-Ginzburg method should be seen more as a broad 
outline rather than an explicit prescription for modelling critical behaviour. 
In particular, the approaches to the theory of the superfluid transition in 
thin films and the roughening transition of crystal surfaces described in this 
thesis both follow the spirit of the Landau-Ginzburg theory whilst differing 
somewhat in detail. 

2.2 Transitions in Two-Dimensions 

2.2.1 The Lower Critical Dimension 

Two-dimensional systems display particularly interesting critical properties 
because the equilibrium fluctuations are much stronger than in three dimen­
sions and yet they are not so overwhelming that the system is perpetually 
disordered as happens in most models with just one dimension. The case 
of a two-dimensional system with a continuous symmetry was considered by 
Mermin and Wagner. They proved that such systems cannot have a sta­
ble broken symmetry state at any finite temperature, which is equivalent to 
saying that there can be no long range order in such systems [5]. 

However the case of a two-dimensional system with a two component order 
parameter is a special case of Mermin and Wagner's theorem. It turns out 
that in this case the Landau-Ginzburg model leads to an order parameter 
correlation function which decays algebraically, 

where the parameter 'T] depends on the temperature. Whilst a correlation 
function of this form undoubtedly precludes long range order, it does not 
have the form typical of disordered phases which is 

(¢(O)¢(r)) Irl-+oo f"V e-Irl/~+, 

where ~+ is the correlation length of the system. The curious state char­
acterized by an algebraic decay of an order parameter field is known as 
quasi-long-range order. Since it cannot persist indefinitely as the tempera­
ture is raised, a phase transition must occur to the totally disordered state 
in which the order parameter field decays exponentially. 

The exact nature of the transition was elucidated by Kosterlitz and Thou­
less who showed that the presence of a small but finite density of topolog­
ical defects could lead to an algebraic decay in the order parameter field, 
whilst a proliferation of such objects destroyed all order [1, 2, 3]. In fact 
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the work of Kosterlitz and Thouless proved applicable to a diverse group of 
two-dimensional phase transition which share the property of a continuous 
symmetry in the 0(2) group. 

2.2.2 Kosterlitz-Thouless Theory 

The essential properties of all the systems in the Kosterlitz-Thouless univer­
sality class can be described either in terms of a two-dimensional Coulomb 
gas model (an approach which emphasizes the importance of the topological 
defects) or as a sine-Gordon field theory. However, the two different ap­
proaches, though formally identical, actually involve rather different physical 
pictures. 

The two-dimensional Coulomb gas model describes the behaviour of a neu­
tral gas of classical charges confined to a two-dimensional world and is de­
fined by the Hamiltonian: 

HCG = - L qiqj In I ri - rj I + 2nJl , 
(ij) a 

(2.13) 

where qi = ±q and ri are the charge and position of the ith particle respec­
tively; a is the particle radius; Jl the chemical potential; n the number of 
particles of each sign in the gas and the summation runs over all the pairings 
of the particles. 

The two-dimensional Coulomb gas model is dual to another well known 
phenomenological model, the sine-Gordon model, even though the latter is 
formulated in terms of a field variable rather than discrete particles [9]. The 
Hamiltonian of the sine-Gordon model has the form 

HSG 1 J 2 2 2y J 2 kBT = 87r2K d r(\7¢(r)) - a2 d rcos¢(r), (2.14) 

where y = exp( -Jl/kBT) and the Kosterlitz parameter K is defined by the 
relation 7rK = q2/kBT. The duality of the two systems means that the 
critical properties of all the systems which may be described by either model 
will be the same. 

The two-dimensional Coulomb gas model is of interest because it undergoes 
a phase transition from an insulating state to a conducting plasma state. 
At low temperatures the charges form closely bound dipolar pairs; however, 
at the transition the charges spontaneously unbind and move independently 
of each other as in a conductor - they are said to be free. Kosterlitz and 
Thouless calculated the transition temperature heuristically by calculating 
the energy required to create free charges. The internal energy of an isolated 
charge of strength q and size a, is q2 In( L / a), where L is the linear dimension 
of the surface to which it is confined. Since the entropy of the particle is 
approximately kB In(L/a)2, the free energy is 

F = In (~) (q2 - 2kBT). (2.15) 

In the simplest possible picture the transition to a conducting state occurs 
when the free energy of a single charge becomes less than zero, hence the 
transition temperature is TKT = q2 /2kB . 
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Kosterlitz applied the renormalization group to the two-dimensional Coulomb 
gas model and was thus able to give a far more detailed description of the 
transition [3]. Starting with a partition function of the form 

(2.16) 

he used a calculational scheme based on that developed by Anderson and 
Yuval for the Kondo problem [50]. The regions of integration are actually 
quite complicated: the ith region, D i , runs over all the possible positions in 
the plane of the ith topological defect. Thus Dl includes the whole plane, D2 
includes all but a region of radius a around the position of the first defect, 
rl, and D3 excludes only the two regions around the first two defects, etc. 

In order to make progress with the calculation, Kosterlitz made a number 
of assumptions about the system. Firstly he assumed that the fugacity, 
y, of the particles was small so that they could be considered as a dilute 
gas. Secondly he assumed that only particles of unit charge are present. 
Finally terms in the Hamiltonian that come from the interactions of charges 
of the same sign were ignored in the renormalization process as for small 
separations they make a negligible contribution to the partition function. 

Renormalization then proceeds by carrying out a small part of the integra­
tions and the core size is then rescaled to a + da. The effect is just to sum 
over contributions to the partition function from particles separated by dis­
tances between a and a + da. The final stage is to write the new expression 
for the partition function, obtained after the partial summation has been 
carried out, in the same form as the original one by introducing renormal­
ized parameters. The differences between these renormalized parameters 
and their original counterparts then lead directly to the recursion relations 
of the system, 

where dl = da/a. 

dy - = y{2 -7rK) 
dl 

(2.17) 

(2.18) 

The structure of the critical surface can be understood more clearly if the 
reduced variable x = 1 - 7r K /2 is introduced. Then the scaling variable can 
be eliminated and the resulting expression integrated to give the equation 
of the renormalization flow curves. Close to the fixed point at x = y = 0: 

y2 = 4!2 (x2 + C) , (2.19) 

where C is a constant. Figure (2.2) shows the flow of the recursion relations. 
There are two lines of fixed points in the critical plane: for initial values of 
x less than zero and small values of y, the value of y always tends to zero 
as scaling proceeds, while for all other initial conditions y tends to infinity 
as scaling proceeds. The divergence of y signals a flow towards a trivial 
fixed point of the system at infinity, but the line of fixed points along the 
axis x < 0, y = 0 in fact represents a line of well defined critical points. 
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Figure 2.2 Renormalization flow of the Kosterlitz recursion relations close 
to the fixed point at x = y = 0 

The Kosterlitz-Thouless transition is marked by the separatrix of the basins 
of attraction of these fixed points. Since y is just the fugacity of a single 
charged particle, this implies (as expected) that there is a transition from a 
state where there are no free charges on large length scales to a state where 
they proliferate. 

Kosterlitz also calculated the form of the correlation length, ~+, in the tran­
sition region. He found that it diverged faster than any power above the 
transition and was infinite for all temperatures below it, 

~+ f"V exp (bt- 1
/
2

) t > 0 

00 t < 0 (2.20) 

where t = (T - TKT) IT and b is a constant which he found to have a value 
of approximately 1.5. This result is of course consistent with the idea derived 
from the renormalization flow that the low temperatur~ phase is a line of 
critical points. 



Chapter 3 Superfluid Films 

One of the most important achievements of the Kosterlitz-Thouless theory 
was the understanding it provided of superfluidity in thin films. Kosterlitz 
and Thouless recognized that the behaviour of superfluid films is controlled 
by the topological defects involved: in this case vortices. The presence of 
free vortices in a fluid film leads to the decay of superflow via the mecha­
nism of phase slippage; but vortices of opposite sense exert an attraction on 
each other and where this is strong enough the film contains only closely 
bound vortex pairs which do not degrade the superflow. Thus Kosterlitz 
and Thouless postulated that the superfluid transition in films arose from 
the unbinding of vortex pairs. They wrote down a phenomenological Hamil­
tonian for the system solely in terms of the vortices, a Hamiltonian which is 
identical to that of a two-dimensional Coulomb gas. 

This chapter contains a review of the Kosterlitz-Thouless transition as ap­
plied to superfluid films. It starts with a detailed exposition of how the 
superfluid transition in films may be described in terms of the behaviour of 
its topological defects. Then there is a derivation of the Kosterlitz recursion 
relations using the simplified 'dielectric picture', which as will be discussed, 
is of questionable validity despite its proliferation throughout the literature. 
This is followed by a detailed description of the linear response theory of Am­
begaokar et al. (AHNS) [7, 8] and its application to the classic experiments 
on helium films performed by Bishop and Reppy [51]. Then a description of 
the alternative phenomenological linear response theory due to Minnhagen 
[14] is given. Finally there is a discussion of some of the problems with the 
theories. The majority of the material in this chapter has been obtained 
from the numerous excellent reviews of the field [14, 32, 33, 9, 43, 52]. 

3.1 Superfiuidity in Two Dimensions 

Superfluidity in bulk 4He is understood in terms of a Bose condensate. 
Crudely stated, a significant fraction of the atoms in the superfluid com­
ponent condense into the ground state and become delocalised. The Bose 
condensate is described by annihilation and creation operators, 'ljJ and 'tjJ*, 
and the order parameter is defined as the average value of the annihilation 
operator, \Il(r) = ('ljJ(r)) . This order parameter is a complex quantity, it lies 
in the 0(2) symmetry group and is usually written explicitly in terms of a 
magnitude and phase 

\Il(r) = 1\Il1 ei¢(r). (3.1) 

The properties of the superfluid depend crucially on the fact that there is 
phase coherence (i.e. long range order in the phase, ¢), as well as uniformity 
in the magnitude of the order parameter [50]. The local superfluid velocity, 

16 
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Vs, is given by the gradient of the phase at a point, 

1i 
Vs = -\1¢. 

m 

17 

(3.2) 

However, in two dimensions the Mermin-Wagner theorem predicts that long 
range order will be destroyed by phase fluctuations in the system for all finite 
temperatures because the phase displays a continuous symmetry. Therefore, 
until the work of Kosterlitz and Thouless in the early seventies, there was 
no convincing theoretical description for the superfluid behaviour of thin 
unsaturated helium films. Yet the superfluidity of helium films was known 
to occur as it had been observed experimentally as early as 1950 [53]. The 
validity of the Kosterlitz-Thouless approach was widely accepted after Am­
begaokar et al. extended the theory to the finite frequency regime, which 
allowed direct comparison with a whole series of sophisticated experiments 
performed using superfluid films incorporated into torsional oscillators. 

The key insight of Kosterlitz and Thouless was the realization that it was 
the statistical mechanics of the vortices that played the dominant role in 
mediating the transition. They started from a Landau-Ginzburg Hamilto­
nian for the system, which because of the underlying 0(2) symmetry, has 
the form 

1£ [w] = i d2
r ( - ~ Iwl2 + ~ Iwl4 + ~ I\1WI2) , (3.3) 

where W is the order parameter of the system; G', f3 and J are functions 
of temperature, representing the fluctuations in the system on very short 
length scales which are averaged over in the process of coarse graining. The 
parameter which controls the extent of the coarse graining is the cut-off, A, 
which sets the minimum length scale in the problem. 

The probability of the system being in an equilibrium state described by 
W (r) is then simply 

(3.4) 

The simplest possible treatment of this system involves ignoring fluctuations 
in the magnitude of the order parameter: that is regarding Iwl as a constant. 
This approximation leads to a Hamiltonian of the form 

k:T = ~ J d2
r K (\1¢)2, (3.5) 

where K = J Iwl2 /kBT. The momentum density of a superfluid, gs, IS 

defined by the relation [32] 

(3.6) 

(3.7) 

so that if it is written in terms of a microscopic superfluid density, gs = p~ v s, 
then this density is P~/kBT = (mj'h)2 K. 

A simple Hamiltonian like that defined in eqn (3.5) leads to a correlation 
function for the order parameter that decays algebraically as [32], 

(3.8) 
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which, as described in chapter 2, is the signature of quasi-long-range order. 
However, that is as far as this model goes: it does not undergo a transition to 
another phase where the correlation function decays exponentially. What is 
described in this model is the behaviour of the long wavelength fluctuations 
in the phase (the Goldstone modes of the system). They destroy the long 
range order in the system at all finite temperatures, but they do not lead to 
a phase transition. 

The next simplest model that can be formulated still ignores the effect of 
small fluctuations in the magnitude of the condensate wavefunction, but 
large fluctuations are included. Large fluctuations of the order parameter 
which cause it to vanish at discrete points are known as vortices. They have 
an important effect on the phase of the wavefunction in their immediate 
vicinity: the phase is undefined at the vortex core but away from the core 
the sum of the phases around any loop enclosing a vortex is quantised. 

In order to include the effects of these large fluctuations in the magnitude of 
the wavefunction, the phase field is divided into two parts: a field entirely 
due to vortices, <p(r), and a second vortex free field, which contains the phase 
fluctuations, '!9(r): 

¢(r) = <p(r) + '!9(r). (3.9) 

The two parts are distinguished by the values of the integrals of their gradi­
ents around closed paths. For the vortex field 

£ \1<p.dr = 21rn, (3.10) 

for some path C, surrounding a number of vortices where n is an integer 
equal to the algebraic sum of the winding numbers of the vortices enclosed 
by the contour. In contrast, the corresponding integral for the vortex free 
part is £ \1'!9.dr = 0, (3.11) 

for all paths R. The vortex field contains all the singularities in the order 
parameter field, by construction, and so must be treated carefully. The vor­
tex free field, on the other hand, is smoothly varying. In addition, the vortex 
field is the minimum energy configuration which contains a given distribu­
tion of vortices - this is possible because the minimum energy configuration 
differs from all neighbouring configurations by a continuous transformation 
which can of course be included in the vortex free part. 

Thus if vortices are explicitly allowed for in the Hamiltonian (eqn 3.5), it 
takes a modified form which may be separated into two parts due to vortices 
and phase fluctuations respectively, 

~ J d2r K (\1<p + \1'!9)2 

~ J d2r K (\1<p)2 + ~ J d2r K (\1'!9)2 

1lv 1lp -+-. 
kBT kBT 

(3.12) 

(3.13) 

(3.14) 
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The cross term vanishes because of the constraint on V{), eqn (3.11) [54]. 
Thus the vortex contribution can be totally decoupled from the spin wave 
contribution, which as has been discussed, is essentially uninteresting and 
does not lead to a phase transition. This leaves the vortices which may' be 
treated as discrete, localized, entities with an interaction potential and a 
chemical potential which is simply the core energy, Ee, of a vortex. As is 
demonstrated in appendix A, the inter-vortex potential is logarithmic and 
so the contribution to the Hamiltonian from vortex excitations with a core 
radius of a may be written as 

k
1-l

V

T 
= 27r2 K J r d2rd2r'nv(r)G(r - r')nv(r') + kEc J d2r Inv(r)1 

B J1r-r/l>a BT 
(3.15) 

where nv(r) is the position density of vortices of unit strength at rand 
G(r - r') the Green's function for the interaction, which takes the form 

G(r) = _In(r/a). 
27r 

(3.16) 

The core energies have to be added on separately because they represent the 
energy associated with the points where the magnitude of the condensate 
wavefunction drops to zero and so the phase is undefined. 

Kosterlitz and Thouless predicted that at low temperatures the vortices in 
a superfluid film are all present as closely bound pairs and that the super­
fluid transition is caused by the unbinding of these pairs - leading to the 
presence of free vortices which cause phase slippage, rapidly destroying the 
superflow. Because the inter-vortex potential is logarithmic it is identical 
to the Coulomb interaction between charges when they are confined to two 
dimensions: if the identification q2/kBT {:} K is made, then the Hamilto­
nian above (eqn 3.15) is equivalent to that of the two-dimensional Coulomb 
gas given in chapter 2. This means that the phase transition in superfluid 
films is entirely analogous to the conductor/insulator transition in the two­
dimensional Coulomb gas and indeed it is usually very convenient to use the 
language of electrostatics to describe the more exotic superfluid system. 

3.2 The Dielectric Picture 

A simple way of deriving the Kosterlitz recursion relations is to use an it­
erative mean field theory method, first derived by Kosterlitz and Thouless 
[1], which exploits the electrostatic analogy. This approach, known as the 
dielectric picture, is considerably simpler than the renormalization group 
method outlined in the previous chapter - both conceptually and in terms 
of mathematical content. Though this alternative picture was first consid­
ered by Kosterlitz and Thouless, it was Young who showed that it leads to 
the Kosterlitz recursion relations [55]. The dielectric model is probably the 
most common form in which the Kosterlitz-Thouless transition is described 
in the literature. However, despite the simplicity and consequent attractive­
ness of this model there is a serious drawback to this approach, as hopefully 
will become clear. 

This derivation makes use of the analogy between vortices in helium films 
and charges in the neutral two-dimensional Coulomb gas model since it is 



3 Superfluid Films 20 

easier to work in the language of electrostatics: the implications for the 
helium system of the results obtained can then be deduced. The starting 
point is the expression for the energy of a pair of isolated charges, ±q , which 
are separated by a distance r in a two-dimensional world, 

Uo(r) = 2q2ln (~) + 2Ec , (3.17) 

where a is the core radius of the charge and Ec the chemical potential, the 
charges are analogous to vortices with the magnitudes of the charges cor­
responding to the winding numbers of the vortices. In the two-dimensional 
Coulomb gas this pair-energy is modified by the presence of intervening pairs 
of smaller separation. The effect of these smaller dipoles can be taken into 
account by introducing a dielectric constant into the potential; the dielec­
tric constant is defined with respect to an electric susceptibility, which itself 
depends on the density of pairs of a given size and their polarizability. Thus 
the static dielectric constant, 'E, may be defined by the relation 

'E(r) 1 + 47rx(r) 

1 + 47r r d2r'r(r')a(r') 
Ja<lr'I<T 

(3.18) 

(3.19) 

where r(r') and a(r') are the number density and polarizability of charge 
pairs of separation r' respectively. Crucially the integration runs from a 
to r: small pairs polarize larger pairs but not the other way around. This 
assumption, known as the one-sided polarization approximation, is usually 
justified by observing that pairs with separation r' » r do not screen the test 
pair [55]. However, the effect of pairs of separation r' ~ r is not represented 
accurately by eqn (3.19) [56]. 

The polarizability is obtained by considering a single dipole of moment qr = 

Po, in the presence of a weak external field Em - such as that which might 
be induced by pairs of larger separation. The average dipole moment in the 
direction of the field is (po cos ()), the average being taken over all orientations 
weighted with the Boltzmann factor for the interaction energy -PoEm cos (), 

(Po cos ()) 
J g7r d(}po cos (}ePO Em cos () / kB T 

Jg7r d(}epoEm cos () / kB T 

P5 Em 

2kBT' 

since the field Em is weak. Thus the polarizability is given by 

( ) 
_ (Po cos ()) _ q2r2 

a r - Em - 2kBT· 

(3.20) 

(3.21) 

(3.22) 

The interaction between two charges (eqn 3.17) can therefore be modified to 
take into account the effect of smaller pairs, thus 

iT dr' 
Uo(r) = 2l '_( ') + 2Ec· 

arE r 
(3.23) 
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In equilibrium the number density of pairs is given by 

r(r) = ~e-Uo(r)/kBT 
a4 

(3.24) 

Y5 (-2q2 1r 
dr' ) 

a4 exp kBT a r''i(r') , 
(3.25) 

where the bare fugacity of a vortex is Yo = exp(-Ec/kBT), so that by 
substituting this into the original expression for the dielectric constant (eqn 
3.19) a self consistent equation can be obtained, 

-() 1 4 d2 , yoq r - q r 1 2 2 ,2 (2 2 1r' d" ) 
E r = + 7r r exp -- . 

a<lr/l<r 2kBTa4 kBT a r"E(r") 
(3.26) 

The Kosterlitz recursion relations then follow directly from this result, all 
that remains is to define the Kosterlitz parameter K in terms of the dielec­
tric function. This is readily achieved as the unrenormalized value of the 
parameter is given by 

hence 
K(a) 

K(r) = 'i(r) , 

so the equation for the dielectric constant (eqn 3.26) reads: 

(3.27) 

(3.28) 

(3.29) 

If the standard scaling parameter, l = In( r / a ), is then introduced the equa­
tion for K becomes 

[ ([I ) 
K(l)-l = K(O)-l + 47r3 10 dl'e4[' Y5exP -27r 10 dl" K(l") , 

so that, if the renormalized fugacity is defined as 

y(l) = YOe21exp ( -7r 10' dl' K(l')) , 

then 
K(l)-l = K(O)-l + 47r3 fo[ dl'y(l')2 

and the Kosterlitz recursion relations follow: 

dK- 1 
_ 4 3 2 

dl - 7r Y 

dy dz = (2 -7rK)y. 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

This method of derivation is essentially a mean field theory, and as a con­
sequence it is sensible to treat the results obtained with some caution. In 
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particular, the derivation involves the one-sided polarization approximation 
which is difficult to justify. Actually this dielectric model is just one of a 
range of similar models, each based on slightly dIffering assumptions, that 
lead to widely differing results [56]. This becomes clear from the equation for 
K which is obtained if the one-sided polarization assumption is not made, 

(3.35) 

as it becomes apparent that the function K (r) is no longer defined. 

The connection between the Kosterlitz recursion relations and the superfluid 
transition becomes clear when the charges of the Coulomb gas analogy are 
'translated' into the language of liquid helium: 

7rn2 pO 
q2 {::} 2 S . 

m 

The macroscopic superfluid density is obtained from the renormalized Koster­
litz parameter, Ps = (m/n)2 K(oo)kBT and so can be related to the micro­
scopic density via the dielectric function 

o 
Ps = E'(oo). 
Ps 

(3.36) 

Hence according to the recursion relations, the macroscopic superfluid den­
sity tends to a universal value as the transition is approached from below 
[57], 

2kBTm2 
lim ps = 2 

T-+TKT 7rn 
(3.37) 

At the transition and at all higher temperatures the macroscopic superfluid 
density vanishes: the film becomes a normal fluid. 

3.3 The Dynamic Theory of AHNS 

The linear response of superfluid films to an oscillating substrate was ini­
tially considered by Ambegaokar, Halperin, Nelson and Siggia (AHNS) [7,8]. 
Their theory proved to be in excellent qualitative agreement with experi­
ments. However, quantitative agreement was rather more difficult to achieve. 

