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ABSTRACT

The Box and Jenkins (1970) methodology of time series model building
using an iterative cycle of identification, estimation and diagnostic
checking to produce a forecasting mechanism is, by now, well known and
widely applied. This thesis is mainly concerned with aspects of the
diagnostic checking and forecasting part of their methodology.

For diagnostic checking a study is made of the overall or ‘portmanteau’
statistics suggested by Box and Pierce (1970) and Ljung and Box (1976) with
regard to their ability for detecting misspecified modelss analytic results
are complemented by simulation power studies when the fitted model is known
to be misspecified. For forecasting, a general approach is proposed for
determining- the asymptotic forecasting loss when using any fitted model in
the class of structures proposed by Box and Jenkins, when the true process
follows any other in that same class. Specialisation is made by conducting
a thorough study of the asymptotic loss incurred when pure autoregressive
models are fitted and used to forecast any other process.

In finite samples the Box-Pierce statistic has its mean well below that
predicted by asymptotic theory (so that true significance levels will be
below that assumed) whilst the Box-Ljung statistic has its mean approximately
correct. However, both statistics are shown to be rather weak at detecting
misspecified models, with only a few exceptions. Asymptotic forecasting
loss is likely to be high when using even high order autoregressive models
to predict certain simple processes. This is especially the case when
allowance is made for estimation error in the fitted models.

| Finally, some outstanding problems are outlined. One of these, namely
the problem of misspecified error structures in time series regression

analysis, is examined in detail.



CHAPTER 1
INTRODUCTION
1.1 Motivation

This research was initially motivated by an apparent need to question
whether or not a model that had been fitted to a time series was the correct
one, and to examine the consequences if the fitted model was misspecified.

Over recent years many sophisticated techniques have been developed to
produce superior models that will provide a better fit to the data at hand
and (hopefully), therefore, produce a better forecasting mechanism for
future, as yet unrealised, values from the same series. In essence, these
techniques generally assume, a priori, the model to be fitted (or base
model choice on the evidence of the data) and so if a misspecification of
the model occurs, for some reason, it would seem reasonable to conjecture
that the consequences could be serious from a forecasting point of view.
(Moreover, some of these techniques are relatively expensive to use and
implement and so one could also ask whether a less sophisticated and expensive
method might not do almost as well from a forecasting point of view. These
ideas and problems are really concerned with the philosophy and need for
forecasting via the fitted model and have been raised in the literature before,
See, for instance, Granger and Newbold (1975) and Chatfield and Prothero
(1973b)).

We shall, in this study, restrict ourselves to models within the general
class of autoregressive integrated moving average (ARIMA) processes, which
have been studied thoroughly by Box and Jenkins (1970), and ask the general
question whether particular fitted models in this class can forecast as well
as the optimum forecast function for the process, which is also assumed to
follow from a model in thevsame class. For certain models in this class,
the Box and Jenkins procedure can be expensive in time and money for
adequate analysis and also in the expertise needed to apply the techniques

(see, for example the conclusion in Chatfield and Prothero (1973a, p 313)).



In one sense, then, we shall adopt the attitude of "doing all the
wrong things", which on the face of it seems certainly sub-optimal, but is
eminently more sensible if one views the whole model building procedure
after the event and asks whether or not the "true" model for the data has
been produced by the techniques employed. Of course, these techniques usually
have built-in checks to test whether the model produced can be considered to
be the ‘correct' one. By their very nature,model checking tests cannot
entertain all possible alternative models that could have been fitted, so
that they will naturally not be equally powerful against all alternatives.
One of the objectives, therefore, will be to try to isolate some of the model
misspecifications which are more serious and which could be ignored (for some
reason or another) by some of the diagnostic checks on model adequacy.

Furthermore, some authors in the recent past (Chatfield and Prothero
(1973a), Prothero and Wallis (1976)) who have fitted Box-Jenkins type models
.have doubted the ability of the so called portmanteau statistic (Box and
Pierce (1970)) to detect model misspecification. The need to analyse in
detail this doubt about this particular diagnostic check was another
motivation for examining model misspecification.

Chatfield (1977) does not believe there is a "true" model, but rather
that a fitted model can provide a simple and useful approximation to some
far more complicated truth., This view seems entirely reasonable, However,
in this study an underlying assumption will be that there does exist some
relatively simple true model. We will then examine the consequences which
follow when the analyst fails to correctly specify this model. Such an
approach seems well worthwhile, and moreover it would seem reasonable to
argue that the results derived would continue to be useful in a more general
context which would allow for Chatfield's objection. This more general view
would be that although reality is typically exceptionally complicated, it is
nevertheless the case that a particular simple model will generally provide
a sufficiently good approximation to that reality for practical purposes

(for example, forecasting). This simple model could then, in practice, be
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regarded as "truth", and the consequences of operating with other simple
models could safely be examined as if this original simple model were
indeed a "true model". After all, since model selection is generally based
on sample evidence, it is reasonable to expect that the analyst will on
occasions fail to find the appropriate simple model. Furthermore, in those
situations in which an underlying model is assumed a priori, it may often
be the case that the assumed model differs appreciably from the particular
simple model which is appropriate.

One of the more recent developments in time series analysis has been
the practical applications of multivariate time series techniques as a
natural extension of the univariate work of Box and Jenkins (1970). In a
recent papér Haugh and Box (1977) fit a multivariate Box-Jenkins model and
suggest that the possibilitie; of making errors in the first stage of the
multivariate procedure, namely fitting univariate models in the ARIMA class
to each series under consideration, deserves further research. This thesis
attempts to show the results of univariate misspecifications in this class
of models.

Another area which has aroused interest lately is the possibility of
misspecifying the residual structure in a time series regression analysis
(Granger and Newbold (1974), Pierce (1977)), and the former paper provided
the stimulus for examining residual error misspecification.

1.2 Notation: the Box-Jenkins approach to univariate model building

We summarise here the general approach to univariate model building as
advocated by Box and Jenkins (1970) as an introduction to the general
notation used throughout this study. If appropriate in later chapters, the
notation may be restated for clarity of exposition. More detailed reviews of
the Box-Jenkins approach are given by Nelson (1973), Newbold (1975), Chatfield
(1975) and Granger and Newbold (1977). Specific examples may be found in
papers which include Chatfield and Prothero (1973a), Bhattacharyya (1974),
Brubacher and Wilson (1976) and Saboia (1977). A summary of many Box-Jenkins

analyses may also be found in Reid (1969) and Newbold and Granger (1974).
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For a review of the current state of time series analysis in general see
Chatfield (1977) or Newbold (1978).

Denote by {Xt}, or simply Xt’ a discrete time series at equally spaced
instants of time. Available for study is a sample of n observations of
Xt, %L’xa""’xh and we shall assume the prime objective is to forecast
future values X ih (h 2 1). The series X, is said to follow an ARIMA(p,d,q)
process if

4(B)(1 - B)IX, = 6(B)a (1.1)

t
where B is the backshift operator such that th Xi_l, and by repeated

application Bjxt = xt-j’ and

#(B) = 1-4B-4B -...- ;!po

o(B) = 1 + ©B+ 9233 Foeee + quq (2)
with p, d and q non-negative integers. Here a, is a process with zero mean,
fixed variance oaa, and with corr(at,as) =0, t % s, Such processes are
called "white noise". The roots of the polynomial equations in B, 4(B) = 0
and 6(B) = O will be required to lie outside the unit circle IBl = 1 to
ensure stationarity and invertibility conditions (see Box and Jenkins (1970)
PP 73-74). The constants ﬁ;,ﬁ;,...,ﬁ; are said to be the autoregressive (AR)
parameters whilst Ga’ez""’gq are termed the moving average (MA) parameters.
A pure AR process has d = 0 and q = 0, whilst a pure MA process has d = 0
and p = 0. The integer d indicates the order of differencing required to
reduce the process to stationarity. If d = 0, with p # 0 and q # O the
structure (1.1) is said to be an ARMA(p,q) process.

The Box-Jenkins methodology for constructing ARIMA(p,d,q) models is based
on a three step iterative cycle of (i) model identification (ii) model
estimation (i1ii) diagnostic checking on model adequacy. After this cycle has
been successfully completed the model fitted is then ready to be used in a

rather important way, namely to forecast future observations of the series

giving rise to structure (1.1).

(I)The notation used here differs slightly from that of Box and Jenkins (1970),
who use ©(B) = 1 - 6B - ... - eqaq, but is in line with that of Granger
and Newbold (1977).
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We briefly describe here the ideas behind (i) and (ii) but the main

theme in this thesis is to examine the consequences of misspecifying (1.1)
by looking in detail at one technique commonly employed in the stage (iii)
of diagnostic checking and the comparative quality of forecasts obtained from
the misspecified model.
(i) 1Identification

- At the identification stage one selects values of p,d,q in the model
(1.1) and obtains initial, rough estimates of ;{1 ,;{2,...,p'p, 91’93’""% using
procedures which are in general, inexact, and require a good deal of_judgement.
The two main tools for doing this are the autocorrelation function and partial
autocorrelation function.

Let Y, = cov[X;sX,,, 5 then the autocorrelation at lag k is
Pe = Yi/Y, (1.2)
where Y, will be the variance of the process. The partial autocorrelation at
lag k, usually denoted ﬁkk’ is the partial correlation between Xt and xt-k’
given xt-j (3 = 140409k - 1), and may be derived by solving the set of

equations

k
pJ = i§1ﬂ{kipj-i (J = l,...,k) (]_.3)

Using the given set of data xl,xa,...,xn, Yy is estimated by C where

1 n-k _ _
¢ = % 1-,51("1; - x)(xt+k - X) (1.4)

n
and X = t;;xt/n. The sample autocorrelation

T, = ck/c (1.5)

is then used to estimate Py (Note that, in general (1.4) is defined with a
mean subtracted off. We shall, in later chapters, use (1.4) and (1.5) without
a sample mean subtracted when it is clear the true mean of the process is
zero,) Thus, theestimates of ﬁkk are obtained by substituting T for Pr in

(1.3). Based on the characteristic behaviour of the autocorrelation and



partial autocorrelation functions of different members of the class of
stochastic models (1.1) (as summarized, for example by Box and Jenkins (1970}
p 79 or Granger and Newbold (1977), p 74) and using the sample estimates, a
tentative identification of the orders p,d and q can be made.

Clearly the extent to which one can reasonably hope for success in
model identification depends on the degree of similarity in the behaviour of
the parent and sample autocorrelation and partial autocorrelation functions.
All other things being equal, the longer the data set, the better the chances
of success. It is generally held that for samples of less than about 45-50
observations, sampling variability is likely to render all but the simplest
members of the ARIMA class virtually impossible to detect. Moreover, even
with samples of 50-100 observations, commonly found in Box-Jenkins analyses,
it seems reasonable to expect that misspecification, of the kind to be studied
in this thesis, will occur fairly frequently.
(ii) Estimation

Once the orders p,d,q have been identified, the next stage in the cycle
is to efficiently estimate the tentatively identified parameters to produce
estimates 2;,2;,...,35, 63,22,...,6q. A least squares minimisation procedure
is usually employed on the conditional expectations of the residuals. It can
be shown that the least squares procedure, for moderately large sample sizes,
produces estimates which are very nearly maximum likelihood. (See Box and
Jenkins (1970), Chapter 7 or Newbold (1974) for details.) The main problem
with the procedure is that since the function that has to be minimised is not
a simple function of the parameters to be estimated, the numerical minimisation
can be rather expensive in computer time. Other problems such as obtaining the
starting up values for the procedure may be solved by methods given by
Granger and Newbold (1977), p 88.
(iii) Diagnostic checking

Box and Jenkins (1970) recommend several post-estimation checks that may
be employed to attempt to detect a misspecification in the class (1.1). They

do emphasise that individually the tests have certain disadvantages, implying
perhaps that each should not be used in isolation. However, one of these,
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to be described shortly, has been used extensively in the literature
apparently as the only diagnostic check to be tried on fittéd models. One
of the main objectives in this thesis will be to attempt to show this
particular test in isolation is rather inadequate at detecting a mis-
specification in the class (1.1).

The method of overfitting is concerned with adding in extra coefficients
in the estimated ARMA(p,q) model for the differenced series, so that a new
ARMA(p+p*,q+q*) model could be estimated in the manner indicated above.

If the original ARMA(p,q) model is adequate for the differenced data, the
estimation procedure should reject the extra coefficients d;+j (3 = 1lyeeesp®)
and Oq+j (3 = 1y¢..59%), so that their estimates differ insignificantly from
zero. However, Granger and Newbold (1977) recommend fitting two different
models namely ARMA(p + p*,q) and ARMA(p,q + g*) as alternatives since they
show in their section 3.4, p 80, that the addition of extra coefficients to
both sides of a correct model can lead to indeterminacy. This will cause the
point estimates of the coefficients to be meaningless and their estimated
standard deviations to be very large.

If the fitted model is of the form (1.1) and it is the true model, the

residuals

a, = 6 (B)(B)(1 - B)%x
t t
constitute a white noise process. Anderson (1942) has shown that the sample

autocorrelations of the residuals 2 93 500053, given by

n

n
Ty = B % k/e5 2

are, for moderately large samples, uncorrelated and normally distributed with

standard deviations n-% . Thus we see that knowledge of the ay and hence the

T would provide us with information on the process. However, the fitted

model (1.1) has to be estimated, as indicated in (ii) above so that the

residuals become

[
o+
]

o (B)4(B) (1 - B)%x,

7'



with the sample autocorrelations now given by

H>

k= tHn 3tgt-k/ & N

Box and Pierce (1970) derived the asymptotic distribution of the ;k
and showed that the standard deviations can be much less than n‘% for

small values of k. Some thoughton this latter point shows that it comes as
a result of actually fitting the time series model; the parameters in the
model are so estimated that the residuals for the fitted structure are as
much like white noise as possible. Hence the first few autocorrelations of
the residuals will be close to zero.

To make this point rather more concretely, suppose we attempt to fit a
pure AR(1) model to white noise. From Box and Jenkins (1970), p 278 an
asymptotically efficient estimate of the autoregressive parameter will be
the first sample autocorrelation of the process Xt = . Hence this will be

given by r, above,

It follows that the residuals from the fitted model will be

X, - rlxt_1 (1.6)
whereas the true model that fits this data is the AR(1l) process
% t-l 3 (1.7)

in which p’l =

Hence T, is effectively being used to estimate ¢& = 0. Simulation
studies were conducted in which samples size 50 were generated from a white
noise series and (1.7) was estimated over 1000 simulations, calculating the
mean and variance of the residual autocorrelations ;L for (1.6). This was
repeated for a further 1000 series for 'residuals' created by (1.7) in which
¢; = 0. We note that in connection with (1.7) we are assuming we know the
correct parameter value whereas in (l.6) we are not. Results of the two

simulation studies are given in Table 1.1.



TABLE 1.1

EMPIRICAL MEAN AND VARIANCE
OF THE SAMPLE RESIDUAL
AUTOCORRELATIONS OF (1.6) AND (1.7)

k
1 2 3 4 5 6
Mean 7, for (1.6) -0.001 |-0.017 | 0.003 | 0.004 | 0.000 | -0.001
Mean %, for (1.7) 0.000 | 0.002 | 0.003 | 0.006 [ 0.000 | 0.000

50.var(%, ] for (1.6) | 0.036 | 0.930 |0.881 | 0.919 | 0.891 | 0.809

50.var(f, ] for (1.7) | 0.954 | 0.961 |0.922 | 0,958 | 0.916 | 0.825

We see that the empirical means agree reasonably and so do the values
of n var[?k] for k 2 2, But at k = 1 we can conclude that the fitting
procedure has caused the variance of the first residual autocorrelation to
be greatly deflafed. This deflation was noted initially by Durbin (1970).

It therefore seems that for the general fitted model of the form (1.1)

3

a comparison of ;k with + 2n ° will be unreliable for low values of k, but
should provide a general indication of possible departure from white noise
in the residuals, provided it is remembered the bounds will tend to under-

estimate the significance of any discrepancies.

The Box-Pierce portmanteau statistic

Box and Pierce (1970) showed that the statistic

m o,
= nkgark

is asymptotically distributed as X° with (m - p - q) degrees of freedom,
(where m is usually about 20 for reasons given in Chapter 2) and its use in
model diagnostic checking has been advocated by Box and Jenkins (1970), p 291.
The hypothesis of adequate model specification would be rejected if the
autocorrelations of the residuals overall departed significantly from white
noise, so that a high value of S could be taken as an indication of model
misspecification. As noted in section (1.1) many authors have doubted the

ability of S to detect model misspecification and Chapters 2 and 4 concentrate



on the problem of applications of S when the model is correctly and
incorrectly specified respectively. We merely note here that in the
simulation studies reported above the empirical mean value of S over the
1000 simulations, with m = 20, was for the fitted model (1.6), 13.94.

Clearly, this value is rather a long way from the asymptotic mean of
20 - 1 = 19 and so we would not expect the use of S in the above situation
to be able to detect any misspecification if we were fitting an AR(1l) model.
The sample size n = 50 is certainly considered 'moderate' in practical time
series analysis and so a closer look (at least) at the exact mean of S, as
defined above, is certainly warranted.

Wilson (1973) has defended the above statistic by claiming it cannot
be expected to detect model inadequacies outside the class of models (1.1)
for which it is designed; we shall show in Chapters 2 and 4 that it is weak
even at detecting misspecifications within the class (1.1).

1.3 Notation : Forecasting

We summarise here some of the main results in the theory of optimal linear
forecasting techniques, following closely the notation of Granger and Newbold
(1977). Also given is a brief review of Box-Jenkins forecasting methods
together with some comments on the well known exponential smoothing techniques
for forecasting.(For aBayesian approach to forecasting see Harrison & Stevens (1976))

Let Xt be a zero mean stationary invertible ARMA(p,q) process

,z{(B)x,c = Q(B)at

which may be written

X, = 4t (B)o(B)a,

+ dla +d a + ceee (1.8)

3 t-1 2 t-2

By seeking a linear forecast of Xn+ (h 2 1) in the form

h

©

fn,h = 5Zo"5 n%n-
and using a least squares criterion, Granger and Newbold (1977), p 121, show

that the optimum forecast is of the form

10.



«©

f d =1 (1.9)

n,h = 20354n%n-3 5 %

Let e be the h step forecast error X_ then if V(h)

n,h +h - fn,ns
denotes the variance of this error (equivalently sometimes known as the
asymptotic mean square error), Granger & Newbold show that e .h is an

]
MA(h - 1) process with

h-1

V(h) = % d;%0,* (1.10)

and that forecast errors from the same base, n, are typically correlated

with (for k 2 0)

h-1 '
- 3 B
E[en’h en’h+k] = 3Z595954x0% (1.11)

Also from the MA(h - 1) process that the h step forecast errors follow

one may obtain the updating formula

f = f +d

n,h n-1 ,h# (x, - £ ) (1.12)

h'"'n n-1,1

which can be very useful in generating the new optimal h step forecasts
given the forecasts up to time (n - 1) and the most recent observed value
in the series, Xn. This can save a considerable amount of computational
work in the calculation of new forecasts.

1f, for example X, is a pure MA(qg) process

xt = e(B)at

the theory leading to (1.9) gives (with o, = 1)

ag-h
20%54h%n- 3 1<h<gq
fn h -
’ 0 h>q
This may be expressed in the fomm
g~h
fn’h = j§ogj+h(xn_j = fn_j_1 ’1) (l. 13)

and can be used to generate forecasts given the infinite past. Starting up

values will be a problem in practice although this will be mentioned later.
A useful formula can be derived for the sequence of optimal forecasts

for given n and increasing h. It is easy to see that the coefficients on the
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right hand side of (1.8) satisfy the following recurrence relation with
the ARMA coefficients A;,A;,...,AE, ea,eg,...,eq.
%‘j%ffbj=9k dj=0(j<®,k=0d”.(LM)

Thus, from (1.9) we can show that

P ®
N jéﬁﬁﬁfn,h-j = 125 4n-1 & =051 >4q (1.15)
where fn,j = xn+j for j < 0.

The sequence of forecasts may be obtained by replacing a by
Xei = fneim,y 10 (1.15).

The above theory has assumed the process to be forecast is stationary;
section 3.9, Chapter 3 generalises the previous methods to obtaining the
variance of the h step forecast error when the process followed is ARIMA(p,d,q).
(See equation (3.88).) A forecast function similar to (1.9) and updating
formula similar to (1.12) may be derived easily although we do not need them
here.

This section, so far has been concerned with univariate forecasting
theory in a particular class of time series models. The fitting of a member
of this class of models involving the identification, estimation and
diagnostic checking outlined in section 1.2 together with the above indicated
forecasting functions, has become known as the Box-Jenkins forecasting
procedure.

For practical illustrations of forecasting using this procedure a very
clear exposition is given in Granger and Newbold (1977), section 5.2, p 149.

As has been pointed out by many authors, this particular class of models
is particularly flexible in its possible application to many commonly
occurring time series. These techniques tend to be a little complex to apply
in practice and for that reason other, less sophisticated methods are
employed sometimes, though they are not typically optimal. The most commonly

used of these is the exponential smoothing procedures which have the

attraction of being fully automatic.

12,



Of course, with these techniques one generally sacrifices forecasting
accuracy for simplicity of models, as the latter can be shown to be a very
restrictive set of processes. (See, for example Harrison (1967).) In any
case most of the exponential smoothing models can be shown to be special
cases of a technique called Kalman filtering (Kalman(l960'; 1963)) which has
been known to engineers for some time.

Exponential smoothing methods have been proposed and developed by
Holt (1957), Winters (1960), Brown (1962), ‘Theil and Wage (1964), Nerlove
and Wage (1964), Trigg (1964), Harrison (1965, 1967), Trigg and Leach (1967),
Harrison and Stevens (1971), Cogger (1974). For a summary of the methods and
comparison of these techniques from a forecasting point of view with Box-
Jenkins methods see respectively Granger and Newbold (1977), pp 163-179 and
Newbgld and Granger (1974).

Some of the results presented in this thesis may, at least indirectly,
be of relevance to exponential smoothing since the great majority of these
procedures assume a priori an underlying model. It will therefore
frequently be the case that to some degfee or other the models assumed will
be misspecified.

Our main concern in this thesis will be to assess the consequences for
forecasting of misspecified models within the ARIMA(p,d,q) class.

1.4 Forecasting with missspecified models

One could regard all fitted models in time series analysis as misspecified
since they will be estimated from sample data and one could never be sure
whether the fitted model is the 'last word' at describing the structure from
which the sample was derived. Surprisingly little seems to have been done in
the region of the consequences of misspecification of time series models in
practice. Box and Jenkins (1970) p 298 indicate how the residuals may be used
to modify a misspecified model; their diagnostic checks suggested in Chapter 8
should, in theory detect a misspecification so that a new cycle of
identification, estimation and diagnostic checking could be started, although

these checks themselves depend in one sense on knowing the correct model.
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Bloomfield (1972) has applied spectral techniques to the problems of
misspecification in autoregressive series, while Granger and Newbold (1977)
derive the asymptotic mean square error for prediction using a misspecified
model. Yamamoto (1976 a,b) derives the asymptotic mean square error of
prediction in the class of ARMA(p,q) models taking estimation error into
account in the fitted coefficients, but his methods assume the model is
correctly specified, It would seem an investigation which combines and
extends the above methods of Granger & Newbold (1977) and Yamamoto (1976 a,b)
by looking at misspecified models within the ARIMA(p,d,q) class would yield
fruitful and interesting results.

Initial evidence for this is provided by McClave (1973) who conducted an
empirical study of pure autoregressive approximations to first order moving
average processes., His motivation for doing this was given by Durbin (1959)
who used high order AR approximations to derive efficient estimates for moQing
average coefficients. McClave concluded that a significant bias was present
in estimating the fitted AR coefficients, which would certainly have adverse
implications for Durbin's procedure and for autoregressive spectral estimation
techniques such as proposed by Parzen(1969).

In fact in this study we concentrate on fitting pure autoregressives
when another model in the ARIMA(p,d,q) class is appropriate. (We could be
accused at this stage of being guilty of ‘'assuming' the appropriate structure,
a practice we have already stated in this chapter is a cause for concern; the
best we could do would be to take the estimation of the 'cofrect' model into
account, which although we do not do explicitly in this study, for reasons
given in Chapter 3,we can expect our results to be little altered by this
extra complication.)

The attraction of examining pure autoregressive fits stems from many
areas. Firstly, provided the roots of the moving average polynomial ©(B) in
(1.1) lie outside the unit circle the process X, can always be expressed as
an infinite autoregressive process., This fact has led Kendall (1971) in his
review of Box and Jenkins (1970) to conclude that we might as well be content:

with autoregressive series and let the order of the fitted AR model be high
14.



enough to ensure independence of the residuals. Box and Jenkins (1973)
disagreed, arguing their case for a parsimonious model for the time series,
pointing out that problems might arise with a large number of parameters to
be estimated. Of course, pure AR processes are very simply fitted and
estimated by least squares (see Box and Jenkins (1970), p 277) whereas mixed
models in the ARIMA(p,d,q) class cause problems in estimation as we have
already seen. The implication of Kendall's comments are that one will do
progressively better by increasing the order of AR fit. This is certainly
true if one considers fitting only, but we shall show in Chapter 3 that when
one takes estimation error of the AR parameters into account one can do
progressively worse by estimating more coefficients,

Along the same lines as the notation in section (1.3), we suppose our

fitted model is within the ARIMA(p,d,q) class, say ARIMA(p,d,q) in the form
, .
d, _
$(B)(1 - B) X, = ®(B)“t (1.16)

where N is now not necessarily white noise. The model (1.16) is developed

fully in terms of obtaining forecasts, 9.1 (say) and our basis of comparison
?

is between f

from the correct model (l.1) and g, , from the misspecified
]

n,h h
model. Specialisation to the case ®(B) = 1 takes place when we examine pure
autoregressives.

1.5 Summaries of Chapters 2-6

Chapter 2 examines in detail the Box-Pierce statistic as advocated by
Box and Jenkins (1970); in particular exact expressions are derived for the
mean and variance of the statistic under the null hypothesis of adequate
specification for the fitted ARMA(p,q) model. Using a central asz approxima-
tion theoretical significance levels are derived for fitting AR(1) models to
AR(1) processes and these are compared with simulation studies. Some of the
deficiencies of the Box Pierce statistic are overcome by a modification of
the statistic and this is also examined in detail, Finally low order moments
of the sample autocorrelations of moving average processes are derived for

use in a later chapter.
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Chapter 3 studies the asymptotic loss from a forecasting point of view
of fitting a misspecified model in the ARIMA class to any other model in
the same class when the order of differencing is correctly specified and
looks in detail at the case of fitting autoregressives both with and without
estimation error in the fitted coefficients.

Chapter 4 uses some of the misspecified models in Chapter 3 to examine
the performance of the Box-Pierce statistic, and its modification, in
detecting the given misspecification. The asymptotic distribution of the
residuals from a misspecified AR model are derived together with the
asymptotic méan and variance of the Box-Pierce statistic under this mis-
specified model. Empirical power studies are conducted on the ability of the
two diagnostic statistics to detect misspecified autoregressive models when
the true process follows particular models in the ARMA(p,q) class.

Chapter 5 considers the problem of underdifferencing a process in the ARIMA
(psdyq) class and examines in detail the case of fitting AR models to the
IMA(1,1) process X, - Xt_1 =3, + @at-1° Expressions for the mean and variance
for the sample autocorrelations of the latter process are derived and used in
the context of fitting the AR models. Finally, an approximate expression is
derived for the asymptotic percentage loss of forecasting for this mis-
specification, the result being verified by simulation studies.

Chapter 6 summarises the findings of Chapters 2-5 and suggests further
areas of research in model misspecification. One of these areas, namely mis-
specified error structures in regression analyses is looked at in the case of
the error process being IMA(l1,1) when the Durbin-Watson d statistic (Durbin
and Watson (1950», which is optimal for an AR(l) error structure, is used in
an attempt to detect autocorrelation in these residuals and analysis proceeds
under the (false) assumption that an AR(1l) error structure is appropriate.

Extensive simulation studies are reported.

16.



CHAPTER 2

SOME SAMPLING PROPERTIES OF SERIAL CORRELATIONS AND THEIR
CONSEQUENCES FOR TIME SERIES MODEL DIAGNOSTIC CHECKING

Summary

This chapter studies the sampling properties of serial correlations
of white noise and, using these, explains why surprisingly low values of
the Box-Pierce portmanteau statistic for testing model inadequacy (which
have been reported in the literature recently), are very often obtained
even when it is known a given model is inadequate. The main reason is that,
even for moderately large sample sizes, the true significance levels are
much lower than those predicted by the asymptotic theory on which the test
is based. Approximations to the low order moments of the sample auto-
correlations of moving average processes are also derived for finite sample
sizes in terms of the derived moments of the serial correlations for white
noise.

2.1 Introduction

Suppose that a time series {Xt] follows a stationary ARMA (p,q) model

gf(B)xt = O(B)at (2.1)

where BX, = X,_ , #(B) = 1 - £ B~ ... - p’po, 6(B) = 1+ 6B+ ...+ quq,
{at] is a sequence of zero mean white noise which is assumed independent
N(O,qf). Xt in general could be the dth difference of an observed time series.
In fitting to data ARMA(p,q) models of the type (2.1) an integral part
of the methodology of Box & Jenkins (1970) involves diagnostic checks based

on the residuals

3 BN (B)S(B)xt (2.2)

where the least squares estimates of the coefficients 3;93;’---:3;’€§""gq
are based on the observed series xi,xé,...,xn.

The autocorrelations
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n
T 3.3
2 =1=k+1tt'k

k k= 1,2,00' (2‘3)

2
t

n
& 8
are calculated as a basis for the model checking. Box & Pierce (1970)
studied their joint distribution. They initially examined the AR(p)
model

(1-4B-...- g{po)xt = a,
and showed that approximately for moderately large n and m
£=(I-Q)x (2.4)

A ~ " .
where r'= (Ii,...,rh) y r'= (ri,ra,..,rm) with

n
Z a,a
t t-k
T = IE%il—————— k=1,2500.,m (2.5)
2
tga at
and Q = X(X'X)™*X’ with
X=1]1 0]
LA ' (2.6)
Wz Wl
wm-1 wm-a wm-p

where (1 + WEB + .0 ) (1 - ¢;B coe = ﬁéBp) = 1, The approximation depends
upon m being moderately large, so that Wj is negligible for j >m - p.
Asymptotically the r, are distributed as independent N(0,1/n) (see
Anderson (1942), Anderson and Walker (1964) or Bartlett (1946)) from
which it follows, since the matrix (I - Q) is idempotent of rank (m - p)

that the portmanteau statistic

m
- n 2
S = “k—§1 £, (2.7)

is asymptotically distributed as X® with (m - p) degrees of freedom.
To deal with mixed processes of the form (2.1), Box and Pierce note that
for moderately large n, the residual autocorrelations do not differ

substantially from those of the autoregressive process
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- - - P+q -
(1-mB- ... Mo BT )X, =

3t
where

p+qy _ P q
- B" ese = B —_ - ™ eees - K]
(1 us ™ . )= (1 d;B ﬁbB Y(1 + G&B + + OqB )

so that in the more general case the statistic (2.7) is distributed
asymptotically as %2 with (m - p - q) degrees of freedom.

However,in practice perhaps the most common sample sizes in Box-
Jenkins analyses are of the order 50-100. In such circumstances it would
be desirable to check whether asymptotic theory for the distribution of the
Tys and consequently of S, provides an adequate approximation.

It would thus seem important to have the exact moments of the T
together with the covariances between the rka, which could then be used to
study the exact mean and variance of S, with a view to examining the
latter's departure from the x? distribution for finite sample- sizes likely
to occur in practice. The moments are obtained in Section 2.2 whilst section
2.3 studies the mean and variance of S and the consequences of the
normality assumption for the distribution of the Ty being dropped.

One of the problems with S will be shown to be that its mean is some-
what lower than that predicted by the ¥° distribution and, as a result,
rather low values of S will be observed in practice. A way round this
problem has been suggested by several authors (Ljung (1976), Prothero and

Wallis (1976)). They suggest defining a modified statistic

m
s’ = n(n + 2)k§%(n -kx)? sz (2.8)

We shall see that while the mean of this statistic is closer to that
predicted by the xa approximation, its variance can be greatly inflated.
In Chapters 3 and 4 a study is made of the possibility of fitting an
ARMA (p’,q’) model to a series which really follows the form (2.1). A
special case of this is when one fits an AR(p’) model to an MA(q) series;
it is shown that the residuals from that fit follow an MA(p’+ q) process.

Consequently if one still uses a statistic of the form (2.7) or (2.8) to
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detect the model inadequacy, the autocorrelations (2.5) are the sample
autocorrelations for an MA(p'+ q) process. Hence to be able to study the

mean and variance of S or S’ in these circumstances it is essential to

have the (finite) sample moments of the sample autocorrelations for a

moving average process. Also, since these autocorrelations are themselves
correlated, the mean and variance of S or S’ would involve these correlations.
The moments and covaé?nces of these sample autocorrelations are obtained

in Section 2.4.

2.2 Sample Moments of the autocorrelations of White Noise

We need to evaluate, for the moments of (2.5),

n

L a,a J
. t t-k
t=k .
E[rkJ] = E —-—4.1;1—_ J = l,2,c.-o¢ (2.9)
2
tgaat
and for the covariances between the rkJ and rsl,

n i
1] - (t:Eﬂ t(tgkz (Fj:_)t t-s ) i 1,2,... (2.10)

E[ J
et 1,2,...

=t
We need to show that the denominators of the right hand sides of both
(2.9) and (2.10) are independent of their corresponding left hand sides;
in those cases the expectations of the ratios will be the ratio of the
expectations.

For j = 1 in (2.9) Moran (1948) and Anderson (1971), p.304, have
provided proofs of the independence of T and tEAat‘. However, the
general cases for (2.9) and (2.10) follow from the following general
theorem:™

Let {Rk = Ck/Co s k = 1,...,n] be a set of ratios of quadratic forms,
where Co'= a'Pa , C, = g'PAkPg, a'= (al,aa,...,an), the matrix P is
symmetric and idempotent, and the matrices Ak are symmetric.

Then for all positive integers £, qj’ J=1,...,4

*¥ 1 am extremely grateful to C M Triggs for providing the proof; see also

Davies, Triggs & Newbold (1977).
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a;
| (o >]
qJ] = [“ K (2.11)

Q
E[c ]
2 : )
whereQ=j§1qjandlskj SNy 3= lysassd (2.12)

Thus, with P the identity matrix, Ak a banded matrix with unity on the
kth super and subdiagonals, Ry = 1)« For (2.9) take £= 1 and q = J and

for (2.10) take £ = 2,q1 = 3, q, = i. Hence,

n h|
= (g 2421 ]

- J= 153240000 (2.13)'
E[(.L.__l tz)J]

E[rk

1’2’000
1,2,-..

n . n .
j i
12 E[(f 240k (B %8’ 1 5

E[x,r, 0 5, (3+1) i
E[(t'—zn.at ) ]

(2.14)

Now'tgéa 2 has a xna distribution so that, assuming without loss of

generality that E[ata] =1,
n . .
E[(tglatz)J] =T(n/2 + 3)27 /T (n/2)
=n(n+2)(n+4)ee.e(n+2j - 2)
as given by Moran (1948).

Odd moments of T

We now show that, since the at's are independent normal, for j odd,

(T e )= 0
t= Tt t+k -

The multinomial expansion of the expression within the expectation brackets

has its general temm as
Haa ) M ea )% e (aa )0
J38 8,4k 3 at+k R 1 1
s 13t S |
n-k Jl.JB. ss e Jn"‘k.
subject to ,& j, = j. This general term may be rewritten in the form
t=10t

(

Jk+l) (jk+jzlj)a(jk+1+jzk+1)a(jzk+jak) j

J 3 : .
1,72 k n-zkt Inegk+s J._
1 } o-azk n k}

z2k+ "*7sk " hektn nekia *t 8y

ST | 1 \
Jll Jzo L A Jn-k.
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where we have blocked the middle (n - 2k) terms from the left, each
block being of length k with the exception of the last which may have
less than k terms depending upon whether or not (n - 2k)/k is an integer.

Since J is odd an odd number of the jt will be odd. The following
argument shows that there will always be an odd power of ay in the above
general term so that the latter has zero expectation.

If any of the j1’jz""’jk or jn-zk+1""’jn-k are odd the general
term has zero expectation. Hence, suppose all these are even; examining
successive powers in the second block of at's, viz j1 + jk+1’ jz + jk+2,
...,jk + j2k we see that if any of the jk+1""’jak are odd an odd power
of a, exists in that block so that the general temm again would have zero
expectation. Suppose the jk+1""’jak are all even; the next block will
have an odd power of a, if any of jak+1""’jak are odd, otherwise we must
assume they are all even. Continuing this argument through each successive
block we arrive at the penultimate block which contains x terms, say,
where 1 £ x < k. But this block must contain x powers from the set of powers
{3

Hence if all previous blocks contain no odd powers this block must do so,

n-zk+1’jn-zk+z""’3n-k} in the last block, which are assumed all even.
since some of the jt must be odd.

Consequently the general term has zero-expectation for j odd and from
(2.13) it follows that
E[r,’]=0 for j odd.

Even moments of rk

We have
n-k n-k

E[(,Z a2 t+k)3]: [t_- t 2k )

= (n - k)
Also, for k < n/2
. n-z2k
[t:l )] = E['l:l t ot 6 atag, Aok
+ 3 é%tatzat+kzat?at4kz] (2.15)

The total number of terms in the last expression within the expectation

brackets on the right hand side of (2.15), allowing for the moment
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t =t is (n - k)®. Terms with suffices (t + k) and t , (t + k) and t,
and t and t’ coincide (n - 2k), (n - 2k) and (n - k) times respectively.
4
Hence, the number of terms for which t # t is (n - k) - 2(n - 2k) - (n - k).

Using the fact that the a, are normal so that E[atzj =1, E[at4] = 3, the

t
right hand side of (2.15) then becomes 9(n - k) + 18(n - 2k) + 3{(n - k)%
- 2(n - 2k) - (n - k)} which reduces to 3((n - k)® + 6n - 10k).

For k > n/2 the second term within the expectation brackets on the
right hand side of (2.15) is not present and the number of times for which
t # t’ in the third term is (n - k)2 - (n - k). Hence the right hand side
of (2.15) becomes 9(n - k) + 3((n - k)® - (n - k)) which reduces to
3((n - X)® + 2(n - k)).

Thus from (2.13) and (2.15) we get

E[rkz] = (n - kx)/n(n + 2) - (2.16)
3((n - k)® + 6n - 10k)/n(m+2) (n+4) (n+6) k < n/2

Er*) ={ . (2.17)
3((n - X)® + 2(n =~ k))/n(n+2) (n+4) (n+6) k > n/2

For a normally distributed variable, x, ui(x) = 3(var[x])?, so that if

we assume the r, are normal, using (2.16) we get

ph(rk) = 3(n - k)?/(n(n + 2))? (2.18)
and (2.17) is clearly always less than (2.18) for all n,k, the
discrepancy getting worse when k is large relative to n.
We also see that for n large, k small
var[rk] = (n - k)/n(n + 2) (2.19)
~ 1/n
Equation (2.19) shows that for k large relative to n, var[rk] can be much
less than 1/n. (In this study we shall only need the expression in (2.17)
for which k < n/2)
Higher order even moments are possible but the algebra involved becomes

rather cumbersome, and for our purposes, these are not needed.

J

. i
Covariances between the rk and T,

Using similar reasoning to that on pages 2l and 22 , and by examining

the general terms from the multinomial expansion of both
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k . n-s

i
and (tgaatat+s)

n—
J
(tgkatat+k)
and looking at products of terms, we see that for j odd or i odd (or both)
n-k ] n-s i
E[((Z, apapy)” (( aga,) 1= 0 k# s

Hence, from (2.14), for j odd, i odd or both odd

. i _
Elz,’r"]=0 (k £ s) (2.20)
It therefore follows that, in this case,
cov[rkJ,rsl] =0 (k # s) (2.21)
For j = 2, i = 2, we need to evaluate
n-k . n-s o
ELGE agap) (18, 2260 ) (2.22)
The product of terms within the expectation bracket is
n-k - - n=s -
(3 30 * 280 2203 26 (B % trs * 245 22062t ths)
Consider the contribution in terms of expectations, from
n-k s oy o8 s s
)
(Fapapy ) (Fagag,) (2.23)

The total number of terms in this product is (n - k)(n - s) and if we
assume k > s, the number of terms that will contribute in the form

4 2 -] s - - -
a, *a, °a ” fort # t # t_ will be 2((n - k = s) + (n - k)) for
1 2 3
k + s < n. Since the only possible form of the other temms that will
. . . .. 2 2 2 2
contribute in this expression is a, ® a, ® a, ® a, ® for t # t £ t, £ t
1 2 3 4
they will number {(n - k)(n - s) - 2({n - k - s) + (n - k)}.
Hence the expectation of (2.23) is
6((n-k-s)+ (n-k))+ {(n-XK(n-5s5)-2((n=-%k=5s)+ (n-k)}
= (n-k)(n~s) +4(2(n - K- s)
Similar reasoning gives the contribution from the terms in
(2:8y arap @y a) (28 a2, 2 2y
as 4(n - k - s).
All other cross product expectations are zero.
Thus, (2.22) becomes
(n - k)(n =s) + 12(n - k) - 8s (k > s)
and from (2.14)
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{(n-¥)(n-s)+ 12(n-k) - 8
E[r,r,?) = L S S S 2l k)

Finally, we have

covln?yz,”] = LRl = - (! (2,20

A normality assumption for the Ty would give that the rk2 are

asymptotically independent and henée uncorrelated. This is seen to be
true in (2.24) by letting n - =, However, even though each individual
covariance term in (2.24) is 0(1/n®) we shall see in section 2.3 that a
substantial contribution is possible from many terms of this form.

Higher order covariances are possible, but the algebra becomes
intractible, and for our purposes these are not needed. (Indeed, to
evaluate these higher order covariances it is best to write the numerators
of rkj and rsi as powers of quadratic forms in normal variables and tp
employ methods of Kumar (1975).)

An important property of these covariances, which is utilized in
section 2.3, is that all these covariances are positive if k < n/2; the
following argument establishes this result.

From the right hand side of (2.24) all covarbnces are positive provided

n(n+2) {12(n-k) - 8s} > (n-s)(n-k) {(n+4) (n+6) - n(n+2)}
= (n-s)(n-k) (8n+24)
After some algebra this condition reduces to
(n~k) (n®+2ns+6s) - 2n(n+2)s > O (2.25)
Writing (2.25) as a linear function of s, As + B (say) where
A= 2(1 - k)n = 6k <O,

we see (2.25) is a decreasing function of s; it must therefore take its
lowest value at s = k - 1. Substituting in (2.25), we get the condition
needed as being

2(k = 1)(n - kn - 3k) + n®(n - k) >0 (2.26)
Note that the left hand side of (2.26) is a quadratic in k, F(k), say

where
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F(k) = -2(n + 3)k®* + (~n® + 4n + 6)k + n® - 2n and

%E-: -4k(n + 3) + (-n® + 4n + 6).
In the range 1 £ k < n,%% is always negative and so F is a decreasing

function of k for fixed n. F(n/2) is positive while F(n/2 + 1) is negative,
It therefore follows that (2.26) is satisfied for k < n/2 and so all

covariances given by (2.24) will be positive for k < n/2.

2.3 Levels of significance of the portmanteau test statistics

Recent studies by Chatfield and Prothero (1973a), Nelson (1974) and
Prothero and Wallis (1976) have shown that, even when several different
models are fitted to the same set of data, very low values of the statistic
S given by (2.7) often result. Moreover, in the analysis of the 106 series
reported in Newbold and Granger (1974), it was found that only rarely did
they encounter a value of S sufficiently high to cause concern.

We thus examine in detail the behaviour of S for the sample sizes
likely to occur in practice so that the adequacy of the asymptotic theory,
on which its derivation is based, can be checked. It is shown that fof
moderate sample sizes, the mean and variance of S differ substantially
from the values predicted by asymptotic theory, the mean being far too low.

The mean and variance of §

Using the matrix representation of Ty given by (2.4) we see that S can
be written in the fomm
S = n(z’Ar) (2.27)
where A= (I - Q) and we have used the fact that (I - Q) is idempotent
symmetric.,
Using (2.16) we see that, since the r, are uncorrelated from (2.21),
E[s] = Tr AV (2.28)
where V is a diagonal matrix with jth diagonal element (n - j)/(n + 2).
Using a theorem of Theobald (1975),
Tr AV < igl Aepy(A) Ay (V)
where k(i)(Y) denote the ordered eigenvalues of Y, Consequently, if, for

example, we are fitting an AR(p) process
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. m=-p
E[s]<s(n+ 2 Z(-1)=(n p){n s - ;)1 (2.29)

Thus, unless m is small relative to n, it follows from (2.29) that the
mean of S will be well below the asymptotic value (m - p). For example,
for n= 50, m= 20 and p = 1, (2.29) gives E[S] < 0.77(m - p).

To obtain the variance of S, note that (2.27) may be written out in

full in the form

m=1 m

K - 2ns§&k?§%1 9 T Tk (2.30)

S=n Z bk
where q;; is the (1,3)*h element of Q and b, = 1 - q,, is the kM diagonal
element of (I -~ Q).

We note, in passing, that (I - Q) = I - X(X'X)™*X' is of the form of
a variance-covariance matrix for any X and so has all its diagonal elements

positive. That is, b, = 0 for all k.

