A NEW APPROACH TO THE MARINE NATURAL PRODUCT ULAPUALIDE A

James Kempson

A Thesis Submitted to the University of Nottingham for the degree of Doctor of Philosophy

Contents

Page
Declaration i
Dedication $i i$
Acknowledgements iii
Abstract iv
Abbreviations $v i$
INTRODUCTION
1.1 Total Synthesis - the Past, Present and the Future 1
1.2 The Ulapualides and Related Metabolites 5
1.3 Metal Ion Chelation in Nature 10
1.4 Biological Profile and Stereochemical Prediction 14
1.5 Biosynthesis of the tris-Oxazole Unit in the Ulapualides 16
1.6 Oxazole Containing Natural Products 18
1.7 A Total Synthesis of Ulapualide A 23
1.8 Aims and Objectives 26
RESULTS AND DISCUSSION
2.1 The tris-Oxazole System 76
2.1.1 New Synthetic Studies towards tris-oxazole systems 27
2.1.2 Oxazole ring Formation 28
2.1.3 The Model Study 33
2.1.4 Conclusions 42
2.2 The Side-Chain in Ulapualide A
2.2.1 The Stereochemical Dilemma 43
2.2.2 Strategy and Design 44
2.2.3 The C26-C34 Aldehyde Fragment 131 45
2.2.4 The C35-C41 β-Keto Phosphonate Fragment 50
2.2.5 The Wadsworth-Emmons Olefination 52
2.2.6 Conclusions 52
2.3 The Bottom-Chain in Ulapualide A
2.3.1 Strategy and Design 54
2.3.2 The Weinreb Amide Fragment 172 56
2.3.3 The β-Hydroxyester Fragment 173 58
2.3.4 The Coupling reaction 61
2.3.5 A Modified Approach to the Bottom-Chain 171 66
2.4 Conclusions 72
EXPERIMENTAL
3.1 General Details 74
3.2 The Model Study 76
3.3 The Side-Chain Synthesis 92
3.4 The Bottom-Chain Synthesis 118
APPENDIX
4.1 Contemporaneous Studies 129
4.2 Spectroscopic Data for Compound 151 136
4.3 X-Ray Crystallography Data for Compound 182 138
4.4 Reprints of Synlett and Perkin I Publications 147
REFERENCES 166

DECLARATION

I declare that the substance of this thesis has not been submitted, nor is concurrently being submitted in candidature for any other degree. I also declare that the work embodied in this thesis is the result of my own investigations. Where the work of other investigators has been used, this has been fully acknowledged in the text.
J. Kempson
G. Pattenden

Dedicated to Mum, Dad and Claire for their constant love and support.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor Professor Gerry Pattenden for his patience and guidance throughout the course of my PhD studies. Thanks also to Dr Shital Chattopadhyay for his early support on this project and for his willingness to listen and discuss. I would also like to thank Dr Frank Montgomery, my industrial supervisor, for his continued interest shown towards my project. I gratefully acknowledge Zeneca Pharmaceuticals for financial support through a scholarship.

Thanks go to all the technical staff at the University of Nottingham for all their help and support, and also to the GP group members for making my life in laboratory C13 such an enjoyable one. Thanks especially to Paul Little and Dave Millan for proof reading this thesis.

Finally, I would like to thank Anna for her never ending support and much needed artistic flair in poster design!

Abstract

This thesis describes synthetic studies directed towards a second generation total synthesis of ulapualide A. Ulapualide A is an extraordinary bioactive tris-oxazole based macrolide which was isolated from the egg masses of the marine sponge Hexabranchus sanguineus and exhibits potent antifungal activity with inhibition of leukaemia cell proliferation.

The Introduction to this thesis includes an overview of natural product chemistry and draws attention to the 'ulapualide' family of secondary metabolites including their isolation, biological activity, biosynthesis and structural determination. Also included is a summary of a total synthesis of ulapualide A by our research group in Nottingham, together with a review of oxazole containing natural products.

The Results and Discussion section of this thesis details our general strategy for an alternative design for the synthesis of the tris-oxazole based macrolide core of ulapualide A. A synthesis of a model system exemplifying this strategy is then described, together with a detailed discussion of polyoxazole ring formation. This is followed by application of the model study to ulapualide A itself, and includes a total synthesis of the polyol C26-C41 side-chain of ulapualide A. The section concludes by describing our synthetic efforts towards the remaining chiral fragment of this natural product, the bottom-chain.

The thesis concludes with an Experimental section containing full details of the preparative work completed and listing spectroscopic and analytical data for all new compounds synthesised during the study.

An Appendix contains a description of contemporaneous synthetic studies carried out by Panek et al during the course of my PhD studies. X-ray crystallographic and spectroscopic data, together with reprints of publications resulting from our work are also included.

ABBREVIATIONS

Ac	acetyl
AIBN	azoisobutyronitrile
Bu	butyl
Bu^{i}	isobutyl
$B u^{s}$	sec-butyl
$\mathrm{Bu}^{\text {t }}$	tert-butyl
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
BINOL	1,1'-bi-2-naphthol
Bn	benzyl
Boc	tert-butoxycarbonyl
Bz	benzoyl
CAN	cerium (IV) ammonium nitrate
CSA	camphorsulfonic acid
DAST	diethylaminosulfur trifluoride
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	1,3-dicyclohexylcarbodiimide
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
de	diasteromeric excess
DEAD	diethyl azodicarboxylate
DIBAL-H	diisobutylaluminium hydride
DMAP	4-dimethylaminopyridine
DMF	N, N-dimethylformamide
DMPU	1,3-dimethyl-3,4,5,6-tetrahydropyrimidin-2(1H)-one
DMS	dimethyl sulfide
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
EDTA	ethylenediaminetetraacetic acid
ee	enantiomeric excess
Et	ethyl
HMPA	hexamethylphosphoramide
HMPT	hexamethylphosphorus triamide

HOBT	1-hydroxybenzotriazole
LAH	lithium aluminium hydride
LDA	lithium diisopropylamide
MCPBA	m-chloroperbenzoic acid
Me	methyl
MEM	(2-methoxyethoxy)methyl
MOM	methoxymethyl
Ms	methylsulfonyl (mesyl)
NBS	N -bromosuccinimide
NMO	4-methylmorpholine N-oxide
nmr	nuclear magnetic resonance
PCC	pyridinium chlorochromate
PDC	pyridinium dichromate
Ph	phenyl
PPTS	pyridinium toluene-p-sulfonate
PTSA	toluene-p-sulfonic acid
Pr	propyl
Pr^{i}	isopropyl
PyBOP	benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate
RNA	ribonucleic acid
RT	room temperature
TBAF	tetrabutylammonium fluoride
TBDMS/TBS	tert-butyldimethylsilyl
TBDPS/TPS	tert-butyldiphenylsilyl
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
THF	tetrahydrofuran
TMANO	trimethylamine- N -oxide
TMOF	trimethylorthoformate
TMS	trimethylsilyl or trimethylsilane
TPAP	tetrapropylammonium perruthenate

INTRODUCTION

1.1 Total Synthesis - the Past, Present and the Future.

The synthesis of urea 1 way back in 1828 signaled the birth of organic synthesis. ${ }^{1}$ Ever since this time, the field of total synthesis has grown tremendously with today's chemical literature overflowing with countless examples of natural products that have fallen to the synthetic organic chemist.

1

2

Penicillin 2, discovered in 1928 by Alexander Fleming, was a highly prized synthetic target in the mid-nineteenth century. ${ }^{2}$ Its unique molecular structure with a fragile β lactam ring, together with its remarkable antibacterial properties which saved so many lives in World War II, finally led to the first total synthesis of penicillin V in 1957. ${ }^{3}$

The prostaglandins with their potent and important biological activities and their potential applications in medicine ${ }^{4}$ have also been an important natural product target. E. J. Corey's first total synthesis of prostaglandin $\mathrm{F}_{2 \alpha} 3$ in 1969^{5} led the way for a myriad of prostaglandin analogues. With these syntheses came important developments in the field of catalyst design which included a set of chiral aluminiumand boron-based catalysts for the Diels-Alder reaction ${ }^{6}$ and the oxazaborolidine (CBS) catalyst to generate chiral alcohols from ketones. ${ }^{7}$

3

4

Progesterone 4 is another important target and belongs to the steroid class of compounds that are so ubiquitous in nature. Its linearly fused polycyclic carbon framework is characteristic of numerous natural products of steroidal and triterpenoid structure and it was W. S. Johnson, in 1971, who employed a polyolefinic ringclosing cascade to generate progesterone's skeleton in just one step. ${ }^{8}$

The 'cascade theme' is very much continued in the endiandric acids 5-7; a fascinating group of natural products discovered in the early 1980s in the Australian plant Endiandra introsa. ${ }^{9}$ Here, a direct one-step strategy involving an 8π electron electrocyclisation, a 6π electrocyclisation, and a Diels-Alder [4+2] cycloaddition reaction installed the polycyclic skeletons of the endiandric acids. ${ }^{10}$

5

6

7
As with all of these examples, the development of new synthetic methods was very much the driving force and natural product synthesis provided ideal opportunities with which to test these new methods and theories. Indeed, by the early 1990s the organic chemist had conquered most of the known structural types of secondary metabolites: prostaglandins, steroids, β-lactams, macrolides, polyene macrolides, polyethers, alkaloids, endiandric acids; all were synthesised by the organic chemist. So where was total synthesis heading?

Most significantly, total synthesis has looked deeper into biology with synthetic chemists now being driven, not only by novel molecular architectures, but also by their modes of biological action. The enediyne anticancer antibiotics, in particular calicheamicin $\gamma_{1}^{\prime} 8$, was one of the first new challenges to the organic chemist. ${ }^{11}$ This natural product provided a unique opportunity for discovery and invention in the areas of chemistry, biology and medicine. Its novel molecular structure is responsible for its powerful biological properties, which include strong binding to DNA, doublestrand cleavage of the genetic material by formation of a benzenoid diradical, and - as a consequence - potent antitumour and antibiotic activity. By the mid-1990s, two groups had achieved the challenging total synthesis, K. C. Nicolaou ${ }^{12}$ and S. J. Danishefsky. ${ }^{13}$

8
The tubulin binding agents taxol $9,{ }^{14,15}$ epothilone A 10^{16-18} and eleutherobin $11^{19,20}$ commanded much attention in the 1990s. Each of these natural products included in their structure a number of unique features - taxol exhibiting its notoriously well known 6,8,6 ring-fused system; epothilone A with its macrolide structure and eleutherobin containing an oxygen-bridged 10 -membered ring. The study of all three of these natural products by the organic chemist has contributed immensely in both delivering scarce natural substances for biological investigations and in our treatment of cancer.

9

10

11

The 29-membered ring natural product rapamycin 12 has been an important target in the field of immunosuppression, so much so, that by the end of 1995, no fewer than four research groups had reported its total synthesis. ${ }^{21-24}$ This natural product also highlighted the recent advances made in organometallic chemistry with Stille's
methodology allowing the conjugated triene system to be formed concurrently with the macrocyclic portion of the molecule.

12
One of the most recent milestones of the organic chemist has come with the glycopeptide class of antibiotics. ${ }^{25}$ Vancomycin 13 in particular has been used over the last four decades as a weapon to combat bacterial disease, and with the first total synthesis of vancomycin in 1999, ${ }^{26,27}$ new achievements in organic synthesis were realised.

13
The field of total synthesis in the $21^{\text {st }}$ century promises to be an exciting one. The pursuit for targeting even more complex structures will demand both new analytical techniques with which to isolate and identify these structures, together with more effective reactions in terms of accomplishing bond constructions and functional group transformations. Furthermore, with the advent of solid phase and combinatorial
chemistry techniques, natural products and their analogues will be the subject of increased biological screening.

1.2 The Ulapualides and Related Metabolites

As part of the ongoing challenge, and inspired by the wealth of biologically active natural products to be isolated from nature, we were lured to the 'ulapualide' family of secondary metabolites whose structures tantalise the imagination regarding their biosynthetic origin and mode of action in vivo.

Ulapualides A 14 and B 15, ${ }^{28}$ together with kabiramide C $16,{ }^{29}$ were the first members of this extraordinarily unique family of tris-oxazole based macrolides to be isolated from nature. The ulapualides derive their name from the Hawaiian words 'ula' meaning red and 'pua' meaning flower, since they were both isolated from the striking rosebud-like egg masses deposited by the nudibranch Hexabranchus sanguineus on ledges in underwater caves off the coast of Hawaii. Simultaneously in 1986, kabiramide C was isolated from the egg masses of an unidentified nudibranch collected at Kariba Bay in the Ryukyus Islands. Once again, this compound shows the three contiguous oxazole ring based macrolide structure found in the ulapualides.

Later, isolation and characterisation of the structurally similar halichondramide 17 from a species of the sponge Halichondria ${ }^{30}$ was reported. Dihydrohalichondramide $\mathbf{1 8}$, isohalichondramide 19 , the acid 20 , the imide 21 and the ester 22 are further examples of similar metabolites which were also isolated from a second specimen of the same sponge. The family of metabolites is further extended by mycalolides A-C 23-25 which were isolated from a sponge of the genus Mycale. ${ }^{31}$ The molecules 1419 and 23-25 show structures based on a 25 -membered macrocyclic lactone which
incorporates a novel tris-oxazole unit, and to which is attached a C11-oxygenated side chain terminating in an unusual formyl enamine residue. The members differ from each other largely according to the oxidation patterns and the level of alkyl group substitutions found in the aliphatic portions of their structures. More recently however, the structurally related halishigamides A-D 26-29 from the Okinawan marine sponge Halichondria ${ }^{32}$ have added to this strikingly unusual family of secondary metabolites; with their incomplete tris-oxazole chromophores contained within these molecules intriguing questions about their biosynthesis are posed.

Figure 1.2.1
Top: The sea slug Hexabranchus sanguineus.
Bottom: The rosebud-like egg mass from which ulapualide A is isolated.

22 Halichondramide ester

26 Halishigamide A

27 Halishigamide B

1.3 Metal Ion Chelation in Nature

Metal ions are essential for all life forms with each organism of a living cell nothing more than a highly tuned multimetal multiligand system. Transition metal ions perform many functions in nature and it is of paramount importance that these essential elements (a) be delivered to the right biological compartments, (b) that they be present in the desired forms of oxidation state and co-ordination geometry required to carry out their selective functions, and (c) that the organism is able to control the amounts of each of these elements and distinguish between them. All of these requirements can be, and are, achieved by selective chelation. Indeed, without chelation as a control, any free transition metal ions would indiscriminantly bind to a range of biological molecules with concomitant physiological disorders!

The discovery of metal-porphyrin complexes provided some of the first evidence for the importance of metal ions in nature. Perhaps the most common examples are the magnesium containing chlorophyls found in plants and green algae, and one of the more recent is chlorophyl $\mathrm{C}_{3} \mathbf{3 0}$, isolated from the algae Emiliana huxleyi. ${ }^{33}$

30
Further intrigue within the terrestrial based environment is found within the siderophores which are iron chelators possessing either hydroxamate or catecholate chelating groups. Enterobactin $31,{ }^{34}$ a cyclic depsipeptide derived from L-serine has three covalently linked catechol groups which form an $\mathrm{Fe}^{(\mathrm{III})}$ complex having the largest known metal binding constant (ca. 10^{52}) of any known $\mathrm{Fe}^{(\mathrm{III})}$ complex. So strong in fact are these complexes that they have been known to leach iron from stainless steel vessels!!

31
The marine environment too contains a wealth of life, but despite the rich availability of carbon, relatively few organisms other than algae can utilise photosynthesis to exploit this source. In spite of the inhospitable nature of the marine environment however, marine flora and fauna produce metabolites which show an incredibly diverse range of molecular architectures. Many of these metabolites contain structural features which would enable them to behave as ionophores, incorporating a macrocyclic cavity with which to encapsulate a metal, with the potential for chelation from polar functional groups.

For example, metabolites such as $\mathbf{3 2}{ }^{35}$ and $\mathbf{3 3}{ }^{36}$ have been isolated from nudibranches, sponges, ascidians and algae. The structures of these cyclic metabolites are reminiscent of the structures of porphyrins and similar ligands capable of metal complexation. It is this similarity to ligands that has led to the suggestion that marine metabolites may be capable of metal complexation and that such a complexation may be responsible for either metal transport, biological assembly of the metabolites or even the biological activity exhibited by a number of these compounds.

32

33

The 'patellamide' family of cyclic peptides, ${ }^{37}$ viz patellamide A, 34, is characterised by the presence of two thiazole and two oxazoline rings which form part of a conformationally restrained 24 -azacrown- 8 macrocyclic framework.

34
The organism, Lissoclinum patella, from which they have been isolated, has been found to concentrate several metals, including copper, to ten thousand times the concentration found in the local marine environment. A number of synthetic studies ${ }^{38}$ have been carried out to establish the relative stereochemistries of these cyclic peptides. ${ }^{1} \mathrm{H}-\mathrm{nmr}$ studies have also been used to determine the conformation in solution, while X-ray studies determined the solid state conformation. These investigations, taken together, have shown that the C_{2}-symmetric patellamides have predominantly a 'square form' conformation, viz 35, the presence of a bridging carbonate group between the two metal ions leading to the suggestion that such complexes may be responsible for CO_{2} transport in biological systems. The non- C_{2} symmetric patellamides assume largley twisted 'figure-eight like' conformations, viz 36. As a result of these studies, relationships can be drawn between chemical structure, conformation and biological activity and how metal ions may contribute in one or other of these factors.

35

36

In complete contrast to the cyclic peptides, the polyether antibiotics have commanded much interest in the scientific world with regard to their biological function and ability to chelate various cations in a transport process. Ionomycin 37 was isolated in 1978 from the organism Streptomyces conlobactus as its hexane soluble calcium complex and further studies showed a specificity for divalent cations. ${ }^{39}$ The ability to facilitate cation transport across membrane barriers has produced a wide range of biological responses in this and other members of the polyether family.

37
Other studies with okadaic acid 38, isolated from the dinoflagellate Prorcentrum lima, have predicted its conformation in solution producing reports of an unspecified 'metal complex'. ${ }^{40}$

38
In additon to compounds of this type, brevetoxin B 39, with its incredible molecular structure, must be included. ${ }^{41}$ The biological activity of this compound rests on its potent neurotoxicity and marked interference with the function of the sodium channels contained within neurons.

1.4 Biological Profile and Stereochemical Prediction

The 'ulapualide' family viz 14-29 of marine natural products possess marked biological activity, with all structures showing pronounced antifungal activity. The ulapualides together with the kabiramides and dihydrohalichondramides inhibit leukaemia cell proliferation, and all the metabolites inhibit cell division in the fertilised sea urchin egg assay. Also, kabiramide C and some of the halichondramides have shown ichthyotoxic properties. This biological activity could be due in part to the tris-oxazole moiety incorporated within the macrolide ring. Indeed, it was our supposition that the several nitrogen and oxygen ligation sites present within the macrolide ring could play host to a metal ion, with retention of the ion made possible by the use of the pendant side chain to wrap over and 'cap' the complex $40 .{ }^{42}$

40
Pursuing the assumption that the biological properties of ulapualide A stem from the ability of the metabolite to act as an ionophore, a metal ion chelation model of the molecule was designed with the intention of predicting the most likely stereochemistry of the ten asymmetric centres contained within ulapualide A.

The donor atoms available in ulapualide A for metal complex formation are both numerous and mixed in type. The oxazole aza-nitrogen centres are expected to be 'soft' donors, and in common with other heterocyclic aza donors are likely to show selectivity for transition metal ion sequestration. The remaining carbonyl, ether and amide oxy atom donors are more typical of the familiar terrestrial ionophores, which are known to express a preference for alkali and alkali-earth metals. The initial study however, focussed on the use of a 'dummy' metal atom for complexation and this
indicated that only two of the three possible oxazole nitrogen centres could complex at one time.

Complex formation was achieved, incorporating structural features common to both the ulapualides and halichondramides, to produce a somewhat arbitrarily chosen octahedral complex 41 using two oxazole aza-nitrogen centres and four carbonyl oxygen donors.

41
Having obtained this complex 41 , the various side chain substituents in ulapualide A were added to the complex, one at a time. As each substituent was added, both of the epimers were then considered and energy minimised and in each case the epimer of higher energy was discarded. The outcome of this study was interesting, since the relative stereochemistry of a major part of the polyol side chain in ulapualide A correlated with the corresponding chiral centres in scytophycin B 42, a related metabolite whose structure had been established by X-ray crystallography measurements. ${ }^{43}$

42
The more recent disclosure of the existance of an additional marine natural product, viz aplyronine 43, ${ }^{44}$ which also shows remarkable similarity to our predicted stereochemistry for ulapualide A, added further evidence for our stereochemical model.

43

1.5 Biosynthesis of the tris-Oxazole Unit in the Ulapualides

The biosynthesis of the three contiguous oxazole rings found in ulapualide A and other members of this family of marine metabolites is open to some debate. The cyclisation of a tris-serine moiety 44 , leading to the corresponding tris-oxazoline $\mathbf{4 5}$, followed by enzymic oxidation to 46 is a common suggestion for the biosynthesis of the tris-oxazole moiety. ${ }^{19,45}$

This is supported by the related bis-oxazole unit found in the natural product hennoxazole A 47, isolated from Polyfibrospongia sp., ${ }^{46 a}$ and muscoride A 48, found in the freshwater cyanobacterium Nostac muscorum, ${ }^{46 \mathrm{~b}}$ displaying a bis-oxazole core which is formally derived from two threonine residues.

47

48
Alternatively, Moore ${ }^{47}$ has suggested a polyketide precursor which leads to the trisoxazole unit 46 via an intramolecular Beckmann rearrangement of a tris-oxime intermediate 49. This route seems to be particularly attractive due to the ubiquity of 1,2-shifts in nature.

46
49
However, strong evidence of a third biosynthetic route to these metabolites comes from the recent publication by Kobayashi et al who isolated the four new oxazole containing compounds, halishigamides A-D 26-29. ${ }^{32}$ The structures of the halishigamides suggests that oxazole formation could occur late, possibly as a final step, in the biosynthesis of such metabolites. Indeed, research within our group is also being carried out into the total synthesis of halichondramide ester, 22, yet another natural product possessing an 'incomplete' tris-oxazole backbone. Starting from the tris-serine precursor, 44, biomimetic synthesis is easy to envisage for this molecule. Cyclisation of two serine residues affords the bis-oxazole unit, $\mathbf{5 0}$, which after
sequential dehydration and oxidation gives the imide, 52. Addition of methanol then reveals the methyl ester, 53 , and the primary amide, 54.

Repeating these simple transformations separately on each of the three oxazole rings soon reveals the biomimetic origin of all the related metabolites, including the recently discovered halishigamides A-D.

1.6 Oxazole Containing Natural Products

The occurrence of natural products containing the oxazole heterocycle has become more widespread in recent years. The vast majority of these secondary metabolites contain an isolated heterocycle, but much of the recent interest in the 5-membered heteroaromatic motif has been sparked by natural products that contain contiguously linked oxazole heterocycles which form bis- and tris-oxazole arrays. This section of the thesis is not intended to be a thorough review of oxazole containing compounds, but rather just to highlight some of the many oxazoles in nature that have been of interest within our research group and that of others.

Probably one of the most popular oxazole containing natural products to attract the synthetic chemist is calyculin A 55 which was isolated from the marine sponge Discodermia calyx in 1986. ${ }^{48}$ The presence of a 2,4-disubstituted oxazole amongst a wide variety of other functionality together with its striking biological activity has led to three successful total syntheses of calyculin A reported by the research groups of Evans, ${ }^{49 \mathrm{a}}$ Masamune ${ }^{49 \mathrm{~b}}$ and Smith. ${ }^{49 \mathrm{c}}$

55
Phorboxazoles A and B also pose a significant challenge to the organic chemist, and were isolated from the Indian Ocean marine sponge Phorbas sp. in 1995. ${ }^{50}$ Their gross structures were shown to encompass an unprecedented molecular architecture of four oxane rings, two 2,4-disubstituted oxazole rings and a 21 -membered macrolactone, incorporating fifteen asymmetric centres. They exhibit a broad range of biological activity, showing exciting cytotoxic, cytostatic and antifungal properties. A total synthesis of phorboxazole A 56 was completed by Forsyth et al ${ }^{51}$ and more recently, the research group of Evans ${ }^{52}$ has completed the synthesis of phorboxazole B.

56
Rhizoxin A 57 is a highly functionalised macrolactone from the pathogenic fungus Rhizopus chinensis. ${ }^{53}$ It differs from many of the natural products discussed in this
section, by the presence of the oxazole at the terminus of the side chain. Rhizoxin A has stimulated much interest within the chemical community, not only by its intriguing structure, but also by exhibiting diverse and significant biological activity. A total synthesis of rhizoxin A was reported by Ohno et al. ${ }^{54}$

57
One of the largest groups of natural compounds that contain oxazoles are found within the macrolide antibiotics known as the virginiamycins. ${ }^{55}$ The virginiamycins are produced by various species of Streptomyces bacteria and are separated into two groups. ${ }^{56}$ The group A virginiamycins are characterised by a common 23 -membered macrolide lactone-lactam accommodating a variety of functionality including an oxazole ring, a 1,3 -diene, an acrylamide unit and an amino acid residue. The group B virginiamycins are cyclic hexadepsipeptides. The biological activity of the virginiamycin antibiotics has been utilised in food additives to improve the growth of cattle and they have recently been recognised as cholecystokinin antagonists for treating panic, anxiety and cancer withdrawal. ${ }^{57}$ However, despite the biological significance and the knowledge of the existence of these compounds for many years a total synthesis, despite considerable effort, had proved elusive. It was not until 1996 that the total synthesis of virginiamycin M2 $\mathbf{5 8}$ was achieved by Schlessinger et al. ${ }^{58}$ The total synthesis of madumycin II 59, by Meyers et al, ${ }^{59}$ and of the related antibiotic anhydropristinamycin IIB 60, by Pattenden et al, ${ }^{60}$ were reported contemporaneously.

58

59

60
Another well documented class of natural products containing heterocyclic rings are the cyclic peptides. The high density of hetero-atoms in possible chelating arrangements has aroused considerable interest over recent years with regard to their biosynthesis and their use as metal transport agents in vivo. This interest has culminated in a total synthesis of mollamide A 61 within our research group, ${ }^{61}$ a novel reverse prenyl substituted cyclic peptide isolated from the ascidian (sea squirt) Didemnum molle. ${ }^{62}$

61
Natural products containing oxazole units linked contiguously are significantly less common. Muscoride A 48, is a novel bis-oxazole based peptidic alkaloid isolated from the terrestrial cyano-bacterium Nostac muscorum, ${ }^{46 b}$ which displays weak antibacterial activity. The molecule is unique because the bis-oxazole unit is derived presumably from two threonine residues making it the only natural product bearing two contiguous 5 -methyl oxazoles. The total synthesis of muscoride A has been
accomplished recently by two groups, Wipf et al in 1996, ${ }^{63}$ and Pattenden et al in 1997. ${ }^{64}$

48
The bis-oxazole containing compound diazonamide A 62, isolated from the colonial ascidian Diazona chinesis is composed of a highly complex bicyclic framework encompassing a chlorinated indole, a benzofuran and a chlorinated bis-oxazole moiety. ${ }^{65}$ Diazonamide A displays potent in vitro cytotoxicity, but its structural complexity has so far eluded the organic chemist and a total synthesis has yet to be reported.

62
A further bis-oxazole containing compound, hennoxazole A 47, was isolated from the marine sponge Polyfibrospongia sp. and was shown to be highly active against the herpes simplex virus. ${ }^{46 a}$ Its structure is characterised by the presence of a 2,4disubstituted bis-oxazole moiety, a pyranoid glycoside and a rather unusual skipped triene unit. Wipf et al reported the total synthesis of the enantiomer of hennoxazole A in $1995,{ }^{66}$ thus confirming the previous structure elucidation. This achievement has been followed by the synthesis of hennoxazole A itself by Williams et al in 1998. ${ }^{67}$

47

Thiangazole 63, ${ }^{68}$ together with the related tantazoles, ${ }^{69} \mathrm{eg}$ tantazole $\mathrm{B} \mathbf{6 4}$, and mirabazoles, ${ }^{70}$ eg mirabazole $C \mathbf{6 5}$, constitute a unique and novel family of cytotoxic alkaloids, which show structures based on the linear fusion of four or five successive 2,4-disubstituted thiazole/oxazole rings terminating in a 2 -cinnamyl or 2-isopropyl thiazoline. The alkaloid thiangazole was isolated in 1992 from the gliding bacterium Polyangium sp., and it has been shown to be one hundred percent effective against HIV-1. A total synthesis of thiangazole was completed in 1994 by Pattenden et al ${ }^{71 \mathrm{a}, \mathrm{b}}$ together with the groups of Wipf, ${ }^{7 \mathrm{lc}}$ Ehrler ${ }^{7 / \mathrm{d}}$ and Heathcock. ${ }^{71 \mathrm{e}}$

63

64

65

1.7 A Total Synthesis of Ulapualide A

The first total synthesis of ulapualide A was recently completed by Chattopadhyah and Pattenden. ${ }^{72}$ At the outset of these studies, a wide range of strategies and disconnections were entertained, with the most notable involving elaboration of the tris-oxazole based macrolide core. Some of these ideas are summarised below.

Thus, our research group considered an obvious macrolactonisation from an appropriate ω-hydroxy carboxylic acid precursor, an intramolecular olefination reaction producing the $\mathrm{C} 25-\mathrm{C} 26$ alkene bond, and the utilisation of intramolecular sp^{2} sp^{2} coupling (eg Stille, Suzuki) reactions involving substituted oxazole ring precursors. An alternative, less obvious, macrolide ring forming strategy was to effect an intramolecular olefination reaction producing the $\mathrm{C} 8-\mathrm{C} 9$ bond in the molecule, as a conjugated enone, and then to later introduce the C9 α-methyl group stereoselectively using the conformational bias of the macrolide core. Indeed, with model work completed and adequate precedent established, the synthetic strategy followed to ulapualide A was based upon the design of the three principal building blocks 66, 67 and 68.

With all of these building blocks to hand, elaboration of the tris-oxazole phosphonium salt 68 and the protected polyol aldehyde 66 , led to the alkene 69. Attachment of a ω carboxy substituted keto-phosphonate residue 67 then produced 70 , which after macrocyclisation via an intramolecular Wadsworth-Emmons olefination led to 71. The synthesis of ulapualide A was then completed by manipulation of the functionality in 71, and simultaneous introduction of the N-methyl N alkenylformamide residue.

69

The total synthesis of ulapualide A addressed a number of important issues. Aside from the obvious synthetic endeavours towards this natural product, ulapualide A has also posed a number of additional questions. Most significantly, it provided an opportunity to pursue the idea of metal chelation in nature. Indeed, the first working stereochemical model of ulapualide A came from molecular modelling of some of its hypothetical metal conjugates ${ }^{42}$ and prompted by this early work, Siegel and coworkers took the metal chelation idea one step further. ${ }^{73}$ Using the related trisoxazole containing natural product, dihydrohalichondramide 18, and employing fluorescence quenching and nmr techniques, these authors demonstrated that metal binding constants in the range $10^{2}-10^{4}$ for the metals $\mathrm{Ag}^{+}, \mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Hg}^{2+}$ and Pb^{2+} provided little evidence of any significant chelate effect.

It was hoped that the total synthesis of ulapualide A would confirm the predicted stereochemistry, for which there had been much debate. However, the synthesis did not succeed in giving conclusive answers, although very small differences between synthetic and natural ulapualide A (in the ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectroscopic data) did lead us to conclude that the stereochemistry of synthetic ulapualide A differed from that in the natural at one or more of the stereogenic centres along the side-chain. There was also uncertainty regarding the stereochemistry of the C9-methyl group of ulapualide A . This centre had been generated via a cuprate addition onto the enone system in 71 and
gave a 3:2 mixture of methyl epimers, both of which closely resembled the natural product.

1.8 Aims and Objectives

When I joined the research group in October 1997, the initial theme of my research was to investigate an alternative synthetic route towards the tris-oxazole backbone in the ulapualides, and to base this route on the recently isolated halishigamides 26-29. If successful, the application of this design to ulapualide A would then enable us to:

- address the problems of stereochemistry in the side-chain in ulapualide arising from the discrepencies between natural and synthetic material.
- develop an alternative route for the stereoselective introduction of the C9methyl group in ulapualide A.

RESULTS AND DISCUSSION

2.1 The tris-Oxazole System 76

2.1.1 New Synthetic Studies towards tris-Oxazole Systems

Despite the achievement of the first total synthesis of ulapualide A, the molecule still held areas of interest and considerable synthetic challenge. This challenge was largely concerned with the tris-oxazole fragment which, up until now, had been synthesised via the biogenetic patterned synthesis based on the sequential oxazole amide-serine cyclisations followed by oxidations of intermediate oxazolines viz $72 \rightarrow 76$.

Scheme 1
However, in light of the structures isolated by Kobayashi et al (26-29), and their possible implications in the biosynthesis of such compounds, a convergent approach
to the tris-oxazole unit was highly desirable. It was anticipated that elaboration of the central oxazole ring could act as the final step in the synthesis of the tris-oxazole moiety.

This route provided the impetus for my PhD work and was based on the model system 77 utilising a macrolactamisation strategy, leading to 78, followed by oxazoline and oxazole ring formation using the substituted mono-oxazoles $\mathbf{7 9}$ and $\mathbf{8 0}$ as key precursors (Scheme 2).

Scheme 2

2.1.2 Oxazole Formation

Pivotal to the success of this model study was a knowledge of oxazole chemistry, in particular oxazole formation. Indeed, the widespread occurrence, uses and syntheses of oxazole derivatives has continued to stimulate the organic chemist ever since the first synthesis of 2-methyloxazole in 1876. As such, oxazoles have been the subject of several reviews ${ }^{74}$ and with such a plethora of syntheses now available, only the most pertinent examples will be mentioned here.

The Robinson-Gabriel reaction is one of the oldest methods available for oxazole synthesis and involves the cyclodehydration of α-acylamino carbonyl compounds 81. A variety of dehydrating agents, including $\mathrm{PCl}_{5}, \mathrm{P}_{2} \mathrm{O}_{5},{ }^{75} \mathrm{POCl}_{3},{ }^{70} \mathrm{SOCl}_{2}{ }^{77}$ and polyphosphoric acid, have been used to effect the transformation.

Variations upon this theme are common, most notably in the reaction of a primary amide 83 with an α-halocarbonyl compound $\mathbf{8 4}$ to produce an intermediate 2acylaminoketone which can undergo dehydration in the usual way to produce a 2,4 -disubstituted oxazole $\mathbf{8 5}$. The utility of this method has recently been demonstrated by Panek et al in a synthesis of the tris-oxazole backbone of ulapualide A . ${ }^{78}$

Early work by Cornforth ${ }^{79}$ is also reminiscent of the Robinson synthesis, with the condensation between ethyl acetimidate hydrochloride 86 and glycine ethyl ester hydrochloride 87 producing an imino ether 88. Formylation of this intermediate to give 89 was followed by an immediate cyclisation in boiling acetic acid to produce the desired 2,4-disubstituted oxazole 90 in good yield (Scheme 3).

Scheme 3
In contrast to these methods, probably the most widely used route to oxazole formation in recent years involves amide formation followed by cyclisation to an oxazoline and subsequent oxidation to give the oxazole (Scheme 4).

Scheme 4
Initial formation of the oxazoline can be achieved in many ways, with activation of the hydroxy amide 93 being required for cyclisation to occur. Activation can be promated by thionyl chloride, followed by treatment with silver triflate; ${ }^{80}$ methanesulfonyl chloride and triethylamine; ${ }^{81}$ triphenylphosphine, carbon tetrachloride and DIPEA; ${ }^{81}$ under Mitsunobu conditions; ${ }^{82}$ phosphorus oxychloride; ${ }^{83}$ or the commonly encountered Burgess reagent ${ }^{84}$ or DAST. ${ }^{85}$ Careful considerations must be taken when choosing a suitable reagent for this transformation, since elimination, aziridine formation or epimerisation may also occur. ${ }^{80}$

The oxazoline-oxazole oxidation has been developed extensively and, in general, proceeds by either a radical pathway or an addition elimination sequence; in either case the need for an enolisable group at the 4-position seems necessary to effect this transformation in good yield. Meyers performed the requisite oxidation of an oxazoline to an oxazole using nickel peroxide in a range of hydrocarbon solvents, ${ }^{87}$ after finding that other oxidants such as manganese dioxide, DDQ and phenanthrenquinone produced disappointing results.

As an alternative to the somewhat capricious NiO_{2} oxidation, Bristol-Myers Squibb discovered a novel oxidation procedure using a mixture of CuBr_{2} and DBU for the oxidation of $\mathbf{9 8}$ to $\mathbf{9 9}$. ${ }^{88}$

In a similar fashion, the Kharasch-Sosnovsky reaction, ${ }^{89}$ later to be modified by the Meyers group, ${ }^{90}$ found application in numerous natural product syntheses. A cocktail of copper(II) acetate, copper(I) bromide and tert-butyl hydroperoxide were eventually found to be the optimum conditions for oxidation to take place.

