
Complex Analysis Using
Nevanlinna Theory

by

Abdullah Mathker Alotaibi

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy, January 2005.



Abstract

In this thesis, we mainly worked in the following areas: value distributions of

meromorphic functions, normal families, Bank-Laine functions and complex os-

cillation theory. In the first chapter wewill give an introduction to those areas and

some related topics that are needed. In Chapter 2 we will prove that for a mero-

morphic function f and a positive integer k, the function af(J(k))n - 1, n ~ 2,

has infinitely many zeros and then we will prove that it is still true when we

replace f(k) by a differential polynomial. In Chapter 3 we will prove that for a

merornorphic function f and a positive integer k, the function af f(k) - 1 with

NI (r, Ilk)) = S(r, f) has infinitely many zeros and then we will prove that it is

still true when we replace f(k) by a differential polynomial. In Chapter 4 we will

apply Bloch's Principle to prove that a family of functions meromorphic on the

unit disc B(O, 1), such that nrr i= 1, m ~ 2, is normal. Also we will prove

that a family of functions meromorphic on B(O,l), such that each f i= ° and

f(J(k))m, k, mEN omits the value 1, is normal. In the fifth chapter we will

generalise Theorem 5.1.1 for a sequence of distinct complex numbers instead of a

sequence of real numbers. Also, we will get very nice new results on Bank-Laine

functions and Bank-Laine sequences. In the last chapter we will work on the

relationship between the order of growth of A and the exponent of convergence

of the solutions ~f y(k) + Ay = 0, where A is a transcendental entire function with

p(A) < ~.
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Chapter 1

Preliminaries

In this chapter, we will give an introduction to each area that we worked on

besides some needed topics.

1.1 Analytic and meromorphic functions

Definition 1.1.1 [21} Let U be an open set in C, and let Zo E U. We say that

f : U -+ C is complex differentiable at Zo E U if the following limit exists and is

finite:

1. f(zo + h) - f(zo)
Hfl .

h-.tO h

Moreover, we say that f is complex differentiable on U if it is complex differen-

tiable at every point in U.

Definition 1.1.2 !4} We say that f is analytic at a E C if f is complex differ-

entiable on some open disc centred at a. Moreover, if f is analytic at every point

in C, we say that f is entire.

Example 1.1.1 z + 1, e", sin z are all entire functions.

9



Preliminaries 10

Definition 1.1.3 {30} We say that f is meromorphic at a E C if f is analytic

at a, or a is a pole of f.

Example 1.1.2 e", Z~l' sinl1rz are all merom orphic junctions.

Throughout this thesis meromorphic means meromorphic in the complex plane

re unless otherwise stated.

Definition 1.1.4 {27} Let f be a complex-valued junction, and let g be a real

function, both of which are defined on [a, (0), a E R We say that f(r) = O(g(r))

as r -+ 00 ij there exist constants K1, K2 such that

Also we say that f(r) = o(g(r)) as r -+ 00 ij

f(r)
g(r) -+ 0 as r -+ 00.

Example 1.1.3 r3 + r + 2 = O(r3) as r -+ 00.

Example 1.1.4 Suppose that P is a polynomial in r; then P (r) = 0(rn) as

r -+ 00, where n is the degree of P.

Example 1.1.5 logr = o(r) as r -+ 00 since IO;T -+ 0 as r -+ 00.

Theorem 1.1.1 (Liouville's theorem){32)

Suppose that f is a bounded entire junction. Then j is constant.

1.2 Nevanlinna Theory

We use the standard terminology of Nevanlinna theory as defined in [14], [20].
All theorems in this section are standard results from Nevanlinna theory. Let j

be a meromorphic function; then we have the following definitions.
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Definition 1.2.1 For all x E (0,00), we set

{
logx

log+ X = ° if x ~ 1

ifO < x < 1.

Definition 1.2.2 {Proximity function}

1 t"
m(r, f) = 271"10 log+ If(reiO) I dO,

and for f =t a E C, we have

1 1 i27r I 1 Im(r, -f -) = -2 log+ f( '0) dO.- a 71" 0 ret - a

Definition 1.2.3 {Integrated counting function}

ir dt
N(r, f) = [n(t, f) - n(O, f)]- + n(O, f) logr

o t

where n(t, f) is the number of poles of f(z) in Izl ~ t, counting multiplicity. Also

for any complex number a, we have

1 ir [Ill dt 1N(r, -f-) = n(t, -f-) - n(O, -f-) - + n(O, -f-) logr.-a 0 -a -a t -a

where n(t, f~J is the number of zeros of f(z) - a in Izl ~ t.

Definition 1.2.4

- ir dtN(r, f) = [n(t, f) - n(O, f)]- + n(O, f) logr
o t

where n(t, f) is the number of poles of f(z) in Izl ~ t counting just once. Also

for any complex number a, we have

- 1 .' ir[Ill dt 1N(r, -f : ) = n(t, -f-) - n(O, -f-) - + n(O, -f-) logr.-a 0 -a -a t -a

where n(t, f~J is the number of zeros of f(z) - a in Izl ~ t counting just once.
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f(z) I n(r, f) I n(r, f) I n(r, 7) n(r, 7)
{Z_1)2{Z-2)6 5 1 8 2(z-3)5

e3z 0 0 0 0

e' - 1 0 0 ;:+ 0(1) ;:+ 0(1)

sin Z 0 0 ~ + 0(1) ~ + 0(1)

Table 1.1: Counting the number of zeros and poles.

Example 1.2.1 We calculate n(r, f), n(r, f), n(r, 7) and n(r, 7) as r --+ 00 for

certain standard meromorphic functions. The results are displayed in Table 1.1.

Definition 1.2.5 (Characteristic function)

T(r, f) = m(r, f) + N(r, f).

1.2.1 Theorems and Propositions in Nevanlinna Theory

Proposition 1.2.1 Assume that the fk are meromorphic functions. Then we

have the following properties:

3. N(r, l:~==lfk(Z)) < l:~=l N(r, fk(Z)).

4· N(r, TI~=lfk(Z)) < l:~==lN(r, fk(Z)).

5. T(r, l:~=~h(z)) ~ l:~=l T(r, h(z)) + 0(1).

6. T(r, TI~==lfk(Z)) < l:~=l T(r, h(z)).
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Theorem 1.2.1 (The first fundamental theorem)

Suppose that f is a non-constant meromorphic function, and suppose that a E C.

Then
1

T(r, f _ a) = T(r, J) + 0(1) as r -+ 00.

Theorem 1.2.2 (The second fundamental theorem)

Suppose that f is a non-constant meromorphic function, and suppose that q 2::: 2.

Suppose that aI, ... ,aq are distinct complex numbers. Then

q 1
m(r, J) + ~ m(r, f _ a) < 2T(r, f) + si-, f)

where S(r, J) means any quantity such that

S(r, J) = o(T(r, J)) as r -+ 00

possibly outside a set of finite measure.

If we take q = 2, al = 0, a2 = 1 then Nevanlinna second fundamental theorem

(Theorem 1.2.2) can also be expressed as follows.

Theorem 1.2.3 (The second fundamental theorem)

Suppose that f is a non-constant mesomorphic function. Then

- - 1 - 1
T(r, f) < N(r, J) + N(r, 7) + N(r, f _ 1) + S(r, J).

Theorem 1.2.4 Let f be an entire function and let 0 < r < R < 00. Let the

maximum modulus be M(r, J) = maxlzl=r If(z)l. Then

T(r, J) < log+M(r, J) < R + r T(R, f).
R-r

A fundamental result in Nevanlinna theory, which is the key to the proof of the

second fundamental theorem, is the following.
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Proposition 1.2.2 Suppose that f is a transcendental meromorphic function,

and suppose that k is a positive integer. Then
f(k)

m(r, T) = S(r, f).

If f is of finite order of growth, we have
f(k)

m(r, T) = O(logr).

Proposition 1.2.2 is called the lemma of the logarithmic derivative.

Proposition 1.2.3 Let f be a meromorphic function, and let k be a positive

integer. Then we have the following.

1. T(r, f(k)) ~ (k + l)T(r, f) + S(r, f).

2. The function N(r, f) counts the points at which f has poles and satisfies

where NI (r, f) counts the simple poles and N2(r, f) counts the multiple poles

just once.

t: - - 13. N(r, f) = N(r, f) + N(r, 7)'

4. N(r,1') = N(r, f) + N(r, f)·

Proposition 1.2.4 Suppose that f is a non-constant meromorphic function, and

suppose that a, b, c, dEC with ad - be #- O. Then

af + b
T(r, cf + d) = T(r, f) + 0(1) .

• 0

Proposition 1.2.5 Suppose that f is a rational function. Then

T(r, f) = O(log r) as r -+ 00.
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Proposition 1.2.6 Suppose that f is a transcendental merom orphic function,

2. e. f is meromorphic but not a rational function. Then

T(r, f)
1 --t 00 as r --t 00.
ogr

Theorem 1.2.5 (The Argument Principle)

Suppose that f is a meromorphic function. Then, provided f has no poles or

zeros on Izl = r,

1 1 f'(z) 1
-2· -f() dz = n{r, -f) - n(r, I).
7f2 Izl=r z

1.2.2 The order of growth

Let us denote the order of growth of f by p(f) which is defined as follows.

Definition 1.2.6 Suppose that f is an entire function and that

M(r, f) = max If(z)l.
Izl=r

Then

(f) 1· log+ log+ M(r, f)
p = Imsup .

. r-+oo logr

Definition 1.2.7 Let f be a meromorphic function. Then

. log+ T{r f)p(f) = lim sup '.
r-+oo logr

If f is entire then Theorem 1.2.4 shows that Definition 1.2.6 and Definition 1.2.7

give the same value of p(f) .
.,

Proposition 1.2.7 Let f and g be meromorphic functions. Then

1. p(f + g) ~ max{p(f), p(g)}.
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2. p(j g) :S max{p(j), p(g)}.

3. If g(z) = f(az + b), then p(g) = p(j) where a, bE C, a =I O.

4. If g (z) = f (zk), then p(g) = k p(f) where k is a positive integer.

5. If f is a polynomial, then p(f) = o.

6. Let P be a polynomial of degree n. Then p(eP(z)) = n.

7. Suppose that f is a transcendental entire function. Then p(ef(z)) = 00.

Example 1.2.2 Here are some examples concerning the order of growth.

1. p(Z2 + 3) = O.

2. p(sinz) = p(cosz) = 1.

1.2.3 The exponent of convergence

Definition 1.2.8 Let f 1= 0 be a meromorphic function. The exponent of con-

vergence )..(f) = )..(j, 0) of the zeros of f is defined by

log+ N(r 1)
)..(f) = lim sup , f

r-+oo logr
(1.1)

Example 1.2.3 Here are some examples concerning the exponent of convergence.

1. )..(eZ) = )..(P) = 0, where P is a polynomial.
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2. A(eZ + 1) = A(sin z) = A(COSz) = 1.

3. If (an) is a sequence tending to infinity then we may define its exponent

of convergence by (1.1) using N(r), where n(r) is the number of an lying

in Izl :S r, For example, suppose that p is a positive integer and (an) is a

sequence such that an = nP, nE N. Then A((an)) = 1.
P

The following two results are standard [20].

Proposition 1.2.8 For all entire functions, we have A(f) :S p(f).

Proposition 1.2.9 Suppose that f is an entire function. Then A(f) < p(f) < 00

implies that p(f) is a positive integer.

1.3 Normal families

Definition 1.3.1 [l l] Let :F be a family of functions merom orphic on B(O, 1).

We say that :F is normal if every sequence in :F has a subsequence, uniformly

convergent in every compact subset of B (0, 1), with respect to the spherical metric.

The easiest way to know whether a ,family of functions is normal or not is to

apply Marty's theorem (Theorem 1.3.1).

Theorem 1.3.1 (Marty's theorem){ll}

Lei F be a family of functions. The family :F is normal on B(zo, 1') if and only

if for every compact subset K c B(zo, 1') there exists M = Mk > 0 such that

If'(z)1
1+ If(z) 12 :S M V z E K, f E :F.



Preliminaries 18

Example 1.3.1 :F = {*: n E N} is normal in C. We can see this by applying

Marty's theorem (Theorem 1.3.1), since we get

1f'(z)1
1+ If(z)12

1
n

1+ 1*12
1<-
ti

::;1.

Example 1.3.2 :F = {nz: n E N} is not normal in C. Again this follows from

applying Marty's theorem (Theorem 1.3.1), since we get

If'(z) 1 n
1+ If(z)12 1+ n21z12

= ti when z = 0

-+ 00.

Theorem 1.3.2 {Hurwitz'theorem)[ll}

Let G be a domain and suppose that {fn} is a sequence of analytic functions in

G converging to the analytic function f. If f :t 0, B(a, R) C G and f(z) # 0 for

[z - al = R then there is an integer N such that, for ti 2: N, f and fn have the

same number of zeros in B(a, R). Here B(a, R) denotes the closure of B(a, R).

Theorem 1.3.3 {Montel's theorem)[ll}

Suppose that :F is a family of [unctions analytic on the open set G. Then F is

normal if :F is locally bounded, i. e. given Zo E G there exist 0 > 0 and M > 0

such that If(z)1 < M for all z E B(zo, 0) and all f E :F.

Bloch's Principle: [37] A family of merom orphic functions which have a prop-

erty P in common in a domain D is usually a normal family in D if P cannot

be possessed by non-constant meromorphic functions in the finite plane.
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Example 1.3.3 Let M be a positive real number, and let f have the property

P if If(z)1 ::; M for zED. Applying Liouville's theorem (Theorem 1.1.1),

we see that any entire function with property P is constant. Using Montel's

theorem (Theorem 1.3.3), we see that a family of analytic functions which have

the property P on a domain D is normal.

1.4 Wronskian determinant

The properties defined in this section are standard and may be found in [20].

Definition 1.4.1 Suppose that iI,··· , fn are meromorphicfunctions in the plane.