The equivalent of (2.28) is

E[S]=n b E(r,*] (2.31)

12
using (2.20) with i = j = 1.
By squaring (2.30), taking expectations and using arguments similar to
those on page 21 to obtain
E[rrrkz]zo (1#3#€k# 29
E[ri rjrk] =0 1i#£3#%x),

and E[ri"rj] =0 (1 #3),

we find

E[s®] = n® L b *E[r,*] + n® mzl L (2bb, + 4q_,)E[r °r,?] (2.32)
k‘ k-s+1 sk

A little algebra then gives, for the variance of S, using (2.31)

mo . m-1 m m-1 m
v[s] = nakgabk var[rk ]+2n25§a E 4 PP cov[r 2,rk ]+4nzs=1k§s+1 sk E[r r, 2]

(2.33)
Expression (2.33) was obtained without any assumption concerning the
distribution of the Ty and so it would be illuminating to compare it with
the expression for V[S] when normality is assumed (V;ES], say) in the N
at the stage of equation (2.27).
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Assuming r is multivariate normal, the quadratic form (2.27) has
variance given by 2Tr(AV)® (see for example Koch, (1967)).

Writing A = {ask} and the diagonal elements of V as ka, we get

AV =,faskvkk] so that
V(s =2 Tr(av)®
m m
= 2 & SEL askvkkaks Vss
2 m=1m
= L 2 A ik 46 1B eh 2ekVkkksVss
5 m=-1m
= 28 I 3 Ykt 468 (e 2 sk ViaVss
m m
-] -] 2
= 2n® £ b 2 (E[z, *])? + 4n® 2 1 Een ok ELr . JE[r 7] (2.34)
. __n-k _ 2 _ . —
since V., = T3 o7 = nE[r,°] and a,, = b with a, = -q_.

Assuming normality in (2.33) (viz u4(rk) = 3(Var[rk])9 _ 3(E[rk2])a)

gives
m=1 m

N[s}:zn 2(E[r 21)2+2n® :£§k§s+1bsbkcov[r 2,r a]+4n oZ 1 Ze s, ok E[r ®r, ]
(2.35)
Note the second term in (2.34) is always smaller than the third temrm
in (2.35) provided m < n/2 (see p26 ). Thus the normality assumption taken
initially, at the very least ignores all the covariance terms given in the
exact expression (2.33). Furthermore even though each individual cov[rsa,rkz]
is 0{n"®) (see p25 ), if m < n/2 all the covariances are positive; the
covariance component in (2.33) and (2.35) involves (m - 1)(m - 2) such
terms multip{ied by 2n® and so their contribution could be substantial since
all b, = 0. The exact variance of S from (2.33) does not use any normality
assumption and it takes into account these covariance temms.
Example Fitting an AR(1l) process
For fitting an AR(1l) process X, - ,th_l = a, we find by = 1 - p’ak'a(l-p'a)

and q = g{s+k-3(l - #%) so that b, > 0 for all 4.

k

The exact mean, using (2.31) becomes

E[s] nkgl (n-K1-F20 - £+ 2)?

(m+l) (1-2™) . 1-"(1m(1-4°))
= Ty (n - 5 - BEENL + S ES

after some algebra. A similar expression is possible for the exact variance
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V[s] obtained from (2.33).
Further insight is gained by specialising to the case g = 0 so that
an AR(1) process is fitted to white noise.

Then (2.31) gives

E[s]= (m - 1)[n el 2?n++g§Y} (2.36)

and from (2.33) the exact variance is

m=-1 m

m
v[s] = n® var[rkz] + 2nas§3k§

ks covlr ?,r.?] (2.37)

st
The nommal approximation from (2.34) is
A m
vy(s] = 20® £ {E[r,?]}? (2.38)
which is the same as (2.37) (after assuming normality) without any of the
covariance terms.
We now examine the performance of S in the context of the above
example; that is, when the hypothesis that a model is correctly specified
is known to be true, and that it is AR(l) and white noise respectively.

Numerical results and significance levels of S

For finite sample sizes S is not a quadratic form in normal variables
and so it does not behave as X° with (m - p) degrees of freedom when we
fit AR(p) processes. However, since its exact mean and variance are available
from (2.31) and (2.33), these moments were used to approximate the
distribution of S by a central axi density. We examine in detail the case
of fitting various AR(1) processes.

In the usual manner, a = V[Sj/é E[s] and v = 2(E[S])?/V[S], from which
was calculated, using a standard ICL numerical integration routine, the
actual significance levels of a test based on S corresponding to assumed

levels of 0.05, 0.1 and 0.2, which would follow if S were distributed as

3

X1 °

In the AR(1) process values of g of 0.1, 0.3, ..., 0.9 were used with
m = 20 and sample sizes n = 50, 100, 200, 500. Theoretical results were

verified with simulation experiments from 1000 replications and the results

are collected in Table 2.1. .
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Table 2.1

THEORETICAL AND EMPIRICAL MEAN, VARIANCE AND SIGNIFICANCE LEVELS OF THE

BOX-PIERCE PORIMANTEAU STATISTIC FOR FITTING AR(1) MODELS; m = 20

LEVEL
4 MEAN VARIANCE 0.05 0.1 0.2

50

0.1]14.25 (13.97) | 33.59 (27.01) {0.013 (0.015) {0,028 (0.024) |0.064 (0.050)
0.3 ]14.25 (14.09) | 33.64 (30.43) | 0.013 (0.019) | 0.028 (0.028) |0.064 (0.058)
10.5 | 14.26 (14.16){ 33.72 (31.97) | 0.013 (0.015) | 0.028 (0.022) {10.065 (0.061)
0.7 | 14.27 (14.67)| 33.84 (37.67) | 0.013 (0.026) | 0.029 (0.039) |0.065 (0.081)
0.9 | 14.34 (15.62) | 34.16 (38.72) | 0.014 (0.032) | 0.030 (0.053) | 0,067 (0.098)

100

0.1 ]16.58 (16.78) | 38.21 (38.29) | 0.029 (0.034) | 0.059 (0.060) |0.122 (0.114)
0.3 | 16.58 (16.55) | 38.24 (37.40) | 0.029 (0.031) | 0.059 (0.064) ]0.122 (0.104)
0.5 16.58 (16.67)| 38.29 (36.24) | 0.029 (0.028) | 0.059 (0.057) {0.122 (0.121)
0.7 | 16.59 (16.59)} 38.35 (33.52) | 0,029 (0.020) | 0.059 (0.046) {0.123 (0.108)
0.9 |16.63 (17.87)| 38.51 (40.58) | 0.030 (0.051) | 0,060 (0.078) |0.124 (0.157)

200

36.21) | 0.039 (0.040) { 0.078 (0.079) |0.158 (0.161)

(

0.1117.78 (17.91)| 38.72 (
37.39) | 0.039 (0.035) | 0.078 (0.060) |0.158 (0.140)

(

(

(

(
(
0.3 | 17.78 (17.70) | 38.73 (
0.5 | 17.78 (17.67)] 38.76 (34.82) | 0.039 (0.037) | 0.078 (0.070) [ 0.158 (0.142)
( 0.044) 10.078 (0.083) [0.158 (0.158)
(

0.056) | 0.079 (0.101) | 0.159 (0.203)

i0.7 | 17.78 (17.67)] 38.79 (40.59) | 0.039
0.9 | 17.81 (18.89)71 38.87 (40.31) | 0.039

500

0.1 | 18.51 (18.66)| 38.43 (38.01) | 0.045 (0.050) { 0.091 (0.091) | 0.182 (0.188)
0.3 { 18.51 (18.19)| 38.44 (36.46) | 0.045 (0.045) | 0.091 (0.081) | 0.182 (0.163)
0.5 | 18.51 (18.55)| 38.45 (38.45) | 0.045 (0.048) | 0.091 (0.090) [ 0.182 (0.179)
0.7 | 18.51 (18.35)| 38.46 (37.80) | 0.045 (0.045) | 0.091 (0.089) | 0.182 (0.179)

0.9 | 18.53 (19.51)| 38.50 (41.30) | 0.046 (0.063) | 0,091 (0.110) | 0.183 (0.217)

(
(
(
(

Note: bracketed figures are simulation results.
It can be seen from the table that in general the agreement is close
between theoretical and empirical results. Note that the discrepancies that
do occur at high values of £ will be caused by the fact that the Wj values
in the matrix (2.6), which were assumed to be negligible for j >m - p = 19,
will only die out very slowly. For example,since wj = ﬁj we get (0.9)%° = 0.12,
The discrepancies at low values of § are caused by the fact that 8 has a

large standard error here since

var[£] c:ii_i_éil (see Box & Jenkins (1970), p244)
and so the approximation that Box & Pierce (1970) make viz g = ¢, (see

p 1514, equation 2.16) that leads to equation (2.4) does not hold so well.
The first problem highlights the difficulty with m needing to be large and
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yet not too close to n.

The main conclusions emerging from this table are that the means of

the test statistic for moderate sized samples are well below the

asymptotic value of 19 and that the true significance levels, are, in

these cases, considerably less than those predicted by asymptotic theory.

Table 2.2 contains the same quantities as Table 2.1 for the case of

fitting AR(1) to white noise, the means and variances being obtained from

(2.36) and (2.37) respectively. In addition, values for the estimated

A
variance of S, VN[S] from (2.38) are shown. This in particular highlights

the problem of not taking into account the covariance terms in (2.37).

Table 2.2

MEAN, VARIANCE AND SIGNIFICANCE LEVELS OF THE BOX-PIERCE
PORTMANTEAU STATISTIC FOR FINITE SAMPLES

FOR FITTING AR(1) TO WHITE NOISE

VALUES

VARIANCE

0.05

LEVEL
0.10

Ol2

33.59 (33.09)
38.21 (38.88)
38.72 (40.22)
38.43 (37.64)

0.013 (0.010)
0.029 (0.026)
0.039 (0.041)
0.045 (0.049)

0.028 (0.021)
0.059 (0.050)
0.078 (0.076)
0.091 (0.098)

0.064 (0.053)
0.122 (0.114)
0.158 (0.159)
0.182 (0.186)

n MEAN oF V\[s]
50{14.25 (13.94)] 20.66
100{16.58 (16.36)| 28.27
200(17.78 (17.97)( 32.83
500{17.83 (18.44)| 35.85
Note:

simulation results are bracketed.

In conclusion then, it seems hardly surprising that "low" values of the

Box-Pierce statistic will be found in practice and that several different

models will appear to adequately fit some given data based on this statistic.

We have noted two main difficulties with the asymptotic theory on which Box

and Pierce based their derivation of a ¥X° distribution for S. First, the

assumption that the sample autocorrelations,

. -1
have variance n

Ty

, of a white noise series

is inadequate unless k is small. Second, the assumption

that these sample autocorrelations are normally distributed does not provide

adequate approximations unless the sample size is large. We now consider an

alternative portmanteau statistic which was designed to get around the first

of these difficulties.
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’
The mean and variance of S

The motivation behind using the modified statistic S’ given by (2.8)
stems from the fact that in the derivation of the distribution of S of
(2.7) much use was made of the approximation Var[rk] = E[rkaj ~ 1/n, that
taking into account the exact expression E[rkz] = (n - k)/n(n + 2), in some
way would provide a more sensitive statistic, more closely approximating
asymptotic theory at finite sample sizes. (Clearly both statistics are
asymptotically equivalent.)

We show to some extent this is achieved, but results are by no means
satisfactory using s’ in sample sizes likely to occur in practice. The
mean of S’ is approximately as predicted by theory but the variance is
inflated.

S’ can be written in the quadratic form

s’ = n(z' AV Ar) (2.39)
where A and V are defined as previously. Thus
E[S'] = TrAV AV (2.40)

We have that AV'Y = {(n + 2)ask(n - k)™'} and AV= {(n+ 2)-1ask(n - k)}

and so
, - momoo_y .
E[s'] = Tr(av "AV) = séiké& n - s) °sk
m , Mam h-s n-k
= - = 2
B kéaakk * s§%k§s+1(n “k T h- s) qck (2.41)
m m=1 m
= 2 _Q]'S) (n‘k) 2
- kéébk + s£&k§s+1( n-k T n- s ) Aok

The expression in brackets on the right hand side of (2.41) is of the form
(x + 1/x) which is clearly bounded below by 2 for x > 0. It is also an

increasing function of x for x > 1, attaining its maximum at the maximum

of x.
/ o 2 e 2
Hence E[S ] 2 kgiakk + 25§ak§s+1ask
= TI‘A2
= TrA
= (m - p)
Similarly
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m=1 m

l{n-l 2

E[S ] < 2 akk 2h - m + n - l}2s=1k=s+1 sk
len -1 n-m
<sl=—=+—7} (m - p) (2.42)

Thus the mean of S’ is always at least (m - p), but the inflation is not
severe. For example, for n = 50, m = 20 and fitting AR(p) processes
(20-p) <E[s’]<1.123(20 - p),
while for n = 100 this inflation is less than 2.3%.
To obtain the exact variance of S’ we have to resort to writing out
(2.39) in full.

- - =1
Let {Hsk} = H= AV A .

m
By direct multiplication we find H_ = (n + 2)j§ ag; Jk/(n - 3.
Thus s’/ = nr'Hr
m m
= s§ Zé skTsTk
m 2 Mm=1 m
= mEHyn® +nZ B (Hy + B )z
m m=1 m
= nE Hyn® +2nZ (B HoTor (2.43)

since H is symmetric.

Equation (2.43) is of a veiy similar form to the right hand side of
(2.30). It therefore follows that V[S'] will be given by the corresponding
form to (2.33).

We find

m-1

m m
V[S ]=n® kkvar[r Jron® s=1k:s+1HssHkkcov[ri’ri]+4nzs§1k§s+1Hsk2E[rszrk2]

(2.44)

Similar reasoning to that on pp 27-28 following equation (2.33) again
will reveal that a normality assumption for r in (2.39) would ignore those
covariance terms in (2.44).
Example Fitting AR(1) to white noise

Except in this very simple case, analytic expressions for E[S'] and
V[S'] from (2.41) and (2.44) are algebraically intractable and the only
feasible way of evaluation is on a computer.

For white noise, a, = o, Ak = 1, k 2 2, so that
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—a.

n | (n+2)/(n - k) k=2
Hkk = (n + 2)j=21akja/(n = j) =
0 | k=1,

Further, since 3y = 0, k # j, then the off diagonal elements of H are zero.

Hence, from (2.41) we get

E[s’]

Z akk (2.45)

(m - 1)

and from (2.44)
m var[r, ?] m-1 n cov[r a,rka]
V[s']= n°(n + 2)3k=a?E"'E7’ + 20%(n + 2)° s—zk=s+1(n- ) (n-k) (2.46)

We thus note that, in this case, the mean of the S’ statistic is the same

as that predicted by asymptotic theory (cf the equivalent expression for S
in (2.36) which was below that predicted by theory), and the variance of
the S’ statistic represents a substantial increase over the corresponding
expression for S given in (2.37) unless n is large relative to m.

We shall see that the variance of S’ can be a good deal higher than
that of S, and indeed than that predicted by asymptotic theory.

Numerical results and significance levels of S /

Theoretical results and simulation experiments were obtained in

" exactly the same manner as those for S for fitting an AR(1l) process for

values of § of 0.1, 0.3, ..., 0.9 with m = 20 and n = 50, 100, 200, 500.
Again the agreement between theoretical and simulation results is good
and the reason for any discrepancies at high and low valﬁes of 4 ha§
already been explained on page 30. Results are collected in Table 2.3,
The main conclusions emerging from this table are that the problem
encountered with the mean of S (being well below its asymptotic value)
has been solved by observing the mean of s’ is (correct to 1 d.p.) equal
to its asymptotic mean for fitting AR(1) processes. However, it is clear
that the variance of S' is well above that value predicted by as?mptotic
theory even for moderate and large sample sizes. Ihe true significance
levels that result are higher than the s;pposed levels and it would seem

that the inflation in variance is the primary cause.
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n= 50
n= 100
n = 200
n = 500

Table 2.3

THEORETICAL AND .EMPIRICAL MEAN, VAﬁIANCE AND SIGNIFICANCE LEVELS

OF THE MODIFIED BOX-PIERCE PORTMANTEAU STATISTIC S‘FOR

MEAN

-/

E[s’] §

1v(s)

FITTING AR(1) MODELS; m = 20

VARIANCE
v(s)

0.05 LEVEL
-y

s’ S

0.1 LEVEL
s 3’

0.2 LEVEL

sl

=/

S

0.1
0.3
0.5
0.7
0.9

19.0 (18.57)
19.0 (18.74)
19.0 (18.86)
19.0 (19.43)

19.0 (20.55)

58.81 (47.06)
58.85 (52.88)
58.92 (55.82)
59.00 (63.94)
59.10 (65.78)

0.086 (0.061)
0.086 (0.070)
0.086 (0.078)
0.086 (0.092)

0.086 (0.114)

0.141 (0,108)
0.141 (0.112)
0.141’
0.141 (0.146)

0.142 (0.156)

(0.121)

0.235
0.235
0.235
0.235

0.235

(0.187)
(0.199)
(0.205)
(0.224)
(0.273)

0.1
0.3
0.5
0.7

0.9

19.0 (19.21)

19.0 (18.98)
19.0 (19.09)
19.0 (18.99)

19.0 (20.36)

50.08 (49.96)
50.11 (48.87)
50.14 (47.17)
50.18 (44.07)

50.20 (52.64)

0.072 (0.070)

0.072 (0.073)
0.072 (0.064)
0.072 (0.058)

0.072 (0.093)

0.126

0.126 (0.117)

0.126 (0.109)
0.126 (0.123)
0.126 (0.111)

(0.160)

0.223
0.223
0.223
0.223

0.223

(0.225)
(0.196)
(0.212)
(0.206)

(0.262)

0.1
0.3
0.5
0.7

0.9

19.0 (19.14)

19.0 (18.92)
19,0 (18.88)
19.0 (18.87)

19.0 (20.14)

44,20 '(41.18)
44,21 (42.83)
44.23 (39.80)
44,25 (46.10)

44,27 (47.97)

0.062 (0.059)

0.062 (0.047)
0.062 (0.053)
0.062 (0.,068)

0.062 (0,082)

0.114 (0.111)

0.114 (0.094)
0.114 (0.096)
0.114 (0,120)

0.114 (0.143)

0.213
0.213
0.213
0.213

0.213

(0.215)
(0.184)
(0.201)
(0.210)
(0.261)

0.1
0.3
0.5
0.7

0.9

19.0 (19.16)

19.0 (18.67)
19.0 (19.04)

19.0 (18.83)

19.0 (20.01)

40.50 (40.06)
40,51 (38.34)
40.51 (40.54)

40.52 (39.86)

0.055 (0.059)

0.055 (0.049)
0.055 (0.056)

0.055 (0.059)

0.055 (0.076)

0.106 (0.106)
0.106 (0.097)
0.106 (0.104)
0.106 (0.109)

)

0.106 (0.130

0.206
0.206
0.206
0.206

0.206

(0.215)
(0.189)
(0.198)
(0.296)

(0.241)

Note:

bracketed

40.53 (43.18)

figures are simulation results.
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The use of S and/or s’in model diagnostic checking .

It has been demonstrated that the use of the statistic S in model

diagnostic checking could be unreliable owing to a deflation in the true
significance levels employed. We would thus expect non significant values
of S to be experienced evén.when an inéqequate model has been fitted to
data. |

The use of S}_might be expected to improve things since the true
significance level is now laréer than the supposed level; but as we have
seen this is not because the distribution of s’ follows its asymptotic ¥°
distribution any more closely than S does, but apparently because its true
variance is now inflated over its asymptotic value. However, the significance
levels for S', for the cases given in Table 2.3 at least, do seem closer
to the asymptotic values than those for S.

In any case, the true test of these statistics comes in their ability
to reject a mis-specified model. Even though they are designed without a
specific alternative to the null hypothesis in mind (as has been mentioned
in, for example, the discussion in Prothero & Wallis (1976)) one would hope .
that they would be able to detect moderately severe types of misspecification;
we shall see in Chapter 4 that their ability to reject such incorrect

models is typically very weak.
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2.4 Sample moments of the autocorrelations of Moving Average Processes

Large sample moments of the sample autocorrelations of processes of
the form (2.1) have been given widely in the literature (see, for example,
Bartlett (1946), Anderson (1971), p 489, theorem 8.4.6), Anderson and
Walker (1964) first gave their asymptotic distribution as being normal.

Define

n
e -
= n - ek ?

2
t§1 xt

(2.47)

Then Anderson and Walker (1964) showed that, if P are the corresponding
population autocorrelations,

J/n (FI‘,-B) ='\/n(f1 - pl”fa - p29 ceesy )
is asymptotically N(Q,W) where W= {wgh} and

o

Woh = 2o PrrgPrin * = B PP~ PPrPrn T 204PP,7)

(2.48)
A special case of (2.48) is when the parent process is MA(q) and k > q

for sufficiently large n,
g q 9
n varfrk] = (1+ 2 ) ; k >q (2.49)

This formula is used in identifying an MA(q) process and its validity is
thus very important (see Box & Jenkins (1970) pp 35 and 36 for details).
Tﬁe extent to which (2.48), and, in particular (2.49), can be assumed
mostly depends on the "largeness" of n.

As we have already seen in connection with the Box-Pierce statistic,
n = 50 cannot be considered "large", and so it was decided to attempt to

find "finite" sample moments of ¥, in the case of an MA(q) process. (White

k
(1961) has given the mean and variance of r, for an AR(1l) process, up to
terms of order n °, thus extending Bartlett's (1946) result in this

special case.)

We consider first an MA(l) process to illustrate the technique.
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Sample moments of the autocorrelations for an MA(1) process

If Xt = a, + Oat_l, we may write
n n
e _ tHen Kok B @t 9 (g v 0ay )
¥ = = (2.50)
n 2 a 2
t§1 Xt t§1 (at + Qat_l)
Hence, approximately,
2
= - (1 +6)°Taa, , + O(Zatat_k_1 + zatat-(k-1))
k™ : 2 3
(1 +6%)%a.” + 20 Zaa,

Dividing throughout by (1 + €°®) ¢ at2 in numerator and denominator we get,

approximately,

1

-1
o _{y ., 20 Zatat-].} {f:_atat-k .8 (zatat-k-:. . Eatit-(k-l))
Tk 1+0° Ia- Ta,® 1+ 03\ Zar Za, 2

-1
(1 + 2p1r1) (;1-k + P (rk+1 + T ) (2.51)

where pa = Q/l+02 and T is the kth sample autocorrelation of white noise,
as defined by (2.5).

A binomial expansion is possible for the left hand bracket on the
right hand side of (2.51) provided |2p111| < 1. That this is so follows
from the fact that Ile < & for MA(1l) processes (see Davies, Pate & Frost
(1974)) and, of course, [Ii' < 1.

Thus, we get
2

~ o _ - 2 _ a_a
T, = (1 2;131 r, + 4p1 r, 8p1 r, ...)(rk + P, (rk_‘_1 + rk_l)) (2.52)

After expansion of the right hand side of (2.52), and taking
expectations throughout we get approximately
~ - - - < 3
E[rlj- p, (1 - 201 2p, )E[r1 D,
A — -] -]
E[rz] = -2 E[Ii 1, (2.53)

E[f ]=0 k>2 ,

th

where the neglected terms involve expectations of the r*" powers of r

k
for r 2 4 and cross product expectations all of which are 0(n"?) (see
equations (2.17) and (2.24)).

On squaring (2.51) we get, after expansion
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~a_ (1 2_ 2 2,. 2 2 2
T, =(1 4p1r'1+l2p1 T, +...)(rk +0, (rk +rk-1+2rk+1rk-1)+2rkp1(rk+1+rk-1))

+1
(2.54)

As before, taking expectations and ignoring terms 0(l/n2), we get,
approximately

E[£2] = p, (1 + E[z,®]) + E[r,?](1 - p *(8 - 12p ?)) (2.55)
and E[%?] = E[r,?] + pla(E[rk_lz] +E[r . %D k 22,

From (2.16) E[r,_ 2]+ E[rkﬂa] = 2 E[r,?],
and so

E[%°]= (1 + 2p ®) E[r,°] k=2 (2.56)

Note that Bartlett's formula in (2.49) would give
n var[?k] = (1 + 2p12) k=22

whereas (2.56) gives, using (2.53),

— _ 2 n-%k
n var[rk] = (1+2p?) é;—:—E% k=23,

Sample moments of the autocorrelations of an MA rocess
For the MA(q) process Xt = a, + Gilat_1 + e + @qat-q , q# 0, the

equivalent of (2.51) for the sample autocorrelation T, is approximately,

q q

- -1
= (1 + 2j£Apjrj) (rk + j£&p

k

+ 1, .)) (2.57)

3Tl ¥ e
where pj is the j'th population autocorrelation for the process and we
assume n is large compared with q, (i.e. end effects are negligible).

We need to prove that the denominator of (2.57) has the property

% (2.58)
258 P37y l <1 !

so that we can expand in a binomial series.

Note that the denominator was derived from

%2 5 £ 0.2)a,?
& % ~(1+2j=1pjrj)(l+j_§19j ) a,® >0,

so that

q
1+ 2j§1pjrj >0,

and consequently,
q
2L, pyry > -1 (2.59)
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Since all moments of rj exist ana rj is bounded, these moments
uniquely determine its distribution(Kendall & Stuart (1977)), also these will
completely define its characteristic function. As all odd moments of rj are
zero (see page2?), its characteristic function must be realj hence the

distribution of rj must be symmetric. (See Kendall & Stuart (1977), Vol 1,

q
exercise 4.1 page 124). By examining the multinomial expansion of (jgipjrj)l
it can be shown to have zero odd moments and by similar reasoning

q
2j§£pjrj has a symmetric distribution. Hence, it follows from (2.59) that
q

. .r, <
2_)§1er,] 1

and so (2.58) follows.
Since we shall take expectations throughout (2.57) and ignore the
expectations of powers (or cross products) of r, greater than 2 (these are

0(n"2)) the expansion is approximately

q q q
~ - 2_ 32
= (1 2J.E pyzs + 4.2 p.°r.%...) (¢

Ty S =P T ks jgapj(rk+j + rk-j?) (2.60)

After some algebra we get, after taking expectations throughout (2.60), for

qz2,
q q-
~ - - 2 2 2 - 2
E[rk] = pk(l 2E[rk 1+ 4j§£pj E[rj i) ZjEApj+kij[rj+k ]
k=1 5 g-k . ¢
bl . 1
2038 PPy Blxs" ] + 5T 0505 BLxs"D) (2.61)
forlsk=<q-1.
q q
E[T ] = - 3 .2 p.%°E[r.2]) - 2. p.p__ .E[r.? 2.62
[Fql = pq(1 - [z’ ] + 45 % =*]) - 2,7 oy sElx"] (2.62)
q
— 2
E[?q+z] =0 for £ > q. (2.64)
From (2.57)
T,2=(1+2 g r.) 2 (r, + g ( +1, .))° (2.65)
k T 5P5T5 kY AP ke T Tk :

Making a binomial expansion and including only those terms that will

contribute to the expectations, we get approximately

q q q g
~e_ (1. 3.2\,.2 V4§ p? ' 2
rk_(l 4jgipjrj+l2j§apjrj (rk+2j§&pj(rkrk+j+rkrk-3)+3=1p3(rk+3+rk-3)

q-1 q
+2s§1j§s+-1p5pj(rk+j+rk-j)(rk+s+rk-s))
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Taking expectations throughout, after much algebra we get, for q = 2,
-2k

E[¢2)=E[r]] +j E[rJ+k]+E[rJ LD+ 20 B[]+ 2 z PP ElT e h
+ zk-l E[ - 8p2E[r®] - 8p_, p, %E[r 2] -qik E[r, 2
PsPak-s"LTk PRELTK 2kPk ELTakd " 3850 PiP3P 54k EL 54k
q q
2 2 2 2
- 8j§k+1pkpj_kE[rk_j] + 120, %5 b, E[rj ] (2.66)

Equation (2.66) holds for all k, provided the summations exist; when k is

such that they do not, those sums are taken to be zero. In particular we

note that
q
E[5.%] = E[r 2] + oy 2(E[ J+k2] + E[rk_ja])
= (1 + zjgipja)ﬁ[rkzj k>q, | (2.67)

since, from (2.16), E[rj+k3] + E[rk_j8] = %[ *].

Hence, from (2.64) and (2.67),

q
~ 27 _ a3y {n - k
n Var[rk ]— 1+ 2:1_};19J ) {-m% ’ k > 2q (2.68)

which is to be compared with (2.49). Also (2.49) is Bartlett's formula for
n varf?ka] for q < k < 2q, whereas the new expansion would use (2.67)
together with relevant terms from (2.61).

Example : the MA(2) process

For q = 2, we get in (2.61), (2.62), (2.63) and (2.64),
E[‘i‘l] = pl(1-25[r12]+4(p1BE[rla]+p:E[r:])) - 2p1paE[r22] - 2p192E[r12]
E[fé] = pa(1-2E[r22]+4(p12E[r}2]+p22E[r22])) - 2paaE[ri2] - 2p25[r23]
E[7,]= - 2papz(E[ria] + E[z ?])
E[¥ 1= - 2p *E[r 7]
E[®]=0 k=5
Also, from (2.66) and (2.67)

E[% ?] = E[ria] + pla(E[raa] +1) + p 2(E[r,%] + E[r 2]) + ZQQE[ria]

(2.69)

- 8p E[r *] - ep_p E[r ®] - 8p ®p E[z *] + 120 *(p, “E[r, * o e[z *])  (2.70)
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E[f %] = E[r,®] + o ®(E[r,?] + E[rla]) + paz(E[r42] + 1)

- 8p23E[r23J - 8p13p2E[ri3] + l2paa(p12E[ri2] + paaE[raz]) (2.71)
q
E[52]= (1 + 2j£apj3)E[rk2] , k > 2 (2.72)

The variances follow, of course, from (2.69)-(2.72).

Numerical results : comparison of the expansions with simulation results

To check the adequacy of the expressions for the mean of the ;k’ E[?k],
given by (2.53) and (2.69) and those for the variance of the %, V[T, ]
obtained from (2.55), (2.56) and (2.70)-(2.72), some simulation experiments
were carried out for MA(1) and MA(2) processes.

Sample means and variances of ;k were calculated over 10,000
simulations for each of the MA(l) processes for which © = 1.0, 0,5, 0.2 and
compared with the values predicted by the above expansions. These results

are collected in Tables 2.4 and 2.5, and also graphed in Figures 2.1 - 2.3.

Table 2.4

A COMPARISON OF E[Ek] USING THE EXPANSION
WITH SIMULATION RESULTS IN MA(1) PROCESSES

k e 1.0 0.5 0.2

1 0.491 0.479 0.390 0.383 0.186 0.182
2 | -0.009 -0.012 | -0.006 =-0.004 | -0.001 =-0.002

3 0.000 -0.001 0.000 0.000 0.000 0.000

4 0.000 ~0,001 0.000 0.000 0.000 0.000

(i) Simulation figures are the second in each column.

(ii) 10,000 simulations for each ©.
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Table

2.5

A COMPARISON OF nv[ik] USING THE EXPANSION

WITH SIMULATION RESULTS FOR SELECTED © FOR MA(1) PROCESS

o O WO =K

(1)

e 1.0 0.5 0.2

0.462 0.499 | 0.578 0.606 | 0.840 0.840
1.380 1.352 | 1.217 1.184 | 0.991 0.992
1.356 1.279 | 1.193 1.155 | 0.971 0.931
1.327 1.266 | 1.168 1.107 | 0.950 0.937
1.298 1.229 | 1.142 1.090 | 0.929 0.903
1.269 1.186 | 1,117 1.064 | 0.909 0.893

(ii) 10,000 simulations for each O.

Simulation figures are the second in each column.

Also, values of the variance of the ;k’ predicted from Bartlett's

formulae (2.48) were calculated for the MA(1l) processes with

©= 0,0, 0.2, o2+ 1.0 and also compared with those obtained from the above

expansions of V[?k]. These results are collected in Table 2.6. All sample

sizes here and throughout were n = 50.

Table 2.6

VALUES OF nV[¥, ] USING THE EXPANSION

AND BARTLETT'S FORMULA IN AN MA(1) PROCESS

o

k

1.0

0.8

0.6

0.4

0.2

0.0

0.462 0,500

1,380 1.500

1.3%6 ..
1.327 ..
1.298 ..
1.269 ..

(1)

0.474 0.512
1.358 1.476
1.334

1.306 ..

1.277 ..

1-249 Lo

0.526 0.568
1.280 1.389
1.256 .,
1.229 ..

1.202

1.176 .

Results are symmetric in ©.

0.652 0.700
1.142 1.238
1.119 ..
1.095

1.071

1.047

0.840 0.895
0,991 1.074
0.971
0.950
0.929 ..

0.909 ..

(ii) Bartlett's figures are the second in each column.
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0.923 1.000
0.904

X

0.885 .

0.865 ..
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GRAPHS OF nV[fk] FOR DIFFERENT © IN MA(1l) PROCESSES

nV['fk]
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The results in Table 2.4 are in close agreement and note in particular‘
that the expansion for E[;z] picks out the fact ;t is negative, confirmed
by the simulation result.

Similarly, the results in Table 2.5 on the v[fk] are also in fairly
close agreement although the theoretical values appear to be consistently
higher than the simulation results. However, when compared with those
values obtained from Bartlett's expansion it becomes clear how much closer
the ‘expansion values are to the simulation results compared with the former.
(See in particular figures 2.1-2.3.)

Similarly, 10,000 simulations were used for each of the nine MA(2)
processes (within and on the boundaries of the invertibility region
o +6, = -1,8 -6 <1,-156 <1, see Box & Jenkins (1970), p 70 or
Granger & Newbold (1977) p 142) given in Tables 2.7 and 2.8, and compared
with the E[?k] and V[?k] expansions.

Table 2.9 gives corresponding comparisons (over more MA(2) processes)
with values of V[?k] from Bartlett's formula (2.48). Some graphical
comparisons are given in figures 2.4-2.8.

The picture that emerges from these tables and graphs is very similar
to those for the MA(1) processes.

Table 2.7

A COMPARISON OF E[F, ] USING THE EXPANSION

WITH SIMULATION RESULTS FOR MA(2) PROCESSES
-0-4 0.4

e, -0.8 0.8

91 O‘O 0.2 0l6 104 0.0

OO WON= ®

0.000 0.001
-0.478 ~0.459
0.000 -0.002
~-0.009 -0.007
0.000 -0.001
0.000 -0.001

9,

0.100 0.096
-0.324 -0.311
0.005 0.005
-0.004 -0.004
0.000 -0.002
0.000 -0,002

0.537 0.524
0.249 0.239
-0.022 -0.010
~-0.003 -0.003
0.000 0.000
0.000 0.00

1.0

0.618 0.604
0.113 0.106
-0.012 -0.007
-0.001 -0.001
0.000 -0.000
0.000 -0.001

0.000 0.003
0.478 0.458
0.000 -0.005
-0.009 -0.009
0.000 0.003
0.000 -0.000

o -2.0

-0.4

0.4

2.0

0.353 0.347
0.453 0.434
-0.026 -0.011
-0.008 -0.006
0.000 0,002
0.000 0.002

-0.353 -0.345
0.453 0.434
0.026 0.017

-0.008 -0.006
0.000 0.001
0.000 -0.001

-0.657 -0.644
0.150 0.143
0.017 0.009

-0.001 -0.003
0.000 0.002
0.000 -0.002

0.657 0.643

0.150 0.143
-0.017 -0,007
-0.001 -0.001

0.000 -0.001

0.000 -0.001

OO BNWN~ X

Simulation results

(1)
(ii) 10,000 simulations

are the second figures in each column.

for each combination of €, , ©
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Table

2.8

A COMPARISON OF nV[F, ] USING THE EXPANSION

WITH SIMULATION RESULTS FOR SELECTED G&,Q;

-Ol 8

IN MA(2) PROCESSES

"0.4

0

.4

0.0

0.2

0.6

1.4

[elfe]
[@]]ee)

0.462
0.460
1.334
1.302
1.277
1.249

0.495
0.504
1.304
1.246
1.237
1.192

0.520
0.688
1.122
1.098
1.075
1.051

0.549
0.735
1.089
1.062
1.047
1.012

0.514
1.077
1.558
1.547
1.514
1.480

0.592
1.095
1.438
1.371
1.344
1.328

l.o

0.319
1.428
ll640
1.612
1.577
1.542

1.5
1.4
1.4
1.3

0.363
1.413

2.301
0.460
1.334
1.302
1.277
1.249

18
91
36
80

(1N

-200

-004

0.4

2.

0

0.275
1.421
1.744
1,720
1.683
1.645

OO WON+—~ ®

(1)

(ii) 10,000 simulations

0.309
1.402
1.645
1,616
1.571
1.544

1.511
0.610
1.506
1.503
1.474
1.441

Simulation figures

1.51
0.65
1.45
1.38
1.33
1.28

are t

0
4
0
1

1.511
0.610
1.507
1.503
4 | 1.474
8 | 1.441

he second

1
0
1
1
1
1

in

Table

2.9

+490
. 646
.443
. 387

0.275
1.421
1.744
1,720
.359 | 1.683
+295 | 1.645

each column.

VALUES OF nV[%, ] USING THE EXPANSION

AND BARTLETT'S FORMULA IN MA(2) PROCESSES

) -1.0

[ V)

"0-8

-004

0.322
1.438
1.631
1.592
1.564
1.546

for each combination of GL, Gg.

2.163
0.504
1.234
1.238
1.210
1.160

0.0

0.

0

0.2

0.2

0.6

0.462
0.460
1.334

0.462 0,500
0.448 0,500
1.356 1.500

0.500
0.513
l .476

64 0.502
74 0.528
15 1.455

0.
0.
l.

520 0.557
688 0.754
122 1.242

1.323
1.298
1.269

oo hONOEFE ®

9

X

1.277
1.249

()

1.302,

4
4
3
283 ..
2
2

1.098 ..
1.07% ..
1.051 .

0.551 0.590
0.919 0.998
1.126 1.251
1.106 ..
1.082 ..
1.058 ..

€

0.2

1.0

1.

4

1

1
1
1
1

OO WD+ ®

.512 1.616

0.706 0.777

.196 1.331
JA77 .,
152 .
.126

0.514
1.077
1.558
1.547
1.514

1.480

0.291
1.354
1.709
s 1.688
1.652
1.578

0.320
1.488
1.909

0.319
1.428
1.640
1.612
.o 1.577
1.542

0.350
1.565
1.822

LY

LI

0.0

1,

8

0.4

2.

I
0

2.301 2.451
0.460 0.513
1.334 1.476
1.302

1.277 ..
1.249

(1)

0.278
1.422
1.736
1.712
1.675
1.638

0.306
1.562
1.935

L

1.511

1.507
1.503
.. |1.474
.. 11.441

0.610 0.679

1.628

1.703

For fixed ©,, results are symmetric in 9 .

(11) Bartlett's figures are the second in each column.
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GRAPHS OF nV[T, ] in MA(2) PROCESSES

! FIGURE 2.4; ©,=0.4,0,=1.0
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nV['i'k]

2:6 A GRAPH OF nV[E, ] IN AN MA(2) PROCESS
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In summary, then, it appears there is nothing to choose between
Bartlett's formula (2.48) and the variance of ?k obtained from the expansions
(2.66) and (2.61) for MA(q) processes for k < q, but for k > g the multiplying
factor (n - k)/n(n + 2) needed in

E[F°]= (1 + 23.51 p;*)Er,”]
becomes very important.

Covariances between the autocorrelations of MA(q) processes

Bartlett's formula (2.48) provides the large sample covariances between

?k and ?; and from (2.57) a finite sample expansion of E[?k?s] is possible
by taking expectations throughout
55 = (1 2_1er3) o B0y (5 + 1y (5 + By ryy + 7))
= (1- 4 2 p rs 12 2 p ra)( 5T, J_lpJ( k+J+rsrk J) ngpj(rkrs+j+rkrs-j)
+j§%p3( kb5 k535, Py (Tar 7o 3)) (2.73)

to the same order of approximation used in (2.66).

After much algebra we get

e[ 5] = o (E[n ] + B[y, D) + 0,4, (B[ ® + B[, *])
q SE? . q- (ak+s)
+ e P3Pi-oFlmry )+ EiPPe B+ B PyhsElnT]
g=-ak k=1 min(k-1 ,q-(k+s))

E[r 2] +

* k+]j ]+j—-2-1 pk-jpk-l-s-jE[rj 351 pk-jpk+s+j E[I‘j ]

J§s+1pk+3 J-s
min(g-k,k+s-1) a- (k+s) . X
jéa pk+jpk+s- [r °]+ 'EA Pr+5Pr+s- 3 [rj 1+ PrPr+s (2.74)
m1n(q,k+s-1) g- (k+s)
4pkpk+s(E[rka] + E[n 2D~ 4pk jzi P; pk+s_-5[ra}+ & pjpk+s+jE[r§J)
q m1n(q, k-1) . g-k .
- 4pkj—k+s+1p3 j=(k+s) [r ) 4pk+s(3§L P pk JE[r ]+J_1 ka+3 [r D

+

q a
2 3 -]
= WPprs iZkn P3P3- kE[r 1+ 12 PePrss 32 3 P; [r 1.

Evaluating (2.74) for the MA(2) process we find
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(£ 7] =p (Elr,°]+E[x?]) +pp, (1+E[x>]) +ppElr?]
~4p, 0, (E[x *1+E[x *])-4p o (E[z *}+E[r_*])-4p °E[r *]

+120 p_(p, *E[x, * }p *E[x *])

E[%5,] = e, (E[z,*}elz,*}+o 0 (E[x *1+E[x *])-4p p_°(E[z, *]+E[r *])
E[$i§i+1] = Pl(E[TiQJ+E[ri*1a]) + p1pa(E[ri-12] + E[ri+22]) i=z3
E[£,%,] = e (E[r, e[z *]) + p *E[r *] + p_® B[ °]
-4p ®p_(E[x *] + E[z_*]) > (2.75)
5[5254 = (20, + plz)E[r:] - 4paaE[r:]
E[fifi+2] = (20, + P 2)E[r1+12] iz3
E(% %] =pp, (E[r)+ E(r,®]) - 4p p %E[r "]
B(%%,,]1=p 0, (Elr;, °] + B[z, 2] 1=2
E[$i51+4] = zE[r1+22] iz

E[T A 1+z] = 0 for all i; 4 > 4,

The expressions in (2.75) are used in Chapter 4 , section 4,3, to

calculate the theoretical mean of the Box Pierce statistic S, in fitting

an AR(1) model to an MA(l) process,

For the above example, Bartlett's formula (2.48) yields the following

special cases in (2.75) (the other cases, for example, E[E;f;], differ

considerably from those given by (2.48))

nE[T,F,  J=20 + 2p P
nE[ril'?i+ ] = pl2 + 20,

(2.76)

for all i, £ >4

By comparing the above with the corresponding equations in (2.75), the

difference is the factor (n - j)/(n + 2) for appropriate j, which is seen
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to be taken as 1 in (2.76). This is, of course approximately true for
j small but is not the case for j large compared with n. (For n = 50,
j = 20 this factor is 0.58.)

2.5 Conclusions

We have shown in this chapter that use of the exact variance of the
kth sample autocorrelation of white noise, (n - k)/n(n + 2), which for
large n can be safely approximated by 1/n, becomes very important in the
study of the distribution of the portmanteau test statistics and the
moments of the xth sample autocorrelations of moving average processes.

A normality assumption for the distribution of the T, was shown to be
unrealistic in moderate sized samples and, in addition, the above
approximation becomes particularly poor for k large, as is the case when
one needs to accumulate terms multiplied by the factor (n - k)/(n + 2) when
studying the portmanteau statistics. Although Box & Pierce (1970) p 1519,
recognised the problem it was not taken into account in their statistic
given by S. It has been shown that problems crop up even with a sample size
of n = 50 (which is not usually considered too small in practical time
series analysis) and one might be led to erroneous conclusions when using
these statistics.

The accumulation problem mentioned above is also apparent when, in
Chapter 4, sums of variances and covariances of the sample autocorrelations
of moving average processes are needed to study the mean and variance of S
when fitting autoregressive models to moving average processes. Bartlett's
(asymptotic) formula for these is shown to be inadequate (for sample sizes
used in practice) owing to the absence of the factor (n - k)/(n + 2) for

appropriate k.
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CHAPTER 3

FORECASTING FROM MIS-SPECIFIED TIME SERIES MODELS WHEN
THE DEGREE OF DIFFERENCING IS CORRECTLY ASSUMED

Summary
This chapter examines the consequences of fitting ARIMA(p,d,q) models

to ARIMA(p,d,q) processes. Expressions are derived for the asymptotic loss
of forecasting using the fitted model compared with the optimal forecasting
function for the true process, when the parameters in both are assumed given.

When d = O, and in the special case of fitting pure AR(p) models, the
estimates of the p'parameters are obtained by a least squares fit and,
equivalently, from the solution of the Yule-Walker equations. Probability
limits and the asymptotic variance covariance matrix of these estimates are
derived.

Asymptotic loss in forecasting for fitting ARIMA(ﬁ;d,O) models to ARIMA
(p,d,q) processes are computed when d = 0 and d = 1. The main results are that
a great deal can be lost when any moving average parameters in the true process
are near their invertibility boundaries even for a very high order AR fit;
otherwise losses can be surprisingly low.

When d = O and estimation error is taken into account in the fitted AR(p)
model, naturally, asymptotic losses are increased. However, at one step ahead,
for some processes a minimum loss occurs when p’is near 4, 5 or 63 further
parameter estimation increases the loss.

When d 2 1 an analytic expression for asymptotic loss is derived taking
estimation error into account in the fitted autoregressive parameters,

although it-is not computed for different processes.