When the substrate is set in motion it is assumed to couple perfectly to the 
normal component of the film (the film is assumed to be 'thin' in the sense 
that its depth is taken to be much less than the viscous penetration depth of 
the normal fluid), the vortices in turn are subject to the Magnus force due 
to the differences in velocity of the normal and superfluid components. This 
extra force can be seen as a modification of the intra-pair vortex potential, 
U(r, t), from the static form, Uo(r), so that 

27rnp~ 
U(r, t) = Uo(r) - r. (k x (vn - us)), 

m 
(3.38) 

where Vn is the local velocity of the normal component and Us the spatially 
averaged superfluid velocity. The easiest way of describing the dynamics of 
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superfluid films, again because of the resultant simplification in the notation, 
is to exploit the analogy with the two-dimensional Coulomb gas. The motion 
of the normal component is equivalent to an external electric field being 
applied across the Coulomb gas 

p~1i 
qEext {:} 27f-k x V n . 

m 
(3.39) 

However, the macroscopic field actually experienced by any pair of charges, 
E, will be modified from the value of the external field by the average dipole 
moment of all the other pairs in the system, this of course just corresponds 
to the term in Us in eqn (3.38), thus 

p~1i 
qE {:} 27f-k x (vn - us). 

m 
(3.40) 

Hence in the language of the Coulomb gas the charge dipole potential be­
comes 

U(r, t) = Uo(r) - qE(t).r. (3.41) 

A dynamic dielectric function is then defined as the ratio of the macroscopic 
field, E, to the magnitude of the external field: 

( ) 
_ Eext(t) 

c w - E(t) . (3.42) 

The dielectric function is a complex quantity: the imaginary part arises from 
the component of the macroscopic field which is 90° out of phase with the 
external field. 

It turns out that the dynamic dielectric function can be measured experi­
mentally, as is discussed later on in this chapter, so it emerges as the key 
quantity to be calculated in the theory. In terms of the two-fluid model, the 
dielectric function simply relates the velocities of the superfluid and normal 
components 

AHNS model the motion of the ith dipole using a Langevin equation for the 
dipole length, ri: 

dri 2D 
dt = - kBT VU(ri' t) + 11(t), (3.43) 

where D is the diffusion constant for the charges and 11 a noise term, with 
Gaussian white spectrum 

(3.44) 

An equivalent way of describing the dynamics [58] is to formulate a Fokker­
Planck equation for the number density of pairs f(r, t), 

_af_(r_,_t) = _2D_V. (f(r, t)VU(r, t) + kBTVf(r, t)), 
at kBT 

(3.45) 

with the effective potential 

U(r, t) = Uo(r) - qE(t)r cos O. (3.46) 
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When there is no external field applied the distribution evolves to an equi­
librium value obtained by simply equating the time derivative to zero, 

e-UO(r)/kBT Y6 -211" fl dl' K(l') 
ro(r) = = -e Jo . 

a4 a4 
(3.47) 

In the linear response regime, where the external field is sufficiently weak, 
ro(r) provides the starting point for the calculation of the full time depen­
dent distribution function. The electric field is taken to be a simple harmonic 
function of time Eext(t) = Eexte-iwt and, as described in appendix B, up to 
linear order the dynamic distribution function may be written as 

( 
qrE . t ) r(r, t) = ro(r) 1 + kBTg(r) cos ()e-~W + ... , (3.48) 

where E is magnitude of the local field and the function g(r) is obtained 
by substituting this expression back into the Fokker-Planck equation. The 
linear differential equation for g(r) then has the form 

. 2 d2 d 
'lwr 9 + r22 + (3 - rV')r~ - rV'g = -rV' 
2D dr2 dr ' 

where V(r) = UO/kBT. AHNS use the function 

14Dr-2 

g(r, w) ::: (14Dr-2 _ iw)' 

(3.49) 

(3.50) 

which is an approximation to the exact solution when rV' in eqn (3.49) is 
replaced by 4, its value at the transition [58]. 

The average dipole moment of the charge pairs can now be calculated, so 
that the external and local fields can be related 

E = Eext - 47r J d 2r qrr(r, t). (3.51) 

Substituting the linearised dynamic distribution function (eqn 3.48) into this 
equation and picking out the component along the direction of the external 
field and varying as e-iwt , leads to an expression for the dynamic dielectric 
function: 

47rq2 J c(w) = 1 + kBT d2rr2 cos2 
() g(r)ro(r). (3.52) 

In the static limit (w --+ 0) the dynamic dielectric function reduces to the 
static value, 

lim c(w) = €'(oo) 
w~o 

and so the association of the dielectric function to the ratio of microscopic 
to macroscopic superfluid densities is generalized to 

pO 
c(w) = S 

ps(w) 
(3.53) 

The analysis is complicated by the fact that in the dynamic regime the transi­
tion is broadened to include temperatures above the transition temperature. 
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According to the Kosterlitz recursion relations, above the transition temper­
ature the fugacity diverges on long length scales and in consequence so does 
the pair distribution function. Hence the expression for the dielectric func­
tion (eqn 3.52) becomes invalid on long length scales. AHNS resolved this 
difficulty by making a sharp distinction between 'bound' and 'free' vortices. 
They claimed that it made no sense to describe vortices separated by large 
distances as bound, so they imposed a cut-off on the integral in eqn (3.52), 
at r = ~+, corresponding to the largest pair size considered bound: 

(3.54) 

This rather complicated expression can, after some algebraic manipulation, 
be rewritten in the simplified form 

(3.55) 

without further approximation. 

They then added a contribution from the remaining free vortices, the density 
of which is chosen to agree with experiment via a fitting parameter F, 

(3.56) 

This leads to agreement with the static Kosterlitz-Thouless theory at the 
transition temperature for a value F = 1/27r. The free vortices are then 
simply assumed to diffuse in the macroscopic field leading, in the plasma 
analogy, to a conductivity of the form 

This gives an extra contribution to the dielectric function, the free vortex 
contribution, which is 

.47rU ( ) 
Cj = 1-. 3.57 

w 

The total dielectric function for the system is simply the sum of the 'free' 
and 'bound' contributions: 

(3.58) 

3.4 Experiments on Superfluid Films 

As mentioned above, the most successful experiments performed on films of 
helium were all performed at finite frequency. The most common experi­
ments involved incorporating a helium film into a driven torsional oscillator, 
though the propagation of third sound through a film has also been mea­
sured. 

The hydrodynamic propagation of third sound is of course a dynamic process 
and so can be analysed using the theory of AHNS and the results compared 
with those obtained from experiment [59, 33]. However, these studies give 
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far less information about the behaviour of the system close to the transition 
than torsional oscillator experiments and much less data is available for them, 
therefore they will not be considered in any detail here. 

Torsional oscillator experiments on helium films were first performed by 
Reppy's group at Cornell in the late 1970s [51]. The basic method is to coat 
a substrate with a thin film of helium and then attach it to a torsional rod, 
either as a series of discs, or as originally described by Bishop and Reppy, 
in the form of a rectangular piece of substrate coated with a film which is 
tightly wound around itself (a geometry known as a 'jelly roll'). As the 
torsional oscillator is driven back and forth the normal component of the 
film locks to the substrate and so moves back and forth, but the superfluid 
component does not couple and so remains stationary. 

The moment of inertia of a torsional oscillator which contains an area A 
coated with superfluid, of density Ps, is given by the expression 

J(T,w) = R2 (M + A (p - ps)) (3.59) 

where Rand M are the radius and mass of the oscillator system and p the 
density of helium. Because the moment of inertia depends on the superfluid 
density, changes in this density lead to a change in the period of the oscillator. 
Also as the normal component moves back and forth with respect to the 
superfluid component a Magnus force is exerted on the vortices, this leads 
to phase slippage and hence dissipation if the vortices are not tightly bound 
in pairs, so that the inverse Q-factor of the oscillator depends on the free 
vortex density. 

Viewing the experiment as a simple harmonic oscillator [51, 60], with mass 
M, spring constant k and an internal dissipation 'Y, in the absence of any 
superfluid it has an equation of motion of the form 

(3.60) 

where x(t) = xe-iwt is the displacement of the oscillator. In the presence 
of a finite macroscopic superfluid density, which is of course complex, this 
becomes 

( _w2 (M + Ap - p~Re (c-1
)) + iw ('Y + wAp~Im (c-1

)) + k) x = 0 

(3.61) 
so that, in the limit of weak damping, the period is 

M + Ap - p~Re (c-1) 
P = 27f 

( )

1/2 

k 
(3.62) 

If Po is the period in the absence of any superfluid component, then the 
period shift is given by 

26.P 
P 

(P
2 
-pJ) = Ap~R ( -1 ( )) 
p'2 M e c w . 

o 
(3.63) 
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The imaginary part of the superfluid density leads to a contribution to the 
dissipation so that if Qo denotes the Q-factor in the absence of superfluid, 

~Q-1 = Q-1 _ Q01 = Ajrm (_c-1 (w)) . (3.64) 

There is a further complication which prevents a direct application of these 
relations to the results of the experiments. It is found experimentally that 
the superfluid component does not remain entirely stationary during the 
experiment, a sizeable portion becomes mechanically entrained by imperfec­
tions in the substrate and oscillates back and forth. This effect is crudely 
accounted for by modifying the value of AIM by a factor (1 - X), where X 
is the proportion of the superfluid component entrained by the substrate. 

The value of X may be determined experimentally by the following procedure. 
As the cell is filled with helium the value of the period increases steadily until 
the film is thick enough to undergo a superfluid transition whereupon the 
period drops abruptly; then as more helium is added the period begins to 
increase again, but at a much slower rate than before. If it is assumed that 
the film is entirely superfluid then this increase in period with increasing 
helium density can be used to determine the proportion of the superfluid 
which is entrained [60]. The explanation usually given for this behaviour is 
a vague one which essentially attributes it to disorder in the substrate - in 
the case of the experiment using the 'jelly roll' configuration of the substrate 
it has been associated with a pinching together of different layers in the roll. 
It has been suggested that the x-factor arises from some geometrical feature 
of the system and this is supported by the fact that there seems to be no 
variation in its value with film thickness [60]. The theory of AHNS can 
only be applied to the experimental data after this effect has been taken 
into account and so within the context of their approach X is an empirical 
number for which there is no theoretical explanation. 

Since the late 1970s, a fit to the theory of AHNS has formed an essential 
part of almost every experimental paper on the dynamics of two-dimensional 
superfluid and superconducting systems. The first and most detailed account 
of the actual fitting procedure is contained in an appendix, written by Teitel 
and Ambegaokar, to the classic paper of Bishop and Reppy [51]. 

Their fitting procedure was rather complex, involving as it did 6 separate 
fitting parameters. Values of the transition temperature, TKT, the dynamic 
length scale, JD Iw, the magnitude of the free vortex density F, the mass 
sensitivity of the oscillator p~AI M and a parameter b which describes the 
trajectories of the recursion relations, were all chosen to obtain the best fit 
to the experimental results. 

The comparison of AHNS's theory with experiment which originally ap­
peared in Bishop and Reppy's paper is reproduced in figure (3.1). The left 
hand side of the dissipation peak drops to an anomalously high value -
something which has not usually been seen in subsequent experiments -
and this was accounted for by Teitel and Ambegaokar simply by the intro­
duction of a sixth fitting parameter which gave an additional contribution to 
the imaginary part of the dielectric function. It is worth noting that whilst 
the fit is good in most places, it certainly fails at the dissipation peak. 
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Figure 3.1 2!:lP/ P and !:lQ-l measured by Bishop and Reppy [51], com­
pared with the dynamic theory of AHNS and the prediction of the static 
theory (from [9]). 

AHNS's theory has been compared with the results of more recent experi­
ments on superfluid systems using a Mylar substrate [60, 61]. However, it 
has been found to provide a reasonable fit for only part of the data, despite 

. the use of 5 or 6 fitting parameters. This is because there are considerable 
quantitative differences between experiments with different thicknesses of 
film. 

3.5 Minnhagen's Theory 

An alternative phenomenological theory of the dynamics of superfluid films 
and other two-dimensional superconducting systems is due to Minnhagen 
[14]. Although similar to the AHNS framework in its general approach and 
structure, Minnhagen's theory differs in several important ways. A detailed 
comparison of the predictions of Minnhagen's dynamic theory with the re­
sults of experiments on superconducting wire networks and the theory of 
AHNS was performed by Wallin [62]. 

The behaviour of vortices below the unbinding temperature is readily mod­
elled using the logarithmic interaction potential: the difficulty arises, as was 
seen with the AHNS theory, in accounting correctly for the behaviour of the 
vortices above the transition temperature. Minnhagen also introduces the 
concept of free vortices, but does so in a carefully controlled way. There 
are three key quantities in the static version of his theory: the static dielec­
tric constant E the screening length A and the interaction cutoff Ac. The 
two quantities E and A represent. the effects of bound and free vortices re­
spectively on the bare vortex-vortex interaction whilst the length Ac is the 
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maximum possible length for the interaction. 

In Minnhagen's theory the limiting forms for the interaction potential be­
tween vortices are given by: 

Urcx yl c 
{ 

e-r/Ac/ IT A «r 
( ) - In (r / Ac) a < r « Ac 

(3.65) 

The screening length, A, is infinite below the transition temperature and 
finite above it: in the region of the transition, as T -+ TtT' it has the form 

(3.66) 

where C1 and C2 are constants and TKT is the transition temperature. In this 
formulation the ratio of the bare to renormalized Kosterlitz parameters is 
calculated using the Fourier transforms of the bare and screened interaction 
potentials; it takes the form 

K{oo) 
K{O) (3.67) 

In formulating the dynamics, Minnhagen proceeds in a similar way to AHNS, 
that is by using a Langevin type equation of motion. The charges respond to 
an effective force made up of a component due to vortex-vortex interactions 
and another due to an external, time varying, electric field. In the linear 
response description the dynamic dielectric function relates the external field, 
EO, to the effective field felt by the charges 

(3.68) 

The key question is how eqn (3.67) is modified by the dynamics. Minnhagen 
assumes that the only major effect of the dynamics is to introduce a new 
length scale, the diffusion length Aw = J D / w, into the problem. Pairs 
separated by distances less than the diffusion length respond adiabatically 
to the field, whilst pairs of larger separation do not have time to relax and 
their contributions to the renormalized quantities average out to zero. Thus 
the real part of the response function is given by 

--1 k2 + A~2 
E 

k 2 + A -2 k=X::;l 

~11+C 
E 1 + Y 

(3.69) 

(3.70) 

where C = {Aw/Ac )2 and Y = (Aw/A)2. The imaginary part is then obtained 
using the Kramers-Kronig relation [62], 

[ 
-1 ] ~12 Y - C 

1m c (w ) = E 7r 1 _ y2 In Y. (3.71) 

Wallin compared the approach of Minnhagen to experiment. He points out 
that one of the problems in making a direct comparison between the theory 
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Figure 3.2 Comparison of the theoretical curves for the real and imaginary 
parts of £(w)-l obtained by Wallin and the data of Jeanneret et al. (from 
[62]). The straight dotted line was used to obtain €,-1 as a function of 
temperature from the data. 

and experiments arises because the temperature dependence of the static di­
electric constant, €', is not determined by the model. However, this problem 
can be bypassed if the ratio of the imaginary to real parts of the dynamic 
dielectric function is considered. For an ideal system in which the cut-off 
length, Ac , is effectively infinite, a value for the ratio at the peak in the dis­
sipation (known simply as the peak ratio) of 2/7r is obtained. Furthermore, 
Wallin points out that the effects of disorder in a system may be modelled in 
this framework by introducing a finite value for Ac to represent the distance 
between inhomogeneities. This leads to a smooth decrease in the peak ratio 
to a value of about 0.2 when C = 5. 

Wallin also compared the temperature dependence of the real and imaginary 
parts of £-l(w) with a set of experimental data from a superconducting wire 
network, performed by Jeanneret et al. [27], which has a peak ratio of al­
most exactly 2/7r. Jeanneret et al. measured the complex a.c. conductance 
of networks of superconducting wires whose real and imaginary parts corre­
spond to the quantities 1m ( _£-1 (w)) and Re (£-1 (w)) respectively. Wallin 
found that a good fit of both real and imaginary parts could be obtained if 
the value of the parameter €,-1 was inferred from the straight line defined by 
the value of Re (£-l(w)) in the low temperature limit (see figure 3.2). The 
values of C 1 , C2 and TKT required to calculate A from eqn (3.66) were also 
obtained from the data. 
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3.6 Discussion 

The qualitative agreement between the theory of AHNS and the results of 
torsional oscillator experiments has never been disputed; the theory has been 
successful in providing a phenomenological understanding of the dynamic 
behaviour of superfluid films. Their work appears widely in textbooks with 
the experimental results of Bishop and Reppy and the dielectric picture of 
Kosterlitz and Thouless. However, the dynamic theory has a number of 
weaknesses. 

The most serious problem with the theory is the lack of precision in the 
predictions it makes: with up to six fitting parameters a whole range of 
curves could be obtained, without any reason why one should fit experiment 
better than the rest. The magnitude of the free vortex contribution and the 
crossover between the 'bound' and 'free' regimes in particular are obtained 
in an ad-hoc manner. Furthermore, despite the six parameter fit, the theory 
still does not fit at the dissipation peak and there is no obvious reason why 
it should fail in this region. 

There are also some rather more subtle difficulties which only become appar­
ent on a closer analysis of the experimental results. Most importantly there 
is nothing in the theory to account for the need to introduce the x-factor; 
more precisely it does not provide a natural way in which the disorder in 
the substrate can be described. The position was summed up by Reppy in 
a paper published in 1996, 'quantitative agreement between the imaginary 
part of PS and the predictions of the dynamic KT theory model has never 
been fully established for Mylar' [63]. 

Minnhagen's theory rests on a similar phenomenological basis to that of 
AHNS, but is rather more precise in the predictions it makes. It also has the 
advantage that it allows, to some degree, for the possible effects of substrate 
disorder. However, the prediction that the peak ratio should be 2/7r or less, 
although somewhat vague, is readily compared with experiment and proves 
to be inconsistent with much of the recent data available for superfluid films 
on Mylar for which the ratio varies from 0.3 to more than 2 [60, 61]. In 
addition, the need to obtain the value of the static dielectric function from 
the data is a serious drawback. 



Chapter 4 Refined Dynamics 

This chapter contains a description of how the theoretical picture of the 
dynamics of superfluid films developed by AHNS can be refined. The purpose 
of such a refinement is to help determine whether the lack of quantitative 
agreement between the theory of AHNS and the results of torsional oscillator 
experiments is due to imprecisions in the theory or because it fails to capture 
some of the essential physics of superfluid films. 

One of the most serious problems with the approach of AHNS is the need to 
add in the contribution of free vortices by hand. This is required because in 
the dynamic regime the transition is broadened and it is necessary to work 
in the region above the transition temperature where the use of Kosterlitz's 
recursion relations leads to a divergence of the fugacity on long length scales. 
One way of avoiding this problem is to derive recursion relations which are 
accurate to higher order in the fugacity. If such modified relations lead to a 
finite value of the fugacity under all conditions then in principle there would 
be no need to introduce an artificial cut-off on the integration over bound 
pairs and the additional free vortex term would not be needed. 

Recursion relations accurate to next higher order in the fugacity have been 
worked out for the Kosterlitz-Thouless transition by several groups. There 
is general agreement about the order and sign of the next term in the fu­
gacity recursion relation, but unfortunately estimates of its coefficient vary 
considerably. Most notable amongst the various calculations are those of 
Amit et al. [15], who used field theoretic methods to renormalize the sine­
Gordon model; those of Minnhagen [14], and those of Timm who provides a 
very appealing geometrical argument to support his derivation [13]. Timm's 
form of the higher order recursion relations is particularly attractive because 
they have a very simple form which leads to a well defined high temperature 
fixed point at which the fugacity is finite. Minnhagen's higher order recur­
sion relations are not considered here in any detail because his language is 
so different from that used by Kosterlitz and Timm. 

This chapter describes how Timm's ideas can be used along with other re­
finements to improve the theory of AHNS, before going on to discuss how 
effective the resulting predictions are in describing the results of recent ex­
periments. The first section contains a summary of how Timm obtained his 
recursion relations; this is followed by a description of how they may be used 
to calculate the dynamic response more accurately; next there is a compari­
son between the predictions of the refined theory and those of Minnhagen's 
dynamical theory; then there is a detailed comparison with the results of 
recent torsional oscillator experiments performed using Mylar and Grafoil 
substrates; finally there is a discussion of the successes and failures of the 
refined theory. 

32 
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4.1 Timm's Ansatz 

The derivation of the generalized recursion relations by Timm is appealing 
in its simplicity. Although his argument is intrinsically interesting [13], there 
is no evidence, a priori, to suggest that the coefficients he obtains are more 
likely to be correct than any of the other derivations in the literature. How­
ever, in refining the dynamic theory it is the existence of a well defined high 
temperature fixed point, at which the fugacity is finite, which is of crucial 
importance. Timm's recursion relations, unlike those of Amit et al., sat­
isfy this condition and so have been chosen to form the basis of the refined 
dynamic theory. 

Timm sought to generalize the Kosterlitz-Thouless theory in two ways: first 
by correcting for the presence of overlapping dipolar pairs which must occur 
at higher vortex densities; second, by using a dielectric approximation for 
the polarization of the vortex system. The higher order term in the recursion 
relation for the fugacity arises from the inclusion of a geometric correction 
factor in the calculation which accounts for the presence of overlapping pairs. 
If fo(r)d2 r is the number of pairs per unit area with separations between r 
and r + dr, then the total pair density is just 

(4.1) 

As described in the previous chapter, in the AHNS picture the static pair 
distribution function is given by 

2 rl 
f ( ) = Yo -271'" Jo dl' K(l') o r 4 e . 

a 
(4.2) 

Hence above the transition, when K(l) is renormalized to zero, J dl' K(l') 
tends to a finite value as 1 --+ 00 and so the total number density of pairs, 
N, is divergent. This result cannot be valid as the energy cost of a vortex 
pair is always at least 2Ec , which is of course finite. 

The apparent contradiction can be avoided by taking more care over the 
way in which vortices are assigned to pairs. To define the pairs uniquely, 
it is essential that they are formed in such a way that the total intra-pair 
separation is the minimum possible at each stage. Timm's ansatz is to intro­
duce a factor into the pair distribution function to represent the probability 
that the pairings have been assigned correctly. Of course the gas of vortices 
is a many body system in which each vortex will interact with every other 
vortex, but Timm treats the assignment of vortices to pairs as a bookkeep­
ing device. As long as the gas of vortices is neutral (in the sense that the 
algebraic sum of winding numbers is zero) it is possible to assign each of the 
vortices to a pair and so describe the interactions between vortices solely in 
terms of the interactions between pairs. Below the transition the pairings 
have physical significance since the vortices are bound together; in contrast, 
above the transition the pairings are purely a calculational device, but are 
valid so long as they are performed self consistently. 