The Wronskian determinant W(iI, ... , fn) is given by

I,

f{
fn

f~

Moreover, for k = 0, , n - 1, the Wk(fl, ... , fn) means the determinant which

comes from W(iI, , fn) by replacing the row ft), ... , f~k) by fin), ... , f~n).

Proposition 1.4.1 Suppose that iI,··· , I« are meromorphic functions in the

plane. Then iI, ... , fn are linearly dependent over C if and only if the Wronskian

WCiI,' .. , fn) = o.

Proposition 1.4.2 Suppose that iI,··· , t-: g are meromorphic functions and

Cl, ... , Cn are complex numbers. Then

( Zn-l) _ (n)2. W l,z,··· '(n-l)!,g - g .
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3. W(!I,'" J«, 1) = (-l)nwu{,··· ,f~)·

4. W(g!I,'" ,gfn) = gnW(!I,'" ,fn)'

5. W(!I,'" ,fn) =frW((~)', ... ,(*),).

Proposition 1.4.3 Suppose that !I,'" .I« are meromorphic functions in the

plane. Then

The following proposition comes at once from Definition 1.4.1.

Proposition 1.4.4 Suppose that !I,12 are meromorphic functions in the plane.

Then

W(!I, h) = fd~ - hf~·

Proposition 1.4.5 Suppose that !I,' .. .I« are linearly independent meromor-

phic solutions of
n-l

y(n) +Lak(z)y(k) = O.
k=O

Then

Proposition 1.4.6 Suppose that !I,' .. .l« are linearly independent meromor-

phic solutions of
n-l

y(n) +L ak(z)y(k) = 0
k=O

such that ak are meromorphic functions. Then the Wronskian W(ft,··· ,fn)

satisfies the differential equation

W' + an-l(Z)W = O.
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1.5 Bank-Laine functions

Suppose that A is a transcendental entire function and suppose that we have the

following equation

y" + A(z)y = O. (1.2)

Cauchy [16] proved that every solution of (1.2) is entire. Moreover, it is shown

[20], [36] that every non-trivial solution J of (1.2) has p(J) = 00.

Definition 1.5.1 {25} A Bank-Laine Junction E is an entire Junction such that

E'(zo) = ±1 at every zero Zo oj E.

Example 1.5.1 E(z) = eZ -1 is a Bank-Laine Junction since the zeros oj E are

ak = 2k7ri, k = 0, ±1, ±2, ... and E'(ak) = 1.

The following theorem gives another way to define Bank-Laine functions [25].

Theorem 1.5.1 An entire Junction E is a Bank-Laine Junction iJ and only if E

is the product II 12 of linearly independent normalised solutions of (1.2) such that

A is an entire function. Here normalised means that W(II, 12) = 1.

Definition 1.5.2 {12}Let (an) be a sequence oj distinct complex numbers. We

say that (an) is a Bank-Laine sequence iJ it is precisely the zero sequence oj a

Bank-Laine Junction E of finite order.

Example 1.5.2 The sequence (an) of integer numbers is a Bank-Laine sequence

since the zero sequence of the Bank-Laine function E(z) = ~sin 7rZ is (an).

Example 1.5.3 Suppose that (an) is a finite sequence of distinct complex num-

bers aj, 1~ j ~n. Then (an) is a Bank-Laine sequence since if we let

E(z) = P(z)eQ(z)
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where Q is defined using Lagrange interpolation so that

then we get

E'(aj) = P'(aj)e-IOgP'(aj)

_ P'( ) log pita')- aj e J

=1.

So (an) is the zero sequence of the Bank-Laine function E and therefore (an) is

a Bank-Laine sequence.

In 1985, Shen [33]proved the following.

Theorem 1.5.2 Suppose that aI, a2, . .. are distinct complex numbers such that

(an) tends to infinity. Then there is a Bank-Laine function E such that the zero

sequence of E is precisely (an).

Bank and Laine proved the following theorems [5].

Theorem 1.5.3 Suppose that A is a. transcendental entire function with p(A) <
~, and suppose that E = !Ih is the product of normalised linearly independent

solutions of {1.2}. Then >"(E) = 00.

Theorem 1.5.4 Suppose that A is a transcendental entire function of finite order

p, and suppose that {1.2} has normalised linearly independent solutions !I,h such

that >"(!Ih) < p. Then p is a positive integer.
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Regarding the non-trivial solutions of (1.2), there is a very nice result about

their order of growth and the exponent of convergence of their zeros when A is a

polynomial in (1.2), given by the following theorem [5].

Theorem 1.5.5 Let A be a polynomial of positive degree n, and let f be a non-

trivial solution of {1.2}. Then

1. p(f) = n~2.

2. If n is odd, then )..(f) = n~2.

3. If n is even and iI,!2 are linearly independent solution of (1.2), then

n+2
max{)..(fl), )..(!2)} = -.

2

When A is transcendental in (1.2), we have the following.

Theorem 1.5.6 Suppose that A(z) is a transcendental entire function with p(A) ~

~ and that iI,!2 are linearly independent solutions of (t.2). Then

max{)..(fl), )..(!2)} = +00.

As noted above Theorem 1.5.6 was proved by Bank and Laine [5] for p(A) < ~,
and by Rossi [31] and Shen [34] when p(A) = ~.

1.6 The density of sets

We will be concerned only with logarithmic density and we will use it in Chapter

6. Let E be a measurable subset of [0,+00). The lower logarithmic density of E

is defined by JT x(t)dt

log dens (E) = lim inf \ t
T-+OO ogr
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where X(t) is the characteristic function of E which is defined as

x(t) = { 1 if tEE
o if t tf_ E.

The upper logarithmic density of E is defined by

Jr x(t)dt

logdens(E)=limsup 1 t .
r-too log r

The logarithmic density gives us an idea how big the set E is. The following fact

is obvious.

Proposition 1.6.1

o < log dens (E) < log dens (E) ::; 1.

Example 1.6.1 Suppose that E has finite measure. Then logdens(E) = O. This

is because J; x(~)dt < J; X(t)dt = 0(1).

We will prove our main results in Chapter 6 by using the following theorems [8],

[9].

Theorem 1.6.1 (cos7fP theorem)

Suppose that f is a non-constant entire function with p(J) < ~. Let

A(r) =. inf log If (z) I
Izl=r

B(r) = sup log lj'(aj] =logM(r,J).
Izl=r

If p < a < 1, then

logdens{r: A(r) > (cos 7fa)B(r)} ~ 1 - p.
a

Note that cos 1!'a > 0 if 0 ::;a < ~.
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Theorem 1.6.2 (Modified cos n p theorem)

Suppose that f is an entire function with p(f) = p < ~ and suppose that A(r) is

defined as in Theorem 1.6.1. Ij (J < p, then the set {r: A(r) > rU} has positive

upper logarithmic density.

In the cos tt p theorem and the modified cos tt p theorem we cannot let p = t. For

example, let j(z) = cos(z!). Here p = ~but A(r) ~ o.

Going back to the relation between T(r, f) and T(r, f(k)), we see that Propo-

sition 1.2.3 shows that T(r, f(k)) is generally not much bigger than T(r, f). A

result in the opposite direction is given by the following.

Theorem 1.6.3 (Hayman-Miles theorem)[15)

Suppose that f is a transcendental (i. e non rational) meromorphic junction, and

suppose that K > 1. Then there exists a set M(K) of upper logarithmic density

at most

o(K) = min{(2eK-1 _1)-1, (1+ e(K -1)) exp(e(l- K))}

such that for every positive integer q,

lim sup T(r, f) < 3eK.
T-tOO, T~M(K) T(r, f(q)) -

(1.3)

If f is entire we can replace 3eK by 2eK in {1.3}.



Chapter 2

On the Zeros of ajU(k))n -1, n > 2

1 In this chapter, we will consider the following. Let f be a transcendental

meromorphic function and n, k be two positive integers. Then the function

af(f{k))n - 1, n 2:: 2, has infinitely many zeros, where a(z) 'I- 0 is a meromorphic

function with T(r, a) = S(r, f).

2.1 Introduction

In 1959, Hayman [13]proved the following theorem.

Theorem 2.1.1 Suppose that f is a transcendental meromorphic function and

n is' a positive integer. Then f' fn assumes every finite non-zero value infinitely

often when n 2:: 3.

Hayman conjectured in [13] that the same result remains true when n 2:: 1. In

1995, Bergweiler and Eremenko [10]settled the remaining cases, i.e. when n 2:: 1,

by proving the following theorem.

1We published this chapter as a paper [3).

26
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Theorem 2.1.2 Suppose that f is a transcendental meromorphic function and

m > l are two positive integers. Then (fm)(l) assumes every finite non-zero value

infinitely often.

In 1993, C.C. Yang, L. Yang and Y. Wang [35]conjectured the following.

Conjecture 2.1.1 Suppose that f is a transcendental entire function and n, k

are two positive integers. Then f(f(k))n assumes every finite non-zero value in-

finitely often when n ~ 2.

In 1998, Zhang and Song [38]stated the following.

Theorem 2.1.3 Suppose that f is a transcendental meromorphic function and

n, k are two positive integers. Then f(f(k))n - A{z), n ~ 2, has infinitely many

zeros, where A{z) "1= 0 is a small function such that T{r, A) = S{r, f).

In fact, the proof of Theorem 2.1.3 is very complicated and there appear to be

some gaps in it. We give a much simpler proof, with some generalisations, by

proving our main result which is Theorem 2.1.4. Before stating this theorem,

we make some assumptions which we need throughout this chapter. Suppose

that f is a transcendental meromorphic function in the plane and a{z) "1= 0 is a

meromorphic function such that

T{r, a) = S{r, f). (2.1)

Let

L{ w) = W(k)+ bk-1 w(k-l) + ... + bow, kEN, (2.2)

where each bj(z), j = 0,1, ... ,k - 1, is a meromorphic function such that

T{r, bj) = S(r, f). (2.3)
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Let n E N, n 2 2, and set

9 = L(f) (2.4)

(2.5)

Theorem 2.1.4 Suppose that f is a transcendental meromorphic function in

the plane. Suppose that L, g, 7/J and the bj are given by (2.2), (2.3), (2.4), (2.5).

Suppose that

T(r, g) =I- S(r, J)

T(r,cp) = S(r,J)

(2.6)

(2.7)

for every solution cpof L( w) = 0 which is meromorphic in the plane. Then

( 1 ) (n(k + 1)) - 1T(r, f) 5: 1_ 6k n _ 1 N(r, 7/J) + S(r, J),

where

(
n(k + 1)) ( 1 )

6k = n - 1 1+ n(k + 1) ,
1o < s, < --1 5: 1.n-

(2.8)

We will give examples in Section 2.4 to show that the hypotheses on 9 and cpin

Theorem 2.1.4 are necessary.

2.2 A lemma needed for Theorem 2.1.4

Lemma 2.2.1 Provided 9 1= 0, we have

T(r, J) 5: T(r,7/J) + S(r, J).

In particular, af L(f)n is a non-constant function.

Proof: Using (2.5), we have

f = 7/J+1.
agn
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So
1 k-l

< N(r,:t:"l) + N(r, a) + nLN(r, bj)
'f" + . 0J=

1
- N(r, 'l/J+ 1) + S(r, j).

Also, using (2.2), (2.4) and (2.5), we have

1
N(r, 7)

1
-

j 'l/J+ 1

1 a (j(k) j(k-l) ) n
jn+l = 'l/J+ 1 T + bk-1-j- +". + bo

Therefore

1
m(r, 7) <

1
(n + l)m(r, 7)

1
- m(r, jn+1)

1
< m(r, 'l/J+ 1) + m(r, a) + S(r, j)

1
- m(r, 'l/J+ 1) + S(r, j).

Hence, using the first fundamental theorem of Nevanlinna theory (Theorem 1.2.1),

T(r, j) 1
- T(r, 7) + 0(1)

1 . 1
- m(r, 7) ~ N(r, 7) + 0(1)

1 1
< m(r, 'l/J+ 1) + N(r, 'l/J+ 1) + S(r, j)

1
- T(r, 'l/J+ 1) + S(r, j)

- T(r, 'l/J) + S(r, j).

This completes the proof of Lemma 2.2.1. o
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2.3 Proof of Theorem 2.1.4

By (2.5) a zero of 9 of multiplicity p with a ¥ 0,00 and with bj ¥ 00 is a zero of

'ljJ' of multiplicity at least np - 1 2:: (n - l)p. Also, 'ljJ = -1 ¥ 0 at such a zero of

g. Thus

- 1N(r, -)
9

1 'ljJ _ _ 1 k-l_
< n _ 1N(r, 'ljJ,) + N(r, a) + N(r,~) +LN(r, bj)

j=O
1 'ljJ'

< n _ 1N(r, -;j;) + S(r, 1)

1 [- - 1 1- n _ 1 N(r, 'ljJ) + N(r, 'ljJ) + S(r, 1)

1 [ k-l 1< n _ 1 N{r, f) + N{r, a) + f,;N{r, b;) + N{r, ~) + S{r, f)

1 [- - 1 1- n _ 1 N(r,1) + N(r, 'ljJ) + S(r, 1). (2.9)

Put bk = 1 and b_1 = bk+1 = O. Hence

k k+l
9 = L bjf(j) = L bjf(j).

j=O j=O
(2.10)

Using the fact that b~+1 = 0 and b_1 = 0, we have

k

g' = L(bjfj) + bjf(j+l))
j=O
k k+l

- L bjf(j) + L bj-d(j)
j=O j=1
k+1

L(bj + bj-df(j).
j=O

Since k+l
9 = L bjf(j),

j=O
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we find that w = f solves
k+l

LCjw(j) = 0
j=O

(2.11)

where

(2.12)

Let

w =uv, 1
v=-.

agn
(2.13)

Using Leibnitz' rule in (2.11), we get

k+l

o = LCj(uv)(j)
j=O

using the convention that (~) = 0 for m> j. Dividing through by v, we get

o ~ u{m) ~ (~) c;"u:m)

k+1
Lu(m)"Am
m=O

(2.14)

( ..mj)
where, again since = 0 for m > i,

_ k+1 (j) v(j-m)
Am - L Cj .. m vi=m

(2.15)



On the Zeros of aj(f(k))n - 1, n> 2 32

In particular, this gives using (2.12),

Ao
k+1 V(j)LCj-
j=o V

k+1 '(j)
'" (b'. + b .-1 - fL b .) '!!_L J J 9 J V
J=o
L(v)' - tLL(v)

9
v

(2.16)

Claim: Ao 't o.
To prove the claim, suppose that Ao = O. Using (2.16), we get

,
L(v)' = fLL(v).