3.1 Introduction
In this chapter we let Ty denote the sample autocorrelation of any

series Xt and not restrict it to the residuals of a least squares fit, as in

Chapter 2.
n-k
It is well known that the sample autocovariance ¢ = téi tht+k/n has the

property that
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where‘Yk is the population autocovariance. (Anderson (1971) p 471, or

Goldberger (1964), p 148.) Hence, using Slutsky's theorem (Wilks (1962),

p 102)

plim Ty plinxck/%o

plim ck/plim ¢,
= Yk/Yo

= P,
We thus see that the probability limit of the sample autocorrelation of any
process is the corresponding population autocorrelation; hence any parameter
estimate which uses a function of the sample autocorrelations will have a
probability limit that we shall (in theory) be able to find, as the probability
limit of a function is the function of the probability limits (Slutsky's
Theorem). It is possible that the sample autocorrelations may suggest searching
for, and fitting a structure which is different from the truth; for such a
structure the parameter estimates will be calculated with the mis-specified
model in mind and the sample autocorrelations would be used in the ‘wrong' way.
However, the probability limit of these estimates will be available in terms

of the autocorrelations of the true process the series follows; we now explore
some of the properties of these plims and the consequences of the misuse of

the sample autocorrelations.,

3.2 Fitting Autoregressive models to any time series process of the ARMA type

Suppose one fits an AR(p’) model to data (which we assume for the moment
is known to follow an AR(p’) process) by ordinary least squares in the usual
manner. For an AR(p’) process the autoregressive parameters (é;,ﬁ;,...,ﬁ;,,

say) satisfy the set of linear equations:

Y4 ' r'd
pl_ﬂ +é%+."””+¢,m

P’ Tpm1
- ’ ’ ’
p,=4p +4, +.......+;>’p,pp,_2

(3.2)

pp'= [1pp,_1 + eeeevecsenccse T ﬂp,
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where pl,pa,...,pp, are the true autocorrelations of the process. Equations
(3.2) are normally called the Yule-Walker equations. Yule-Walker estimates
of the parameters are obtained by replacing pl,pa,...,pp, by the calculated
sample autocorrelations R NTRYRE N (Box & Jenkins (1970) p 55).
Writing (3.2) in an obvious matrix notation we see

F=P" p (3.3)
and the Yule-Walker estimates will be given by

§

r
) 4 . . .
where f = (3:,3;,...,35,) y I = (ri,ra,...,rp) and Pr is the matrix P with

P! r

~

the pl,pz,...,pp, replaced by Il,rz,...,rp,respectively. Mann and Wald (1943)
showed that asymptotically the sampling properties of the least squares
estimators and Yule-Walker estimators are the same.
If, now, the process that X, follows is not necessarily an AR(p’) process
. ’ ’ 4 -
but we fit an AR(p’) model in the form X, ﬁ;xt_l - eee - db,xt_p, = e, by
minimisation of £e,?, the equations that have to be solved may be written in
matrix form
R = Ppf

Asymptotically B is equivalent to r and P, to Pr; hence R is a column

R

vector such that plim 5 = p, P, is a symmetric matrix such that plim PR =P

R
and f is now a column vector of the least squares estimators of ﬁ:,ﬁ;,...,ﬁ;,,
where we have used the fact that plim r, = p,. (See Box & Jenkins (1970),
p 277.)
Hence, from Slutsky's theorem applied to matrices
plim R = plim PRplim §

we have that

so that plim f =P p (3.4)
Comparing (3.3) and (3.4) we see that the autoregressive parameter estimates
ﬂ:}ﬁ;,...,};,, from the least squares fitting of an AR(p’) model to any time
series process, have probability limits which may be obtained by solving the
Yule-Walker equations containing Ql,pa,---,pﬁ@ the autocorrelations of the

true process.
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For example, if we fit an AR(1) model to any process the least squares

estimate of the parameter d: is asymptotically equivalent to L, . Thus,

. ’ _ . -
plim ﬁ; = plim r, = p1
where p is the first autocorrelation of the true process. If we fit AR(2)

from (3.4) with p'= 2, we get plim z (l - P, y/(1 - Y 2) and

(o, - )
plim 3 TT—:-E—ES— where N and p, are the autocorrelations of the true

process.
From (3.4) we thus define
plim §'= 8
so that ,J; ,g!;,...,p’;), will be understood to be the probability limits of the
least squares estimates in fitting an AR(p’) model to any process. These will

be used later to study the residuals obtained in an autoregressive fit.

Variance - covariance matrix of the autoregressive parameter estimates

We have already noted in section 2.4 that the calculated autocorrelations

I aT seeesTy of any ARMA(p,q) process have the property that the joint

distribution of Jﬁ(ri ~Pl), Jﬁ(rz- pa),...,lﬁ(rm- pm) tends to N(Q,W) where
pj is the jth autocorrelation of the true process and the variance covariance
matrix, W, has elements defined by (2.48).

Let Vs be the asymptotic variance covariance matrix of the p' estimated
autoregressive parameters in § . Since, asymptotically, § is a function of
the first p' sample autocorrelations, and since the variances of these r, are
0(1/n) (Bartlett, 1946) we can apply methods of Kendall & Stuart (1977) Vol 1
p 247 to obtain the exact form of Vg .

Let Bf = ﬂf(r sTyreeesT, .)s since, asymptotically E[r.] = Py

3

(3 = 15240044p") we may apply the appropriate form gf equatlonsz(lo .12) and
Y V.4
(10.13) of Kendall & Stuart (1977) Vol 1. Writing —= to mean =—=

ap arj
evaluated at Py 5P, seeesPpe (3= 1lyeeesp’) we get to 0(l/n),
p’(38]\? p’ (3B 38!
= Tl A — .
var[ﬂl] J=21(apj) var[rJ] J%él(épj apz) cov[rJ,rEJ

(3.5)
o B’ (38 38, oB; 3F¢
cov[;gi,ﬂk] = jgl('&T; SE) var[r ]+ J?h( ﬁ) cov[rj,rz]
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The equations in (3.5) may be written out in matrix form as DWD', where

I'4 / ’ IT
ap1 ap2 ap3 app,
az; aza'
D= 13 %, = (d »d seersdy) (say) (5.6)
38’ 3g’, g’
o o
P% Ps pﬁ
and gj = %g j = l,o-o,p'o (3.7)
J
From (3.4), viz f = P-lg sy we differentiate with respect to rj to get
of 1 ap~t
- _ = —_
Brj Brj arj
= P-l¥ - P-lgl—)- P-IE

- r

_ -1(32 P - )
Brj arj ~

(3.8)

(see for example, Stephenson (1965) or Macduffe (1956)).

In (3.8) we have

2 4

3r, = (Byadye on by and
OP _

ar. - Toepl(o’ 61j’ aaj’ eeey bp'.z ,j)

J
where éij is the Kronecker delta, and Toepl is a p'x p’ symmetric Toeplitz
matrix.

Substitution of pl,pa,...,pp, for Ty AT 00 e 0T in (3.8) yields the

column vectors defined by (3.7) so that

nvs = DWD' (3.9)

where D is given by (3.6).

Example 3.1 Fitting AR(2) to an MA(1l) process

1 1, if we fit an AR(2) process of the f -4 -4 =
n general, i (2) p orm X, ﬁ;Xt_l 4 X =

error to data, using least squares, the estimates obtained are asymptotically

equivalent to solving (3.2) with p’ = 2. Hence asymptotically
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.§ = K’ r 1 r

2 1l 2

so that using (3.6) and (3.8), we find, after some algebra

_ (1-p,) (14p,®) -(1-p *)p,
PR 2, () (1m0 (3:10)

_ . . _ 2
For an MA(1l) process, X, = ag + G&at_l, we find, with p = G&/ﬁ + 6, R

(3.11)

2 2 4 .n 2
Y 1-3p ° +4p ¢ 20 (1-p, 2
2p, (1-p ®) 1 +2p,

From (3.10) and (3.11) we may obtain nvs as given by (3.9); isolating

elements of this matrix we find

nvar(B] = =i mya (1 - 40,7 + 30,4 + 60.° + 29,°)

1

nVar[Za’] = '('I—_lpﬂj";(l - 4p12 +p*+ 10p16) (3.12)
1
’ 7 _ p ] 4 6
n COV[BI 983] = m.; (-1 + 691 - 9p1 - 491 )

The asymptotic covariance between B: and E; is always negative for
positive G& and

n(var[B:] - var [3;]) = 2p14/(1 - pla)a 20
Table 3.1 contains values of the asymptotic variances of the autoregressive

parameter estimates together with their asymptotic correlations for different

8 values,
1
TABLE 3.1
ASYMPTOTIC VARIANCES AND CORRELATIONS OF
AUTOREGRESSIVE PARAMETER ESTIMATES
’ ’ 4 ¢
6 nvar[g ] | nvar[ﬂ’g] corr(;3’1 )
0.1 1.00 1.00 -0.097
0.3 0'98 0097 -00232
0.5 0.93 0086 "00258
007 0090 0. 74 -O. 245
0.9 0.91 0.70 -0.247
1.0 0.91 0.69 -0.249
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Example 3,2 Fitting an AR(1) model to any ARMA(p,q) process

If we fit Xt - ﬂgxt_l = error to data by least squares, asymptotically
3: = r,, and, from (3.7) and (3.9) Vg is simply a scalar, namely the (1,1)

element given by the infinite sum

de P

ot P Py - 4P PP+ 20 %0 )

(ST

from (2.45).
Thus the asymptotic variance of the autoregressive parameter estimate
depends on all the autocorrelations of the true process.

For p= 0, g= 1, we get with pj =0, j=22,
- 70 - P 2
nVg = nvar[ﬂ;] =1-p (3 - 4p,°)

Example 3.3 Fitting AR(p) models to MA(q) processes

Durbin (1959) has advocated a method of estimation of moving average

parameters which involves fitting a high order autoregressive model to the
moving average process, and using the estimated AR coefficients to determine
estimates of the moving average parameters. If the moving average process is
Xy = a + G»lat_1 + eeee + Qqat-
and the estimated autoregressive parameters are 3;, 3;,...,3;,, the Durbin

estimator of (91,92,...,9q) is given by

' ’ - ~J -
p=1 p-q+ 1 p-1
/723 7 % / ’ ‘ /
j= OKJ J'gOngJﬂ = 333_,_2 °e J—o ’ngj+q- él I’ ngJﬂ
Tag By 6
j=o"i"in  j=07] P
= (3.13)
p-ah p’ p-q
T B3 £33 8 £33
L J=0 ng J+tam J=0'3 J Jt 9 LJ=08 J7J+q]

Although it is shown that the estimator is asymptotically efficient, one
might expect problems with the results from (3.13) since the ﬁ:}ﬂ;,...,ﬂg,
will themselves be correlated.

For example, in fitting an AR(p) model to an MA(l) process one might
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expect high correlations between B:,ﬂ:,...,ﬂ;, since, if the process is
Xt = a, + G&at_l, these are merely estimating the first p powers of Qj in
C e e (g )] _
the infinite AR representation on( G&) xt-j = a,.
However, in the case p'= 2, table 3.1 shows correlations between ﬂ:'and

ﬂ; are not very high over the range of G&.

3.3 Fitting mixed Autoregressive-moving average models to any time series
of the ARMA(p,q) type

Suppose one fits a model which is ARMA(p’,q) to a process which is
ARMA(p,q) by a least squares procedure as described in Box & Jenkins (1970)
pp 208-250.

Let the true process be of the form (2.1), viz,

;{(B)xt = e(B)at (3.14)
where ay is white noise, but we fit the model

8(B)X, = @(B)n, (3.15)
where #(B) = 1 - ﬁ;B - ﬁ;BQ - ...-ﬁgﬁp'and @(B) = 1 + GEB + 9;33 Fouot e;pq:
The least squares procedure will minimise the function S(#,8) where
F'= (4 f]e By 8= (8),6,,000,8))
and where

s(#,8) = Enta

z(@‘l(B)a(B)xt)z (3.16)

Sl ol

Let the estimates of the parameters for which (3.16) is a minimum be
(§,8). Since S is a well behaved function of & and @, its differential with
respect to & and @ will be also, so that the probability limit of the
minimum of the function S will be the minimum of the probability limit of
the function S. Hence plim(§,8) is the (2,8) for which the variance of m,
is a minimum,

From (3.14) and (3.15) we need these (3,8) for which var[nt] is a
minimum where

#(B)e(B)n, = &(B)8(B)a, (3.17)

In general the variance of 7, in (3.17) will be non linear in
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p!l' ,ﬁ;,...,p'r;,, el‘,ezj,...,e;, so that its minimisation will be extremely
difficult except in a few simple cases. Moreover, determination of the
asymptotic variance covariance matrix of these probability limits is
possible via methods of Anderson (1975) but we shall not pursue them here.

However, in general, the plims of the least squares estimators (obtained
from some numerical minimisation procedure) are not asymptotically
equivalent to the estimators obtained from other methods when one fits an
ARMA(p,q) model to an ARMA(p,q) process.

For example, Durbin (1959) gives a method of estimating the parameters
in a pure moving average process (i.e. this would be equivalent to fitting
an MA(q) model to an MA(q) process) and shows that the procedure is
asymptotically efficient. Suppose, however the true process is AR(1l),

)(t - ;{Xt_l = a,
but we fit an MA(1l) model

X = (1+ Q'B)nt
Durbin's procedure would involve fitting a high order autoregressive process
(of order k, say) by least squares and the estimates 3:,ﬂ;,...,3£ so

obtained are used to form the estimate é' of ©' where

. 4
Z g8
é/_ 1;-(0 : 141 , 301___ 1
’
ig zi
From (3.4), plim 3; = (4 i=1
0] i=z2
and so
plim 8" = 4/(1 + #£°) (3.18)

which clearly has a maximum of 4.
From (3.17) the probability limit of the least squares estimator will
be that value of & which minimises var(m,) where
(1 -¢#B)(1+8 B)'r]t = a,
i.e. the variance of the AR(2) process

(1- (- 6B - 408 = a .
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Its variance is

(1 - 46)
(1+g0) (1- 5@03 - (£ - 6)2) (3.19)

(see Box & Jenkins (1970) p 62).

After differentiating (3.19) with respect to © and setting the

derivative to zero, we require the roots of
F£E -4 -+d=0  (§#1) (3.20)

Clearly © = #/(1 + #2) does not satisfy this equation except at £ = 0, so
that the probability limit given by (3.18) is different from any solution
of (3.20). Walker (1967) has also obtained (3.20) as part of the basis of
testing an AR(1) model versus the alternative of MA(1l). Also in that paper
(p 45) Walker concludes that the Durbin estimation procedure applied to
fitting MA(1) to AR(1l) is equivalent to the least squares procedure. This is
clearly not the case.

To investigate the probability limits of the least squares estimator of
o' the cubic (3.20) was solved for a range of values of g and those roots
for which ]©'] < 1 are collected in Table 3.2. Figure 3.1 is a graph of the
relevant roots of (3.20) together with (3.18) for different values of £.
Note that if we put g = -¢ in (3.20) the solutions will be (-6) where 6’ is
the solution of (3.20) with positive g.

TABLE 3.2

VALUES OF THE PLIMS OF THE DURBIN ESTIMATOR (D)
AND THE LEAST SQUARES ESTIMATOR (L.S.)

g 0.9 0.8 07 0.6 05 0.4 03 0.2 0.1 |
D 0.497 0.488 0.470 0.441 0,400 0,345 0,275 0.192 0,099

L.S.| 0.735 0.640 0.565 0.496 0.428 0.356 0,279 0.193 0.099

Note if ﬁ - -4 each estimate changes sign also.
We see over the range of g from 0.0 to about + 0,5 the plims of the two
estimators are indeed very close, but outside this range the discrepancy
becomes larger, it being a maximum at ﬁ close to 1. In the next section

(example 3.9) we examine how much is lost asymptotically when one forecasts,
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GRAPH OF PLIMS OF DURBIN AND LEAST SQUARES ESTIMATOR
FOR FITTING MA(1) TO AR(l) FOR DIFFERENT 4
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Least Squares

Durbin's

b=
o¥

using either of these two estimators, from the fitted MA(1l) model compared

with the optimal forecast from the correct AR(1l) process.

3.4 Comparison of Forecasts for correct and mis-specified models with the

coefficients in each being given

If X, follows an ARMA(p,q) process given by (3.14) viz,

t
#(B)X, = o(B)a, (3.21)
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and we assume Xt is stationary and invertible, then we may write

X, = gt (B)8(B)a,

d(B)at (3.22)

n

so that do,da,..., are the coefficients in the infinte moving average
representation of Xt.
We now consider forecasting from an alternative stationary invertible
model ARMA(p’,q) as given by (3.15), viz
2(B)X, = @(B)n, (3.23)
where un is not necessarily white noise.
Expression (3.23) may be written equivalently
-1
X, =8 (B)@(B)nt
= c(B)n, (3.24)

— 2 —
where c(B) = co t ¢ B+c B+ .cii..,and c = 1.
Hence from (3.22) and (3.24), we must have

g

¢t (B)d(B)a

t .
b(B)a, (3.25)

where b(B) = b, + b B + 1:>213‘a + eeeey and b= L.
Let the optimal (least squares) h-step forecast for model (3.22) be
fn e SO that this is our best forecast based on the correct model, From
]

Granger & Newbold (1977) p 121, we have

f,h = 3250 54nn-j (3.26)

Since we have (incorrectly) assumed model (3.24), we shall believe n, to be
white noise and so if g | 1is the assumed optimal (least squares) forecast
H

for this model,
oo

%,h = 2o ®5+hMh-j (3.27)
The model (3.24) will be the one we shall use and so our h-step forecast

error will be

Xoth ~ %,h
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which may be written as the identity

£ )+ (f (3.28)

nth ~ %n,h © (xn+h " "n,h n,h ~ gn,h)

- fn’h‘will be the h-step forecast error from the correct model,

X

X +h
From (3.22) and (3.26)

-]

-]
Yorh = b T 580 %5%mh-3 T 3Eo%54nn-3

© [+ ]
Fol3Pneh-3 ~ 52h%5%nehe
h-1

= jgkdjan+h-j (3.29)
a linear weighted sum of a K’ k > 0. Also,
®
9,h = §20°%5+h -
© o
= 32%5+h(180P13n-3-1)
- ,
= 535 (M)a g (3.30)
where .
J
as(h) = EoChaPs- g *
® ®
fn,h " %,n " jgodj+han-j - jZBaj(h)an—j
- -}
= jgo(dj+h - aj(h))an-j ] (3.31)

which is a linear weighted sum of a_k? k2 0.

It therefore follows from (3.29) and (3.31) that (xMh - fn’h) is

uncorrelated with (fn,h - gn’h).

Denote the variances of the h-step forecast error for the right and

wrong models by V(h) and Vzh) respectively. Then, taking variances throughout

(3.28) we get

V(h) = v(n) + V(jgo(dj+h - a5(h))a,_;)

v(h) + J.Eo(cl a;(h))? 0.2 (3.32)

j+h ~
where Gaz is the variance of the ghite noise process a, and, from (3.29),
-1

- 2 2
v(h) = j-‘godj 0" .
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Note that Vzh) 2 V(h) always, as is to be expected.

We now define the mean square proportionate loss, P(h), from using the
incorrect model, by

vih) - V
P(h) = h 7(h h (3.33)

so that this will be an absolute measure of the discrepancy between the mean
square error of h-step forecasts for the right and wrong models.

T (d,., - a;(h)?
Hence P(h) = == J;?x . (3.34)

]
2o%;

P(h) expressed as a percentage will be called the percentage loss of our

sub~optimal forecasts. V(h) is monotonic non decreasing, but as noted by
Granger & Newbold (1977), p 137 V?h) is not necessarily monotonic non
increasing or decreasing. It follows that the latter is true also for P(h).

We now give a number of examples of calculations of (3.34) for simple

ARMA models.
Example 3.4 Fitting AR(1) to AR(1)

Let the true process be (1 - g{B)Xt = 8 but suppose the model

(1 - #'B)X, = n, is assumed. From (3.22), (3.24), (3.25) and (3.30) we find
ay= £ o5 = 69, b, = 1, b= (P - 410, (21), o) = 4T

; (dh - lh)a 3
Hence P(h) = £= d ¢

h~-1 j
j§o £

{E- £lh)a
= h
(1- ¢
Table 3.3 contains values of P(h) for two different pairs of values

’

g, 8.

TABLE 3,3
VALUES OF P(h)

h g=0.7, = 0.5 | £=0.5, g’= 0,8
1 0.078 0.120
2 0.076 0.162
3 0.054 0.152
4 0.034 0.121
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Note that for one of these P(h) first increases and then decreases with

increasing h,

Example 3.5 Fitting AR(1) to MA(1)

Let the true process be X, = (1 + QB)at, and the assumed model

(1 - ;f'B)x,c = Ny From (3.22) (3.24),(3.25) and (3.30) we find d_ = 1,
4 =0 d;=0(322);b, =1,b = (0-#)y b_=-4's, b= 0 (3 = 3);
a,(h) = £, a (n) = &, a;(n) = 0, (5= 2).
Hence P(1) = (6~ 0)® + &3¢’ (3.35)
p(n) = 420 h2 2.

From (3.35) we find that P(1) has a minimum when ;d’: /(1 + 6°), the
autocorrelation of the true process. This fact complements the idea in
Example 3.2 that the probability limit of the AR(1l) parameter estimate is
the 15 autocorrelation of the true process and that it would be 'best' to
take 4 = p, for l-step ahead prediction. We shall return to this point
later when we allow the parameters in any autoregressive fit to be determined
by the autocorrelations of the true process. (It is well known that the
solution of the Yule Walker equations (3.2) for correctly fitting an AR(p)
model to an AR(ﬁ) process minimises the variance of the one step ahead
forecast error.)

Example 3.6 Fitting AR(1) to MA(2)

Let the true process be X, = (1 + QLB + OzBa)at, and the assumed model

t
/
(1 - #B)X, = m.. From (3.22) (3.24), (3.25) and (3.30) we find d_ = 1,
d =9,d =6,d =0 (323);b,=1,b = (@1 - 4), b = (@8 -ﬁ@l),

'h _ ‘h
glﬂ{ H az(h) - @2¢ ]

]

b, =#'9,, by =0 (3 24); a(0) = 4", a (n)
a;(h) = 0 (j 2 3),
Hence P(1) = (- 6)% + (94~ 6)% + 62’2 (3.36)
P(2) = {(£" - G»g)2 + 639%14 + eazd'4]/(1 + G&z)
p(h) = 4P h 23,
Again we find that P(1) has a minimum when ﬁJz (G& + G&G;)/(l + G&E + 922),

the first autocorrelation of the true process.
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Example 3.7 Fitting AR(2) to MA(1)

~ Let the true process be X, = (1 + ©B)a,, and the assumed model
’ -
(1- ¢;B - ﬁ;B )xt

. _ — (a . 4 __l )
l,d =6 d;=0322 b =1,b = (e ﬁ;), b, = (¢; + ey;),

4 . _ ~ 7
-Qﬁg, bj =0, j =4, ao(h) = ¢y al(h) = 6c, + ﬁ; Choy ?

Tye From (3.22), (3.24), (3.25) and (3.30) we find

4%

b
3

/
aa(h) = Qﬂa Chey ? aj(h) = 0 (j = 3) where ¢, is given by

[

¢
o l’cl=g{l’

’

'
ch ¢; ch-l * %z ch-z (h = 2)

as follows from its definition (3.24).
We find for the proportionate loss
/ /
P(L) = (4 - 0)% + (of + 4)° + 6°4 " (3.37)
After some algebra we get
—_ 3 -] 3 4 >
P(h) = ¢ ° + ﬁ; hey * 26 cCh, P h=z2

P(1) has a minimum with respect to g and ¢; when
! 2
g =0/(1-0p?

1
-0,/ -p %)

%l
where p, = o/(1 + €®), the first autocorrelation of the true process.

(3.38)

2

We note that (3.38) is the solution of the Yule-Walker equations (3.2)
with p': 2 and p2 = 0. Thus the AR(2) fit is again 'best' with respect to a
minimum P(l) when we allow the AR parameters to be decided by the solution
of the Yule-Walker equations, using the autocorrelations of the process.

Example 3.8 Fitting MA§1} to ARfl)

Let the true process be (1 - ;sz)Xt = a,, and the assumed model

X, = (1 + O'B)nt. From (3.22), (3.24), (3.25) and (3.30) we find d, = £
(3= 15250000)
301 (e . . (s ,
b, = (-9 = (7 - )Ry g4 e
Also ¢, = 1, c, = Q’, c5 = 0 (j 2 2) so that aj(l) = @'bj (3 20)
a;(h) =0 (3205 h=2).
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P(1) = E (ﬂfjﬂ - 9’{’!(341) - (-é)(j+1)}/(g{+ ).

We find 52,

For h =2 2,
P(h) = £°7/(1 - M)

It can be seen that even in these simple cases the algebra involved in
obtaining an analytic expression for P(h) can become tedious. A computer
program was therefore written to calculate (3.34) using the orders of the
true and fitted models p, q, p', g’and the pre-chosen parameters
BB reeerdy 8838 5000s0 5 B2f senesfis €58, 5000,0 . Table 3.4
contains values of P(h) for arbitrarily chosen parameters in examples (3.5) -
(3.8) whilst Tables 3.5 and 3.6 contain P(h) for some other true and fitted
models, again with arbitrarily chosen values for the parameters.

Table 3.4 sﬁows that certain misspecified models can give forecasts that
do rather poorly, compared with the correctprocess, at one or two steps ahead.
The general picture emerging from table 3.5 is that if one mistakes

AR(1) for AR(2) or vice versa again one can be quite a long way away from
optimal forecasts, but MA(l) mistaken for MA(2) or vice versa is not nearly
so serious an error.

Table 3.6 shows that mistaking a mixed model of the ARMA (1,1) type for
MA(1) or AR(1) (or vice versa) can be serious at one step ahead and that
misspecified parameters in an ARMA (1,1) model have percentage losses which
get worse and then better as the number of steps ahead one wishes to forecast
increases.

TABLE 3.4

PERCENTAGE LOSS FOR FITTING MISSPECIFIED MODELS (EXAMPLES 3.5-3.8)

AR(1)to MA(1) AR(1) to MA(2) AR(2) to MA(1) MA(1)to AR(1)
1] ’ ’ /
h|g'=0.5 8=-0.5/4 =0.5 € =0.2 6 =-0.4 g,=0.2,4 =0.4 &=-0.5 8'=0.5 g=-0.5
1 106 62,0 62,0 196
2 6.3 41.8 17.2 6.7
3 1.6 1.7 3.6 1.6
4 0.4 0.4 3.7 0.4
5 Ocl O'l 1‘2 Ool
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TABLE 3.5

PERCENTAGE LOSS FOR FITTING MISSPECIFIED MODELS
NON MIXED MODELS

AR(1)to AR(2) |AR(2)toAR(1) [MA(1)to MA(2) |MA(2)toMA(1)
4'=0.8 g{1'=o.7, e20.5; e:=0.7,

h | 4 =0.4,6 =0.2 g!a'=o.3;g{=o.5 6,=0.7,0 =0.3 |6/=0.3;8:0.5
1 16.7 25.3 9.3 10.1
2 7.5 47.9 6.0 7.9
3 7.3 62.4 0.0 0.0
4 5.4 72.0 0.0 0.0
5 4,2 76.9 0.0 0.0

AR(2)to AR(2) |MA(2)toMA(2) |AR(2)to MA(2) | MA(2)toAR(2)

1
;!1'=o. 6,4_=0.4;
h ¢{1=o.5,g{2=o.3

4 /
0'=0.6,0'=0.4

1 2
91=0'5’92=0.3

’ ')
¢;=0.1,¢;=0.4
e =0,.5,0 =0,2

1 2

0'=0.6,0 =0.4;
1 3
;zfl=0.5,p'a=0.3

1 7.7 1.7 27.7 25.4

2 14.2 1.0 9.2 41.8

3 21.2 0.0 4.6 44.5

4 27.9 0.0 3.6 29.4

5 34.2 0.0 1.0 19.6
TABLE 3.6

PERCENTAGE LOSS FOR FITTING MISSPECIFIED MODELS (MIXED MODELS)
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AR(1)to ARMA(1,1)|ARMA(1,1)to AR(1)]|MA(1)to ARMA(1,1)|ARMA(1,1)to MA(1)]
’ / ’ 4 ’
h{#=0.834=0.5,6=0.6 #=0.4,08°0.3;4=0.8|6-0.8;4-0.5,0-0. 6| #=0.4,6-0.3;0-0.8
1 23.5 18.6 20.6 14.5
2 11.5 29.4 18.3 6.1
3 11.9 24.1 4.0 1.0
4 10.4 16.8 1.0 0.1
ARMA(1,1) to ARMA(1,1)
/
h | #=0.6,820.5;4=0.8,6=0.4
1 8.2
2 13.1
3 12.9
4 10,7




Example 3.8 (continued)

We return to example 3.8 where we fitted MA(1) to AR(1), but use the
methods described in section 3.3 to determine the values used for the
fitted parameter 9'. Thus we allow o to be

(i) the plim of the Durbin estimator in (3.13), viz o= g/ + #2) as

given by (3.18) and

(ii) the plim of the least squares estimator, viz that 9, which is the

appropriate solution of the cubic equation (3.20).

From (i) and (ii) we calculate P(l) for various values of g in the
range 0 < g < 1 and the results are collected in Table 3.7. (There is no need
to consider P(h) (h = 2), since both models will forecast zero above 1 step
ahead, so that P(h) (h 2 2) will be identical for both estimators.) Also, we
shall see later in theorem 3.1 that P(l) is symmetric in ﬁ so that there is
no need to include results for -1 < 4 < 0.

TABLE 3.7
ONE STEP AHEAD PERCENTAGE LOSS FOR FITTING MA(1l) TO AR(1

USING PLIMS OF DURBIN'S ESTIMATOR AND THE LEAST SQUARES
ESTIMATOR (L.S.) FOR VARIOQUS VALUES OF THE AUTOREGRESSIVE PARAMETER 4

4 0.9 0.8 0.7 0.6 0.5 0.4
D 166 59.9 27,1 12.8 5.8 2.4
Lo S' 133 51.9 24.8 1212 507 203

The picture that emerges from this table is very similar to that
demonstrated in figure 3.1, p63 , where both estimators were plotted over a
similar range of ﬁ. One does far worse with the Durbin estimator, from a
forecasting point of view, above g of about 0.7.

This section has developed the idea of percentage loss, P(h), and
demonstrated how they can be calculated for fitting certain pre-determined
models to known processes. The last example allowed the parameter in the
fitted model to be determined by some appropriate or accepted estimation

procedure which in turn gave the fitted parameter as a function of the
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parameters in the true process. As we have already mentioned in the
introduction the fitting and estimation of pure autoregressive models has
wide appeal and the next section deals with the problem of finding the
percentage loss when we fit pure autoregressive models where the process
follows (in general) some other (known) structure.

3.5 Fitting autoregressives when we allow the parameters to be determined
by the autocorrelations of the true process

The previous section contained examples of misspecified models when the
parameters of both the true process and fitted model were arbitrarily chosen.
We have seen in equation (3.4) the logic of allowing pure autoregressive
parameters to be determined by the autocorrelations of the true process via
the Yule-Walker equations even when one is misspecifying the model. This was
further illustrated in examples 3.5, 3.6 and 3.7 where the autoregressive
parameters so chosen would have minimised the one step ahead percentage loss
of forecasts. (Bloomfield (1972) has proved these results in general). This
section considers the consequences of fitting an AR(p) model to an ARMA(p,q)
process. The results obtained will thus demonstrate how much is lost in terms
of forecast accuracy when an autoregressive model is fitted to a large sample
of data generated by an ARMA process.

Firstly we examine in detail what happens when we fit an AR(p) process to
a moving average model of order 1. This possibility has been touched upon by
Box & Jenkins (1973), and we shall return to their example later.

In general if we fit an AR(p) model, we allow the coefficients

¢;Z¢g,...,¢;, to be obtained from the solution of (3.4), namely from

A i Y -
g, RN o]
g, b1 P 0, o
/ _ 3.39
g = e, p 1
V4
| o [ Fpa OO B e

where the theoretical autocorrelations may be obtained using an algorithm of

McLeod (1975,1977).
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Galbraith and Galbraith (1974) have determined the inverses of certain
patterned matrices of the type in (3.39) so that the exact solution of (3.39)
is, in theory, possible. If the true process is MA(1), pj = 0, j 2 2, so that
(3.39) becomes, simply,

7/ -l -y ~ 4
T;,;l 1 o e,
’ l . o 0
g, Pl
. = Lo ) (3.40)
N .. P
@) .o
g’ e 1| |o
L p’-‘ . 1 ol L. -

The easiest way to solve (3.40) is to write out the equations involved in

4
full, and to solve for ﬁs in reverse order, j = p’, p'- lyeees2yle

We find
J
g o )Py N
3 = D, ’ J = lseeeyp
P

where DS is the detemminant of an (sxs) matrix with unity on the main diagonal

and p1 on the first super and sub diagonals, and Do = 1, We can write

f)
_ AP
Dp’ =P Mp’

where Mp, satisfies the recurrence relation

M - 1/p, My, + Mz =0 (3.41)

and so has solution
Mp,z sinh((p"+ 1)B)/sinhB

where coshB = l/2p1 and p, £ 1/2.

Hence D= plp sinh((p’+ 1)B)/sinhB and it follows that

' (=1)3 sinh[(p’ - (5-1)8] 5= lyeeusp’
’{J' B sinh[ (p’+ 1) 8] P £1/2 . (3.42)
If p = 1/2)(3.41) has solution
Mpl: (p'+ 1)
so that Dpl= (1/2)pkp'+ 1)
i gl L7 g0l L X (5.43)

Y (p'+ 1)
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If the true process has moving average parameter ©, so that

p = o/ + ©°) the solutions (3.42) may be rewritten in the form

}Z{.,= (-l)j-l (l/g)pl-(j-l )- Qpi(j-l) J= lyeeesp

and we see that as p’~ o, so that the order of the fitted autoregressive

(3.44)

becomes infinite, for fixed finite j,

! (o] 3= lyeass
?; (-8) o4 1.

il

Note also that the solution (3.43) for the ﬁ&l corresponds to fitting an
AR(p) model to the non invertible moving average process of order 1 given by
Xt = ag + 8oy

Even though we have the exact solution for the AR parameters in (3.43) and
(3.44), an analytic expression for P(h) from (3.34) in the general case seems
algebraically intractible.

A neat expression is possible, however for P(l) in fitting AR(p) to the
boundary non-invertible MA(l) process.

From (3.22), (3.24), (3.25) and (3.30) we find, in this case that with
¢: =p/(p+l), ﬂ; = -(p-1)/(p%1) 5 uss ﬁ%: = (-l)ptl/(ﬁkl) we get after some
algebra, d = 1, d = 13 )
1, b = 1/(B+l), b = =1/(B+1),uue, by, = (1)P/(BHL), by,
o, = P/(Frl)y o, = V/(B+1)?, of = (1)) /)T (52 2)
3,(1) = p/(5+1), 2;(1) = (-13/(54) (3= 15000080, 2= 0 520+ L

Hence the loss in forecasting with the AR(p) model is

b =0 (j =2);

0

P() = I (d,, - a,(1))°
P 3
= 2, (dsy - a;(1))

/

‘ P
(d - a,(1))° + jgl(l/pﬁrl)z

1/(541).

We note that this is the percentage loss one step ahead incurred in fitting

an AR(p) model to the extreme case of an MA(1) process.
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Example 3.9
Box and Jenkins (1973) in reply to Chatfield & Prothero (l973a),p 341,
stress that if the true process that a time series follows is MA(l), for
example
Xt = 3 t=1

one would prefer to estimate the single parameter 0.8 rather than the many

- 0088

autoregressive coefficients in the infinite representation

+ 0.64X _

t-2

X, + 0.8%,_ +

+ + 0.51X —ateee = 3y

If one did fit an autoregressive model, in practice one would choose a finite
length (p'say), and therefore, asymptotically, the parameter estimates would
tend to the values given by (3.42) or equivalently (3.44). Table 3.8 gives
the asymptotic values (plims) of the autoregressive parameters one gets in
fitting autoregressives to the above moving average process for different
values of p'.

TABLE 3.8

FITTED AR COEFFICIENTS IN FITTING AR(p’) TO THE

MA(L) PROCESS X, = ay ~0.8a,
A A A T A S A
1] 0.49
2| 0.64 0.31
3] 0,71 0.45 0,22
41 0,75 0.53 0.34 0.17
5| 0.77 0.57 0.41 0.26 0.13
6| 0.78 0.60 0.45 0.32 0.20 0.10
7| 0.79 0.61 0.47 0.35 0.25 0.16 0.08
gl 0,79 0.62 0.49 0.37 0.28 0.20 0.13 0,06
- | 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17 ...,
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It is clear that the first three or four fitted parameters get close to
the corresponding ones in the infinite autoregressive representation for
moderately small p:

A measure of how much one would lose from a forecasting point of view is
given by P(h) defined in (3.34). Table 3.9 contains values of the percentage
loss of forecasts calculated using the asymptotic parameter estimates given
in Table 3.7.

TABLE 3.9

PERCENT h-STEP LOSS FOR FITTING AR(Y) TO THE

MA(1) PROCESS X, = a, - 0.8a,_
pl
h 1 2 3 4 5 6 7 8

1 2.0 12.8 7.3 4.3 2.7 1.7 1.0 0.6

2 5.7 3.0 1.7 1.0 0.6 0.4 0.2 0.1

3 1.3 2.4 1.5 0.9 0.6 0.4 0.2 0.1

4 0.3 l.l l.3 0'9 0.6 0.4 0.2 0.1

It can be seen the loss incurred in fitting only, say, an AR(4) model is
surprisingly low, the worst case throughout being at one step ahead. Even for
only fitting an AR(1) model, above one step ahead the loss incurred is again
surprisingly low. We investigate this latter phenomenon by determining P(h)
for fitting an AR(1) model to various MA(1) processes using (3.44). In this
case, of course, ﬁ; is given by p, .

P(h) for h = 1,2,3 and various © values in the model

Xt = at + Gat_1

are plotted in figure 3.2, The general picture that emerges is that P(h) is
symmetric in © (see later, p77 , where this is generalised slightly) and
that for 2 or more steps ahead very little is lost in using an AR(1) model
to forecast, this loss being always less than 7%. Even at one step ahead

for © values as large as + 0.6, the percentage error is less than 10%.
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FIGURE 3.2

P(h) FOR FITTING AR(1) TO MA(l) FOR VARIOUS
© VALUES

L P(h) %
50

1 40

+ 30

+ 20

+ 10

n >
0.0 0.2 0.4 0.6 0.8 e 1.0

3.6 A property of P(h) for fitting autoregressive models to ARMA(p,q)
processes

It was noted in Example 3.9 that P(h) was symmetric in @ for fitting AR(1)

to an MA(l) process. We now show this property is a special case of the
following more general result concerning fitting a general AR(p) model to any
ARMA(p,q) process.
Theorem 3.1

If an AR(PF) model is fitted to the ARMA(p,q) process

#(B)X, = ©(B)a,

in the manner given by solving the Yule Walker equations as in (3.39) and the
process parameters ¢E(i = 1,250004p)s Gi (1 =1,2,...,q) are changed to
(-1)ig{i (1 = lyeeesp)s (-1)i@i(i = ly...5q), then the percentage losses

given by (3.34) in each case are identical.
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Examples Fitting AR(p) to:

(a)

an MA(2) process X, = a, +0a  + G»aat_2

P(h) will be the same as in X, = a, - © a,_ + CIC A
(b)

an ARMA(1l,1) process X¢ - 1Xt_1 = a, + G)lat_1

P(h) will be the same as in Xg + ﬁ;xt_l = a, - G&at_l .
(c)

an ARMA(1,2) process X, - g{lx,c_l =a +Qa +6a

The theorem applied here means P(h) will be identical for processes
for which we fix 6  and vary ¢; and © as in (b).

(d)

an ARMA(2,1) process X, - £ X

t 17t-1 ﬁéxt-a = 3 + Gla

t-1
Similar reasoning as in (c) after fixing ﬁ;.

Proof of Theorem 3.1

To prove the theorem we need a few preliminary results concerning the
solution of equations of the Yule-Walker type, on which the p’ autoregressive
parameters rely. These are given in Lemmas 3.1,3.2,3.3,3.4.

‘Lemma 3,1

Consider solving the equations (finite or infinite in number)

r - - - o -
1 e1 ea’ o« o d1 Ki
f 1 e d K
1 1 } 2 3
f £ 1 d _ |k (3.46)
2 1 . 3 = a
_ J L J |

i i i
In (3.46) replace e; by (-1) e; f. by (=1) fi and K; by (-1)1Ki

(i = 1,2y6ee ). If we now multiply all odd rows by -1, the new equations

that have to be solved are
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F — - - -y
-1 e1 -e2 ea - i dl Ki
-f 1 -e e a' K

1 1l 2 2 2
[
-f2 f1 -1 e da = 1(:3
. -f 1 ) .
1 .
which may be equivalently written
[ 1 e e e T M-d K
1 2 3 1
f 1 e e d’ K
1 1 3 23 2
. ' -
£ £01 e -d, = K, (3.47)
£ £ £ 1 d’ :
3 2 1 . 4
- p — - ‘L -

From (3.46) and (3.47) we see that if dl’dz"°' are the solutions of
i i i .
(3.46) the Changes {ei g (-l) ei’ fi - ("l) fi, Ki - ("'l) Ki} (l = 1’2,0 oo)
yields solutions (-l)ldi (i=1,2,004)e
. . Pa 4
Note that if e, = f;, = K, = p; (i = 1,...,p), and d; = g{i (3.46) ;
becomes the Yule Walker equations described by (3.39).

Lemma 3.2

The infinite MA representation of the ARMA(p,q) process is given by

(3.22), viz

Xt:d(B)at
o, =d ggfd 0,1 (3.48)
where . =d, - . p.d. . J=0,1y.0e04q 3.48
i R R
Equations (3.48) may be written in matrix fomm
(1 o0 o 0 .. J7a ] "o+ 4]
. ] 1 1 M
_¢; 1 . ) d o+ fz
-gfa -;fl 1 d, = (-)3+gf3
-dst_}{z_-pll 1 .




which is in the form (3.46) with

e. = 0 (i = 1,2,-0- )

1
£, = {_%i (1= 1,2,..0,p)
1 0 (i >p)
gi + ﬁi i - 1,2,900 ’min(p’q)
Ki= @i i: p+l,.¢c,q if q>p

]

ﬁi i= qtlye..p if p>q
0 elsewhere

so that we may apply lemma 3.1 and conclude that if we deplace Gi by
(-1)191, ﬂi by (—l)lﬁi, the infinite MA representation of the new process has
moving average coefficients given by (—l)ldi 1= 041525000 o

It therefore follows that since

E

Py = J_odJ JJ(k/_o ; k= 0yly0ees (3.49)

and if we Teplace d; by (-1)de, then

pat h j+k
on( 1) dj( 1) J+k/3‘0 J

2
(-1) JzodeJ+k/5zodJ

i

('1) pk .

ioe- ei had ("l)lgi (i l,-oo’p)

. implies p, - (-l)kpk k= 0,1,...
and 4y ~ (DY, (= L)

This leads us to Lemma 3.3.

Lemma 3.3

Using the results in Lemma 3.1 with e, = f, = K, = p, and d, = g, we get

that if p - (-1)kpk (k = Oylyess)
/ 3 Il
ﬁi hd (_l)lﬁi . (i = 1,2,...'p’)
Hence combining this result with lemma 3.2, if the fitting>of an AR(p)

model to an ARMA(p,q) process yields, asymptotically, autoregressive

'] / ’ . i
parameters él,ﬁ;,... d;, the transformation of the parameters o, - (-1) o
(i=1,...,q) and ﬁi - (-1)l¢i (1 = lyee.yp) yields autoregressive

'
parameters -¢;ﬁ 8., 85 e (-1)95;; in the equivalent AR(g) fit.

80.



Thus our main theorem will be proved if we can show that under the
transformation of the autoregressive parameters ﬁ;'a (-l)i¢E,,P(h) is
unchanged. This we do in Lemma 3.4.

Lemma 3.4
From (3.33), viz
P(h) = !ihlV%H¥ihl
we need only show that the numerator is unaltered by the parameter
transformations, since, in Lemma 3.2, we showed V(h) was unaltered,

From (3.32),

f _ % _ 2 2
V() - v(h) = SE (d,,, - a;(h))® oy (3.50)
J
where, from (3.30) a;(h) = &/ h P54 (3.51)

and the coefficients c; and bj are determined by (3.24) and (3.25).

Since we are fitting AR(P), we get from (3.24)
c(B) = (B)

yielding the recurrence relation
/

P,
c.=.Z 8. c,_. j = 0,1,... (3.52)
b )T c.=0, <0
J
and from (3.25)
b(B) = 8(B)d(B)
yielding the recurrence relation
b, = d ggf' d 0,1 (3.53)
. = s T oL . o3 j = 9lgs e .
J J 1=1°1 J=1 d. = 0’ J <0

b

Expression (3.52) is very similar to equation (3.48) in Lemma 3.2, so

2 !

that using similar reasoning we get that the transformation %; - (-l)lgfi
e h|

l ."’-l « o

implies c, (-1) ¢ . , -

Also, in (3.53) putting dj - (-l)Jdj and d& - (—l)lﬁi , it follows that

these imply bj - (-l)ij, and therefore

j .
_ h+2 _1yd-
g§o( 1) °h+z( 1) zbj-z
. J
(. j+h
= (=177 5L,y o Ps_y

= (-1 a;(n)
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by (3.51).
, . .
Hence ﬁi - (-l)lﬁ{ implies aj(h) - (-l)J+haj(h) so that, finally,
from (3.50) and the results in Lemma 3.2,

-1)3*hy

son = (17 Pa (0))%0,2

A(

[>¢]

2
PRI NUNEA

V(n) - v(h);

i.e. V?h) - V(h) is unaltered by the transformation ﬁ; - (-l)iﬁg , and
therefore, so is P(h).
We have thus proved Theorem 3.1.