Consider adding a pair of separation r to a system containing pairs of sep­
aration up to but not including r. The probability that the vortex of the 
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pair being added does not lie within a distance r' of an anti-vortex already 
present, which belongs to a pair of separation r', is just 

Hence the probability that the vortex is not placed too close to any pre­
existing anti-vortex is 

An identical factor is obtained from consideration of the placement of the 
anti-vortex, thus the pair distribution function may be written in the self 
consistent form 

r 0 (r) = ~~ exp ( -2rr 10' dl' K(l') - 4rr2 10' dl' e41' a4ro(l')) . (4.4) 

Then since y2(r) = r4ro(r), a new self consistent relation for the fugacity is 
obtained 

A new recursion relation for the fugacity follows immediately, 

(4.6) 

The second part of Timm's work concentrates on a possible way in which 
the recursion relation for K(l) can be generalized. He makes the observation 
that the standard dielectric picture (as discussed in the previous chapter) 
treats the dipoles as a continuous medium and so fails to include the effects 
due to the local field around any given charge. Timm suggests that this can 
be done using the Clausius-Mossotti type formula valid in two dimensions, 

_ 1 + Ea 
E = 3 ' - Ea 

(4.7) 

where Ea is the dielectric constant calculated previously, ignoring local field 
effects. 

Using Timm's method, the new fourth-order recursion relation for K(l) takes 
the form dK 3 2 2 ( K) dz = -47r Y K 2 - K(O) . (4.8) 

The generalized recursion relations obtained by Timm lead to a flow diagram 
which is significantly modified from the usual Kosterlitz-Thouless form (see 
figure 4.1). There are two important new features in the diagram: firstly, 
for temperatures above the transition there is a fixed which point lies at 
(K(oo) = 0, y(oo) = 1/7r), so the fugacity remains bounded under all cir­
cumstances; secondly, because of the presence of the parameter K(O) the 
flow lines from different sets of initial conditions can cross. It is also worth 
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Figure 4.1 Plot of Timm's recursion relations (from [13]). 
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noting that the line of fixed points which correspond to the low temperature 
phase remain essentially unchanged. 

Timm goes on to demonstrate that his recursion relations lead to exactly 
the same form of scaling for the correlation length, ~+, as in the standard 
Kosterlitz-Thouless theory. However, now the total vortex number remains 
finite, even above the transition temperature and so, as Timm points out, the 
regions above and below the transition may be treated on an equal footing. 

4.2 Refined Theory 

The idea of the refined theory is to calculate the dynamic response using the 
general approach of AHNS, but using Timm's recursion relations instead 
of those obtained by Kosterlitz. Because the total vortex number remains 
finite, an expression for the bound vortex contribution to the dynamic di­
electric function can be derived which remains valid, even for temperatures 
above the transition, so that an arbitrary 'free' vortex contribution is no 
longer required. However, it is clear that even using Timm's generalized 
recursion relations involves a considerable approximation, they are after all 
only accurate to fourth order in the fugacity. The hope is that the approx­
imations made using this method will be less arbitrary than those involved 
in adding in a 'free' vortex term. 

In order to work out the dynamics of the system using the new recursion 
relations the starting point is Timm's expression for the static pair distri­
bution function [16]. If the equilibrium pair distribution, given by eqn (4.4) 
above, is assumed to arise from an effective potential in a Boltzmann factor 
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then this potential must have the form 

_0 _ = 27f dl' K(l') + 47f2 r dl'y2(l') + 2Ec. u.ef f lot t 
~T 0 h ~T 

(4.9) 

To obtain the correct static limit, a Fokker-Planck equation is again used to 
obtain the dynamic pair distribution function, 

af(r, t) _ 2D [eff ] 
at - kBT '\l. f(r, t)'\lU (r, t) + kBT'\lf(r, t) , ( 4.10) 

with 
Ueff (r, t) = Ugff (r) - qEr cos ()e-iwt . (4.11) 

The extra term in the potential leads to an additional radial probability 
current term in the Fokker-Planck equation. Physically this extra current 
term is due to the rearrangement of pairs: over time the positions of the 
charges change so that the pairings will need to change continually in order 
to remain consistent. 

As before, a solution up to just linear order is required and so a substitution 
of a trial function of the form 

( 
qrE .) f(r, t) = fo(r) 1 + kBTg(r) cos ()e-1wt +... , (4.12) 

is made into the Fokker-Planck equation. This again leads to a differential 
equation for the function 9 (r ), 

. 2 ~ d 
lwr 9 + r2 ----.!L + (3 - rV')r~ - rV' 9 = -rV' 
2D dr2 dr ' 

(4.13) 

but this time the potential term has the modified form 

d (U.eff
) rV' = r dr k~T = 27f (K(l) + 27fy2(l)) = 2m'£(l). ( 4.14) 

It is now straightforward to recalculate the dynamic dielectric constant: first 
Timm's recursion relations are used to get K(l) and y(l), starting from a 
convenient set of initial conditions; eqn (4.14) is then used to obtain the 
function 9 (r ); finally, the dynamic dielectric function comes from the relation 
used by AHNS to calculate the bound pair response 

(X) dE 
c(w) = 1 + Ja drg(r) dr' ( 4.15) 

Crucially though, there is no longer a term from 'free' vortices to be added 
in: the integral runs to infinity, including all the vortices. 

4.2.1 Numerical Method 

Obtaining the function g(r) from eqn (4.13) is essentially a standard two 
point boundary value problem. However, the presence of the K(l) term com­
plicates matters: to obtain it accurately it is necessary to integrate Timm's 
recursion relations up to the length scale l and values for K(O) and y(O) have 
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to be chosen. In practice a small initial value of the fugacity is chosen as 
the recursion relations still represent a very limited expansion in powers of 
this quantity, whilst the value of K(O) is carefully varied in order to sweep 
through the transition. 

The equation for g(r) is readily rewritten in terms of K,(l) and the scaling 
parameter 1, 

(4.16) 

The simplest way of obtaining a numerical solution to this equation is to 
split it into two coupled, first order, differential equations of the form 

dg = f 
dl 

df iwa2e2l 

dl = - (2 - 27rK,(l)) f + 27rK,(l)g - 2D 9 - 27rK,(l). 

( 4.17) 

( 4.18) 

The boundary condition at 1 = 0 is g(O) = 1, obtained using the static limit. 
The far boundary is set at a value 1 = 1 f' and the boundary condition there 
is obtained from the asymptotic solution of eqn (4.16) for large l, 

( 4.19) 

The value of If is chosen to be sufficiently large that the value of g(l f) IS 

negligible, this condition is achieved using 

1 (2D) If = 2"ln wa2 + 3. ( 4.20) 

The quantity lD = (In(2D/wa2 ))/2 represents the length scale beyond which 
pairs are unable to equilibrate with the external field. 

There are several standard techniques for obtaining accurate numerical so­
lutions to coupled first order differential equations with two point boundary 
conditions. It turned out that the so called 'relaxation method' proved the 
most effective in this case (the commonly used alternative 'shooting' method 
was also tried, but failed to provide a rapidly convergent solution). The par­
ticular implementation of the relaxation method used was adapted from that 
described in the book, 'Numerical Recipes' by Press et al. [64]. Essentially 
the technique involves transforming the coupled ordinary differential equa­
tions into a series of finite difference equations spanning a grid of 800 points, 
spaced between I = 0 and I = If, which incorporate the boundary conditions 
at the edges. An initial guess is made at the values of the functions f (l) 
and g(l) at each of the grid points, the values are then substituted into the 
finite difference equations, leading to corrections to the initial values which 
are then altered accordingly and substituted back into the FDEs and so on 
recursively until the values converge. In practice, the initial values were 
chosen using Ambegaokar and Teitel's approximate form of g(l), and the 
values 'relaxed' to convergent solutions within two or three iterations. Care 
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was also taken to space the grid points to greatest effect - the majority 
of the points were distributed over the region where g(l) was anticipated to 
vary most strongly (i.e. l > l f /2), an approach which was readily justified a 
posteori. 

The only complicating feature in the calculation was the need to obtain r;;(l) 
at each of the grid points. This was achieved using a sequence of subroutines 
that performed an adaptive 4th-5th order Runga-Kutta numerical integra­
tion. The differential equations involved were sufficiently straightforward to 
make this process routine and issues such as step size proved to be relatively 
unimportant. 

The final integration to obtain the dynamic dielectric function (from eqn 
4.15) was then performed using a simple minded trapezoidal method. This 
step was again straightforward, though it proved necessary to use double 
precision arithmetic to obtain accurate results as the quantities involved 
were quite small. 

4.2.2 Results 

Starting with the initial values y(O) = 0.1 and lD = 10 the value of K(O) 
was varied from 1.32 to 1.34 and integration performed over the range l = 0 
to l = lD + 3, thus sweeping through the transition region, as can be seen 
from the plot of Timm's recursion relations in figure (4.1). As the recursion 
relations were integrated the quantity l+, which is related to the correlation 
length of the system, was measured using the definition K(l+) = 1/7r (this 
gives a value roughly half the size quoted by Timm as he uses the definition 
K (l+) = 2/ 7r; however, this is unimportant as it is the relative differences in 
this quantity, not its absolute values, which are of interest). The differential 
equations for g(l) were then solved numerically, as described above, and the 
real and imaginary parts of the inverse of the dynamic dielectric function 
were then calculated. The same procedure was then repeated for differing 
initial values of the fugacity: y(O) = 0.2 and 0.3, the values of K(O) being 
chosen in each case to sweep through the transition; then the value of lD 
was altered to 8 and the calculation again repeated. 

The real and imaginary parts of the function g(l), calculated using y(O) = 
0.1, are shown in figures (4.2) and (4.3) respectively for the three values of 
K(O): 1.34, 1.33 and 1.32. The real part of the function dips slightly as 
K(O) is reduced before returning to almost its initial shape. The behaviour 
of the imaginary part is similar but not identical; again as K(O) is reduced 
the peak in Im(g(l)) initially decreases, but on further reduction of K(O) 
it increases, to a slightly greater height than initially and with a broader 
shape. 

The variation of the real and imaginary parts of the quantity K(O)c-l(w) 
with l+ for different values of the bare fugacity, y(O), is shown in figures (4.4) 
and (4.5) respectively. As expected, the real part shows a rapid increase 
over a short range, before levelling out: this is just the superfluid jump. The 
imaginary part is similarly predictable in shape, displaying a clear dissipation 
peak. However, what is new here is that the curves obtained are relatively 
independent of the exact value of y(O) chosen (the value was kept within a 
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limited range because the calculation is still based on the assumption that it 
is a small quantity). In fact this apparent universality extends to variations 
in the values of the other key parameter, lD, as is shown in figures (4.6) and 
(4.7). This implies that the theory predicts a single universal curve which 
does not need to be tuned by altering the values of microscopic parameters, 
it offers the prospect of a fit to experiment with few if any fitting parameters. 

A major complication which arises in fitting to experiment concerns the 
temperature dependence of the quantity l+. The usual method employed is 
to model its variation with temperature using a set of arbitrary parameters, 
chosen to fit experiment. However, there is another way of looking at the 
results which obviates this problem [65], that is to plot the real and imaginary 
parts of the response function directly against each other, on an Argand 
diagram. Thus the whole problem of assigning a temperature dependence 
to l+ is avoided. Figure (4.8) shows the response function of the refined 
dynamic theory, K(O)c-l(w), plotted in this way. The maximum in the 
imaginary part has a value of 0.158 and the ratio of the imaginary to real 
parts at the maximum is 0.64 ± 0.01. Now the fit to experiment can, in 
principle, be performed without adjustable parameters if the values of AIM 
and X can be measured accurately. 

4.2.3 Finite Size Effects 

In the refined theory the length scale associated with the dynamics, lD, is 
implicitly assumed to be the most important length scale in the problem. 
Accordingly, the integrations are performed up to a scale described by l f = 

l D + 3 in each case. For an inhomogeneous substrate this may not be a 
safe assumption: there may be an additional length scale characterizing the 
disorder in the surface which proves more relevant than lD. The effect of 
the disorder can be described crudely by stopping the renormalization at a 
length scale associated with the inhomegeneity. Such an approach would be 
in the same spirit as the use of a finite cut-off on the inter-vortex interaction, 
Ac , introduced by Minnhagen. 

The refined theory can easily be adjusted to gauge the effect of a finite 
size cut-off in the recursion relations. If instead of integrating up to l f = 
lD + 3, the integrations are performed up to l f = lD + C with C < 3 then a 
curve with a rather different shape is obtained. As shown in figure (4.9) the 
main effect of reducing the cut-off C is to reduce the size of the imaginary 
component. This is consistent with the effect of a finite interaction cut-off, 

Ac , in Minnhagen's theory. 

The method is certainly crude, but it does provide a qualitative picture of 
how the theory is changed if the length scale of substrate disorder becomes 
shorter than the length scale associated with the dynamics. 

4.3 Comparison with Minnhagen 

The theory of Minnhagen was compared by Wallin with the results of ex­
periments on superconducting wire networks performed by Jeanneret et al., 
which are analogous to the torsional oscillator experiments performed on su­
perfluid films [27]. Jeanneret et al. measured the complex a.c. conductance 
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Figure 4.8 The universal curve predicted by the theory, the real and imag­
inary parts of K(0)c- 1(w) are plotted parametrically. 

of networks of superconducting wires whose real and imaginary parts cor­
respond to the quantities 1m (-c-1(w)) and Re (c-1(w)) respectively. The 
prediction of the refined theory is compared, via a parametric plot, with the 
experimental curve and with the fit performed by Wallin [62] in figure (4.10). 
The universal curve from the refined theory has been scaled arbitrarily to 
fit at the static transition temperature, as the factor corresponding to AIM 
could not readily be obtained from the experimental data. Whilst the fit is 
not as good as that obtained by Wallin, it is quite reasonable considering 
that only one fitting parameter has been used (it is not clear how many fit­
ting parameters Minnhagen's theory would require to fit just the parametric 
form of the data used here, as Wallin's approach is based around the tem­
perature dependence of the quantities involved, but it is very unlikely to be 
just one). 

The ratio of the real and imaginary parts of c-1 (w) at the dissipation peak for 
Minnhagen's theory is 2/7r in excellent agreement with the data of Jeanneret 
et al. A value of 0.64 ± 0.01 is predicted for this quantity by the refined 
theory, a value which is consistent with that obtained by Minnhagen. In 
addition, the peak ratio in both theories is reduced by the introduction of 
an additional length scale to model disorder. 

In summary, it seems that there is no major difference between the pre­
dictions of the refined theory and Minnhagen's phenomenological approach. 
However, even this close agreement does not guarantee that the refined the­
ory will be able to describe the features of torsional oscillator experiments 
accurately. 
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4.4 Comparison with Experiment 

Since the theory of AHNS was published in 1978 [7] along with the pioneering 
experimental study of Bishop and Reppy [51], numerous similar experiments 
have been performed on superfluid films using a variety of substrates. In 
this section the refined theory is compared with results from two sets of 
experiments: one performed using a Mylar substrate and the other using a 
Grafoil substrate pre-plated with Hydrogen Deuteride (HD). 

The frequency shift and inverse Q-factor measured in torsional oscillator 
experiments are related to the quantities calculated in the theory by the 
relations 

(4.21) 

~Q-l = Ar;;~~T K(O)Im (_c-1 (w)) , (4.22) 

where A is the area of the film, m the mass of an atom of He4 and M is the 
sum of the mass of the cell and substrate. 

As discussed in the previous chapter, the comparison between theory and 
experiment is complicated by the fact that some coupling occurs between the 
substrate and the superfluid component. It is believed that imperfections 
in the substrate allow it to entrain some of the superfluid component; the 
mechanism by which this occurs is unclear, but it is known to depend very 
strongly on the morphology of the substrate. The effect is accounted for 
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by the inclusion of an extra factor, X, in the equations for the period shift 
and inverse Q-factors. For Mylar about 15% of the superfluid component is 
entrained but for Grafoil the figure is as high as 95%. 

4.4.1 Mylar Substrate 

Here the results from a series of torsional oscillator experiments carried out 
by McQueeney using a Mylar substrate [61] are analysed in the light of the 
predictions of the refined dynamic theory. His work is particularly interesting 
as he measured the response of helium films with a whole range of different 
thicknesses. 

The results from torsional oscillator experiments are usually presented in 
the form of curves of 2~P / P against T and ~Q-l against T. The problem 
with this method is that in order to make a comparison with the theory the 
temperature dependence of K(O)Re (c(w)-l) and K(O)Im (c(w)-l) have to 
be modelled in an essentially arbitrary way which introduces several fitting 
parameters. However, as discussed earlier in this chapter, the problem can 
be avoided if instead a parametric plot is used and the real and imaginary 
parts of K(O)c(w)-l are plotted against each other. 

McQueeney performed experiments on films of 28 different thicknesses which 
he referred to as coverages 1 to 28. They corresponded to films containing 
between 55 and 107J..Lmoles of helium of which 52. 13J..Lmoles was estimated to 
form an inert (solid) layer atop the substrate. In order to analyse the data 
a series of representative points were taken from the graphs in McQueeney's 
thesis and plotted in a parametric form. Figure (4.11) shows the parametric 
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plots of the dielectric function for a wide range of different coverages, ex­
cluding only the thinnest films, scaled by the temperature of the dissipation 
peak in each case, Tp. Whilst there is significant variation in the sizes of 
the peaks in the curves, they show remarkably similar behaviour for much 
of the range of values. Interestingly there is an oscillation in the peak value 
of .6.Q-l with film thickness, as shown in figure (4.12). This suggests that 
atomic layering effects may playa significant role in modifying the behaviour 
of superfluid films on Mylar. 

In figure (4.13) the results from a series of the thicker curves is compared 
with the prediction of the refined theory, using no fitting parameters. The 
value of AIM, corrected for the X factor is, 266 m2kg-1 and was obtained 
from measurements performed by Agnolet, McQueeney and Reppy [60] on 
the same apparatus later used by McQueeney. Although the curves are dis­
placed with respect to each other, their sizes and shapes are very similar 
except at one end, as can be seen from figure (4.14) where the theoretical 
curve has been translated to the left as an aid to the eye. The agreement 
between theory and experiment after a translation has been performed is 
striking, in particular the dissipation peak has the correct height, in effect 
this is a one parameter fit (as compared to the 5 or 6 usually employed). 
The problem lies in the steepness of the increase in the imaginary part of 
the experimental data at the left hand side: a feature which is not repro­
duced in the theoretical curve. The gradual increase in -K(O)Im (c(w)-l) 
in the theoretical curve leads directly to the lateral displacement between 
theoretical and experimental curves. 

It is not yet clear whether a rapid increase in -K(O)Im (c(w)-l) is a feature 
of all the torsional oscillator experiments performed using helium on Mylar. 
It occurs consistently in McQueeney's data, but is not so obvious in the 
earlier data of Agnolet et al. [60]. However, this discrepancy at the left hand 
side of the parametric plots corresponds to the high temperature end of the 
response: the fit is poor here because of the distance from the static critical 
temperature. The refined theory discussed here is still based on recursion 
relations which describe the static transition which are, by construction, 
only valid close to the critical point, thus it is to be expected that the 
theory will become increasingly invalid in regions further away from TKT. 

This problem was obscured in the theory of AHNS because they chose the 
magnitude of their free vortex contribution precisely to fit experiment at 
the high temperature end (though this meant that they could not fit the 
dissipation peak correctly), thus masking a fundamental weakness in the 
theory. 

The similarity in the general shapes of the experimental and theoretical 
curves was only found for a limited range of film thickness (76-92J..Lmoles, 
i.e. coverages 16 to 24). A possible explanation for the large discrepancy 
that arises for the thinner films concerns the fugacity of the vortices. Even 
the refined theory is based on an expansion in the fugacity so it is bound 
to be more effective for systems with larger core energies - that is for the 
thicker films which contain longer vortices. The reason for the breakdown in 
agreement at the high coverage end is even less clear, but may be because 
the films are not behaving in an entirely two-dimensional way. 
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Nyeki et al. for Helium films on Grafoil pre-plated with an HD bilayer 

4.4.2 Grafoil Substrate 

Torsional oscillator experiments have recently been performed using a Grafoil 
substrate, either on its own, or pre-plated with one or more layers of HD 
[63, 66]. The purpose of the pre-plating is to screen the effect of the substrate 
potential in the hope that this will allow the intrinsic properties of the film 
to be observed more easily. 

Grafoil forms a series of atomically flat plaquettes with dimension of order 
100-200A which join together in an entirely disordered manner. Nyeki et 
al. examined the behaviour of helium films of various thicknesses and for two 
different types of pre-plating [66]. The x-factor for the system was measured 
to lie between 0.9519 and 0.9617 - depending on the exact details of the pre­
plating. The very high value of the x-factor reflects the poor connectivity 
of the surface and is a strong indicator that the behaviour of the film is 
dominated by the morphology of the substrate. 

In particular, Nyeki et al. studied superfluid transitions in a temperature 
range from 0.8K to 1.4K for films with thicknesses ranging from a submono­
layer to 3 fluid layers on top of Grafoil pre-plated with either a bilayer or a 
trilayer of HD. For film thicknesses of greater than one fluid layer the data 
comes close to collapsing onto a single curve, as can be seen in the parametric 
plot of some of the data for the bilayer pre-plating, figure (4.15). Although 
the general shape and universal properties of the experimental curves are in 
line with the theoretical prediction the size and positions of the curves differ 
greatly [67]. Furthermore, there is a systematic variation in the value of the 
dissipation peak: it increases and then decreases with increasing coverage 
as the second fluid layer is built up towards completion as shown in figure 
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Figure 4.16 Variation of the maximum in b.Q-l with film thickness for 
helium films on preplated Grafoil, using the data of Nyeki et al. 

(4.16). 

4.5 Discussion 

McQueeney's data for superfluid films on Mylar allows a detailed compari­
son with the refined dynamic theory. It is found that the general shape of 
the parametric plot calculated using the refined theory agrees well with the 
results from a series of different film thicknesses, though there is always a 
serious discrepancy in the high temperature region. However, McQueeney 
found that there was significant variation in the behaviour of the dynamic 
dielectric function for different film thicknesses: a feature which cannot be 
reconciled with the prediction of a single curve which the refined theory leads 
to. 

The comparison of the refined theory with results obtained using a Grafoil 
substrate proves even more problematic. This time the results lie much 
closer to a single universal curve, but its shape differs strongly from the 
predictions of the refined theory. The fact that the x-factor is so large 
for Grafoil (of order 0.95) suggests that the morphology of the substrate is 
playing a dominant role in the behaviour of the film. Indeed the dissipation 
sets in at a point far removed from that suggested by the theory, implying 
that the transition may not even be in the Kosterlitz-Thouless universality 
class. 