9
(2.17)

We consider two cases:

Case (1): L(v) 't O.

Using (2.17), we have
L(v)' g'
L(v) = 9
L(v) = cg,

where 0 icE C since L(v) 't O. Using (2.4), we have

L(v) = cL(J).

Solving this, we get

v = cf + h, L(h) = 0

v = c(J + H), L(H) = O.
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Let F = f + H. This gives v = cF and

LU) LU + H)

L(F).

Since v = cF and v = a~n by (2.13), we have a~n = cF and

1 acL(j)nF

acL(F)nF.

Since L(H) = 0 and H = v~cf is meromorphic in the plane, we get by (2.7)

T(r, H) = S(r, j). Hence

T(r,1) = T(r, F) + S(r, F)

k-l

T(r, a) + LT(r, bj) = S(r, 1) = S(r, F).
j=O

This contradicts Lemma 2.2.1, applied to F = j + H.

Case 2: L(v) = O.

Using (2.7), we get T(r, v) = S(r,1) and using (2.13) we have v = a~n' Thus,

T(r, g) = S(r,1) which is a contradiction to (2.6). This completes the proof of

the claim.

Returning to the proof of Theorem 2.1.4, we have using (2.5) and (2.13),

u w
v
afgn

1P+1.
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So 'ljJ+ 1 solves (2.14). This gives

('ljJ+ 1)(k+1)+ Ak('ljJ + l)(k) + ... + AI('ljJ + 1)' + Ao('ljJ + 1) = 0

'ljJ(k+I) + Ak'ljJ(k) + ... + AI'ljJ' + Ao('ljJ + 1) = 0

'ljJ(k+1) A A__ + ~'ljJ(k) + ... + _1 'ljJ'+ 'ljJ+ 1 = 0
Ao Ao Ao

1 ['ljJ(k+I) 'ljJ(k) 'ljJ'] 1
Ao 'ljJ + AkT + ... + Al -:v; + 1 + 'ljJ= O.

Therefore
1 -1 ['ljJ(k+1) 'ljJ(k) 'ljJ']
'ljJ= Ao 'ljJ + AkT + ... + Al -:v; - 1.

Using (2.15), we note that

(2.18)

_ (k + 1) v(k+l-m) k (j ) v(j-m)
Am - + ~ Cj .

V ~ Vm j=m m

Hence the contribution to n(r, Am) from the terms v(j-m) , ELis at most k + 1- m,
v 9

and the contribution to n(r, Ao) and n(r, Am 1{J~») from these terms is at most

k + 1. Furthermore, using (2.13) and (2.16) we see that any pole of Ao can only

occur at poles or zeros of g, poles or zeros of a(z), or poles of bj(z). So

[
- - 1 1 ] k-I

N(r, Ao) < (k + 1) N(r, g) + N(r, g) + N(r, a) + N(r, -;;:) + 2f;N(r, bj)

< (k + 1) [N(r, f) + N(r, ~)] + S(r, J).

Using (2.9), we have

N(r;Ao) < (k+1) [N(r,J)+ (n~l) N(r,J)+ (n~l) N(r,~)] +S(r,J)

.. ( 1) - (k+1) - 1(k+ 1) 1+ n _ 1 N(r, f) + n _ 1 N(r, 'ljJ) + S(r, J)

(n~ ~ :)) N(r, f) + (~ ~ ~) N(r, ~) + S(r, f). (2.19)
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Using (2.2), (2.4) and (2.5), we have

~+1
a

So a pole of f of multiplicity p with bj =1= 00 is a pole of P~l of multiplicity

p + (p + k)n 2: 1 + (1 + k)n. Thus

(
1 ) ~ + 1 k-l_

N(r, J) < 1+ n(1 + k) N(r, -a-) + ~ N(r, bj)

< (1 + nt1 + k)) N(r, ~ + 1)+ S(r, J)

< (1+nt1+k))T(r,~)+s(r,J). (2.20)

Using (2.8), (2.19) and (2.20), we get

N(r, Ao)

(2.21)

Using (2.15) and (2.18), we have

N(r,- ~) ~ N(r, ~o) + (k + 1)N(r, ~) + S(r, J) (2.22)

1 1
m(r, 1/;) ~ m(r, Ao) + S(r, f)· (2.23)
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Using (2.16), (2.21), (2.22) and (2.23), we get

1
- T(r, ~) + 0(1)

1 1
- mer, ~) + N(r, ~) + 0(1)

< mer, ~o) + N(r, ~o) + (k + I)N(r, ~) + S(r, f)
1 - 1

- T(r, Ao) + (k + I)N(r, ~) + S(r,!)
- 1

- T(r, Ao) + (k + I)N(r, ~) + S(r, f)

- 1- N(r, Ao) + (k + I)N(r, ~) + S(r, f)

( ) (k+l) - 1 - 1< OkT r, ~ + n _ 1 N(r, ~) + (k + I)N(r, ~) + S(r, f)

(
n(k + 1)) - 1

- okT(r,~) + n _ 1 N(r, ~) + S(r, f).

Thus

(1 - ok)T(r,~) ~ (n~k~ 11)) N(r, ~) + S(r, f)

(
1 ) (n(k + 1)) - 1T(r,~) ~ 1_ Ok n _ 1 N(r, ~) + S(r, f).

Using Lemma 2.2.1, we get

(
1 ) (n(k + 1)) - 1T(r, f) < 1_ s, n _ 1 N(r, ~) + S(r, f).

Hence, Theorem 2.1.4 is proved.

2.4 Examples and Corollaries

Now we will give two examples to show that without the hypotheses which are

in Theorem 2.1.4 we can find ~ = af gn - 1 with no zeros. In the first example,
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we do not have the first hypothesis which is the equation (2.6), and in the second

example we do not have the second hypothesis which is the equation (2.7).

Example 2.4.1 Supposethatf(z) =ez+z andL(w) =w"-2w'+w. Thisgives

9 = L(f) = z - 2, T(r, g) = S(r, f) and fg2 = (eZ + z)(z - 2)2. Let a = Z(Z':2)2

which gives T(r,a) = S(r,f). From all of these, we see that

'lj; afg2-1

z(z ~ 2)2 (eZ + z)(z - 2)2 - 1

eZ + z eZ

---1=-+1-1z z
eZ
- =1= o.z

Example 2.4.2 Suppose that L(w) w' - wand 'lj; = f g2 - 1, where f

eZ - ~e -2z
• Hence

9 f' - f
Z 1 -z 2 -z
e + -eT - eZ + -e 2

3 3
-z

eT.

Thus

'lj; fg2 - 1

(
Z 2 -z -z 2e - -eT)(eT) - 1

·3
(

Z 2-ze - 3eT)e-Z - 1

2 -3z
1- -e-2 -1

3
2 -3z--e-2

3
=1= o.

Here, cp= eZ solves L(w) = 0, but T(r,cp) =1= S(r, f).
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Corollary 2.4.1 Suppose that f is a transcendental meromorphic function in

the plane, and suppose that a, g, 'ljJ are given by {2.1}, {2.4} and {2.5} such that

T(r, g) =1= S(r, f) and T(r, 4» = S(r, 1) for every solution 4> of L(w) = 0 which is

meromorphic in the plane. Then 'ljJ = af gn - 1 has infinitely many zeros and the

function af gn assumes every non-zero value infinitely often.

Corollary 2.4.2 Suppose that f is a transcendental meromorphic function in the

plane, and suppose that a =t 0 is a meromorphic function with T(r, a) = S(r, 1).

Let 'ljJ = af(f(k))n - 1, n ~ 2, n, kEN. Then

(
1 ) (n(k + 1)) - 1T(r, f)::; 1_ Ok n _ 1 N(r, 'ljJ) + S(r, 1).

Proof: We have here 9 = f(k). Using the Hayman-Miles theorem (Theorem

1.6.3), we have T(r, g) =1= S(r,1). Also, we have here L( w) = w(k). Thus, every

4> which is a solution of L(w) = 0 would be a polynomial. So T(r,4» = S(r,1).

Applying Theorem 2.1.4, this completes the proof of Corollary 2.4.2. 0

Theorem 2.1.3 follows at once from Corollary 2.4.2, using A = ~.

Corollary 2.4.3 Suppose that f is a transcendental meromorphic function in the

plane. Let a, 'ljJ be as in Corollary 2·4.2. Then 'ljJ = af(f(k))n - 1 has infinitely

many zeros and the function aj(f(k))n assumes every non-zero value infinitely

often.



Chapter 3

On the Zeros of af f(k) - 1

1 In this chapter, we will consider the following. Let k be a positive integer,

and let f be a transcendental meromorphic function with N1(r, ,tk») = S(r, f).
Then the function af f(k) - 1 has infinitely many zeros, where a(z) :f=. 0 is a

meromorphic function such that T(r, a) = S(r, f). Here, N1(r, ,tk») denotes the

integrated counting function of simple zeros of f(k).

3.1 Introduction

Let us recall the Conjecture 2.1.1, which we restate as follows.

Conjecture 3.1.1 Let n, k be two positive integers, and let f be a transcendental

entire function. Then f(j(k))n - 1 has infinitely many zeros.

In Ohapter 2, we proved the following (See Corollary 2.4.3).

Theorem 3.1.1"Let n, k be two positive integers, and let f be a transcendental

meromorphic function in the plane. Let a(z) :f=. 0 be a meromorphicfunction with

1We published this chapter as a paper [2].

39
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T(r, a) = S(r, f). Then af(f{k))n - 1 has infinitely many zeros when n ::::2.

Thus the case n ::::2 is completely proved in Chapter 2 and the remaining case is

when n = 1. In 1995, Bergweiler and Eremenko [10] proved the following.

Theorem 3.1.2 Suppose that f is a transcendental meromorphicfunction. Then

f f' - 1 has infinitely many zeros.

The next result is by Langley [26] from 2003.

Theorem 3.1.3 Suppose that f is a transcendental entire function. Then f f"-1
has infinitely many zeros.

In 1998, Zhang and Song [38] proved the following.

Theorem 3.1.4 Let k be a positive integer, and let f be a transcendental entire

function with NI (r, ftk») = S(r, f). Then f f{k) - 1 has infinitely many zeros,

where NI (r, ftk») denotes the integrated counting function of simple zeros of f{k).

In fact, few details of the proof of Theorem 3.1.4 are given in [38]. We give a

simple proof of a more general result. Before stating our main results, Theorem

3.1.5 and Theorem 3.1.6, we make some assumptions which we need throughout

this chapter and are similar to those made in Chapter 2. Suppose that f is a

transcendental meromorphic function in the plane and a(z) '¥= 0 is a meromorphic

function such that

T(r, a) = S(r, f). (3.1)

Let

L( w} = w{k) + bk-I w{k-I) + ... + bow, kEN, (3.2)

where each bj(z), j = 0,1, ... ,k - 1, is a meromorphic function such that

T(r, bj) = S(r, f). (3.3)
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Let

g = L(f) (3.4)

(3.5)'IjJ = afg - 1.

Theorem 3.1.5 Suppose that f is a transcendental meromorphic function in the

plane. Suppose that L, g, 'IjJ and the bj are given by (3.2), (3.3), (3.4) and (3.5).

Suppose that

T(r, g) =1= S(r, 1)

T(r,cI» = S(r,1)

(3.6)

(3.7)

for every solution cl> of L( w) = 0 which is meromorphic in the plane. Then

T(r, f) < (k + l)(k + 2) [JV(r, ~) + JV(r,~) 1 + S(r, 1).

Theorem 3.1.6 Suppose that f is a transcendental meromorphic function in the

plane. Suppose that L, g, 'IjJ and the bj are given by (3.2), (3.3), (3.4), (3.5),

and that (3.6) holds, as does (3.7) for every solution cl> of L( w) = 0 which is

meromorphic in the plane. Then

- 1 1
T(r, 1) ~ 2(k + l)N(r, 1)+ 2(k + l)JV(r, 'IjJ) + (k + 1)N1(r, g) + S(r, 1).

3.2 A lemma needed for Theorem 3.1.5 and The-

orem 3.1.6

This lemma is the analogue of Lemma 2.2.1. We include the proof for complete-

ness.

Lemma 3.2.1 Provided g :t 0, we have

T(r, f) < T(r, 'IjJ) + S(r, 1).
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In particular, aj L(J) is a non-constant junction.

Proof: Using (3.5), we have

So

1
N(r, 7)

l = ?/J+1.
ag

1 k-l

< N(r, ~) + N(r, a) +LN(r, bj)
0/+ '0)'=

1
- N(r'?/J + 1) + S(r, J).

Also, using (3.2), (3.4) and (3.5) we have

1 ag
-

j ?/J+1
1 _ a (j(k) j(k-l) )
J2 - ?/J+1 j+bk-1-j-+,,·+bo .

Therefore
1

2m(r, 7)
1

- m(r, J2)
1

< m(r'?/J + 1) + m(r, a) + S(r, J)

1
- m(r'?/J + 1) + S(r, J).

Hence, using the first fundamental theorem of Nevanlinna theory (Theorem 1.2.1),

T(r, J)
1 '

- T(r, 7) + 0(1)

1 1
- m(r, 7) + N(r, 7) + 0(1)

1 1
< m(r'?/J + 1) + N(r'?/J + 1) + S(r, J)

1
- T(r'?/J + 1) + S(r, J)

- T(r,?/J) + S(r, J).