More recently, the addition-elimination oxidation of $\mathrm{BrCCl}_{3} / \mathrm{DBU}$ has found increasing popularity. ${ }^{91}$ So too, a similar oxidation developed by Jung which uses DBU and CCl_{4} in pyridine and $\mathrm{MeCN} .^{92}$ Indeed, this oxidation found application in the total synthesis of Muscoride A 48 by Pattenden et al. ${ }^{64}$

Finally, an alternative pathway developed by Wipf et al has also proven to be extremely useful in oxazole formation en route to natural products. Wipf, having encountered problems with the oxidation of oxazolines, returned to the RobinsonGabriel type cyclisation of a β-keto amide to produce an oxazole. ${ }^{93}$ Thus oxidation of a β-hydroxy amide with the Dess-Martin reagent, ${ }^{94}$ followed by mild cyclodehydration of the intermediate β-keto amide with triphenylphosphine, iodine and triethylamine allowed the rapid synthesis of highly substituted and
functionalised oxazoles in good overall yield. Amido-aldehydes derived from serine residues were found to cyclise to the oxazole in a much less facile manner. Wipf overcame this problem by changing the reaction conditions and so used the bulky base 2,6-di-tert-butyl-4-methylpyridine, with dibromotetrachloroethane and triphenylphosphine. Under these conditions elimination did not occur spontaneously and required subsequent treatment with DBU to produce the oxazole. ${ }^{60}$

The use of both these approaches is shown by Wipf's total synthesis of the enantiomer of hennoxazole $A .{ }^{66}$ Thus, condensation of the acid 101 with serine methyl ester hydrochloride, via the mixed anhydride, gave the β-amido alcohol 102 which was cyclised to the oxazoline 103 with the Burgess' reagent. ${ }^{84}$ Oxidation of 103 with copper(II) bromide and DBU then gave the desired oxazole 104 in 73\% overall yield (Scheme 5).

Reagents: i, Serine.OMe. $\mathrm{HCl}, \mathrm{i}-\mathrm{BuOCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, Burgess' reagent, THF; iii, $\mathrm{CuBr}_{2}, \mathrm{DBU}, \mathrm{HMTA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (73% over 3 steps).

Scheme 5

Elaboration of the side chain in 104 and saponification of the ester gave the acid precursor 105 to the second oxazole. The acid 105 was next coupled to the tetrahydropyran-amine unit 106 under standard peptide coupling conditions to give the β-amido alcohol 107 in 63% yield. Oxidation of 107 with Dess-Martin periodinane then gave the intermediate amido aldehyde, which was smoothly
cyclodehydrated using the conditions described previously to give the enantiomer of hennoxazole A 108 after desilylation with TBAF in 42% overall yield (Scheme 6). ${ }^{66}$

106

108
Reagents: i, PyBOP, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (63\%); ii, Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ iii, $\mathrm{BrCl}_{2} \mathrm{CCCl}_{2} \mathrm{Br}, \mathrm{PPh}_{3}$, 2,6-di-tert-butyl-4-methylpyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, DBU, MeCN; TBAF, THF, (42% over 4 steps)

Scheme 6

2.1.3 The Model Study

As highlighted in the previous section, the methodology of Cornforth ${ }^{79}$ was utilised to generate the 'top' 2,4-disubstituted oxazole, 90 , of the model system. Exposure of this oxazole to N-bromosuccinimide under reflux conditions in carbon tetrachloride ${ }^{95}$ provided a crude mixture of mono- and di-brominated esters, 109 and 110 respectively, together with a small amount of the 5 -substituted product 111 and unreacted starting material. After extensive and somewhat troublesome purification, the desired mono-brominated oxazole 109 was isolated albeit in only 41% yield (Scheme 7).

Reagents: i, NBS/AIBN, (41\%).
Scheme 7
Additon of an ethereal solution of triphenylphosphine to 109 next gave the Wittig salt 112 as a hygroscopic pale yellow solid. Deprotonation of this mono-oxazole phosphonium salt with n-butyllithium at $-78^{\circ} \mathrm{C}$ in THF produced a solution of the corresponding ylide which slowly decolourised upon addition of the model C5aldehyde, leading to the expected olefin 113 in an acceptable 45\% yield (Scheme 8). ${ }^{1} \mathrm{H} \mathrm{nmr}$ data confirmed the formation of the (E)-geometric isomer of 113 after examination of the coupling constants for the respective olefinic protons $\left(\mathrm{H}_{\mathrm{a}} / \mathrm{H}_{\mathrm{b}} J\right.$ $=16.0 \mathrm{~Hz}$).

Reagents: i, $\mathrm{PPh}_{3},(82 \%)$; ii, n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$; iii, 5-tert-butyldimethylsilylpentanal, (45\%).

Scheme 8

The lower chain 118 was synthesised in eight steps starting from the Garner acid $114,{ }^{\%}$ a common chiral building block which features in many heterocyclic natural product syntheses. A peptide coupling reaction between 114 and serine methyl ester first gave the corresponding amide 115 in readiness for the cyclodehydration-oxidation sequence to install the 'bottom' oxazole ring of the model system. This sequence utilised Burgess' reagent ${ }^{84}$ to give the corresponding oxazoline in a 61% yield and as a mixture of diastereoisomers. Oxidation of this mixture with $\mathrm{BrCCl}_{3} / \mathrm{DBU}^{91}$ finally led to the oxazole, 116a, in a good yield of 75%.

Following reduction of the methyl ester group in 116a to the corresponding aldehyde, 116b, a Wadsworth-Emmons olefination using 117 as the coupling partner and employing finely ground barium hydroxide octahydrate as base, ${ }^{97}$ successfully gave the enone, 118, in a 71% yield (Scheme 9). Again, examination of the coupling constants $\left(\mathrm{H}_{\mathrm{c}} / \mathrm{H}_{\mathrm{d}} J=15.6 \mathrm{~Hz}\right)$ confirmed the (E) geometry.

118
Reagents: i, Serine $\mathrm{OMe} . \mathrm{HCl}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}$ then DCC, (74\%); ii, Burgess reagent, THF, (75\%); iii, $\mathrm{BrCCl}_{3}, \mathrm{DBU}, 0-25^{\circ} \mathrm{C},(75 \%) ;$ iv, DIBAL-H; v, PySO_{3} in DMSO, $\mathrm{Et}_{3} \mathrm{~N},(60 \%)$; vi, $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}, 117, \mathrm{THF},(71 \%)$.

Scheme 9

With the top and bottom fragments, 113 and 118, now in hand, protecting group manipulation and coupling of these fragments was now envisaged to give the precyclisation fragment, 119. The realisation of a macrolactamisation protocol requires that the ester function at the C 4 position of the 'top' oxazole in 119 must be removed to reveal a free carboxylic acid, such that a ring forming lactamisation reaction may be performed with the fully deprotected serine residue at the C 2 position of the 'bottom' oxazole heterocycle. Protecting group chemistry was therefore of utmost importance, especially when applied to ulapualide A itself, so not as to affect any of the sensitive functionality present in the side-chain. For
this reason, allyl ester protection of the carboxyl group was chosen, with the mild deprotection conditions of palladium (0) unlikely to affect any other part of the molecule (Scheme 10).

Scheme 10
Thus, hydrolysis of the top-chain ester, 113, using lithium hydroxide in a 3:1 THF:water mixture afforded the carboxylic acid, 120, in quantitative yield. Protection of the acid as the allyl ester was then effected by reacting 120 with allyl bromide under phase transfer conditions, to give the fully protected oxazole, 121 in a 59\% yield (Scheme 11).

121
Reagents: i, LiOH, 3:1 THF: $\mathrm{H}_{2} \mathrm{O}$ (100\%); ii, Allyl bromide, aliquat 336, 5d (59\%).

To reveal the free hydroxyl of the TBDMS ether, $\mathbf{1 2 1}$ was reacted with a slight excess of TBAF in THF only to provide the deprotected alcohol, 122, in a disappointing 32% yield. Transformation of the substrate to a less polar product had also occurred. Analysis of this material indicated loss of the olefinic peaks which suggested that a conjugate addition of the naked anion into the alkene could have occurred, thus producing the tetrahydropyran product 123. Acid deprotection however, using a 3:1:1 mixture of $\mathrm{AcOH}: \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}$, gave the alcohol 122 in a 95% yield (Scheme 12). ${ }^{98}$

Reagents: i, TBAF, THF, 12h
Scheme 12

With the C5 top-chain now complete, our attention turned to the bottom fragment 125. The double bond of the conjugated enone system in $\mathbf{1 1 8}$ needed to be reduced in order to give the correct conformation for the macrocyclisation step, and also to avoid any complications with the palladium(0) deprotection of the allyl ester.

Hydrogenation of 118 with both homogeneous and heterogeneous catalysts proved fruitless, even under the forcing conditions of 70atms H_{2}. Attention therefore turned to the selective 1,4-reduction of the enone using calcium metal in liquid ammonia. ${ }^{99}$ A variety of conditions were tried ranging from 5 equivalents through to 30 equivalents of calcium. 'Selective' reduction of the enone only occurred under the extreme conditions of 30 equivalents, although disappearance of the oxazole proton resonance at $\delta 7.77 \mathrm{ppm}$ also occurred under these conditions. As a consequence of these disappointing results, it was decided that conjugate addition of a methyl carbanion to the enone in 118 was now the most
favoured route. Thus, addition of methyl lithium to a cooled solution of copper iodide first produced a yellow solution of the methyl cuprate, $\mathrm{Me}_{2} \mathrm{CuLi}$. Dropwise addition of the enone system 118 then led to a clear solution and formation of the C9 β-methyl ketone, 124, in an adequate 55% yield (Scheme 13).

125
Reagents: i, $\mathrm{Me}_{2} \mathrm{CuLi}$, 2 h (55\%); ii, $\mathrm{LiOH}, 3: 1 \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}$ (100%).

Scheme 13

Exposure of the oxazole ester, 124, to aqueous lithium hydroxide next presented the requisite acid, 125, in a quantitative yield.

To complete the synthesis of the model system, we required to couple the top and bottom chains, 122 and 125. Deprotection and macrolactamisation, followed by cyclodehydration and oxidation would then furnish the target. A review of the literature revealed a plethora of available methods for ester formation. ${ }^{100}$ One of the most common methods found, a carbodiimide condensation, involved treatment of the carboxylic acid with the alcohol and EDC in dichloromethane containing a catalytic amount of DMAP. This method served us well, giving an excellent 73% yield of 119 from the two respective fragments 122 and 125 (Scheme 14).

Scheme 14

With both the top and bottom chains now successfully coupled, all that remained was to unmask the carboxylic acid and deprotect the BOC-protected oxazolidine in 119, in order to attempt macrolide formation. Cleavage of the allyl ester was the first deprotection performed (Scheme 15), using pyrrolidine in the presence of a catalytic amount of palladium(0) to give the desired acid, 126, in a crude 70% yield. ${ }^{101}$ A 50\% TFA solution next gave the deprotected oxazolidine 127 and we were now ready to try the crucial macrolactamisation reaction.

127
Reagents: i, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, pyrrolidine; ii, 50% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Scheme 15

Like esterification, these types of transformation were just as prevalent within the literature. ${ }^{102}$ Diphenylphosphorylazide (DPPA) seemed to be a fairly common phosphorus based acyl activating reagent, and so this was used in the initial macrolactamisation studies. Indeed, exposure of the substrate, 127, to DPPA in the presence of DIPEA under high dilution conditions afforded the macrolactam 78 in 20\% yield (Scheme 16).

Reagents: i, DPPA, DIPEA, DMF, 5d, (20\%).

Scheme 16

Enthused by this positive result, a cyclodehydration procedure towards the desired ring system now became feasible. This was effected using Burgess' reagent ${ }^{84}$ to give the oxazoline, 128, in a 67% yield. 'Oxidation' using $\mathrm{BrCCl}_{3} / \mathrm{DBU}$, ${ }^{91}$ however, did not give the desired tris-oxazole, possibly due to enolisation of the ketone on the bottom chain.

In retrospect, the failure of this reaction was not too surprising. All previous examples of this oxidation have required an enolisable group at the 4-position of the oxazole ring and in our system, this was not the case. A similar oxidation using $\mathrm{CCl}_{4} / \mathrm{DBU} /$ pyridine $/ \mathrm{MeCN}$ had also been used in our research group to furnish the bis-oxazole core of muscoride A. Even here, the presence of an ester functionality attached to the terminal oxazole made enolisation possible through the oxazole ring (see page 31).

Reagents: i, Burgess' reagent (67\%); ii, NiO_{2} (46\%).

Scheme 17

A metal oxide oxidation, although renowned for being low yielding, was now the next option. Thus, portionwise addition of nickel peroxide ${ }^{87}$ to a refluxing solution of 128 gave the tris-oxazole macrolide, 77, in a surprisingly good yield of 46%, probably due to the high degree of conjugation acting as the driving force (Scheme 17).

The structure of 77 followed conclusively from inspection of its ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum which showed three singlets at $\delta 8.07,8.06$ and 7.19 ppm , indicative of the three oxazole protons of ulapualide A which occur at $\delta 8.15,8.13$ and 7.48 ppm respectively. Another characteristic feature of the tris-oxazole moiety is its UV absorption spectrum which displays absorption maxima in the range $\lambda_{\max } 240-260$ nm . Indeed, this diagnostic fingerprint occurred at $\lambda 263 \mathrm{~nm}$ for the model system and reinforced our evidence for its structure.

2.1.4 Conclusions

We have demonstrated a new approach to the tris-oxazole macrocyclic portion of ulapualide A . The design for this synthesis was inspired by the isolation of the halishigamides and the possible implications that these molecules have regarding the biosynthesis of the tris-oxazole backbone in the ulapualides. This model study has been achieved using a number of oxazole ring-forming reactions with the key macrolactamisation reaction allowing the central oxazole ring to be formed at the final stage of the synthesis.

2.2 The Side-Chain in Ulapualide A

2.2.1 The Stereochemical Dilemma

The completion of the aforementioned model study paved the way for its application to the natural product, ulapualide A. For this to be realised, the synthetic problem of the side-chain had to be addressed. The side-chain of ulapualide A , contains eight out of the ten chiral centres found within this natural product and has proved a somewhat daunting challenge, made all the more difficult by the differences found between the cmr data of Chattopadhyay's synthetic and natural ulapualide A. Upon completion of ulapualide A, in January 1998, these differences led us to conclude that the stereochemistry of the synthetic ulapualide differed from that in the natural product at one or more of the stereogenic centres along the C28-C33 portion of the top-chain. This suspicion was later confirmed by Panek and Fusetani who through extensive nmr techniques together with degradation studies, established the stereochemistry of the related mycalolide metabolites $\mathbf{2 2 - 2 4}$, stating that this prediction applied to the ulapualides. ${ }^{103}$

As illustrated below, it is interesting to see where the differences in stereochemistry lie. For the C28-C32 portion of the top-chain, Panek's prediction appears to be enantiomeric as compared to ours. The C33 centre together with the remaining three chiral centres at C37-C39 are of the same stereochemistry to that predicted by the metal chelation model.

Molecular Modelling Prediction

Synthetic Modelling Prediction

It is uncanny therefore that the differences between our synthetic ulapualide and natural ulapualide A are simply:

- The differing stereochemistry at C32, ie β-OMe instead of α-OMe, which is reflected in the different data in their cmr spectra, viz C-32, $\delta 81.0 \mathrm{ppm}$ (natural $\delta 81.8 \mathrm{ppm}$).
- The mirror image (enantiomeric) relationship between the C28-C30 centres in the two compounds, which is not reflected in their cmr shift data, viz C-28, $\delta 79.9 \mathrm{ppm}$ (natural $\delta 80.0 \mathrm{ppm}$), C-29, $\delta 34.1 \mathrm{ppm}$ (natural δ 34.6), $\mathrm{C}-30, \delta 72.8 \mathrm{ppm}$ (natural $\delta 73.0 \mathrm{ppm}$), $\mathrm{C}-29-\mathrm{Me}, \delta 9.1 \mathrm{ppm}$ (natural $\delta 9.1 \mathrm{ppm})$.

2.2.2 Strategy and Design

With the remarkable correlations made between synthetic and natural ulapualide A, together with the findings of Panek, it was decided to embark on a newly designed synthesis to the revised stereochemistry of the top-chain, with 129 now as our target.

129
For this revised target, we still intended to use many of the key disconnections made previously in our recent total synthesis. Hence, prudent disconnection across the olefinic double bond C25-C26 and the ester at C30 together with the formyl enamine disconnetion revealed the C16 structure 130 now as our target. Notice the choice of hydroxy protecting groups at C30, C38 and C41, together with the dimethyl acetal masking the aldehyde at C26. With this dimethyl acetal, MOM, TBDMS, TBDPS derivative 130, we were confident of selective removal
in the order $\mathrm{CH}(\mathrm{OMe})_{2}>\mathrm{OMOM}>\mathrm{OTBDMS}$ using the reagent dimethyl boron bromide. ${ }^{104}$

130

131

132

Scheme 18

This C26-C4l fragment 130 was to be derived from the elaboration of the two sub-units 131 and 132 using a Wadsworth-Emmons coupling procedure. The stereochemical detail associated with each of these sub-units would be generated by applying the Evans' chiral aldol protocol in combination with the controlled ring opening of chiral epoxy alcohols by methyl nucleophiles.

2.2.3 The C26-C34 Aldehyde Fragment 131

Rapid generation of the first two chiral centres in this fragment 131 came from the Evans aldol reaction between the C3-aldehyde 133 and the commercially available (R)-4-benzyl-3-propionyl-2-oxazolidinone $134 .{ }^{105}$ Addition of this aldehyde to a solution of the boron enolate derived from the imide 134 at $-78^{\circ} \mathrm{C}$ led to the syn-aldol product 135 in 80% yield and with excellent diastereoselectivity (de $>95 \%$ from ${ }^{1} \mathrm{H} \mathrm{nmr}$). Reduction of the auxilliary in 135 with lithium methoxyborohydride ${ }^{106}$ then gave the diol 136 which, following protection, gave the mixed methyl ether-silyl ether 137b in 56% yield over three steps (Scheme 19).

133 134

138
iv $\begin{aligned} & \square \mathbf{a}, \mathrm{R}=\mathrm{H} \\ & \mathrm{b}, \mathrm{R}=\mathrm{Me}\end{aligned}$
Reagents: i, $\mathrm{Bu}_{2} \mathrm{BOTf}_{\mathrm{Et}} \mathrm{E},-78{ }^{\circ} \mathrm{C}(80 \%)$; ii, $\mathrm{LiBH}_{4}-\mathrm{MeOH}(90 \%)$; iii, tert $-\mathrm{BuPh}_{2} \mathrm{SiCl}$, imidazole, (94%); iv, NaH , MeI, (66%); v, $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}$-C, (92%); vi, $(\mathrm{COCl})_{2}, \mathrm{DMSO}^{2} \mathrm{Et}_{3} \mathrm{~N},(87 \%)$.

Scheme 19

The stereochemical assignment of the syn-aldol product 135 was secured by conversion of the diol 136 into the corresponding acetonide from which the ${ }^{1} \mathrm{H}$ nmr vicinal coupling constants for the protons on carbons C32-C33 could be readily extracted. Indeed, $J_{32} .33=2.6 \mathrm{~Hz}$ confirmed the desired synstereochemistry. ${ }^{107}$

Hydrogenolysis of $\mathbf{1 3 7 b}$ and oxidation of the resulting primary alcohol next led to the protected aldehyde 138. This aldehyde was now ready to undergo a second Evans aldol reaction, ${ }^{105}$ this time with the boron enolate derived from the unsaturated imide 143 (Scheme 20). The imide 143 was produced smoothly from the mono benzyl ether of propane-1,3-diol 139, following: i , oxidation and a Wittig reaction with ethoxycarbonylmethylenetriphenylphosphorane, leading to 140 ; ii, saponifiaction of 140 and conversion into the acid chloride 142 , and finally iii, treatment of 142 with the anion derived from (R)-4-phenylmethyl-2oxazolidinone to produce 143 . When the aldehyde 138 was added to a solution of the boron enolate derived from the imide 143 at $-78{ }^{\circ} \mathrm{C}$, work-up and chromatography led to the anti-aldol product 144 as a $1: 1$ mixture of Z - and E isomers in 70% yield and $>95 \%$ de.

143
144

Reagents: i, $\mathrm{DMSO},(\mathrm{COCl})_{2}, \mathrm{Et}_{3} \mathrm{~N}$, then $\mathrm{EtO}_{2} \mathrm{CCH}=\mathrm{PPh}_{3}(68 \%)$; ii, $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}(95 \%)$; iii, $(\mathrm{COCl})_{2}$, DMF; iv, $n-\mathrm{BuLi}, 4$-phenylmethyl-2-oxazolidone, $-78^{\circ} \mathrm{C}(80 \%)$: v, $\mathrm{Bu}_{2} \mathrm{BOTf}$,
$\mathrm{Et}_{3} \mathrm{~N},-7{ }^{\circ} \mathrm{C}$, then 138 (70%); vi, $\mathrm{LiBH}_{4}-\mathrm{MeOH}(90 \%)$; vii, $\mathrm{MeSO}_{2} \mathrm{Cl}^{-} \mathrm{Pr}_{2} \mathrm{NEt}(90 \%)$; viii, $\mathrm{LiBH}_{4}-\mathrm{MeOH}(82 \%)$.

Scheme 20
In readiness for oxidative cleavage of the double bond in 144 , the imide residue was next reduced to the alcohol 145 in a 90% yield using lithium methoxyborohydride. ${ }^{100}$ Mesylation of 145 using mesyl chloride in the presence
of triethylamine then gave the mesylate 146 in 85% yield which was further reduced, again using lithium borohydride. This gave the corresponding C29- β methyl compound 147 in a 95% yield. Notice how the reductive removal of the auxilliary followed by the deoxygenation step has allowed the syn-aldol reaction to function as an apparent anti-aldol reaction, generating the 1,2-anti relationship across the C29-C30 bond. This protocol has been utilised by others in several polypropionate natural product syntheses, ${ }^{108}$ including rapamycin. ${ }^{2 l d}$

The C30-hydroxy group in 147 was next protected as its silyl ether to give 148 in 98% yield (Scheme 21). Ozonolysis of 148 at $-78^{\circ} \mathrm{C}$, followed by a reductive work-up procedure using PPh_{3}, then led to the aldehyde 149 in 80% yield. Brown's chemistry was next utilised to generate the C27-C28 bond of the top chain and also install the final chiral centre of this fragment. ${ }^{109}$ Hence, addition of Brown's (-)-allyldiisopinocampheylborane to the aldehyde 149 proceeded in a highly diastereoselective manner and after chromatography, gave rise to the required hydroxy olefin 150 (Scheme 21).

Reagents: i, TBDMS-OTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (95\%); ii, $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}(80 \%)$; iii, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{MgBr}$, (-)IPCBOMe, $-78^{\circ} \mathrm{C}(70 \%)$.

Scheme 21
With all of the chiral centres now in place for this fragment, it was a good time to prove the stereochemical assignment of the C28-C30 anti-diol. Indeed, much work in analysing the stereochemistry of 1,3-diols has been done by the research groups of Rychnovsky and Evans which relies on the conformational properties of the corresponding 1,3-diol acetonides (4,6-dialkyl-2,2-dimethyl-1,3-dioxanes). ${ }^{107}$ Chemical shift correlation of the ${ }^{13} \mathrm{C} \mathrm{nmr}$ resonances of the three acetonide
carbons has been shown to be a reliable method for determination of the relative stereochemistry in such systems. Application of this method to our own system produced the acetonide 151. The ketal carbon resonance at $\delta 100.6 \mathrm{ppm}$ in $\mathbf{1 5 1}$ together with the two methyl carbons resonating at $\delta 23.9 \mathrm{ppm}$ and $\delta 25.0 \mathrm{ppm}$ was indicative of an anti-acetonide existing in a twist-boat conformation in order to avoid the 1,3-diaxial interactions that would be present in either chair conformation.
 151

This stereochemical assignment was further reinforced by examination of the nOe enhancements obtained after irradiating the C 4 and C 5 protons. This was possible due to the clear splitting in this region of the ${ }^{1} \mathrm{H} n \mathrm{~nm}$.

9%

49

With the stereochemistry of fragment $\mathbf{1 5 0}$ now secure, the final stages of our synthesis were nothing more than protecting group manipulations. Hence, conversion of the C28 secondary alcohol in 150 into the corresponding methyl ether 151 was achieved under mild methylating conditions using methyl triflate and $2,6-$ DTBP. Selective deprotection of the secondary TBS ether in 151 using PPTS in ethanol next gave the desired alcohol 152 which was immediately reprotected as its methoxymethyl ether 153 in a 95% yield. Ozonolysis of the terminal double bond in 153 then led to the aldehyde 154 which was protected as its dimethyl ketal $\mathbf{1 5 5}$ in 95% yield. Finally, deprotection of the primary silyl ether in 155 using TBAF provided the alcohol 156 in quantitative yield, which after oxidation using TPAP-NMO ${ }^{110}$ produced the aldehyde 131 (Scheme 22). We were now in a position to couple this aldehyde with the β-keto phosphonate fragment, 132.

Reagents: i, MeOTf, 2,6-di-tert-butylpyridine (98\%); ii, PPTS, ethanol, (90%); iii, MOM-Cl, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ (95\%); iv, $\mathrm{O}_{3}, \mathrm{PPh}_{3}$, (89\%); v, TMOF, MeOH, pTSA (98%); vi, TBAF, (100%); vii, TPAP, NMO (89%)

Scheme 22

2.2.4 The C35-C41 β-Keto Phosphonate Fragment 132

The synthesis of the phosphonate 132, required for the projected coupling reaction with 131 , was achieved in twelve steps starting from the E-allylic alcohol 157 and
featured the regiospecific chiral epoxide ring opening reactions $158 \rightarrow \mathbf{1 5 9}$ and $163 \rightarrow 164$ as key reactions. ${ }^{111}$

Reagents and conditions: i, (+)-DET, Ti(O $\left.\mathrm{O}^{\mathrm{P}}\right)_{4}, \mathrm{t}-\mathrm{BuOOH}(76 \%) ; \mathrm{ii}, \mathrm{Me}_{3} \mathrm{Al}$; iii, NaIO_{4} (84%); iv, $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}$ (94%); v, DIBAL (96%); vi, (-)-DET, $\mathrm{Ti}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{4}, \mathrm{t}-\mathrm{BuOOH}(85 \%)$; vii, MeMgBr , $\mathrm{CuI}, \mathrm{THF} ; \mathrm{NaIO}_{4}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(89 \%)$; viii, TBDMS-OTf, 2,6-Lutidine (100%); ix, PPTS, MeOH, DCM (96%); x, TPAP, NMO (94%); xi, MePO(OMe) ${ }_{2}, n-\operatorname{BuLi}(90 \%)$; xii, PDC, DMF (92%).

Scheme 23

Hence, the phosphonate was synthesised from the chiral 1,2-diol intermediate 159 which was itself produced from the E-allylic alcohol 157 using a similar strategy to that used in the synthesis of 143 . After periodate cleavage of this diol to the aldehyde 160, a Wittig reaction between 160 and carbomethoxytriphenylyphosphorane next led to the E-unsaturated ester 161 which on reduction with DIBAL-H accessed the E-hex-2-en-1-ol 162. Epoxidation of $\mathbf{1 6 2}$ to 163 using the Sharpless protocol ${ }^{112}$ with (-)-diethyl tartrate, followed by chelation controlled epoxide ring opening with methylmagnesium
bromide next led to the 1,3-diol 164 in 85% yield. Protection of the primary and secondary hydroxy groups in $\mathbf{1 6 4}$ as their tert-butyldimethylsilyl ether $\mathbf{1 6 5}$, followed by selective deprotection of the primary alcohol, then gave 166 which was smoothly oxidised to the corresponding aldehyde 167 using TPAP-NMO. ${ }^{110}$ Finally, treatment of the aldehyde 167 with dimethyl methyl phosphonate in the presence of n-BuLi followed by oxidation of the resulting carbinol 168 using PDC in DMF then produced the phosphonate 132 (Scheme 23).

After storage of the phosphonate $\mathbf{1 3 2}$ for ~ 1 year, ${ }^{1} \mathrm{H}$ nmr revealed to our surprise that the benzyl ether contained within this fragment had been oxidised to the corresponding benzoate ester 169 (Scheme 24). This was confirmed via ${ }^{13} \mathrm{C} \mathrm{nmr}$ which showed a singlet at $\delta 166.6 \mathrm{ppm}$, indicative of an ester carbonyl carbon, and also by mass measurement data. We were confident however, that this fragment was still a suitable precursor to the key Wadsworth-Emmons olefination and that selective deprotection of the benzoate ester could be achieved later in the synthesis.

Scheme 24

2.2.5 The Wadsworth-Emmons Olefination

The crucial Wadsworth-Emmons olefination between the phosphonate 132 and the aldehyde 123 was accomplished to give the E-alkene 169 in an excellent 90% yield using barium hydroxide in wet THF as medium (Scheme 25). ${ }^{97}$

Reagents and conditions: i, $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$, wet THF (90%).
Scheme 25

2.2.6 Conclusions

The major hurdle in the synthesis of the side-chain 170 was deciphering the information presented to us with the completion of Chattopadhyay's total synthesis of ulapualide A and comparison with the natural product. We were greatly aided in this process by the timely publication of Panek et al and it was this that prompted us to revise our target to 130.

The synthesis was based largely upon the previous synthesis by Chattopadhyay which used the Wadsworth-Emmons olefination as the key coupling reaction. The stereochemical detail associated with each of the two sub-units 123 and 169 necessary to perform this key reaction was generated using a combination of Evans aldol, Brown's allylboration and Sharpless epoxidation techniques. All of this chemistry was put in place to give 800 mg of $\mathbf{1 7 0}$ with the stereochemical integrity of the newly generated centres along the C28-C33 portion of the sidechain confirmed via a range of nmr techniques.

2.3 The Bottom-Chain 171 of Ulapualide A

2.3.1 Strategy and Design

With eight out of the ten chiral centres found within ulapualide A now in place, we needed to address the remaining two chiral centres at C 3 and C 9 contained along the bottom chain of the natural product. Hence, disconnecting across the central oxazole ring and the lactone functionality in the natural product reveals 171, the fragment of interest.

171
Essentially, this fragment consists of a β-methyl ketone moiety attached both to an oxazole ring system and to a β-hydroxy ester which closes the lactone ring. The major problem encountered with the corresponding fragment in our previous total synthesis of ulapualide A was knowing which methyl orientation (α or β) had been generated at the C9 position. A 1,4 conjugate addition of methyl carbanion onto an α, β-unsaturated ketone gave a $3: 2$ mixture of C 9 methyl epimers, with the major product assigned as the α-orientation. This assignment followed from comparison of nmr spectroscopic data between both epimers and natural ulapualide A, together with consideration of molecular mechanics modelling data. Alternative chemistry therefore needed to be employed to give each of the C9 methyl epimers separately. One possible disconnection, across the C6-C7 bond, revealed the Weinreb amide 172 and a functionalised Grignard coupling partner, 173 (Scheme 26).

172

173

Scheme 26

Results from the work of Mann et al have suggested that formation of the Weinreb amide $\mathbf{1 7 2}$ containing the chiral methyl group would be feasible. ${ }^{113}$ This goal can be reached using the technique of cupration of chiral bromoallenes derived from propargylic mesylates. With this strategy, the control of stereochemistry turns out to be a problem of controlling the ethynylation of a chiral (enantiomerically pure) aldehyde.

Disconnection of the Grignard partner 173 led us to the chiral β-hydroxy ester 174 , formed from the stereoselective reduction of the β-keto ester 175 . To complete the retrosynthetic strategy, the β-keto ester 175 would be accessible from the alkylation of the dianion of methyl acetoacetate 177 with 176 (Scheme 27).

Scheme 27

2.3.2 The Weinreb Amide Fragment 172

Work towards the Weinreb amide fragment 172 began with the protected, configurationally stable Garner aldehyde 178 which has been widely used in nucleophilic addition reactions. ${ }^{114}$ The addition of nucleophiles to $\mathbf{1 7 8}$ under chelation control has been shown to produce good syn- or threo-selectivity, whereas good Felkin-Ahn control in which chelation is precluded has been shown to give high levels of anti- or erythro-selectivity. ${ }^{\text {114b }}$ Indeed, the additon of ethynyltrimethylsilane to Garner's aldehyde 178 under either Felkin-Ahn or chelation controlled conditions has earlier been shown to proceed with high erythro- and threo-levels of selectivity respectively (Scheme 28). These observations provided us with an ideal route to access both of the C9-methyl epimers found in ulapualide after converting each of the alcohol groups in 179 and 180 into their corresponding methyl groups.

Reagents: $\mathrm{i},{ }^{n} \mathrm{BuLi}$, (1-ethynyl)trimethylsilane, HMPT, THF; ii, EtMgBr, (1-ethynyl)trimethylsilane, CuI, THF/Me ${ }_{2} \mathrm{~S}$

Felkin-Ahn

Chelated

Scheme 28

Hence reaction of 178 with lithiated ethynyltrimethylsilane in THF at $-78^{\circ} \mathrm{C}$ in the presence of the cation-complexing agent HMPT produced the erythro-alkynol 179 with 95% diastereoselectivity. ${ }^{114 a}$ After desilylation, the alcohol was transformed into the mesylate using triethylamine and mesyl chloride. $\mathrm{S}_{\mathrm{N}} 2$

Reagents and conditions: i, TBAF; ii, $\mathrm{MeSO}_{2} \mathrm{Cl}, \mathrm{Et} \mathrm{H}_{3} \mathrm{~N}$; iii, $\mathrm{LiBr}, \mathrm{CuBr} . \mathrm{Me}_{2} \mathrm{~S}$, THF (38% over 3 steps); iv, $\mathrm{MeMgBr}, \mathrm{LiBr}, \mathrm{CuBr} . \mathrm{Me}_{2} \mathrm{~S}$ (80%).

Scheme 29
reaction of CuLiBr_{2} on this mesylate then gave the bromo-allene 181 which was then alkylated using the cuprate derived from methyl magnesium bromide, copper bromide-dimethyl sulfide complex and lithium bromide (Scheme 29). This gave the propargylic derivative 182 as a crystalline solid in 80% yield where the expected anti-stereochemistry was confirmed by an X-ray crystal structure analysis (Figure 2.3.2.1 and Appendix 4.3).

X-ray structure showing the anti-stereochemistry for compound 182

Figure 2.3.2.1

With this compound in hand, and the stereochemistry secure, we next needed to manipulate the terminal acetylene in 182 into a Weinreb amide. This was
successfully accomplished after silylation of 182 and subsequent oxidation with dicyclohexylborane and $\mathrm{H}_{2} \mathrm{O}_{2}$ to give the carboxylic acid 184 which was further transformed into the Weinreb amide 185 via a peptide coupling reaction with N, O-dimethylhydroxylamine hydrochloride, employing pyBOP as the coupling reagent (Scheme 30).

Reagents: i, n - $\mathrm{BuLi}, \mathrm{Me}_{3} \mathrm{SiCl}(61 \%)$; ii, Dicyclohexylborane, $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$; iii, (MeO)MeNH.HCl, py-BOP, $\mathrm{Et}_{3} \mathrm{~N}$ (54% over two steps).

Scheme 30

2.3.3 The β-Hydroxyester Fragment 173

With the Weinreb amide fragment 185 now in hand, our attention was directed towards the synthesis of its coupling partner 173. Thus, methyl acetoacetate 177 was first converted into its dianion, which was then alkylated with the TBDMS protected iodide 176 to give the β-ketoester 186 in a 73% yield. ${ }^{115}$ Noyori's well known BINAP ligand was next used to effect the chiral reduction of the β-keto ester 186. ${ }^{116}$ However, (R)-Ru-BINAP reduction under 100 atmospheres of hydrogen for 6 days gave only a 3% yield of the desired alcohol 187. By far the major product of this reaction was the diol 174, obtained from the chiral reduction of the β-keto ester moiety followed by deprotection of the primary TBS-ether (Scheme 31). (presumably due to the slightly acidic conditions associated with using methanol as solvent.) However, re-protection of this compound using TBS$\mathrm{Cl} /$ imidazole in DMF gave 187 in multigram quantities. The enantiomeric excess
of this alcohol was $>95 \%$ as determined by ${ }^{19} \mathrm{~F} \mathrm{nmr}$ analysis of its Mosher's ester derivative. ${ }^{117}$

Reagents: i, NaH; ii, n-BuLi; iii, TBDMS-protected 176, (80\%); iv, (R)-Ru-BINAP, MeOH, 100 atms $\mathrm{H}_{2}, 6$ days.