Comparison with the work done by Wallin, based on Minnhagen's theory, 
suggests that there is very good agreement between the two approaches. 
This is perhaps to be expected as despite the fact that they differ somewhat 
in detail, they rely on essentially the same phenomenological basis. 
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The refined theory allows the predictions of the phenomenological model of 
AHNS to be made precise by removing almost entirely the need for fitting pa­
rameters. Using the refined theory makes the disagreement between theory 
and experiment transparent: it becomes apparent that the phenomenological 
approach to the dynamics of superfluid films cannot account satisfactorily 
for a number of the central features in the available data. 

Any comprehensive theoretical framework which seeks to provide an under­
standing of all the data will need to contain at least two new additional 
features. Firstly, comparing the results obtained using Mylar and Grafoil 
substrates, it is clear that the disordering effect of the substrate on the su­
perfiuidity of films cannot be isolated and so must be incorporated into the 
theoretical picture. Secondly, a way of modelling the systematic variation in 
the dissipation and period shift with coverage needs to be developed. 



Chapter 5 Roughening and Super-Roughening 
Transitions 

This chapter summarizes the theory of the roughening and super-roughening 
transitions in preparation for the description of the effect of disorder on crys­
tal surfaces which follows in chapter 6. It turns out that the sine-Gordon 
model provides a very effective description of the behaviour of crystal sur­
faces close to the roughening transition. The renormalization group treat­
ment of the roughening transition due to Nozieres and Gallet is described 
in some detail as it leads to recursion relations which differ from those of 
Kosterlitz, despite the underlying duality of the sine-Gordon model and the 
two-dimensional Coulomb gas. 

The roughening and super-roughening transitions are concerned with the 
way in which the morphology and growth of a crystal surface is affected by 
the underlying periodicity of the bulk crystal structure. In both cases, for 
temperatures below the transition temperature the surface is dominated on 
large length scales by the lattice, which seeks to pin it to discrete 'planes' 
separated by the lattice constant. For temperatures above the transition, 
the surface wanders freely across the planes of the lattice: it is a transla­
tional symmetry in the direction of the crystal height which is broken at 
the transitions. The essential difference between the two transitions lies in 
the nature of the underlying crystal 'planes' involved. If the bulk crystal 
structure is perfectly periodic, the behaviour of its surface is described by 
the roughening transition: the atoms of the solid lie in discrete layers which 
are truly planar. If instead the translational symmetry in the plane of the 
substrate is broken, so that although the atoms of the crystal lie in discrete 
layers, these layers are very strongly distorted from the planar, then the 
behaviour of the surface is described by the super-roughening transition. 

The modern theory of the roughening transition is based on a renormaliza­
tion group treatment of a sine-Gordon model [68, 18]. Careful experiments 
carried out on the surfaces of several types of crystal and extensive com­
puter simulation work, based on a variety of growth models, give detailed 
confirmation of all the important predictions of the renormalization group 
approach. The most sophisticated version of the theory is due to Nozieres 
and Gallet [19, 20, 69, 21] and their exposition is used as the basis of the 
description of the transition given here. 

The super-roughening transition was initially predicted by Toner and Di 
Vincenzo [23], via an extension of previous work on the random phase sine­
Gordon model [70, 71], for the surfaces of crystals containing quenched bulk 
disorder or equivalently crystals grown on disordered substrates. The be­
haviour of such systems in the linear response regime was analysed by Tsai 
and Shapir [24]. These works, though not yet exposed to the rigours of ex­
perimental test, have been the subject of a good deal of computer simulation 
work which has confirmed the existence of the transition despite continuing 
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controversy over some aspects of the theory [72, 73]. 

This chapter summarises the main ideas of both theories. It begins with 
a description of how the sine-Gordon model may be used to describe the 
behaviour of a crystal surface close to the roughening transition and how 
the random-phase sine-Gordon model can be used to describe the super­
roughening transition. There then follows an outline of the renormalization 
group treatment of the sine-Gordon model developed by Nozieres and Gallet. 
N ext the predictions of the theory are compared with the results of exper­
iment. Finally there is a brief summary of how renormalization group has 
been applied to the random-phase sine-Gordon model, leading to recursion 
relations for the super-roughening transition. 

5.1 Formulation of a Continuous Model 

For crystals with both ordered and disordered types of bulk lattice structures 
the thermodynamics of the interface between a crystal and its melt can only 
be understood correctly if the equilibrium fluctuations are considered since 
in two-dimensions they dominate the behaviour. At low temperatures the 
important modes of the surface are those with long wavelengths, the melting 
freezing waves, so called because the interface transmits them by melting 
slightly then freezing in turn. Their importance arises from the fact that 
their excitational energy goes to zero as their wavelength becomes infinitely 
long: they are the Goldstone modes of the system [74]. 

As usual where long wavelength fluctuations dominate, a coarse-grained con­
tinuous model is developed which is then analysed using the renormalization 
group. In order to formulate such a model, the interface between the solid 
phase and its melt is defined in a necessarily arbitrary way by the function 
z(r), which represents the height of the crystal above a point in the crystal 
substrate with position vector r: all atoms above this height are taken to 
be in the liquid phase whilst those below are in the solid phase. Any model 
of pinned interfaces must contain two basic terms: a local curvature term 
that represents the surface tension and an harmonic potential energy term 
that models the effect on the surface of the pinning to the underlying lattice. 
Thus the simplest expression for a crystal surface energy is the functional 

where;Y is the surface stiffness and V(z(r)), the pinning potential, has period 
the lattice spacing, b, and is minimized at the lattice 'planes'. Clearly the 
functional V(z(r)) can be written as a cosine Fourier series, but only the 
first term is required since higher order harmonic terms turn out to become 
rapidly less relevant as their frequency increases. If in addition the interface 
is assumed to be reasonably smooth (so that \7 z « 1) then the surface 
tension term can be expanded in a MacLaurin series and only the lowest 
order term retained (in the language of the renormalization group it is simply 
a matter of discarding all but the most relevant terms). Thus in the case of 
the roughening transition, the model Hamiltonian is just that of the sine-
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Gordon model, 

'HR = J d'r ('Y(V ~(r))' - Va cos c,,:(r)) ) (5.2) 

where Vo is the strength of the periodic pinning potential. 

The Hamiltonian used to model the super-roughening transition is very sim­
ilar, 

J 2 (iCV'z(r))2 (27r )) 
1lSR = d r 2 - Vo cos b (z(r) + zl(r)) . (5.3) 

The extra term in the periodic potential, Zl (r ), is essentially an extra phase, 
representing disorder in the lattice. It defines the position of the crystal inter­
face in the absence of any fluctuations, i.e. at absolute zero temperature. In 
most studies of the super-roughening transition it is entirely uncorrelated so 
that (Zl(O)zl(r)) = 6(r), representing the growth of a crystal on a substrate 
which is completely disordered on length scales greater than the atomic scale 
[23, 24]. However, the same Hamiltonian may be used to introduce a dis­
ordering phase term with any type of correlation [25]. In particular, if the 
disorder is due to the presence of screw dislocation pairs, then the correlation 
functions of Zl (r) depend strongly on the distribution of the pairs. 

Implicit in this continuous description of the transition is the exclusion of 
modes of wavelength the lattice spacing, b, or less. Thus there is a built 
in ultraviolet cut-off: only degrees of freedom with wavenumber less than 
Ao = 27r /b need be included when calculating the partition function. 

In practice it proves impossible to renormalize the exact Hamiltonian so a 
further approximation must be made: the coupling is taken to be weak in the 
neighbourhood of the transition, so that a perturbative approach in powers 
of Vo is valid. Such an approximation of course makes sense in the study of 
a transition from a coupled to an uncoupled state. Following this approach, 
the rough state is clearly identified with a Gaussian Hamiltonian: inclusion 
of the pinning potential then represents a perturbation away from this state. 

The excitational modes of the surface are most readily analysed by consid­
ering the surface height in terms of its Fourier components: 

z(r) = 2: Zkeik.
r 

k<Ao 

In terms of these the Hamiltonian given by eqn (5.2) becomes 

1lR = 2: ~ik2lzkl2 - J d2r Vo cos (27r~(r)) . 
k<Ao. 

(5.4) 

(5.5) 

Thus for a free interface, controlled solely by surface tension, the equiparti­
tion theorem leads to the relation 

( 2) kBT 
IZkl = ik2 · (5.6) 

The presence of the pinning potential leads to a non-trivial coupling of these 
surface modes. 
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The dynamics is obtained from the static behaviour in the usual way: by 
formulating a Langevin type equation. Since the surface height, z, is a 
non-conserved quantity, the system has model A dynamics; the dynamical 
equation takes the form 

i( ) = - 61l[z(r)] R 
ry r 6z(r) + , (5.7) 

with R a random noise term with the usual Gaussian white spectrum, 

(R(r, t)R(r', t')) = 2D6(r - r')6(t - t') (5.8) 

to ensure that the system relaxes towards equilibrium. ry-l is the surface 
mobility. 

The dynamic picture is to be preferred to the static one because it is more 
intuitive and leads to a systematic joint renormalization of both ;Y and ry. 
Furthermore, the dynamic theory is more readily generalised to include other 
physical effects such as a slight over pressure on the crystal surface. 

Nozieres and Gallet also extended their version of the sine-Gordon theory to 
consider the roughening transition on a vicinal surface. They showed that 
the effect of a slight angle between the surface and the under lying crystal 
planes could be accounted for by an extra phase in the harmonic term of 
the Hamiltonian which leads to an anisotropy in the renormalized surface 
stiffness. However, the theory may be extended even further: to include the 
effect of a dynamic overpressure on the crystal surface [75], or to incorporate 
the effects of screw dislocations on the roughening transition (as is described 
in the following chapter). 

5.2 Renormalization 

Renormalization techniques have been applied very successfully to both of 
the systems described by the coarse grained models outlined above. In the 
case of the roughening transition renormalization has been carried out to 
second order in the potential in both static and dynamic pictures [18, 19, 
21]. N ozieres and Gallet also considered the response of the system to a 
weak external drive: in contrast to the AHNS approach Nozieres and Gallet 
used an explicitly dynamic renormalization scheme based on the equation 
of motion to calculate the linear response of the system. In this section the 
static renormalization scheme, which is the least complex, is described and 
the main results from the dynamic approach are outlined, along with some 
of the consequences of the theory. 

The static renormalization scheme proceeds by successively summing over 
the large wavevector modes in the partition function of the system. The sur­
face modes, Zk, are separated into two groups: a thin shell with wavevectors 
of magnitude in the range A < k < Ao (which will be averaged over) and the 
longer wavelength components with wavevectors k < A. Thus the surface 
height z(r) is split into two parts: 

z(r) = z(r) + 6z(r) (5.9) 

where 



5 Roughening and Super-Roughening Transitions 

and 

z( r) = L zkeik.r 
k5.A 
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(5.10) 

6z(r) = L Zkeik.r (5.11) 
A<k5.Ao 

After the short wavelength modes have been summed over A becomes the 
new cutoff, replacing Ao. Subsequent renormalization sums over the modes 
from A to A. 

The summation over the short wavelength modes leads to a new energy term 
in the partition function, 

z = j Dz(r) j D6z(r)e-1-l(z(r),t5z(r))/kB T (5.12) 

= j Dz(r)e-ll(z(r))/kB T. (5.13) 

This expression for the energy, 1£, contains the surface tension term due to 
the long wavelength modes and a potential energy term which, because of 
the summation, is averaged over the short wavelength modes with Gaussian 
weight. Thus, 

1£ = L ~7k2Iz2(r)l- jd2rkBTln(eV/kBT) 
k<A 2 0 

(5.14) 

where the average (e V/kBT) 0 is carried out with weight e( -:Y(kt5z(r))2 /kBT) over 

the range of 6z(r). 

In the weak pinning regime the logarithmic term may be expanded per­
turbatively in terms of the pinning potential strength. The expansion has 
traditionally been performed up to second order as there is a finite correction 
to both the potential and surface tension operators at this level (the surface 
tension is marginal in a first order calculation). The cumulant expansion to 
this order is 

The first order term leads to a renormalization of the potential, 

v = (V)o = V (z(r)) (cos (27r6;(r)) )0 
V (z(r)) e-~((t5z(r))2)o 

(5.15) 

(5.16) 

(5.17) 

where the correlation function is given by ((6z(r))2\ = kBTdlj27r7, with 

dl = In(Aj A). 

The second order terms lead to a renormalization of the surface tension, 7· 
When irrelevant operators have been eliminated the remaining term has the 
form 

aV~ cos (2: (z(r') - z(r))) 
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where Q' is a constant and r' = r+p. A simple expansion of this cosine term 
to second order is appealing as the quadratic part is immediately identifiable 
with the surface stiffness operator. However, this approach is incorrect as 
the variable in the expansion, (z( r') - z( r)), is not necessarily small. The 
correct treatment of this term was first given by Knops and Den Ouden [18]. 
They recognized that the higher order terms thrown away when only the 
quadratic order is kept each contain a linear combination of an irrelevant 
operator and the quadratic operator (which is marginal). Thus for a term 
of 2n th order in the expansion of the cosine, 

(z(r') - z(r))2n = 02n(r) + a2n(r' - r)(z(r') - z(r))2 + b2n (r' - r) (5.18) 

where 02n is an irrelevant operator and b2n a constant which only con­
tributes to the renormalized free energy. The key term is the coefficient of 
the quadratic operator, a2n(r' - r), which gives the renormalization of the 
surface stiffness. 

Nozieres and Gallet use essentially the same method whilst providing a rather 
more physical argument for it [19]. They perform a further subdivision of 
the wave modes of the system splitting z into two parts: a small term ~, 
which may be considered as a weak external driving motion (the response 
to which is calculated) and a second part zeq which represents all the other 
thermal fluctuations at equilibrium, such that z = ~ + zeq. By hypothesis 
zeq has a Gaussian equilibrium distribution, thus 

cos (2; (z(r') _ z(r))) = cos (2; (zeq(r') + ~(r') - zeq(r) - ~(r))) (5.19) 

= cos (2; (~' _~) ) (cos (2; (zeq(r') _ zeq(r))) ) , (5.20) 

the term cos(27r(~' - ~)/b) may safely be expanded as a Taylor series and its 
second order component identified with the surface stiffness. The coefficient 
of this term is thus the correlation function 

C(z', z) = (cos (2; (zeq(r') - zeq(r))) ) , (5.21) 

where the average is taken with a Gaussian weight. 

The recursion relations for the potential and surface stiffness are then read­
ily obtained from the first and second order expressions respectively. The 
recursion relation for the pinning potential strength is written in terms of 
U = Va / A 2 , the pinning energy per area (1/ A) 2. The relations have the form 

dU = U(2 - n) 
dl 

(5.22) 

(5.23) 
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where n = 7rkBT/-;Yb2 and A(n) is given by the expression 

(5.24) 

which may be evaluated numerically. 

The starting point for the dynamic calculation is the Langevin equation for 
the interface, obtained from the model Hamiltonian (eqn 5.2) via eqn (5.7). 
It has the form, 

. _ 2 27rVo. (27rZ) "lZ = ,V Z - -b- sm -b- + R. (5.25) 

The random force is separated into two parts: R = R + JR, where JR 
represents fluctuations with wavenumbers lying in the thin shell from the 
lattice cutoff Ao = 27r /b, to the value A. Further renormalization proceeds 
over the shell from A to A. 

Once separated out, the effect of JR is averaged over, effectively thinning 
the degrees of freedom of the system. The surface height after this average 
has been performed is defined as 

z(R) = (z (R+JR))OR. (5.26) 

If Jz = z - z, then the equation of motion for z may be written as 

- 2 - 27r / (27r ) ) "lZ = -;YV z + R - b Vo \ sin b (z + Jz) oR (5.27) 

and that for Jz as, 

"lJz = -;YV2 Jz + JR - 2; Vo {sin (2; (z + Jz)) - (sin (2; (z + 6Z)) ) OR} . 

(5.28) 

Renormalization proceeds by rewriting the equation of motion for z in the 
same form as eqn (5.25), and then extracting the dependence of the scaling 
parameters -;y and Vo on the infinitesimal flow variable dl to obtain recursion 
relations. In the weak coupling approximation, 6z is expanded as series of 
terms of the form: 

6z = 6Z(O) + 6z(1) + ... (5.29) 

with the superscript denoting the power dependence on V. Clearly to calcu­
late the renormalized equation of motion (eqn 5.27) to second order in the 
pinning strength calculation of the terms 6Z(O) and 6z(1) is required. These 
terms are calculated progressively by an iterative solution of the relevant 
equation of motion, eqn (5.28), thus 

6z(O)(r, t) = J d2r' J~oo dt'xo(r - r', t - tl)6R(r', t'), (5.30) 
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where XO is the response function for the diffusion equation. The expression 
for <5z(1) is then found by substituting <5z(O) into the harmonic term of the 
equation of motion. 

Writing c = cos(27r<5z/b) and 8 = sin(27r<5z/b) and using the notation c(i) and 
8(i) for the ith order terms in their expansion in powers of Vo, the harmonic 
term in eqn (5.27) can be rewritten (up to second order) as 

~ince the ave~age of 8(0) proves to be zero. The term -Vosin(27rz/b) (c(O)) 
IS first order III Vo and so leads to a correction to the pinning potential. The 
terms in (8(1)) and (c(l)) are the second order correction: 

~(2) _ 2; Vo {sin (2; z) (c(l)) + cos (2; z) (8(1)) } 

_ 2; Vo {sin (2; z) ( _ 2; sin (2; <5z(O)) <5z(l)) 

+ cos (2; z) (2; cos (2; <5Z(O)) <5z(l)) } , 

which eventually renormalizes TJ and ;Yo 

(5.31) 

(5.32) 

The calculation proceeds in a similar way to the static one: irrelevant op­
erators are separated out and neglected. What remains is a term which 
depends on sin (27r (z' - z) / b), again a separation of variables is made into 
the equilibrium fluctuations and the response to a weak external drive. This 
leads to corrections to both the surface stiffness and the mobility because 
the difference (z' - z) now depends on time as well as position. 

The recursion relations for the pinning potential and surface stiffness ob­
tained in the dynamic renormalization programme take the same form as in 
the static case: eqns (5.22) and (5.23). However, in the dynamic picture the 
mobility is also renormalized 

dTJ = 87r
4

TJ U2 B (n) 
dl ;Yb4 ' 

and the functions A(n) and B(n) now take the form: 

B(n) = n 1000 

dpp3'JoCp) 1000 

dx e- 41x e-2nh(p,X)e-fj2x, 

with the quantity h(p, x) given by 

h(p, x) = 10
1 d: [1 _ Jo(kp)e-

xfj2k2
] . 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

Clearly there is a fixed point at n = 2 which corresponds to a roughening 
temperature given by 



5 Roughening and Super-Roughening Transitions 60 

A simple transformation to the reduced variables X = 2;:Yb2 /,rrkBT and Y = 

47rU /kBT allows the recursion relations for the pinning potential and surface 
stiffness to be rewritten explicitly in the form of the Kosterlitz-Thouless 
universality class: 

dY = 2Y [1-~] 
dl X (5.37) 

dX y2 
dz = 2X A(2/ X). (5.38) 

This of course is to be expected given the equivalence of the sine-Gordon 
and two-dimensional Coulomb gas models. What is interesting is that the 
recursion relations are not exactly the same as those derived by Kosterlitz 
(see chapter 2): the presence of the term A (2/ X) / X is new here. This 
discrepancy arises because the operator product expansion of Knops and Den 
Ouden [18] has been used. Earlier treatments of the roughening transition 
which used the incorrect expansion of the cosine function, described above, 
led to recursion relations identical to those of Kosterlitz [9]. 

Nozieres and Gallet comment on the difference between their recursion re­
lations and those of Kosterlitz, 'In the (U, ,) plane, they are the usual 
Kosterlitz-Thouless hyperbolae near the fixed point. Away from n = 2, they 
depart from that shape, even to order U2 '. Furthermore they observe that, 
'such corrections considerably improve the theoretical fit of curvature and 
step energy measurements' [19]. Hence it can be concluded that the recur­
sion relations derived by Kosterlitz for superfluid films and still used widely 
in that context may well not be as accurate as those derived by Nozieres and 
Gallet. 

As usual in the Kosterlitz universality class, there are essentially two lines 
of fixed points. For initial conditions corresponding to temperatures above 
the roughening temperature, TR, Y flows to zero at a finite value of X; 
for temperatures below the roughening transition the value of Y eventually 
diverges. Since Y = 47rU / kBT measures the strength of the periodic pinning 
potential, this implies that above the transition temperature there exists no 
length scale on which the pinning potential is relevant to the interface while 
below it such a finite length scale will always exist. The critical value of the 
scaling parameter, 1 = lc, at which the pinning potential becomes relevant 
for T < TR cannot be determined exactly. It is usually estimated to occur 
when the pinning strength is of the same order as the thermal fluctuations 
of the surface so that Y(lc) rv 47r. 

The correlation length of the system simply defines the length scale on which 
the pinning potential becomes relevant 

(5.39) 

so that it remains finite for all temperatures below the transition and is 
infinite above. However, the correlation length has another obvious inter­
pretation in the context of a crystal surface: it represents the approximate 
width of a step on the interface. Since the step width and the step energy, 
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j3, are related by the relation 

(5.40) 

it is clear that the step energy vanishes at the roughening transition. A 
more refined calculation using the recursion relations also allows the exact 
behaviour of the step energy as the transition is approached to be determined 
[19] . 

The behaviour of the height-height correlation function of the system may 
also be predicted using lc. Again the recursion relations must be integrated 
to obtain an accurate result, but if the interface is considered as unpinned 
up to a length scale equal to the correlation length, (, then it follows that 
for shorter distances the correlation function will simply be that of a free 
interface: 

G(r) = ((z(O) - z(r))2) = b2 ln IAorl. (5.41) 

Thus above the transition temperature, when ( diverges, the correlation 
function will diverge logarithmically with distance. However, below the 
roughening temperature - where ( is finite - the interface may only be 
regarded as free for lengths r < (, so that the height-height correlation 
function remains bounded even for very large separations with the form 

G(oo) = ((z(O) - z(oo))2) = b2ln IAo(l. (5.42) 

5.3 Comparison with Experiment 

A roughening transition might be expected to occur in a wide variety of 
crystals in equilibrium with their melts. However, the release of latent heat 
is frequently sufficient to prevent the system from reaching equilibrium and 
furthermore, because the transition is of infinite order, it is easily broad­
ened. The most conclusive experiments performed to date have been on He4 

crystals though electronic and x-ray scattering off the surfaces of certain 
metal crystals [76] and investigations of organo-halide crystals [77] have also 
revealed the presence of roughening transitions in the systems concerned. 