On the Zeros of af f(k) - 1 43

This completes the proof of Lemma 3.2.1. D

3.3 Proof of Theorem 3.1.5 and Theorem 3.1.6

Some steps in this proof are similar to those in Chapter 2 but we include all

details for completeness. Put bk = 1 and b_1 = bk+1 = O. So

k k+1

9 = L bjf(j) = L bjf{j).
j=O j=O

(3.8)

Using the fact that b~+1 = 0 and b_1 = 0, we have

k

g' = L(bjf{j) + bjf(j+I))
j=O
k k+1

Lbjf(j) + Lbj-d(j)
j=O j=1

k+1
L(bj + bj-df{j).
j=O

Since
k+1

9 = Lbjf(j),
j=O

we find that w = f solves
k+1
LCjw(j) = 0
j=O

(3.9)

where

(3.10)

Let
1

w =uv, v =-.
ag

(3.11)
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Using Leibnitz' rule in (3.9), we get
k+I

o = I>j(uv)(j)

j=O

~ Cj t, (~)u(m)vU-m)
~ Cj ~ (~) u(m)vU-m)

using the convention that (~) = 0 for m> j. Dividing through by v, we get

o = ~u(m)~ (~) c/
u
:
m

)

(3.12)

., (J)where, agam smce m = 0 for m > i,

k+1 (j) v(j-m)
Am = 2:: Cj .

j=m m v
(3.13)

In particular, this gives using (3.10),

Ao
HI v(j)LCj-
j=O V

k+1 , (j)

"'(b'. + b'-I - !Lb·)'!!._
~ J J 9 J V
J=O

L(v)' - ~L(v)
v (3.14)
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Claim: Ao ¢ O.

To prove the claim, suppose that Ao = O. Using (3.14), we get

,
L(v)' = [LL(v).

9
(3.15)

We consider two cases:

Case (1): L(v) ¢ O.

Using (3.15), we have
L(v)' g'
L(v) = 9
L(v) = cg,

where 0 # cEre since L(v) ¢ O. Using (3.4), we have

L(v) = cL(f).

Solving this, we get

v = cf + h, L(h) = 0

v = c(f +H), L(H) = O.

Let F = f +H. This gives v = cF and.

L(f) - L(f + H)

- L(F).

Since v = cF and v = _l_, we have .L = cF andag ag

1 acL(f)F

acL(F)F.
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Since L(H) = 0 and H = v~cf is meromorphic in the plane, we get by (3.7)

T(r, H) = S(r, f). Hence

T(r, f) = T(r, F) + S(r, F)

k-1
T(r, a) + LT(r, bj) = S(r, f) = S(r, F).

j=O

This contradicts Lemma 3.2.1, applied to F = f + H.

Case 2: L(v) = O.

Using (3.7), we get T(r, v) = S(r,1) and using (3.11) we have v = a1g. Thus

T(r, g) = S(r, f) which is a contradiction to the first hypothesis in the equation

(3.6). So the claim is proved.

Returning to the proof of Theorem 3.1.5 and Theorem 3.1.6, we have using

(3.5) and (3.11),

u w
v
afg

'I/J+1.

So 'I/J + 1 solves (3.12). This gives

('I/J + l)(k+l) + Ak('I/J + l)(k) + ... + A1('I/J + 1)' + Ao('I/J + 1) = 0

'I/J(k+1)+ Ak'I/J(k) + ... + A1'I/J' + Ao('I/J + 1) = 0

'I/J(k+1) A A
-'--- + 2'I/J(k) + ... + _1 'I/J' + 'I/J + 1 = 0

Ao Ao Ao
1 ['I/J(k+1) 'I/J(k) 'I/J'] 1 .
Ao 'I/J + AkT + ... + A1-;;j; + 1+ 'I/J = o.
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Thus
1 -1 ['!f;(k+l) '!f;(k) '!f;']
'l/J = Aa 'l/J + AkT + ... + Al ~ - 1.

Using (3.13), we note that

_ (k + 1) v(k+l-m) k (j ) v(j-m)
Am - + "'" Cj .V ~ Vm j=m m

(3.16)

Hence the contribution to n(r, Am) from the terms v(j-m) , !L is at most k + 1- m,v 9

and the contribution to n(r, Aa) and n(r, Am 1/1;») from these terms is at most

k + 1. Furthermore, using (3.14) we see that any pole of Aa can only occur at

poles or zeros of g, poles or zeros of a(z), or poles of bj(z). So

[
- - 1 1 ] k-l

N(r, Aa) < (k + 1) N(r, g) + N(r, g) + N(r, a) + N(r,~) + 2 ~ N(r, bj)

< (k + 1) [N(r,1) + N(r, ~)] + S(r, f). (3.17)

Using (3.16), we have

1 1
m(r, '!f;) < m(r, Aa) + S(r, 1) (3.18)

N(r, ~) < N(r, ~a) + (k + l)N(r, ~) + S(r, 1). (3.19)

3.4 The completion of the proof of Theorem

3.1.5
Using (3.4) and (3.5), we have

'l/J+ 1 fg
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So a pole of f of multiplicity p with bj =1= 00 is a pole of 1/!~1 of multiplicity

p + (p + k) ~ 1 + (1 + k) = k + 2. Thus

< (k 1 2) N(r, 1/J+1)+ I::N(r,bj)
+ a j=O

< (k ~ 2) N(r,1/J + 1) + S(r, 1)

< (k ~ 2) T(r,1/J) + S(r, f)·

N(r,1)

Using (3.17) and (3.20), we have

(3.20)

(
k+1) - 1N(r, Ao):::; k + 2 T(r, 1/J) + (k + l)N(r, g) + S(r, 1).

Using (3.14), (3.18), (3.19) and (3.21), we get

1
- T(r, 1/J) + 0(1)

1 1
- m(r, 1/J) + N(r, 1/J) + 0(1)

< m(r, 1
0
)+ N(r, 1

0
)+ (k + l)N(r, ~) + S(r, f)

1 ) - 1- T(r, Ao + (k + l)N(r, 1/J) + S(r, 1)

( - 1- T(r, Ao) + k + l)N(r, 1jJ) + S(r, 1)

- 1
- N(r, Ao) + (k + l)N(r, ':;j) + S(r, f)

< (~: D T{r, 1/J) + (k + l)N{r,~) + (k + l)N{r, ~) + S{r, f).

T(r,1/J)

So

(1- ~: ~) T{r,1/J) < (k + 1) [N{r, ~) + N{r, ~)l+ S{r,J)

(k! 2) T{r, 1/J) <: (k+ 1) [N{r, ~) + N{r,~) 1+ S{r, f)

(3.21)
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[- 1 - 1]T(r,1/J) ::; (k + l)(k + 2) N(r, 1/J)+ N(r, r) + S(r, f).

Using Lemma 3.2.1, we get

[- 1 - 1]T(r, f) ::;(k + l)(k + 2) N(r, 1/J)+ N(r, g) + S(r, f).

This completes the proof of Theorem 3.1.5.

3.5 The completion of the proof of Theorem

3.1.6

By (3.5) a multiple zero of 9 of multiplicity p with a =I- 0,00 and with bj =I- 00

is a zero of 1/J'of multiplicity p - 1 2 1, but is not a zero of 1/J. So, with N2 as

defined in Proposition 1.2.3,

- 1
N2(r, -)

9

k-l
1/J - - 1 "'-< N(r, .,,,) + N(r, a) + N(r, -) + Z:: N(r, bj)
'f/ a .0

J=

1/J'< N(r, -;j;) + S(r, f)

- - 1
- N(r, 1/J)+ N(r, 1/J)+ S(r, f)

- - 1< N(r, f) + N(r, 1/J)+ S(r, f). (3.22)
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Using (3.17), (3.18), (3.19) and (3.22), we get

111
- T(r, 1/;) + 0(1) = m(r, 1/;) + N(r, 1/;) + 0(1)

1 1 ) - 1< m(r, Ao) + N(r, Ao + (k + l)N(r, 1/;) + S(r, f)
1 - 1

- T(r, Ao) + (k + l)N(r, 1/;) + S(r, f)
- 1

- T(r, Ao) + (k + l)N(r, 1/;) + S(r, f)
- 1

- N(r, Ao) + (k + l)N(r, 1/;) + S(r, f)

< (k + l)N(r, f) + (k + l)N(r,~) + (k + l)N(r, ~) + S(r, f)

- ) ( 1 - 1 - 1- (k + l)N(r, f + k + 1)N1(r, -) + (k + 1)N2(r, -) + (k + l)N(r, 0')
9 9 'f/

+ S(r, f)

< (k + l)N(r, f) + (k + l)Nl(r,~) + (k + 1) [N(r, f) + N(r, ~)l
- 1+ (k + l)N(r, 1/;) + S(r, f)

- - 1 1
- 2(k + l)N(r, f) + 2(k + l)N(r, 1/;) + (k + 1)N1(r, g) + S(r, f)·

T(r,1/;)

Using Lemma 3.2.1, we get

- - 1 1
T(r, f) ::;2(k + l)N(r, f) + 2(k + l)N(r, 0') + (k + 1)N1 (r, -) + S(r, f).

. 'f/ 9

Thiscomplete the proof of Theorem 3:1.6.

3.6' Examples and Corollaries

In this section, we will give two examples to show that without the hypotheses

in Theorem 3.1.5 and Theorem 3.1.6 we can find 1/; = af 9 - 1 with no zeros. In

the first example, we do not have the first hypothesis which is the equation (3.6),
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and in the second example we do not have the second hypothesis which is the

equation (3.7).

Example 3.6.1 Suppose that J(z) = eZ + z and L(w) = w" - 2w' + w. This

gives g = L(f) = z - 2, T(r, g) = S(r, f) and J g = (eZ + z)(z - 2). Let a = Z(Z~2)

which gives T(r, a) = S(r,J). From all oJ these, we see that

'!jJ aJg - 1

1 Z
z(z _ 2) (e + z)(z - 2) - 1

eZ + z---1
z

eZ- + 1-1z
eZ
- =I- O.
z

Example 3.6.2 Suppose that L( w) = w' -wand '!jJ = J g-l, where J = e' - ~e-z .

Hence

g J' - J
Z 1 1e + -e= - eZ + _e-z2 2
-Ze .

Thus

1__ e-2z
2

i- O.

Here, c/J = e' solves L(w) = 0, but T(r, c/J) =I- S(r, J).
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Corollary 3.6.1 Let k be a positive integer, and let j be a transcendental mero-

morphic function. Let a(z) ¢. 0 be a meromorphic function with T(r, a) = S(r, I).
Suppose that 'IjJ = af f(k) - 1. Then

Corollary 3.6.2 Let k be a positive integer, and let f be a transcendental mero-

morphic function. Let a( z) ¢. 0 be a meromorphic function with T( r, a) = S (r, I).
Suppose that 'IjJ = af f(k) - 1. Then

- 1 1
T(r, I) :S 2(k + l)N(r, I) + 2(k + l)N(r, 'IjJ) + (k + 1)N1 (r, j(k)) + S(r, I).

Corollary 3.6.3 Let k be a positive integer, and let f be a transcendental entire

function. Let a(z) ¢. 0 be a meromorphic function with T(r, a) = S(r, I). Suppose

that 'IjJ = af j(k) - 1. Then

- 1 1
T(r, I) :S 2(k + l)N(r, 'IjJ) + (k + 1)N1 (r, j(k)) + S(r, I).

Theorem 3.1.4 follows at once from Corollary 3.6.3. However, we still need to

prove the following to complete the proof of Conjecture 3.1.1.

Conjecture 3.6.1 Let k be a positive integer, and let f be a transcendental entire

function. Then f f(k) - 1 has infinitely many zeros.



Chapter 4

On Normal Families

1 In this chapter, we will prove that a family of functions meromorphic on the

unit disc B(O, 1), such that f(f,)m =1= 1, m ~ 2, is normal. Also, we will prove

that a family of functions meromorphic on B(O, 1), such that f =1= 0, f(f(k))m =1=

1, k, mEN, is normal. Moreover, we will generalise both of these results.

4.1 Introduction

Theorem 4.1.1 Let n be a positive integer, and let :F be a family of functions

merom orphic such that t't" =1= 1 on B(O, 1), for each f E:F. Then F is normal

on B(O, 1).

The proof of Theorem 4.1.1 is due to Yang and Chang [28]for n ~ 5, Ku [19]for

n = 3,4, Pang [29] for n = 2, and Bergweiler and Eremenko [10] for n = 1. In

1979, Ku [18]proved the following theorem.

Theorem 4.1.2 Let k be a positive integer, and let F be a family of meromorphic

1We published this chapter as a paper [1].

53
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functions such that f -I ° and f(k) -11 for each f E :F on B(O, 1). Then:F is

normal on B(O, 1).

For proving the normality, we will mainly use the following lemma.

Lemma 4.1.1 (Zalcman Lemma){37}

Lei F be a family of meromorphic functions on the unit disc B(O, 1) such that all

zeros of functions in :F have multiplicities greater than or equal to l and all poles

of functions in :F have multiplicities greater than or equal to j. Let et be a real

number satisfying -l < et < j. Then F is not normal in any neighbourhood of

zo E B(O, 1) if and only if there exist

1. points Zn E B(O, 1), z., -t Zo;

2. positive numbers Pn, Pn -t 0;

3. functions l« E :F;

4. a non-constant meromorphic function g;

such that gn(z) = P~fn(zn + Pnz) -t g(z) locally uniformly on C with respect to

the spherical metric.

Lemma 4.1.1 holds without any restrictions on the zeros and the poles of all f E :F

for -1 < et < 1. However, we can take -1 < et < 00 for a family of analytic

functions and we can also take -00 < et .< 1 for a family of meromorphic functions

which do not vanish [37], i.e. have no zeros.

4.2 Some theorems required for the subsequent

results

In Chapter 2, we have proved the following theorem (See Corollary 2.4.3).
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Theorem 4.2.1 Let m, k be two positive integers with m ~ 2 , and let f be

a transcendental meromorphic function. Then f(f(k))m - 1 has infinitely many

zeros in <c.

