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ABSTRACT 

The Box and Jenkins (1970) methodology of time series model building 

using an iterative cycle of identification, estimation and diagnostic 

checking to produce a forecasting mechanism is, by now, well known and 

widely applied. This thesis is mainly concerned with aspects of the 

diagnostic checking and forecasting part of their methodology. 

For diagnostic checking a study is made of the overall or 'portmanteau' 

statistics suggested by Box and Pierce (1970) and Ljung and Box (1976) with 

regard to their ability for detecting misspecified models; analytic results 

are complemented by simulation power studies when the fitted model is known 

to be misspecified. For forecasting, a general approach is proposed for 

determining. the asymptotic forecasting loss when using any fitted model in 

the class of structures proposed by Box and Jenkins, when the true process 

follows any other in that same class. specialisation is made by conducting 

a thorough study of the asymptotic loss incurred when pure autoregressive 

models are fitted and used to forecast any other process. 

In finite samples the Box-Pierce statistic has its mean well below that 

predicted by asymptotic theory (so that true significance levels will be 

below that assumed) whilst the Box-Ljung statistic has its mean approximately 

correct. However, both statistics are shown to be rather weak at detecting 

misspecified models, with only a few exceptions. Asymptotic forecasting 

loss is likely to be high when using even high order autoregressive models 

to predict certain simple processes. This is especially the case when 

allowance is made for estimation error in the fitted models. 

Finally, some outstanding problems are outlined. One of these, namely 

the problem of misspecified error structures in time series regression 

analysis, is examined in detail. 



1.1 Motivation 

CHAPTER 1 

INTRODUCTION 

This research was initially motivated by an apparent need to question 

whether or not a model that had been fitted to a time series was the correct 

one, and to examine the consequences if the fitted model was misspecified. 

Over recent years many sophisticated techniques have been developed to 

produce superior models that will provide a better fit to the data at hand 

and (hopefully), therefore, produce a better forecasting mechanism for 

future, as yet unrealised, values from the same series. In essence, these 

techniques generally assume, a priori, the model to be fitted (or base 

model choice on the evidence of the data) and so if a misspecification of 

the model occurs, for some reason, it would seem reasonable to conjecture 

that the consequences could be serious from a forecasting point of view. 

(Moreover, some of these techniques are relatively expensive to use and 

implement and so one could also ask whether a less sophisticated and expensive 

method might not do almost as well from a forecasting point of view. These 

ideas and problems are really concerned with the philosophy and need for 

forecasting via the fitted model and have been raised in the literature before. 

See, for instance, Granger and Newbold (1975) and Chatfield and Prothero 

(l973b)). 

We shall, in this study, restrict ourselves to models within the general 

class of autoregressive integrated moving average (ARIMA) processes, which 

have been studied thoroughly by Box and Jenkins (1970), and ask the general 

question whether particular fitted models in this class can forecast as well 

as the optimum forecast function for the process, which is also assumed to 

follow from a model in the same class. For certain models in this class, 

the Box and Jenkins procedure can be expensive in time and money for 

adequate analysis and also in the expertise needed to apply the techniques 

(see, for example the conclusion in Chatfield and Prothero (1973a, p 313». 
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In one sense, then, we shall adopt the attitude of "doing all the 

wrong things", which on the face of it seems certainly sub-optimal, but is 

eminently more sensible if one views the whole model building procedure 

after the event and asks whether or not the "true" model for the data has 

been produced by the techniques employed. Of course, these techniques usually 

have built-in checks to test whether the model produced can be considered to 

be the 'correct' one. By their very nature. model checking tests cannot 

entertain all possible alternative models that could have been fitted, so 

that they will naturally not be equally powerful against all alternatives. 

One of the objectives, therefore, will be to try to isolate some of the model 

misspecifications which are more serious and which could be ignored (for some 

reason or another) by some of the diagnostic checks on model adequacy. 

Furthermore, some authors in the recent past (Chatfield and Prothero 

(1973a),Prothero and Wallis (1976» who have fitted Box-Jenkins type models 

have doubted the ability of the so called portmanteau statistic (Box and 

Pierce (1970» to detect model misspecification. The need to analyse in 

detail this doubt about this particular diagnostic check was another 

motivation for examining model misspecification. 

Chatfield (1977) does not believe there is a "true" model, but rather 

that a fitted model can provide a simple and useful approximation to some 

far more complicated truth. This view seems entirely reasonable. However, 

in this study an underlying assumption will be that there does exist some 

relatively simple true model. We will then examine the consequences which 

follow when the analyst fails to correctly specify this model. Such an 

approach seems well worthwhile, and moreover it would seem reasonable to 

argue that the results derived would continue to be useful in a more general 

context which would allow for Chatfield's objection. This more general view 

would be that although reality is typically exceptionally complicated, it is 

nevertheless the case that a particular simple model will generally provide 

a sufficiently good approximation to that reality for practical purposes 

(for example, forecasting). This simple model could then, in practice, be 
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regarded as "truth", and the consequences of operating with other simple 

models could safely be examined as if this original simple model were 

indeed a "true model". After all, since model selection is generally based 

on sample evidence, it is reasonable to expect that the analyst will on 

occasions fail to find the appropriate simple model. Furthermore, in those 

situations in which an underlying model is assumed a priori, it may often 

be the case that the assumed model differs appreciably from the particular 

simple model which is appropriate. 

One of the more recent developments in time series analysis has been 

the practical applications of multivariate time series techniques as a 

natural extension of the univariate work of Box and Jenkins (1970). In a 

recent paper Haugh and Box (1977) fit a multivariate Box-Jenkins model and 

suggest that the possibilities of making errors in the first stage of the 

multivariate procedure, namely fitting univariate models in the ARIMA class 

to each series under consideration, deserves further research. This thesis 

attempts to show the results of univariate misspecifications in this class 

of models. 

Another area which has aroused interest lately is the possibility of 

misspecifying the residual structure in a time series regression analysis 

(Granger and Newbold (1974), Pierce (1977», and the former paper provided 

the stimulus for examining residual error misspeci fication. 

1.2 Notation: the Box-Jenkins approach to univariate model building 

We summarise here the general approach to univariate model building as 

advocated by Box and Jenkins (1970) as an introduction to the general 

notation used throughout this study. If appropriate in later chapters, the 

notation may be restated for clarity of exposition. More detailed reviews of 

the Box-Jenkins approach are given by Nelson (1973), Newbold (1975), Chatfield 

(1975) and Granger and Newbold (1977). Specific examples may be found in 

papers which include Chatfield and Prothero (1973a),Bhattacharyya (1974), 

Brubacher and Wilson (1976) and Saboia (1977). A summary of many Box-Jenkins 

analyses may also be found in Reid (1969) and Newbold and Granger (1974). 
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For a review of the current state of time series analysis in general see 

Chatfield (1977) or Newbold (1978). 

Denote by (Xt ), or simply Xt , a discrete time series at equally spaced 

instants of time. Available for study is a sample of n observations of 

Xt , X ,X , ••• ,X and we shall assume the prime objective is to forecast 
1:3 n 

future values Xn+h (h ~ 1). The series Xt is said to follow an ARIMA(p,d,q) 

process if 

where B is the backshift operator such that BXt -

Xt ., and 
-J 

.0(B) 

Q(B) 

= 1 - P. B - .0 B:3 -
1 :3 

= 1 + 9 B + 9 B:3 + 
1 :3 

... 

(1.1 ) 

Xt ,and by repeated 
-1 

with p, d and q non-negative integers. Here at is a process with zero mean, 

fixed variance 0a2
, and with corr{at,as ) = 0 , tIs. Such processes are 

called "white noise". The roots of the polynomial equations in B, .0(B) = 0 

and 9(B) = 0 will be required to lie outside the unit circle IBI = 1 to 

ensure stationarity and invertibility conditions (see Box and Jenkins (1970) 

pp 73-74). The constants p. ,.0 , ••• ,p are said to be the autoregressive (AR) 
1 2 P 

parameters whilst 9 ,9 , ••• ,9 are termed the moving average (MA) parameters. 
1:3 q 

A pure AR process has d = 0 and q = 0, whilst a pure MA process has d = 0 

and p = O. The integer d indicates the order of differencing required to 

reduce the process to stationarity. If d = 0, with pI 0 and q I 0 the 

structure (1.1) is said to be an ARMA(p,q) process. 

The Box-Jenkins methodology for constructing ARIMA(p,d,q) models is based 

on a three step iterative cycle of (i) model identification (ii) model 

estimation (iii) diagnostic checking on model adequacy. After this cycle has 

been successfully completed the model fitted is then ready to be used in a 

rather important way, namely to forecast future observations of the series 

giving rise to structure (1.1). 

(l)The notation used here differs slightly from that of Box and Jenkins (1970), 

who use 9(B) = 1 - 9
1

B - ••• - 9qBq, but is in line with that of Granger 

and Newbold (1977). 
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We briefly describe here the ideas behind (i) and (ii) but the main 

theme in this thesis is to examine the consequences of misspecifying (1.1) 

by looking in detail at one technique commonly employed in the stage (iii) 

of diagnostic checking and the comparative quality of forecasts obtained from 

the misspecified model. 

(i) Identification 

At the identification stage one selects values of p,d,q in the model 

(1.1) and obtains initial, rough estimates of p. ,p , ..• ,p, , 9 ,9 , ••• ,9 using 
1 2 P 1 2 q 

procedures which are in general, inexact, and require a good deal of judgement. 

The two main tools for doing this are the autocorrelation function and partial 

autocorrelation function. 

Let Yk = cov[~,Xt+k]; then the autocorrelation at lag k is 

(1.2) 

where y will be the variance of the process. The partial autocorrelation at o 

lag k, usually denoted ~kk' is the partial correlation between Xt and Xt _k ' 

given Xt . (j = l, ••• ,k - 1), and may be derived by solving the set of 
-J 

equations 

k 

Pj = i~l ~ki Pj - i (j = 1, ••• ,k) ( 1.3) 

Using the given set of data X ,X , ••• ,X , Yk is estimated by ck ' where 
1 2 n 

n-k 
Ck : ~ J:

1 
(Xt - X)(Xt +k - X) (1.4) 

n 
and X = ~ Xt/n. The sample autocorrelation 

(1.5) 

is then used to estimate Pk• (Note that, in general (1.4) is defined with a 

mean subtracted off. We shall, in later chapters, use (1.4) and (1.5) without 

a sample mean subtracted when it is clear the true mean of the process is 

zeroJ Thus, the estimates of Pkk are obtained by substituting rk for Pk in 

(1.3). Based on the characteristic behaviour of the autocorrelation and 
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partial autocorrelation functions of different members of the class of 

stochastic models (1.1) (as summarized, for example by Box and Jenkins (1970~ 

p 79 or Granger and Newbold (1977), p 74) and using the sample estimates, a 

tentative identification of the orders p,d and q can be made. 

Clearly the extent to which one can reasonably hope for success in 

model identification depends on the degree of similarity in the behaviour of 

the parent and sample autocorrelation and partial autocorrelation functions. 

All other things being equal, the longer the data set, the better the chances 

of success. It is generally held that for samples of less than about 45-50 

observations, sampling variability is likely to render all but the simplest 

members of the ARIMA class virtually impossible to detect. Moreover, even 

with samples of 50-100 observations, commonly found in Box-Jenkins analyses, 

it seems reasonable to expect that misspecification, of the kind to be studied 

in this thesis, will occur fairly frequently. 

(ii) Estimation 

Once the orders p,d,q have been identified, the next stage in the cycle 

is to efficiently estimate the tentatively identified parameters to produce 
/\" I' It II ,. 

estimates p. ,~ , ••• ,~ , Q ,Q , ••• ,Q • A least squares minimisation procedure 
1 2 P 1 2 q 

is usually employed on the conditional expectations of the residuals. It can 

be shown that the least squares procedure, for moderately large sample sizes, 

produces estimates which are very nearly maximum likelihood. (See Box and 

Jenkins (1970), Chapter 7 or Newbold (1974) for details.) The main problem 

with the procedUre is that since the function that has to be minimised is not 

a simple function of the parameters to be estimated, the numerical minimisation 

can be rather expensive in computer time. other problems such as obtaining the 

starting up values for the procedure may be solved by methods given by 

Granger and Newbold (1977), p 88. 

(iii) Diagnostic checking 

Box and Jenkins (1970) recommend several post-estimation checks that may 

be employed to attempt to detect a misspecification in the class (1.1). They 

do emphasise that individually the tests have certain disadvantages, implying 

perhaps that each should not be used in isolation. However, one of these, 
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to be described shortly, has been used extensively in the literature 

apparently as the only diagnostic check to be tried on fitted models. One 

of the main objectives in this thesis will be to attempt to show this 

particular test in isolation is rather inadequate at detecting a mis-

specification in the class (1.1). 

The method of overfitting is concerned with adding in extra coefficients 

in the estimated ARMA(p,q) model for the differenced series, so that a new 

ARMA(p+p*,q+q*) model could be estimated in the manner indicated above. 

If the original ARMA(p,q) model is adequate for the differenced data, the 

estimation procedure should reject the extra coefficients ~ +" (j = l, ••• ,p*) 
p J 

and Q " (j = l, ••• ,q*), so that their estimates differ insignificantly from 
q+J 

zero. However, Granger and Newbold (1977) recommend fitting two different 

models namely ARMA(p + p*,q) and ARMA(p,q + q*) as alternatives since they 

show in their section 3.4, p 80, that the addition of extra coefficients to 

both sides of a correct model can lead to indeterminacy. This will cause the 

point estimates of the coefficients to be meaningless and their estimated 

standard deviations to be very large. 

If the fitted model is of the form (1.1) and it is the true model, the 

residuals 

constitute a white noise process. Anderson (1942) has shown that the sample 

autocorrelations of the residuals a ,a , ••• ,a , given by 
1 2 n 

n n 

r k = .Jk+1 atat-k/.Jl at 
2 

are, for moderately large samples, uncorrelated and normally distributed with 

standard deviations n-t . Thus we see that knowledge of the at and hence the 

r k would provide us with information on the process. However, the fitted 

model (1.1) has to be estimated, as indicated in (ii) above so that the 

residuals become 

7. 



with the sample autocorrelations now given by 

A 

Box and Pierce (1970) derived the asymptotic distribution of the r k 

and showed that the standard deviations can be much less than n-t for 

small values of k. Some thoughlon this latter point shows that it comes as 

a result of actually fitting the time series model; the parameters in the 

model are so estimated that the residuals for the fitted structure are as 

much like white noise as possible. Hence the first few autocorrelations of 

the residuals will be close to zero. 

To make this point rather more concretely, suppose we attempt to fit a 

pure AR(l) model to white noise. From Box and Jenkins (1970), p 278 an 

asymptotically efficient estimate of the autoregressive parameter will be 

the first sample autocorrelation of the process Xt = at. Hence this will be 

given by r above. 
1 

It follows that the residuals from the fitted model will be 

x - r X t 1 t-l 

whereas the true model that fits this data is the AR(l) process 

in which p. = o. 
1 

(1. 6) 

(1. 7) 

Hence r is effectively being used to estimate p. = O. Simulation 
1 1 

stUdies were conducted in which samples size 50 were generated from a white 

noise series and (1.7) was estimated over 1000 simulations, calculating the 
... 

mean and variance of the residual autocorrelations rk for (1.6). This was 

repeated for a further 1000 series for 'residuals' created by (1;7) in which 

¢. = O. We note that in connection with (1.7) we are assuming we know the 
1 

correct parameter value whereas in (1.6) we are not. Results of the two 

simulation studies are given in Table 1.1. 
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Mean 
A 

for r k 

Mean "- for r k 

50.var[rkJ 

50.var[rkJ 

TABLE 1.1 

EMPIRICAL MEAN AND VARIANCE 
OF THE SAMPLE RESIDUAL 

AUTOCORRELATIONS OF (1.6) AND (1.7) 

k 
1 2 3 4 

(1.6) -0.001 -0.017 0.003 0.004 

(1.7) 0.000 0.002 0.003 0.006 

for (1. 6) 0.036 0.930 0.881 0.919 

for (1. 7) 0.954 0.961 0.922 0.958 

5 6 

0.000 -0.001 

0.000 0.000 

0.891 0.809 

0.916 0.825 

We see that the empirical means agree reasonably and so do the values 

of n var[~kJ for k ~ 2. But at k = 1 we can conclude that the fitting 

procedure has caused the variance of the first residual autocorrelation to 

be greatly deflated. This deflation was noted initially by Durbin (1970). 

It therefore seems that for the general fitted model of the form (1.1) 

a comparison of ~k with ± 2n-t will be unreliable for low values of k, but 

should provide a general indication of possible departure from white noise 

in the residuals, provided it is remembered the bounds will tend to under-

estimate the significance of any discrepancies. 

The Box-Pierce portmanteau statistic 

Box and Pierce (1970) showed that the statistic 

is asymptotically distributed as X2 with (m - p - q) degrees of freedom, 

(where m is usually about 20 for reasons given in Chapter 2) and its use in 

model diagnostic checking has been advocated by Box and Jenkins (1970), p 291. 

The hypothesis of adequate model specification would be rejected if the 

autocorrelations of the residuals overall departed significantly from white 

noise, so that a high value of S could be taken as an indication of model 

misspecification. As notedin section (1.1) many authors have doubted the 

ability of S to detect model misspecification and Chapters 2 and 4 concentrate 
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on the problem of applications of S when the model is correctly and 

incorrectly specified respectively. We merely note here that in the 

simulation studies reported above the empirical mean value of S over the 

1000 simulations, with m = 20, was for the fitted model (1.6), 13.94. 

Clearly, this value is rather a long way from the asymptotic mean of 

20 - 1 = 19 and so we would not expect the use of S in the above situation 

to be able to detect any misspecification if we were fitting an AR(l) model. 

The sample size n = 50 is certainly considered 'moderate' in practical time 

series analysis and so a closer look (at least) at the exact mean of S, as 

defined above, is certainly warranted. 

Wilson (1973) has defended the above statistic by claiming it cannot 

be expected to detect model inadequacies outside the class of models (1.1) 

for which it is designed; we shall show in Chapters 2 and 4 that it is weak 

even at detecting misspecifications within the class (1.1). 

1.3 Notation: Forecasting 

We summarise here some of the main results in the theory of optimal linear 

forecasting techniques, following closely the notation of Granger and Newbold 

(1977). Also given is a brief review of Box-Jenkins forecasting methods 

together with some comments on the well known exponential smoothing techniques 

for forecasting. (For a Bayesian approach in forecasting see Harrison & Stevens (1976~) 

Let Xt be a zero mean stationary invertible ARMA(p,q) process 

which may be written 

= at + d at + d at + .••• 1 -1 2-2 

By seeking a linear forecast of X h (h ~ 1) in the form 
n+ 

co 

f h = .E w. h X . n, J=O J, n-J 

(1.8) 

and using a least squares criterion, Granger and Newbold (1977), p 121, show 

that the optimum forecast is of the form 

10. 



<Xl 

f h = .E d. ha . n, J=O J+ n-J d = 1 o 

Let e h be the h step forecast error X h - f h; then if V(h) n, n+ n, 

(1. 9) 

denotes the variance of this error (equivalently sometimes known as the 

asymptotic mean square error), Granger & Newbold show that e h is an n, 

MA(h - 1) process with 

h-1 
V(h) . ~ d.2 2 

= J~O J O"a (1.10) 

and that forecast errors from the same base, n, are typically correlated 

with (for k ~ 0) 

h-1 
E[en,h en,h+kJ = j~Odjdj+kO"a2 (loll) 

Also from the MA(h - 1) process that the h step forecast errors follow 

one may obtain the updating formula 

f = f + d (X - f ) n ,h n-1 ,h+1 h n n-1 ,1 
( 1.12) 

which can be very useful in generating the new optimal h step forecasts 

given the forecasts up to time (n - 1) and the most recent observed value 

in the series, X • This can save a considerable amount of computational 
n 

work in the calculation of new forecasts. 

If, for example Xt is a pure MA(q) process 

the theory leading to (1.9) gives (with Q = 1) 
o 

f = n,h 

This may be expressed in the form 

q-h 
f h = .E Q. h(X . - f. ) n, J=O J+ n-J n-J-1,1 

h>q 

(1.13) 

and can be used to generate forecasts given the infinite past. Starting up 

values will be a problem in practice although this will be mentioned later. 

A useful formula can be derived for the sequence of optimal forecasts 

for given n and increasing h. It is easy to see that the coefficients on the 
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right hand side of (1.8) satisfy the following recurrence relation with 

the ARMA coefficients I. ,p , ... ,1. , Q ,9 , ••• ,9 • 
1 2 P 1 2 q 

P 
d

k 
- .E p.dk . = Qk J=l J -J 

d. = 0 (j < 0), k = 0,1, •• (1.14) 
J 

Thus, from (1.9) we can show that 

p 
f h - .1: p. f h . = n, J=l J n, -J 

where f . = Xn+' for j s; o. 
n,J J 

<XI 

.,l;: Q. h a . 
1-0 1+ n-1 

0, i > q 

The sequence of forecasts may be obtained by replacing a . by n-1 

x . - f. in (1.15). 
n-1 n-1-1 ,1 

(1.15 ) 

The above theory has assumed the process to be forecast is stationary; 

section 3.9, Chapter 3 generalises the previous methods to obtaining the 

variance of the h step forecast error when the process followed is ARlMA(p,d,q). 

(See equation (3.88).) A forecast function similar to (1.9) and updating 

formula similar to (1.12) may be derived easily although we do not need them 

here. 

This section, so far has been concerned with univariate forecasting 

theory in a particular class of time series models. The fitting of a member 

of this class of models involving the identification, estimation and 

diagnostic checking outlined in section 1.2 together with the above indicated 

forecasting functions, has become known as the Box-Jenkins forecasting 

procedure. 

For practical illustrations of forecasting using this procedure a very 

clear exposition is given in Granger and Newbold (1977), section 5.2, p 149. 

As has been pointed out by many authors, this particular class of models 

is particularly flexible in its possible application to many commonly 

occurring time series. These techniques tend to be a little complex to apply 

in practice and for that reason other, less sophisticated methods are 

employed sometimes, though they are not typically optimal. The most commonly 

used of these is the exponential smoothing procedures which have the 

attraction of being fully automatic. 
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Of course, with these techniques one generally sacrifices forecasting 

accuracy for simplicity of models, as the latter can be shown to be a very 

restrictive set of processes. (See, for example Harrison (1967).) In any 

case most of the exponential smoothing models can be shown to be special 

cases of a technique called Kalman filtering (Kalman(196a~, 1963~ which has 

been known to engineers for some time. 

Exponential smoothing methods have been proposed and developed by 

Holt (1957), Winters (1960), Brown (1962), Theil and Wage (1964), Nerlove 

and Wage (1964), Trigg (1964), Harrison (1965, 1967), Trigg and Leach (1967), 

Harrison and Stevens (1971), Cogger (1974). For a summary of the methods and 

comparison of these techniques from a forecasting point of view with Box-

Jenkins methods see respectively Granger and Newbold (1977), pp 163-179 and 
, 

Newbold and Granger (1974). 

Some of the results presented in this thesis may, at least indirectly, 

be of relevance to exponential smoothing since the great majority of these 

procedures assume a priori an underlying model. It will therefore 

frequently be the case that to some degree or other the models assumed will 

be misspecified. 

Our main concern in this thesis will be to assess the consequences for 

forecasting of misspecified models within the ARIMA(p,d,q) class. 

1.4 Forecasting with missspecified models 

One could regard all fitted models in time series analysis as misspecified 

since they will be estimated from sample data and one could never be sure 

whether the fitted model is the 'last word' at describing the structure from 

which the sample was derived. Surprisingly little seems to have been done in 

the region of the consequences of misspecification of time series models in 

practice. Box and Jenkins (1970) p 298 indicate how the residuals may be used 

to modify a misspecified model; their diagnostic checks suggested in Chapter 8 

should, in theory detect a misspecification so that a new cycle of 

identification, estimation and diagnostic checking could be started, although 

these checks themselves depend in one sense on knowing the correct model. 
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Bloomfield (1972) has applied spectral techniques to the problems of 

misspecification in autoregressive series, while Granger and Newbold (1977) 

derive the asymptotic mean square error for prediction using a misspecified 

model. Yamamoto (1976 a,b) derives the asymptotic mean square error of 

prediction in the class of ARMA(p,q) models taking estimation error into 

account in the fitted coefficients, but his methods assume the model is 

correctly specified. It would seem an investigation which combines and 

extends the above methods of Granger & Newbold (1977) and Yamamoto (1976 a,b) 

by looking at misspecified models within the ARIMA(p,d,q) class would yield 

fruitful and interesting results. 

Initial evidence for this is provided by McClave (1973) who conducted an 

empirical study of pure autoregressive approximations to first order moving 

average processes. His motivation for doing this was given by Durbin (1959) 

who used high order AR approximations to derive efficient estimates for moving 

average coefficients. McClave concluded that a significant bias was present 

in estimating the fitted AR coefficients, which would certainly have adverse 

implications for Durbin's procedure and for autoregressive spectral estimation 

techniques such as proposed by Parzen(1969). 

In fact in this study we concentrate on fitting pure autoregressives 

when another model in the ARIMA(p,d,q) class is appropriate. (We could be 

accused at this stage of being guilty of 'assuming' the appropriate structure, 

a practice we have already stated in this chapter is a cause for concern; the 

best we could do would be to take the estimation of the 'correct' model into 

account, which although we do not do explicitly in this study, for reasons 

given in Chapter 3,we can expect our results to be little altered by this 

extra complication.) 

The attraction of examining pure autoregressive fits stems from many 

areas. Firstly, provided the roots of the moving average polynomial 9(B) in 

(1.1) lie outside the unit circle the process Xt can always be expressed as 

an infinite autoregressive process. This fact has led Kendall (1971) in his 

review of Box and Jenkins (1970) to conclude that we might as well be content\ 

with autoregressive series and let the order of the fitted AR model be high 
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enough to ensure independence of the residuals. Box and Jenkins (1973) 

disagreed, arguing their case for a parsimonious model for the time series, 

pointing out that problems might arise with a large number of parameters to 

be estimated. Of course, pure AR processes are very simply fitted and 

estimated by least squares (see Box and Jenkins (1970), p 277) whereas mixed 

models in the ARIMA(p,d,q) class cause problems in estimation as we have 

already seen. The implication of Kendall's comments are that one will do 

progressively better by increasing the order of AR fit. This is certainly 

true if one considers fitting only, but we shall show in Chapter 3 that when 

one takes estimation error of the AR parameters into account one ~ do 

progressively ~ by estimating more coefficients. 

Along the same lines as the notation in section (1.3), we suppose our 

fitted model is within the ARlMA(p,d,q) class, say ARIMA(p~d:q) in the form 
, 

I(B)(l - B)dXt = @(B)rt (1.16) 

where ~t is now not necessarily white noise. The model (1.16) is developed 

fully in terms of obtaining forecasts, gn,h (say) and our basis of comparison 

is between f h from the correct model (1.1) and g h from the misspecified n, n, 

model. Specialisation to the case @(B) = 1 takes place when we examine pure 

autoregressives. 

1.5 Summaries of Chapters 2-6 

Chapter 2 examines in detail the Box-Pierce statistic as advocated by 

Box and Jenkins (1970); in particular exact expressions are derived for the 

mean and variance of the statistic under the null hypothesis of adequate 

specification for the fitted ARMA(p,q) model. Using a central aXv2 approxima­

tion theoretical significance levels are derived for fitting AR(I) models to 

AR(l) processes and these are compared with simulation studies. Some of the 

deficiencies of the Box Pierce statistic are overcome by a modification of 

the statistic and this is also examined in detail. Finally low order moments 

of the sample autocorrelations of moving average processes are derived for 

use in a later chapter. 
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Chapter 3 studies the asymptotic loss from a forecasting point of view 

of fitting a misspecified model in the ARlMA class to any other model in 

the same class when the order of differencing is correctly specified and 

looks in detail at the case of fitting autoregressives both with and without 

estimation error in the fitted coefficients. 

Chapter 4 uses some of the misspecified models in Chapter 3 to examine 

the performance of the Box-Pierce statistic, and its modification, in 

detecting the given misspecification. The asymptotic distribution of the 

residuals from a misspecified AR model are derived together with the 

asymptotic mean and variance of the Box-Pierce statistic under this mis­

specified model. Empirical power studies are conducted on the ability of the 

two diagnostic statistics to detect misspecified autoregressive models when 

the true process follows particular models in the ARMA(p,q) class. 

Chapter 5 considers the problem of underdifferencing a process in the ARIMA 

(p,d,q) class and examines in detail the case- of fitting AR models to the 

lMA(l,l) process Xt - Xt -
1 

= at + 9at _
1

• Expressions for the mean and variance 

for the sample autocorrelations of the latter process are derived and used in 

the context of fitting the AR models. Finally, an approximate expression is 

derived for the asymptotic percentage loss of forecasting for this mis­

specification, the result being verified by simulation studies. 

Chapter 6 summarises the findings of Chapters 2-5 and suggests further 

areas of research in model misspecification. One of these areas, namely mis­

specified error structures in regression analyses is looked at in the case of 

the error process being IMA(l,l) when the Durbin-Watson d statistic {Durbin 

and Watson (l950~, which is optimal for an AR(l) error structure, is used in 

an attempt to detect autocorrelation in these residuals and analysis proceeds 

under the (false) assumption that an AR(l) error structure is appropriate. 

Extensive simulation studies are reported. 
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CHAPTER 2 

SOME SAMPLING PROPERTIES OF SERIAL CORRELATIONS AND THEIR 
CONSEQUENCES FOR TIME SERIES MODEL DIAGNOSTIC CHECKING 

Summary 

This chapter studies the sampling properties of serial correlations 

of white noise and, using these, explains why surprisingly low values of 

the Box-Pierce portmanteau statistic for testing model inadequacy (which 

have been reported in the literature recently), are very often obtained 

even when it is known a given model is inadequate. The main reason is that. 

even for moderately large sample sizes, the true significance levels are 

much lower than those predicted by the asymptotic theory on which the test 

is based. Approximations to the low order moments of the sample auto-

correlations of moving average processes are also derived for finite sample 

sizes in terms of the derived moments of the serial correlations for white 

noise. 

2.1 Introduction 

Suppose that a time series [Xt } follows a stationary ARMA (p,q) model 

¢(B)Xt = Q(B)at (2.1) 

where BXt = \-1' ¢(B) = 1 - ¢1 B - •••• - ¢pBP, 9(B) = 1 + 91 B + ••• + 9qB
q

, 

[at} is a sequence of zero mean white noise which is assumed independent 

N(O,~). Xt in general could be the dth difference of an observed time series. 

In fitting to data ARMA(p,q) models of the type (2.1) an integral part 

of the methodology of Box & Jenkins (1970) involves diagnostic checks based 

on the residuals 

(2.2) 

where the least squares estimates of the coefficients $ ,$ , ... ,$ ,~ ""~q 
1 <3 P 1 

are based on the observed series X ,X ""'Xn' 
1 2 

The auto correlations 
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k = 1,2, ••• (2.3) 

are calculated as a basis for the model checking. Box & Pierce (1970) 

studied their joint distribution. They initially examined the AR(p) 

model 

and showed that approximately for moderately large nand m 

r = (I - Q)r ... ..., (2.4) 

,,, (" " ) where r = r, ••• ,r 
- 1 m 

, r'= (r ,r , •• ,r) ..., 12m with 

n 
~ ata t _k t=k+t rk = n k = 1,2, .•• ,m (2.5) 

J1 
a :a 
t 

and Q = X(X'X)-l X' with 

X= 1 0 

'1 1 (2.6) 

'a '1 

'm-1 'm-a 'm-p 

where (1 + • B + ••• )(1 - ~ B 
1 1 

... - ~ BP) = 1. The approximation depends 
p 

upon m being moderately large, so that 'j is negligible for j > m - p. 

Asymptotically the rk are distributed as independent N(O,l/n) (see 

Anderson (1942), Anderson and Walker (1964) or Bartlett (1946») from 

which it follows, since the matrix (I - Q) is idempotent of rank (m - p) 

that the portmanteau statistic 

(2.7) 

is asymptotically distributed as X2 with (m - p) degrees of freedom. 

To deal with mixed processes of the form (2.1), Box and Pierce note that 

for moderately large n, the residual autocorrelations do not differ 

substantially from those of the autoregressive process 
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where 

(1 - TI B - ••• - TIp+ BP+q) = (1 - ~ B - ••• - ~ BP)(l + g B + ••• + g Bq) 
1 q 1 P 1 q 

so that in the more general case the statistic (2.7) is distributed 

as~ptotically as X2 with (m - p - q) degrees of freedom. 

However, in practice perhaps the most common sample sizes in Box-

Jenkins analyses are of the order 50-100. In such circumstances it would 

be desirable to check whether asymptotic theory for the distribution of the 

r k, and consequently of S, provides an adequate approximation. 

It would thus seem important to have the exact moments of the rk 

together with the covariances between the rk
2

, which could then be used to 

study the exact mean and variance of S, with a view to examining the 

latter's departure from the X2 distribution for finite sample- sizes likely 

to occur in practice. The moments are obtained in Section 2.2 whilst section 

2.3 studies the mean and variance of S and the consequences of the 

normality assumption for the distribution of the r k being dropped. 

One of the problems with S will be shown to be that its mean is some-

what lower than that predicted by the X2 distribution and, as a result, 

rather low values of S will be observed in practice. A way round this 

problem has been suggested by several authors (Ljung (1976), Prothero and 

Wallis (1976». They suggest defining a modified statistic 

m 
S' = n(n + 2)Jl (n - k)-l rk

2 (2.8) 

We shall see that while the mean of this statistic is closer to that 

predicted by the X2 approximation, its variance can be greatly inflated. 

In Chapters 3 and 4 a study is made of the possibility of fitting an 

ARMA (pi ,q') model to a series which really follows the form (2.1). A 

special case of this is when one fits an AR(p') model to an MA(q) series; 

it is shown that the residuals from that fit follow an MA(p'+ q) process. 

Consequently if one still uses a statistic of the form (2.7) or (2.8) to 
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detect the model inadequacy, the autocorrelations (2.5) are the sample 

autocorrelations for an MA(p+ q) process. Hence to be able to study the 

mean and variance of 5 or 5' in these circumstances it is essential to 

have the (finite) sample moments of the sample autocorrelations for a 

moving average process. Also, since these autocorrelations are themselves 

correlated, the mean and variance of 5 or 5' would involve these correlations • . 
'" The moments and covarances of these sample autocorrelations are obtained 
/I 

in Section 2.4. 

2.2 Sample Moments of the autocorrelations of White Noise 

We need to evaluate, for the moments of (2.5), 

~ n )' 
. t atat _k J 

E[rk
J ] = E t=k~ 2 

.Jlat 

j = 1,2, ••••• 

and for the covariances between the r j and r i k s 

j = 1,2, ••• 
i = 1,2, ••• 

(2.9) 

(2.10) 

We need to show that the denominators of the right hand sides of both 

(2.9) and (2.10) are independent of their corresponding left hand sides; 

in those cases the expectations of the ratios will be the ,ratio of the 

expectations. 

For j = 1 in (2.9) Moran (1948) and Anderson (1911), p.304, have 
n 

provided proofs of the independen~e of r k and ~l at
8

• However, the 

general cases for (2.9) and (2.10) follow from the following general 

theorem:* 

Let {~= C~Co ' k = l, ••• ,n} be a set of ratios of quadratic forms, 

where C - a'Pa C - _a'PAkP~' _a'= (a a a) the matrix P is 0-- -' k- l'a'···'n' 
symmetric and idempotent, and the matrices ~ are symmetric. 

Then for all positive integers t, q., j = I, ••• ,! 
J 

* I am extremely grateful to C M Triggs for providing the proof; see also 

Davies, Triggs & Newbold (1911). 
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[ 
t qi1 E .IT (c ) J 

J=l k. 
] (2.11) 

t 
where Q = .E qjand 1 ~ k. ~ n , j = 1, ••• ,t 

J=l J 
(2.12) 

Thus, with P the identity matrix, ~ a banded matrix with unity on the 

kth super and subdiagonals, Rk = rk • For (2.9) take t = 1 and ~ = j and 

for (2.10) take t = 2,~ = j, q:a = i. Hence, 

n j 
. E[ (t=~+J. atat _k) ] 

E [r J ] = -..=.::;.;.:....~;....;;.;...-
k n. 

E [ (~ at:a) J ] 

n 

j = 1,2, •••• 

j = 1,2, ••• 
i = 1,2, ••• 

Now ~ at
2 has a Xo2 distribution so that, assuming without loss of 

generality that E[at
2] = 1, 

n. . 
E[(t~lat2)J] :r(n/2 + j)2J/r(n/2) 

= n(n + 2)(n + 4) •••• (n + 2j - 2) 

as given by Moran (1948). 

Odd moments of rk 

(2.13) 

(2.14) 

We now show that, since the at's are independent normal, for j odd, 

n-k . 
E[CJl atat+k)J] = O. 

The multinomial expansion of the expression within the expectation brackets 

has its general term as 

n-k 

j ja jn k 
j:(a a +k) 1 (a a +k) • •• (a ka) -

1 1 :a a n- n . ,. , ., 
J .J ••••• J k' l:a n-

subject to ~ljt = j. This general term may be rewritten in the form 

J'!J': ., 
1 a •• 0 ° In_ko 
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where we have blocked the middle (n - 2k) terms from the left, each 

block being of length k with the exception of the last which may have 

less than k terms depending upon whether or not (n - 2k)/k is an integer. 

Since j is odd an odd number of the jt will be odd. The following 

argument shows that there will always be an odd power of at in the above 

general term so that the latter has zero expectation. 

If any of the j1 ,j:a , ••• ,jk or jn-:ak+l , ••• ,jn-k are odd the general 

term has zero expectation. Hence, suppose all these are even; examining 

successive powers in the second block of at's, viz jl + jk+1' j:a + jk+2' 

•• ·,jk + j2k we see that if any of the jk+1 , •• ·,j2k are odd an odd power 

of at exists in that block so that the general term again would have zero 

expectation. Suppose the jk+1 , ••• ,j2k are all even; the next block will 

have an odd power of at if any of j:ak+l , ••• ,j3k are odd, otherwise we must 

assume they are all even. Continuing this argument through each successive 

block we arrive at the penultimate block which contains x terms, say, 

where 1 ~ x ~ k. But this block must contain x powers from the set of powers 

{j k ,j k , ••• ,j k} in the last block, which are assumed all even. n-2 +1 n-2 +2 n-

Hence if all previous blocks contain no odd powers this block must do so, 

since some of the jt must be odd. 

Consequently the general term has zero-expectation for j odd and from 

(2.13) it follows that 

for j odd. 

Even moments of r
k 

We have 
n-k n-k 

E[ CJ1 at at +k)2] = E[J1 at 2at+k 2J 

= (n - k) 

Also, for k ~ n/2 
n-k n-k n-:ak 

E[(~ at at +k)4] = E[J1 at4at+k4 + 6~1 at2at+k4at+2~ 

(2.15) 

The total number of terms in the last expression within the expectation 

brackets on the right hand side of (2.15), allowing for the moment 
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I ( 2 I I t = t is n - k) • Terms with suffices (t + k) and t , (t + k) and t, 

and t and t' coincide (n - 2k), (n - 2k) and (n - k) times respectively. 
, 

Hence, the number of terms for which tit is (n - k)2 - 2(n - 2k) - (n - k). 

Using the fact that the at are normal so that E[at
2] = 1, E[at

4
] = 3, the 

right hand side of (2.15) then becomes 9(n - k) + 18(n - 2k) + 3(n - k)2 

- 2(n - 2k) - (n - k)} which reduces to 3«n - k)2 + 6n - 10k). 

For k > n/2 the second term within the expectation brackets on the 

right hand side of (2.15) is not present and the number of times for which 

tit' in the third term is (n - k)2 - (n - k). Hence the right hand side 

of (2.15) becomes 9(n - k) + 3«n - k)2 - (n - k)) which reduces to 

3«n - k)2 + 2(n - k)). 

Thus from (2.13) and (2.15) we get 

E[rk2
] = (n - k)/n(n + 2) 

{

3( (n - k)2 + 6n - 10k)/n(n+2) (n+4) (n+6) 
Er r 4J = 

- k 3«n - k)2 + 2(n - k))/n(n+2) (n+4) (n+6) 

k s; n/2 

k > n/2 

(2.16) 

(2.17) 

For a normally distributed variable, x, ~ (x) = 3(var[x])2, so that if 
4 

we assume the r k are normal, using (2.16) we get 

~4 (rk) = 3(n - k)2/(n(n + 2))2 

and (2.17) is clearly always less than (2.18) for all n,k, the 

discrepancy getting worse when k is large relative to n. 

We also see that for n large, k small 

var[rkJ = (n - k)/n(n + 2) 

~ l/n 

(2.18) 

(2.19) 

Equation (2.19) shows that for k large relative to n, var[rkJ can be much 

less than l/n. (In this study we shall only need the expression in (2.17) 

for which k s; n/~ 

Higher order even moments are possible but the algebra involved becomes 

rather cumbersome, and for our purposes, these are not needed. 

Oovariances between the rk
j and rsi 

Using similar reasoning to that on pages 21 and 22 , and by examining 

the general terms from the multinomial expansion of both 
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n-k . n-s . 
CJl atat+k)J and CJl atat+s ) 1 

and looking at products of terms, we see that for j odd or i odd (or both) 

n-k . n-s . 
E[ (Jl atat+k)J (Jl atat +s ) 1] = 0 k -:J 5 

Hence, from (2.14), for j odd, i odd or both odd 

It therefore follows that, in this case, 

co v[ r k j ,r s i ] = 0 

For j = 2, i = 2, we need to evaluate 

n-k n-s 
E[ (~ atat +k)2 (Jl at at+s )2] 

(k :I s) 

(k -:J s) 

The product of terms within the expectation bracket is 

n-k n-s 
(Jlat2at+k2 + 2t~~ atat+kat,at+k)(tJ; at2at+s2 + 2t~t,atat+sat' at+s ) 

Consider the contribution in terms of expectations, from 

n-k n-s 
(~ at 

2 
at +k 

2
) CJl at 

2 
at +s 

2
) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

The total number of terms in this product is (n - k) (n - s) and if we 

assume k > s, the number of terms that will contribute in the form 

at 4 at 2 at 2 for \ 'I t2 'I ta will be 2( (n - k - s) + (n - k)) for 
1 2 a 

k + s ~ n. Since the only possible form of the other terms that will 

contribute in this expression is at 2 at 2 at 2 at 2 for tl -:J t2 -:J ta -:J t
4

, 

1 2 3 4 

they will number [(n - k)(n - s) - 2({n - k - s) + (n - k)}. 

Hence the expectation of (2.23) is 

6( (n - k - s) + (n - k)) + [(n - k) (n - s) - 2( (n - k - s) + (n - k)} 

= (n - k) (n - s) + 4(2(n - 1<) - s) 

Similar reasoning gives the contribution from the terms in 

(2t~t' atat+kat , at+k) (2t~t' atat+sat , at+s ) 

as 4(n - k - s). 

All other cross product expectations are zero. 

Thus, (2.22) becomes 

(n - k)(n - s) + 12(n - k) - 8s 

and from (2.14) 
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E[rk2rS2] = ((n - kpn - s~ +'l2~n - k~ - 8s) 
n n + 2) n + 4) n + 6 

Finally, we have 

[ 2 2] (n-k) (n-s) + l2(n-k) - 8s fn-k) (n-s) 
cov r k ,rs = n(n+2) (n+4) (n+6) - n(n+2)}2 

(k > s) 

2 A normality assumption for the r k would give that the rk 

(2.24) 

are 

asymptotically independent and hence uncorrelated. This is seen to be 

true in (2.24) by letting n - 00. However, even though each individual 

covariance term in (2.24) is 0{1/n2
) we shall see in section 2.3 that a 

substantial contribution is possible from many terms of this form. 

Higher order covariances are possible, but the algebra becomes 

intractible, and for our purposes these are not needed. (Indeed, to 

evaluate these higher order covariances it is best to write the numerators 

of r k
j and rsi as powers of quadratic forms in normal variables and to 

employ methods of Kumar (1975).) 

An important property of these covariances, which is utilized in 

section 2.3, is that all these covariances are positive if k ~ n/2; the 

following argument establishes this result. 

From the right hand side of (2.24) all covar.ences are positive provided 

n(n+2)(12{n-k) - 8s} > (n-s) (n-k) (n+4) (n+6) - n(n+2)} 

= (n-s){n-k){8n+24) 

After some algebra this condition reduces to 

(n-k)(n2 +2ns+6s) - 2n(n+2)s > 0 

Writing (2.25) as a linear function of s, As + B (say) where 

A = 2 (1 - k) n - 6k < 0, 

(2.25) 

we see (2.25) is a decreasing function of s; it must therefore take its 

lowest value at s = k - 1. Substituting in (2.25), we get the condition 

needed as being 

2{k - l){n - kn - 3k) + n2{n - k) > 0 (2.26) 

Note that the left hand side of (2.26) is a quadratic in k, F{k), say 

where 
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F(k) = -2(n + 3)k2 + (_n2 + 4n + 6)k + n3 
- 2n and 

dF { 2 dk = -4k (n + 3) + -n + 4n + 6). 

In the range 1 ~ k ~ n,~~ is always negative and so F is a decreasing 

function of k for fixed n. F(n/2) is positive while F(n/2 + 1) is negative. 

It therefore follows that (2.26) is satisfied for k ~ n/2 and so all 

covariances given by (2.24) will be positive for k ~ n/2. 

2.3 Levels of significance of the portmanteau test statistics 

Recent stUdies by Chatfield and Prothero (1973a), Nelson (1974) and 

Prothero and Wallis (1976) have shown that, even when several different 

models are fitted to the same set of data, very low values of the statistic 

S given by (2.7) often result. Moreover, in the analysis of the 106 series 

reported in Newbold and Granger (1974), it was found that only rarely did 

they encounter a value of S sufficiently high to cause concern. 

We thus examine in detail the behaviour of S for the sample sizes 

likely to occur in practice so that the adequacy of the asymptotic theory, 

on which its derivation is based, can be checked. It is shown that for 

moderate sample sizes, the mean and variance of S differ substantially 

from the values predicted by asymptotic theory, the mean being far too low. 

The mean and variance of S 

Using the matrix representation of r k given by (2.4) we see that Scan 

be written in the form 

(2.27) 

where A = (I Q) and we have used the fact that (I - Q) is idempotent 

syrrunetric. 

Using (2.16) we see that, since the r k are uncorrelated from (2.21), 

E[SJ = Tr AV (2.28) 

where V is a diagonal matrix with jth diagonal element (n - j)/(n + 2). 

Using a theorem of Theobald (1975), 
m 

Tr AV ~ i~l A(i) (A) A(i) (V) 

where A(i){Y) denote the ordered eigenvalues of Y. Consequently, if, for 

example, we are fitting an AR(p) process 
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m-p 
E[S] ~ (n + 2)-1.E (n _ .) - (m _ ){--D-- m - p + I} 

1=1 1 - P n + 2 - 2(n + 2) (2.29) 

Thus, unless m is small relative to n, it follows from (2.29) that the 

mean of S will be well below the asymptotic value (m - p). For example, 

for n = 50, m = 20 and p = 1, (2.29) gives E[S] ~ 0.77(m - p). 

To obtain the variance of S, note that (2.27) may be written out in 

full in the form 

m m-l m 
S = nIJl bkrk 

2 
- 2nJl k=~+l qskr srk (2.30) 

where qij is the (i,j)th element of Q and bk = 1 - qkk is the kth diagonal 

element of (I - Q). 

( , ) -1 ' We note, in passing, that (I - Q) = I - X X X X is of the form of 

a variance-covariance matrix for any X and so has all its diagonal elements 

positive. That is, bk ~ 0 for all k. 

The equivalent of (2.28) is 

m 
E[S] = nJJl bk E[rk

2
] (2.31) 

using (2.20) with i = j = 1. 

By squaring (2.30), taking expectations and using arguments similar to 

those on page 21 to obtain 

and 

we find 

E[rirjrkr.t] = 0 

= 0 

= 0 

(i I j I kit) , 

(i f j I k) , 

(i I j) , 

m m-l m 
E[S2] = n2,J: bk

2E[rk
4

] + n2 E ,j: ..... (2b bk + 4q k2)E[r 2rk2] 
1\.-1 5=1 1\.- S , .L S S s 

A little algebra then gives, for the variance of S, using (2.31) 

m m-l m m-l m 

(2.32) 

V[S] = n2 ,J: bk2var[rk2}t2n2 E,j: ..... b bkcov[r 2,rk
2]+4n2 E ,~ + q k2E[r 2rk2] 

1\.-1 5=1 ~s-'.L S S 5==l.&v-s 1 S s 

(2.33) 

Expression (2.33) was obtained without any assumption concerning the 

distribution of the r k and so it would be illuminating to compare it with 

'" the expression for V[S] when normality is assumed (VN[S], say) in the r k 

at the stage of equation (2.27). 
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Assuming £ is multivariate normal, the quadratic form (2.27) has 

variance given by 2Tr(AV)2 (see for example Koch, (1967». 

Writing A = {ask} and the diagonal elements of V as Vkk , we get 

AV = {askVkk } so that 
A 

VN[S] = 2 Tr(AV)2 
m m 

= 2Jl ~ ask Vkkaks V 5S 
m m-l m 

= 2IJl akk2Vkk2 + 4~lJJ5+1 askVkkaksVss 
m m-l m 

= 2Jl akk2Vkk2 + 4~JS+1 ask2vkkVss 
m m-l m 

= 2n2JJlbk2(E[rk2J)2 + 4n2 J1I£s-+1. qSk2E[rk2JE[rs2] 

n - k [2J since Vkk = (n + 2) = nE r k and akk = bk with ask = -qsk· 

(2.34) 

Assuming normality in (2.33) (viz ~4 (rk) = 3(var[rk])2 = 3(E[rk2])2) 

gives 
m m-l m m-l m 

VN[ S}:2n2 J1 bk 
2 

(E[rk 
2 

])2+2n2 ~l ~s-+1. bsbkcov[r s 
2 
,rk 

2 ]+4n2 Jl t&S-+1. qsk 2E[rs 2rk 2J 

(2.35) 

Note the second term in (2.34) is always smaller than the third term 

in (2.35) provided m ~ n/2 (see p26 ). Thus the normality assumption taken 

initially, at the very least ignores all the covariance terms given in the 

exact expression (2.33). FUrthermore even though each individual cov[rs2,rk2] 

is O(n-2 ) (see p25 ), if m ~ n/2 all the covariances are positive; the 

covariance component in (2.33) and (2.35) involves (m - l)(m - 2) such 

terms multiplied by 2n2 and so their contribution could be substantial since 

all bk ~ O. The exact variance of S from {2.33} does not use any normality 

assumption and it takes into account these covariance terms. 

Example Fitting an AR(l} process 

For fi tting an AR( I} process Xt - PX
t

_
1 

= at' we find bk = 1 - pak-2 (1 - p:a) 
and qsk = ps+k-2(1 - pa) so that bk > 0 for all p. 

The exact mean, using (2.31) becomes 
m 

E[S] = nIJ
1 

(n - k)(1 - pak-2(1 - pa»)(n + 2)-1 

_ m ( _ (m+ 1) _ n (1- j3m) + 1-tm 
(l +In (1-f )) 

- (n+2) n 2 ----rn+2) n+2) 0-;<2 

after some algebra. A similar expression is possible for the exact variance 
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v[s] obtained from (2.33). 

Further insight is gained by specialising to the case ¢ = 0 so that 

an AR(l) process is fitted to white noise. 

Then (2.31) gives 

E[S] = (m - l)(n ~ 2 - 2(n++ 22) 1 (2.36) 

and from (2.33) the exact variance is 

m m-l m 
V[S] = n·\~2 var[rk

2
] + 2n\~2JS+1 cov[rs 

2 
,rk2] (2.37) 

The normal approximation from (2.34) is 

(2.38) 

which is the same as (2.37) (after assuming normality) without any of the 

covariance terms. 

We now examine the performance of S in the context of the above 

example; that is, when the hypothesis that a model is correctly specified 

is known to be true, and that it is AR(l) and white noise respectively. 

Numerical results and significance levels of S 

For finite sample sizes S is not a quadratic form in normal variables 

and so it does not behave as X2 with (m - p) degrees of freedom when we 

fit AR(p) processes. However, since its exact mean and variance are available 

from (2.31) and (2.33), these moments were used to approximate the 

distribution of S by a central aX2 density. We examine in detail the case 
'V 

of fitting various AR(l) processes. 

In the usual manner, a = V[Sj/2 E[S] and 'V = 2(E[S])2/V[S], from which 

was calculated, using a standard reL numerical integration routine, the 

actual significance levels of a test based on S corresponding to assumed 

levels of 0.05, 0.1 and 0.2, which would follow if S were distributed as 

2 

~-l • 

In the AR(l) process values of ¢ of 0.1, 0.3, ••• , 0.9 were used with 

m = 20 and sample sizes n = 50, 100, 200, 500. Theoretical results were 

verified with simulation experiments from 1000 replications and the results 

are collected in Table 2.1. 
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1 

2 

Table 2.1 

THEORETICAL AND EMPIRICAL MEAN, VARIANCE AND SIGNIFICANCE LEVELS OF THE 
BOX-PIERCE PORTMANTEAU STATISTIC FOR FITTING AR(l) MODELS; m = 20 

LEVEL 

n ¢ MEAN VARIANCE 0.05 0.1 0.2 

0.1 14.25 (13.97) 33.59 (27.01) 0.013 (0.015) 0.028 (0.024) 0.064 (0.050) 

[0.3 14.25 (14.09) 33.64 (30.43) 0.013 (0.019) 0.028 (0.028) 0.064 (0.058) 

50 10•5 14.26 (14.16) 33.72 (31. 97) 0.013 (0.015) 0.028 (0.022) . 0.065 (0.061) 
i 

10.7 14.27 (14.67) 33.84 (37.67) 0.013 (0.026) 0.029 (0.039) 0.065 (0.081) 
I 

:0.9 14.34 (15.62) 34.16 (38.72) 0.014 (0.032) 0.030 (0.053) 0.067 (0.098) 
I 

;0.1 16.58 (16.78) 38.21 (38.29) 0.029 (0.034) 0.059 (0.060) 0.122 (0.114) 
I 

1
0•3 16.58 (16.55) 38.24 (37.40) 0.029 (0.031) 0.059 (0.064) 0.122 (0.104) 

00 10.5 16.58 (16.67) 38.29 (36.24) 0.029 (0.028) 0.059 (0.057) 0.122 (0.121) 

1
0•7 16.59 (16.59) 38.35 (33.52) 0.029 (0.020) 0.059 (0.046) 0.123 (0.108) 

1
0•9 16.63 (17.87) 38.51 (40.58) 0.030 (0.051) 0.060 (0.078) 0.124 (0.157) 

10.1 17.78 
I 

(17.91) 38.72 (36.21) 0.039 (0.040) 0.078 (0.079) 0.158 (0.161) 

0.3 17.78 (17.70) 38.73 (37.39) 0.039 (0.035) 0.078 (0.060) 0.158 (0.140) 

00 0.5 17.78 (17.67) 38.76 (34.82) 0.039 (0.037) 0.078 (0.070) 0.158 (0.142) 

iO.7 17.78 (17.67) 38.79 (40.59) 0.039 (0.044) . 0.078 (0.083) 0.158 (0.158) 
i 

(18.89) 38.87 (40.31 ) 0.039 (0.056) 0.079 (0.101) 0.159 (0.203) 
10•9 17.81 

\0.1 18.51 (18.66) 38.43 (38.01) 0.045 (0.050) 0.091 (0.091) 0.182 (0.188) 

18.51 (18.19) 38.44 (36.46) 0.045 (0.045) 0.091 (0.081) 0.182 (0.163) 
1
0•3 

0010•5 18.51 (18.55) 38.45 (38.45) 0.045 (0.048) 0.091 (0.090) 0.182 (0.179) 
I 

1
0•7 18.51 (18.35) 38.46 (37.80) 0.045 (0.045) 0.091 (0.089) 0.182 (0.179) 

iO•9 18.53 (19.51) 38.50 (41. 30) 0.046 (0.063) 0.091 (0.110) 0.183 (0.217) 

Note: bracketed figures are simulation results. 