Computer simulations have also proved a useful tool in testing the predic­
tions of the theory. Such simulations seek to isolate the essential physical 
details of a system and provide details of their statistical behaviour. 

5.3.1 Experiments on Helium Crystals 

Several important studies of the roughening transition in He4 crystals in 
contact with the superfluid phase have been performed, in particular by Wolf 
et al. [78], Gallet et al. [22] and Rolley et al. [79]. He4 is particularly suitable 
for the investigation of the thermodynamics of crystal interfaces because it 
has some unique properties which make the transition particularly accessible 
[80, 81]: it has quasi-infinite thermal conductivities which allow equilibrium 
to be achieved quickly and any departures from it are easily controlled; the 
superfluid phase has zero viscosity so that there is no resistance to mass 
transport; equally importantly, a very high level of purity can be achieved. 
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Three very different sets of measurements have been performed on such 
systems: the energy of steps at temperatures just below the transition the , 
average curvature of crystals and the variation of the growth rate in the 
critical region. Each of these give results which are entirely consistent with 
theoretical expectations. The Nozieres-Gallet theory requires three different 
fitting parameters which are usually taken to be as follows: the roughening 
temperature, TR; the ratio of the unrenormalized parameters Vo(O)j;Y(O); 
and the cut-off, Ao. However, it is found that the same choice of values 
leads to a good fit for each of the three types of experiment, a result which 
provides strong support for the Nozieres-Gallet theoretical picture. 

The step energy for crystals close to the roughening temperature was mea­
sured successfully by Wolf et al. [78]. They examined the variation in the 
growth velocity of crystals grown by a two-dimensional nucleation process 
with the difference in chemical potential between the crystal and its melt, 
l:if.1. In this regime the growth velocity, v(f.1), is given by the expression 

V(fL) = kllfLexp (3bb.fL::BT ) , (5.43) 

where Ps is the bulk density of the solid phase and k the surface mobility. 
The step energy was found to decay towards zero as the roughening transition 
was approached in precisely the way predicted by the theory, as is shown in 
figure (5.1). 

Gallet et al. extended this work to investigate the growth rate of crystals 
close to and above the roughening temperature [22]. They found that the 
growth evolved smoothly from a non-linear rate below TR, to a linear one 
at and above TR. This experiment provided a sensitive test of the dynamic 
theory which proved to be in good qualitative and quantitative agreement. 

The third series of experiments which have been performed to test the theory 
measure the dispersion and damping of melting freezing waves on vicinal 
surfaces [79]. Such experiments allow the surface stiffness to be measured 
and clearly reveal the anisotropy predicted by N ozieres and Gallet for vicinal 

surfaces. 

5.3.2 Computer Simulation Work 

Much of the computer simulation work on the behaviour of crystal surfaces 
has centred around the solid-on-solid (SOS) model. The idea is to treat the 
crystal as a series of columns of various heights so that the assignment of en­
ergies to different interface configurations is straightforward. The substrate 
is divided into an array of squares and the height of the crystal above each 
is recorded, in integer units, in the array hi - this leads to a simplified 
interface which contains no overhangs or voids. The energy of the surface is 
taken to be lowest when all the columns have the same height so that the 

SOS Hamiltonian takes the form 

Hsos = L f Ihi - hi+§I, (5.44) 

i,§ 

w here the summation runs over all the nearest neighbours for each of the 
height columns. The function f Ixl is generally an increasing function of its 
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Figure 5.1 Variation of step energy with temperature close to the rough­
ening transition, reproduced from the review in the work of Balibar et al. 
[82]. 

variable, but its exact form varies depending on the particular details of the 
model which is used. The two most commonly studied forms are: f Ixl = Ixl 
(known as the absolute solid-on-solid model) and f Ixl = x2 (called the dis­
crete Gaussian model). In all cases quantities of interest are obtained by 
using the Hamiltonian as a Boltzmann weighting in Monte-Carlo simula­
tions [83]. That the relevance of such models goes beyond their original 
formulation as simplistic attempts to mimic real crystal growth processes 
was demonstrated by Chui and Weeks [30] who showed that the discrete 
Gaussian model is dual to the two-dimensional Coulomb gas model and 
hence equivalent to the sine-Gordon model. 

The crystal surfaces modelled in such simulations have been shown to un­
dergo the roughening transition. The behaviour of the height-height cor­
relation function may be determined in a straightforward way using the 
columnar heights. The behaviour of the correlation function for large sepa­
rations changes at the transition: below the transition temperature it takes a 
finite value, but above the transition temperature it diverges logarithmically 
[84]. It has also been demonstrated that the step energy vanishes above the 
transition in such models [85]. 
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5.4 Super-Roughening 

Renormalization group methods have also been applied to the model used 
to describe crystal surfaces where disorder is present (eqn 5.3). For a crys­
tal grown on a disordered substrate a super-roughening transition replaces 
the roughening transition in both the static and dynamic regimes; however, 
the exact details of the calculations are not directly relevant to what fol­
lows and so the interested reader is referred to the original works for them 
[23, 24]. The treatments are essentially extensions of earlier work on the 
random phase sine-Gordon model [70, 71]. Both are based on the weak 
coupling approximation so that a perturbative expansion in powers of the 
pinning potential is used. The dynamic renormalization is carried out using 
field-theoretic methods. It uses the so-called Martin-Siggia-Rose (MSR) for­
malism which enables a dynamic theory in d-dimensions to be transformed 
into a static one in (d + 1 )-dimensions [86]. 

The static recursion relations, first obtained by Toner and Di Vincenzo [23], 
can be written in the form 

dg ( ) Ag 2 di = 2g 1 - n - A 2 9 

&y = 0 
dl 

c 
(5.45) 

(5.46) 

(5.47) 

where Ag and AK are dimensionless constants of order one and the notation 
9 = U 2e-2l has been used. Ac is a short wavelength cut-off which is inversely 
proportional to the correlation length for translational order in the plane 
parallel to the substrate. The quantity ;:Y' is an off-diagonal element of the 
surface stiffness matrix which arises because the translational symmetry in 
the plane of the crystal substrate has been broken by the presence of disorder; 
it does not affect the renormalization of the other parameters and so is not 
essential for a basic understanding of the transition. These relations show 
that there is a fixed point at n = 1, hence the super-roughening transition 
occurs at a temperature TSR = ;:Yb2 /7rkB. Renormalization was carried out 
in the dynamic picture by Tsai and Shapir who obtained recursion relations 
which reduce to those of Toner and Di Vincenzo in the static limit [24]. 

The dynamic recursion relations for the super-roughening transition lead 
to important predictions for the behaviour of the height-height correlation 
function [24]. It is found that the correlation function diverges logarithmi­
cally above the transition temperature (as expected in the rough state), but 
diverges even more strongly below the transition temperature, with the form 
G(R) ex (In R)2. 

SOS models can also be used to investigate the super-roughening transition, 
since the mechanics of the model remains applicable once the disorder has 
been incorporated in the initial configuration. This is done by displacing the 
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baseline from which each column height is measured. The height in the ith 
column, hi, is given by 

(5.48) 

where the quenched height di is chosen randomly and independently on the 
interval (-b/2, +b/2] and ni is an integer. Monte Carlo simulations based on 
the discrete Gaussian model confirm the presence of the super-roughening 
transition, which is identified from a change in the behaviour of the height­
height correlation function. The transition is found to occur exactly at the 
temperature predicted by renormalization group methods [87]. However, the 
results of simulations have not yet confirmed the predicted behaviour of the 
height-height correlation function [87, 88]. 



Chapter 6 Roughening and Disorder 

This chapter describes how the behaviour of a crystal surface is modified 
by the presence of dislocations. It is found that the surface still undergoes 
a roughening transition when the disordering caused by the dislocations is 
weak. In contrast, when the underlying crystal lattice is strongly disordered 
by dislocations, the surface can undergo a super-roughening transition. In 
both cases the weak-coupling regime may be modelled successfully using 
an extension of the N ozieres-Gallet theory. However, the behaviour in the 
strong coupling regime is less well understood: it seems that there must be a 
low temperature transition from a facet to the super-rough state, but under 
exactly what circumstances it occurs remains unclear. 

This chapter is organized as follows. In the first section there is a discussion 
of how the morphology of a crystal surface is changed by screw dislocations. 
Then there is a description of the way in which the change in morphology 
can be accounted for in the weak coupling limit by adapting the sine-Gordon 
model of the interface. Next the Nozieres-Gallet renormalization group treat­
ment is repeated in the presence of screw dislocations and the behaviour of 
the interface calculated for different distributions of the dislocations. There 
then follows an analysis of the effect of thermally generated dislocation loops 
on crystal surfaces in the weak coupling limit. Then there is a section which 
considers the effect of disorder on interfaces which are strongly coupled to 
the underlying lattice. Finally, the chapter concludes with a section in which 
there is a discussion of the results obtained and a phase diagram for a crystal 
surface threaded by screw dislocations is proposed. 

6.1 Screw Dislocations 

The effect of screw dislocation pairs on the behaviour of the crystal surface 
they thread depends crucially on their distribution. Each of the dislocations 
acts as a source or sink for a step. The steps on the interface join each screw 
with another screw of opposite sense of rotation and so the dislocations form 
pairs, as illustrated in figure (6.1). 

If the screws are distributed as pairs, with steps between them of average 
length II, then the degree to which the crystal surface is disordered can, in 
principle, be controlled by varying the separation II. The disordering effect 
of the dislocations may then be investigated by considering crystals with 
the screws distributed in different ways, that is crystals threaded by screw 
dislocation pairs with differing average separations II. This parameter can 
vary from almost zero, the case which leads to an ordered surface (the screw 
pairs have no effect), up to a value equal to the average distance between 

screws of the same sign i.e. a separation of d++ = (L2 / M) 1/2 where L2 is 
the area of the substrate and M the number of each type of screw present. 
Strongly correlated screw pairs, for which ii « d++, lead to a shift in the 

66 
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Figure 6.1 Two screw dislocations of opposite sign which pierce the surface 
normally form a pair with a step on the interface running between them 

position of the roughening transition, but crucially they do not alter the 
universality class of the transition. Weakly correlated pairs, where II ~ d++, 
on the other hand, destroy the roughening transition and lead to a super­
roughening transition [26]. 

The screw dislocation pairs are imagined to be sown somehow into the 
nascent crystal. This might be done by growing it on a suitably treated 
substrate, by exposing it to strain fields, or a combination of such methods. 
However, once formed with screw dislocations in a particular distribution, 
the crystal would be allowed to grow in conditions close to equilibrium. The 
dislocations are assumed to be effectively quenched and to run right through 
the crystal from its base to the interface parallel to the z-axis. Crucially the 
pairings between screws, and hence the distribution of the steps they induce, 
are not necessarily fixed as the crystal grows. 

When a crystal surface is threaded by screw dislocations the crystal planes 
lose their individual identity since rotation about a dislocation leads smoothly 
from one plane to the next. The average positions of the atoms are no longer 
those of the perfect planes, z = nb, with n a positive integer, instead they are 
shifted by the dislocations from these by an amount, zl(r), which depends 
on the number and distribution of the dislocations. This means that the 
minima of the pinning potential will be shifted by this amount at each point 
over the crystal surface, though of course the periodicity of the potential is 
unaffected. In terms of the model Hamiltonian Zl (r) simply acts as an extra 
phase. 

The displacement, zl(r), induced by a single screw dislocation is OZl = 
±ifJb/21r [89], where 1> is the azimuthal angle of rotation about the dislocation 
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(the sign depends on the sense of rotation of the screw). Now consider a pair 
of screw dislocations of opposite sign with a step between them described by 
the vector Il . The elastic displacement due to the pair at a point r, measured 
from an origin at the midpoint between the dislocations, is c5z1 (r) = ,b/27r, 
where, is the angle subtended by the vector Il at the point r. If r » il , 

then this reduces to c5z1 (r) = II sin ()b/27rr where () is the angle between Il 
and r. The total displacement of the interface at any point is then obtained 
by simply summing over the contributions of each pair of screw dislocations 
that have a step between them. Thus Zl (r) depends not only on the actual 
positions of the dislocations, but also on the particular distribution of steps 
between them. 

6.2 Renormalization with Disorder 

The Hamiltonian for an interface with disorder arising from screw disloca­
tions can be renormalized using the Nozieres-Gallet framework. The po­
tential term is simply modified to include the extra phase due to the screw 
dislocations, Zl (r), 

Since the disorder induced phase shift, Zl, is independent of the thermal 
fluctuations in the surface height, its presence has no effect on the way in 
which the surface height, z, is split into two parts: 

z(r) = z(r) + c5z(r). (6.2) 

This means that the first order term renormalizes in the same way as before, 

v = (V)a = Va (cos (2; (z(r) + c5z(r) - Zl(r)))) a (6.3) 

V (z(r) - zd (cos (27rc5;(r)) ) a (6.4) 

_ 271"2 ((8z(r))2) 
V (z(r) - Zl) e b2 o. (6.5) 

At second order averages over the equilibrium distribution arise and these 
are affected by the disorder phase. In particular it is the correlation function 
C(z, z') which is altered, in the presence of disorder it has the form: 

/ (27r (z' - z~ - Z + zd)) 
C= \cos b ' (6.6) 

where the unprimed quantities are evaluated at r and the primed ones at 
r + p. The average is taken over the Fourier components of the equilibrium 
distribution of the interface displacement and hence depends on Zl· Thus 
the correlation function may be rewritten as, 

(6.7) 
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with the function G D (p) = (cos (21f (z~ - Zl) / b)) due to the disorder. The 
average in G D (p) is taken over a random placement of dislocations and the 
average value of (z' - z)2 is given by 

/ -I - 2) kBT lAO dk kBT \ (Z - Z) = -----:::::- -k [1 - Jo(kp)] = -----:::::-h(p). 
1f'Y ° 1f'Y 

(6.8) 

The function G D is assumed to depend on the position p, but not on the 
time. The dislocations are considered to be effectively fixed in place: it is 
true that their positions and the pairings between them do evolve over time , 
but the time scales for these processes are assumed to be so long as to be 
irrelevant. 

The new term G D (p) modifies the renormalization of the surface stiffness to 

d~ 3V2 
00 

dT = 1f'ib40 fa d2pp2Jo(Ap)e-2nh(p)GD(p). 

Thus the static recursion relations take the form 

with 

dU 
- = U(2 - n) 
dl 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

When the calculation is performed in the dynamic regime the renormaliza­
tion of both the surface stiffness and the mobility are altered by the dislo­
cations. The recursion relations for the potential and surface stiffness have 
the same form as in the static case (eqns 6.10 and 6.11) and the behaviour 
of rJ is given by 

(6.13) 

The function G D is present in the integration over p in both the expressions 
for A(n, l) and B(n, l) so they are altered: 

(6.14) 

The existence and character of any surface phase transition in the presence of 
dislocation induced disorder are thus controlled by G D(p), and its behaviour 
in turn is entirely determined by the distribution of the dislocations. 

There are three important forms that the function G D (p) can take. Firstly, if 
G D(pe1 / Ao) tends to some constant value as 1 -+ 00, then there is no essential 
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change in the transition that occurs. A simple roughening transition occurs, 
with slightly altered values of the parameters A(n) and B(n). If on the other 
hand G D ('pel / Ao) varies as (lz/ p )2a, with the parameter 2cx < 1, then there 
is still a roughening transition, but a distinct shift in the critical point occurs 
[25]. Finally, if the correlation function decays to zero rapidly with increasing 
l, then the recursion relations for ;Y and 'fJ are effectively terminated at a finite 
length scale and no longer describe a transition in the Kosterlitz-Thouless 
universality class. 

6.3 Calculation of Correlation Functions 

The calculation of the correlation functions involving screw dislocations is 
complicated because there is no simple analytical way of calculating the 
function G D (p) . In order to determine the actual behaviour of particular 
distributions of screw dislocations, computer simulations were used to cal­
culate G D (p) for all p in the two limits h « d++ and II ~ d++. The model 
used was based on the simple ansatz that steps form between screw dislo­
cations of opposite sign in such a way as to minimize the total step length. 
Although, as will be seen, this is not quite the same as minimizing the surface 
energy it leads to a state which is close to (within the range of thermal fluc­
tuation at least) the minimum energy configuration. In the limiting cases 
for which the simulation is used the simple model on which it is based is 
perfectly sufficient. 

6.3.1 Computational Method 

The average values of the height-height correlation function for different dis­
tributions of screw dislocations were calculated in the following way. Screw 
dislocations were placed on a square crystal surface of side L, either entirely 
at random (the random distribution) or as closely spaced pairs, of opposite 
sign, distributed randomly across the surface (the paired distribution). In 
the case of the random distribution the dislocations of opposite sign were 
paired up in such a way that swapping over the steps between any two pairs 
always led to an increase in the total step length. This leads to a state which 
is close to a local minima in the total step energy, though not necessarily 
close to the global minimum. For closely paired dislocations the system is in 
its lowest energy state when steps form between members of the same pair 
and so no rearrangement was necessary. 

The correlation function G D (p) = (cos (27r (Zl (p) - Zl (0)) / b)) was calculated 
in the following way. First of all two sample points a distance p apart on the 
interface were selected at random (within a square of side L /2 at the centre 
of the system, so that neither of the points could approach the edges too 
closely). The total phase due to all the dislocations paired together by steps 
was then calculated at the points. This was done using simple coordinate 
geometry and the total obtained by simply adding together the contributions 
of all the dislocations. The cosine of the difference in phase between the two 
points was then calculated. Finally, the process was repeated for a variety of 
different values of p and for different distributions of the screw dislocations. 

For the randomly placed distribution between 12 and 80 screw dislocations 
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Figure 6.2 The function GD(p) as a function of pill for closely spaced pairs 
of dislocation lines, where It/d++ = 0.01 

of each kind were used. Averages were taken over up to 500 different choices 
of the sample points' positions and then the process was repeated between 
50 and 100 times for differing random placements of the dislocations. For the 
paired distributions the members of each pair were separated by a distance 
O.ld++. Averages in this case were taken over more than 10000 different ran­
dom placements of pairs and were repeated for systems containing between 
25 and 100 pairs. 

6.3.2 Closely Spaced Pairs 

The results of the simulations for closely spaced pairs are shown in figure 
(6.2). The correlation function takes the form GD(p) rv (It/p)2a, with 2a = 
nil I d~+. In the static picture this leads to a modification of the parameter 
A(n) which now depends on the renormalization parameter l: for p » li it 
may be written as A(n, l) = A'(n)e-2al where 

A' (n) = 1000 

dpp3 JoCfi)e-2nh(P) (Aolt/p)2a . (6.16) 

This then leads to modified static recursion relations of the form: 

dU' dz = U' (2 - a - n) (6.17) 

(6.18) 
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Figu re 6.3 The function G D (p) as a function of p / d++ for screw dislocations 
placed at random, ll/d++ ~ 1 

where U' = U e-al
. They are still of the Kosterlitz-Thouless form, but the 

fixed point is shifted from the normal roughening transition value, n = 2, 
to n = 2 - a. This behaviour was first encountered by Scheidl [25] who 
studied the case where Zl is just a random field with a spatial correlation 
function of the form p-2a. The calculation is easily repeated in the dynamic 
renormalization scheme, leading to the same result. 

6.3.3 Randomly Placed Dislocations 

When equal numbers of screw dislocations of opposite sign are placed entirely 
at random onto a crystal surface the correlation function G D decays rapidly 
to zero as the length scale is increased. The actual decay is somewhat faster 
than e-p/ d++ so th~t within the error of the simulations G D is zero for 
p ~ O.8d++(see figure 6.3). Thus it is reasonable to model the function as 
a simple step at p = d++: this leads to recursion relations which have a 
different form depending on the length scale. 

When d++Aoe-l « 1 the coefficients in the dynamic renormalization scheme 
are modified, 



6 Roughening and Disorder 73 

(6.21) 

and 

-:::'2 -

The term e-P x, in addition to e-2nh(p,x), cuts off the integrals for x ,....., l/rP. 
For large values of l both A(n, l) and B(n, l) die off rapidly since they vary 
as le-4l and e-2l respectively. 

The crossover comes at a value of l given by ld = In( d++Ao): for smaller 
values of l the renormalization proceeds almost as in the absence of disorder, 
but at l = ld the renormalization of the surface stiffness is effectively stopped 
and that of 'TJ altered substantially. It is of course the large length scale 
behaviour which determines the critical behaviour of the system and for 
l » ld the recursion relations can be approximated closely, up to second 
order, as 

dU 
dz = U(2 - noo) 

d- 4 d4 A4 .:J.... = 7r noo ++ 0 U2 -4l I ( l/d A) 
dl ;:Yb4 e n e ++ 0 

dln'TJ 
dl 

(6.25) 

(6.26) 

(6.27) 

where noo is the constant value to which n is renormalized when d;:Y / dl decays 
to zero for l » ld. There is a very close correspondence between the recursion 
relations obtained for randomly placed dislocations and those of the super­
roughening transition obtained by Tsai and Shapir in the dynamic regime 
[24]. This is seen most clearly if the potential U is redefined: defining the 
quantity g by the relation 

the recursion relations become, 

d;:Y = 0 
dl 

dln'TJ = 47r4nood~+A5 
dl ;:Y2b4 g. 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

The term in g2 has been introduced here without proof, but it would arise 
naturally in a higher order renormalization scheme. The functional form of 
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the coefficient f3 has not been determined, but it will not alter the character 
of the transition as it is not the leading term close to criticality. The fixed 
point of these relations occurs at nco = 1: for nco < 1, 9 renormalizes to a 
constant value and 77 diverges, leading to an interface which is pinned and 
immobile; in contrast if nco > 1, then while 9 tends to a zero, 77 tends to a 
finite value, leading to an unpinned and mobile interface. 

Although the recursion relations obtained have the same form as those of 
the super-roughening transition this does not necessarily mean that a sharp 
phase transition would be observed in practice. It may be that a crossover 
occurs instead [90]: such a possibility is consistent with the observation, 
made by Toner and Di Vincenzo, that the super-roughening transition is not 
a true thermodynamic phase transition and is in fact rounded on long length 
scales [23]. 

6.4 Dislocation Loops 

Another interesting type of disordering of crystal surfaces is that due to the 
thermally generated dislocation loops which always arise in real crystals. 
These objects consist of two short sections of screw dislocation which pierce 
the surface normally and are joined in the bulk of the crystal by an edge dis­
location and on the surface by a step. Dislocation loops differ topologically 
from screw dislocation pairs because the loops are entirely closed objects. 
The size of the loops is very small in comparison with the average distance 
between them as their energy cost is proportional to the length of the edge 
dislocation in the bulk of the crystal. 