Scheme 31

Protection of the secondary alcohol in 187 using TPS-Cl and imidazole in DMF then gave the desired TPS-ether 189 in 86% yield. Reduction of the ester in 189 using DIBAL-H in THF at $-78^{\circ} \mathrm{C}$ then gave the primary alcohol 190 in 84% yield. Attempted benzyl protection of this primary alcohol using sodium hydride as base however gave only a mixture of silyl migration products, presumably as a result of the alkoxide anion attack at the silicon centres of both the TBS and TPS protecting groups. Milder conditions of $\mathrm{Ag}_{2} \mathrm{O}$ failed to give any benzylated product (Scheme 32).

189

Reagents: i, TPS-Cl, imidazole, DMF (86\%); ii, DIBAL-H, THF, $-78^{\circ} \mathrm{C}(84 \%)$.
Scheme 32

With the failure of this approach, re-examination of our protecting group strategy uncovered the ABO -ortho ester method for the protection of polyfunctionalised carboxylic acids. Ortho esters are ideal carboxyl protective groups against nucleophilic attack by hydroxide or organometallic reagents. Studies carried out by Wipf et al on the mushroom components (S)- γ-hydroxyleucine lactone and (S)- α-vinylglycine have demonstrated the versatility of this protocol ${ }^{118}$ which is complementary to the OBO-ester technology of Corey. ${ }^{119}$

Thus, returning to our multigram stock of compound 189 , selective deprotection of the primary TBS ether using CSA in a $1: 1 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture provided the alcohol 192 which was brominated under the mild conditions of $\mathrm{CBr}_{4} / \mathrm{PPh}_{3}$ to give the bromide 193 in 87% yield over two steps (Scheme 33). Hydrolysis of the methyl ester using LiOH in 3:1 THF:water next gave the carboxylic acid, 194, albeit in only 80% yield. Also evident in the crude ${ }^{1} \mathrm{H}$ nmr of this reaction were olefinic signals due to E_{2} elimination of hydrogen bromide leading to a terminal olefin. Condensation of carboxylic acid 194 with the epoxy alcohol 195 in the presence of EDC and DMAP next led to the epoxy ester 196 in a 64% yield. Zirconocene-catalysed ortho ester formation was next achieved using $10 \mathrm{~mol} \%$ of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $2 \mathrm{~mol} \%$ of AgClO_{4} which finally led to the ortho ester 197 in 87% yield (Scheme 33).

Reagents: i, CSA, 1:1 MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(98 \%)$; ii, $\mathrm{CBr}_{4} \mathrm{PPh}_{3}$ (92%); iii, LiOH, THF- $\mathrm{H}_{2} \mathrm{O}$ (80%); iv, EDC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (64%); $\mathrm{v}, \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, \mathrm{AgClO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(87 \%)$.

Scheme 33

2.3.4 The Coupling Reaction

With both of the fragments 185 and 197 now at our disposal, thoughts were directed towards the key coupling reaction. Initial attempts at Grignard reagent formation proved fruitless with starting bromide 197 being recovered. However, work carried out by Negishi et al has highlighted a clean and convenient procedure for converting primary alkyl iodides into the corresponding alkyllithium derivative by treatment with tert-butyllithium. ${ }^{120}$ Although we had a primary bromide, lithium-halogen exchange was still attempted in dry diethyl ether at $-78^{\circ} \mathrm{C}$ using two equivalents of tert-butyllithium. After addition of the Weinreb amide, 185, and warming to room temperature, tle showed the appearance of two new products. To our pleasure, ${ }^{1} \mathrm{H}$ nmr together with nominal mass measurement data indeed provided evidence that the reaction had been successful, albeit in a meagre yield of 15% (Scheme 34).

Reagents: i, tert-BuLi, $\mathrm{Et}_{2} \mathrm{O}$ (15\%).

Scheme 34

Although disappointed by the repeatedly poor yields of this reaction, we were still confident that the methods used to generate chirality in each of the two fragments 185 and 197 was not the problem but that the stumbling block lay in the fragment coupling. The use of dithiane coupling reactions for the generation of protected aldol linkages and, more importantly in our case, as a tactic for the union of major synthetic building blocks has received much attention in the literature. ${ }^{121}$ Indeed, coupling of 1,3 -dithianes with electrophiles has been exploited in the total syntheses of many natural products and the generality of the tert-BuLi-10\% HMPA/THF protocol developed by Smith et al in their total synthesis of rapamycin seemed an attractive route for our own system. Hence, the plan was still to construct the C6-C7 bond, but now to effect this transformation via a dithiane alkylation approach.

This route was made all the more attractive due to the fact that we had multigram quantities of the electrophile 193 at our disposal. Furthermore, the chemistry involved in forming the dithiane fragment deviated only slightly from the chemistry that had been used to generate the Weinreb amide. Starting from the acetylene $\mathbf{1 8 2}$, hydroboration using thexylchloroborane-methyl sulfide followed by pH 7 buffered oxidative work-up with hydrogen peroxide, first gave a 58%
yield of the aldehyde 202. ${ }^{122}$ Careful considerations were taken when deciding the appropriate set of conditions for dithiane formation bearing in mind we had present the acid sensitive Garner motif. A range of conditions were tried, all of which gave the desired product 199 but in pitiful yield, with the majority of material falling to baseline on tlc (Scheme 35).

Reagents: i, ThxBHCl. $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$ (58%); ii, TMSSCH ${ }_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{STMS}^{2} \mathrm{ZnI}_{2}, \mathrm{Et}_{2} \mathrm{O}$, (12%).

Scheme 35

Not deterred by this unforeseen problem and confident that the dithiane coupling was the correct strategy, we decided to test the feasibility of this coupling with what little material we had to hand. Hence, using 'standard' dithiane metallating conditions, we were pleased to see a 20% yield of the desired coupled product, 201 (Scheme 36). Prolonged reaction times and slight variations in the reaction conditions failed to increase the yield, but with returned starting material, it was a slight improvement on the Weinreb amide coupling strategy.

Reagents: i, tert-BuLi, 10% HMPA/THF, $-78^{\circ} \mathrm{C},(20 \%)$.

Scheme 36

We speculated that the lack of success in the crucial dithiane alkylation reaction, $v i z 199+200 \rightarrow 201$, was possibly due to the inherent difficulty in effecting clean metalation of the dithiane 199. Aware that many 1,3-dithiane systems prove
stubborn to lithiation, we were drawn to the work of Armstrong and Jones who, similar to ourselves, had reported difficulties with dithiane metallation utilising a variety of bases, solvent systems and chelating additives. ${ }^{123}$ This problem was eventually solved by increasing the acidity of the dithiane 202 by conversion to the monosulfoxide 203 using $m \mathrm{CPBA}$, which was then readily metallated using n butyllithium at $-78^{\circ} \mathrm{C}$. Addition of the aldehyde 204 provided the sulfoxide 205 in good overall yield (Scheme 37).

Reagents: i, $m \mathrm{CPBA}$; ii, n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$, (67% over 2 steps).
Scheme 37

Hence, for our own system, we decided to oxidise the dithiane 199 to the corresponding monosulfoxide 206 in order to make the C 2 proton (dithiane numbering) more acidic. Treatment of dithiane 199 with $m \mathrm{CPBA}$ at $0^{\circ} \mathrm{C}$ provided the monosulfoxide 206 as a mixture of four possible diastereoisomers that appeared as two major spots by tlc.

Reagents: i, mCPBA, $0^{\circ} \mathrm{C},(73 \%)$.
Scheme 38

One pair of diastereoisomers arose from oxidation of the equatorial or axial lone pairs on a sulfur atom, creating the trans and cis monosulfoxides. Another pair of diastereoisomers would then be generated depending on which sulfur atom had been oxidised. After column chromatography, the major product corresponded to the trans pair of sulfoxides. The assignment of trans stereochemistry to the major isomer (Scheme 39) follows by analogy to the oxidation of other monosubstituted dithianes previously reported by Carey and co-workers which also gave predominantly the trans isomer. ${ }^{124}$

Reagents: $\mathrm{i}, m \mathrm{CPBA}, 0^{\circ} \mathrm{C}$.
Scheme 39

With both coupling fragments 206 and 200 in hand, we were ready to continue with the synthesis of the side chain (Scheme 40). However, following treatment of the trans-monosulfoxide 206 with n-butyllithium at $-78{ }^{\circ} \mathrm{C}$ for 15 min and addition of the alkyl iodide 200, we were again disappointed to find only a 14% yield of desired product 207. Repeating the reaction with tert-butyllithium as base failed to give any improvement in yield and with these consistently poor results, we were eventually forced into considering alternative coupling strategies.

Reagents: i, n-BuLi, THF, $-78^{\circ} \mathrm{C}$.
Scheme 40

2.3.5 A Modified Approach to the Bottom-Chain 171

To date, the various efforts made towards synthesising the bottom-chain of ulapualide A 171 have not been successful. However, the initial results that we had achieved whilst employing a lithio-addition to the Weinreb amide had been encouraging (Scheme 41).

Reagents: i, tert- $\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}$ (15\%).

Scheme 41

Although the yield of the reaction (Scheme 41) was very low (15%), we reasoned that a possible cause was the chelating ability of the ortho-ester protecting group which would preclude any addition into the Weinreb amide 185 . We felt that the Grignard strategy provided us with the greatest opportunity for synthesising the bottom chain of ulapualide A 171 and therefore we sought to explore the reaction further by changing the nature of both the organometallic precursor and the electrophilic partner.

The initial focus of the approach was to synthesise the oxazole-aldehyde 208 together with its projected coupling partner 209. Notice how on this occasion we wanted to increase the convergency of the route by introducing the oxazole ring at an earlier stage in the synthesis, ie before performing the fragment coupling. This would obviously have implications regarding the nature of the nucleophile 209.

208

209

We felt a lithio-derivative would prove too basic with the possibility of deprotonation at the C 5 position of the oxazole ring in fragment 208. A Grignard derivative was therefore the initial target, but this time containing a benzyl protected alcohol as opposed to an ortho-ester group which we had previously synthesised.

To test the feasibility of this approach, we decided to carry out a model study with the aldehyde derived from Cornforth oxazole 210, and the simple C3 iodide 211. The results of this model study are shown in Scheme 42.

Entry	Additive	Yield 212(\%)
1	-	-
2	$\mathrm{Me}_{2} \mathrm{Zn}$	15
3	MgBr_{2}	55

Scheme 42

Due to the basic nature of the alkyllithium, it was necessary to transmetallate for another metal. Ultimately, the Grignard reagent derived from freshly prepared MgBr_{2}, proved to give the higher yielding reaction. In the zinc case, the major product was attributed to methyl-zinc addition into the aldehyde. This platform allowed us to continue with some degree of confidence in the synthesis of the oxazole-aldehyde 208, and its coupling partner 209.

Hence, treatment of the oxazolidine 182 with 4 M hydrochloric acid in dioxane cleaved both the acetonide and the tert-butyloxycarbonyl protecting groups to give the hydrochloride salt of the amino-alcohol. The crude amino-alcohol was then coupled to Garner acid 213, under carbodiimide-mediated coupling
conditions to provide the amide 214. Oxidation of the alcohol in 214 was accomplished upon exposure to Dess-Martin periodinane to give the aldehyde 215, which underwent finally a cyclodehydration reaction, using the modified procedure developed by Wipf et al, ${ }^{66}$ to produce the oxazole-acetylene product 216 in moderate yield. Hydroboration utilising the previously employed thexylborane then gave the oxazole-aldehyde $\mathbf{2 0 8}$ in a rather disappointing yield of 37%.

Reagents: i, 4 M HCl in dioxane; ii, $\mathrm{EDC}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (63% over 2 steps); iii, Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\left(82 \%\right.$); iv, $\mathrm{BrCl}_{2} \mathrm{CCCl}_{2} \mathrm{Br}$, $\mathrm{PPh}_{3}, 2,6$-di-tert-butyl-4-methylpyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; v, $\mathrm{DBU}, \mathrm{MeCN},(42 \%$ over 2 steps); vi, ThxBHCl. $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}(37 \%)$.

Scheme 43

Due to problems encountered with the scrambling of silicon protecting groups in the previous synthesis of the bottom chain (Scheme 32, page 60), we needed to explore a different protecting group strategy. Accordingly, exposure of the diol 174 to PMB-trichloroacetimidate in the presence of triflic acid gave the PMBether $\mathbf{2 1 7}$ in 74% yield. Protection of the secondary alcohol 217 as its TBDPSether followed by reduction of the methyl ester with DIBAL-H then provided the alcohol $\mathbf{2 1 9}$ in 67% yield over 2 steps. Benzyl protection of this alcohol using benzyl trichloroacetimidate, again with triflic acid as the catalyst, provided 220 in
84% yield. Removal of the PMB-ether was next accomplished using DDQ to give the alcohol 221 in 59\% yield which after conversion to the corresponding iodide 209 using $\mathrm{PPh}_{3} /$ iodine/imidazole now put us in a position to try our crucial Grignard coupling reaction.

Reagents: i, PMBOC($=\mathrm{NH}$) $\mathrm{CCl}_{3}, \mathrm{TfOH}, \mathrm{Et}_{2} \mathrm{O}(74 \%)$; ii, TPS-Cl, imidazole, DMF; iii, DIBAL-H, THF, $-78^{\circ} \mathrm{C}\left(67 \%\right.$ over 2 steps); iv, $\mathrm{BnOC}(=\mathrm{NH}) \mathrm{CCl}_{3}, \mathrm{TfOH}, \mathrm{Et}_{2} \mathrm{O}$ (84\%); v, DDQ, $19: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}$, (59%); vi, PPh_{3}, I_{2}, imidazole, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{Et}_{2} \mathrm{O},(96 \%)$.

Scheme 44

The Grignard coupling was carried out using identical conditions to the model study, but much to our disappointment gave none of the desired product. Instead, all that was recovered was starting aldehyde 208, proton-quenched iodide 223 and $5-10 \%$ of a product that was tentatively assigned as compound 222 , presumably arising from a Brook-type rearrangement of compound 209. ${ }^{125}$

Reagents: i, tert- $\mathrm{BuLi}, \mathrm{MgBr}_{2}, \mathrm{Et}_{2} \mathrm{O}$
Scheme 45

In an effort to understand the failings of this Grignard reaction, we needed to identify, as far as possible, which component of the coupling was flawed. To this end, we decided to react the oxazole-aldehyde 208 with the commercially available Grignard allylmagnesium bromide and indeed, we were pleased to observe almost complete consumption of the starting material within 10 minutes of the reaction being started. ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectroscopic analysis of the crude reaction mixture together with mass measurement data confirmed the formation of 224 as an unresolved mixture of diastereoisomers.

Reagents: i, Allylmagnesium bromide, $\mathrm{Et}_{2} \mathrm{O}$.
Scheme 46
Knowing the aldehyde 208 was capable of accepting a Grignard reagent, we wanted to investigate the reactivity of the Grignard reagent derived from the alkyl iodide 209. For this investigation, we decided benzaldehyde would be an ideal electrophile, but unfortunately following formation of the Grignard and addition to an ethereal solution of benzaldehyde cooled to $-78^{\circ} \mathrm{C}$, we failed to observe any reaction, with reduced product 223 being recovered after quenching with saturated ammonium chloride.

Scheme 47

As a result of these two simple 'test' reactions, we can tentatively draw conclusions on the failure of this Grignard reaction. We have identified that the
aldehyde fragment 208 does indeed react with allylmagnesium bromide and that the stumbling block lay with the alkyl iodide/Grignard component. Possible explanations for its lack of reactivity are numerous, and may involve chelation of magnesium about the two ether oxygens contained within this fragment. As such, a continued investigation into this coupling is underway with 'fine tuning' of fragment 209 necessary to result in a total synthesis of the bottom chain 217 and ultimately in ulapualide A itself.

2.4 Conclusions

The main emphasis throughout this period of research has been the alternative construction of the 25 -membered tris-oxazole core of ulapualide A. Our disconnection strategy, centred around the halishigamides, simplified the problem to the synthesis of the two subunits 79 and $\mathbf{8 0}$. Cornforth methodology allowed for the incorporation of the 'top' oxazole ring in 79, while some more recent chemistry generated the 'bottom' oxazole in 80 . The success of the key macrolactamisation reaction saw the completion of the tris-oxazole backbone 77, albeit on a model system.

Ever since this success, we have sought to apply the model study to the real target of ulapualide A. In this application, we have 'reviewed' the stereochemistry of the side-chain and, taking the important publication of Panek and Fusetani et al into consideration, the stereochemistry of four chiral centres was revised. This revised side-chain target 130 was generated in a similar manner to the previous synthesis by Chattopadhyay. Hence, the main disconnection relied upon a Wadsworth-Emmons olefination reaction leading to the advanced precursors 131 and 132. A combination of Evans aldol, Brown allylboration and Sharpless epoxidation reactions allowed for the rapid generation of all eight chiral centres. The target 170 was finally completed following a Wadsworth-Emmons olefination employing barium hydroxide octahydrate as base.

The bottom chain 171 provided the next challenge en route to ulapualide A. In this fragment we had to generate both C9-methyl epimers separately and our initial strategy was based upon a Grignard additon of bromide 197 to the Weinreb amide 185. Noyori's BINAP chemistry generated the chiral hydroxyl group in fragment 197, while either chelation or Felkin-Ahn controlled additions to an aldehyde provided the basis for the stereochemistry of the C9-methyl group. However, all attempts to effect fragment coupling via the Grignard reaction met with little success and our synthetic efforts were then concentrated upon a
dithiane alkylation strategy. The repeated failings of this strategy led us to reevaluate the initial Grignard coupling reaction and early indications have shown that minor alterations to the existing fragments will result in their successful coupling.

EXPERIMENTAL

3.1 General Details

All melting points were determined on a Kofler hot-stafe apparatus and are uncorrected. Optical rotations were recorded in spectroscopic grade chloroform or methanol on a Jasco DIP-370 polarimeter at ambient temperature. $[\alpha]_{\mathrm{D}}$ values are recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Ultraviolet spectra were recorded on a Philips PU 8700 spectrophotometer as solutions in either deionised water, or spectroscopic grade methanol or ethanol. ε values are recorded in units of $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. Infrared spectra were obtained using a Perkin-Elmer 1600 series FT-IR instrument or a Nicolet Magna 550 instrument either as liquid films or as dilute solutions in spectroscopic grade chloroform. Proton nmr spectra were recorded on either a Bruker WM 250 (250 MHz), a Bruker DPX 360 (360 MHz), a Bruker AM 400 (400 MHz), a Bruker DRX 500 (500 MHz), a Varian Unity 300 (300 MHz), a Varian Inova 400 (400 MHz) or a Jeol EX $270(270 \mathrm{MHz})$ spectrometer as dilute solutions in deuterochloroform at ambient temperature, unless otherwise stated. The chemical shifts are quoted in parts per million (ppm) relative to residual chloroform as internal standard ($\delta 7.27$) and the multiplicity of each signal is designated by the following abbreviations: s , singlet; d , doublet; t, triplet; q, quartet; sep., septet; br., broad; m, multiplet; app., apparent. All coupling constants are quoted in Hertz. Carbon-13 nmr spectra were recorded on either a Bruker DPX 360 (at 90.6 MHz), a Bruker DRX 500 (at 125.8 MHz), or a Jeol EX-270 (at 67.8 MHz) instrument as dilute solutions in deuterochloroform, unless otherwise stated. Chemical shifts are reported relative to internal chloroform standard ($\delta 77.0$) on a broad band decoupled mode, and the multiplicities determined using a DEPT sequence. Where required, $\mathrm{H}-\mathrm{H}$ COSY, $\mathrm{H}-\mathrm{C}$ COSY and nOe spectra were recorded on a Bruker DPX 360 (360 MHz), or a Bruker DRX 500 (500 MHz) instrument using standard Bruker software with no modifications. Where a mixture of compounds has been produced, the data given is for that mixture unless otherwise stated. Mass spectra were recorded on a VG Autospec, a MM-701CF, a VG Micromass 7070E or a Micromass LCT spetrometer using electron ionisation (EI), electrospray (ES), or fast atom bombardment (FAB) techniques. Microanalytical data were obtained on a Perkin-Elmer 240B elemental analyser.

Flash chromatography was performed on Merck silica gel 60 as the stationary phase and the solvents employed were either of analytical grade or were distilled before use. All reactions were monitored by thin layer chromatography using Merck silica gel 60 F_{254} precoated aluminium backed plates which were visualised with ultraviolet light and then with either acidic alcoholic vanillin solution, basic potassium permanganate solution, or acidic anisaldehyde solution.

Routinely, dry organic solvents were stored under nitrogen and/or over sodium wire. Other organic solvents were dried by distillation from the following: THF and benzene (potassium benzophenone ketyl), dichloromethane (calcium hydride) and methanol (magnesium methoxide). Other organic solvents and reagents were purified by the accepted literature procedures. Dess-Martin periodinane was prepared according to the modified procedure of Ireland and Liu. ${ }^{94 b}$ All organic extracts were dried with magnesium sulfate unless otherwise stated. Solvent was removed on a Büchi rotary evaporator. Where necessary, reactions requiring anhydrous conditions were performed in a flame or oven dried apparatus under a nitrogen or argon atmosphere as stated.

3.2 The Model Study

[(1-Ethoxyethylidene)amino]-acetic acid ethyl ester 88. ${ }^{79}$

Using a modification of the Cornforth procedure, ${ }^{79}$ a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of ethyl acetimidate hydrochloride ($25.0 \mathrm{~g}, 0.2 \mathrm{~mol}$) in ether (100 ml) was shaken for 5 \min in a separating funnel with a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of potassium carbonate (33.1 $\mathrm{g}, 0.24 \mathrm{~mol})$ in water $(70 \mathrm{ml})$. The separated aqueous phase was extracted with diethyl ether (30 ml) and a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of glycine ethyl ester hydrochloride $(28.2 \mathrm{~g}$, 0.2 mol) in water (30 ml) was then added to the combined organic phases with further shaking for 15 min . The separated aqueous layer was once again extracted with diethyl ether (30 ml) and the combined organic phases were washed with water (3 x $30 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave a yellow oil which was distilled to give the imino ether ($20.7 \mathrm{~g}, 59 \%$) as a colourless liquid, bp $90^{\circ} \mathrm{C}$ at 10 mmHg (lit. bp ${ }^{79} 85-86{ }^{\circ} \mathrm{C}$ at 7.5 mmHg); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1745$ and $1677 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 4.24-4.09 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 1.88$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.31-1.24(6 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(69.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.2(\mathrm{~s}), 164.8(\mathrm{~s}), 60.9$ (t), $60.8(\mathrm{t}), 51.3(\mathrm{t}), 15.2(\mathrm{q}), 14.2(\mathrm{q})$ and $14.1(\mathrm{q}) ; \mathrm{m} / 2$ (EI) (Found: $\mathrm{M}^{+}, 173.1072$; $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires M^{+}173.1052).

2-Methyloxazole-4-carboxylic acid ethyl ester $90 .{ }^{79}$

Using a modification of the Cornforth procedure, ${ }^{79}$ a solution of the imino ether 88 $(69.1 \mathrm{~g}, 0.40 \mathrm{~mol})$ in dry THF (150 ml) was added dropwise over 40 min to a stirred suspension of potassium tert-butoxide ($49.2 \mathrm{~g}, 0.44 \mathrm{~mol}$) in dry THF (150 ml) under a nitrogen atmosphere at $-10^{\circ} \mathrm{C}$. Ethyl formate ($35.5 \mathrm{ml}, 0.44 \mathrm{~mol}$) was added sequentially and after stirring at $-10^{\circ} \mathrm{C}$ for 1 h , dry diethyl ether (100 ml) was added to the brown solution. The mixture was held at this temperature for 1 h and was then evaporated in vacuo to leave the potassium enolate salt 89 as a hygroscopic yellow
solid. Hot acetic acid (110 ml) was added to the vigorously stirred residue and reflux was maintained for 15 min before the mixture was cooled to room temperature. The resulting orange solid was dissolved in water (500 ml) and the solution was then basified cautiously with solid potassium carbonate before the aqueous mixture was extracted with diethyl ether ($3 \times 300 \mathrm{ml}$). The combined organic phases were washed with saturated brine $(100 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave a yellow liquid. Distillation of the crude material gave the oxazole ester ($50.4 \mathrm{~g}, 81 \%$), as a straw coloured liquid, bp $106-110^{\circ} \mathrm{C}$ at 20 mmHg (lit. $\mathrm{bp}^{79} 106-110^{\circ} \mathrm{C}$ at 12 mmHg); (Found: $\mathrm{C}, 54.2 ; \mathrm{H}, 5.8 ; \mathrm{N}, 8.8 . \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires $\mathrm{C}, 54.2 ; \mathrm{H}, 5.8 ; \mathrm{N}, 9.0 \%$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 217$ (4760); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1738,1592$ and $1109 ; \delta_{H}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.12(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.37\left(2 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.37\left(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.0(\mathrm{~s}), 160.9(\mathrm{~s}), 143.4$ (d), 133.1 (s), 60.7 (t), 13.9 (q) and 13.4 (q); m / z (EI) (Found: $\mathrm{M}^{+}, 155.0619$; $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires 155.0582).

2-Bromomethyloxazole-4-carboxylic acid ethyl ester 109.

Solid NBS ($6.9 \mathrm{~g}, 39.0 \mathrm{mmol}$) and AIBN ($400 \mathrm{mg}, 20 \% \mathrm{w} / \mathrm{w}$) were added to a stirred solution of the oxazole ester $90(2.0 \mathrm{~g}, 13.0 \mathrm{mmol})$ in carbon tetrachloride (40 ml) and the suspension was then heated under reflux in a nitrogen atmosphere for 17 h . The mixture was cooled to room temperature, then evaporated in vacuo to leave a residue which was purified by chromatography on silica using $1: 1$ toluene:ethyl acetate as eluent to give the bromomethyloxazole ($1.23 \mathrm{~g}, 41 \%$) as a yellow oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}$ ${ }^{1} 1726,1317$ and $1114 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.25(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right)$, $4.39\left(2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 160.5(\mathrm{~s}), 159.9(\mathrm{~s}), 144.7(\mathrm{~d}), 134.1(\mathrm{~s}), 61.3(\mathrm{t}), 19.3(\mathrm{t})$ and $14.0(\mathrm{q}) ; \mathrm{m} / \mathrm{z}$ (EI) $235,233\left(\mathrm{M}^{+}, 6,6 \%\right), 190,188(15,15), 154(91), 110(4)$ and $82(7)$.

4-Ethoxycarbonyloxazol-2-ylmethyltriphenylphosphonium bromide 112.

A solution of triphenylphosphine ($2.4 \mathrm{~g}, 9.2 \mathrm{mmol}$) in dry diethyl ether (17 ml) was added to a solution of the bromomethyloxazole $109(1.1 \mathrm{~g}, 4.6 \mathrm{mmol})$ in dry diethyl ether (5 ml) under a nitrogen atmosphere and the solution was then stirred at room temperature for 24 h . The mixture was evaporated to dryness in vacuo to leave a yellow solid which was triturated in pentane ($3 \times 30 \mathrm{ml}$). The residue was evaporated to dryness in vacuo to leave the phosphonium salt $(1.9 \mathrm{~g}, 82 \%)$ as a pale yellow solid, $\mathrm{mp}>300^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.07(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.94-7.53(15 \mathrm{H}, \mathrm{m}, 3$ x Ph), $6.10\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}} 14.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.28\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 1.32 $\left(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, which was used without further characterisation.

2-[6'-(tert-Butyldimethylsilanyloxy)-hex-1'-enyl]-oxazole-4-carboxylic acid ethyl ester 113.

A solution of n-butyllithium (2.35 M in hexane, $1.68 \mathrm{ml}, 2.69 \mathrm{mmol}$) was added dropwise over 10 min to a stirred suspension of the phosphonium salt $112(1.67 \mathrm{~g}$, 2.69 mmol) in dry THF (40 ml) at $-30^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The deep red solution was stirred at room temperature for 30 min , and was then cooled to $-78^{\circ} \mathrm{C}$. A solution of 5-tert-butyldimethylsilylpentanal ($0.87 \mathrm{~g}, 4.04 \mathrm{mmol}$) in dry THF (9 ml) was added dropwise over 5 min to the ylide solution at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to warm to room temperature overnight. The mixture was quenched with saturated aqueous ammonium chloride solution (20 ml) and the separated aqueous layer was then extracted with diethyl ether $(2 \times 30 \mathrm{ml})$. The combined organic phases were washed with saturated brine $(20 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 5:1 petrol (bp 40$60^{\circ} \mathrm{C}$):ethyl acetate as eluent to give the olefin $(0.4 \mathrm{~g}, 41 \%)$ as a viscous oil; (Found:
$\mathrm{C}, 60.9 ; \mathrm{H}, 9.3 ; \mathrm{N}, 3.9 . \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{NSi}$ requires $\mathrm{C}, 61.1 ; \mathrm{H}, 8.9 ; \mathrm{N}, 4.0 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730,1664,1318$ and $1114 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.12(1 \mathrm{H}, \mathrm{s}, 5-$ H), $6.85\left(1 \mathrm{H}, \mathrm{dt}, J 16.0\right.$ and $\left.7.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.32\left(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.39(2 \mathrm{H}, \mathrm{q}, J$ $7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.65-3.61\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 2.30-2.28\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.58-1.54(4 \mathrm{H}$, $\mathrm{m}, 4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 1.39\left(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{f}\right)$ and $0.05(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.6$ (s), 160.4 (s), 142.9 (d), 142.5 (d), 133.3 (s$)$, $115.8(\mathrm{~d}), 62.7(\mathrm{t}), 61.2(\mathrm{t}), 32.5(\mathrm{t}), 32.1(\mathrm{t}), 25.9(\mathrm{q}), 24.7(\mathrm{t}), 18.3(\mathrm{~s}), 14.3(\mathrm{q})$ and 5.3 (q); m / z (FAB) (Found: $\mathrm{M}^{+}+\mathrm{H}, 354.2119 ; \mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NSi}$ requires 354.2101).

2-[6'-(tert-Butyldimethylsilanyloxy)-hex-1'-enyl]-oxazole-4-carboxylic acid 120.

Lithium hydroxide ($22 \mathrm{mg}, 0.51 \mathrm{mmol}$) was added in one portion to a solution of the ester 113 ($60 \mathrm{mg}, 0.17 \mathrm{mmol}$) in a 3:1 mixture of THF: $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml})$, and the mixture was then stirred at room temperature for 2 h . Water (2 ml) was added, followed by ethyl acetate (10 ml) and the mixture was cooled to $0^{\circ} \mathrm{C}$ and then acidified to pH 1 with 2 M HCl (0.5 ml added dropwise). The separated aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$) and the combined organic extracts were then washed with saturated brine (20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave the carboxylic acid ($20 \mathrm{mg}, 99 \%$) as a white solid, $\mathrm{mp} 210-212{ }^{\circ} \mathrm{C}$ (from ethanol); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3460,1651$ and $1110 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.21(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.89$ $\left(1 \mathrm{H}, \mathrm{dt}, J 16.0\right.$ and $\left.7.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.33\left(1 \mathrm{H}, \mathrm{dt}, J 16.0\right.$ and $\left.1.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.66-3.63$ $\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 2.32-2.30\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.59-1.56\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 0.90(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Bu}^{{ }^{\prime}}$) and $0.06\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.3$ (s), 162.5 (s), 144.3 (d) 143.6 (d), 133.9 (s$), 116.0$ (d), 63.2 (t), 32.9 (t), 32.6 (t), 26.4 (q), 25.1 (t), 18.8 (s) and -4.9 (q) m/z (ES) (Found: $\mathrm{M}^{+}+\mathrm{H}, 326.2583 ; \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NSi}$ requires 326.1787).

2-[6'-(tert-Butyldimethylsilanyloxy)-hex-1'-enyl]-oxazole-4-carboxylic acid allyl ester 121.

A solution of tricarpylmethylammonium chloride ($77 \mathrm{mg}, 0.2 \mathrm{mmol}$) and allyl bromide ($23 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (0.3 ml) was added in one portion to a stirred suspension of the carboxylic acid $120(62 \mathrm{mg}, 0.2 \mathrm{mmol})$ and sodium hydrogen carbonate ($16 \mathrm{mg}, 0.2 \mathrm{mmol}$) in water $(0.3 \mathrm{ml})$ at room temperature. The mixture was stirred vigorously at room temperature for 24 h , and then extracted with dichloromethane ($3 \times 10 \mathrm{ml}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 5:1 petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$): ethyl acetate as eluent to give the olefin ($35 \mathrm{mg}, 51 \%$) as a colourless oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1731, 1664, 1369, 1317, 1092 and $989 ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.14(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.85\left(1 \mathrm{H}, \mathrm{dt}, J 16.0\right.$ and $\left.7.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.32(1 \mathrm{H}, \mathrm{d}, J 16.0$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 6.01\left(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.4\right.$ and $\left.5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $1.3 \mathrm{~Hz}=\mathrm{CHH}), 5.29(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $1.3 \mathrm{~Hz},=\mathrm{CHH}), 4.82(2 \mathrm{H}, \mathrm{d}, J 5.9 \mathrm{~Hz}$, $\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$), 3.66-3.61 ($2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}$), 2.31-2.28 ($2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$), 1.57-1.42 ($4 \mathrm{H}, \mathrm{m}$, $4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$ and $0.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 161.7 (s$), 161.0(\mathrm{~s}), 143.0(\mathrm{~d}), 142.6$ (d), 133.7 (s), 131.7 (d), 119.0 (t), 115.8 (d), 65.7 $(\mathrm{t}), 62.7(\mathrm{t}), 32.5(\mathrm{t}), 32.1(\mathrm{t}), 25.9(\mathrm{q}), 24.7(\mathrm{t}), 18.3(\mathrm{~s})$ and $-5.4(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 366.2094 ; \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NSi}$ requires 366.2101).

2-(6'-Hydroxyhex-1'-enyl)-oxazole-4-carboxylic acid allyl ester 122.

A solution of the silyl ether $121(115 \mathrm{mg}, 0.3 \mathrm{mmol})$ in a $3: 1: 1$ mixture of $\mathrm{AcOH}: \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{ml})$ was stirred at room temperature for 2 h . The mixture was basified with saturated sodium hydrogen carbonate solution and the separated aqueous phase was then extracted with dichloromethane ($3 \times 10 \mathrm{ml}$). The combined organic
phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 5:1 petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$): ethyl acetate as eluent to give the alcohol $(70 \mathrm{mg}, 91 \%)$ as a straw coloured oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1732,1664,1316$ and $990 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.14(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) 6.85\left(1 \mathrm{H}, \mathrm{dt}, J 16.0\right.$ and $7.0 \mathrm{~Hz}, 2^{\prime}-$ H), $6.32\left(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.01(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.4$ and 5.9 Hz , $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $1.3 \mathrm{~Hz},=\mathrm{CHH}), 5.29(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and 1.3 $\mathrm{Hz},=\mathrm{CH} H), 4.82\left(2 \mathrm{H}, \mathrm{d}, J 5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.66-3.61(2 \mathrm{H}, \mathrm{m}, 6 \mathrm{H}-\mathrm{H}), 2.31-2.28$ $\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$ and $1.57-1.42\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.8(\mathrm{~s})$, 161.0 (s), 143.1 (d), 142.2 (d), 133.9 (s$), 131.7$ (d), 119.1 (t), 116.0 (d), 65.8 (t), 62.5 (t), $32.5(\mathrm{t}), 32.0(\mathrm{t})$ and $24.6(\mathrm{t})$.

4'-(2-Hydroxy-1-methoxycarbonylethylcarbamoyl)-2',2'-dimethyloxazolidine-3'carboxylic acid tert-butyl ester 115. ${ }^{127}$

Triethylamine ($1.81 \mathrm{ml}, 13.0 \mathrm{mmol}$) was added dropwise, over 2 min , to a stirred solution of serine methyl ester hydrochloride ($0.58 \mathrm{~g}, 3.7 \mathrm{mmol}$) in dry dichloromethane $(15 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. A solution of Garner acid $114^{96}(0.91 \mathrm{~g}, 3.7 \mathrm{mmol})$ in dry dichloromethane (5 ml) was added in one portion followed by $\mathrm{HOBt}(0.54 \mathrm{~g}, 4.0 \mathrm{mmol})$ and the resulting suspension was then stirred at room temperature for 15 min . A solution of DCC ($0.83 \mathrm{~g}, 4.0 \mathrm{mmol}$) in dry dichloromethane (5 ml) was added to the suspension over 10 min and the mixture was then stirred at room temperature for 17 h . The mixture was evaporated in vacuo to leave a solid which was taken up in ethyl acetate (20 ml), washed with saturated aqueous sodium bicarbonate soution ($3 \times 15 \mathrm{ml}$), 10% aqueous citric acid solution (3 $\times 15 \mathrm{ml}$) and saturated brine ($2 \times 10 \mathrm{ml}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave a residue which was purified by chromatography on silica using a $3: 1$ ethyl acetate:petrol $\left(\mathrm{bp} 40-60^{\circ} \mathrm{C}\right)$ as eluent to give the amide (0.9 g , 74%) as a straw coloured oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1743,1681,1368$ and $1053 ; \delta_{\mathrm{H}}(360$
MHz, d_{0}-DMSO at 353 K$) 7.81(1 \mathrm{H}, \mathrm{dd}, J 24.4$ and $7.6 \mathrm{~Hz}, \mathrm{NH}), 4.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 4.46-4.39 $\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 4.15-4.08(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.93-3.87\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, 3.81-3.72 (1H, m, 5'-H), 3.68-3.63 (1H, br m, 2-H), $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.58(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $1.41\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, d_{6}\right.$-DMSO at 353 K$) 171.1$ (s), 170.5 (s$), 151.2$ (s$), 94.1$ (s$), 79.3$ (s$), 66.7$ (t$), 61.5$ (t$), 59.4$ (d), 54.7 (d), 52.0 (q), 28.1 (q), $25.0(\mathrm{q})$ and $24.3(\mathrm{q}) ; m / z(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 347.1813 ; \mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{~N}_{2}$ requires 347.1818).