It can be seen from the table that in general the agreement is close 

between theoretical and empirical results. NOte that the discrepancies that 

do occur at high values of p will be caused by the fact that the W. values 
J 

in the matrix (2.6), which were assumed to be negligible for j > m - p = 19, 

will only die out very slowly. For example. since W. = pj we get (0.9)ao = 0.12. 
J 

The discrepancies at low values of p are caused by the fact that ~ has a 

large standard error here since 

var[~] ~ (1 ~ ,f) (see Box & Jenkins (1970), p244) 

and so the approximation that Box & Pierce (1970) make viz ~ = p, (see 

p 1514, equation 2.16) that leads to equation (2.4) does not hold so well. 

The first problem highlights the difficulty with m needing to be large and 
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n 

50 

100 

200 

500 

yet not too close to n. 

The main conclusions emerging from this table are that the means of 

the test statistic for moderate sized samples are well below the 

asymptotic value of 19 and that the true significance levels, are, in 

these cases, considerably less than those predicted by asymptotic theory. 

Table 2.2 contains the same quantities as Table 2.1 for the case of 

fitting AR(l) to white noise, the means and variances being obtained from 

(2.36) and (2.37) respectively. In addition, values for the estimated 
A 

variance of S, VN[SJ from (2.38) are shown. This in particular highlights 

the problem of not taking into account the covariance terms in (2.37). 

Table 2.2 

MEAN, VARIANCE AND SIGNIFICANCE LEVELS OF THE BOX-PIERCE 
PORTMANTEAU STATISTIC FOR FINITE SAMPLES 

FOR FITTING AR(l) TO WHITE NOISE 

VALUES LEVEL 
OF v~[sJ --

MEAN VARIANCE 0.05 0.10 

14.25 (13.94) 20.66 33.59 (33.09) 0.013 (0.010) 0.028 (0.021) 

16.58 (16.36) 28.27 38.21 (38.88) 0.029 (0.026) 0.059 (0.050) 

17.78 (17.97) 32.83 38.72 (40.22) 0.039 (0.041) 0.078 (0.076) 

17.83 (18.44) 35.85 38.43 (37.64) 0.045 (0.049) 0.091 (0.098) 

Note: simulation results are bracketed. 

0.2 

0.064 (0.053) 

0.122 (0.114) 

0.158 (0.159) 

0.182 (0.186) 

In conclusion then, it seems hardly surprising that "low" values of the 

Box-Pierce statistic will be found in practice and that several different 

models will appear to adequately fit some given data based on this statistic. 

We have noted two main difficulties with the .asymptotic theory on which Box 

and Pierce based their derivation ofaX3 distribution for S. First, the 

assumption that the sample autocorrelations, r k, of a white noise series 

. -1 have varlance n is inadequate unless k is small. Second, the assumption 

that these sample autocorrelations are normally distributed does not provide 

adequate approximations unless the sample size is large. We now consider an 

alternative portmanteau statistic which was designed to get around the first 

of these difficulties. 
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I 
The mean and variance of S 

I 
The motivation behind using the modified statistic S given by (2.8) 

stems from the fact that in the derivation of the distribution of S of 

(2.7) much use was made of the approximation var[rk] = E[rk2
] ~ lin, that 

taking into account the exact expression E[rk2
] = (n - k)/n(n + 2), in some 

way would provide a more sensitive statistic, more closely approximating 

asymptotic theory at finite sample sizes. (Clearly both statistics are 

asymptotically equivalent.) 

We show to some extent this is achieved, but results are by no means 
I 

satisfactory using S in sample sizes likely to occur in practice. The 
I 

mean of S is approximately as predicted by theory but the variance is 

inflated. 

S' can be written in the quadratic form 

S' = n(E.'AV-1A£) 

where A and V are defined as previously. Thus 

E[S' ] = TrAV-1 AV 

and so 

E[S' ] = Tr{AV-1 AV) = E E n - k a 2 mmH 
5=1 1<:=1 n - s sk 

= 
m m-l m 
E a 2 + E E (n-

1<:=1 kk 5=1 1<:= S+l n 
s + n -
k n-

m m-1 m 
s} + ~n = I<£. bk 

2 + E E {(n-
5=lI<;:::S+l n- k n 

(2.39) 

(2.40) 

k) 2 (2.41) s ask 

- k}) 2 
- s qsk 

The expression in brackets on the right hand side of (2.41) is of the form 

(x + l/x) which is clearly bounded below by 2 for x > O. It is also an 

increasing function of x for x > 1, attaining its maximum at the maximum 

of x. 
m m-l m 

Hence E[S'J ~ JJ1 akk
2 

+ 2J1JJS+1 ask
2 

= TrA 

= (m - p) 

Similarly 
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m m-l m 
[ '] a lrn - 1 n - m} ~ a E S < I];; akk + -2t + --1 2 E I~ a k 

1\.-1 n - m n - 5=1 J\.-s+l s 

< l[n - 1 + n - m} (m _ ) 
2 n - m n - 1 P (2.42) 

Thus the mean of S' is always at least (m - p), but the inflation is not 

severe. For example, for n = 50, m = 20 and fitting AR(p) processes 

(20 - p) s: E[S '] < 1.123(20 - p), 

while for n = 100 this inflation is less than 2.3%. 

To obtain the exact variance of S' we have to resort to writing out 

(2.39) in full. 

Let [Hsk} = H = AV-1 A • 
m 

By direct multiplication we find Hsk = (n + 2).r: a .a.k/(n - j). 
J=l sJ J 

I 
n.!:'H.!: Thus S = 

m m 
= n E JJ H kr r k 5=1 1 S S 

m m-l m 
= n~ Hkkrk a + n E JJ +l (H k + Hk ) r r k 5=1 S S ss 

m m-l m 
= nJl Hkkrk 

2 
+ 2n I: E H r r 

5=1 I<;:: S+l S k s k (2.43) 

since H is symmetric. 

Equation (2.43) is of a very similar form to the right hand side of 

(2.30). It therefore follows that V[S'] will be given by the corresponding 

form to (2.33). 

We find 

(2.44) 

Similar reasoning to that on pp 27-28 following equation (2.33) again 

will reveal that a normality assumption for.!: in (2.39) would ignore those 

covariance terms in (2.44). 

Example Fitting AR(l) to white noise 

Except in this very simple case, analytic expressions for E[S'] and 

V[S'] from (2.41) and (2.44) are algebraically intractable and the only 

feasible way of evaluation is on a computer. 

For white noise, all = 0, akk = 1, k ~ 2, so that 
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I 
j 
J 

m f(n + 2)/{n - k) 

'\k = (n + 2)';' ak/I(n - j) = t. o· 

k ~ 2 . 

k = 1. 

Further, since akj = 0, k I j, then the off diagonal elements of H are zero. 

Hence, from (2.41) we get 

and from (2.44) 

m 
E[S'] = .Jl akk a 

= (m - 1) 

(2.45) 

, m var[rk 
3

] m-l m covEr 3 ,r
k 
3] 

V[s'] = n
3 

(n + 2)3 J3 (n _ k)3 + 2n
3 

{n + 2)2 J2iJS+t (n-s) (n-k) (2.46) 

We thus note that, in this case, the mean of the S' statistic is the same 

as that predicted by asymptotic theory (cf the equivalent expression for 5 

in (2.36) which was below that predicted by theory), and the variance of 

the 5' statistic represents a substantial increase over the corresponding 

expression for 5 given in (2.37) unless n is large relative to m. 
, 

We shall see that the variance of 5 can be a good deal higher than 

that of S, and indeed than that predicted by asymptotic theory. 

Numerical results and significance levels of S I 

Theoretical results and simulation experiments were obtained in 

. exactly the same manner as those for S for fitting an AR(l) process for 

values of p of 0.1,0.3, .... , 0.9 with m = 20 and n = 50,100,200,500. 

Again the agreement ,between theoretical and simulation results is good 

and the reason for any discrepancies at high and low val~es of p has 

already been explained on page 30. Results are collected in Table 2.3. 

the main conclusions emerging from this table are that the problem 

encountered with the mean of S (being well below its asymptotic value) 

has been solved by observing the mean of S' is (correct to 1 d.p.) equal 

to its asymptotic mean for fitting AR(l) processes. However, it is clear 

that the variance of 5' is .well above that value predicted by asymptotic 

theory even fOT moderate and large sample 6izes.Ihetrue significance 

levels that result are higher than the supposed levels and it would seem 

that the inflation in variance is the primary cause. 



n = 50 

n = 100 

n = 200 

n = 500 

I 
0.1 

0.3 

0.5 

0.7 

0.9 

0.1 

0.3 

0.5 

0.7 

0.9 

0.1 

0.3 

0.5 

0.7 

0.9 

0.1 

0.3 

0.5 

0.7 

0.9 

Table 2.3 

THEORETICAL AND·EMPIRICAL MEAN, VARIANCE AND SIGNIFICANCE LEVELS 
OF THE MODIFIED BOX-PIERCE PORTMANTEAU STATISTIC S'FOR 

FITTING AR(l) MODELS; m = 20 

MEAN VARIANcE 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 
E[ 5'1 s' . v(s) V(5) 5' 

-, 
5' 5' 5' -, 5 5 

19.0 (18.57) 58.81 (47.06) 0.086 (0.061) 0.141 (0.108) 0.235 (0.187) 

19.0 (18.74) 58.85 (52.88) 0.086 (0.070) 0.141 (0.112) 0.235 (0.199) 

19.0 (1S.S6) 5S.92 (55.S2) 0.OS6 (0.07S) 0.141 (0.121) 0.235 (0.205) 

19.0 (19.43) 59.00 (63.94) 0.OS6 (0.092) 0.141 (0.146) 0.235 (0.224) 

19.0 (20.55) 59.10 (65.78) 0.OS6 (0.114) 0.142 (0.156) 0.235 (0.273) 

19.0 (19.21) 50.0S (49.96) 0.072 (0.070) 0.126 (0.117) 0.223 (0.225) 

19.0 (18.98) 50.11 (48.87) 0.072 (0.073) 0.126 (0.109) 0.223 (0.196.) 

19.0 (19.09) 50.14 (47.17) 0.072 (0.064) 0.126 (0.123) 0.223 (0.212) 

19.0 (lS.99) 50.1S (44.07) 0.072 (0.05S) 0.126 (0.111) 0.223 (0.206) 

19.0 (20.36) 50.20 (52.64) 0.072 (0.093) 0.126 (0.160) 0.223 (0.262) 

19.0 (19.14) 44.20 . (41.1S) 0.062 (0.059) 0.114 (0.111) 0.213 (0.215) 

19.0 (1S.92) 44.21 (42.S3) 0.062 (0.047) 0.114 (0.094) 0.213 (0.184) 

19.0 (18.S8) 44.23 (39.80) 0.062 (0.053) 0.114 (0.096) 0.213 (0.201) 

19.0 (lS.S7) 44.25 (46.10) 0.062 (0.06S) 0.114 (0.120) 0.213 (0.210) 

19.0 (20.14) 44.27 (47.97) 0.062 (0.082) 0.114 (0.143) 0.213 (0.261) 

19.0 (19.16) 40.50 (40.06) 0.055 (0.059) 0.106 (0.106) 0.206 (0.215) 

19.0 (lS.67) 40.51 (3S.34) 0.055 (0.049) 0.106 (0.097) 0.206 (0.lS9) 

19.0 (19.04) 40.51 (40.54) 0.055 (0.056) 0.106 (0.104) 0.206 (0.19S) 

19.0 (1S.S3) 40.52 (39.S6) 0.055 (0.059) 0.106 (0.109) 0.206 (0.206) 

19.0 (20.01) 40.53 (43.1S) 0.055 (0.076) 0.106 (0.130) 0.206 (0.241) 

Note: bracketed figures are simulation results. 
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The use of 5 and/or 5'in model diagnostic checking 

It has been demonstrated that the use of the statistic 5 in model 

diagnostic checking 'could be unreliable owing to a deflation in the true 

significance levels employed. We would thus expect non significant values 

of 5 to be experienced even when an inadequate model has been fitted to 

data. 

lbe use of 5 I mi'ght be expected to improve things since the true 

significance level is ~ow larger than the supposed level; but as we have 

.' a seen this is not because the distributlon of 5 follows its asymptotic X 

distribution any more closely than 5 does, but apparently because its true 

variance is now inflated over its asymptotic value. However, the significance 
, 

levels for 5 , for the cases given in Table 2.3 at least, do seem closer 

to the asymptotic values than those for S. 

In any case, the true test of these statistics comes in their ability 

to reject a mis-specified model. Even though they are designed without a 

specific alternative to the null hypothesis in mind (as has been mentioned 

in, for example, the discussion in Prothero & Wallis (1976}) one would hope, 

that they would be able to detect moderately severe types of misspecification; 

we shall see in Chapter 4 that their ability to reject such incorrect 

models is typically very weak. 
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2.4 Sample moments of the autocorrelations of Moving Average Processes 

Large sample moments of the sample auto correlations of processes of 

the form (2.1) have been given widely in the literature (see, for example, 

Bartlett (1946), Anderson (1971), p 489, theorem 8.4.6). Anderson and 

Walker (1964) first gave their asymptotic distribution as being normal. 

Define 

n 

;'~ .Jk+l \ Xt _ k ,.. 
r k = n = r_k (2.47) 

Jl xt
2 

Then Anderson and Walker (1964) showed that, if Pk are the corresponding 

population autocorrelations, 

In (£ - p) = In(r - P ,"r - P , 
.,.,... 1 1 2 2 

... , ) 

is asymptotically N(~,W) where W = [wgh } and 

wgh = J-Q)(Pr+-gPr+-h + Pr-gPr+-h - ~PrPr+-g - 2PgPrPr+h + 2p9PhP/) 

(2.48) 

A special case of (2.48) is when the parent process is MA(q) and k > q 

for sufficiently large n, 

. , k>q (2.49) 

This formula is used in identifying an MA(q) process and its validity is 

thus very important (see Box & Jenkins (1970) pp 35 and 36 for details). 

The extent to which (2.48), and, in particular (2.49), can be assumed 

mostly depends on the "largeness" of n. 

As we have already seen in connection with the Box-Pierce statistic, 

n = 50 cannot be considered "large", and so it was decided to attempt to 

find "finite" sample moments of rk in the case of an MA(q) process. (White 

(1961) has given the mean and variance of r for an AR(1) process, up to 
1 

terms of order n-3
, thus extending Bartlett's (1946) result in this 

special case.) 

We consider first an MA(1) process to illustrate the technique. 
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Sample moments of the autocorrelations for an MA(1) process 

If Xt = at + 9at _
1

, we may write 

n 
Jk+1 (at + 9at _

1
) (at _ k + 9at _ k-l ) 

= n 
Jl (at + 9at _1 ) 2 

Hence, approximately, 

(1 + 9)2~atat_k + 9(~atat_k_l + ~atat-(k_l) 

(1 + 92) tat 2 + 29 Eat at -1 

(2.50) 

Dividing throughout by (1 + 92). t at
2 in numerator and denominator we get, 

approximately, 

29 tatat_1}-1{ ~atat_k 9 (Eatat _k_1 Eat at -(k-l»)1 
1 + 92 ~a 2 Ea a + 1 + 92 Ea 2 + Ea 2 

t t t t 

(2.51) 

where P
1 

= 9/1+92 and rk is the kth sample autocorrelation of white noise, 

as defined by (2.5). 

A binomial expansion is possible for the left hand bracket on the 

right hand side of (2.51) provided I 2Pl r11 < 1. That this is so follows 

from the fact that I p I < t for MA(l) processes (see Davies, Pate & Frost 
1 

(1974» and, of course, Irll < 1. 

Thus, we get 

rk = (1,- 2P r + 4P 2r ::I - 8p 3 r 3 ) ( ( » 
1 1 1 1 1 1 •• • r k + Pl r k+1 + rk_1 

(2.52) 

After expansion of the right hand side of (2.52), and taking 

expectations throughout we get approximately 

E[r ] = P (1 - 2(1 - 2p 2)E[r 2]), 
1 1 1 1 

(2.53) 

k > 2 

where the neglected terms involve expectations of the rth powers of rk 

for r ~ 4 and cross product expectations all of which are 0(n-2) (see 

equations (2.17) and (2.24». 

On squaring (2.51) we get, after expansion 
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As before, taking expectations and ignoring terms 0(1/n2
), we get, 

approximately 

and E[rk
2J = E[rk

2J + P1 2(E[rk_1
2J + E[rk+J. 2J) 

From (2.16) E[rk_1
2J + E[rk+J. 2J = 2 E[rk

2J , 
and so 

k ~ 2 

Note that Bartlett's formula in (2.49) would give 

n var[rkJ = (1 + 2P12) 

whereas (2.56) gives, using (2.53), 

k ~ 2 

k ~ 2. 

k ~ 3 • 

Sample moments of the autocorrelations of an MA(g) process 

(2.54) 

(2.55) 

(2.56) 

For the MA(q) process Xt = at + 9 at + ••• + 9 at ,q 1 0, the 
1 -1 q -q 

equivalent of (2.51) for the sample autocorrelation r k is approximately, 

.,.. q -1 q 
r k = (1 + 2.~ p.r.) (rk + .~ p.(rk+. + r k .)) (2.57) 

J=l J J J=l J J -J 

where p. is the jth population autocorrelation for the process and we 
J 

assume n is large compared with q, (i.e. end effects are negligible). 

We need to prove that the denominator of (2.57) has the property 

q 

1 2.~ p.r.\ < 1 J=l J J 

so that we can expand in a binomial series. 

Note that the denominator was derived from 

so that 

n 2 q q 2 2 
~ Xt ~ (1 + 2.~ p.r.)(l + .~ Q. )~at > 0, 
v-1 J=l J J J=l J 

q 
1 + 2.~ p.r. > 0 , 

J=l J J 

and consequently, 
q 

2
J
·I:

1
P.r. >-1 

- J J 
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Since all moments of rj exist and rj is bounded, these moments 

uniquely determine its distribution(Kendall & Stuart (1977», also these will 

completely define its characteristic function. As all odd moments of r. are 
J 

zero (see page2~, its characteristic function must be real; hence the 

distribution of r. must be symmetric. (See Kendall & stuart (1917), Vol 1, 
J q . 

exercise 4.1 page 124). By examining the multinomial expansion of (.E p.r.)l 
J=l J J 

it can be shown to have zero odd moments and by similar reasoning 
q 

2.E p.r. has a symmetric distribution. Hence, it follows from (2.59) that 
J=l J J 

and so (2.58) follows. 

q 
2.I: p.r. < 1 
J=l J J 

Since we shall take expectations throughout (2.57) and ignore the 

expectations of powers (or cross products) of r k greater than 2 (these are 

O(n-2» the expansion is approximately 

,.., q q 2a q 
r
k 

= (1 - 2.I: p.r. + 4.I: p. r .••• )(rk + .E p.(rk+· + r k .» 
J=l J J J=l J J J=l J J -J. 

(2.60) 

After some algebra we get, after taking expectations throughout (2.60), for 

q :?; 2, 
q q-k 

E[rk] = Pk(l - 2E[rk2] + 4.E p.2E[r.2]) - 2.I: P'+kP.E[r.+k2] J=l J J J=l J J J 

k-1 q-k 
- 2(.I: P.Pk .E[r. 2] + .E p.p. kE[r.2J) J=l J -J J J=l J J+ J 

(2.61) 

- 2.i p.p .E[r. 2
] 

J=l J q- J J 
(2.62) 

for 1 ~ L ~ q (2.63) 

for L > q. (2.64) 

From (2.57) 

- 2 q -2 q 2 
r k = (1 + 2.E p.r.) (rk + .I: p.(rk+· + r k .» 

J=l J J J=l J J -J 
(2.65) 

Making a binomial expansion and including only those terms that will 

contribute to the expectations, we get approximately 
_2 q q 2 2 2 q q 2 2 
r k=(l-4.E p.r.+12.E p.r.) (rk+2.E p.(rkrk .+rkrk .)+.E

1
P.(rk+.+rk .) 

J=l J J J=l J J J=l J +J -J J= J J -J 
q-1 q 

+2J1j:~S+1 PsPj (rk+j+rk_j ) (rk+s+rk_s )} 
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Taking expectations throughout, after much algebra we get, for q ~ 2, 

q q-2k 
E[1\k2J=E[r:l3kJ +.~ p~(E[r.+2kJ+E[r. 2kJ)+ 2P kE[rk

2J+ 2 ~ P P kE[r :13k] J=1 J J J - 2 5=1 S 5+2 5+2 

k~ ~k 
+ 2 ~ P P k E[rk 2J - 8p2kE[rk2J - ap kPk2E[r 2k J -.Ek~ PkP·p·+kE[r. 2k J 5=1 s 2 - S - S 2 2 J=' .. J J J + 

q 2J 2 q 2 [ 2J - a.Ek PkP· kE[rk. + 12Pk .E p. E r. J= +l J- -J J=l J J (2.66) 

Equation (2.66) holds for all k, provided the summations exist; when k is 

such that they do not, those sums are taken to be zero. In particular we 

note that 

E[rk
2J = E[rk· 2J + .~ p.2(E[r.+k

2J + E[rk .2J) 
J=l J J -J 

= (l + 2j~1 Pj 2)E[rk
2J k > q , 

since, from (2.16), E[rj +k
2J + E[rk_j

2J = 2E[rk
2J. 

Hence, from (2.64) and (2.67), 

[ ,.. 2J ( ~ 2) M-k n var rk = 1 + 2." p. + 2 ' J=l J n 

(2.67) 

k > 2q (2.68) 

which is to be compared with (2.49). Also (2.49) is Bartlett's formula for 

n var[~k2J for q < k ~ 2q, whereas the new expansion would use (2.67) 

together with relevant terms from (2.61). 

Example : the MA(2) process 

For q = 2, we get in (2.61), (2.62), (2.63) and (2.64), 

E[r J = P (l-2E[r 2J+4(p 2E[r 2J+p 2E[r 2J» - 2p P E[r 2J - 2p P E[r :l3J 1 1 1 1 1 2 2 12:3 121 

E[1 J = P (1-2E[r 2J+4(p 2E[r 2J+p 2E[r 2J» - 2p 2E[r 2J - 2p E[r 2J 
2 2 2 1122 11 22 

E[r J = - 2p P (E[r 2J + E[r 2J) 
3 1 2 1 2 

Also, from (2.66) and (2.67) 

Elr 2J = E[r 2J + P 2(E[r 2J + 1) + P 2(E[r 2] + E[r 2J) + 2p E[r 2J 1 1 1 2 2 3 1 21 
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(2.71) 

k > 2 (2.72) 

The variances follow, of course, from (2.69)-(2.72). 

Numerical results: comparison of the expansions with simulation results 

To check the adequacy of the expressions for the mean of the rk, E[rk], 

given by (2.53) and (2.69) and those for the variance of the rk, V[rkJ 

obtained from (2.55), (2.56) and (2.70)-(2.72), some simulation experiments 

were carried out for MA(l) and MA(2) processes. 

Sample means and variances of rk were calculated over 10,000 

simulations for each of the MA(l) processes for which 9 = 1.0, 0,5, 0.2 and 

compared with the values predicted by the above expansions. These results 

are collected in Tables 2.4 and 2.5, and also graphed in Figures 2.1 - 2.3. 

k 

Table 2.4 

A COMPARISON OF E[rkJ USING THE EXPANSION 

WITH SIMULATION RESULTS IN MA(l) PROCESSES 

1.0 0.5 0.2 

1 0.491 0.479 0.390 0.383 0.186 0.182 

2 -0.009 -0.012 -0.006 -0.004 -0.001 -0.002 

3 0.000 -0.001 0.000 0.000 0.000 0.000 

4 0.000 -0.001 0.000 0.000 0.000 0.000 

(i) Simulation figures are the second in each column. 

(ii) 10,000 simulations for each Q. 
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Table 2.5 

A COMPARISON OF nV[rk] USING THE EXPANSION 

WITH SIMULATION RESULTS FOR SELECTED 9 FOR MA(l} PROCESS 

k 

1 

2 

3 

4 

5 

6 

9 

0.462 

1.380 

1.356 

1.327 

1.298 

1.269 

1.0 

0.499 0.578 

1.352 1.217 

1.279 1.193 

1.266 1.168 

1.229 1.142 

1.186 1.117 

0.5 0.2 

0.606 0.840 0.840 

1.184 0.991 0.992 

1.155 0.971 0.931 

1.107 0.950 0.937 

1.090 0.929 0.903 

1.064 0.909 0.893 

(i) Simulation figures are the second in each column. 

(ii) 10,000 simulations for each Q. 

Also, values of the variance of the rk , predicted from Bartlett's 

formulae (2.48) were calculated for the MA(l) processes with 

Q = 0.0, 0.2, ••• , 1.0 and also compared with those obtained from the above 

expansions of V[rkJ. These results are collected in Table 2.6. All sample 

sizes here and throughout were n = 50. 

k Q 1.0 

Table 2.6 

VALUES OF nV[rkJ USING THE EXPANSION 

AND BARTLETT'S FORMULA IN AN MA(l) PROCESS 

0.8 0.6 0.4 0.2 

1 0.462 0.500 0.474 0.512 0.526 0.568 0.652 0.700 0.840 0.895 

2 1.380 1.500 1.358 1.476 1.280 1.389 1.142 1.238 0.991 1.074 

3 1.356 0' 1.334 .' 1.256 1.119 .. 0.971 .' 
4 1.327 1.306 1.229 1.095 0.950 . . 
5 1.298 . ' 1.277 .. 1.202 1.071 0.929 .. 
6 1.269 • 0 1.249 .. 1.176 1.047 0.909 

(i) Results are symmetric in Q. 

(ii) Bartlett's figures are the second in each column. 
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GRAPHS OF nV[rkJ FOR DIFFERENT e IN MA(l) PROCESSES 
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The results in Table 2.4 are in close agreement and note in particular 

that the expansion for E[r J picks out the fact it is negative, confirmed 
2 " 

by the simulation result. 

Similarly, the results in Table 2.5 on the V[rkJ are also in fairly 

close agreement although the theoretical values appear to be consistently 

higher than the simulation results. However, when compared with those 

values obtained from Bartlett's expansion it becomes clear how much closer 

the 'expansion values are to the simulation results compared with the former. 

(See in particular figures 2.1-2.3.) 

Similarly, 10,000 simulations were used for each of the nine MA(2) 

processes (within and on the boundaries of the invertibility region 

9 + 9 ~ -1,9 - 9 ~ 1, -1 ~ 9 ~ 1, see Box & Jenkins (1970), p 70 or 
1:3 1:3 :3 

Granger & Newbold (1977) p 142) given in Tables 2.7 and 2.8, and compared 

with the E[xkJ and v[rkJ expansions. 

Table 2.9 gives corresponding comparisons (over more MA(2) processes) 

with values of v[rkJ from Bartlett's formula (2.48). Some graphical 

comparisons are given in figures 2.4-2.8. 

The picture that emerges from these tables and graphs is very similar 

to those for the MA(l) processes. 

Table 2.7 

A COMPARISON OF E[rkJ USING THE EXPANSION 

WITH SIMULATION RESULTS FOR MA(2) PROCESSES 

:3 
-0.8 -0.4 0.4 0.8 

9
1 0.0 0.2 0.6 1.4 0.0 

-9 

k 

1 
2 
3 
4 
5 
6 

0.000 0.001 0.100 0.096 0.537 0.524 0.618 0.604 0.000 0.003 
-0.478 -0.459 -0.324 -0.311 0.249 0.239 0.113 0.106 0.478 0.458 

0.000 -0.002 0.005 0.005 -0.022 -0.010 -0.012 -0.007 0.000 -0.005 
-0.009 -0.007 -0.004 -0.004 -0.003 -0.003 -0.001 -0.001 -0.009 -0.009 
0.000 -0.001 0.000 -0.002 0.000 0.000 0.000 -0.000 0.000 0.003 
0.000 -0.001 0.000 -0.002 0.000 0.00 0.000 -0.001 0.000 -0.000 

9 
k 

2 

f1. 
1 
2 
3 
4 
5 
6 

-2.0 

-0.657 -0.644 
0.150 0.143 
0.017 0.009 

-0.001 -0.003 
0.000 0.002 
0.000 -0.002 

-0.4 

-0.353 -0.345 
0.453 0.434 
0.026 0.017 

-0.008 -0.006 
0.000 0.001 
0.000 -0.001 

1.0 
0.4 2.U 

0.353 0.347 0.657 0.643 
0.453 0.434 0.150 0.143 

-0.026 -0.01l -0.017 -0.007 
-0.008 -0.006 -0.001 -0.001 

0.000 0.002 0.000 -0.001 
0.000 0.002 0.000 -0.001 

(i) Simulation results are the second figures in each column. 

(ii) 10,000 simulations for each combination of ~, 9
2 

• 
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9 
k ~ 
1 
2 
3 
4 
5 
6 

Q 
k 

1 
2 
3 
4 
5 
6 

-0.8 
0.0 

Table 2.8 

A COMPARISON OF nV[rkJ USING THE EXPANSION 

WITH SIMULATION RESULTS FOR SELECTED 9 ,9 
1 :3 

IN MA(2) PROCESSES 

-0.4 0.4 
0.2 0.6 1.4 

0.8 
0.0 

0.462 0.495 0.520 0.549 0.514 0.592 0.319 0.363 2.301 
0.460 0.504 0.688 0.735 1.077 1.095 1.428 1.413 0.460 
1.334 1.304 1.122 1.089 1.558 1.438 1.640 1.518 1.334 
1.302 1.246 1.098 1.062 1.547 1.371 1.612 1.491 1.302 
1.277 1.237 1.075 1.047 1.514 1.344 1.577 1.436 1.277 
1.249 1.192 1.051 1.012 1.480 1.328 1.542 1.380 1.249 

1.0 
-2.0 -0.4 0.4 2.0 

0.275 0.309 1.511 1.510 1.511 1.490 0.275 
1.421 1.402 0.610 0.654 0.610 0.646 1.421 
1.744 1.645 1.506 1.450 1.507 1.443 1.744 
1.720 1.616 1.503 1.381 1.503 1.387 1.720 
1.683 1.571 1.474 1.334 1.474 1.359 1.683 
1.645 1.544 1.441 1.288 1.441 1.295 1.645 

(i) Simulation figures are the second in each column. 

(ii) 10,000 simulations for each combination of 9 , 9 • 
1 2 

Table 2.9 

VALUES OF nV[rkJ USING THE EXPANSION 

AND BARTLETT'S FORMULA IN MA(2) PROCESSES 

-1.0 -0.8 
0.0 0.0 0.2 0.2 

-0.4 

0.322 
1.438 
1.631 
1.592 
1.564 
1.546 

0.6 

0.462 0.500 0.462 0.500 0.464 0.502 0.520 0.557 0.551 0.590 
0.448 0.500 0.460 0.513 0.474 0.528 0.688 0.754 0.919 0.998 
1.356 1.500 1.334 1.476 1.315 1.455 1.122 1.242 1.126 1. 251 
1.323 
1.298 
1.269 

9a 
k~ 

1 
2 
3 
4 
5 
6 

0.0 

· . 1.302, 

· . 1.277 
• 0 

1.249 

0.2 

1.512 1.616 
0.706 0.777 
1.196 1.331 
1.177 . . 
1.152 • 0 

1.126 ,0 

0.8 
0.8 

• 0 
1.283 

• 0 
1.258 

• 0 
1.231 

0.4 
0.6 

0.514 0.563 
1.077 1.185 
1.558 1.749 
1.547 . . 
1.514 • e 

1.480 eo 

1.8 

. . 1.098 · . 1.106 o. 

. . 1.075 · . 1.082 .. 
o. 1.051 

• 0 
1.058 .. 

1.0 1.4 

0.291 0.320 0.319 0.350 
1.354 1.488 1.428 1.565 
1. 709 1.909 1.640 1.822 
1.688 , , 1.612 e • 

1.652 . . 1.577 •• 
1.578 • 0 1.542 .. 

1.0 
0.4 1.2 2.0 

2.163 
0.504 
1.234 
1.238 
1.210 
1.160 

0 

2.301 2.451 0.420 0.465 0.278 0.306 1.511 1. 628 0.243 0.270 0.275 0.302 
0.460 0.513 1.017 1.126 1.422 1.562 0.610 0.679 1.219 1.347 1.421 1.562 
1.334 1.476 1. 793 2.044 1. 736 1.935 1.507 1.703 1.891 2.143 1. 744 1.944 
1.302 e, 1.807 · . 1. 712 , . 1.503 · . 1.895 . . 1.720 · . 
1.277 . . 1.769 

• e 
1.675 . . 1.474 · . 1.854 ' 0 1.683 · . 

1.249 • 0 1.730 · . 1.638 . . 1.441 · . 1.813 • 0 1.645 · . 
(i) For fixed 92 , results are symmetric in ~. 

(ii) Bartlett's figures are the second in each column. 

46. 
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GRAPH OF nV[rkJ IN AN MA(2) PROCESS 
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In summary, then, it appears there is nothing to choose between 

Bartlett's formula (2.48) and the variance of rk obtained from the expansions 

(2.66) and (2.61) for MA(q) processes for k ~ q, but for k > 9 the multiplying 

factor (n - k)/n(n + 2) needed in 
q 

E[rk
2J = (1 + 2j~1 p/)E[rk 2J 

becomes very important. 

Covariances between the autocorrelations of MA(g) processes 

Bartlett's formula (2.48) provides the large sample covariances between 

rk and rs and from (2.57) a finite sample expansion of E[rkrs ] is possible 

by taking expectations throughout 
q -2 q q 

rkrs = (l + 2. I: p. r . ) (rk + . I: p. (rk+. + rk .))( r + . ~ p. (r . + r . ) ) J=l J J J=l J J -J s J:::"l. J s+J S-J 
q q 2 2 q q 

= (1-4.I: p.r.+12.I: P.r.)(rkr +.I: p.(r rk+·+r r k .)+.I: P.(rkr +.+rkr .) J=l J J J=l J J S J=l J s J s -J J=l J s J s-J 
q q 

+.I: p.(rk+.+rk .).I: p.(r +.+r .)) (2.73) J=1 J J - J J=l J s J s- J 

to the same order of approximation used in (2.66). 

After much algebra we get 

Evaluating (2.74) for the MA(2) process we find 
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E[r r J = p (E[r 2J + E[r 2J) + P P (1 + E[r 2J) + P P E[r 2J 12 11 2 12 3 121 

E [r oro -L.. J = p (E [r ° 2 J+E [r ° +l 2 J) + p P (E [r ° 2 ] + E [r 0+ 2 J ) 
~ ~T'" 1 ~ ~. 1 2 1-1 1 2 i ~ 3 

(2.75) 

E[riri+) = (2P2 + P1 2)E[ri+l 2J i ~ 3 

E[r r J = P P (E[r 2J + E[r 2J) - 4P P 2E[r 2J 1 4 ~ 2 2 3 122 

E[roro+ J = P P (E[r"+l2J + E[ro+ 2J) 
~ ~ 3 121 1 2 

i ~ 2 

E[ro ro+ ] = p 2E[r1"+ 2 ] 1142 2 i ~ 1 

The expressions in (2.75) are used in Chapter 4 , section 4.3, to 

calculate the theoretical mean of the Box Pierce statistic S, in fitting 

an AR(l) model to an MA(l) process. 

For the above example, Bartlett's formula (2.48) yields the following 

special cases in (2.75) (the other cases, for example, E[r r ], differ 
1 2 

considerably from those given by (2.48)). 

nE[roro+ J = 2p + 2p p 1 1 1 1 1 2 
i ~ 3 

nE[?o ro+ ] = 1 ~ 2 
p 2 + 2p 
1 :13 

i :i?: 3 (2.76 ) 

nE[ror:o+ J= 1 1 3 2P1 P2 i :i?: 2 

nE[~or"+ J = P 2 1 ~ 4 :13 
i :i?: 1 

nE[ri ri+1,J = 0 for all i, 1,>4 

By comparing the above with the corresponding equations in (2.75), the 

difference is the factor (n - j)/(n + 2) for appropriate j, which is seen 
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to be taken as 1 in (2.76). This is, of course approximately true for 

j small but is not the case for j large compared with n. (For n = 50, 

j = 20 this factor is 0.58.) 

2.5 Conclusions 

We have shown in this chapter that use of the exact variance of the 

kth sample autocorrelation of white noise, (n - k)/n(n + 2), which for 

large n can be safely approximated by l/n, becomes very important in the 

study of the distribution of the portmanteau test statistics and the 

moments of the kth sample autocorre1ations of moving average processes. 

A normality assumption for the distribution of the rk was shown to be 

unrealistic in moderate sized samples and, in addition, the above 

approximation becomes particularly poor for k large, as is the case when 

one needs to accumulate terms multiplied by the factor (n - k)/(n + 2) when 

studying the portmanteau statistics. Although Box & Pierce (1970) p 1519, 

recognised the problem it was not taken into account in their statistic 

given by S. It has been shown that problems crop up even with a sample size 

of n = 50 (which is not usually considered too small in practical time 

series analysis) and one might be led to erroneous conclusions when using 

these statistics. 

The accumulation problem mentioned above is also apparent when, in 

Chapter 4, sums of variances and covariances of the sample autocorrelations 

of moving average processes are needed to study the mean and variance of S 

when fitting autoregressive models to moving average processes. Bartlett's 

(asymptotic) formula for these is shown to be inadequate (for sample sizes 

used in practice) owing to the absence of the factor (n - k)/(n + 2) for 

appropriate k. 
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FORECASTING FROM MIS-SPECIFIED TIME SERIES MODELS WHEN 
THE DEGREE OF DIFFERENCING IS CORRECTLY ASSUMED 

Summary 

This chapter examines the consequences of fitting ARIMA(p~d,q) models 

to ARIMA(p,d,q) processes. Expressions are derived for the asymptotic loss 

of forecasting using the fitted model compared with the optimal forecasting 

function for the true process, when the parameters in both are assumed given. 

When d = 0, and in the special case of fitting pure AR(p) models, the 

estimates of the p'parameters are obtained by a least squares fit and, 

equivalently, from the solution of the Yule-Walker equations. Probability 

limits and the asymptotic variance covariance matrix of these estimates are 

derived. 
I 

Asymptotic loss in forecasting for fitting ARIMA(p,d,O) models to ARlMA 

(p,d,q) processes are computed when d = ° and d = 1. The main results are that 

a great deal can be lost when any moving average parameters in the true process 

are near their invertibility boundaries even for a very high order AR fit, 

otherwise losses can be surprisingly low. 

When d = ° and estimation error is taken into account in the fitted AR(p) 

model, naturally, asymptotic losses are increased. However, at one step ahead, 

for some processes a minimum loss occurs when p'is near 4, 5 or 6; further 

parameter estimation increases the loss. 

When d ~ 1 an analytic expression for asymptotic loss is derived taking 

estimation error into account in the fitted autoregressive parameters, 

although itis not computed for different processes. 

3.1 Introduction 

In this chapter we let rk denote the sample autocorrelation of ~ 

series X
t 

and not restrict it to the residuals of a least squares fit, as in 

Chapter 2. 
n-k 

It is well known that the sample autocovariance ck = ~l XtXt+k/n has the 

property that 
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plim ck = Y k 

whereY k is the population autocovariance. (Anderson (1971) p 471, or 

Goldberger (1964), p 148.) Hence, using Slutsky's theorem (Wilks (1962), 

p 102) 

plim rk = plim C k/co 

= plim ck/plim Co 

= Yk/Yo 

= Pk 

We thus see that the probability limit of the sample autocorrelation of any 

process is the corresponding popUlation autocorrelation; hence any parameter 

estimate which uses a function of the sample autocorrelations will have a 

probability limit that we shall (in theory) be able to find, as the probability 

limit of a function is the function of the probability limits (Slutsky's 

Theorem). It is possible that the sample autocorrelations may suggest searching 

for, and fitting a structure which is different from the truth; for such a 

structure the parameter estimates will be calculated with the mis-specified 

model in mind and the sample autocorrelations would be used in the 'wrong' way. 

However, the probability limit of these estimates will be available in terms 

of the autocorrelations of the true process the series follows; we now explore 

some of the properties of these plims and the consequences of the misuse of 

the sample autocorrelations. 

3.2 Fitting Autoregressive models to any time series process of the ARMA type 

Suppose one fits an AR(p') model to data (which we assume for the moment 

is known to follow an AR(p') process) by ordinary least squares in the usual 

manner. For an AR(p/) process the autoregressive parameters (~',p',.",~'" 
l:a p 

say) satisfy the set of linear equations: 

Pi = P; 
Pa = P;P1 

+.11 + ••••••• + .I', P , 
P:a Pp p-:a 

pp,= ~/p I +. • ••••.•• 1 •••• + I.', 
1 P-l P 
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where p ,p , ••• ,p I are the true autocorrelations of the process. Equations 
1 2 P 

(3.2) are normally called the Yule-Walker equations. Yule-Walker estimates 

of the parameters are obtained by replacing p ,p , ••• ,p, by the calculated 
1 2 P 

sample autocorrelations r ,r , ••• ,r I (Box & Jenkins (1970) p 55). 
1 2 P 

Writing (3.2) in an obvious matrix notation we see 

(3.3) 

and the Yule-Walker estimates will be given by 

f = p-1 r 
- r,.. 

where t= (p,',P', ••• ,$,',)', r= (r,r , ••• ,r,)' and P is the matrix P with 
- l:a p '" 12 P r 

the p ,p , ••• ,p I replaced by r ,r , ••• ,r , respectively. Mann and Wald (1943) 
1 2 p 1 2 P 

showed that asymptotically the sampling properties of the least squares 

estimators and Yule-Walker estimators are the same. 

If, now, the process that Xt follows is not necessarily an AR(p') process 

but we _fit an AR(p') model in the form Xt - p,'Xt - ••• - p",Xt ,= et by 
1 -1 p-p 

minimisation of Eet
2

, the equations that have to be solved may be written in 

matrix form 

R = P f ,... R-

Asymptotically R is equivalent to rand PR to P ; hence R is a column ",., ".. r f'III 

vector such that plim ~ = £ ' PR is a symmetric matrix such that plim PR = P 

and! is now a column vector of the least squares estimators of P;,P~, ... ,P~" 
where we have used the fact that plim r k = Pk. (See Box & Jenkins (1970), 

p 277.) 

Hence, from Slutsky's theorem applied to matrices 

plim ~ = plim PRpIim ! 
we have that 

p = P plim f 
,.. -

so that Il> -1 plim w = P P - - (3.4) 

Comparing (3.3) and (3.4) we see that the autoregressive parameter estimates 

$.',~', ... ,~'" from the least squares fitting of an AR(p') model to any time 
1 2 P 

series process, have probability limits which may be obtained by solving the 

Yule-Walker equations containing P1 ,p , ••• ,p I, the autocorrelations of the 
:a p 

true process. 
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For example, if we fit an AR(l) model to any process the least squares 

estimate of the parameter p,' is asymptotically equivalent to 
1 

plim ~' = plim r = P 
1 1 1 

r • 
1 

Thus, 

where p is the first autocorrelation of the true process. If we fit AR(2) 
1 

from (3.4) with p' = 2, we get plim $,' = p (1 - P )/(1 - p 2) and 
1 1 2 1 

(p
2 

- P
1

2
) 

plim 1; = (1 _ P12) where P
1 

and P:a are the autocorrelations of the true 

process. 

From (3.4) we thus define 

plim ~ = t 
,." ..., 

so that ~;,~~, ••• ,~~, will be understood to be the probability limits of the 

least squares estimates in fitting an AR(p') model to any process. These will 

be used later to study the residuals obtained in an autoregressive fit. 

Variance - covariance matrix of the autoregressive parameter estimates 

We have already noted in section 2.4 that the calculated autocorrelations 

r ,r , ••• ,r of any ARMA(p,q) process have the property that the joint 
12m 

distribution of lO(r -p), In(r - P ), ••• ,In(r - p ) tends to N(O,W) where 
1 1 :a 2 m m ~ 

p. is the jth autocorrelation of the true process and the variance covariance 
J 

matrix, W, has elements defined by (2.48). 

I 
be the asymptotic variance covariance matrix of the p estimated 

autoregressive parameters in ! . Since, asymptotically, ! is a function of 

the first p' sample autocorrelations, and since the variances of these r i are 

O(l/n) (Bartlett, 1946) we can apply methods of Kendall & Stuart (1977) Vol 1 

P 247 to obtain the exact form of V~ • 
t 

Let ~." == ~.,1(r ,r , ••• ,r I h since, asymptotically E[r. J = p., 
111 2 P J J 

(j = 1,2, ••• ,p/) we may apply the appropriate form of equations (10.12) 
op: op~ 

and 

(10.13) of Kendall & Stuart (1977) Vol 1. Writing op~ to mean or~ 
J J 

evaluated at p ,p , ••• ,pp' (j = 1, ••• ,p') 
1 2 

we get to O(l/n), 

pi op~ 2 p' op: op.' 
var[pO = j~ (ap;) var[rj ] + j~j,( ap; ap:) cov[rj ,r t] 

[ ')" p' (ap., aPk) p' (ap~ ap') 
cov Pi ,PkJ := J.f ~p1 ~P var[r.J + .4 I: _1 ---.k cov[r. r ] 

-1 0 j 0 j J J;t.ti::l OP
j 

OPt J' t 
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The equations in (3.5) may be written out in matrix form as 
, 

DWD , where 

o$,' 
1 

o$,' 
1 

o$,' 
1. 

o$,/ 
1 

op 
1 

op 
2 

op 
3 oPp' 

op' 
2 

op' 
2 

D= op op = (d ,d , ••• ,d ,) (say) 
1 2 .. 1"'2 ... p 

(3.6) 

01.' ..:Ji 
0$' 
...:...E.' 

0$' 
..:....E 

oP1 op 
2 oPp' 

_2.1 
j = 

, 
(3.7) and 2'j - oP

j 
1, ••• ,p • 

( ) 
• ~ -1 From 3.4, V1Z cP = P r ,.. "" , we differentiate with respect to rj to get 

ot -lor cw-1 

orj 
= P -Z +- r or. orj -J 

_lor -lOP -1 
= P ..:: - p - P r 

orj orj 

-1(0£ oP -1) =P ---P r or
j 

or
j 

... (3.8) 

(see for example, Stephenson (1965) or Macduffe (1956». 

In (3.8) we have 

where 6ij is the Kronecker delta, and Toepl is a p x pi symmetric Toeplitz 

matrix. 

Substitution of P1 ,p , ••• ,p, for r ,r , ••• ,r I in (3.8) yields the 
2 p 12 P 

column vectors defined by (3.7) so that 

(3.9) 

where D is given by (3.6). 

Example 3.1 Fitting AR(2) to an MA(1) process 

In general, if we fit an AR(2) process of the form Xt - ~'Xt - ~'X = 
1 -1 2 t-2 

error to data, using least squares, the estimates obtained are asymptotically 

equivalent to solving (3.2) with pi = 2. Hence asymptotically 
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so that using (3.6) and (3.8), we find, after some algebra 

1 
[
(l-P )(l+p 2) - (l-p 2) p] 

2 1 1 1 
D = (l-p 2)2 2p (p -1) (l-p 2) 

1 1 2 1 

For an MA(l) process, Xt = at + 9
1 

at _
1

, we find, with P1 

P = 0, 
2 

[ 

1-3P 2 + 4P 4 
1 1 

W = 2p (l-p 2) 
1 1 

2p (l-p 2)] 
1 1 

1 +2p 2 
1 

(3.10) 

(3.11) 

From (3.10) and (3.11) we may obtain nV~ as given by (3.9); isolating 

elements of this matrix we find 

nVar[.z;J = (1 1 P 2) 4 (1 _ 4P 2 + 3p 4 + 6p 6 + 2p 8) 
1 ·1 1 1 

1 

nVarr~:J = (1 1 (1 _ 4P 2 + P 4 + lOp 6) LPQ - P 2)4 1 1 1 
1 

n cov[$.' ,$'J = 11 Pl 2)4 (-1 + 6p 2 - 9p 4 - 4P 6) 
1 2 - Pl 1 1 1 

The asymptotic covariance between $.' and $' is always negative for 
1 2 

positive E> and 
1 

n(var[p,'J - var [$'J) = 2p 4/(1 - P 2)2 :a: 0 
121 1 

(3.12) 

Table 3.1 contains values of the asymptotic variances of the autoregressive 

parameter estimates together with their asymptotic correlations for different 

Q values. 
1 

Q 
1 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

TABLE 3.1 

ASYMPTOTIC VARIANCES AND CORRELATIONS OF 
AUTOREGRESSIVE PARAMETER ESTIMAlES 

nvar[$.' ] 
1 

nvar[$'J 
2 

corr ($ , ,$' ') 
1 2 

1.00 1.00 -0.097 

0.98 0.97 -0.232 

0.93 0.86 -0.258 

0.90 0.74 -0.245 

0.91 0.70 -0.247 

0.91 0.69 -0.249 
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Example 3.2 Fitting an ARC1} model to any ARMA(p.g} process 

If we fit Xt - p"Xt = error to data by least squares, asymptotically 
1 -1 

;.' = r , and, from (3.1) and (3.9) V~ is simply a scalar, namely the (1,1) 
1 1 'l' 

element given by the infinite sum 

CD 

r£.~Prt1 2 + Pr-l Prt1 - 4Pl PrPr+l + 2P1

2
p/) 

from (2.45). 

Thus the asymptotic variance of the autoregressive parameter estimate 

depends on all the autocorrelations of the true process. 

For p = 0, q = 1, we get with Pj = 0, j :I! 2 , 

nVc- = nvar[p,'] = 1 - P 2(3 - 4p 2} 
'l' 1 1 1 

Example 3.3 Pi tting AR(p'} model s to MA(g) processes 

Durbin (1959) has advocated a method of estimation of moving average 

paramete~which involves fitting a high order autoregressive model to the 

moving average process, and using the estimated AR coefficients to determine 

estimates of the moving average parameters. If the moving average process is 

Xt = at + Q at +. • •• + 9 at 1 -1 q -q 

and the estimated autoregressive parameters are $', ;', ... ,~~, the Durbin 
1 2 P 

estimator of (9 ,9 , ••• ,9 ) is given by 
1 2 q 

, 
P p/2 .r: . 

J=o J 

, 
P pili .1: . 

J=o J 

~ 
1 

~ 
q 

(3.13) 

Although it is shown that the estimator is asymptotically efficient, one 

might expect problems with the results from (3.13) since the P1',P;, ... ,;;, 
will themselves be correlated. 

For example, in fitting an AR(p} model to an MA(l) process one might 
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expect high correlations between p:,p';, ..• ,p'~, since, if the process is 

Xt = at + 9
1 

at -
1

, these are merely estimating the first p'powers of 9. in 
en • J 

the infinite AR representation .t (-9 )J Xt . = at. 
J=O 1 - J 

However, in the case p= 2, table 3.1 shows correlations between p' and 
1 

~' are not very high over the range of 9 • 
P2 -- 1 

3.3 Fi tUn 
of the 

e models to an time series 

Suppose one fits a model which is ARMA(p',ci) to a process which is 

ARMA(p,q) by a least squares procedure as described in Box & Jenkins (1970) 

pp 208-250. 

Let the true process be of the form (2.1), viz, 

(3.14) 

where at is white noise, but we fit the model 

t (B) Xt :: @(B),,\ (3.15) 

where t(B) = 1 - p'B - p'B2 - ••• -P',~p' and @(B) 
1 2 p 

The least squares procedure will minimise the function S(!,~) where 

I (.I' .I' .1')' (" ') t = P. ,p , ••• ,Po ( ,@=9
1
,9, ••• ,9 

,.. 1 2 P - 2 q' 

and where 

S(I,®) = 1. tn. 2 

N'" n "t 

= ~ t(@-l (B)I(B)x
t

)2 (3.16) 

Let the estimates of the parameters for which (3.16) is a minimum be 

(f,~). Since S is a well behaved function of ! and ~, its differential with 

respect to ! and ~ will be also, so that the probability limit of the 

minimum of the function S will be the minimum of the probability limit of 

the function S. Hence plim(!,~) is the (!,~) for which the variance of ~t 

is a minimum. 

From (3.14) and (3.15) we need these (!,~) for which var[,,\] is a 

minimum where 

p(B)@(B),,\ = I(B)9(B)at (3.17) 

In general the variance of ~t in (3.17) will be non linear in 
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p,' ,fr' , .•• ,p", Q' ,Q', ••• ,9' J so that its minimisation will be extremely 
1 a p' 1 a q 

difficult except in a few simple cases. Moreover, determination of the 

asymptotic variance covariance matrix of these probability limits is 

possible via methods of Anderson (1975) but we shall not pursue them here. 

However, in general, the plims of the least squares estimators (obtained 

from some numerical minimisation procedure) are not asymptotically 

equivalent to the estimators obtained from other methods when one fits an 

ARMA(p,q) model to an ARMA(p,q) process. 

For example, Durbin (1959) gives a method of estimating the parameters 

in a pure moving average process (i.e. this would be equivalent to fitting 

an MA(q) model to an MA(q) process) and shows that the procedure is 

asymptotically efficient. Suppose, however the true process is AR(l), 

but we fit an MA(l) model 

Durbin's procedure would involve fitting a high order autoregressive process 

(of order k, say) by least squares and the estimates l.',$" ... '~k' so 
1 a 

obtained are used to form the estimate ~' of Q' where 

From (3.4), plim ${ = (~ 

and so 

k-l 
.I: "~".' 1=0 P1P 1+1 

k 
I: !l/a 

i=oPi 

i = 1 
i 01! 2 

, 

plim ~/ = fr/O + pa) 
which clearly has a maximum of t. 

p '= 1 o 

(3.18) 

From (3.l7) the probability limit of the least squares estimator will 

be that value of Q' which minimises var(~} where 

(1 - ~B)(1 + Q/B)~t = at 

i.e. the variance of the AR(2) process 

(1 - (I - Q) B - ~Q' Ba ) 'Il t = at. 
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Its variance is 

(3.19) 

(see Box & Jenkins (1970) p 62). 

/ 
After differentiating (3.19) with respect to e and setting the 

derivative to zero, we require the roots of 

;a~l - ~e'a - e' + ~ = 0 (3.20) 

Clearly 9= ~/(l +;a) does not satisfy this equation except at ~ = 0, so 

that the probability limit given by (3.18) is different from any solution 

of (3.20). Walker (1967) has also obtained (3.20) as part of the basis of 

testing an AR(l) model versus the alternative of MA(l). Also in that paper 

(p 45) Walker concludes that the Durbin estimation procedure applied to 

fitting MA(l) to AR(l) is equivalent to the least squares procedure. This is 

clearly not the case. 

To investigate the probability limits of the least squares estimator of 

e' the cubic (3.20) was solved for a range of values of ~ and those roots 

for which le'l < 1 are collected in Table 3.2. Figure 3.1 is a graph of the 

relevant roots of (3.20) together with (3.18) for different values of ~. 
I I 

Note that if we put ~ = -~ in (3.20) the solutions will be (-e) where e is 

the solution of (3.20) with positive ~. 

TABLE 3.2 

VALUES OF THE PLIMS OF THE DURBIN ESTIMATOR 
AND TIlE LEAST UARES ESTIMATOR 

P 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

D 0.497 0.488 0.470 0.441 0.400 0.345 0.275 0.192 0.099 

L.S. 0.735 0.640 0.565 0.496 0.428 0.356 0.279 0.193 0.099 

Note if ~ ~ -p each estimate changes sign also. 

We see over the range of p from 0.0 to about ± 0.5 the plims of the two 

estimators are indeed very close, but outside this range the discrepancy 

becomes larger, it being a maximum at p close to 1. In the next section 

(example 3.9) we examine how much is lost asymptotically when one forecasts, 
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FIGURE 3.1 

Least Squares 

Durbin's 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

using either of these two estimators, from the fitted MA(l) model compared 

with the optimal forecast from the correct AR(l) process. 