Because dislocation loops are present at all finite temperatures, it was ar­
gued by Andreev that crystal surfaces should always be disordered so that a 
roughening transition of the Kosterlitz-Thouless type cannot occur [35, 36]. 
Andreev's argument centres on the way in which the height of a crystal sur­
face is defined when the crystal is threaded by dislocation loops. The height 
above a particular point on the substrate can be seen as the sum of two 
contributions: a growth height due to the addition of layers of atoms, and 
a component due to elastic distortions in the underlying crystal planes. In 
this picture the surface height of a defect free crystal is entirely due to the 
growth component. 

The problem arises over the appropriate choice of 'height' when the calcula­
tion of the height-height correlation function is considered. Andreev argues 
that when there are defects present it is the growth height which should be 
used to calculate the height-height correlation function. He finds that in 
the presence of dislocation loops, which lead to steps of length lz, spaced an 
average distance d apart, the height-height correlation function has the form 

(6.32) 

w here the points A and B lie a distance L apart. Clearly this function is 
strongly divergent, implying that crystal surfaces will always have an infinite 
width and so be rough since dislocation loops must always be present to some 

extent. 
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It was on the basis of the divergence of the height-height correlation function, 
calculated in this way, that Andreev claimed that 'there can be no rough­
ening phase transitions ... to which the Kosterlitz-Thouless picture actually 
applies' [35]. However, Andreev's method is not the only way of defining 
the height of a crystal surface threaded by dislocations [90]. For instance 
one could define the height by counting the number of crystal planes that 
are crossed in travelling directly upwards from the substrate to the surface. 
Where a dislocation loop is present the number of planes is only altered in 
the region between the line dislocation, running inside the crystal, and the 
step to which it joins on the surface. Since the effects of the line disloca­
tion and the step parts of the loop are equal and opposite, according to 
this definition the loops warp the crystal planes, but certainly do not lead 
to any divergences in the correlation function. However, the matter can be 
investigated more thoroughly by incorporating the dislocation loops into the 
Nozieres-Gallet theory - in much the same way as with screw dislocations. 

If the crystal surface is pierced by thermally generated dislocation loops the 
correlation function, G D (p), takes on a third distinct form. The disloca­
tion loops are modelled as a semicircular dislocation, of radius a few lattice 
spacings, whose ends are linked by a small step in the interface forming a 
closed object. As the loops are thermally generated and the energy required 
to generate them is typically much larger than kBT, they form a dilute gas 
on the interface and so can be assumed to be non-interacting. The elastic 
displacement produced by a single loop is rather less than that due to a 
pair of screw dislocations, JZ1 ~ sin () / r2, because the underlying dislocation 
cancels out the effect of the step on long length scales. 

Since the loops act independently the correlation function is given by 

(6.33) 

for N loops in an area S, where JZL\ and Jz~>. are the contributions from 
the loop labelled by 'A' to the total elastic displacement at the points rand 
r' respectively. The average is taken over all configurations of each of the N 
loops. However, when the cosine is expanded all those terms containing at 
least one sine vanish on the average, hence the expression simplifies to the 
form 

N 

GD(p) = II (cos (27r (JZL\ - Jz~>.) /b)). (6.34) 
>.=1 

Each of the terms in this product are equal so 

GD(p) (cos (27r (Jz1 - JzU /b))N (6.35) 

(1 - ~ J d2r (1- cos (211" (OZ! - oz;j /b))) N, (6.36) 

where now the average is over the configurations of a single loop. In the 
thermodynamic limit, where N tends to infinity with n = N/ S = 1/d2 

fixed, the correlation function is 

GD(P) = exp (-n J d2r(1- cos (27r (Jz1 - Jz~) /b))) . (6.37) 
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If the origin is taken to be at the centre of a loop of length l/ then the two 
points rand r' lie at distances rand r' from it. There is only a contribution 
to the integral in eqn (6.37) when the value of the cosine term differs from 
1, this occurs when a dislocation loop is within a distance l/ of the point 
r. Further away, each loop contributes an amount 8zlA :::::: aq sin ()b/r2 to 
the total 8z1 , where a is a constant. Thus when the separation, p, is much 
larger than the size of the loop, the integral over r converges rapidly in the 
region l/ < r < p. This means that the integral tends to a constant value 
for large p, thus the correlation function G D (p) tends to e -anI? Since the 
energy of a dislocation loop increases sharply with length, it is clear that in 
practice the value of the ratio of loop length to inter-loop spacing will be 
very small. Hence GD(p) decreases only slightly from unity when p > l/ so 
that the roughening transition is essentially unaffected by the presence of 
the loops. 

6.5 The Strong Coupling Regime 

In the weak coupling limit the roughening transition exists in the low­
disorder regime, but when the underlying crystal lattice is strongly disor­
dered a super-roughening transition occurs instead. This leads to the hy­
pothesis that in the strong coupling limit, at T = 0, there must be a phase 
transition at which the ground state of a crystal surface changes from faceted 
to super-rough [37]. However, there are two important questions which need 
to be addressed before the nature of such a transition can be elucidated for 
a crystal where the disorder arises from screw dislocations. First, the tra­
ditional definition of a facet as 'flat' becomes ambiguous in the presence of 
dislocations: a more general picture of what is meant by a facet is needed. 
Second, for a surface threaded by dislocations the morphology of the sur­
face is determined by the way in which steps form on the interface between 
the dislocations. In order to model the behaviour of the interface, what is 
required is a clear understanding of how the steps are likely to form for a 
given distribution of screws. 

This section begins with a description of how the definition of a facet may be 
generalized to situations where the underlying crystal lattice is disordered. 
N ext there is discussion of how the steps on the interface arising from screw 
dislocations are most likely to be distributed in the low temperature limit. 
Finally results are presented from an attempt to use a simple computer 
simulation to determine exactly where the proposed transition from a facet 
to the super-rough state occurs. 

6.5.1 Definition of a Facet 

For a perfect crystal structure a 'facet' is synonymous with the ground 
state of the surface and can be unambiguously defined in terms of either 
a height-height correlation function, ((z(r) - z(r + p))2), which remains fi­

nite as p --+ 00, or simply a finite step energy (which means it costs a finite 
amount of energy to tilt the surface). However, in the presence of disloca­
tions the surface becomes rugged: the crystal 'planes' are no longer planar 
and cannot be uniquely defined. Therefore the traditional definition of a 
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facet is ambiguous and can lead to misconceptions. A clear understanding 
of both how a facet may be defined in the presence of disorder and the nature 
of the ground state of such systems is essential to any understanding of the 
behaviour of disordered crystal surfaces in the low temperature limit [37]. 

Here a crystal surface is defined as faceted if, in the thermodynamic limit, a 
finite amount of energy is required to tilt the surface by even an infinitesimal 
amount. Put another way, a crystal surface of area L2 is faceted if there is 
a cusp in the variation of the free surface energy density, E( B) / L2, with tilt 
angle, B, in the limit B -+ O. This means that if a step that runs right across 
the interface is added and allowed to interact with the steps between any 
dislocations already present, then the change in the surface energy density 
will be proportional to L if the crystal is faceted. If the energy of the system 
grows less rapidly with L when steps are added to the interface, for example 
as In L or as LQ with alpha less than 1, then there is no cusp in the free 
energy and the interface is not faceted according to this definition. 

In the low temperature regime the dominant contribution to the surface en­
ergy comes from the step energy: steps on the interface have a finite energy 
per unit length. The longer the total length of steps between dislocations 
the higher the surface energy. However, when the surface is threaded by 
dislocations an accurate calculation of the free energy must also include the 
contribution due to the strain introduced in the interface by the dislocations 
[90]. The energy due to the elastic strain is taken to be much weaker than 
that arising from the steps, but its inclusion may lead to a lifting of the de­
generacy of various arrangements of steps between screw dislocations which, 
whilst leading to differing surface morphologies, have the same total step 
length. 

When screw dislocations are distributed as closely spaced pairs the steps 
that form between them are short in comparison with the average distance 
between any two pairs. As a consequence the cost of creating a step running 
right across the crystal is the same as in the absence of dislocations: certainly 
the long step is broken into pieces wherever it crosses dislocation-induced 
steps, but since these steps are randomly oriented the effect of breaking the 
long step into pieces will be to increase the total step length as often as it is 
to decrease it. 

For dislocations distributed at random, the steps that form on the interface 
are simply as long as their average separation. This means that when an 
extra step which runs right across the interface is added, a good deal of 
rearrangement of the steps will tend to occur, as the crystal is grown slowly, 
before 'equilibrium' is reached (that is to sayan arrangement that does not 
alter as further layers are gradually added to the surface [91]). Certainly the 
energy of the surface increases when the extra step is added, but it is not 
obvious that the energy density varies with L, in the limits of L -+ 00 and 
B -+ 0, in a way that ensures that there is a cusp in the free energy. 

An interesting comparison can be made between the case of randomly placed 
screw dislocations and that of solid-on-solid models with disordered sub­
strates. It has been established that in the weak coupling limit the solid­
on-solid model with atoms growing on a disordered substrate undergoes the 
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super-roughening transition. Recent work on such systems in the low tem­
perature limit has shown that the increase in the free energy of the surface 
when an extra step is added scales with the size of the system as In L imply­
ing that the ground state is non-faceted [72, 73]. The standard solid-on-solid 
model and the undisordered sine-Gordon model of crystal surfaces (or that 
which includes the effects of paired dislocations) are known to display the 
same characteristics in both weak and strong coupling limit [92]. Further­
more, the theoretical model of an interface threaded by screw dislocations 
undergoes a super-roughening transition in the weak coupling limit, as does 
the disordered solid-on-solid model. This suggests that the ground state of a 
crystal surface threaded by randomly distributed screw dislocations should 
be unfaceted. 

Parallels may also be drawn with the Mott-transition of hydrogen atoms 
or excitons [93, 94]. For both systems + and - charges are present. A 
transition occurs when, and if, the charges are able to dissociate. When the 
distance between positive charges is much smaller than the Bohr radius such 
a dissociation does not occur, the charges remain paired in neutral dipoles. 
However, if the dipoles start to overlap (i.e. if the distances between like and 
unlike charges are similar) then the system becomes a plasma. At T = 0 
there is a sharp transition from the insulating state to the conducting state, 
but it is blurred at finite temperatures. The dilute screw pairs are analogous 
to the paired state in the Mott-transition. As the density is increased so that 
II ~ d++ a transition to a non-faceted state which is nevertheless still pinned 
occurs. The analogy breaks down at finite temperatures where a sharp 
transition is expected to persist in the case of dislocations. The transition is 
not blurred for crystal surfaces because steps are macroscopic objects which 
can stretch across the whole crystal width, while atoms are highly localised 
and so are more susceptible to fluctuations. 

6.5.2 Step Distribution 

In the low temperature limit the distribution of dislocation induced steps 
on a crystal surface is determined entirely by the distribution of the dis­
locations over the surface. When the screw dislocations exist as pairs, the 
key parameter is the ratio of the intra-pair separation ll' to the inter-pair 
separation d++. When ldd++ « 1 the steps form short sections which al­
ways join members of the same pair and are well separated on the surface 
of the crystal; if instead ldd++ ~ 1, then it is no longer obvious how the 
steps should form as the screw dislocation pairs become indistinct and blend 
together. However, the distribution of steps is somewhat constrained by the 
topological requirement that no two steps can cross. 

When the density of screw dislocations is large the pairings between them, 
and hence the way in which the steps will form, are not obvious by inspection. 
A good idea of how the steps are distributed under these circumstances can 
be obtained by considering how their positions change as a crystal grows. 
Consider a single pair of screw dislocations with a step of length [ joining 
them. As a slight over-pressure is applied to the crystal the step bows out 
by an amount s ~ [2 F / /3, where /3 is the energy per unit length of the step 
and F the force applied to the surface. If the crystal grows at the expense 
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of its melt then the step will bow out further as atoms add to the edge of 
the step, until eventually it intersects with itself forming a terrace. 

If there are several pairs of screw dislocations then as growth proceeds the 
steps will intersect with each other from time to time as they expand, and 
so rearrange. The degree to which this happens depends on the rate at 
which the crystal is grown as this affects the distance which the steps bow 
out between the dislocations. For a crystal being grown at a very slow rate 
the most likely distribution of the steps on the interface is one in which the 
total step length is a minima: that is the steps form between dislocations 
in such a way that the pairs so formed are as small as possible. The step 
length evolves towards a minimum because the rearrangement of steps as the 
crystal grows is intrinsically a one way process. Large steps bow out a long 
way as the crystal grows, interacting with any steps they encounter in the 
process, where as smaller steps sweep out smaller areas, therefore they are 
less likely to interact with another step and so are more likely to maintain 
their configuration as growth proceeds. However, there is no reason why the 
configuration of the steps should be the one, amongst all possible pairings, 
which minimizes the total step length. The bias in the evolution of the step 
distribution is always towards a reduction in step length, but there is no 
guarantee that the system will find its way to the state where the total step 
length is the absolute minimum. 

6.5.3 Computer Simulation Method 

A simple computer simulation was developed to try and determine exactly 
when the proposed low temperature transition from a faceted to super-rough 
state occurs. In this model all attention is focused on the behaviour of the 
steps between screw pairs: the rest of the thermodynamics of the surface is 
ignored since in the strong coupling limit the fluctuations in the interface are 
negligible. Furthermore, it is assumed that because the energy of the surface 
is dominated by the steps, the strain energy associated with the dislocations 

can be neglected. 

The question that the simulations were designed to consider is this: for a 
given distribution of screw pairs is there a cusp in E( B) / L2 in the limit B ---+ 0 
? The question is answered by measuring the average energy required to tip 
surfaces threaded by screw dislocations by increasing amounts. The tilting is 
achieved - as it would be in practice - by adding steps which stretch across 
the whole width of the crystal (known as 'long steps') to the interface. These 
'long steps' are then allowed to rearrange with the steps already present, due 
to the screw dislocation pairs themselves, until a locally minimum energy 
configuration is achieved. By simply recording the change in ground state 
energy as the 'long steps' are added successively, the curve of change in 
surface energy versus tilt angle can be plotted. Also, by investigating the 
behaviour of crystals of different size, the relationship between the change in 
energy when a single 'long step' is added and the size of the crystal surface 
may be determined. The hope was that this simple model would show a 
change in behaviour with different distributions of screw dislocations. 

In the simple model considered here the dislocations are placed across a 
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square crystal surface of side L, as randomly distributed pairs of + and _ 
screws, each separated by a much shorter distance il and with a step between 
them. To ensure that none of the screws lie outside the crystal surface the 
centre of each pair is distributed within a square of side Lo = L - il. When 
M pairs are placed, the average distance between screws of the same type 
is approximately d++ = J L2 / M. The relaxation of the system to a local 
energy minimum is simulated by allowing the pairings of sets of two screws 
to interchange wherever this leads to a lower energy state. In practice the 
relaxation is done by cycling through all the screws in turn and swapping 
over the pairings between them (and hence the associated steps) where this 
reduces the total step length. The simulation also allows screws to pair 
with the edge of the substrate if this leads to a reduction in energy (for 
distributions where il ::: d++ this is a realistic possibility). 

Once a local minimum energy state of the system is found, 'long steps' are 
added one at a time that run across the whole width of the crystal to test 
the stability of the ground state. Each time a 'long step' is added the new 
minimum energy configuration is worked out, using the same methods as 
before, and the total energy of the system calculated. 

The whole procedure was repeated for between 200 and 2000 different ran­
dom arrangements of the screws for values of iz/ d++ = 0.2, 0.4, 0.6, 0.78, 
0.9 and 1.0, as well as for an entirely random distribution of screws. For 
each type of distribution simulations were performed using values of L from 
7071 to 31423 (in arbitrary units) and the average increase in the energy of 
the system is calculated as up to seven 'long steps' are added successively. 
The variation of the number of screws and the size of the crystal gives sets 
of results from which the behaviour of the energy of the system may be 
extrapolated to the thermodynamic limit for each type of distribution. 

At first it seemed that this simple method was sufficient to provide a rea­
sonable picture of how a crystal surface disordered by dislocations behaves 
in the strong coupling limit. Unfortunately though, careful tests of the sim­
ulation revealed that the algorithm becomes inadequate for values of iz/ d++ 
close to 1. The problem is that the minimas in the energy become very 
shallow. Therefore when an extra 'long step' is added to the interface the 
relaxation algorithm frequently shifts the system to the vicinity of a different 
minima rather than pushing the system up the side of the well defined by 
the original minima. However, despite these difficulties the results from the 
simulations are still of some value because the breakdown in the algorithm 
is itself interesting as it may be associated with a change from the faceted 
to super-rough states. 

6.5.4 Results 

The quantities that are of interest in the simulations are the changes in the 
surface energy density, b.E/L2, when the crystal is tilted by an amount elb 
(where e is the number of steps added divided by Land b is the crystal 
lattice parameter). According to the definition of a facet used here, a plot 
of b.E / L2 versus e /b should determine whether a crystal surface is faceted 
or not: if there is a cusp at the origin then the crystal is faceted, otherwise 
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Figure 6.4 Variation of tlE / L2 with tilt angle for different distributions of 
screw dislocations defined by ld d++ 

it is super-rough. 

A plot of tlE/L2 versus ()/b for ldd++ = 0.2,0.6 and 1.0 combining the 
data from each value of L is shown in figure (6.4). At first sight it appears 
that the results collapse onto a single curve for each value of ldd++. For 
small amounts of disorder (ld d++ = 0.2 and 0.6) the behaviour is clearly 
predominantly linear, passing through the origin. In contrast, the plot for 
the largest value of disorder (ldd++ = 1.0) is far from linear, although it 
still passes through the origin. However, since it is the region closest to the 
origin which is of interest, inspection is insufficient and an analytic analysis 
of the curves is required. 

If the curves of tlE / L2 are assumed to have an analytic form then for small 
() they can be approximated by a power series in (): 

(6.38) 

For the data available the number of parameters required to obtain a good fit 
(which was defined by the value of the chi-squared divided by the degrees of 
freedom) increased from 2 to 4 with ldd++ varying from 0.2 to 1.0. Separate 
fits were performed for each value of L for each II / d++. The purpose of 
fitting the sets of data from different sized crystals was to isolate the finite 
size effects which arise: both due to screws forming steps with the edges 
and the requirement that the centres of the screw pairs are placed at least a 
distance ld2 away from any-edge. In figure (6.5) the variation of the linear 
coefficient, aI, with I/L is plotted for each value of ldd++. 

For ld d++ < 0.78 the behaviour is clear: in each case the value of al in­
creases linearly as II L-+ 0, the gradient being almost the same each time. 
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energy in powers of the tilt angle, with 1/ L for different distributions of screw 
dislocations defined by it! d++ 

This'implies that these systems are all faceted as they each contain finite 
linear coefficients. In contrast, for larger values, idd++ > 0.8, the value 
of al decreases with increasing L, although its exact behaviour in the limit 
1 / L~ 0 cannot be determined from the available data. This suggests that 
for values of it! d++ close to unity the linear coefficient may vanish in the 
thermodynamic limit, implying that under these circumstances the inter­
face is super-rough. However, because the simulations were performed on 
such limited scales, the behaviour in the thermodynamic limit can only be 
conjectured. The safest conclusions to draw from these results are that for 
idd++ < 0.78, the crystal surface is faceted, but for it!d++ > 0.8 the algo­
rithm used breaks down. 

6.6 Conclusions and Discussion 

The extension of the Nozieres-Gallet theory of the roughening transition to 
include the effect of screw dislocations shows that the disorder can change 
the universality class of the phase transition. If the screw dislocations are 
distributed at random then instead of the roughening transition a super­
roughening transition occurs instead. However, if the screw dislocations 
are distributed as closely spaced pairs then the interface still undergoes a 
roughening transition, but the critical point is shifted. 

In the low temperature regime it is possible to define a facet, even in the 
presence of disorder, as any state for which there is a cusp in the surface 
energy density when the interface is tilted slightly. However, if the surface 
undergoes a super-roughening transition in the weak coupling limit then at 
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Figure 6.6 Schematic representation of the proposed phase diagram of a 
crystal surface which is disordered by screw dislocations. it! d++ represents 
the degree of disorder in the system, TR and TSR are the roughening and 
super-roughening temperatures respectively. 

temperatures below the transition it must be in the super-rough state. This 
means that in the strong coupling regime there must be a critical level of 
disordering in the underlying crystal lattice at which a Mott-like transition 
occurs between the faceted and super-rough states. 

These results suggest a phase diagram for the crystal surface of the general 
form illustrated in figure (6.6). The rough phase is the high temperature 
state of the system for all levels of disorder, whilst the low temperature 
phases for weak and strong disorder are faceted and super-rough respectively. 
Certain regions of the phase diagram have been modelled successfully: the 
far left side of the diagram represents the region described by the standard 
theory of the roughening transition and the right-hand side can be associ­
ated with the super-roughening transition. Part of the faceted-rough phase 
boundary for a crystal with a small amount of disorder in the crystal lattice 
has also been mapped when the disorder arises from screw dislocations [26]; 
in this case the transition point is shifted slightly. 

The question of exactly when a Mott type transition occurs between the 
faceted and super-rough states remains open. In particular, the problem of 
how to work out the pairings between screw dislocations that lead to the 
ground state has not yet been solved. 



Chapter 7 New Dynamic Theory of Superfluid Films 

This final chapter outlines the way in which the theory of Nozieres and Gallet 
can be adapted to model the dynamics of superfluid films. The work is still 
at a relatively early stage, but preliminary results suggest that it may lead 
to an improved understanding of the experimental data. 

As has been discussed in some detail already in this thesis, the current the­
ories of superfluidity in thin films are insufficient to explain quantitatively 
the results of a variety of torsional oscillator experiments. The problem 
arises because there has not been a satisfactory theoretical framework in 
which to discuss the dynamics of these systems. The dynamics have always 
been tacked on in an essentially ad-hoc way to a static (that is, equilibrium) 
renormalization treatment. There are no recursion relations for the renor­
malization of the noise or a time dependent external drive. Furthermore, 
there is no obvious way of describing the effects of atomic layering in the 
film or disorder in the substrate, though both have been shown to affect the 
results of real experiments considerably. What is required is a renormaliza­
tion procedure which has the dynamics built into it: just such a procedure 
was developed by N ozieres and Gallet in the context of the roughening tran­

sition [19]. 

It has been appreciated for some time that the dynamic renormalization 
scheme of Nozieres and Gallet is more systematic than any of the meth­
ods currently used to describe the dynamics of superfluid films [75]. Their 
scheme was extended to consider the effect of an harmonically varying over­
pressure on the crystal surface by Giorgini and Bowley [75], who came close 
to recognizing the application to superfluid films. They identified and calcu­
lated a 'dielectric constant' for the crystal system. However, they perceived 
an analogy between the two systems where in fact there is an identity. Using 
the Hubbard-Stratonovich transformation the duality of the two-dimensional 
Coulomb gas and sine-Gordon models can be proved and so an exact trans­
lation from the language of the roughening transition to that of superfluid 
films is possible [9]. Hence, a fully self-consistent dynamic renormalization 
scheme may be formulated for superfluid systems in which the noise and 
external oscillating field are renormalized and which may be extended to 
include the effects of disorder or discrete layering. 