J. Hinchliffe [17] proved the following theorem.

Theorem 4.2.2 Let f be a transcendental tneromorphic function and let ak :t 0
be a meromorphic function with T(r, ak) = S(r, f). Let P[f] be a non-constant

differential polynomial in f defined by
n p

P[f](z) =L ak(z) II(f(j)(Z))Sk,j,
k=l j=O

where the minimum degree of P[J]) is given by

d(P[J]) = min {~Skj} > 2.l<k<n ~ , -- - j=O

Let

Q = max {~jSkJ'}'l<k<n ~ ,- - j=l

Then

) Q + 1 N( 1) 1 - 1
Tir, f :::;d(P[J]) - 1 r, 7 + d(P[J]) _ 1Nir, P[J] _ 1) + S(r, f)·

Corollary 4.2.1 Let f be a transcendental mesomorphic function with no zeros,

and let P[f] be a non-constant differential polynomial in f with d(P[f]) ~ 2.

Then P[J] - 1 has infinitely many zeros in C.

Example 4.2.1 In this example, we will evaluate d(P[f]) and Q for given differ-

ential polynomials P[J](z), using Theorem 4.2.2. The results are given in Table

4·1.

We will require the following result on rational functions.
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P[J](z) I g(P[J]) I Q I
J I" - J'3 2 3

1'" + J'2 J" 1 4

Table 4.1: Evaluating the minimum degree of prj]) and Q.

Theorem 4.2.3 Let k, m be two positive integers and let 9 be a non-constant

rational Junction. Then either g{k) _ 0 or g(z)(g{k)(z))m = 1 has at least one

solution z E Co

Proof: Assume that g{k) "¢ O. Then 9 "¢ 0 and so R(z) = g(z)(g{k)(z))m is not

identically zero. We show first that

R(oo) = a, a E C\{O} (4.1)

is impossible. Assuming that (4.1) holds, we may suppose that a = 1. Thus

g(z)(g{k)(z))m -+ 1 as z -+ 00. Hence g(oo) = 00 since if not we would have

g( 00) E C and so g' (00) = 0 and then (g{k))m( 00) = O. This gives g(g{k))m -+ 0

as z -+ 00 which is a contradiction. Since g( 00) = 00, we get (g{k))m( 00) = O.

Using the Laurent expansion, we get

( )
n a,

9 z = CnZ + ... + Co+ - + . . . as z -+ 00,z

g{k)(Z) = n(n - 1) ... (n - k + "l)cnzn-k + ... + (_l)k k~:~ + ....
z

But (g{k))m(oo) = 0, so g{k)(oo) = 0 and this gives

(g{k))m(z) = (_1)mk (k!dd
m + ...

zm{k+l) as z -+ 00.

Since g(z)(g{k))m(z) -+ 1 as z -+ 00, we have
zm{k+l)

g(z) = (_l)mk (k!d1)m + ... as z -+ 00,
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and this gives as z --+ 00, since m(k + 1) > k,
( _l)mk

g{k)(z) = (mk + m)(mk + m-I)··. (mk +m - k + l)zm{k+l)-k + ...
(k!d1)m . '

(g{k))m(z) = (( _l)mk (mk + m)(mk + m-I) ... (mk +m _ k + l))m zm2{k+l)-mk+ ....
(k!d1)m

Hence, (g{k))m(oo) = 00 which is a contradiction.

Thus (4.1) is impossible. In particular, R(z) cannot be a non-zero constant.

Suppose now that R(z) is non-constant, but never takes the value 1 in C. Then

R~l i= 00 on C. So

P, where P is a polynomial

1
P

1
1+ P'

But this gives R( (0) = 1, and we have already excluded this case. This completes

1
R-1
R-1

R

the proof. o

4.3 The normality when f(f' + af)m =F 1, m > 2

Theorem 4.3.1 Let m be a positive. integer with m ~ 2, and let a(z) be an

anal~tic function on B(O, 1). Suppose that :F is a family of functions meromorphic

on B(O, 1) such that, for each f E :F, fU' + af)m i= 1 on B(O, 1). Then:F is

normal on B(O, 1).

Proof: Suppose that :F is not normal on B(O, 1). So:F is not normal at at least

one point in B(O,l), say zoo Using the Zalcman lemma (Lemma 4.1.1), with

a =~:lE (-1, 1), there exist
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1. Zn E B(O, 1), Zn -t Zo;

2. positive numbers Pn, Pn -t 0;

3. functions in E :F;

4. a non-constant meromorphic function g;

such that

(4.2)

locally uniformly on C with respect to the spherical metric. Let P = g-l( {oo})

be the set of all poles of g. So, g~ -t g' locally uniformly on C\P. Using (4.2),

we have g~(z) = p~+l i~(zn + Pnz). Thus, on C\P,

in(zn + Pnz)[i~(zn + Pnz) + a(zn + Pnz)in(zn + Pnz)]m

= p;;-agn(Z) [p;;-a-l g~(z) + a(zn + Pnz)p;;-agn(z)]m

= p;;-agn(z)p;;-m(a+1)[g~(z) + Pna(zn + Pnz)gn(z)]m

= p;;-a(m+l)-mgn(z)[g~(z) + Pna(zn + Pnz)gn(z)]m

= gn(z)[g~(z) + Pna(zn + Pnz)gn(z)]m

-t g(z)[g'(z) + O.a(zo)g(z)r

= 9 (z ) [g' (z ) ]m.

Using Theorem 4.2.1 and Theorem 4.2.3, we have at least one (0 E C with

g((o)(g'((o))m = 1, and (0 (j. P. Applying the Hurwitz' theorem (Theorem 1.3.2),

there exist points (n -t (0 with

Thus
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But Zn + Pn(n E B(O, 1) for large n since Zn ---+ Zo E B(O, 1) and Pn ---+ 0. So we

obtain points in B(O, I) at which fn(f~ + afn)m = 1, fn E :F, which give us a

contradiction. Hence, :F is normal. This completes the proof of Theorem 4.3.1. 0

Corollary 4.3.1 Let m be a positive integer with m ~ 2. Suppose that :F is a

family of functions meromorphic on B(O, 1) such that for each f E :F, nrr =I- 1

on B(O, 1). Then:F is normal on B(O, 1).

We cannot let a(z) be a meromorphic function in Theorem 4.3.1. The counter

example is the following.

Example 4.3.1 Let n be a positive integer, and let f(z) = ;z. This gives f'(z) =
:z~' Leta(z) = ~,which is a meromorphic function in B(O, 1). From all of this,

f' ()f - -1 + 1 1 - -1 1 Hwe get + a z - nz2 Z nz - nz2 + nz2 = 0. ence

f(f' + af? = ° =I- 1 on B(O, 1).

However, :F = {;z: n E N} is not normal on B(O, 1) since the family {nz :

nE N} is not normal (Example 1.3.2).

4.4 The normality when P[f] -=11, f -=I 0

Lemma 4.4.1 Let g be a non constant rational function such that g(z) is never

° in the plane. Let

.' p
Q(() = I1g(j)(()SO,j,

j=O

p

SO,j ~ 0, L SO,j ~ 1.
j=O

Let a E C\ {O}. Then Q takes the value a at least once in C.
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Proof: We have given that g is never 0. This gives g( 00) = ° and so g(j) (00) = 0.

Thus Q(oo) = 0. So provided Q is not constant, Q takes the value a E <C\{O}. If

Q is constant, Q = 0. Hence, g(j) - ° for some j. This gives either g is constant

(for j = 1) or g takes the value 0. This is a contradiction and hence Lemma 4.4.1

is proved. o

Theorem 4.4.1 Let n, p be two positive integers and let T = {1, 2"" ,n}. For

each k E T and each j E {a, 1"" ,p}, let Sk,j be a non-negative integer. For

each k E T let ak be the solution of the following equation:
p

L Sk,j( -ak - j) = 0.
j=O

(4.3)

Assume that there is a unique cS E T such that ao < ak for all k E T\ {cS}, and

assume that
p

LSo,j > 2,
j=O
P

LSk,j ;::: 1 V k E T\{cS}.
j=O

(4.4)

For each k E T let ak(z) be an analytic function on B(O, 1), and assume further

that ao(z) has no zeros in B(O, 1). Let F be a family of functions meromorphic

on B,(O, 1) such that, for each f E :F, f has no zeros in B(O, 1) and the function

P[J] defined by
n p

P[J](z) = Lak(Z) IIu(j)(z))Sk,j
k=l j=O

does not take the value 1 in B (0, 1). Then:F is normal on B (0, 1).

Example 4.4.1 In this example, we evaluate ak for a given differential polyno-

mial P[J], using (4·3). The results are given in Table 4·2.
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I I" + f'2 -1 -1 0 -1

PI' + 1"'2 - f'31"4 -1 -3 -11 -33 -7-

Table 4.2: Examples on Cik'

Proof: Suppose that :F is not normal on B(O, 1). So:F is not normal at at least

one point on B(O, 1), say Zoo We note that Cia ~ 0 by (4.3). Applying the Zalcman

lemma (Lemma 4.1.1), with Ci = Cia, we find that there exist

1. Zn E B(O, 1), Zn ---+ Zo;

2. positive numbers Pn, Pn ---+ 0;

3. functions In E :F;

4. a non-constant function 9 meromorphic in C;

such that

(4.5)

locally uniformly on C with respect to the spherical metric. Since 9 is non-

constant and each gn omits 0 on B(O, 1), it follows from the Hurwitz' theorem

(Theorem 1.3.2) that 9 omits the value 0 on C. Let R = g-1( {oo}) be the set

of all poles of g. Thus, g~) ---+ g(j) locally uniformly on C\R, for j = 1,2, ... ,p.

Using (4.5), we have
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Hence, locally uniformly on C\R, using (4.3) with k = 6,
n Pl:ak(Zn + Pnz) IT(J~j)(zn + Pnz))Sk,j

k=l j=O
n P

= l:ak(Zn + Pnz) ITp~k.j(-O-j)(g~)(Z))Sk,j
k=l j=O
n 2:P ( ') P

= l:ak(Zn + Pnz)Pn j=oSk,j -O-J rr(g~)(z))Sk,j
k=l j=O

P P
= ao(zn + Pnz) IT(g~)(Z))ScI,j + l: ak(Zn + PnZ)p~~=OSk,j(-Ocl-j) II (g~)(Z))Sk,j

j=O kET, k::f,8 j=O
P

-+ ao(zo) IT (g(j) (Z)(cI,j = G(z)
j=O

since Pn -+ 0, Zn -+ Zo E B(O, 1), each ak is analytic on B(O, 1) and for k =1= 6
P Pl:Sk,j( -ao - j) =L Sk,j(ak - ao) > 0,

j=O j=O

using (4.3) and (4.4).

We note that if 9 is transcendental then G cannot be constant. For if G is

constant then clearly G =1= ° since 9 is transcendental. Assuming that G is a

non-zero constant we see that 9 has no poles. Let m be the largest integer such

that So,m =1= 0. Then we can write

which gives

,-
by the lemma of the logarithmic derivative. This contradicts the Hayman-Miles

theorem (Theorem 1.6.3).
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Using Corollary 4.2.1 and Lemma 4.4.1, we have at least one (0 E C with

p

ao(zo) IT (g(i)((o))SO,j = 1,
j=O

and (0 ~ R. Applying the Hurwitz' theorem, we get points (n --+ (0 with

p p

ao(zn+Pn(n) IT (g~)((n))SO,j+ L ak(Zn+Pn(n)p"f~=OSk,j(-QO-j) IT (g~)((n))Sk,j = 1.
j=O kET, kio j=O

Thus

k=l j=O

But Zn + Pn(n E B(O,I) since Zn --+ Zo E B(O,I) and Pn --+ 0. So, we have

( U)Skjfunctions fn E :F such that P[Jn] = 2:~=1ak n~=o fnJ takes the value 1 on

B(O,I). This gives a contradiction and so :F is normal. This completes the proof

of Theorem 4.4.1 o

Corollary 4.4.1 Let k, m be positive integers, and f be a meromorphic function.

Lei F be a family of functions meromorphic on B(O, 1) such that for each f E :F,

we have f i= 0, f(f(k))m i= 1 on B(O, 1). Then:F is normal on B(O, 1).

We cannot omit the condition that ao(z) have no zeros in Theorem 4.4.1. The

counter example is the following.

Example 4.4.2 Let n denote a positive integer, and let P[J](z) = a(z)f(z)f'(z),

where f(z) = ;z i= ° on B(O, 1). This gives f'(z) = ;:z~· Let a(z) = z4~1O' From
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all of these, we get

P[J](z) = a(z)f(z)f'(z)
Z3 1-1

---
z4 + 10nz riz?

-1
n2(z4 + 10)

=1= 1 on B(O,l).

However, :F = {n1z: nE N} is not normal on B(O, 1).

Furthermore, we cannot allow a(z) to have poles in B(O,l) in Theorem 4.4.1.

The counter example is the following.

Example 4.4.3 Let n be a positive integer and let f E :F = {nz: n::::: 2}.

Suppose that a(z) =~. This means that 0 is a pole of a(z). So

P[J](z) = a(z)f(z)f'(z)
1= -.nz.nz

= n2

=1= 1 on B(O,l).

However, :F = {nz : n > 2} is not normal on B(O, 1).

Also, we cannot ignore the condition that 6 is unique in Theorem 4.4.1. The

counter example. is the following.

Example 4.4.4 Let n be a positive integer, and let P[J](z) = f(z)f"(z) -

2(J'(Z))2, where f(z) = ;z =1= O. This gives f'(z) = ;:z\, and f"(z) = n~3.
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From all of these, we get

P[J](z) = f(z)f"(z) - 2(f'(Z))2
2 2

= n2z4 - n2z4

=0
=I 1 on B(O,l).

However, :F = t;z: n E N} is not normal on B(O, 1), and al = a2 = -1.

Hence there is not a unique 8.



Chapter 5

On Bank-Laine Functions

1 In this chapter, we will consider the following. Suppose that (an) is a sequence

of distinct complex numbers such that the imaginary part of an is very close to

zero and such that for E > 0, we have lam - ani> Elanl > ° V n i= m. Then

(an) is not a Bank-Laine sequence. Also, we will prove a new result concerning

the Bank-Laine functions.