2',2'-Dimethyloxazolidine-[2,4']-bioxazolyl-4,3'-dicarboxylic acid 3'-tert-butyl ester 4-methyl ester 116a. ${ }^{127}$

A solution of Burgess' reagent $(0.77 \mathrm{~g}, 3.2 \mathrm{mmol})^{84}$ in dry THF (10 ml) was added to a solution of the amide $115(0.96 \mathrm{~g}, 2.8 \mathrm{mmol})$ in dry THF (20 ml) and the mixture was heated under reflux for 2 h in a nitrogen atmosphere. The mixture was evaporated to dryness in vacuo and the residue was purified by chromatography on silica using 1:1 petrol (bp $40-60^{\circ} \mathrm{C}$) ethyl acetate as eluent to give the oxazoline ($6.1 \mathrm{~g}, 61 \%$) as an oil; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at 348 K , single diastereoisomer) 4.83-4.79 $\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}\right.$ H), 4.61-4.56 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 4.43\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.8.8 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 4.16(1 \mathrm{H}$, dd, $J 9.0$ and $6.9 \mathrm{~Hz}, 5-\mathrm{H}), 4.04(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $3.2 \mathrm{~Hz}, 5-\mathrm{H}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ and 1.67-1.44 $\left(15 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right.$ and $\left.\mathrm{Bu}^{\prime}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, single diastereoisomer) $171.4,169.1,151.3,106.4,95.2,80.4,70.2,68.3,66.7,55.0,52.8$, 52.4, 28.4, 25.2 and 24.3; m / z (EI) (Found: $\mathrm{M}^{+}-\mathrm{CH}_{3}, 313.1395 ; \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 313.1400).

DBU ($0.53 \mathrm{ml}, 3.5 \mathrm{mmol}$) was added dropwise, over 2 min , to a stirred solution of the oxazoline $(1.04 \mathrm{~g}, 3.2 \mathrm{mmol})$ in dry dichloromethane $(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Bromotrichloromethane ($0.34 \mathrm{ml}, 3.5 \mathrm{mmol}$) was added dropwise over 10 min and the mixture was allowed to warm to room temperature over $24 \mathrm{~h} .{ }^{91}$ The mixture was quenched with aqueous saturated ammonium chloride solution (2×20
$\mathrm{ml})$, and the separated aqueous phase was then extracted with ethyl acetate (2×20 $\mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, and then evaporated in vacuo to leave a residue which was purified by chromatography on silica using 1:1 petrol (bp $40-60{ }^{\circ} \mathrm{C}$):ethyl acetate as eluent to give the oxazole ($0.8 \mathrm{~g}, 75 \%$) as a mixture of rotamers; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2980,1703,1368$, and $1110 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major rotamer) $8.21(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.20-5.07\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.29-4.09\left(2 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}\right), 3.93$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.30\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$, major rotamer) 164.0 (s), 161.3 (s), 150.9 (s), 143.6 (d), 133.4 (s), 95.1 (s), $80.5(\mathrm{~s}), 67.4(\mathrm{t}), 55.0(\mathrm{~d}), 52.1(\mathrm{q}), 28.0(\mathrm{q}), 25.1$ (q) and $23.9(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB})$ (Found: $\mathrm{M}+\mathrm{H}, 327.1531 ; \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 327.1556).

4-Hydroxymethyl-2',2'-dimethyloxazolidine-[2,4']-bioxazolyl-3'-carboxylic acid tert-butyl ester.

A solution of DIBAL-H (1.5 M in toluene, $5.1 \mathrm{ml}, 7.7 \mathrm{mmol}$) was added dropwise, over 30 min , to a stirred solution of the oxazole ester $116 \mathrm{a}(1.0 \mathrm{~g}, 3.06 \mathrm{mmol})$ in dry dichloromethane $(10 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h . The mixture was quenched with methanol (20 ml) followed by magnesium sulfate (20 g) and the filtered suspension was evaporated in vacuo to leave a viscous yellow residue. The residue was added to a saturated solution of potassium sodium tartrate and the mixture was stirred vigorously for 2 h . The mixture was extracted with ethyl acetate ($2 \times 200 \mathrm{ml}$), and the combined organic phases were then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave a yellow residue. The residue was purified by chromatography on silica using $1: 1$ petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$): ethyl acetate as eluent to give the oxazole alcohol $(0.55 \mathrm{~g}, 61 \%)$ as a yellow oil; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major rotamer) $7.55(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.13-4.98\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.58\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right)$, 4.26-4.04 (2H, m, $\left.5^{\prime}-\mathrm{H}\right), 2.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.29\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.7$ (s), 151.2 (s), 140.6 (s), 134.9 (d), 95.0
$(\mathrm{s}), 80.4(\mathrm{~s}), 67.4(\mathrm{t}), 56.7(\mathrm{t}), 55.1(\mathrm{~d}), 28.1(\mathrm{q}), 25.2(\mathrm{q})$ and $24.2(\mathrm{q}) ; m / z(\mathrm{EI})$ (Found: $\mathrm{M}^{+}, 298.1535 ; \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires 298.1529).

4-Formyl-2', 2'-dimethyloxazolidine-[2,4']-bioxazolyl-3'-carboxylic acid tert-butyl

 ester 116 b .

A solution of pyridine-sulfur trioxide complex ($0.87 \mathrm{~g}, 5.49 \mathrm{mmol}$) in DMSO (5 ml) was added dropwise, over 2 min , to a stirred solution of the alcohol $(0.50 \mathrm{~g}, 1.7 \mathrm{mmol})$, DMSO (5 ml) and triethylamine ($4.71 \mathrm{ml}, 33.8 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. The mixture was stirred at room temperature for 2 h and then quenched with a 10% aqueous solution of potassium hydrogen sulfate (10 ml). The separated aqueous layer was extracted with diethyl ether ($3 \times 25 \mathrm{ml}$) and the combined organic phases were then dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The residue was purified by chromatography on silica using ethyl acetate as eluent to give the oxazole aldehyde ($0.4 \mathrm{~g}, 79 \%$) as a colourless oil; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major rotamer) 9.95 $(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.24(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.20-5.07\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.31-4.12\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, $1.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$, which was used immediately without further characterisation.

8-(Dimethoxyphosphoryl)-7-oxo-octanoic acid ethyl ester 117. ${ }^{128}$

A solution of n-butyllithium (2.35 M in hexane, $14.4 \mathrm{ml}, 33.8 \mathrm{mmol}$) was added dropwise, over 10 min , to a stirred solution of dimethylmethyl phosphonate in dry

THF (80 ml) under a nitrogen atmosphere at $-78^{\circ} \mathrm{C}$. The mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 30 min and a solution of diethyl pimelate ($5.0 \mathrm{~g}, 23.1 \mathrm{mmol}$) in dry THF (40 ml) was then added in one portion. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then quenched with saturated aqueous ammonium chloride solution (100 ml). The separated aqueous layer was extracted with diethyl ether ($2 \times 50 \mathrm{ml}$) and the combined organic phases were washed with saturated brine $(50 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using ethyl acetate as eluent to give the β-ketophosphonate ($1.6 \mathrm{~g}, 24 \%$) as a straw coloured oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3477,2953,1730,1259$ and $1185 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\left.4.08\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{POCH}_{3}\right), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{POCH})_{3}\right), 3.05$ $\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}} 22.7 \mathrm{~Hz}, 8-\mathrm{H}\right), 2.59(2 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, 6-\mathrm{H}), 2.26(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 2-\mathrm{H})$, $1.64-1.53(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 1.34-1.25(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $1.22(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 201.3(s), $201.2(\mathrm{~s}), 173.1$ (s), $59.7(\mathrm{t}), 52.6(\mathrm{q})$, $52.5(\mathrm{q}), 43.4(\mathrm{t}), 40.8(\mathrm{~d}), 33.6(\mathrm{t}), 27.9(\mathrm{t}), 24.2(\mathrm{t}), 22.5(\mathrm{t})$ and $13.8(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ $294\left(\mathrm{M}^{+}, 2 \%\right), 249\left(\mathrm{M}^{+}-\mathrm{OEt}, 15 \%\right), 231\left(\mathrm{M}^{+}-(\mathrm{OMe})_{2}, 26 \%\right)$.

4-(8'"-Ethoxycarbonyl-3"-oxooct-1"-enyl)-2',2'-dimethyloxazolidine-[2,4']-bioxazolyl-3'-carboxylic acid tert-butyl ester 118.

Barium hydroxide octahydrate $(0.4 \mathrm{~g}, 1.4 \mathrm{mmol})$ was added in one portion to a stirred solution of the β-ketophosphonate $117(0.4 \mathrm{~g}, 1.4 \mathrm{mmol})$ in dry THF (8 ml) under a nitrogen atmosphere at room temperature. The suspension was stirred for 30 min and a solution of the aldehyde $116 \mathbf{b}(0.4 \mathrm{~g}, 1.4 \mathrm{mmol})$ in $40: 1 \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was then added in one portion. The mixture was stirred at room temperature for 3 h then quenched with saturated aqueous sodium bicarbonate solution (20 ml) and extracted with dichloromethane ($3 \times 20 \mathrm{ml}$). The combined organic phases were washed with saturated brine $(20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave a viscous oil. as eluent gave the alkene ($0.5 \mathrm{~g}, 71 \%$) as a yellow oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2936,1698$, 1379 and $1097 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major rotamer) $7.77(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{d}$, $\left.J 15.6 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right), 6.91\left(1 \mathrm{H}, \mathrm{d}, J 15.6 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 5.15-5.00\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.29-4.22$ $\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.15-4.09\left(1 \mathrm{H}\right.$, br m, $\left.5^{\prime}-\mathrm{H}\right), 4.12\left(2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.64-$ $2.60(2 \mathrm{H}, \mathrm{m}, 4 "-\mathrm{H}), 2.30(2 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, 8 "-\mathrm{H}), 1.76-1.54$ (9H, m, 5"-H, 6"-H, 7"-H and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) and 1.49-1.21 ($15 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}$ and Bu^{l}); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 200.0 (s), 173.8 (s), 160.2 (s$), 151.3$ (s$), 139.4$ (s$), 137.7$ (s$), 129.3$ (s$), 127.3$ (s), 95.3
 $24.7(\mathrm{t}), 24.2(\mathrm{q}), 23.7(\mathrm{t})$ and $14.2(\mathrm{q})$.

4-(8''-Ethoxycarbonyl-1"'-methyl-3'"-oxooctyl)-2', 2^{\prime}-dimethyloxazolidine-[2,4']-bioxazolyl-3'-carboxylic acid tert-butyl ester 124.

A solution of methyllithium (1.6 M in diethyl ether, $6.7 \mathrm{ml}, 10.7 \mathrm{mmol}$) was added dropwise over 20 min to a stirred suspension of copper iodide ($1.0 \mathrm{~g}, 5.4 \mathrm{mmol}$) in dry diethyl ether (20 ml) at $-5^{\circ} \mathrm{C}$ under an argon atmosphere and the resulting yellow solution was stirred at $-5^{\circ} \mathrm{C}$ for 30 min . A solution of the enone $118(300 \mathrm{mg}, 0.65$ mmol) in dry diethyl ether (15 ml) was added dropwise over 10 min to the cuprate solution at $-5^{\circ} \mathrm{C}$ and the mixture was stirred at $-5^{\circ} \mathrm{C}$ for 3 h . The mixture was quenched with a $1: 1$ mixture of saturated aqueous ammonium chloride:ammonium hydroxide solution (20 ml) and the separated aqueous layer was then extracted with diethyl ether ($2 \times 30 \mathrm{ml}$). The combined organic phases were washed with saturated brine (30 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using $1: 1$ petrol (bp $40-60^{\circ} \mathrm{C}$): ethyl acetate as eluent to give the β-methyl ketone ($168 \mathrm{mg}, 55 \%$) as a viscous oil. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1696$; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.30(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.29-4.95(1 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}-\mathrm{H}), 4.22-4.16(1 \mathrm{H}, \mathrm{m}$,
$\left.5^{\prime}-\mathrm{H}\right), 4.13-4.02\left(1 \mathrm{H}\right.$, br m, $\left.5^{\prime}-\mathrm{H}\right), 4.11\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.30-3.24(1 \mathrm{H}$, $\left.\mathrm{m}, 1^{\prime \prime}-\mathrm{H}\right), 2.83\left(1 \mathrm{H}, \mathrm{dd}, J 6.0\right.$ and $\left.16.9 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 2.51\left(1 \mathrm{H}, \mathrm{dd}, J 8.1\right.$ and $17.2 \mathrm{~Hz}, 2^{\prime \prime}-$ H), $2.36\left(2 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 2.27\left(2 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, 8^{\prime \prime}-\mathrm{H}\right), 1.72-1.41(9 \mathrm{H}, \mathrm{m}, 5 "-\mathrm{H}$, $6 "-\mathrm{H}, 7 "-\mathrm{H}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 1.31-1.09 (18H, m, $2 \times \mathrm{CH}_{3}, \mathrm{Bu}^{t}$ and $\left.1 "-\mathrm{CH}_{3}\right) ; \delta_{C}(90$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 209.2 (s), 173.6 (s , 162.8 (s$), 151.2$ (s$), 133.1$ (s , 94.9 (s$), 80.1$ (s$)$, $67.5(\mathrm{t}), 60.2(\mathrm{t}), 55.2(\mathrm{~d}), 48.3(\mathrm{t}), 42.9(\mathrm{t}), 34.1(\mathrm{t}), 28.6(\mathrm{t}), 28.1(\mathrm{q}), 26.8(\mathrm{~d}), 25.1$ $(\mathrm{q}), 24.6(\mathrm{t}), 24.5(\mathrm{q}), 23.1(\mathrm{t}), 19.4(\mathrm{q})$ and $14.2(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{H}$, 481.2944; $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{7} \mathrm{~N}_{2}$ requires 481.2915).

4-(8'-Carboxy-1'"-methyl-3'"-oxooctyl)-2',2'-dimethyloxazolidine-[2,4']-bioxazolyl-3'-carboxylic acid tert-butyl ester 125.

Lithium hydroxide ($22 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added in one portion to a solution of the ester $124(60 \mathrm{mg}, 0.17 \mathrm{mmol})$ in a $3: 1$ mixture of THF: $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml})$, and the mixture was then stirred at room temperature for 2 h . Water (2 ml) was added, followed by ethyl acetate $(10 \mathrm{ml})$ and the mixture was then acidified to pH 1 with $2 \mathrm{M} \mathrm{HCl}(0.5 \mathrm{ml}$ added dropwise). The separated aqueous layer was extracted with ethyl acetate (3 x 10 ml), and the combined organic phases were then washed with saturated brine (20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave the carboxylic acid $(20 \mathrm{mg}$, $99 \%)$ as a viscous oil; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.32(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.12-4.98\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), 4.24-4.15 ($\left.1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.13-4.03\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.32-3.26\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 2.88-$ $2.82\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right), 2.58-2.46\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right), 2.40-2.27\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}\right.$ and $\left.8^{\prime \prime}-\mathrm{H}\right)$ and 1.73-1.12 ($24 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}, \mathrm{Bu}^{\prime}, 5^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}, 7^{\prime \prime}-\mathrm{H}$ and $\left.1^{\prime \prime}-\mathrm{CH}_{3}\right)$.

4-\{8-[6-4-Allyloxycarbonyloxazol-2-yl-hex-5'-enyloxycarbonyl]-1"'-methyl-3'"-oxooctyl\}-2"'",2"',-dimethyloxazolidine-[2'",4"'']-bioxazolyl-3"''-carboxylic acid tert-butyl ester 119.

1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride ($37 \mathrm{mg}, 0.19 \mathrm{mmol}$) was added in one portion to a stirred solution of the acid $\mathbf{1 2 5}(77 \mathrm{mg}, 0.18 \mathrm{mmol})$ and the alcohol $122(50 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dichloromethane (6 ml) at $0^{\circ} \mathrm{C}$ containing 4(dimethylamino)pyridine ($11 \mathrm{mg}, 0.09 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then at room temperature overnight before it was evaporated to dryness in vacuo. The residue was diluted with ethyl acetate (10 ml) and water (2 ml), and the organic layer was then separated, washed with saturated sodium bicarbonate (15 ml) and water (15 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using $1: 1$ petrol (bp $40-60^{\circ} \mathrm{C}$):ethyl acetate as eluent to give the ester $(89 \mathrm{mg}, 73 \%)$ as an oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2934,2253,1793,1730,1720$ and 1368; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.14(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.31\left(1 \mathrm{H}, \mathrm{s}, 5{ }^{\prime \prime}-\mathrm{H}\right), 6.83(1 \mathrm{H}, \mathrm{dt}, J$ 16.0 and $\left.7.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.33\left(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 6.01(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.4$ and $\left.5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.37(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $1.3 \mathrm{~Hz},=\mathrm{CHH}), 5.27(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $1.3 \mathrm{~Hz},=\mathrm{CHH}), 5.08-4.96(1 \mathrm{H}, \mathrm{m}, 4 " \mathrm{H}-\mathrm{H}), 4.82\left(2 \mathrm{H}, \mathrm{dt}, J 5.8\right.$ and $1.3 \mathrm{~Hz}, \mathrm{CH}_{2}$ $\mathrm{CH}=\mathrm{CH}_{2}$), 4.23-4.03 (4H, m, 1'-H and $\left.5^{\prime \prime \prime} \mathrm{H}-\mathrm{H}\right), 3.31-3.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right), 2.83(1 \mathrm{H}, \mathrm{dd}$, $J 16.9$ and $\left.5.8 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 2.51\left(1 \mathrm{H}, \mathrm{dd}, J 16.9\right.$ and $\left.7.8 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 2.40-2.27(6 \mathrm{H}, \mathrm{m}$, $4^{\prime \prime}-\mathrm{H}, 8^{\prime \prime}-\mathrm{H}$ and $\left.4^{\prime}-\mathrm{H}\right), 1.73-1.55$ ($10 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}$ and $2 \times \mathrm{CH}_{3}$), $1.48-1.08$ ($15 \mathrm{H}, \mathrm{m}$, $5^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}, 7^{\prime \prime}-\mathrm{H}$ and $\left.\mathrm{Bu}^{t}\right), 0.90-0.80\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 210.5$ (s), 173.6 (s), 162.8 (s), 161.7 (s), 160.9 (s), 151.2 (s), 144.9 (s), 143.1, 141.8, 133.8 (s$), 133.1,131.7,119.0(\mathrm{t}), 116.1,94.9(\mathrm{~s}), 80.1(\mathrm{~s}), 67.4(\mathrm{t}), 65.7(\mathrm{t}), 63.8(\mathrm{t}), 55.1$, $48.3(\mathrm{t}), 42.9(\mathrm{t}), 34.0(\mathrm{t}), 32.2(\mathrm{t}), 29.6(\mathrm{t}), 28.6(\mathrm{t}), 28.2,28.1,28.0(\mathrm{t}), 26.8,25.0$,
24.7 (t), 24.6, 24.2, 23.1 (t), 19.3 (q); $m / z(F A B) \quad$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 686.3677$; $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{10} \mathrm{~N}_{3}$ requires 686.3654).

Bis-oxazole amino acid ester 127.

Pyrrolidine ($33.1 \mu \mathrm{l}, 0.4 \mathrm{mmol}$) was added in one portion to a stirred solution of the ester $119(0.18 \mathrm{~g}, 0.3 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium ($18 \mathrm{mg}, 0.016$ $\mathrm{mmol})$ and triphenylphosphine ($4.1 \mathrm{mg}, 0.016 \mathrm{mmol}$) in dichloromethane (2 ml) at 0 ${ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h , diluted with dichloromethane (10 ml) and then washed with $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{ml})$. The separated organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 9:1 dichloromethane:methanol as eluent to give the carboxylic acid $(0.11 \mathrm{~g}, 70 \%)$ as an opaque oil, which was used immediately without characterisation.

Trifluoroacetic acid (50% solution in dichloromethane, 1 ml) was added in one portion to the acid 126 at room temperature under a nitrogen atmosphere. After stirring for 1 h , toluene was added (1 ml) and the solution was concentrated in vacuo. Two subsequent additions of toluene ($2 \times 2 \mathrm{ml}$) followed by concentration in vacuo left the crude trifluoroacetic acid salt of the amino alcohol as a yellow residue, which was used immediately without characterisation.

The oxazole-amide-oxazole macrolide 78.

Diisopropylethylamine ($37 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added in one portion to a stirred solution of the salt $127(51 \mathrm{mg}, 0.08 \mathrm{mmol})$ in dry DMF (16 ml) under a nitrogen atmosphere at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and then diphenylphosphorylazide ($0.034 \mathrm{~g}, 0.12 \mathrm{mmol}$) was added and the mixture was stirred for a further 3 min and then left at room temperature for 5 days under a nitrogen atmosphere. The mixture was diluted with ethyl acetate $(20 \mathrm{ml})$ and poured into icecold water. The separated aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$) and the combined organic phases were washed with water ($6 \times 30 \mathrm{ml}$) and saturated brine $(30 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using ethyl acetate as eluent to give the amide (14 mg , 36%) as an oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3399,1715,1688$ and $1596 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major rotamer) $8.20(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 8.02(1 \mathrm{H}, \mathrm{d}, J 7.4 \mathrm{~Hz}, \mathrm{~N} H), 7.45(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.93$ $(1 \mathrm{H}, \mathrm{dt}, J 16.2$ and $6.8 \mathrm{~Hz}, 5-\mathrm{H}), 6.37(1 \mathrm{H}, \mathrm{d}, J 16.2 \mathrm{~Hz}, 6-\mathrm{H}), 5.46-5.42(1 \mathrm{H}, \mathrm{m}, 11-$ $\mathrm{H}), 4.27-4.10(4 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}$ and $1-\mathrm{H}), 3.42-3.37(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 3.03(1 \mathrm{H}, \mathrm{dd}, J 16.7$ and $11.0 \mathrm{~Hz}, 17-\mathrm{H}), 2.62-2.56(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 2.54-2.35(6 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 19-\mathrm{H}$ and $23-$ H), $1.84-1.61(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 1.50-1.22(6 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}, 21-\mathrm{H}$ and $22-\mathrm{H})$ and 0.97-0.91 (3H, m, 16-CH3 $) ; \delta_{\mathrm{C}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 209.5(\mathrm{~s}), 173.6(\mathrm{~s}), 161.0(\mathrm{~s})$, 160.8 (s), 145.3 (s$), 144.4$ (s$), 141.7$ (d), 140.5 (d), 136.1 (s$), 134.2$ (d), 132.1 (d), $128.6(\mathrm{~d}), 116.0(\mathrm{~d}), 64.6(\mathrm{t}), 63.8(\mathrm{t}), 48.3(\mathrm{t}), 43.0(\mathrm{t}), 34.4(\mathrm{t}), 31.9(\mathrm{t}), 29.7(\mathrm{t}), 28.6$ (t), 27.8 (t), 24.7 (t), 23.4 (t), $19.4(\mathrm{q}) ; m / z$ (EI) (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 469.2223$; $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires 469.2167).

The oxazole-oxazoline-oxazole macrolide 128.

A solution of Burgess' reagent ($4.5 \mathrm{mg}, 0.02 \mathrm{mmol}$) in dry THF (0.2 ml) was added to a solution of the amide $78(8 \mathrm{mg}, 0.02 \mathrm{mmol})$ in dry THF $(0.4 \mathrm{ml})$ and the mixture was heated under reflux for 2 h under a nitrogen atmosphere. The cooled mixture was evaporated to dryness in vacuo and the residue was purified by chromatography on silica using $1: 1$ petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$):ethyl acetate as eluent to give the oxazoline (5.5 $\mathrm{mg}, 72 \%) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.01(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.98-6.84(1 \mathrm{H}$, d, J $15.9 \mathrm{~Hz}, 5-\mathrm{H}), 6.29(1 \mathrm{H}, \mathrm{d}, J 15.9 \mathrm{~Hz}, 6-\mathrm{H}), 5.48-5.35(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 4.77-4.58$ $(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 4.16-3.98(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.40(1 \mathrm{H}$, app. d, $J 4.8 \mathrm{~Hz}, 16-\mathrm{H}), 3.33-3.25$ $(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 2.96-2.87(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 2.46-2.15(6 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}, 23-\mathrm{H}$ and $4-\mathrm{H})$, $1.87-1.35(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 1.29-1.03(6 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}, 21-\mathrm{H}$ and $22-\mathrm{H})$ and $0.90-$ $0.76\left(3 \mathrm{H}, \mathrm{m}, 16-\mathrm{CH}_{3}\right)$.

The tris-oxazole macrolide 77.

Freshly prepared nickel peroxide (150 mg) was added in three portions to a refluxing solution of the oxazoline $128(50 \mathrm{mg})$ in dry benzene (3 ml) at one hour intervals. The mixture was heated under reflux for 2 h , and then filtered through celite. The filtrate was concentrated in vacuo to leave a viscous mass. Purification by chromatography on silica using ethyl acetate as eluent gave the tris-oxazole macrolide as a white solid; $\operatorname{mp} 140-142{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 263$ (1888); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3019,2929$,

1715 and $1215 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.07(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 8.06(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 7.40(1 \mathrm{H}$, s, $14-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{dt}, J 15.9$ and $7.1 \mathrm{~Hz}, 5-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{dt}, J 15.9$ and $1.5 \mathrm{~Hz}, 6-\mathrm{H})$, $4.08(2 \mathrm{H}, 2 \mathrm{x}$ dt $J 22.0$ and $10.8 \mathrm{~Hz}, 1-\mathrm{H}), 3.43-3.39(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 3.29(1 \mathrm{H}, \mathrm{dd}, J$ 17.2 and $6.0 \mathrm{~Hz}, 17-\mathrm{H}), 2.63-2.57(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 2.49-2.35(6 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}, 23-\mathrm{H}$ and $4-\mathrm{H}), 1.80-1.60(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 1.46-1.16(6 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}, 21-\mathrm{H}$ and $22-\mathrm{H})$ and $0.93-0.78\left(3 \mathrm{H}, \mathrm{m}, 16-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 210.25(\mathrm{~s}), 173.86(\mathrm{~s}), 162.77(\mathrm{~s})$, 156.57 (s), 154.26 (s), 146.65 (s), 143.23 (d), 137.27 (d), 137.02 (d), 133.40 (d), 131.76 (s), 130.39 (s$), 115.21$ (d), 65.86 (t$), 48.08$ (t), 43.64 (t$), 34.58$ (t), 31.13 (t), $29.70(\mathrm{t}), 29.15(\mathrm{t}), 27.44(\mathrm{~d}), 26.88(\mathrm{t}), 25.06(\mathrm{t}), 24.45(\mathrm{t})$ and $18.96(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 468.2154 ; \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires M 468.2134).

3.2 The Side-Chain Synthesis

(3'S,2'R)-3-Benzyl-4-(5'-benzyloxy-3'-hydroxy-2'-methylpentanoyl)-oxazolidin-5one 135.

A solution of dibutylborontriflate (1.0 M in dichloromethane, $27.5 \mathrm{ml}, 37.5 \mathrm{mmol}$) and triethylamine $(5.7 \mathrm{ml}, 40.9 \mathrm{mmol})$ were added to a solution of the imide 134 (8.0 $\mathrm{g}, 34.0 \mathrm{mmol}$) in dry dichloromethane (65 ml) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the resulting pale yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then at $0^{\circ} \mathrm{C}$ for 30 min before being re-cooled to $-78^{\circ} \mathrm{C}$. A solution of the aldehyde $133(5.6 \mathrm{~g}$, 34.0 mmol) in dry dichloromethane (20 ml) was added dropwise over 30 min to the mixture which was then stirred at $-78^{\circ} \mathrm{C}$ for 1.5 hr . The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and held at that temperature for 2 h . It was then quenched by the addition of pH 7 buffer solution (30.0 ml) followed by methanol (140 ml). After $30 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}_{2}$ (30.0 ml of a 30% aqueous solution) was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . It was then diluted with water (100 ml) and the aqueous phase extracted with dichloromethane ($3 \times 100 \mathrm{ml}$). The combined organic phases were washed with water $(50 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, then filtered, and the filtrate concentrated in vacuo. Chromatography on silica using $1: 1$ petrol (bp 40-60
${ }^{\circ} \mathrm{C}$): diethyl ether as eluent gave the secondary alcohol $(10.8 \mathrm{~g}, 80 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}-52.7$ (c, 0.9 in CHCl_{3}); (Found: $\mathrm{C}, 69.7 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.5 ; \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{~N}$ requires C, $69.5 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.5 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2922,2866,1778,1693,1383,1363$, 1095 and $972 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.27(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.26-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $4.69(1 \mathrm{H}$, dddd, $J 7.0,7.0,7.0$ and $3.5 \mathrm{~Hz}, 4-\mathrm{H}), 4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.23-4.17$ $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.83\left(1 \mathrm{H}\right.$, ddd, $J 13.7,7.0$ and $\left.3.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 3.75-3.64\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, $3.33\left(1 \mathrm{H}, \mathrm{d}, J 2.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 3.27\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.3.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.79(1 \mathrm{H}, \mathrm{dd}, J$ 13.4 and $\left.9.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 1.95-1.85\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 1.78-1.71\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$ and 1.29 $\left(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.49(\mathrm{~s}), 152.93$ (s), 137.95 (s), 135.02 (s$), 129.30$ (d), 128.81 (d), 128.28 (d), 127.55 (d), 127.25 (d), 73.08 (t), 70.23 (d), $68.18(\mathrm{t}), 66.56(\mathrm{t}), 55.07(\mathrm{~d}), 42.45(\mathrm{~d}), 37.62(\mathrm{t}), 33.64(\mathrm{t})$ and $11.07(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$: (Found $\mathrm{M}^{+}+\mathrm{Na}, 420.1761 ; \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{NNa}$ requires 420.1787).
(3S,4R)-1-Benzyloxy-4-methylpentan-3,5-diol 136.

Dry methanol ($1.5 \mathrm{ml}, 37.5 \mathrm{mmol}$) and a solution of lithium borohydride $(2.0 \mathrm{M}$ in THF, $18.8 \mathrm{ml}, 37.5 \mathrm{mmol}$) were each added dropwise to a solution of the imide 135 $(5.9 \mathrm{~g}, 15.0 \mathrm{mmol})$ in dry THF $(120 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was quenched by the addition of $1 \mathrm{M} \mathrm{NaOH}(87 \mathrm{ml})$ and then the mixture was allowed to warm to room temperature. Ethyl acetate (100 ml) was added and the separated aqueous phase was then extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$). The combined organic phases were washed with water (50 ml) and saturated brine (50 ml), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo to leave an inseparable mixture of the diol and the oxazolidine. This mixture was used immediately in the next step.

Imidazole ($3.5 \mathrm{~g}, 50.7 \mathrm{mmol}$) and tert-butyldiphenylsilyl chloride $(8.5 \mathrm{~g}, 31.0 \mathrm{mmol})$ were added sequentially to a solution of the crude 1,3 - diol $136(10.3 \mathrm{~g})$ in dry DMF $(30 \mathrm{ml})$ at room temperature under a nitrogen atmosphere. The solution was stirred at room temperature for 12 h and then diluted with water (70 ml) and diethyl ether (70 $\mathrm{ml})$. The separated organic phase was washed with water ($4 \times 100 \mathrm{ml}$) and saturated brine (100 ml), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by chromatography on silica using petrol (bp $40-60^{\circ} \mathrm{C}$): diethyl ether as eluent gave the silyl ether ($5.7 \mathrm{~g}, 82 \%$ over 2 steps) as a colourless oil; $[\alpha]_{\mathrm{D}}-0.9\left(c, 0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; (Found: $\mathrm{C}, 75.36 ; \mathrm{H}, 8.34: \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 75.28 ; \mathrm{H}, 8.28 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-}$ ${ }^{1} 3497,2931,2859,1362,1111$ and $998 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71-7.65(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.48-7.27 ($11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.07-4.04(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.75-3.65$ $(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $5-\mathrm{H}), 1.91-1.68(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $4-\mathrm{H}), 1.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and 0.96 $\left(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.22(\mathrm{~s}), 135.60(\mathrm{~d}), 133.26(\mathrm{~s}), 129.71$ (d), 128.35 (d), 127.68 (d), 127.59 (d), 127.55 (d), 74.0 (d), 73.15 (t), 72.02 (d), 68.75 (t), 67.82 (t), 40.02 (d), 34.11 (t), 26.83 (q), 19.14 (s) and 10.76 (q); m/z (FAB) (Found $\mathrm{M}^{+}+\mathrm{H}, 463.2656 ; \mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{3}$ Si requires 463.2668).
(3S,4R)-1-Benzyloxy-5-(tert-butyldiphenylsilanyloxy)-4-methyl-3-methoxy pentane 137b.

Sodium hydride (60% dispersion in oil, $1.3 \mathrm{~g}, 32.0 \mathrm{mmol}$) was added in one portion to a stirred solution of the alcohol $137 \mathrm{a}(7.6 \mathrm{~g}, 16.0 \mathrm{mmol})$ in dry DMF $(20 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min and then methyl iodide ($4.9 \mathrm{ml}, 78.4 \mathrm{mmol}$) was added in one portion. The resulting mixture was stirred at room temperature for 2 h and then quenched with saturated aqueous ammonium chloride solution (200 ml), diluted with water (200 ml) and extracted with
diethyl ether ($3 \times 100 \mathrm{ml}$). The combined organic phases were washed with water (2 x 100 ml) and saturated brine $(50 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by chromatography on silica using petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$): diethyl ether as eluent gave the methyl ether $(5.0 \mathrm{~g}, 66 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}+4.5(c, 4.4$ in CHCl_{3}); (Found: C, 75.8; H, 8.7; $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 75.6 ; \mathrm{H}, 8.5 \%$); $\nu_{\max }($ film $) / \mathrm{cm}^{-1} 2930,2858,1362$ and $1104 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.70-7.65(4 \mathrm{H}, \mathrm{m}$, Ph), $7.27-7.37$ ($11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.48(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{PhCHHO}), 4.52(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}$, $\mathrm{PhCHHO}), 3.77(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and $7.0 \mathrm{~Hz}, 3-\mathrm{H}), 3.67-3.59(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $5-\mathrm{H})$, $3.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.96-1.82(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $4-\mathrm{H}), 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.88(3 \mathrm{H}, \mathrm{d}, J$ $7.0 \mathrm{~Hz}, \mathrm{Me}) . \delta_{\mathrm{C}}\left(90.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.50(\mathrm{~s}), 135.56$ (d), 133.87 (s), 129.51 (d), 128.29 (d), 127.57 (d), 127.54 (d), 127.43 (d), 78.31 (d), 72.93 (t), 67.41 (t), 65.69 (t), $58.31(\mathrm{q}), 39.15(\mathrm{~d}), 31.96(\mathrm{t}), 26.86(\mathrm{q}), 19.24(\mathrm{~s})$ and $11.28(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ (Found $\mathrm{M}^{+}+\mathrm{Na}^{+}, 499.2660 ; \mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SiNa}$ requires 499.2644).
(3S,4R)-5-(tert-Butyldiphenylsilanyloxy)-3-methoxy-4-methylpentan-1-ol.

Pearlman's catalyst $\left(\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, 650 \mathrm{mg}\right)$ was added in one portion to a solution of the benzyl ether 137b ($6.4 \mathrm{~g}, 13.4 \mathrm{mmol}$) in dry methanol (60 ml) at room temperature, and the flask was then evacuated prior to the introduction of hydrogen gas. The mixture was stirred under one atmosphere of hydrogen for 18 h and then filtered through celite. The filter cake was washed with ether ($2 \times 25 \mathrm{ml}$) and the combined filtrate was concentrated in vacuo. Purification by chromatography on silica using 2:1 (bp $40-60{ }^{\circ} \mathrm{C}$): diethyl ether as eluent gave the alcohol ($4.8 \mathrm{~g}, 92 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}-11.5\left(c, 1.1\right.$ in CHCl_{3}); (Found: $\mathrm{C}, 71.10 ; \mathrm{H}, 9.06 ; \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 71.46$; $\mathrm{H}, 8.86 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3486,2858,1731,1461,1362$ and $1083 ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 7.72-7.66 (4H, m, Ph), 7.46-7.37 (6H, m, Ph), 3.77-3.66 (3H, m, 1-H and 5$\mathrm{H}), 3.58-3.48(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H}), 3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.97-1.89(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $1.75-1.65(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and $0.95\left(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(90$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 135.91 (d), 133.75 (s), 129.58 (d), 127.61 (d), 81.83 (d), 65.30 (t , $61.31(\mathrm{t}), 57.88(\mathrm{q}), 38.49(\mathrm{~d}), 33.22(\mathrm{t}), 26.87(\mathrm{q}), 19.24(\mathrm{~s})$ and $12.29(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ (Found $\mathrm{M}^{+}+\mathrm{Na}, 409.2216 ; \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}$ requires 409.2175).