This chapter contains a description of preliminary work on the adaptation 
of the Nozieres-Gallet scheme to superfluid systems. After a brief discussion 
of the details of the duality of the two models, the way in which the electric 
field can be 'translated' into the language of the sine-Gordon model is shown 
along with the derivation of its recursion relation. This is followed by details 
of how the dielectric function can be calculated. Some preliminary results 
using a simple calculational scheme based on the work of Giorgini and Bowley 
[75] are then presented. Next there is a description of some of the ways in 
which the basic model may be extended, in particular to take into account 

84 
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the effects of disorder and discrete layering in the films. Finally there is a 
discussion of how the work outlined might be extended in the future in order 
to develop a comprehensive theory of the dynamics of superfluid films. 

7.1 Comparison of Models 

The duality of the two-dimensional Coulomb gas model, which is used to de­
scribe superfluid films, and the sine-Gordon model was discussed in chapter 
2 and is demonstrated in appendix C. Each term in either of the models has 
a direct counterpart in the other one. 

The starting point is the grand partition function for the two-dimensional 
Coulomb gas (which is used to describe superfluid films), 

z = ""' _1_ ""' _1_ Nrr+ J d2ro. Nrr-J d2
r{3 N+ N- (-tlCG ) 

L..J N+! L..J N-! a2 a2 y y exp k T ,(7.1) 
N+ N- 0.=1 (3=1 B 

where N+ and N- are the number of positive and negative charges, and the 
Coulomb gas Hamiltonian is given by 

where nv(r) is the density of unit charges at r. The duality transformation 
allows the grand partition function to be rewritten in the form 

Comparing this with the Hamiltonian used to describe the roughening tran­

sition, discussed in chapter 5, 

(7.4) 

it is apparent that the pinning potential may be associated with the fugacity, 
and the surface stiffness with the Kosterlitz parameter, using the relations: 

and 

b¢ 
z{:} -

27f 

_ kBT 
,{:} Kb2 ' 

Furthermore, the minimum length scale in the Coulomb gas problem, a, can 
be identified with the lattice cutoff length in the sine-Gordon model, Ar; 

1
: 

in particular, they scale in exactly the same way. 

These connections make obvious physical sense: it is clear that the fugacity 
and pinning potential should be associated as they both constitute the ex­
pansion parameter in the renormalization group treatment of the respective 
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models. It is also clear from the above identifications that the low tempera­
ture phase of one system must be related to the high temperature phase of 
the other and vice-versa. This observation becomes clear when it is noted 
that the low temperature phase of the crystal surface has a large value of 
the pinning potential where as the fugacity is high for superfluid systems in 
the high temperature limit. 

The dynamics of the sine-Gordon model is usually obtained by the formu­
lation of a Langevin equation. This standard technique, which provides a 
valid description of the dynamics of the sine-Gordon model, is assumed to 
still be applicable when that model is used as an abstract representation of 
the superfluid system. 

The description of the duality transformation which is common in the lit­
erature [9] essentially stops at this point. The question of how an analogue 
of the electric field in the two-dimensional Coulomb gas could be calculated 
for crystal surfaces remains, nor is there any attempt to see how disorder 
in superfluid systems might manifest itself in the sine-Gordon picture. If 
the Nozieres-Gallet approach is to be adapted to analyse superfluid systems 
then answers to these questions become essential. However, the technique 
needed to do so is clear: a Hamiltonian for the superfluid system containing 
the electric field is postulated and then converted into the language of the 
sine-Gordon model via an Hubbard-Stratonovich transformation. 

7.2 The Electric Field Analogue 

The effect of a macroscopic electric field on the two-dimensional Coulomb gas 
is analogous to the effect of an oscillating substrate on a superfluid film. As 
was discussed in chapter 3, the force on the charges due to the macroscopic 
electric field, E, is equivalent to the Magnus force on vortices which arises 
from the relative motion between normal and superfluid components in the 
film, 

pOh 
qE.r {:} 27r-s-r. (k x (vn - us)) . (7.5) 

m 
Therefore, in order to analyse the dynamics of the vortices in the sine-Gordon 
model the Hubbard Stratonovich transformation performed must be general­
ized to include the quantity corresponding to the electric field in the Coulomb 

gas picture. 

The electric field can be seen as leading to an external chemical potential 
in the context of the two-dimensional Coulomb gas model. In the absence 
of such a field, the fugacity is just a function of the chemical potential, y = 
exp ( - f..l / kB T), and the chemical potential arises simply from the core energy 
of the charge. This definition may be extended in a straightforward way to 
take account of the presence of an electric field, E [95]. The generalized 
fugacity, y', which includes the effect of E is written as 

y' exp (-~ + _1_ jd2rnv (r)E.r) (7.6) 
kBT kBT 

yexp (k~T j d
2
rn v (r)E.r) . (7.7) 
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T~e . electric field term is simplified by putting the charges in explicitly and 
wntmg 

J d 2
rnv (r)E.r = J d"rE.r (~.5 (ra - r) - ~.5 (rr r)) (7.8) 

LE.ra - LE.r(3, (7.9) 
a (3 

where the positions of the positive and negative charges are represented by 
the sets of coordinates {r a} and {r (3} respectively. 

When the generalized fugacity, which includes the electric field term (eqn 
7.7), is included in the grand partition function and the duality transfor­
mation is performed, the sine-Gordon partition function obtained has the 
modified form: 

z = c J D¢(r)exp ( 87r;K J d2
r (\1¢)2 + !; J d2

rcos (¢ - i!';)) . 

(7.10) 
The electric field gives rise to an extra term in the sinusoidal expression; also 
because the new term involves the dot product of the position, it specifies a 
special direction in the plane of r. This is very similar to the way in which a 
vicinal surface is described in the context of the roughening transition [19]: 
in that setting an extra term of the form hx is included in the argument 
of the cosine, where h = (8zj8x) quantifies the amount of tilt along the x 
direction. However, the presence of i = .J=I in eqn (7.10) is rather disqui­
eting, although it is an inevitable consequence of the Hubbard-Stratonovich 
transformation for any system of charges whose fugacities are not always 
identical [96]. 

Some light is shed on the possible meaning of the imaginary term in eqn 
(7.10) by Samuel [97, 54]. The auxiliary field can be seen as a kind of 
coarse grained Coulomb potential; however, it is i¢ rather than ¢ which is 
identified with a charge density. If, as Samuel suggests, the auxiliary field 
is pure imaginary then the Hamiltonian containing the electric field makes 
perfect sense. In fact the presence of the i should make no difference to the 
analysis: here it will be assumed that the imaginary term leads to no unusual 
behaviour. Instead a simple calculation is made which can be compared with 
experiment: if the results are successful then it will be worth attempting a 
more rigorous derivation. 

In order to obtain the dynamics in the presence of the electric field model A 
dynamics is assumed. Furthermore, in order to avoid divergences an upper 
length scale, L, must be imposed on the problem such that ELjkBT « 1. In 
principle this should lead to an extra surface term in the equation of motion 
[97]. However, here it is assumed that the size of L can be chosen to be 
much greater than all other length scales, in particular the dynamic length 
scale. When this is the case the boundaries will have a negligible effect on 
the bulk of the film and so the surface term can be neglected. 

When the fugacity and Kosterlitz parameter have been 'translated' into 
the language of the roughening transition. using the associations described 
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above, a Langevin equation of the form 

. -t"72 27r Vi . (27r E.r ) 
'T]Z =, v Z - --,; 0 sm --,;Z - i kBT + R, (7.11) 

is obtained. The simplest way of proceeding is to renormalize this equation 
up to first order in the magnitude of the electric field, leading to a non-trivial 
recursion relation for the electric field. This recursion relation can then be 
integrated to give the dynamic dielectric function. A higher order treatment 
would also be of interest, but is considerably more complex and so is not 
considered here in any detail. 

7.3 Renormalization 

The renormalization procedure adopted here is the second order dynamic 
method of Nozieres and Gallet which was described in the context of the 
roughening transition in chapter 5 and so the same notation has been used. 

If the Langevin equation for the system is rewritten in terms of the variable 

. E(t)xb 
Ze = Z - 127rkBT' (7.12) 

and the electric field is assumed to be given by E (t) = Eoe -iwt, then it takes 
the new form 

. wxbEo -iwt -t"72 27r . (27r ) R 
'T]Ze + 'T] e = ,v Ze - -b Vo sm -b Ze + . 

27rkBT 
(7.13) 

Thus a term proportional to 'T]wxe- iwt arising in the renormalization scheme 
will lead to a correction to Eo· 

Proceeding in the style of Nozieres and Gallet, the short wavelength Fourier 
components of Z are summed over. It is found that there is no change in 
the behaviour of the term which is first order in the potential, as in the case 
when disorder was included in the model of the roughening transition. At 
second order the most relevant term has the form 

where p = r - r', T = t - t' and n = 7rkBT/'7b2. It is the expansion of this 
term which leads to renormalization of '7, 'T] and the electric field. 

The next step is to expand the harmonic term using the trick of splitting Z 

into two parts, so that z = zeq + ~ where zeq has an equilibrium distribution. 

Thus if the shorthand 

iEob (-iwt ,-iw(t-r)) a = xe - x e 
27rkBT 

(7.15) 
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is adopted, then the expansion of the harmonic term to first order in ~ 
becomes, 

2; (e' -~) cos (a) \ cos C; ((z,q)' - z,q) ) ) 

+ sin (a) \ cos C; ((z,q)' - z,q) ) ) . (7.16) 

The first term in this expression is familiar, the difference (( - 0 IS ex­
panded as a Taylor series, 

, _ a~ a~ 1 a2~ 
(~ -~) - -T at - Pi -a -+ -2 PiPj a -a _ + ... Tz Tt TJ 

(7.17) 

and so leads to corrections to the surface stiffness and the mobility from 
the coefficients of the a~ / at and a2 ~ / aT i aT j terms respectively. These take 
almost the same form as in the Nozieres-Gallet treatment except for the 
presence of the extra cos a: 

4-2 
~ 87r Vondl J 2 rJ() 2 h( ) ~ 2 

d'"'(ij = b4 d PPiPj io dTXO (p, T) e- n p,7 Jo (Ap) e-,A 7/11 cos a 

(7.18) 

4-2 
167r Vondl J 2 roo -( ~ 2 

dry = b4 d P io dTTXO (p, T) e-2nh 
p,7) Jo (Ap) e-'YA 7/11 cos a. 

(7.19) 
The surface stiffness is generalized to take account of any possible anisotropy, 
taking the form: iij with i, j = x, y. Usually when the angular integrals 
are carried out the off-diagonal elements of the stiffness matrix vanish and 
the sum of the diagonal elements takes a value which does not depend on 
the choice of axes. However, if there is any angular dependence in the 
cos a term then this will no longer be the case, implying that the electric 
field breaks the rotational symmetry in the xy plane. In the isotropic case 
terms in a~ / aT i vanish, but again if the rotational symmetry in the xy plane 
is broken by the cos a term then they will be finite and lead to an extra 
parameter in the renormalization scheme. Just such an anisotropy arises in 
the renormalization of the vicinal crystal surface. In terms of superfluid films 
such an anisotropy would lead to a generalization of the Kosterlitz parameter 
to a tensorial form and physically it would imply differing longitudinal and 
transverse momentum susceptibilities in the superfluid [9]. 

The second term in the harmonic expansion (eqn 7.16) must give rise to a 
correction to the electric field Eo, though how it does so is not immediately 
obvious. Labelling the part of ~ (2) which contains this term as Y leads to 
the expression 

To obtain the linear response the term sin a must be simplified to include 
only terms up to and including linear order in Eo. Using the notation Px = 
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X' - x , 
0: = iEob (xe-iwt (1 _ eiWT ) _ p e-iW(t-T)) 

2nkBT x 

so that the sinusoidal term may be expanded as 

smo: = sin (iXxe-iwt (1 - eiWT)) cos (-iXPxe-iW(t-T)) 

+ cos (iXxe-iwt (1 - eiWT
)) sin (-iXPxe-iW(t-T)) , 

90 

(7.21) 

where X = Eob/2nkBT. However, when the angular integration in eqn (7.20) 
is performed the second term in the expansion of sin 0: vanishes because 
Px = P cos 8 and 

1a
27r 

d8 sin (z cos 8) 0, Vz. (7.22) 

Thus to first order in Eo, 

iEob . t ( .) (3) sino: = xe-1W 1 - elWT + 0 E 2nkBT 0 . 
(7.23) 

The extra correction term arising at second order in the pinning potential 
and linear order in the electric field is given by 

y = iEobxe-iwt16n4V~ndl J d2 (X; d ( ) -2nh(p,T)J (A ) -::YA2T/T] 
2nkBTb4 P Jo TXO p,T e 0 p e 

x (1 - eiWT
) . (7.24) 

By comparing this expression with the electric field term in eqn (7.13), it is 
clear that 

Thus on making the change of variables p = pA and K, 

becomes 

32n5VQ2nEodl J d~~3Iooo d (~) -2nh(p K)J (;;\ -{?K 
dEo b4~A4 pp K,Xo p, K, e ' 0 Pl e 

1 0 . 

x ~ (eiWT 
- 1 ) . (7.26) 

If substitutions are now made for the kernel, xo = e-1
/

4K 14n;YT, and for the 
pinning potential, U = Vol A2, then eqn (7.26) can be rewritten as 

dlnEo 
dl 

(7.27) 

-2 -
Notice that the distinctions between vi and Vo as well as TJ and TJ have been 
neglected in the change of variables, in each case using the exact expression 
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would lead to a correction which is both proportional to d1 2 or higher or­
der and fourth order in the pinning potential, hence their omission is quite 
acceptable in the context of this second order scheme. 

To obtain recursion relations for ;:y and 'f} that include the effects of the elec­
tric field up to just linear order, an expansion of the term in cos Q similar to 
that employed for the sin Q term is required. Once this has been done the , 
recursion relations are easily obtained by substituting the linearised expres-
sion into eqns (7.18) and (7.19). A straightforward expansion of the cosine 
term gives 

cos Q cos (iXxe- iwt (1 - eiWT )) cos ( -iXPxe-iw(t-T)) 

- sin (iXxe- iwt (1 - eiWT )) sin (-iXPxe-iW(t-T)) , (7.28) 

where again X = Eob/27CkBT. Clearly there are no terms of linear order in 
the electric field present, 

COSQ 

Thus in the linear field approximation the renormalization equations for ;:y 
and 'f} have exactly the same form as in the case of zero field so the system 
can be treated as isotropic. However, if instead an expansion to second 
order were performed then an expression containing the quantity Px would be 
obtained, which would lead to anisotropy in the surface stiffness as discussed 
above. 

The results derived in the second order treatment of Nozieres and Gallet for 
U, ;:y and 'f}, along with the relation for the electric field obtained above, form 
a complete set of recursion relations for the system: 

and 

dU - = (2-n)U 
dl 

dlnEo _ 87C4 U2

C ( ) 
dl - - ;:Y2b4 n, WT . 

The functions A(n), B(n) and C(n, WT) are given by the relations 

(7.30) 

(7.31) 

(7.32) 

(7.33) 

(7.34) 
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Figure 7.1 The variation of functions C'(n,Td) and C"(n,Td) with Td for 
the case n = 2 

(7.35) 

and 

(7.36) 

Making the change of variables T = K,p211Pr, and introducing the quantity 
Td = A Cill1W ) 1/2 , equal to the ratio of the 'diffusion' length and A -1, the C 
coefficient can be split into its real and imaginary parts, C' and C" respec­

tively: 

(7.37) 

and 

These expressions have exactly the same form as those derived by Giorgini 
and Bowley who considered the response of a crystal interface to an harmonic 
over pressure. The behaviour of the C functions is readily investigated by 
numerical integration. The variation of C'(n, Td) with Td is very close to that 
of a step function: it increases rapidly from zero for small T d, to a constant 
value of 0.246 at Td "-J 0.5, for n = 1. However, C'(n, Td) varies only slightly 
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with n, the height of the step varies from 0.246 for n = 1, to a value of 0.195 
when n = 3. In contrast the function C"(n, Td) takes the form of a sharp 
peak around the point Td '" 0.5, and has a value of zero elsewhere. The 
effect of variation in n is to modulate the value of the peak, but the change 
is only of order 10%. The behaviour of C'(n, Td) and C"(n, Td) for n = 2 is 
shown in figure (7.1). 

The recursion relations are readily 'translated' into the language of superfluid 
films that was used in chapters 3 and 4: 

dy 
- = y(2 -7rK) 
dl 

dK- 1 

dl = 47r3y2 [27rKA(7rK)] 

dIn 1] 4 
-- = 327r y2 K2 B(7rK) 

dl 

dlnEo 4 2 2 
dl = -327r Y K C(7rK, Td)' 

(7.39) 

(7.40) 

(7.41) 

(7.42) 

Eqns (7.41) and (7.42) do not have counterparts in the static treatment 
of Kosterlitz which was described in chapter 2. However, eqns (7.39) and 
(7.40) do arise in Kosterlitz's scheme, though not in exactly the same form: 
the factor in the square brackets in eqn (7.40) is simply equal to one in 
Kosterlitz's work [1]. A value of one is close, but not identical, to the value 
of 27r K A( 7r K) at the transition, which is 1.56. 

7.3.1 Calculation of the Dielectric Function 

The dielectric function is, in principle, obtained by simply integrating the 
recursion relation for the electric field 

(7.43) 

hence 

(7.44) 

or, explicitly in the language of superfluid films, 

c(w)-l = exp (- 1000 

dl (327r4y(l)2 K(1)2C(7rK(l), Td)) ) . (7.45) 

However, great care needs to be taken to ensure that the assumptions on 
which the derivation of the recursion relations are based do not become 
invalid. The most serious problem is that an increase in the magnitude 
of the coupling, U, as 1 -+ 00 will make the weak coupling approximation 

invalid. 

This question was considered by Giorgini and Bowley in their analysis of the 
mathematically identical problem of the roughening transition in the pres­
ence of an external harmonic drive. They were concerned with the renormal­
ization of the part of the interface velocity fluctuating at the same frequency 
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as the external drive, Uo (w). In their treatment they derive an expression 
which they identified as a dielectric function, 

(7.46) 

Their expression for the renormalization of the interface velocity is identical 
to that derived here for the renormalization of the electric field. 

In an approach very similar to that of AHNS, Giorgini and Bowley calculate 
the dielectric function as a combination of two parts: a term from the short 
wavelength fiuctuations, which is obtained via the renormalization approach, 
and a second term describing the long wavelength behaviour which is dom­
inated by the pinning potential. In terms of the roughening transition this 
description is valid in the region just below the transition where the pinning 
potential is finite on a macroscopic scale. This corresponds to the region 
just above the superfiuid transition in thin Helium films, which is exactly 
what is probed by torsional oscillator experiments. 

To model the strong coupling regime Giorgini and Bowley use the simplest 
possible ansatz. They solve the equation of motion for the surface assuming 
that all displacements of the interface are small in this regime. They expand 
in terms of the displacement, retaining just the leading term. Then they use 
this result to calculate a contribution to the dielectric function of the system 
in the strong coupling limit which is added to the contribution arising from 
the weak coupling regime (obtained from renormalization). The crossover 
between the two contributions is not well defined in the theory and suffers 
from the same problems as the cut-off introduced by AHNS between bound 
and free vortices; it is assumed to be related to the correlation length of the 
system, but is in practice an adjustable parameter. 

It is now recognized that the calculation of Giorgini and Bowley is unsatis­
factory, both because of the imprecision it leads to in the crossover region 
and also because of the crude nature of the approximations it involves. A 
more satisfactory technique would use a renormalization group approach: ei­
ther by obtaining recursion relations which are explicitly valid in the strong 
coupling regime, or by developing a renormalization scheme which remains 
valid over the whole range of integration, similar to that described in chapter 

4. 

However, in order to perform a preliminary calculation of the response of 
a superfiuid film using the dynamic approach, the method of Giorgini and 
Bowley is sufficient. Therefore the expression for the dielectric function 
given above (eqn 7.44) is modified: the integration is performed up to a 
finite cutoff, Ie, and a separate term from the strong coupling regime is then 
added on. This strong coupling contribution is obtained from a solution in 
the long wavelength limit of the equation of motion for small displacements, 

which has the form 

(7.47) 
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If the solution is further restricted to include only the component varying at 
the same frequency as the external field, then it is found that the expression 
for the dielectric function can be written as 

(7.48) 

The notation is considerably simplified by making the following change of 
variables 

Y = 47rU 
- kBT' 

The equation for the dielectric function now takes the form 

In (t:{w)) = 10'" dl ~Si22 C{2/ X, rd) + In (1+ i ~(~:j r~(l,)) , (7.49) 

with the real and imaginary parts of the coefficient C given by eqns (7.37) 
and (7.38) above, respectively. An important advantage of the new variables 
is that they can be related directly to the microscopic parameters of the 
superfluid: X {:} 2/7r K and Y {:} 87rY. In terms of these parameters, the 
diffusion length is 

-l X1/2 (l) 
rd(l) = Ae 1/2 

TJ 
(7.50) 

where 

A= (7.51) 

In order to carry out a calculation of the dielectric function the initial values 
of various parameters need to be specified. The values of X and Y require 
no special tuning, they are chosen as follows: Y must be much less than 47r 
and X is varied to sweep through the transition. The initial value of TJ is 
not determined by the theory at present and is essentially free, as is that of 
the parameter A. Finally the value of lc is not well defined, as is usual when 
an approximate cross-over technique like this is employed. 

7.3.2 Preliminary Results 

The results from a simple calculation of the dielectric function using the dy­
namic renormalization group method and the cross-over technique outlined 
above is shown in figure (7.2). Following Giorgini and Bowley, the value of 
X(O) was varied from 0.71 to 0.91, sweeping through the transition and the 
value of Y(O) is defined by the relation 

( ) 
_ .58 x X(O) 

Y 0 - .6301 (7.52) 
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Figure 7.2 Parametric plot of the dynamic dielectric function for superfluid 
films for different values of the cut-off parameter le 

The values of the three adjustable parameters were also assigned using the 
values suggested by Giorgini and Bowley. The assumption is that the results 
should be essentially insensitive to the values used: 1](0) = X(0).\2 /(4 x 106 ) 

with .\ = 1.76 X 105 • The value of le is defined by the value of Y at which 
renormalization is stopped. Since it is known that variation in this cut-off 
leads to considerable differences in the results obtained, the calculation was 
repeated for a series of different values from Y(le) = 1 to Y(le) = 47r. From 
figure (7.2) it is obvious that there is considerable variation in the dielectric 
function for different values of le. This is probably a result of imprecision in 
the crossover procedure rather than of any physical significance. 