5.1 Introduction

Let A be an entire function, and let fi,!2 be two linearly independent solutions

of

y" + A(z)y = 0, (5.1)

normalised so that the Wronskian, as defined in Proposition 1.4.4,

W = W(jl,!2) = fd~ - f~!2 (5.2)

1We submitted this chapter to be published as a paper in Journal of Mathematical Analysis

and Applications.
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satisfies W = 1. Then E = hh is a Bank-Laine function as in Definition 1.5.1

and satisfies the following Bank-Laine product formula [5]

(5.3)

Conversely, if E is a Bank-Laine function then [6] the function A which is de-

fined by (5.3) is entire and the function E is the product of linearly independent

normalised solutions of (5.1).

Example 5.1.1 E(z) = sin z is a Bank-Laine function and we may write

. 2 . z zsm z = sm - cos -.2 2
It is very easy to see that h = V2 cos ~ and h = V2 sin ~ are normalised solutions

of
" 1y + 4Y = o.

We recall from Theorem 1.5.2 that any sequence (an) tending to infinity without

repetition is the zero sequence of a Bank-Laine function and we refer the reader

to the definition of a Bank-Laine sequence (see Definition 1.5.2). In 1999, Elzaidi

[12]proved the following theorem.

Theorem 5.1.1 Suppose that A is a positive real constant with A > 1, and sup-

pose that (an) is a sequence of distinc,t real numbers such that for large n we have

an~l > Aan > O. Then (an) is not a Bank-Laine sequence.

In 2001, Jim Langley [25] gave an example of a Bank-Laine sequence (an) such

that lan+ll > Alanl where A is a positive real constant with A> 1. In 1999, Jim

Langley [24]proved the following theorem.

Theorem 5.1.2 Let K and M be two positive real constants with K > 1. Let

A be a transcendental entire function of finite order, and let E = hh be the
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o a·J

Figure 5.1: An example of a sequence (an) in Theorem 5.1.1.

product of two linearly independent solutions of the equation (5.1) normalised so

that the Wronskian satisfies W = 1. Suppose that there exists a positive sequence

rm tending to infinity, such that for each large positive integer m, the number of

zeros of E in the annulus

(5.4)

is at most r~. Suppose that

lim sup log rm+l <
lex)·m-too ogrm

Then E has finite order.

In 1999, Elzaidi [12]proved the following theorem.

Theorem 5.1.3 Let (an) be a Bank-Laine sequence. Then there is a positive

constant M such that for all large n we have

5.2 Generalising Theorem 5.1.1

Theorem 5.2.1: Let A be a positive real number with A > 1, and let ¢> : [0, oo) -+

[0, co) be a function which satisfies

lim xn¢>{x) = 0 'i/n E N.
x-too

(5.5)
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Suppose that (an) is a sequence of distinct complex numbers with, for all large n,

(5.6)

(5.7)

Then (an) is not a Bank-Laine sequence.

Proof: Suppose that (an) is a Bank-Laine sequence. Hence there is an entire

function E of finite order with zero sequence (an), which satisfies the Bank-Laine

property. We can relabel those an which satisfy (5.6) as aI, a2, ... and then there

exist polynomials Q(z) and P(z), such that P(z) has simple zeros, and such that

E(z) = P(z)g(z)eQ(z}. (5.8)

g(z) = IT (1 - ~) ,
j=l aJ

where each an in (5.9) satisfies (5.6). Using (5.8), we get

(5.9)

E'(z) = P'(z)g(z)eQ(z} + P(z)g'(z)eQ(z} + P(z)g(z)Q'(z)eQ(z}.

At each am we have, using (5.8) and (5.9),

(5.10)

Now let us apply some analysis to g'(.am). Using (5.9), we have

Therefore

(5.11)
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Let

Eo = IT (1 _ 1j)
j=l A

(5.12)

El = IT (1+ ;j) .
}=1

Both of these products, which are in (5.12)and (5.13),converge and

(5.13)

0< Eo < 1< El' (5.14)

Now let us rewrite the following

= Il:~(:j -1) II(1- :~)
}<m} m j>m }

= II~ II11-!21 II11- ami· (5.15)
j<m lajl j<m am j>m aj

For j > m, we have

and this gives, using (5.6),

1 I· ami 11--.-< 1-- <1+--
A)-m - a· - Aj-m'

. }

So

II(1- _1 ) < II11- am I < II(1 + _.1 )
. A)-m. a· - A)-m
}>m }>m} j>m

00 (" 1) I am I 00 ( 1)n· 1- -.- < II 1 - - < II 1+ -.-
A)-m a· - A)-m

j=m+1 j>m} j=m+1
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Hence, using (5.12) and (5.13),

Bo < IT 11 - :~ I ::; e;
J>m J

(5.16)

Using (5.13), we get

IT 11 - !21 ::; IT (1 +Etl)
j<m am j-cm laml

(5.17)

Using (5.12), we get

(5.18)

Using (5.11), (5.15), (5.16), (5.17) and (5.18), we have

1'( )I < 1 IT laml 2
9 am - laml. lajl Bl,

J<m

1'( ) I > 1 IT I am I 2
9 am - "Iaml. lajl Bo·

J<m
Hence, using the last two inequalities,

log Ig'(am)1 = -log laml +L log I:~I + 0(1)
j<m I JI

= -log laml + N(laml, ~) + 0(1)
9

1
= N(laml, -) + O(log laml)· (5.19)

9
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Now let us estimate N(r, ~).

1. The lower bound

1 iT 1 dtN(r, g) 2: T! n(t, g)T
1 1 iT dt> n(r2 -) -

- , L t9 T~

1 1 1
= 2n(r2, g) logr.

Therefore
N(r, 1)
_-----=;9_ -+ 00 as r -+ 00.
logr

This means that

logr = 0 ( N(r,~)) asr -+ 00. (5.20)

2. The upper bound

For large m and

laml :::;r < lam+1l,

we have n(r, ~) = m. Using (5.6), we have

(5.21)

which gives, for r as in (5.21),

(m-1)10gA+loglall < loglaml:::; logr,

and so
logr -log lall

m < log A + 1.

Therefore
1

n(r, -) :::;O(logr) asr -+ 00.
9
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Using the definition of N(r, ~), we have

1 iT 1 dtN(r, -) ~ n(r, -)-
9 lall 9 t

1 r< n(r,-)log-I I'
9 al

Hence
1

N(r, -) ~ O(log r)2 as r --+ 00.
9

Taking the absolute value and logarithms in (5.10), we get

(5.22)

log IP(am)1 + log Ig'(am)1 + Re(Q(am)) = O. (5.23)

Using (5.19), (5.20) and the fact that log IP(am) I= O(log lam!), we get

-Re(Q(am)) = (1 + o(l))N(laml, ~). (5.24)
9

Returning to the polynomial Q(z) which is in (5.8), we can write Q(z) as
q

Q(z) = LCkZk, Ck E C.
k==O

Letting am = Xm + iYm, we get
q

Q(am) = L Ck(Xm + iYm)k
k==O

(5.25)

So every term in Q(am) includes Ym except when n = O. Using (5.5) and (5.7),

we have Ym --+ 0 as m --+ 00 and, for 1 ~ n ~ k,

Ix~-n(iYmtl ~ lamlk-nlYmln

~ lamlk-n</>(Iaml)n

--+ O. (5.26)
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Using (5.25) and (5.26), we have

Q(am) = t,Ck [x~ +t. (:)x~-n(iYm)nl
q

= l.:CkX~ + 0(1).
k=O

Thus, as m ---+ 00 we have,
q

-Re(Q(am)) =L dkx~ + 0(1), dk = -Re(ck)' (5.27)
k=O

Using (5.20), (5.24) and (5.27) we see that 2:%=0 dkx~ must be a non-constant

polynomial in Xm· So it grows like a power of Xm and this contradicts the upper

bound for N(laml, ~), which is in (5.22). This completes the proof of Theorem

5.2.1. []

It is very easy to see that Theorem 5.1.1 comes at once from Theorem 5.2.1.

The sequence (an) could be as in Figure 5.2.

o a·J

Figure 5.2: An example of a sequence (an) in Theorem 5.2.1.

Corollary 5.2.1 Suppose that A is a positive real constant with A > 1, and

suppose that (an) is a sequence of distinct non-zero real numbers such that for

large n we have

Then (an) is not a Bank-Laine sequence.
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5.3 A refinement of Theorem 5.2.1

Theorem 5.3.1 Let c > 0 and let ¢ : [0,00) -t [0,00) be a function which

satisfies
lim xn¢(x) = 0 'tin EN.
x-+oo

(5.28)

Suppose that (an) is a sequence of distinct complex numbers tending to infinity

with, for all large n,

(5.29)

(5.30)

Then (an) is not a Bank-Laine sequence.

Proof: We may assume that c is small. Suppose that (an) is a Bank-Laine

sequence. Hence there is an entire function E of finite order with zero sequence

(an), which satisfies the Bank-Laine property. We can relabel those an which

satisfy (5.29) and (5.30) as aI, a2,'" and then there exist polynomials P(z) and

Q(z), such that P(z) has simple zeros, and such that

E(z) = P(z)g(z)eQ{z) (5.31)

where

g(z) = IT (1 - ~) .
j=l aJ

(5.32)

Using (5.31), we have

E'(z) = P'{z)g(z)eQ{z) + P(z)g'(z)eQ{z) + P(z)g(z)Q'(z)eQ{z).

Hence at each am we have, using (5.32),

(5.33)
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Now let us apply some analysis to g'(am). Using (5.32), we have

Therefore

(5.34)

Let

A=l+~
4

e, = IT (1 _ 1j)
j=l A

BI = IT (1+ ;j) .
J=l

Both of these products, which are in (5.36) and (5.37), converge and

(5.35)

(5.36)

(5.37)

0< Bo < 1< BI. (5.38)

Now let us rewrite the following

= Il :~ (:j - 1) II (1 - :~)
J<m J m j>m J

= II laml IT11- aj I II 11- ami· (5.39)
j<m laj I j<m am j>m aj

Lemma 5.3.1 Suppose that aI, a2,··· satisfy (5.29) and (5.30). Then for large

m there are at most two aj such that

(5.40)
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Proof: Suppose that there are three aj satisfying (5.40), say aa, af3 and aT Then,

using (5.29) and (5.30), either at least two lie near ~+ or at least two lie near

~-. Suppose that aa and af3 lie near ~+. Then we have, using (5.30) and (5.40),

f
laa - af31 ::; 21aml + 0(1)

< flaal·

This contradicts (5.29) and therefore Lemma 5.3.1 is proved. D

Relabelling (am) if necessary, we may assume that

Using (5.35) and Lemma 5.3.1, we get for large m

lam+11 ~ laml

lam+21 ~ Alaml

lam+31 ~ lam+21 ~ Alaml

lam+41 ~ Alam+21 ~ A2laml·

Hence, if m is large and j E N,

(5.41)

We may assume that (5.41) holds for all m, j E N, by otherwise incorporating

finitely many terms from 9 into P and relabelling.

For j > m, we have
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and this gives, using (5.41),

1 I ami 11--.-< 1-- <1 --
A[z-;m] - aj - + A[i-;m]'

Now let us rewrite the following

I I 00 I III I_am = II I_am
j>m aj j=m+1 aj

= 11- aa
m I IT 11- :~ I·m+l j=m+2 J

Using (5.29) and (5.41), we have

1+ lam I > 11_ ~ I = lam+l - am I
lam+ll - am+1 lam+ll

2?:: 11-~I > Elam+11
am+l laml

2 ?:: 11- ~ I > E.
am+l

Using (5.36), (5.37) and (5.42), we have

00 ( 1) 00 I I 00II 1 - -._- < II 1 - am < II 1 + _1_
(.1.=.!!!.] - . - z-m

j~m+2 A' j~m+2 a, j~m+2 ( AI, I)

Using (5.43), (5.44) and (5.45), we now have

EB5 :s; II11- a~ I :s; 2B~.
j>m aJ

78

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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For j < m, we have

II11- :j I = IT 11- a;-k I
J<m m k=1 m

= 11- a;~1ITII1-a:j.
Using (5.29) as in (5.44), we have

1 + lam-II> 11_ am-II = lam - am-II
laml - am laml

2 ~ 11- a;~1I > E.

Using (5.36), (5.37) and (5.41), we have

m-I ( 1) rn=l I I m-I ( 1)II 1 - A[~] ::; II 1 - a;-k ::; II 1+ \[k]
k=2 k=2 m k=2 A 2

00 ( 1) 2 m-I I I 00 ( ) 2D 1- ,\i ~!!1- a;;:k ~ D 1+ ;,

m-I .
B5 ::; II1.1- am-k I ::; Br

k=2 am

Using (5.47), (5.48) and (5.49), we thus have

EB5 ::;II11- ~I::;2B~.
j<m am

Using (5.34), (5.39), (5.46) and (5.50), we now obtain

79

(5.47)

(5.48)

(5.49)

(5.50)
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Using the last two inequalities, we get

log Ig'(am)1 = -log laml +L log II:~II+ 0(1)
J<m J

1= -log laml + N(laml, -) + 0(1)
9

1
= N(laml, -) + O(log laml). (5.51)

9

Now let us estimate N(r, 1.).
9

1. The lower bound

1 fT 1 dtN(r, -) ;::: n(t, -)-
9 T~ 9 t

1 1 iT dt> n(r2 -) -
- , 1 t9 T"2"

111
= "2n(r2, g) logr.

Therefore
N(r, 1.)
_---.::.9_ ~ 00 ----'-log r as r ---,00.