3.4 Comparison of Forecasts for correct and mis-specified models with the 
coefficients in each being given 

If Xt follows an ARMA(p,q) process given by (3.14) viz, 

¢,(B)X
t 

= fl(B)a t 
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and we assume Xt is stationary and invertible, then we may write 

Xt = ~l(B)Q(B)at 

= d(B)at (3.22) 

so that d ,d , ••• , are the coefficients in the infinte moving average o 1 

representation of Xt • 

We now consider forecasting from an alternative stationary invertible 

model ARMA(p~q) as given by (3.15), viz 

where ~t is not necessarily white noise. 

Expression (3.23) may be written equivalently 

Xt = 1-1 (B)a(B)~ 

= c(B)Tlt 

where c(B) = c + c B + c B2 + •••••• , and c = 1 • o 1 2 0 

Hence from (3.22) and (3.24), we must have 

~ = c-1(B)d(B)at 

= b(B)at 

where b(B) = b + b B + b B2 + •••• , and bo = 1. o 1 2 

(3.23) 

(3.24) 

(3.25) 

Let the optimal (least squares) h-step forecast for model (3.22) be 

f h' so that this is our best forecast based on the correct model. From n, 
Granger & Newbold (1977) p 121, we have 

00 

f h = .E d. ha . n, J=O J+ n-J (3.26) 

Since we have (incorrectly) assumed model (3.24), we shall believe ~ to be 

white noise and so if g h is the assumed optimal (least squares) forecast n, 

for this model, 
00 

gn,h = j&o cj+h'Tlh_j (3.27) 

The model (3.24) will be the one we shall use and so our h-step forecast 

error will be 
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which may be written as the identity 

Xn+h - gn,h = (Xn+h - fn,h) + (fn,h - gn,h) (3.28) 

Xn+h - fn,h will be the h-step forecast error from the correct model. 

From (3.22) and (3.26) 
(XI (XI 

Xn+h - fn,h = j~o djan+h_j - j~Odj+han_j 

(XI CD 

= .~ djan+h . - j~ d.a h . J-O -J =h J n+ -J 
h-l 

= .E d.an+h . J=O J -J 

a linear weighted sum of an+k' k > O. Also, 

where 

CD 

g h = .E c. hn . n, J=o J+ n-J 

CD CD 

= .J; C '+h(·J; bia .. ) J-O J 1-0 n-J-l 

CD 

= .,t a. (h) a j J-O J n-

j 

a j (h) = Joch:+-tbj-t • 

CD CD 

fn,h - gn,h = j~Odj+han_j - j~Oaj(h)an_j 

CD 

= .J; (d'+h - a.(h»a j J-O J J n-

which is a linear weighted sum of a k' k'~ o. n-

It therefore follows from (3.29) and (3.31) that (Xn+h - fn,h) is 

uncorrelated with (fn,h - gn,h). 

(3.29) 

(3.30) 

(3.31) 

Denote the variances of the h-step forecast error for the right and 
, 

wrong models by V(h) and V(h) respectively. Then, taking variances throughout 

(3.28) we get 
, CD 

V(h) = V(h) + V(.J; (d'+h - a.(h»a .) 
J-O J J n-J 

CD 

= V(h) + .J; (d'+h - a. (h»2 a 2 
J-O J J a (3.32) 

where ~ 2 l'S the variance of the white noise process a and from (3 29) 
v t' ., 

a h~ 
V(h) = .,td. 2 

0 2 • 
J-O J a 
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Note that V(h) ~ V(h) always, as is to be expected. 

We now define the mean square proportionate loss, P(h), from using the 

incorrect model, by 

P (h) - V/(h) - V(h) 
- V(h) (3.33) 

so that this will be an absolute measure of the discrepancy between the mean 

square error of h-step forecasts for the right and wrong models. 

Hence 

en 

.~ (d.+h - aJ.(h»2 P(h) = ... J-.....;;o~J~""'""-___ _ 
h-l 
.1: d. 
J-O J 

2 

(3.34) 

P(h) expressed as a percentage will be called the percentage loss of our 

sub-optimal forecasts. V(h) is monotonic non decreasing, but as noted by 
I 

Granger & Newbold (1977), p 137 V(h) is not necessarily monotonic non 

increasing or decreasing. It follows that the latter is true also for P(h). 

We now give a number of examples of calculations of (3.34) for simple 

ARMA models. 

Example 3.4 Fitting AR(l) to AR(l) 

Let the true process be (1 - ~B)Xt = at' but suppose the model 

(1 - ~/B)Xt = ~ is assumed. From (3.22), (3.24), (3.25) and (3.30) we find 

.Ij _ .I' j _ _ (.Ij ,,' .Ij-l. ( ) _ "/h"j d. = p , c. - p ,b - 1, b. - p - 'P 'P ), (J~l), a. h - 'P 'P • 
J J 0 J J 

Hence P (h) 

Table 3.3 contains values of P(h) for two different pairs of values 
I p, P • 

h 

1 
2 
3 
4 

TABLE 3.3 
VALUES OF P(h) 

p= 0.7, l= 0.5 ~= 

0.078 
0.076 
0.054 
0.034 
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0.5, ~'= 0,8 

0.120 
0.162 
0.152 
0.121 



Note that for one of these P(h) first increases and then decreases with 

increasing h. 

Example 3.5 Fitting AR(l) to MA(l) 

Let the true process be Xt = (1 + 9B)at , and the assumed model 

(1 - ,1'B)Xt = n .• From (3.22) (3.24) (3.25) and (3.30) we find d = 1, 
'1: " 0 

I , 

d = 9, d. = 0 (j ~ 2); b = 1, b = (9 - ,1), b = -,1 9, b. = 0 (j ~ 3); 
1 J 0 1 2 J 

'h 'h . a (h) = P ,a (h) = r¥ ,a. (h) = 0, (J ~ 2). o 1 J 

Hence P(l) = (,1'- 9)2 + 921 2 (3.35) 

P(h) = ,1'2h h ~ 2. 
I 

From (3.35) we find that P(l) has a minimum when p = 9/(1 + 92
), the 

autocorrelation of the true process. This fact complements the idea in 

Example 3.2 that the probability limit of the AR(l) parameter estimate is 

the 1st autocorrelation of the true process and that it would be 'best' to 
, 

take ,1 = p for I-step ahead prediction. We shall return to this point 
1 

later when we allow the parameters in any autoregressive fit to be determined 

by the autocorrelations of the true process. (It is well known that the 

solution of the Yule Walker equations (3.2) for correctly fitting an AR(p) 

model to an AR(p) process minimises the variance of the one step ahead 

forecast error.) 

Example 3.6 Fitting AR(l) to MA(2) 

Let the true process be Xt = (1 + EllB + 9
2
B2 )at , and the assumed model 

, 
(1 - p B)Xt = n .• From (3.22) (3.24) (3.25) and (3.30) we find d = 1, '1: ), 0 

d = 9 ,d = Q , d. = 0 (j ~ 3); b = 1, b = 
1 1 2 2 J 0 1 

I I 

(9 - p), b = (9 - P 9 ), 
122 1 

I 'h 
b =-p 9, b. = 0 (j ~ 4); a (h) = P ,a (h) = 

3 2 J 0 1 

J'h J1h 
Q p ,a (h) = 9 'P , 
122 

a.(h) = 0 (j ~ 3). 
J 

I I , 
Hence P(l) = (p _ Q )2 + (Q,1 _ Q )2 + 9 2p 2 

112 2 
(3.36) 

P(2) = «p/2 _ Q)2 + 9 2,5'4 + Q 2¢"4}/(l + Q 2) 
212 1 

h ~ 3. 
I 

Again we find that P(l) has a minimum when p = (9 + 9 9 )/(1 + Q 2 + e 2), 
1 1 2 1 2 

the first autocorrelation of the true process. 
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Example 3.7 Fitting AR(2) to MA(l) 

Let the true process be Xt = (1 + 9B)at , and the assumed model 

(1 - I;B - I~B2)Xt = ~t. From (3.22), (3.24), (3.25) and (3.30) we find 

d == 1, d == 9, d. == 0 j ~ 2; b = 1, b == (9 - ~'), b = -(I' + Q¢.'), o 1 J 0 1 12 2 1 

b = -91', b. = 0, j ~ 4. a (h) == ch ' a (h) = 9ch + I' ch ' 
3 2 J 0 1 2 -1 , 

a (h) = ~ Ch ' a.(h) == 0 (j ~ 3) where ch is given by 
2 2 -1 J 

c = 1, o 

Ch = I; 
c = ~' , 

1 1 , 
C + I C h-l :a h-;a 

(h ~ 2) 

as follows from its definition (3.24). 

We find for the proportionate loss 

P ( 1) == (p, I _ 9) 2 + (9P.' + /;') 2 + 92 /;'2 
112 ;a 

After some algebra we get 

( ) 2 .1'2 2 .I' P h == Ch + p ch + 2p chch P 
2 -1 2 -1 1 

p(l) has a minimum with respect to i' and /;' when 
1 2 

p.' = p /(l _ p 2) 
111 

I' = - P 2/(1 _ P 2) 
211 

h ~ 2 

where p = 9/(1 + Ef), the first autocorrelation of the true process. 
1 

(3.37) 

(3.38) 

We note that (3.38) is the solution of the Yule-Walker equations (3.2) 

with p'~ 2 and p = O. Thus the AR(2) fit is again 'best' with respect to a 
2 

minimum pel) when we allow the AR parameters to be decided by the solution 

of the Yule-Walker equations, using the autocorrelations of the process. 

Example 3.8 Fitting MA(l) to AR(l) 

Let the true process be (1 - IB)Xt = at' and the assumed model 

Xt = (1 + 9/B)~t. From (3.22), (3.24), (3.25) and (3.30) we find dj == I j
; 

(j = 1,2, •••• ) 

b
j 

= ilo(-Q)il(j-i) = (P'j+l - (-9') (j+t») / (I + 9') 

Also o (j ~ 2) so that a.(l) = 9'b. (j ~ 0) 
J J 

a. (h) = 0 (j ~ 0; h ~ 2). 
J 
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For h ~ 2, 

It can be seen that even in these simple cases the algebra involved in 

obtaining an analytic expression for P(h) can become tedious. A computer 

program was therefore written to calculate (3.34) using the orders of the 

true and fitted models p, q, p' , q'and the pre-chosen parameters 
.I' .1' , I I , P. ,p , ... ,P. ; 9 ,9 , ••• ,9 ; ~ ,p , ••• ,P. ,; 9 ,9 , ••• ,9 I. Table 3.4 

12 P 12 q 12 P 12 q 

contains values of P(h) for arbitrarily chosen parameters in examples (3.5) -

(3.8) whilst Tables 3.5 and 3.6 contain P(h) for some other true and fitted 

models, again with arbitrarily cho?en values for the parameters. 

Table 3.4 shows that certain misspecified models can give forecasts that 

do rather poorly, compared with the correct process, at one or two steps ahead. 

The general picture emerging from table 3.5 is that if one mistakes 

AR(l) for AR(2) or vice versa again one can be quite a long way away from 

optimal forecasts, but MA(l) mistaken for MA(2) or vice versa is not nearly 

so serious an error. 

Table 3.6 shows that mistaking a mixed model of the ARMA (1,1) type for 

MA(l) or AR(l) (or vice versa) can be serious at one step ahead and that 

misspecified parameters in an ARMA (1,1) model have percentage losses which 

get worse and then better as the number of steps ahead one wishes to forecast 

increases. 

TABLE 3.4 

PERCENTAGE LOSS FOR FITTING MISSPECIFIED MODELS (EXAMPLES 3.5-3.8) 

AR ( 1 ) to MA (1 ) AR(l) to MA(2) AR(2) to MA(l) MA(l)to AR(l) 

l=O.5 Q::-0.5 
, , , 

9'=0.5 ~-0.5 h P =0.5 9 =0.2 9 =-0.4 P. =0.2,p =0.4 9::-0.5 
1 2 1 2 

1 106 62.0 62.0 196 
2 6.3 41.8 17.2 6.7 
3 1.6 1.7 3.6 1.6 
4 0.4 0.4 3.7 0.4 
5 0.1 - 0.1 1.2 0.1 
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h 

1 

2 

3 

4 

5 

h 

1 

2 

3 

4 

5 

TABLE 3.5 

PERCENTAGE LOSS FOR FITTING MISSPECIFIED MODELS 
(NON MIXED MODELS) 

AR( 1 )to AR(2) AR(2)toAR(l) MA(l)to MA(2) MA(2)toMA(l) 

~/=0.8; 
I , I 

P. =0.7, 9::0.5; 9 =0.7, 

P. =0.4,1 =0.2 
I 1 I 1 

1 =0. 3;,b0. 5 9 =0.7,9 =0.3 Q =0.3;9::0.5 
1 :a a 1 a :a 

16.7 25.3 9.3 10.1 

7.5 47.9 6.0 7.9 

7.3 62.4 0.0 0.0 

5.4 72.0 0.0 0.0 

4.2 76.9 0.0 0.0 

AR(2)to AR(2) MA(2)toMA(2) AR(2)to MA(2) MA(2)toAR(2) 
, I I I I I I , 

P. =0.6,1 =0.4; 9 =0. 6,fl =0.4 P. =0.1,1 ::;0.4 fl =0. 6,fl =0.4, 
1 :a 1 :a 1 :a 1 :a 

p. =0.5,1 =0.3 
1 :a 

9 =0.5,9 =0.3 
1 :a 9 =0.5,9 =0.2 

1 :a P. =0.5,1 =0.3 
1 :a 

7.7 1.7 27.7 25.4 

14.2 1.0 9.2 41.8 

21.2 0.0 4.6 44.5 

27.9 0.0 3.6 29.4 

34.2 0.0 1.0 19.6 

TABLE 3.6 

PERCENTAGE LOSS FOR FITTING MISSPECIFIED MODELS (MIXED MODELS) 

AR(l)to ARMA(l,l) ARMA(l,l)to AR(l) MA(l)to ARMA(l,l) ARMA( 1,1) to MA(l) 
I 

h ¢b0.8;~0.5,~0.6 
, , 

~0.4,~0.3;,b0.8 
, 
9::0.8;~0.5,Q::0.6 

I I 

~0.4,Q::0.3;Q::0.8 

1 23.5 18.6 20.6 14.5 
2 11.5 29.4 18.3 6.1 
3 11.9 24.1 4.0 1.0 
4 10.4 16.8 1.0 0.1 

ARMA(l,l) to ARMA(l,l) 
I , 

h .b0.6,~0.5;.b0.8,9=0.4 

1 8.2 
2 13.1 
3 12.9 
4 10.7 
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Example 3.8 (continued) 

We return to example 3.8 where we fitted MA(l) to AR(l), but use the 

methods described in section 3.3 to determine the values used for the 
I I 

fitted parameter 9 • Thus we allow 9 to be 

(i) the plim of the Durbin estimator in (3.13), viz 9'= ~/~ + ~) as 

given by (3.18) and 
, 

(ii) the p1im of the least squares estimator, viz that 9 which is the 

appropriate solution of the cubic equation (3.20). 

From (i) and (ii) we calculate P(l) for various values of p in the 

range 0 < ~ < 1 and the results are collected in Table 3.7. (There is no need 

to consider P(h) (h ~ 2), since both models will forecast zero above 1 step 

ahead, so that P(h) (h ~ 2) will be identical for both estimators~ Also, we 

shall see later in theorem 3.1 that P(l) is symmetric in p so that there is 

no need to include results for -1 < P < o. 

TABLE 3.7 

ONE STEP AHEAD PERCENTAGE LOSS FOR FITTING MA 1 TO AR 1 
USING PLIMS OF DURBIN'S ESTIMATOR D AND THE LEAST UARES 

ESTIMATOR L.S. FOR VARIOUS VALUES OF THE AUTOREGRESSIVE PARAMETER 

P 0.9 0.8 0.7 0.6 0.5 0.4 

D 166 59.9 27.1 12.8 5.8 2.4 

L.S. 133 51.9 24.8 12.2 5.7 2.3 

The picture that emerges from this table is very similar to that 

demonstrated in figure 3.1, p63 , where both estimators were plotted over a 

similar range of p. One does far worse with the Durbin estimator, from a 

forecasting point of view, above p of about 0.7. 

This section has developed the idea of percentage loss, P(h), and 

demonstrated how they can be calculated for fitting certain pre-determined 

models to known processes. The last example allowed the parameter in the 

fitted model to be determined by some appropriate or accepted estimation 

procedure which in turn gave the fitted parameter as a function of the 
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parameters in the true process. As we have already mentioned in the 

introduction the fitting and estimation of pure autoregressive models has 

wide appeal and the next section deals with the problem of finding the 

percentage loss when we fit pure autoregressive models where the process 

follows (in general) some other (known) structure. 

3.5 Fitting autoregressives when we allow the parameters to be determined 
by the autocorre1ations of the true process 

The previous section contained examples of misspecified models when the 

parameters of both the true process and fitted model were arbitrarily chosen. 

We have seen in equation (3.4) the logic of allowing pure autoregressive 

parameters to be determined by the autocorrelations of the true process via 

the Yule-Walker equations even when one is misspecifying the model. This was 

further illustrated in examples 3.5, 3.6 and 3.7 where the autoregressive 

parameters so chosen would have minimised the one step ahead percentage loss 

of forecasts. (Bloomfield (1972) has proved these results in general). This 

section considers the consequences of fitting an AR(p) model to an ARMA(p,q) 

process. The results obtained will thus demonstrate how much is lost in terms 

of forecast accuracy when an autoregressive model is fitted to a large sample 

of data generated by an ARMA process. 

Firstly we examine in detail what happens when we fit an AR(p) process to 

a moving average model of order 1. This possibility has been touched upon by 

Box & Jenkins (1973), and we shall return to their example later. 

In general if we fit an AR(p) model, we allow the coefficients 
I I I 

~ ,p , ... ,p.p' to be obtained from the solution of (3.4), namely from 
1 2 

r/' 1 P
1 Pa 1 

p' P
1 

1 P
1 2 

~' = Pa P
1 

1 
3 

p~, Pp'-l P1 
1 

(3.39) 

where the theoretical autocorrelations may be obtained using an algorithm of 

McLeod (1975,1977). 
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Galbraith and Galbraith (1974) have determined the inverses of certain 

patterned matrices of the type in (3.39) so that the exact solution of (3.39) 

is, in theory, possible. If the true process is MA(l), p. = 0, j ~ 2, so that 
J 

(3.39) becomes, simply, 

1.
1 

1 

I.' a 

1 P1 
-1 

P1 
P1 

1 0 0 

= (3.40) 

0 
P

1 

P
1 

1 0 

The easiest way to solve (3.40) is to write out the equations involved in 
, 

full, and to solve for ~j in reverse order, j = p', p'- 1, ••• ,2,1. 

We find 

-(-p )jD I • 

,,' _ 1 p-J 
"'j - Dpl 

I 
j = 1, ••• ,p 

where D is the determinant of an (sxs) matrix with unity on the main diagonal 
s 

and p on the first super and sub diagonals, and D = 1. We can write 
1 0 

I 

D,=pPM, 
P 1 P 

where Mpl satisfies the recurrence relation 

M I - 1/ pM, + M I = 0 
P 1 P-1 p-a 

and so has solution 

M, = sinh( (pi + 1) f3)/sinhf3 
p 

where coshf3 = 1/2p and p :I 1/2. 
1 1 

I 

Hence D,= P P sinh((p'+ l)f3)/sinhf3 and it follows that 
p 1 

Ifp 
1 

so that 

and 

, 
I·=~~~~~~~~ 

J 

has solution 

M,= (p'+ 1) 
p 
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j = 1, ••• ,p 

P :I 1/2 • 
1 

j = 1, ••• ,p I 

(3.41) 

(3.42) 

(3.43) 



If the tru e process has moving average parameter e, so that 

p = e/~ + e2 )the solutions (3.42) may be rewritten in the form 
1 

(1!9)P-U-1)_ gP~(j-l) 
I I 

(l/e)P+l_ gP+l 

I 
j = 1, ••• ,p 

9i1 
(3.44) 

I 
and we see that as p ~ 00, so that the order of the fitted autoregressive 

becomes infinite, for fixed finite j, 

I j p. - -(-9) 
J 

j := 1, •••• 
9 i 1. 

I 

Note also that the solution (3.43) for the Pj corresponds to fitting an 

AR(p) model to the non invertible moving average process of order 1 given by 

Even though we have the exact solution for the AR parameters in (3.43) and 

(3.44), an analytic expression for P(h) from (3.34) in the general case seems 

algebraically intractible. 

A neat expression is possible, however for pel) in fitting AR(p) to the 

boundary non-invertible MA(l) process. 

From (3.22), (3.24), (3.25) and (3.30) 

P,' = p'/(p+l), p' = -(p~1)/(p4-1), ••• , P.I = 

we find, in this case that with 
I 

1 2 P 
(_l)p-l/(p+l) we get after some 

algebra, d = 1, d = 1; o 1 
I 

b = 1, b = l/(p'+l), b = -l/(p+l), ••• , b, = 
o 1 2 P+l 

(-l)P/(p+l), b, . = 
P+J 

o (j ~ 2); 

c = p/(p+l), c = 1/(p+1)2, c. = (-I)j(p+2)j-2/(p+1)j 
1 2 J 

U ~ 2) 

a (1) = p/(p+l), a.(l) = (_l)j-l/(~l) U = l, ••• ,p'), a. = 0 j ~ pi + l. 
o J J 

Hence the loss in forecasting with the AR(p) model is 
00 

pel) = .E (d. - a
J
.(1»2 

J=O J+1 
P 2 = .E (d ...... - a.(l» 

J=o J.... J I 

P 
= (d - a (1»2 + .E (l/p~l)2 

1 0 J=l 

= l/(p+l). 

We note that this is the percentage loss one step ahead incurred in fitting 

an AR(p) model to the extreme case of an MA(l) process. 
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Example 3.9 

Box and Jenkins (1973) in reply to Chatfield & Prothero (1973a), p 341, 

stress that if the true process that a time series follows is MA(l}, for 

example 

Xt = at - 0.8at _
1 

one would prefer to estimate the single parameter 0.8 rather than the many 

autoregressive coefficients in the infinite representation 

Xt + 0.8Xt + 0.64Xt + 0.5lXt + ••• = at 
-1 -2 -3 

If one did fit an autoregressive model, in practice one would choose a finite 

length (p'say), and therefore, asymptotically, the parameter estimates would 

tend to the values given by (3.42) or equivalently (3.44). Table 3.8 gives 

the asymptotic values (plims) of the autoregressive parameters one gets in 

fitting autoregressives to the above moving average process for different 

I values of p • 

TABLE 3.8 

FITTED AR COEFFICIENTS IN FITTING AR I TO THE 
MA 1 PROCESS Xt = at -0.8at _

1 

p P.' 
1 

pi 
2 

1/ 
3 

,5' 
4 

,5' 
6 

,5' 
6 

P.' 
7 

pi 
8 

1 0.49 

2 0.64 0.31 

3 0.71 0.45 0.22 

4 0.75 0.53 0.34 0.17 

5 0.77 0.57 0.41 0.26 0.13 

6 0.78 0.60 0.45 0.32 0.20 0.10 

7 0.79 0.61 0.47 0.35 0.25 0.16 0.08 

8 0.79 0.62 0.49 0.37 0.28 0.20 0.13 0.06 

00 I 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17 
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It is clear that the first three or four fitted parameters get close to 

the corresponding ones in the infinite autoregressive representation for 
, 

moderately small p. 

A measure of how much one would lose from a forecasting point of view is 

given by P(h) defined in (3.34). Table 3.9 contains values of the percentage 

loss of forecasts calculated using the asymptotic parameter estimates given 

in Table 3.7. 

TABLE 3.9 

PERCENT h-STEP LOSS FOR FITTING AR TO THE 
~l PROCESS Xt = at - 0.8at _

1 

I p 

h 1 2 3 4 5 6 7 8 

1 25.0 12.8 7.3 4.3 2.7 1.7 1.0 0.6 

2 5.7 3.0 1.7 1.0 0.6 0.4 0.2 0.1 

3 1.3 2.4 1.5 0.9 0.6 0.4 0.2 0.1 

4 0.3 1.1 1.3 0.9 0.6 0.4 0.2 0.1 

It can be seen the loss incurred in fitting only, say, an AR(4) model is 

surprisingly low, the worst case throughout being at one step ahead. Even for 

only fitting an AR(l) model, above one step ahead the loss incurred is again 

surprisingly low. We investigate this latter phenomenon by determining P(h) 

for fitting an AR(l) model to various MA(l) processes using (3.44). In this 

case, of course, Pl is given by Pl. 

P(h) for h = 1,2,3 and various Q values in the model 

are plotted in figure 3.2. The general picture that emerges is that P(h) is 

symmetric in Q (see later, p77 ,where this is generalised slightly) and 

that for 2 or more steps ahead very little is lost in using an AR(l) model 

to forecast, this loss being always less than 7%. Even at one step ahead 

for Q values as large as ± 0.6, the percentage error is less than 10%. 
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FIGURE 3.2 

P(h) FOR FITTING AR(l) TO MA(l) FOR VARIOUS 
f) VALUES 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 
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3.6 A property of P(h) for fitting autoregressive models to ARMA(p,g) 
processes 

0.8 9 1.0 

It was noted in Example 3.9 that P(h) was symmetric in Q for fitting AR(l) 

to an MA(l) process. We now show this property is a special case of the 

following more general result concerning fitting a general AR(p) model to any 

ARMA(p,q) process. 

Theorem 3.1 

If an AR(p) model is fitted to the ARMA(p,q) process 

in the manner given by solving the Yule Walker equations as in (3.39) and the 

process parameters l (i = 1,2, ••• ,p), 9. (i = 1 ,2, ••• ,q) are changed to 
1 1 

(_l)ipf. (i = 1, ••• ,P), (_l)iQ• (i = l, ••• ,q), then the percentage losses 
1 1 

given by (3.34) in each case are identical. 
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Examples Fitting AR(p) to: 

(a) 

an MA(2) process Xt = at + Q at + Q at 
1 -1 a-a 

(b) 

an ARMA(l,l) process Xt - p. Xt = at + Q at 
1 -1 1 -1 

(c) 

an ARMA(1,2) process Xt - p. Xt = at + e at + e at 
1 -1 1 -1 2-2 

The theorem applied here means P(h) will be identical for processes 

(d) 

for which we fix Q and vary I. and Q as in (b). 
2 1 1 

an ARMA(2,1) process X _.J X _.J X - a +" a t ,101 t-l ,10 at-a - t ~l t-l 

Similar reasoning as in (c) after fixing ¢' • 
2 

Proof of Theorem 3.1 

To prove the theorem we need a few preliminary results concerning the 

solution of equations of the Yule-Walker type, on which the pi autoregressive 

parameters rely. These are given in Lemmas 3.1,3.2,3.3,3.4. 

Lemma 3.1 

Consider solving the equations (finite or infinite in number) 

1 e e . . . d K 
1 2 1 1 .. 

f 1 e d K 
1 1 2 2 

f f 1 d K (3.46) 
2 1 3 = 3 

In (3.46) replace e
1
. by (-1)i e1., f. by (_l)i f . and K. by (_1)i K. 

111 1 

(i = 1,2,... ). If we now multiply all odd rows by -1, the new equations 

that have to be solved are 
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, 
-1 e -e e . , . d

1 
K 

1 2 3 1 

-f 1 -e e d' K 
1 1 2 • 2 2 

-f f -1 e d' = K 
2 1 1 . 3 3 

-f 1 
1 

which may be equivalently written 

I 
1 e e e -d K 

1 2 3 1 1 

f 1 e e d' K 
1 1 2 2 2 

f f 1 e -d' = K (3.47) 
2 1 1 3 3 

f f f 1 d' 
3 2 1 4 

From (3.46) and (3.47) we see that if d ,d , ••• are the solutions of 
1 2 

(3.46) the changes (e. ~ (_l)i e., f. ~ (_l)i f ., K. ~ (_l)iK.) (i = 1,2, ••• ) 
11111 1 

yields solutions (_l)id. (i = 1,2, ••• ). 
1 

Note that if e. = f. = K. = p. (i = 1, ••• ,P'), and d. = p.1 (3.46) 
111 1 1 1 

becomes the Yule Walker equations described by (3.39). 

Lemma 3.2 

The infinite MA representation of· the ARMA(p,q) process is given by 

(3.22), viz 

where 

Xt = d(B)at 

p 
9. = d. - .I; .I.d .. 

J J 1=lJ01 J-1 
j = O,l, ••• ,q 

d. = 0, j < ° 
J 

Equations (3.48) may be written in matrix form 

1 ° 0 ° d 9+p,' 
1 1 1 

-p, I d f>+p 
1 :3 :3 :3 

-~ -p, 1 d = Q+~ 
2 1 3 3 3 

-~ -~ -p, 1 
3 2 1 

-I p 
o -I p. 

~ 
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which is in the form (3.46) with 

e. = 0 
1 

f. = {-Pi 
1 0 

(i = 1,2, ••• ) 

(i = 1,2, ••. ,p) 

(i > p) 

[

9. + p. i = 1,2, ••• ,min(p,q) 
1 1 

K.= 9i i=p+1, ••• ,q if q>p 
1 

p. i = q+1, ••• ,p if P > q 
1 

o elsewhere 

so that we may apply lemma 3.1 and conclude that if we dep1ace 9i by 

(_1)i9., I. by (_l)il., the infinite MA representation of the new process has 
1 1 1 

moving average coefficients given by (_l)id. i = 0,1,2, •••• 
l. 

It therefore follows that since 

co co 

Pk = j~odjdj+k/j~odj2 k=O,l, •••• 

and if we replaced. by (-l)jd., then 
J J 

co j j+k co 2 
.E (-1) d.(-l) d.+k/.E d. 
J=O J J J=O J 

k co co 2 = (-1) .k d.d.+k/.k d. 
J-O J J J-O J 

= (-l)kPk 

(3.49) 

i.e. 9
i 
~ (-1)i9i 

and Pi ~ (-l)ipi 

(i. = 1, ••• ,p) 1 
implies P

k 
~ (-l)kPk k = 0,1, ••• 

(J = 1, .... ,q) 

This leads us to Lemma 3.3. 

Lemma 3.3 
I 

Using the results in Lemma 3.1 with e. = f. = K. = p. and d. = p., we get 
1 1 1 1 1 1 

that if Pk ~ (-l)kPk (k = 0,1, ••• ) 

p: ~ (_l)ip: . (i = 1,2, •••• ~) 
1 1 

Hence combining this result with lemma 3.2, if the fitting of an AR(P') 

model to an ARMA(p,q) process yields, asymptotically, autoregressive 
, I 

parameters P
1 

,P
2

' ••• ¢,', the transformation of the parameters Q. ~ (_1)i 9 . 
P 1 1 

(i = 1, ••• ,q) and Pi - (_l)ip. (i = 1, ••• ,p) yields autoregressive 
1 

I 

parameters -¢,', P I, -I. I, ••• (-l)P¢, I, in the equivalent AR(P') fit. 
1 2 3 P 
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Thus our main theorem will be proved if we can show that under the 
I • I 

transformation of the autoregressive parameters l .... (_1)1.¢'. , P(h) is 
1 1 

unchanged. This we do in Lemma 3.4. 

Lemma 3.4 

From (3.33), viz 
, 

P(h) _ V(h) - V(h) 
- V(h) 

we need only show that the numerator is unaltered by the parameter 

transformations, since, in Lemma 3.2, we showed V(h) was unaltered. 

From (3.32), 
, ~ 

V(h) - V(h) = .~ (d.+h - a.(h))2 Ga
2 

J=O J J 

j 
where, from (3.30) aj (h) = ~o ch+.tbj_.t, 

and the coefficients cj and bj are determined by (3.24) and (3.25). 

Since we are fitting AR(p) , we get from (3.24) 

yielding the recurrence relation 
, 

p I 

c. = .~ ¢. c .. 
J 1=1 1 J-1 

and from (3.25) 

b(B) = ~(B)d(B) 
yielding the recurrence relation 

b. = d. 
J J 

, 
p , 
.~ "'. d .. 
1=1 J0 1 J-1 

j = 0,1, ••• 
c. = 0, j < ° 

J 

j = 0,1, ••• 
d. = 0, j < ° 

J 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

Expression (3.52) is very similar to equation (3.48) in Lemma 3.2, so 

that using similar reasoning we get that the transformation .¢'.' .... (_l)i.¢'.' 
1 1 

implies c ..... (-l)jc .• 
J J 

Also, in (3.53) putting dj 
J
. I • I 

.... (-1) d. and ;f . .... (_1)11. , it follows that 
J 1 1 

these imply bj .... (-l)jbj , and therefore 

j h+ 1, j-I • .tEo (-1) ch+ 1, ( -1) -b j - 1, 

j+h j 
= (-1 ) j~ 1, ch+.t,b j - 1, 

= (_l)j+h a. (h) 
J 
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by (3.51). 

Hence ~.' .... (_l)i~.' implies a.(h) -0 (-l)j+ha.(h) so that, finally, 
1 1 J J 

from (3.50) and the results in Lemma 3.2, 

CD j+h ·+h 
.1; ((-1) d.+h - (_l)J a.(h))2cr 2 
J-O J J a 

CD 

= .E (d.+h - a.(h))a 2 J=O J J a 
I = V(h) - V(h); 

I 

i.e. V(h) 
, • I 

V(h) is unaltered by the transformation ~ ..... (_l)lp. , and 
1 1 

therefore, so is P(h). 

We have thus proved Theorem 3.1. 

The usefulness of this theorem lies in the fact that when we want to 

examine different values of P(h) for fitting AR(p) to ARMA(p,q), the range 

of values of the autoregressive-moving average parameters I, ,~ , ... ,1, ; 
1 2 P 

~ ,~, ••• ,~ considered will not have to be so large owing to the identical 
1 2 q 

values taken by P(h) under the transformations p ..... (_l)ip . , g. -0 (_l)i Q .• 
111 1 

3.7 Percentage loss for fitting AR(p) models to ARMA(p,g) processes 

Some processes reported in the literature 

We first consider two examples of fitted series reported in the literature 

and examine what happens to P(h) when we successively fit higher and higher 

order autoregressive processes to them. 

Box and Jenkins (1970), p 293 have analysed series A (Chemical Process 

Concentration Readings, p 325) and found the observations to fit the ARMA(l,l) 

process given by 

Xt - 0.92Xt _
1 

= 1.45 + at - 0.58at _
1 

For our purposes we assume the two parameter values estimated are the 

actual values that the process possesses. We note in passing that the infinite 

autoregressive representation of the above process is (ignoring the constant 

1.45) 

(1 - 0.34B - 0.197B2 
- 0.114B3 

- 0.066B4 - 0.039B6 ••• )X = a 
t t 

I ./' ,,' I For fitting AR(p), allowing the parameters p. ,p , ••• ,~ ,to be determined 
1 2 P 

by (3.4) and (3.39), the results of successive fittings are collected in 
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Table 3.10. 

TABLE 3.10 

FITTED AR COEFFICIENTS IN FITTING AR~El TO 
Xt - 0.92Xt _

1 
= at - 0.58at _

1 

, 
~' ~' /;' ~' ~ , ~' ~' ~' P 1 :a 3 4 6 6 7 8 

1 0.59 

2 0.41 0.30 

3 0.36 0.23 0.17 

4 0.35 0.21 0.13 0.10 

5 0.34 0.20 0.12 0.08 0.05 

6 0.34 0.20 0.12 0.07 0.04 0.03 

7 0.34 0.20 0.12 0.07 0.04 0.03 0.02 

8 0.34 0.20 0.11 0.07 0.04 0.02 0.01 0.01 

Note that the first few autoregressive parameters home-in very quickly 

to the corresponding ones in the infinite AR representation, so that we might 

expect P(h) to be low if we, say, fitted an AR(2) or AR(3) process to the 

series A and used that to forecast it. 

This is confirmed in Table 3.11 where P(h), calculated using the computer 

program with the AR parameters given in Table 10, are reported for different 

h. 

h 

1 

2 

3 

4 

5 

6 

TABLE 3.11 

PERCENT h-STEP LOSS FOR FITTING AR ' TO ruE 
ARMA 1,1 PROCESS X

t 
- 0.92X

t
_

1 
= at - 0.58at _

1 

p' 

1 2 3 4 5 6 7 8 

14.3 4.2 1.4 0.4 0.1 0.1 0.0 0.0 

16.6 5.5 1.8 0.6 0.2 0.1 0.0 0.0 

20.7 5.0 2.0 0.7 0.2 0.1 0.0 0.0 

21.8 5.9 1.7 0.7 0.3 0.1 0.0 0.0 

20.9 6.5 1.9 0.6 0.3 0.1 0.0 0.0 

18.9 6.9 2.0 0.6 0.2 0.1 0.0 0.0 

Note that if one fitted an AR(3) model at no stage does the percentage loss 
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become more than 2% and for an AR(4) model it is no more than 1%. 

At first sight, then,the above example seems to imply, in spite of 

the fact that the series identified was nearly non-stationary, a sufficiently 

high autoregressive will do practically as well as the true model, 

asymptotically, from a forecasting point of view. 

A series which has created a certain amount of controversy after analysis 

of Jenkins and Watts (1968) and Box and Jenkins (1970), p 410 is the well 

known gas furnace data. Chatfield (1977) has pointed out a number of problems 

with the analyses and conclusions concerning the model fitted by both pairs 

of authors. We shall assume that the process follows the ARMA(4,2) model, 

identified and estimated by Box & Jenkins (1970), p 409, 

(1 - 2.42B + 2.38B2 
- 1.l6B3 + 0.23B4 )Xt = (1 - 0.31B + 0.47B2 )at 

and fit successively higher order AR processes and examine P(h) in each case. 

The theoretical autocorrelations for the above process were calculated within 

the computer program for P(h) according to McLeod (1975,1977) and used to 

" I determine the fitted AR coefficients ~ ,p , ... ,¢, I' which are given in Table 
1 2 P 

3.12. 

p 

1 

2 

3 

4 

5 

6 

TABLE 3.12 

FITTED AR COEFFICIENT IN FITTING AR(p/) TO THE 
GAS FURNACE DATA MODEL 

¢" pi 
1 2 

I' pi 
3 4 

0.77 

1. 65 -0.80 

2.20 -1.69 0.46 

2.10 -1.34 0.01 

2.13 -1.34 -0.17 

2.11 -1.27 -0.20 

0.21 

0.50 

0.32 

l 
6 

l 7 

-0.14 

0.15 -0.14 

¢" 
a P' 

9 

7 2.11 -1.27 -0.21 0.32 0.18 -0.18 0.02 

8 

9 

10 

2.11 -1.26 -0.22 0.30 

2.11 -1.26 -0.22 0.30 

2.11 -1.26 -0.22 0.29 

0.19 -0.09 -0.13 0.07 

0.19 -0.09 -0.11 0.05 0.01 

0.19 -0.08 -0.12 0.01 0.07 -0.03 

The infinite AR representation of the process is 

(1 - 2.11B + 1.2682 + 0.2283 
- 0.29B4 

- 0.19B6 + 0.0886 + 0.1687 
••• )X

t 
= at 
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so that from Table 3.12 we see that an AR(8) fit virtually gets the first 

6 autoregressive parameters correct. Table 3.13 gives values of P(h) for all 

the autoregressive fits given in Table 3.12. 

TABLE 3.13 

at 

, 
p 

h 1 2 3 4 5 6 7 8 9 10 

1 796 131 9.3 4.6 2.6 0.7 0.6 0.1 0.1 0.0 

2 390 155 8.2 6.1 2.5 0.9 0.7 0.1 0.2 0.0 

3 187 144 6.0 6.0 2.0 0.9 0.6 0.1 0.2 0.0 

4 95.0 130 4.0 5.5 1.5 0.8 0.5 0.1 0.1 0.0 

5 51.8 119 2.5 5.0 1.1 0.7 0.4 0.1 0.1 0.0 

6 30.5 109 1.6 4.7 0.8 0.7 0.4 0.1 0.1 0.0 

Not surprisingly, autoregressive fits of order below 4 do not do very well, 

but fits above order 6 have very low percentage loss. It thus appears (not 

surprisingly) from these two examples, that it is the moving average parameters 

that really affect P(h) to the greatest extent. In both examples the MA 

coefficient values were not very large so that further series need to be 

examined where the MA coefficients are nearer the non-invertible boundary in 

addition to studying the affect (or lack of it) of any autoregressive 

coeffi cients. 

Processes that are pre-chosen 

There seem to be very few stationary ARMA(p,q) processes which have been 

identified, estimated and reported in the literature (we consider non 

stationary processes in sections 3.9 and 3.10), so that a study of auto­

regressive fitting in the manner indicated above (with a view to looking at 

P(h)) to known identified time series in the ARMA(p,q) class is only possible 

by self choice of such processes. Problems of estimation for these chosen 

series in the fitted model are dealt with in section 3.8 • 
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Percentage loss for fitting AR(p) models to MA(2) processes 

If the true process is MA(2) given by 

Xt = at + 9 at + 9 at 1 -1 2-2 

the choice of values for the parameters 9 ,9 is restricted by the 
1 2 

invertibility conditions 

9 + 9 >-1 
1 2 

f) - f) < 1 
1 2 

-1 < f) < 1 
2 

(3.54) 

(see Box & Jenkins (1970), p 70 and Granger and Newbold (1977), p 142). 

From Theorem 3.1, once f) has been fixed we need only consider positive 
2 

values (say) of 9 , for P(h) will be symmetric in f) for fixed f) • 
1 1 2 

The chosen parameter values and calculations of P(h) (using the computer 

program) are collected in Table A3.I, page 115. Note that the relevant 

figures are the upper ones in each cell of that table. 

As might be expected one does worse when the MA coefficients are near the 

boundary of the invertibility region; this is especially so at one step ahead 

even for an AR(4) fit. Since Parzen (1969) has advocated fitting a high order 

autoregressive to any series for his spectrum estimation, it seems worthwhile 

to look at such fits when they are made to near boundary invertible processes. 

Since one would rarely consider fitting an autoregressive above an order of 

about 10, some near non invertible processes were chosen from Table A3.1, and 

AR models up to order 10 were fitted. Table A3.2 contains the one step ahead 

percentage losses and Table A3.3 the corresponding values of the AR 

coefficients. 

We see that the high pel) values are reflected by the very slow dying out 

of the fitted autoregressive coefficients which, of course, are a direct 

result of the MA coefficients being near the non-invertibility boundary. The 

latter situation could arise if one ~ differenced a time series e.g. if 

one differenced a series that did not need differencing, the moving average 

coefficients of the differenced series would be that much closer to the non 

invertibility boundary. Any autoregressive fit to the resultant series (as 
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would be the case if one wished to use the Parzen (1969) spectrum 

estimation procedure) would suffer from a very slow dying out of the fitted 

coefficients. 

These results then demonstrate that, at least in theory, there exist 

simple two parameter time series models for which high order autoregressives 

would give grossly sub-optimal forecasting performance. However, as can be 

seen in Table A3.l, one has only to move a short distance into the 

invertibility region before AR(4) models give satisfactory forecasts when 

the true process is MA(2). 

Percentage loss for fitting AR(p) models to ARMA(l,2) processes 

We now examine the effects of including an autoregressive parameter, in 

addition to two moving average ones, when evaluating the percentage loss for 

fitting AR(p) models to such processes. If the true process is 

Xt - ~ Xt = at + e at + 9 at 1 -1 1 -1 2-2 

we shall need the invertibility conditions (3.54) on the moving average 

parameters e , 9 , with the usual stationarity condi tion II. I < 1. 
121 

From Theorem 3.1 and example (c), p 78, for fitting AR(p) models and 

examining P(h), once 9 is fixed, P(h) will be identical for the pairs of 
2 

values (I. ,9 ), (-p, , -9 ) and (-p. ,9 ), (p. ,-9 ). Hence we need only 
1 1 1 1 1 1 1 1 

consider positive values of p. • 
1 

Calculations of P(h), using the computer program, for different values of 

J Q and Q are given as the upper figures in each cell of Table A3.4, 
J01 , 1 2 --

pagel17. We notice again that the P(h) values are particularly large near the 

boundary of the invertibi1ity region, whatever value of p. we have but at 4 
1 

steps ahead the boundary values have a less marked affect. Processes for 

which P. = 0.4, 9 = 0.2, Q = 0.4 (say) have P(h) values which are less than 
112 

10% for any autoregressive fit. 

and 

We note also that the P(h) values for the processes 

(1 - 0.4B)Xt = (1 - 1.4B + O.4B2 )at 

(1 - 0.8B)Xt = (1 - 1.8B + 0.8B2 )at 

(3.55) 

(3.56) 

are the same. That this must be so can be seen by noting that the right hand 
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side of (3.55) may be written (1 - B)(l - 0.4B) and the right hand side of 

(3.56) as (1 - B)(l - 0.8B) so that the processes represented by (3.55) and 

(3.56) are equivalent to the non invertible MA(l) process 

Xt = at - at _
1 

by cancelling factors on both sides. 

A closer look at the near boundary invertible processes is provided in 

Tables A3.5 and A3.6. pel) is calculated for autoregressive fits up to order 

10 together with the fitted coefficients. The same picture emerges as in the 

pure MA(2) process in Tables A3.2 and A3.3, namely that one can do really 

quite badly even for an AR(lO) fit when one is dealing with certain ARMA(1,2) 

processes. 

Percentage loss for fitting AR(p) models to ARMA(l,l) processes 

We have already seen in the first example of section 3.7 that not very 

much is lost from the point of view of P(h) when one fits AR(p) to an 

ARMA(l,l) process which has an autoregressive parameter near the non stationary 

boundary with the moving average parameter near to 0.6. Therefore, in the light 

of the results so far we would expect the moving average coefficient to have a 

greater influence on the value of P(h} than the autoregressive coefficients. 

These suspicions are borne out by examination of the ~ figures in each 

cell of table A3.7, which gives the P(h) values for fitting AR(p) to the model 

Xt - p. Xt = at + 9 at 1 -1 1 -1 

over different values of (p, ,9 ). Again, we use Theorem 3.1 to cut down the 
1 1 

number of pairs of (p. ,9 ) we need look at. Again, most is lost one step ahead, 
1 1 

but apart from near boundary value cases of the parameters, fitting an AR(4} 

model can yield surprisingly low values of P(h). For example with 9 = + 0.75 
1 -

and any I. the percentage loss one step ahead is no more than 5%. 
1 

I 
Percentage loss for fitting AR(p) models to ARMA(2,l) processes 

If the true process is 

we shall need, for choice of values of p.,~ and 9 , the stationarity 
1:3 1 
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conditions 

12 + P1 < 1 

12 - 11 < 1 

-1 < 1 < 1 
2 

together with the usual invertibility condition 19 I < 1. (See Box & Jenkins 
1 

(1970), p 58.) 

From Theorem 3.1, for examining P(h), once 1 is fixed, P(h) will be 
2 

identical for the pairs of values (I. ,9 ), (-I. ,-9 ) and (-~ ,9 ), (I. ,-9 ). 
1 1 1 1 1 1 1 1 

Hence we need only consider positive values of Q • 
1 

Table A3.8 contains calculations of P(h) for different (I. ,I ,9 ) and 
1 2 1 

different autoregressive fits. The most striking featUre of these results is 

that if one fitted an AR(4) model, the most one could lose for any ARMA(2,l) 

process given in Table A3.8 is a little over 12%, this being at one step 

ahead. At two steps ahead this figure is a little over 5%. In these cases it 

appears to be (as expected) the high value of the moving average parameter 

which is the major factor that causes the P(h) to be high. 

Conclusions concerning fitting AR(p) models to ARMA(p,g) processes 

The results of this section seem to imply that when one fits a high order 

autoregressive to a known process, the asymptotic loss from a forecasting 

point of view will be low if any moving average parameters are well within 

their invertibility boundary values. In the latter case all that seems to 

matter is to get the order of the fitted autoregressive model two or three 

above the order of the autoregressive parameters in the true process. 

However, if any of the moving average parameters are near their 

invertibility boundary values a great deal can be lost, asymptotically, even 

for fitting autoregressives with an order as high as 10. 

It appears, then, that very often relatively little is lost if one fits 

autoregressive processes to mixed ARMA processes, and that typically only one 

or two additional parameters are required to produce forecasts which are 

almost as good as the optimal. Exceptions to this assertion arise only when 

the true process has moving average parameters close to or on the boundary 
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of the invertibility region. In such, fairly rare, cases even high order 

autoregressives can produce grossly sub-optimal forecasts. 

We have assumed in this section that no estimation error will be present 

in either the fitted model or the true process since we have taken both to 

be "known". This is, of course, unrealistic and consideration is given to 

the estimation problem in the next section. 

3.8 Percentage loss for fitting AR(p) models to ARMA (p.g) processes 
taking estimation error into account in the fitted model 

Yamamoto (1976a) has given a manageable expression for the asymptotic 

mean square error (a.m.s.e.) of prediction h steps ahead when one fits an 

autoregressive model to a process which is known to be autoregressive (with 

the same order as the fitted model). His work extends that given previously 

by Bloomfield (1972), Bhansali (1974) and Schmidt (1974). 

We now extend Yamamoto's methods to determine the a.m.s.e. when an 

AR(p) model is fitted to any ARMA (p,q) process, taking into account 

estimation error in the fitted coefficients. The fitted AR(p) model is a 

special case of (3.23) namely 

(3.57) 

where we assume Xt follows the process (3.21), and the fitted coefficients 

¢./,p", ••• ,~', are obtained from (3.39). 
1 2 p , 

Defining Xt = (Xt,Xt , ••• ,Xt I ) , 
,." -l -p+1 !t = (~,O, .•• ,O) 

A= 

¢.' P.' 
1 2 

1 0 

o 1 

o o 1 0 

we may write (3.57) in the equivalent form 

Xt = AXt + n. 
,... N -1 ... 't 

Noting the recursive nature of (3.59) we may write 
Q) • 

X = .E AJ n. 
.... t J=o -'t-j 

I 

and 

so that from (3.24) we get that the (l,l)-element of Aj 
1° s c F .• rom 

J 

(viz the optimal least squares forecast based on the fitted model) 
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IX) 

g h = .E c. h T1 • n, J=o J+ n-J 

and defining the (p'x 1) column vector e;= (1,0, ••• ,0) we may write 

IX) , (j+h) 
g =.E e A T'\. n,h J=O,.., -n-J 

IX) h. 
I J = .E e A An. J=O ,., .... n-J 

, h IX) j = e A jE A T1 • 
... =0 -n-J 

(3.61) 

where we have used (3.60). The predictor (3.27) or equivalently (3.61) assumes 

we know the coefficients I' = (~' ,p,', ••. ,~',) , whereas in practice a least 
- l:a p 

squares fit will only provide estimates 1'= (pip~, ... ,$;) • Defining 

a'(h) = e' Ah 
,.. -

we write A as the matrix (3.58) with $;,p;, ... ,P~, replacing Il',I:, ... ,I~, 
so that the predictor (3.61) with estimated coefficients becomes 

" '''h g h=eAX n, ,.. "'n 

= a '(h) x (say) (3.62) 
~ -n 

Following Yamamoto (197~ we form a Taylor expansion of (3.62) around 

f = I , obtaining ,.. ,.. 

9 h = a'(h)X + (f - I)'[hlh.)] X + higher order terms n, IV ,.n - - ~ ..... n 

= g h n, X + higher order terms ... n 

where the higher order terms are O(l/n). Also, Yamamoto shows that 

[ai~h)] (~ ~. say) is the first (p'x p) submatrix of 

h-l 
. E (A' j 0 A h-l - j ) 
J=O 

where ® is the Kronecker product. 

From (3.63) and (3.61) we may write, approximately, 

(Xn+h - 9n,h) = (Xn+h - gn,h) + (! - !)/~ ~n 

= (Xn+h - fn,h) + (fn,h - gn,h) + (! - !)'~~n 

(3.63) 

(3.64) 

(3.65) 

where f h is defined by (3.26), namely the optimal forecast from a correctly n, 

fitted model. We have shown in Section 3.4 that the first two terms of (3.65) 
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are uncorrelated; the first and last terms will also be uncorrelated since 

the former involves future values of the shock series generating the Xt ' 

whilst the latter only involves past values. 

We now assume {as does Yamamoto (1976a)) that the observations used for 

prediction are uncorrelated with those used in estimating the 1.',p', ... ,I.', 
1 2 P 

in I. In other words we assume f is based on distant observations, so that 
~ ~ 

,.. . 
1 IS ,.. 

{I -,.. 

can 

independent of X • Since (X +h --n n , 
i) M X we will have established ... -h n 

establish that (Xn+h - gn,h) is. 

f h) is uncorrelated with n, 

that (f h - g h) is, also, n, n, 

Thus we need to show, asymptotically, 
, 

E[ (t - !) ~~n (Xn+h - gn,h) ] = 0 

if we 

(3.66) 

But, by the assumption above, f is independent of X , and g h only involves - ~n n, 

~n. Further, since Xn+h is even more distant, it is certainly independent 

of f. Hence (3.66) is 

Asymptotically the first term in this expression is zero and so the result 

is proved. 

Hence, taking variances throughout (3.65), we get, asymptotically, 

" writing the left hand side of the expression as V (h), 

" V(h) = V(h) + V(g h - f ) + V 2 n, n,h h 

= Vi (h) + v
h

2 (3.67) 
I 

where V(h), V(h) are defined in (3.32) and 

vh
2 = E[~~ ~ (! - !) (f - !) ~~n] 

Define E[~n~~] = E. Then, since EBf - !)(f - !)] = Vi ' where Vi is 

given by (3.9), and, assuming as before that t and X are uncorrelated, 
N -n 

we get 

Vh
2 = Tr(~ Vi ~E) 

From (3.67), we can obtain 

" V(h) - V(h) 
V(h) 

, V 2 

= V(h) - V(h) + h 
V(h) VTh) 

V 2 
h = P(h) + V(h) 
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where P(h) is defined by (3.33). Writing the left hand side of (3.69) as 

" P(h) we get 
1\ 

P(h) = P(h) + vh
2 /V(h) 

and so the proportionate loss for an estimated model will be the 

proportionate loss for the wrongly fitted model plus Vh
2 /V(h). 

Of course, if we assume we are estimating an AR(p) process, 

g = f n,h n,h 

and so from (3.67), we get approximately, 
1\ 

V(h) = V(h) + vh:a 

where Vh
2 = Tr(~I:-1hhI:)aa:a/n, 

(3.70) 

(3.71) 

since nVf = I:-1aa
2 (Box and Jenkins (1970), pp 274-284). Equation (3.71) is 

the equivalent of equation (4.5) given by Yamamoto (1976a), p 125. 

Example 3.10 Fitting AR(l} to MA(l) 

Let the true process be Xt = at + 91 at _
1 

• 

From (3.39) in Section 3.5 ~ ~ = p , the matrix A defined by (3.58) is 
1 1 

I 
a scalar, i.e. P1 ' and hence for (3.61) we have 

so that a'(h) = P,'h = ph. 
,.., 1 1 

Therefore M is a scalar, viz hP h-l 
-h 1 • 

Also, 

I: = var[X ] = (1 + e 2)a 2 n 1 a 

and from example 3.2 

n VA = n var[¢:' ] 
t 1 

= (1 - P 2(3 - 4p 2)} 
1 1 

It therefore follows that 

V
h

2 = h2p2(h-l)(1 - P 2(3 _ 4P 2»(1 + 9 2)a 2/n• 
1 1 1 1 a 

so that from (3.70) 

A 

P(h) = P(h) 

where P(h) is, from example 3.5 given by 
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P(l) = (p - 9 )2 + 9 2p 2 
1 1 1 1 ' 

h ~ 2. 

Note also that V(h) = (1 + 9 2)0 2 (h ~ 2) so that 
1 a 

P{h) = p2h + h2p2(h-l)(1 _ P 2(3 _ 4P 2))/n. 
1 1 1 1 

In the most extreme case, 9 = 1, and we find 
1 

1\ 

p(l) = 1/2 + lin 

;.. 

P(h) = (1/2) ah + h2 (1/2) a (h-l ) .1/2n. } 

= (1/2)ah(1 + 2h2 /n) 

(h ~ 2) 

h ~ 2 

Evaluation of Percentage loss taking estimation error into account 
1\ 

To evaluate P(h) given by (3.70) the additional work needed over the 

previous calculations of ~(h), given by the computer program and reported 

in Tables A3.l - A3.8 as the upper values in each cell, is to determine vh
2 

from (3.68). E, the (p'x p) variance covariance matrix of the parent process 

is available from an algorithm given by McLeod (1975, 1977) whilst Vf 

involves programming, in general, its definition given by (3.9), which in 

turn involves programming the variance covariance matrix of the sample auto-

correlation for any ARMA(p,q) process as given by Anderson (1971), p 489. The 

latter is relatively straight forward to obtain given sufficient of the 

theoretical autocorrelations of the true process obtained from McLeod's 

algori thm. 