(3S,4R)-5-(tert-Butyldiphenylsilanyloxy)-3-methoxy-4-methylpentanal 138.

A solution of DMSO (0.4 ml) in dry dichloromethane (2 ml) was added dropwise over 5 min . to a solution of oxalyl chloride (0.3 ml) in dry dichloromethane (5 ml) at $78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After 5 min ., a solution of the alcohol ($1.0 \mathrm{~g}, 2.6$ mmol) in dry dichloromethane (3 ml) was added dropwise over 15 min . and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h . Triethylamine ($1.6 \mathrm{ml}, 11.8 \mathrm{mmol}$) was added dropwise over 15 min . to the mixture which was then allowed to warm to room temperature. The mixture was diluted with water (50 ml) and dichloromethane (50 ml), and the aqueous layer was then separated and extracted with dichloromethane (2 x 50 ml). The combined organic phases were washed with water (50 ml) and saturated brine (50 ml) then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Purification by chromatography on silica using dichloromethane as eluent gave the aldehyde $(0.8 \mathrm{~g}$, 81%) as an unstable colourless viscous oil; $[\alpha]_{\mathrm{D}}-13.8$ (c, 1.0 in CHCl_{3}); $\nu_{\max }($ film $) / \mathrm{cm}^{-1} 2931,2859,1780,1723,1384,1361$ and $1111 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $9.82(1 \mathrm{H}, \mathrm{t}, J 2.1 \mathrm{~Hz}, \mathrm{CHO}), 7.74-7.62(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.48-7.36(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.94(1 \mathrm{H}$, $\mathrm{dt}, J 7.7$ and $4.4 \mathrm{~Hz}, 3-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $6.9 \mathrm{~Hz}, 5-\mathrm{H}), 3.56(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $5.8 \mathrm{~Hz}, 5-\mathrm{H}), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.65-2.56(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.91-1.85(1 \mathrm{H}, \mathrm{m}, 4-$ H), $1.07\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and $0.91\left(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.54$ (d), 135.53 (d), 133.59 (s$), 129.82$ (d), 127.63 (d), 77.65 (d), 65.18 (t), 57.94 (q), 46.16 (t), 39.35 (d), 26.95 (q), 19.22 (s) and 11.62 (q); m/z (EI) (Found $\mathrm{M}^{+}+\mathrm{Na}, 407.1975$; $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}$ requires 407.2018).
(4'R,2'R, $1 S, 3 S, 4 R$)-4'-Benzyl-3'-\{5'-benzyloxy-2'-[5-(tert-butyldiphenylsilanyloxy)-1-hydroxy-3-methoxy-4-methylpentyl]-pent-3'-enoyl\}-oxazolidin-2'-one 144.

A solution of dibutylborontriflate (1.0 M in dichloromethane, $2.2 \mathrm{ml}, 2.2 \mathrm{mmol}$) and triethylamine ($0.4 \mathrm{ml}, 2.7 \mathrm{mmol}$) were added to a solution of the imide $143(0.7 \mathrm{~g}, 1.9$ $\mathrm{mmol})$ in dry dichloromethane (15 ml) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the resulting pale yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then at $0^{\circ} \mathrm{C}$ for 30 min before being re-cooled to $-78^{\circ} \mathrm{C}$. A solution of the aldehyde $138(0.8 \mathrm{~g}, 2.1 \mathrm{mmol})$ in dry dichloromethane (5 ml) was added dropwise over 10 min to the mixture which was then stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and held at that temperature for a further 2 h . It was then quenched by adding a solution of $\mathrm{NaOAc}(0.2 \mathrm{~g})$ in methanol and water ($3 \mathrm{ml}, 10: 1$). After $20 \mathrm{~min} ., \mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{ml}$ of a 30% aqueous solution) was added dropwise and the mixture stirred at $0^{\circ} \mathrm{C}$ for 30 min . It was then diluted with water (20 ml) and the aqueous phase was extracted with dichloromethane ($3 \times 100 \mathrm{ml}$). The combined organic phases were washed with water (50 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, then concentrated in vacuo. Chromatography on silica using 50:1 dichloromethane:diethyl ether as eluent gave the secondary alcohol (0.6 g , 70% based on recovered aldehyde) as a colourless oil; $[\alpha]_{\mathrm{D}}+4.4$ (c, 0.7 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2931,2859,1781,1695,1384,1361$ and $1111 ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, CDCl_{3}) 7.72-7.62 (4H, m, Ph), 7.45-7.25 (16H, m, Ph), 6.06-5.82 ($2 \mathrm{H}, \mathrm{m}, 3$ "-H and $\left.4^{\prime \prime}-\mathrm{H}\right), 4.94\left(1 \mathrm{H}, \mathrm{dd}, J 10.3\right.$ and $\left.5.0 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 4.73-4.64\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.58-4.49(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}), 4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.28-4.18\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.17-4.10\left(2 \mathrm{H}, \mathrm{m}, 5{ }^{\prime \prime}-\mathrm{H}\right)$, 4.08-4.03 $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.72-3.68(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.67-3.52(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $3-\mathrm{H})$, $3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.28-3.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.78-2.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.06-1.89$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.69-1.57(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.55-1.48(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.07\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$, and $0.94\left(3 \mathrm{H}, \operatorname{app} \mathrm{t}, J 6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.01$ (173.52) (s), 152.93 (152.75) (s), 138.13 (s), 135.55 (d), 135.53 (s), 134.90 (s), 133.86 (s), 133.22 (d), 129.48 (d), 129.37 (d), 129.34 (d), 128.87 (d), 128.31 (d), 128.30 (d), 127.82 (d),
127.70 (d), 127.55 (d), 127.30 (d), 126.01 (d), 79.03 (79.07) (d), 72.68 (t), 71.92 (t), 70.13 (t$), 69.55$ (d), 69.01 (d), 66.59 (t$), 65.87$ (t$), 65.43$ (65.38 (t$), 58.42(\mathrm{q}), 55.03$ (d), 51.29 (d), 48.10 (d), 38.96 (38.88) (d), 37.51 (37.43) (t), 35.99 (35.93 ((t), 26.85 (q), 19.22 (s) and 12.34 (12.29) (q); m / z (FAB) (Found $\mathrm{M}^{+}+\mathrm{Na}^{+}, 772.3620$; $\mathrm{C}_{45} \mathrm{H}_{55} \mathrm{NO}_{7} \mathrm{SiNa}$ requires 772.3646).
(2R,3S,5S,6R)-2-(3'-Benzyloxyprop-1'-enyl)-7-(tert-butyldiphenylsilanyloxy)-5-methoxy-6-methyl-heptane-1,3-diol 145.

Dry methanol ($0.7 \mathrm{ml}, 16.0 \mathrm{mmol}$) and a solution of lithium borohydride (2.0 M in THF, $8.5 \mathrm{ml}, 17.0 \mathrm{mmol}$) were each added dropwise to a solution of the imide 144 $(4.9 \mathrm{~g}, 6.5 \mathrm{mmol})$ in dry $\mathrm{THF}(60 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was quenched by the addition of $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{ml})$ and then the mixture was allowed to warm to room temperature. Ethyl acetate (20 ml) was added and the separated aqueous phase was then extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$). The combined organic phases were washed with water (50 ml) and saturated brine (50 ml), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Purification by chromatography on silica using 2:1 (bp 40-60 ${ }^{\circ} \mathrm{C}$):diethyl ether as eluent gave the 1,3 -diol $(3.4 \mathrm{~g}, 90 \%)$ as a colourless viscous oil; [$\alpha]_{\mathrm{D}}-2.7$ ($c, 0.75$ in CHCl_{3}); (Found: C, $72.80 ; \mathrm{H} .8 .35 ; \mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}$ requires C , $73.10 ; \mathrm{H}, 8.10 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3457,2931,2859,1760,1602,1455,1362,1112$ and $1077 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71-7.63(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.47-7.24(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.94-$ $5.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 4.53\left(2 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.11-3.95\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $1-\mathrm{H}), 3.80-3.73(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.72-3.60(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.59-3.53(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H}), 3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.58-2.49(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.95(1 \mathrm{H}$, quintet, $J 4.3 \mathrm{~Hz}, 6-\mathrm{H})$, 1.72-1.63 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $1.53-1.41(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and $1.01(3 \mathrm{H}, \mathrm{dd}, J$ 6.9 and $\left.2.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{c}\left(90.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.10$ (137.88) (s), 135.53 (135.51) (d), 133.65 (133.62) (s), 130.43 (130.30) (d), 130.22 (d), 129.76 (d), 129.56 (d), 128.33 (128.32) (d), 127.72 (d), 127.65 (d), 127.58 (d), 80.12 (79.86((d), 72.42 (72.02) (t), 70.62 (t$), 69.86$ (69.71) (d), 65.77 (65.43 (t$), 64.85$ (64.40) (t$), 58.32$ (q), 49.78 (d),
45.59 (d), 38.65 (38.63) (d), 35.37 (35.24) (t), 26.84 (q), 19.20 (s), 15.18, 12.77 (q) and $12.56(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB})$ (Found $\mathrm{M}^{+}+\mathrm{H}, 577.3362 ; \mathrm{C}_{35} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{Si}$ requires 577.3349).

($2 R^{\prime}, 1 S, 3 S, 4 R$)-Methanesulfonic acid-5'-benzyloxy-2'-[5-(tert-

 butyldiphenylisilanyloxy)-1-hydroxy-3-methoxy-4-methylpentyl]-pent-3'enylester 146.
N, N-Diisopropylethylamine ($2.0 \mathrm{ml}, 11.0 \mathrm{mmol}$) and methanesulphonyl chloride (0.4 $\mathrm{ml}, 5.1 \mathrm{mmol})$ were added sequentially to a stirred solution of the diol $\mathbf{1 4 5}(2.9 \mathrm{~g}, 5.1$ mmol) in dry dichloromethane (58 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at room temperature for 1 h .1 M potassium carbonate solution (58 ml) was added and the resulting two phase mixture was stirred vigorously at room temperature for 10 min . The aqueous phase was extracted with dichloromethane ($3 \times 50 \mathrm{ml}$) and the combined organic phases were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to leave the crude methanesulfonate $(3.0 \mathrm{~g}, 90 \%)$ as an oil which was used immediately in the next step.
(4R,5S, 7S,8R)-1-Benzyloxy-9-(tert-butyldiphenylsilanyloxy)-7-methoxy-4,8-dimethylnon-2-en-5-ol 147.

Dry methanol ($1.0 \mathrm{ml}, 24.0 \mathrm{mmol}$) and a solution of lithium borohydride (2.0 M in THF, $12.0 \mathrm{ml}, 24.0 \mathrm{mmol}$) were each added dropwise to a solution of the mesylate $145(4.5 \mathrm{~g}, 6.9 \mathrm{mmol})$ in dry THF $(120 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was quenched by the addition of $1 \mathrm{M} \mathrm{NaOH}(120 \mathrm{ml})$ and then the mixture was allowed to warm to room temperature. Ethyl acetate (20 ml) was added and the separated aqueous phase was then extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$). The combined organic phases were washed with water (50 ml) and saturated brine (50 ml), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Purification by chromatography on silica using 2:1 (bp 40-60
${ }^{\circ} \mathrm{C}$): diethyl ether as eluent gave the reduced product ($3.2 \mathrm{~g}, 82 \%$) as a colourless viscous oil; $[\alpha]_{\mathrm{D}}-6.54\left(c, 1.3\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2932,2858,1602,1455$, 1362, 1265, 1112, 1080 and 983; (Found $\mathrm{C}, 74.7 ; \mathrm{H}, 8.8 ; \mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{4}$ Si requires 74.9, H ; $8.6 \%) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.70-7.67 (4H, m, Ph), 7.47-7.27 (11H, m, Ph), 5.75$5.63(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.01(2 \mathrm{H}, \mathrm{d}, J 5.0 \mathrm{~Hz}, 1-\mathrm{H}), 3.63-$ $3.53(4 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 7-\mathrm{H}$ and $5-\mathrm{H}), 3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.37(1 \mathrm{H}$, br s, OH$), 2.23-2.18$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.98-1.91(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 1.57(2 \mathrm{H}$, ddd, $J 10.8$ and $3.1 \mathrm{~Hz}, 6-\mathrm{H}), 1.09$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{l}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right)$ and $0.99\left(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, 8-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(90$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 135.80 (s), 135.62 (135.59) (d), 133.80 (133.77) (s), 129.59 (d), 128.36 (d), 127.78 (d), 127.62 (127.57) (d), 79.92 (d), 71.98 (d), 70.77 (t), 65.49 (t), 58.44 $(\mathrm{q}), 43.09(\mathrm{~d}), 38.89(\mathrm{~d}), 35.32(\mathrm{t}), 26.89(\mathrm{q}), 19.27(\mathrm{~s}), 16.48(\mathrm{q})$ and $12.64(\mathrm{q}) ; \mathrm{m} / \mathrm{z}$ (EI) (Found $\mathrm{M}^{+}+\mathrm{Na}^{+}, 583.3245 ; \mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{SiNa}$ requires 583.3220).
(4R,5S, 7S,8R)-1-Benzyloxy-9-(tert-butyldiphenylsilanyloxy)-7-methoxy-4,8-dimethylnon-2-en-5-ol, tert-butyldimethylsilyl ether 148.

A solution of tert-butyldimethylsilyltrifluoromethane sulphonate ($1.0 \mathrm{ml}, 4.5 \mathrm{mmol}$) in dry dichloromethane (5 ml) was added dropwise over 5 min to a stirred solution of the alcohol $147(2.1 \mathrm{~g}, 3.7 \mathrm{mmol})$ and 2,6 -lutidine ($1.1 \mathrm{ml}, 9.0 \mathrm{mmol}$) in dry dichloromethane (20 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to room temperature where stirring was continued for an additional 1 h . Methanol (1.5 ml) was added followed by dichloromethane $(10 \mathrm{ml})$ and the solution was then washed with water $(2 \times 50 \mathrm{ml})$ and saturated brine (25 ml) then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Purification by chromatography on silica using 50:1 diethyl ether:dichloromethane as eluent gave the bis-silyl ether ($2.4 \mathrm{~g}, 95 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}-2.8$ (c, 0.9 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3438,2955,2929,2856$ and $1072 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.70-7.61$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.46-7.28(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.73-5.51(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 4.49(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.13-4.00(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.99-3.98(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.76-3.64(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H})$, 3.55-3.49 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.48-3.33(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.59-2.37(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 1.94-1.86(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 1.59-1.41(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.01(3 \mathrm{H}$,
$\left.\mathrm{d}, J 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.91-0.86\left(12 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{\prime}\right.$ and $\left.\mathrm{CH}_{3}\right)$ and $0.04\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(90$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 138.44 (138.33) (s), 136.13 (d), 135.61 (d), 135.57 (d), 134.88 (s), 133.92 (d), 129.54 (d), 128.34 (d), 128.32 (d), 127.79 (d), 127.71 (d), 127.59 (d), 127.54 (d), 127.48 (d), 126.69 (d), 126.62 (d), 78.42 (d), 77.94 (d), 72.69 (d), 71.59 (t), 66.15 (t), 57.21 (q), 41.87 (d), 38.06 (d), 35.17 ($t), 29.70(t), 26.91(q), 25.95(d)$, $19.26(\mathrm{~s}), 18.12(\mathrm{~s}), 16.24(\mathrm{q}), 11.75(\mathrm{q}), 1.01(\mathrm{q}),-2.96(\mathrm{q})$ and $-4.24(\mathrm{q}) ; m / z(E I)$ (Found $\mathrm{M}^{+}+\mathrm{Na}^{+}$, 697.4087; $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$ requires 697.4084).
(2R,3S,5S,6R)-3-(tert-Butyldimethylsilanyloxy)-7-(tert-butyldiphenylsilanyloxy)-5-methoxy-2,6-dimethylheptanal 149.

A solution of the alkene $148(1.8 \mathrm{~g}, 2.6 \mathrm{mmol})$ in dry dichloromethane (40 ml) was ozonised at $-78{ }^{\circ} \mathrm{C}$ until the solution turned blue. Oxygen was then bubbled through the solution for 10 min . to remove any excess of ozone. Triphenylphosphine (0.8 g , 2.9 mmol) was then added in one portion under a nitrogen atmosphere and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . before warming to room temperature. The solution was concentrated in vacuo to leave a residue which was purified by chromatography on silica using $6: 1$ petrol (bp $40-60^{\circ} \mathrm{C}$): ethyl acetate as eluent to give the aldehyde $(1.2 \mathrm{~g}, 80 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}+6.7(c, 1.8$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3438,2955,2929,2856$ and $1072 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $9.75(1 \mathrm{H}, \mathrm{d}, J 1.6 \mathrm{~Hz}, \mathrm{CHO}), 7.71-7.65(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.48-7.27(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.15(1 \mathrm{H}$, ddd, $J 8.3,5.1$ and $3.4 \mathrm{~Hz}, 3-\mathrm{H}), 3.70(1 \mathrm{H}$, dd, $J 6.4$ and $10.0 \mathrm{~Hz}, 7-\mathrm{H}), 3.55(1 \mathrm{H}$, dd, , $J 6.5$ and $10.0 \mathrm{~Hz}, 7-\mathrm{H}), 3.53-3.49(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.60-2.50(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 1.95(1 \mathrm{H}, \mathrm{dq}, J 3.4$ and $6.8 \mathrm{~Hz}, 6-\mathrm{H}), 1.65(1 \mathrm{H}, \mathrm{ddd}, J 14.3,7.5$ and 4.3 Hz , $4-\mathrm{H}), 1.55(1 \mathrm{H}$, ddd, J 19.4, 8.6 and $5.1 \mathrm{~Hz}, 4-\mathrm{H}), 1.14\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.09$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J 6.13 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCl}_{3}\right) ; \delta_{\mathrm{C}}\left(90.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 204.22$ (d), 135.60 (d), 135.54 (d), 133.76 (s), 129.56 (d), 127.60 (d), 78.24 (d), 70.62 (d), 64.93 (t), 56.99 (q), 51.89 (d), 37.80 (d), 36.30 (t), 26.88 (q), 25.85 (q), 19.21 (s), 18.02 (s), $11.85(\mathrm{q}), 9.0\left(\mathrm{CH}_{3}\right), 9.73(\mathrm{q}),-$ $4.34(\mathrm{q})$ and $-4.44(\mathrm{q}) ; m / z(\mathrm{EI})$ (Found $\mathrm{M}^{+}+\mathrm{Na}^{+}, 579.3243 ; \mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$ requires 579.3302).
(4S,5R,6S,8S,9R)-6-(tert-Butyldimethylsilanyloxy)-10-(tert-butyldiphenylsilanyloxy)-8-methoxy-5, 9-dimethyldec-1-en-4-ol 150.

A solution of allylmagnesium bromide (1.0 M in ether, $2.65 \mathrm{ml}, 2.65 \mathrm{mmol}$) was added dropwise over 2 min . to a stirred solution of $(-)-\mathrm{IPC}_{2} \mathrm{BOMe}(0.87 \mathrm{~g}, 2.76$ mmol) in dry diethyl ether (3 ml) at $-78^{\circ} \mathrm{C}$ under an argon atmosphere. The resulting thick white slurry was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to room temperature. The mixture was stirred for an additional hour at room temperature, then cooled to $-90^{\circ} \mathrm{C}$ and a solution of the aldehyde $149(1.23 \mathrm{~g}, 2.21 \mathrm{mmol})$ in dry diethyl ether (6 ml) was cannulated slowly into it. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 h and then quenched by the slow addition of $3 \mathrm{M} \mathrm{NaOH}(2.0 \mathrm{ml})$. The mixture was warmed to room temperature and $\mathrm{H}_{2} \mathrm{O}_{2}$ (0.78 ml of a 30% aqueous solution) was then added slowly. The mixture was heated under reflux for an hour, then cooled to room temperature and diluted with ether (50 ml). The separated organic phase was washed with water ($2 \times 20 \mathrm{ml}$) and saturated brine $(25 \mathrm{ml})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Purification by chromatography on silica using 9:1 petrol (bp 40$\left.60^{\circ} \mathrm{C}\right)$:ethyl acetate as eluent gave the alcohol $(0.93 \mathrm{~g}, 70 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}$ +5.3 ($c, 2.0$ in CHCl_{3}); (Found: $\mathrm{C}, 70.4 ; \mathrm{H}, 10.2 ; \mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{4} \mathrm{Si}_{2}$ requires $\mathrm{C}, 70.2 ; \mathrm{H}$, $9.8 \%) ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3438,2955,2929,2856$ and $1072 ; \delta_{H}(360 \mathrm{MHz}, \mathrm{CDCl} 3)$ 7.71-7.65 (4H, m, Ph), 7.47-7.33 (6H, m, Ph), $5.81(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.1$ and 7.1 Hz , $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right), 5.10(1 \mathrm{H}, \mathrm{dd}, J 17.2$ and $1.6 \mathrm{~Hz},=\mathrm{CHH}), 5.03(1 \mathrm{H}, \mathrm{dd}, J 10.1$ and 1.6 $\mathrm{Hz},=\mathrm{CH} H), 4.15(1 \mathrm{H}, \mathrm{dt}, J 7.4$ and $1.4 \mathrm{~Hz}, 6-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{ddd}, J 9.0,5.1$ and 1.6 Hz , $4-\mathrm{H}), 3.74-3.65(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and $6.1 \mathrm{~Hz}, 8-\mathrm{H}), 3.40(1 \mathrm{H}$, br s, $\mathrm{OH}), 3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.40-2.28(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.15-1.95(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $9-\mathrm{H})$, $1.85-1.75(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.73-1.57(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.07\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.04(3 \mathrm{H}, \mathrm{d}, J 7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and 0.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}$); $\delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.57$ (d), 135.52 (d), 135.38 (d), 133.74 (s), 133.70 (s), 129.61 (d), 127.64 (d), 127.61 (d), 116.89 (t), 77.63 (d), 76.61 (d), 70.13 (d), 65.13 (t), 57.23 (q), 39.34 (t), 38.32 (d), 37.79 (d), 35.43 (t), $26.88(\mathrm{q}), 25.83(\mathrm{q})$, $19.23(\mathrm{~s}), 17.88(\mathrm{~s}), 11.23(\mathrm{q}), 10.65(\mathrm{q}),-4.35(\mathrm{q})$ and $-4.65(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}, 621.3770 ; \mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$ requires 621.3771).
(4S, 5R, 6S, 8S, 9R)-6-(tert-Butyldimethylsilanyloxy)-10-tert-butyldiphenylsilanyloxy)-4, 8-dimethoxy-5, 9-dimethyldec-1-ene 151.

2,6-Di-tert-butylpyridine ($11.5 \mathrm{ml}, 51.0 \mathrm{mmol}$) and methyltrifluoromethane sulfonate $(2.9 \mathrm{ml}, 25.5 \mathrm{mmol})$ were added sequentially to a solution of the alcohol $150(1.0 \mathrm{~g}$, 1.7 mmol) in chloroform (35.0 ml) under a nitrogen atmosphere. The mixture was heated to reflux for 70 min . and then cooled to room temperature. Concentrated $\mathrm{NH}_{4} \mathrm{OH}(1.8 \mathrm{ml}, 25.5 \mathrm{mmol}$) was added and the mixture was stirred at room temperature for 2 h and then diluted with dichloromethane $(25 \mathrm{ml})$. The organic phase was washed successively with water (20 ml), $2 \mathrm{M} \mathrm{HCl}(3 \times 25 \mathrm{ml})$, water (20 ml) and saturated brine (25 ml), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by chromatography on silica using 2:3 petrol (bp $40-60^{\circ} \mathrm{C}$):dichloromethane as eluent gave the methyl ether $(1.0 \mathrm{~g}, 95 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}-15.2\left(c, 1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2930,2857$ and 1089; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.70-7.62(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.45-7.35 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.90-5.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right), 5.14-5.06(2 \mathrm{H}, \mathrm{m}$, $\left.H_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right), 3.89(1 \mathrm{H}$, ddd, $J 9.5,3.8$ and $1.7 \mathrm{~Hz}, 6-\mathrm{H}), 3.69(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $5.6 \mathrm{~Hz}, 10-\mathrm{H}), 3.55(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $6.8 \mathrm{~Hz}, 10-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{dq}, J 9.9$ and 2.4 Hz , $8-\mathrm{H}), 3.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.94(1 \mathrm{H}, \mathrm{dt}, J 6.8$ and $1.8 \mathrm{~Hz}, 4-\mathrm{H})$, 2.41-2.30 (1H, m, 3-H), 2.29-2.23 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.07-1.96(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 1.79(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 1.47-1.35(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.32-1.27(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 0.93(3 \mathrm{H}, \mathrm{d}, J$ $\left.1.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J 1.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.64$ (d), 135.59 (d), 134.58 (d), 133.99 (s), 133.94 (s), 129.51 (d), 129.48 (d), 127.58 (d), 117.18 (t), 82.62 (d), 79.53 (d), 70.20 (d), 65.02 (t), 57.53 (q), 57.30 (q), 42.37 (d), 37.92 (d), 34.77 (t), 33.98 (t), $26.91(\mathrm{q}), 25.96(\mathrm{q}), 19.26(\mathrm{~s}), 18.06(\mathrm{~s}), 12.62(\mathrm{q}), 8.84(\mathrm{q}),-3.89(\mathrm{q})$ and $-4.56(\mathrm{q})$; m / z (EI) (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}, 635.3893 ; \mathrm{C}_{30} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$ requires 635.3928).
(4S,5R,6S,8S,9R)-10-(tert-Butyldiphenylsilanyloxy)-4,8-dimethoxy-5,9-dimethyldec-1-en-6-ol 152.

Pyridinium p-toluene sulphonate (160 mg) was added to a solution of the bis-silyl ether $151(1.3 \mathrm{~g}, 2.1 \mathrm{mmol})$ in ethanol $(17 \mathrm{ml})$ and the mixture was heated to reflux for 9 h , then evaporated in vacuo. The residue was purified by chromatography on silica using 7:1 dichloromethane:diethyl ether as eluent to give the alcohol (948 mg , 90%) as a colourless oil; $[\alpha]_{\mathrm{D}}-9.0\left(c, 0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3453,1642$, 1111 and 1081 ; (Found: $\mathrm{C}, 73.0 ; \mathrm{H}, 9.7 ; \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 72.3 ; \mathrm{H}, 9.2 \%$); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.70-7.65(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.46-7.36(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.77(1 \mathrm{H}, \mathrm{ddt}, J$ $14.1,7.6$ and $\left.6.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.12\left(1 \mathrm{H}, \mathrm{dq}, J 17.1\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{H} H \mathrm{C}=\mathrm{CHCH}_{2}\right), 5.05$ $\left(1 \mathrm{H}, \mathrm{dq}, J 10.1\right.$ and $\left.1.0 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CHCH}_{2}\right), 3.75-3.52(6 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}, 4-\mathrm{H}, 8-\mathrm{H}, 6-\mathrm{H}$ and OH$), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.50-2.42(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.28-2.15$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.99-1.90(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.70(1 \mathrm{H}, \mathrm{dt}, J 7.1$ and $2.5 \mathrm{~Hz}, 7-\mathrm{H}), 1.63-1.44$ $(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $9-\mathrm{H}), 1.07\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ and $0.88(3 \mathrm{H}, \mathrm{d}$, $\left.J 7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.62$ (d), 135.59 (d), 135.17 (d), 133.87 (s), 133.83 (s), 129.54 (d), 129.52 (d), 127.59 (d), 116.91 (t), 82.49 (d), 79.49 (d), 71.36 (d), 65.42 (t), 58.43 (q), 57.35 (q), 39.84 (d), 38.93 (d), 37.00 (t), 34.76 (t), 26.88 (q), $19.26(\mathrm{~s}), 12.50(\mathrm{q})$ and $11.36(\mathrm{q}) ; \mathrm{m} / 2(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 499.3240 ; \mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{4} \mathrm{Si}$ requires 499.3244).
(4S,5R,6S,8S,9R)-10-(tert-Butyldiphenylsilanyloxy)-4,8-dimethoxy-6-methoxymethoxy-5,9-dimethyldec-1-ene 153.

Methoxymethyl chloride $(0.6 \mathrm{ml}, 8.3 \mathrm{mmol})$ was added dropwise to a solution of the alcohol $152(0.83 \mathrm{~g}, 1.7 \mathrm{mmol})$ and diisopropylethylamine ($2.8 \mathrm{ml}, 16.6 \mathrm{mmol}$) in dry dichloromethane (50 ml) under a nitrogen atmosphere, and the mixture was then heated to reflux for 1 h . The mixture was cooled to room temperature, and another
portion of methoxymethyl chloride was added and the mixture then heated to reflux for a further 1 h . The process was repeated once more by which time no starting alcohol was left by tlc analysis. The mixture was diluted with dichloromethane (100 $\mathrm{ml})$ and washed with water $(2 \times 50 \mathrm{ml})$, followed by saturated brine $(50 \mathrm{ml})$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The mixture was evaporated in vacuo and the residue purified by chromatography on silica using 25:1 dichloromethane:diethyl ether as eluent to give the methoxymethyl ether $(0.85 \mathrm{~g}, 95 \%)$ as a colourless viscous oil; $[\alpha]_{\mathrm{D}}-14.4(c, 0.9$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2931$ and $1090 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.70-7.66(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$, $7.45-7.36(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.83\left(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.2\right.$ and $\left.7.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right) 5.14-$ $5.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 4.69(1 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{O}), 4.60(1 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}$, $\mathrm{OCHHO}), 3.77-3.65(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $6-\mathrm{H}), 3.60-3.48(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $8-\mathrm{H}), 3.39$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.10(1 \mathrm{H}, \mathrm{q}, J 5.5 \mathrm{~Hz}, 4-\mathrm{H})$, $2.33(2 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}, 3-\mathrm{H}), 2.00-1.86(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $9-\mathrm{H}), 1.49-1.46(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $1.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and $0.92\left(6 \mathrm{H}\right.$, app $\left.\mathrm{t}, J 6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 135.61 (d), 135.57 (d), 134.52 (d), 133.89 (s), 133.85 (s), 129.53 (d), 129.51 (d), 127.58 (d), 117.14 (t), 96.28 (t), 81.58 (d), 78.87 (d), 77.02 (d), $65.30(t), 58.10(\mathrm{q})$, 57.19 (q), 55.74 (q), 39.58 (d), 38.89 (d), 34.91 (t), 33.68 (t), $26.87(\mathrm{q}), 19.25(\mathrm{~s})$, $12.25(\mathrm{q})$ and $9.11(\mathrm{q}) ; m / z(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 543.3505 ; \mathrm{C}_{32} \mathrm{H}_{51} \mathrm{O}_{5}$ Si requires 543.3506).
(3S,4R,5S, 7S,8R)-9-(tert-Butyldiphenylsilanyloxy)-3,7-dimethoxy-5-methoxymethoxy-4,8-dimethylnonanal 154.

A solution of the alkene $153(0.8 \mathrm{~g}, 1.5 \mathrm{mmol})$ in dry dichloromethane (40 ml) was ozonised at $-78^{\circ} \mathrm{C}$ until a blue colour persisted and then oxygen was bubbled through the solution for 10 min . Triphenylphosphine ($0.5 \mathrm{~g}, 1.9 \mathrm{mmol}$) was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . under a nitrogen atmosphere, and then allowed to warm to room temperature. The mixture was evaporated in vacuo and the residue was purified by chromatography on silica using 12:1 dichloromethane:diethyl ether as eluent to give the aldehyde $(0.7 \mathrm{~g}, 89 \%)$ as a labile colourless liquid; $[\alpha]_{\mathrm{D}}-$
13.7 (c, 1.8 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420,1722$ and $1090 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $9.83(1 \mathrm{H}, \mathrm{t}, J 2.1 \mathrm{~Hz}, \mathrm{CHO}), 7.72-7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.46-7.37(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.71(1 \mathrm{H}$, d, $J 6.8 \mathrm{~Hz}, \mathrm{OCHHO}), 4.66(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCHHO}), 3.76-6.35(3 \mathrm{H}, \mathrm{m}, 9-\mathrm{Hand} 3-$ H), $3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $6.4 \mathrm{~Hz}, 5-\mathrm{H}), 3.56-3.50(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.65(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.03-1.90(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $8-\mathrm{H}), 1.57-1.50(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, J 4.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ and $0.95\left(3 \mathrm{H}, \mathrm{d}, J 4.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.29$ (d), 135.54 (d), 135.49 (d), 133.80 (s), 133.74 (s), 129.51 (d), 129.49 (d), 127.54 (d), 96.58 (t), 78.75 (d), 77.64 (d), 77.24 (d), 65.13 (t), 57.94 (q), 57.54 (q), $55.75(\mathrm{q}), 46.09(\mathrm{t}), 41.32(\mathrm{~d}), 38.59(\mathrm{~d})$, $33.89(\mathrm{t}), 26.82(\mathrm{q}), 19.20(\mathrm{~s}), 12.19(\mathrm{q})$ and $9.66(\mathrm{q}) ; m / z(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}$, 567.3072; $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{SiNa}$ requires 567.3118).
(3S,4R,5S, 7S, 8R)-9-(tert-Butyldiphenylsilanyloxy)-1,1,3,7-tetramethoxy-5-methoxymethoxy-4,8-dimethylnonane 155.

p-Toluenesulphonic acid (12 mg , catalytic) was added in one portion to a solution of the aldehyde 154 ($780 \mathrm{mg}, 1.4 \mathrm{mmol}$) in a mixture of trimethyl orthoformate (32 ml) and dry methanol (22 ml) at room temperature under a nitrogen atmosphere. The homogeneous mixture was stirred for 1 h and then quenched with saturated aqueous sodium hydrogen carbonate solution (5 ml). The separated organic layer was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), evaporated in vacuo and the residue purified by chromatography on silica using 7:1 dichloromethane: diethyl ether as eluent to give the dimethyl acetal (830 mg , 98%) as a colourless oil; $[\alpha]_{\mathrm{D}}-6.0\left(c, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3428,2932$ and 1088; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71-7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.45-7.36(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.71$ $(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCHHO}), 4.64(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCHHO}), 4.55(1 \mathrm{H}, \mathrm{t}, J 5.6 \mathrm{~Hz}, 1-$ $\mathrm{H}), 3.79-3.74(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $5.9 \mathrm{~Hz}, 9-\mathrm{H}), 3.57(1 \mathrm{H}, \mathrm{dd}, J$ 10.0 and $5.9 \mathrm{~Hz}, 9-\mathrm{H}), 3.54-3.50(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.26-3.19(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 2.03-1.87(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $8-\mathrm{H}), 1.83(2 \mathrm{H}, \mathrm{t}, J 5.4 \mathrm{~Hz}, 2-\mathrm{H}), 1.50(2 \mathrm{H}, \mathrm{t}, J$ $6.3 \mathrm{~Hz}, 6-\mathrm{H}), 1.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ and $0.94(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}$,
$\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.56$ (d), 135.52 (d), 133.85 (s), 133.83 (s), 129.49 (d), 129.47 (d), 127.54 (d), 102.02 (d), 96.38 (t), 79.26 (d), 77.68 (d), 77.50 (d), 65.31 (t), $57.98(\mathrm{q}), 55.73(\mathrm{q}), 53.07(\mathrm{q}), 51.85(\mathrm{q}), 41.06(\mathrm{~d}), 38.85(\mathrm{~d}), 35.01(\mathrm{t}), 33.73(\mathrm{t})$, $26.84(\mathrm{q}), 19.21(\mathrm{~s}), 12.15(\mathrm{q})$ and $9.37(\mathrm{q}) ; m / z(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 590.3589$; $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Si}$ requires 590.3639).
(3S,4R,5S, $7 S, 8 R$)-1,1,3,7-Tetramethoxy-5-methoxymethoxy-4,8-dimethylnonan-9-ol 156.