The usefulness of this theorem lies in the fact that when we want to
examine different values of P(h) for fitting AR(p) to ARMA(p,q), the range
of values of the autoregressive-moving average parameters ¢Q,¢;,...,¢%;
ea,ez,...,eq considered will not have to be so large owing to the identical
values taken by P(h) under the transformations ﬁi - (-l)ig{.1 ) 9 = (-l)i@i .

3.7 Percentage loss for fitting AR(p) models to ARMA(p,q) processes

Some processes reported in the literature

We first consider two examples of fitted series reported in the literature
and examine what happens to P(h) when we successively fit higher and higher
order autoregressive processes to them.

Box and Jenkins (1970), p 293 have analysed series A (Chemical Process
Concentration Readings, p 325) and found the observations to fit the ARMA(1,1)
process given by

X, - 0.92X,_ = 1.45 + a, - 0.58a,

For our purposes we assume the two parameter values estimated are the
actual values that the process possesses. We note in passing that the infinite
autoregressive representation of the above process is (ignoring the constant
1.45)

(1 - 0.34B - 0.197B® - 0.114B® - 0.066B* - 0.0398%...)%, = a

t
/
For fitting AR(p), allowing the parameters ¢;,ﬁ;,...,ﬁ;,to be determined

by (3.4) and (3.39), the results of successive fittings are collected in
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Table 3.10.

TABLE 3,10
FITTED AR COEFFICIENTS IN FITTING AR(p) TO
X, - 092X, = a, - 0.58a,_

! ] [} [ ] 1] 1 / [
P | £ £, g, g, g g, g g
1 0.59
2 | 0.41 0.30
3 | 0.36 0.23 0.17
4 | 0.35 0.21 0.13 0.10
5 | 0.34 0.20 0.12 0.08 0.05
6 | 0.34 0.20 0.12 0.07 0,04 0.03
7 | 0.34 0.20 0.12 0.07 0.04 0.03 0.02
8 | 0.34 0,20 0,11 0,07 0.04 0.02 0.0l 0.01

Note that the first few autoregressive parameters home-in very quickly

to the corresponding ones in the infinite AR representation, so that we might

expect P(h) to be low if we, say, fitted an AR(2) or AR(3) process to the

series A and used that to forecast it,

This is confirmed in Table 3.11 where P(h), calculated using the computer

program with the AR parameters given in Table 10, are reported for different

h.

PERCENT h-STEP LOSS FOR FITTING AR(g) TO THE

TABLE 3.11

ARMA(1,1) PROCESS X, - 0.92X,_, = a, - 0.58a,
pl
h b 1 2 3 4 5 6 7 8
1 | 143 4.2 1.4 0.4 0,1 0.1 0.0 0.0
2 ] 16.6 55 1.8 0.6 0.2 0.1 0.0 0.0
3 { 20,7 50 2.0 0.7 0.2 0.1 0.0 0.0
4 } 21.8 59 1.7 0.7 0.3 0.1 0.0 0.0
5 | 209 6.5 1.9 0.6 0.3 0.1 0.0 0.0
6 | 18.9 6.9 2.0 0.6 0.2 0.1 0.0 0.0

Note that if one fitted an AR(3) model at no stage does the percentage loss
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become more than 2% and for an AR(4) model it is no more than 1%.

At first sight, then,the above example seems to imply, in spite of
the fact that the series identified was nearly non-stationary, a sufficiently
high autoregressive will do practically as well as the true model,
asymptotically, from a forecasting point of view.

A series which has created a certain amount of controversy after analysis
of Jenkins and Watts (1968) and Box and Jenkins (1970), p 410 is the well
known gas furnace data. Chatfield (1977) has pointed out a number of problems
with the analyses and conclusions concerning the model fitted by both pairs
of authors. We shall assume that the process follows the ARMA(4,2) model,
jdentified and estimated by Box & Jenkins (1970), p 409,

(1 - 2.42B + 2.388° - 1.16B° + O.23B4)Xt = (1 - 0.31B + 0.47Bz)at
and fit successively higher order AR processes and examine P(h) in each case.
The theoretical autocorrelations for the above process were calculated within

the computer program for P(h) according to McLeod (1975,1977) and used to

/ [ [
determine the fitted AR coefficients ﬁ;,ﬁ;,...,ﬁ;,, which are given in Table

3.12.
TABLE 3,12
FITTED AR COEFFICIENT IN FITTING AR(p? TO THE
GAS FURNACE DATA MODEL

AR A A
1 0.77
2 1.65 -0.80
3 2,20 -1.69 0.46
4 2.10 -1.34 0.01 0.21
5 2,13 -1.34 -0.17 0.50 =0.14
6 2.11 -1.27 -0.20 0.32 0.15 =0.14
7 2.11 -1.27 -0.21 0.32 0.18 -0.18 0.02
8 2,11 -1.26 -0.22 0.30 0.19 -0,09 -0.13 0.07
9 2.11 -1.26 =0.,22 0.30 0.19 -0.09 -0.11 0.05 0,01
10 2,11 -1.26 -0.22 0.29 0,19 -0.08 -0.12 O,01 0,07 -0.03

The infinite AR representation of the process is

(1 - 2.11B + 1.26B® + 0.,22B% - 0,29B* - 0.19B° + 0,08B% + 0,16B’...)X, = a

t t
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so that from Table 3.12 we see that an AR(8) fit virtually gets the first
6 autoregressive parameters correct. Table 3.13 gives values of P(h) for all
the autoregressive fits given in Table 3.12.

TABLE 3.13

PERCENT h-STEP LOSS FOR FITTING AR(p) TO THE ARMA(4,2)
PROCESS (1-2.42B+2.38B5-1.16B5+O.23B4)x£=(1-0.31B+0.47B ay

p
h 1 2 3 4 5 6 7 8 9 10

1 796 131 9.3 4.6 2,6 0.7 0,6 0.1 0.1 0.0
2] 30 155 8.2 6.1 2.5 0.9 0.7 0.1 0.2 0.0
3 187 144 6,0 6.0 2,0 0.9 0.6 0.1 0.2 0.0
4 9.0 130 4.0 5.5 1.5 0.8 0.5 0.1 0.1 0.0
5 | 51.8 19 2.5 5.0 1.1 0,7 0.4 0.1 0.1 0.0

6 {30.5 109 1.6 4,7 0.8 0.7 0.4 0.1 0.1 0.0

Not surprisingly, autoregressive fits of order below 4 do not do very well,
but fits above order 6 have very low percentage loss. It thus appears (not
surprisingly) from these two examples, that it is the moving average parameters
that really affect P(h) to the greatest extent. In both examples the MA
coefficient values were not very large so that further series need to be
examined where the MA coefficients are nearer the non-invertible boundary in
addition to studying the affect (or lack of it) of any autoregressive
coefficients.

Processes that are pre-chosen

There seem to be very few stationary ARMA(p,q) processes which have been
identified, estimated and reported in the literature (we consider non
stationary processes in sections 3.9 and 3.10), so that a study of auto-
regressive fitting in the manner indicated above (with a view to looking at
P(h)) to known identified time series in the ARMA(p,q) class is only possible
by self choice of such processes. Problems of estimation for these chosen

series in the fitted model are dealt with in section 3.8 .
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Percentage loss for fitting AR(p) models to MA(2) processes

If the true process is MA(2) given by

X, = + 68 a
:.L

£ = 3 + Gza

t-1 t-2
the choice of values for the parameters G;,Gg is restricted by the
invertibility conditions
ea + Gz > -1
9 -6, <1 (3.54)
-1 < 92 < 1
(see Box & Jenkins (1970), p 70 and Granger and Newbold (1977), p 142).

From Theorem 3.1, once 92 has been fixed we need only consider positive
values (say) of G&, for P(h) will be symmetric in GE for fixed @2.

The chosen parameter values and calculations of P(h) (using the computer
program) are collected in Table A3.1, page 115, Note that the relevant
figures are the upper ones in each cell of that table.

As might be expected one does worse when the MA coefficients are near the
boundary of the invertibility region; this is especially so at one step ahead
even for an AR(4) fit. Since Parzen (1969) has advocated fitting a high order
autoregressive to any series for his spectrum estimation, it seems worthwhile
to look at such fits when they are made to near boundary invertible processes.
Since one would rarely consider fitting an autoregressive above an order of
about 10, some near non invertible processes were chosen from Table A3.1, and
AR models up to order 10 were fitted. Table A3.2 contains the one step ahead
percentage losses and Table A3.3 the corresponding values of the AR
coefficients.

We see that the high P(l) values are reflected by the very slow dying out
of the fitted autoregressive coefficients which, of course, are a direct
result of the MA coefficients being near the non-invertibility boundary. The
latter situation could arise if one over differenced a time series e.qg. if
one differenced a series that did not need differencing, the moving average

coefficients of the differenced series would be that much closer to the non

invertibility boundary. Any autoregressive fit to the resultant series (as
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would be the case if one wished to use the Parzen (1969) spectrum
estimation procedure) would suffer from a very slow dying out of the fitted
coefficients.

These results then demonstrate that, at least in theory, there exist
simple two parameter time series models for which high order autoregressives
would give grossly sub-optimal forecasting performance. However, as can be
seen in Table A3.l, one has only to move a short distance into the
invertibility region before AR(4) models give satisfactory forecasts when
the true process is MA(2).

Percentage loss for fitting AR(p) models to ARMA(1,2) processes

We now examine the effects of including an autoregressive parameter, in
addition to two moving average ones, when evaluating the percentage loss for
fitting AR(ﬁ) models to such processes., If the true process is

Xy = A%y = ap+Qag, + 03,
we shall need the invertibility conditions (3.54) on the moving average
parameters G&, GZ, with the usual stationarity condition |¢;l <1,

From Theorem 3.1 and example (c), p78, for fitting AR(ﬁ) models and
examining P(h), once 92 is fixed, P(h) will be identical for the pairs of
values (¢;’€E)’ (—ﬁ;, -GE) and (-ﬁ;,ea), (ﬁ;,-c&). Hence we need only
consider positive values of § .

Calculations of P(h), using the computer program, for different values of
¢;, © and © are given as the upper figures in each cell of Table A3.4,
pagell7. We notice again that the P(h) values are particularly large near the
boundary of the invertibility region, whatever value of ﬁ; we have but at 4
steps ahead the boundary values have a less marked affect. Processes for
which ¢; = 0.4, G& = 0.2, 92 = 0.4 (say) have P(h) values which are less than
10% for any autoregressive fit.

We note also that the P(h) values for the processes

(1 - o.413)x,c = (1 - 1.4B + o.4133)at (3.55)
and (1 - 0.8B)X, = (1 - 1.8B + 0.8B2)at (3.56)

are the same. That this must be so can be seen by noting that the right hand
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side of (3.55) may be written (1 - B){(1 - 0.4B) and the right hand side of
(3.56) as (1 - B)(1 - 0.8B) so that the processes represented by (3.55) and
(3.56) are equivalent to the non invertible MA(1l) process

L
by cancelling factors on both sides.

A closer look at the near boundary invertible processes is provided in
Tables A3.5 and A3.6. P(l) is calculated for autoregressive fits up to order
10 together with the fitted coefficients. The same picture emerges as in the
pure MA(2) process in Tables A3.2 and A3.3, namely that one can do really
quite badly even for an AR(10) fit when one is dealing with certain ARMA(1,2)

processes.

Percentage loss for fitting AR(p) models to ARMA(1,1) processes

We have already seen in the first example of section 3.7 that not very

much is lost from the point of view of P(h) when one fits AR(ﬁ) to an
ARMA(1,1) process which has an autoregressive parameter near the non stationary
boundary with the moving average parameter near to 0.6. Therefore, in the light
of the results so far we would expect the moving average coefficient to have a
greater influence on the value of P(h) than the autoregressive coefficients.
These suspicions are borne out by examination of the upper figures in each
cell of table A3.7, which gives the P(h) values for fitting AR(P) to the model
Xg - ﬁlxt-l =t 8 A,
over different values of (¢;,€a). Again, we use Theorem 3.1 to cut down the
number of pairs of (¢ﬁ,€3) we need look at. Again, most is lost one step ahead,
but apart from near boundary value cases of the parameters, fitting an AR(4)
model can yield surprisingly low values of P(h). For example with G& =+ 0.75
and any ¢; the percentage loss one step ahead is no more than 5%.

Percentage loss for fitting AR(p) models to ARMA(2,1) processes

If the true process is

xt - ¢;xt-1 - ¢;xt-a = 3 + €)J.at—l

we shall need, for choice of values of ﬁ;,ﬁ; and GR, the stationarity
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conditions
5; + ﬁ; <1
g, -4 <1

-1 < 5; <1

together with the usual invertibility condition IG&I < 1. (See Box & Jenkins
(1970), p 58.)

From Theorem 3.1, for examining P(h), once d; is fixed, P(h) will be
identical for the pairs of values (¢;,€a), (-¢;,-e&) and (-A;,ea), (g&,-é&).
Hence we need only consider positive values of G&.

Table A3.8 contains calculations of P(h) for different (¢;,¢;,ea) and
different autoregressive fits. The most striking feature of these results is
that if one fitted an AR(4) model, the most one could lose for any ARMA(2,1)
process given in Table A3.8 is a little over 12%, this being at one step
ahead. At two steps ahead this figure is a little over 5%. In these cases it
appears to be (as expected) the high value of the moving average parameter

which is the major factor that causes the P(h) to be high.

Conclusions concerning fitting AR(p) models to ARMA(p,q) processes

The results of this section seem to imply that when one fits a high order
autoregressive to a known process, the asymptotic loss from a forecasting
point of view will be low if any moving average parameters are well within
their invertibility boundary values. In the latter case all that seems to
matter is to get the order of the fitted autoregressive model two or three
above the order of the autoregressive parameters in the true process.

However, if any of the moving average parameters are near their
invertibility boundary values a great deal can be lost, asymptotically, even
for fitting autoregressives with an order as high as 10,

It appears, then, that very often relatively little is lost if one fits
autoregressive processes to mixed ARMA processes, and that typically only one
or two additional parameters are required to produce forecasts which are
almost as good as the optimal. Exceptions to this assertion arise only when

the true process has moving average parameters close to or on the boundary
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of the invertibility region. In such, fairly rare, cases even high order
autoregressives can produce grossly sub-optimal forecasts.

We have assumed in this section that no estimation error will be present
in either the fitted model or the true process since we have taken both to
be "known". This is, of course, unrealistic and consideration is given to

the estimation problem in the next section.

3.8 Percentage loss for fitting ARSéZ models to ARMA §g,g2 processes

taking estimation error into account in the fitted model

Yamamoto (1976a) has given a manageable expression for the asymptotic
mean square error (a.m.s.e.) of prediction h steps ahead when one fits an
autoregressive model to a process which is known to be autoregressive (with
the same order as the fitted model). His work extends that given previously
by Bloomfield (1972), Bhansali (1974) and Schmidt (1974).

We now extend Yamamoto's methods to determine the a.m.s.e. when an
AR(P) model is fitted to any ARMA (p,q) process, taking into account
estimation error in the fitted coefficients. The fitted AR(p) model is a
special case of (3.23) namely

#(B)X, = m, (3.57)
where we assume X, follows the process (3.21), and the fitted coefficients
ﬁ:,ﬁ;,...,ﬁg, are obtained from (3.39).

’ [
Defining X, = (xt,xt_l,...,xt_ﬁ+1) » My = (nt,O,...,O) and

o ’ ¢ '~
A A
1 o 0
A= 0 1 0 (3.58)
0 0 1 0 |

we may write (3.57) in the equivalent form

X

Noting the recursive nature of (3.59) we may write

= M, D (2.59)

® .
- J

%= iE0 & Tej (3.60)

so that from (3.24) we get that the (1,1)-element of A’ is ¢5+ From (3.27),

(viz the optimal least squares forecast based on the fitted model)
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[+]
nyh = 3%0%5+h Mh-j

and defining the (p’ x 1) column vector e¢’= (1,0,...,0) we may write

9

= (3+h)
gn,h J-go s A .-n-j

B, €A AJnn_

hoo

Il

Ann_

= o APy (3.61)
where we have used (3.60). The predictor (3.27) or equivalently (3.61) assumes
we know the coefficients glz (;J; ,pf;,...,p'l;,) s whereas in practice a least
squares fit will only provide estimates §'= (Zf’z;,...,ﬂl;,) . Defining

a(h) = ¢'A°
. N ’ I'4 ’ . L4 14 /
we write A as the matrix (3.58) with 31 ,32,...,3p, replacing ’{1 ’da”" ,pfp,

so that the predictor (3.61) with estimated coefficients becomes

PS /Ah
%,h = 2 AX
= §'(n)x (say) (3.62)

Following Yamamoto (19763 we form a Taylor expansion of (3.62) around

f: ¢ , obtaining

[
~ ! 4
9. h E(h)l(n + (f - §) [—EH X + higher order terms

= 9,n 7 (§ - g)’[é%éb_)_] X, + higher order temms (3.63)

where the higher order terms are 0(1/n). Also, Yamamoto shows that

[aagb ] (= My, say) is the first (p x p) submatrix of

h-1 s
E, (e M) (3.64)

where ® is the Kronecker product.
From (3.63) and (3.61) we may write, approximately,

(xn+h - an,h) = (xn+h - gn,h) + (8- §)'Mh X

‘
= (xn+h - fn,h) + (fn,h B gn,h) + (2- - §) WX (3.65)
where f_ is defined by (3.26), namely the optimal forecast from a correctly
’

fitted model. We have shown in Section 3.4 that the first two terms of (3.65)
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are uncorrelated; the first and last temms will also be uncorrelated since
the former involves future values of the shock series generating the Xt,
whilst the latter only involves past values,

We now assume (as does Yamamoto (1976a)) that the observations used for

prediction are uncorrelated with those used in estimating the ¢:,¢;,...,¢;,

in 2. In other words we assume f is based on distant observations, so that

o>

is independent of zn' Since (xn+h - fn,h) is uncorrelated with
S ’ . > 3 -
(2 - g) M X we will have established that (fn,h - gn,h) is, also, if we

can establish that (X

n+h gn,h) is.

Thus we need to show, asymptotically,
’
E[(2 - §) M X (X, - gn,h)] =0 (3.66)
But, by the assumption above, f is independent of Xn, and % .h only involves
~ ’
Xn‘ Further, since xn+h is even more distant, it is certainly independent
of §. Hence (3.66) is
~
ad
E[(2 - ) EMX (X p - 9, 1))
Asymptotically the first temm in this expression is zero and so the result
is proved.
Hence, taking variances throughout (3.65), we get, asymptotically,

A
writing the left hand side of the expression as V (h),

o 2
v(h) - fn,h) + Vy

v(h) + V(gn,h

v (n) + v, 2 (3.67)

U
where V(h), V(h) are defined in (3.32) and
3 _ ' /
v?=Elx M (8-8)0(-8 mx]
‘ / s
Define E[}nxn] = I, Then, since E[§ - ¢)(§ - 8)] = Vg » where V£ is

given by (3.9), and, assuming as before that § and Zn are uncorrelated,

we get
2 _ 4 n
Vo= Tr(M, Vs MhZ) (3.68)
From (3.67), we can obtain

V(h) - V(h) _ V(R) - V(h) .\ N
v(h) - v(h) v(h)
2

Vh
P(h) + Ty (3.69)
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where P(h) is defined by (3.33). Writing the left hand side of (3.69) as
S?h) we get

PA(h) = P(h) + vha/v(h) (3.70)
and so the proportionate loss for an estimated model will be the
proportionate loss for the wrongly fitted model plus Vha/V(h).

Of course, if we assume we are estimating an AR(p) process,

9,h = fn,n
and so from (3.67), we get approximately,

A

V() = V(h) + v, ® (3.71)
where Vha = Tr(MhE-thZ)oaa/h,

since nVg = E-loaa (Box and Jenkins (1970), pp 274-284). Equation (3.71) is
the equivalent of equation (4.5) given by Yamamoto .(1976a), p 125.

Example 3.10 Fitting AR(1) to MA(1)

Let the true process be Xt = a, + G&at_l.
From (3.39) in Section 3.5 ,61’ = p,» the matrix A defined by (3.58) is

/
a scalar, i.e. ﬁ; , and hence for (3.61) we have
_ ¢+h
gn,h - ﬁ; xn
)
so that a(h) = 4" =p " .
. . h-
Therefore Mh is a scalar, viz hp1 1,
Also,
- _ 2y . 3
= var[Xh] = (1 + G& )oa
and from example 3.2

nVa

i

n var[ﬁz]

{1-02(3-4p2)}

It therefore follows that

2 _,343(h1),. 3 2y _ 2
V,° = b (1 P, (3 - 491"‘))(1 +6 )ora /n.

h
so that from (3.70)

(h-1)
h%f (1 - 0 2(3 - 4p, %)) (1 + 0 ?)

P‘\(h) = P(h) + n.V({h) Oaa

where P(h) is, from example 3.5 given by
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- - 3 2, 2
P(1) = (p, e;) +6,°7, "%
2h
P(h) = p; hz2,

Note also that V(h) = (1 + GEB)°a2 (h 2 2) so that
N
P(h) = pfh + hapf(h 1)(1 - p13(3 - 4p12))/h. (h 2 2)
In the most extreme case, GE = 1, and we find
A
P(1)=1/2+1/mn ,

5?h) (1/2)%P + ha(l/é)z(h-l).l/2n.

h 22
(1/2)2P(1 + 2n%/n)

Evaluation of Percentage loss taking estimation error into_account

A
To evaluate P(h) given by (3.70) the additional work needed over the

previous calculations of P(h), given by the computer program and reported
in Tables A3.1 - A3.8 as the upper values in each cell, is to determine Vha
from (3.68). I, the (p’x p) variance covariance matrix of the parent process
is available from an algorithm given by McLeod (1975, 1977) whilst Vs
involves programming, in general, its definition given by (3.9), which in
turn involves programming the variance covariance matrix of the sample auto-
correlation for any ARMA(p,q) process as given by Anderson (1971), p 489. The
latter is relatively straight forward to obtain given sufficient of the
theoretical autocorrelations of the true process obtained from McLeod's
algorithm.

As noted previously, M is the first (p’x p) matrix of a certain Kronecker
product (3.64). The whole matrix from which M is obtained would therefore be

‘2 p'a) and so if one were to calculate all of this matrix one would have

(p
to be working with (for example) (64 x 64) matrices even for an AR(8) fit.
Since this is undesirable from a computing point of view, we give the following
simplification that may be used to obtain Mh in a computer program.

From (3.64) consider the first (p’ x ﬁ) submatrix of AleDAp_l_j. Using
the definition of Kronecker product this will be the (1,1) element of A'j

h=~

- ’3
times AT *7J, Now the (1,1) element of A J must be the same as the (1,1)
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element of Aj, which we noted from (3.60) and (3.24) is the jth
coefficient in the infinite moving average representation of the process
after fitting AR and replacing the corresponding coefficients by their plims,
namely cj, (the cj is the jth temm in the expansion of the asymptotic fitted
process and defined by equation 3.24).

It follows that the first (p’x p) submatrix of MI® A3 4111 be
¢ Ah"]'-j and so from (3.64),

h-1 .
_ h'l'J
Mh = j__z_:o ch (3.72)

The coefficients ¢ (3 = 05142540..) will already have been calculated

in the program to obtain P(h) so that given these it is a straightforward

matter to program (3.72).

Computational results for percentage losses taking estimation error into
account in the fitted AR(d) model

o
We calculate percentage losses P(h) in this section according to equation

(3.70) where the sample size, n, is needed. We note that it is only in the
added factor th/v(h) that we require n and so, given a specific model for
which we have already calculated P(h), once P?h) is found for a certain n,
it would be a straightforward matter to determine P?h) for any other sample
size. Throughout this section we use n = 50.
Example 3.9 (continued)

Initially, we refer to example (3.9) where the possibility of fitting
AR(P) models to the MA(1) process

X_

t-1
was considered, percentage losses from P(h) defined in (3.34), being given
in Table 3.9. From that table we note, in particular that, as is to be expected,
P(1l) decreases steadily as the order of the autoregressive fit, p: increases.,
Table 3.9(A) contains values of the percentage loss of forecasts
A

calculated from P(h) defined in (3.70), taking estimation error into account

/
in the fitted AR(p) models.
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TABLE 3,9(A)

PERCENT h-STEP LOSS FOR FITTING AR(g) TO THE
MA(1) PROCESS X,= a; - 0.8a,

(TAKING ESTIMATION ERROR INTO ACCOUNT)

/

p

1 2 3 4 5 6 7 8
26.7 | 17.5 | 13.4 | 12.7 | 12.7 | 13.8] 15.0 | 16.7
6.6| 7.3 | 7.3] 9.4]10.6|12.8] 14.4 | 16.5
1.9 4.5| 5.4 7.4 8.6/ 10.8}12.4]14.6
0.5| 1.7] 3.6| 5.1| 6.7| 8.8],10.4)12.6

AR OW NN =

At one step ahead we see thgt P?l) first decieases and then increases. Thus,
there exists a point where the order of the autoregressive fit is optimal

for one step ahead forecasting, and more will be lost, asymptotically, from

a forecasting point of view, if further autoregressive coefficients are
included in the fitted model. Clearly, in the above example the optimal order
of fit would be around 4 or 5, the minimum percentage loss being about 13%.

A similar pattern is also apparent for other moving average parameters
when AR(p) models are fitted to them, the optimal order of autoregressive
being different in each case, (as is to be expected). It is also interesting
to note that ﬁ?h) is symmetric in the moving average parameter, ©, as was
proved for P(h) in Theorem 3.1,

We now refer to Tables A3.1, A3.2, A3.4, A3.5, A3.7 and A3.8 where
percentage losses taking estimation error into account, using 6?h) as
defined in (3.70), are calculated for those same true processes that were
described on pages 86 - 89 , when P(h) was considered. Note that, throughout,

relevant figures are the lower ones in each cell of the appropriate table.,

A
Percentage loss, P(h), for fitting AR(p) models to MA(2) processes

Referring to table A3.1, we see that, in general, taking estimation error
into account in the fitted model causes the percentage loss to increase by up
to approximately 15% (this being for near boundary MA(2) processes, fitting an
AR(4) model and one step ahead forecasting). We also note that if the MA process
is moderately within the invertibility boundaries this increase is approxi-

mately 10%.
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Also apparent from this table is the initial decrease and subsequent
increase of P(1)in different processes, for increasing the order of the
fitted model (see for example G; = 0.4, GL = 1,0). Since the table only
deals with fitting up to AR(4), there will be instances where the ﬁ?l)
values will not have levelled out.

Table A3.2 deals with fitting higher order AR(§3 models to some extreme
boundary MA(2) processes, and it can be seen from that Table, in the case
of @2 = =0.4, QL = 0.6 the optimum order of autoregressive fit is p'= 5,
whilst for Gg = -1,0, Gg = 0.0 no optimum appears to have been reached
although it appears the minimum loss could be around 40%.

Percentage loss, ﬁ?h). for fitting AR(p) models to ARMA(1,2) processes

N
The lower values in each cell of Table A3.4 are calculations of P(h)

for different parameters in the ARMA(1,2) process.

We note first that the duality mentioned between the processes (3.35)
and (3.56) (namely the two processes in which ﬁ; = 0.4, 9 =-1.4, 0 = 0.4
and ¢L = 0.8, = -1.8, ©_= 0.8 where P(h) was identical), carries through
to é}h) being identical for the same two processes (which is as it should be).

It can be seen that percentage losses after taking estimation error into
account can be substantially more than without taking estimation error into
account. This is true, mainly, for near boundary ARMA(1,2) processes with
the increase being less marked for a moderate distance within the invertibility
boundaries of the moving average parameters.

When we examine higher order autoregressive fits to near boundary
ARMA(1,2) processes in Table A3.3, a levelling out of P?i) is apparent for
some of these processes. For example when GE = -0.4, Gﬁ = -0.6 and ¢; = 0.5
the optimum order of fit appears to be pl= 4, whilst for GE = -0.4, GE = 1.4,
and ﬁ; = 0.8 the optimum order is when p = 9.

Also, when GB = =-1.0, Gg = 0.0 and ¢; = 0.4 no optimum appears to have
been reached, although it appears the minimum loss will be around 40%., This
is very similar to the result for the pure MA(2) process (in which ¢; could

be considered zero) noted above.
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A
Percentage loss, P(h), for fitting AR(p) models to ARMA(1,1)

and ARMA(2,1) processes |

For fitting AR(p) models to ARMA(1l,1) processes, our conclusions
concerning the percentage loss, P(h), as described on p 88 , can be applied
to the numerical results from P?h) as given by the lower figures in each
cell in Table A3.7. Relatively little is lost for processes for which the
autoregressive parameter is near the non stationary boundary and the moving
average parameter is near 0.6. It is only when the moving average parameter
is near the invertibility boundary IGE' = 1, that percentage losses are large. z
Note, that for the order of autoregressives fitted, no levelling off in ﬁ?l)
is obvious from this table. :

In the case of ARMA(2,1) processes much the same conclusion can be
reached concerning ﬁ?h) as with P(h) on p 88 . We see that at one step ahead
and fitting an AR(4) model to any ARMA(2,1) process the most one would lose
is just under 21%, whilst at 2 steps ahead is just under 27%. In these cases

it is again the high value of the moving average parameter which causes the

problems.

!

Conclusions concerning fitting AR models to ARMA rocesses

taking estimation error into account

The results of this section, where we took estimation error into account
in the fitted model, draw us to conclusions which are rather different, in
general from those of section 3.7, page 89 , where estimation error was ignored. §
As expected, percentage losses are higher for 5}h), the increase being no more |
than 2 or 3% when we fit AR(1) models. However, in some cases, at one step
ahead in particular, percentage loss as given by éih), can first decrease and
then increase for increasing order of autoregressive process fitted. This
would imply that higher and higher order AR's do not necessarily yield results
which give a corresponding improvement in forecasting ability from the fitted

model. The problem of estimating more and more coefficients swamps the

improvement gained from a superior fitting model, when no estimation error

is allowed for.
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3.9 Percentage loss for fitting any ARIMA(phd.d) model to an
other ARIMA(p,d processy d =2 1

Sections 3.1 - 3.8 dealt with situations in which the fitted model and

true process were stationary i.e. no differencing was required in either

case,

We assume now that Y, follows the ARIMA(p,d,q) process
FB)(1 - B)YY, = o(B)a,

where we write (1 - B)dYt = X, so that (3.73) is, alternatively,

#(B)X, = o(B)a,
which is equivalent to (3.21).
If we fit the ARIMA(p,d,q) model
#(8) (1 - B)%, = a(B)
t = i
it is equivalent to
()X, = @(B)n,

which is (3.23).

(3.73)

(3.74)

(3.75)

(3.76)

Therefore, in referring to (3.73) and (3.75) we assume the notation of

Section 3.4 when they are in the equivalent forms (3.74) and (3.76).

From the expression (1 - B)dY = Xt, we may write

t
d

Y, = .£D.Y X
tT % Tty T R

. j=
* _ (oq)I2 _ A1 d?
where Dj = (-1) de = éd—-JLTJ.'-

]
Now define Yi = (Yi,Yy seee¥y o), ).‘1: = (X;s05..+,0) and

.Dl* Dz*’""’ Dd*T
D* = 1 0 0 ,
0 1 0
0 1 0
L .

Then (3.77) may be written

- %
Ye=D¥, v 4

By successivesubstitutionyone can obtain, with D*0

n
=
-
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h-1

- p*h *J
Lon = 0 Xn 55, 0 Xiinej (3.78)
Yn+h will be the first element in ¥n+h’ obtainable by multiplying
'
2: (l,o,... ,O), on th. Hence from (3.78)
y  =eD™y 4 e'hE?D*j X (3.79)
nth = ~ ~N ~ j= ~nt+h-j 3.79

The first term on the right hand side of (3.79) is just a linear combination

of Y _; (3 20), say,
d-1

jgszYn-j (3.80)

From the second term on the right hand side of (3.79)

[] *j _ *j
&0 Xnag = (1005a50,) D5 Xy ]
0
0
L ]
= DyXnrh-;
where Dy is the (1,1) element of o,
h=1
Hence, the second temm is jgoDjxn+h-j’ so that (3.79) becomes
d-1 h-1
Y L4.Y .+ .LD.X (3.81)

nth ~ 350°i'n-3 7 550°5 n+h-j

(Y)

If the optimal h step forecast of Y is, for the correct model, f '/,
n+h nyh

o e(X) : :
h-j 18 fn,h—j’ using an observation of

Granger and Newbold (1977), (equations (4.4.15),(4.4.19) and the paragraph

and the equivalent forecast of Xn+

following (4.4.19)) we may obtain from (3.81)

d-1 h=1
(Y) (X)
f = . . . . . .
nyh = 3Fot¥n-3 * sEoPsfn,h- (3.82)

Let g(Y) (X) be the corresponding forecasts from the incorrectly fitted

n,h’ gn,h
model, then again from (3.81)
d=-1 h-1
(Y) _ (x)
9,h = Zo%i¥n-5 * 12oP5%, h-3 (3.83)
We now write
(Y) _ (Y) (Y) (Y)
Yorh = %n,h = nen = foond * Bpp - 95 1) (3.84)

which is the non-stationary equivalent of (3.28).
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We have, from (3.81) and (3.82)

h-1
(Y) (x)
Yo" = &, Dy (xn+h_j - fn’h_j) (3.85)
and from (3.29), (X - f(x) ) will depend only on a (i >0)
*<?1s YPath-3 T *n,h-j P b n+i .
It follows, therefore, that (Yn+ (Y)) will depend only on a i (i >0).
Also, from (3.82) and (3.83)
() _ (Y) (x) _ (%)
fa,h = 9n,h = E5D3(fn h-j gn.h-j)
h-1 © o
= 20329 201 ~ 1Eo3 (0 - Pa )
h-l ©
= Py 1&(un-g - (0 - Mag,y (3.86)
where we have used (3.31). This latter expression depends only on a3 i=20,

and so the expression in the brackets on the right hand side of (3.84) are
uncorrelated with one another.

Again, denoting the variances of the h step forecast error for the right
and wrong model by V(h) and Vth), we can take variances throughout (3.84) and

use (3.86) to obtain

’ o h-
Vib) = V() + B (ED (A, - a(h - D)7 02
Hence,
% (Ep, (@ (h - 1))
y L (. . - h-1i
P(h) = V(h)vzhg(h) Foite 1T 2 0.2 (3.87)

and V(h) is given by the variance of (3.85), i.e.

h-1 h=j=-1
V(h) = V(,ZDs(E diapy s 5)) (3.88)
h-1 h-(j+1) h-3 h-1 h-
= (,LD%.% di +2ZD .2 Fien 0 I_J 2949 - (5- k)) 2 (h=22)

J=0"ji=o
after some algebra.
The special case when h = 1 is worthy of note. In this case D0 = 1, and the

numerator of the right hand side of (3.87) becomes
- 2.2
£, - 2, (1),

and from (3.88), the denominator is
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— 4 3
v(1) = 0, "
Hence

P(1) = .2 (d, - a;(1))? (3.89)

= 3503
which is precisely the same as the proportionate loss one step ahead given
by (3.34) in the stationary case, as is to be expected.

We thus have the percentage loss one step ahead is the same for
fitting an ARIMA(pﬁd,d) model to an ARIMA(p,d,q) process as it is for fitting
an ARMA(p:ds model to an ARMA(p,q) process.
Example 3.11 Fitting ARIMA(1,1,0) to ARIMA(O,1,1)

This example is the non stationary equivalent of example (3.5).

Let the true process be Yt - Yt = ag + eat_l, and the assumed model

-1
(1- 4B)(¥, - ¥, ) =n. As in example 3.5, d =1, d =8, d; = 0 (j 2 2).
We have immediately from (3.89) that
P(1) = (§'- ©)2 + 0?4'?
which is identical to (3.35).
Also, from the fact that d = 1, so that D is scalar implying Dj =1 for

all j, and using (3.88)
h-1 h-(j+n) h-2 h-1  h-j

v(h) = jgo £, d;” + 2%, j§k+1 iEj-k didi‘(j'k)) %a
= {1+ (h-1)Q1+0)3)} oa2 h=zl

after some algebra.
Also, from the aj(h) (3 = 0,1,...3 h = 2,...) given in example (3.5) we

find after some algebra that the numerator of (3.87) is

Hg—%}a*{%ﬂ o’ hz2
- CH=g - (St

{(h-1Q1+0)?+1)}

giving

P(h) = h=2?2

Note that P(h) is not symmetric in © for any choice of 5', unlike the case of
fitting a stationary AR(1) to MA(1) (see example 3.9 and theorem 3.1). Thus,

for © = -1 we would expect P(h) to be larger than for © = +1,
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As can be seen from the calculations involved above analytic
expressions for P(h) from (3.87) are even more intractible than those
involved for stationary processes. The only conceivable way of looking at
the problem is by computing the sums. Before giving a number of examples,

computationally we need the (1,1) element of matrix D*, i.e. Dj'

For d = 2,
_ 12 -1
D* = [l O]
and DJ. = (G+1) (3= 0,1ye00)s
For d = 3,
3 -3 1
D¥ =11 0 0
0 1 0

We now show, in general that

_{j+d- %):

Ds = 54d=Cdm T 3T (@ - 1

Clearly, this is true for d = 1,2,3. Assume the form of Dj for some integer d,

From (3.77)we must have the Dy satisfying

(1+DB+ DQBB + ) -m9%=1
Let D; be those coefficients that satisfy
(L+DfB+D B+ .0 - !

Hence, we must have
(1+D:B+D;B2+.... J(1-B)= (1+DB+DB +... )

Equating coefficients of B we find

P ;
5 = 1201 T 385 14d- Can

Consider, now the binomial expansion of
i+d-1

i+d-1 _
- r§o i+d-1Crx

(1 + x) r

summing over i, we get

j i+d-1 j i+d"1 r
igo(l + X) = i’§0 I'—E'O i+d—1C rx
On the right hand side of this equation the coefficient of xd'l is
J

120 i+d-1Cdn1
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After summing a G.P., the left hand side reduces to

-u_'_ x)d"l - (l + X)j+d

-X
where the coefficient of x°* is j+dcd'
Hence D; = j+dCd and so, by induction, the formula
Dj = j+d-1Cd—1 is proved.

Thus, in any computer program the Dj may be readily generated for any d.

In thevcomputation of P(h) the dj and aj(h) needed in (3.87) and (3.88)
are the same as those needed in the corresponding fitting of stationary
' ARMA(ﬁ,d) models to ARMA(p,q) process. The previous program could then be
easily modified to form the sums involved in (3.87) and (3.88).
3.10 Percentage loss for fitting ARIMA ',d,0) models to ARIMA(p,d rocesses

Some processes reported in the literature

The first example of section 3.7 concerned fitting AR(p) models to a
time series analysed by Box and Jenkins (1970) which was found to fit

adequately the ARMA(1,1) process

X, - 0.92X, = 1.45 + a (3.90)

t t t-1
Box & Jenkins (1970), p 293 give an adequate, alternative representation of

- 0.583

the same series in the form of the non stétionary IMA(1,1) process

Xt - Xt_1 = a, - 0.7at__1 (3.91)

We now assume the parémeter value of 0.7 in the alternétive representation

(3.91) is the actual value the process possesses and fit ARIMA(pzl,O) models,

(Note that wetemporarily drop the convention adopted in (3.73) of putting, in

this case Y, - Y, = X because of the duality between (3.90) and (3.91).)
The infinite ARIMA representation of (3.91) is

(1 - B)(1 + 0.7B + 0.49B® + 0.34B° + 0.24B* + 0.168B° + 0.082B°+..,)X, = a

t t

or equivalently

(1 - 0.3B - 0.21B% - 0,158 - 0.10B* - 0.07B* ... )X, = ay
which is very close to the infinite AR representation of (3.90) (see p82 ).
This property of series giving rise to apparently different structures

(for which a closer look proves the structures to be almost identical) has
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been mentioned by Box & Jenkins (1973) and Granger & Newﬁold (1977). The
latter authors make the point that when this is the case it is not terribly
important to distinguish between the structures, since both must give
similar forecasts.

In fitting the model

(1 - B)(Xf - 4; xt-1 - d; xt-a cee T d;’xt-p) =My

we allow the autoregressive parameters to be determined by (3.4) and (3.39)
(the Yule Walker equations) applied to the autocorrelations of the
stationary process (1 - B)Xt. Table 3.14 contains the autoregressive
parameter values (plims) so obtained.

TABLE 3,14

FITTED AR COEFFICIENTS IN FITTING ARIMA(bZl,O) TO
. " Xi_l = a, - 0.7at_1

’ ’ ’ ¢ ’ / / ’/ /
A A
"0.47
-0.60 -0.28

-0.66 -0.40 -0.19

-0.68 -0.44 -0.27 -0.13

-0.69 -0.47 -0.31 -0.19 -0.09

-0,70 -0.,48 -0.33 -0.,21 =-0.13 =-0.06

-0.70 -0.48 -0.33 -0,23 =-0.15 -0.09 -0.04

-0.70 -0.49 -0.34 -0.23 -0.,16 -0.10 -0,06 -0.03

0w N o8 0O W N = |T

Again the autoregressive parameters home-in very quickly and the fore-
casting loss in terms of P(h) was calculated according to (3.87) and (3.88)
with the generated values of the dj and aj(h) with Dj = 1, Table 3.15 contains

a summary of the results.

TABLE 3.15
PERCENT h~-STEP LOSS FOR FITTING ARIMA(p%1,0) TO
THE ARIMA(O,1,1) PROCESS (xt - xt_15 = a‘t"")‘—'- 0.7a,_,
s
p
h 1 2 3 4 5 6 7 8
1 16.1 6.8 3.1 1.5 0.7 0.3 0.2 0.1
2 21.4 9.3 4.3 2.1 1.0 0.5 0.2 0.1
3 15.4 10,2 5.1 2.5 1.2 0.6 0.3 0.2]
4 15.9 6.9 501 207 104 0.7 003 0.2
5 14.1 7.1 3.4 2.6 1.3 0.7 0.4 0.2
6 13.5 6.8 3.5 1,7 0.9 0.8 0.4 0.2
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By comparing Tables 3.15 and 3.11 we see that if we fitted
ARIMA(1,1,0) to X, - X._, = a - 0.7a,_  our percentage lossesfor h = 3,
are less than for fitting AR(1l) to Xy = 0.92X, = a, - 0.58a,_ . However,
in all other cases the non stationary autoregressive fit gives worse
percentage losses compared with the alternative stationary one, although
the differences are not very large, since both processes were practically the
same, Also in Box and Jenkins (1970) two other series (B and D,p293 ) were
found to require first differencing; ARIMA(pzl,O) models were fitted in the
manner described above and all percentagelosses for all fits were found to be

virtually zero,

Reid (1969) gives two series which he fitted and estimated in the form

(1 + 0.86B) (1 - B)Yt (1 + O.8B)at (series Q10)
and (1 -0.62B)(1 - B)Y, = (1 + 0.6B)a, (series Al9)
We see that series QlO almost has a cancelling factor and when ARIMA(pﬁl,O)
models were fitted, assuming the given structure as the path the process
truely followed, at no point was the percentage loss more than 1%. This is,
of course, to be expected.

The same kind of fitting applied to series Al9 gave results reported in
tables 3.16 and 3.17.

TABLE 3.16

FITTED AR COEFFICIENTS IN FITTING ARIMA§§,1,02 10
1 -0.62B)(1 - B Yt = (1 + 0.6B ay

’ / ’ ’ ’ ’ / 4 /
g ﬂ‘at {g g, gi X g, dg__
0.8
1.1 -0.38

1.18 -0.61 0.21

1.21 -0.69 0.36 -0.12

1.21 -0.72 0.41 -0.21 0.07

1.22 -0,73 0.43 -0.25 0.13 -0.04

1.22 -0.73 0.44 <-0.,26 0.15 -0.08 0.03

1.22 -0.73 0.44 -0.26 0.15 -0.09 0.05 -0.02

W N 6 O~ W N T
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TABLE 3.17

PERCENT h-STEP LOSS FOR FITTING ARIMA(p.:1,0) TO
THE ARIMA(1,1,1) PROCESS (1 - 0.62B) (1 - B5Yt = (1 + o.sB)at

p
h 1 2 3 4 5 6 7 8
l1 |25 7.3 25 0.9 0.3 0.1 0.0 0.0
2]124 3.9 1.3 05 0,2 0,1 0,0 0,0
3 |10.9 3.6 1,2 0.4 0,2 0.1 0.0 0.0
4 | 10,1 32 1},0 0.4 0,1 0,0 0.0 0.0

Clearly, even a low order ARIMA(le,O) fit does reasonably well from a fore-
casting point of view in spite of the fact that the first two autoregressive
coefficients in the infinite ARIMA representation have values closer to the
non stationary boundary than is usual from commonly occurring series. Again,
evidence suggests the only important point is whether the moving average
coefficient is near to the invertibility boundary.

More recently, Saboia (1977) has analysed female birth time series for
Norway for 1919-1974 and found two alternative ARIMA models that give fore-
casts which were very close. These models were the ARIMA(4,1,1) given by

(1 - 0.91B - 0,288% + 0.168° + 0.168*)vY, = (1 - 0.93B)a, (3.92)
and the ARIMA(3,1,2) given by
(1 - 1.40B + 0.278% + 0.218°)vY, = (1 - 1.36B + 0.448°)a, (3.93)
The author was unable to distinguish between them as far as forecasting
ability was concerned and stressed the importance of having models containing
five parameters by pointing out that only these were able to incorporate
information on the length of generation of the population.