As noted previously, ~ is the first (piX p) matrix of a certain Kronecker 

product (3.64). The whole matrix from which ~ is obtained would therefore be 

(p/2 x p/2) and 50 if one were to calculate all of this matrix one would have 

to be working with (for example) (64 x 64) matrices even for an AR(8) fit. 

Since this is undesirable from a computing point of view, we give the following 

simplification that may be used to obtain Mh in a computer program. 

From (3.64) consider the first (piX p) submatrix of A'j®Ah- 1
-

j • Using 

the definition of Kronecker product this will be the (1,1) element of Aj 

times Ah-1
-

j • Now the (1,1) element of A/j must be the same as the (1,1) 
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element of Aj, which we noted from (3.60) and (3.24) is the jth 

coefficient in the infinite moving average representation of the process 

after fitting AR and replacing the corresponding coefficients by their plims, 

namely c., (the c. is the jth term in the expansion of the asymptotic fitted 
J J 

process and defined by equation 3.24). 

cj 

It follows that the first (p'x p) submatrix of A/j~ Ah-1
-

j will be 

Ah-1
-

j and so from (3.64), 

h-l . 
h-l-J 

M. = .r: c.A 
-h J=O J 

(3.72) 

The coefficients cj (j = 0,1,2, ••• ) will already have been calculated 

in the program to obtain P(h) so that given these it is a straightforward 

matter to program (3.72). 

Com utational results e losses takin estimation error into 
account in the fitted 

We calculate percentage losses P(h) in this section according to equation 

(3.70) where the sample size, n, is needed. We note that it is only in the 

added factor Vh
2/V(h) that we require n and so, given a specific model for 

1\ 

which we have already calculated P(h), once P(h) is found for a certain n, 

'" it would be a straightforward matter to determine P(h) for any other sample 

size. Throughout this section we use n = 50. 

Example 3.9 (continued) 

Initially, we refer to example (3.9) where the possibility of fitting 

AR(p) models to the MA(1) process 

was considered, percentage losses from P(h) defined in (3.34), being given 

in Table 3.9. From that table we note, in particular that, as is to be expected, 
I 

P(l) decreases steadily as the order of the autoregressive fit, p, increases. 

Table 3.9(A) contains values of the percentage loss of forecasts ,. 
calculated from P(h) defined in (3.70), taking estimation error into account 

I 

in the fitted AR(p) models. 
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h 

1 

2 

3 

4 I 

TABLE 3.9(A} 

PERCENT h-STEP LOSS FOR FITTING AR ' TO THE 
MA 1) PROCESS Xt= at - 0.8at _

1 
(TAKING ESTIMATION ERROR INTO ACCOUNT) 

I 

P 

1 2 3 4 5 6 7 

26.7 17.5 13.4 12.7 12.7 13.8 15.0 

6.6 7.3 7.3 9.4 10.6 12.8 14.4 

1.9 4.5 5.4 7.4 8.6 10.8 12.4 

0.5 1.7 3.6 5.1 6.7 8.8. \10.4 

" 

8 

16.7 

16.5 

14.6 

12.6 

At one step ahead we see that P(l) first decreases and then increases. Thus, 

there exists a point where the order of the autoregressive fit is optimal 

for one step ahead forecasting, and more will be lost, asymptotically, from 

a forecasting point of view, if further autoregressive coefficients are 

included in the fitted model. Clearly, in the above example the optimal order 

of fit would be around 4 or 5, the minimum percentage loss being about 13%. 

A similar pattern is also apparent for other moving average parameters 

when AR(p~ models are fitted to them, the optimal order of autoregressive 

being different in each case, (as is to be expected). It is also interesting 
A 

to note that P(h) is symmetric in the moving average parameter, Q, as was 

proved for P(h) in Theorem 3.1. 

We now refer to Tables A3.l, A3.2, A3.4, A3.5, A3.7 and A3.8 where ,. 
percentage losses taking estimation error into account, using P(h) as 

defined in (3.70), are calculated for those same true processes that were 

described on pages 86 - 89 , when P(h) was considered. Note that, throughout, 

relevant figures are the lower ones in each cell of the appropriate table. 
A 

Percentage loss, P(h}, for fitting AR(p} models to MA(2} processes 

Referring to table A3.1, we see that, in general, taking estimation error 

into account in the fitted model causes the percentage loss to increase by up 

to approximately 15% (this being for near boundary MA(2) processes, fitting an 

AR(4) model and one step ahead forecasting). We also note that if the MA process 

is moderately within the invertibility boundaries this increase is approxi-

mately 10%. 

96. 



Also apparent from this table is the initial decrease and subsequent 

increase of P(l)in different processes, for increasing the order of the 

fitted model (see for example 9
2 

= 0.4, 9
1 

= 1.0). Since the table only 
A 

deals with fitting up to AR(4), there will be instances where the P(l) 

values will not have levelled out. 
I 

Table A3.2 deals with fitting higher order AR(p) models to some extreme 

boundary MA(2) processes, and it can be seen from that Table, in the case 
I 

of 9 = -0.4, Q = 0.6 the optimum order of autoregressive fit is p = 5, 
2 1 

whilst for 9 = -1.0, Q = 0.0 no optimum appears to have been reached 
2 1 

although it appears the minimum loss could be around 40%. 
".. 

Percentage loss, P(h), for fitting AR(p) models to ARMA(l,2) processes 
A 

The lower values in each cell of Table A3.4 are calculations of P(h) 

for different parameters in the ARMA(1,2) process. 

We note first that the duality mentioned between the processes (3.55) 

and (3.56) (namely the two processes in which p. = 0.4, 9 = -1.4, 9 = 0.4 
1 1 2 

and p. = 0.8, 9 = -1.8, 9 = 0.8 where P(h) was identical), carries through 
~1 1 2 

to P(h) being identical for the same two processes (which is as it should be). 

It can be seen that percentage losses after taking estimation error into 

account can be substantially more than without taking estimation error into 

account. This is true, mainly, for near boundary ARMA(l,2) processes with 

the increase being less marked for a moderate distance within the invertibility 

boundaries of the moving average parameters. 

When we examine higher order autoregressive fits to near boundary ,.. 
ARMA(l,2) processes in Table A3.3, a levelling out of P(l) is apparent for 

some of these processes. For example when Q = -0.4, Q = -0.6 and ~ = 0.5 
211 

I 

the optimum order of fit appears to be p = 4, whilst for Q = -0.4, 9 = 1.4, 
2 1 

I 
and p. = 0.8 the optimum order is when p = 9. 

1 

Also, when 9 = -1.0, Q = 0.0 and I. = 0.4 no optimum appears to have 
211 

been reached, although it appears the minimum loss will be around 40%. This 

is very similar to the result for the pure MA(2) process (in which ~ could 
1 

be considered zero) noted above. 
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Percentage loss. P(h), for fitting AR(p) models to ARMA(l,l) 
and ARMA(2,1) processes 

For fitting AR(p) models to ARMA(l,l) processes, our conclusions 

concerning the percentage loss, P(h), as described on p 88 , can be applied 

to the numerical results from P(h) as given by the lower figures in each 

cell in Table A3.7. Relatively little is lost for processes for which the 

autoregressive parameter is near the non stationary boundary and the moving 

average parameter is near 0.6. It is only when the moving ayerage parameter 

is near the invertibility boundary' Q I = 1, that percentage losses are large. 
1 

~ 

Note, that for the order of autoregressives fitted, no levelling off in P(l) 

is obvious from this table. 

In the case of ARMA(2,1) processes much the same conclusion can be 
~ 

reached concerning P(h) as with P(h) on p 88 • We see that at one step ahead 

and fitting an AR(4) model to any ARMA(2,1) process the most one would lose 

is just under 21%, whilst at 2 steps ahead is just under 27%. In these cases 

it is again the high value of the moving average parameter which causes the 

problems. 

Conclusions concerning fitting AR(P) models to ARMA(p,g) processes 
taking estimation error into account 

The results of this section, where we took estimation error into account 

in the fitted model, draw us to conclusions which are rather different, in 

general from those of section 3.7, page 89 , where estimation error was ignored. 
A 

As expected, percentage losses are higher for P(h), the increase being no more 

than 2 or 3% when we fit AR(l) models. However, in some cases, at one step 
A 

ahead in particular, percentage loss as given by P(h), can first decrease and 

then increase for increasing order of autoregressive process fitted. This 

would imply that higher and higher order ARts do not necessarily yield results 

which give a corresponding improvement in forecasting ability from the fitted 

model. The problem of estimating more and more coefficients swamps the 

improvement gained from a superior fitting model, when no estimation error 

is allowed for. 
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309 

Sections 3.1 - 3.8 dealt with situations in which the fitted model and 

true process were stationary i.e. no differencing was required in either 

case. 

We assume now that Yt follows the ARIMA(p,d,q) process 

d 
P{(B)(l - B) Yt = 9(B) at 

d where we write (1 - B) Yt = Xt ' so that (3.73) is, alternatively, 

which is equivalent to (3.21). 

If we fit the ARIMA(p',d ,q') model 

it is equivalent to 

which is (3.23). 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

Therefore, in referring to (3.73) and (3.75) we assume the notation of 

Section 3.4 when they are in the equivalent forms (3.74) and (3.76). 

d From the expression (1 - B) Yt = Xt ' we may write 

0*= 

d * 
Yt = .1: D. Yt . + Xt J=l J -J 

f-l)j-l d: 
d-j):j: 

D * D *, •••• , D * d 1 :a 

1 0 0 

0 1 0 

0 1 0 

Then (3.77) may be written 

~t = D*!t_l + ~t 

, 

By successive substitution, one can obtain, with D*o - I, 
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h-l . 
Y = D*h Y + .E D*J x h . ... n+h ",n J=O ,.,n+ -J 

Yn+h will be the first element in In+h' obtainable by multiplying 

e'= (1,0, ••• ,0), on Y h. Hence from (3.78) ,.. ,..n+ 

h-l . 
Y = e'D*h Y + e' .E D*J X . 

n+h - ",n N J=O "'n+h-J 

(3.78) 

(3.79) 

The first term on the right hand side of (3.79) is just a linear combination 

of Y . (j ~ 0), say, 
n-J 

d-l 
.E 1-.Y • 
J=O J n-J 

From the second term on the right hand side of (3.79) 

e'D*jX . ( ) *j-
h = 1,0, .. .,0, D Xn+h_j ,... ""n+ -J 

° 
° 

= D.X +h . J n -J 

where D. is the (1,1) element of D*j. 
J 

h-l 
Hence, the second term is .E D.X +h ., so that (3.79) becomes J=O J n -J 

d-l h-l 
Y h= .E1-.Y . + .ED.X h' 
n+ J=O J n-J J=O J n+ -J 

(3.80) 

(3.81) 

If the optimal h step forecast of Yn+h is, for the correct model, f~~~, 
and the equivalent forecast of X h . is f(X

h
) ., using an observation of 

n+ -J n, -J 

Granger and Newbold (1977), (equations (4.4.15),(4.4.19) and the paragraph 

following (4.4.19» we may obtain from (3.81) 

(Y) d-l h-l (X) 
f h = .E 1-. Y . + .E Djf h . n, J=O J n-J J=O n,-J 

(3.82) 

Let g~~~, g~~~ be the corresponding 

model, then again from (3.81) 

forecasts from the incorrectly fitted 

(Y) d-l 
g h = .E 1-. Y . n, J=O J n-J 

h-l (X) 
+ .E D.g h . J=O J n, -J (3.83) 

We now write 

Y - g(Y) - (y - f(Y» + (f(Y) - (y» 
n+h n,h - n+h n,h n,h gn,h (3.84) 

which is the non-stationary equivalent of (3.28). 
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We have, from (3.81) and (3.82) 

() h-l 
Y - f Y = ED. (X _ f (X) .) 

n+h n,h j=o J n+h-j n,h-J (3.85) 

and from (3.29), (Xn+h-j - f(Xh) .) will depend only on a . (i > 0). n, -J n+1 

It follows, therefore, that (Yn+h - f~~~) will depend only on an+i (i > 0). 

Also, from (3.82) and (3.83) 

f
,(Y) _ (Y) h-l (X) 

h g h = j];: D. ( f h j n, n, -0 J n,-

h-l m m 

= j~oDj(i~odi+h_jan_i - i~oai (h - j)an_i ) 

h-l m 

= j~oDj i~o(di+h-j - ai(h - j»an- i (3.86) 

where we have used (3.31). This latter exppession depends only on a i i ~ 0, n-
and so the expression in the brackets on the right hand side of (3.84) are 

uncorrelated with one another. 

Again, denoting the variances of the h step forecast error for the right 
I 

and wrong model by V(h) and V(h), we can take variances throughout (3.84) and 

use (3.86) to obtain 
, 00 h-l 

V(h) = V(h) + jE (.,1: D. (d. h . - a. (h - 1)))2 =0 1-0 1 J+ -1 J 

Hence, 

and V(h) is given by the variance of (3.85), i.e. 

h-l h-j-l 
V(h) = V(.E Dj(iE d.an+h j .» J=O =0 1 - -1 

a a 
a • 

(3.87) 

(3.88) 

h-1 h- (j+l ) h-a h-l h- j 

= (j~OD~i~O d~ + 2JoIk j~k+l Dj i~j-kdi di _ (j-k» aa:a (h ~ 2) 

after some algebra. 

The special case when h = 1 is worthy of note. In this case D = 1, and the 
o 

numerator of the right hand side of (3.87) becomes 

m :a :a .E (d. - a.(l» a 
J=o J J a 

and from (3.88), the denominator is 
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Hence 
CXI 

P(l) = .1: (d. - a.(l))2 
J=o J J (3.89) 

which is precisely the same as the proportionate loss one step ahead given 

by (3.34) in the stationary case, as is to be expected. 

We thus have the percentage loss one step ahead is the same for 

fitting an ARIMA(p',d,q') model to an ARIMA(p,d,q) process as it is for fitting 

an ARMA(p~q) model to an ARMA(p,q) process. 

Example 3.11 Fitting ARIMA(1.1.0) to ARIMA(O.l.l) 

This example is the non stationary equivalent of example (3.5). 

Let the true process be Yt - Yt -
1 

= at + 9at _
1

, and the assumed model 
, 

(1 - I B) (Yt - Yt -
1

) = "\. As in example 3.5, do = 1, d
1 

= 9, dj = 0 (j ~ 2). 

We have immediately from (3.89) that 

P (1) = (,5' - 9):a + ~ l :a 

which is identical to (3.35). 

Also, from the fact that d = 1, so that D is scalar implying OJ = 1 for 

all j, and using (3.88) 
h-l h- (j+l ) h-2 h-l h- j 

V(h) = (.1:.1: d. 2 + 21~ .1:k+ .1:. k d.d. (. k» a:a J=O 1.=0 1. 1\.'-"0 J= 1. l=J- 1. 1.- J- a 

h ~ 1 

after some algebra. 

Also, from the aj(h) (j = a,l"'.J h = 2, ••• ) given in example (3.5) we 

find after some algebra that the numerator of (3.87) is 

giving 

P(h) = fe - i'f~ : flr + [teH : flr 
{(h - 1)(1 + 9)2 + 1) 

a 2 
a h ~ 2 

h ~ 2 

Note that P(h) is not symmetric in 9 for any choice of ,5', unlike the case of 

fitting a stationary AR(l) to MA(l) (see example 3.9 and theorem 3.1). Thus, 

for 9 = -1 we would expect P(h) to be larger than for e = +1. 
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As can be seen from the calculations involved above analytic 

expressions for P(h) from (3.87) are even more intractible than those 

involved for stationary processes. The only conceivable way of looking at 

the problem is by computing the sums. Before giving a number of examples, 

computationally we need the (1,1) element of matrix D*, i.e. 

For d = 2, 

and O. = (j + 1) 
J 

For d = 3, 

D* = [~ -~] 
(j = 0,1, ••• ). 

D* = [~ -3 
o 
1 

We now show, in general that 

~] 

D •• 
J 

Clearly, this is true for d = 1,2,3. Assume the form of OJ for some integer d. 

From (3.77)we must have the OJ satisfying 

(1 + D B + D B2 + •••• )(1 - B)d = 1 
1 2 

Let O~ be those coefficients that satisfy 
J 

(1 + Dt B + Dt B2 + ••• )(1 _ B)d+l = 1 
1 2 

Hence, we must have 

(1 + ° t B + D 1" B2 + 
1 2 •••• ) (1 - B) = (1 + ° B + D B2 + ••• 

1 2 

Equating coefficients of B we find 

t j j 
D. = . I: o. = . t . d C d J 1=0 1 1=0 1 + -1 -1 

Consider, now the binomial expansion of 

i+d-l 
(1 + x)i+d-1 = I: C xr 

r-=o i+d-1 r 

summing over i, we get 

j j i+d-l 
.I: (1 + x)i+d-l =.I: I: 
1=0 1=0 r-=o 

r 
. d C X 1+ -1 r 

On the right hand side of this equation the coefficient of xd-1 is 

j 

i~o i+d-1Cd-1 
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After summing a G.P., the left hand side reduces to 

(1 + x)d-l _ (l + x)j+d 
-x 

where the coefficient of xd-1 is j+dCd. 

"t-
Hence D. = 

J 
j+dCd and so, by induction, the formula 

D. = 
J 

C is proved. 
j+d-1 d-1 

Thus, in any computer program the Dj may be readily generated for any d. 

In the computation of P(h) the d. and a.(h) needed in (3.87) and (3.88) 
J J 

are the same as those needed in the corresponding fitting of stationary 

ARMA(p',q,) models to ARMA(p,q) process. The previous program could then be 

easily modified to form the sums involved in (3.87) and (3.88). 
I 

3.10 Percentage loss for fitting ARIMA(p,d,O) models to ARIMA{p,d,g) processes 

Some processes reported in the literature 

The first example of section 3.7 concerned fitting AR(p) models to a 

time series analysed by Box and Jenkins (1970) which was found to fit 

adequately the ARMA(l,l) process 

Xt - 0.92Xt _
1 

= 1.45 + at - 0.58at _
1 

(3.90) 

Box & Jenkins (1970), p 293 give an adequate, alternative representation of 

the same series in the form of the non stationary IMA(1,1) process 

Xt - Xt = at - 0.7at -1 . -1 
(3.91) 

We now assume the parameter value of 0.7 in the alternative representation 
, 

(3.91) is the actual value the process possesses and fit ARIMA(p,l,O) models. 

(Note that wetemparari1y drop the convention adopted in (3.73) of putting, in 

this case Yt - Yt -
1 

= Xt because of the duality between (3.90) and (3.91).) 

The infinite ARIMA representation of (3.91) is 

(1 - B)(l + 0.7B + 0.49B2 + 0.34SS + 0.24B4 + 0.168B6 + 0.082B6 + ••• )Xt = at 

or equivalently 

(1 - 0.3B - 0.21B2 
- 0.15B3 

- 0.10B4 - 0.07B4 ••• 

which is very close to the infinite AR representation of (3.90) (see p 82 ). 

This property of series giving rise to apparently different structures 

(for which a closer look proves the structures to be almost identical) has 
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been mentioned by Box & Jenkins (1973) and Granger & Newbold (1977). The 

latter authors make the point that when this is the case it is not terribly 

important to distinguish between the structures, since both must give 

similar forecasts. 

In fitting the model 

(1 - B)(X
t 

- P,' Xt 1 -1 

, , 
- ~ Xt • •• - ~ I Xt ,) = n. 

2 -2 P -p ~ 

we allow the autoregressive parameters to be determined by (3.4) and (3.39) 

(the Yule Walker equations) applied to the autocorrelations of the 

stationary process (1 - B)Xt • Table 3.14 contains the autoregressive 

parameter values (p1ims) so obtained. 

, 
P 

1 

2 

3 

4 

5 

6 

7 

8 

TABLE 3.14 

FITTED AR COEFFICIENTS IN FITTING ARIMA(p',l ,0) TO 
Xt - \-1 = at - 0.7at _1 

p,' 
1 

P, I ~ I 

7 9 

-0.47 

-0.60 -0.28 

-0.66 -0.40 -0.19 

-0.68 -0.44 -0.27 -0.13 

-0.69 -0.47 -0.31 -0.19 -0.09 

-0.70 -0.48 -0.33 -0.21 -0.13 -0.06 

-0.70 -0.48 -0.33 -0.23 -0.15 -0.09 -0.04 

-0.70 -0.49 -0.34 -0.23 -0.16 -0.10 -0.06 -0.03 

Again the autoregressive parameters home-in very quickly and the fore-

casting loss in terms of P(h) was calculated according to (3.87) and (3.88) 

with the generated values of the dj and aj(h) with OJ = 1. Table 3.15 contains 

a summary of the results. 

TABLE 3.15 

PROCESS X -t 
X t-l 

I 

P 

h 1 2 3 4 5 6 7 8 

1 16.1 6.8 3.1 1.5 0.7 0.3 0.2 0.1 
2 21g4 9.3 4.3 2.1 1.0 0.5 0.2 0.1 
3 15.4 10.2 5.1 2.5 1.2 0.6 0.3 0.2 
4 15.9 6.9 5.1 2.7 1.4 0.7 0.3 0.2 
5 14.1 7.1 3.4 2.6 1.3 0.7 0.4 0.2 
6 13.5 6.8 3.5 1.7 0.9 0.8 0.4 0.2 
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By comparing Tables 3.15 and 3.11 we see that if we fitted 

ARlMA(l,l,O) to Xt - Xt _
1 

= at - 0.7at _
1 

our percentage lossesfor h ~ 3, 

are less than for fitting AR(l) to Xt - 0.92Xt _
1 

= at - 0.58at _
1

• However, 

in all other cases the non stationary autoregressive fit gives worse 

percentage losses compared with the alternative stationary one, although 

the differences are not very large, since both processes were practically the 

same. Also in Box and Jenkins (1970) two other series (B and D,p 293 ) were 
I 

found to require first differencing; ARlMA(p,l,O) models were fitted in the 

manner described above and all percentagelossesfor all fits were found to be 

virtually zero. 

Reid (1969) gives two series which he fitted and estimated in the form 

and 

(1 + 0.86B)(1 - B)Yt = (1 + 0.8B)at 

(1 - 0.62B)(1 - B)Yt = (1 + 0.6B)at 

(series QlO) 

(series A19) 

We see that series QIO almost has a cancelling factor and when ARIMA(p~l,O) 

models were fitted, assuming the given structure as the path the process 

truely followed, at no point was the percentage loss more than 1%. This is, 

of course, to be expected. 

The same kind of fitting applied to series A19 gave results reported in 

tables 3.16 and 3.17. 

TABLE 3.16 

I 

,tl ,ta ~' ~J ~J ~I P7 ~e p 
3 4 Q 6 

I I 

1 0.8 

2 1.1 -0.38 

3 1.18 -0.61 0.21 

4 1.21 -0.69 0.36 -0.12 

5 1.21 -0.72 0.41 -0.21 0.07 

6 1.22 -0.73 0.43 -0.25 0.13 -0.04 

7 1.22 -0.73 0.44 -0.26 0.15 -0.08 0.03 

8 1.22 -0.73 0.44 -0.26 0.15 -0.09 0.05 -0.02 
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TABLE 3.17 

TIlE 1 - 0.62B 

I 

P 

h 1 2 3 4 5 6 7 S 

1 25.5 7.3 2.5 0.9 0.3 0.1 0.0 0.0 

2 12.4 3.9 1.3 0.5 0.2 0.1 0.0 0.0 

3 10.9 3.6 1.2 0.4 0.2 0.1 0.0 0.0 

4 10.1 3.2 1.0 0.4 0.1 0.0 0.0 0.0 

Clearly, even a low order ARIMA(p~l,O) fit does reasonably well from a fore-

casting point of view in spite of the fact that the first two autoregressive 

coefficients in the infinite ARIMA representation have values closer to the 

non stationary boundary than is usual from commonly occurring series. Again, 

evidence suggests the only important point is whether the moving average 

coefficient is near to the invertibility boundary. 

More recently, Saboia (1977) has analysed female birth time series for 

Norway for 1919-1974 and found two alternative ARIMA models that give fore­

casts which were very close. These models were the ARIMA(4,1,1) given by 

(1- 0.91B - 0.2SB2 + 0.16B3 + 0.16a4)VYt = (1 - 0.93B)at 

and the ARIMA(3,1,2) given by 

(3.92) 

(1 - 1.40B + 0.27B2 + 0.21B3
) VYt = (1 - 1.36B + 0.44B2 )at (3.93) 

The author was unable to distinguish between them as far as forecasting 

ability was concerned and stressed the importance of having models containing 

five parameters by pointing out that only these were able to incorporate 

information on the length of generation of the population. 

The infinite ARlMA(m,l,O) representation of (3.92) is 

(l+0.02B-0.26B2 -0.0SSS+0.osa4+0.0SB6 +O.07Ef+0.07B7 + ••• )VYt = at 

whilst the infinite ARIMA(m,l,O) representation of (3.93) is 

(1 - 0.04B - 0.2282 
- O.osSS - 0.01B4 - ••• 

We see that both models are, in fact very similar so that it is not 

surprising they give forecasts that are close to each other. 

(3.94 ) 

(3.95 ) 

ARIMA(p,l,O) models were fitted to (3.92) and (3.93) and the fitted 

parameters for each model are given in Tables 3.18 and 3.19. 
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TABLE 3.18 

FITTED AR COEFFICIENTS IN FITTING ARIMA!~~lIOl TO !3.92) 
, A' I' I' I' I' I' ':' I' p 

1 2 3 4 I:» 6 7 8 

1 -0.12 

2 0.03 0.27 

3 0.02 0.27 0.08 

4 0.02 0.29 0.08 -0.09 

5 0.02 0.30 0.10 -0.09 -0.08 

6 0.01 0.29 0.11 -0.07 -0.08 -0.07 

7 0.01 0.29 0.11 -0.06 -0.06 -0.07 -0.07 

8 0.01 0.29 0.10 -0.06 -0.05 -0.06 -0.07 -0.06 

TABLE 3.19 

FITTED AR COEFFICIENTS IN FITTING ARIMA(e~lIOl TO (3.93) 

I I.' I' ,:1 I" I' I' I.' ':' p 
1 2 3 4 I:» 6 7 8 

1 -0.14 

2 0.07 0.24 

3 0.05 0.23 0.07 

4 0.05 0.23 0.07 -0.01 

5 0.05 0.24 0.08 0.00 -0.04 

6 0.05 0.24 0.09 0.01 -0.04 -0.05 

7 0.05 0.23 0.09 0.01 -0.02 -0.05 -0.05 

8 0.05 0.23 0.08 0.01 -0.02 -0.04 -0.05 -0.05 

Notice how the fitted autoregressive parameters seem to be homing-in slowly 

to the values in the infinite autoregressive representations (3.94) and (3.95). 

This is because in (3.92) the moving average parameter 9
1 

= -0.93, is very 

close to the invertibility boundary and in (3.93) the first of the inverti­

bility conditions in (3.54), viz 9
1 

+ 9
2 

> -1, has -1.36 + 0.44 = -0.92, 

which is again close to the boundary. 
I 

Table 3.20 gives the percent h-step loss after fitting ARIMA(p,l,O) 

models to (3.92) and (3.93). It appears that one would do better by fitting a 

high autoregressive ARIMA(p',l,O) model to (3.92) rather than (3.93) even 

though the processes were very close. One explanation for this would be, 

again, the relative closeness of the moving average parameters to the 

invertibility boundaries which could be causing P(h) to be sensitive to 
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slight departures from these boundaries. At one or two steps the percentage 

loss in any case, for fitting ARIMA(7,1,0) to either model is no more than 

TABLE 3.20 

(results for the latter model are bracketed) 
pI 

h 1 2 3 4 

1 17.3(13.7) 5.6(2.0) 4.9(1.5) 4.1(1.5} 

2 27.3(19.3) 9.6(3.4) 9.6(2.9) 7.9(2.9) 

3 25.9(17.8) 13.2(4.5) 13.9(4.2) 11.4(4.2} 

4 24.9(15.9) 16.7(5.4) 18.3(5.5) 15.1(5.4} 

5 24.8(13.8) 20.2(6.2) 22.6(6.6} 18.5(6.5) 

6 25.1 (12. 2) 23.5(6.9) 26.8(7.7) 21.9(7.6) 
, 

p 

h 5 6 7 8 

1 3.4(1.3) 2.8(1.1) 2.4(0.8) 2.0(0.6) 

2 6.6(2.5} 5.5(2.0} 4.6(1.5) 3.9(1.1) 

3 9.5(3.6) 7.9(2.8) 6.6(2.1) 5.6(1.5) 

4 12.5(4.6) 10.4(3.6) 8.7(2.7) 7.3(1.9) 

5 15.3(5.6) 12.7(4.3) 10.7(3.2) 9.0(2.3} 

6 18.1(6.4} 15.0(5.0) 12.5(3.7) 10.5(2.6} 

It is remarkable that for model (3.93) a moderate order autoregressive 

model gives quite good forecasts one step ahead, but does a good deal worse 

several steps ahead. This suggests that residual variance, which reflects 

within sample one step ahead forecast error variance, might not be the best 

criterion for distinguishing between models. 

Processes that are pre-chosen 

We now examine percentage loss for fitting ARIMA(p~l,O) models to pre-

chosen ARIMA(p,l,q) processes. 

For comparison we use all the non stationary analogues of the pre-chosen 

processes in section 3.7 and the results are collected in Tables A3.9-A3.12 

at the end of this chapter. We noted in example 3.11, p 102, that P(h) in 

109 • 



general is not symmetric for the conditions on the parameters in an 

ARIMA(p,l,q) process as described by Theorem 3.1. Thus, in addition we 

give in table A3.9, for Q = 0.0, calculations of P(h) for negative Q values 
a 1 

and in table A3.l1 in fitting to ARIMA(l,l,l) processes, calculations of 

P(h) for negative p. values. 
1 

Percentage loss for fitting ARIMA(p~l,O) models to ARIMA(0,1,2) processes 

If the true process is 

we still need the invertibility conditions (3.54). 

Calculations of P(h) are given in Table A3.9, the results at one step 

ahead being, of course, identical to the stationary results given in Table A3.l. 

otherwise, the percentage losses are all larger when compared with the 

corresponding stationary process values in Table 3.1. This is particularly so 

as h increases. 

Note also, the similar picture of high P(h) values near the invertibility 

boundaries in Table A3.9. In the rows opposite 9 = 0.0, we have a complete 
2 

picture of P(h) values for fitting ARlMA(p~l,O) models to the non stationary 

ARlMA(O,l,l) process. We see that for negative 9 , above one step ahead, the 
1 

P(h) values are very much worse than for positive 9 , reflecting the non 
1 

symmetric characteristic as noted in the analytic expression P(h) given in 

example 3.11, p 102. 

Percentage loss for fitting ARlMA(p~l,O) modeis to ARlMA(l,1,2) processes 

We assume the true process is 

using, again, the invertibili ty conditions (3.54), and I p., < 1. 
1 

Table A3.10 contains calculations of P(h) in fitting ARIMA(p~l,O) models. 

As in the previous case the percentage loss is rather higher, in general, 

when compared with the corresponding values obtained for the stationary 

ARMA(1,2) process and reported in Table A3.4. Notice particularly the kind of 

increases when Q = 1.0, i.e. the second moving average parameter is on the 
2 
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non invertible boundary. High autoregressive fits really do very badly. 

Percentage loss for fitting ARIMA(d.1.0) models to ARIMA(ltkU processes 

We assume the true process is 

(1 - ~1 B) (l - B) Y t = at + 9
1 

at _
1 

wi th I P. I < 1 and I 9 I ~ 1. 
1 1 

Table A3.1l contains the calculations of P(h) in fitting ARIMA(p:l,O) 

models. Comparing this table with the corresponding ones for the stationary 

ARMA(l,l) process in Table A3.7 we see percentage loss is again higher 

throughout the ranges considered. If one looks at P(h) for negative p. values 
1 

we see that the picture is somewhat brighter than the positive p. values. 
1 

I 
Percentage loss for fitting ARIMA{p,l,O) models to ARIMA{2,1,1) processes 

We assume the true process is 

(1 - P. B-1 B2)(1 - B)Yt = at + 9 at 
1 2 1 ~ 

with the usual stationarity conditions for the autoregressive parameters 

. given on p 89 • 

Table A3.12 contains calculations of P(h) and it appears that when the 

results are compared with the corresponding stationary process in Table A3.8 

(i) 

(ii) 

3.11 

for positive p. percentage losses are worse in the non stationary case 
1 

for negative p. percentage losses 
1 

are worse in the stationary case. 

Percentage loss for fitting ARIMA(e.d.O) to ARIMA(p.d.g) processes 
taking estimation error into account in the fitted model 

We assume the process Yt follows the model (3.73), viz 

~(B)(l - B)dYt = 9(B)at 

with (1 - B)dYt = Xt and we fit a special case of (3.75) and (3.76) 

viz 

and 

t (B)( 1 - B)dYt = 1'lt 

t (B) Xt = 1'lt 

Using the notation of sections 3.8 and 3.9, we get from (3.63), approximately, 

(3.96) 

and from (3.83) 

(3.97) 
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so that if we look for the forecast of Y based on the wrong model and with 

estimation of the autoregressive parameters we get 

Now write 

d-l h-l ( 
n(Y) = .E t.Y . + .E D n X) • 
gn,h J=O J n-J J=O jgn,h-J 

Yn+h - 9~~~ = (Yn+h - g~~~) + (g~~~ - 9~~~) 
( h-l 

= (Y V»~ + .E D.(g(X) 
n+h - gn,h J=O J n,h-j 

n(X) ) 
g h . n, -J 

using (3.97) and (3.98). From (3.96) this may be written in the form 

(y _ n(Y» _ (y _ (Y» + hi:l D (I _ ~)' M. X 
n+h gn,h - n+h gn,h j=o j.... .l -h-j"'n 

(3.98) 

(3.99) 

(3.100) 

Since we may assume the first two terms on the right hand side of (3.100) are 

asymptotically uncorrelated by the same arguments as in Section 3.8, we can 
A 

take variances throughout to obtain, letting V(h) be the variance of the left 

hand side, from (3.84), 
" I h-l h-a h-l 

V(h) = V(h) + .E D.aVh . h j + 2.1;: 1J!·.Lo DjDkVh j h k J=O J -J, - J-O A.-J • .L - , -
(3.101) 

where, from p 101 , 

, CD h-l 
V(h) = V(h) + j~O(i~oDi(dj+h-i - aj(h - i»)aoaa 

and 

[
'f " Col ] Vh . h k = E X M.' • (t - t) (t - ,) M. kXn 

- J, - l\Jl~n-J'" ,.." - -h- '" 

= rr(~_ j Vi 1vh_kE) 

where E[X x'] = E , 
""n I"fl 

E[(! - ~)(! - !)'] = V. 

and we have assumed, as before on p 92 , that i and X are uncorrel ated. ,... ... n 

Thus, from (3.87) we may form 
A " 

P (h) - V(h) - V(h) 
. - V(h) 

(3.102) 

which is the non stationary analogue of (3.70). 
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In (3.102), when h = 1, D = 1, we get o 
" , P(l) = P(l) + V 

1,L 

which is identical to (3.70) when h = 1. Thus the one step ahead proportionate 

loss when taking estimation error into account in an ARIMA(p~d,O) fit is the 

same as in the analogous ARMA(p,O) fit to any corresponding non stationary or 

stationary process respectively, as is to be expected. 

Example 3.12 Fitting ARlMA(1.1.0) to ARIMA (0,1,1) with estimation error 

Let the true process be Yt - Yt -
1 

= at + Q
1 

at -
1

, but we fit 

(1 - ~lB)(l - B)Yt = at. From example 3.11 we get P(h) as required in (3.102). 

Also, since d = 1, Dj = 1 for all j so that 

h-l h-2 h-1 
Ito 1; V 2I: I: V 
P(h) - P(h) + j-o h-j,h-j + j=o 1E~1J h-j,h-k 

- V(h) V h 

From example 3.10 

and from example 3.11 

V(h) = (h - 1)(1 + Q )2 + l) 
1 

We also need Vh-j,h-k (k 1 j) and here the algebra gets intractable. Even this 

simple example highlights the fact that the only conceivable way of evaluation 

" of P(h) is using a computer program. 

From (3.102) the extra computation needed over the corresponding 

" stationary case for P(h) should be straightforward to incorporate in any 

computer program that already calculates these values. However, we do not 

pursue evaluation of (3.102) any further here. 

3.12 Conclusions 

We have shown in this chapter that when the degree of differencing is 

correctly assumed in a stationary process and one fits different stationary 

models, the asymptotic percentage loss incurred can be great, especially when 

the true process is near its non stationary and/or non invertibility 

boundaries (except, possibly, when factors cancel on both sides). Several 

examples were examined in this case where even high order autoregressives did 

not provide satisfactory models for forecasting. The main reason for this was 
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that the moving average parameters were close to the invertibility 

boundaries; as expected, any autoregressive parameters present did not 

affect the forecasting ability of the fitted AR(p} model too much, even 

when some were on1ymarginallywithin their non stationary boundaries. For 

some processes with parameters moderately within their boundaries there 

were cases of percentage loss being surprisingly low. 

As we might expect, taking estimation error into account in the fitted 

model affects the percentage loss incurred by increasing it by as much as 

20 - 30% for high order autoregressive fits; also, for some processes, it 

was clear that increasing the number of autoregressive parameters used in 

fitting did not have a payoff in terms of forecasting ability. Indeed, in 

some cases the optimum order of autoregressive was around 4,5, or 6 and if 

one estimated ~ parameters than this, one was very much worse off in 

terms of forecasting ability. 

For non stationary models rather more was lost in fitting AR(p) models 

to the (correctly) differenced series compared with the stationary analogues. 

The complexity of analysis increased, when estimation error was taken into 

account in the fitted model and, although the problem was solved in general, 

no concise algebraic expressions appear to be available for percentage loss 

even in the very simple cases of this type of misspecification. 

The possibility of taking estimation error into account in the true 

process, as well as the fitted model, is mentioned in Chapter 6. We merely 

note here that V(h), the h-step forecast error variance for the true process, 

will be larger when estimation error is taken into account in that process. 

Hence the percentage loss as given by (3.70) would be reduced; the evidence 

of this chapter suggests that because the number of parameters in the true 

process is low, the increase in V(h) will be relatively small. Hence we may 

regard the P(h) values reported in Tables A3 0 1 - A3.8 as maximum percentage 

losses we could obtain after taking estimation error into account in both 

the fitted model and the true process. 
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roo 
64.0 
64.0 
67.9 
69.6 

IS.S 
20.1 
43.5 
45.3 

0.2 
2.0 
9.5 

11.1 
50.0 
52.0 

13.5 
17.3 
5.6 
7.3 

25.3 
26.6 
88.9 
91.1 

64.0 
64.0 
37.9 
39.7 

173 
176 

86.4 
93.4 
76.6 
78.4 

233 
236 

TABLE A3.1 

PERCENT h-STEP LOSS FOR FITTING AR(p) TO MA(2) PROCESSES 

h = 1 h = 2 h-3 
p' p' p' 

2 3 4 1 2 3 4 1 2 3 4 
,- ~ .. --- ---

50.0 50.0 33.3 100 50.0 50.0 33.3 I 0.0 6.3 6.3 3.7 
56.5 ' 58.7 44.6 100 53.1 55.5 41.4 0.0 '9.5 n.3 11.~ 

25.0 25.0 12.8 - 64.0 25.0 25.0 12.8 0.0 5.7 5.7 3.0 
30.3 32.1 22.1 64.0 27.5 29.5 19.5 0.0 8.7 10.6 10.6 
29.7 29.5 18.1 61.6 25.0 25.0 14.2 0.0 5.2 5.3 2.7 
35.1 36.9 27.8 61.6 27.5 29.6 21.0 0.0 8.2 10.1 LO.l 

4.5 3.6 1.3 I 16.2 3.2 2.9 0.9 0.0 1.9 1.8 0.6 
8.6 '1.5 9.3 I 16.2 5.3 6.8 7.1 0.0 3.5 5.4 6.2 

27.1 22.2 17.9 ' 15.4 0.7 5.0 4.0 0.0 3.3 2.0 - 1.8 
32.3 29.3 27.6 15.7 9.6 10.2 11.3 0.1 4.6 6.3 7.7 

-----. -- .. 

0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
4.0 6.0 8.0 0.4 2.2 4.2 6.2 0.0 0.3 2.2 4.2 
3.1 1.1 u.4 3.1:1 1.4 U.:;, U.<! 0.7 1.2 0.5 0.2 
7.2 6.9 S.4 4.7 5.1 5.8 7.8 1.1 2.8 3.9 5.9 

33.3 25.0 20.0 5.3 3.7 2.3 l.b 1.0 2.9 ' 2.1 1.5 
39.0 32.3 29.9 7.3 8.2 8.1 10.3 2.1 5.1 6.0 8.3 ' -_ ... ._.,--

~-'-

3.6 1.5 0.7 11.5 3.7 1.2 0.7 0.0 2.4 0.8 0.5 
7.5 7.4 9.0 12.4 5.6 5.5 7.2 0.1 3.7 4.4 6.5 
5.2 2.0 0.3 4.2 3.0 1.8 0.2 2.8 1.5 1.3 0.2 

10;1 8.7 8.2 5.8 6.6 7.7 7.8 ! 3.8 4.0 6.4 6.7 
4.7 0.8 0.6 10.3 3.3 0.4 U.l 1.4 2.0 0.3 0.1 
9.0 6.8 9.0 11.4 8.6 7.4 9.2 8.4 7.0 5.9 7.7 

52.3 35.S 26.8 11.2 7.0 4.0 3.2 6.1 4.3 2.8 1.8 
59.0 43.7 37.5 12.3 12.6 11.2 13.1 7.1 8.5 7.8 10.4 

25.0 25.0 12.8 64.0 25.0 25.0 12.8 , 0.0 5.7 5.7 3.0 
28.8 33.2 22.6 64.0 27.2 29.5 20.8 I 0.0 7.9 9.3 12.1 
32.5 25.1 12.8 22.0 13.7 15.1 l.tI 8.4 2.0 5.4 2.7 
39.8 35.2 21.5 24.3 19.7 23.1 16.6 9.6 ~.2 12.5 10.6 

106 74.1 5:;,.7 20.1:1 l:l. <! 11.4 e ... 8.1l C.I 4.<! 3.0 
115 84.4 69.3 22.1 21.6 18.8 20.0 9.6 11.2 9.7 12.6 -
59.8 42.0 39.6 66.1 53.1 34.2 34.8 0.3 8.4 3.7 4.9 
66.6 50.4 52.8 69.4 55.7 41.6 45.1 0.8 10.2 9.5 13.4 
50.8 50.6 38.5 34.5 17.8 18.8 17.7 u.5 2.3 3.0 4.4 
5S.1 63.6 51.0 36.0 25.2 :'3.5 27.4 12.7 7.7 10.3 12.2 

150 110 86.7 25.9 20.0 15.9 13.2 S.S 6.3 4.4 3.2 
162 122 103 27.2 26.7 23.6 24.7 9.<; 11.5 10.0 12.9 

---
Note (i) P(h) values are the upper figures in each cell 

~ 

(ii) P(h) values are the lower figures in each cell 

'. 

h.4 
p' 

1 2 
f--

3, 4 

0.0 6.3 6.3 3.7 
b:n' 1.1:1 9.0 -10.0 

0.0 5.7 ' 5.7 3.0 
0.0 7.1 8.3 9.1 
0.0 5.1 5.2 2.7 
0.0 6.6 7.8 8.5 

0.0 1.2 1.7 0.5 
0.0 2.1 3.3 4.4 
0.0 0.5 2.4 l.b 
0.0 1.5 4.0 5.4 

0.0 0.0 0.0 0.0 
0.0 0.0 0.3 2.2 
0.1 0.4 0.4 0.2 
0.3 0.8 2.2 3.8 
0.4 1.4 1.7 1.4 
0.6 2.2 4.2 5.S 

- f---
0.0 1.5 0.8 0.5 
0.0 2.3 2.8 ':.5 
0.9 0.3 1.1 0.2 
1.4 1.6 4.1 4.S 
3.1 2.6 0.3 0.1 
3.9 4.6 ':.1 5.8 
2.4 4.1 2.6 1.8 
3.1 5.9 f.3 8.1 

.--. 
J.O 5.7 5.7 3.0 
0.0 6.9 8.3 10.0 
3.7 0.2 4.1 2.5 
4.6 3.0 9.1 8.~ 
3.7 0.0 4.2 3.0 
4.6 8.5 8.4 10.5 

0.0 5.8 3.6 4.6 
0.2 7.1 7.8 11.2 
5.6 1.1 1.9 3.9 
6.6 4.6 7.1 10.0 
3.9 6.3 4.4 3.2 
4.8 8.8 13.6 10.8 j 



9a 

-1.0 

-0.4 

0.8 

1.0 

1.0 

9 a 

-1.0 

-0.4 

0.8 

1.0 

1.0 

~ 

0.0 

. TABLE A3.2 

1 STEP AHEAD PREDICTION PERCENTAGE LOSS IN FIITING 
AR(p? TO SELECTED MA(2) PROCESSES 

, 
p 

1 2 3 4 ~ 6 7 8 9 

100 50.0 50.0 33.3 33.3 25.0 25.0 20.0 20.0 

100 56.5 58.7 44.6 46.7 40.6 42.8 39.8 41.9 

10 

16.7 

40.6 
-

43.5 27.1 22.2 17.9 15.3 13.2 11.7 10.4 9.5 8.6 
0.6 

45.3 32.3 29.3 27.6 26.8 27.1 27.4 28.4 29.3 30.7 

173 106 74.1 55.7 43.9 35.7 29.7 25.2 21.7 19.0 
1.8 

176 115 84.4 69.3 58.6 53.0 48.3 46.2 44.1 43.6 
. -

86.4 59.8 42.0 39.6 28.6 28.6 22.5 21.7 19.0 
0.4 

93.4 66.6 50.4 52.8 42.1 46.0 40.7 42.4 41.4 

233 150 110 86.7 71.4 60.7 52.8 46.7 41.8 
2.0 

237 162 122 103 89.0 81.3 74.8 71.4 68.1 

Note (1) P(l) values are the upper figures 1n each cell 
A 

(ii) P(l) values are the lower figures in each cell 

TABLE A3.3 

COEFFICIENTS OF THE AR(lO) FIT TO THE ABOVE PROCESSES 

9
1 

pi 
1 p~ p~ I; I~ I; I.,' I.' 

0.0 0.0 -0.83 0.0 -0.67 0.0 -0.5 0.0 -0.33 

0.6 0.51 -0.62 0.49 -0.46 0.38 -0.33 0.26 -0.2 

17.2 

42.1 

37.9 

66.7 

I: 
0.0 

0.14 

1.8 1.62 -1.93 2.02 -1.93 1.71 -1.42 1.08 -0.73 0.41 

0.4 0.37 0.69 -0.56 -0.34 0.55 0.05 -0.41 0.11 0.19 

2.0 1.67 -2.05 2.18 -2.12 1.91 -1.59 1.21 -0.82 0.45 
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TABLE A3.4 

PERCENT h-'STEP LOSS FOR FITTING AR(p) TO ARMA(1,2' PROCESSES 

. . 
~ h~ I h= 2 h = 3 h = 4 

._., ....... __ .- _ ..... '-
Q::I "'- Pl, 1 . 2 p' 3 4 1 2 

pi p' p' 
3 4 1 2 3 4 1 2 3 4 

0.8 68.0 ,40.~ 36.4 26.7 32.1 19.3 21.0 1~.;l 1~.6 12.9 14.4 10.4 8.7 9.0 10.8 7.6 
-I.e 0.0 70.0 ,46.4 44.3 37.3 32.9 23.727.2 24.~ 

~~ 14.6 18.3 17.0 8.7 10.~ 13.7 12.4 
0.4 92.0 47.9 -47.2 32.1 7B.:'I 41.2 142.6 28:'9- r-'-9:-.r 9.6 0.2 1.1 '0.0 7.0 4.2 

94.0 ~4.3 ~~.7 43.2 7B.8 44.9 48.!I 37.6 7.5 12.0 14.4 13.5 1.1 8.7 10.2 10.3 .. -- --_ .. _. . .. - .. -~-2.3 1:6" r-- '0:- ,-,- _., ... -
0.8 !l0.0 33.3 2!1.0 20.0 6.3 3.7 1.6 2.9 2.1 1.5 0.4 1.4 1.7 1.4 

0.2 
52.0 39.0 32.3 29.9 7.3 8.2 8.1 10.3 2.1 5.1 6.0 8.3 0.6 2.2 4.2 !I.8 

0.4 63. !I 30.6 28.8 18.9 33.2 10.9 12.1 :).J 4.0 :).0 :).:) 2.6 0.6 3.8 4.8 2.2 
6!1.2 136.0 ' 36._~_ ~,.!I 33.5 13.9 16.9 12.4 4.0 7.0 9.7 9.1 0.6 5.7 7.7 7.4 

0.8 40.1 20.2 15.9 9:-6' T2.0 4.0 Ig:~ 1~:~ 
:;).U ~.6 4.5 ~:~ 2.4 2.3 3.9 I.~ 

-O.E! 0.0 41.7 25.1' 22.4 18.5 13.3 8.!I 5.3 !I.2 8.1 2.!I 3.4 6.4 6.0 
0.4 57.8 23.6: 22.9 12.0 47.1 18.5 19.0 '}.II :'1.3 6.B 7.1 3.7 0.8 5.5 5.9 3.1 

59.4 2B.B, 29.9 21.2 47.4 
~~ 24.5 17.1 5.3 9.1 11.5 10.6 0.8 7.5 9.0 8.8 

0.8 39.9 19.3 16.9 10.6 3'0;0 .8 ' 19:'0" 14.(S' 14.1 1~.0 13.1 
1~:~ 6.2 6.4 9.6 '0.9 

1-0.2 41.6 24.2 23.4 19.6 30.8 22.0 25.0 22.8 14.9 13.6 16.8 8.3 9.8 12.5 11.4 
60.2 26.5,20.3 10.0 63.9 31.4 32.0 121.1 6.6 6.2 6.3 :'1.0 1.1 6.0 6.1 3.4 0.4 61.9 31.8 133.5 2!1.5 64.1 34.7 37.4 29.0 6.6 10.6 12.7 11.9 1.0 7.8 9.1 9.1 - , ... .. -- "'- -.-... -- -

0.8 52.0 39.7 : 26.6 21.5 4.1 6.7 2.9 2.5 2.3 4.6 2.2 1.9 1.4 4.3 1.3 1.6 
0.6 !l4.5 45.8 34.0 31.6 6.3 13.2 9.8 12.5 5.2 12.7 8.2 11.8 4.4 11.7 6.1 10.6 

0.4 50.0 33.3 ,2!1.0 20.0 6.3 3.7 2.3 1.0 1.0 2.9 ~:~ 1.5 0.4 1.4 1.7 1.4 

I--
52.0 39.0 . 32.3 29.9 7.3 8.2 8.1 10.3 2.1 5.1 8.3 0.6 2.2 ".2 5.8 

0.8 18.4 12.8 I 4.5 3.0 2.9 :).3 0.9 1.0 1.1 4.2 U.7 1.0 0.6 4.3 0.4 ~.9 

0.2 20.6 17.9 ,10.6 11.3 5.3 11.5 7.5 10.4 ,.7 10.8 6.1 9.5 2.8 9.0 4.6 8.1 

0.4 19.9 7.!I ! 4.4 2.1 8.1 ;:~ 1.7 0.7 1.2 !.9 1.5 0.6 0.2 0.4 1.3 0.6 

-O.~ 
21.4 11.8 ,10.3 10.2 8.7 6.7 8.3 1.4 3.2 4.9 6.4 0.2 1.2 3.2 4.3 - 5.9 2:61' 0.5 0.3 2.3 1.6 0.2 0.3 0.4 1.0 0.2 0.3 0.2 1.1 0.2 0.3 0.8 

.0.2 7.7 6.9 6.4 8.4 3.5 6.0 5.9 8.2 1.0 3.8 4.0 6.3 0.4 1.!I 2.2 4.2 
13.3 '2.1 2.1 0.5 13.4 2.4 2.4 0.7 1.6 1.0 1.0 O.!I 0.3 1.:) 1.:) 0.4 0.4 14.6 6.0 7.8 8.4 13.5 4.5 6.4 6.8 1.8 2.9 4.8 5.6 0.3 2.2 ' 3.1 4.1 

0.8 13.:;) 8.3 6.2 7.3 17.0 1201 111 • 9 IU.O ~.7 11.4 tI.2 '(.2 :;).tI 0.2 0.1 :).2 

0.6 15J l 12.6 14.6 15.9 17.9 14.7 16.6 17.6 9.7 9.2 10.9 11.9 5.8 6.4 7.2 8.2 

0.4 31.4 19.4 17.4 14.4 26.4 14.7 113• 1 IU.:;) 3.:;) 
~:~ 

4.4 3.3 U.:> 2.3 3.3 2.~-
33.1 24.2 24.2 23.7 26.4 16.9 ~.~. 17.2 3.5 7.8 8.7 0.5 2.9 4.7 6.0 - -.- - . 