Tetrabutylammonium fluoride ($442 \mathrm{mg}, 1.7 \mathrm{mmol}$) was added in one portion to a stirred solution of the silyl ether $155(825 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF (12.5 ml) at room temperature under a nitrogen atmosphere and the mixture was stirred at room temperature for 5 h . An additional portion of TBAF (100 mg) was added and stirring was continued for a further 1 h by which time the starting material was completely consumed. The mixture was evaporated in vacuo to leave a residue which was extracted with dichloromethane ($3 \times 50 \mathrm{ml}$). The combined organic phases were washed with water (50 ml) and saturated brine (50 ml) then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Purification by chromatography on silica using 3:1 diethyl ether:dichloromethane as eluent gave the alcohol ($484 \mathrm{mg}, 98 \%$) as a colourless, viscous liquid; $[\alpha]_{\mathrm{D}}-44.2\left(c, 1.3\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3464,2934$ and 1080; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.67(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{O}), 4.59(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}$, $\mathrm{OCHHO}), 4.51(1 \mathrm{H}, \mathrm{t}, J 5.8 \mathrm{~Hz}, 1-\mathrm{H}), 3.76(1 \mathrm{H}$, ddd, $J 9.8,4.5$ and $1.8 \mathrm{~Hz}, 5-\mathrm{H}), 3.68$ $(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $8.9 \mathrm{~Hz}, 9-\mathrm{H}), 3.50(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $5.0 \mathrm{~Hz}, 9-\mathrm{H}), 3.47-3.44$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.32(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.22(1 \mathrm{H}$, sextet, $J 5.1 \mathrm{~Hz}, 3-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 2.29-2.22 (1H, m, 8-H), 1.92-1.85 (1H, m, 4-H), $1.79(2 \mathrm{H}, \mathrm{t}, J 6.1 \mathrm{~Hz}, 2-\mathrm{H}), 1.62-1.43$ $(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 0.91\left(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ and $0.81\left(3 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(90.6$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 102.07 (d), 96.45 (t), 82.05 (d), 79.21 (d), 77.53 (d), 65.63 (t), 57.94 (q), $57.51(\mathrm{q}), 55.71(\mathrm{q}), 53.03(\mathrm{q}), 52.11(\mathrm{q}), 40.98(\mathrm{~d}), 35.41(\mathrm{~d}), 34.97(\mathrm{t}), 31.36(\mathrm{t})$,
$12.83(\mathrm{q})$ and $9.12(\mathrm{q}) ; m / z(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}, 375.2328 ; \mathrm{C}_{17} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Na}$ requires 375.2359).
(3S,4R,5S, 7S,8R)-1,1,3,7-Tetramethoxy-5-methoxymethoxy-4,8-dimethylnonanal 131.

A mixture of the alcohol 156 ($127 \mathrm{mg}, 0.36 \mathrm{mmol}$), NMO ($88 \mathrm{mg}, 0.72 \mathrm{mmol}$) and powdered $4 \AA$-molecular sieves (0.5 g) in dry dichloromethane (10 ml) was stirred at room temperature for 10 min under nitrogen and then solid TPAP ($12 \mathrm{mg}, 0.036 \mathrm{~mm}$) was added in one portion. The mixture was stirred for an additional 1 h then diluted with ether (100 ml) and filtered through celite. The filter cake was washed with ether ($2 \times 25 \mathrm{ml}$) and the combined ether extracts were concentrated in vacuo to leave a brown residue. Chromatography on silica using dichloromethane-ether (3:1) as eluent gave the aldehyde ($112 \mathrm{mg}, 89 \%$) as a colourless oil, $[\alpha]_{\mathrm{D}}-68.6(c, 3.0$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1721 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 4.68(1 \mathrm{H}$, d, $J 6.8 \mathrm{~Hz}, \mathrm{OCHHO}), 4.60(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCHHO}), 4.50(1 \mathrm{H}, \mathrm{t}, J 5.7 \mathrm{~Hz}, 1-\mathrm{H})$, 3.79-3.76 $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $8-\mathrm{H}), 3.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.33(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36-3.30(1 \mathrm{H}, \mathrm{b}, \mathrm{m}, 7-\mathrm{H}), 3.26-3.16$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.95-1.85(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.78(2 \mathrm{H}, \mathrm{t}, J 5.3 \mathrm{~Hz}, 2-\mathrm{H}), 1.68-1.47(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 1.07\left(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) . \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 204.8 (d), 102.0 (d), 96.5 (t), 79.1 (d), 78.0 (d), 77.4 (d), 57.9 (q), 57.7 (q), 55.8 (q), 53.1 (q), 52.2 (q), 49.3 (d), 40.8 (d), 34.9 (t), 34.4 (t), 9.1 (q) and 8.4 (q). m / z (EI) (Found: $\mathrm{M}^{+}-\mathrm{CH}_{2}+\mathrm{Na}^{+}, 359.2045 ; \mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Na}$ requires 359.2046).

(2S, 3R)-[2-(5-Benzyloxyethyl)oxiranyl]methanol 158. ${ }^{72}$

Titanium (IV) isopropoxide ($2.64 \mathrm{ml}, 8.9 \mathrm{mmol}$), (+)-diethyl tartarate ($1.84 \mathrm{ml}, 10.7$ mmol) and 5-benzyloxypent-2-en-1-ol $\mathbf{1 5 7}^{124}(16.0 \mathrm{~g}, 83.2 \mathrm{mmol})$ were added sequentially over 30 min to a suspension of powdered $4 \AA$ sieves (2.8 g) in dry
dichloromethane (200 ml) at $-20^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min , and then tert-butylhydroperoxide (3 M in isooctane, 55.5 $\mathrm{ml}, 166.5 \mathrm{mmol}$) was added over 30 min . The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 8 h and then kept at $-18^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched by the addition of water (100 ml) and then warmed to room temperature over 30 min . Sodium hydroxide in brine $(30 \%, 20 \mathrm{ml})$ was added, and the mixture was then stirred at room temperature for 30 min before the two phases were separated. The aqueous phase was extracted with dichloromethane ($3 \times 200 \mathrm{ml}$) and the combined organic phases then washed with saturated brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated in vacuo to leave a pale yellow oil which was purified by chromatography on silica using diethyl ether as eluent to give the epoxide $(13.1 \mathrm{~g}, 76 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}-30.0$ (c, 3.9 in CHCl_{3}); (Found: $\mathrm{C}, 69.4 ; \mathrm{H}, 7.9 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.2 ; \mathrm{H}, 7.7 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3427,2921,2863,1454,1363,1101$ and $1029 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.36-7.20 (5H, m, Ph), $4.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.81-3.74(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.56(2 \mathrm{H}, \mathrm{t}, J$ $6.0 \mathrm{~Hz}, 5-\mathrm{H}), 3.53-3.43(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.03-2.96(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{dt}, J 4.6$ and $2.3 \mathrm{~Hz}, 3-\mathrm{H})$ and $1.95-1.71(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.8(\mathrm{~s}), 128.03(\mathrm{~d})$, $127.69(\mathrm{~d}), 72.6(\mathrm{t}), 66.5(\mathrm{t}), 61.5(\mathrm{t}), 58.6(\mathrm{~d}), 53.4(\mathrm{~d})$ and $31.7(\mathrm{t})$.
(2R)-4-Benzyloxy-2-methylbutyraldehyde $160{ }^{72}$

A solution of trimethylaluminium (2 M in hexane, $75.0 \mathrm{ml}, 150.0 \mathrm{mmol}$) was added dropwise over 30 min to a stirred solution of the epoxy alcohol $158(10.0 \mathrm{~g}, 48.0$ mmol) in dry dichloromethane (300 ml) at $0^{\circ} \mathrm{C}$ under an argon atmosphere. The mixture was allowed to warm to room temperature and then stirred for 15 h . After cooling back to $0^{\circ} \mathrm{C}, 2 \mathrm{M} \mathrm{HCl}(150 \mathrm{ml})$ was added cautiously and the two layers were allowed to separate. The separated aqueous layer was extracted with dichloromethane $(2 \times 200 \mathrm{ml})$ and the combined organic phases were concentrated in vacuo. Analysis of the p.m.r. spectrum of the residue showed the presence of an ca 9:1 mixture of regioisomeric products in favour of the required 5-benzyloxy-3-methylpentane-1, 2diol 159. A solution of the residue in methanol (450 ml) and water (100 ml), was stirred with sodium periodate $(9.6 \mathrm{~g})$ for 6 h before the solvent was removed in vacuo.

The residue was diluted with water $(200 \mathrm{ml})$ and the mixture was then extracted with dichloromethane ($3 \times 200 \mathrm{ml}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated in vacuo to leave a pale yellow oil. Chromatography on silica using ether as eluent gave the aldehyde ($7.8 \mathrm{~g}, 84 \%$) as an unstable colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1723 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.63(1 \mathrm{H}, \mathrm{d}, J 1.7 \mathrm{~Hz}, \mathrm{CHO}), 7.34-7.25$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.55-3.48(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.52(1 \mathrm{H}$, app sextet d, J 6.9 and $1.7 \mathrm{~Hz}, 2-\mathrm{H}), 2.10-1.97(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.74-1.62(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $1.09(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 204.5(\mathrm{~d}), 138.0(\mathrm{~s}), 128.2$ (d), 128.1 (d), $127.55(\mathrm{~d}), 72.8(\mathrm{t}), 67.2(\mathrm{t}), 43.5(\mathrm{~d}), 30.6(\mathrm{t})$ and $13.0(\mathrm{q})$.
(4R)-Ethyl-6-benzyloxy-4-methylhex-(2E)-enoate $161 .^{72}$

Carboethoxytriphenylphosphorane ($14.6 \mathrm{~g}, 42 \mathrm{mmol}$) was added in one portion to a solution of the aldehyde $160(7.50 \mathrm{~g}, 39.0 \mathrm{mmol})$ in dry dichloromethane (200 ml) at room temperature under a nitrogen atmosphere and the resulting yellow solution was stirred for 12 h . The mixture was concentrated in vacuo to leave a pale yellow viscous liquid which was purified by chromatography on silica using $4: 1$ petrol (bp 40-60 $\left.{ }^{\circ} \mathrm{C}\right)$:ethyl acetate as eluent to give the ester $(9.60 \mathrm{~g}, 94 \%)$ as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2979,2858,1723$ and $1655 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.28-7.14(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 6.77(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $15.8 \mathrm{~Hz}, 3-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and $15.8 \mathrm{~Hz}, 2-\mathrm{H}), 4.38$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.08\left(2 \mathrm{H}, \mathrm{q}, J 6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.41-3.33(2 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}$, app septet, $J 7.0 \mathrm{~Hz}, 4-\mathrm{H}), 1.59(2 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, 5-\mathrm{H}), 1.19\left(2 \mathrm{H}, \mathrm{t}, J 6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $0.97\left(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.6$ (s), 153.6 (d), 138.3 (s), 128.2 (d), 127.5 (d), 127.5 (d), 119.9 (d), 72.9 (t), 67.8 (t), $60.0(t), 35.7(t), 33.3$ (d), 19.3 (q) and 14.2 (q).

A solution of DIBAL-H (1 M in hexane, $70.0 \mathrm{ml}, 70.0 \mathrm{mmol}$) was added over 30 min to a stirred solution of the ester $161(9.0 \mathrm{~g}, 34.0 \mathrm{mmol})$ in dry THF $(100 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , and then quenched with 2 M HCl (5 ml initially, followed by 50 ml after the reaction had set to a gel). The separated aqueous layer was then extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated in vacuo to leave a yellow oil. Chromatography on silica using 7:1 dichloromethane:diethyl ether as eluent gave the alcohol ($7.28 \mathrm{~g}, 96 \%$) as an oil; $[\alpha]_{\mathrm{D}}-31.2\left(c, 14.1\right.$ in CHCl_{3}); (Found: C, 76.1; H, 9.5. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C} 76.3 ; \mathrm{H} \mathrm{9.2} \mathrm{\%}$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3385$, 2924 and $2863 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.44-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.73-5.35(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 4.46\left(2 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.05(2 \mathrm{H}, \mathrm{br}$ s, $1-\mathrm{H}), 3.57(2 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}$, $6-\mathrm{H}), 2.40(1 \mathrm{H}$, septet, $J 6.6 \mathrm{~Hz}, 4-\mathrm{H}), 2.10(1 \mathrm{H}, \mathrm{br}$ s, OH$), 1.60(2 \mathrm{H}$, ddd, $J 13.2,6.8$ and $3.3 \mathrm{~Hz}, 5-\mathrm{H})$ and $1.00\left(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.2$ (s), 137.8 (d), 128.7 (d), 127.8 (d), 127.7 (d), 127.4 (d), 72.6 ($t), 68.3$ ($t), 63.5(t), 36.7(t)$, 33.9 (d) and 20.5 (q).
(2S, 3R, 4R)-[2-(6-Benzyloxy-4-methylpropyl)oxiranyl]methanol 163. ${ }^{72}$

Titanium (IV) isopropoxide ($1.0 \mathrm{ml}, 3.4 \mathrm{mmol}$), (-)-diethyl tartarate ($0.7 \mathrm{ml}, 4.0$ $\mathrm{mmol})$ and the allylic alcohol $162(7.0 \mathrm{~g}, 32.0 \mathrm{mmol})$ were added sequentially over 20 \min to a stirred suspension of powdered $4 \AA$ sieves (1.2 g) in dry dichloromethane (50 ml) at $-20^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 \min, then tert-butylhydroperoxide (3 M in isooctane, $21.3 \mathrm{ml}, 64.0 \mathrm{mmol}$) was added over 30 min and the resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 8 h . It was then kept at $-18^{\circ} \mathrm{C}$ for 12 h before being quenched by the addition of water (40 ml). The mixture was warmed to room temperature over 30 min , and then sodium hydroxide in brine $(30 \%, 8 \mathrm{ml})$ was added, and the mixture stirred at room temperature for 30 min . The
separated aqueous phase was extracted with dichloromethane ($3 \times 50 \mathrm{ml}$) and the combined organic phases were then washed with saturated brine (50 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated in vacuo to leave a pale yellow oil, which was purified by chromatography on silica using $3: 2$ petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$): ethyl acetate as eluent to give the epoxide $(6.4 \mathrm{~g}, 85 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}+14.9(c, 10.7$ in CHCl_{3}); (Found: $\mathrm{C}, 71.3 ; \mathrm{H}, 8.8 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.2 ; \mathrm{H}, 8.5 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3415,2963 and $2876 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.50(2 \mathrm{H}, \mathrm{q}, J 7.0$ $\left.\mathrm{Hz}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 3.86-3.79(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.58-3.49(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $6-\mathrm{H}), 2.96-2.89$ $(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and OH$), 2.77(1 \mathrm{H}, \mathrm{dd}, J 6.6$ and $2.5 \mathrm{~Hz}, 3-\mathrm{H}), 1.90-1.82(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 1.66-1.54 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$) and $0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.4$ (s), 128.2 (d), 127.7 (d), 127.5 (d), 72.8 ($), 68.0(\mathrm{t}), 61.8(\mathrm{t}), 60.3(\mathrm{~d}), 57.0(\mathrm{~d}), 34.2$ (t), $32.4(\mathrm{C}-1)$ and $15.8(\mathrm{q})$.
(2R,3R,4R)-6-Benzyloxy-2,4-dimethylhexane-1, 3-diol $164 .^{72}$

A solution of methylmagnesium bromide (3 M in THF, $28.5 \mathrm{ml}, 85.5 \mathrm{mmol}$) was added over 1 h to a stirred suspension of $\mathrm{CuI}(1.67 \mathrm{~g}, 8.8 \mathrm{mmol})$ in dry THF (75 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then a solution of the epoxy alcohol $163(6.5 \mathrm{~g}, 27.5 \mathrm{mmol})$ in dry THF (50 ml) was added over 30 min . The reaction was stirred at $0^{\circ} \mathrm{C}$ for 15 h and then quenched by the addition of saturated aqueous ammonium chloride solution (150 ml). The mixture was stirred vigorously at room temperature for 30 min and then extracted with ether (3 x 150). The combined organic phases were washed with saturated brine (150 ml), and then concentrated in vacuo. Analysis of the p.m.r. spectrum of the residue showed that it was composed of a $9: 1$ mixture in favour of the required 1,3-diol. A solution of the residue in methanol $(140 \mathrm{ml})$ and water $(35 \mathrm{ml})$ was stirred with sodium periodate (1.5 g) for 7 h and then most of the methanol was removed in vacuo. The residue was diluted with water (100 ml) and then extracted with dichloromethane ($3 \times 100 \mathrm{ml}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated in vacuo to leave a pale yellow oil. Chromatography on silica using $1: 1$ petrol ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$) :ethyl acetate as eluent gave the $1,3-\mathrm{diol}(5.85 \mathrm{~g}, 84 \%)$ as a liquid; $[\alpha]_{\mathrm{D}}+10.8(c, 10.3 \mathrm{in}$
CHCl_{3}); (Found: C, $71.1 ; \mathrm{H}, 9.9 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.4 ; \mathrm{H}, 9.5 \%$); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-}$ ${ }^{1} 3408,2957$ and $2857 ; \delta_{H}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.53(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 3.76(2 \mathrm{H}$, br d, $J 5.6 \mathrm{~Hz}, 1-\mathrm{H}), 3.64-3.47(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and OH$), 3.34(1 \mathrm{H}$, br q, $J 5.3 \mathrm{~Hz}, 3-\mathrm{H}), 3.24(1 \mathrm{H}$, br $\mathrm{t}, J 5.3 \mathrm{~Hz}, \mathrm{OH}), 1.95(1 \mathrm{H}$, heptet, $J 6.9 \mathrm{~Hz}, 4-\mathrm{H})$, $1.85(1 \mathrm{H}, \mathrm{d}$ sextet, $J 7.3$ and $3.5 \mathrm{~Hz}, 2-\mathrm{H}), 1.72(2 \mathrm{H}, \mathrm{q}, J 5.6 \mathrm{~Hz}, 5-\mathrm{H}), 0.96(3 \mathrm{H}, \mathrm{d}, J$ $\left.6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ and $0.89\left(3 \mathrm{H}, \mathrm{d}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.8(\mathrm{~s}), 128.3$ (d), 128.8 (d), 127.6 (d), 81.3 (d), 72.9 ($t), 67.8(t), 67.4(t), 36.8(d), 33.1(d), 30.0(t)$, $16.7(q)$ and $14.0(q)$.
(2R, 3R, 4R)-6-Benzyloxy-1,3-(tert-butyldimethylsilanyloxy)-2, 4-dimethylhexane 165. ${ }^{72}$

A solution of tert-butyldimethylsilylmethane sulphonate ($1.98 \mathrm{ml}, 8.61 \mathrm{mmol}$) in dry dichloromethane (5 ml) was added dropwise over 5 min . to a stirred solution of the diol $164(1.05 \mathrm{~g}, 4.1 \mathrm{mmol})$ and 2,6-lutidine ($1.98 \mathrm{ml}, 17.20 \mathrm{mmol}$) in dry dichloromethane (10 ml) at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was allowed to warm to room temperature and then stirred for 1 h before being quenched with methanol ($100 \mu \mathrm{l})$. The mixture was diluted with dichloromethane (50 ml), and then washed with water $(25 \mathrm{ml})$ and saturated brine $(25 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. It was then filtered, and the filtrate concentrated in vacuo. The residue was purified by chromatography on silica using $1: 1$ petrol (bp $40-60^{\circ} \mathrm{C}$): dichloromethane as eluent to give the pure bis-silyl ether ($1.92 \mathrm{~g}, 97.5 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}-1.4\left(c, 2.2\right.$ in CHCl_{3}); (Found: $\mathrm{C}, 67.45$; $\mathrm{H}, 11.6 . \mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $\left.\mathrm{C}, 67.5 ; \mathrm{H} 10.8 \%\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36-7.34$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.53(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}, \mathrm{PhCHHO}), 4.51(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}, \mathrm{PhCHHO}), 3.75$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.58-3.40(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $6-\mathrm{H}), 1.90-1.82(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 0.96-0.83$ $\left(26 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 4-\mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$ and $\left.2 \times \mathrm{Bu}^{t}\right)$ and $0.08-0.04\left(12 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 138.8 (s , 128.7 (d), 127.7 (d), 127.55 (d), 78.5 (d), 73.0 (t), 69.3 (t), 65.7 (t), 40.0 (d), 33.7 (d), 31.6 (t), 26.3 (q), 26.1 (q), 19.5 (s), 16.4 (s), 17.6 (q), 14.9 (q), $-3.7(\mathrm{q}),-3.9(\mathrm{~s}),-5.1(\mathrm{~s})$ and $-5.2(\mathrm{~s}) ; m / z 481\left(\mathrm{M}^{+}+\mathrm{H}^{+}\right)(22 \%) ; 503\left(\mathrm{M}^{+}+\mathrm{Na}^{+}\right)$ (30\%)
(2R, 3R, 4R)-6-Benzyloxy-3-(tert-butyldimethylsilanyloxy)-2, 4-dimethylhexan-1ol $166{ }^{72}$

Pyridinium toluene- p-sulphonate (55 mg) was added in one portion to a solution of the bis-silyl ether $165(0.53 \mathrm{~g}, 1.1 \mathrm{mmol})$ in dry dichloromethane and methanol (14 $\mathrm{ml}, 1: 1)$ and the resulting solution was stirred at room temperature under a nitrogen atmosphere for 8 h . It was then quenched with a saturated aqueous sodium hydrogen carbonate solution (5 ml), concentrated in vacuo and then diluted with dichloromethane $(50 \mathrm{ml})$ and water $(50 \mathrm{ml})$. The aqueous layer was extracted with dichloromethane ($2 \times 25 \mathrm{ml}$) and the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then concentrated in vacuo. The residue was purified by chromatography on silica using dichloromethane as eluent to give the primary alcohol $(0.38,96 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}-1.6$ (c, 9.0 in CHCl_{3}); (Found: C, $68.6 ; \mathrm{H}, 10.8 ; \mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 68.8 ; \mathrm{H}, 10.4 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3423,2956$ and $1461 . \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.45-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.54(1 \mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz}, \mathrm{PhCHHO}), 4.51(1 \mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz}$, $\mathrm{PhCH} H \mathrm{O}), 3.78-3.47(5 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 6-\mathrm{H}$ and $3-\mathrm{H}), 2.71(1 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{OH}), 1.96-$ $1.82(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $2-\mathrm{H}), 1.49-1.38(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.07\left(6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, $0.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH} \mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 138.5 (s), 128.3 (d), 127.5 (d), 127.5 (d), 81.4 (d), 72.9 (t), 68.8 (t), 66.2 (t), 36.9 (d), $35.5(\mathrm{~d}), 32.38(\mathrm{t}), 26.0(\mathrm{q}), 18.2(\mathrm{q}), 16.5(\mathrm{q}), 16.0(\mathrm{q}),-4.15(\mathrm{q})$ and $-4.35(\mathrm{q}) ; \mathrm{m} / \mathrm{z}$ (FAB) (Found: $\mathrm{M}^{+}+\mathrm{H} 367.2668 ; \mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{3}$ Si requires 367.2675).
(2R, 3R, 4R)-6-Benzyloxy-3-(tert-butyldimethylsilanyloxy)-2, 4-dimethylhexanal $167 .{ }^{72}$

N-Methylmorpholine N-oxide ($0.30 \mathrm{~g}, 2.5 \mathrm{mmol}$) was added in one portion to a suspension of the alcohol $166(0.46 \mathrm{~g}, 1.24 \mathrm{mmol})$ and powdered $4 \AA$ molecular sieves $(0.7 \mathrm{~g})$ in dry dichloromethane $(20 \mathrm{ml})$ and the resulting mixture was stirred at room temperature under a nitrogen atmosphere for 0.5 h . Tetrapropylammonium
perruthenate ($0.02 \mathrm{~g}, 0.06 \mathrm{mmol}$) was added in one portion and the mixture was stirred for 45 min . It was then diluted with ether (100 ml) and filtered through celite. The filtrate was concentrated in vacuo to leave a brown residue which was purified by chromatography on silica using dichloromethane as eluent to give the aldehyde (0.43 $\mathrm{g}, 96 \%$) as a labile colourless oil; $[\alpha]_{\mathrm{D}}-23.3$ ($c, 8.8$ in CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2851$, 2795,1754 and $1697 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.81(1 \mathrm{H}, \mathrm{d}, J 2.8 \mathrm{~Hz}, \mathrm{CHO}), 7.39-7.29$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $4.55(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}, \mathrm{PhCHHO}), 4.49(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}, \mathrm{PhCHHO}), 3.81$ $(1 \mathrm{H}$, app $\mathrm{t}, J 4.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.59-3.47(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.57-2.53(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.9-1.94$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.84-1.79(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.48-1.43(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.10(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; $\delta_{C}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 205.2$ (d), 138.4 (s), 128.3 (d), 127.5 (d), 127.5 (d), 78.6 (d), 72.9 (t), 68.45 (t$), 49.2$ (d), 35.4 (d), 32.4 (t), 25.9 (q), 18.15 (s$), 15.6$ (q) 12.5 (q), $4.15(\mathrm{q})$ and $-4.53(\mathrm{q})$.
(3R, 4R, 5R)-[7-Benzyloxy-4-(tert-butyldimethylsilanyloxy)-2-hydroxy-3,5-dimethylheptyl|-phosphonic acid, dimethyl ester $168 .{ }^{72}$

A solution of n-butyllithium (1.6 M in hexane, $1.6 \mathrm{ml}, 2.5 \mathrm{mmol}$) was added dropwise over 5 min . to a stirred solution of methyl dimethylphosphonate ($0.29 \mathrm{ml}, 2.55 \mathrm{mmol}$) in dry THF (22 ml) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the resulting solution was stirred for 0.5 h at $-78^{\circ} \mathrm{C}$. A solution of the aldehyde $167(0.44 \mathrm{~g}, 1.2 \mathrm{mmol})$ in dry THF (9 ml) was added dropwise over 20 min . and the mixture was stirred for an additional hour. It was then quenched with saturated aqueous sodium hydrogen carbonate solution (5.6 ml) and allowed to come to room temperature. The mixture was extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$) and the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then concentrated in vacuo to leave a pale yellow oil. Chromatography on silica using ethyl acetate as eluent gave the hydroxyphosphonate $(0.53 \mathrm{~g}, 90 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}-1.7\left(c, 4.0\right.$ in CHCl_{3}); (Found: C, 58.8; H, 9.7; $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{SiP}$ requires $\left.\mathrm{C}, 59.0 ; \mathrm{H}, 9.2 \%\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.31-7.21(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 4.49-4.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}$), 3.72 (3.72) ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.71 (3.69) ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.70-3.60 (1H, m, 4-H) 3.59-3.40 ($2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 2.01-1.98 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 1.96-1.70
$(5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 3-\mathrm{H}$ and $1-\mathrm{H}), 1.37-1.35(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 0.95\left(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.92$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.045\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$. $\delta_{C} 138.5(\mathrm{~s}), 128.2(\mathrm{~d}), 127.5(\mathrm{~d}), 127.39(\mathrm{~d}), 80.7(79.6)(\mathrm{d}), 72.8(\mathrm{t}), 68.75(68.1)(\mathrm{t})$, $65.6,52.4$ (52.3) (q), 52.1 (52.1) (q), 42.7 (42.5), 39.7 (39.6), 34.7 (34.5), 32.1, 31.5, $30.1,26.1,11.0,16.2,18.3,-4.0$ and -4.3 .
(3R, 4R, 5R)-17-Benzyloxy-4-(tert-butyldimethylsilanyloxy)-3, 5-dimethyl-2-oxoheptyl)-phosphonic acid, dimethyl ester $132 .{ }^{72}$

Pyridinium dichromate ($2.86 \mathrm{~g}, 7.60 \mathrm{mmol}$) was added in one portion to a solution of the alcohol $168(0.53 \mathrm{~g}, 1.1 \mathrm{mmol})$ in dry DMF (7 ml) and the resulting solution was then stirred at room temperature under nitrogen for 24 h . The mixture was diluted with water (35 ml) and then extracted with ether ($3 \times 50 \mathrm{ml}$). The combined organic phases were washed with water ($3 \times 25 \mathrm{ml}$) and saturated brine (25 ml), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using ethyl acetate as eluent to give the keto-phosphonate ($0.49 \mathrm{~g}, 92 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}-79.9$ (c, 2.5 in CHCl_{3}); (Found: C, 59.6 ; H, 9.2; $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{SiPO}_{6}$ requires $\mathrm{C}, 59.3, \mathrm{H}, 8.9 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1715 . \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46-7.28(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 4.44(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, \mathrm{PhCHHO}), 4.39(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, \mathrm{PhCHHO}), 3.71$ $\left(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 3.68\left(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 3.46-3.37(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.37$ $(1 \mathrm{H}, \mathrm{d}, J 18.0 \mathrm{~Hz}, 1-\mathrm{H}), 3.34(1 \mathrm{H}, \mathrm{d}, J 18.0 \mathrm{~Hz}, 1-\mathrm{H}), 3.01-2.89(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $3-$ H), 1.76-1.75 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 1.35-1.33 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $0.97\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.78\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right),-0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $-0.12(3 \mathrm{H}, \mathrm{s}$, SiCH_{3}); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 205.7$ (s), 138.4 (s), 128.2 (d), 127.4 (d), 127.4 (d), 79.4 (d), 72.8 (t), $68.4(t), 52.9(q), 52.8(q), 49.9(\mathrm{~d}), 43.9(\mathrm{t}), 42.0(\mathrm{t}), 34.6(\mathrm{t}), 31.6$ $(\mathrm{t}), 25.9(\mathrm{q}), 18.1(\mathrm{~s}), 15.6(\mathrm{q}), 13.91(\mathrm{q}),-4.51(\mathrm{q})$ and $-4.62(\mathrm{q})$.
(3R,4R,5R)-Benzoic acid-4-(tert-butyldimethylsilanyloxy)-1-
(dimethyloxyphosphoryl)-3,5-dimethyl-2-oxoheptyl ester 169.

$[\alpha]_{\mathrm{D}}-43.6\left(c, 0.8\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1714,1279$ and $1042 . \delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 8.05-8.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.58-7.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.54-7.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 4.48$4.29(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.80-3.75\left(7 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.2 \times \mathrm{OCH}_{3}\right), 3.36(1 \mathrm{H}$, dd, $J 22.4$ and $13.9 \mathrm{~Hz}, 1-\mathrm{H}), 3.13-2.96(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $3-\mathrm{H}), 2.04-1.96(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.93-1.83$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.64-1.56(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.07\left(3 \mathrm{H}, \mathrm{d}, J, 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.04(3 \mathrm{H}, \mathrm{d}, J 6.9$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, and $-0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}(90$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 205.4 (s), 166.6 (s$), 132.9$ (s$), 130.2$ (s$), 129.5$ (d), 128.3 (d), 127.5 (d), 79.3 (d), 63.3 (t), 52.9 (q), 52.8 (q), 50.2 (d), 43.8 (t), 42.4 (t), 34.6 (d), 30.6 (t), 26.0 (q), $18.2(\mathrm{~s}), 15.8(\mathrm{q}), 14.0(\mathrm{q}),-4.3(\mathrm{q})$ and $-4.5(\mathrm{q}) . \mathrm{m} / \mathrm{z}$ (EI) (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}$ 523.1812; $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{7} \mathrm{SiPNa}$ requires 523.2257).
(3S,4R,5S, $7 S, 8 R, 12 R, 13 R, 14 R$)-Benzoic acid-13-(tert-butyldimethylsilanyloxy)-1,1,3,7-tetramethoxy-5-methoxymethoxy-4,8,12,14-tetramethyl-11-oxo-hexadec-9-enyl ester 170.

A solution of the ketophosphonate $169(58.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in dry THF $(2.7 \mathrm{ml})$ was stirred in the presence of activated barium hydroxide octahydrate ($30.2 \mathrm{mg}, 0.095$ mmol) at room temperature for 30 min , and then a solution of the aldehyde 123 (38.2 $\mathrm{mg}, 0.11 \mathrm{mmol}$) in $40: 1 \mathrm{THF}$-water (2.6 ml) was added. The inhomogeneous mixture was stirred vigorously at room temperature for 3.5 h and then diluted with dichloromethane $(50 \mathrm{ml})$. The organic phase was washed with saturated sodium hydrogen carbonate solution (10 ml) saturated brine $(10 \mathrm{ml})$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 1:1 petrol (bp $40-60^{\circ} \mathrm{C}$):ethyl acetate as eluent to give the E-alkene ($73 \mathrm{mg}, 95 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}-26.4$ (c, 0.6 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1710 . \delta_{\mathrm{H}}(360 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right)$ 8.04-7.94 (2H, m, Ph), 7.57-7.51 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.45-7.36 (2H, m, Ph), 6.94 $(1 \mathrm{H}, \mathrm{dd}, J 6.6$ and $16.0 \mathrm{~Hz}, 9-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and $16.0 \mathrm{~Hz}, 10-\mathrm{H}), 4.68(1 \mathrm{H}, \mathrm{d}$, $J 6.8 \mathrm{~Hz}, \mathrm{OCHHO}), 4.60(1 \mathrm{H}, \mathrm{d}, J 4.7 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{O}), 4.50(1 \mathrm{H}, \mathrm{t}, J 5.6 \mathrm{~Hz}, 1-\mathrm{H})$, 4.48-4.38 $(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 4.37-4.27(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{dd}, J 2.3$ and $8.0 \mathrm{~Hz}, 13-$ H), $3.80-3.70(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.33(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.19(1 \mathrm{H}, \mathrm{q}, J 6.0 \mathrm{~Hz}, 3-\mathrm{H}), 3.09-$ $3.02(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.76-2.67(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.06-1.93(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.92-1.82(2 \mathrm{H}$, $\mathrm{m}, 8-\mathrm{H}$ and $2-\mathrm{H}), 1.81-1.73(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $15-\mathrm{H}), 1.69-1.54(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}), 1.43-$ $1.35(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.07\left(3 \mathrm{H}, \mathrm{d}, J, 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02\left(6 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 0.88$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.83\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, and $-0.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.9(\mathrm{~s}), 166.6$ (s), 148.7 (d), 132.8 (d), 130.3 (s), 130.0 (d), 129.4 (d), 128.3 (d), 102.0 (d), 96.5 (t), 81.0 (d), 78.8 (d), 77.9 (d), 77.3 (d), 63.5 (t), 57.9 (q), $57.5(\mathrm{q}), 55.7(\mathrm{q}), 53.1(\mathrm{q}), 51.9(\mathrm{q}), 48.2(\mathrm{~d}), 41.1(\mathrm{~d}), 38.3(\mathrm{~d}), 34.9(\mathrm{t})$, 33.4 (t), 33.0 (d), 29.5 (t$), 26.1$ (q), 18.3 (s$), 16.8$ (q), 14.4 (q), 14.1 (q), 9.2 (q), -4.1 (q) and -4.5 (q). m / z (EI) (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}$747.4494; $\mathrm{C}_{39} \mathrm{H}_{68} \mathrm{O}_{10} \mathrm{SiNa}$ requires 747.4479).

3.4 The Bottom-Chain Synthesis

(4R,1'R)-4-(1'-Hydroxytrimethylsilanylprop-2'-ynyl)-2,2-dimethyloxazolidine-3carboxylic acid tert-butyl ester 179. ${ }^{114 \mathrm{a}}$

A solution of n-butyllithium (2.5 M in hexane, $10.0 \mathrm{ml}, 25.0 \mathrm{mmol}$) was added dropwise to a stirred solution of (1-ethynyl)trimethylsilane ($3.82 \mathrm{ml}, 27.0 \mathrm{mmol}$) in dry THF (130 ml) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , hexamethylphosphoroustriamide $(6.18 \mathrm{ml}, 34.0 \mathrm{mmol})$ was added, followed by a solution of $178(3.92 \mathrm{~g}, 17.0 \mathrm{mmol})$ in dry THF (15 ml). After 2 h at $-78{ }^{\circ} \mathrm{C}$, saturated aqueous ammonium chloride solution (100 ml) was added and the mixture allowed to warm to room temperature. The mixture was diluted with water (100 ml) and the separated aqueous layer was then extracted with diethyl ether ($3 \times 100 \mathrm{ml}$).

The combined organic phases were washed with $0.5 \mathrm{M} \mathrm{HCl}(100 \mathrm{ml})$, saturated brine $(100 \mathrm{ml})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 6:1 Petrol (bp $40-60^{\circ} \mathrm{C}$): ethyl acetate as eluent to give the alcohol ($4.8 \mathrm{~g}, 85 \%$) as a white solid; mp $62-64{ }^{\circ} \mathrm{C}$ (diethyl ether); $[\alpha]_{\mathrm{D}}-72.7$ (c, 1.1 in CHCl_{3}); (Found: $\mathrm{C}, 58.61 ; \mathrm{H}, 8.84 ; \mathrm{N}, 4.19 . \mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{NSi}$ requires $\mathrm{C}, 58.68$; $\mathrm{H}, 8.93 ; \mathrm{N}, 4.28 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3306,2977,2900,1696,1667,1393,1368$ and $1092 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, d_{6}\right.$-DMSO at 353 K$) 5.43(1 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, \mathrm{OH}), 4.54(1 \mathrm{H}, \mathrm{dd}, J$ 6.4 and $\left.3.7 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 4.04-3.92(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.46(12 \mathrm{H}$, $\mathrm{s}, \mathrm{Bu}^{t}$ and $\left.\mathrm{CH}_{3}\right), 0.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, d_{6}-\mathrm{DMSO}\right.$ at 353 K$) 151.6(\mathrm{~s}), 106.5$ (s$), 93.6(\mathrm{~s}), 88.6(\mathrm{~s}), 79.2(\mathrm{~s}), 63.5(\mathrm{t}), 61.2$ (d), $60.8(\mathrm{~d}), 27.9(\mathrm{q}), 25.8(\mathrm{q}), 24.4(\mathrm{q})$ and $-0.4(\mathrm{q}) ; \mathrm{m} / z(\mathrm{EI})$ (Found: $\mathrm{M}^{+}+\mathrm{H} 328.1926 ; \mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{NSi}$ requires 328.1944).
(4R,3'R)-4-(3'-Bromopropa-1',2'-dienyl)-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester 181.