The infinite ARIMA(w,1,0) representation of (3.92) is

(1+0, 02B-0, 26B°-0, 08B°+0. 08B*+0, 08E°+0. 07B°+0. 078" +. .. )oY, = 3 (3.94)
whilst the infinite ARIMA(w,1,0) representation of (3.93) is
(1 - 0,04B - 0,228 - 0.08B> - 0.0lB* - ... )vY, = a (3.95)

We see that both models are, in fact very similar so that it is not
surprising they give forecasts that are close to each other.

ARIMA(p,1,0) models were fitted to (3.92) and (3.93) and the fitted

parameters for each model are given in Tables 3.18 and 3.19.
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TABLE 3.18

FITIED AR COEFFICIENTS IN FITTING ARIMA(p,1,0) TO (3.92)

’ ’ / ’ ’ ’ /
p £ £, g, g, g g g, g
1 [-0.12
2 | 0,03 0.27
3 | o.o2 0.27 o0.08
4 | 0,02 0.29 0.08 -0.09
5 | 0,02 0.30 0.10 -0,09 -0.08
6 | 0,01 0.29 0.11 =0.07 -0.08 =0.07
7 | 0,01 0.29 0.11 =0.06 =0.06 =0,07 =0.07
8 | 0,01 0.29 0.10 -0.06 -0.05 -0.06 =-0.07 =0.06

TABLE 3.19

FITTED AR COEFFICIENTS IN FITTING ARIMA(p%,1,0) TO (3,93)

S A N G A N A A

T

1 ] 3 4 B
-00 14
0.07 0.24

0.05 0.23 0,07

0.05 0.23 0.07 -0.01

0.05 0.24 0.08 0.00 -0.04

0.05 0.24 0.09 0.01 -0.04 -0.05

0.05 0.23 0.09 o.01 -0,02 -0,05 -0.05

0.05 0.23 0.08 0.01 -0.02 -0,04 -0.05 -0.05

O N oV DN WA -

Notice how the fitted autoregressive parameters seem to be homing-in slowly
to the values in the infinite autoregressive representations (3.94) and (3.95).
This is because in (3.92) the moving average parameter G{ = -0,93, is very
close to the invertibility boundary and in (3.93) the first of the inverti-
bility conditions in (3.54), viz e + 92 > -1, has -1.36 + 0.44 = -0.92,
which is again close to the boundary.

Table 3.20 gives the percent h-step loss after fitting ARIMA(ﬁZl,O)
models to (3.92) and (3.93). It appears that one would do better by fitting a
high autoregressive ARIMA(p,1,0) model to (3.92) rather than (3.93) even
though the processes were very close. One explanation for this would be,
again, the relative closeness of the moving average parameters to the

invertibility boundaries which could be causing P(h) to be sensitive to
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slight departures from these boundaries. At one or two steps the percentage

loss in any case, for fitting ARIMA(7,1,0) to either model is no more than

5%.

PROCESS GIVEN BY (1-0.91B-0.28B%+0,16B°+0,16B4)yY,=(1-0.93B)a

TABLE 3.20

PERCENT h-STEP LOSS FOR FITTING ARIMA(p1,0) TO THE ARINA(4,1,1)
¢ ¢ AND

THE ARIMA(3,1,2) (1-1.4os+o.27Ba+o.21135)vvt=(1-1.363+o.4435)at

(results for the latter model are bracketed)

h 1 2 3 4
1 17.3(13.7) 5.6(2.0) 4.9(1.5) 4.1(1.5)
2 | 27.3(19.3) 9.6(3.4) 9.6(2.9) 7.9(2.9)
3 25.9(17.8) 13.2(4.5) 13.9(4.2) 11.4(4.2)
4 24.9(15.9) 16.7(5.4) 18.3(5.5) 15.1(5.4)
5 24.8(13.8) 20.2(6.2) 22.6(6.6) 18.5(6.5)
6 25.1(12.2) 23.5(6.9) 26.8(7.7) 21.9(7.6)
h 5 6 7 8

1 3.4(1.3) 2.8(1.1) 2.4(0.8) 2.0(0.6)
2 6.6(2.5) 5.5(2.0) 4.6(1.5) 3.9(1.1)
3 9.5(3.6) 7.9(2.8)  6.6(2.1) 5.6(1.5)
4 12.5(4.6) 10,4(3.6) 8.7(2.7) 7.3(1.9)
5 15.3(5.6) 12,7(4.3) 10.7(3.2) 9.0(2.3)
6 18.1(6.4) 15,0(5.0) 12.5(3.7) 10.5(2.6[

It is remarkable that for model (3.93) a moderate order autoregressive

model gives quite good forecasts one step ahead, but does a good deal worse

several steps ahead. This suggests that residual variance, which reflects

within sample one step ahead forecast error variance, might not be the best

criterion for distinguishing between models.

Processes that are pre-chosen

We now examine percentage loss for fitting ARIMA(le,O) models to pre-

chosen ARIMA(p,l,q) processes.

For comparison we use all the non stationary analogues of the pre-chosen
processes in section 3.7 and the results are collected in Tables A3.9-A3.12

at the end of this chapter. We noted in example 3.11, p 102, that P(h) in
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general is not symmetric for the conditions on the parameters in an
ARIMA(p,1,q) process as described by Theorem 3.1. Thus, in addition we

give in table A3.9, for GL = 0.0, calculations of P(h) for negative Gg values
and in tgble A3.11 in fitting to ARIMA(1l,1,1) processes, calculations of

P(h) for negative ¢; values.

Percentage loss for fitting,ARIMASgﬂl,O} models to ARIMA(0,1,2) processes

If the true process is

Y, - Y = + @ a
1

7 Tga T 3 + 6.2

t-1 t-2
we still need the invertibility conditions (3.54).

Calculations of P(h) are given in Table A3.9, the results at one step
ahead being, of course, identical to the stationary results given in Table A3.1.
Otherwise, the percentage losses are all larger when compared with the
corresponding stationary process values in Table 3.1. This is particularly so
as h increases.

Note also, the similar picture of high P(h) values near the invertibility
boundaries in Table A3.9. In the rows opposite 92 = 0.0, we have a complete
picture of P(h) values for fitting ARIMA(p’1,0) models to the non stationary
ARIMA(0,1,1) process. We see that for negative GE, above one step ahead, the
P(h) values are very much worse than for positive G&, reflecting the non
symmetric characteristic as noted in the analytic expression P(h) given in
example 3.11, p 102,

Percentage loss for fitting ARIMAﬂQ;l,OQ models to ARIMA(1,1,2) processes

We assume the true process is

(1-£B)(1-B)Y, =a +6a_ +86a
using, again, the invertibility conditions (3.54), and Iﬁ;I <1,
Table A3.10 contains calculations of P(h) in fitting ARIMA(p),1,0) models.
As in the previous case the percentage loss is rather higher, in general,
when compared with the corresponding values obtained for the stationary

ARMA(1,2) process and reported in Table A3.4. Notice particularly the kind of

increases when eg = 1.0, i.e. the second moving average parameter is on the
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non invertible boundary. High autoregressive fits really do very badly.
Percentage loss for fitting ARIMA(p,1,0) models to ARIMA(l rocesses
We assume the true process is

(1 - p’lB)(l - 13)3{t = a, +6a

with lﬁ;l < 1 and IGRI < 1.

Table A3.11 contains the calculations of P(h) in fitting ARIMA(p)1,0)
models. Comparing this table with the corresponding ones for the stationary
ARMA(1,1) process in Table A3.7 we see percentage loss is again higher
throughout the ranges considered. If one looks at P(h) for negative ﬁ; values
we see that the picture is somewhat brighter than the positive ﬁ; values.

Percentage loss for fitting ARIMA(p’,1,0) models to ARIMA(2,1,1) processes

We assume the true process is

23 -
(1 - gle - g{aB )(1 - B)Y, = a; + CXN

with the usual stationarity conditions for the autoregressive parameters

‘given on p89 .

Table A3.12 contains calculations of P(h) and it appears that when the
results are compared with the corresponding stationary process in Table A3.8
(i) for positive p& percentage losses are worse in the non stationary case

(ii) for negative ¢; percentage losses are worse in the stationary case.

3.11 Percentage loss for fitting ARIMA(p,d,0) to ARIMA(p,d,q) processes
taking estimation error into account in the fitted model

We assume the process Y, follows the model (3.73), viz

4(B)(1 - B)dYt = o(B)a,

with (1 - B)dYt = X, and we fit a special case of (3.75) and (3.76)

t
viz §(B) (1 - 13)"\(,c =,
and §(B)Xt =T,

Using the notation of sections 3.8 and 3.9, we get from (3.63), approximately,

sr(l),(})l = gr(1),(l?1 +(§-8) mx (3. 96)
and from (3.83)
Y (X)
é % Jz ijn -j jg DJ nyh-j (3.97)
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so that if we look for the forecast of Y based on the wrong model and with

estimafion of the autoregressive parameters we get

61()\521 = jé;*: b¥n-5 * ?l:o ng,(,),(y),- (3.98)
Now write
Yoth - arg:!l)m = (o - (Y)) ¥ (9(Y) (Y))
= (Y (Y)) + Ep, (¥ -5 ) (a.99)

n+h ~ n h 35073 n,h=3 n h=j
using (3.97) and (3.98). From (3.96) thls may be written in the form

(Y - "éﬁ) = (Y, (Y)) + .__ODJ(§ - §)/ M_s%n (3,100)

Since we may assume the first two terms on the right hand side of (3.100) are
asymptotically uncorrelated by the same arguments as in Section 3.8, we can

P
take variances throughout to obtain, letting V(h) be the variance of the left

hand side, from (3.84),
~ ' h-1 h-2 h-1
V(h) = v(h) + _ZODJ Vo hej + 2550 kE5+123% Yhe3,hk (3.101)

where, from p 101,

Vin) = V) + B GED Gy - 250 - 1)),
and
Voeg ek = Bt g8 - D08 - 8w x ]
= Tr(M_ Vs M _,E)
where E[xx'] =E,

~nen
E[(§-8)(F-2) 1= v,

and we have assumed, as before on p92 , that‘§ and‘_).(n are uncorrelated.

Thus, from (3 87) we may fomm

- v(h
P(h) = vl v(h
h=2 h=-1
v h v(h - 2j§ 12541 24Pk Y1 hek
= v(h)
h-1 h-a h-1

D.D V.

LDV s 2E o
p(h) + =2 JW};)J’}’ o ’@Jﬁlr—b—ﬁ L k h-J,h-k (3.102)

which is the non stationary analogue of (3.70).
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In (3.102), when h= 1, Do =1, we get

o)

P(1) = P(1) + Vs
which is identical to (3.70) when h = 1. Thus the one step ahead proportionate
loss when taking estimation error into account in an ARIMA(p;d,O) fit is the
same as in the analogous ARMA(S;O) fit to any corresponding non stationary or
stationary process respectively, as is to be expected.

Example 3,12 Fitting ARIMA(1,1,0) to ARIMA (0,1,1) with estimation error
Let the true process be Yt - Yt__1 = a, + Giiat y but we fit

(1 - gﬁB)(l - B)Yt = a,. From example 3.11 we get P(h) as required in (3.102).
Also, since d =1, Dj = 1 for all j so that

h-3 h=

h-3
V, 2,2
D) = p(n) + Hehtined | 25

From example 3.10

vh'j,h-j = (h - j)apla(h‘j‘l)(l - p12(3 - 4p13))(1 + gla)/n

and from example 3.11

v(h) = {(h - 2)(1 + 91)3 + 1}
We also need V. b1 hek (k # j) and here the algebra gets intractable. Even this
simple example highlights the fact that the only conceivable way of evaluation
of gkh) is using a computer program.

From (3. 102) the extra computation needed over the corresponding
stationary case for P(h) should be straightforward to incorporate in any
computer program that already calculates these values. However, we do not
pursue evaluation of (3.102) any further here.

3.12 Conclusions

We have shown in this chapter that when the degree of differencing is
correctly assumed in a stationary process and one fits different stationary
models, the asymptotic percentage loss incurred can be great, especially when
the true process is near its non stationary and/or non invertibility
boundaries (except, possibly, when factors cancel on both sides). Several
examples were examined in this case where even high order autoregressives did

not provide satisfactory models for forecasting., The main reason for this was
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that the moving average parameters were close to the invertibility
boundaries; as expected any autoregressive parameters present did not
affect the forecasting ability of the fitted AR(P) model too much, even
when some were only marginally within their non stationary boundaries. For
some processes with parameters moderately within their boundaries there
were cases of percentage loss being surprisingly low.

As we might expect, taking estimation error into account in the fitted
model affects the percentage loss incurred by increasing it by as much as
20 - 30% for high order autoregressive fits; also, for some processes, it
was clear that increasing the number of autoregressive parameters used in
fitting did not have a péy off in terms of forecasting ability. Indeed, in
some cases the optimum order of autoregressive was around 4,5, or 6 and if
one estimated more parameters than this, one was very much worse off in
terms of forecasting ability.

For non stationary models rather more was lost in fitting AR(p) models
to the (correctly) differenced series compared with the stationary analogues,
The complexity of analysis increased, when estimation error was taken into
account in the fitted model and, although the problem was solved in general,
no concise algebraic expressions appear to be available for percentage loss
even in the very simple cases of this type of misspecification.

The possibility of taking estimation error into account in the true
process, as well as the fitted model, is mentioned in Chapter 6. We merely
note here that V(h), the h-step forecast error variance for the true process,
will be larger when estimation error is taken into account in that process.
Hence the percentage loss as given by (3.70) would be reduced; the evidence
of this chaptersuggests that because the number of parameters in the true
process is low, the increase in V(h) will be relatively small., Hence we may
regard the P(h) values reported in Tables A3.1 - A3.8 as maximum percentage
losses we could obtain after taking estimation error into account in both

the fitted model and the true process.
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TABLE A3.1
PERCENT h-STEP LOSS FOR FITTING AR(g) TO MA(2) PROCESSES
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JABLE A3.2

1 STEP AHEAD PREDICTION PERCENTAGE LOSS IN FITTING
AR(p) TO SELECTED MA(2) PROCESSES

’

P

10

-1.0

0.0

100
100

50.0

56.5

50.0

58.7

33.3

44.6

33.3

46.7

25.0 | 25,0 | 20.0

40.6 | 42.8 | 39.8

20.0

41.9

16.7

40.6

-004

0.6

43.5

45.3

27.1

32.3

22.2
29.3

17.9

27,6

15.3
26.8

13.2 | 11.7 | 10.4

27,1 { 27.4 | 28.4

9.5
29.3

8.6
30.7

0.8

173
176

106
115

74.1

84.4

55.7
69.3

43.9
58.6

35.7 1 29.7 | 25.2

53.0 | 48.3 | 46.2

21.7

44,1

19.0
43.6

1.0

0.4

86.4
93.4

59.8
66.6

42.0

50.4

39.6
52.8

28.6
42.1

28.6 122,5 | 21,7

46.0 {40,7

42.4

19.0
41.4

17.2

42.1

1.0

2.0

233

237

150
162

110

122

86.7
103

71.4

89.0

60.7 |52.8 | 46,7

4l1.8
68.1

37.9
66.7

Note (1) P(1) values

Pal
(11) P(1) values

TABLE A3.3

81.3 {74.8 | 71.4

are the upper figures in each

are the lower figures in each

cell

cell

COEFFICIENTS OF THE AR(10) FIT TO THE ABOVE PROCESSES

5

£

‘.

g,

’

$e

’

g,

/

%

, ’

#9 ﬁ{m

-1.0
-0.4
0.8
1.0
1.0

0.0
0.6
1.8
0.4
2.0

0.0

0.51
1.62
0.37

1067

-0.83
-0,62
-1.93

0.69
-2.05

0.0
0.49
2.02
-0.56
2.18

-0.67 0.0

'00 46

-1.93 1.7

-0.34

‘2.12 109

'00 5

0.38 -0,33

1 '1042

0.55 0.05

1 -1.59

0.0 '0.33 000 "00 17

0.26
1.08
-0.41
'1.21

-0.2

-0.73
0.11

-0.82

0.14 -0.09
0.41 -0.15
0.19 -0,12
0.45 -0,17
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TABLE A3.4

PERCENT h-STEP LOSS FOR FITTING AR{p) TO ARMA{1,2) PROCESSES

7
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P(h) values are the upper figures in each cell

(1)

Note:

P(h) values are the lower figures in each cell

(11)
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TABLE A3.4 (continued)

PERCENT h-STEP L0SS FOR FITTING AR(F) TO ARMA(1,2) PROCESSES
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P(h) values are the upper figures in each cell

(1)

_Note:

(11) 62h) values are the lower figures in each cell
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TABLE A3.5

1 STEP AHEAD PREDICTION PERCENTAGE LOSS IN FITTING
AR(d) TO SELECTED ARMA(1,2) PROCESSES

p
o |4 1 2 3 4 5 6 7 8 10
0.0l 0.4 |92:0 [47.9 | 47.2 |32.1 31,9 | 24.2 [ 24,1 | 19.4 16.3
<01 0.4 194.0|54.3 |55.7 |43.2 | 45.1 | 39.7 | 41.7 | 39.2 40, 1
0.6| 0.4 |3144 19,4 [17.4 |14.4 | 12,7 | 11.2 | 10.1 | 9.2 | 8.4 | 7.7
61 0.4 1331 | 24.2 | 24.2 {23.7 | 23.9 | 24.8 | 25.6 | 26.9 | 28.0 | 29.6
Lal 0.5 1188 |82.7 149.8 [34.5|26.1|20.8 |17.3|14.7 | 22.6 | 11.4
41 0.8 1787 |o1.1|58.4 |45.9 | 38.6|35.8 |33.8|33.5 |33.3 |34.0
0.4 | 250 |136 |89.5 [65.0 [50.0|40.0 |32.9|27.7 {23.6 | 20
Lalo?]254 147 |100 [79.5 | 65.3 |57.9 |51.9 | 49.0 | 46.4 | 45
‘81 os 1339 [162 [10I [71.5[54.2[42.834.9(29.2 [24.8 |21
81343 174 [113 [86.6 | 69.8 | 61.1 |54.2|50.8 |47.7 | 46
o8] 0.4 |51.9 [36.3 [17.1 [16.1[1L.9] 7.1 ] 7.0 5.0 3.4| 3
8| 0.4 | 57" | 43.3 | 24.1 |26.1 | 23.7 | 20.7 | 23.5 | 22.4 | 22.2 | 24
0. |439 219 [144 107 |84.6170.0 [59.7 [ 52.0
ol—® 444 235 |158 [125 103 |91.9 |82.7 | 77.7
1 54 [329 [187 [129 [98.5[79.3 | 66.4 [57.0[50.0
41333 |201 |143 [116 |97.7 |87.8|79.6]75.3
o | 201 [69.3 [50.5 [49.6 [36.7 | 27.6 | 27.2 | 24.7
Lol 28 1203 177.3 |60.7 |64.9 |52.5 | 42.6 | 45.7 | 46.4
"2 2 [128 [56.3 [50.5 [45.8 [32.2 | 26.8 [ 26.8 | 22.8
41130 |63.4 |62.0 |60.3 |46.6|41.9 |45.7 | 44,1
0.5 | 96.5 [85.0 [53.9 [42.0 [37.4 [ 28.1 | 27.9 | 21.8
o 4bos 1983 195.6 |66.3 |53.4 [52.2 |44.8 |48.3 | 41.7
o4 |77-2 [76.2 [43.6 [41.9[31.9 [ 26.0 | 25.4 | 21.0
4 180.3 |86.5 [52.6 |54.7 | 45.8 | 45.1 | 45,0 | 40.8
oo | 116 |69.7 [56.8 [38.2 [38,0 [27.6 | 27.0 | 22.4
ooab® 122 76,0 169.0 |50.8 |55.0 |43.0 | 46,0 | 43.4
"4 o4 [109 [52.1[5L.4 [35.7 [32.2 [27.8 [ 23.2 | 22.5
41720 [56.6 |61.4 |48.0 |47.6 |44.2 |41.2 | 43.9
o6 | 139 |75.8 |43.4 [40.637.0 [27.4 | 23.8 | 23.7
8 | 158 |84.4 |51.8 {52.5 |52.1 | 44.0 | 42.6 | 45.8
-1.2 0.2 | 61.4 [61.3 [46.5 [31.8 [29.7 [28.2 [22.3 [ 19.6
41 64.6 | 71.4 |58.2 |41.9 | 43.1 | 45.3 | 40.3 | 40.2
o5 | 8Ll [59.2 [47.9 [40.7 [35.8[32.0 [29.2 | 26.8
8 183.5 | 66.0 |56:5 |52.5 |49.4 |48.5 | 47.5 | 47.8
-2.0 o a | ISL [107 [83.8 [68.9 [58.7 |51.1[45.3 [40.6
41154 [116 |94.6 |83.5 |74.9 {70.3 | 66.2 | 64.3

Note (i) P(1) values are the upper figures in each cell

(1i) P(1) values are the lower figures in each cell
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5 4,

1

TABLE A3.6
COEFFICIENTS OF THE ARQlO) FIT TO THE PROCESSES IN TABLE A3.5

%

g

4

g8

g

gy

#y

4

Foo

-1.0

0.4

0.39 -0.83

0.31

-0.66

0.23 -005

0.15

-0.33

0.08

-0.16

-0.4

0.4

-0.12 ~0.43

-0.26

-0.28

'0.22 ‘0.2

-0016

'0013

-0.09

l"0.08

0.4

0.8

2.09 -2,32

2.20

-1095

1165 _1032

0.99

_0-67

0.36

-0.11

0.8

0.4

2.00 -2054

2.71

-2061

2032 -1191

1.42

-0.93

'0049

-0016

0.8

2-39 -3015

3.41

-3030

2-94 -2040

1.77

-1014

0.57

-0-17

0.4

-0.39 0-46

0.64

0.15

-0.34 -0.3%

-0.03

0.19

0.12

-0.01

1.0

0.8

2044 -3.29

3.63

-3.58

3.22 -2.64

1.96

-1-26

0.63

-0.18

0.4

2.05 -2.66

2.90

-2084

2,56 -2.12

1.59

-1004

0.54

'0017

1.2

0.8

1.90 -1027

-0.15

1.16

-1.12 0.34

0.42

-0063

0.40

-0.10

0.4

1.50 -0.83

—0030

0.97

-0.81 0.14

0.40

'0048

0.26

'0005

0.4

0.8

1.16 0.40

-1008

0.06

0.80 -0.31

-0.44

0.33

0.14

‘Oolé

0.4

0.77 0.55

-0083

-0014

0069 -0014

-0044

0.24

0.18

-0117

0.8

0.44 0,97

-0-03

-0076

-0021 0049

0.27

'0024

'0017

0.11

0.4

0.03 0.83

0.26

-0055

-0038 0.27

0.34

-0.06

-0018

0.00

0.8

-0030 0.51

0.79

0.43

-0.17 -0.49

-0036

-0.01

0.21

0.16

0.4

-0.69 0.08

0.65

0.61

0.13 -0.32

-0n39

‘0015

0.11

0.14

0.8

'0.99 -0094

-0.88

-0.80

-0.70 -0060

-0048

‘0036

-Oa24

-0,11

0.4

-1.30 -1.45

-1.49

-1042

'1028 "1007

‘0084

'0059

-0c36

'0.15
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TABLE A3.7

PERCENT h-STEP LOSS FOR FITTING AR(g) TO ARMA(1l,1) PROCESSES

2.3
9.4

4,6
121,

.8
a:8

8.6
10.0 1 10,6

1

6.6
12,7

P(h) values are the upper figures in each cell

16.7 | 14.3 | 12.5

22,0 121.,4121.0 21,7

(ii1) P(h) values are the lower figures in each cell

0 39.4 [28.3
0.3 67.0 | 45.3 | 5.7

37.0 |31.2 | 27.6 [ 26.7
(1)

~T130.8 13,3
0.3 32,4 {18.0

70.0

35.0]25.9 ] 20.6 | 17.1

0.6
0.3

Note:

1.0
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PERCENT h-STEP LOSS FOR FITTING AR(p) TO ARMA(2,1) PROCESSES
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(1) P(h) values are the upper figures in each cell
(11) P(h) values are the lower figures in each cell

Note:




continued

TABLE A3.8

PERCENT h-STEP LOSS FOR FITTING AR(g) TO ARMA(2,1) PROCESSES
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P(h) values are the upper figures in each cell

(1)

(1i) P(h) values are the lower figures in each cell

Note:
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TABLE A3.9

1,0) TO ARIMA(O,1,2) PROCESSES
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TABLE A3.10

PERCENT h-STEP LOSS FOR FITTING ARIMA(yg,1,0) TO ARIMA(1l,1,2) PROCESSES
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PERCENT h-STEP LOSS

TABLE A3.11

FOR FITTING ARIMA(Y,1,0) TO ARIMA(1,1,1) PROCESSES

i h=1 h= 2 h=3 h=4
- o i R e — - 5

& |6 | 1 2] 3]s 1213 a1l 2 la a1 2134
0.9 | 95.0 | 48.7 | 32.8 | 24.7 | 36.9 | 20.0 |13.3 9.9 | 30.4 | 17.6 |11.4 8.4 124.6 |14.9 | 9.4 | 6.8

1.0 [ 0.6[80.0 44.4|30.8 [23.5 28,0 | 16,1 [11.0 8.3 |21.9 12.5 | 8.3 | 6.1 |18.1 | 9.8 | 6.2 | 4.6
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CHAPTER 4

SOME POWER STUDIES OF THE BOX-PIERCE AND
BOX~-LJUNG PORTMANTEAU STATISTICS

Summary

This chapter considers the distribution of the residual autocorrelations
from fitting autoregressive models to any other ARMA(p,q) process. Asymptotic
means and variances of the Box-Pierce and Box-Ljung statistics are derived
under these circumstances and it is explained why these may not be assumed
in practice. Power studies are conducted on the ability of the two statistics
to reject certain misspecified models, the choice of true processes being
made on thé percentage loss incurred, from a forecasting point of view,
after fitting the misspecified models. It is shown that their ability to

reject such incorrect models is typically very weak.

4,1 Introduction

Chapter 3 studied the consequences, from a forecasting point of view,
of misspecifying a model when the true process was, in general, different,
and known. In Chapter 2 we looked at the well known Box~Pierce statistic
(2.7), and a modification, the Box-Ljung statistic (2.8), which were
measures of how well any fitted model suited the data. We highlighted some
problems with them even when we correctly specified our model, and hence in
some sense had 'ideal' residuals to deal with under the null hypothesis,
These residuals (2.2) were considered estimates of the random observations
from a white noise process, which generated a series through the model (2.1).

The true test of these statistics is in their ability to reject a mis-
specified model, and we take some of the misspecifications studied in
Chapter 3 and examine the portmanteau statistics' performances at detecting
such incorrectly fitted models. Of course, in general the error terms in a
misspecified model are not a white noise process, as equations (3.23) and
(3.25) of section 3.4 show.

For instance, in example 3.5 we fitted an AR(1) model to an MA(1)

process., If the fitted model is (1- 3'B)Xt = My we have shown,
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asymptotically, from the Yule-Walker equations (3.39) g’= plim g’= o, »

so that the residuals are, in this case

My = X = P ¥,
If the true process is X, = a, +9.a, , p = 91/(1 + Gla) and we get,
asymptotically, for the residuals

n‘t = 8 + (91 - p1)at-1 - gzplat-a

a, + {8°/(1+0%)}s,_ - {e,%/(1 + 6 %) }a,_, (4.1)
which is an MA(2) process. Thus the residuals actually examined, viz

g = X - 5% (4.2)
and used in either the Box-Pierce statistic (2.7) or the Box-Ljung statistic
(2.8), would be, asymptotically, samples from a moving average process of
order 2 and not samples from a white noise series. Clearly, the analysis of
the misspecification in this manner is a very important part of any study
of the way either of these statistics perform.

Initially, Box & Pierce (1970) analysed the residuals from a pure

autoregressive fit; we adopt the same procedure in section 4.2, very closely

following those authors' analysis.

4.2 The distribution of residual autocorrelations from fitting an AR(ﬁ)
model to any ARMAgg,gl process

In this section we fit an AR(p) model to an ARMA(p,q) process by
ordinary least squares in the manner described in Chapter 3, section 3.5
(i.e. we allow the plims of the autoregressive parameter estimates to be
solutions of the Yule-Walker equations (3.39)) and examine the residuals
from such a fit as determined by équations (3.25).

If our true process is as described by (3.14) and the fitted model is,
from (3.15) given by

¢(B)X, = n,
(where #(B) contains the plims of the autoregressive parameter estimates)
then, from (3.25)
#(B)n, = #(B)e(B)a, , (4.3)
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so that asymptotically, the residuals from such a fit follow an
ARMA(p,p'+ q) process. In particular if our true process is pure moving
average our residuals are, asymptotically, also pure moving average,
MA(p + q).
Let the autoregressive parameter estimates from a least squares fit to

a series of length n be 3{,3;,...,3;, so that the calculated residuals are

ﬁt=$(B)Xt '
= (1 - KB - 8.8° - ... - ﬂp,Bp)xt
=X = BIXe = BXy m eeee - Bg,x_p,. (4.4)

Define the autocorrelations of these residuals by

n
3 = tgkﬁarkrk k
n
3
& A

When we have the plims of the autoregressive parameter estimates

k k= l,2,n.-,m (4.5)

ﬁ:,ﬁ;,...,ﬁ;.'the residuals are written

n, = #(B)X,
_ _ ’ - - _ - ’ p'
= (1 ,{B ,{B g{p@)xt
= ﬁ t'l - ‘ Xt-a = see = ¢pxt_pl (4'6)
and the autocorrelations by
In
-k
Iy = -Eﬁzg—- k= 1,2,.0.,m (4.7)

Thus, in the special case of fitting an AR(p) model to an AR(p) process,

$(B) = #(B), and from (4.3) M, = a;, so that the autocorrelations in (4.5)

and (4.7) are the same as those defined in equations (2.3) and (2.5),
respectively. We now proceed in much the same manner as Box and Pierce (1970),
keeping as close as possible to their notation.

A recurrence relation satisfied by the probability limits of the
autoregressive parameter estimates and linear constraints on the r

k

From the Yule-Walker equations (3.39) we see that the plims of the least

squares estimates of the fitted AR parameters satisfy the recurrence relations,
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4 4
Ps - BiPery = voe - 4 gPs-p'= 0s 8= 1,250009p (4.8)

We note that this recurrence relation does not hold for s 2 p'+ 1, which

is the case if we were fitting an AR(P) model to an AR(p) process (see Box
and Jenkins (1970) p 54, equation 3.2.4). We note also that the least squares
estimates B{ (i = 1,25.4.p) will satisfy a form similar to (4.8) in terms

of the sample autocorrelations réx) of Xt, viz

X X - (X ’
ré ) T Bp'rs-QF Oy 8= 1,25000sp (4.9)
X, X
(X) _ 2%%-k
where = ‘—zxtz )

Now let ¢(B) = ¢ (B) = (1 + B+ WQBB +oeee )y

and §(B) =8*(B) = (1+ §B+ § 8% + ... ) so that

£
= 5%o¥3M-
_(ﬁjnt_
Hence the Y's and %'s satisfy the recurrence relation
4
w— dlwv‘_l""noo""‘# ¢1+ﬁ\) \)Sp
v %w +ooo+¢l¢ \)2p/

17V p vp’

(4.10)

It is well known that the residuals ﬁt from the least squares fit satisfy
()

the orthogonality conditions

n
zﬂﬁtx_j=o 1<j<p (4.11)

and so from the form of Xt above,

0=%§ §,Mf y;
= Wkgk-l-j

=g wk§k+j + Op(l/n) (1s3js<p) (4.12)

where Op(l/h) denotes order in probability as defined in Mann & Wald (1943)

(I)This is simply a consequence of the least squares fit, and holds whether

or not the assumed model is correctly specified.
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We assume in the equations leading up to (4.12) that the summation over

k stops after m, say, so that Wj is negligible for j >m = p:

Linear expansion of fk about r,

Define p’o’= ;!o’ = -1 and

#(B)X, = X, = £ X, | = ees - dp,xt_p.- (4.13)
=M

Also define r = Emn,_/E7°, (4.14)

. . sle)x e}
which may be written g(i(B)Xt}’ using (4.13).

The numerator of this expression, after some algebra, reduces to

L4 ’

P p -
¥ i FR di’{jxt-ixt-k-j (4.15)

A similar expression may be obtained for the denominator and, combining this

with (4.15) we obtain, after some algebra,

'4
& L& rols
fo= £8 J;? i ‘(‘*;J- . (4.16)
v 9+ (X
=0 j§o diﬁsrj-l

Thus ;k is a function of B:,B;,...,B;,; £k(3:,32,...,353, say.
Since plim 8; = ﬁg, the root mean square error of 3;, defined by
(E[(ﬁ; - Bg)a])%'is of order 1/i/n and so, since from (4.4) and (4.5), ?k is
a function of B:,B;,...,ﬂ;; we can approximate ?k by a first order Taylor
expansion about § = %, where 3'= (ﬁ:,...,ﬁ;).

Following the same reasoning as Box and Pierce (1970) equations (2.10)

-(2.15) we get

4

"~ p ! ’
N jgé(dj - B})Sjk + Op(l/h), (4,17)
where
T "
ik 95| 4=$

132,



s (0) X
ke - it Thyi-j o71% 3Tk 3 1)(130"1 ( ) (4.18)

3p; P pP.. p° p
j (X) ’ /7 (X) 3
iZo J—o/ ip’ ji-j (ii:oj;:o 1#3%1- j)

p
3 J—Od; (X) (X) ;) 2(i§ ‘g

On substituting 9 = Q in thls expression, the second term on the right hand
side of (4.18) contains 2031 (X), which, from (4.9) is zero.

Hence

R 2@, 0

ng l—orl ’k+J | M (4.19)
: 48,2
o j=o"i" i i-3

We approximate this expression by replacing the 3{ by their probability
limits, ﬁ{ and the r(x) by the corresponding population autocorrelations, p.
We write the result as

I

_ﬁ(p * Prsi-i)
5. = - = ’k+J -1 k+i-J (4.20)

jk p

Since r_ = P_ + Op(l/h) and 3; = ﬁg + Op(l/n), we may replace Sjk in (4.17)
by ij defined by (4.20).

We note that (4.20) is identical to equation (2.16) in Box & Pierce (1970),
except that (4.20) contains the plims of the AR coefficients. Also, Box &
Pierce simplify their equation (2.16) by noting the recurrence relation
satisfied by autoregressive parameters which is (4.8) with K{ replaced by ﬁi
(the true AR coefficients in fitting AR to AR) and for all s ., We noted that
(4.8) only holds for 1 <s < pl so that no simplification is possible for the
first term in the numerator of (4.20). However we may use (4.8) to simplify

the denominator, obtaining

/

1285 (P + Pyygog)

6., = 7
1241
ij only depends upon k + j and k - j and so we write
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85k = Yie3 ¥ Oka

where
4
p ,
_ i§o"ipk-j+i
Yk"j p ’
1281 Py
p/
7
4 s = i§o¢i°k+j-i
an k+j

i-—goﬁ{ilpi
From the recurrence relation (4.8) we see
1 j=20
57 {0 lsjsp’

Also &, = 0, 2 <3 <p.

Define the (m x p) matrix X = Y + Z, where

B h
62 63 . e 6p'+1
) )
3 4
Z= . .
. 5ap'
O 6m+p'_'
and
r 1 -
Yo Yo Y Y. (p=1) 0
Y]. Yo Y:.
YB Yz Yl
YO ;
Y = . = .
Ym-:. Ym-p' JL hYm-:.

Hence, we may write (4.17) in the following matrix form
)

P 4 ~ ~ A r
where T = (rl,rz,...,rm) and r = (rl,ra,...,rm).

10D

=7 +X(2 -

~

Iy
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If T 0 ... 0
¢1 1
G
u= | oy
V- Yn-p’

we have from (4.12), in matrix terms
fu=0 (4.24)
to order in probability 1/n.

Multiply both sides of (4.23) by

Q= x(u'x)*u’ (4.25)
and we get from (4.24)
9=Q+i-;x
or
£=(I-Q)x
= Ar (4.26)

We note that Q is idempotent, so that A= 1 - Q is also idempotent. In the
Box and Pierce (1970) paper they were fitting AR(p) to AR(p) so that the
recurrence relation (4.8) holds for all s, which implies 6k+j = 0 for all
k,j3 hence Z is the zero matrix in this case. Furthemrmore they show
Ye-3 = wk-j (see their equation (2.20)) so that U= Y= X. Thus equations
(4.25) and (4.26) above are identical to Box & Pierce's (2.26) and (2.27)
respectively in the special case.

From (4.3) and (4.7) the sample autocorrelations in r are asymptotically
those from an ARMA(p,pu-q) process. Let.g*' = (pl*, pa*,...,pm*) where
P, *sP,*;..,P * are the population autocorrelations of the ARMA(p,p’ + q)
process. Hence, from Anderson & Walker (1964),

z ~ N(p*, W/n) (4.27)

where W is defined by equation (2.48), p 37 , with the pj* replacing the P
in that equation. We noted in Chapter 2, Section 2.4 that in some circumstances
(2.48) did not provide satisfactory values for the variances of the sample

autocorrelations, and we take into account the modifications suggested there,

later.
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The vector of residual autocorrelations, §, is therefore a linear
transformation of a multinormal variable and therefore itself normally
distributed.

From (4.26) and (4.27) we get

£ ~ N(Ag* , AWA/n) (4.28)
Again, in the Box-Pierce paper, we would have E* = 0 and W= 1 so that in
that case (4.28) above would be equivalent to their equation (2.29).

Example 4.1 The residuals from fitting an AR(1) model to a MA(l) process

We take the simplest possible case of misspecification and from (4.1)
we see that asymptotically the residuals follow the MA(2) process
n = a +6°/(1+8%)a_ - {0°/(1+ 0 )l (4.29)
with population autocorrelations given by

p ¥ = e&a/{(l + G&z)(l + Gaa G

*#= .0 2 3 4
P, 6, /(1 + 6°+86 ) (4.30)
pj*= 0 9 j 2 3.
Also, for the true MA(1l) process
a —
6/(1+e7) i=1
p. =
J 0 jz2
Asymptotically, ﬁ: = p, and so from (4.10)
- J
Wj Y
Also,
3 .
{pl/(l-pl) j=1
Y; =
J 0 j=2
and -0 ?/(1-p% =1
5. =
3 0 j22

[
Therefore, X = (1 - 2913, P, s 05 eeu 0)/(1 - pla)
- ./
and U= (1: pl’ pla, seey plml)
and we find U'X= 1.

From (4.25), we find
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[0 -p, (1-20) -2 (1-207) o.M (12p%)
-p (1-20%) -p2 . -py
A= (1-Q) = '(-1—1'33'7 : : ' : (4.31)
(1-p7)
(1-p7)
L (1-07) |

Finally, we need the variance-covariance matrix, W, of the sample auto-
correlations for an MA(2) process.
From (2.28) and (4.30) we find (assuming the sample size is large

enough for (2.48) to provide an adequate approximation) the upper triangle

of W to be
i 1+2p;+2+2p*»;2 2pX-2pXp¥ 2p*
-0xt+apyert o -apror +epees® | 2pe (-ep) | ep® 0 o
+4p;‘4+2p;—8pfzpa +4p;*3+4p;('pf -4p;('3p:
oepTeanrter®| w2epex | +ex® | 2y 0 opx® 0.

+apt-apxiox  -apxpx® o208 .

%24 o K? H1OORD *1on® %ok | px?
1+2p¥%120%°  2042pX0% | 20%4pX7 | 2pkp* 1 pX

1+2p¥7+20%? 12020 XD% 1 2%+ ¥ 12p¥p% -

< © o (4.32) -
Hence, from (4.31) and (4.32) we may obtain the distribution of § as given

by (4.28). Analytic expressions for the means and variances are clearly
extremely complicated and so the most sensible way of evaluation is on a

computer,

Numerical and Theoretical results for fitting AR(1) to MA(1)

To verify the adequacy of the approximations involved in deriving (4.28),
simulation experiments were run for fitting an AR(1) model to the MA(1)
process X, = a, + €>lat_1 over the range of values Ga = 1.0, 0.6, 0.4, 0.2.
1000 simulations were used for sample sizes n = 50, 100, 200, and the mean

and variance of §k calculated over these 1000 experiments. Theoretical
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values for the mean and variance of f;, 32,..., were calculated using
(4.30), (4.31) and (4.32), the results from theory and simulations being
collected in tables 4.1 and 4.2.

TABLE 4,1

THEORETICAL AND EMPIRICAL MEAN OF THE RESIDUAL

AUTOCORRELATIONS ) FOR FITIING AR(1) TO MA(1)

Ga = 1,0
THEORETICAL EMPIRICAL
k n = 50 n = 100 n = 200
1 0.167 0.169 0.166 0.169
2 -0,333 -0.316 -0.321 -0.328
3 0.000 -0,010 ~-0.001 -0,005
4 0.000 -0.010 0.007 0.001
e = 0,6
1 0.107 0.109 0.109 0.107
2 ~0.242 -0,226 -0,234 -0.236
3 0.000 ~-0.010 -0.008 -0,003
4 0.000 -0.002 -0,001 -0,005
GE = 0.4
1 0.047 0.054 0.050 0.047
2 -0.135 -0.134 -0.135 -0.133
3 0.000 -0,012 -0.004 0,001
4 0.000 -0.009 -0,002 0.000
G& = 0,2
1 0.007 0.014 0.011 0.010
2 -0.038 -0.052 -0,048 -0.043
3 0.000 -0.011 -0.004 -0.002
4 0.000 0.000 ~0.002 0.000

Clearly the agreement between the theoretical and empirical means of fk is
generally quite good, especially for large sample sizes. Note that from (4.30)
we see there is little need to consider negative © since in that case only
the sign of p ¥ is altered as compared with the corresponding positive Gg

value,.
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TABLE 4.2

THEORETICAL AND EMPIRICAL n TIMES VARIANCE OF THE

RESIDUAL AUTOCORRELATIONS r"k FOR FITTING AR(l) TO MA(1)

e = 1.0
i S

THEORETICAL EMPIRICAL
K i n= 50 n = 100 n = 200
1 0. 167 0.197 0.195 0.199
2 0.278 0.387 0.376 0.350
3 1.278 1.110 1.160 1.250
4 1,278 1.122 1.259 1.304
5 1.2718 | 1.040 1.167 1.292
o = 0.6
1 0.150 0.181 0.171 0.163
2 0.476 0.520 0.520 0.522
3 1.140 1.002 1.065 1.100
4 1.140 0.971 1.051 1.128
5 1.140 0.986 1.018 1,125
Ga = 0.4
1 0.109 0.138 0.117 0.121
2 0.755 0.742 0.775 0.791
3 1.041 0.916 1.003 0.962
4 1.041 0.874 1.002 0.956
5 1.041 0.846 0.958 0.995
8 = 0,2
1 0.037 0.068 0.058 0.052
2 0.952 0.861 0.953 1.003
3 1.003 0.854 0.976 0.986
4 1.003 0.891 0.978 1.019
5 1.003 0.823 0.925 0.898

The agreement between theoretical and simulation results in Table 4.2
is reasonably good for large sample size (200) but we note that for the
sample size n = 50 (which is commonly considered ‘'moderate' in practical
time series analysis) the empirical values of n var[fk] for k 2 3 are
consistently below the theoretical figures. This type of problem was noted
in Chapter 2, section 2.4, where the difficulty lay with the elements in the

variance-covariance matrix W as defined by equation (2.48). Since W is used
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in general to obtain the variance of fk in (4.28), when we need to examine
the mean and variance of the Box-Pierce and Box-Ljung statistics S and S:
based on these fk's, the accumulation problem highlighted in Chapter 2 (see
the discussion after equation (2.35), section 2.3 and also section 2.4) will
again pose problems. We therefore adopt the modifications suggested in
equations (2.70) - (2.72) and (2.74) when the variances of the 7 and

covariances between the rj and r; are needed.

4.3 The Portmanteau statistics S and S for fitting AR(p) models to
ARMA rocesses

The Box-Pierce statistic S, as defined by (2.7),

mo
S=n& ',
would use the fk as defined by (4.5). We consider two equivalent ways of

writing‘g ;s namely (4.26)

LS

= Az
so that S can be written in the quadratic form
S=nz' A'Ar
= nz’'Br (4.33)
where B = A’A. Further, since, from (4.26), each fk is a linear combination
of the T (j = 1,...,m) we may also write

m

r, = g&Bkjrj (4.34)

where {Bkj} = B,
If we use (4.33) we see S is a quadratic form in the variables AT seees
r o From (4.27) these are asymptotically multivariate normal. Assuming this,
(4.33) has mean
:
E[s] = E[n{ B}:] = TrBW + np* Bo¥ (4.35)
and variance
Var[S] = var[nr Br] = 2Tz(BWBW) + 4ng*'+ BWBp* (4.36)
wherqef’= (pi*,pa*,...,pm*) and we have used (4.27) (see Koch (1967)).
Equations (4.35) and (4.36) show the extent to which the assumption
that S is asymptotically x® (under which 2E[S] = var[S])is untrue for mis-

specifying models. In (4.35) and (4.36) we would have to have (a) p* = 0 and
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(b) BW idempotent. Clearly, in general neither of these is true, (They
were true under asymptotic theory in Chapter 2 for fitting AR(ﬁ) models
to AR(ﬁ) processes. )

By looking at the mean and variance of S for fitting AR(p) models to
AR(ﬁ) processes as given in equations (2.28) and (2.34) in Chapter 2
pages 26 and 28 , we see (4.35) and (4.36) are natural generalisations of
the latter equations for fitting AR(P) to any ARMA(p,q) process. However,
in the discussions associated with equation (2.34) a normality assumption
in the T, T _secesT, Was shown to be unrealistic for the kinds of sample sizes
used in practice. Also, in Section 4.2 we saw how the elements of W, the
asymptotic variances and covariances of the sample autocorrelations for a
moving average process of order 2, might lead one to results which were over-
estimates of what was more likely to occur for a sample of size 50, say. (This
is similar to the special case of substituting 1/n for the variance of . in
Chapter 2, when we really needed (n - k)/n(n + 2)).