0.8 184 82.7 49.8 34. !I 39.4 22.4 14.0 9.7 18.6 12.5 7.4 4.8 14.2 9.5 5.5 3.4 
187 91.1 58.4 45.9 40.9 30.3 22.5 21.7 20.1 22.7 16.6 18.0 16.0 22 0 113.9 16.8 

1.4 
f: OtI.O 43.8 31.3 22.2 13.7 8.9 6.2 11.7 6.7 4.0 2.6 8.8 5.7 3.3 2.1 0.4 76.3 52.1 42.4 23.5 20.4 16.5 17.3 13.0 13.9 10.9 13.4 10.2 11.7 8.!I 11.3 

0.8 
,}4.3 

~~:~ 3.8 0.7 33.4 12.2 3.0 0.4 10. 'f II.B 2.3 0.2 13.7 7.7 2.1 0.2 

1.0 
95.9 9.6 8.9 34.7 19.4 11.0 11.2 18.0 18.5 11.5 12.4 15.3 19.9 11.2 12.8 
56.0 12.5 2.0 0.6 19.4 7.4 1.6 0.2 g:; 1~:~ 1.2 0.1 10.1 4.6 1.2 Uol 

0.4 57. !I 17.4 7.8 8.8 20.6 13.8 9.1 10.4 8.6 10.1 11.5 10.7 7.0 8.6 

0.8 37.7 4.9 4.9 1.6 24.9 1~:~ 2.8 1.5 13.1 1.tI tI.:> 1.1' 11.4 1.4 1.1 1.0 

0.6 f....-
38.8 9.4 12.3 9.8 26.2 11.8 11.1 14.5 9.9 11.3 12.0 13.1 10.9 12.2 12.2 

0.4 "'15. B 4.!I 3.7 O.B I:.!.::> l.tI :.!.:> U.IS 6.:) 0.4 1. :) U.O 7.3 0.2 1.1 U.:;) 
17.0 9.1 11.0 8.7 14.0 7.6 10.1 9.5 9.9 5.B 9.0 9.3 8.7 4.~ 7.7 7.8 

0.8 14.0 12.3 2.6 1.4 14.5 9.4 3.0 0.9 7.1 3.B 2.3 0.:) :).9 2.8 2.1 0.3 
1~.3 17.9 9.0 9.5 16.6 14.9 10.~ 10.~ 9.3 8.6 11.7 11.4 8.5 7.7 12.8 11.7 

0.2 9.5 8.2 1.2 1.2. b.2 7.6 1.1 1.0 1. :.! 3.0 0.7 0.6 0.9 3.1 0.7 0.6 
0.4 11.7 13.2 7.2 9.4 I!!~ 10.6 7.1 9.0 3.1 6.0 7.2 8.8 2.2 5.3 6.0 7.4 

O. 20.0 8.7 3.5 0.9 10.7 TI.T 3.0 1.3 4.2 0.4 1.7 1.1 2.1 !I.2 0.7 1.0 
0.8 

~0.2 ~:9 13.0 9.!I 9.3 16.4 13.~ 9.2 9.3 9.6 9.1 8.6 10.9 7.2 8.0 7.4 ll.~ - .9 2.13 i 2.1 1).4 17.2 3.1 ~:: 0.4 :.!.:;) 2.1 1.11 0.3 0.4 1.9 1.5 0.3 
0.4 23.5 6.4 ' 8.8 8,6 18.9 5.0 6.9 2.8 4.0 !I.3 7.0 O.~ 3.2 3.9 5.5 

0.8 ,37.9 4.8 2.B 1. 'f 33.3 4.4 3.4 I.IS ,23.3 3.0 3.1 1.4 Ib.U O.'} 2.2 1.1 
45.5 8.4 8.7 10.0 041.5 7.3 7.1 8.3 27.2 7.1 6.7 8.1 17.7 4.3 ~.5 7.0 

0.6 12.2 5. !I 0.8 0.1 9.8 4.9 0.8 0.6 1.9 3.8 0.0 O.~ 0.3 0.3 0.:'1 0.4 
0.4 15.9 10.2 6.8 8.7 10.3 7.1 ~.2 6.9 1.9 4.9 4.2 5.6 0.3 0.9 2.3 3.8 

0.8 18.8 11.6 3.8 0.6 14.B 9.0 3.1 0.6 9.4 9.4 2.7 O.!I ~.8 4.3 2.6 O.~ 

23.9 18.2 11.1 8.6 15.0 12.2 8.3 6.8 9.4 10.7 6.9 5.5 ~.8 5.0 ~.1 4.5 
1.0 5.4 1.2 I 1.2 0.8 3.7 O.~ 0.4 0.4 2.6 0.5 0.4 0.4 0.2 0.4 0.3 0.4 

0.4 6.9 5.5 7.8 9.1 4.8 4.4 6.3 7.9 3.2 2.7 4.3 6.0 O.~ 1.0 2.4 4.2 

0.8 16.8 11.81 9.9 8.7 4.3 2.b, 1.9 1.0 1.0 2.0 1.:'1 1.3 0.7 0.5 1.2 1.0 
18.6 16.4 16.3 17.5 5.1 6.0 6.9 9.0 1.2 3.3 4.7 6.7 0.7 O.B 2.6 4.3 

1.4 
150• 0 33.3T:2~.o 20.0 6.3 3.7 2.3 1.6 1.6 2.9 ~:g 1.5 0.4 1.4 1.7 1.4 0.4 52.0 39.0 !32.3 29.9 ".3 8.2 8.1 10.3 2.1 !I.l 8.3 0.6 2.2 4.2 5.8 

Note: (1) P(h) values are the upper figures in each cell 
A 

(ii) P(h) values are the lower figures in each cell 
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TABLE A3.4 (continued) 

PERCENT h-STEP LOSS FOR FITTING AR(p) TO ARMA(1,2) PROCESSES 

h= 1 h= 2 h = 3 h = 4 
, p' p' p' 

Qa ~ PI ,p 
1 , 1 2 1 3 4 1 2 3 .. 2 3 I .. 1 2 J 3 .. 

0.8 339 ; 162 101 7l.~ 66.8 42.2 29.2 21.8 2~ .. 9 119. i" 12: 6 "t'-9: 1 18.1 13.6 I 8.8 6.1 
1.8 343 I 174 113 86.6 68.4 ~I.~ 38.8 3~.4 27.4 30.1 22.4 123.4 19.8 27.1 17.7 20.6 

0.4 ~O 13b 89.~ b5.0 39.6 :u.4 19.9 1:>.2 14.t1 9. ~, 0.4 I 4.:) 10.8 ~ :>.1 J.:> 
~ 147 101 7~~} 41.0 3~.2 28.4 27.6 16.1 17.7 13.9 '16.4 12.2 14.0 10.6 13.8 -, 
115 34.-6 32~3 23. 62".f ilS l~:f"' 1:).4 23.7 9.0 4.9 7.0 17.~ 0.8 b.O 2.7 :>.4 

0.9 116 40.7 42.9 34.4 63.6 30.0 27.6 18.6 24.9 18.6 16.2 17.2 19.0 18.4 15. I 15.6 
0.4 1 66•0 30.7 30.5 17.8 39.0 14.2 1:>.4 11.9 1:>.0; 2.? 3.9 4.7 12.0 1.5 2.5 3.9 

67.5 36.8 41.6 ~7!.~_ 40~}- 22.1 ~?7 '~ 16!~10.0_ 13.0 4.i- 14.0 8.0 lq.~_ 12.0 
0.8 ~e.-~' 55.-0 23~5 22.7 :JO. 58.1 r.'t' T4.4 i 1'8;'7' --r.r T."'9- 12-.1" 4.4 6.8 

0.8 0.0 
60.8 63.6 30.7 34.4 54.8 62.4 31.3 36.0 18.0 ' 21.8 17.8 22.1 11.6 15.1 15.3 20.3 
~9.4 34.8 23.6 16.4 46.1 37.5 20.9 17.8 3.3 i 10.3 4.2 :>.8 0.4 8.8 2.5 4.9 0.4 64.9 40.2 31.1 27.1 51.6 39.6 28.0 26.9 5.3 12.4 10.7 1~.8 1 ... 10 ... 7.9 1".0 

0.8 106 36.8 23.1 22.1 98.6 30.9 21.8 20.8 1
50•3 i 15.8 14.2 12.7 2'1.0 5.b 8.8 7.9 

121 41.4 30.2 33.~ 108 34.8 26.3 28.7 52.6 21.1 18.5 20.0 29.5 Q.6 11.9 13.2 -0.9 4f1.3 37.5 18.1 13.8 24.6 24.7 12.9 7.7 6.0 I 11.4 5.8 3.3 0.5 1.2 4.9 2.2 0.4 48.9 4:>.:> 2~.7 22.8 26.7 27.5 19.1 15.7 '6.5 12.9 11.7 10.0 0.6 2.3 7.3 7.1 

0.8 I:lu.u JJ.3 25.0 20.0 6.3 ~.7 2.3 1.b 1;~ 2.9' "'2.-1 l:"5"' -0..( -r;.r 1. ~ 1.4 
:>2.0 39.0 32.3 29.9 7.3 8.2 8.1 10.3 2.1 5.1 6.0 8.3 0.6 2.2 4.2 5.8 

-1.8 106 71.7 53.3 41.9 10.2 7.1 :>.2 4.0 4.2 It. 6 3.5 2.7 1.0 3.7 3.1 2.4 0.4 109 79.3 62.3 54.0 11.3 12.4 ll.~ 13.7 4.9 7.8 8.0 10.6 1.4 4.9 6.4 8.0 .. 
0.8 439 219 144 107 80.3 53.' 39.0 30.7 28.9 21.9 15.2 11.5 19.4 1:>.0 10.0 7.3 

444 ~~5 158 125 82.0 ~,3.3 49.3 45.3 30.4 33.2 25.2 26.1 21.1 28.6 19.1 22.0 2.0 ~- 329 18r 129" 9S:Y 48.r 33.2- '27:0 2l.8 is.6 "-i~:6 7.2 ~.3 11.1 7.9 5.3 3.7-
0.4 333 200 143 116 48.9 43.5 36.0 34.9 17.0118.6 14.8 17.3 12.4 14." 11.0 14.2 

0.8 1201 ClIJ.J :>u.::» 49.6 '82.3 38.6 22.0 23.7 1 28•4 Ib.l b.2 -1.7 19.9 12.0 3.0 - -":6 
203 77.3 60.7 64.9 83.8 48.2 33.3 37.6 29.7 "26.~ 17.3 20.3 21.3 25.0 14.6 17.4 

1.2 128 56.3 50.5 45.8 54.2 26.8 18.6 20.9 17.6 7.3 2.1 4.8 14.0 5.1 0.5 3.3 0.4 130 63.4 62.0 60.3 55.6 35.2 30.0 32.7 18.8 15.2 11.:_ 14.8 15.4 12.5 8.6 11.8 

0.8 9b.5 85.0 53.9 42.u B2.1 58.0 47.1 29.7 2:i.'J 14.4 16.~ -':5 15.4 7.4 11.B J.O 
98.3 95.6 65.3 53.4 84.6 69.0 59.0 44.0 25.8 21.1 28.2 20.5 17.4 13.7 ~.2 16.8 

0.4 77.2 76.2 43.6 41.9 5b.l bO.2 3b.3 31.2 7.0 '1.0 7.3 4.4 1 4.1 b.b 5.3 12•0 0.4 80.3 86.~ 52.6 54.7 60.0 65.2 4~.9 44.2 9.2 12.5 16.2 14.9 1 6.0 9.4 13.6 12.0 
1.0 11b 69.7 58.8 38.2 95.0 88.0 64.2 4~.5 24.3 28.4 IB.9 11:>.1 11.2 Ib.2 8.2 9.2 

0.8 122 76.0 69.0 50.8 109 90.6 74.9 57.7 32.5 31.0 26.8 28.2 I 17.9 18.2 14.8 22.1 
-0.4 109 52.1 51.4 35.7 108 52.0 :)2.:) 3:>.0 9.0 10.2 lU.O ::».9 1.4 :).4 0.4 J.3 

0.4 120 56.6 61.4 48.0 110 55.4 58.0 45.6 9.2 12.8 14.4 15.7 1.4 7.0 9.3 11.0 

0.8 139 75.8 43.4 40.b 100 ' 47.b 2B.7 2:>.4, :)0.3 20.7 10. ~, 110•1 ".-'.4 11.5 lU.:> lU.5 
1~.8 84 .. 4 51.8 52.5 10i 53.2 34.8 33.6 50.3 33.3 22.7 22.4 27.4 15.6 14.4 15.0 

-1.2 61.'+ 61.3 46.5 31.8 25.1 24.6 22.0 14.5 8.9 8.4 8.5 4.8 0.5 0.5 5.2 3.2 
0.4 64.6 7l~~ ~~4 41.9 27.2 29.1 29.6 23.0 9.8 11.0 14.5 11.5 1.0 1.8 8.~ 8.4 

0.8 81.1 59.2 47.9 40-:7 -~6.8 4.3 2;9- -~ 2-:-i "'I~ 3.3 2.:> 1.9 u.:> 1.B' 2.1 1.7 
83.~ 66.0 56!.~ _~.2" 'l.8 8.9 8.7 11.0 2.5 5.7 6.5 9.0 0.8 2.6 4.7 6.4 

-2.0 151 107 83.8 68.9 12.5 9.3 7.3 0.0 4.7 5.2 4.0 3.2 1.1 4.0 3.3 2.6 
0.4 154 116 94.6 83.5 13.6 14.7 13.8 16.1 5.5 8.5 8.5 11.2 1.5 5.3 6.8 8.4 --, 

Note I (i) P~h) values are the upper figures in each cell 
,. 

(i1) P(h) values are the lower figures in each cell 
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Q 
2 

~1.0 

.. 0.4 

0.4 

0.8 

1.0 

TABLE A3.5 

1 STEP AHEAD PREDICTION PERCENTAGE LOSS IN FITTING 
AR(P) TO SELECTED ARMA(1,2) PROCESSES 

, 
P 

Q
1 

t' 1 2 3 4 5 6 7 8 
J. 

~------' 

0.0 0.4 92.0 47.9 47.2 32.1 31.9 24.2 24.1 19.4 
94.0 54.3 55.7 43.2 45.1 39.7 41.7 39.2 

-0.6 0.4 31.4 19.4 17.4 14.4 12.7 11.2 10.1 9.2 
33.1 24.2 24.2 23.7 23.9 24.8 25.6 26.9 

---

1.4 0.8 184 82.7 49.8 34.5 26.1 20.8 17.3 14.7 
187 91.1 58.4 45.9 38.6 35.8 33.8 33.5 

. _--.--'_.'-

0.4 250 136 89.5 65.0 50.0 40.0 32.9 27.7 
254 147 101 79.5 65.3 57.9 51.9 49.0 

1.8 339 162 101 71.5 54.2 42.8 34.9 29.2 
0.8 343 174 113 86.6 69.8 61.1 54.2 50.8 

-0.8 0.4 51.9 36.3 17.1 16.1 11.9 7.1 7.0 5.0 
57.8 43.3 24.1 26.1 23.7 20.7 23.5 22.4 

0.8 439 219 144 107 84.6 70.0 59.7 52.0 
444 235 158 125 103 91.9 82.7 77.7 

2.0 329 187 129 98.5 79.3 66.4 57.0 50.0 
0.4 333 201 143 116 97.7 87.8 79.6 75.3 

0.8 201 69.3 50.5 49.6 36.7 27.6 27.2 24.7 
203 77.3 60.7 64.9 52.5 42.6 45.7 46.4 1.2 128 56.3 50.5 45.8 32.2 0.4 26.8 2b.8 22.8 
130 63.4 62.0 60.3 46.6 41.9 45.7 44.1 

0.8 96.5 85.0 53.9 42.0 37.4 28.1 27.9 21.8 
98.3 95.6 65.3 53.4 52.2 44.8 48.3 41.7 

0.4 77.2 76.2 43.6 41.9 31.9 28.0 25.4 21.0 
0.4 80.3 86.5 52.6 54.7 45.8 45.1 45.0 40.8 

0.8 116 69.7 58.8 38.2 38.0 27.6 27.0 22.4 
122 76.0 69.0 50.8 55.0 43.0 46.0 43.4 

-0.4 109 52.1 51.4 35.7 32.2 27.8 23.2 22.5 
0.4 120 56.6 61.4 48.0 47.6 44.2 41.2 43.9 

0.8 139 75.8 43.4 40.6 37.0 27.4 23.8 23.7 
158 84.4 51.8 52.5 52.1 44.0 42.6 45.8 

-1.2 61.4 61.3 46.5 31.8 29.7 28.2 22.3 19.6 
0.4 64.6 71.4 58.2 41.9 43.1 45.3 40.3 40.2 

0.8 81.1 59.2 47.9 40.7 35.8 32.0 29.2 26.8 
83.5 66.0 56:5 52.5 49.4 48.5 47.5 47.8 

-2.0 151 107 83.8 68.9 58.7 51.1 45.3 40.6 
0.4 I 154 116 94.6 83.5 74.9 70.3 66.2 64.3 

---, 

Note (i) P(l) values are the upper figures in each cell 
A 

(ii) P(1) values are the lower figures in each cell 
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9 10 
~ - ~ ". -
19.4 16.3 
41.2 40.1 

-----

8.4 7.7 
28.0 29.6 

i----- ---

22.6 11.4 
33.3 34.0 
_."_ .. _ . 

23.6 20.5 
46.4 45.4 
24.8 21.4 
47.7 46.5 

3.4 3.4 
22.2 24.7 
--_._,. -

46.1 41.3 
73.1 70.8 
44.4 40.0 
71.2 69.3 
19.8 18.5 
42.3 43.7 

--18.8 18.5 
41.1 44.0 
21.5 18.4 
44.6 43.5 
20.7 17.2 
43.8 41.9 
20.5 19.0 
43.9 44.0 
18.4 18.4 
40.7 43.9 
20.3 17.2 
43.6 41.0 
19.6 17.4 
43.5 42.1 
24.9 23.2 
47.7 48.6 
36.9 33.8--
62.2 61.6 

----_._--- . 



TABLE A3.6 

COEFFICIENTS OF THE AR(10) FIT TO IlIE PROCESSES IN TABLE A3. 5 

Q e ~1 ~1 ~2 ~I ~4 ~' ~' ~' ~' 1
9

' Il~ 
2 1 5 B 7 8 

------, 
-1.0 0.0 0.4 0.39 -0.83 0.31 -0.66 0.23 -0.5 0.15 -0.33 0.08 -0.16 

---'-, , 
-0.4 -0.6 0.4 -0.12 -0.43 -0.26 -0.28 -0.22 -0.2 -0.16 -0.13 -0.09 -0.08 I 

I 

0.4 1.4 0.8 2.09 -2.32 2.20 -1.95 1.65 -1.32 0.99 -0.67 0.36 -0.11 -1 

0.4 2.00 -2.54 2.71 -2.61 2.32 -1.91 1.42 -0.93-0.49 -0.16 
1.8 

0.8 0.8 2.39 -3.15 3.41 -3.30 2.94 -2.40 1.77 -1.14 0.57 -0.17 

-0.8 0.4 -0.39 0.46 0.64 0.15 -0.34 -0.35 -0.03 0.19 0.12 -0.01 

0.8 2.44 -3.29 3.63 -3.58 3.22 -2.64 1.96 -1.26 0.63 -0.18 
2.0 

0.4 2.05 -2.66 2.90 -2.84 2.56 -2.12 1.59 -1.04 0.54 -0.17 

0.8 1.90 -1.27 -0.15 1.16 -1.12 0.34 0.42 -0.63 0.40 -0.10 
1.2 

0.4 1.50 -0.83 -0.30 0.97 -0.81 0.14 0.40 -0.48 0.26 -0.05 

0.8 1.16 0.40 -1.08 0.06 0.80 -0.31 -0.44 0.33 0.14 -0.16 
0.4 

0.4 0.77 0.55 -0.83 -0.14 0.69 -0.14 -0.44 0.24 0.18 -0.17 
1.0 

0.8 0.44 0.97 -0.03 -0.76 -0.21 0.49 0.27 -0.24 -0.17 0.11 
-0.4 

0.4 0.03 0.83 0.26 -0.55 -0.38 0.27 0.34 -0.06 -0.18 0.00 

0.8 -0.30 0.51 0.79 0.43 -0.17 -0.49 -0.36 -0.01 0.21 0.16 
.. 1.2 

0.4 -0.69 0.08 0.65 0.61 0.13 -0.32 -0.39 -0.15 0.11 0.14 

0.8 -0.99 -0.94 -0.88 -0.80 -0.70 -0.60 -0.48 -0.36 -0.24 -0.11 
-2.0 --- ____ T .. -----~.--

0.4 -1.30 -1.45 -1.49 -1.42 -1.28 -1.07 -0.84 -0.59 -0.36 -0.15 
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TABLE A3.7 

PERCENT h-STEP LOSS FOR FITTING AR(p) TO ARMA(l,l) PROCESSES 

1.0 

h = I h = 2 h = 3 h = 4 ./ 
pi-"'" ... ,.. .._.- ..... p' ._ .... p;'-' ............... -- .---p.....,',----, 

; P1 l' 2 3 4 1 2 3 4 .. 1 2 3 I-.~_' _ .. L_ 2 ~--:.3_+...;;;;4_.1 
O-~ ~95.() 4S.7 32.S 24.7 17.6 11.2 r 7.3 ~.3 10.3 7.4 4.6 3.3 8.1 ~.6 3.~ 2.~ 
.. :. __ 96.9. ... ~~,J_. 4Q •. ~ .~.~-2- 1?!..~ IS. 1 11~:;:!'73~1~6'!..74~1~2~.2~1~7.:..:.2~1:.:3~.4~..!.;I~~.~~~10~ • ..:;.4~1~S.~0~14-1':..:;4~1~~.!.;.1!....J 
06.80.0 44.4 30.8 23.~ 11.7 ·1:6--~.0 3.6 7.9 4.4 2.9 2.06.6 3;6 ~;r l.~ 

• 82 a ~0.7 38.3 33.8 13.1 13.8 112.3 14.1 9.6 11.7 9.7 12.4 8.3 9.8 7.3 10.6 
03 M.O 39.4 28.3 22.0 7.7 4.8 3.1 2.1 4.9 -3.0 2.1 1.~ ~.6 2.-81.7T;3" 

• 67.0 4~.3 35.7 32.1 8.9 10.2 9.7 11.S 6.0 7.~ 7.2 9.8 3.~ 4.8 ~.4 7.~ 
1----~--+---~--~--_r~~--_+--_4----~~----~-- ----I---~--~--~--_+----I 

I 0.7~ 
o 9 52.6 19.4 9.1 

• ~,1. ~.!+1~.3_ 
o 6 41.6 16.~ 8.0 

• 43.2 21.4 14.1 
0.3 30.8 13.3 6.6 

32.4 18.0 12.7 

4.7 12.3 6.4 3.1 1.6 7.7 4.7 2.3 1.2 6.4 3.8 1.8 1.0 
!3.~ ~&_ J.2. 9 11.~ 1~2:!.,.1=+...;9r:.' =-6 +=-;14::-'.;..1 ¥10;:.: .... 8-4!lr2.:.;8:..+-.;.S.~8~1~~~. 6~..;;9~. 8~!.;13~.~1 
4.2 8.6 4.6 2.3 1.2 6.7 3.1 1.7 0.9 ~ ~.-!r T.:r lJ.6" 

12.6 10.0 10.6 9.4 11.2 8.4 10.1 S.4 10.S 7.6 S.7 6.6 9.6 
3.5 6.3 3.3 1.7 0.') 4.3 2.3 1.4 o.s ~2 .~ T.' -0-.1 

11.S 7.~ 8.~ a.l 10.1 ~.4 6.~ 6.3 a.7 3.0 4.0 4.6 6.~ 
~-+--t-- - -_. . .. +---+--+--+-----1f-~-_+-~-_+-_+-_+_---!__ 

0.9 22.8 4.6 1.1 0.3 6.9 2.3 0.6 0.1 4.7 1.a O.~ 0.1 4.3 1.~ 0.4 0.1 
I----iH2;::;4c:..:.2H--:8"'".8H-i6~.~8~8r._i'2+_ar.~~_+_TS.=_14"_+_.;a~.1:_t_:1:,;0,:...1H-.....;:6.9 ~2 S.S .. _10'~_I-.~~ 11.7 S.6 11.4 

o ~ 06 16.4 3.~ O.S 0.2 ~.o 1.6 0.4 0.1 43"", ,.~. "0.-4' ·(l~T 4.u 1:1" 6:~ o:-r 
• • 17 S 7 7 6.6 8.2 6.~ 7.1 7 4 9.~ 6.2 7.2 6.8 9.0 ~.a ~.9 ~.4 7.8 

0.3 10.3 2.3 0.6 0.1 3.7 1.1 0.3 0.1 2.5 -O.S 0.3 -0-.1 1.2 0.7 0.2 0.1 

t
-+---t_1_1'~_f- 6~4 6.4 S.l ~.O ~.?6 _._4 ..... _a._~+_3_.5 ..... _4_.1-+_4_.8.-4_6._._94-1_._84-_1.~,_ 3.1 4.9 

0.9 ~.~ 0.3 0.0 0.0 2.2 0.2 0.0 0.0 1.7 0.2 0.0 0.0 1.7 0.1 0.0 0.0 
6.9 4.3 ~.9 7.9 4.3 ~.7 7.3 9.3 4.6 7.1 S.O 10.0 ~.2 S.3 S.4 10.4 

o 6 3.3 0.2 0.0 0.0 1.6 0.1 0.0 0.0 1.;; 0.1 0.0 0.0 1.3 0.1 0.0 0.0 
I O. 2~ • 4. 9 _ 4. ~ 6. a B. =-0 +...:3~.~4-+-i-l4.~8+~6':..;~;..-+..;;81.i'~H-~3c'-i' 4:+....,4::-. 6H-;~O-:-'i-7 7. S 2.9 3. 4 I-~' 7 6.4 
i 0.3 1.6 0.1 0.0 0.0 1.0 0.1 0.0 0.0 O.~ -0.1 o~cr- 0:0 0.2 0:0' 0:0'· ·0:0' 

3.2 4.1 6.0 8.0 2.2 3.6 ~.4 7.4 1.2 2.0 3.6 ~~6 O.~ 0.6 1.9 3.7 
I __ ~- .. _ ..... - -- _.. -. ".'''-'' ---. --'---'-' ... -4---

4.3 0.3 0.0 0.0 3.4 0.3 0.0 0.0 3.S 0.2 0.0 0.0 4.3 0.2 0.0 0.0 
0.9 7.7 4.3 6.0 8.0 9.9 4.6 ~.S 7.7 11.8 6.0 ~.9 7.7 12.6 6.9 6.9 7.7 

6 1.0 0.1 0.0 0.0 1.0 0.1 0.0 0.0 0.8· 0.1 0.0 1J.1r If.4 0.0 0;0- 11.0" 
-0.~~0_·~~3~ .. 5~~4~1~6~.~0~8~.~0~2~.~44-~2.~9~~4~.7~~6~.7~~1,:...2~~1~'r6~3~.~I~~~.~I~~0.~~~~0~.9~~I~.7~,3~.3~ 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O"'O:1r 0.0 0.0 0.0 
f-_4-0_._3+_2_._1_+__4._0_+_-6_.0+_S_.0 ..... _0_.0-+-2.0 i' ~:O 6.0 0.0 0.0 2.0~~.~+0_._0-+-0_._0-+-0_._0+-2_._0~ 

09 11.4 2.6 0.6 0.1 12.5 3.3 o.a 0.2 1~.4 2.8 0.9 0.2 16.3 3.3 0.7 0.2 
• 17.1 7 5 7.2 8.3 20.3 8.7 '6.6 7.3 21.6 9.~ 6.6 6.8 20.3 10.0 7.2 6.~ 

a 6 0.4 0.1 0.0 0.0 0.4 0.1 0.0 0.0 0.2 0.1 0.00.~ ~ 0.1 0.0 0.0 
-0.5 • ~ 6 4 2 6.1 8.0 0.5 2.3 4.2 6.1 0.2 0.3 2.2 4.1 0.1 0.1 0.2 2.2 

0.3 1.1 0.3 O. f HO~.OH--ioC!-:. sH--:o:!.:. 2~-r:..: 0 .• 1~";:'" O. o~";:'; o.o<+~ 0 .• 2H-.r; 0 .• 1r-+~..,;.:..;. 0<4-.w:-; 0 .• 0;"+";':"; o .• or-+";":"; 0 .• 01-1-';':';0,.0:-'1 
2.8 4.2 6.0 8.0 1.0 2.~ 4.2 6.2 0.0 O.~ 2.3 4.3 0.0 0.0 0.4 2.3 

~--+-~---+--~--~--+---+---~--~-+---r--~--~.-
~.9 3.1 1.7 0.9 7.3 3.8 2.1 1.2 7.0 4.2 2.3 1.3 ~.8 4.2 2.4 1.4 

~0._9+-~9.~8~8.~ 9.0~~~9~.7~~8~.~1~7~.~7~7~'T7~8~.~3~~7.~1~~~~.a~~6~.3~~7~.0~~5~.~a~~~.~0~4~.~5~~~.~4~ o a 6 1.9 CYO.6 0.3 1.~ 0.8 o.~ 0.3 0.4 0.7 0.4 0.2 0.2 0.2 0.4 ~ 
- .75 • 3.7 5.0 6.4 8.3 1.6 2.9 4.4 6.3 0.4 0.9 2.6 4.4 0.2 0.2 0.7 2.~ 

10.2 5.2 2.8 1.5 4.~ 2.3 1.2 0.7 0.1 I 1.9 1.1 0.6 0.0 0.0 -0.9 0.6 
11.9 9.4 8.7 9.6 ~.1 5.3 ~.8 7.7 0.2 I 2.7 4.1 ~.S 0.1 0.3 2.0 3.7 0.3 

~ . ··I---I--~-.o-+- ~~7 4':". ~-+--4-. 340-4~. 2+-4-. 0-+-3-.8-+---3-.6-+-3-.-4+ 'i -3-.-4+-3-.-3 -I-;~ -;. ;- -;~;- 7.8-~ 7 

1_0_.9-+-:,.:.7,,-:.0:+:..:;.8:..,:.9:--+-;1=-70:..,:. 7;--t-'il:~2:.;;' 7-; . ...1~~ .. +~ 7.~ '?!~_ .~4-~.3.5 5!;"'~!~~2. 7. 2. 7 ~'.~ ~_.'-!L 
20.0 l6.7 14.3 12.5 9.0 7.2 T.'.I II ~.1 2.;; cr "'3 ... I .:.11 I."D Q,9" .. ,.. .: U 

-1.0 0.6 22 a 21.4 21.0 21.7 9.2 9.7 10.2 11.9 2.6 4.7 6.1 7.7 1.0 1.1 3.1 4.9 
35.0 25.9 20.6 17.1 7.~ 4.9 3.~ 2.7 0.2 3.1· 2.3 1.7 0.10.1" '1;<T 1;'! 

0.3 37.0 31.2 27.6 26.7 B.l 8.3 8.4 10.3 0.4 4.2 I 5.6 7.5 0.1 0.6 3.3 ~.O 

Note a (i) P(h) values are the upper figures in each cell 
A 

(ii) P(h) values are the lower figures in each cell 
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TABLE A3.8 

PERCENT h-STEP LOSS FOR FITTING AR{p) TO ARMA{2,1) PROCESSES 

I 
. 

; h= 1 h = 2 h= 3 h= 4 
• I P P r 3 

P' 
P; PI ~I 1 2 I 3 4 1 2 3 4 1 2 4 1 2 3 4 

0.91 
0.8 20.1 10.7 i 6.1 3.7 0.8 2.6 i 1.~ 0.9 7.1 3.8 I 2.8 1.7 1.4 1.6 1.1 0.8 

0.0 23.4 18.4 i1~.4 113 •. ~-+ 1.;L ~.6 7.7 8.4 16.1 .8. ~_ U.~_8 . 11.3 ~.?~il. 6.4 1\h.7, ,~,~ 
0.4 229 11.1 1.6 I 0.3 , 109 2.~ T:T'o:'2 121 ~. 7 0.9 0:'2 106 3.8 0.7 0.1 

291 17.~ 7.9 7.8 ' 200 6.2 ~.9 . 6.4. 173 13.!'l 10.6 8.9 143 9.0 9.4 7.6 ~-.- ,- -- . i 0.0 0.8 0.7 O.!I 0.3 i 0.2 0.0 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 
0.1 2.6 4.4 6.3 : 8.1 3.8 4.2 6.3 8.1 ~.4 !I.3 7.1 8.7 6.6 6.3 8.1 8 8 

0.4 63.7 6.2 0.9 0.1 12.8 2.8 0.6 0.1 27.8 2.8 0.6 0.1 18.8 2.3 0.4 0.1 
._.,. 73.1 11.6 7.3 8.0 34.3 4.9 !I.7 6.8 49.8 7.1 - 8.8 8.6 43.8 !'l.B 8.!I 7.6 

0.8 4.3 2.6 1.6 1.0 0.2 0.6 0.4 0.2 1.3 0.8 0.7 O.!'l 0.4 0.3 0.2 0 .. 2 

0.8 0.0 6.8 7.3 8.6 9.7 4.8 4.6 6.9 8.4 ,].!J- ~!?- 8.3 9.4 7.0 6.0 8.9 8.7 
0.4 97.6 7.9 1~0.2 47.6 3.2 0.8 0.1 46.!'l 4.4 0.7 O.T 4'0'.8 3.8 0.6 0.1 

117 13.9 7.9 8.3 72.9 6.0 6.1 6.9 60.6 10.0 9.9 9.1 49.9 7.4 8.8 7.7 

0.8 17.9 9.7 ~.6 3.4 2.4 2.7 1. :, 0.9 6.6 4.0 2.8 1.7 2;9' 1;9' 1".4 "Q.9 

-0.1 21.9 17.3 1!1.013.6 9.0 !'l.8 8.0 8.7 13.4 8.1 1I.~ 11.1 9.6 6.4 10.0 8.3 
0.4 162 9.9 1.4 0.2 137 3.2 1.0 0.2 64.6 !I.8 0.8 0.2 162.3' ~.1 cr."f o.T 

r-' 213 16.2 8.1 8.1 146 7.4 6.2 6.6 6~.1 14.1 10.4 8.8 62.3 11.2 8.8 7.4 

0.8 16.4 9.0 5.3 3.2 1.8 2.1 1.2 0.7 2.2 1.6 1.2 0.7 1.!I 1.2 0.7 0.6 
118 a 13.3 11.2 11,3 4 0 7.8 8.2 10.2 ~.3 9.6 8.4 10.9 !I.4 10.8 7.5 11.2 

O.~ 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 "'O';(J o;cr ~ ,0.4 2.1 3.9 !I.9 7.8 3.8 4.4 6.4 8.4 ~.2 !I.6 7.0 8.9 6.4 6.7 7.9 9.2 
0.8 11.2 6.5 ' 3.9 2.4 1.1 1.4 0.8 -0. !I 1:6 1.0 ~.9 0-;0 ,1.2 0.7 0.4 0.4 

0.3 113.0 107 9 8 10 6 3.3 6.8 7.6 9.9 4.5 7.8 7.4 9.9 4.3 7.!I 6.2 9.5 
0.4 1.1 0.2 . 0.0 0.0 0.3 0.1 0.0 0.0 0.4 0.1 0.0 0.0 0.4 0.1 0.0 0.0 

3. 4 4,2 ! 6 1 8 0 4&_L3~.6.0 8.0 4.3 4.4 6.1 8.0 4.1 4.5 6.3 7.4 

0.8 6.4 3.8 : 2.4 1.5 0.7 ' 0.8 I O.~ 0~3 "0.9 0.7 0~6 cr;4 0.6 '0.4 0.2 0;3'-

0.1 8 2 8.0 ; 8.3 9.5 2.8 i 5.6 6.8 9.0 3.2 !I.7 6.0 8.5 2.6 4.3 4.7 7.3 

0.4 3.7 0.6 , 0.1 0.0 1.7 , 0.4 0.1 0.0 1.1 0.3 0.1 0.0 0.) 11.2 0.0 0.0 
6.!I 4.7 6.2 8.0 4.7 ! 3.3 5.4 7.2 3.1 3.1 5.0 6.7 2.1 2.6 4.2 5.3 

0.4 2.2 1.4 0.9 0.6 0.4 , 0.4 i 0.2 0.1 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 
0.8 4,0 5.4 6,7 8.!I 2.3 ,4.4._ 6.0 8.1 1.9 3.7 4.8 7.0 1.2 2.2 3.5 5.5 

-0.1 9.1 1.3 0.2 0.0 6.3 , 1.0 I 0.2 0.0 1.6 1.0 0.2 0.0 1.4 0.4 0.1 ~ 0.4 12.8 5.7 ' 6.5 8.1 8.0 3.3 4.9 6.5 2.1 2.8 4.4 5.8 1.6 1.7 2.7 4.0 

0.8 0.0 0.0 0.0 0.0 0.0 : 0.0 ! 0.0 I 0.0 I 0.0 0.0 0.0 0.0 0.0 0.0 .~. --u;o-

-0.3 .--
2.0 4.0 6.0 8.0 1.6 ; 3.2 ~.2 7.2 0.9 2.1 3.7 ~.7 0.4 1.0 2.3 3.9 

0.4 20.3 2.7 :'0.4 --:-0.1 19.2 , 2.2 0.4 0.1 5.2 2.4 0.4 0.1 4.7 1:~ ~ O.~ -- 26.2 7,,~ I 6,8 8 .. 1 19.3 I 4 8 4 9 6 2 5 2 4.8 4 8 ~.7 4 7 2. 4. 
9.7 5.6 , 3.4 2.1 !I.7 3.3 2.0 I 1.2 I 3.7 4.3 ~:~ 1.6 3.4 ;:~ 2.6 ;:! 0.8 13, 6 II 8 ;11.5 11.6 68 !I,9 7 4 I B.2 3 9 5 6 7.6 3 5 4 5 

.. 0.5 46.1 !I.O : O.B 0.1 41.8 4.3 0.8 0.1 40.6 3.8 0.7 0.1 40.~ 4.3 0.6 0.1 
0.4 60.5 10.4 I 7.2 8.1 !l5.4 9.4 !I.6 6.2 46.6 11.8 6.9 6.5 42.9 12.0 6.8 6.1 

0.8 158 39.2 18.0 i 9.8 50.1 13.6 6.6 3.6 30.1 9.1 4.3 2.2 24.9 7.4 3.3 1.7 
160 4~.5 24.7 18.B 51.1 20.7 14.7 14.8 31.2 18.3 13.8 15.1 26.1 18.1 12.6 14.6 

1.2 69.8 6.6 1.0 i 0.2 31.9 3.6 0.6 0.1 22.!I 3.2 0.5 0.1 120.7 2.9 T1J.~ o.r 0.4 70.9 11.0 6.8 I 8.1 32.9 10.0 8.6 10.5 23.6 11.~ 9.7 11.6, 21.9 12.2 I 9.~ ll.6 

0.8 132 36.4 17.1 I 9.3 37.4 9.7 4.9 I 2.7 ,27.0 ~.9 2.8 1."'5 [T9.1 ~.8 I 2.7 1.4 
133 42.6 23.8 !18.3 38.3 16.0 12.4~~~f7!!1 , 11.8 9.8 ll.7 ~'?!~- 9.4 8.0 9.6 

0.8 !l7.0 5.8 0.9 I 0.1 26.5 2.9 0.5 0.1 23.3 i:5' 0.4'" 'O;r 15.7 '2'310'.4 0.1 
0.4 

~~.1 10.2 17§' ?J !I. 1 ~?!~ 8.5 7·..7 ~·-r..~4-1-7.5 6.8 8.7 16.3 5.3 I !I.1 6.8 .. - . 
105 32:S- 15.8 I 8.7 29.2 6.7 3.6 2.0 '20.3 6.3 2.9 1.7 3.5 6.2 2.9 1.0 

0.8 
~~,. 38.8 22.5 17.7 29.9 11.8 110.1 11.6 20.7 9.3 7.7 9.4 3.6 9.2 : 7.7 B.!I 

0.4 t-- -4.9' 0.8 0.1 23.7 2.3 ; 0.4 0.1 15~3 2.4 0.4 - -0·.1' '-2-;0' 2.2 ,0.4 cr.1 
0.4 44.4 

45.6 9.3 6.6 8.1 24.2 ' 6.8 . 6.5 8.5 1~.5 4.8 4.7 6.5 2.1 4.7 ' 4.3 ~.8 

0.8 78.5 28.1 14.1 I 7.9 28.1 6.2 '3:3'1 1•9 9.2 7.8 3.5 2.2 2',4 4.9 J 2~; 13 
80.1 33.9 20.6 16.8 28.4 10.1 8.7 10.2 9.2 10.1 8.0 9.1 2.4 ~.!~ ~ ~--0.4 0.0 32.2 3.9 0.6 I 0.1 23.3 2.2 ' 0.4 0.1 4.8 2.4 0.4 0.1 2.6- l.~ 0.3 0.1 

0.4 133.3 8.2 6.4 , 8.1 23.5 !I.3 5.1 6.9 4.8 4.6 4.6 6.3 2.6 3.7 3.1 4.8 
52.2 21.9 11.5 6.6 33.1 10.2 ! 5.~ 3:r 4.0 7.2 3.1 2';(J 3;-8' 4.1 3.3 T,8-

0.8 53.B 27.3 18.0 1~.4 33.1 12.9 ' 9.8 10.1 4.0 9.9 7.7 B.7 3.8 5.9 5.B 6.5 
-0.4 20.4 2.7 0.4 0.1 21.0 2.4 I 0.4 I 0.1 4.1 2.1 ;-0.3 -0.1 1.8 1.1 , 0.3 cr;T 

0.4 21.6 6.9 _. ~. 8.0 21.0 ' 4.6 4.3 6.1 4.1 4.3 . 4.2 5.7 1.8 2.2 ' 2.7 4.3 

0.8 26.2 13.3 7.!I -4.5 29.5 -13.7 7.7 4.5 10.7 8.2 • 3.9 2.4 1.6 4.0 I 3.4 1.8 
27.9 18.1 13.~_ 13.0 29.6 1~.9 11.9 10.9 10.7 10.0 ' 7.3 7.7 1.6 4.6 6.1 6.4 

-0.8 9.8 1.4'" 0.2 '0;'6 11.7 1.7 0.3 0.0 8.7 1.7 I 0.3 0.0 2.5 1.3 -0-.4 o.(y· 
0.4 
~& 5.5 6.1 8.0 12.2 4.5 5.0 6.8 8.8 3.1 : 3.3 4.9 2.6 1.B 2.~_ 3.8 .- .. 

Li '0';7 4.3 -2~8- 't,7 1.1 4.6 3.0 I 1.9 1.2 3.5 2.7 T:i 
0.8 2.8 1.8 1.8 

4.5 5.7 6.9 B.7 ~.2 ~.2 6.3 7.8 4.9 4.0 I 4.~ ~.B 3.6 2.B 3.0 3.9 
-1.2 l.O u.3 0.0 0.0 1.8 0.4 0.1 0.0 2.1 0.4 I 0.1 0.0 2.3 0.4 0.1 0.0 

0.4 3.1 4.2 6.0 8.0 3.7 4.4 6.3 8.3 4.0 4.1 5.8 7.8 3.9 3.4 5.0 6.7 

Note: (i) P(h) values are the upper fIgures in each cell 
,.. 

(il) P(h) values are the lower figures in each cell 
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TABLE A3.8 (continued) 

PERCENT h-STEP LOSS FOR FITTING AR(p) TO ARMA(2,1) PROCESSES 

h= 1 h= 1 h = 3 h = 4 

Pa P1 
p p' p p 

~ 1 2 3 4 1 2 3 4 1 2 3 4 1 :2 3 4 

0.8 668 ~~.7 22.9 11.9 270 22.0 9.9 ~.2 17~ 13.2 6.7 3.4 140 9.2 4.9 2.4 
1.6 b69 63.1 29.8 21.1 271 29.6 18.4 16.8 17~ 22.0 17.6 17.3 140 19.1 17.6 H.O 

0.4 378 12.7 1.8 0.3 20B 7.0 1.2 0.2 1~0 ~.O 1.0 0.2 128 4.1 0.8 0.1 
379 17.6 7.~ 8.2 20B 13.6 9.4 10.9 1~0 13.3 11.~ ,12.8 129 13.7 12.7 13.6 

o 81~09 ~3.~ 22.3 11.7 188 1l.8 6.4 3.4 1~6 ~.o 3.9 0 2.1 83.2 10.8 4.:) 3.1 
0.8 

• I ~10 61.1 29.2 20.B IBB 17.6 13.6 ' 13.9 1~6 9.~ 10.0 11.0 83.2 18.1 11.1 12.7 

" 299 12.0 1.7 0.3 lei8 4.3 1.0 0.2 1:)0 2.7 0.8 0.1 H.O 4.3 0.7 0.1 
0.4,300 I 17.0 7.4 8.1 169 9.~ 8.0 9.7 1~1 6.9 6.4 7.7 71.0 11.0 7.6 9.1 
0.8 3~O 49,.8 21.3 11.2 181 :).7 4.9 2.7 99.4 ~::! f.O 4.7 09.1 9.1 2:0- -~.3 

-0.8 0.0 3~1 ~7.6 2B.3 20.4 181 9.9 10.1 11.0 99.4 13.8 13.0 ~9.1 16.3 8.3 11.4 

0.4 220 11.0 1.6 0.2 179 2.8 1.1 0.2 'liS. 7 :).7 0.8 0.2 09.1 4.4 0.0 0.1 
221 ' 16.0 7.3 8.2 179 6.:) ~.7 7.0 7B.7 12.8 7.3 8.7 69.1 10.4 6.:) 8.0 

0.8 191 ' 42.0 ' 1B.9 10.2 2~7 38.1 19.4 10.0 104 13.9 3.0 3.;S :)(.0 22.0 8.1 4.3 
192 49.8 26.1 19.8 2:)8 46.6 2~.7 17.7 104 21.~ 9.3 10.9 ~7.0 31.7 16. I-~~ -0.8 141 9.3 1.4 0.2 176 8.3 1.7 0.3 ll4 ~.4 0.6 0.2 48.3 6.8 0.4 0:9 0.1 
142 14.4 7.1 8.1 177 14.4 6.9 7.0 114 11.1 ~.8 6.8 48.3 14.6 8.6 8.9 

0.8 32.~ I 10.7 8.7 :).1 ~:).~ 28.2 1~.6 9.1 76.~ 38.8 20.0 11.9 90.4 43.8 22.1 ~~:~ -1.6 33.9 21.3 1:).4 13.9 :'>7.4 34.9 24.3 19.0 78.:'> 43.6 28.9 22.0 92.3 46.8 28.8 
63.0 6.2 0.9 0.1 72.:) 7.9 1.3 0.2 78.3, 9.:) 1.~ 0.2 86.1l 

i~:; 1.4 0.2 0.4 63.6 11.0 6.7 8.1 73.2 1~.~ 9.0 9.6 79.1 ' 17.~ 10.8 10.6 87.6 11.0 11.0 

0.8 1300 ~9.4 23.9 12.3 ~37 22.9 10.3 ~.3 361 11.9 6.6 3.3 3~ 6.2 4.~ 2.2 
1300 66.4 30.1' 20.9 538 29.~ 17.9 16.0 3G2 19.1 16.3 1~.8 305 13.5 1~.~ 14.6 

1.~ - 76':) 14.2 2.0 0.3 431 7.:) 1.3 0.2 324 4.:1 1.1 0.2 293 2.8 0.8 0.1 0.4 766 ' IB.7 7.2 7.7 431 13.3 8.7 10.0 32~ 11.4 10.3 ll.~ 293 10.1 11.0 11.:') 

0.8 11~' ~B.B 123.7 12.3 409 17.(, 8.:) 4.4 34~ 4.4 4.3 2.1 29:) 4.0 3.2 2.1 

1.2 11~~' 6~.9 30.0 20.8 4~9 23.~ 1~.6 14.7 34:) , 9.4 12.0 12.6 29~ 9.1 9.7 10.2 
697 ! 14.0 , 2.0 0.3 393 6.0 1.2 0.2 338 I 2.1 0.9 0.2 28:1 

;:~ ~:~ Ool 0.4 698 ! 18.5 ' 7.2 7.7 393 11.3 8.1 9.6 338 7.1 8.1 9.3 28~ 7.4 

0.8 1004 ~8.2 ;23.5 12.2 393 ll.o 0.0 3.:1 337 3.7 4.3 ;.!.~ ~:~ H.9 4.9 3.7 
1006 6:'>.3 '29.9 20.8 393 16.6 13.1 13.2 337 8.2 9.7 10.2 20.3 11.2 13.1 

0.8 622 13.8 1.9 0.3 363 4.2 1.1 0.2 326 1.9 I 0.8 0.2 ~~; 4.4 0.6 0.2 0.4 623 18.4 7.2 7.7 364 8.8 7.4 8.9 326 6.2 ~.8 6.9 11.9 7.~ 9.2 

0.8 8~1 
:)7.3 23.'3- 12.1 36~ ~.7 :).0 2.7 300 14.3 7.b 4.4 148 9.1 3.3 3-.-&-

8~3 64.7 29.7 20.7 36~ 9.9 10.6 11.6 300 21.7 12.~ 11.2 148 17.8 9.9 13.6 
0.4 

~4~ 13.:) I 1.9 0.3 362 2.4 1.1 0.2 2:10 4.9 1.0 0.2 142 3.7 o.~ Q.2 
0.4 M6 18.2 7.1 7.7 362 6.2 6.3 7.9 2~6 11.1 6.0 7.1 142 11.4 7.8 9.7 

0.8 705 :)6.0 23.0 11.9 398 3.4 5.2 2.8 234 20.~ 8.7 ~.4 177 6.1 2.1 2.4 
706 63.7 29.4 20.6 398 7.6 9.9 10.6 234 30.~ 14.6 13.1 177 13.9 7.~ ll.3 

-0.9 0.0 470 13.2 1.9 0.3 399 1.7 1.2 0.2 194 b.3 0.9 0.2 178 3.0 0.6 0.1 0.4 471 17.9 7.1 7.7 399 :).4 ~.3 6.~ 194 14.1 7.0 8.3 178 9.7 6.3 7.7 

0.8 ~~9 54.2 22.5 11.7 504 13.1 10.4 :).:1 1'1'1 10.3 0.1 4.:) 
~~~ 11l.0 b.B 4.~ 

:,>61 62.1 29.1 20.4 ~04 19.8 14.9 12.2 199 26.3 12.2 12.7 29.2 13.1 11.3 
1-0.4 399 12.8 1.8 0.3 441 4.2 1.7 0.3 188 :1.3 0.7 0.2 109 :).9 0.9 0.2 

0.4 400 17.6 7.1 7.7 441 9.3 :).4 ~.7 188 12.8 6.8 8.3 169 14.6 7.3 7.4 

0.8 409 ~1.4 21.7 11.4 57B 40.~ 22.1 11.7 248 10.8 2.7 3.4 
~~ .21).1 9.8 :1.2 

410 ~9.8 28.~ 20.1 ~79 ~3.6 28.~ 18.~ 248 20.1 8.2 10.7 41.7 18.7 12.9 
-0.8 32~ 12.2 1.7 0.3 410 1~:~ 2.1 0.3 