This means that

logr = 0 (N(~, ~)) asr ~ 00. (5.52)

2. The upper bound

For large m and

laml :=:; r :=:; lam+11,

we have n(r, ~) = m. Using (5.41), we have

(5.53)
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which gives, for r as in (5.53),

[m-I]2 log A+ log lall :::;log laml :::;logr,

and so

[m-I] < logr-Ioglall.
2 - logA

Therefore, since m :::;2(m;-1) + 1 :::;2[m;-1] + 3 we have

1n(r, -) :::;O(logr) as r --+ 00.
9

Using the definition of N(r, ~), we have

1 iT 1 dtN(r, -) :::; n(r, -)-
9 lall 9 t

1 r< n(r,-)log-I I'
9 a1

Hence
1N(r, -) :::;O(log r)2 as r --+ 00.
9

Taking absolute value and logarithms in (5.33), we get

Using (5.51), (5.52) and the fact that log IP(am)1 = O(log lam!), we get

-Re(Q(am)) = (1+ o(l))N(laml, ~).
9

81

(5.54)

(5.55)

(5.56)

Returning to the polynomial Q(z) which is in (5.31), we can write Q(z) as

q

Q(z) =L ckzk, Ck E C.
k=O
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Letting am = Xm + iYm, we get

q

Q(am) = L Ck(Xm + iYm)k
k=O

(5.57)

So every term in Q(am) includes Ym except when n = O. Using (5.28) and (5.30),

we have Ym --+ 0 as m --+ 00 and, for 1 :::;n :::;k,

--+ O. (5.58)

Using (5.57) and (5.58), we have

Q(am) = t,Ck [x~ + t,(:)x~-n(iYm)n]
q

= LCkX~ + 0(1).
k=O

Thus, as m --+ 00 we have,

q

-Re(Q(am)) = LdkX~ + 0(1), dk = -Re(ck). (5.59)
k=O

Using (5.52), (5.56) and (5.59) we see that 2::%=0 dkx':n must be a non-constant

polynomial in Xm. So it grows like a power of Xm and this contradicts the upper

bound for N(laml, ~), which is in (5.54). This completes the proof of Theorem

5.3.1. []
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5.4 A further new result

Theorem 5.4.1 Suppose that A is a transcendental entire function of finite or-

der. Let A be a positive real number with A > 1, and let 'IjJ : [0,00) -+ [0,00) be a

function satisfying

lim exn 'IjJ (x) = 0 V n E N.
x-+oo

(5.60)

Suppose that each bn is a real number with

(5.61)

and suppose that

(5.62)

Suppose that E = fIh is the product of linearly independent normalised solutions

of (5.1), and that all but finitely many zeros of E lie in U~IB(bn' Pn). Then E

has finite order and finitely many zeros, and there are polynomials PI, P2 such

that E = PIeP2•

Proof: Suppose that A and E are as in the hypotheses. First we want to show

that such a function E has finite order.

Claim: There exist positive real numbers rm, m = 1,2" .. , with

(5.63)

and such that, for each m,

(5.64)

To prove the claim we set rl = Aibil. Assume rl,'" ,rm have been chosen

satisfying (5.63) and (5.64). If
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we set

(5.65)

In this case we have, using (5.65),

{Ibil} n (,x-lrm+l, ,xrm+d

= {Ibil} n (rm, ,x2rm)

= <p.

On the other hand if there exists

then this bk is unique by (5.61), and we set

(5.66)

Then, using (5.61) and (5.66),

{Ibil} n (,x-lrm+l, ,xrm+l)

= {Ibil} n (Ibkl, ,x2lbkl)

= <p.

This proves the claim.

Using (5.63), we have for some positive constant C,

logrm+l :::;logrm + C.

Hence
lim sup log rm+l < 1 < 00.
m-+oo log rm -
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Using (5.62) and (5.64), we see that the number of zeros of E in the annulus

is zero for large m. Returning to how we defined rm, we see that (rm) tends to

infinity. Applying Theorem 5.1.2, we get that E has finite order.

Assume that E has infinitely many zeros. Using Theorem 5.1.3, there is a

positive constant M such that, for all zeros a, a' of E with a =1= a',

Hence by (5.60) and (5.62) for large n there is at most one zero of E in each disc

B(bn, Pn). We may delete any bn such that B(bn, Pn) does not contain a zero of

E. This does not affect (5.61). Relabelling the bn and an if necessary, we can

write

E(z) = P(z)eQ(» fi (1- :J
where P(z) and Q(z) are polynomials and an E B(bn, Pn). Using (5.60) and

(5.62), we have

IIm(an)1 < 'I/J(lbnl) < 'I/J(lanl + 0(1))

= o(lanl-L)

for every L > O. Using (5.61), we have for large n

Applying Theorem 5.2.1, we see that the zero sequence of E is not a Bank-Laine

sequence and this gives a contradiction. This completes the proof of Theorem

5.4.1. o



Chapter 6

On Complex Oscillation Theory

I In this chapter, we will consider the following. Suppose that A is a transcen-

dental entire function with p(A) < ~. Suppose that k ~ 2 and y(k) + Ay = 0 has

a solution f with )..(1) < p(A), and suppose that Al = A + h where h t 0 is an

entire function with p(h) < p(A). Then y(k) + Aly = 0 does not have a solution

9 with )..(g) < p(A).

6.1 Introduction

Suppose that kEN and A is an entire function. Suppose that fj, j = {I, 2, ... ,k}

are solutions of

y(k) + Ay = O. (6.1)

Cauchy [16] proyedthat any solution of (6.1) is entire. In recent years, a lot

of work [5], [7], [22], [23] has been done in the connection between the order of

growth p of A and the exponent of convergence )..of fj, j = {I, 2, ... ,k}. We

1We submitted this chapter to be published as a paper in Results in Mathematics.
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recall from Definition 1.2.7 and Definition 1.2.8 the following.

(A) 1
· log+ T(r, A)

p = im sup 1
r-+oo og r

log+ N(r, J.)
A(fj) = lim sup 1 J

r-+oo ogr
Hayman-Miles [15] proved the following, which follows from Theorem 1.6.3.

Theorem 6.1.1 Let f be a meromorphic function and let k be a positive integer.

Then p(f(k)) = p(f).

We need the following definition and lemma [20] for our main results, Theorem

6.2.1 and Theorem 6.5.1.

Definition 6.1.1 Let B(zn' rn) be open discs in the complex plane. We say that

the countable union UB(zn' rn) is an R-set if Zn -t 00 and L rn is finite.

Lemma 6.1.1 Suppose that f is a meromorphic function of finite order. Then

there exists a positive integer N such that

holds for large z outside of an R-set.

For the proof of Theorem 6.5.1, we win use the following theorem and lemma,

which give an asymptotic representation for solutions of (6.1) with few zeros. The

first of these is a special case of a result from [23].

Theorem 6.1.2 (Langley's theorem) [27}

Let A be a transc;endental entire function of finite order, and let El be a subset of

[1, 00) of infinite logarithmic measure and with the following property. For each

rEEl there exists an arc
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of the circle 8(0, r) such that

lim min{logIA(z)l: z Ear} = +00.
r--+oo,rEEl log r

Let k ~ 2 and let f be a solution of {6.1} with )..(1) < 00. Then there exists a

subset E2 C [1, (0) of finite measure, such that for large rE Eo = El \E2,we have

f'(z) = A()t _ k - 1A'(z) O( -2) k - 1
f(z) Cr Z 2k A(z) + T , z Ear, cr - - .

Here c; depends on r but not on z, and the branch of At is analytic on a-.

We note that E2 has finite measure and so finite logarithmic measure. Therefore,

Eo has infinite logarithmic measure. Moreover, we exclude the case k = 1 because

for k = 1 the general solution of (6.1) is

y = C exp ( - lz A( t) dt) , C E C.

Lemma 6.1.2 {Hayman's lemma} [14J

Let f be an analytic function, and let F = f. Then for kEN

f(k) = Fk + k(k - 1) Fk-2 F' + R (F)f 2 k-2 ,

where Pk-2 is a differential polynomial with constant coefficients, which vanishes

identically for k :S 2 and has degree k ., 2 when k > 2.

Before stating the first result, let us note the following example.

Example 6.1.1 It is possible to have a solution f of {6.1} with no zeros. Let

f =.eB where B is an entire function, and let F = f. It is clear to see that

F = B'. Using the Hayman's lemma {Lemma 6.1.2}, we have

f;) = (B')k + k(k; 1) (B,)k-2 + B" + Pk-2(B').

EBy letting - A = f ' we see that f = eB, which has no zeros, solves {6.1}.
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6.2 A new result

Theorem 6.2.1 Suppose that A is a transcendental entire function with p(A) <
~. Suppose that

y" + Ay = 0 (6.2)

has a solution f with >'U) < p(A). Suppose that

(6.3)

where h t 0 is an entire function with p(h) < p(A). Then

y" + A1y = 0 (6.4)

does not have a solution 9 with >.(g) < p(A).

Proof: We note first that p(Ad = p(A), using (6.3). Suppose that (6.2) has

a solution f with >'U) < p(A), and suppose that (6.4) has a solution 9 with

>.(g) < p(A). We can let

(6.5)

(6.6)

where U and V are entire functions and P, Q either are polynomials or satisfy

Q = zm2 IT (1 - _:_), bk E C, m2 E Nu {O},
, k=l bk

with p(P) = >.U) and p(Q) = >.(g). We note that these products converge

because >'U), >.(g) are both less than 1. Using (6.2) and (6.5), we get

PU,2 + PU" + 2P'U' + P" + AP = O. (6.7)
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Using (6.4) and (6.6), we get analogously

QV,2 +QV" + 2Q'V' +Q" +AQ + hQ = O. (6.8)

Dividing (6.7) by P, we find that

P' P"U,2+ U" + 2-U' + - +A = O.P P
(6.9)

Dividing (6.8) by Q, we obtain analogously

Q' Q"
V,2 + V" + 2 Q V' +Q+ A + h = O. (6.10)

Let
f'

F=7'

g'
G=-.

9

(6.11)

(6.12)

Using (6.5) and (6.11), we get

P'
F= P +U'. (6.13)

Using (6.6) and (6.12), we obtain

G= ~ +V'.

Using (6.9) and (6.13), we find that

(6.14)

F' +F2+A = 0, (6.15)

whereas, using (6.10) and (6.14), we get

G' + G2 + A + h = O. (6.16)

Subtracting (6.16) from (6.15) gives

F' - G' + F2 - G2 = h. (6.17)
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6.3 A lemma and corollary needed for Theorem

6.2.1

Lemma 6.3.1 Suppose that A is an entire function with p(A) < ~. Let I,9 be

solutions of {6.2} and {6·4} respectively with >.(1) < p(A) and >.(g) < p(A). Let

U and V be as in {6.5} and {6.6} respectively. Then

p(A) = p(U) = p(V).

Proof: To prove that p(A) = p(U), we need to prove the following.

1. p(A) '5: p(U).

Using (6.9), we have

pI P"
A = -U'2 - U" - 2 P U' - p'

Using the fact that p( ~) '5: p(P) = >.(1) < p(A), which gives p( ~') < p(A),

and using Theorem 6.1.1, we get

p(A) '5: max{p(U'2), p(U"), p(U')}

= p(U).

2. p(U) '5: p(A).

Using (6.9), we have

pI P"
U'2 = _U" - 2-U' - - - A

PP'

Dividing through by U', we get

I U" pI 1 ( P" )U =---2--- -+AU' P U' P .
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Suppose IU'(z)1 ~ 1. If not, we have nothing to prove. So

IU" I IP' I 1 (I P" I )IU'(z)l::; u' (z) + 2 P (z) + IU'(z)1 p(z) + IA(z)1

Itr I IP' I IP" I::; u' (z) + 2 P (z) + p(z) + IA(z)l·

So since U is transcendental by p(A) ::; p(U), and since m(r, P~») = O(log r)

because P has finite order,

m(r, U') ::;m(r, A) + S(r, U').

Hence, outside a set of finite measure,

(1+ o(l))T(r, U') ::; T(r, A).

This gives

p(U') ::; p(A)

and so, using Theorem 6.1.1,

p(U) ::; p(A).

Similarly we can prove that p(A) = p(V) using the fact that P(Al) = p(A) as

noted above. This completes the proof of Lemma 6.3.1. 0

Corollary 6.3.1 Suppose that A is an entire junction with p(A) < !. Let j, 9

be as in Lemma 6.3.1, and let F, G be defined by {6.11} and {6.12} respectively.

Then

p(A) = p(F) = p(G).
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Proof: Using (6.13), we have
pI

F= P +U'.

Using the assumption and Lemma 6.3.1, we know that p(~) ~ p(P) = )..U) <

p(A) = p(U). Hence, using Theorem 6.1.1,

p(F) = p(U).

Using (6.14), we have

G= ~ +V'.

Using the assumption and Lemma 6.3.1, we know that p(%) ~ p(Q) = )..(g) <
P(Al) = p(A) = p(V). Hence, using Theorem 6.1.1,

p(G) = p(V).

This completes the proof of Corollary 6.3.1, using Lemma 6.3.1. D

6.4 The completion of the proof of Theorem

6.2.1

Let

ip = F - G. (6.18)

It is very easy to estimate the order of ip as follows, using (6.18) and Corollary

6.3.1. We have

p(ip) ~ max{p(F), p(G)}

= p(A)
1

< 2'
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Claim: <I>~ O.

To prove the claim, suppose that <I> O. This gives, using (6.18), F = G and so

F' _ G'. Using (6.17), we get h = 0 and this contradicts the hypothesis h ~ O.

This completes the proof of the claim.

Dividing (6.17) by <I>,we get

<I>' h
~+F+G=<I>'

Using (6.13) and (6.14), we find that

<I>' P' Q' h
~ + P + U' + Q + V' = <I>' (6.19)

Pick a such that

max{'\(J), '\(g), p(h)} < a < p(A). (6.20)

Let us consider the two cases for the order of <I>,i.e when p( <I» ::; a and when

p( <I» > a.

Case 1: p( <I» ::; a.

(This includes the case when <I>is a rational function)

Using (6.18), we have

F' = G' + <I>'.

Using (6.15) and (6.16), we get

-A = F2+F'

= G2 + 2G<I>+ <I>2+ G' + <I>'
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This gives
h - <1>2 - <1>'

G = 2<1>

Therefore, using Theorem 6.1.1 and (6.20),

p(G) ::; max{p(h), p(<1>)}

< p(A)

which contradicts the fact that p(G) = p(A) as in Corollary 6.3.1.