Thus, on the one hand one might be attracted by the (relative)
mathematical simplicity of the mean and variance of S as given by (4.35) and
(4.36)3 this ought to be judged against the loss in accuracy that one would
incur in applying a normality assumption together with the elements of W as
given by (2.48).

The alternative, of course, becomes mathematically intractible except
for the case of the mean of S (which in any case, is independent of the
distribution of the ri,ra,...,rm), but does depend on the elements of W, We

now explore the alternative possibilities.

From (4.34)

m ~
5= nk:§1 I‘kz
m m
= & GE Byry)”®

m m m-l m

3_ 3
nkga jéinj "+ 2nk%% jéa z§j+1Bijk£rjr£ (4.37)

3

Taking expectations throughout (4.37) we see
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m m m m-1

E[s] = “kéﬁjéinsz[rjz] + 2nk§éj§&z§j+injBsz[rjrz] (4.38)
The r, in (4.38) are the sample autocorrelations for an ARMA(p,p+q)

process. In the special case of fitting AR(1) to an MA(1)process the E[rjz]

and E[rjrzj are available from Chapter 2, equations (2.70), (2.71), (2.72)

and (2.75), using the p* in (4.30) (the 53 in Chapter 2 are the r, in (4.38))

3

which correspond to the sample autocorrelations foran MA(2) process,

Of course, when we are fitting AR(p) to AR(p) the r, in (4.38) are the

J
sample autocorrelations for white noise so that the second term on the right
hand side of (4.38) disappears, using (2.20); in addition the elements of B
become identical to the elements of A in equation (2.27) so that (4.38)
reduces to (2.31) in this special case.

To illustrate the use of (4.38) and to confirm the use of the expressions
(2.70), (2.71), (2.72) and (2.75) from Chapter 2, simulation studies were
conducted in which 1000 different MA(l) processes were generated for each of
the values © = + 0.2, + 0.4, + 0.6, + 0.8, + 1.0 and AR(1) models were
fitted with the usual calculation of the Box-Pierce Statistic (2.7) from the
residuals in each case. The empirical mean of S (§) was calculated and
compared with those values given by expression (4.38) for sample sizes n = 50,
100, 200, Results are summarized in Tables 4.3 and 4.4.

TABLE 4.3

THEORETICAL AND EMPIRICAL MEAN BOX PIERCE STATISTIC S

FOR FITTING AR{1) MODELS T0 MAzls PROCESSESg m = 20

n= 50 n = 100

e E[s] 3 E[s] s
-1.0 | 25,02 23,22 | 34.94 33,51
-0.8 | 23.60 21,99 | 32.52 31,12
-0.6 | 19.64 18,53 | 25.78  25.36
-0.4 | 15.82 15,40 | 19.26 19,01
-0.2 | 14,37 14,24 | 16,78  17.05
0.2 | 14,37 14,29 | 16.78 17,05
0.4 | 15.82 15,62 | 19.26 19,06
0.6 | 19.64  18.47 | 25.78 24,77
0.8 | 23.60 21.98 | 32.52 30,90
1,0 | 25.02 23,52 | 34,94 33,11
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TABLE 4.4

THEORETICAL AND EMPIRICAL MEAN BOX PIERCE STATISTIC S
FOR FITTING AR(1) MODELS TO MA PROCESSES; m = 20

n = 200

e E[s] S
1.0 50,35  49.32
0.6 34.12 33,06
0.4 22.55 22,36
0.2 18.13 18,16

We note that the agreement between theoretical and simulation results
is reasonably good, except that the theoretical results are consistently
above the corresponding simulation ones. However, bearing in mind the results
of Chapter 2, section 2.4 where the derived expansions of E[rka] produced

variances of Ty which were consistently above the simulated ones, the slight

inflation is to be expected. On the other hand, also from section 2.4, by
comparing the expansion of E[rka] with those derived from Bartlett's (2.48)
results (see figures 2.4 - 2.8) if we had used (4.35), which assumes (2.48)
as the elements of W, to calculate the theoretical mean of S, the results
would have been that much further away again from the simulations.

It-can be seen from Table 4.3 that the mean of the test statistic can
lie well below the mean of the asymptotic null distribution even when a
moderately seriously misspecified model is used. This emphasises the
difficulty with the Box-Pierce statistic noted in Chapter 2.

As far as the theoretical variance is concerned, without assuming
nomality (which is clearly undesirabl@we have to resort to squaring (4.37)
and taking expectations. This will involve us in the fourth moments of the
sample autocorrelations of ARMA(p,p+q) processes which we noted in section
2.4 to be algebraically intractible. In addition we would need the covariances
between r_* and 1, (j # s) which again would be difficult.

To give some idea of the kinds of values we might expect for the variance
of S, in the above simulations the empirical variance was noted and, in
addition, to check on the ability of S to reject a misspecified model, the

number of times it would do so over the 1000 simulations for each MA(1) model
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was noted at significance levels of 5, 10 and 20%. These empirical
variances and powers are collected in Tables 4.5 and 4.6.
TABLE 4.5
EMPIRICAL VARIANCE AND POWER OF THE

BOX PIERCE STATISTIC S FOR FITTING AR(1) MODELS
TO MA(1) PROCESSES; m = 20

n= 50
POWER
e VARIANCE | 0,05 LEVEL | 0,10 LEVEL | 0.20 LEVEL
-1.0 80.43 0.176 0.249 0.390
-0.8 74,73 0.145 0.215 0,332
-0.6 55.31 0.073 0.112 0.176
-0.4 41,20 0.028 0.055 0.094
-0.2 32,01 0.017 0,032 0.064
0.2 32,86 0,018 0.028 0.056
0.4 42,65 0.035 0.052 0.101
0.6 55.63 0.076 0,110 0.177
0.8 74.48 0.139 0.199 0.327
1.0 86.89 0.193 0,275 0.401
n = 100
POWER

e VARIANCE | 0.05 LEVEL | 0.10 LEVEL | 0,20 LEVEL
-1.0 113.60 0.566 0.693 0.833
-0.8 107.14 0.455 0. 600 0.767
-0.6 83,04 0.259 0.353 0.501
-0.4 55,69 0.080 " 0.128 0.212
-0.2 37.97 0.034 0.067 0,130
0.2 38.89 0.035 0.061 0.120
0.4 60,00 0.074 0.116 0.210
0.6 78.83 0.220 0.325 0.460
0.8 114.39 0.435 0.580 0,747
1.0 107.00 0.531 0.686 0.835
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TABLE 4.6

EMPIRICAL VARIANCE AND POWER OF THE
BOX PIERCE STATISTIC S FOR FITTING AR MODELS
TO MA(1) PROCESSES; m = 20

n = 200
POWER
] VARIANCE | 0,05 LEVEL | 0,10 LEVEL | 0,20 LEVEL
1.0 151.93 0.984 0.996 1.000
0.6 103.57 0.571 0.694 0.831
0.4 64.74 0.143 0.226 0.379
0.2 46,30 0.048 0.077 0.143

For a sample of size 50, we see that the proportion of times the
(incorrect) model would be rejected is just below 0.2 at the 5% significance
level for the extreme MA(1l) in which © = + 1. Even at the 20% level this
proportion is about 0.4. It can be seen that only for a sample size of 200
do the empirical powers become as adequate as one might hope.

This empirical evidence suggests that the well used statistic, S, is
typically very weak at rejecting misspecified models especially for the kind
of sample sizes likely to occur in practice. Our results suggest two reasons
for this. First, portmanteau tests of this type are likely, intrinsically to
lack power, as they are based on a large number of residual autocorrelations,
many of which contain little or no information about model misspecification.
For example we have already seen (table 4.1) that in the case of fitting
AR(1) models to an MA(l) process, only the first two residual auto-
correlations have non zero mean., Second, we noted in Chapter 2 that the
asymptotic levels of the Box-Pierce statistic can greatly under estimate
true levels for moderate sample sizes. It was seen that the Box-Ljung
statistic does not generally suffer from this problem (indeed, we noted a
tendency for its true significance levels to be rather too high). Accordingly,
we now examine the behaviour of this statistic when the model is incorrectly
specified. Further studies of the ability of the statistic S to reject other
misspecified models is given in Section 4.4.

The Box-Ljung statistic S', as defined by (2.8), viz
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S‘:= n(n + 2);)5111 (n - k)-lfka
can bg written in the quadratic fomm
§'= nr' AV Ar
= nz'Cr (4.39)
where from (4.26), g = A£, V is a diagonal matrix with jth diagonal element

! -
(n-3)/(n+2), and C= AV * A. Again, using (4.27), we see (4.39) has mean

E(S] = E[nz'Cz] = TroW + ng*' Cp* (4.40)
and variance
Var[S] = var[nE'QE] = 2Tr(CWCW) + 4qg*'cwqg* (4.41)
where p*=(pr,p2,...,p;f and we have used (4.27). (Koch, (1967)).

The asymptotic normality assumption in (4.27) will again not be
justified for the kinds of sample sizes likely to occur in practice. The

equivalent expression to (4.38), for the statistic SI, will be
, m m mm-1 m

E(s]= nZ 5E, ckjaE[rja] + gL L ijCsz[rjrz] (4.42)
where {ij} = C. We do not evaluate (4.42), but merely note that the ij
will be rather complicated functions of the wj defined in (4.10), the
elements of the matrix X used in (4.23) and the elements of V.

As a preliminary study on the performance of s'in rejecting misspecified

models, in the simulation studies reported on p 142, the empirical mean,
variance and power of Slwere noted for the same valuesof © given in Tables

4,5 and 4.6. The results are collected in Tables 4,7 and 4.8.
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TABLE 4.7

EMPIRICAL MEAN, VARIANCE AND POWER OF THE
BOX-LJUNG STATISTIC 5’ FOR FITTING AR{1) MODELS
TO MA(1) PROCESSES; m = 20

n = 50
POWER
LEVEL
e MEAN VARIANCE 0.05 0.10 0.20
-1.0 29.46 135,69 0.406 0.512 0,655
-0.8 28.06 125.39 0.342 0.450 0.584
-004 20¢ 24 69. 18 Oc 108 0. 170 0. 264
-0.2 18.89 54.93 0.078 0.119 0.199
0.2 19.03 56.99 0.070 0.115 0.205
0.4 20.57 72,46 0.116 0.156 0.254
0.6 23.87 91.95 0.192 0.280 0.409
0.8 28.02 125,39 0.334 0.441 0.591
1.0 29.86 144.97 0.401 0.506 04649
n = 100
POWER
LEVEL
o MEAN VARIANCE 0.05 0.10 0.20
-0.8 34.47 135.58 0.588 0.728 0.852
0.2 19,51 50. 68 0.074 0.127 0.242
0.4 21.63 76.72 0.131 0.207 0.318
0.6 27,71 99.63 0.332 0.439 0. 600
0.8 34,26 144,93 . 0.577 0.709 0.839
1.0 36.59 136,35 0.677 0. 802 0.909
TABLE 4.8
EMPIRICAL MEAN, VARIANCE AND POWER OF THE
BOX-LJUNG STATISTIC S°FOR FITTING AR MODELS
TO MA(1) PROCESSES; m = 20
n = 200
POWER
LEVEL
O MEAN VARIANCE 0.05 0.10 0.20
1.0 51.38 168.41 0.988 0.998 1.000
0.6 34.70 114.91 0.637 0.743 0.874
0.4 23.70 72.08 0.188 0.294 0.455
0.2 19.39 52.63 0.060 0.105 0.194
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We see that, by comparing Table 4.7 with 4.5 and Table 4.8 with 4.6
the modified statistic s’is much better than S at detecting a misspecified
model, the improvement being that S'would detect the misspecified model
20% more often (approx). However, in isolation, Table 4.7 shows that S'is
still rather weak at detecting the extreme misspecified MA(1) model in which
© = + 1 when the sample size is n = 50, Figures 4.1 and 4,2 show graphs of
the empirical power of S and Slfor sample sizes 50 and 100, Clearly, from
these graphs we see even for a sample size of 100 neither statistic is very
powerful at detecting the misspecified model. Asymptotically, of course,
both statistics are the same so that the powers at a sample size of 200 are
very much closer.

Marriott (1976) has also conducted a limited study of the power of both
S and S'in fitting MA(1) models to ARMA(1,1) processes. He concludes that S’
would be a more desirable statistic to use compared with S, since he also
found that the former was better at detecting a misspecified model. However,
he also concludes that S'is not as powerful as one would hope it to be. Of
course, it is inevitable that the null hypothesis will be rejected more
frequently by S'than by S, since for any given set of data s'must be larger
than S.

We have seen in Chapter 3 some value in fitting high order auto-
regressives to ARMA(p,q) processes and so we now look at how S and S'perfonn
relative to each other in detecting the misspecified model when AR(4) models
are fitted to MA(l) processes, for 6 = 1.0, 0.8, 0.6, 0.4, 0.2, For each ©
value 1000 MA(1l) processes were simulated for three sample sizes n = 50,
100, 200 and the mean and variance of the portmanteau statistics were
calculated over the 1000 simulations. These results together with the number
of times the incorrect model was rejected are collected in Table 4.9.

) Note that for a sample size of 50 the power of both statistics is
rather weak even for the extreme MA(l) process in which © = 1,0. In this
case, we have seen from Chapter 3, section 3.5 , that the asymptotic per-

centage loss is 100/(4+1) = 20%, so that the fact that both statistics would

not detect the misspecified model very often, could have quite bad
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FIGURES 4.1 AND 4.2

GRAPHS OF THE EMPIRICAL POWER OF S AND S’
TOR FITTING AR(1) MODELS
TO MA(7) PROCESSES; 5% LEVEL, m = 20
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IABLE 4.9

EMPIRICAL MEAN, VARIANCE AND POWER

OF THE PORTMANTEAU STATISTICS FOR FITTING

AR(4) MODELS TO MA(1l) PROCESSES; m = 20

i n= 50 n = 100 4
MEAN  VARIANCE POWER MEAN  VARIANCE , POWER
0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 0.1 LEVEL 0,2 LEVEL
0= 1.0 S|14.43 23,17 0.026 0.044 0.108 19.67 40.59 0.148'_ 0.235 0.398
- Y s119.26  41.60 0.131 0.228 0.377 22,40 53.69 0.262 0.387 0.537
o= 0‘ 8 S|12.73 20.83 0.011 0.024 0.065 16.63 33.42 0.063 0.115 0.221
¥ s17.17 37.81 0.084 0.131 0.251 19.08 43.85 0.133 0.219 0.347 _
o= 0.6 5 |11.43 16.11 0.002 0.006 0.028 13.85 22.17 0.011 0.035% 0.098
-7 8°115.56 24.41 0.045 0.082 0.169 16.08 30.06 0.050 0.101 0.210
o= 0.4 5 |11.35 15.40 0.002 0.009 0.029 13.71 21.47 0.011 0.032 0.083
7T S’115.52  28.04 0.040 ~ 0.075 0.161 15.94 28.91 0.043 0.084 0.194 .
02 0.2 S,|11.18 15.75 0.004 0.009 0,019 13.74 23.80 0.017 0.038 0.088
e s’{15.35 29,21 0.034 0.067 0.176 15,99 32.33 0.047 0.092 0.195
n = 200
MEAN VARIANC£1 POWER
: 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL

6= 1.0 S 26.67 51.07 0.476 0.639 0.801

= **Y ¢ 28.21 57.83 0.554 0.711 0.854

o= 0.8 S| 20.91 42.34 0.189 0.303 0.490

= VP g1 22.27 48.02 0.246 0.380 0.566

o=0.6 S 15.34 28,08 0.032 0.078 0.160

- VP gl 16.48 32.34 0.054 0.107 0.218

o= 0.4 S|14.74 30.06 0.035 0.069 0.143

= Y% gl 15,87  34.77 0.053 0.105 0.186

0=0,2 S| 14.53 - 25,76 0.025 0.049 0.124

= Ye< '] 15.64 29.93 0.039 0.088 0.171




consequences from a forecasting point of view., Of course, as the sample
size increases the picture is a little brighter, the rejection of the
misspecified AR(4) model at a sample size of 200 being approximately 48%
and 55% for S and S'respectively at a 5% significance level,

Also, we see from section 3.7, that as © gets below about 0.8, the
consequences of the misspecification, asymptotically from a forecasting point
of view, diminishes. Thus, even though the performance of the portmanteau
statistics is poor, the consequences of this are not as serious as one might
at first imagine.

Further evidence is needed on the performance of these two statistics
and the next section makes a more comprehensive study of their ability to

reject misspecified models.,

4,4 Simulation Results for the Power of the Portmanteau Statistics

In a power study of the ability of S and S'to reject a misspecified
model when autoregressive models are fitted to ARMA(p,q) processes, the number
of these processes that could be chosen for study, is of course, infinite.
However, we note firstly that Box & Jenkins (1970) suggest that p and q will
rarely be above 2 in practice; this is borne out by the number of series

(

that have been fitted and reported in the literature 1)(with one or two

notable exceptions).

Secondly, bearing in mind one of the most important reasons for fitting
models to data is the need to forecast one (and more) steps ahead from that
fitted model, it would seem natural to ask whether the portmanteau statistics
could detect, reasonably often, a misspecified model which gives rise to a
certain asymptotic percentage loss in mean squared forecast error, as
discussed in Chapter 3. In other words we would like to examine (for example)
those true ARMA(p,q) processes which, after having fitted an AR(p) model,
give rise to one step ahead percentage losses of under 10%,between 10% and

25%, between 25% and 50%, and above 50%. The criterion will be based upon

(I)Ihis is not conclusive evidence that higher order processes do not occur
in nature. But, if they do, experienced time series analysts rarely succeed

in correctly identifying them.
151.



percentage losses without taking estimation error into account.

We thus use the percentage losses to suggest the ARMA(p,q) processes
which we examine, rather than be completely arbitrary in our choice for
study. Even so, with this criterion, a certain amount of arbitrariness
will arise.

Referring to the upper entries in tables A3.1 - A3.8, we chose
(arbitrarily) processes which yield percentage losses in the above mentioned
ranges, after having fitted AR(1) and AR(4) models. Those processes selected
were simulated 1000 times, for sample sizes n = 50, 100, 200 and the
portmanteau statistics S and S'were used to detect the misspecified models;
the mean, variance and number of times the misspecified fitted model was
rejected, was calculated over the 1000 simulations. Results are collected
in Table$ 4,10 - 4.13. Our objective is to obtain a reasonable estimate of
power, in order to give some idea of the probability of detecting particular
misspecifications. For 1000 simulations, the standard error of our estimates

will be at most 0.5 (1000)_%'e50.016, which is sufficiently accurate for our

purposes.

On examining tables 4,10 - 4.13, we see that the power of both S and S'
at detecting a misspecified model is, in general, rather low for the kinds
of sample sizes that occur in practice. As is to be expected, the Box-Ljung
statistic performs better than the Box-Pierce statistic, since, although both
statistics are based on the same asymptotic theory, for a given set of
residual autocorrelations, the former will always be numerically larger than
the latter.

In Table 4,11, where percentage losses are not insignificant, (10 - 25%),
even for a sample size of 100 the power of both S and s'is rather low. For
the ARMA(1,2) process given, even for fitting an AR(4) model, the best either
statistic can do at the 5% significance level is to reject the misspecified
model just over 22% of the time. This only increases to approximately 55%
at the 20% significance level. In Table 4.13, where percentage losses are
very high (over 50%), for a sample size of 50 and in boundary non-invertible
MA(2) process in which G& = 2.0, Gg = 1.0 for which we fit an AR(4) model, S’
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TABLE 4.10

EMPIRICAL MEAN, VARIANCE AND POWER
OF THE PORTMANTEAU STATISTICS FOR FITTING
AR(1) AND AR(4) MODELS TO ARMA(p,q) PROCESSES FOR
WHICH 1 STEP AHEAD PERCENTAGE LOSS IS LESS THAN 10%; m = 20

AR(1) FITTED
1 n =50 n= 100
MEAN  VARIANCE POWER MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL
MA(2) S| 17.26 56,89 0.070 0.099 0.160 22,65 76.90 0.170 0.247 0.372
=9 =0,6,0 =0,4
1(P(1)-536%) S'| 22.47 92,77 0.170 0.238 0.355 25.52 97,60 0.267 0.360 0.507
ARMA(1,1) S| 18.38 64.54 0.085 0.118  0.192 22,68 72.10 0.178 0.264 0.375
% =0.9,8 =0.25
1(19(1)_5 5%) s’ 23.76 107.66 0.218 0.279 0.409 25,42 89.90 0.270 0.361 0.503
ARMA(1,2) s]|17.00 50,09 0.053 0,080 0,155 22,31 74,05 0.158 0.223 0.353
$.=0.8,65-0.2,65-0.4
1 (P(l)—5 9%3 s’l 22,13 83.01 0.161 0.243 0.338 25,11 93,63 0.239 0.343 0.475
n = 200
MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL
MA(2) s| 28.76 102.25 0.400 0.512 0.647
6 =0.6,8_=0.4
(13(1)—5.6%) s’l 30.33 113.83 0.457 0.563 0.697
ARMA(l 1) S|29.27 96.85 0.423 0.545 0.683
=0.9,6,=0.25 )
1(r>(1)—5 5%) s’} 30.78 107.09 0.482 " 0.597 0.729
ARMA(1,2) $128.32 89.97 0.357 0.494 0.643
p’ =0.8,8F-0.2,6,=-0.4 , , '
~(p(1)=s. 9%? s’|29.82 99.85 0.438 0.559 0.701
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TABLE 4,10 (continued)

EMPIRICAL MEAN, VARIANCE AND POWER OF THE PORTMANTEAU STATISTICS FOR FITTING

AR{1) AND AR(4) MODELS TO ARMA(p,q) PROCESSES FOR WHICH 1 STEP AHEAD
PERCENTAGE LOSS 1S LESS THAN 10;; m = 20 A

AR(4) FITTED
MEAN  VARTANCEP = 0 POWER MEAN  VARIANCER = 100 POWER
PROCESS 0.05 LEVEL 0,1 LEVEL 0.2 LEVEL ' 0,05 LEVEL 0,1 LEVEL 0.2 LEVEL
MA(2) S111.93 17.19 0.006 0.013 0.038 14.83 28,50 0.030 0.063 0.138
=0,2,0,=-0.4
P(l)-l 3%) s’1 16,26 31.38 0.059 0.102 0.193 17.17 38.23 0.083 0.142 0.265
ARMA(1,1) S|11.92 17.39 0.005 0.011 0.043 15.01 26.83 0.028 0.061 0.144
0.3, _-0 75 :
’(p(l)_?lsx) s’|16.25 31,77 0.055 0.110 0.215 17.38 35.89 0.077 0.152 0.266
ARMA(1.2) S |12.23 16.66 0.005 0.013 0.045 15.40 26.67 | 0.030 0.071 0.150
$,=0.8,8=-0.6,0,=-0.4
(P(1)=7. 3%) s’|16.67 31.09 0.057 0.104 0.221 17.81 35.78 0.087 0.155 0.277
ARMA(2,1) S |15.35 28.48 0.034 0.066 0.159 19.61 42.24 0.146 0.223 0.381
#,=0.8,45-0.4,6=0.8
(P(1)=9.3%) s$’120.20 50.12 0.174 0.282 0.427 22,22 54,46 0.241 0.367 0.549
; n = 200
MEAN  VARIANCE POWER 4
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL
MA(2) S} 17.20 36.38 0.081 0.145 0.267
=0,2,8,=-0.4 ‘
p(1)_1 3%) s| 18.43 41.79 0.119 0.205 0.337
ARMA(1,1) s{ 17.04 38.30 0.084 0.128 0.244
=0.3,8,=-0.75
1(1>(1)—1 52) sl 18.27 43.82 0.104 0.173 0.318
ARMA(1,2) S| 18.93 37.71 0.122 0.203 0.344
$,=0.8,6-0.6,6_=-0.4
(rP(1)=7. 3%) sl 20.28 43.43 0.172 0.261 0.420
ARMA(2,1) S| 26.35 63.93 0.430 0.590 0.757
4,=0.8,6=-04,6=0.8
(p(1)~9 3% s’| 27.85 72.30 0.509 0.668 0.817




TABLE 4,11

EMPIRICAL MEAN, VARIANCE AND POWER OF THE PORTMANTEAU STATISTICS FOR FITTING
AR(1) AND AR{4) MODELS TO ARMA(p,q) PROCESSES FOR WHICH 1 STEP AHEAD
PERCENTAGE LOSS IS BETWEEN 10% AND 25%:; m = 20

AR(1) FITTED
n= 50 n = 100 ‘
MEAN  VARIANCE POWER MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0,2 LEVEL 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL
MA(2) S| 21.57 76.39 0.130 0.201 0.321 31,66 134.57 0.485 0.591 0.735
6,=0.2,0,=-0.4
(P(1)= 18. 8%) s'| 27.54 126.82 0.330 0.443 0.577 35.06 166,58 0.592 0,700 0.833
ARMA(1,1) S|17.53 41.26 0.046 0.074 0.141 23.04 50.84 0. 154 0.252 0.417
=0.6,6,=-1,0
](P(l) 2b 0%) §’| 22.84 71.04 0.166 0.244 0.374 25.91 65,62 0.266 0.397 0.553
ARMA(1,2) s|19.08 73,72 0.094 0.143 0.225 25,30 101.82 0.232 0.342 0.479
$,=0.4,8,=0. 2,;{ =0.4
g‘,: (p( =15.8 Sl 24.60 120.29 0.250 0.331 0.449 28,27 125,78 0.348 0.457 0. 603
. n = 200
MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0,2 LEVEL
MA(2) s | 45.47 164.40 0.913 0.959 0.989
=0.2,8_=-0.4
P(1)=18.8%) s'| 47.48 181.69 0.934 0.972 0.991
ARMA(1,1) S129.8 66,31 0.421 0.583 0.758
$,=0.6,6,=-1.0
](P(l) 20 02) s’|31.42  74.39 0.506 0.659 0.804
ARMA(1,2) S 135.56 140.90 0.633 0,743 0.852
£ o 4,8,=0.2 ;! =0.4
a)‘ 15. 8% $'137.29 155.26 0.688 0.795 0.879
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TABLE 4.11 (continued)

EMPIRICAL MEAN, VARIANCE AND POWER OF THE PORTMANTEAU STATISTICS FOR FITTING
AR(1) AND AR(4) MODELS TO ARMA(p,q) PROCESSES FOR WHICH 1 SIEP AHEAD
PERCENTAGE LOSS IS BETWEEN 10% AND 25%; m = 20

AR(4) FITTED
n= 50 n = 100
MEAN  VARIANCE POWER MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 0,1 LEVEL 0.2 LEVEL
MA(2) S|{13.71 22.29 0.023 0.038 0.082 19,25 38.21 0.139 0.222 0.366
6,=0.6,6,=-0.4
’(p(l)_17 9%) s'118.37 39.97 0.103 0.177 0.305 21.98 50.31 0.237 0.359 0.529
ARMA(1,1) S 13.62 22.99 0.019 0.042 0.093 | 18.67 38.73 0.106 0.177 0.318
=0.3,8,=-1.0 -
’(P(l) 17. 1%) s’|18.28 41.31 0.107 0.174 0.304 21.33 51.12 0.195 0.315 0.503
ARMA(1,2) S [14.31 24.88 0.022 0.049 0.113 19.38 33.69 0.115 0.203 0.376
#$,=0.4,6,=-1.4,0.=0.4 ‘
(p( =20%) s’[19.12 45.13 0.139 0.222 0.367 22.06 44,57 0.229 0.365 0.546
ARMA(2,1) S {30.85 189.43 0.573 0.660 0.768 40,40 271,94 0.781 0.843 0.907
£,=1.6,8=-0.9,0,=0.8
(p(1 _12.3% s’{37.82 282.88 0.728 0.810 0.880 44,01 315.41 0.837 0.891 0.942 |
n = 200
MEAN  VARIANCE POWER )
PROCESS 0.05 LEVEL 0.1 LEVEL 0,2 LEVEL
MA(2) S125.44 50.40 0.401 0.573 0.758
=0,6,8,=-0.4
P(1)=17.9%) s’} 26.99 57.49 0.494 0.663 0.807
ARMA(1,1) S |25.20 52.13 0.363 0.524 0.736
$,=0.3,8,=-1.0
?p(l)_n 1%) s’|26.73 59.13 0.445 0,612 0.807
ARMA(1,2) S 127.00 54.23 0.497 0.661 0.816
$,=0.4,6,=-1.4,6,=0.4
(P{1}=20%) s’|o8.58 61.39 0.566 0.721 0.855
ARMA(2 1) S 149.48 469.44 0.890 0.942 0.977
#$,=1.6,4=-0 e,) =0.8
(p(1 _12. 5" 151.32 497.34 0.916 0.956 0.981




TABLE 4,12
EMPIRICAL MEAN, VARIANCE AND POWER OF THE PORTMANTEAU STATISTICS FOR FITTING

AR(1) AND AR(4) MODELS TO ARMAzQ q) PROCESSES FOR WHICH 1 STEP AHEAD

PERCENTAGE LOSS IS BETWEEN 25% AND 50%; m = 20

AR(1) FITTED
n= 50 n = 100
MEAN  VARIANCE POWER MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 0.1 LEVEL 0,2 LEVEL
MA(2) S| 24,60 98.02 0.224 0.302 0.444 37.10 147.50 0.687 0.795 0.895
=0.9,0_=0.8
P(1)=37.9%) s'{ 31.20 162.73 0.439 0.548 0.682 40,99 185.12 0.789 0.874 0.943
ARMA(1,1) S 126.37 98.00 0.293 0.395 0.528 39.38 143.48 0.789 0.873 0.939
=0,6,8,=0.75
1(19(1)_41 6%) S'133.12 164.77 0.508 0.616 0.739 43.24 180.09 0.859 0.922 0.965
ARMA(1,2) S |24.01 83,08 0.191 0.281 0.418 35,21 120,79 0. 645 0.773 0.876
g{ =0. 8,e¥ -0.2,0_=-0, 8
(P(1)=39. 9%? 30.40 140.12 0.416 0.533 0.693 38,89 152.68 0.759 0.852 0.931
n = 200
| MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0,1 LEVEL 0,2 LEVEL
MA(2) S| 54,96 201.95 0.992 0.998 1.000
9,0.=0.8 ,
Q’(p(l)—ﬁ 9%) S| 57.31 222.86 0.993 1.000 1.000
ARMA(1,1) S| 60.56 231,22 0.997 1.000 1.000
$,=0.6,6,=0.75
’(p(l) 41 6%) s'| 62.88 255.68 0.999 1.000 1.000
ARMA(1,2) S|52.67 171.01 0.992 0.996 1.000
'S o.s,ag_ 0.2,0_=-0.8
(P(1)=39. 9%7 s’l 54,87 189,87 0.994 0.998 1.000
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TABLE 4.12 (continued)

EMPIRICAL MEAN, VARIANCE AND POWER OF THE PORTMANTEAU STATISTICS FOR FITTING
AR(1) AND AR(4) MODELS TO ARMA(p.,q) PROCESSES FOR WHICH 1 STEP AHEAD
PERCENTAGE LOSS IS BETWEEN 25% AND 50%: m = 20

AR(4) FITTED
n= 50 n = 100
MEAN  VARIANCE POWER MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 0,1 LEVEL 0.2 LEVEL
MA(2) S| 16.68 30.66 0.055 0.117 0.217 24,86 55,96 0.351 0.529 0.699
0,=1,2,8.=1.0 , :
1(13(1):38.5%) S| 21.97 54,77 0.239 0.365 0.528 28,04 73.16 0.539 0.678 0.823
ARMA(1,2) S|16.05 27.39 0.044 0.089 0.176 23.48 48,25 0.313 0.439 0.615
$,=0.4,6,=-1.8,0_=0.8 ,
(P(1)=41.9%) s’} 21.10 48,77 0.203 0.304 0.485 26.45 62.99 0.454 0.580 0.751
n = 200
MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL
MA(2) S| 38.06 87.30 0.927 0.978 0.996
%-—-102,9 =1.0
p(1)=38.5%) ¢| 40.09 98.41 0.955 0.986 0.999
ARMA(1,2) S| 35.64 83,67 0.868 0.949 0.985
51=004,%:—l¢8,g 2008
(P(1)=41.9%F | 37.49  94.61 0.903 0.958 0.994
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TABLE 4.13

EMPIRICAL MEAN, VARIANCE AND POWER OF THE PORTMANTEAU STATISTICS FOR FITTING

AR(1) AND AR(4) MODELS TO ARMA(p.q) PROCESSES FOR WHICH 1 STEP AHEAD
PERCENTAGE LOSS IS ABOVE 50;; m = 20

AR(1) FITTED
n =50 n = 100
MEAN  VARIANCE : POWER MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL | 0,05 LEVEL 0.1 LEVEL 0.2 LEVEL
MA(2) S| 28.24 119.34 0.336 0.447 0.601 | 45.27 193.58 0.904 0.960 0.991
6,=0.4,0_=1.0
Ip(1)=68.42) 'l 35.25 194.08 0.588 0.700 0.817 | 49.57 239.80 0.955 0.982 0.996
ARMA(1,1) 27.87 106.76 0.316 0.449 0.592 42,53 172.30 0.851 0.920 0.974
¢=O.6’%=l.o
’(p(l)zao%) S’] 34.81 178.06 0.582 0.703 0.825 | 46.58 215.15 0.911 0.957 0.988
ARMA(1,2) S |27.83 119.04 0.310 0.429 0.587 | 41.01 133,90 0.836 0.913 0.973
#,=0.4,8,=-1.8,0.=0.8
(P(1)=106%) s’|34.87 197.79 0.568 0.695 0.807 |45.02 169.69 0.902 0.958 0.987
n = 200
MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0,2 LEVEL
MA(2) S |73.36 301.44 1.000 1.000 1.000
6,=0.4,6,=1,0
(P(1)=88.4%)  s’[76.10 328.75 1.000 1.000 1.000
ARMA(1,1) S |65.65 220.29 1.000 1.000 1.000
$,=0.6,8,=1.0
Yp(1)=80%) 5’| 68.12 243,92 1.000 1.000 1.000
ARMA(1,2) S |63.82 200.02 1.000 1.000 1.000
$,=0.4,6,=-1.8,0,=0.8
(p(1)=106%) $’166.27 221.82 1.000 1.000 1.000
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TABLE 4.13 (continued)

EMPIRICAL MEAN, VARIANCE AND POWER OF THE PORTMANTEAU STATISTICS FOR FITTING

AR(1) AND AR(4) MODELS TO ARMA(p,q) PROCESSES FOR WHICH 1 STEP AHEAD

PERCENTAGE LOSS IS ABOVE 50%; m = 20

AR(4) FITTED
n = 50 n= 100
MEAN  VARIANCE POWER MEAN  VARIANCE POWER
PROCESS 0.05 LEVEL 0,1 LEVEL 0.2 LEVEL 0.05 LEVEL 0.1 LEVEL 0,2 LEVEL
MA(2) s{17.72 27.80 0.069 0.134 0.263 26.69 58,05 0.462 0.614 0.789
=2,0,0,=1.0
P(1)= 86 7%) s’|23.02 49.84 0.280 0.428 0.607 29,87 75.89 0.611 0.748 0.881
ARMA(1,2) S |23.79 63.10 0.324 0.441 0.613 31.67 80.17 0.702 0.828 0.937
4,=0.8,6,=2,0,6.=1.0 |
(p( 107%) S |29.98 105.80 0.583 0.700 0.826 34,98 102,04 0.810 0.906 0.974
n = 200
MEAN  VARIANCE | POWER
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL
MA(2) S141.48 94,96 0.977 0.992 0.998
e%_z.o »6,=1.0 ,
P(l)—86 7%) S |143.50 106.84 0.983 0.995 0.999
ARMA(1,2) S {45.63 90.88 0.999 1.000 1.000
#$,=0.8,0,=2.0,8,=1.0
(p(13—107%) s'147.59 101.45 0.999 1.000 1.000




would detect this misspecification under 30% of the time at the 5%
significance level. Naturally, for a large sample size (n = 200) both
statistics become satisfactory at detecting misspecification.

A closer look at these tables shows that percentage loss is a reasonable
guide to the ability of S and S'to detect misspecification, although one or
two examples show that nothing like an exact relationship will exist between
them. For example, in Table 4.11 when fitting AR(4) to the ARMA(2,1) process
for which ¢ = 1.6, § = -0.9 and 8 = 0.8 and a sample size 50 both S and s’
detect the misspecification surprisingly often. Similarly, in Table 4.13 for
the misspecification of the MA(2) process mentioned in the previous paragraph,
at ; sample size 50, the very low percentage rejection for both statistics
is somewhat surprisigg considering the high percentage loss in forecasting.

To explain the reasons for this in the above examples consider the
first four average residual autocorrelations (over the 1000 simulations
conducted for fitting AR(4) models) as given in Table 4.14,

TABLE 4,14

EMPIRICAL MEAN SAMPLE RESIDUAL

AUTOCORRELATIONS FOR FITTING AR(4) MODELS
TO SPECIFIC MA(2) AND ARMA(2,1) PROCESSES

MA(2) PROCESS ARMA(2,1) PROCESS
6 = 2.0, = 1.0 ¢; = l.6,¢; = -0.9,0 = 0.8
k n = 50 n = 200 n = 50 n = 200
1 0.18 0.125 0.49 0.35
2 -0.15 -0,163 0.05 -0.06
3 0.13 0.175 0.02 0.05
4 -0.10 -0.144 -0.03 -0.02

Note: for both processes average residual autocorrelation

were virtually zero beyond lag 4 for both sample sizes.

It is clear from this table that in the case of the MA(2) process the
residual autocorrelations are of moderate size spread over four lags, whilst
for the ARMA(2,1) process the residual autocorrelations are such that where
as the first is large, the remainder at other lags are virtually zero. Thus,

for a sample of size 50 the single large autocorrelation at lag 1 will
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become important in calculations of S and s 'whereas for the same sample
size the four moderately sized autocorrelations will not contribute,
relatively, as much in calculations of S and s. Hence, for detecting
misspecification in the above MA(2) process we would expect S and S’'to be
somewhat lower than we might first imagine, whereas for the ARMA(2,1)
process the opposite would be true.

Now, the sample autocorrelations in Table 4.14 will (at least for large
sample .sizes) provide reasonable estimates of the residual autocorrelations
from the misspecified model. Our results then suggest that while percentage
loss provides some indication of the likely power of the portmanteau statistic,
one must expect considerable variability in powers between different mis-
specifications producing roughly equal losses in forecasting accuracy. To make

this point rather more concretely, suppose the true model
,z{(B)x,c = G(B)at
where ay is white noise. If an AR(p) model is fitted to such a process the

fitted model will be of the form

@(B)Xt = ”t
where

8(B) = (1- 4B - ... - p”,Bp')

and the ﬁ; are the probability limits of the least squares estimates., The
residuals from the fitted model then obey

g(B)n, = #(B)o(B)a,
If the autocorrelations of N happen to be large for just one or two lags,
one would expect the portmanteau statistics to be better than if these auto-
correlations were of moderate size for several lags.

Our conclusion, then, is a somewhat mixed one. There certainly exist mis-
specifications, producing considerable loss in forecasting power, which will
not be shown up very often by portmanteau checks (at least for sample size
50 - 100). On the other hand, it will sometimes happen that less severe mis-
specifications are fairly frequently detected. However, the practical time
series analyst can hardly expect to consistently have the good fortune to
make only specification errors of this latter kind. Accordingly, for general
use, one would not be happy about the ability of the portmanteau statistics
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alone to produce checks of sufficient stringency.

4,5 Conclusions

We have shown in this chapter that, even though the Box~Pierce and
Box-Ljung statistics S and S'respectively were derived with no specific
alternative hypothesis in mind, when they are used in an attempt to detect
models which are known to be misspecified, their empirical performance is
rather poor for the kinds of sample sizes used and found in practical time
series analysis.

Although the asymptotic mean and variance of both S and Slare both given
under the assumption of fitting AR(p) models to ARMA(p,q) processes, their
distributions took no simple form thus necessitating an empirical study of
their powers.

As would be expected s'does better than S in all circumstances, the main
reason being that its numerical value is higher than that of S when calculated
from a given set of residual autocorrelations, so that when a X° test is
applied, it will naturally reject a given misspecified model more often,

Since each statistic calculates a weighted sum of squared residual
autocorrelations it appears that they would perform best for those mis-
specifications that give rise to residuals which have one or two high auto-
correlations, rather than ones which have several of moderate size only,

I would also argue on the basis of these results that a practice which
has recently sprung up in some of the applied literature is of dubious value,
It is common now to see fitted models reported, accompanied only by the
value of the Box-Pierce statistic S. Presumably the implication is that if
the value of S is not too high the model can safely be assumed to be adequate,
Of course, we noted in Chapter 2 (and the point is reinforced in the present
chapter) that the Box-Ljung statistic S‘is more appropriate than S. However,
even this modification to the practice just described would hardly be
adequate. As we have seen, for sample sizes met in practice, misspecifications
of considerable gravity are often undetected by the statistic S: The

conclusion, then, must be that further checks on model adequacy are almost
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essential. It should be added that this point is clearly recognised by

Box and Jenkins (1970, chapter 8), who recommend several other checks.
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CHAPTER 5

FORECASTING FROM MISSPECIFIED TIME SERIES MODELS WHEN
THE ASSUMED DEGREE OF DIFFERENCING IS TOO LOW

Summary

This chapter considers the mean and variance of the sample auto-
correlations for an ARIMA(p,1,q) process and looks at theoretical asymptotic
parameter estimates for fitting AR(p? models to such processes, An
expression is derived for the asymptotic h-step forecast error variance
and in the special case p= 0 and q = 1, percentage losses are given for
fitting AR(2) models. These results are supported by simulation studies, and
the possibility of the more general approach adopted in Chapter 3 is indicated.

5.1 Introduction

Suppose that a time series X, follows the ARIMA(p,d,q) process

#®) (1 - B)%x, = o(B)a, (5.1)
Since this process is non stationary it possesses no (finite) mean and the
population autocovariances and autocorrelations do not exist. Further
problems arise in any asymptotic study of fitting different models to (5.1),
since the residuals from such a fit will themselves be samples from a non-
stationary process. That this is so can be seen by considering fitting the
non-stationary ARIMA(p,d;q) model )

8(B) (1 - B)dxt = 8(B)n, (5.2)

7

where we assume d > d .

If (5.1) and (5.2) are both to hold,
gme) (1 - )8 = amemla, (5.3)

so that m, will follow (asymptotically) an ARIMA(p+q) d-d: p+q) process. The
theory of section (3.3), where stationary ARMA(p,q) models were fitted to
stationary ARMA(p,q) processes by least squares cannot be applied to find
asymptotic parameter estimates in the fitted model. This would be especially
so for the results of section (3.2) where pure autoregressives were fitted,

since the probability limits of the fitted AR coefficients depended directly
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on the population autocorrelations of the true process. We see, therefore,

that a different approach has to be used.

As an example of the procedure adopted, let xl,xa,...,xn be n values

from the non-stationary ARIMA(p,l,q) process

#(8)(1 - B)X, = 6(B)a, (5.4)
Sample autocorrelations, s defined by
T = ck/bo (5.5)
n

where ¢, = = t-§k+1 - ic)(xt_k - X) (k= 0,1,25...) and X = 1%:1 Xt/n, may,
of course, be calculated. Note that our definition of sample autocorrelation
in equation (2.5) and also the definition in section 3.1 did not subtract
off the sample mean as in (5.5). The reasons for doing so here is given on
p 169 and p 179, where it provides us with a convenient mathematical
simplification in both cases. We shall see that when we use (5.5) in fitting
misspecified models, the assumed model takes a slightly different form from
that in (5.2).

For instance, if we fit an AR(l) process by least squares,example 3.2
directed us to use the first sample autocorrelation (without X) to estimate

ﬁ;, the fitted autoregressive parameter. Suppose we use r defined by (5.5)
to estimate ¢:, i.e. set
g =1 (5.6)

Note that, if Z = X, - X, we may write

T, Z Z,Z,_ k/;:

so that in accordance with example 3.2, using 3: =z implies we are
fitting Zt - Bgzt-z = efror to data by least squares. That is, the model
7 ' -
- X) - iﬁ(x%_I - X) = error (5.7)

Moreover, in section 5.2 we give an asymptotic expansion for E[rk] for the
process (5.4) (with r, defined by (5.5)), so that from (5.6)

B3] = elz, 1,
and the problem we had in Chapter 3 of determining plim 3: (as we did in

equation (3.41)) has been replaced by obtaining a satisfactory expression
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for E[rl ]o Naturally, this will depend on the true process the series
follows, but will not depend upon its population autocorrelations (which we
have already mentioned do not exist).

Hence, in fitting a stationary AR(1) model to a non-stationary ARIMA(p,l,q)
process we shall fit the model (5.7) to the data by least squares. In general,
extending the above arguments, if we fit an AR(p') model, and obtain estimates
of the p’ autoregressive parameters ;f;,;f;,...,ﬁ;,, via the solutions of the
equations (3.2), with the 1, defined by (5.5), i.e.