~~~ 
4.0 U.:I 0.2 g~ 7.3 1.0 "0,2-

0.4 326 17.1 7.0 7.7 410 6.9 6.4 10.8 ~.7 6.7 18.0 8.9 8.8 

0.8 261 46.3 20.2 10.7 453 0:1.0 31.1 ~t~ 404 33.9 
1
10•7 1~:~ t:~ 1

21 • 1 ~.2 2.4 
262 ~5.1 27.2 19.6 455 83.B 41.3 406 46.9 18.1 3~.2 14.1 9.7 

-1.2 2~1 11.4 1.6 0.3 314 11.6 2.2 0.4 348 6.0 1.2 0.3 
~~~ 6.~ 0.7 0.1 

0.4 
2~1 16.4 7.0 7.7 31~ 20.8 B.4 7.7 349 16.7 ·7.0 6.1 1~.8 7.~ 7.3 
112 33.6 16.1 B.9 196 ~7.7 28.7 15.9 281 78.2 32.8 19.:) 321 80.3 28.~ 14.3 

0.8 113 42.4 23.~ 17.9 19B 74.6 40.6 26.6 284 9~.2 . 4B.~ 31.4 323 92.~_ 42.2 2~.3 
-1.6 174 10.2 1.~ 0.2 205- rn.7-- --2~O- '0:3 1231 12.~-- 1.9' 0.4 263-- 1300 r~6 '-0.3 

0.4 175 15.2 '6.8 7.7 206 21.6 9.2 B.8 232 24.8 11.1 9.4 264 24.9 11.1 . 9.3 

Note: (i) P(h) values are the upper figures in each cell 
,.. 

(ii) P(h) values are the lower figures in each cell 
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0.2 
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37.9 
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--

TABLE A3.9 

PERCENT h-STEP LOSS FOR FITTINGARIMJ(p',l,O} TO ARlMA(O,l,2} PROCESSES 

h = 1 h = 2 h = 3 
p. p~ p~ 

2 3 4 1 2 3 4 1 2 3 4 1 

50.0 50.0 33.3 100 50.0 50.0 33.3 100 56.3 56.3 37.0 100 

25.0 25.0 12.8 64.0 25.0 25.0 12.8 62.7 29.0 29.0 15.0 61.5 
29.7 29.5 18.1 42.5 12.0 13.1 4.5 35.6 12.3 13.5 4.7 33.7 

4.5 3.6 1.3 11.3 1.1 1.6 2.8 8.5 0.8 1.6 2.1 7.1 
27.1 22.2 17.9 9.9 

'0-

3.8 3.5 2.5 6.7 2.7 2.6 1.8 5.4 

33.3 25.0 20.0 6~~ 40.7 29.7 23.2 53.1 44.0 33.1 25.9 57.0 
3.1 1.1 0.4 12.7 4.4 1.5 0.5 8.4 4.7 1.8 0.7 8.4 
0.0 0.0 0.0 0.2 f--O.O _Q.O 0.0 J!~J ___ ~!_O __ 0.0 0.0 0.1 

. 0.1 -0-:-0- --0:-0 - ---:-~ 
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 
3.1 0.4 4. i- t-----. f----.. - -

-O~2 ---'3.-3 0.4 0.1 2.7 1.1 1.4 0.5 1.1 
33.3 25.0 20.0 12.5 -8-:1- -5.-9-- -'4~-o -S.7 5.4-- ---~-3.9 -2.'F 0:8 
3.6 1.5 0.7 9.3 4.2 0.9 0.8 4.5 3.3 0.5 0.6 2.9 

1- .. 
2.0 0.3 4.2 ~-2~9 -~ 1.8 0.2 3.1 1.7 1.4 0.2 2.6 5.2 

-'4;1- f- 0.8 0.6 14.8 3.7 0.5 0.2 11.8 3.1 0.4 0.1 10.4 
~2.2 35.8-~6.8 27.2 16:7 

r.-·-· 
8:-~:) 18:1 10~-6 ~-7.0 5.1 14.1 11.4 

25.0 25.0 ~!.~ 64.0 25.0 25.0 12.8 24.4 11.3 11.3 5.8 ~!.!--c-- ._--- f-=-c,--
16.7 14.6 9.6 

.-.-~-

32.5 25.1 1~~~_ 25.4 I-J6._~ 8.7 7.1 5.0 11.2 
106 74.1 50.1 1-25•0 19.4 29.~r r-19.5 l~f.O 10.6- 21.1 55.7 33.9 

59.8 42.0 39.6 57.1 52.5 30.5 32.9 20.5 24.1 11.5 14.4 11.7 
50.8 50.6 38.5 44.7 24.2 25.0 22.2 25.3 10.8 11.5 11.6 18.9 
150 1rO 86.7 63.cr- 45.0- 35:Cr- 28:-6 35.5 24.4 18-:5 

1-.---
14.8 24.8 

h = 4 
pI 

2 3 , 4 

62.5 62.5 40.7 

32.9 
---.:- 32.9 17.1 

14.1 15.4 5.3 

0.6 --LJ_ 1.7 
1.7 2.3 1.5 

36.7 33.7 27.5 i ----- - ... -_. ! 
3.0 l·_tL 0.7 I 

0.0 ~.()·.!L ---0.0 
1----- -_ .. __ .-.-

0.0 0.0 0.0 
1.0 0.4 0.1 
4.3' . 3'~-O -2-:3'·' 

3.1 0.3 0.6 
1.3 1.3 0.1 
2.8 0.3 0.1 
8.1 5.2 3.7 

~~ 8.1 4.2 1--..... _.-
4.3 7.2 3.7 --.. -~ 

13.7 1- 9•0-- -'7:2' 

17.5 6.7 9.7 
6.4 7-.2- 8.0 -16.4 12.1 9.6 



TABLE A3.10 

PERCENT h-STEP LOSS FOR FITTING ARIMA (P', l, O) TO ARI MA(l , 1,2) PROCESSES 

I ~, I 
h = 1 h= 2 h = 3 h = 4 

p' p' p' pi 
Q:a f.)l 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 .... 

30. ·i ' T 3~ .0 
-1 .0 0.0 0.8 68. 0 40. 5 36.4 ' 26. 7 .l..35 . 2 21. 1 22. 5 16. 4 ~~ O 124 .1 ' 27. 3 20. 0 48. 3 25 . 6 - --_.- ---

32.l1 73. 2 
- - ,- -- .-

0.4 92 .0 47 . 9 47. 2 38. 3 40. 6 27 . 6 79. 9 43. 3 46.6 31. 5 97 . 9 57. 5 62 . 1 41. 3 

0.2 0 . 8 50. 0 33. 3 25.0 20.0 . 12. 5 8.1 5. 9 4. 6 8. 7 5.4 3. 9 2. 9 6. 8 4. 3 3. 0 2. 3 
0.4 63 . 5 30. 6 28.8 18. 9 ' 28 . 5 8.2 10. 1 3. 9 26. 4 6. 9 ; 9. 5 2. 9 26. 5 7. 6 11.0 3.1 1-- • . - _ .- ._--... _. _. 

-0. 8 0.0 0.8 40.1 20.2 15. 9 9.6 15.3 6. 1 6. 4 3. 1 14 . 3 ~+6. 2 2. 5 14 . 3 4. 4 6. 9 2. 6 . - --_. --'--
0.4 57. 8 · 23 . 6 22. 9 12. 0 43 . 1 16. 3 18.2 8. 9 45. 6 18. 0 120. 6 10. 1 50. 6 22 . 6 26 . 0 12. 6 

-0.2 <?.8 39. 9 : 19. 3 16. 9 10. 6 31.0 17. 9 19. 1 14.0 38.4 23 . 2 125 . 9 19. 5 47. 7 30. 2 34 . 3 25 . 9 ,-
0.4 60. 2 , 26. 5 26.3 16.0 70.5 37. 3 38. 6 27. 1 85.3 47.5 149. 4 34. 8 108 64 . 9 67 . 6 46 . 9 

0.6 0.8 52.0 39. 7 26. 6 21. 5 14 .8 13. 9 8.3 6. 9 10.B 11 . 6 6. 2 5. 3 8.4 10.1 4.B 4. 3 

0.4 . 50.0 33. 3 25.0 20.0 12.5 8.1 5. 9 4. 6 B.7 5. 4 3. 9 2. 9 6. 8 4. 3 3. 0 2. 3 - . 
0.8 18.4 12. 8 4.5 3.0 6. 2 6.7 1. 6 1.4 4. 6 6. 6 1 1. 2 1. 3 3. 6 6. 7 0. 9 1. 2 0.2 I 

-0.4 
0.4 19. 9 7. 5 4. 4 2. 1 8. 0 2. 2 1. 6 0.7 6.5 1.5 1. 3 O. S S.4 1.0 1. 2 0.4 

- 0. 2 0.8 5. 9 2. 6 0. 5 0. 3 2.5 I .B 0. 2 0.3 1. 9 1. 9 0. 2 0.3 1.4 2. 1 0. 2 0.4 

0. 4 13.3 2. 1 2.1 0. 5 14. 1 2.9 2. 8 0. 9 IS.0 3. S 3. 5 1. 2 14 . B 4. 3 4. 2 1. 4 

-0.6 0.8 13. 5 8. 3 8. 2 7. 3 22.9 16.8 16. 4 14 . 7 32. 9 25 . 1 24. 4 22. 0 43. 3 34. 3 33 . 3 29 . 9 

0.4 31. 4 19. 4 17. 4 14. 4 61. 2 40. 7 35.5 29.5 92 . 4 6!1 .2 56. 2 46. 5 24. 8 192. 7 81. 4 66. 6 

1.4 0. 8! 184 f ~2. 7 49 . 8 34 . 5 72 . 2 35 . 9 22.2 15 . 4 56. 7 30.7 18. 6 12.8 44. 3 2S . 1 14 . 8 10. 0 

0.4 ' 134 68. 6 43.B 31.3 47 . 2 26.2 17. 0 12.2 34 .0 19.0 12. 0 9. 4 26. 5 14. 2 8. 6 5. 9 - - - "- -'- ~--- --- -- -I---
1. 0 0.8 94.3 21. 1 3. 8 0.7 S1.7 14.8 3. 2 0. 5 42.7 14 . B ' 3. 4 0.4 3S. 0 13. B 3. 2 f-~ 

0.4 ' 56. 0 12.5 2.0 0. 6 30. 7 B. 9 1.7 0. 3 24 . 6 8. 1 1. 6 0. 2 21. 2 7. 1 1.4 0.1 -
0.6 0. 8 37.7 4. 9 4. 9 1.6 31. 0 3.5 3. 3 1. 5 27.4 3.1 2.8 1. 5 23. 9 2. 7 2. 4 1. 5 

0. 4 15.B 4. 5 3. 7 O.B 14.S 2. 3 2. 8 0.8 12. 7 1. 4 2. 2 0.7 11 . 8 0. 9 1.8 0. 7 

0. 2 0.8 14.0 12. 3 2. 6 1. 4 14 .7 10. 0 2. 9 1.0 13.3 8. 4 3. 1 O.B 11 . 8 6. 9 3. 0 0. 7 

0.4 
0. 4 9.5 I 8.2 1. 2 1.2 6.3 7.B 1. 1 1.0 4. 0 6.1 0. 9 0. 8 2. 8 5. 3 0. 8 0. 7 

-0. 2 
0.8 20.0 8. 7 3.5 0. 9 13. 9 11. 5 3.0 1.3 10. 8 11 . 0 I 2. 4 1. 4 B.4 10.0 1. 9 1. 3 

0.4 18. 9 2. 8 2. 7 0. 4 17. 7 3.6 3. 0 0. 4 12. 6 3.1 2. 4 0. 3 9. 0 2. 8 2. 0 0. 3 ------ --' -
-0.6 

0.8 37. 9 4. 8 2. 8 1.7 43.8 4.B 4. 4 2.0 43 .6 3.7 4. 7 1. 9 41. 2 3. 1 4.5 1.7 ---
0.4 12. 2 5. 5 0.8 0.7 18.9 6. 2 1.0 1. 1 15.1 5.0 0. 8 1. 1 11 . 5 3. 5 0. 7 1. 0 ...... - -- .. _- .. 
0. 8 18.8 11.6 3.B 0.7 34.3 18.1 5.1 O.B 38.8 20.3 4.8 0. 7 3B. 6 21. 2 4. 7 0. 6 

-1.0 
0.4 5.4 1. 2 1. 2 O.B 5.3 1.B 1. 9 1.0 1. 9 1. 9 2.0 1.0 1.7 2.0 2.1 1.1 

-1.4 
0.8 16.8 11.B 9. 9 B. 7 28. 2 20. 7 17. 3 15 . 3 36. 8 31.S 26. 8 23.8 48. 5 40. 2 3(,. B 33. 0 

--
0. 4150.0 33.3 25. 0 20 .0 62. 5 40.7 29. 7 23. 2 :'>3. 1 44 . 0 133. 1 25 . 9 57 .0 36.7 33. 6 27 . 5 

1.8 0. 8 339 162 101 71.:'> 119 66.0 44. 0 32. 3 B8 . 4 53 . 0 135. 3 25 . 8 65 . 4 4 1. 2 26. 9 19. 5 

0.4 250 136 B9.5 65 .0 BO.7 49.7 34.8 26. 2 53 .B 33.7 23 . 3 17 . 4 3B . 6 23 . 5 15 . B 11. 6 

0. 9 0.B i ll. 5 34.6 32. 3 23 .0 79 . 9 24 . 6 19. 7 17. 3 62 . 2 20.1 114. 5 14. 6 49 . 0 16. 3 10. 5 12.1 

0.4 66.0 30. 7 30. 5 17.8 48. 1 17. 9 1B.B 13.4 34 . 2 10. 7 11.B 9. 7 27 . 3 7. 0 B. O 7.4 

0. 81-58:5 
-- -- .. - -- -. 
55.0 23.5 22. 7 52.0 57. 9 22.0 23.7 37. 5 43. 9 16.1 18.7 2B. l 34 . 5 12 . 3 15. 3 

0.8 0.0 
0. 4 59 .5 34.B 23 . 6 16. 4 46. 6 39. 7 20 . 3 IB . 4 24 . B 25 . 9 10 . 9 12. 4 15. 0 19. 9 6. 6 9. 6 

0.8 106 36.8 23 . 1 22 . 1 163 46.3 37.7 33. 3 135 32.1 32. 2 27 . 0 115 2S .4 128. 0 23 .0 
- 0.9 

0.4 44.3 37 . 5 18. 1 13 . 8 72. 4 52. 3 22. 9 20 .7 45 . 0 31. 9 12. 4 13. 9 32. 5 22. 3 1 8. 9 11 . 7 

0 . 8 50.0 33. 3 25 . 0 20.0 62.5 40.7 29. 7 23.2 53. 1 44.0 33 . 1 25 . 9 57. 0 36.7 133 . 6 27 . 5 
- 1.8 

0.4 106 71.7 53.3 41. 9 75 . 9 46 . 1 31. 2 22 . 7 28. 7 23 . 5 16. 5 11. 9 26 . 9 12. 5 11. 7 9.1 

0 . 8 439 219 144 107 144 84 . 0 59. 2 45.7 104 65 .1 4:1 .8 35 . 2 75 . 0 49. 2 33 . 9 25 . 9 
2. 0 

63 . 4 0.4 329 187 129 98. 5 98.8 64.2 47. 4 37. 6 . 41 . 8 ! 30. :1 23. 9 43 . 9 28 . 0 19. 9 15. 4 
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TABLE A3.11 

PERCENT h-STEP LOSS FOR FITTING ARI MA (P,l,O) TO ARIMA(l,l,l) PROCESSES 
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TABLE A3.12) 

PERCENT h-STEP LOSS FOR FITTING ARI MA (pjl,O) TO ARlMA'{ ~ tr,-l\ PROCESSES 
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CHAPTER 4 

SOME POWER STUDIES OF THE BOX-PIERCE AND 
BOX-LJUNG PORTMANTEAU STATISTICS 

Summary 

This chapter considers the distribution of the residual autocorrelations 

from fitting autoregressive models to any other ARMA(p,q) process. Asymptotic 

means and variances of the Box-Pierce and Box-Ljung statistics are derived 

under these circumstances and it is explained why these may not be assumed 

in practice. Power studies are conducted on the ability of the two statistics 

to reject certain misspecified models, the choice of true processes being 

made on the percentage loss incurred, from a forecasting point of view, 

after fitting the misspecified models. It is shown that their ability to 

reject such incorrect models is typically very weak. 

4.1 Introduction 

Chapter 3 studied the consequences, from a forecasting point of view, 

of misspecifying a model when the true process was, in general, different, 

and known. In Chapter 2 we looked at the well known Box-Pierce statistic 

(2.7), and a modification, the Box-Ljung statistic (2.8), which were 

measures of how well any fitted model suited the data. We highlighted some 

problems with them even when we correctly specified our model, and hence in 

some sense had 'ideal' residuals to deal with under the null hypothesis. 

These residuals (2.2) were considered estimates of the random observations 

from a white noise process, which generated a series through the model (2.1). 

The true test of these statistics is in their ability to reject a mis-

specified model, and we take some of the misspecifications studied in 

Chapter 3 and examine the portmanteau statistics' performances at detecting 

such incorrectly fitted models. Of course, in general the error terms in a 

misspecified model are not a white noise process, as equations (3.23) and 

(3.25) of section 3.4 show. 

For instance, in example 3.5 we fitted an AR(l) model to an MA(l) 

process. If the fitted model is (1 - $'B)Xt = ~t' we have shown, 
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asymptotically, from the Yule-Walker equations (3.39) ~'= plim p'= p , 
1 

so that the residuals are, in this case 

If the true process is \ = at + 9
1 

at _
1

, P1 = 9
1
/(1 + 9

1

2
) and we get, 

asymptotically, for the residuals 

'r1t = at + (9
1 

- P1 )at _
1 

- 9
1 

P
1 

at -
2 

= at + {9 3/(1 + 9
2)}at - {9 2/(l + 9 2))at (4.1) 

1 1 -1 1 1-2 

which is an MA(2) process. Thus the residuals actually examined, viz 

(4.2) 

and used in either the Box-Pierce statistic (2.7) or the Box-Ljung statistic 

(2.8), would be, asymptotically, samples from a moving average process of 

order 2 and not samples from a white noise series. Clearly, the analysis of 

the misspecification in this manner is a very important part of any study 

of the way either of these statistics perform. 

Initially, Box & Pierce (1970) analysed the residuals from a pure 

autoregressive fit; we adopt the same procedure in section 4.2, very closely 

following those authors' analysis. 

4.2 The distribution of residual autocorrelations from fitting an AR(p) 
model to any ARMA(p,g) process 

In this section we fit an AR(p) model to an ARMA(p,q) process by 

ordinary least squares in the manner described in Chapter 3, section 3.5 

(i.e. we allow the plims of the autoregressive parameter estimates to be 

solutions of the Yule-Walker equations (3.39» and examine the residuals 

from such a fit as determined by equations (3.25). 

If our true process is as described by (3.14) and the fitted model is, 

from (3.15) given by 

(where I(B) contains the plims of the autoregressive parameter estimates) 

then, from (3.25) 

(4.3) 
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so that asymptotically, the residuals from such a fit follow an 

ARMA(p,p' + q) process. In particular if our true process is pure moving 

average our residuals are, asymptotically, also pure moving average, 

MA(p' + q). 

Let the autoregressive parameter estimates from a least squares fit to 

a series of length n be P;,P;, ... ,P~I so that the calculated residuals are 

~ = f(B)Xt 
I 

= (1 - ;"B - ~/B2 - ••• - $,', BP)Xt 1 2 P 

= Xt - 1: Xt - 1 - P~Xt_2 - •••• - p~, xt _p, • 

Define the autocorre1ations of these residuals by 

,.. 
r -k- k = 1,2, ••• ,m 

When we have the plims of the autoregressive parameter estimates 

p. I,p', ... ,,5,',' the residuals are written 
1 2 P 

1'1t = t(B) Xt 

= (1 - ~'B - p'a2 

1 2 

, 
- •.• - p~Tl) Xt 

_piX - ••• -,5,'y. , 
2 t-2 P t-p 

and the autocorrelations by 

k = 1,2, ••• ,m 

(4.5) 

(4.6) 

(4.7) 

Thus, in the special case of fitting an AR(p) model to an AR(p) process, 

I(B) = p(a), and from (4.3) ~ = at' so that the autocorre1ations in (4.5) 

and (4.7) are the same as those defined in equations (2.3) and (2.5), 

respectively. We now proceed in much the same manner as Box and Pierce (1970), 

keeping as close as possible to their notation. 

A recurrence relation satisfied by the probability limits of the 
autoregressive parameter estimates and linear constraints on the r

k 

From the Yule-Walker equations (3.39) we see that the p1ims of the least 

squares estimates of the fitted AR parameters satisfy the recurrence relations, 
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I jl 
P - j P -. • •• - p, ,p , = 0, 

S P1 S-l P S-p 
s = 1,2, ••• ,p' (4.8) 

We note that this recurrence relation does not hold for s ~ p'+ 1, which 

i! the case if we were fitting an AR(p) model to an AR(p) process (see Box 

and Jenkins (1970) p 54, equation 3.2.4). We note also that the least squares 

estimates;: (i = 1,2, ••• ,p) will satisfy a form similar to (4.8) in terms 
1 

of the sample autocorrelations r~X) of Xt ' viz 

r eX) _ ~'r(X) _ ••• _ ~' reX) - ° ' 
S PI S-l Pp' s-p'- , s = 1,2, ••• ,p (4.9) 

r(X) -
EXtXt _k 

k - EX a 
t 

where 

Now let WeB) = t -1 (B) = (1 + , B + , Ba + ... ) , 
1 a 

and ,(B) = S-l (B) = (1 + ~ B + W Ba + ... 
1 a 

) so that 

, 
Hence the ,'s and ~'s satisfy the recurrence relation 

I 
V s: P 

(4.10) 
I 

V ~ P 

" It is well known that the residuals ~t from the least squares fit satisfy 

the orthogonality conditions(l) 

and so from the form of Xt above, 

° = ~ ~ 'k~~t-k-j 
= ~ 'k~k+j 
= ~ 'krk+j + 0p(l/n) 

1 s: j s: pi (4.11) 

(1 s: j s: p) (4.12) 

where 0p(l/n) denotes order in probability as defined in Mann & Wald (1943) 

(I)This is simply a consequence of the least squares fit, and holds whether 

or not the assumed model is correctly specified. 
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We assume in the equations leading up to (4.12) that the summation over 

k stops after m, say, so that Wj is negligible for j > m - p~ 

Linear expansion of rk about rk . 
Define p' = I' = -1 and 

o 0 

=11t 

Also define rk = t ~~_~ ~2 

which may be written 

- ••• - ~ ", Xt .' p -p 

The numerator of this expression, after some algebra, reduces to 

(4.13) 

(4.l4) 

(4.15) 

A similar expression may be obtained for the denominator and, combining this 

with (4.15) we obtain, after some algebra, 
, I 

P P • " I (X) 
.1: .1: .Ii.ljrk . . 1=0 J=O P P +J-1 
p' pi .,., (X) 

.1: .1: .I . .I. r .• 
1=0 J=o P1PJ J-1 

.~., ., ... . 
Thus rk is a function of ,11 ,,12'''' ,pp,; r k (,I; ,p~, . .. ,p~,), say. 

Since plim $~ = p:, the root mean square error of $.', defined by 
J J J 

(4.16) 

{E[ {p~ - $~):a])t is of order I/Jn and so, since from (4.4) and (4.5), rk is 
J J 

a function of p.',; I, ... ,p,'" we can approximate rk by a first order Taylor 
1 2 P 

expansion about f = t, where t I = (1,', ••• ,~',), 
... - "" 1 P 

Following the same reasoning as Box and Pierce (1970) equations (2.10) 

-(2.15) we get 
I 

,. P I !I',. 
r k = r k + .L {p. - P.)o'k + 0 (lin), 

J=l J J J P (4.17) 

where 
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Now 

I 

• Pj" , ( (X) (X» 
ihk .1: . r k:+· .:+ r k:+· j _ J= 1 J-1 1-
ollj - p' P'.,., (X) 

i~o j~jiJjri_j 
(4.18) 

• A • On substituting! = ! in tp1S expression, the second term on the right hand 

. PJ' (X) side of (4.18) conta1ns.t .r .. , which, from (4.9) is zero. 1= 1 1-J 

Hence 

(4.19) 

We approximate this expression by replacing the pi by their probability 

limits, p: and the r(X) by the corresponding population autocorre1ations, p. 
1 

We write the result as 

(4.20) 

Since r = p :+ 0 (lin) and p~ = P~ :+ 0 (lIn), we may replace 8
J
' k in (4.17) 

ssp J J P 
by 6jk defined by (4.20). 

We note that (4.20) is identical to equation (2.16) in Box & Pierce (1970), 

except that (4.20) contains the plims of the AR coefficients. Also, Box & 

Pierce simplify their equation (2.16) by noting the recurrence relation 
I 

satisfied by autoregressive parameter~ which is (4.8) with Pi replaced by Pi 

(the true AR coefficients in fitting AR to AR) and for all s • We noted that 
I 

(4.8) only holds for 1 ~ s ~ p so that no simplification is possible for the 

first term in the numerator of (4.20). However we may use (4.8) to simplify 

the denominator, obtaining 

(4.21) 

6
jk 

only depends upon k :+ j and k - j and so we write 
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where 

and 

Yk . = -J 

From the recurrence relation (4.8) we see 

c j = 0 
Y . = , -J 1 ~ j ~p 

Also 6. = 0, 2 
. , 

J 
~ J ~ p. 

Define the (m x ~» matrix x= 
6 
a 

6 
3 

Z= 

6m+l 

and 

Yo Y-1 V-a ... 
Y1 Yo 

Ya 

y= 

Y + Z, where 

6 
3 

6 
4 . 

Y- (p~l ) 

Yo 

• 6 , 
ap 

1 

Y1 

Ya 

= 
• 

0 

1 

Y1 

Hence, we may write (4.17) in the following matrix form 

r = r +X(t - i) 
,., "., rv -

"I where r = "" ") I ( ) (r ,r , ••• , rand r = r
1

, r , ••• , r • 
l·a m - a m 
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If 1 0 , . , 
·1 1 

·2 ·1 
u= 

we have from (4.12), in matrix terms 

r'U = 0 -
to order in probability lin. 

Multiply both sides of (4.23) by 

Q = x(U'X)-lU' 

and we get from (4.24) 
,.. 

o = Qr + r - r 
,." IV N ,v 

or 

~ = (I - Q)r ,.. ... 
= Ar 

0 

1 

·1 

(4.24) 

(4.25) 

(4.26) 

We note that Q is idempotent, so that A = I - Q is also idempotent. In the 

Box and Pierce (1970) paper they were fitting AR(p) to AR(p} so that the 

recurrence relation (4.8) holds for all s, which implies ~k+j = 0 for all 

k,j; hence Z is the zero matrix in this case. Furthermore they show 

Y - 'k . (see their equation (2.20» so that U = y= x. Thus equations k-j - -J 

(4.25) and (4.26) above are identical to Box & Pierce's (2.26) and (2.27) 

respectively in the special case. 

From (4.3) and (4.7) the sample autocorrelations in r are asymptotically -I I 

those from an ARMA(p,p+q) process. Let P* = (p *, p *, ••• ,p *) where _ 12m 

p *,p *, ••• ,p * are the population autocorrelations of the ARMA(p,p'+ q} 
12m 

process. Hence, from Anderson & Walker (1964), 

r ,." N(p*, Win) - (4.27) 

where W is defined by equation (2.48), p 37 , with the p.* replacing the p. 
J J 

in that equation. We noted in Chapter 2, Section 2.4 that in some circumstances 

(2.48) did not provide satisfactory values for the variances of the sample 

autocorre1ations, and we take into account the modifications suggested there, 

later. 
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The vector of residual autocorrelations, r, is therefore a linear ..., 

transformation of a multinormal variable and therefore itself normally 

distributed. 

From (4.26) and (4.27) we get 
A I 

r ~ N(Ap* , AWA/n) ... ,.., (4.28) 

Again, in the Box-Pierce paper, we would have P* = 0 and W= I so that in 
,." -

that case (4.28) above would be equivalent to their equation (2.29). 

Example 4.1 The residuals from fitting an AR(l) model to a MA(l) process 

We take the simplest possible case of misspecification and from (4.1) 

we see that asymptotically the residuals follow the MA(2) process 

TI. = at + Q 3/(1 + Q a)at - (Q aiel + Q a)}at ~ 1 1 -1 1 l-a 

with population autocorrelations given by 

P * = Q 3 /{ (1 + Q 2)( 1 + Q a + Q 4r)} 
1 1 111 

P * = _Q a /(1 + Q a + Q 4r) 
all 1 

p.*= 0, 
J 

j ~ 3. 

Also, for the true MA(l) process 

p. = 
J { 

Q /(1 + 9 a) 
1 1 

o 

Asymptotically, ,5.'= p and so from (4.10) 
1 1 

,. = p j 
J 1 

Also, 

{ 
P /(1 _ P a) 

1 1 

y. = 
J 

° 

j = 1 

j ~ 2. 

j = 

j ~ 2 

and { 
_p a/(l _ p 2) 

1 1 j = 
6j = 

° j ~ 2 
, 

Therefore, X= (1 - 2P1

2
, Pl ' 0, . .. , 0)/(1 - P a) 

1 
I 

u= (1, Pl' 
a m-l) and Pl ' ... , P1 

I 
and we find U X = 1. 

From (4.25), we find 
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W= 

pa _p (1_ 2pa) _p2 (1_2p2) •••• _ p (m-l ) (l-2pa) 
1 1 1 1 1 1 1 

1 -p (1_ 2p2) _p3 _pm 
A=(I-Q)= 1 1 1. 1 (4.31) (l-p~) 

(1_p2) 
1. 

(1_p2) 
1 

Finally, we need the variance-covariance matrix, W, of the sample auto­

correlations for an MA(2) process. 

From (2.28) and (4.30) we find (assuming the sample size is large 

enough for (2.48) to provide an adequate approximation) the upper triangle 

of W to be 

l+2~2+2p*2 2p*-2P*P* 2P* 1 2 1 1 2 2 
_ 5P*2 +4p*2 p*2 j_ 2p*3 -4p*p* I +p*2 +p*2 

1. 1. 2 1. 12 1. 2 
+4p*4+2p*_8p*2p +4p*3+4p*p*3 _4p*ap* 

1 21.2 1. 12 12 
1+2p*2+2p*2 2p* 

1.:a 1. 

\_5P*2+4P*2p*21 +2p~* 
2 1 2- 1 2 

+4p*4_4p*2p* _4p~*2 
2 1. 2 1 2 

j 2P*P (l-P*)j 122 

2p*p* 1. 2 

o I 0 .. 

p*2 I 0 .. 
2 

1+2p*2+2p*2 2p*+2p*p* 2p*+p*2 I 2p*p* I p*2 
1. 2 1 1. 2 :a 1. 1. 2 2 

1+2p*2+2P*2,2P*+2p*P*12p*+p*2 12P*p;· 
121122112 . 

. 
(4.32) 

Hence, from (4.31) and (4.32) we may obtain the distribution of r as given ,.. 

by (4.28). Analytic expressions for the means and variances are clearly 

extremely complicated and so the most sensible way of evaluation is on a 

computer. 

Numerical and Theoretical results for fitting ARCl) to MA(l) 

To verify the adequacy of the approximations involved in deriving (4.28), 

simulation experiments were run for fitting an AR(l) model to the MA(l) 

process Xt = at + 91 at_lover the range of values Q1 = 1.0, 0.6, 0.4, 0.2. 

1000 simulations were used for sample sizes n = 50, 100, 200, and the mean 
,.. 

and variance of rk calculated over these 1000 experiments. Theoretical 
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d · f A A values for the mean an varlance 0 r, r , ••• , were calculated using 
1 :a 

(4.30), (4.31) and (4.32), the results from theory and simulations being 

collected in tables 4.1 and 4.2. 

k 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

TABLE 4.1 

THEORETICAL AND EMPIRICAL MEAN OF THE RESIDUAL 
AUTOCORRELATIONS fk FOR FITTING AR(l) TO MA(l) 

THEORETICAL 

0.167 
-0.333 

0.000 

0.000 

0.107 

-0.242 

0.000 

0.000 

0.047 

-0.135 

0.000 

0.000 

0.007 

-0.038 

0.000 

0.000 

~ = 1.0 
1 

n = 50 

0.169 

-0.316 

-0.010 

-0.010 

9 = 0.6 
1 

0.109 

-0.226 

-0.010 

-0.002 

9
1 

= 0.4 

0.054 

-0.134 

-0.012 

-0.009 

9 = 0.2 
1 

0.014 

-0.052 

-0.011 

0.000 

EMPIRICAL 

n = 100 

0.166 

-0.321 

-0.001 

0.007 

0.109 

-0.234 

-0.008 

-0.001 

0.050 

-0.135 

-0.004 

-0.002 

0.011 

-0.048 

-0.004 

-0.002 

n = 200 

0.169 

-0.328 

-0.005 

0.001 

0.107 

-0.236 

-0.003 

-0.005 

0.047 

-0.133 

0.001 

0.000 

0.010 

-0.043 

-0.002 

0.000 

Clearly the agreement between the theoretical and empirical means of rk is 

generally quite good, especially for large sample sizes. Note that from (4.30) 

we see there is little need to consider negative Q
1 

since in that case only 

the sign of p * is altered as compared with the corresponding positive ~ 
1 1 

value. 
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k 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

TABLE 4.2 

THEORETICAL AND EMPIRICAL n TIMES VARIANCE OF THE 
RESIDUAL AUTOCORRELATIONS fk FOR FITTING AR(l) TO MA(l) 

THEORETICAL 

0.167 

0.278 

1.278 

1.278 

1.278 

0.150 

0.476 

1.140 

1.140 

1.140 

0.109 

0.755 

1.041 

1.041 

1.041 

0.037 

0.952 

1.003 

1.003 

1.003 

f) = 1.0 
1 

n = 50 

0.197 

0.387 

1.110 

1.122 

1.040 

9 = 0.6 
1 

0.181 

0.520 

1.002 

0.971 

0.986 

f) = 0.4 
1 

0.138 

0.742 

0.916 

0.874 

0.846 

Q = 0.2 
1 

0.068 

0.861 

0.854 

0.891 

0.823 

EMPIRICAL 

n = 100 

0.195 

0.376 

1.160 

1.259 

1.167 

0.171 

0.520 

1.065 

1.051 

1.018 

0.117 

0.775 

1.003 

1.002 

0.958 

0.058 

0.953 

0.976 

0.978 

0.925 

n = 200 

0.199 

0.350 

1.250 

1.304 

1.292 

0.163 

0.522 

1.100 

1.128 

1.125 

0.121 

0.791 

0.962 

0.956 

0.995 

0.052 

1.003 

0.986 

1.019 

0.898 

The agreement between theoretical and simulation results in Table 4.2 

is reasonably good for large sample size (200) but we note that for the 

sample size n = 50 (which is commonly considered 'moderate' in practical 

time series analysis) the empirical values of n var[rkJ for k ~ 3 are 

consistently below the theoretical figures. This type of problem was noted 

in Chapter 2, section 2.4, where the difficulty lay with the elements in the 

variance-covariance matrix W as defined by equation (2.48). Since W is used 
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in general to obtain the variance of r k in (4.28), when we need to examine 
I 

the mean and variance of the Box·Pierce and Box-Ljung statistics Sand S, 

based on these rk's, the accumulation problem highlighted in Chapter 2 (see 

the discussion after equation (2.35), section 2.3 and also section 2.4) will 

again pose problems. We therefore adopt the modifications suggested in 

equations (2.70) - (2.72) and (2.74) when the variances of the rj and 

covariances between the rj and r i are needed. 

4.3 
, 

Sand S for fittin to 
rocesses 

The Box-Pierce statistic S, as defined by (2.7), 
m 

,. 3 

S = n~ r k ' 

would use the r k as defined by (4.5). We consider two equivalent ways of 

writing r ; namely (4.26) 
,.; 

,. 
r = Ar r- ... 

so that S can be written in the quadratic form 
I I 

S=nrAAr 
N ... 

= nr'Br N _ (4.33) 
I ,. 

where B = A A. Further, since, from (4.26), each rk is a linear combination 

of the rj (j = l, ••• ,m) we may also write 
m 

rk = j~l Bkjrj 

where (Bkj } = B. 

(4.34) 

If we use (4.33) we see S is a quadratic form in the variables r ,r , ••• , 
1 a 

rm. From (4.27) these are asymptotically multivariate normal. Assuming this, 

(4.33) has mean 
I 

E[S] = E[nr~ Br] = TrBW + np* Bp* 
f'tw N ~ #IW 

(4.35) 

and variance 
I 

Var[S] = var[n{B.:] = 2Tr(BWBW) + 4n,e* BWB£* (4.36) 
I 

where~* = (P
1 

*,pa*, ••• ,pm*) and we have used (4.27) (see Koch (1967». 

Equations (4.35) and (4.36) show the extent to which the assumption 

that S is asymptotically X
3 (under which 2E[S] = var[S])is untrue for mis­

specifying models. In (4.35) and (4.36) we would have to have (a) p* = 0 and - ,..,-
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(b) BW idempotent. Clearly, in general neither of these is true. (They 

were true under asymptotic theory in Chapter 2 for fitting AR(p) models 

to AR(p) processes.) 

By looking at the mean and variance of S for fitting AR(p) models to 

AR(p) processes as given in equations (2.28) and (2.34) in Chapter 2 

pages 26 and 28 , we see (4035) and (4.36) are natural generalisations of 

the latter equations for fitting AR(p) to any ARMA{p,q) process. However, 

in the discussions associated with equation (2.34) a normality assumption 

in the r ,r , ••• ,r was 
l:a m shown to be unrealistic for the kinds of sample sizes 

used in practice. Also, in Section 4.2 we saw how the elements of W, the 

asymptotic variances and covariances of the sample autocorrelations for a 

moving average process of order 2, might lead one to results which were over­

estimates of what was more likely to occur for a sample of size 50, say. (This 

is similar to the special case of substituting lin for the variance of r k in 

Chapter 2, when we really needed (n - k)/n(n + 2». 

Thus, on the one hand one might be attracted by the (relative) 

mathematical simplicity of the mean and variance of S as given by (4.35) and 

(4.36); this ought to be judged against the loss in accuracy that one would 

incur in applying a normality assumption together with the elements of W as 

given by (2.48). 

The alternative, of course, becomes mathematically intractible except 

for the case of the mean of S (which in any case, is independent of the 

distribution of the r ,r , ••• ,r ), but does depend on the elements of W. We 
1:a m 

now explore the alternative possibilities. 

From (4.34) 

m m 
= n,];: (.E Bk .rj ra 

_1 J=l J 

m m m m-l m 
= nJl j~ Bkj 2rj a + 2n~ j& ~j+l BkjBkJ,rjr J, (4.37) 

Taking expectations throughout (4.37) we see 
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m m m m-l m 
E[S] = nJlj~l Bk/E[r/] + 2n~j~ljj+l BkjBkl[rjrt] (4.38) 

The r k in (4.38) are the sample autocorrelations for an ARMA(p,p+q) 

process. In the special case of fitting AR(l) to an MA(l) process the E[r.2] 
J 

and E[rjr t ] are available from Chapter 2, equations (2.70), (2.71), (2.72) 

and (2.75), using the P* in (4.30) (the rj in Chapter 2 are the rj in (4.38» 

which correspond to the sample autocorrelations for an MA(2) process. 

Of course, when we are fitting AR(p) to AR(p) the rj in (4.38) are the 

sample autocorrelations for white noise so that the second term on the right 

hand side of (4.38) disappears, using (2.20), in addition the elements of B 

become identical to the elements of A in equation (2.27) so that (4.38) 

reduces to (2.31) in this special case. 

To illustrate the use of (4.38) and to confirm the use of the expressions 

(2.70), (2.71), (2.72) and (2.75) from Chapter 2, simulation studies were 

conducted in which 1000 different MA(l) processes were generated for each of 

the values Q = ± 0.2, ± 0.4, ± 0.6, ± 0.8, ± 1.0 and AR(l) models were 

fitted with the usual calculation of the Box-Pierce Statistic (2.7) from the 

residuals in each case. The empirical mean of S (5) was calculated and 

compared with those values given by expression (4.38) for sample sizes n = 50, 

100, 200. Results are summarized in Tables 4.3 and 4.4. 

TABLE 4.3 

THEORETICAL AND EMPIRICAL MEAN BOX PIERCE STATISTIC S 
FOR FITTING AR(l) MODELS TO MA(l) PROCESSES. m - 20 

n= 50 n= 100 

E[S] - E[S] S 9 S 

-1.0 25.02 23.22 34.94 33.51 
-0.8 23.60 21.99 32.52 31.12 
-0.6 19.64 18.53 25.78 25.36 
-0.4 15.82 15.40 19.26 19.01 
-002 14.37 14.24 16.78 17.05 
0.2 14.37 14.29 16.78 17.05 
0.4 15.82 15.62 19.26 19.06 
0.6 19.64 18.47 25.78 24.77 
0.8 23.60 21.98 32.52 30.90 
1.0 25.02 23.52 34.94 33.11 
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TABLE 4.4 

THEORETICAL AND EMPIRICAL MEAN BOX PIERCE STATISTIC S 
FOR FITTING ARC!) MODELS TO MAC!) PROCESSES; m - 20 

n= 200 

e E[S] S 

1.0 50.35 49.32 

0.6 34.12 33.06 

0.4 22.55 22.36 

0.2 18.13 18.16 

We note that the agreement between theoretical and simulation results 

is reasonably good, except that the theoretical results are consistently 

above the corresponding simulation ones. However, bearing in mind the results 

of Chapter 2, section 2.4 where the derived expansions of E[rk2
] produced 

variances of r k which were consistently ~ the simulated ones, the slight 

inflation is to be expected. On the other hand, also from section 2.4, by 

comparing the expansion of E[rk2
] with those derived from Bartlett's (2.48) 

results (see figures 2.4 - 2.8) if we had used (4.35), which assumes (2.48) 

as the elements of W, to calculate the theoretical mean of S, the results 

would have been that much further away again from the simulations. 

It· can be seen from Table 4.3 that the mean of the test statistic can 

lie well below the mean of the asymptotic null distribution even when a 

moderately seriously misspecified model is used. This emphasises the 

difficulty with the Box-Pierce statistic noted in Chapter 2. 

As far as the theoretical variance is concerned, without assuming 

normality (which is clearlyundesirabl~we have to resort to squaring (4.37) 

and taking expectations. This will involve us in the fourth moments of the 

sample autocorrelations of ARMA(p,p+q) processes which we noted in section 

2.4 to be algebraically intractible. In addition we would need the covariances 

between r 2 and r.2 (j I s) which again would be difficult. 
s J 

To give some idea of the kinds of values we might expect for the variance 

of S, in the above simulations the empirical variance was noted and, in 

addition, to check on the ability of S to reject a misspecified model, the 

number of times it would do so over the 1000 simulations for each MA(l} model 
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was noted at significance levels of 5, 10 and 20%. These empirical 

variances and powers are collected in Tables 4.5 and 4.6. 

TABLE 4.5 

EMPIRICAL VARIANCE AND POWER OF THE 
BOX PIERCE STATISTIC S FOR FITTING AR 1 MODELS 

TO MA 1 PROCESSES m = 20 

Q VARIANCE 

-1.0 80.43 

-0.8 74.73 

-0.6 55.31 

-0.4 41.20 

-0.2 32.01 

0.2 32.86 

0.4 42.65 

0.6 55.63 

0.8 74.48 

1.0 86.89 

Q VARIANCE 

1.0 113.60 

0.8 107.14 

0.6 83.04 

0.4 55.69 

0.2 37.97 

0.2 38.89 

0.4 60.00 

0.6 78.83 

0.8 114.39 

1.0 107.00 

n = 50 

POWER 

0.05 LEVEL 0.10 LEVEL 

0.176 

0.145 

0.073 

0.028 

0.017 

0.018 

0.035 

0.076 

0.139 

0.193 

0.249 

0.215 

0.112 

0.055 

0.032 

0.028 

0.052 

0.110 

0.199 

0.275 

n = 100 
POWER 

0.05 LEVEL 0.10 LEVEL 

0.566 0.693 

0.455 0.600 

0.259 0.353 

0.080 0.128 

0.034 0.067 

0.035 0.061 

0.074 0.116 

0.220 0.325 

0.435 0.580 

0.531 0.686 
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0.20 LEVEL 

0.390 

0.332 

0.176 

0.094 

0.064 

0.056 

0.101 

0.177 

0.327 

0.401 

0.20 LEVEL 

0.833 

0.767 

0.501 

0.212 

0.130 

0.120 

0.210 

0.460 

0.747 

0.835 



Q 

1.0 

0.6 

0.4 

0.2 

TABLE 4.6 

EMPIRICAL VARIANCE AND POWER'OF THE 
BOX PIERCE STATISTIC S FOR FITTING AR 1 MODELS 

TO MA 1 PROCESSES m = 20 

n = 200 

POWER 

VARIANCE 0.05 LEVEL 0.10 LEVEL 0.20 LEVEL 

151.93 0.984 0.996 1.000 

103.57 0.571 0.694 0.831 

64.74 0.143 0.226 0.379 

46.30 0.048 0.077 0.143 

For a sample of size 50, we see that the proportion of times the 

(incorrect) model would be rejected is just below 0.2 at the 5% significance 

level for the extreme MA(l) in which Q = ± 1. Even at the 20% level this 

proportion is about 0.4. It can be seen that only for a sample size of 200 

do the empirical powers become as adequate as one might hope. 

This empirical evidence suggests that the well used statistic, S, is 

typically very weak at rejecting misspecified models especially for the kind 

of sample sizes likely to occur in practice. Our results suggest two reasons 

for this. First, portmanteau tests of this type are likely, intrinsically to 

lack power, as they are based on a large number of residual autocorrelations, 

many of which contain little or no information about model misspecification. 

For example we have already seen (table 4.1) that in the case of fitting 

AR(l) models to an MA(l) process, only the first two residual auto-

correlations have non zero mean. Second, we noted in Chapter 2 that the 

asymptotic levels of the Box-Pierce statistic can greatly under estimate 

true levels for moderate sample sizes. It was seen that the Box-Ljung 

statistic does not generally suffer from this problem (indeed, we noted a 

tendency for its true significance levels to be rather too high). Accordingly, 

we now examine the behaviour of this statistic when the model is incorrectly 

specified. Further studies of the ability of the statistic S to reject other 

misspecified models is given in Section 4.4. 

The Box-Ljung Statistic 
I 

The Box-Ljung statistic S , as defined by (2.8), viz 
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can be written in the quadratic form 

I 

S = nr' A' V-1 Ar .. ,... 

= nr' Cr 
-.J ... (4.39) 

where from (4.26), ~ = A£, V is a diagonal matrix with jth diagonal element 

I( , -1 
(n - j) n + 2), and C = A V A. Again, using (4.27), we see (4.39) has mean 

E[S] = E[nr'Cr] = TrCW + np*' CP* 
,.. #It l1li -.J 

(4.40) 

and variance 

Var[ 5] = var[ nr' CrJ = 2Tr( CWCW) + 4np*' CWCp* 
~ ... ,,- #'III 

(4.41) 
, 

where p*'=(P*,p , ••• ,p*) and we have used (4.27). (Koch, (1967». 
l:a m 

The asymptotic normality assumption in (4.27) will again not be 

justified for the kinds of sample sizes likely to occur in practice. The 
I 

equivalent expression to (4.38), for the statistic S , will be 

, m m m m-l m 
E[S] = nl~ .~ Ck ·2 E[r. 2

] + 2n- r: .1; J;.-L,. c. .CkIlE[rjr ,l ] 
&-~J-1 J J k=lJ-1k-J~~ -kJ ~ ~ 

(4.42) 

where [Ckj ] = C. We do not evaluate (4.42), but merely note that the Ckj 

will be rather complicated functions of the W. defined in (4.10), the 
J 

elements of the matrix X used in (4.23) and the elements of V. 

As a preliminary study on the performance of S'in rejecting misspecified 

models, in the simulation studies reported on p 142, the empirical mean, 
I 

variance and power of S were noted for the same valuesof Q given in Tables 

4.5 and 4.6. The results are collected in Tables 4.7 and 4.8. 

146. 



TABLE 4.7 

EMPIRICAL MEAN VARIANCE AND POWER OF THE 
BOX-LJUNG STATISTIC FOR FITTING AR 1 MODELS 

Q MEAN 

-1.0 29.46 
-0.8 28.06 
-0.6 23.94 
-0.4 20.24 
-0.2 18.89 
0.2 19.03 
0.4 20.57 
0.6 23.87 
0.8 28.02' 
1.0 29.86 

Q MEAN 

-l.0 37.05 
0.8 34.47 
0.6 28.41 
0.4 21.59 
0.2 19.51 
0.2 19.51 
0.4 21.63 
0.6 27.71 
0.8 34.26 
1.0 36.59 

TO MA 1 PROCESSES· m = 20 

n = 50 

VARIANCE 0.05 

135.69 0.406 
125.39 0.342 
91.38 0.193 
69.18 0.108 
54.93 0.078 
56.99 0.070 
72.46 0.116 
91.95 0.192 

125.39 0.334 
144.97 0.401 

n = 100 

VARIANCE 0.05 

143.69 0.687 
135.58 0.588 
106.08 0.369 
71.51 0.140 
49.54 0.082 
50.68 0.074 
76.72 0.131 
99.63 0.332 

144.93 0.577 
136.35 0.677 

TABLE 4.8 

POWER 
LEVEL 

0.10 

0.512 
0.450 
0.283 
0.170 
0.119 
0.115 
0.156 
0.280 
0.441 
0.506 

POWER 
LEVEL 

0.10 

0.797 
0.728 
0.477 
0.206 
0.133 
0.127 
0.207 
0.439 
0.709 
0.802 

0.20 

0.655 
0.584 
0.429 
0.264 
0.199 
0.205 
0.254 
0.409 
0.591 
00(649 

0.20 

0.908 
0.852 
0.626 
0.307 
0.220 
0.242 
0.318 
0.600 
0.839 
0.909 

EMPIRICAL MEAN VARIANCE AND POWER OF THE 
BOX-LJUNG STATISTIC S FOR FITTING AR 1 MODELS 

TO MA 1 PROCESSES· m = 20 

n = 200 

Q MEAN VARIANCE 0.05 

1.0 51.38 168.41 0.988 

0.6 34.70 114.91 0.637 

0.4 23.70 72.08 0.188 

0.2 19.39 52.63 0.060 
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POWER 
LEVEL 

0.10 

0.998 

0.743 

0.294 

0.105 

0.20 

1.000 

0.874 

0.455 

0.194 



We see that, by comparing Table 4.7 with 4.5 and Table 4.8 with 4.6 
I 

the modified statistic S is much better than S at detecting a misspecified 
, 

model, the improvement being that S would detect the misspecified model 

20% more often (approx). However, in isolation, Table 4.7 shows that S'is 

still rather weak at detecting the extreme misspecified MA(l) model in which 

G = ± 1 when the sample size is n = 50. Figures 4.1 and 4.2 show graphs of 
, 

the empiric~ power of Sand S for sample sizes 50 and 100. Clearly, from 

these graphs we see even for a sample size of 100 neither statistic is very 

powerful at detecting the misspecified model. Asymptotically, of course, 

both statistics are the same so that the powers at a sample size of 200 are 

very much closer. 

Marriott (1976) has also conducted a limited study of the power of both 
I 

Sand S in fitting MA(l) models to ARMA(l,l) processes. He concludes that S' 

would be a more desirable statistic to use compared with S, since he also 

found that the former was better at detecting a misspecified model. However, 
I 

he also concludes that S is not as powerful as one would hope it to be. Of 

course, it is inevitable that the null hypothesis will be rejected more 
I , 

frequently by S than by S, since for any given set of data S must be larger 

than S. 

We have seen in Chapter 3 some value in fitting high order auto­

regressives to ARMA(p,q) processes and so we now look at how Sand S'perform 

relative to each other in detecting the misspecified model when AR(4) models 

are fitted to MA(l) processes, for Q = 1.0, 0.8, 0.6, 0.4, 0.2. For each Q 

value 1000 MA(l) processes were simulated for three sample sizes n = 50, 

100, 200 and the mean and variance of the portmanteau statistics were 

calculated over the 1000 simulations. These results together with the number 

of times the incorrect model was rejected are collected in Table 4.9. 

Note that for a sample size of 50 the power of both statistics is 

rather weak even for the extreme MA(l) process in which e = 1.0. In this 

case, we have seen from Chapter 3, section 3.5 , that the asymptotic per­

centage loss is 100/(4+1) = 20%, so that the fact that both statistics would 

not detect the misspecified model very often, could have quite bad 
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FIGURES 4.1 AND 4.2 

GRAPHS OF THE EMPIRICAL POWER OF SANDS' 
FOR FITTING ARC 1) MODELS 

TO MA( 1) PROCESSES i 5% LEVEL, m = 20 

POWER 
1.0 

n = 50 
0.9 

0.8 

0.7 

0.6 

0.5 
5' 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

n = 100 

I 
5 

POWER 
1. 

0.8 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 
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(JI 

o . 

Q = 1.0 

Q = 0.8 

Q = 0.6 

Q:= 0.4 

Q=0.2 

MEAN 

S 14.43 
S' 19.26 

S 12.73 
S' 17.17 

S 1l.43 
S' 15.56 

5 11.35 
5' 15.52 

5 11.18 
5' 15.35 

n = 50 

TABLE 4°.9 

EMPIRICAL MEAN, VARIANCE AND POWER 
OF THE PORTMANTEAU STATISTICS FOR FITTING 

AR(4) NDDELS TO MAO) PROCESSES; m = 20 

n = 100 
VARIANCE POWER MEAN VARIANCE . 

0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 

23.17 0.026 0.044 0.108 19.67 40.59 0.148 
41.60 0.131 0.228 0.377 22.40 53.69 0.262 

20.83 0.011 0.024 0.065 16.63 33.42 0.063 
37.81 0.084 0.131 0.251 19.08 43.85 0.133 

16.11 0.002 0.006 0.028 13.85 22.17 0.011 
24.41 0.045 0.082 0.169 16.08 30.06 0.050 

15.40 0.002 0.009 0.029 13.71 21.47 O.Oll 
28.04 0.040 0.075 0.161 15.94 28.91 0.043 

15.75 0.004 0.009 0.019 13.74 23.80 0.017 
29.21 0.034 0.067 0.176 15.99 32.33 0.047 

n = 200 
MEAN VARIANCE POWER 

0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 

Q = 1.0 5 26.67 51.07 0.476 0.639 0.801 
~ 28.21 57.83 0.554 0.711 0.854 

Q = 0.8 S 20.91 42.34 0.189 0.303 0.490 
5· 22.27 48.02 0.246 0.380 0.566 

Q = 0.6 5 15.34 28.08 0.032 0.078 0.160 
S' 16.48 32.34 0.054 0.107 0.218 

.Q = 0.4 5 14.74 30.06 0.035 0.069 0.143 
5 15~87 34.77 0.053 0.105 0.186 

.Q = 0.2 S 14.53 ·25.76 0.025 0.049 0.124 
s' 15.64 29.93 0.039 0.088 0.171 I - -

POWER 
0.1 LEVEL 0.2 LEVEL 

0.235 0.398 
0.387 0.537 

0.115 0.221 
0.219 0.347 

0.035 0.098 
0.101 0.210 

0.032 0.083 
0.084 0.194 . 

0.038 0.088 
0.092 0.195 
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consequences from a forecasting point of view. Of course, as the sample 

size increases the picture is a little brighter, the rejection of the 

misspecified AR(4) model at a sample size of 200 being approximately 48% 
, 

and 55% for Sand S respectively at a 5% significance level. 

Also, we see from section 3.7, that as 9 gets below about 0.8, the 

consequences of the misspecification, asymptotically from a forecasting point 

of view, diminishes. Thus, even though the performance of the portmanteau 

statistics is poor, the consequences of this are not as serious as one might 

at first imagine. 

Further evidence is needed on the performance of these two statistics 

and the next section makes a more comprehensive study of their ability to 

reject misspecified models. 

4.4 Simulation Results for the Power of the Portmanteau Statistics 
I 

In a power study of the ability of Sand S to reject a misspecified 

model when autoregressive models are fitted to ARMA(p,q) processes, the number 

of these processes that could be chosen for study, is of course, infinite. 

However, we note firstly that Box & Jenkins (1970) suggest that p and q will 

rarely be above 2 in practice; this is borne out by the number of series 

that have been fitted and reported in the literature(l) (with one or two 

notable exceptions). 

Secondly, bearing in mind one of the most important reasons for fitting 

models to data is the need to forecast one (and more) steps ahead from that 

fitted model, it would seem natural to ask whether the portmanteau statistics 

could detect, reasonably often, a misspecified model which gives rise to a 

certain asymptotic percentage loss in mean squared forecast error, as 

discussed in Chapter 3. In other words we would like to examine (for example) 

those true ARMA(p,q) processes which, after having fitted an AR(p) model, 

give rise to one step ahead percentage losses of under 10%,between 10% and 

25%,between 25% and 50%, and above 50%. The criterion will be based upon 

(l)This is not conclusive evidence that higher order processes do not occur 

in nature. But, if they do, experienced time series analysts rarely succeed 

in correctly identifying them. 
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percentage losses without taking estimation error into account. 

We thus use the percentage losses to suggest the ARMA(p,q) processes 

which we examine, rather than be completely arbitrary in our choice for 

study. Even so, with this criterion, a certain amount of arbitrariness 

will arise. 

Referring to the upper entries in tables A3.l - A3.8, we chose 

(arbitrarily) processes which yield percentage losses in the above mentioned 

ranges, after having fitted AR(l) and AR(4) models. Those processes selected 

were simulated 1000 times, for sample sizes n = 50, 100, 200 and the 
I 

portmanteau statistics Sand S were used to detect the misspecified models, 

the mean, variance and number of times the misspecified fitted model was 

rejected, was calculated over the 1000 simulations. Results are collected 

in Tables 4.10 - 4.13. Our objective is to obtain a reasonable estimate of 

power, in order to give some idea of the probability of detecting particular 

misspecifications. For 1000 simulations, the standard error of our estimates 

will be at most 0.5 (lOOO)-t ~ 0.016, which is sufficiently accurate for our 

purposes. 
, 

On examining tables 4.10 - 4.13, we see that the power of both Sand S 

at detecting a misspecified model is, in general, rather low for the kinds 

of sample sizes that occur in practice. As is to be expected, the Box-Ljung 

statistic performs better than the Box-Pierce statistic, since, although both 

statistics are based on the same asymptotic theory, for a given set of 

residual autocorrelations, the former will always be numerically larger than 

the latter. 

In Table 4.11, where percentage losses are not insignificant, (10 - 25%), 

even for a sample size of 100 the power of both Sand S'is rather low. For 

the ARMA(1,2) process given, even for fitting an AR(4) model, the best either 

statistic can do at the 5% significance level is to reject the misspecified 

model just over 22% of the time. This only increases to approximately 55% 

at the 20% significance level. In Table 4.13, where percentage losses are 

very high (over 50%), for a sample size of 50 and in boundary non-invertible 

MA(2) process in which 9
1 

= 2.0, 9
2 

= 1.0 for which we fit an AR(4) model, S' 
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I-' 
(Jl 
w 

PROCESS 

MA(2) S 
"-9 =006,9 =0.4 

'P (1)=5~6%) S' 

ARMA(1,I) S 
~ =0.9,9 =0.25 

'"(p ( 1 )=5~ 5%) S' 

ARMA(1,2) S 
~ =0.8,Qf-O.2~0.4 

1 (p (1 )=5. S' 
- ----

MEAN 

TABLE 4.10 

EMPIRICAL MEAN, VARIANCE AND POWER 
OF THE PORTMANTEAU STATISTICS FOR FITTING 

AR(!) AND AR(4) MODELS TO ARMA(p,g) PROCESSES FOR 
WHICH 1 STEP AHEAD PERCENTAGE LOSS IS LESS TIlAN 10%; m = 20 

AR(1) FIT1ED 

n = 50 n = 100 
VARIANCE POWER MEAN VARIANCE 

0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 
17.26 56.89 0.070 0.099 0.160 22.65 76.90 0.170 

22.47 92.77 0.170 0.238 0.355 25.52 97.60 0.267 
18.38 64.54 0.085 0.118 0.192 22.68 72.10 0.178 

23.76 107.66 0.218 0.279 0.409 25.42 89.90 0.270 

17.00 50.09 0.053 0.080 0.155 22.31 74.05 0.158 

22.13 83.01 0.161 0.243 0.338 25.11 93.63 0.239 

n = 200 
MEAN VARIANCL POWER 

PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 

MA(2) S 28.76 102.25 0.400 0.512 0.647 , 

Q =0.6,9 =0.4 
1(p (1 )=5: 6%) S' 30.33 113.83 0.457 0.563 0.697 

ARMA(l,l) S 29.27 96.85 0.423 0.545 0.683 
P1=0.9,91=0.25 

P(1)=5.5%) s' 30.78 107.09 0.482 . 0.597 0.729 

ARMA(l,2) S 28.32 89.97 0.357 0.494 0.643 
11=0.8,~-O.2,9T=-0.4 

(P(1)=5.9% s' 29.82 99.85 0.438 0.559 0.701 
- - --

~ -

POWER 
0.1 LEVEL 0.2 LEVEL 

0.247 0.372 

0.360 0.507 

0.264 0.375 

0.361 0.503 

0.223 0.353 

0.343 0.475 



I-' 
U1 
~ 

PROCESS 

MA(2) S 
t=O.2,Q:a=-0.4 

P(l)=1.3%) S' 
ARMA(l,l) S 

P(=0.3,~=-0. 75 
s' P(1)=1.5%) 

ARMA(l.2) S 
A =0. 8,~-0.6,Q:a=-0. 4 

(PC1 =7.3%) S' 
ARMA(2,1) S 

¢l =0.8,Pj-0.4,~=0.8 
(PCl =9.3%) S' 

TABLE 4.10 (continued) 

m = 20 

AR(4) FITTED 

MEAN VARIANCEn = 50 POWER MEAN VARIANc:En = 100 POWER 
0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 

11.93 17.19 0.006 0.013 0.038 14.83 28.50 0.030 0.063 0.138 

16.26 31.38 0.059 0.102 0.193 17.17 38.23 0.083 0.142 0.265 
1l.92 17.39 0.005 0.011 0.043 15.01 26.83 0.028 0.061 0.144 

16.25 31.77 0.055 0.110 0.215 17.38 35.89 0.077 0.152 0.266 
12.23 16.66 0.005 0.013 0.045 15.40 26.67 0.030 0.071 0.150 

16.67 31.09 0.057 0.104 0.221 17.81 35.78 0.087 0.155 0.277 
15.35 28.48 0.034 0.066 0.159 19.61 42.24 0.146 0.223 0.381 

20.20 50.12 0.174 0.282 0.427 22.22 54.46 0.241 0.367 0.549 

n = 200 
MEAN VARIANCE POWER 

; PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 
MA(2) S 17.20 36.38 0.081 0.145 0.267 1 =0.2,Q2=-0.4 

P(1)=1.3%) S 18.43 41.79 0.119 0.205 0.337 
ARMA(l,l) S 17.04 38.30 0.084 0.128 0.244 

P,=0.3,,\=-0.75 
P(1)=1.5%) s' 18.27 43.82 0.104 0.173 ~.318 

ARMA(l,2) S 18.93 37.71 0.122 0.203 0.344 
Pl=0.8,~0.6,Q2=-0.4 

(p(l -7.3%) S' 20.28 43.43 0.172 0.261 0.420 
ARMA(2,1) S 26.35 63G93 0.430 0.590 0.757 

A. =0.8,P:f-OA,~=0.8 
(P(l)=9.3% S' 27.85 72.30 0.509 0.668 0.817 



I-' 
(]I 
(]I 

PROCESS 
MA(2) 

,\=0.2,Qa=-0.4 
(p (1)=18. 8%) 

ARMA(l,l) 
P,=0.6,9

h
=-1.0 

P(1)=2 .0%) 
ARMA(l,~) 

P1 =0. 4,~ =0. 2 ,~=O. 4 
(P(l =15.8 

S 

S· 

S 

S' 
S 

S' 

TABLE 4.11 

n = 50 n = 100 
MEAN VARIANCE POWER MEAN VARIANCE POWER 