Case 2: p( <1» > a.

Using (6.13), (6.14) and (6.18), we have

<1>=F-G
pI Q'= - - - + U' - V'.p Q

Using (6.20), it is clear that p(~) ::; p(P) = >.(1) < a and p(%) ::; p(Q) =

>.(g) < a. So

(6.21)

p(U' .; V') > a

since p( <1» > a. Hence
1

a < p(U' - V') < 2'

Pick·(J such that
1

a < (J < p(U' - V') < 2'

The modified cosnp theorem (Theorem 1.6.2) gives that the set

{r: inf log IU'(z) - V'(z)1 > ru}
Izl=r
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has positive upper logarithmic density.

Since p(P) + p(Q) < 00, using Lemma 6.1.1, there exist M > 0 and a set of

discs Biz«, Pn) with 2: Pn < 00 such that, for large z,

I
P' (z) I + IQ' (z) I < I IMP(z) Q(z) - z , (6.22)

The set HI of r > 0 such that the circle Izl = r meets H has measure less than

or equal to 22: Pn < 00. Hence

So

and so
J; XHl (t)~ -+ O.

logr
Therefore, HI has zero upper logarithmic density. Hence we deduce that there

exists a set H2 of positive upper logarithmic density such that

inf log IU'(z) - V'(z)1 > r"
Izl=r

and such that the inequality of (6.22) holds for [z]= r, which then gives

1<I>(z) I ~ IU'(z) - V'(z)l- O(rM),

(6.23)

Hence, using (6.20),

I
h(z) I < erP(h)+O(l) -

<I>(z) - er" - 0(1), (6.24)
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Using (6.11), (6.12) and (6.18), we have

if>=F-G

= I' _ g'
f 9

(6.25)

Using (6.25), we see that if> has simple poles and these can only occur at the zeros

of f or the zeros of g. Hence, using (6.5) and (6.6), we get

1 1
n(r, if» ~ n(r, 7) + n(r, g)

1 1= n(r, p) + n(r, Q)' (6.26)

Integrating (6.19) around Izl = rn, r« -+ 00, rn E H2, we get using the Argument

Principle (Theorem 1.2.5) and (6.24), and the fact that U' and V' are entire,

1 1 1
n(rn, if» - n(rn' if» + n(rn, p) + n(rn, Q) = 0(1).

But the left hand side must be an integer. So

1 1 1
n(rn, if» - n(rn, if» + n(rn, p) + n(rn, Q) = O.

Hence, using (6.26),

1 1 1
n(rn' <1» = n(rn' if» - n(rn, p) - n(rn' Q)

1 . 1 1 1
~ n(rn, p) - n(rn' p) + n(rn, Q) - n(rn' Q)

~ O.

Since the number of zeros of any function is a non-negative number, we get

and so
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Since <I> is very large on Izl = Tn by (6.23), we have

1
m(Tn, <I» = O.

Hence
1

T(Tn' <I» = 0

and so, using the first fundamental theorem of Nevanlinna Theory (Theorem

1.2.1),

T'r«, <I» = 0(1).

This contradicts the fact that <I> is a transcendental function, since p( <I» > a, and

completes the proof of Theorem 6.2.1. o

Corollary 6.4.1 Suppose that A is a transcendental entire function with p(A) <

!.Suppose that y" + Ay = 0 has a solution with finitely many zeros. Suppose

that Al = A + h, where h ¢ 0 is an entire function with p(h) < p(A). Then

y" + Aly = 0 does not have a solution with finitely many zeros.

Corollary 6.4.2 Suppose that A is a transcendental entire function with p(A) <
!. Suppose that Y"+Ay = 0 has a solution with no zeros. Suppose that Al = A+h,

where h ¢ 0 is an entire function with p(h) < p(A). Then y" + Aly = 0 does not

have. a solution with no zeros.

It seems that we need another method to solve the following problem since we do

not get a simple formula such as (6.17).

Problem 6.4.1 Suppose that A is a transcendental entire function with p(A) <

!. Suppose that k ~ 2 and (6.1) has a solution with no zeros. Suppose that

Al = A + h, where h ¢ 0 is an entire function with p(h) < p(A). Show that

y(k) + Aly = 0 does not have a solution with no zeros.
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6.5 The solution of Problem 6.4.1

In this section, we will prove a generalisation of Problem 6.4.1 and by doing this

we give another proof of Theorem 6.2.1. Our main result in this section is the

following theorem.

Theorem 6.5.1 Suppose that A is a transcendental entire function with p(A) <
~. Suppose that k ~ 2 and {6.1} has a solution f with >..(1) < p(A), and suppose

that {6.3}holds, where h ~ 0 is entire with p(h) < p(A). Then

(6.27)

does not have a solution 9 with >..(g) < p(A) .

Proof: We note as before that P(Al) = p(A), using (6.3). Suppose that (6.1)

has a solution f with >..(1) < p(A), and suppose that (6.27) has a solution 9 with

>..(g) < p(A). We can let

(6.28)

(6.29)

where U and V are entire functions and P, Q either are polynomials or satisfy

Q = zm2 IT (1 - ~), bk E C, m2 E Nu {O},
. k=l bk

with p(P) = >..(1) and p(Q) = >..(g). We note that these products converge

because >"(1), >..(g) are both less than 1. Let

(6.30)
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g'
G=-.

9
(6.31)

Using (6.28) and (6.30), we get

p'
F= P +U'. (6.32)

Using (6.29) and (6.31), we obtain

G= ~ +V'. (6.33)

Applying the Hayman's lemma (Lemma 6.1.2), we obtain

j(k) = Fk + k(k - 1) Fk-2 F' + P (F)
j 2 k-2 , (6.34)

(6.35)

where Pk-2 is a differential polynomial with constant coefficients, which vanishes

identically for k :s; 2 and has degree k - 2 when k > 2.

Pick T, er such that

1
max{A(f), A(g), p(h)} < T < er < p(A) < 2' (6.36)

The modified COS7rP theorem (Theorem 1.6.2) gives that the set

El = {r: inf log IA(z)1 > rU}
Izl=r

(6.37)

has positive upper logarithmic density. Let E2 C [1,00) be a subset of finite

measure so that, for some M, E N,

IA'(z) I IP'(z) I IQ'(z) I MA(z) + P(z) + Q(z) :s; rI, [z] = r 2: 1, r (j. E2• (6.38)
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Such E2 and Ml exist by [27]. For large rEEl we also have, using (6.36) and

(6.37),

We can apply the Langley's theorem (Theorem 6.1.2) to (6.1) and (6.27), letting

aT be the whole circle [z] = r, rEEl' Hence for large rEED = El \E3, where

E2 C E3 and E3 has finite measure, the following is true.

J'(z) = cA(z)t _ k - 1 A'(z) + O(r-2) Izl = r, ck = -1, (6.39)
J(z) 2k A(z) ,

g'(z) = dA (z)t _ k - 1 A~(z) + O( -2) Izl = r, dk = -1. (6.40)
g(z) 1 2k Al(Z) r,

Here c, d may depend on r, but not on z, We remark that Eo is infinite, because

finite measure implies zero logarithmic density. It is clear from (6.36) and (6.37)

that

I
h( z) I eTP(h)+o(!)

A(z)::; er" = 0(1), Izl = r, r -+ 00, rEED,

I
h'(z) I < eTP(hl)+o(!) eTP(h)+O(!)

A(z) - eT17 eT17 =0(1), r -+ 00, Izl = r, rEED, (6.41)

using' p(h') ::; p(h). Now let us apply the binomial theorem to expand At, ~ in

fA! A'terms 0 s , jf' Using (6.3) and (6.41), we get

1 !
-At = (A + h)k

=Ak(1+~)k
= At (1 + 0 (II~II) ) , Izl = r, rEED· (6.42)
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Also, using (6.3) and (6.41) again, we obtain

A'+h'
A+h
A'+h'

-
A(l + ~)

= A' + h' (1 _ !!_ + h
2

_ + ... )
A A A2

(A' h') ( (Ihl))= A+A 1+0 TAl

= ~ (1+0G~D)+ 0 G~D'Izl= r, rEED· (6.43)

Using (6.38), (6.40), (6.42) and (6.43), we get for Izl = rEED,

g'(z) = dA( )t _ k - 1A'(z) O( -2) dk = -1 (6.44)
g(z) z 2k A(z) + r, .

We recall that c and d may depend on r but, for a given r, do not depend on z.

6.6 A lemma needed for Theorem 6.5.1

Lemma 6.6.1 Suppose that c, d are as in {6.39} and {6.44} respectively. Then

c = d Jor all large rEED.

Proof: We may write d = wc where wk = 1. Using (6.44), we obtain

g'(z) = A()t _ k - 1A'(z) O( -2) k = 1
g(z) wc z 2k A(z) + r ,w .

Multiplying (6.39) by wand then subtracting (6.45) from it, we get

w (J'(:Z) + k - 1A'(Z)) = g'(z) + k - 1A'(z) + 0(r-2).
J(z) 2k A(z) g(z) 2k A(z)

(6.45)

Integrating around Izl = rn, r« --+ 00, rn E Eo, we find that
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But the right hand side must be a positive integer since n(rn, ~) ~ 0, n(rn, ~) > O.

This is because if n (rn'~) = 0 we get

Since inflzl=rlog IA(z) I is very big for rn --+ 00, rn E Eo, we get

1
m(rn, A) = o.

Hence,
1

T(rn' A) = O.

Using the first fundamental theorem of Nevanlinna Theory (Theorem 1.2.1), we

obtain

T(rn' A) = 0(1).

This contradicts the fact that A is transcendental and proves the claim that

n(rn'~) > O. For the same reason, n(rn,:7) + n(rn'~) is a non-zero positive

integer. Hence, w is a positive rational number and since Iwl = 1 we get w = 1

and so c = d. o

6.7 The completion of the proof of Theorem

6.5.1

We can now write onlz] = r, r E Eo, using (6.44),

G(z) = g'\z) = A()t _ k - 1A'(Z) O( -2) ck = -1.
g(z) c z 2k A(z) + r ,

Subtracting (6.46) from (6.39), we get as r --+ 00, r E Eo,

f' g'f = 9 + 0(1), Izl = r.

(6.46)
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Using (6.32) and (6.33), we get

pI Q'
P + U' = Q + V' + 0(1).

Using (6.38), we obtain

IU'(z) - V'(z)1 ~ 2rMl, Izl = r, rE Eo.

This gives

1· . f T(r, U' - V')
im III 1 < 00
r-+oo og r

and so U' - V'is a polynomial. Hence, U - V is a polynomial and so

U = Po + V

where Po is a polynomial. Thus, using (6.32),

P' I I
F = P +Po+ V.

Using (6.33), we find that

F=G+M (6.47)

where
pI Q' I

M = P '- Q +Po'

Using (6.1) and (6.34), we get

Fk + k(k - 1) Fk-2 F' + Pk-2(F) = -A,
2

(6.48)

(6.49)

where Pk-2 is a differential polynomial with constant coefficients, which vanishes

identically for k ~ 2 and has degree k - 2 when k > 2. Using (6.27) and (6.35),

we obtain

(6.50)
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Using (6.47) and (6.49), we get

(G + M)k + k(k - 1) (G + M)k-2(G' + M') + Pk-2(G + M) = -A. (6.51)
2

Expanding out (G +M)k and (G + M)k-2 by the binomial theorem, we can write

(6.51) as

and subtracting (6.50) from this we get

(6.52)

Here Rk-2(M, G) and Sk-2(M, G) are polynomials in M, G and their derivatives,

and each have total degree at most k - 2 in G and its derivatives.

Claim: M =t o.
To prove the claim, We may assume that M = O. Using (6.47), we get F = G.

Using (6.49) and (6.50), we have h = O. This contradicts the hypothesis h =t 0
and completes the proof of the claim.

Divi~ing (6.52) by MGk-2, we get

kG Sk-2(M, G) = h
+ MGk-2 MGk-2' (6.53)

Suppose that IGI > 1. Now SkM~~'f) is a sum of terms

where

qo + ql + ... + qk ~ k - 2
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and hence such a term has modulus at most

IMI;"++;,-l I~ I;' ···1M;) I;' IGI"++"-k+'I~ I" ···1G;) I"
S IMli"++;,-l I~ Ii' ···1M;) I;'I~ I" ···1G;) I"

Using (6.53) and (6.54), we get

(6.54)

1m(r, G) :::;Cl m(r, M) +m(r, M) +m(r, h) + S(r, G) + S(r, M)

:::;C2T(r, M) + T(r, h) + S(r, G).

But, using (6.33),
1

N(r, G) < N(r, Q)'

Hence
1

(1+ o(l))T(r, G) :::;CT(r, M) + T(r, h) + N(r, Q)'

Therefore, using (6.36) and (6.48),

T(r, G) = O(rT), r E Eo.

Using (6.50), we have

T(r, A) :::;C3 T(r, G) + T(r, h).

Hence

T(r, A) = O(rT), r E Eo.

Using (6.37), thiscontradicts the fact that log IA(z)1 > r", Izl = r, r E Eo, so

that T(r, A) = m(r, A) > r", r E Eo. This completes the proof of Theorem 6.5.1.

o
It is very clear to notice that Theorem 6.2.1 comes at once from Theorem 6.5.1.

Also, it is very easy to see that Problem 6.4.1 comes directly from Theorem 6.5.1.
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Corollary 6.7.1 Suppose that A is a transcendental entire function with p(A) <

~. Suppose that (6.1) has a solution with finitely many zeros. Suppose that Al

is defined as Al = A + h, where h =t 0 is an entire function with p(h) < p(A).

Then y(k) + Aly = 0 does not have a solution with finitely many zeros.

Corollary 6.7.2 Suppose that A is a transcendental entire function with p(A) <

~. Suppose that (6.1) has a solution with no zeros. Suppose that Al is defined

as Al = A + h, where h =t 0 is an entire function with p(h) < p(A). Then

y(k) + A1y = 0 does not have a solution with no zeros.
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