8+3r teeeoot+f,r,

| <

3 L, + 3 + o000 ot ﬂ /T

P pTa (5.8)

gr +o-'ooo+3pll

1 P'l

we shall be effectively fitting the model

(x, - %) - 31'(xt_1 - X) - eees - Zp',(xt_p,- X) = error

to the data by least squares.
Using similar notation to that in Section 3.2 we may write the solution

/ ’
vector, f: (;31',32,..., 3;,) of (5.8) in the form

T |
= Pr r (5-9)

o

’,
Where 5— (I‘1 ’rz,ooo,rpl)o

Now def::me SE to be the value of § obtained by replacing all the sample

autocorrelations r, sT rece sy of the true process in (5.9) by their

expectations. Thus

B E[rl ] E[ra] coe E[rpr-_:L ]1 = E[I‘l ].
E[rl] 1 E[I‘zj

. L | (5.10)
E[ p-l] 1 E[rﬁ%

Provided the variances of the rj are not too large this should provide an

adequate (though biased) approximation to_E[f].
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We evaluate (5.10) in some special cases for ﬁ'= 1,2,3,4 on p177 , and
gsome evidence for its validity in providing estimates for the auto-
regressive parameters is given through some simulation studies, section 5.2,
p 178.

As far as asymptotic mean square error for forecasting is concerned, a
slightly modified approach is again needed compared with those used to derive
(3.32) and (3.34) in section 3.4. Details are given in section 5.4.

As we have pointed out, the rk's and consequently their expectations,
are important for the study of misspecified non-stationary processes. Sample
autocorrelations for non-stationary processes have been little studied,
except notably Wichern (1973) who looked at the IMA(l,1) process. We now
examine his results and provide an expression for E[r, ] and var[r, ] for the

more general ARIMA(p,l,q) process.

5.2 The mean and variance of the sample autocorrelations for an IMA(1,1)

process
We first consider a special case of the process (5.1) in which p = 0,

d=1 and q = 1, namely the integrated moving average model
xt - xt_1 = a, + Gat_1 (5.11)
for which Wichern (1973) attempted to examine the kinds of values one might
expect to obtain for the sample autocorrelations T from a sample xi,xh,....xn
from (5.11), where r, is defined by (5.5). For the general process (5.11)
and < will be correlated so that
E(xr, ] = E[c, /c,] (5.12)
£ E[ck]/E[co] (5.13)

Wichern (1973) pointed this out but examined the right hand side of (5.13) to

Tx

get some idea of the behaviour of the mean of Iy These results are also quoted
by Box and Jenkins (1970), pp 200 - 201. Wichern's simulation results on the
sample mean, ik’ over 400 simulations of the process (5.11) did not compare

too favourably with the theoretical values obtained from the ratio E[ck]/E[co],

over a range of © values.
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A quadratic form representation of Ty

Wichern (1973) showed that we may write r, as the ratio of the quadratic

forms in the variables a, given by

2 T'FQ FTa/(2n)

rk = E,' T’FTg/(n) (5. 14)

’ ’
where 3’= (a1 ,aa,...,an), F= (I - l_;/n) with 1 = (1,1400.41),

»l '1
1 |
T= f o1 , withA=1+0
R !

and Qk is an (nxn) zero matrix with unity on the kth super and sub diagonals.

In the above representation Wichern (1973) assumed that a  and X, are
fixed and so when r, is defined as in (5.5) (i.e. the sample mean X is taken
off) a, and Xb disappear from the analysis., Of course, 1f a stationary model
is to be fitted to an integrated process, it will generally not appear from
the data to be reasonable to assume a zero mean for the stationary
representation. The sample mean X then constitutes a sensible estimator for
the unknown mean. (It is well known that, for stationary processes, X is an
asymptotically efficient estimator of the true mean.)

Defining M = T'FQkFT and K = T'FT, we may write (5.14) as the ratio of

quadratic forms

W

Ma/2
’Kz (5.15)

Ty

w

If (as Wichern does) we assume the a is distributed as multivariate normal,
(5.15) is the ratio of quadratic forms in normal variables. The exact
distribution of (5.15) is difficult to find. Distributions of ratios of the
type a’Ga/a’Ha have been found when G and H commute, for in this case the
ratio can be simultaneously diagonalised by the same orthogonal transformation
to a form which can lead to the exact distribution (Watson (1955))., The case
when H = I has been well discussed by Anderson (1971). Gurland (1955)

obtained a Laguerrian expansion for the distribution under a commutative
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property of G and H, whilst Watson (1955) obtained the exact distribution.
Dent and Broffit (1974) and Broffit and Dent (1975) obtained the exact mean
and variance of Watson's distribution and proposed asymptotic distributions
for the ratio of the quadratic form when G and H do not commute. The
success of these results appears to depend heavily on a symmetric form for
the distribution of the ratio g’G‘g/éfH 2 and more experimental work needs
to be done to test out their methods. The distribution of Ty in (5.15) is
not symmetric, in general, and moreover M and K do not commute.

In a recent article, Khuri and Good (1977) obtain the distribution of
ratios of quadratic forms in non normal variables when G and H are not
i%essarily positive semi definite matrices, so that it ought to be possible
to obtain the distribution of Tys above, at least in closed form. We do not
proceed with their analysis for the following ideas provide us with concise,
easily understood approximate expressions for the mean and variance of Tye

Since ¢, = a'M a/2n and ¢, = a'K a/n and we assume the g is normal,

Wichern gives

E[c,] = Trko */n (5.16)

and E[ck] = TrMoaB/Zn (5.17)

Elc, ] 3T

and obtains the ratio E[co] = TK

_ {n-k){-6+6 M+ (n°+2k®-4kn-1) \®
= n'En-' 1) r6-£—6k-%n+_-7-1 xa"'u—l] (5.18)

Wichern examined (5.18) for different © values and his reported results

are collected in Table 5.1, together with the empirical mean ;k that he

found from his simulations. (A description of Table 5.1 is given on p/¥7l.)

The mean and variance of T

Following methods first proposed by Marriott and Pope (1954) and
Kendall (1954) we may obtain an expansion of r = (a + E[ck])(b + E[co])"1

where a = ¢, - E[ck], b= - E[co], so that after taking expectations,
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E[ck] (1 _ E[ckco] E[coaj
E[co] E|ck|E|co] + ZElcolsﬁ (5.19)

to order 1/n.
Also, from Kumar (1975)

E[c,c,] = E[2 M 2 & K 3]/2n®
= {ToM TrK + 2TrMK}o_*/2n® (5.20)
and E[coa] = E[(g‘K a)?]/n? '
= {(Trk)® + 21‘rKa]oa"/'n2 (5.21)

so that (5.19) becomes, after substitution,

_ M( OTIMK . 2Trk® )
E[rk] = Tk \* =~ TemTek + {TrK) 2 (5.22)

An analytic expression for E[rk] from (5.22) in termms of A, k and n, similar
to (5.18) is algebraically intractible, and so the only feasible method of
examining (5.22) is by programming.

Expression (5.22) was therefore programmed and, in particular evaluated
at those @ values and that sample size used by Wichern (n = 50). A'direct
comparison is therefore possible between the ratio (5.18) studied by
Wichern, his simulation results for the mean sample autocorrelation, Ek and
the expansion given by (5.22). Results are collected in Table 5.1.

It is clear from the table that, even though the ratio E[ck]/E[co]
studied by Wichern (1973) provides some insight into the behaviour of the
sample autocorrelations, Tys the expansion for E[rk] given by (5.22) gives
values which are much closer to the empirical sample mean ;k which was

reported from 400 simulations with a sample size of 50 as conducted by Wichern.
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TABLE 5.1

EVALUATIONS OF E[c, J/E[c ] AND E[z, ]
TOGETHER WITH THE EMPIRICAL SAMPLE MEAN T,

(AS REPORTED FROM SIMULATIONS BY WICHERN ;1973)2

e = +009
1 2 3 4 5

k
E[ck]/E[co] 0,930 0.834 0,743 0,657 0,575

Ty 0.91 0.77 0. 64 0.53 0.44

E[r,] 0,907 0,771  0.647 0,535  0.434

8 = +0,5
E(c, J/E[c,] | 0,927 0.832 0,741  0.655  0.573

rk 0.90 0076 0.64 0.53 0,44

E[r, ] 0,902 0,766 0,643 0,532 0,432

E(c, JE[c,] | 0.902 0.809 0,721  0.637  0.538

rk 0,86 0.73 0.61 0051 0-42

E[x, ] 0.859 0,730 0,613 0,507 0,411

E(c, VE[c,] | 0.727  0.652 0,580  0.512  0.448

T, 0.62 0.54 0.46 0.38 0,32

E(r, ] 0.605 0,515 0,434 0,360 0,294

’ 0= -0,8

E[ck]/t[co] 0.255 0,228 0,202 0,177 0,153
T 0.21 0,18 0.16 0.13 0.11
E(r, ] 0,200 0.174 0,150 0,129 0,108

e = -100

E[c, J/E[c,] | -0.020 -0.020 -0.0192 -0.019 -0.018
T, -0,02  -0.02  =0,02  -0.03  -0.02

E(z, ] -0,020 =0,020 =-0,0192 -0,019 -0,018

Note (i) sample size n = 50

(ii) 400 simulations for each @ value
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To gain further insight into the behaviour of E[rk] particular © values
were chosen and (5.22) was evaluated for k = 1,2,3 for various sample sizes,
The cases © = -0.5 and 8 = 0.0 are given in figures 5.1 and 5.2 (the shape
of the curves in figures 5.1 and 5.2 were typical for all the © values looked
at in the range).

As pointed out by Box & Jenkins (1970) p 200, for small k, the expected
valueé of Iy for an IMA(1,1) process are not very large for the kinds of
sample sizes used in practical time series analysis, although it is also clear
from the graphs in figures 5.1 and 5.2 that, as expected, E[rk] is
asymptotically 1.

Also, from Kendall & Stuart (1977) Vol 1, we may obtain an expression
for the variance, var[rk], for the ratio of the variables c, to c_.

We find, from their equation 10.17, p 247, that

E[ck])2 var[co] var[ck] _2 cov[co,ck]

""’r[rklz(stco] Lo, )°  Elo®  Els,Eley] (5-22)

to order 1/n.
From (5.16) and (5.21)

var[c ] = 2 Trk%_*/n® (5.24)
similarly

var[c, ] = ToM’g */2n? (5.25)
and cov[c ¢, ] = TrMKo, */n? (5.26)

These expressions, together with (5.16) and (5.17) may be substituted in
(5.23) for computational purposes. (Analytic expressions are again intractible,)
Expression (5.23) was programmed and evaluated at those values of ©, n
and k considered by Wichern (1973). Results are collected in Table 5.2
where the standard deviation of the empirical sample mean }k is also reported
from Wichern's 400 simulation experiments.,
In general, the variances given in table 5.2 are very small, suggesting
that an expression of the form (5.10)should provide a fairly close

approximation to the means of the estimated parameters when an AR(p) model
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FIGURE 5,1

GRAPH OF E[r, ] FOR DIFFERING k AND .
SAMPLE SIZE; © = -0.5
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TABLE 5,2

EVALUATIONS OF var[r, ] TOGETHER
WITH THE (var(r, ]/400)% AND
THE EMPIRICAL STANDARD ERROR OF T,
(AS REPORIED FROM SIMULATIONS BY WICHERN (1973))

€= 0.9
k 1 2 3 4 5

var(r, ] 0.0008 0,0033 0.0070 0.0114 0,0160
{var[rk]/aoo}%' 0,001 0.003 0,004 0,005 0,006

sede (T ) 0.002 0.006 0,008 0.010 0,011
&= 0.5
var[r, ] 0.0008 0.0034 0,0072 0.0116 0.0161

[var[rk]/4001% 0.001 0,003 0,004 0,005  0.006

sed. (7)) 0.004 0,006 0.008 0,010  0.011
6= 0.0
var(r, ] 0.0012 0,0043 0.0084 0,0130 0,0176
{var[rk]/AOO]%' 0.002 0,003 0,005 0.006 0,007
N EW 0,004 0,007 0.009 0,010 0,011
0= -0.5
var[z, ] 0.0163 0.0213 0.0259 0.0299 0.0330
{var[rk]/ZOOI% 0.006 0,007 0.008 0,009  0.009
s.d. (7)) 0.009 0,010 0,011 0,011  0.011
6= -0,8
var[r, ] 0.0516 0,0491 0.0461 0.0429 0,0395
{var[rk]/4001% 0.011 0,011 0,011 0,010  0.010
seds (7)) 0.010 0,010 0.009 0,009 0,008
o= ~1,0
var[rk] 0.0196 0.0192 0,0188 0,0184 0,0180

{var[rk]/ZOO}% 0.007 0.007 0.007 0.007 0.007

s.d. (7 ) 0,007  0.007 0,007 0,007  0.007

Note (i) sample size n = 50

(ii) 400 simulations for each © value
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Theoretical parameter estimates for fitting AR(é} models to the
IMA- Erocess

is fitted to an IMA(1l,1) process. We now go on to examine this possibility,

We now evaluate the expression (5.10) for 2E using the calculated

expected sample autocorrelations given in table 5.1 for different values of

© in the IMA(1l,1) process

Xt - Xt_1 = at + Oat_

1

Table 5.3 contains results for fitting autoregressives up to order 4.

TABLE 5,3

THEORETICAL AUTOREGRESSIVE PARAMETER ESTIMATES
FOR FITTING ARZ#S MODELS TO IMAZl,ls PROCESSES Xt- Xt:iz a,+

t t-1
, , , , SAWLE SIZE = 50 , , , , ,
e |p g 2, g, g, e (p| 4 vfé £, ¢;
10,907 1} 0.902
0.,9{2}1.176 =0,2956 0,512 | 1.1281 -0,28%10
3|1.192 -0.3617 0.0562 3 ( 1,1355 -0,2842 0,0294
411.195 -0,3809 0,1197 -0.0532 4 | 1,1367 -0.2960 0,0767 =0,0416
1| 0.8590 1| 0,605
21 0.8827 -0,0282 2 | 0.4618 0,2361
0.0 3} 0.8819 -0,0038 ~0.0276 -0.5 13 | 0.4408 0,1950 0,0890
410,.,8812 -0,0039 -0,0036 -0,0272 4| 0,4386 0,1902 0,0781 0.0246
110,200 1 {-0.0200
-0,8]2[0.1716 0.1399 -1.0 {2 |-0,0204 -0,0200
3|0.1578 0.1230 0.0985 3 |-0,0208 ~0,0204 -0,0200
410,1511 0.1146 0.0877 0,0683 4 |-0,0212 -0,0208 -0,0204 -0,0200

We note that these theoretical parameter estimates seem to be homing

into stable values as the order of autoregressive fltted increases. To give

some justification for the substitution of the expected values of the sample

autocorrelations in place of the calculated sample autocorrelations in

I 4 / 4
equation (5.9), hence obtaining #1 ”!a""”{p' ,» some simulation studies were

conducted. 1000 IMA(1,1) processes for each of the © values 0.9, 0,5, -0.5

and -0.8 were generated for a sample size 50, AR(2) processes were fitted by

least squares and the parameters ﬁz,ﬁ; were estimated using (5.9), The mean
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of these estimates over the 1000 processes are collected in Table 5.4.

TABLE 5.4

NUMERICAL AUTOREGRESSIVE PARAMETER ESTIMAIES
FOR FITTING AR(2) MODELS TO IMAZI 1) PROCESSES X - X ag+ e ay_,

SAMPLE SIZE n = 50, 1000 SIMULATIONS

e 0.9 0.5  =0.5 -0.8

E (31’) 1.171 1.132 0.502  0.188
E(8]) -0,294  -0.257 0,206  0.122
var[g; ] 0.020 0.016 0.024  0.027
var(g] 0.021 0.017 0.016 0,022
cov[#, .8 ] -0,019  -0,014  =-0,007 0,005

Clearly, the numerical results agree closely with those corresponding
theoretical ones in Table 5.3, especially for positive © . For negative © ,
as © tends to -1, we see that xt tends to a white noise process. In that
case, as is seen from Table 5.2 the variances of the r, are at their highest.
Hence the ﬁ:,ﬁ: obtained by replacing r, and r_ by E[Ii] and E[ré] in the
Yule~-Walker equations will be correspondingly biased. However, in absolute
terms, even for © = -0.8 the use of ;f;: 0.17, pfa’= 0.14 as given in Table
5.3 should be very close to the"true" ﬂ:'and ﬁ; values. Note, in addition,
the average sample variances and covariances over the 1000 simulations are
small, This latter fact will be used and referred to later in Section 5.4.
Its importance lies in the fact that we can now, with some confidence, use
the #ﬁvof table 5.3 to obtain an assessment of the likely forecasting

performance when AR(p) models are fitted to IMA(1,1) processes.

5.3 The mean and variance of the sample autocorrelations for an
ARIMAZE;:;EE Erocess

Let X follow the process (5.1) withd=1, i.e.

Then we may write this in the form

178,



<
1
>
|

L - X, = £ (B)e(B)a,
= d(B)a, (5.28)

where u, = d(B)at is a stationary invertible infinite moving average process,

Thus, we may write

(5.29)

where we shall assume the population autocorrelations pk (k 2 0) are

available for the process Uy
Assuming E[ut] = 0, var[ut] = cua and using methods similar to Wichern

(1973) we have, for a sample Xl,Xa,...,Xn and fixed X , from (5,29)

Xy

= Xo+ut+ut_1 + oo +u1

so that (Xt - X), where X = tglxt/n, depends only on (ul,ua,...,un). This is
one of the reasons we define the sample autocorrelation, ) by (5.5), namely
that in the subsequent analysis Xo is not present.

.. ’ .
Defining u'= (ul SU_sees ,un), we may write

(u'T'FQ FTu)/2n (5.30)
(v T'FTu)/n (5.31)

Cx

and c

o
where the matrices F and Qk are defined on p 169 and
) -
O
T=1: .
1 A |

/
Defining M= T PQkFT and K = T'FT, (5.30) and (5.31) may be more

compactly written

¢y = u’ Mu/(2n) (5.32)
and c, = ¥ Ku/n (5.33)
so that ™ = Ck/Co
" My/2
u’Ku (5.34)
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The expected value of the sample autocovariances

/
Suppose a = (31’32""’an) is a vector of white noise, variance Gaa,
assumed normal and that
u= Sg (5.35)
where S is an (n x n) matrix. Also if the variance covariance matrix of

u is I, it follows that I = §5'0 %,

Thus, from (5.33) and (5.35)

Elc,]

E[a’ 8'ksa]/n

TrS 'KSoaa/n

Tr(ZK)/n (5.36)
Similarly, from (5.33) and (5.35)
E[c, ] = Tr(ZM)/2n (5.37)

An equivalent form for (5.36) and (5.37) is obtained by noting that

p1 pn-lT
p 1 '
T=o0?% ‘ :
u
A
Lpn'l ! ! J

where pj (3 2 1) are the true autocorrelations of Uys and K and M are symmetric,

We get
0,°TrK 20, % n-1 n-j
Elc,]= =+ — B LK g Py (5.38)
0,°TzM  0,® n=1 n-J
and ol ==z *+n B A Y o f (5.39)

where K = {Kij] and M = {Mij}.
Of course, the IMA(1,1) process that Wichern (1973) considered was such
that the {at} would follow an MA(1) process for which Gha = (1+80 a)oaa,

P, = e/+e 2) and pj = 0 (j 2 2). In this case, we find, after some algebra,

that (5.38) reduces to

0. 2(n-1
Efc. 1= —— ((n+ 1) ® + 6 - 6))
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where A= 1+ © ., This is the same as Wichern's expressions for E[co].
Equation (5.39) also reduces to Wichern's expression for E[ck] in this
special case.

For computational purposes (5.38) and (5.39) are probably best left as
they are, although we give the following expressions in the special cases for

E[cl] and E[cz]. We get after much algebra,

3 -]

(o} g n=1
B[, ] = gua(n-1) (0-ant L)+ 355u8 (n-(3+1)) [n(n®- (234 1)n+ (5%41) )43 (3-1) Do,
and

0'2 0,3
E[c_] = g25(n-2) (n®-8n+7)+ 335(n-2) (n®-8n+10)p,

o 2 n-
+ 385 [T, (o (5+1) In(n>- (25+3)n+(3%4843) 1423 (3-1) Jp,

The expected value of the sample autocorrelations

From the expansion for E[rk] given in (5.19) we see we shall need

E[c,c,] and E[c ?] in addition to E[c ] and E[c, ] given by (5.38) and (5.39).

From (5.32), (5.33) and (5.35)

E[a"s'Ms a a’s'ksa]/2n?

_ Ir(EM) Tr(ZK) + TrSZZKZI (5.40)

- 2n3

E[ckco]

and

1l

E[g’SIKS a E'S’KSEJ/na
3 2
_ QIEEKE + 2Tr£K22 (5.41)

where we have assumed the g'is multivariate nommal and used Kumar's (1975)

E[c,?]

expressions for the expectation of quadratic forms in normal variables.

From (5.36), (5.39), (5.40) and (5.41) and substituting these in (5.19)

_ ATr(EM) 2Tr§MZKZZ 2Tz (KE)?
E[rk] T Tr(ZK (1 T Tr(eMTr(zx) T TT;%EE%YQ) (5.42)

By examining (5.22) we see (5.42) is of a very similar form. We find

we get

(5.42) reduces to (5.22) in the simple case considered by Wichern (1973).
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The variance of the sample autocorrelations

The expansion for the variance of r, is given, in general, by (5.23).

In that formula we require, from (5.36) and (5.41),

2Tr(KE)®
var[co] = ‘—Eég—l- (5.43)

Also, from (5.37) and the fact that

2 2
E[cka] = -(%IL%L + Eéan—;)— (5.44)

we get
_ Ir(M)? .
var[c, ] = -—é;;l— (5.45)
Similarly

1!§¥§5§1 (5.46)

cov[ck,co] =

Substitution of (5.43), (5.45), (5.46), (5.36) and (5.37) in the expansion

(5.23) yields
_ 1[ToME\®/ T2(KE)? 2Ir(ME)® 4Tr
var[z ] = 4(TrKZ) ((rrZK2552 + zrrfngsz - Tr(ME§Tr%KZ§ (5.47)

5.4 Asymptotic forecast error variances and percentage losses
for fitting AR models to ARIMA processes

Although the a.m.s.e. for forecasting ARIMA(p,d,q) processes is well
known (see, for example, Box & Jenkins, 1970, p128 ), we give here an

expression for V(h) in terms of the notation introduced in section 3.9 ,

Chapter 3.
Let the ARIMA (p,d,q) process be given by (5.1), where we let

Y, = (1 - B)dxt " (5.48)

so that we may write

J(B)Yt = e(B)at (5.49)

From (5.48) and section 3.9, Chapter 3, we may write
- 2
X, = (Do + D1B + D_B® + "")Yt (5.50)
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where D = 1, Dy = ., Gy, (3 21); from (3.22), p64 ,

Y, = ,t"‘(a)e(B)at (5.51)
= d(B)at
= (4, + d B+ daBa +eee)ay (5.52)

withd = 1.
)

Hence, from (5.50) and (5.52)

- 3 2
X, = (Do +DB+ DB + ...)(do +d B+ daB + ...)at (5.53)
— 3
= (¢ + w B + vaB + ...)at
where ¥ = 3§5d3 i- (i =0,1,....)

It follows that the variance of the h-step forecast error is given by

V(h)

( ) v;°

i<o
h-~y i

15, (;2,d;D

Z,(,Ed;D, j)"’o 2 (5.54)

Example 5.1
For the IMA(1l,1) process

(1 - B)X =(1+86 B)at

wegetD, =1, (j=0 1,...) andd =1,d =0,d, =0 (Jj=2), so that

J 1 J
Wo W (l+9)9 (322)
Hence,
h-l 3 3
vih) = (1 + iéi(l +0) o,

Q1+ h-=-1)1+8e )"’)oa2

which is identical to equation (5.47), in Box and Jenkins (1970), p 145,

Forecast error variances and percentage losses for fitting AR(d) models to
ARIMA rocesses

We consider the special case of the true model given by (5.48) and (5.49)

with d = 1. For more general d, similar methods may be used, although
naturally the algebra becomes more complicated.

From (5.48), with d = 1, we may write
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t

Xg X, + ;5 Y5 (5.55)

where we assume Xo is fixed.
In fitting an AR(P) model, from the reasoning following (5.5) in the
introduction to this chapter, we shall be estimating

(X = 1) = A (X = ) = BI(X - W)= eeem BX_ - W) = m, (5.56)

-3
/ [ 4

where the /1 ,p’a,...,;(p, are assumed to be the solutions of (5.10) (that is
the Yule-Walker equations with the expected values of the T for the true
process) and where n, will not be white noise; U will be 'estimated' by

- n . Be Ao Ay

X = é;xt/n and the autoregressive parameter estimates, ;{1 ,p{a,... ,dp, are
obtained from a least squares fit, or, equivalently by solving (5.8).

Our estimated model will then be

» A

- A, - A, - P -
(X, - X) - p"(xt_l- X) - ;!a(xt_a- X)= eee- 8 ,(xt_p,- X) = mn (5.57)
where {ﬁt} will (wrongly) be assumed to be a sample of white noise residuals,
From (5.55)
t
(X, - X) = BY, - ¥ (5.58)
n
where Y* = t%(“ - (t - l))Yt/n.

Note that it is the subtraction of X in (5.58) that causes X, to
disappear from the analysis (this point was mentioned in the discussion
following (5.5) as being the partial motivation for defining Ty in the manner

(5.5)).
Let g be the forecast of X .., made at time n based on the fitted
n,h n+h

V4 P '4 N
autoregressive model using the ’{1 ,yfa,... ”‘(p’ obtained from (5.10). It

follows that

. P -
9, n - X= j-§1°j,h(xrm-j - X) (5.59)

4
where the S5 h will be known functions of p’i (i = 1y..0,p). For example,

for fitting an AR(1l) model ¢ h= ;{'h.
’ 1l

From (5.58), the true value, xn+h may be written
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h

n
Xop = X= ZY + TV - (5.60)

Using (5.58) we can rewrite (5.59) in the fomm

’

- p n1-j
9,n - X= j=1 J,h( L Y, - (5.61)
Since the h-step forecast error will be en,h = xn+h - gn,h’ We may subtract

(5.61) from (5.60) to get
n p’ nh-j

p -
JZ;Y .+ z:v j__;‘ k_gl cj,hyk - (1~ J.__}_:lcj,h)v*

On substituting in the expression for Y*, and collecting terms in

’

Y oo Yn+h-1""’Yn+1’ Yn,...,Y2 (where there is no term in Y;) we may

write, after a little algebra,

’

Y

en,h = Zn Yoh (5.62)

[

where “Y'n"‘h: (Yn"'h’ Yn"'h'.l,'..’ Ynﬂ’Y’...’Y)
4
and 4 = (zi,za,..., zn+h—1)’
where Zj = 1, j = 1,2,oo.h
/

k p /
Zh""k= 1l - igci h - ;(l - élci’h)’ k = 1,2,ooo,p (5.63)
pl
Zh"‘ (1"‘)(1 1—1 ih)’ k—p+ l,p+%,..n—1)
If we assume the d3 (3= 1,...,p) and hence the ¢; p, are fixed, from
’

’
(5.62) the forecast error variance, V(h), is given by
’
V(h) = Zh n+hZh (5.64)
’
where Iy = E[Y . Yoenl:
y
In practice, the assumption that the 53 are fixed will not be true; they

are certainly correlated with Yn-j (3 =2 0). However, we saw on p 178

(Table 5.4) that in the case of fitting AR(2) models to the IMA(1,1) process,
d;’and ﬁ;’had variances of 0(1/n) and small covariance.

Table 5.5 contains the same numerical results for n = 50 as Table 5.4 but
also, for comparison,results for n = 100 and 1000 simulations in each case

are included.
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TABLE 5.5

EMPIRICAL MEAN, VARIANCE AND COVARIANCE
OF AUTOREGRESSIVE PARAMETERS IN
FITTING AR(2) TO IMA(1,1) PROCESSES

6 | n MEAN VARIANCE COVARIANCE
B & A |G

50 | 1.183 -0.305 | 0.0188 0.0199 | -0,0172

%% 1 100 | 1.224 -0.283 | 0.0162 0.0178 | -0.0164
50 | 1.123 -0.249 | 0.0167 0.0172 | -0.0147

%% 1100 | 1181 -0.242 | 0.0122 0.0135 | -0.0123
50 | 0.507  0.209 | 0.0240 0.0139 | -0.0066

% | 00 | 0.561  0.280 | 0.0114 0.0080 | -0.0049
50 | 0.184  0.120 | 0.0260 0.0245 | 0.0051

8 1 00 | 0.270 0,222 | 0.0157 0.0155 | 0.0050

We see that the variances and covariances get smaller for n = 100 so that
the assumption that the J;lare fixed ought to be a reasonable approximation.
We would thus expect the above assumption to allow VZh)u;be given by (5.64),
to be an adequate approximation for sample sizes that occur in practice.
Evidence for this is given below in example 5.2 where (5.64) is calculated
and compared with some simulation results on the average squared forecast
error for the same misspecification.

The expression given by (5.64) will be the variance of the h-step
forecast error using the Fitted model; from (5.54) we have the h-step forecast

error for the true process and so using definition (3.33) for the mean square

proportionate loss, P(h), we get

4
V(h) - V(h
p(a) = U= 0)
! ha 1 3.2
5 Eoinn - t§o(j=odei—j) %
- h-y i

i;%(j; d.D, )"‘oaa

Fo j i-J

Example 5.2 Fitting AR(é! models to IMAfl,l) processes

Suppose the true model is X, - X, = (1+eo B)at » but we fit AR(P).

(5.65)
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From (5.48)
= (l + 0 B)at

and so zn+h is the (n + h - 1)x(n + h - 1) matrix

-
1+6° e
. O
e 1+0
Enth = s 0,? (5. 66)
o .
e 1+6 i
From (5.64) we find
nth-1 n+h=)
v(n) = {(1 + e’) Z sz + 20 L 22 g A 3 (5.67)
Also, from example 5.1
v(h) = (1 + (h - 1)1 + 8)®)0,? (5.68)
Using (5.65), (5.67) and (5.68) we get
nth=3 n+h-1

(1+ ez)ﬁgL 2.2 + 293‘53 2425
(1 + (h~1)(1 + 8)?)

-1 (5.69)

P(h) =

In particular, for one step ahead forecasting, h = 1 and for fitting an

AR(1) model, we find from (5.59) and (5.63)

[ 1 (3=1)
ZJ = (n - (j - 1)(1 - d;)/ﬂ (j = 293’---9n)

so that
n

n
(1 + Qa)jg‘z.a + 2G=}:Iazjzj_1 -1

P(1)

9’+(1+e’*)(1-;!)’ E (n-(5-1))3%/n? +2@1-,{)(n-1)/n

+ 26(1 - l )a (n -(j- l))(n - (3 -2))/n?

29(1-&)(n—1) (1+6°) (1- ﬁf )3(n-1) (2n-1) 29(l-yf1')a(n-l)(n-2)

— 02
=0 + n n + n

(5.70)

/
We see from (5.70) that if we put £ = 1, P(1) = ©° and in that case we have
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effectively fitted a random walk to an IMA(1,l) procesé. From (5.7) the
residuals from such a fit are X, - X, = 3 + Gat_1 which has variance
§L+92)ca’so that we can see directly P(1) = @°, showing that (5.70) is

consistent in that special case.

Table 5.6 contains evaluations of (5.67) for four values of © and
sample sizes n = 50 and 100, together with the empirical mean squared fore-
cast error for fitting AR(2) models to IMA(l,l1) processes, (using forecasts
obtained from (5.59) with p’: 2 and the autoregressive parameter estimates

as determined by 5.8) over 1000 simulations for each © value.
TABLE 5.6
THEORETICAL AND EMPIRICAL MEAN SQUARED h STEP
FORECAST ERROR FOR FITTING AR(2) TO IMA(1,1) PROCESSES

h
e n 1 2 3 4

50{2.289 (2.263)(8.914 (8.189) |17.475 (15.474) |26.986 (22.660)

100{1.881 (2.049)|7.112 (7.287) {13.693 (13.206) |21.292 (19.419)

50[1.635 (1.898)]5.776 (5.801) |10.995 (10.362) |16.715 (15.245)

100/1.368 (1.324)]4.646 (4.381) | 8.687 ( 7.821)(13.298 (11.740)

5011.307 (1.337){1.929 (1.734) | 2.694 ( 2.337)| 3.400 ( 2.852)

100{1.211 (1.078)|1.743 (1.522) | 2.430 ( 1.861)| 3.154 ( 2.200)

50[1.209 (1.230)1.341 (1.271){ 1.492 ( 1.308)| 1.573 ( 1.445)

100{1.300 (1.189)/1.514 (1.362)] 1.789 ( 1.602){ 1.970 ( 1.627)

Note (i) 1000 simulations for each ©

(ii) simulation results are bracketed.

The overall picture emerging from Table 5.6 is that simulation results
are reasonably close to those obtained theoretically, from the expression
(5.67). Thus, the evidence of Table 5.5 where it was shown the empirical
variance of the autoregressive parameter estimates were small, together with
the results in Table 5.6, suggest that the h step forecast error variance
for the misspecified autoregressive model can be calculated from the
expression (5.64). It follows that the asymptotic percentage loss of fore-
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casting may, to a reasonable degree of approximation, be calculated using
the expression P(h) in (5.65).
Table 5.7 contains evaluations of the percentage loss, 100.P(h),
where P(h) is given by (5.65) for fitting AR(1) and AR(2) models to IMA(1,1)
processes for n = 50 and 100.
TABLE 5.7
PERCENT h-STEP LOSS FOR FITTING

AR(1) AND AR(2) MODELS TO
IMA(1,1) PROCESSES

AR(1) AR(2)
h h
6 n |1 2 3 4 |1 2 3 4
50 | 1453 494 417 343 | 120 93.4 113 128
%% 100 | 3030 1083 876 718 | 8.1 54.4. 66.6 80.0
50 | 881 429 384 324 | 63.5 77.7 99.9 116
% 100 | 1864 906 812 ee1 | 36.8 43.0 57.9 71.6
50 | 96.8 121 157 161 | 30.7 54.3 79.6 94.3
% 0| 26 263 331 335 | 21,1 39.4 62.0 s0.2
50 | 15.0 23.5 30.1 33.6| 20.9 29.0 38.1 40.5
% 00 | 31.6 46.6 67.8 77.5] 30.0 45.6 65.7 75.9

There are a number of interesting results worthy of note here: percentage
losses are, overall, very large indeed. This would imply that the pure auto-
regressive misspecification produces forecasts which are grossly sub-optimal
and so the consequences of under differencing a time series would seem to be
severe.

For an increased sample size, in the case of fitting an AR(1) model
for example, percentage losses also increase. That this must be so can be
seen, from (5.70) where the one step ahead percentage loss is given., The temrms
involving the summations over squaredintegers depend on n and clearly in the
example in the above Table for the increase in sample size from 50 to 100,the ext:
summations have outweighed the effect of ﬁ!,getting closer to unity (from

(5.19) and (5.18) we saw how E[Ii] would tend to unity for increasing n).
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This dependence upon n is not quite so clear cut for fitting AR(2) models
fo: in that case, some reduction in percent loss for increasing n occurs for
particular € .

5.5 Conclusions

We have shown that when one wishes to consider the asymptotic loss from
a forecasting point of view of fitting non stationary ARIMA(pzd;d) models to
non stationary ARIMA(p,d,q) processes (d > d3 a rather different approach has
to be adopted compared with that in Chapter 3. The reason is that the sample
autocorrelations used in fitting are from a non stationary processs thus
the approach used in Chapter 3 to find probability limits of AR parameter
estimates (which in turn uses the population autocorrelations of the true
process) is invalid since for a non stationary process population auto-
correlations do not exist (or, alternatively, are all unity in some limiting
sense).

The problem was solved by using an expansion for the expected value of
the kth sample autocorrelation for a non stationary process and using these
in the usual Yule-Walker equations in place of the population autocorrelations.
Simulation evidence suggested that parameter estimates obtained by least
squares will have variance approximately of order l/h; asymptotic mean square
error of forecasts derived assuming this were very close to the average
squared forecast error found in simulation studies. Also, we would expect
that taking estimation error into account in the fitted model will not alter
substantially the percentage losses when estimation error is ignored.

Results suggest that if one fitted a stationary autoregressive process
to a non stationary IMA(1,1) process, for example, percentage losses could be
large. By comparison with the non stationary results of Chapter 3 (where the
differencing was assumed to be correctly specified) we see that the results
there are not nearly so bad in terms of loss when one fits autoregressives
to a correctly differenced series. That is,the consequences of under differ-

encing a series seem to be quite severe in terms of loss of forecasting

ability.
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CHAPTER 6

MODEL MISSPECIFICATION IN TIME SERIES ANALYSIS:
RETROSPECT AND PROSPECT

Summary

This chapter reviews the work so far and discusses possibilities for
future research in model misspecification. Section 6.1 summarises the main
chapters, while section 6.2 outlines the problems only touched upon, and
not solved in the first 5 chapters; section 6.3 discusses the possibility
of research into three regions of misspecification not dealt with at all
in this study. In section 6.4 one of these regions is specialised by
looking at time series regression methods when an inappropriate error
structure has been used.

6.1 The results of model misspecification so far covered

We have shown that the commonly used Box-Pierce statistic S, defined by

(2.7), and used to test for model inadequacy or misspecification, is very
likely to yield a surprisingly low value even when it is known that a given
model is inadequate. It was shown that in the null case S is not distributed
as x? for the kinds of sample sizes likely to occur in practice; in particular,
the mean of the statistic S is far lower than that predicted by its asymptotic
xa distribution, so that the true significance level will be lower than that
assumed.

The modified statistic S', as proposed by Ljung and Box (1976) and
Marriott (1976) and defined in (2.8) to some extent overcomes the difficulty
of the mean of S being far too low. It was shown that the mean of Slis much
closer to the asymptotic xa mean, although its true significance level appears
to be slightly above that assumed in any test.

The reason the mean of s'is closer to the asymptotic xa mean, is that it
takes into account the fact that the variance of the kth sample autocorrelation
for white noise is (n - k)/n(n + 2) and from its definition in (2.8) we see
it will always be numerically above that of S; Box and Pierce (1970) in their
derivation of S assumed this variance was 1/n. The latter is, of course, true

for large sample size, but their theory also required that the number, m, of
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terms in the calculation of S be large enough for the coefficients, Wj,

in the infinite moving average representation of the true process to die

out for j > (m - p - q) where we assume X, ~ ARMA(p,q). Hence m, in practice,
is usually taken to be about 20; a moderate sample size in time series
analysis is generally accepted to be n = 50, so that the l/h assumption will
not be adequate for many values of k in the range 1 < k < m. Thus we really
require that n be large relative to m, a point made by Chitturi (1976).

Another important assumption made by Box & Pierce was that the sample
residual autocorrelations were normally distributed. Again this is true
asymptotically but in trying to find the mean and variance of both S and s’
a normality assumption in these residual autocorrelations was found to
ignore many covariance terms between the rk2 which although individually
small, together contributed a substantial amount to their derivation.

In the literature where ARMA(p,q) processes are fitted and reported by
various authors, the poor performance of S has been suspected for some time.
Thus a comprehensive study of both S and s'was conducted on their ability
to detect models which were known to be misspecified. Some criterion was
necessary in deciding which kind of misspecification to examine (i.e. not
only the true processes to which different models are fitted, but also the
gravity of misspecifications in each case).

The criterion used was one of asymptotic percentage loss of forecasting,
after fitting a certain model to a known process. This was the difference in
the asymptotic mean square error for the misspecified model and the correct
process as a proportion of the a.m.s.e. for forecasting with the correct
process. This measure of forecasting loss is, in itself, worth a separate
study.

It was possible to derive an analytic expression for the asymptotic
percentage loss of forecasting when the parameters in the fitted model and
true process were given., Of course, in any fitting procedure in time series
analysis the parameters that are fitted are estimated from information
contained in the sample. For a least squares fit for an autoregressive model,

it was shown that the probability limits of the estimated coefficients could
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be obtained by solving the Yule-Walker equations with the Py in those
equations being the population autocorrelations of the true process,

Using this method to decide autoregressive parameters in pure AR fitted
models a selection of different ARMA(p,q) processes were considered and
percentage losses were calculated. The main results were that losses could
be high for those true processes with moving average coefficients on or
near invertibility boundariés. Provided the moving average coefficients

were reasonably well within the invertibility region, losses in some cases
were surprisingly low. Naturally, at one step ahead, losses steadily
decreased for increasing order of autoregressive fit, but when estimation
error in these autoregressive parameters was allowed for, this was not
necessarily the case. In fact for some processes, at 1 step ahead percentage
losses achieved minimum values at specific orders of fit, while others seemed
to home-in to fixed amounts as the order of fit increased. At larger than
one step ahead, no such patterns seemed to exist, although naturally, all
percentage losses in these cases were larger ‘than if estimation error was ignored.

Overall percentage losses varied from virtually zero to several hundred ‘
percent in the most extreme cases. The large number of tabulations made in
Chapter 3 are no doubt open to a range of interpretations. However, the
broad conclusion that might be drawn is that for low order ARMA(p,q) processes,
unless the moving average coefficients are quite close to the boundary of
the invertibility region, the cost (in terms of forecast accuracy) of fitting
moderate order autoregressive processes is not too severe, and would be
tolerable in many practical applications. On the other hand, as the
invertibility boundary is reached, these costs can increase very dramatically
indeed.

For fitting ARIMA(p,d,0) models to ARIMA(p,d,q) processes, percentage
losses beyond one step ahead appear to be higher, in general, compared with
the stationary analogues. Estimation error was taken into account in the non
stationary fitted AR(ﬁ) model and an analytic expression obtained, but not

evaluated.
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The examination of the performance of the statistics S and S'at
detecting -misspecified models ideally requires their exact distribution
under specific alternatives. This was found intractible, but the
distribution of residual autocorrelations for misspecified models was
Vderived, which in turn enabled analytic expressions for the means and
variances of S and S to be derived for the residuals obtained from fitting
AR(p) models to ARMA(p,q) processes. (We note here that the extension to
the residuals from fitting ARMA(p,q) models to ARMA(p,q) processes is not
possible in the manner described by Box and Pierce (1970), p 1522. There
is no duality of residuals here, which is vital in the Box and Pierce
extensign.) The criterion of percentage loss of forecasts described above
was used to decide which processes were to be used in examining the
performances of S and Sf Four regions of percentage loss were decided upon
and processes were chosen from the class of ARMA(p,q) structures which gave,
after fitting AR(1) and AR(4) models, the chosen percentage loss. 1000
simulations of each process was conducted and the ability Qf S and S’to
detect the autoregressive misspecification examined by counting the number
of times each statistic would reject that autoregressive fit over these
1000 simulations at given levels of significance.

In general it was found that the power of both S and S ;as rather low
at detecting the misspecifications; in some cases the power was as low as
0.3 at the 5% significance level for typically severely misspecified models
(i.e. processes which had moderately largé percentage losses). There were
one or two exceptions to this; processes clearly exist whereby S and S'do
surprisingly well at detecting the misspecification and vice versa : there
were processes which had high percentage losses but the proportion of
detection was surprisingly low. Clearly there can be no direct relationship
between asymptotic percentage loss and the power of S and S: By examining
the structure of S and S: these two cases showed that the processes for
which these statistics are likely to perform well at detecting misspecified

models are those for which the effects of the misspecification are manifested
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in just one or two residual autocorrelations; the opposite is true when
these effects are diffused over a large number of residual autocorrelations.

It would thus only be fortunate in practical time series analysis if
one happened across the type of misspecification which gave rise to such
residuals.

Having examinedmisspecification in which we assume the order of
differencing to be correct, there remained the problem of studying under-
differencing and overdifferencing a time series as another extension of the
kind of misspecification that could take place in practice. The problems
of overdifferencing are discussed briefly in section 6.2,

As far as underdifferencing is concerned, we concentrated on the case
where we fitted AR(p) models to once differenced series; in particular we
took the ubiquitous IMA(1,1) process as our typical example.

The study necessitated redefining our sample autocorrelations (namely
subtracting off a mean in its definition) as this led us to certain,
convenient mathematical simplications in the study. The approach was very
similar to that in Chapter 3, except probability limits of autoregressive
parameter estimates were not possible in the non stationary situation, since
they would involve the population autocorrelations of the true, integrated
process (which, of course, do not exist).

The problem was overcome by using an asymptotic expansion of the sample
autocorrelations of integrated processes and using these, instead of the
usual Py in the Yule Walker equations. It was found that this procedure
yielded reasonable estimates of the autoregressive parameters in the AR(S)
fit, as was confirmed by simulation studies. Also derived was a general
analytic expression for the percentage loss of forecasting with this type of
misspecification (assuming the substitution mentioned above) and it too, was
found to be quite close to what one gets from simulation studies. The general
conclusions were that underdifferencing was, in terms of asymptotic fore-
casting loss, quite a severe type of model misspecification.

The kinds of misspecification covered could all quite easily occur in
practical time series analysis and we have shown that it is very important
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to realise some of the consequences of making these mistakes. Moreover the
most frequently used test for model misspecification in Box-Jenkins type
analyses has been shown to be rather weak, even when the fitted model is

known to be misspecified.

6.2 Unsolved problems in this study

This section covers several of the problemsmentioned, but not fully
solved in the preceding chapters. Possible directions of study and
indications of solutions are suggested.