0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 
21.57 76.39 0.130 0.201 0.321 31.66 134.57 0.485 0.591 0.735 

27.54 126.82 0.330 0.443 0.577 35.06 166.58 0.592 0.700 0.833 
17.53 41.26 0.046 0.074 0.141 23.04 50.84 0.154 0.252 0.417 

22.84 71.04 0.166 0.244 0.374 25.91 65.62 0.266 0.397 0.553 
19.08 73.72 0.094 0.143 0.225 25.30 101.82 0.232 0.342 0.479 

24.60 120.29 0.250 0.331 0.449 28.27 125.78 0.348 0.457 0.603 

200 n = "'vv 

MEAN VARIANCE POWER 
PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 

MA(2) S 45.47 164.40 0.913 0.959 0.989 
1=0.2,9 =-0.4 

P (1 )=1§. 8%) S' 47.48 181.69 0.934 0.972 0.991 
ARMA(1,l) S 29.85 66.31 0.421 0.583 0.758 

P1.. =0.6,'\ =-1.0 
P (1)=20.0%) S' 31.42 74.39 0.506 0.659 0.804 

ARMA(l,~) S 35.56 140.90 0.633 0.743 0.852 
A=0.4'0=0.2,Pr=0.4 , 

37.29 155.26 0.688 0.795 0.879 (P(l =1~.8% ___ ~ 



I-' 
()l 
0-

PROCESS 
MA(2) S 

(\=0.6,Q2=-0.4 
P (1 )= 17 • 9%) S' 

ARMA(l,l) S 
,\=0.3,Q1=-1.0 

P (1 )= 17 • 1%) S' 
ARMA(l,2) S 

Il=0.4,~=-1.4,Q2=0.4 
(P(l =20%) S' 

ARMA(2,1) S 
A =1. 6,lf-O.9,~=0.8 

S' (P(l =12.3% 

n = 50 n = 100 
MEAN VARIANCE POWER MEAN VARIANCE POWER 

0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 
13.71 22.29 0.023 0.038 0.082 19.25 38.21 0.139 0.222 0.366 

18.37 39.97 0.103 0.177 0.305 21.98 50.31 0.237 0.359 0.529 
13.62 22.99 0.019 0.042 0.093 18.67 38.73 0.106 0.177 0.318 

~ 

18.28 41.31 0.107 0.174 0.304 21.33 51.12 0.195 0.315 0.503 
14.31 24.88 0.022 0.049 0.113 19.38 33.69 0.115 0.203 0.376 

• 
19.12 45.13 0.139 0.222 0.367 22.06 44.57 0.229 0.365 0.546 
30.85 189.43 0.573 0.660 0.768 40.40 271.94 0.781 0.843 0.907 

37.82 282.88 0.728 0.810 0.280 44.01 31~.41 0.837 0.891 0.942 
------

n = 200 
MEAN VARIANCE rvnJ;;n 

PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 
MA(2) S 25.44 50.40 0.401 0.573 0.758 

1=0.6,Q2=-0.4 
P(1)=17.9%) s' 26.99 57.49 0.494 0.663 0.807 

ARMA(l,l) S 25.20 52.13 0.363 0.524 0.736 
1(=0.3,,\=-1.0 

P(1)=17.1%) S' 26.73 59.13 0.445 0.612 0.807 
ARMA(l,2) S 27.00 54.23 0.497 0.661 0.816 

Il=0.4,~=-1.4,Q2=0.4 
(P(l =20%) S' 28.58 61.39 0.566 0.721 0.855 

ARMA(2,1) S 49.48 469.44 0.890 0.942 0.977 
11 =1.6,P'f-0.9,~=0.8 

(p (1 =12.3% S' 51.32 497.34 0.916 0.956 0.981 



...... 
(]I 
....J 

PROCESS 
MA(2) S 

t=0.9,Q2=0.8 
P(I)=37.9%) S' 

ARMA(I,l) S 
',=0. 6,~=0. 75 

S' P(I)=41.6%) 
ARMA(l,2) S 

P1 =0. 8'IT: -O.2,Qr-0• 8 
(P(l =39.9% S' 

ARO) FITlED 
n = 50 n = 100 

MEAN VARIANCE POWER MEAN VARIANCE POWER 
0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 

24.60 98.02 0.224 0.302 0.444 37.10 147.50 0.687 0.795 0.895 
I 

31.20 162.73 0.439 0.548 0.682 40.99 185.12 0.789 0.874 0.943 
26.37 98.00 0.293 0.395 0.528 39.38 143.48 0.789 0.873 0.939 

I 

33.12 164.11 0.508 0.616 0.139 43.24 180.09 0.859 0.922 0.965 I 
I 

24.01 83.08 0.191 0.281 0.418 35.21 120.19 0.645 0.773 0.876 ! 

I 30.40 140.12 0.416 0.533 0.693 38.89 152.68 0.159 0.852 0.931 

n = 200 
MEAN VARIANCE POWER , 

PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 
MA(2) S 54.96 201.95 0.992 0.998 1.000 

~ =0.9 ,Q,=O. 8 I 

P (1)=3 .9%) S 57.31 222.86 0.993 1.000 1.000 
ARMA(l,l) S 60.56 231.22 0.997 1.000 1.000 ¢, =0.6,,\=0.75 

P (1 )=41. 6%) S' 62.88 255.68 0.999 1.000 1.000 
ARMA(1,2) S 52.67 171.01 0.992 0.996 1.000 

p. L=0.8,~-0.2,Qr-0.8 
(p(1 -39.9% S' 54.87 189.87 0.994 0.998 1.000 



I-' 
(]1 
CD . 

PROCESS 

MA(2) 
Q =1.2,92=1.0 
1P(1)=38.5%) 

ARMA(1,2) 

TABLE 4.12 (continued) 

EMPIRICAL MEAN, VARIANCE AND POWER OF THE PORTMANTEAU STATISTICS FOR FITTING 
ARC!) AND AR(4) MODELS TO ARMA(p,g) PROCESSES FOR WHICH 1 STEP AHEAD 

PERCENTAGE LOSS IS BETWEEN 25% AND 50%; m = 20 

AR(4) FITTED 

n = 50 n = 100 
MEAN VARIANCE POWER MEAN VARIANCE 

0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 

S 16.68 30.66 0.055 0.117 0.217 24.86 55.96 0.351 

s' 21.97 54.77 0.239 0.365 0.528 28.04 73.16 0.539 

S 16.05 27.39 0.044 0.089 0.176 23.48 48.25 0.313 
Il=0.4,~=-1.8,92=0.8 

(p (1 =41.9%) S' 21.10 48.77 0.203 0.304 0.485 26.45 62.99 0.454 

n = 2UU 
MEAN VARIANCE POWER 

PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 

MA(2) S 38.06 87.30 0.927 0.978 0.996 
t=1.2,Q =1.0 

P (1)=3~.5%) t1 40.09 98.41 0.955 0.986 0.999 

ARMA(1,2) S 35.64 83.67 0.868 0.949 0.985 
Pl=0.4,~ =-1.8,Q(0.8 

(p (1 )=41. 9% ~ 37.49 94.61 0.903 0.958 0.994 

I 

POWER 
0.1 LEVEL 0.2 LEVEL 

0.529 0.699 

0.678 0.823 

0.439 0.615 

0.580 0.751 
------------ ------- , 



I-' 
(Jl 
-0 

PROCESS 

MA(2) S 
Q =0.4,(;) =1.0 
1P (1 )=8t4%) S' 

ARMA(l,l) S 
P,=0.6,f\=1.0 

P(I)=8Q%) s' 
ARMA(1,2) S 

~ =0. 4,~ =-1.8,92=0.8 
(p (1 =106%) S' 

TABLE 4.13 

AR(l) FITlEI:> . 
n = 50 n = 100 

I MEAN VARIANCE POWER MEAN VARIANCE POWER 
0.05 LEVEL 0.1 LEVEL 0.2 LEVEL I 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL' 

28.24 119.34 0.336 0.447 0.601 45.27 193.58 0.904 0.960 0.991 

35.25 194.08 0.588 0.700 0.817 49.57 239.80 0.955 0.982 0.996 
27.87 106.76 0.316 0.449 0.592 42.53 172.30 0.851 0.920 0.974 

34.81 178.06 0.582 0.703 0.825 46.58 215.15 0.911 0.957 0.988 
27.83 119.04 0.310 0.429 0.587 41.01 133.90 0.836 0.913 0.973 

34.87 197.79 0.568 0.695 0.807 45.02 169.69 0.902 0.958 0.987 
~ -

n = 200 
MEAN VARIANCL POWER I 

PROCESS I 

0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 

MA(2) S 73.36 301.44 1.000 1.000 1.000 
~ =0.4,9 =1.0 

(p (1)=8t4%) S' 76.10 328.75 1.000 1.000 1.000 

ARMA(I,l) S 65.65 220.29 1.000 1.000 1.000 
Pt=0.6,~=1.0 

P(l)=80%) s' 68.12 243.92 1.000 1.000 1.000 

ARMA(1,2) S 63.82 200.02 1.000 1.000 1.000 
P1 =0. 4,~ =-1. 8,f)a=0.8 

(p (1 =106%) S' 66.27 221.82 1.000 1.000 1.000 



I-' 

'" o . 

PROCESS 

MA(2) 
~ =2.0,92=1. 0 

P (1)=86.7%) 

ARMA(I,2) 
P1 =0.8,~=2.0,Q2=1. 0 

(P(l =107%) 

TABLE 4.13 (continued) 

EMPIRICAL MEAN, VARIANCE AND POWER OF THE PORTMANTEAU STATISTICS FOR FITTING 
AR(l) AND AR(4) fJDDELS TO ARMA(p,g) PROCESSES FOR WHICH 1 SlCP AHEAD 

PERCENTAGE LOSS IS ABOVE 50%; m = 20 

AR(4) FITlCD 

n = 50 n = 100 
MEAN VARIANCE POWER MEAN VARIANCE 

0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 0.05 LEVEL 

S 17.72 27.80 0.069 0.134 0.263 26.69 58.05 0.462 

S' 23.02 49.84 0.280 0.428 0.607 29.87 75.89 0.611 

S 23.79 63.10 0.324 0.441 0.613 31.67 80.17 0.702 

S' 29.98 105.80 0.583 0.700 0.826 34.98 102.04 0.810 

n = 200 
MEAN VARIANCE POWER 

PROCESS 0.05 LEVEL 0.1 LEVEL 0.2 LEVEL 

MA(2) S 41.48 94.96 0.977 0.992 0.998 
1=2.0,92=1.0 I 

P (1)=86.7%) S 43.50 106.84 0.983 0.995 0.999 

ARMA(l,2) S 45.63 90.88 0.999 1.000 1.000 
Pl =0.8,9

1 
=2.0,92=1.0 

(P(l =107%) S' 47.59 101.45 0.999 1.000 1.000 i 

POWER 
0.1 LEVEL 0.2 LEVEL 

0.614 0.789 

0.748 0.881 

0.828 0.937 

0.906 0.974 



would detect this misspecification under 30% of the time at the 5% 

significance level. Naturally, for a large sample size (n = 200) both 

statistics become satisfactory at detecting misspecification. 

A closer look at these tables shows that percentage loss is a reasonable 
, 

guide to the ability of Sand S to detect misspecification, although one or 

two examples show that nothing like an exact relationship will exist between 

them. For example, in Table 4.11 when fitting AR(4) to the ARMA(2,1) process 

for which ~ = 1.6, ¢. = -0.9 and Q = 0.8 and a sample size 50 both Sand S' 
121 

detect the misspecification surprisingly often. Similarly, in Table 4.13 for 

the misspecification of the MA(2) process mentioned in the previous paragraph, 

at a sample size 50, the very low percentage rejection for both statistics 

is somewhat surprisi~g considering the high percentage loss in forecasting. 

To explain the reasons for this in the above examples consider the 

first four average residual autocorrelations (over the 1000 simulations 

conducted for fitting AR(4) models) as given in Table 4.14. 

TABLE 4.14 

MA(2) PROCESS ARMA(2,1) PROCESS 

9 = 2.0,9 = 1.0 P1 = 1.6,p = -0.9,9 = 0.8 
1 1 2 1 

k n = 50 n= 200 n = 50 n = 200 

1 0.18 0.125 0.49 0.35 

2 -0.15 -0.163 0.05 -0.06 

3 0.13 0.175 0.02 0.05 

4 -0.10 -0.144 -0.03 -0.02 

Note: for both processes average residual autocorrelation 

were virtually zero beyond lag 4 for both sample sizes. 

It is clear from this table that in the case of the MA(2) process the 

residual autocorrelations are of moderate size spread over four lags, whilst 

for the ARMA(2,1) process the residual autocorre1ations are such that where 

as the first is large, the remainder at other lags are virtually zero. Thus, 

for a sample of size 50 the single large autocorrelation at lag 1 will 

161. 



, 
become important in calculations of Sand S whereas for the same sample 

size the four moderately sized autocorrelations will not contribute, 
, 

relatively, as much in calculations of Sand S. Hence, for detecting 

misspecification in the above MA(2) process we would expect Sand S/to be 

somewhat lower than we might first imagine, whereas for the ARMA(2,l) 

process the opposite would be true. 

Now, the sample autocorrelations in Table 4.14 will (at least for large 

sample.sizes) provide reasonable estimates of the residual autocorrelations 

from the misspecified model. Our results then suggest that while percentage 

loss provides some indication of the likely power of the portmanteau statistic, 

one must expect considerable variability in powers between different mis-

specifications producing roughly equal losses in forecasting accuracy. To make 

this point rather more concretely, suppose the true model 

~(B)Xt = 9(B)at 
where at is white noise. If an AR(PJ model is fitted to such a process the 

fitted model will be of the form 

where 

t(B)Xt = nt 

, P 
I(B) = (1 - !l'B - ••• - !p,B ) 

I 
and the !. are the probability limits of the least squares estimates. The 

J 

residuals from the fitted model then obey 

If the autocorrelations of ~ happen to be large for just one or two lags, 

one would expect the portmanteau statistics to be better than if these auto-

correlations were of moderate size for several lags. 

Our conclusion, then, is a somewhat mixed one. There certainly exist mis-

specifications, producing considerable loss in forecasting power, which will 

not be shown up very often by portmanteau checks (at least for sample size 

50 - 100). On the other hand, it will sometimes happen that less severe mis-

specifications are fairly frequently detected. However, the practical time 

series analyst can hardly expect to consistently have the good fortune to 

make only specification errors of this latter kind. Accordingly, for general 

use, one would not be happy about the ability of the portmanteau statistics 
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alone to produce checks of sufficient stringency. 

4.5 Conclusions 

We have shown in this chapter that, even though the Box-Pierce and 
, 

Box-Ljung statistics Sand S respectively were derived with no specific 

alternative hypothesis in mind, when they are used in an attempt to detect 

models which are known to be misspecified, their empirical performance is 

rather poor for the kinds of sample sizes used and found in practical time 

series analysis. 
I 

Although the asymptotic mean and variance of both Sand S are both given 

under the assumption of fitting AR(p) models to ARMA(p,q) processes, their 

distributions took no simple form thus necessitating an empirical study of 

their powers. 
, 

As would be expected S does better than S in all circumstances, the main 

reason being that its numerical value is higher than that of S when calculated 

from a given set of residual autocorrelations, so that when a X2 test is 

applied, it will naturally reject a given misspecified model more often. 

Since each statistic calculates a weighted sum of squared residual 

autocorrelations it appears that they would perform best for those mis-

specifications that give rise to residuals which have one or two high auto-

correlations, rather than ones which have several of moderate size only. 

I would also argue on the basis of these results that a practice which 

has recently sprung up in some of the applied literature is of dubious value. 

It is common now to see fitted models reported, accompanied only by the 

value of the Box-Pierce statistic S. Presumably the implication is that if 

the value of S is not too high the model can safely be assumed to be adequate. 

Of course, we noted in Chapter 2 (and the point is reinforced in the present 
I 

chapter) that the Box-Ljung statistic S is more appropriate than S. However, 

even this modification to the practice just described would hardly be 

adequate. As we have seen, for sample sizes met in practice, misspecifications 
, 

of considerable gravity are often undetected by the statistic S. The 

conclusion, then, must be that further checks on model adequacy are almost 
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essential. It should be added that this point is clearly recognised by 

Box and Jenkins (1970, chapter 8), who recommend several other checks. 
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Summary 

CHAPTER 5 

FORECASTING FROM MISSPECIFIED TIME SERIES MODELS WHEN 
THE ASSUMED DEGREE OF DIFFERENCING IS TOO LOW 

This chapter considers the mean and variance of the sample auto­

correlations for an ARlMA(p,l,q) process and looks at theoretical asymptotic 

parameter estimates for fitting AR(p1 models to such processes. An 

expression is derived for the asymptotic h-step forecast error variance 

and in the special case p = 0 and q = 1, percentage losses are given for 

fitting AR(2) models. These results are supported by simulation studies, and 

the possibility of the more general approach adopted in Chapter 3 is indicated. 

5.1 Introduction 

Suppose that a time series Xt follows the ARlMA(p,d,q) process 

I(B)(l- B)dXt = Q(B)at (5.1) 

Since this process is non stationary it possesses no (finite) mean and the 

population autocovariances and autocorrelations do not exist. Further 

problems arise in any asymptotic study of fitting different models to (5.1), 

since the residuals from such a fit will themselves be samples from a non-

stationary process. That this is so can be seen by considering fitting the 

( ' ") non-stationary ARIMA p,d,q model , 
I(B)(l - B)dXt = 8(B)~ 

I 

where we assume d > d • 

If (5.1) and (5.2) are both to hold, 
I 

I(B)8(B) (1 - B)(d-d)~ = I(B)Q(B)at 

(5.2) 

(5.3) 

, 
so that ~ will follow (asymptotically) an ARIMA(p+q~ d-d, p+q) process. The 

theory of section (3.3), where stationary ARMA(p,q) models were fitted to 

stationary ARMA(p,q) processes by least squares cannot be applied to find 

asymptotic parameter estimates in the fitted model. This would be especially 

so for the results of section (3.2) where pure autoregressives were fitted, 

since the probability limits of the fitted AR coefficients depended directly 
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on the population autocorrelations of the true process. We see, therefore, 

that a different approach has to be used. 

As an example of the procedure adopted, let X ,X , ••• ,X be n values 
1 2 n 

from the non-stationary ARlMA(p,l,q) process 

Sample autocorrelations, rk, defined by 

rk = clco 
n 

(5.5) 
n 

where ck = ~ .Jk+l (Xt - X) (Xt _k - X) (k = 0,1,2, ••• ) and X = Jl Xt/n, may, 

of course, be calculated. Note that our definition of sample autocorrelation 

in equation (2.5) and also the definition in section 3.1 did not subtract 

off the sample mean as in (5.5). The reasons for doing so here is given on 

p 169 and p 179, where it provides us with a convenient mathematical 

simplification in both cases. We shall see that when we use (5.5) in fitting 

misspecified models, the assumed model takes a slightly different form from 

that in (5.2). 

For instance, if we fit an AR(l) process by least squares,example 3.2 

directed us to use the first sample autocorrelation (without X) to estimate 

I.', the fitted autoregressive parameter. Suppose we use r defined by (5.5) 
1 1 

to estimate I.', i.e. set 
1 

I.' = r 
1 1 

Note that, if Zt = Xt - X, we may write 

n n 
r1 = J:aZtZt_1 J1 Zt 

2 

so that in accordance with example 3.2, using i' = r implies we are 
1 1 

(5.6) 

fitting Zt - p,'Zt = error to data by least squares. That is, the model 
1 -1 

(Xt - X) - ~'(Xt . - X) = error 
1 -1 

(5.7) 

Moreover, in section 5.2 we give an asymptotic expansion for E[rkJ for the 

process (5.4) (with r k defined by (5.5», so that from (5.6) 

E[~:] = E[r
1
], 

and the problem we had in Chapter 3 of determining plim I.' (as we did in 
1 

equation (3.41» has been replaced by obtaining a satisfactory expression 

166. 



for E[r
1
]. Naturally, this will dep~nd on the true process the series 

follows, but will not depend upon its population autocorrelations (which we 

have already mentioned do not exist). 

Hence, in fitting a stationary AR(l) model to a non-stationary ARIMA(p,l,q) 

process we shall fit the model (5.7) to the data by least squares. In general, 

extending the above arguments, if we fit an AR{p) model, and obtain estimates 
I " , 

of the p autoregressive parameters p. ,~ , ••• ,~ " via the solutions of the 1:a p 

equations (3.2), with the rk defined by (5.5), i.e. 

r = 1,' + 1'r +. 
1 1 a 1 • • • • + 1. I, r I 

p P-l 

• + 1.', r I p p-:a (S.8) 
r =1,'r +1.'+ •• 

:a 1 1 a • • 

, ~, 

r ,: $. r , +...... + P. , P 1 p~ P 

we shall be effectively fitting the model 

(Xt - X) - ~l' (~-l - X) - •••• - 1;~Xt_p' - X) = error 

to the data by least squares. 

Using similar notation to that in Section 3.2 we may write the solution 

vector, f': (1.',p-', ••• , ~/J of (5.8) in the form 
~ 1 a p 

t = p-1 r .... r ... (S.9) 

, ( ) where r = r,r , ••• ,rp' • ".. l:a 

Now define !E to be the value of ! obtained by replacing all the sample 

autocorrelations r ,r , ••• ,r lof the true process in (5.9) by their 
1 a p 

expectations. Thus 

1 E[r
1

] E[r
a

] ••• E[rp'_l] -1 E[r ] 
1 

E[r
1

] 1 E[r ] 
a 

(S.lO) 

E[r, ] 
P-l 

1 

Provided the variances of the rj are not too large this should provide an 

adequate (though biased) approximation to E[i]. 
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I 
We evaluate (5.10) in some special cases for p = 1,2,3,4 on p111 , and 

some evidence for its validity in providing estimates for the auto-

regressive parameters is given through some simulation studies, section 5.2, 

P 118. 

As far as asymptotic mean square error for forecasting is concerned, a 

slightly modified approach is again needed compared with those used to derive 

(3.3~ and (3.34) in section 3.4. Details are given in section 5.4. 

As we have pointed out, the rk's and consequently their expectations, 

are important for the study of misspecified non-stationary processes. Sample 

autocorrelations for non-stationary processes have been little studied, 

except notably Wichern (1913) who looked at the lMA(l,l) process. We now 

examine his results and provide an expression for E[rkJ and var[rk] for the 

more general ARIMA(p,l,q) process. 

5.2 The mean and variance of the sample autocorrelations for an lMA(l,l} 
process 

We first consider a special case of the process (5.1) in which p = 0, 

d = 1 and q = 1, namely the integrated moving average model 

(5.11) 

for which Wichern (1973) attempted to examine the kinds of values one might 

expect to obtain for the sample autocorrelations rk from a sample X ,X , ••• ,x 
1 a n 

from (5.11), where rk is defined by (5.5). For the general process (5.11) 

rk and Co will be correlated so that 

E[rk ] = E[ cJlco ] 

-I E[ckJ!E[CoJ 

(5.12) 

(5.13) 

Wichern (1973) pointed this out but examined the right hand side of (5.13) to 

get some idea of the behaviour of the mean of rk • These resul ts are al so quoted 

by Box and Jenkins (1970), pp 200 - 201. Wichern's simulation results on the 

sample mean, rk, over 400 simulations of the process (5.11) did not compare 

too favourably with the theoretical values obtained from the ratio E[ckllE[coJ, 

over a range of Q values. 
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A quadratic form representation of rk 

Wichern (1973) showed that we may write rk as the ratio of the quadratic 

forms in the variables at given by 

~' T' FQkFT,e/(2n) 
rk = a'T'FTa!(n) ..... .. 

where a'= (a ,a , ••• ,an), F = (I - l{/n) 
,.. 1::1 --

1 

A 1 

, 
with 1 = (1,1, ••• ,1), 

(5.14) 

T= A A 1 with A = 1 + e 

A . . A 1 

and Qk is an (nxn) zero matrix with unity on the kth super and sub diagonals. 

In the above representation Wichern (1973) assumed that a and X are 
o 0 

fixed and so when rk is defined as in (5.5) (i.e. the sample mean X is taken 

off) a and X disappear from the analysis. Of course, if a stationary model 
o 0 

is to be fitted to an integrated process, it will generally not appear from 

the data to be reasonable to assume a zero mean for the stationary 

representation. The sample mean X then constitutes a sensible estimator for 

the unknown mean. (It is well known that, for stationary processes, X is an 

asymptotically efficient estimator of the true mean.) 
, I 

Defining M= T FQkFT and K = T FT, we may write (5.14) as the ratio of 

quadratic forms 

(5.15) 

If (as Wichern does) we assume the a is distributed as multivariate normal, ,., 

(5.15) is the ratio of quadratic forms in normal variables. The exact 

distribution of (5.15) is difficult to find. Distributions of ratios of the 

type ~'G2/~/H~ have been found when G and H commute, for in this case the 

ratio can be simultaneously diagonalised by the same orthogonal transformation 

to a form which can lead to the exact distribution (Watson (1955». The case 

when H = I has been well discussed by Anderson (1971). Gurland (1955) 

obtained a Laguerrian expansion for the distribution under a commutative 
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property of G and H, whilst Watson (1955) obtained the exact distribution. 
) 

Dent and Broffit (1974) and Broffit and Dent (1975) obtained the exact mean 

and variance of Watson's distribution and proposed asymptotic distributions 

for the ratio of the quadratic form when G and H do not commute. The 

success of these results appears to depend heavily on a symmetric form for 

the distribution of the ratio !' G i-li H oS and more experimental work needs 

to be done to test out their methods. The distribution of rk in (5.15) is 

not symmetric, in general, and moreover M and K do not commute. 

In a recent article, Khuri and Good (1977) obtain the distribution of 

ratios of quadratic forms in non normal variables when G and H are not 

n~eS6arilY positive semi definite matrices, so that it ought to be possible 

to obtain the distribution of rk, above, at least in closed form. We do not 

proceed with their analysis for the following ideas provide us with concise, 

easily understood approximate expressions for the mean and variance of r k• 

Since ck = ~' M !/2n and Co = !' K !In and we assume the i is normal, 

Wichern gives 

E[ coJ = TrKoa
2 In 

and E[ckJ = TrMoa2/2n 

E[ckJ _ tTrM 
and obtains the ratio E[ co] - TrK 

(5.16) 

(5.17) 

(5.18) 

Wichern examined (5.18) for different Q values and his reported results 

are collected in Table 5.1, together with the empirical mean rk that he 

found from his simulations. (A description of Table 5.1 is given on p:Y11.) 

The mean and variance of rk 

Following methods first proposed by Marriott and Pope (1954) and 

Kendall (1954) we may obtain an expansion of r k = (a + E[ckJ)(b + E[coJ)-l 

where a = ck - E[ckJ, b = Co - E[co]' so that after taking expectations, 
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to order lin. 

Also, from Kumar (1975) 

E[ ckcoJ = E[~' M ,e ,e,' K 2J/2n2 

= {TrM TrK + 2TrMK}o 4. /2n2 
a 

and E[c
0

2J = E[(,e'K s)2]/na 

= {(TrK)2 + 2TrK2}o 4. /n2 
a 

so that (5.19) becomes, after substitution, 

[ ] tTrM( 2TrMK 2TrK2 \ 
E rk = TrK 1 - TrMTrK + (TrK)2) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

An analytic expression for E[rk] from (5.22) in terms of A, k and n, similar 

to (5.18) is algebraically intractible, and so the only feasible method of 

examining (5.22) is by programming. 

Expression (5.22) was therefore programmed and, in particular evaluated 

at those Q values and that sample size used by Wichern (n = 50). A direct 

comparison is therefore possible between the ratio (5.18) studied by 

-Wichern, his simulation results for the mean sample autocorrelation, r k and 

the expansion given by (5.22). Results are collected in Table 5.1. 

It is clear from the table that, even though the ratio E[ckllE[co] 

studied by Wichern (1973) provides ~ insight into the behaviour of the 

sample autocorrelations, rk, the expansion for E[rk] given by (5.22) gives 

values which are much closer to the empirical sample mean rk which was 

reported from 400 simulations with a sample size of 50 as conducted by Wichern. 
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TABLE 5.1 

EVALUATIONS OF E[CkJ/E[CoJ AND E[rk] 
TOGETHER WITH THE EMPIRICAL SAMPLE MEAN rk 

(AS REPORTED FROM SIMULATIONS BY WICHERN (1973» 

9 = +Oe9 

k 1 2 3 4 5 

E[ ck]/E[ co] 0.930 0.834 0.743 0.657 0.575 

rk 0.91 0.77 0.64 0.53 0.44 

E[rk] 0.907 0.771 0.647 0.535 0.434 

9 = +01 5 

E[Ck]/E[C
O

] 00927 0.832 0.741 0.655 0.573 

- 0.90 0.76 0064 0.53 0.44 rk 

E[rk] 0.902 0.766 0.643 0.532 0.432 

Q = 000 

E[ck]/E[coJ 0.902 0.809 0.721 0.637 0.558 

- 0.86 0.73 0.61 0.51 0.42 rk 

E[rk] 00859 0.730 0.613 0.507 0.411 

Q = -015 

E[CkVE[C
O

] 0.727 00652 Oe580 0.512 0.448 

- 0.62 Oe54 0.46 rk 0.38 0032 

E[rk] Oe605 0.515 Oe434 0.360 0.294 

• 9 = -0.8 

E[ ckJ/E[ co] 0.255 0.228 0.202 Oe177 0.153 

- Oe21 Oe1S 0.16 0.13 0.11 rk 

E[rkJ 0.200 0.174 0.150 0.129 0.108 

Q = -leO 

E[ck]!E[co] -00020 -0.020 -0.0192 -00019 -00018 

- -0.02 -0.02 -0.02 -0.03 -0.02 rk 

E[rk] -0.020 -0.020 -0.0192 -0.019 -0.018 

Note (i) sample size n = 50 

(ii) 400 simulations for each Q value 
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To gain further insight into the behaviour of E[rk] particular Q values 

were chosen and (5.22) was evaluated for k = 1,2,3 for various sample sizes. 

The cases e = -0.5 and e = 0.0 are given in figures 5.1 and 5.2 (the shape 

of the curves in figures 5.1 and 5.2 were typical for all the Q values looked 

at in the range). 

As pointed out by Box & Jenkins (1970) p 200, for small k, the expected 

values of rk for an IMA(l,l) process are not very large for the kinds of 

sample sizes used in practical time series analysis, although it is also clear 

from the graphs in figures 5.1 and 5.2 that, as expected, E[rk] is 

asymptotically 1. 

Also, from Kendall & Stuart (1977) Vol 1, we may obtain an expression 

for the variance, var[rk ], for the ratio of the variables ck to co. 

We find, from their equation 10.17, p 247, that 

to order lin. 

From (5.16) and (5.21) 

similarly 

and 

var[co] = 2 TrK'ia0a4/n'ia 

var[ckJ = T'rlfcra
4/ 2n'ia 

cov[co'ck] = TrMKoa
4/n'ia 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

These expressions, together with (5.16) and (5.17) may be substituted in 

(5.23) for computational purposes. (Analytic expressions are again intractlble.) 

Expression (5.23) was programmed and evaluated at those values of e, n 

and k considered by Wichern (1973). Results are collected in Table 5.2 

where the standard deviation of the empirical sample mean rk is also reported 

from Wichern's 400 simulation experiments. 

In general, the variances given in table 5.2 are very small, suggesting 

that an expression of the form (5.l0)should provide a fairly close 

approximation to the means of the estimated parameters when an AR(p) model 
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TABLE 5.2 

EVALUATIONS OF var[rkJ TOGETHER 
WITH THE (var[rkJl400)t AND 

THE EMPIRICAL STANDARD ERROR OF rk 
(AS REPORTED FROM SIMULATIONS BY WICHERN (1973)) 

Q = 0.9 

k 1 2 3 4 

var[rk] 0.0008 0.0033 0.0070 0.0114 

{var[rkJ/400}t 0.001 0.003 0.004 0.005 

s.d. (rk) 0.002 0.006 0.008 0.010 

Q = 0.5 

var[rkJ 0.0008 0.0034 0.0072 0.0116 

( var[rkV400)t 0.001 0.003 0.004 0.005 

s.d. (rk) 0.004 0.006 0.008 0.010 

G = 0.0 

var[rk] 0.0012 0.0043 0.0084 0.0130 

( Var[rkV400li 0.002 0.003 0.005 0.006 

s.d.(rk) 0.004 0.007 0.009 0.010 

Q = -0.5 

var[rk] 0.0163 0.0213 0.0259 0.0299 

(var[rk]/400)t 0.006 0.007 0.008 0.009 

s.d. (rk) 0.009 0.010 0.011 0.011 

Q = -0.8 

var[rk] 0.0516 0.0491 0.0461 0.0429 

( var[rkV400)t 0.011 0.011 0.011 0.010 

s.d. (rk) 0.010 0.010 0.009 0.009 

Q = -1.0 

var[rk] 0.0196 0.0192 0.0188 0.0184 

( var[rk]/400}t 0.007 0.007 0.007 0.007 

s.d. (r
k

) 0.007 0.007 0.007 0.007 

Note (i) sample size n = 50 

(ii) 400 simulations for each 9 value 
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Q 

1s fitted to an IMA(l,l) process. We now go on to examine this possibility. 

arameter estimates for fittin models t the 

We now evaluate the expression (5.10) for !E using the calculated 

expected sample autocorrelations given in table 5.1 for different values of 

Q in the IMA(l,1) process 

Table 5.3 contains results for' fitting autoregressives up to order 4. 

TABLE 5.3 

THEORETICAL AUTOREGRESSIVE PARAMETER ESTIMATES 
FOR FITTING AR~p~ MODELS TO IMA~1,1~ PROCESSES xt- Xt_~= at+ Qat -1 

P,' p' 
SAMPLE SIZE = 50 

I If' I?' Q I I.' ~' It' ,;' P P 1 :a 3 4- :a 3 

1 0.907 1 0.902 

0.9 2 1.176 -0.2956 0.5 2 1.1281 -0.2~10 

3 1.192 -0.3617 0.0562 3 1.1355 -0.2842 0.0294 

4 1.195 -0.3809 0.1197 -0.0532 4 1.1367 -0.2960 0.0767 -0.0416 

1 0.8590 1 0.605 

2 0.8827 -0.0282 2 0.4618 0.2361 

0.0 3 0.8819 -0.0038 -0.0276 -0.5 3 0.4408 0.1950 0.0890 

4 0.8812 -0.0039 -0.0036 -0.0272 4 0.4386 0.1902 0.0781 0.0246 

1 0.200 1 -0.0200 

.-0.8 2 0.1716 0.1399 -1.0 2 -0.0204 -0.0200 

3 0.1578 0.1230 0.0985 3 -0.0208 -0.0204 -0.0200 

4 0.1511 0.1146 0.0877 0.0683 4 -0.0212 -0.0208 -0.0204 -0.0200 

We note that these theoretical parameter estimates seem to be homing 

into stable values as the order of autoregressive fitted increases. To give 

some justification for the substitution of the expected values of the sample 

autocorrelations in place of the calculated sample auto correlations in 
, I I 

equation (5.9), hence obtaining p. ,~ , ••• ,p, " some simUlation stUdies were 
l:a p 

conducted. 1000 IMA(l,l) processes for each of the 9 values 0.9, 0.5, -0.5 

and -0.8 were generated for a smnp1e size 50, AR(2) processes were fitted by 

least squares and the parameters P:'P~ were estimated using (5.9). The mean 
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of these estimates over the 1000 processes are collected in Table 5.4. 

TABLE 5.4 

NUMERICAL AUTOREGRESSI VE PARAMETER ESTIMATES 
FOR FITTING AR(2) MODELS TO IMA(I,l) PROCESSES Xt - Xt -

1
= at+ Q at _

1 
SAMPLE SIZE n = 50, 1000 SIMULATIONS 

Q 0.9 0.5 -0.5 -0.8 

E(;") 1.171 
1 

1.132 0.502 0.188 

E(~') -0.294 -0.257 0.206 0.122 
:a 

var[¢,'J 
1 

0.020 0.016 0.024 0.027 

var[p"J 0.021 0.017 0.016 0.022 
:a 

cov[l; ,I~] -0.019 -0.014 -0.007 0.005 

Clearly, the numerical results agree closely with those corresponding 

theoretical ones in Table 5.3, especially for positive Q • For negative Q , 

as Q tends to -1, we see that Xt tends to a white noise process. In that 

case, as is seen from Table 5.2 the variances of the rk are at their highest. 

Hence the I.' ,I' obtained by replacing rand r by E[r ] and E[r ] 1n the 
12 1 :a 1 :a 

Yule-Walker equations will be correspondingly biased. However, in absolute 
, , 

terms, even for Q = -0.8 the use of p. = 0.17, P. = 0.14 as given in Table 
1 :a 

.1' .1' 5.3 should be very close to the "true" p. and 11 val ues. Note, in addi tion, 
1 :a 

the average sample variances and covariances over the 1000 simulations are 

small. This latter fact will be used and referred to later in Section 5.4. 

Its importance lies in the fact that we can now, with some confidence, use 

the I; of table 5.3 to obtain an assessment of the likely forecasting 

performance when AR(p) models are fitted to IMA(l,l) processes. 

5.3 sam Ie auto correlations for an 
rocess 

Let Xt follow the process (5.1) with d = 1, i.e. 

I(B) (l - B) Xt = Q(B) at • (5.27) 

Then we may write this in the form 
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Xt - Xt _
1 

= ~l(B)Q(B)at 
= d(B)at (5.28) 

where ut = d(B)at is a stationary invertible infinite moving average process. 

Thus, we may write 

where we shall assume the population autocorrelations Pk (k ~ 0) are 

available for the process Ute 

(5.29) 

Assuming E[utJ = 0, var[utJ = 0ua and using methods similar to Wichern 

(1973) we have, for a sample X ,X , ••• ,X and fixed X , from (5.29) 
1 a n 0 

Xt = X + ut + ut +. •• + u o -1 1 

n 
so that (Xt - X), where X= -tkXt/n, depends only on (u

1
,ua ' ••• 'un). This is 

one of the reasons we define the sample autocorrelation, rk, by (5.5), namely 

that in the subsequent analysis Xo is not present. 

and 

Defining ~/= (u ,U , ••• ,u ), we may write 
- 1:a n 

Ck = (~'T'FQkFT~)/2n 
Co = (~'T'FT~)/n 

where the matrices F and Qk are defined on p 169 and 

1 

1 
o 

1 

T= 

1 • . 1 

, , 
Defining M = T FQkFT and K = T FT, (5.30) and (5.31) may be more 

compactly written 

and 

so that 

Ck = ~'M~/(2n) 
Co = i Ky/n 

r k = ck/ co 

, 'I = 1J Mu 2 
u'Ku ,.. ... 
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The expected value of the sample autocovariances 

Suppose a'= (a ,a , ••• ,an) is a vector of white noise, variance a 2 
oJ 1 2 a ' 

assumed normal and that 

u = Sa "" ,.. (5.35) 

where S is an (n x n) matrix. Also if the variance covariance matrix of 

u is E, it follows that E = SS'cr 2. 
~ a 

Thus, from (5.33) and (5.35) 

E[coJ = E[~' S' KS~J/n 

= TrS'KScr 2/n a 

= Tr(EK)/n 

Similarly, from (5.33) and (5.35) 

E[ ckJ = Tr(EM)/2n 

An equivalent form for (5.36) and (5.37) is obtained by noting that 

(5.36) 

(5.37) 

where Pj (j ~ 1) are the true autocorre1ations of ut ' and K and M are symmetric. 

We get 

cr 2 TrK 20' 2 n-1 n-j 
E[coJ = u + u st K s+j Pj n n- j~ s (5.38) 

0' zTrM cr 2 n-1 n-j 
and E[ckJ = 

u + ...1L .E .E M s+j Pj 2n n J=l J=l s (5.39) 

where K = {K .. } and M = {M .. }. 
1J 1J 

Of course, the lMA(l,l) process that Wichern (1973) considered was such 

that the {at} would follow an MA(l) process for which cr
U

2 = (1 + Q 2)cra
2

, 

p = Q /t + Q 4 and p. = 0 (j ~ 2). In this case, we find, after some algebra, 
1 ~ J 

that (5.38) reduces to 

a 2 (n-1) 
E[c ] = a6 ((n + 1) A,2 + 6 - 6A,) o n 
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where A= 1 + Q • This is the same as Wichern's expressions for E[c J. 
o 

Equation (5.39) also reduces to Wichern's expression for E[c
k

] in this 

special case. 

For computational purposes (5.38) and (5.39) are probably best left as 

they are, although we give the following expressions in the special cdses for 

E[c ] and E[c J. We get after much algebra, 
1 a 

(J a (J 2 n-1 

E[c ] = 6U2 (n-l) (n2 -4n+l)+ 3U3'~ (n-(j+l»{n(n2-(2j+l)n+(j2+1»+j(j_l»)P. 
1 n n J-1 J 

and 

The expected value of the sample autocorrelations 

From the expansion for E[rkJ given in (5.19) we see we shall need 

E[CkCoJ and E[c
0
2J in addition to E[co] and E[ck] given by (5.38) and (5.39). 

From (5.32), (5.33) and (5.35) 

E[CkC ] = E[a'S'MS a a'S'KSal!2n2 
o ,.. ,.. ,.. .., 

= Tr(EM) Tr(EK) + TrCMEKI:) 
2n2 n2 (5.40) 

and 

E[c 2J = E[a'S'KS a a/ S'KSaJ/n2 o I'It,I l"IV IW ,." 

(5.41) 

where we have assumed the a'is multivariate normal and used Kumar's (1975) 
<'J 

expressions for the expectation of quadratic forms in normal variables. 

From (5.36), (5.39), (5.40) and (5.41) and substituting these in (5.19) 

we get 

[ J tTf(E)} (2Tr{MEKI:~ 2TrfKI:~:a ) 
E rk = Tr EK 1 - Tr(EM)Tr EK) + (Tr KE )2 (5.42) 

By examining (5.22) we see (5.42) is of a very similar form. We find 

(5.42) reduces to (5.22) in the simple case considered by Wichern (1973). 
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The variance of the sample autocorrelations 

The expansion for the variance of rk is given, in general, by (5.23). 

In that formula we require, from (5.36) and (5.41), 

var[c ] == 2Tr(Kt) 2 
o n2 

Also, from (5.37) and the fact that 

E[c
k

2 ] == (TrME)2 + Tr(ME) 2 
4n2 2n2 

we get 

Similarly 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

Substitution of (5.43), (5.45), (5.46), (5.36) and (5.37) in the expansion 

(5.23) yields 

] _ 1. frrNl:.)2(Tr(Kt)2 2Tr(ME) 2 4Tr(~1 ) 
var[rk - 4\TrKE (Tr(Kt»2 + (Tr(ME)2 - Tr(ME~{KEr (5.47) 

5.4 losses 

Although the a.m.s.e. for forecasting ARlMA(p,d,q) processes is well 

known (see, for example, Box & Jenkins, 1970, p128 ), we give here an 

expression for V(h) in terms of the notation introduced in section 3.9 

Chapter 3. 

Let the ARlMA (p,d,q) process be given by (5.1), where we let 

so that we may write 

From (5.48) and section 3.9, Chapter 3, we may write 

Xt = (D + D B + D B2 + •••• ) Y
t o 1 2 
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where D ::: 1, D. = .+d Cd (j ~ 1); from (3.22), p64 , o J J -1 -1 

Yt ::: P-1(B)9(B)a
t 

= d(B)at 

::: (d + d a + d aa + ••• )a
t o 1 a 

with d = 1. o 

where 

Hence, from (5.50) and (5.52) 

X
t

::: (D + D B + D a2 + ••• )(d + d B + d Sa + ••• )a
t o 1 a 0 1 2 

= (, +. a + • a2 + ••• )at o 1 2 
i 

t. = .E d .D. . 
1 FO J 1-J 

(i=O,I, .... ) 

(5.51) 

(5.52) 

(5.53) 

It follows that the variance of the h-step forecast error is given by 

h-l 

Example 5.1 

V(h) = (.E ,.2 a 2) 
1=0 1 a 

h-l i 
::: .j: (.E d .D. j )aO' a 

1-0 J=o J 1- a 

For the IMA(l,l) process 

(5.54) 

we get OJ = 1, (j = 0,1, ... ) and do::: 1, d
1 

= Q , d
j 

::: 0 (j ~ 2), so that 

• ::: 1, •. = (l + 9 ), (j ~ 2). 
o J 

Hence, 

h-l 
V(h) ::: (1 + i~l (l + 9 )20'a:a 

= (1 + (h - 1)(1 + 9 )a)O' a 
a 

which is identical to equation (5.47), in Box and Jenkins (1970), p 145. 

for fi ttin models to 
ARIMA rocesses 

We consider the special case of the true model given by (5.48) and (5.49) 

with d = 1. For more general d, similar methods may be used, although 

naturally the algebra becomes more complicated. 

From (5.48), with d = 1, we may write 
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t 
X£=X + ~ Y. 

I. 0 J-~ J 

where we ass\.UDe Xo is fixed. 

(5.55) 

In fitting an AR(p1 model, from the reasoning following (5.5) in the 

introduction to this chapter, we shall be estimating 

I I , 

where the I. ,I , ... ,~ , are assumed to be the solutions of (5.10) (that is 
1 a p 

the Yule-Walker equations with the expected values of the rj for the true 

process) and where ~ will not be white noise, ~ will be 'estimated' by 
n "', '" I /10 I X = -~ x. In and the autoregressive parameter estimates, p. ,I , ... ,~ , are t:.!l. -"'t l:a p 

obtained from a least squares fit, or, equivalently by solving (5.8). 

Our estimated model will then be 

(5.57) 

where {~) will (wrongly) be assumed to be a sample of white noise residuals. 

From (5.55) 
t 

(Xt - X) = ~ Y j - y* (5.58) 
n 

where y* = ti (n - (t - 1) )Yt/n. 

Note that it is the subtraction of X in (5.58) that causes Xo to 

disappear from the analysis (this point was mentioned in the discussion 

following (5.5) as being the partial motivation for defining rk in the manner 

(5.5». 

Let gn,h be the forecast of Xn+h' made at time n based on the fitted 
j" I 

autoregressive model using the ~ ,I ' ... '~pl obtained from (5.10). It 
1 :a 

follows that , 
- p -

gn,h - X = j~l cj ,h(Xn+1_j - X) (5.59) 
, 

where the c. h will be known functions of I. (i = 1, •.• ,P'). For example, 
J, 1 

for fitting an AR(1) model C h = I.,h. 
1 , 1 

From (5.58), the true value, Xn+h may be written 
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n h 
Xn+h - i = ~ Yj + jt Yn+j - v* (5.60) 

Using (5.58) we can rewrite (5.59) 1n the form 

Since the h-step forecast error will be en,h = Xn+h - gn,h' we may subtract 

(5.61) from (5.60) to get 
h n p' n+1.-j p/_ 

en,h = ~ Yn+j + A Yj • .1i ~1 Cj ,hYk - (1 - j~l Cj ,h)Y* 

On substituting in the expression for Y*, and collecting terms in 

Yn+h' Y h , ••• ,y~, Y , ••• ,Y (where there is no term in Y ) we may 
n+-1 "''&' n a 1 

write, after a little algebra, 

where 

and 

where 

, 
e - 1.. Y n,h - ~ .... n+h 

I 

!n+h = (Yn+h' Yn+h-l , ••• , Yn+1' Yn'···' Va) 
, 

.3n = (zl' Z a ' • • ., Zn+h-l)' 

Z. = 1, j = 1,2, ••• h 
J 

h k 
~k = 1 - Ii ci,h - n(l -

pi 

~k = (1 - ~)(l - i~l ci,h)' k \= p' + 

I 
k=I,2, ••• ,p 

1 ,p' + 2". .. (n-1). 

(5.62) 

(5.63) 

J ' , If we assume the Pj (j = l, ••• ,p) and hence the ci,h are fixed, from 
, 

(5.62) the forecast error variance, V(h), is given by 

, , 
V(h) = ~ I:n+h--~ (5.64) 

I 
In practice, the assumption that the ~j are fixed will not be true; they 

are certainly correlated with Y . (j ~ 0). However, we saw on p 178 n-J 

(Table 5.4) that in the case of fitting AR(2) models to the IMA(I,l) process, 
, I 

P. and ~ had variances of O(l/n) and small covariance. 
1 a 

Table 5.5 contains the same numerical results for n = 50 as Table 5.4 but 

also, for comparison,results for n = 100 and 1000 simulations in each case 

are included. 
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Q n 

50 
0.9 

100 

50 
0.5 

100 

50 
-0.5 

100 

50 
-0.8 

100 

TABLE 5.5 

EMPIRICAL MEAN, VARIANCl: AND COVARIANCE 
OF AUTOREGRESSIVE PARAMETERS IN 

FITTING AR(2) TO IMA{l,l} PROCESSES 

MEAN VARIANCE COVARIANCE 

P:" 1 
$' 

a P:' 
1 

$ , 
a (1

1
' ,$;) 

1.183 -0.305 0.0188 0.0199 -0.0172 

1.224 -0.283 0.0162 0.0178 -0.0164 

1.123 -0.249 0.0167 0.0172 -0.0147 

1.181 -0.242 0.0122 0.0135 -0.0123 

0.507 0.209 0.0240 0.0139 -0.0066 

0.561 0.280 0.0114 0.0080 -0.0049 

0.184 0.120 0.0260 0.0245 0.0051 

0.270 0.222 0.0157 0.0155 0.0050 

We see that the variances and covariances get smaller for n = 100 so that 
, 

the assumption that the Jj are fixed ought to be a reasonable approximation. 
, 

We would thus expect the above assumption to allow V(h}tobe given by (5.64), 

to be an adequate approximation for sample sizes that occur in practice. 

Evidence for this is given below in example 5.2 where (5.64) is calculated 

and compared with some simulation results on the average squared forecast 

error for the same misspecification. 

The expression given by (5.64) will be the variance of the h-step 

forecast error using the fitted model; from (5.54) we have the h-step forecast 

error for the true process and so using definition (3.33) for the mean square 

proportionate loss, P(h), we get 

(5.65) 

Example 5.2 Fitting AR(p) models to IMA(l,l) processes 

Suppose the true model is Xt - Xt _
1 

= (1 + Q B)at ' but we fit AR(p). 

186. 



Fl"OIII (5.48 ) 

and so tn+h is the (n + h - l)x(n + h - 1) matrix 

1~ 9 

9 1+Q 2 

tn+h= • 

o 

o 

• 

9 

1+Q 2 

(J a 
a 

From (5.64) we find 

n+h-l n+h-l , ~ a } a V(h) = {(1 + w~)jt z. + 2Q jt z,Zj (J 
=l J =2 J -1 a 

Also, from example 5.1 

Using (5.65), (5.67) and (5.68) we get 

n+h-l n+h-l 
(1 + g2).~ z.a + 2e.t Z.Z. 

P (h) = 13 J J=a J J-1 _ 1 
(1 + (h - 1)(1 + 9)2) 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

In particular, for one step ahead forecasting, h = 1 and for fitting an 

AR(l) model, we find from (5.59) and (5.63) 

{
I (j = 1) 

(n - (j - 1)(1 - ~')/n 
1 

Z. = 
J (j = 2,3, ••• ,n) 

so that 
n n 

P(l) = (1 + g2).~ Z.2 + 2Qj t z.z. - I .r-t J =2 J J-1 

, n 
+ 2e(1 - ~ )2.t (n -

1 .r-s (j - I})(n - (j - 2»/n2 

, 
2Q( I-p, ) (n-l) 

=92+ 1 + n 

(l+Q2) (I-~'ra(n-l) (2n-l) 29(1-p,')2(n-l) (n-2) 
1 + __ ...:1=--___ _ 

n n 

(5.70) , 
We see from (5.70) that if we put P1 = 1, P(l) = 92 and in that case we have 
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effectively fitted a random walk to an IMA(l,l) process. From (5.7) the 

residuals from such a fit are Xt - ~-l = at + Qat _
1 

which has variance 

t!~a)(Ja:r so that we can see directly pel) = fiJ, showing that (5.70) is 

consistent in that special case. 

Table 5.6 contains evaluations of (5.67) for four values of Q and 

sample sizes n = 50 and 100, together with the empirical mean squared fore­

cast error for fitting AR(2) models to IMA(1,1) processes, (using forecasts 
, 

obtained from (5.59) with P = 2 and the autoregressive parameter estimates 

as determined by 5.8) over 1000 simulations for each Q value. 

TABLE 5.6 

FORECAST ERROR FOR FITTING AR 2 

h 
Q n 1 2 3 4 

50 2.289 (2.263) 8.914 (8.189) 17.475 (15.474) 26.986 (22.660) 
0.9 

100 1.881 (2.049) 7.112 (7.287) 13.693 (13.206) 21.292 (19.419) 

50 1.635 (1.898) 5.776 (5.801) 10.995 (10.362) 16.715 (15.245) 
0.5 

100 1.368 (1.324) 4.646 (4.381) 8.687 ( 7.821) 13.298 (11.740) 

50 1.307 (1.337) 1.929 (1.734) 2.694 ( 2.337) 3.400 ( 2.852) 
-0.5 

100 1.211 (1.078) 1.743 (1.522) 2.430 ( 1.861) 3.154 ( 2.200) 

50 1.209 (1.230) 1.341 (1.271) 1.492 ( 1.308) 1.573 ( 1.445) 
-0.8 

100 1.300 (1.189) 1.514 (1.362) 1.789 ( 1.602) 1.970 ( 1.627) 

Note (i) 1000 simulations for each Q 

(ii) simulation results are bracketed. 

The overall picture emerging from Table 5.6 is that simulation results 

are reasonably close to those obtained theoretically, from the expression 

(5.67). Thus, the evidence of Table 5.5 where it was shown the empirical 

variance of the autoregressive parameter estimates were small, together with 

the results in Table 5.6, suggest that the h step forecast error variance 

for the misspecified autoregressive model can be calculated from the 

expression (5.64). It follows that the asymptotic percentage loss of fore-
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casting may, to a reasonable degree of approximation, be calculated using 

the expression P(h) in (5.65). 

Table 5.7 contains evaluations of the percentage loss, 100.P(h), 

where P(h) is given by (5.65) for fitting AR(l) and AR(2) models to IMA(l,l) 

processes for n = 50 and 100. 

Q n 

50 
0.9 

100 

50 
0.5 

100 

50 
-0.5 

100 

50 
-O.S 

100 

TABLE 5.7 

PERCENT h-SlEP LOSS FOR FITTING 
ARC!} AND AR(2} IDDELS TO 

lMA(! ,I} PR()(;J:SSES 

( ) ARl AR(2) 

h h 

1 2 3 4 1 2 3 

1453 494 417 343 129 93.4 113 

3030 1033 876 718 88.1 54.4. 66.6 

881 429 384 324 63.5 77.7 99.9 

lS64 906 S12 681 36.8 43.0 57.9 

96.S 121 157 161 30.7 54.3 79.6 

216 263 331 335 21.1 39.4 62.0 

15.0 23.5 30.1 33.6 20.9 29.0 38.1 

31.6 46.6 67.8 77.5 30.0 45.6 65.7 

4 

128 

80.0 

116 

71.6 

94.3 

80.2 

40.5 

75.9 

There are a number of interesting results worthy of note here; percentage 

losses are, overall, very large indeed. This would imply that the pure auto-

regressive misspecification produces forecasts which are grossly sub-optimal 

and so the consequences of under differencing a time series would seem to be 

severe. 

For an increased sample size, in the case of fitting an AR(l) model 

for example, percentage losses also increase. That this must be so can be 

seen, from (5.70) where the one step ahead percentage loss is given. The terms 

involving the summations over squared integers depend on n and clearly in the 

example in the above Table,for the increase in sample size from 50 to 100,the ext, 
, 

summations have outweighed the effect of P
1 

getting closer to unity (from 

(5.19) and (5.18) we saw how E[r1 ] would tend to unity for increasing n). 
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this dependence upon n is not quite so clear cut for fitting AR(2) models 

for in that case, some reduction in percent loss for increasing n occurs for 

particular G • 

5.5 Conclusions 

we have shown that when one wishes to consider the asymptotic loss from 

. ( , , ') a forecasting point of view of fitting non statlonary ARIMA p,d,q models to 
I 

non stationary ARIMA(p,d,q) processes (d > d) a rather different approach has 

to be adopted compared with that in Chapter 3. The reason is that the sample 

autocorrelations used in fitting are frOm a non stationary process; thus 

the approach used in Chapter 3 to find probability limits of AR parameter 

estimates (which in turn uses the population autocorrelations of the true 

process) is invalid since for a non stationary process population auto-

correlations do not exist (or, alternatively, are all unity in some limiting 

sense). 

The problem was solved by using an expansion for the 'expected value of 

the kth sample autocorrelation for a non stationary process and using these 

in the usual Yule-Walker equations in place of the population autocorrelations. 

Simulation evidence suggested that parameter estimates obtained by least 

squares will have variance approximately of order lIn; asymptotic mean square 

error of forecasts derived assuming this were very close to the average 

squared forecast error found in simulation studies. Also, we would expect 

that taking estimation error into account in the fitted model will not alter 

substantially the percentage losses when estimation error is ignored. 

Results suggest that if one fitted a stationary autoregressive process 

to a non stationary IMA(l,l) process, for example, percentage losses could be 

large. By comparison with the non stationary results of Chapter 3 (where the 

differencing was assumed to be correctly specified) we see that the results 

there are not nearly so bad in terms of loss when one fits autoregressives 

to a correctly differenced series. That is, the consequences of under differ-

encing a series seem to be quite severe in terms of loss of forecasting 

abili ty. 
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CHAPTER 6 

MODEL MISSPECIFICATION IN TIME SERIES ANALYSIS: 
RETROSPECT AND PROSPECT 

Summary 

This chapter reviews the work so far and discusses possibilities for 

future research in model misspecification. Section 6.1 summarises the main 

chapters, while section 6.2 outlines the problems only touched upon, and 

not solved in the first 5 chapters; section 6.3 discusses the possibility 

of research into three regions of misspecification not dealt with at all 

in this study. In section 6.4 one of these regions is specialised by 

looking at time series regression methods when an inappropriate error 