The numerical routines used to integrate the recursion relations are not yet 
efficient enough to make the calculation routine. The values of the param­
eters were kept the same as those of Giorgini and Bowley to allow the nu­
merical methods to be checked, rather than for any physical reasons. In the 
future the numerical methods will be refined so that the dielectric function 
can be calculated for a whole range of initial conditions. 

It was found that except for values of le such that Y(le) > 7r, the dominant 
contribution to 1m (c(w)-l) comes from the region in which the renormaliza­
tion group approach breaks down. At present the calculation in this regime 
is the simplest possible and so it is likely that a more sophisticated approach 
will alter the results significantly. 

Despite the lack of available data, it is clear that the results from this method 
leads to parametric curves of the dielectric function with a shape very similar 
to those measured by McQueeney in torsional oscillator experiments. Figure 
(7.3) shows a comparison of the theoretical curve for Y(lc) = 1 with a subset 
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Figure 7.3 Comparison of the sine-Gordon theory for Y(lc) = 1 with some 
of the data from McQueeney's thesis. In order to obtain the fit the theoretical 
curve has been scaled up by 15%. 

of the data from McQueeney's thesis. Unfortunately the theoretical curve 
had to be scaled up by 15% in order to obtain the fit: a procedure which 
is certainly unsatisfactory. However, the shape of the theoretical curve is 
much closer to that of experiment than the refined theory, particularly at 
the left hand side. The naive comparison made at this stage is in effect a 
two parameter fit, but the agreement is as good, if not better, than any of 
the other dynamic theories of superfluid films. Indeed it seems likely that 
the fit will improve if the theory can be extended to include disorder and 
non-linear effects. 

7.4 Variations on the Theme 

The dynamic sine-Gordon theory presented here has the advantage that it 
is readily extended to include other physical effects which may be relevant. 
This section outlines the way in which the theory might be adapted to include 
either the effects of disorder in the substrate or atomic layering in the film. 
This work is in a preliminary stage and the approaches described here are 
not the only ones available: they are presented here simply as examples of 
how the theory can be generalized. 

7.4.1 Inclusion of Disorder 

One way in which the dynamic sine-Gordon theory can be extended to in­
clude effects of disorder was described in chapter 6. In the context of the 
roughening transition disorder is modelled by an additional phase in the 
harmonic term. However, it is not obvious what this extra phase would 
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correspond to in the superfluid film picture. A more physically appealing 
appr?ach would be to start from the two-dimensional Coulomb gas model 
and mtroduce a spatial variation in the fugacity of the charges. The vari­
ation in the fugacity could be used to model the pinning of vortices on 
inhomogeneities in the substrate. 

Consider a chemical potential for a vortex which is generalised to contain an 
~dditional spatially dependent term, ps(r) = p + h(r), so that the fugacity 
IS now 

y(r) exp (-ps(r)/kBT) 

exp (-p/kBT) exp (-h(r)/kBT) . 
(7.53) 

(7.54) 

When the Hubbard-Stratonovich transformation is applied this leads to a 
partition function in the sine-Gordon picture of the form 

z = c J V¢(r)exp ( - J d2
r (87r;K (\7¢(r))2 - 2~~r) cos¢(r))). (7.55) 

The spatial dependence of the fugacity is transferred to the pinning potential 
of the sine-Gordon model. 

The disorder in this model is then characterized by a correlation function for 
the function h(r), leading to a new length scale in the problem. The exact 
form that the correlation function should take has not been considered in 
any detail yet, but should certainly be strongly dependent on the details of 
substrate morphology. 

7.4.2 Coupled Layers 

The results of torsional oscillator experiments have shown that the number 
of atomic layers in a film affect its dynamics in a systematic way. It has 
been suggested that when a superfluid film consists of more than one fluid 
layer the coupling between the layers is imperfect and depends in some way 
on the degree of completion of the uppermost layer [65]. In principle, this 
can be tested using the methods of the sine-Gordon theory described above. 
The first step is to postulate a Hamiltonian for a set of weakly interacting 
layers; the Hubbard-Stratonovich transformation is then applied to give a 
set of coupled sine-Gordon equations which can then be renormalized and 
so the dynamic response obtained. 

The simplest possible Hamiltonian for a system of two weakly coupled layers 
consists of a two-dimensional Coulomb gas model generalized to include two 
species of charged particles which interact with both themselves and each 
other logarithmically, but with different strengths in each case. The idea is 
that each species should represent the vortices in one or other of the layers: 
vortices in the same layer interact with each more strongly than vortices 
in different layers. The most convenient way of doing this is to generalize 
the Kosterlitz parameter, K = ps1i2 /m2 kBT, so that it describes both the 
coupling within each layer and between the layers. This is done by writing 
it as a matrix, 

_K = ( X ,fr;:K-;:-\~K"-2 (7.56) 
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where Kl and K2 are proportional to the superfluid densities in the first 
a~d second layers respectively and the strength of the interlayer coupling is 
gIven by the new parameter X. The Hamiltonian for the layered system is 
then 

1{ nK·· 11 . (Ir- 'I) k T = - L AtJ d2rd2r/n~(r) In r nt(r/), 
B ij Ir-r'l>a a 

(7.57) 

where A is a constant and the summation runs over all the vortices in both 
layers (labelled by i and j respectively). 

The algebra is considerably more complicated than in the single layer model 
and so the details of the calculation are not given here, but in appendix 
D. The final result is a pair of coupled sine-Gordon equations which may 
then be renormalized. The new feature is that the coupling between layers, 
X, will also be renormalized: when it scales to infinity the equations will 
collapse to those of a single layer, but when X remains finite, or goes to 
zero, the behaviour of the system will be substantially altered. 

Although the model of coupled layers outlined here is very simple, it is by 
no means the only possible model of the system. In particular, it is possible 
to formulate a model in which the strength of the interaction between the 
layers is given by an harmonic Josephson coupling term. Further work will be 
required to determine whether there is a difference in the physics predicted 
by different models of layering and which of them provides the best picture 
of the effects observed in experiment. 

7.5 Conclusions and Discussion 

The theory presented in this chapter is a synthesis of the two principal 
areas of work in this thesis: the dynamic behaviour of superfluid films and 
the roughening transition of crystal surfaces. The dynamic renormalization 
group theory of the sine-Gordon model developed by Nozieres and Gallet 
provides the basis of a more natural theory of superfluid film dynamics than 
the phenomenological models of AHNS and Minnhagen. Furthermore, it is 
possible to expand the sine-Gordon model to include the effects of disorder 
in the substrate or the behaviour of two weakly coupled atomic layers of 
superfluid. Preliminary results suggest that this new theoretical approach 
is likely to lead to improved agreement with experiment. However, before 
any conclusions can be drawn with certainty a good deal of further work will 

need to be done. 

The work described in this chapter is simply an outline. In fact a well defined 
programme of work remains. The first step will be to provide a more rigor­
ous derivation of the equation of motion that was assumed here. Improved 
numerical methods would also be very helpful as they would allow the depen­
dence of the dielectric function on the various parameters to be determined. 
Next a more sophisticated approximation for the strong coupling regime 
needs to be developed. The most natural way of doing this would be to 
renormalize the equation of motion in the strong coupling regime. Linearis­
ing in the displacement leads to a linear equation which can be renormalized 
without further approximation. However, an expansion in some parameter 
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related to 1jVo would be more generally valid, though the renormalization 
calculation would now be non-trivial. An alternative scheme could be based 
on an extension of the Nozieres-Gallet renormalization scheme to higher or­
der, in the spirit of Timm. It is to be hoped that such a method would allow 
a well defined calculational scheme to be developed (like that described in 
chapter 4) which avoided the need for an arbitrary crossover parameter lc. 

The work on the inclusion of disorder via a variable fugacity and on the 
layered sine-Gordon model is still at a very early stage. Indeed it is not yet 
clear whether the models proposed here will provide the correct description 
of the corresponding physical effects in real superfluid films. The recursion 
relations need to be calculated before their worth can be evaluated. However, 
these models are intrinsically interesting as they are examples of a broad 
group of possible extensions to the sine-Gordon method. Even if they fail 
to capture the physics of superfluid films it is quite possible that they may 
prove applicable to another system which undergoes a Kosterlitz-Thouless 
transition. 

Another possible extension to the work described here would be to calculate 
the response of a superfluid film in the non-linear regime. Although this has 
been done before [52, 98, 99], using an extension of the AHNS theory, the 
idea that the response should be anisotropic is new. A detailed calculation 
would be of particular interest as it may lead to new predictions which would 
be open to experimental test. 

Hopefully the new theoretical approach presented here will lead to a clearer 
understanding of the physics of superfluid films. Even though the work is still 
at an early stage it seems that the method detailed here will provide a more 
complete theoretical picture of the dynamic behaviour of superfluid films 
than the alternative phenomenological theories that have been developed in 
the past. Future work will be directed towards describing the results of the 
torsional oscillator experiments which are still only poorly understood after 

twenty years. 



Appendix A Vortex-Vortex Interaction 

The expression for the energy of a single vortex and the interaction energy 
of a pair of vortices are derived in this appendix. The starting point is 
the definition of the configuration of the vortex part of the order parameter 
phase which gives rise to a vortex of winding number n, 

fa V <p.dl = 21rn. (A.l) 

and the associated expression for the vortex contribution to the energy, 

(A.2) 

The range of integration in this case includes the whole plane except the 
core region and so leads to an expression for the energy of a vortex to which 
the core energy must be added in separately. 

When the phase of the order parameter was split into two parts (see section 
3.2) the vortex contribution was defined as being a local minima of the 
energy. For a single vortex configuration, as described by eqn (A.l), this 
is just <p = ncp, where cp is the angle in plane polar coordinates. Hence, 
!V<p! = nlr , and so it follows that the energy of an isolated vortex with 
core radius a, in a circular box of radius L, is 

-- = -n dr21rr- = 1rKn In-. 1lv K 21£ 1 2 L 
kBT 2 a r2 a 

(A.3) 

The total energy of a single vortex is given by this expression, plus the core 

energy, 
(A.4) 

The energy of a pair of vortices of equal but opposite winding number, a 
distance r apart, is obtained in the following way. The expression for the 
energy in eqn (A.2) is integrated by parts, 

However, since the region of integration excludes all the vortex cores, V2<p = 

O. Hence on applying the divergence theorem in two-dimensions, a line 

integral is obtained, 

1lv = K 1 dl<p (V<p.m) , 
kBT 2 JR 

(A.6) 

where m is a unit vector which points normally (outwards) to the contour. 
The path of integration, R, is a single continuous contour which bounds the 

entire region of integration. 
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1 

2 

Figu re A.I Schematic representation of the path of integration for a system 
containing two vortices 

For a system with two vortices the contour takes the form shown in figure 
(A.I). The only important contribution comes from the sections of the path 
between the two vortices, labelled 1 and 2 in the figure. For a large enough 
system '\l cp ~ 0 along the outer edge of the contour, also along the region 
from the edge to the positive vortex <p'\l<p has the same value on both sides 
of the contour and so the contributions cancel. The integrations around each 
of the vortices are finite, but lead to constant values which do not depend 
on their positions and so are absorbed into the values of the core energies. 

The integral is readily evaluated along the parts of the path between the two 
vortices, by changing variables from the phase to plane polar coordinates 
defined by the relations cp = n4> and V <p = n4> / r, so that 

K i dlcp'\lcp 
2 r,a 

Ki r 
n n (4)1 - 4>2) - dr'-

2 a r' 
(A.7) 

(A.8) 

since the value of 4> differs by 21r across the two sides of the line of integration. 
Therefore the total energy of the pair of vortices is given by the expression: 

(A. g) 

This reduces to the form of the interaction energy introduced in chapter 3 
when the vortices are of unit strength. 



Appendix B Calculation of r (r, t) 

In chapter 4, it was stated that the solution of the Fokker-Planck equation, 

af(r, t) 2D 
at = kBT V'. (f(r, t)V'U(r, t) + kBTvT(r, t)) , (B.1) 

for a potential of the form 

U(r, t) = Uo(r) - qE(t).r, (B.2) 

where Uo(r) is the static potential, could be written as 

f(r, t) = fo(r) (1 + ~:~g(r) cos (}e-iwt + ... ) , (B.3) 

with the function g(r) given by the differential equation 

. 2 d2 d lwr 2 9 ( ,g , , 
2D 9 + r dr2 + 3 - r V )r dr - r V 9 = -r V . (B.4) 

This result is most readily obtained using a double expansion method [52]. 
If the dynamic pair distribution function is written in terms of its static 
counterpart, 

e-UO(r)/kBT _ Y5 -27r t dl' K(l') 
fo(r) = 4 - 4 eo, 

a a 
(B.5) 

and some function h, in the form 

e-U(r,t)/kBT eh 
f(r, t) = 4 = fo(r)eqE.r/kBT eh , 

a 
(B.6) 

then substitution into the Fokker-Planck equation leads the relation 

_1 ah = (V'h)2 V'2h _1 av _ V'VV'h 
2D at + + 2D at ' 

(B.7) 

w here V = U / kB T. If the time dependent part of the potential (that is the 
part related to the oscillating electric field) is explicitly separated from the 
part which depends on the position alone, i.e. if it is rewritten as 

(B.8) 

then eqn (B.7) becomes 

_1 ah = (V'h)2 + V'2h- q a (E.r) _ V'Vo V'h+ -q-V'hV' (E.r). (B.9) 
2D at 2DkBT at kBT 

This equation is exact, but not readily solved and so approximations become 
necessary. Firstly, it is the linear response which is of primary interest and so 
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the term ('V' h ) 2 is neglected. Secondly the local electric field will, in general, 
have the form 

E(r t) = E e-iwt + E e-i3wt + , 0 1 ... , (B.10) 

and so if the external drive varies solely at the fundamental frequency w then 
terms in E1 and all higher harmonics will be much smaller and so, following 
Bowley and Giorgini [52], they are neglected. 

The function h can be written in the general form 

h = L L Hl,n(r)e-inwteilB, 
n l 

(B.ll) 

and substitution of this expression into eqn (B.9) leads to the equation for 
the coefficients, 

-mw 
2i)Hl,n 

" Hi,n Hl,n[2 iwqEor 
Hl,n + -r- - r + 2DkBT {Ol,l + Ol,-l} On,l 

H'"'{!;' qEo [H' H' ] - l,n a + 2kBT l-1,n+1 + 1+1,n+1 

qEo [[ ] 
- 2kBT -:;. (Hl-1,n-1 - Hl+1,n+1) . (B.12) 

If each coefficient H is represented as power series expansion in a new pa­
rameter, X = Eaqr/2kBT, so that 

( 
(1) 2 (2) 

H r)l,n = XGI,n + X Gl,n + ... , (B.13) 

then to first order in X, 

[rG(l)]" + ~ [rG(l)]' - ~G(1) [2 
l,n r l,n r2 Z,n 

[ 
(1)]' , iwr 

- rGZ,n Va + 2D [OZ,l + OZ,-l] On,l. (B.14) 

Hence it is clear that the inhomogeneous term is only non-zero for n = 1 
and [ = ±l. Furthermore, the same equation is obtained for both l = ±1: 
this means that G

Z
(l) = 0 is a valid solution for all other values of nand l. 
,n 

Thus if G~i,l is written simply as G, then 

-iwr G" + (3 TT') G' G'TT' + iwrG 2D = r - r Va - Va 2D· (B.15) 

Including both the first order terms in X, the pair distribution function is 

f(r, t) = fa(r)eQErcosBe-iwt(l+G)/ksT (B.16) 

so that on expanding the exponential to first order the expression used in 
chapter 4 is obtained, with 9 = 1 + G. The equation in 9 quoted above (eqn 
B.4) follows immediately from the equation for G. 



Appendix C Duality Transformation 

The two-dimensional Coulomb gas model has been known to be dual to the 
sine-Gordon model for some time [9, 97]. However, a detailed knowledge 
of the mechanics of the transformation is necessary if the extensions of the 
theory to include the effect of a time varying field is to be understood, 
therefore this appendix contains a demonstration of the duality. 

The interaction between charges is described using a logarithmic interaction 
potential of the form, 

Hk cTc = -7r K J ( d2rd2r'nv(r) In (Ir - r'l) nv(r'), (C.1) 
B Jlr-r/l>a a 

where nv is the density of unit charges. The grand partition function is then 
given by the expression 

z = ,,_1_ ""' _1_ Nrr+ J d2ro Nrr-J d2
rf3 N+ N- (-Hcc) 

L...J N+I L...J N-I 2 2 Y Y exp k T ' 
N+ . N- . 0=1 a f3=1 a B 

(C.2) 

where N+ and N- are the number of positive and negative charges respec­

tively, and y is their fugacity. 

In order to demonstrate the duality of this model with the sine-Gordon 
model, the starting point is the interaction potential between the charges. 
This is transformed into reciprocal space, after which the transformation due 
to Hubbard and Stratonovich is applied to obtain a path integral. Finally, 
the grand partition function obtained in this procedure is simplified, leading 

to the sine-Gordon form. 

The interaction potential for two charges a distance r apart in the two­
dimensional Coulomb gas may be represented by the Green function 

G(r) = _In(r/a) 
27r 

(C.3) 

where a is the core size of the charge. G(r) satisfies Poisson's equation so 

that 
(C.4) 

The Fourier transforms of the Green function are defined by the relations 

(C.5) 

1" . G(r) = - ~ e-1q.rG(q), 
A q 

(C.6) 
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where A is a numerical factor. The Fourier transform of G(r) takes the 
simple form 

(C.7) 

The density of unit strength charges, nv , is defined using the positions of all 
the positive and negative charges: 

nv(r) = L 6(r - ro) - L 6(r - r{3) (C.8) 
a {3 

where the sets {ro} and {r{3} define the positions of the positive and negative 
charges respectively. Therefore the interaction of the charges is written as 

excluding the core energies (these are included later when the grand partition 
function is formulated). When the Green function is replaced by its Fourier 
transform, this leads to a new expression of the form 

(C.lO) 

(C.lI) 

where nv(q) is simply the Fourier transform of nv(r). 

The Hubbard-Stratonovich transformation is now used to change this expres­
sion into a path integral over the auxiliary field ¢. Essentially this involves 
the use of the identity (see for example p 399 of ref. [43]) 

(47rt/2 (det 0)1/2 eAiCijAj = J (IT dYi ) e-YiCi-/Yj/4+AiYj 

2=1 

(C.12) 

where 0 is an n x n matrix with inverse 0-1 and Yi and Ai are n component 

vectors. 

U sing this transformation the Boltzmann factor for a particular arrangement 
of the charges can be written as 

e-1lca/kBT = 0 J V¢(r)exp (8;2~ J d2
r (V'¢(r))2) 

x exp (i J d2r nv (r) ¢( r )) . 

where 0 is an unimportant constant. 

(C.13) 

(C.14) 

Further simplification is achieved by substituting for the particle density, 

nv (r) = L 6 (r a - r) - L 8 (r {3 - r) . 
a {3 
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On making this substitution eqn (C.13) takes the modified form 

e-'Iloa/kBT = c J 1J</>(r)exp (8;'~ J d'r (\7</>(r))2 
) exp (i ~ </>(ro)) 

xexp ( -i ~ </>(r~)) . (C.15) 

Thus the grand partition function is now written as 

Z = 

This expression is greatly simplified by the use of the identity 

(C.17) 

and so the grand partition function is then, 

z = c J V¢(r)exp (- (87r;K J d2
r(\1¢(r))2 - !; J d2

rcos¢(r))), 

(C.18) 
which is of course the partition function for the sine-Gordon model. 



Appendix D Layered Sine-Gordon Model 

Here the derivation of two coupled sine-Gordon equations from the model of 
layered superfluid films postulated in chapter 7 is outlined. The Hamiltonian 
for the layered system is 

where the Kosterlitz parameter has been generalized to a matrix, 

(D.2) 

with the strength of the interlayer coupling given by the new parameter X. 

Progress is made by diagonalising the matrix K using an orthogonal trans­
formation of the form 

so that, 

U = ( co~ () sin () ) 
- sm(} cos () 

U-1KU= (Ka 0) 
- 0 Kb ' 

where the new parameters are defined by: 

(D.3) 

(D.4) 

Ka = Kl cos2 () + K2 sin2 
() - 2X J K1K2 sin () cos () (D.5) 

Kb = Kl sin2 () + K2 cos2 
() + 2X J K1K2 sin () cos (), (D.6) 

and 
() 2XJK1K2 

tan2 = K K' 
2 - 1 

The terms in the interaction energy (eqn D.l) may then be written as: 

n~ (q)Kijnt (q) 

where the following definitions have been used, 

~~l) (q) cos (}n~l) (q) - sin (}n~2) (q) 

~~2) (q) = cos (}n~2) (q) + sin (}n~1) (q). 

(D.8) 

(D.9) 
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Substituting eqn (D.7) into the Hamiltonian, eqn (D.1), and carrying out a 
Fourier transform leads to a grand partition function of the form 

z (D.lO) 

where the subscripts 1 and 2 refer to the two different layers, so that for in­
stance Nt is the number of positive vortices in the first layer. The Hubbard­
Stratonovich transformation may now be applied to eqn (D.1O), this time 
two auxiliary field are required, ¢a and ¢b, so that the partition function 
becomes 

with 

z = c J D¢a(r) J D¢b(r)exp (kB~) , 

87r~~a J d2
r(\7¢a(r))2 - 87r;Kb J d2

rC'V¢b(r))2 

+ 2~1 J d2r (cos (¢a(r) cos () + ¢b(r) sin())) 

(D.ll) 

+ 2~2 J d2r (cos (¢b(r) cos () - ¢a(r) sin())) , (D.12) 

and C a constant. 

The system is assumed to be described by model A dynamics, of the form 

. a¢i = _ bH [¢a, ¢b] + ~(t) 
rh at b¢i ' 

(D.13) 

where the noise term, ~, may differ in magnitude from layer to layer. Thus 
the partition function given by eqn (D.ll) leads to a pair of coupled Langevin 

equations, 

kBT \72¢a _ 2y1kBT cos()sin(¢a(r)cos()+¢b(r)sin()) 
47r2 Ka a2 

+2Y2kBT sin()sin(¢b(r)cos()-¢a(r)sin()) + Ra(t) (D.14) 
a2 

kBT \72¢b _ 2Y2kBT cos ()sin (¢b(r) cos() - ¢a(r) sin()) 
47r2 Kb a2 

_ 2y1kBT sin () sin (¢a (r) cos () + ¢b(r) sin ()) + Rb(t). (D.15) 
a2 
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