In Chapter 2 some rather complex expansions were given for the sample
moments of the autocorrelations of MA(q) processes and these were shown to

be a rather better approximation than the well known Bartlett formula, for
k >aq,

q
~ — 2
nvar[f, ] = (1 + 2,% P )

as defined by (2.49). However, as can be seen from figures 2,1 - 2,8 these
expansions do not yield results which follow simulation evidence as closely
as one might desire; the given expansion is consistently above the empirical
evidence. Thus we might expect taking further terms in the expansion given by
(2.60) will yield superior results, although this in itself will involve the
sixth and eighth moments of the sample autocorrelations for white noise, It
would seem if this problem is to be tackled a computer with an algebraic
processor would be the answer, although there seems to be no guarantee of
pay off in temms of a superior fitting expansion. Chapter 4 employed the
expansions given in Chapter 2 and there it appeared they were adequate.
Chapter 3 concentrated on fitting autoregressives to ARMA(p,q) processess
this was done since autoregressives have wide appeal in terms of mathematical
simplicity and also it is easy, intuitively, to see how autoregressives can
arise in practice (see, e.g., Granger and Newbold (1977) p 15). However, the
fitting of mixed ARMA models involves non linear equations that can only be
solved numerically, and we saw in section 3.3 a least squares fit of an MA(1)
process, when the true model was AR(l), gave results which were different
from those obtained by using another procedure, namely, the well known Durbin
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(1959) estimation procedure,

Thus, obtaining asymptotic parameter estimates will depend upon the
estimation procedure used; Anderson (1975) has given one for fitting a model
in the general ARMA(p,q) class so that using his methods, it ought to be
possible to generalise the main results of Chapter 3 to the larger class of
fitting ARMA(p,q) models, and, consequently, provide a variance covariance
matrix of parameter estimates so derived. The percentage loss should then be
fairly straightforward to compute using a computer program which already
calculates percentage loss for given values of parameters in both the fitted
ARMA(p,d) model and the ARMA(p,q) process.

The problem of estimation error in fitting AR(ﬁS models was tackled
using methods of Yamamoto (1976a) and, on this basis it was straightforward
to derive asymptotic percentage losses when fitting these to the general class
of ARMA(p,q) processes, since these depended (directly) upon the variance
covariance matrix of the AR parameter estimates. If one is to take estimation
error into account when fitting the more general class of ARMA(p:d) models
we need, initially, the solution to the problem when the fitted model and
true process are the same. This is possibly provided in an unpublished paper
by Yamamoto (1976b); the computation involved in extending to fitting to
ARMA(p,q) processes will be rather more than with fitting the pure AR(p)
model, but nevertheless, when combined with the variance covariance matrix of
the parameter estimates obtained from methods suggested in the previous
paragraph, one should be able to derive an expression somewhat similar to
equation (3.70).

In fitting ARIMA(pzd,O) models to ARIMA(p,d,q) processes the asymptotic
percentage loss, taking estimation error into account in the fitted model was
given in expression (3.102). This was not evaluated, and clearly any future
study should do this. Moreover, an extension to fitting ARIMA(pZd,&) models
with and without estimation error would again be desirable to complete the
study on this type of model misspecification.

Another possible line of approach to the problem of misspecification is
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to take some real time series, fit what appears to be the 'best' models

in the ARMA(p,q) class and then compare forecasts from these models with
those forecasts made from estimated autoregressives (or any other, different,
model), The autoregressives would have wide appeal here since they are
relatively cheap to fit compared with mixed models in the ARMA class. Our
evidence suggests that provided any moving average parameters in the 'best'
model were well within the invertibility boundary one might not do too badly
using forecasts based on the autoregressives. In any case, given the
parameters in the best model, Tables A3.1 - A3.8 could be used to obtain
some idea of the loss that might be incurred.

As far as overdifferencing is concerned, a new problem is presented. If
one is simply interested in fitting an autoregressive model to the over-
differenced series, the results of Chapter 3 are immediately applicable.
However, if a mixed model is to be fitted, this could involve a moving
average term on the boundary of the invertibility region. For example,
suppose the true process is white noise, but that a first order moving
average model is fitted to the first differenced series, The optimum model
is then

Xe = Xgoy = 3¢ 7 3¢y
so that the true moving average parameter is on the boundary of the parameter
surface. It is well known that in such circumstances asymptotic results
based on maximum likelihood break down.
6.3 Further problems in misspecifying time series models

We now highlight some problems in three other areas of time series
analysis which deserve further research. The study so far has not dealt with
(i) seasonal Box=-Jenkins ARIMA models,

(1i) time series for which an instantaneous non linear transformation
may be appropriate,
(1ii) multivariate time series modelling and misspecification,

In the discussion on (iii) the special multivariate case of misspecifying

the model for autocorrelated residuals in a multiple linear regression is
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mentioned and examined in a certain amount of detail in section 6.4.

(i) Model misspecification in seasonal Box-Jenkins ARIMA models

Box and Jenkins (1970), Chapter 9 extend the structure generating a

time series {Yt} from the ARIMA(p,d,q) process given by (3.73)

FB)(1 - B)YY, = 6(B)a, (6.1)

to the general multiplicative seasonal model
] d sy\D s
#(B)4, (B") (1 - B)°(1 - B%)"Y, = 0(B)9,(B%)a, (6.2)

where s is the season length, ﬁ;(Bs) and GQ(BS) are polynomials in B® of
degrees P and Q respectively.

Few models in the class (6.2) have been fitted in the literature except,
notably, the well known airline data given as an example by Box and Jenkins
(1970) themselves, the study by Chatfield and Prothero (1973a), Brubacher &
Wilson (1976), Newbold (1975) and Thompson and Tiao (1971). Chatfield and
Prothero obtained four different seasonal models all of which appeared to do
more or less equally as well from a forecasting point of view, although they
all did not 'fit' the data as well.

In addition, Wilson (1973), in the discussion on the Chatfield & I'rothero
(1973a) paper obtained two seasonal models for the same data each of which
gave forecasts which were ‘'acceptable'. (Arguably these latter forecasts were
'better' than those obtained from the models actually fitted by Chatfield &
Prothero.)

Clearly, it would be useful to examine the consequences of this type of
misspecification in the sense that all fitted models cannot be 'best’',
although a completely general type of misspecification in processes of the
form (6.2) will, no doubt, be algebraically intractible. Also, we note that
if one were to adopt the techniques of Chapter 3, where high order auto-
regressives were fitted to data, problems immediately arise in the seasonal
analogue of estimating the parameters ﬁ;,s,da’s, «eeo which in practice will
*reach back' a long way into the data, thus necessitating a very large

sample size (if high order seasonal autoregressives are to be fitted to real
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seasonal time series).

(11) Time series with instantaneous non linear transformations

The ARIMA class of models that aie assumed to generate a series Xt are
all linear in Xt, so that a linear forecast function results. The latter
property is a mathematical convenience which is not always appropriate in
practice.

One possibility in relaxing this linearity assumption is to assume that
the model is linear in T(Xt) where T( ) is an instantaneous transformation

function. Tukey (1957) examined the transformation function

xtx A#£ O
T(xt) = 1 log Xe A=0 (6.3)
for Xt >0 and A < 1. Another equivalent class of transformations
vy A
(x," - 1)/2 AF O

was introduced by Box and Cox (1964). Their use, when modelling time series,

has been recommended by Box and Jenkins (1970) and Chatfield (1975), but the
appropriate choice of A\ is crucial to obtaining adequate forecasts, as pointed
out by Wilson (1973) and Box and Jenkins (1973). These latter authors show

that the adoption of the log transformation by Chatfield and Prothero (1973:)

in analysing and forecasting the sales of a certain company was inappropriate

in that it over transformed their data; Wilson (1973) pointed out that the
better transformation was a power of the series, Xt, and that resulted in
superior forecasts. Clearly, there areproblems here in possible misspecification:
of A.

It is probable that there is a problem of interaction between appropriate
specification of A and of the appropriate form of differencing, as appears to
follow from the two model structures presented by Wilson. This suggests that
the problems of these two kinds of misspecification should be treated Jointly

- an exercise which would involve enormous theoretical and computational

difficulties.
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Granger and Newbold (1976) have pointed out another problem with
dealing with transformed series; they showed that, in general the auto-
covariance function is not invariant under instantaneous transformations
and, hence, difficulties will arise in model selection.

Nevertheless, it would seem natural to ask the general question of how
much would be lost, asymptotically, from a forecasting point of view when a
value X'has been used for the transformation parameter when the true value
that should have been used was A. For example, Chatfield and Prothero (1973b)
in their reply to Box and Jenkins (1973) showed that a change in the parameter
A from O (the log transformation) to 0.25 had a substantial effect on the
resulting forecasts, whilst a further change in A from 0.25 to 1 appeared to
have relatively little effect on forecasts. From this, Chatfield and Prothero
conjectured that Box-Jenkins forecasts from the class of ARIMA models are
robust to changes in the transformation parameter away from zero. Clearly,
this deserves further investigation, and, of course problems will also arise
in the estimation of A as an extra parameter. Brubacher (1976) has studied
methods of estimating A, when the orders p,q of the ARMA process are both
known and estimated.

An approach to the misspecification of A along the lines of Chapter 3
would, in theory be possible, although it is anticipated much theoretical
foundation work would have to be carried out initially.

There is a further reason why such work might be of importance however,
The time series analyst is frequently in the position of having to convince
the non-specialist of the "reasonableness" of his models if they are to be
used in practice. In fact, on the surface, ARIMA models do not have a great
deal of intuitive appeal to many decision makers, although the arguments put
forward by Granger and Morris (1976) should be of value here. The analyst
would be in even more difficulty if he were to assert to the decision maker
that the natural metric for his data was, say, the cube root! A plausible
case can generally be made for either A= 1 (no transformation) or A= 0

(logarithmic transformation), and it would be well worthwhile to enquire
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whether it was possible typically to "get by" with one or other of these
alternatives.

(iii) Multivariate time series misspecification

The theoretical ideas behind extending the class of univariate ARMA
models to multivariate ARMA models are relatively straightforward. The
univariate autoregressive and moving average parameters become matrices of
autoregressive and moving average coefficients whilst the series Xt becomes
a vector of many series, all of which, in general will be cross correlated
with each other.

It is this last point which causes the greatest problems in selecting a
particular multivariate model from a general class of models. Calculations
of cross correlations would be straightforward, but can produce misleading
conclusions (see Box and Newbold (1971)).

A first step in a multivariate time series analysis would often be to
fit univariate ARMA models to all the individual series to be considered, anq
then analyse the cross correlations of the residuals from each. These have
been used by Jenkins (1975), Granger and Newbold (1977) and Haugh and Box
(1977) to suggest the form of model appropriate in the general multivariate
class, With the evidence available to date, multivariate model selection is
a less confident procedure than univariate selection. In fact Haugh & Box
(1977) recognise that the first stage of multivariate identification mentioned
above is crucial to any subsequent analysis. As already mentioned in Chapter 1,
they ask the possible consequences of the univariate model misspecification,
with its resulting effects on the model used in the multivariate case.

We have attempted to answer the problem of univariate misspecification
and have shown, in some cases the consequences are severe. Therefore it would
seem reasonable to suggest that, bearing in mind all the extra problems involved
in the multivariate time series approach, the consequences of modél mis-
specification would be rather moresevere than in the univariate case.

Newbold (1978) argues that it is unlikely that multivariate time series

models can be handled successfully by time series methods alone, unless there
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are only a few series, or the relationships involved are particularly
simple. He thus suggesfs that it is not desirable to rely on time series
models exclusively, but to marry these with traditional behavioural models
used in econometrics. This would have the advantage of imposing restrictions
on the class of models that need to be considered, so easing the model
selection problem mentioned above. Practical applications of this idea have
been given by Zellner and Palm (1974) and Prothero and Wallis (1976).

One extension of this idea is to consider a multiple linear regression
with the residuals assuming a model in the general ARIMA class. Bhattacharyya
(1974) forecasted demand for telephones in Australia using a seasonal time
series error structure. We now examine in more detail the consequences of
misspecifying a time series error structure, building on the ideas in

Granger and Newbold (1974).

6.4 Time series error misspecification and spurious regressions

Autocorrelated errors in time series regression equations, when ignored,
can cause problems for parameter estimates resulting in inadequate forecasts.
Malinvaud (1966) and Granger and Newbold (1974) have looked at special cases
of this kind of misspecification, the latter authors concentrating on the
spurious regression problem where they falsely assumed residual errors to be
white noise. More recently Pierce (1977), p 20 has commented on the insufficient
consideration given to the error structure of residuals in time series
regression and concludes that relationships that don't really exist can be
found between series. We explore some possibilities of misspecified residuals
in this section by questioning the usual procedure of assuming a first order
autoregressive structure for autocorrelated errors, and suggest an alternative
one within the ARIMA class. For a thorough analysis of residuals which follow
an AR(1) process see, for example Johnston (1972).

The plausibility for an error structure which follows an IMA(1,1) process
has been forwarded by Newbold and Davies (1978), using a priori arguments.,

They argue that levels of economic time series rarely follow stationary

models, but invariably require first differencing to induce stationarity. In
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particular, a hypothesis frequently tested is whether all the regression
coefficients are zero: if this is the case it follows that the residuals
will follow the same structure as the dependent variable, so that in that
case a stationarity assumption in these residuals would be inappropriate.
A common, very simple representation of a non stationary series is the
IMA(1,1) process. We therefore explore some of the consequences of using
normal multiple regression residuals analysis when in fact these residuals
follow an IMA(1,1) process. We have already seen in Chapter 5 that the means
of the sample autocorrelations of IMA(l,l) processes are not very large and
that an autoregressive process of order 1 will not adequately approximate
these processes. It therefore seems likely that a misspecified residual error
structure of this type will cause problems of interpretation in a multiple
regression analysis.

Consider the regression equation

Yt = BO + lel,t + LA + kal(,t + ut (t = l’2,ao.’n) (605)

where the u, are assumed to be the residuals. The usual treatment is to

assume the u, follow an AR(1) process

(6.6)

where ay is assumed to be white noise, with variance oaa. The Durbin-Watson

statistic, calculated from the residuals Gt (say),

n » s
tga(u - ut-l)

d= (6.7)

t
&5
is used to test the null hypothesis of ﬁ; = 0 in (6.6). (See Durbin and

Watson (1950, 1951, 1971).) It is easy to show that d only depends on the
first autocorrelation of the residuals, so that no autocorrelations beyond

the first are used in deciding on the residual structure. Only rarely have
alternative error structures been examined and tested in a regression analysis,

For example, see Sargan (1964), Phillips (1966) Wallis (1972) or Engle (1974).

The proposed alternative structure for the residuals is

ug - U T ag e 8y (6.8)



and we shall still use the statistic (6.7) for detection of residual
autocorrelation of the structure given by (6.6) when in fact (6.8) is true.
Nerlove and Wallis (1966) have examined the use of d in inappropriate
situations and Tillman (1975) has conducted power studies on d, while
Pierce (1971) looked at least squares regression with ARMA(p,q) residuals
but none of these authors considered a non stationary error structure.

Series of 50 observations were generated from the first order integrated

moving average processes

Xt " Xyt T 35,6 03y 4 X5,0 = 100,53 = 1,2,000 4k
Yt - Yt-l = at + Q*at-l Yo = 100

where a1,t’ aa,t, cosy ak,t’ a, were independent noxmally distributed white
noise series, each with unit variance.

Using these generated series linear regressions of the form (6.5) were
estimated in the usual manner by least squares and the null hypothesis

' H ql =B = eeee =B =0 (6.9)

was tested for k = 1,2 and 4. The usual t statistic was used for k = 1 and
the conventional Ftest for k = 2 and 43 in addition attempts at detection of
residuals which follow the structure (6.6) were made by calculating the
Durbin Watson d statistic given by (6.7). The procedures adopted were as

follows.

Denote the least squares estimates of Bo’%,""’sk by

so that the residuals are

=Y (6.10)

ug =Yg o gél)‘ B )x

~ ) aQ1)
1 1.t T BaL xa,t Toeee T sk1 X

k,t
(t = 1,2,000 ’n)
The statistic (6.7) was calculated and the autoregressive parameter in (6.6)

estimated by calculating

(6.11)

1 "‘[n-:.,,a n Ag}f‘
The number of times the t and d statistics were significant for k = 1
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and the F and d statistics significant for k = 2, 4 were calculated over
1000 simulations for each pair of (© ,0*%) values in the case k = 1 and
500 simulations for k = 2, and 4. Note that the F statistic was calculated
using ‘

R%/(k - 1
1 - R n -k

n . n

where R® = 1 - tg&ut3/¥£L(Yt - Y)2. Results for k = 1 are collected in Table
6.1, while Tables 6.2 and 6.3 contain the corresponding results for k = 2
and 4 respectively. All significance levels here and throughout are 5%.

After examining these tables it can be seen that if one adopted the
decision rule "reject the null hypothesis (6.9) only if t or F is significant
and d is insignificant”, one would not be making the wrong decision very
often except when © * is large. Of course, in the latter case we have seen
in Chapter 5 the expected values of the sample autocorrelations for such
processes are not very large, so that the d statistic would not be able to
pick out autocorrelation in the residuals of this type very often. This job
the Durbin-Watson statistic was not constructed to do, of course, and the
results in the Tables 6.1 - 6.3 clearly demonstrate this.

Having detected autocorrelation in the residuals, the usual procedure is

then to correct for it., Using the autoregressive parameter estimate given by

(6.11) the regression
A

Ha)ys 20) ; ()
S LN LLES NNV UL

= | J1
(6.12)
A1) _ AL)y . K ~
Yt-’ll Yt-l _Bo(l-dl ) + 3-—8183 j '!1 jt- U
t= 2,0044n

was estimated by least squares, yielding new estimates of Bo,%_,...,Bk
2(=2 ) (2 2(2) . .
(B seeesB say). This then enabled a new estimate of the auto-
R (2 )
regressive parameter 51 to be made, (g ), say) using the formula (6.11) with
the residuals from (6.12). The procedure was continued until the estimates
converged (see Cochrane and Orcutt (1949)). At each iteration the null

hypothesis (6.9) was tested and the Durbin-Watson d statistic calculated in
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TABLE 6.1

PERCENTAGE OF TIMES t AND d ARE SIGNIFICANT IN
1,000 SIMULATIONS FOR EACH (6,0%) : k = 1
X SERIES e = 0.0 © =-0,2 © =-0.4 ==-0.6 e =-0.8
Y SERIES t t t t t

o N.Sig] Sig |N.Sig| Sig |N.Sig| Sig M&gl&g N.Sigy Sig
N.Sig 0.0 ] 0.1 0.0 |0,0)] 0,0 ] 0.1 ] 0,0 ] O0.2] 0.0} 0,0
0.0 d Inconc. 6.0 0.0} 0,0 { 0,0} 0.0 | O.1}{ 0.0} 0.0} 0.0 | 0.0
Sig 33.0 1 66.9 |35.6 164.4 |37.1 162.7 |44.6 155.2 |61.0 139.0

Mean d 0.328 0.355 0.397 0.424 0.362
N.Sig 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
"0.2 d InconCo O-O 0.0 Ooo O-l 0.0 0.0 0.1 0.0 Ooo 0.0
Sig 33.7} 66.1 |35.8 |64.1 [38.6 )6l.4 |]45.0 |54.8 |61.9 ]38.1

Mean d 0.449 0.470 0.504 0.521 0.451
N.Sig 0.3 1.6 { 0.5 1.1 0,51 0.,5] 0.7 | 0.5 ] 0.4 | 0.1
’0.4 d Inconc. 001 0-7 0.4 0.7 Oo7 lul 0.5 0-8 004 002
Sig 37.2) 60.1 [{36.4 |60.9 |40.1 |57.1 {47.0 ]50.5 |[64.0 }34.9

Mean d 0.70% 0.714 0.721 0.723 0.635
N.Sig 5.1 6.9 6.7 7.7 6.2 ] 7.4 6.7 ] 6.2 | 5.9 | 2.4
-006 d InconC. 2.4 2.6 2.0 3.0 106 2-4 201 2.4 207 1.1
Sig 34.2| 48.8 |33.9 |46.7 | 38.4 144.0 | 44.7 }37.9 | 62.7 25,2

Mean d 1.089 1,104 1.118 1,10% 1.016
N.Sig 38.8] 21.2 |41.9 |21.6 {37.0 122.2 |38.6 |19,0 |44.2 | 9.2
-0.8 d InconCo 6.2 303 5-3 208 5.6 l 2.4 602 203 7.5 1.5
Sig 19.8} 10.7 {18.1{10.,3 (21.0 111.8 {23,7 }10.2 | 29,9 7.7

Mean d 1.664 1,705 1.668 1.650 1.614
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TABLE 6,2

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN

500 SIMULATIONS FOR EACH (0,0%) :

k=2

x SERIES Q = 0.0 9 =’002 @ =—0.4 9 ;’006 ='O.8
Y SERIES E F F F F
o* N.Sig| Sig | N.Sig| Sig {N.Sig| Sig | N.Sig| Sig | N.Sig| Sig
N.Sig 0.0 0.2 0,0 | 0,0 0,0 | 0.4| 0.0 | 0.0} 0.0 0.0
0.0 d Inconc. 0.0 0.0y 0,0 | 0,0 0,0 | 0,0} 0,0 | 0.2 0.0 }{ 0.0
Sig 19.2 /80,6 | 21.8 178.,2 |22.0 |77.6 | 33.0 166.8 | 61.0 39,0
Mean d 0.472 0.505 0.523 0.561 0.465
N.Sig 0.0 | 0.4 0.2 ] 0.2 | 0,0 | 0.8 0.0 0,2 0.2 0.0
-0.2 d Inconc. 0.0 | 0.8 0.0 ’ 0.8 0.2 | 0.6] 0.2 1.0 0.4 0.2
Sig 21.8 177.0 | 21.0 177.8 |24.0 1|74.4 | 32.4 166.2 | 60.6 138,6
Mean d 0.609 0.641 0.674 0.706 0.580
N.Sig 0.6 | 2.2 0.4 | 2.4 0.8 2.0 1.0 1.2 0.6 | 0.2
-0.4 d Inconc. 0.4 2.0 1.4 | 3.8 0.4 | 3.4 1.2 l 3.2| 0.6 ‘ 0.4
Sig 20.8 174.0 | 22.4 169.6 |25.8 167.6 | 39.4 154,0 | 55.4 142.8
Mean d 0.832 0.895 0.883 0.896 0.767
N.Sig 7.4 114.6| 8.2 |15.4 6.6 114.0| 8.0 10,0} 7.0 | 3.6
-0.6 d Inconc. 5.4 | 8.8 4.0 ' 8.2 | 4,2 ] 9.2] 6.0{ 7.6] 5.6 | 2.8
Sig 22.6 141,2 | 23.2 141.0 {24.2 121.8 | 34.4 134,0] 55.4 |25.6
Mean d 1.315 1.305 1.304 1.271 1.115
N.Sig 42,0 |27.6 | 40,8 |123.6 |45.6 (22.8| 48,0 |17.4 | 46.2 6.8
-0.8 d InCOﬂC. 7-2 7-0 10.2 600 9.8 400 1108 308 1502 2.2
Sig 9.0 | 7.2 10,6 { 8.8 |11.2 | 6.6] 12.4 6.6 24.8 | 4.8
Mean d 1.807 1.760 1.782 1.763 1.644
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TABLE 6,3

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN
500 SIMULATIONS FOR EACH (©,0%) : k = 4
X SERIES &= 0.0 © =-0.2 ©=-0.4 © =-0,6 =-0.8
Y SERIES F F F F F

ox N.Sig| Sig | N.Sig| Sig | N.Sig| Sig | N.Sig| Sig | N.Sig| Sig
N.Sig 0.0 | 0.4 0,0 | 0.4} 0.0 | 0.4} 0.0 | 0.0] 0.0 0.2
0.0 d {Inconc. 0.0 { 1.8 0,0 | 2.6 | 0.0 | 4.0 0.0 | 3.4 0.0} 0.4
Sig 4.8 193.0 | 4.0 193,0 | 5.2 190.4 | 13.4 183.2 | 31.0 168.4

Mean d 0.718 0.771 0.806 0.824 0.702
N.Sig O'o 004 000 0.4 0.0 lu4 002 006 002 O‘O
-0.2 d {Inconc. 0.0 | 4.6 | 0,2 | 8.2 | 0.2 l 6.8 0.2 | 6,2| 0,0 1.8
Sig 5.6 189.4 7.2 184.0 | 6.6 | 8.5 | 16.2 176,6 | 36.4 161.6

Mean d 0.865 0.927 0.933 0.900 0.758
anig 0.2 5.8 0.4 6.4 0-8 5.8 0.2 3.0 0.0 008
-0.4 d Inconc. 0.6 |19.8 0.8 |21.2 2.2 '17.2 2.0 l37.6 2.6 | 6.4
Sig 8.0 165.6 | 6,2 | 6.5 | 8,8 65,2 | 0,0 | 8,0 37.8 |52.4

Mean d 1.142 1.176 1.171 1.138 0.972
N.Sig 5.8 |28.2 | 8.6 |27.8 | 4.0 {28.0 | 6.2 |17.4 | 6.2 | 5.2
-O¢6 d InCOI’lC- 502 27.6 5.6 27-8 6.4 2804 1006 203 1408 13t4
Sig 6.0 127,2 6.8 123.4 6.4 126.8 [14.4 128.4 | 33.0 127.4

Mean d 1.550 1.561 1.538 1.458 1.286
N.Sig 40.6 |39.0 [38.2 |35.2 [38.4 7.2 |4l.4 |26.6 |40.2 114.4
-0.8 d InCOnC. 502 lloo 908 9.4 9-6 1003 1418 900 2308 7.0
Sig 2.0 2.2 l¢8 2-6 102 3.0 306 4-6 906 5.0

Mean d 1,975 1.932 1,938 1.853 1.740
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TABLE 6.4

PERCENTAGE OF TIMES t AND d ARE SIGNIFICANT IN

1000 SIMULATIONS FOR EACH PAIR OF (0,0%) 1 k =1

(2nd REGRESSION)
X SERIES = 0,0 6 =-0,2 e =-0.4 0 =-0.6 @ =-0.8
Y SERIES t t t t t
o* N.Sig| Sig | N.Sig| Sig |N.Sig| Sig | N.Sig| Sig N.Sigy Sig
'N.Sig 44.1 {10.3 | 45.7 | 6.1 [37.4 | 6.2 |37.8 | 2.7 |41.0 | 1.9
o.o Inconc 8.5 109 6'6 107 8.3 l.2 6.6 1.0 8.4 003
Sig 25.9) 9.3 |27.4 112.5 |[35.0[11.9 | 38,9 113,0 |43.7 1| 4.7
Mean d 1.481 1.386 1.163 0.963 1.107
N.Sig 61.6 119.2 | 61.0 |15.1 {56.9 }12.6 |58.3 | 7.2 [ 61.4 | 4.3
-0.2 Inconc 2.8 lco 2.6 , 107 4.3 , 108 3.3 2.3 404 0'4
Sig 10.3 1 5.1 |13.2 | 6.4 {16.7 1 7.7 119.9 | 9.0 25.3 | 4.2
Mean d 1.789 1,710 1,975 1.513 1.443
N.Sig 64.8 | 26.7 | 64.2 124.7 [65.7 |19.0 {66.8 [14.1 | 72.3 | 6.8
-0.4 Inconc 1.3 l l.2}| 1.0 l l.1 1.8 1.2 | 3.2 ' 1l.1] 2.6 l 0.5
Sig 4-0 2.0 5.4 3.6 7-8 4,5 9.0 5-8 14-6 302
Mean d 2.005 1.946 1.874 1.830 1.827
N.Sig 62.1 | 32,7 | 63.7 (30.8 |64.2 |28.9 {67.8 24.9 | 80.1 9.3
-0.6 Inconc 0.4 | 0.3] 0.4 l 0.3} 0.7 0.4 1.4 l 0.4] 1.5} 0.3
Sig 2.9 1.6 2.3 i2.514,01 1.8} 6,01 2.5 6.81 2,0
Mean d 2,015 1.992 1.976 1.911 1.938
N.Sig 69,0 | 27.7 | 69.5 126.4 |71.3 |24.8 |73.6 |22.3| 82.7 |12.6
~-0.8 {Inconc 0.3 0.3} 0.4 | 0,4 ] 0,7 0,3] 0.6 | 0.4 1.4 | 0.2
Sig 1-3 104 2.7 006 109 l-o 109 102 2.8 0.3
Mean d 1.946 1.943 1.933 1.927 1.924
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TABLE 6.5

PERCENTAGE OF TIMES t AND d ARE SIGNIFICANT IN
1000 SIMULATIONS FOR EACH PAIR OF : k= 1

3rd REGRESSION

X SERIES 8= 0.0 0 =-0.2 =-0.4 © =-0.6 0 =-0.8
Y SERIES t t t t t
o N.Sig| Sig |N.Sig| Sig |N.Sig| Sig [N.Sig| Sig |N.Sig| Sig
N.Sig 64.1 | 9.7 [65.,1 | 7.4 |63.6 | 6.3 {67.0 | 3.9 {70.3 | 4.0
0.0 Inconc 9.9 | 1.2} 8.8 1.2 {9.3|0.3]|6.7|0.4]09.8]0.3
\ sig 13,0 | 2.1 {15.3 | 2.2 {17.9 | 2.3 {19.9 | 2.1 {15.1 { 0.5
Mean d 1.748 1.722 1.692 1.647 1.749
(N.Sig 75.8 |15.8 |77.8 |13.0 [79.1 |11.5 |83.7 | 7.3 [87.1 | 6.1
'002 InconC 1.8 , 0-9 1.6 I 0.5 1-5 003 202 0-2 1.6 4 0.0
lsig 45 1.2 50 121 |57 1]1.9|4.9 1.7 | 4.5 | 0.7
Mean d 1.989 1.959 1.971 1.981 1.992
N.Sig 71.1 [24.6 (73.7 [21.7 (78.2 (16.9 [84.6 |11.4 |87.6 | 8.2
-0.4 Inconc 009 l 002 0‘5 004 006 I Ool 0.4 0-2 009 0.1
\sig 2.4 10,823 |1.4 |31 /11241 1.0]3.1]0.1
Mean d 2.118 2.103 2.102 2.124 2.165
N.Sig 64.7| 31.3| 66.3] 29.6| 70.0; 26.1| 74,0| 15.9| 86.6] 8.9
"0.6 Inconc o.l Ocl 0.6 0.0 0.8’ 002 102 0.5 0-6' O.l
1 sig 2.6] 1.2| 1.6l 1.9] 2.0l o.9| 3.71 0.7 3.0l o.8
Mean d 2.065 2.064 2.081 2,057 2.105
N.Sig 69.6 | 27.4| 70,0 26.5| 71.7| 24.4| 74.9| 21.8] 84.2 12.1
-0.8 Inconc 0.3{ 0.1{ 0.3| 0.2| o.8} 0.3] 0.6{ 0.1 1.1l 0.2
| sig 1.2] 1.4 2.4] o.6] 1.8/ 1.0 1.4] 1.2| 2.3 o
Mean d 1.956 1.953 1.951 1.956 1.959
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TABLE 6.6

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN

500 SIMULATIONS FOR EACH PAIR OF (0,6*%) : k= 2
2nd REGRESSION)
X SERIES = 0.0 e =-0.2 © =-0.4 © =-0.6 @ =-0.8
Y SERIES F F F F F
o* N.Sig| Sig N.Sigj Sig| N.Sig| Sig N.Sig] Sig| N.Sig| Sig
N.Sig 33.4 (13.4 | 34.0 [11.2| 23.4 | 5.0 23.2 | 0.8 31.6 | 0.2
0.0 d {Inconc 16.6 | 7.8 | 15.4 | 8.6 16.4 | 5.8 15,2 | 3.2 18.2 | 0.4
Sig 16.4 112.4 19,0 111.8} 35.6 113.8| 43.0 114,6 | 45.4 | 4.2
Mean d 1.601 1.584 1.456 1.388 1.414
N.Sig 55.4 |29.8 | 55.0 |24.4 | 50.0 ]18.2| 47.2 | 7.4 | 55.0 | 3.2
-0.2 d {Inconc 4.4 | 4.4 | 6.8 , 3.2| 9.0 , 5.6| 8.8 , 5.0 11.6 | 1.2
Sig 3.4 | 2.6 6,01 4,6]11.2 16.0}]21,4110.2/23.2 | 5.8
Mean d 1.863 1.815 1.732 1.628 1.642
N.Sig 60.4 |36.8 | 55.2 139.4 | 59.2 |29.2| 63.0 {17.0] 72.2 | 4.4
-0.4 d {Inconc 0.8 I 1.2] 1.8 | 2.4 4.4 l 2.6 8.0 l 3.6| 7.6 1.6
Sig 0.4 10.4| 0,61 0.6} 2.6 12,0 4.41 4,0 10.6 | 3.6
Mean d 2.008 1.964 1.899 1.858 1.82%
N.Sig 56.6 |43.0|57.2 |41.8 | 56.2 (41.6] 65.8 |28.6 | 80.6 |11.6
-0.6 d (Inconc 0.0 | 0.4] 0.6 ’ 0.2 1.2 I 0.4 2.8} 1.8] 3.6 | 1.4
Sig . 0.0 { 0.0 0.0l 0.2} 0.6 | 0.0} 0.6 0.4 2.4 | 0.4
Mean d 2.016 1.999 1.966 1.939 1.942
N.Sig 64.2 135.8|68.6 |31.4}70.4 {29.0| 75.0 {24.8 | 89.2 {10.4
-0.8 d {Inconc 0.0 l 0.0} 0.0 l 0.0 0.4 l 0.2 0.2 l 0.0j 0.4 | 0.0
Sig 0.0 1 0.0y 0.0 0.0 0,0 } 0.0} 0.0} 0.0} 0.0 | 0.0
Mean d 1.969 1.966 1.957 1.954 1.957
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TABLE 6,7

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN

500 SIMULATIONS FOR EACH PAIR OF (0,8*) : k = 2
3rd REGRESSION
X SERIES e= 0.0 0 =-0.2 © =-0.4 8 ==0.6 © =-0.8
Y SERIES F F F F F
or N.Sig| Sig | N.Sig| Sig| N.Sig| Sig |N.Sig| Sig |N.Stg| Sig
N.Sig 58.8 |14.6 | 63.8 [10.0 | 63.6 | 4.2 [64.0 | 3.0 {74.6 | 1.2
0.0 d <{Inconc 12.8 | 3.8 |15.2 | 2,6 |17.6 | 1.4 [16.0 | 0.6 |14.0 | 0.4
Sig 8.81 1.2 6.4 12,0}11.0 | 2,2 {11.0 1 1.4 ] 9.6 | 0.2
Mean 4 1.776 1.775 1.733 1,756 1,797
N.Sig 74.4 122,6 | 65.0 ]19.8 | 79.0 |16.4 [85.4 | 6.0 [89.4 | 4.4
-0.2 d (Inconc 22] 02| 2.8 | 0.8} 2.6 | 0.4 | 3.8 l 1.4 | 3.4 | 0.0
Sig 0.6 0.0 1.0 0.6 l-2 004 2.2 102 2.4 0.4
Mean d 2,013 2,012 1.999 1.971 2.038
N.Sig 69.4 |30.4 | 67.0 |32.8 | 77.0 [22.2 |88.4 |10.4 [93.2 | 5.2
—0.4 d Inconc 002 i 0‘0 0.2 0.0 006 ‘ 002 008 l 0.2 006 I 0.0
Sig c.0t 0,0f 0.0 0.0|] O,OI| 0,0} 0,0} Q.2 0,61 0.4
Mean d 2.127 2.114 2.121 2,177 2.186
N.Sig 58.8 |41.2 | 62.0 ;38,0 | 61.6 |38.0 [75.8 |24.0 [91.0 | 8.6
'0.6 d Inconc 000 0.0 0.0 l 0-0 0.2 002 000 Ono 0.4 0-0
Sig 0.0l 0,0| 0,0 0,0] 0,01 0.0] 0.2 0.0} 0.01 0.0
Mean d 2,066 2,072 2.063 2.077 2.151
N.Sig  64.6 |35.4 |68.6 [31.4 | 71.8 |28.2 |76.6 (23.4 |90.4 | 9.6
-0.8 d {Inconc 0.0 ‘ 0.0} 0.0 l 0.0| 0.0 ' 0.0 | 0.0 I 0.0 ] 0.0 l 0.0
Sig 0.0 000 000 o-o 000 O'O 0.0 000 000 0.0
Mean d 1.978 1.980 1.978 1.982 2.004
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TABLE 6.8

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN

500 SIMULATIONS FOR EACH PAIR OF (©,0%) : k = 4
2nd REGRESSION

x SERIES 9 = 000 g ="002 O ="004 Q =‘006 @ :-0.8
Y SERIES F F F F 13
o* N.Sig[ Sig N.Sigl Sig N.Sigl Sig N.Sigj Sig | N.Sig) Sig
N.Sig 7.6 {15.4 | 3.4 |14.2]| 3.2 | 8.4 4,0 | 2.6]| 6.0 | 0.8
0.0 d {Inconc 17.2 [34.0 {17.2 |34,0| 18.4 |25.6 | 15.6 [15.4 | 20.6 | 2.6
Sig 10.6 115.2 11,8 119.4] 21.8 [22.6 | 34.4 [28,0 | 57.8 |12.2
Mean d 1.538 1.497 1.403 1,291 1.150
N.Sig 18.0 |42.6 18.2 |29.8| 14.8 18.0 | 16.2 8.8 1 2%.2 1.0
-0.2 d Inconc 10.0 |24.2 |11.8 [31.6) 18.6 '30.0 23.8 ‘20.6 27.4 ' 5.4
Sig 2,6 | 2,6 4.6 | 4,0] 7.2 |11.4 |16.8 113.8{34.2 | 6.8
Mean ( 1.744 1.694 1.604 1,817 1.443
IN.Sig 21-8 66-0 23-2 57-0 26.2 43.2 29-6 2408 37-0 6-4
‘0.4 d Inconc 302 \ 808 502 1306 908 17-8 16.2 '21.4 2506 9-2
1Sig 0.0 0.2 0.2 0.8 1-6 l.4 5.0 3.0 16.4 5.4
Mean d 1.891 1.850 1.793 1.711 1.62%
N.Sig 28.0 {70.6 |31.6 |64.6| 28.8 164.4 [41.0 [41.4 | 55.4 |17,0
-0.6 d Inconc 0.0 , l.4 | 1.8 | 2.0| 2.4 ' 4,2 | 8.8 | 7.2|17.8 | 6.4
Sig 0.0 0.0 0.0 000 0.2 0-0 008 0-8 2-2 1.2
Mean d 1.944 1.930 1.901 1.846 1.816
N.Sig  47.0 |52.6 |51.0 |48.8| 50.2 |49.2 |62.0 |36.0 | 67.4 |21.0
-0.8 d <{Inconc 0.2 | 0.2 | 0.2 I 0.0f 0.4 | 0.2 1.2 0.8} 3.4 | 1.2
Sig 0.0 0.0} 0.0 0.0f 0.0} 0.0} 0.0} 0.0{ 0.0 | 0.0
Mean d. 1.967 1.963 1.958 1.939 1.917
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TABLE 6.9

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN

500 SIMULATIONS FOR EACH PAIR OF (0,0%) : k = 4

3rd REGRESSION

X SERIES Q = 000 9 =-0.2 g =-0.4 Q =-0.6 =-o.8
- Y SERIES F F F F F

o N.Sig| Sig |N.Sig| Sig| N.Sig| Sig]| N.Sig} Sig| N.Sig| Sig
N.Sig 27.2 122.8 | 26.6 {23.4| 30,2 [12.4|31.2 | 4.2/ 4%,0 | 2.6
0.0 d Inconc 27,0 115.,4 129.6 |13.2| 33.0 |11.8)34.6 | 8.2 | 36.0 1.8
Sig 5.0 1 2.6 5.6 1.6 10,2 | 2.4} 17.4 | 4.4} 13,4 1.2

Mean d 1.721 1.703 1.656 1.611 1.693
N.Sig 40,2 |45.2 | 43.8 |39.2( 49.0 ;27.4| 60.6 |13.0} 79.4 | 5.6
-0.2 d (Inconc 7.0 6.8]110.4 | 6.2] 12.6 l 8.2 17.6 l 5.6 11.2 | 1.2
sig 004 004 0.4 000 2.4 0.4 2.0 102 108 o'e

Mean d 1.912 1.899 1.867 1.862 1.947
N. Sig 3402 64.4 38-6 58'2 5004 43.6 58-6 3004 8004 11.6
-0.4 d {Inconc 0.6} 0.8] 0.8 l 2.4 2.6] 3.0|] 6.2 4.2 5.6 ' 1.8
Sig .01 0,0} 0,01t 0.0y 0.2 0.2 0.2 | 0.4| 0.6} 0.0

Mean d 2.007 2.00 1.985 1.971 2.065
{N.Sig 32.0 | 67.4 | 36.4 }63.0| 34.8 | 64.8| 57.2 |40.4| 78.4 119.4
-0.6 d {Inconc 0.0} 0.6 ] 0.6 I 0.0] 0.2 | 0.2 0.8] 1.6] 1.0 ' 1.0
\sig 0.0l 0.0 0.0l 0.0 0.0l 0.0 0.0l 0.0 0.0 0.2

Mean d 1.989 1.989 1.987 1.987 2.046
NuSig 47,2 | 52.4 [51.2 |48.6] 50.8 49,2 6306 36.0 78.2 2106
-0.8 d <{Inconc 0.2] 0.2) 0.2 | 0.0] 0.0 I 0.0] 0.2 0.2{ 0.0 ‘ 0.2
Sig 0.0 OQO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mean d 1.970 1.970 1.965 1.959 1,968
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each case.

Tables 6.4 and 6.5 are the second and third regressions in the case
k = 1, while tables 6.6 and 6.7 correspond to k = 2 and tables 6.8 and 6.9
correspond to k = 4.

In addition, we give in Tables 6.10 and 6.11 for k= 1 and k = 4 the
number of times a significant relationship is (wrongly) found at the
final iteration. The final picture, then, is that spurious regressions are
found rather too often, the problem being particularly marked for k = 4 and,
in general, in the lower triangles (-&* < -@) of both tables.

TABLE 6,10

PERCENTAGE OF TIMES t IS SIGNIFICANT IN REGRESSION
"CORRECTED" FOR FIRST ORDER AUTOREGRESSIVE ERRORS IN

1,000 SIMULATIONS FOR EACH (0,0%) t k = 1

o | €= 0.0 0= -0.2 0= -0.4 0= -0.6 0= -0.8
0.0 11.5 8.3 6.5 4.5 4.7
-0.2 15.8 12.3 11.0 7.1 6.6
-0.4 23.6 22.9 15.9 11.0 8.2
-0.6 32.3 30.7 25.5 19.7 9.8
-0.8 28.9 27.3 25.5 22,7 12.0
TABLE 6,11

PERCENTAGE OF TIMES F IS SIGNIFICANT IN REGRESSION
"CORRECTED" FOR FIRST ORDER AUTOREGRESSIVE ERRORS IN
500 SIMULATIONS FOR EACH (0,6%) : k = 4

o =00 6= -0.2 = -0.4 0= -0.6 &= -0.8
0.0 24.4 18.6 9.8 - 6.2 5.0
-0.2 40.0 27.6 20.6 10.0 6.8
-0.4 59.6 54.8 36.0 23.4 10.8
-0.6 66.4 62,2 59.0 37,2 16.8
-0.8 52.6 48.8 59.4 35.8 21.6

The interpretation of these results is not as clear cut as one might
A
first imagine, since the tests effectively assume that ﬂ; is fixed rather

than stochastic. One would expect a small inflation in true significance
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levels for sample size 50 because of this. To verify this, independent

samples of size 50 were generated from

Xt + 100

v L A%y -
Xy # xt-l = 4,t } X¢

Y, - g Yo =3 5 Y, = Y, + 100

and the regression equation (6.5) was fitted with k = 1 using ordinary least
squares, for different values of (4 *,d ). The error structure (6.6) is now
correctly specified and the iteration procedure based on (6.12) was used
until estimates of the coefficients converged. The percentage of times the

t statistic is significant in a regression when it is (iteratively)
appropriately corrected for first order autoregressive residuals, at the

final stage of the iteration, is given in Table 6.12,

TABLE 6.12

PERCENTAGE OF TIMES t IS SIGNIFICANT IN REGRESSION APPROPRIATELY
T CORRECIED FOR FIRST ORDER AUTOREGRESSIVE ERRORS IN
1,000 SIMULATIONS FOR EACH (g,8*%)

g% = 0.4 g* = 0.6 g* = 0.8
g = 0.4 ' 6.9 7.6 7.6
4= 0.6 6.4 6.0 8.8
g = 0.8 6.4 4.9 8.0

We note that the significance levels are rather too high in this case,
but this inflation in no way explains the very large number of times the t
and F statistics are significant in the lower half triangles of tables 6.10
and 6.11. It may therefore be concluded that the main reason for these
spurious regressions was the misspecified error structure.

The conclusions emanating from these simulation results are that
alternative error structures to the usual AR(1) process given by (6.6) ought
to be entertained when considering multiple regression analyses relating
economic data. In regressing economic time series, the IMA(1,1) process seems
a reasonable alternative for the residual error structures that can arise;
it is clear that when this structure is appropriate for time series residuals

the usual significance tests, based on AR(1) error models do not perform
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adequately.
6.5 Conclusions

The general conclusions emerging from Chapter 6 are that there are
many other possible ways of misspecifying time series models which should
and ought to deserve further research. It appears the most fruitful areas
would be to examine the consequences of misspecifying a non-linear
instantaneous transformation of a time series and the results of misspecifying
the time series residual error structure in multiple regression analyses
with economic type data. In addition it would seem desirable to develop some
test statistic that could test the null hypothesis of AR(1l) residuals against
the alternatives of a non-stationary IMA(1,1) structure, at least for those
cases where a full Box-Jenkins analysis to determine appropriate error

structure is not practicable.
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