structure has been used. 

6.1 The results of model misspecification so far covered 

We have shown that the commonly used Box-Pierce statistic S, defined by 

(2.7), and used to test for model inadequacy or misspecification, is very 

likely to yield a surprisingly low value even when it is known that a given 

model is inadequate. It was shown that in the null case S is not distributed 

as X2 for the kinds of sample sizes likely to occur in practice; in particular, 

the mean of the statistic S is far lower than that predicted by its asymptotic 

X2 distribution, so that the true significance level will be lower than that 

assumed. 
, 

The modified statistic S , as proposed by Ljung and Box (1976) and 

Marriott (1976) and defined in (2.8) to some extent overcomes the difficulty 
, 

of the mean of S being far too low. It was shown that the mean of S is much 

closer to the asymptotic X2 mean, although its true significance level appears 

to be slightly above that assumed in any test. 

The reason the mean of S'is closer to the asymptotic X2 mean, is that it 

takes into account the fact that the variance of the kth sample autocorrelation 

for white noise is (n - k)/n{n + 2) and from its definition in (2.8) we see 

it will always be numerically above that of S; Box and Pierce (1970) in their 

derivation of S assumed this variance was l/n. The latter is, of course, true 

for large sample size, but their theory also required that the number, m, of 
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terms in the calculation of S be large enough for the coefficients, ,., 
J 

in the infinite moving average representation of the true process to die 

out for j > (m - p - q) where we assume Xt ~ ARMA(p,q}. Hence m, in practice, 

is usually taken to be about 20; a moderate sample size in time series 

analysis is generally accepted to be n = 50, so that the lin assumption will 

not be adequate for many values of k in the range 1 ~ k ~ m. Thus we really 

require that n be large relative to m, a point made by Chitturi (1976). 

Another important assumption made by Box & Pierce was that the sample 

residual autocorrelations were normally distributed. Again this is true 
I 

asymptotically but in trying to find the mean and variance of both Sand S 

a normality assumption'in these residual autocorrelations was found to 

ignore many covariance terms between the r k
2 which although individually 

small, together contributed a substantial amount to their derivation. 

In the literature where ARMA(p,q} processes are fitted and reported by 

various authors, the poor performance of S has been suspected for some time. 
, 

Thus a comprehensive study of both Sand 5 was conducted on their ability 

to detect models which were known to be misspecified. Some criterion was 

necessary in deciding which kind of misspecification to examine (i.e. not 

only the true processes to which different models are fitted, but also the 

gravity of misspecifications in each case). 

The criterion used was one of asymptotic percentage loss of forecasting, 

after fitting a certain model to a known process. This was the difference in 

the asymptotic mean square error for the misspecified model. and the correct 

process as a proportion of the a.m.s.e. for forecasting with the correct 

process. This measure of forecasting loss is, in itself, worth a separate 

study. 

It was possible to derive an analytic expression for the asymptotic 

percentage loss of forecasting when the parameters in the fitted model and 

true process were given. Of course, in any fitting procedure in time series 

analysis the parameters that are fitted are estimated from information 

contained in the sample. For a least squares fit for an autoregressive model, 

it was shown that the probability limits of the estimated coefficients could 
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be obtained by solving the Yule-Walker equations with the P
k 

in those 

equations being the population autocorrelations of the true process. 

Using this method to decide autoregressive parameters in pure AR fitted 

models a selection of different ARMA(p,q) processes were considered and 

percentage losses were calculated. The main results were that losses could 

be high for those true processes with moving average coefficients on or 

near invertibility boundaries. Provided the moving average coefficients 

were reasonably well within the invertibility region, losses in some cases 

were surprisingly low. Naturally, at one step ahead, losses steadily 

decreased for increasing order of autoregressive fit, but when estimation 

error in these autoregressive parameters was allowed for, this was not 

necessarily the case. In fact for some processes, at I step ahead percentage 

losses achieved minimum values at specific orders of fit, while others seemed 

to home-in to fixed amounts as the order of fit increased. At larger than 

one step ahead, no such patterns seemed to exist, although naturally, all 

percentage losses in these cases were larger than if estimation error was ignored. 

Overall percentage losses varied from virtually zero to several hundred 

percent in the most extreme cases. The large number of tabulations made in 

Chapter 3 are no doubt open to a range of interpretations. However, the 

broad conclusion that might be drawn is that for low order ARMA(p,q) processes, 

unless the moving average coefficients are quite close to the boundary of 

the invertibility region, the cost (in terms of forecast accuracy) of fitting 

moderate order autoregressive processes is not too severe, and would be 

tolerable in many practical applications. On the other hand, as the 

invertibility boundary is reached, these costs can increase very dramatically 

indeed. 

For fitting ARlMA(p,d,O) models to ARIMA(p,d,q) processes, percentage 

losses beyond one step ahead appear to be higher, in general, compared with 

the stationary analogues. Estimation error was taken into account in the non 

stationary fitted AR(p) model and an analytic expression obtained, but not 

evaluated. 
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The examination of the performance of the statistics 5 and 5' at 

detecting,misspecified models ideally requires their exact distribution 

under specific alternatives. This was found intractible, but the 

distribution of residual autocorrelations for misspecified models was 

derived, which in turn enabled analytic expressions for the means and 
, 

variances of Sand S to be derived for the residuals obtained from fitting 

AR(p) models to ARMA(p,q) processes. (We note here that the extension to 
I I 

the residuals from fitting ARMA(p,q) models to ARMA(p,q) processes is not 

possible in the manner described by Box and Pierce (1970), p 1522. There 

is no duality of residuals here, which is vital in the Box and Pierce 

extensiQn.) The criterion of percentage loss of forecasts described above 

was used to decide which processes were to be used in examining the 
I 

performances of Sand S. Four regions of percentage loss were decided upon 

and processes were chosen from the class of ARMA(p,q) structures which gave, 

after fitting AR(l) and AR(4) models, the chosen percentage loss. 1000 
I 

simulations of each process was conducted and the ability of Sand S to 
~ 

detect the autoregressive misspecification examined by counting the number 

of times each statistic would reject that autoregressive fit over these 

1000 simulations at given levels of significance. 
I 

In general it was found that the power of both Sand S was rather low 

at detecting the misspecifications; in some cases the power was as low as 

0.3 at the 5% significance level for typically severely misspecified models 

(i.e. processes which had moderately large percentage losses). There were 
, 

one or two exceptions to this; processes clearly exist whereby Sand S do 

surprisingly well at detecting the misspecification and vice versa I there 

were processes which had high percentage losses but the proportion of 

detection was surprisingly low. Clearly there can be no direct relationship 
, 

between asymptotic percentage loss and the power of Sand S. By examining 
, 

the structure of Sand S, these two cases showed that the processes for 

which these statistics are likely to perform well at detecting misspecified 

models are those for which the effects of the misspecification are manifested 
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in just one or two residual autocorrelations; the opposite is true when 

these effects are diffused over a large number of residual autocorrelations. 

It would thus only be fortunate in practical time series analysis if 

one happened across the type of misspecification which gave rise to such 

residuals. 

Having examinEdmisspecification in which we assume the order of 

differencing to be correct, there remained the problem of studying under-

differencing and overdifferencing a time series as another extension of the 

kind of misspecification that could take place in practice. The problems 

of overdifferencing are discussed briefly in section 6.2. 

As far as underdifferencing is concerned, we concentrated on the case 

where we fitted AR(p) models to once differenced series; in particular we 

took the ubiquitous IMA(l,l) process as our typical example. 

The study necessitated redefining our sample autocorrelations (namely 

subtracting off a mean in its definition) as this led us to certain, 

convenient mathematical simplications in the study. The approach was very 

similar to that in Chapter 3, except probability limits of autoregressive 

parameter estimates were not possible in the non stationary situation, since 

they would involve the population autocorrelations of the true, integrated 

process (which, of course, do not exist). 

The problem was overcome by using an asymptotic expansion of the sample 

autocorrelations of integrated processes and using these, instead of the 

usual Pk in the Yule Walker equations. It was found that this procedure 
I 

yielded reasonable estimates of the autoregressive parameters in the AR{p) 

fit, as was confirmed by simulation studies. Also derived was a general 

analytic expression for the percentage loss of forecasting with this type of 

misspecification (assuming the substitution mentioned above) and it too, was 

found to be quite close to what one gets from simulation studies. The general 

conclusions were that underdifferencing was, in terms of asymptotic fore-

casting loss, quite a severe type of model misspecification. 

The kinds of misspecification covered could all quite easily occur in 

practical time series analysis and we have shown that it is very important 
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to realise some of the consequences of making these mistakes. Moreover the 

most frequently used test for model misspecification in Box-Jenkins type 

analyses has been shown to be rather weak, even when the fitted model is 

known to be misspecified. 

6.2 Unsolved problems in this study 

This section covers several of the problems mentioned , but not fully 

solved in the preceding chapters. Possible directions of study and 

indications of solutions are suggested. 

In Chapter 2 some rather complex expansions were given for the sample 

moments of the autocorrelations of MA(q) processes and these were shown to 

be a rather better approximation than the well known Bartlett formula, for 

k > q, 

as defined by (2.49). However, as can be seen from figures 2.1 - 2.8 these 

expansions do not yield results which follow simulation evidence as closely 

as one might desire; the given expansion is consistently above the empirical 

evidence. Thus we might expect taking further terms in the expansion given by 

(2.60) will yield superior results, although this in itself will involve the 

sixth and eighth moments of the sample autocorrelations for white noise. It 

would seem if this problem is to be tackled a computer with an algebraic 

processor would be the answer, although there seems to be no guarantee of 

payoff in terms of a superior fitting expansion. Chapter 4 employed the 

expansions given in Chapter 2 and there it appeared they were adequate. 

Chapter 3 concentrated on fitting autoregressives to ARMA(p,q) processes; 

this was done since autoregressives have wide appeal in terms of mathematical 

simplicity and also it is easy, intuitively, to see how autoregressives can 

arise in practice (see, e.g., Granger and Newbold (1977) p 15). However, the 

fitting of mixed ARMA models involves non linear equations that can only be 

solved numerically, and we saw in section 3.3 a least squares fit of an MA(l) 

process, when the true model was AR(l), gave results which were different 

from those obtained by using another procedure, namely, the well known Durbin 
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(1959) estimation procedure. 

Thus, obtaining asymptotic parameter estimates will depend upon the 

estimation procedure used; Anderson (1975) has given one for fitting a model 

in the general ARMA(p,q) class so that using his methods, it ought to be 

possible to generalise the main results of Chapter 3 to the larger class of 

fitting ARMA(p,q) models, and, consequently, provide a variance covariance 

matrix of parameter estimates so derived. The percentage loss should then be 

fairly straightforward to compute using a computer program which already 

calculates percentage loss for given values of parameters in both the fitted 
, , 

ARMA(p,q) model and the ARMA(p,q) process. 
I 

The problem of estimation error in fitting AR(p) models was tackled 

using methods of Yamamoto (1976~ and, on this basis it was straightforward 

to derive asymptotic percentage losses when fitting these to the general class 

of ARMA(p,q) processes, since these depended~irectly) upon the variance 

covariance matrix of the AR parameter estimates. If one is to take estimation 

( , ') error into account when fitting the more general class of ARMA p,q models 

we need, initially, the solution to the problem when the fitted model and 

true process are the same. This is possibly provided in an unpublished paper 

by Yamamoto (1976b); the computation involved in extending to fitting to 

ARMA(p,q) processes will be rather more than with fitting the pure AR(p) 

model, but nevertheless, when combined with the variance covariance matrix of 

the parameter estimates obtained from methods suggested in the previous 

paragraph, one should be able to derive an expression somewhat similar to 

equation (3.70). 

In fitting .RlMA(p~d,O) models to ARIMA(p,d,q) processes the asymptotic 

percentage loss, taking estimation error into account in the fitted model was 

given in expression (3.102). This was not evaluated, and clearly any future 
, I 

study should do this. Moreover, an extension to fitting ARIMA(p,d,q) models 

with and without estimation error would again be desirable to complete the 

study on this type of model misspecification. 

Another possible line of approach to the problem of misspecification is 
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to take some real time series, fit what appears to be the 'best' models 

in the ARMA(p,q) class and then compare forecasts from these models with 

those forecasts made from estimated autoregressives (or any other, different, 

model). The autoregressives would have wide appeal here since they are 

relatively cheap to fit compared with mixed models in the ARMA class. Our 

evidence suggests that provided any moving average parameters in the 'best' 

model were well within the invertibility boundary one might not do too badly 

using forecasts based on the autoregressives. In any case, given the 

parameters in the best model, Tables A3.l - A3.8 could be used to obtain 

some idea of the loss that might be incurred. 

As far as overdifferencing is concerned, a new problem is presented. If 

one is simply interested in fitting an autoregressive model to the over­

differenced series, the results of Chapter 3 are immediately applicable. 

However, if a mixed model is to be fitted, this could involve a moving 

average term on the boundary of the invertibility region. For example, 

suppose the true process is white noise, but that a first order moving 

average model is fitted. to the first differenced series. The optimum model 

is then 

Xt - Xt -1 = at - at - 1 

so that the true moving average parameter is on the boundary of the parameter 

surface. It is well known that in such circumstances asymptotic results 

based on maximum likelihood break down. 

6.3 Further problems in misspecifying time series models 

We now highlight some problems in three other areas of time series 

analysis which deserve further research. The study so far has not dealt with 

(i) seasonal Box-Jenkins ARIMA models, 

(ii) time series for which an instantaneous non linear transformation 

may be appropriate, 

(iii) multivariate time series modelling and misspecification. 

In the discussion on (iii) the special multivariate case of misspecifying 

the model for autocorrelated residuals in a multiple linear regression is 
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mentioned and examined in a certain amount of detail in section 6.4. 

(i) Model misspecification in seasonal Box-Jenkins ARIMA models 

Box and Jenkins (1970), Chapter 9 extend the structure generating a 

time series {Yt } from the ARIMA(p,d,q) process given by (3.73) 

(6.1) 

to the general multiplicative seasonal model 

(6.2) 

where s is the season length, ~p(BS) and QQ(Bs) are polynomials in BS of 

degrees P and Q respectively. 

Few models in the class (6.2) have been fitted in the literature except, 

notably, the well known airline data given as an example by Box and Jenkins 

(1970) themselves, the study by Chatfield and Prothero (1973a), Brubacher & 

Wilson (1976), Newbold (1975) and Thompson and riao (1971). Chatfield and 

Prothero obtained four different seasonal models all of which appeared to do 

more or less equally as well from a forecasting point of view, although they 

all did not 'fit' the data as well. 

In addition, Wilson (1973), in the discussion on the Chatfield I\. I'rothero 

(1973a) paper obtained two seasonal models for the same data each of which 

gave forecasts which were 'acceptable'. (Arguably these latter forecasts were 

'better' than those obtained from the models actually fitted by Chatfield & 

Prothero. ) 

Clearly, it would be useful to examine the consequences of this type of 

misspecification in the sense that all fitted models cannot be 'best', 

although a completely general type of misspecification in processes of the 

fonn (6.2) will, no doubt, be algebraically intractible. Also, we note that 

if one were to adopt the techniques of Chapter 3, where high order auto-

regressives were fitted to data, problems immediately arise in the seasonal 

analogue of estimating the parameters I. ,~ , .... which in practice will 
1,S a,s 

'reach back' a long way into the data, thus necessitating a very large 

sample size (if high order seasonal autoregressives are to be fitted to real 
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seasonal time series). 

(ii) Time series with instantaneous non linear transformations 

The ARlMA class of models that are assumed to generate a series X
t 

are 

all linear in Xt , so that a linear forecast function results. The latter 

property is a mathematical convenience which is not always appropriate in 

practice. 

One possibility in relaxing this linearity assumption is to assume that 

the model is linear in T(Xt ) where T( ) is an insta~taneous transformation 

function. Tukey (1957) examined the transformation function 

for Xt > 0 and A ~ 1. Another equivalent class of transformations 

A':;' 0 

A = 0 

(6.3) 

(6.4) 

was introduced by Box and Cox (1964). Their use, when modelling time series, 

has been recommended by Box and Jenkins (1970) and Chatfield (1975), but the 

appropriate choice of A is crucial to obtaining adequate forecasts, as pointed 

out by Wilson (1973) and Box and Jenkins (1973). These latter authors show 

that the adoption of the log transformation by Chatfield and Prothero (19731) 

in analysing and forecasting the sales of a certain company was inappropriate 

in that it over transformed their data, Wilson (1973) pointed out that the 

better transformation was a power of the series, Xt , and that resulted in 

superior forecasts. Clearly, there are problems here in possible misspecification~ 

of A. 

It is probable that there is a problem of interaction between appropriate 

specification of A and of the appropriate form of differencing, as appears to 

follow from the two model structures presented by Wilson. This suggests that 

the problems of these two kinds of misspecification should be treated jOintly 

- an exercise which would involve enormous theoretical and computational 

difficul ties. 
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Granger and Newbold (1976) have pointed out another problem with 

dealing with transformed series; they showed that, in general the auto-

covariance function is not invariant under instantaneous transformations 

and, hence, difficulties will arise in model selection. 

Nevertheless, it would seem natural to ask the general question of how 

much would be lost, asymptotically, from a forecasting point of view when a 
I 

value A has been used for the transformation parameter when the true value 

that should have been used was A. For example, Chatfield and Prothero (1973b) 

in their reply to Box and Jenkins (1973) showed that a change in the parameter 

A from 0 (the log transformation) to 0.25 had a substantial effect on the 

resulting forecasts, whilst a further change in A from 0.25 to 1 appeared to 

have relatively little effect on forecasts. From this, Chatfield and Prothero 

conjectured that Box-Jenkins forecasts from the class of ARIMA models are 

robust to changes in the transformation parameter away from zero. Clearly, 

this deserves further investigation, and, of course problems will also arise 

in the estimation of A as an extra parameter. Brubacher (1976) has studied 

methods of estimating A, when the orders p,q of the ARMA process are both 

known and estimated. 

An approach to the misspecification of A along the lines of Chapter 3 

would, in theory be possible, although it is anticipated much theoretical 

foundation work would have to be carried out initially. 

There is a further reason why such work might be of importance however. 

The time series analyst is frequently in the position of having to convince 

the non-specialist of the "reasonableness" of his models if they are to be 

used in practice. In fact, on the surface, ARIMA models do not have a great 

deal of intuitive appeal to many decision makers, although the arguments put 

forward by Granger and Morris (1976) should be of value here. The analyst 

would be in even more difficulty if he were to assert to the decision maker 

that the natural metric for his data was, say, the cube root: A plausible 

case can general! y be made for either ). = 1 (no transformation) or A = 0 

(logarithmic transformation), and it would be well worthwhile to enquire 
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whether it was possible typically to "get by" with one or other of these 

al ternati veSt 

(iii) Multivariate time series misspecification 

The theoretical ideas behind extending the class of univariate ARMA 

models to multivariate ARMA models are relatively straightforward. The 

univariate autoregressive and moving average parameters become matrices of 

autoregressive and moving average coefficients whilst the series X
t 

becomes 

a vector of many series, all of which, in general will be cross correlated 

with each other. 

It is this last point which causes the greatest problems in selecting a 

particular multivariate model from a general class of models. Calculations 

of cross correlations would be straightforward, but can produce misleading 

conclusions (see Box and Newbold (1971». 

A first step in a multivariate time series analysis would often be to 

fit univariate ARMA models to all the individual series to be considered, and 

then analyse the cross correlations of the residuals from each. Thesl) have 

been used by Jenkins (1975), Granger and Newbold (l977) and Haugh and Box 

(1977) to suggest the form of model appropriate in the general multivariate 

class. With the evidence available to date, multivariate model selection is 

a less confident procedure than univariate selection. In fact Haugh & Box 

(1977) recognise that the first stage of multivariate identification mentioned 

above is crucial to any subsequent analysis. As already mentioned in O1apter 1, 

they ask the possible consequences of the univariate model misspecification, 

with its resulting effects on the model used in the multivariate case. 

We have attempted to answer the problem of univariate misspecification 

and have shown, in some cases the consequences are severe. Therefore it would 

seem reasonable to suggest that, bearing in mind all the ('xtrd problQIll~ illv()lved 

in the multivariate time series approach, the consequences of model mis­

specification would be rather more severe than in the univariate case. 

Newbold (1978) argues that it is unlikely that multivariate time series 

models can be handled successfully by time series methods alone, unless there 
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are only a few series, or the relationships involved are particularly 
. . 

simple. He thus suggests that it is not desirable to rely on time series 

models exclusively, but to marry these with traditional behavioural models 

used in econometrics. This would have the advantage of imposing restrictions 

on the class of models that need to be considered, so easing the model 

selection problem mentioned above. Practical applications of this idea have 

been given by Zellner and Palm (1974) and Prothero and Wallis (1976). 

One extension of this idea is to consider a multiple linear regression 

with the residuals assuming a model in the general ARIMA class. Bhattacharyya 

(1974) forecasted demand for telephones in Australia using a seasonal time 

series error structure. We now examine in more detail the consequences of 

misspecifying a time series error structure, building on the ideas in 

Granger and Newbold (1974). 

6.4 Time series error misspecification and spurious regressions 

Autocorrelated errors in time series regression equations, when ignored, 

can cause problems for parameter estimates resulting in inadequate forecasts. 

Malinvaud (1966) and Granger and Newbold (1974) have looked at special cases 

of this kind of misspecification, the latter authors concentrating on the 

spurious regression problem where they falsely assumed residual errors to be 

white noise. More recently Pierce (1977), p 20 has commented on the insufficient 

consideration given to the error structure of residuals in time series 

regression and concludes that relationships that don't really exist can be 

found between series. We explore some possibilities of misspecified residuals 

in this section by questioning the usual procedure of assuming a first order 

autoregressive structure for autocorrelated errors, and suggest an alternative 

one within the ARIMA class. For a thorough analysis of residuals which follow 

an AR(l) process see, for example Johnston (1972). 

The plausibility for an error structure which follows an IMA(l,l) process 

has been forwarded by Newbold and Davies (1978), using a priori arguments. 

They argue that levels of economic time series rarely follow stationary 

models, but invariably require first differencing to induce stationarity. In 
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particular, a hypothesis frequently tested is whether all the regression 

coefficients are zero: if this is the case it follows that the residuals 

will follow the same structure as the dependent variable, so that in that 

case a stationarity assumption in these residuals would be inappropriate. 

A common, very simple representation of a non stationary series is the 

IMA(l,l) process. We therefore explore some of the consequences of using 

normal multiple regression residuals analysis when in fact these residuals 

follow an IMA(I,l) process. We have already seen in Chapter 5 that the means 

of the sample autocorrelations of IMA(l,l) processes are not very large and 

that an autoregressive process of order 1 will not adequately approximate 

these processes. It therefore seems likely that a misspecified residual error 

structure of this type will cause problems of interpretation in a multiple 

regression analysis. 

Consider the regression equation 

(t = 1,2, ••• ,n) (6.5) 

where the ut are assumed to be the residuals. The usual treatment is to 

assume the ut follow an AR(l) process 

(6.6) 

where at is assumed to be white noise, with variance 0aa. The Durbin-Watson 
;0. 

statistic, calculated from the residuals ut (say), 

n ~ 
1: ('" G ) a t=a ut - t-l d = -==--..:;...-~~ 

n ,. 
~ Uta 

(6.7) 

is used to test the null hypothesis of P
1 

= 0 in (6.6). (See Durbin and 

Watson (1950, 1951, 1971).) It is easy to show that d only depends on the 

first autocorrelation of the residuals, so that no autocorrelations beyond 

the first are used in deciding on the residual structure. Only rarely have 

alternative error structures been examinooand tested in a regression analysis. 

For example, see Sargan (1964), Phillips (1966) Wallis (1972) or Engle (1974). 

The proposed alternative structure for the residuals is 

(6.8) 
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and we shall still use the statistic (6.7) for detection of residual 

autocorrelation of the structure given by (6.6) when in fact (6.8) is true. 

Nerlove and Wallis (1966) have examined the use of d in inappropriate 

situations and Tillman (1975) has conducted power studies on d, while 

Pierce (1971) looked at least squares regression with ARMA(p,q) residuals 

but none of these authors considered a non stationary error structure. 

Series of 50 observations were generated from the first order. integrated 

moving average processes 

Xj ,t - X = aj , t + 9 aj , t-1 Xj = lOO,j = l,2, ••• ,k 
j ,t-1 ,0 

Yt - Yt -1 = at + 9*at _
1 Y = 0 

100 

where a t' a2 ,t' ••• , ak,t' at were independent normally distributed white 1 , 

noise series, each with unit variance. 

Using these generated series linear regressions of the form (6.5) were 

estimated in the usual manner by least squares and the null hypothesis 

Ho I ~1 = f3a = •••• = 1\ = 0 (6.9) 

was tested for k = 1,2 and 4. The usual t statistic was used for k = 1 and 

the conventional F test for k = 2 and 4; in addition attempts at detection of 

residuals which follow the structure (6.6) were made by calculating the 

Durbin Watson d statistic given by (6.7). The procedures adopted were as 

follows. 

" 6.)" (1 ) " (1 ) Denote the least squares estimates of f3 ,f3 ' •• ·'~k by ~ ,~ •• ·.,f3k o 1 0 1 

so that the residuals are 

(6.10) 

(t = 1,2, ••• ,n) 

The statistic (6.7) was calculated and the autoregressive parameter in (6.6) 

estimated by calculating 

(6.11) 

The number of times the t and d statistics were significant for k = 1 
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and the F and d statistics significant for k = 2, 4 were calculated over 

1000 simulations for each pair of (~ ,Q*) values in the case k = 1 and 

500 simulations for k = 2, and 4. Note that the F statistic was calculated 

using 

nAn 
where RCl = 1 - Jl Uta / J1 (Yt - y) Cl. Results for k = 1 are collected in Table 

6.1, while Tables 6.2 and 6.3 contain the corresponding results for k = 2 

and 4 respectively. All significance levels here and throughout are 5%. 

After examining these tables it can be seen that if one adopted the 

decision rule "reject the null hypothesis (6.9) only if t or F is significant 

and d is insignificant", one would not be making the wrong decision very 

often except when ~ * is large. Of course, in the latter case we have seen 

in Chapter 5 the expected values of the sample autocorrelations for such 

processes are not very large, so that the d statistic would not be able to 

pick out autocorrelation in the residuals of this type very often. This job 

the Durbin-Watson statistic was not constructed to do, of course, and the 

results in the Tables 6.1 - 6.3 clearly demonstrate this. 

Having detected autocorrelation in the residuals, the usual procedure is 

then to correct for it. Using the autoregressive parameter estimate given by 

(6.11) the regression 

Y (1 - (~(d)2)t = S (l_(~(d)2)t +.~ S (1_(;'(d)2)"§-x + J 
I ,101 0 1 J=1 j 1 jl u1 

Y - ~(l)y = S (l_~(1)) + .~ S.(X.
t 

- ~l(l)Xjt_l) + u
t t 1 t-l 0 1 J=l J J 

(6.12) 

t=2, ••• ,n 

was estimated by least squares, yielding new estimates of S ,S , ••• ,Sk 
o I 

~(Cl)A(2) ~(2) . (S ,S , ... ,R' ,say). ThlS then enabled a new estimate of the auto-o 1 "'-k 
J ~(2) regressive parameter ,101 to be made, (PI ,say) using the fOI1T\u1a (6.11) with 

the residuals from (6.12). The procedure was continued until the estimates 

converged (see Cochrane and Orcutt (1949)). At each iteration the null 

hypothesis (6.9) was tested and the Durbin-Watson d statistic calculated in 
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X SERIES 

Y SERIES 
e* 

0.0 d 

-0.2 d 

0.4 d 

0.6 d 

0.8 d 

TABLE 6.1 

PERCENTAGE OF TIMES t AND d ARE SIG~IFICANT IN 
1,000 SIMULATIONS FOR EACH (9,9*) : k = 1 

9 = 0.0 e =-0.2 e =-0.4 Q =-0.6 

t t t t 
N.Sig Sig N.Sig Sig N.Sig Sig N.Sig Sig 

r· Si9 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.2 
Inconc. 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Sig 33.0 66.9 35.6 64.4 37.1 62.7 44.6 55.2 

Mean d 0.328 0.355 0.397 0.424 

r· S19 0.0 0.2 0.0 I 0.0 0.0 I 0.0 0.0 0.1 
Inconc. 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 
Sig 33.7 66.1 35.8 64.1 38.6 61.4 45.0 54.8 

Mean d 0.449 0.470 0.504 0.521 

r· Si9 0.3 1.6 0.5 1.1 0.5 0.5 0.7 0.5 
Inconc. 0.1 0.7 0.4 0.7 0.7 1.1 0.5 0.8 
Sig 37.2 60.1 36.4 60.9 40.1 57.1 47.0 50.5 

Mean d 0.705 0.714 0.721 0.723 

r· S19 5.1 6.9 6.7 J 7. 7 6.2 7.4 6.7 6.2 
Inconc. 2.4 2.6 2.0 3.0 1.6 2.4 2.1 2.4 
Sig 34.2 48.8 33.9 46.7 38.4 44.0 44.7 37.9 

Mean d 1.089 1.104 1.118 1.105 

r· Si9 38.8 21.2 41.9j21.6 37.0 22.2 38.6 19.0 
Inconc. 6.2 3.3 5.3 2.8 5.6 2.4 6.2 2.3 
Sig 19.8 10.7 18.1 10.3 21.0 11.8 23.7 10.2 

Mean d 1.664 1.705 1.668 1.650 
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9 =-0.8 

t 
N.Sig Sig 

0.0 0.0 
0.0 0.0 

61.0 39.0· 

0.362 

0.0 0.0 
0.0 0.0 

61.9 38.1 

0.451 

0.4 0.1 
0.4 0.2 

64.0 34.9 

0.635 

5.9 2.4 
2.7 1.1 

62.7 25.2 

1.016 

44.2 9.2 
7.5 1.5 

29.9 7.7 

1.614 

-



x 
y 

SERIES 

SERIES 

9* 

o .0 d 

-0 .2 d 

-0 .4 d 

-0 .6 d 

-0 .8 d 

TABLE 6.2 

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN 
500 SIMULATIONS FOR EACH (Q,Q*) : k = 2 

9 = 0.0 e =-0.2 e = -0.4 e =-0.6 

F F F F 
N.Sig Sig N.Sig Sig N.Sig Sig N.Sig Sig 

r·Si9 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.0 
Inconc. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 
Sig 19.2 80.6 21.8 78.2 22.0 77.6 33.0 66.8 

Mean d 0.472 0.505 0.523 0.561 

r· Si9 0.0 0.4 0.2 1 0.2 0.0 0.8 0.0 1 0.2 
Inconc. 0.0 0.8 0.0 0.8 0.2 0.6 0.2 1.0 
Sig 21.8 77.0 21.0 77.8 24.0 74.4 32.4 66.2 

Mean d 0.609 0.641 0.674 0.706 

[N. S19 0.6 1 2.2 0.4 1 2.4 0.8 2.0 1.0 11.2 Inconc. 0.4 2.0 1.4 3.8 0.4 3.4 1.2 3.2 
Sig 20.8 74.0 22.4 69.6 25.8 67.6 39.4 54.0 

Mean d 0.832 0.895 0.883 0.896 

r· Si9 7.4 114.6 8.2 115.4 6.6 114.0 8.0 110.0 
Inconc. 5.4 8.8 4.0 8.2 4.2 9.2 6.0 7.6 
Sig 22.6 41.2 23.2 41.0 24.2 21.8 34.4 34.0 

Mean d 1.315 1.305 1.304 1.271 

r· Si9 42.0 27.6 40.8 23.6 45.6 22.8 48.0 17.4 
Inconc. 7.2 7.0 10.2 6.0 9.8 4.0 ll.8 3.8 
Sig 9.0 7.2 10.6 8.8 11.2 6.6 12.4 6.6 

Mean d 1.807 1.760 1.782 1.763 

208. 

e =-0.8 

F 
N.Sig 5ig 

0.0 0.0 
0.0 0.0 

61.0 39.0 

0.465 

0.2 1 0.0 
0.4 0.2 

60.6 38.6 

0.580 

0.61 0.2 
0.6 0.4 

55.4 42.8 

0.767 

7.0 3.6 
5.6 2.8 

55.4 25.6 

1.115 

46.2 6.8 
15.2 2.2 
24.8 4.8 

1.644 
-.--.~ 



X SERIES 

Y SERIES 
Q* 

0.0 d 

0.2 d 

0.4 d 

0.6 d 

TABLE 6.3 

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN 
500 SIMULATIONS FOR EACH (9,9*) : k = 4 

f) = 0.0 f) =-0.2 9=-0.4 f) =-0.6 

F F F F 
N.Sig Sig N.Sig Sig N.5ig 5ig N.51g 51g 

r·Si9 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.0 
Inconc. 0.0 1.8 0.0 2.6 0.0 4.0 0.0 3.4 
51g 4.8 93.0 4.0 93.0 5.2 90.4 13.4 83.2 

Mean d 0.718 0.771 0.806 0.824 

r· Si9 0.0 0.4 0.0 0.4 0.0 11.4 0.2 1 0.6 
Inconc. 0.0 4.6 0.2 8.2 0.2 6.8 0.2 6.2 
Sig 5.6 89.4 7.2 84.0 6.6 8.5 16.2 76.6 

Mean d 0.865 0.927 0.933 0.900 

r· Si9 0.2 5.8 0.4 1 6.4 o.s 1 5.S 0.2 
1

3
•
0 

Inconc. 0.6 19.8 0.8 21.2 2.2 17.2 2.0 37.6 
S1g 8.0 65.6 6.2 6.5 8.8 65.2 0.0 8.0 

Mean d 1.142 1.176 1.171 1.138 

r· Si9 5.S 12S.2 8.6 27.8 4.0 ts.o 6.2 111.4 
Inconc. 5.2 27.6 5.6 27.8 6.4 28.4 10.6 2.3 
Sig 6.0 27.2 6.8 23.4 6.4 26.8 14.4 28.4 

Mean d 1.550 1.561 1.538 1.458 

r· Si9 40.6 39.0 38.2 35.2 38.4 f7.2 41.4 26.6 
0.8 d Inconc. 5.2 11.0 9.8 9.4 9.6 10.3 14.8 9.0 

Sig 2.0 2.2 1.8 2.6 1.2 3.0 3.6 4.6 

Mean d 1.975 1.932 1.938 1.853 
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9 =-0.8 -
F 

N.S1g S~ 

0.0 0.2 
0.0 0.4 

31.0 68.4 

0.702 

0.2 1 0.0 
0.0 1.8 

36.4 61.6 

0.708 

0.0 0.8 
2.6 6.4 

37.8 52.4 

0.972 

6.2 5.2 
14.8 13.4 
33.0 27.4 

1.286 

40.2 14.4 
23.8 7.0 
9.6 5.0 

1.740 



TABLE 6.4 

X SERIES Q = 0.0 Q =-0.2 Q =-0.4 Q =-0.6 Q =-0.8 

Y SERIE5 t t t t t 

9* 
N.Sig 51g N.51g 5ig N.51g 51 9 N.Sig 51g N.S1g 519 

{N.Si9 44.1 10.3 45.7 6.1 37.4 6.2 37.8 2.7 41.0 1.9 
0.0 Inconc 8.5 1.9 6.6 1.7 8.3 1.2 6.6 1.0 8.4 0.3 

51g 25.9 9.3 27.4 12.5 35.0 11.9 38.9 13.0 43.7 4.7 

Mean d 1.481 1.386 1.163 0.963 1.107 

{N.Si9 61.6 19.2 61.0 r5.1 56.9 /12.6 58.3 7.2 61.4 / 4.3 
-0.2 Inconc 2.8 1.0 2.6 1. 7 4.3 1.8 3.3 2.3 4.4 0.4 

5ig 10.3 5.1 13.2 6.4 16.7 7.7 19.9 9.0 25.3 4.2 

Mean d 1.789 1.710 1.575 1.513 1.443 
-~. . 

r· Si9 64.8 26.7 64.2 /24.7 65.7 /19.0 66.8 14.1 72.3 / 6.S 
-0.4 Inconc 1.3 1.2 1.0 1.1 1.8 1.2 3.2 1.1 2.6 0.5 

51g 4.0 2.0 5.4 3.6 7.8 4.5 9.0 5.8 14.6 3.2 

Mean d 2.005 1.946 1.874 1.830 1.827 

-

fN.Si 9 62.1 32.7 63.7 to.S 64.2 28.9 67.8 /24.9 80.1 9.3 
-0.6 Inconc 0.4 0.3 0.4 0.3 0.7 0.4 1.4 0.4 1.5 0.3 

51g 2.9 1.6 2.3 2.5 4.0 1.8 6.0 2.5 6.8 2.0 

Mean d 2.015 1.992 1.976 1.911 1.938 

r· Si9 69.0 127.7 69.5 126.4 71.3 24.8 73.6 22.3 82.7 12.6 
-0.8 Inconc 0.3 0.3 0.4 0.4 0.7 0.3 0.6 0.4 1.4 0.2 

5ig 1.3 1.4 2.7 0.6 1.9 1.0 1.9 1.2 2.8 0.3 

Mean d 1.946 1.943 1.933 1.927 1.924 
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TABLE 6.5 

X SERIES 9 = 0.0 El =-0.2 El =-0.4 9 =-0.6 e =-0.8 

Y SERIE5 t t t t t 
Q* N.5ig 5ig N.5ig 5ig N.5ig 5ig N.5ig 51g N.5ig 51g r N. 51 9 64.1 9.7 65.1 7.4 63.6 6.3 67.0 3.9 70.3 4.0 

0.0 \.. Inconc 9.9 1.2 8.8 1.2 9.3 0.3 6.7 0.4 9.8 0.3 
S19 13.0 2.1 15.3 . 2.2 17.9 2.3 19.9 2.1 15.1 0.5 

Mean d 1. 748 1.722 1.692 1.647 1.749 

)N.51 g 75.8 
1
15

•
8 77.8 

1
13

•
0 79.1 11.5 83.7 1 7.3 81.1 / 6.1 

-0.2 l Inconc 1.8 0.9 1.6 0.5 1.5 0.3 2.2 0.2 1.6 0.0 
51g 4.5 1.2 5.0 2.1 5.7 1.9 4.9 1. 7 4.5 0.7 

Mean d 1.989 1.959 1.971 1.981 1.992 

-----

fN• Si9 71.1 r· 6 73.7 r1. 7 78.2 r6
•
9 84.6/11.4 87.6 8.2 

-0.4 Inconc 0.9 0.2 0.5 0.4 0.6 0.1 0.4 0.2 0.9 0.1 
\ 519 2.4 0.8 2.3 1.4 3.1 1.1 2.4 1.0 3.1 0.1 

Mean d 2.118 2.103 2.102 2.124 2.165 

) N. 5i9 64.7 31.3 66.3 29.6 70.01 26•1 74.0/19.9 86.6J 8.9 
-0.6 t Inconc 0.1 0.1 0.6 0.0 0.8 0.2 1.2 0.5 0.6 0.1 

5i9 2.6 1.2 1.6 1.9 2.0 0.9 3.7 0.7 3.0 0.8 

Mean d 2.065 2.064 2.081 2.057 2.105 
-.-~ ... ~-

) N. Sig 69.6 27.4 70.0 26.5 71.7 24.4 74.9 21.8 84.2 12.1 
-0.8 lInconc 0.3 0.1 0.3 0.2 0.8 0.3 0.6 0.1 1.1 0.2 

5ig 1.2 1.4 2.4 0.6 1.8 1.0 1.4 1.2 2.3 0.1 

Mean d 1.956 1.953 1.951 1.956 1.959 
---

, 
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TABLE 6.6 

X SERIES 9 = 0.0 Q =-0.2 9 =-0.4 9 =-0.6 Q =-0.8 

Y SERIES F F F F F 

9* 
N. Sig Sig N.Sig Sig N.Sig Sig N.5ig 5ig N.Sig Sig 

r· Si9 33.4 13.4 34.0 11.2 23.4 5.0 23.2 0.8 31.6 0.2 
0.0 d Inconc 16.6 7.8 15.4 8.6 16.4 5.8 15.2 3.2 18.2 0.4 

Sig 16.4 12.4 19.0 11.8 35.6 13.8 43.0 14.6 45.4 4.2 

Mean d 1.601 1.584 1.456 1.388 1.414 

r· Si9 55.4 29.8 55.0 r4.4 50.0 r·2 47.2 I 7.4 55.0 3.2 
-0.2 d Inconc 4.4 4.4 6.8 3.2 9.0 5.6 8.8 5.0 11.6 1.2 

Sig 3.4 2.6 6.0 4.6 11.2 6.0 21.4 10.2 23.2 5.8 

Mean d 1.863 1.815 1.732 1.628 1.642 

r·Si9 60.4 136.8 55.2 139.4 59.2 29.2 63.0 117.0 72.2 4.4 
-0.4 d Inconc 0.8 1.2 1.8 2.4 4.4 2.6 8.0 3.6 7.6 1.6 

Sig 0.4 0.4 0.6 0.6 2.6 2.0 4.4 4.0 10.6 3.6 

Mean d 2.008 1.964 1.899 1.858 1.825 

r·Si9 56.6 43.0 57.2 141.8 56.2 r.6 65.8 28.6 80.6 11.6 
-0.6 d Inconc 0.0 0.4 0.6 0.2 1.2 0.4 2.8 1.8 3.6 1.4 

5ig 0.0 0.0 0.0 0.2 0.6 0.0 0.6 0.4 2.4 0.4 

Mean d 2.016 1.999 1.966 1.939 1.942 

r· Si9 64.2 135.8 68.6 131.4 70.4 29.0 75.0 24.8 89.2 10.4 
-0.8 d Inconc 0.0 0.0 0.0 0.0 0.4 0.2 0.2 0.0 0.4 0.0 

5ig 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mean d 1.969 1.966 1.957 1.954 1.957 
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TABLE 6.7 

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN 
500 SIMULATIONS FOR EACH PAIR OF Q Q* : k = 2 

3rd REGRESSION 

X SERIES Q = 0.0 Q =-0.2 Q =-0.4 Q =-0.6 

Y SERIES F F F F 

9* 
N.Sig Sig N.Sig Sig N.S1g S1g N.51g S1g 

r· S19 58.8 14.6 63.8 10.0 63.6 4.2 64.0 3.0 
0.0 d Inconc 12.8 3.8 15.2 2.6 17.6 1.4 16.0 0.6 

Sig 8.8 1.2 6.4 2.0 11.0 2.2 11.0 1.4 

Mean d 1.776 1.775 1.733 1.756 

t· Si9 74.4 22.6 65.0 19.8 79.0 16.4 8~.4 I 6.0 
-0.2 d Inconc 2.2 0.2 2.8 0.8 2.6 0.4 3.8 1.4 

5ig 0.6 0.0 1.0 0.6 1.2 0.4 2.2 1.2 

Mean d 2.013 2.012 1.999 1.971 

t· Si9 69.4 130.4 67.0 32.8 77.0 122.2 88.41 10•4 
-0.4 d Inconc 0.2 0.0 0.2 0.0 0.6 0.2 0.8 0.2 

5ig 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 

Mean d 2.127 2.114 2.121 2.177 

r· Si9 58.81 41 •2 62.0 138.0 61.6 38.0 75.8 24.0 
-0.6 d Inconc 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 

5ig 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 

Mean d 2.066 2.072 2.063 2.077 

r· S19 64.6 35.4 68.61 31.4 71.8 28.2 76.6 23.4 
-0.8 d Inconc 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5ig 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mean d. 1.978 1.980 1.978 1.982 
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Q =-0.8 

F 
N.51g 51g 

74.6 1.2 
14.0 0.4 
9.6 0.2 

1.797 
-"_. 

89.4 4.4 
3.4 0.0 
2.4 0.4 

2.038 
,--~ -

93.2 1 5.2 
0.6 0.0 
0.6 0.4 

2.186 

91.0 8.6 
0.4 0.0 
0.0 0.0 

2.151 

90.4 9.6 
0.0 0.0 
0.0 0.0 

2.004 



TABLE 6.8 

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN 
500 SIMULATIONS FOR EACH PAIR OF Q 9* I k = 4 

2nd REGRESSION 

X SERIES Q = 0.0 Q =-0.2 e =-0.4 Q =-0.6 

Y SERIES F F F F 
Q* N.Sig S1g N.S1g S1g N.S1g 51g N.S1g 51g 

r· SiQ 7.6 15.4 3.4 14.2 3.2 8.4 4.0 2.6 
0.0 d Inconc 17.2 34.0 17.2 34.0 18.4 25.6 15.6 15.4 

S1g 10.6 15.2 11.8 19.4 21.8 22.6 34.4 28.0 

Mean d 1.538 1.497 1.403 1.291 

r· SiQ 18.0 42.6 18.2 29.8 14.8 18.0 16.2 1 8.8 
-0.2 d Inconc 10.0 24.2 11.8 31.6 18.6 30.0 23.8 20.6 

Sig 2.6 2.6 4.6 4.0 7.2 11.4 16.8 13.8 

Mean d 1.744 1.694 1.604 1.517 

fN•Sig 21.8 66.0 23.2 57.0 26.2 43.2 29.6 124.8 
-0.4 d lInconc 3.2 8.8 5.2 13.6 9.8 17.8 16.2 21.4 

Sig 0.0 0.2 0.2 0.8 1.6 1.4 5.0 3.0 

Mean d 1.891 1.850 1.793 1.711 

r· SiQ 28.0 rO.6 31.6 64.6 28.81 64•4 41.0 41.4 
-0.6 d Inconc 0.0 1.4 1.8 2.0 2.4 4.2 8.8 7.2 

5ig 0.0 0.0 0.0 0.0 0.2 0.0 0.8 0.8 

Mean d 1.944 1.930 1.901 1.846 

r·SiQ 47.0 52.6 51.0 148.8 50.2 49.2 62.0 36.0 
-0.8 d Inconc 0.2 0.2 0.2 0.0 0.4 0.2 1.2 0.8 

S1g 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mean d 1.967 1.963 1.958 1.939 
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Q =-0.8 

F 
N.5ig 51g 
6.0 0.8 

20.6 2.6 
57.8 12.2 

1.150 

2!1.2 , 1.0 
27.4 5.4 
34.2 6.8 

1.443 

-

37.0 I 6.4 
25.6 9.2 
16.4 5.4 

1.625 

55.4 17.0 
17.8 6.4 
2.2 1.2 

1.816 
.-------~~ 

67.4 21.0 
3.4 1.2 
0.0 0.0 

1.917 



TABLE 6.9 

PERCENTAGE OF TIMES F AND d ARE SIGNIFICANT IN 
500 SIMULATIONS FOR EACH PAIR OF 

3rd REGRESSION 

X SERIES Q = 0.0 Q =-0.2 Q =-0.4 Q =-0.6 E> =-0.8 
--. 

Y SERIES F F F F F 
9* 

N.Sig 5ig N.S1g S1g N.S1g S1g N.S1g 51g N.Sig 51g 

r· Sig 27.2 22.8 26.6 23.4 30,2 12.4 31.2 4.2 4~.0 2.6 
0.0 d Inconc 27.0 15.4 29.6 13.2 33.0 11.8 34.6 8.2 36.0 1.8 

Sig 5.0 2.6 5.6 1.6 10.2 2.4 17.4 4.4 13.4 1.2 

Mean d 1.721 1.703 1.656 1.611 ]..693 

r·Sig 40.2 45.2 43.8 39.2 49.0 127.4 60.6 113.0 79.4 5.6 
-0.2 d Inconc 7.0 6.8 10.4 6.2 12.6 8.2 17.6 5.6 11.2 1.2 

S1g 0.4 0.4 0.4 0.0 2.4 0.4 2.0 1.2 1.8 0.8 

Mean d 1.912 1.899 1.867 1.862 1.947 

--

r· Sig 34.2 64.4 38.6 1~8.2 50.4 43.6 58.6 30.4 80.41 11 •6 
-0.4 d Inconc 0.6 0.8 0.8 2.4 2.6 3.0 6.2 4.2 ~.6 1.8 

Sig 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.6 0.0 

Mean d 2.007 2.00 1.985 1.971 2.065 

fN•Sig 32.0 /67.4 36.4 63.0 34.8 64.8 57.2 40.4 78.4 119.4 
-0.6 d tlnConc 0.0 0.6 0.6 0.0 0.2 0.2 0.8 1.6 1.0 1.0 

Sig 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 

Mean d 1.989 1.989 1.987 1.987 2.046 
--.......---... ~ 

r· Sig 47.2 52.4 51.2 48.6 ~0.8 149.2 63.6 36.0 78.2 21.6 
-0.8 d Inconc 0.2 0.2 0.2 0.0 0.0 0.0 0.2 0.2 0.0 0.2 

Sig 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mean d 1.970 1.970 1.965 1.959 1.968 
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each case. 

Tables 6.4 and 6.5 are the second and third regressions in the case 

k = 1, while tables 6.6 and 6.7 correspond to k = 2 and tables 6.8 and 6.9 

correspond to k = 4. 

In addition, we give in Tables 6.10 and 6.11 for k = 1 and k = 4 the 

number of times a significant relationship is (wrongly) found at the 

final iteration. The final picture, then, is that spurious regressions are 

found rather too often, the problem being particularly marked for k = 4 and, 

in general, in the lower triangles (-9* < -Q) of both tables. 

TABLE 6.10 

PERCENTAGE OF TIMES t IS SIGNIFICANT IN REGRESSION 
"CORRECTED" FOR FIRST ORDER AUTOREGRESSIVE ERRORS IN 

1,000 SIMULATIONS FOR EACH (Q,9*) z k - 1 

9* Q = 0.0 Q = -0.2 Q = -0.4 Q = -0.6 Q = -0.8 

0.0 11.5 8.3 6.5 4.5 4.7 

-0.2 15.8 12.3 11.0 7.1 6.6 

-0.4 23.6 22.9 15.9 11.0 8.2 

-0.6 32.3 30.7 25.5 19.7 9.8 

-0.8 28.9 27.3 25.5 22.7 12.0 

TABLE 6.11 

PERCENTAGE OF TIMES F IS SIGNIFICANT IN REGRESSION 
"CORRECTED" FOR FIRST ORDER AUTOREGRESSIVE ERRORS IN 

500 SIMULATIONS FOR EACH (Q,9*) I k = 4 

9* Q = 0.0 Q = -0.2 Q = -0.4 Q = -0.6 Q = -0.8 

0.0 24.4 18.6 9.8 6.2 5.0 

-0.2 40.0 27.6 20.6 10.0 6.8 

-0.4 59.6 54.8 36.0 23.4 10.8 

-0.6 66.4 62.2 59.0 37.2 16.8 

-0.8 52.6 48.8 59.4 35.8 21.6 

The interpretation of these results is not as clear cut 
1\ 

first imagine, since the tests effectively assume that P-
1 

is 

as one might 

fi xed rather 

than stochastic. One would expect a small inflation in true significance 
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levels for sample size 50 because of this. To verify this.inqependent 

samples of size 50 were generated from 

• 
Xt - ~* X t-1 = a 1,t J Xt = Xt + 100 

• • • 
Yt - ~ Y t-1 = at ; Yt = Yt + 100 

and the regression equation (6.5) was fitted with k = 1 using ordinary least 

squares, for different values of (¢ *,~ ). The error structure (6.6) is now 

correctly specified and the iteration procedure based on (6.12) was used 

until estimates of the coefficients converged. The percentage of times the 

t statistic is significant in a regression when it is (iteratively) 

appropriately corrected for first order autoregressive residuals, at the 

final stage of the iteration, is given in Table 6.12. 

TABLE 6.12 

PERCENTAGE OF TIMES t IS SIGNIFICANT IN REGRESSION APPROPRIATELY 
CORRECTED FOR FIRST ORDER AUTOREGRESSIVE ERRORS IN 

1,606 SIMULATIONS FOR EACH (~,;*) 

~* = 0.4 ¢* = 0.6 ,5* = 0.8 
---~,---. 

¢= 0.4 6.9 7.6 7.6 

p= 0.6 6.4 6.0 8.8 

p= 0.8 6.4 4.9 8.0 

We note that the significance levels are rather too high in this case, 

but this inflation in no way explains the very large number of times the t 

and F statistics are significant in the lower half triangles of tables 6.10 

and 6.11. It may therefore be concluded that the main reason for these 

spurious regressions was the misspecified error structure. 

The conclusions emanating from these simulation results are that 

alternative error structures to the usual AR(l) process given by (6.6) ought 

to be entertained when considering multiple regression analyses relating 

economic data. In regressing economic time series, the IMA(l,l) process seems 

a reasonable alternative for the residual error structures that can ariseJ 

it is clear that when this structure is appropriate for time series residuals 

the usual significance tests, based on AR(l) error models do not perform 
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adequately. 

6.5 Conclusions 

The general conclusions emerging from Chapter 6 are that there are 

many other possible ways of misspecifying time series models which should 

and ought to deserve further research. It appears the most fruitful areas 

would be to examine the consequences of misspecifying a non-linear 

instantaneous transformation of a time series and the results of misspecifying 

the time series residual error structure in multiple regression analyses 

with economic type data. In addition it would seem desirable to develop some 

test statistic that could test the null hypothesis of AR(l) residuals against 

the alternatives of a non-stationary IMA(l,l) structure, at least for those 

cases where a full Box-Jenkins analysis to determine appropriate error 

structure is not practicable. 
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