Solid tetrabutylammonium fluoride ($42.3 \mathrm{~g}, 0.13 \mathrm{~mol}$) was added in one portion to a stirred solution of the alcohol $179(35.0 \mathrm{~g}, 0.11 \mathrm{~mol})$ in dry THF (450 ml) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$ and the solution was stirred at room temperature for 6 h . Diethyl ether (300 ml) was added followed by water (200 ml) and the separated organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The crude was dissolved into dry dichloromethane $(200 \mathrm{ml})$ and cooled to $-50^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Triethylamine ($18.7 \mathrm{ml}, 0.13 \mathrm{~mol}$) was added dropwise, over 5 min , to this solution followed by methanesulfonyl chloride ($10.4 \mathrm{ml}, 0.13 \mathrm{ml}$) and the mixture was allowed to warm to room temperature over 1 h with vigorous stirring. The mixture was quenched with saturated aqueous ammonium chloride solution (200 ml) and the separated organic layer dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The crude was dissolved into diethyl ether (50 ml) and filtered through silica gel. The diethyl ether was additionally dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The crude was dissolved into dry THF (250 ml) and a solution of dry $\mathrm{LiBr}(17.4 \mathrm{~g}, 0.20 \mathrm{~mol})$ and $\mathrm{CuBr} . \mathrm{Me}_{2} \mathrm{~S}$ $(41.1 \mathrm{~g}, 0.20 \mathrm{~mol})$ in dry THF $(150 \mathrm{ml})$ was added and the mixture heated to $60^{\circ} \mathrm{C}$ for

6 h under a nitrogen atmosphere. After cooling, diethyl ether (400 ml) was added followed by saturated aqueous ammonium chloride solution (200 ml). The separated organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 1:1 Petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$):diethyl ether as eluent to give the allene ($11.56 \mathrm{~g}, 36 \%$ over 3 steps) as brown crystals; mp $38-40^{\circ} \mathrm{C}$ (diethyl ether); $[\alpha]_{\mathrm{D}}-267.7$ ($c, 1.0$ in CHCl_{3}); (Found: C, 49.18; H, 6.30; N, 4.36; Br 25.26 . $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{NBr}$ requires $\left.\mathrm{C}, 49.07 ; \mathrm{H}, 6.34 ; \mathrm{N}, 4.40 ; \mathrm{Br} 25.11 \%\right) ; \mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 2979, 2935, 2880, 1693, 1367, 1090, 1060 and $864 ; \delta_{H}\left(360 \mathrm{MHz}, d_{6}\right.$-DMSO at 353 K) $6.52\left(1 \mathrm{H}, \mathrm{d}, J 5.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 5.66\left(1 \mathrm{H}\right.$, app $\left.\mathrm{t}, J 5.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.52-4.51(1 \mathrm{H}, \mathrm{m}, 5-$ H), $4.07(1 \mathrm{H}$, ddd, $J 9.1,6.0$ and $1.1 \mathrm{~Hz}, 4-\mathrm{H}) 3.83(1 \mathrm{H}$, app dt, $J 9.0,1.2$ and 1.0 Hz , $5-\mathrm{H}), 1.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.46\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{Bu}^{t}\right) ; \delta_{\mathrm{C}}(90 \mathrm{MHz}, d 6-\mathrm{DMSO}$ at 353 K) 200.5 (s), 150.7 (s), 101.6 (d), 93.2 (s), 79.1 (s$), 74.8$ (d), 67.1 (t), 54.7 (d), 27.9 (q), 26.4 (q) and 23.7 (q); m/z (FAB) (Found: $\mathrm{M}^{+}+\mathrm{H}, 318.068481 ; \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{NBr}$ requires 318.07048).
(4R,1'R)-4-(1'-Methylprop-2'-ynyl)-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester 182.

A solution of methylmagnesium bromide (3 M in diethyl ether, $11.7 \mathrm{ml}, 35.0 \mathrm{mmol}$) was added dropwise to a stirred suspension of copper bromide-dimethyl sulfide complex ($7.2 \mathrm{~g}, 35.0 \mathrm{mmol}$) and dry $\operatorname{LiBr}(3.0 \mathrm{~g}, 35.0 \mathrm{mmol})$ in dry THF (60 ml) at 0 ${ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , the solution was added dropwise via cannula to a solution of bromoallene $181(2.2 \mathrm{~g}, 6.9 \mathrm{mmol})$ in dry THF (50 ml) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After 1 h at $-78{ }^{\circ} \mathrm{C}$ saturated ammonium chloride solution (100 ml) was added and the mixture allowed to warm to room temperature. The mixture was diluted with water $(100 \mathrm{ml})$ and the separated aqueous layer was then extracted with diethyl ether ($2 \times 100 \mathrm{ml}$). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 1:1 petrol (bp $40-60^{\circ} \mathrm{C}$):diethyl ether as eluent to give the acetylene as a colourless oil; $[\alpha]_{\mathrm{D}}-247.9\left(c, 1.1\right.$ in CHCl_{3}); (Found:
$\mathrm{C}, 66.60 ; \mathrm{H}, 9.20 ; \mathrm{N}, 5.20 . \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}$ requires $\mathrm{C}, 66.37 ; \mathrm{H}, 9.15 ; \mathrm{N}, 5.53 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3306,2938,1681$ and $1260 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, d_{6}-\mathrm{DMSO}\right.$ at 353 K$)$ 4.05-3.93 $(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}), 3.08-3.03\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.80\left(1 \mathrm{H}, \mathrm{d}, J 2.53 \mathrm{~Hz}, \mathrm{I}^{\prime}-\right.$ H), $1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.09(3 \mathrm{H}, \mathrm{d}, J 7.13 \mathrm{~Hz}$, $1^{\prime}-\mathrm{CH}_{3}$); $\delta_{c}\left(90 \mathrm{MHz}, d_{6}\right.$-DMSO at 353 K) 151.48 (s), $93.60(\mathrm{~s}), 85.96(\mathrm{~s}), 79.27(\mathrm{~s})$, 71.92 (d), 63.94 (t), 59.14 (d), 27.02 (d), 27.82 (q), 25.83 (q), $23.06(q)$ and $14.30(q)$; $m / z(F A B)$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 254.1752 ; \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}$ requires 254.1756).
(4R,1'R)-4-(1'-Methyl-3'-trimethylsilanylprop-2'-ynyl)-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester 183.

A solution of n-butyllithium (1.7 M in hexane, $1.7 \mathrm{ml}, 2.9 \mathrm{mmol}$) was added dropwise to a stirred solution of the acetylene 182 in dry THF (25 ml) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min and 1 h at room temperature, the mixture was cooled again to $-70^{\circ} \mathrm{C}$ and chlorotrimethylsilane ($0.6 \mathrm{ml}, 4.9 \mathrm{mmol}$) was added dropwise under a nitrogen atmosphere. After stirring for 12 h at room temperature, saturated aqueous ammonium chloride solution was added (10 ml). The separated aqueous layer was extracted with diethyl ether ($2 \times 30 \mathrm{ml}$) and the combined organic phases then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using $10: 1$ petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$): diethyl ether as eluent to give the silyl protected acetylene ($0.4 \mathrm{~g}, 61 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}+0.4$ ($c, 1.1$ in CHCl_{3}); $u_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2162,1692,1367$ and $872 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, d_{6^{-}}\right.$ DMSO at 353 K) 4.04-3.92 ($3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}$), $3.09-3.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 1.54(3 \mathrm{H}$, s, $\left.\mathrm{CH}_{3}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, J 7.11 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{CH}_{3}\right)$ and 0.15 $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{c}}\left(90 \mathrm{MHz}, d_{6}\right.$-DMSO at 353 K$) 151.54(\mathrm{~s}), 109.19(\mathrm{~s}), 93.66(\mathrm{~s})$, 90.39 (s), 79.30 (s), 64.08 (t), 59.14 (d), 25.70 (q), 25.78 (q), 27.86 (q), 14.51 (q) and $-0.159(\mathrm{q}) ; m / z(\mathrm{EI})$ (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}, 389.2233 ; \mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SiNa}$ requires 389.2236).
(4R,1'R)-4-[2'-(Methoxymethylcarbamoyl)-1'-methylethyl]-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester 185.

Borane-dimethylsulfide complex ($0.47 \mathrm{ml}, 4.91 \mathrm{mmol}$) was added dropwise to cyclohexene ($1.0 \mathrm{ml}, 9.84 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at $0^{\circ} \mathrm{C}$ for 1 hr , the white solid was cooled to $-35^{\circ} \mathrm{C}$ and a solution of $183(0.80 \mathrm{~g}$, 2.46 mmol) in dry THF (60 ml) was added dropwise under a nitrogen atmosphere. After stirring at $40^{\circ} \mathrm{C}$ for 12 h , methanol (6.25 ml), NaOH (6.25 ml of a 3 M solution) and $\mathrm{H}_{2} \mathrm{O}_{2}(6.25 \mathrm{ml}$ of a 30% solution) were subsequently added and the mixture stirred for 3 h at $40^{\circ} \mathrm{C}$. The mixture was diluted with water and the aqueous layer washed with diethyl ether ($2 \times 50 \mathrm{ml}$). The separated aqueous layer was acidified using 2 M HCl (ca 20 ml) and then extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo to leave the crude carboxylic acid which was used without further purification.

Triethylamine ($0.25 \mathrm{ml}, 1.75 \mathrm{mmol}$) was added dropwise to a stirred solution of the crude carboxylic acid 184 in dry dichloromethane (15 ml) at $-20^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The solution was stirred at $-20^{\circ} \mathrm{C}$ for 15 min and then $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine hydrochloride $(0.34 \mathrm{~g}, 3.50 \mathrm{mmol})$, triethylamine $(0.54 \mathrm{ml}$, 3.85 mmol) and benzo-1-yloxy tripyrrolidino phosphonium hexafluorophosphate $(0.91 \mathrm{~g}, 1.75 \mathrm{mmol})$ were added separately, each in one portion. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min and then at room temperature for 12 h . The mixture was diluted with dichloromethane (10 ml) and then washed with $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{ml})$, saturated aqueous sodium hydrogen carbonate solution (20 ml) and saturated brine (20 $\mathrm{ml})$. The combined organic phases were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on diethyl ether as eluent to give the weinreb amide as a white waxy solid; $[\alpha]_{\mathrm{D}}-2.5\left(c, 1.3\right.$ in CHCl_{3}); (Found: C , 58.42; $\mathrm{H}, 9.21 ; \mathrm{N}, 8.05 . \mathrm{C}_{10} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires $\mathrm{C}, 58.16 ; \mathrm{H}, 9.15 ; \mathrm{N}, 8.48 \%$); $U_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1682,1650,1366$ and $1090 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.92-3.67(3 \mathrm{H}$,
$\mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}_{3}\right), 3.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}_{3}\right), 2.50-2.24$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 1.60-1.49\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) 1.43\left(12 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{t}\right.$ and $\left.\mathrm{CH}_{3}\right)$ and $0.91\left(3 \mathrm{H}, \mathrm{d}, J 6.70 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.3(\mathrm{~s}), 152.7(\mathrm{~s}), 93.9(\mathrm{~s})$, 79.8 (s), 64.7 (t), 61.4 (d), 61.0 (q), 36.2 (t$), 32.5$ (q), 32.2 (d), 28.6 (q), 26.5 (q), 23.0 (q), $15.7(\mathrm{q}) ; m / z(\mathrm{FAB})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 331.2263 ; \mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{~N}_{2}$ requires 331.2233).
(4R,1'R)-4-[2'-[1'",3']Dithan-2'-yl-1'-methylethyl]-2,2-dimethyloxazolidine-3carboxylic acid tert-butyl ester 199.

(a) Lithium aluminium hydride ($30 \mathrm{mg}, 0.76 \mathrm{mmol}$) was added in one portion to a stirred solution of the weinreb amide $185(0.2 \mathrm{~g}, 0.61 \mathrm{mmol})$ in dry THF (7 ml) at 0 ${ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at $0^{\circ} \mathrm{C}$ for 20 min , the mixture was quenched with saturated aqueous sodium hydrogen sulfate solution (2 ml) and the separated aqueous layer was then extracted with diethyl ether ($2 \times 15 \mathrm{ml}$). The combined organic phases were washed with $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$, saturated aqueous sodium hydrogen carbonate solution (10 ml), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo to leave the crude aldehyde ($0.13 \mathrm{~g}, 80 \%$) which was used in step (c).
(b) Monochloroborane-dimethylsulfide complex ($0.10 \mathrm{ml}, 1.0 \mathrm{mmol}$) was added dropwise to 2,3-dimethyl-2-butene ($0.12 \mathrm{ml}, 1.0 \mathrm{mmol}$) at $-10^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at $-10^{\circ} \mathrm{C}$ for 10 min , the mixture was allowed to warm to room temperature. After stirring at room temperature for 3 h , the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of the acetylene 182 ($250 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry dichloromethane (1 ml) was added dropwise under a nitrogen atmosphere. After stirring at room temperature for $12 \mathrm{~h}, \mathrm{NaOH}$ (0.4 ml of a 2.5 M solution), pH 7 buffer solution (1 ml) and $\mathrm{H}_{2} \mathrm{O}_{2}$ (0.3 ml of a 30% solution) were subsequently added and the mixture stirred for 2 h at $0^{\circ} \mathrm{C}$. The mixture was diluted with diethyl ether (3 ml) and the aqueous layer saturated with solid potassium carbonate. The separated aqueous layer was then extracted with diethyl ether ($2 \times 10 \mathrm{ml}$), and the combined organic
phases were then washed with saturated brine (20 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in lucuo to leate the crude aldehyde ($157 \mathrm{mg} .58 \%$) which was used immediately in step (c) without further purification.
(c) Zinc iodide (18 mg .0 .06 mmol) was added in one portion to a stirred solution of the crude aldehyde 202 (150 mg .0 .6 mmol) and 1,3-propanedithiobis(trimethylsilane) $(0.16 \mathrm{~g} .0 .03 \mathrm{mmol})$ in dry dicthyl ether $(1.5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at room temperature for 8 h , the mixture was quenched with water (2 $\mathrm{ml})$ and the separated aqueous phase extracted with diethyl ether ($2 \times 5 \mathrm{ml}$). The combined organic phases were washed with saturated brine (10 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 2:1 petrol (bp $40-60^{\circ}()$)dicthyl ether as eluent to give the dithiane ($26 \mathrm{mg}, 12 \%$) as a white solid: $m p 94-90^{\circ}\left(`\right.$ diethyl ether); $[\alpha]_{0}+8.0\left(c, 0.1\right.$ in CHCl_{3}); (Found: C , 56.22; H. 8.50: N. 3.64. $\mathrm{C}_{1}-\mathrm{H}_{31} \mathrm{O}_{3} \mathrm{NS}$ requires $\mathrm{C}, 56.47 ; \mathrm{H}, 8.64 ; \mathrm{N}, 3.87 \%$); $u_{\text {mar }}\left(\mathrm{CHCl}_{1}\right) \mathrm{cm}^{1} 2934.1087 .1367$ and $1083 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.05(1 \mathrm{H}$, dd, J 4.8 and $9.8 \mathrm{H} / .3-\mathrm{H}) .3 .92-3.70(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 2.95-2.80(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}$), 2.76-2.60 (1H. m, 1'-H). 2.39-2.31 (1H, m, 2'-H), 2.13-2.05 (1H, m, 2'-H), 1.92-1.70 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 1.65-1.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) 1.48\left(12 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{t}\right.\right.$ and $\left.\mathrm{CH}_{3}\right)$ and $0.92\left(3 \mathrm{H}, \mathrm{d}, J 6.80 \mathrm{H} / .1^{\prime}-\mathrm{CH}_{3}\right) ; \delta_{C}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 152.32(\mathrm{~s}), 94.02(\mathrm{~s}), 79.79(\mathrm{~s})$, 64.39 (t), 61.08 (d). 45.18 (d), 39.54 ($), 33.08$ (d), 30.51 (t), $30.05(\mathrm{t}), 28.43(\mathrm{q})$, $26.10(\mathrm{t}), 23.54(\mathrm{q}), 22.74(\mathrm{q})$ and $13.96(\mathrm{q}) ; \mathrm{m} / \mathrm{z}$ (FAB) (Found: $\mathrm{M}^{+}, 361.1769$; $\mathrm{C}_{17} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{NS}_{2}$ requires 361.1745).

6-(tert-Butyldimethylsilanyloxy)-3-oxohexanoic acid methyl ester 186. ${ }^{115}$

Methylacetoacetate (2.0 g. 17.2 mmol) was added dropwise to a stirred suspension of sodium hydride ($60^{\circ} \%$ dispersion in oil, $1.6 \mathrm{~g}, 38.7 \mathrm{mmol}$) in dry THF (40 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at $0^{\circ} \mathrm{C}$ for 15 min , a solution of n butyllithium (1.6 M in hexane, $23.0 \mathrm{ml}, 36.8 \mathrm{mmol}$) was added dropwise, followed by a solution of 2-(terr-butyldimethylsilanyloxy)-1-iodoethane 176 ($10.5 \mathrm{~g}, 36.8 \mathrm{mmol}$)
in dry THF (10 ml) under a nitrogen atmosphere. After stirring for 2 h at $0^{\circ} \mathrm{C}$, the dark orange suspension was poured cautiously onto water (100 ml). The mixture was acidified with $2 \mathrm{M} \mathrm{HCl}(c a 50 \mathrm{ml})$ and the separated aqueous layer was then extracted with diethyl ether ($2 \times 200 \mathrm{ml}$). The combined organic phases were washed with water $(4 \times 10() \mathrm{ml})$. dricd $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The orange oil was purified by chromatography on silica using $6: 1$ petrol ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$):diethyl ether as eluent to give the β-keto ester ($3.8 \mathrm{~g}, 80 \%$) as a pale yellow oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 2954, 2930. 2857. 1745. 1716, 1322 and $1098 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.71(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.60\left(2 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CO}\right), 2.61(2 \mathrm{H}, \mathrm{t}, J 7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 1.79\left(2 \mathrm{H}\right.$, quint, $\left.J 6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right) 0.02(6 \mathrm{H}$, $\left.\mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.57$ (s), 167.59 (s), 61.77 (t), 52.21 (q), 48.99 (t$), 39.41(\mathrm{t}), 26.49(\mathrm{t}), 25.82(\mathrm{q}), 18.20(\mathrm{~s})$ and $-5.49(\mathrm{t}) ; m / z(\mathrm{FAB})\left(\right.$ Found: $\mathrm{M}^{+}-\mathrm{CH}_{3}$, $259.13645 ; \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Si}$ requires 259.13657).
(3R)-6-(terr-Butyldimethylsilanyloxy)-3-hydroxyhexanoic acid methyl ester 187.

Benzeneruthenium (II) chloride dimer ($46 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added to a stirred solution of (R)-BINAP ($130 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dry dimethylformamide $(1.5 \mathrm{ml})$ and the resulting solution was heated at $100^{\circ} \mathrm{C}$ for 10 min under an argon atmosphere. The solvent was removed under a high vacuum (using a two-way tap to keep everything under argon). The black solid was heated between $50-60^{\circ} \mathrm{C}$ under high vacuum (0.1 mbar) for 2 h (to further dry the catalyst) before cooling to room temperature. The freshly prepared catalyst and ester $186(2.7 \mathrm{~g}, 10 \mathrm{mmol})$ were dissolved in dry methanol (10 ml) and the solution was degassed using freeze/pump/thaw cycles (x 4). The resulting mixture was transferred into a glass vessel of a high pressure hydrogenator under a stream of argon. The apparatus was then purged with hydrogen by pressurising to 10 atmospheres and depressurising to 1 atmosphere (x 5) followed by pressurising to 50 atmospheres and depressurising to 10 atmospheres (x 3). Finally, the hydrogenator was pressurised with hydrogen to 100 atmospheres and the mixture was stirred at this pressure for six days. The hydrogen was released carefully and the mixture was concentrated in vacuo to leave a black oil.

The oil was purified by chromatography on silica using 1:1 petrol (bp 40-60 $\left.{ }^{\circ} \mathrm{C}\right)$: diethyl ether as eluent to give the alcohol $(1.44 \mathrm{~g}, 52 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}-$ 3.5 (c, 1.5 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3373$ and $1726 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.09-$ $4.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.82(2 \mathrm{H}, \mathrm{t}, J 5.7 \mathrm{~Hz}, 6-\mathrm{H}), 2.48-2.41(2 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 1.65-1.58(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and $0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta_{C}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.12(\mathrm{~s}), 67.86(\mathrm{~d}), 63.12(\mathrm{t}), 51.64(\mathrm{q}), 41.32(\mathrm{t}), 33.60(\mathrm{t})$, $28.81(\mathrm{t}), 25.84(\mathrm{q}), 18.23(\mathrm{~s})$ and $-5.44(\mathrm{q}) ; m / z(\mathrm{EI})$ (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}, 299.1653$; $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}$ requires 299.1655).
(3R)-6-(tert-Butyldimethylsilanyloxy)-3-(tert-butyldiphenylsilanyloxy)-hexanoic acid methyl ester 189.

tert-Butyldimethylchlorosilane ($9.4 \mathrm{~g}, 34.0 \mathrm{mmol}$) was added in one portion to a stirred solution of the alcohol $187(1.9 \mathrm{~g}, 6.9 \mathrm{mmol})$ and imidazole $(2.8 \mathrm{~g}, 41.0 \mathrm{mmol})$ in dry dimethylformamide $(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at room temperature for 12 h , the mixture was quenched with water (20 ml) and the separated aqueous phase extracted with diethyl ether ($2 \times 30 \mathrm{ml}$). The combined organic phases were washed with water (50 ml) and saturated brine (50 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 6:1 petrol (bp $40-60^{\circ} \mathrm{C}$): diethyl ether as eluent to give the bis-silyl ether $(3.4 \mathrm{~g}, 86 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}-21.2$ (c, 1.5 in CHCl_{3}); $\mathrm{u}_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1732 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71-7.65(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.46-7.35(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 4.23-4.18(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.46-3.36(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.48$ $(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.53-1.40(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 1.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$, $0.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right)$ and $-0.02\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.92$ (s), 135.88 (d), 135.84 (d), 133.98 (s), 129.58 (d), 127.49 (d), 127.47 (d), 70.25 (d), 62.93 (t), 51.37 (q), 41.79 (t), 33.43 (t$), 28.01$ (t), $26.90(\mathrm{q}), 25.90(\mathrm{q}), 19.28(\mathrm{~s}), 18.26(\mathrm{~s})$ and $-5.36(\mathrm{q}) ; m / z$ (EI) (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}, 537.2780 ; \mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$ requires 537.2832).
(3R)-3-(tert-Butyldiphenylsilanyloxy)-6-hydroxyhexanoic acid methyl ester 192.

10-Camphorsulfonic acid ($140 \mathrm{mg}, 0.58 \mathrm{mmol}$) was added in one portion to a stirred solution of the silyl protected alcohol $189(1.7 \mathrm{~g}, 2.9 \mathrm{mmol})$ in a $1: 1$ mixture of dry dichloromethane and methanol (20 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring at room temperature for 2 h , the mixture was diluted with dichloromethane (10 ml) and quenched with saturated aqueous ammonium chloride solution (10 ml). The separated aqueous phase extracted with dichloromethane ($2 \times 20 \mathrm{ml}$). The combined organic phases were washed with water $(20 \mathrm{ml})$ dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using 3:1 petrol (bp 40$60^{\circ} \mathrm{C}$): diethyl ether as eluent to give the alcohol ($1.32 \mathrm{~g}, 98 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}-19.3$ (c, 1.3 in CHCl_{3}); (Found: $\mathrm{C}, 68.60 ; \mathrm{H}, 7.93$. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}$ requires C , $68.96 ; \mathrm{H}, 8.05 \%) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3623$ and $1732 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.73-7.65$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.46-7.36(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.28-4.22(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 3.43-3.40 $(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.48(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.56-1.44(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H})$ and 1.05 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}$); $\delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.81$ (s), 135.84 (d), 135.80 (d), 133.76 (s), 129.67 (d), 129.63 (d), 127.49 (d), 69.89 (d), 62.47 (t), 51.39 (q), 41.58 (t), 33.06 (t), $27.70(\mathrm{t}), 26.85(\mathrm{q})$ and $19.22(\mathrm{~s}) ; \mathrm{m} / 2(\mathrm{EI})$ (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}, 423.1887 ; \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}$ requires 423.1968).
(3R)-6-Bromo-3-(tert-Butyldiphenylsilanyloxy)-hexanoic acid methyl ester 193.

Carbon tetrabromide ($0.8 \mathrm{~g}, 1.5 \mathrm{mmol}$) was added in several portions to a stirred solution of the alcohol $192(0.61 \mathrm{~g}, 1.5 \mathrm{mmol})$ and triphenylphosphine $(0.52 \mathrm{~g}, 2.0$ mmol) in dry dichloromethane (10 ml) at room temperature under a nitrogen atmosphere. After stirring at room temperature for 2 h , the solvent was removed in vacuo. Petrol (ca 30 ml) was added to the residue with vigorous stirring and the resultant precipitate was filtered off. The filtrate was concentrated in vacuo to leave a
residue which was purified by chromatography on silica using 6:1 petrol (bp 40-60 ${ }^{\circ} \mathrm{C}$):diethyl ether as cluent to give the bromide $(0.64 \mathrm{~g}, 92 \%)$ as a cream oil; $[\alpha]_{\mathrm{D}}$ 23.0 (c. 2.0 in $\left(\mathrm{HCl}_{3}\right)$: $u_{\text {пй }}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1733 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72-7.65(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) .7 .48-7.37$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .4 .23$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.19(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 2.48(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.86-\mathrm{l} .78(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.63-1.57(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and 1.05 (9H. s. Bu^{i}): $\dot{o}_{(}\left(90 \mathrm{MH} / \mathrm{CDCl}_{3}\right) 171.53$ (s), 135.86 (d), 135.83 (d), 133.71 (s), 129.76 (d). 129.69 (d). 127.62 (d), 127.55 (d), 69.38 (d), 51.46 (q), 41.75 (t), 35.47 (t), 33.46 (t). 27.96 (t). 20.91 (q) and 19.27 (s); m / z (EI) (Found: $\mathrm{M}^{+}+\mathrm{Na}^{+}$, 485.1099; $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{SiBrNa}$ requires 485.1124).

APPENDIX

4.1 Contemporaneous Studies

The unique structural features of the ulapualides has drawn the research group of Panek to also explore a synthesis of these natural products. Indeed, soon after their publication in 1999 regarding the stereochemistry of these secondary metabolites, Panek and Liu described a total synthesis of the natural product mycalolide A 22. ${ }^{126}$ A brief overview of the work of Panek's research group is therefore appropriate.

227

228

Scheme 48

Retrosynthetic analysis of mycalolide A 22 led to fragments 227 and 228 through cleavage of the macrolide linkage and the C19-C20 olefin bond (Scheme 48). In the synthetic direction, union of 227 and 228 via a Schlosser-Wittig reaction would be followed by macrocyclisation. Further disconnection of 227 (Scheme 49) at the C6-C7 σ-bond produced subunits 229 and 230 , which served as the initial targets. It was anticipated that the stereogenic centre of 230 could be accessed by a hydrolytic kinetic resolution (HKR) of terminal epoxide 233, and the anti-stereochemical relationship at C8 and C9 in 229 would be established utilising the research group's chiral silane methodology.

Scheme 49
The strategy towards the tris-oxazole backbone relied on Hantzsch-type methodology in which a linear sequence generated all three oxazole rings (Scheme 50). The synthetic sequence was initiated with the condensation between cinnamamide 234 and ethyl bromopyruvate $\mathbf{2 3 5}$ in a sodium bicarbonate buffered medium to give the corresponding hydroxy oxazoline. This condensation was immediately followed by dehydration affording the functionalised oxazole 236 in 83% yield. Conversion of the ethyl ester in 236 into the corresponding amide using aqueous ammonium hydroxide quantitatively gave the amido-oxazole 237 which underwent a second Hantzsch reaction resulting in the formation of the bis-oxazole 238. The cinnamyl portion of the bis-oxazole, 238, was next elaborated in a three-step process, employing a catalytic dihydroxylation with osmium tetroxide, oxidative cleavage using lead tetraacetate and reduction of the resulting aldehyde with sodium borohydride, to give the primary alcohol 239. Amidation of the ester group in $\mathbf{2 3 9}$ followed by
protection of the primary alcohol as its tert-butyldiphenylsilyl ether next provided the silylated bis-oxazole 240 in 90% yield. This material was subjected to a third, and final, Hantzsch reaction which finally gave the tris-oxazole 241.

Reagents: i, NaHCO_{3}, THF; ii, TFAA (83% over 2 steps); iii, $\mathrm{NH}_{4} \mathrm{OH}$, (100%); iv, 235, NaHCO_{3}. THF; v, TFAA (77% over 2 steps); vi, OsO_{4}, TMANO; vii, $\mathrm{Pb}(\mathrm{OAc})_{4}$; viii, $\mathrm{NaBH}_{4},\left(62 \%\right.$ over 3 steps); ix, $\mathrm{NH}_{4} \mathrm{OH} ; x$, TPS-Cl, imidazole, (90% over 2 steps); xi, 235, NaHCO_{3}, THF; xii, TFAA, (86% over 2 steps).

Scheme50

Construction of the subunit 229 and introduction of the C8-C9 stereocentres (Scheme 51) now required an anti-selective crotylation with the tris-oxazole aldehyde. In the presence of the lewis acid TiCl_{4}, the condensation between (S) - $\mathbf{2 3 2}$ and $\mathbf{2 3 1}$ provided homoallylic alcohol 242 in 65% yield with high diastereoselectivity (anti/syn > 30:1).

231
242
Reagents: $\mathrm{i}, \mathrm{TiCl}_{4},(65 \%)$.
Scheme 51
131

Synthesis of the subunit 230 (Scheme 52), was initiated by HKR of the racemic epoxide 233. Thus, 233 was subjected to the resolution conditions as described by Jacobsen and co-workers, providing (R)-233 of 99% ee in 94% yield. Nucleophilic epoxide ring opening using higher order cuprate 243 , followed by stannane-iodide exchange and protection of the hydroxyl as it TBDPS ether, furnished $\mathbf{2 3 0}$ in four steps (64\% overall).

245
Reagents: i, (R, R)-Salen-Co, AcOH, $\mathrm{H}_{2} \mathrm{O}$, (94\%); ii, 243, THF, (76\%); iii, TPS-Cl, imidazole, DMF, (92\%); iv, I_{2}, THF, (100%).

Scheme 52

The assembly of 227 was accomplished by a Kishi-Nozaki coupling between 229 and 230 (Scheme 53). Treatment of 229 and 230 with $\mathrm{NiCl}_{2}-\mathrm{CrCl}_{2}$ in THF/DMF at RT afforded allylic alcohol 246 in 80% yield, as a 1:1 mixture of diastereoisomers. This material was subjected to a Dess-Martin periodinane oxidation to provide enone 247 quantitatively. Selective deprotection of the primary TBDPS ether with TBAF followed by conversion of the resulting alcohol to the benzylic bromide and hydrolysis of the tert-butyl ester with TFA, completed the synthesis of fragment 227.

Reagents: i, $\mathrm{NiCl}_{2} / \mathrm{CrCl}_{2}$, THF/DMF, (80\%); ii, Dess-Martin Periodinane, (99\%); iii, TBAF, (99\%); iv, $\mathrm{CBr}_{4} / \mathrm{PPh}_{3}$, (92\%); v, TFA, (100\%).

The synthesis of the side-chain 228 relied upon another Nozaki-Kishi coupling between the vinyl iodide 248 and the aldehyde 249 (Scheme 54).

Scheme 54

Common with the synthesis of fragment 229, chiral allylsilane methodology was applied in generating the stereogenic centres in both fragments 248 and 249. A typical example of this chemistry is shown with the Lewis acid-promoted condensation of silane 250 with aldehyde 251 (Scheme 55). This installed the three contiguous chiral centres of fragment 249.

Scheme 55

When the fragments 248 and 249 were treated with $\mathrm{NiCl}_{2} / \mathrm{CrCl}_{2}$ in THF-DMSO ($3: 1 \mathrm{v} / \mathrm{v}$), the coupling product 253 was obtained in 88% yield as a $1: 1$ mixture of alcohol diastereoisomers (Scheme 56). This mixture was converted to ketoaldehyde 254 in 90% yield via a three step sequence and following PMB
deprotection using DDQ and installation of an acetyl group at the C32 hydroxyl, the synthesis of the side-chain $\mathbf{2 2 8}$ was complete.

Reagents: i, $\mathrm{NiCl}_{2}-\mathrm{CrCl}_{2}$, THF/DMSO, (88\%); ii, PtO_{2}; iii, DIBAL-H; iv, Dess-Martin Periodinane, (90% over 3 steps); v, DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$, (87%); vi, $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{DMAP}$ (98%).

Scheme 56

In all their studies, Panek et al have affected the key coupling of 227 and 228 via a Schlosser-Wittig olefination leading to good yields of the desired tris-oxazole (E)-olefin. Indeed, application of this to mycalolide A 22, provided the desired product 255 as a single olefin isomer in 86% yield (Scheme 57).

Reagents: $\mathrm{i}, \mathrm{Et}_{3} \mathrm{P} / \mathrm{DMF}, \mathrm{DBU},(86 \%)$.
Scheme 57
After removal of the TBS group in 255, the resulting seco acid 256 was subjected to Yamaguchi esterification conditions, providing the macrocycle 257 in 66% yield. Hydrolysis of the acetal in 257, followed by installation of the terminal N methyl formamide group and deprotection using TBAF/AcOH, finally gave mycalolide A 22 (Scheme 58).

Reagents: i, PPTS/EtOH, (65\%); ii, 2,4,6-Cl $\mathrm{PhCOCl}^{\mathrm{i}}{ }^{\mathrm{Pr}}{ }_{2} \mathrm{NEt}, \mathrm{DMAP}$, PhH, (66\%); iii, PPTS, wet acetone; iv, PPTS,HCONHMe, PhH, (30% over 2 steps); v, TBAF/AcOH, THF, (82\%).

Scheme 58

In summary, the first total synthesis of (-)-mycalolide A was achieved via the application of two complimentary chemical processes, HKR, and chiral silane based methodology. The synthesis also confirmed the relative and absolute stereochemistry of mycalolide A.
4.2 Spectroscopic Data for Compound 151

rs. 11
ecc:11 $>$
18261
926.22
$926 \cdot \mathrm{EZ}$
c00 52 -
889.62

80C. OE
060. GE -
969 6̌ - \qquad
\qquad

4.3 X-Ray Crystallography Data for Compound 182

Empirical formula	C14 $\mathrm{H23}$ N 03
Formula weight	253.33
Crystal description	colourless block
Crystal size	$0.42 \times 0.29 \times 0.16 \mathrm{~mm}$
Crystal system	Monoclinic
Space group	P2 (1)
Onit cell dimensions	$\begin{array}{ll} a=5.9395(4) A & \text { alpha }=90 \text { deg. } \\ b=13.1720(9) A & \text { beta }=101.330(1) \text { deg. } \\ c=10.0751(7) A & \text { gamma }=90 \text { deg. } \end{array}$
Volume	772.87(9) A^3
Reflections for cell refinement	4628
Range in theta	2.57 to 28.16 deg.
2	2
Density (calculated)	$1.089 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.076 m^{\wedge}-1$
F(000)	276
Diffractometer type	Bruker SMART CCD area detector
Wavelength	0.71073 A
Scan type	omega
Reflections collected	6925
Theta range for data collection	2.05 to 28.68 deg.
Index ranges	$-7<=h<=7,-17<=k<=17,-13< \pm 1<=13$
Independent reflections	1908 (R(int) $=0.0301$
Observed reflections	1797 [I>28igma(I)]
Decay correction	none
Structura solution by	direct methods
Hydrogen atom location	difference Pourier
Hydrogen atom treatment	refined
Data / restraints / parameters	1908/1/255 (least-squares on $\mathrm{F}^{\wedge} 2$)
Final R indices [I>2sigma (I)]	$\mathrm{RI}=0.0293, \mathrm{wR2}=0.0786$
Final R indices (all data)	R1 = 0.0315, wR2 $=0.0801$
Goodness-of-ift on F^2	1.042

```
Final maximum delta/sigma 0.003
Weighting scheme
```



```
Largest diff. peak and hole 0.203 and -0.114 e.A^-3
```

Table 2. Atomic coordinates $\left(x 10^{\wedge}\right.$) and equivalent isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for YNTBES. $0(e q)$ is defined as one third of the trace of the orthogonalized oif tensor.

	x	y	z	O(eq)
N1	8992(2)	3379 (1)	3313 (1)	28 (1)
C2	10018 (2)	2387(1)	3044 (1)	31 (1)
03	10679 (2)	1981(1)	4374(1)	36 (1)
C4	9014(3)	2314 (1)	5130 (2)	36 (1)
C5	8449(2)	3406 (1)	4673 (1)	27 (1)
C6	12185 (3)	2489(2)	2472 (2)	44 (1)
C7	8262 (3)	1702(1)	2168 (2)	40 (1)
08	8252 (2)	3890 (1)	1115 (1)	40 (1)
C8	8048 (2)	4005 (1)	2285 (1)	30 (1)
09	6913 (2)	4770 (1)	2747 (1)	34 (1)
C9	5653 (3)	5531(1)	1807 (2)	34 (1)
C10	7302 (3)	6127 (2)	1125 (2)	45 (1)
C11	4635 (3)	6205(1)	2764 (2)	47 (1)
C12	3770 (3)	5018 (2)	787 (2)	46 (1)
C1'	9819 (2)	4223 (1)	5601(1)	$30(1)$
C2'	9227 (3)	4134 (1)	6953 (1)	36 (1)
C3'	8785 (3)	4027 (2)	8040 (2)	47 (1)
C4'	12430(3)	4156 (2)	5698(2)	42 (1)

Table 3. Bond lengths [A], angles [deg] for yNTBES.

N1-C2	1.4887(18)
N1-C5	1.4683 (15)
N1-C8	1.3564 (17)
C2-03	1.4240(18)
C2-C6	1.516 (2)
C2-C7	1.522 (2)
03-C4	1.4303 (18)
C4-C5	$1.528(2)$
C4-H4A	0.98 (2)
C4-H4B	0.95 (2)
C5-C1'	1.5482(19)
C5-H5	0.956 (19)
C6-H6A	1.02 (2)
C6-H6B	0.98 (3)
C6-H6C	0.96 (2)
C7-H7A	0.93 (3)
C7-H7B	0.97 (3)
C7-H7C	0.93 (3)
08-C8	1.2177 (16)
C8-09	1.3453 (17)
09-C9	1.4782(17)
C9-C10	1.520 (2)
C9-C11	1.520 (2)
C9-C12	1.521 (2)
C10-H10d	0.95 (3)
C10-H108	0.94 (3)
C10-H10C	0.95 (3)
C11-H11A	0.99 (3)
C11-H118	0.99 (3)
C11-H11C	1.06 (3)
C12-H12A	0.91 (3)
C12-H128	0.96 (3)
C12-H12C	0.97 (3)
C1'-C2'	$1.4768(18)$
C1'-C4'	1.538 (2)
C1'-H1'A	0.99 (2)
C2'-C3'	1.184 (2)
C3'-83.	0.962 (19)
C4'- H_{4} ' A	0.98 (3)
C4'-H4'B	0.97 (3)
C4'-H4'C	0.98 (2)
C8-81-C5	124.34(11)
C8-N1-C2	121.15(11)
C5-N1-C2	111.35(11)
O3-C2-N1	101.83(11)
O3-C2-C6	107.07 (13)
N1-C2-C6	113.56(13)
03-C2-C7	110.75 (13)
N1-C2-C7	111.53(12)
C6-C2-C7	111.58(14)
C2-03-C4	1n7 4 (r..

C4-C5-C1'	114.47(12)
N1-C5-H5	110.7(11)
C4-C5-H5	108.9(11)
C1'-C5-H5	108.7(11)
C2-C6-H6A	111.8(12)
C2-C6-H6B	106.5(15)
H6ג-C6-H68	113 (2)
C2-C6-H6C	$110.8(13)$
H6A-C6-H6C	107.8(18)
H68-C6-H6C	107 (2)
C2-C7-H7A	112.4 (16)
C2-C7-H7B	109.6(15)
87ג-C7-878	112(2)
C2-C7-H7C	109.9(17)
H7A-C7-H7C	105 (3)
H7B-C7-E7C	$107(2)$
08-c8-09	125.44(12)
O8-C8-N1	123.99 (13)
O9-C8-N1	110.56(10)
C8-09-C9	120.77(10)
09-C9-C10	110.49(13)
09-C9-C11	101.75(12)
C10-C9-C11	$110.94(15)$
09-C9-C12	110.06 (13)
C10-C9-C12	$112.22(14)$
C11-C9-C12	110.90 (15)
C9-C10-H10A	$111.9(15)$
C9-C10-H108	113.1(18)
H10A-C10-H108	104 (2)
C9-C10-H10C	110.9 (15)
H10A-C10-H10C	106 (2)
H10b-C10-H10C	$111(2)$
C9-C11-H11A	110.5(14)
C9-C11-8118	109.7(14)
H12A-C11-8118	111(2)
C9-C11-H11C	108.5(13)
H11A-C11-H11C	108.2(19)
H118-C11-H11C	108.5(19)
C9-C12-H12A	109.8(15)
C9-C12-H12B	112.4(14)
H12A-C12-H128	112 (2)
C9-C12-H12C	106.2(16)
H12A-C12-H12C	$107(2)$
H12B-C12-H12C	$109(2)$
C2'-C1'-C4'	110.93(12)
C2'-C1'-C5	108.05(12)
C4'-C1'-C5	113.71 (12)
C2'-C2'-H1'A	107.4(10)
C4'-C1'-E1'A	109.0(10)
cs-c1'-H1'A	107.5(11)
C3'-C2'-C1'	177.60(18)
C2'-C3'- $\mathrm{H}^{\prime}{ }^{\prime}$	$178.2(12)$
C1'-C4'-H4'A	111.2(13)
C1'-C4'-H4'B	109.9(15)
H4'A-C4'-H4'B	$109(2)$
C1'-C4'-H4'C	110.3 (12)
H4'A-C4'-H4'C	104.8 (18)
H4'B-C4'- $\mathrm{H} 4^{\prime} \mathrm{C}$	111(2)

Table 4. Anisotropic displacement parameters ($\boldsymbol{A}^{\wedge} 2 \times 10^{\wedge} 3$) for yNTBES. The anisotropic displacement factor exponent takes the form:

	011	022	033	023	013	012
N1	$34(1)$	$29(1)$	$21(1)$	$1(1)$	$8(1)$	$6(1)$
C2	$34(1)$	$30(1)$	$28(1)$	$0(1)$	$6(1)$	$7(1)$
03	$44(1)$	$32(1)$	$31(1)$	$2(1)$	$3(1)$	$9(1)$
C4	$49(1)$	$31(1)$	$27(1)$	$5(1)$	$8(1)$	$0(1)$
C5	$30(1)$	$32(1)$	$20(1)$	$2(1)$	$6(1)$	$2(1)$
C6	$39(1)$	$47(1)$	$49(1)$	$-5(1)$	$17(1)$	$9(1)$
C7	$45(1)$	$36(1)$	$38(1)$	$-8(1)$	$2(1)$	$5(1)$
08	$57(1)$	$44(1)$	$22(1)$	$3(1)$	$12(1)$	$10(1)$
C8	$34(1)$	$32(1)$	$23(1)$	$1(1)$	$6(1)$	$5(1)$
09	$43(1)$	$37(1)$	$23(1)$	$4(1)$	$6(1)$	$14(1)$
C9	$37(1)$	$32(1)$	$31(1)$	$8(1)$	$3(1)$	$6(1)$
C10	$49(1)$	$41(1)$	$44(1)$	$7(1)$	$10(1)$	$-3(1)$
C11	$50(1)$	$38(1)$	$53(1)$	$5(1)$	$13(1)$	$16(1)$
C12	$45(1)$	$45(1)$	$43(1)$	$11(1)$	$-6(1)$	$0(1)$
C1	$37(1)$	$31(1)$	$23(1)$	$0(1)$	$8(1)$	$-1(1)$
C2'	$43(1)$	$37(1)$	$26(1)$	$-3(1)$	$6(1)$	$-3(1)$
C3	$62(1)$	$52(1)$	$28(1)$	$-5(1)$	$14(1)$	$-10(1)$
C4	$36(1)$	$48(1)$	$40(1)$	$-7(1)$	$8(1)$	$-7(1)$

Table 5. Hydrogen coordinates $\left(x 10^{\wedge} 4\right)$ and isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for YNTBES.

	x	y	z	O(eq)
H4A	7630 (40)	1891(19)	4910 (20)	46 (5)
H4B	9660 (40)	2280(20)	6070 (20)	54 (6)
H5	6850 (30)	3522 (14)	4622 (18)	28 (4)
H6A	13330 (40)	2981(18)	3030 (20)	48 (6)
H6B	12810 (40)	1800 (20)	2440 (30)	60 (7)
H6C	11840(40)	2734(18)	1560 (20)	44 (5)
H7ג	7020 (50)	1550 (20)	2570 (30)	63 (7)
H7B	7780 (40)	2000 (20)	1280(30)	52 (6)
H7C	8920 (50)	1080 (20)	2040(30)	70 (7)
H10d	8560(40)	6380 (20)	1760(30)	57 (7)
H108	7980 (50)	5730 (20)	540(30)	64 (7)
H10C	$6570(40)$	6710 (20)	670 (20)	57 (6)
H11A	3800 (40)	6780 (20)	2270(30)	59 (6)
H11B	5860 (40)	6440 (20)	3510 (20)	55 (6)
H1IC	3440 (40)	5770(20)	3180(20)	50 (6)
H12A	2830 (40)	4660 (20)	1230(20)	58 (6)
H12B	4370 (40)	4600 (20)	160 (20)	55 (6)
H12C	2860 (40)	5560 (20)	$300(30)$	64 (7)
H1'A	9270(30)	4896 (15)	5232(18)	30 (4)
H3'	8470(30)	3944(17)	8936(19)	40 (5)
H4'A	13010(40)	3490 (20)	6010(20)	50 (6)
H4'B	$13200(40)$	4670 (20)	$6320(30)$	61 (7)
H4'C	12810(30)	4227 (16)	4800 (20)	40 (5)

Table 6. Torsion angles [deg] for YNTBES.

$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	-177.50(12)
$C(5)-N(1)-C(2)-O(3)$	-16.77(15)
$C(8)-N(1)-C(2)-C(6)$	67.76 (18)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	-131.51(14)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-59.35(17)
$C(5)-N(1)-C(2)-C(7)$	101.38(15)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(3)-C(4)$	33.89 (14)
$\mathrm{C}(6)-\mathrm{C}(2)-O(3)-C(4)$	153.34(13)
$C(7)-C(2)-O(3)-C(4)$	-84.81(14)
$C(2)-O(3)-C(4)-C(5)$	-38.92(15)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	154.59(14)
$C(2)-N(1)-C(5)-C(4)$	-5.40(15)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}\left(1^{\prime}\right)$	-82.82(16)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}\left(1^{\prime}\right)$	117.19(13)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	25.87(14)
O(3)-C(4)-C(5)-C(1)	-95.88(13)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{O}(8)$	-169.24(15)
$C(2)-N(1)-C(8)-O(8)$	-11.1(2)
$C(5)-N(1)-C(8)-O(9)$	11.94(19)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{O}(9)$	170.08(12)
$O(8)-C(8)-O(9)-C(9)$	3.7 (2)
$N(1)-C(8)-O(9)-C(9)$	-177.50(13)
$C(8)-O(9)-C(9)-C(10)$	-63.40(18)
$C(8)-O(9)-C(9)-C(11)$	178.73(13)
$C(8)-O(9)-C(9)-C(12)$	61.09(18)
$N(1)-C(5)-C\left(1^{\prime}\right)-C\left(2^{\prime}\right)$	-176.67(12)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	-62.19(15)
$N(1)-C(5)-C\left(1^{\prime}\right)-C\left(4^{\prime}\right)$	-53.06(16)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	61.41(15)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	-63(4)
$\mathrm{C}(5)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	62 (4)

4.4 Reprints of Symlett and Perkin I Publications

With Compliments of the Author

Thieme

A Macrolactamisation-Oxazoline Ring Forming Approach towards the trisOxazole Macrolide Core in the Ulapualides

James Kempson. Gerald Pattenden*

School of Chemistry. University of Nottingham. Nottingham NG7 2RD. England
Fax +44 (115) 9513535
Received 2I Janwany 1999

Abstract

A new design for the synthesis of the $\mathbf{2 5}$-membered $t r i s-$ oxazole macrolide core. 3, in the "ulapualide family" of marine natural products e.g. 1 isolated from nudibranchs and sponges, based on a macrolactamisation strategy, leading to 4 , followed by oxazoline and oxazole ring formation using the substituted monooxazoles 5 and 6 as key precursors, is described.

Key words: marine natural products. macrolactamisation, ring-formation, oxazolines

The "ulapualides" are a family of novel tris-oxazole containing bioactive macrolides found in nudibranchs and marine sponges; they include the halichondramides, ${ }^{\text {' }}$ kabiramides. ${ }^{2}$ mycalolides. ${ }^{3}$ halishigamides ${ }^{4}$ and the parent member ulapualide A 1.5 Interestingly, several members of the halishigamides isolated from the Okinawan marine sponge Halichondria have one or more incom-
plete oxazole rings in their structures, e.g. halishigamide D 2, which could have implications regarding the biosynthetic origins of this intriguing family of marine metabolites. ${ }^{6}$ During 1998 we described a total synthesis of the ulapualide A structure $1,{ }^{7}$ with the relative stereochemistry shown, using a strategy based on elaboration of an appropriately functionalised linear tris-oxazole unit followed by addition of the lipid-like side chain, macrocyclisation, and functional group manipulation. ${ }^{8}$ In a second generation synthetic approach to the ulapualides we now describe a synthesis of the 25 -membered tris-oxazole macrolide core 3 in these structures based on a macrolactamisation strategy, leading to 4 , followed by oxazoline and oxazole ring formation, using the substituted monooxazoles 5 and 6 as key precursors (Scheme 1). ${ }^{9}$
Thus, the known 2 -methyloxazole 7^{10} was first elaborated to the corresponding phosphonium salt 8, following bro-

1

5

6

Scheme 1
mination (NBS, AIBN, $\mathrm{CCl}_{4}, \Delta ; 41 \%$) and treatment with triphenylphosphine ($\mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h} ; 82 \%$). A Wittig reaction between 8 and 5 -tert-butyidimethylsilyipentanal " (BuLi, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$) next gave the E -alkene ($9 ;-45 \%$), ${ }^{12}$ which was then saponified (LiOH, THF- $\mathrm{H}_{2} \mathrm{O} ; 99 \%$) and converted into the corresponding allyl ester 10 (allyl bromide, $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}: 51 \%$) (Scheme 2). Deprotection of the silyl ether group in 10 ($\mathrm{AcOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$; 91%) finally gave the primary alcohol 5 in readiness for coupling to the carboxylic acid 6.

The carboxylic acid 6 was prepared starting from Gamer's acid 11^{13} following conversion into the amide 12 using serine methyl ester $\mathrm{HCl}\left(\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right.$ then DCC ; 74\%), cyclodehydration to the corresponding oxazoline using Burgess' reagent ${ }^{14}$ in THF (75%) and oxazole ring formation ($\mathrm{BrCCl}_{3}, \mathrm{DBU}, 0-25^{\circ} ; 75 \%$) ${ }^{15}$ (Scheme 3). After conversion of the oxazole ester 13a into the corresponding aldehyde 13b (DIBAL-H, then PySO_{3} in DMSO, $\mathrm{Et}_{3} \mathrm{~N} ; 60 \%$ overall), a Wadsworth-Emmons olefination reaction with the keto-phosphonate $14^{16}\left[\mathrm{Ba}(\mathrm{OH})_{2}\right.$.

Reagents and Condirions: i, NBS/AIBN, CCl4, $\triangle, 41 \%$; ii, $\mathrm{PPh}_{3}, \mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 82 \%$; iii, $\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; iv, 5-tert-butyldimethylsilyipentanal, 45%; v, LiOH, THF- $\mathrm{H}_{2} \mathrm{O}, 99 \%$; vi, Allyl bromide, $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}, 51 \%$; vii, AcOH, THF, $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 91 \%$.

Scheme 2

Reagents and Conditions: i. Serine $\mathrm{OMe} . \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}$ then DCC, 74\%; ii, Burgess' reagent. THF, 75\%; iii, BrCCl_{3}. DBU, $0-25^{\circ} \mathrm{C}$, 75\%; iv. DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} ; \mathrm{v}, \mathrm{PySO}_{3}$ in DMSO, $\mathrm{Et}_{3} \mathrm{~N}, 60 \%$; vi, $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}, 14, \mathrm{THF}, 71 \%$; vii, $\mathrm{Me}_{2} \mathrm{CuLi}$. $\mathrm{Et}_{2} \mathrm{O} .5^{\circ} \mathrm{C}$. 55\%; viii, LiOH, THF, $\mathrm{H}_{2} \mathrm{O}, 98 \%$.

Scheree 3

Reagenis and Conditions: i, EDC.HCl, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 73 \%$; ii, ($\mathrm{Ph}_{3} \mathrm{P}$) 4 Pd-pyrrolidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \%$; iii, 50\% TFA solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv. DPPA, DIPEA. DMF, 20\%; v, Burgess' reagent, THF, 69\%; vi, $\mathrm{NiO}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \Delta, 46 \%$.

Schesme 4
$8 \mathrm{H}_{2} \mathrm{O}$, THF. $25^{\circ} \mathrm{C}, 3 \mathrm{~h}: 71 \%$] next gave rise to the E-enone 15. Conjugate addition of lithium dimethylcuprate ($\mathrm{Et}_{2} \mathrm{O}$ $-5{ }^{\circ} \mathrm{C}, 55 \%$) followed by saponification of the resulting keto-ester 16 (LiOH, THF, $\mathrm{H}_{2} \mathrm{O} ; 98 \%$) then produced the carboxylic acid 6 as a viscous oil.
Esterification of the carboxylic acid 6 with the alcohol 5 in the presence of 1 -ethyl-3-[3-(dimethylamino)propyl)carbodiimide HCl containing 4-(dimethylamino)pyridine at $0^{\circ} \mathrm{C}$ for 2 h gave 17 in an excellent 73% yield, which was then deprotected sequentially using ($\left.\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}$ pyrrolidine (70%. carboxylic acid), followed by 50% TFA. leading to the TFA salt 18.
Macrolactamisation of 18 was accomplished under high dilution using diphenylphosphoryl azide in the presence of diisopropylethylamine giving rise to the macrolactammacrolide 4 as a mixture of diastereoisomers in an unoptimised 20% yield. The synthesis of the tris-oxazole macrolide 3 was then completed following cyclodehydration of 4 to the corresponding oxazole-oxazoline-oxazole 19 in the presence of Burgess' reagent, and oxidation of 19 using nickel peroxide ${ }^{17}$ ($\mathrm{C}_{8} \mathrm{H}_{8}, \Delta ; 46 \%$). This convergent approach to the synthesis of the tris-oxazole macrolide core 3 in the ulapualides has many attractions over the linear approach described earlier in our total synthesis of the ulapualide A structure 1. The development of this design towards a second generation synthesis of members of the ulapualides (halichondramides, kabiramides, mycalolides and halishigamides) is in progress in our laboratories.

Acknowledgement

We thank Zeneca for support of this work via a Research Studentship (to JK), and Dr Andy D Jones of Zeneca for his interest in this study.

References and Notes

(1) (a) Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Norma, M.; Noguchi, H.; Sankawa, U. J. Org. Chem., 1989, 54, 1360 (b) Kernan, M. R.; Molinski, T. F.; Faulkner, D. J. J. Org. Chem., 1988, 53, 5014.
(2) Fusetani, N.: Yasumuro. K.: Matsunaga, S.; Hashimoto, K. Tetrahedron Letl., 1989, 30, 2809.
(3) Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Koseke, K.; Norma, M. J. Am. Chem. Soc., 1986, 108, 847.
(4) Kobayashi, J.; Tsuda, M; Fuse, H.; Sasaki, T.; Mikami, Y. J. Nat. Prod, 1997, 60, 150.
(5) Roesener, J. A.; Scheuer, P. J. J. Am. Chem. Soc., 1986, I08, 846. The stereochemistry depicted for ulapualide A, ie 1 , is suggested from molecular modelling studies (see refs 7 and 8)
(6) For some discussion of this issue see refs: (a) Ichiba, T:; Yoshida, W. Y.; Scheuer, P. J.; Higa, T.; Gravalos, D. G. J. Am. Chem. Soc., 1991, J13. 3173. (b) Nagatsu, A.; Kajitani, H.; Sakakibara, J. Tetrahedron Lett., 1995, 36, 4097.
(c) Moore, R. E.; Patterson, G. M. L.; Mynderse, J. S.; Barchi, J.; Norton, T. R.; Furusawa, E.; Furusawa, S. Pure Appl. Chem. 1986. 58, 263 (d) Ishibashi, M.; Moore, R. E.; Patterson, G. M. L.; Xu, C.; Clardy, J. J. Org. Chem., 1986, 51, 5300.
(7) Chattopadhyay, S. K.; Pattenden, G. Tetrahedron Lett., 1998, 39, 6095.
(8) See Chattopadhyay, S. K.: Pattenden, G. Synlen, 1997, 1345 and extensive references and bibliography contained therein.
(9) For the genesis of this approach see: Chattopadhyay, S. K.; Pattenden, G. Synletr, 1997, 1342. For other approaches to the tris-oxazole unit in the ulapualides see: (a) Panek. J. S.;
Beresis, R. T.; Celatka, C. A. J. Org. Chem. 1996. 61, 6494. (b) Panek, J. S.; Beresis. R. T. J. Org. Chem. 1996, 61, 6496. (c) Liu, P.; Celatka, C. A.; Panck, J. S. Tetrahedron Lett., 1997. 38. 5445. (d) Celatka, C. A.; Liu, P.; Panek, J. S. Tetrahedron Lett. 1997. 38. 5449. (e) Yoo, S-K. Tetrahedron Lett., 1992. 33, 21 59. of Doyle, K. J.; Moody, C. J. Tetrahedron, 1994, 50, 3761.
(10) Comforth. J. W.; Comforth, R. H. J. Chem. Soc., 1947, 96.
(11) Danishefsky, S. J.: Pearson. W. H. J. Org. Chem., 1983, 48. 3865.
(12) All new compounds showed satisfactory spectroscopic data together with mass spectrometry data. Typical procedures: i , conversion of 18 invo 4 : Disopropylethylamine (37 mg . 0.29 mmol) was added in one portion to a stirred solution of 18 ($51 \mathrm{mg}, 0.08 \mathrm{mmol}$) in dry DMF (16 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then diphenylphosphoryl azide ($34 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added and stiming was continued for 3 min . The mixture was left at room temperature for 5 days, then diluted with ethyl acetate (20 ml) and poured into ice-cold water. The separated aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$) and the combined organic extracts were then washed with water $(6 \times 30 \mathrm{ml})$ and brine (30 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using ethyl acetate as eluent to give 4 ($14 \mathrm{mg}, 36 \%$) as an oil. $u_{\text {man }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3399,1715,1688$, 1596; δ_{H} ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major rotamer) $8.20(1 \mathrm{H}, \mathrm{s}, 29-\mathrm{H})$, 8.02 (1 H, d, J7.4, NH), 7.45 ($1 \mathrm{H}, \mathrm{s}, 21-\mathrm{H}$), 6.93 ($1 \mathrm{H}, \mathrm{dL}, J 16.2$ and 6.8. 2-H), 6.37 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.46-5.42$ (1H, m, 22-H), 4.27-4.10 (4H, m, 23-H and 6-H), 3.42-3.37 ($1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}$), $3.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.7$ and $11.0,14-\mathrm{H}), 2.62-2.56(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H})$, 2.54-2.35 ($6 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 8 \cdot \mathrm{H}$ and $3-\mathrm{H}$), 1.84-1.61 ($4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and 5-H), 1.50-1.22 (6H, m, 9-H, 10-H and 11-H) and $0.97-$ 0.91 (3H, m, 16-H); δ_{c} ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 209.5(s), 173.6(s), $161.0(\mathrm{~s}), 160.8(\mathrm{~s}), 145.3(\mathrm{~s}), 144.4(\mathrm{~s}), 141.7(\mathrm{~d}), 140.5(\mathrm{~d})$, 136.1(s), 134.2(d), 132.1(d), 128.6(d), 116.0(d), 64.6(t),
63.8(t), 48.3(t), 43.0(t), 34.4(t), 31.9(t), 29.7(t), 28.6(t), 27.8(t), 24.7(t), 23.4(t), 19.4(q): m/z (EI) (Found $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$, 469.2223, 100%. $\mathrm{C}_{25} \mathrm{H}_{3}, \mathrm{O}_{6} \mathrm{~N}_{3}$ requires M .469 .2167). ii, conversion of 4 into 19; Freshly prepared NiO_{2} (150 mg) was added in three portions to a solution of 4 ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) in refluxing dry benzene (3 ml) at one hour intervals. The mixture was heated under reflux for two more hours, and then filtered through celite. The filtrate was concentrated in vacuo to leave a viscous mass. Purification by chromatography on silica using ethyl acetate as eluent gave 19 ($14 \mathrm{mg}, 46 \%$) as a white solid. m.p. 140-142 ${ }^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 263$ (1888);
$v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3019,2929,1715$ and $1215 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$. $\left.\mathrm{CDCl}_{3}\right) 8.07$ and $8.06(2 \times 1 \mathrm{H}, \mathrm{s}, 31-\mathrm{H}$ and $26-\mathrm{H}) .7 .40(1 \mathrm{H}, \mathrm{s}$. $21-\mathrm{H}), 7.19$ (1H, dt. J 15.9 and $7.1,2-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{dt}, J 15.9$ and $1.5,1-\mathrm{H}), 4.08(2 \mathrm{H}, 2 \times \mathrm{dt}, J 22.0$ and $10.8,6-\mathrm{H}), 3.43$. $3.39(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.2$ and $6.0,14-\mathrm{H}), 2.63-$ $2.57(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}), 2.49-2.35(6 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 8-\mathrm{H}$ and $3-\mathrm{H})$, $1.80-1.60(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 1.46-1.16(6 \mathrm{H}, \mathrm{m}, 9 . \mathrm{H}, 10-\mathrm{H}$ and $11-\mathrm{H})$ and $0.93-0.78(3 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}) ; \delta_{\mathrm{c}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 210.25(s), 173.86(s), 162.77(s), 156.57(s), 154.26(s), 146.65(s), 143.23(d), 137.27(d), 137.02(d), 133.40(d), 131.76(s), 130.39(s), 115.21 (d), 65.86(t), 48.08(t), 43.64(t), 34.58(t), 31.13(t), 29.70(t), 29.15(t), 27.44(d), 26.88(t). 25.06(t), 24.45(t) and 18.96(q); m/z (FAB) (Found M ${ }^{+}+1$, $468.2154,7 \% . \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{M}, 468.2134$).
(13) (a) Garner, P.; Park, J. M. J. Org. Chem., 1987, 52, 2361. (b) McKillop, A.; Taylor, R. J. K.; Watson, R. J.; Lewis, N. Synthesis, 1994, 31.
(14) Atkins, G. M. Jr.; Burgess, E. M. J. Am. Chem. Soc., 1968, 90, 4744.
(15) Williams, D. R.; Lowder, P. D.; Gu, Y-G.; Brooks, D. A. Tetrahedron Lett., 1997, 38, 331.
(16) Reader, M. PhD Thesis, University of Nottingham, 199.
(17) Evans, D. L.; Minster, D. K.; Jordis, U.; Hecht, S. M.; Mazzu, A. L. Jr.; Meyers, A. I. J. Org. Chem., 1979, 44, 497.

Article Identifier:
1437-2096.E;1999,0,05,0533,0536,ftx,en;L02299ST.pdf

Towards a total synthesis of ulapualide A. Concise synthetic routes to the tris-oxazole ring system and tris-oxazole macrolide core in ulapualides, kabiramides, halichondramides, mycalolides and halishigamides

Shital K. Chatopadhyay, James Kempson, Alan McNeil, Gerald Pattenden,* Michael Reader, David E. Rippon and David Waite

School of Chemistry. The Liniversity of Nottingham. Nottingham. UK NG7 2RD
Received (in Cambridge, UK) 27th January 2000, Accepted 3rd February 2000
Published on the Web 21st June 2000

A range of methods for the synthesis of mono-, bis- and tris-2,4-disubstituted oxazoles were evaluated. which led ultimately to a concise synthesis of the three contiguous oxazole ring system 26 in the ulapualide family of 25 -membered macrolides, e.g. 1 . found in marine organisms. The tris-oxazole macrolide core 30 in ulapualide A (1) was also synthesised based on a macrolactamisation strategy from the two functionalised mono-oxazole precursors 28 and 29. followed by oxazoline 45 and oxazole ring formation. exploiting the methodologies established in the synthesis of linear bis- and tris-oxazoles in the formation of 18 and 26 . The tris-oxazole 26 was converted into the corresponding phosphonium salt 5 in readiness for elaboration to ulapualide $\mathrm{A}(1)$.

The "ulapualides", which include the halichondramides, kabiramides, mycalolides and halishigamides are a novel family of marine metabolites which show structures based on the presence of three contiguous oxazole rings incorporated in a 25 -membered macrolide ring, to which is attached an acyclic side chain that terminates in an N-methyl- N-alkenyl formamide group. ${ }^{1-4}$ The structures. e.g. ulapualide A $1,{ }^{\prime}$ differ from each other largely according to the oxidation patterns and alkyl group substitutions found in their aliphatic portions, e.g. mycalolide B (2). ${ }^{4}$ Interestingly, other ulapualides are known which contain incomplete tris-oxazole chromophores e.g. $\mathbf{3}^{3}$ and 44^{9}

Although oxazoles are now found quite commonly in nature." the tris-oxazole unit present in the ulapualides remains
unprecedented. Indeed, in earlier overtures we have even suggested that some of the unique biological properties of these molecules are associated with their capacity to sequester and transport metal ions, i.e. behave as ionophores, using the several oxazole nitrogen and side chain oxygen ligand binding sites present in their structures. "The combination of a unique and unprecedented chemical structure with novel biological properties lured us to attempt a total synthesis of the founder member, ulapualide A (1), of this intriguing family of marine metabolites. ${ }^{\text {a }}$ In this paper we focus our attention on the development of suitable synthetic routes to the three contiguous oxazole ring system in the natural product. specifically the doubly functionalised tris-oxazole 5,' and in the accompanying paper we describe the extension of this work culminating in a total

1

DOI: 10.1039/b0007501

J. Chem. Soc., Perkin Trans. 1, 2000, 2415-2428

approach.'
Thus condensation between serine ethyl ester hydrochloride 10 and ethyl acetimidate hydrochloride 11 in the presence of triethylamine first led to the oxazoline 12 (Scheme 1). ${ }^{12}$ which on oxidation with nickel peroxide in hot benzene. according to the method of Meyers et al..13 gave the mono-oxazole ester 13 a. The same substituted oxazole 13 a could also be obtained from ethyl acetimidate hydrochloride following condensation with glycine ester hydrochloride leading to 14, followed by formylation (to 15) and acid-catalysed cyclisation, as described by Cornforth and Cornforth. ${ }^{14}$ Saponification of 13a, followed by conversion of the resulting carboxylic acid 13b into the corresponding acid chloride 13 c and treatment with a second
synthesis of ulapualide A. with the relative stereochemistry shown in structure 1 ."

The tris-oxazole unit 6 (cf 5) in the ulapualides is most likely derived in nature by cyclodehydration of an appropriately substituted tris-serine precursor, e.g. 7. leading to the corresponding tris-oxazoline. followed by enzymic oxidation. ${ }^{11}$ A related bis-oxazole unit is found in the natural product hennoxazole A 8 isolated from Polyfibrospongia sp.," and muscoride A 9 found in the freshwater cyanobacterium Nostac muscorum ${ }^{\text {b }}$ shows a bis-oxazole core which is formally derived from two threonine residues. Our first approach to the differentially functionalised tris-oxazole 5 was indeed based on the aforementioned biogenetic pathway but utilised three molecules of serine in three sequential oxazoline cyctisation-

Scheme 2
molecule of serine ester hydrochloride next provided the mono-oxazole serine amide 16a. Treatment of 169 with thionyl chloride at $0^{\circ} \mathrm{C}$ then led to the alkyl chloride 16 b which could be cyclised to the oxazole-oxazoline 17a in the presence of 1.2 equivalents of silver triflate. ${ }^{15}$ Oxidation of 17a using nickel peroxide in hot benzene then provided the bis-oxazole 18 as colourless crystals. albeit in only 27% yield. More satisfactory methods for the "oxidation" of 17 a to 18 were either to use N-bromosuccinimide with irradiation from a sun lamp. ${ }^{16}$ or alternatively to convert 17a into the corresponding phenylselenyl derivative 17 b . then oxidise the latter to the selenoxide and eliminate the elements of phenylselenic acid. ${ }^{17}$ Finally, the same bis-oxazole ester 18 could be produced from the alkyl chloride $\mathbf{1 6 b}$ following conversion into the alkene 19. bromin-ation-dehydrobromination of 19 to the vinyl bromide 20. and cyclisation of the latter in the presence of copper(II) bromide and caesium carbonate. ${ }^{\text {is }}$

Repetition of the sequences detailed above i.e. acid chloride 21b formation (from 18), reaction with serine ester hydrochloride (to 22a). chlorination (to 22b). cyclisation to 23a and oxidation (direct or via $\mathbf{2 3 b}$). or alternatively conversion of 22b into 24 followed by bromination-dehydrobromination (to 25) and cyclisation. was then applied to convert the bis-oxazole ester 18 into the target tris-oxazole ester 26 (Scheme 2), which was secured as a white solid, $\mathrm{mp} 222-224^{\circ} \mathrm{C}$. In a slight modification to the synthesis of 18 and 26 from similar starting materials. the amide 13 d derived from 13 c could be converted into the oxazole-oxazoline 17 c in one step by condensation with serine ethyl ester hydrochloride in the presence of triethyloxonium tetrafluoroborate, and likewise the amide 21c into 23c by similar chemistry.

With the tris-oxazole 26 to hand, treatment with N-bromosuccinimide and AIBN with irradiation from a 300 W sun lamp at reflux in carbon tetrachloride for 24 h , next led to the corresponding oxazolylmethyl bromide 27 which, on reaction with triphenylphosphine. finally led to the target trisoxazole phosphonium salt 5 in readiness for elaboration to ulapualide A. These studies are described in the accompanying paper. ${ }^{10}$

Preliminary details of the aforementioned synthesis of the tris-oxazole unit 26 in the ulapualides were described in 1990.9 Other approaches to the same unit have been described more recently, which highlight the scope for the Hantzsch oxazole synthesis ${ }^{19}$ and for $[3+2]$ cycloaddition reactions of acyl carbenes to nitriles ${ }^{20}$ in the elaboration of oxazoles. Like our own approach however, these alternative methods are used in a linear, step-wise fashion. A more attractive proposition would be to develop a convergent approach to the tris-oxazole unit in the ulapualides, which would permit the elaboration of the central oxazole ring as a final step and in an intramolecular fashion. We felt this objective could be achieved based on a macrolactamisation strategy from two appropriately functionalised mono-oxazole precursors, followed by oxazoline and oxazole ring formation exploiting the methodologies we had established in the synthesis of the polyoxazoles 18 and 26; this sequence is shown diagramatically in Scheme 3. Such an approach would offer an attractive alternative strategy for elaboration of the tris-oxazole macrolide core in the ulapualides. Accordingly, we examined the scope for this approach using the substituted mono-oxazoles 28 and 29 as key precursors, with a view to the synthesis of the model tris-oxazole macrolide 30 (Scheme 4).

Scherne 3

Scheme 4

Scheme 5 Reagents and conditions: i. SerineOMe-HCl. Et, $\mathrm{N} .0^{\circ} \mathrm{C}$ then $\mathrm{DCC}, 74 \%$; ii, Burgess' reagent, THF, 75%, iii, $\mathrm{BrCCl}_{3}, \mathrm{DBU}, 0-25{ }^{\circ} \mathrm{C}, 75 \%$; iv. DIBAL-H, v, PySO in DMSO, Et ${ }_{1} \mathrm{~N}, 60 \%$; vi, $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}, 14, \mathrm{THF}, 71 \% ; \mathrm{vii}, \mathrm{Me}_{2} \mathrm{CuLi}^{2}, \mathrm{Et}_{2} \mathrm{O},-5{ }^{\circ} \mathrm{C}, 55 \% ;$ viii, $\mathrm{LiOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 98 \%$.

Thus, treatment of the serine-derived oxazolidine carboxylic acid 31 (Garner's acid) ${ }^{21}$ with serine methyl ester hydrochloride first gave the corresponding amide 32 which on reaction with Burgess' reagent ${ }^{12}$ led to the oxazoline 33 as a mixture of diastereoisomers (Scheme 5). "Oxidation" of this mixture using $\mathrm{BrCCl}_{1}-\mathrm{DBU}^{\mathbf{2}}$ then gave the oxazole 34 a which, following reduction to the corresponding aldehyde 34b and WadsworthEmmons olefination using the ketophosphonate 35 , ${ }^{24}$ was converted into the E-enone 36 . The addition of lithium dimethylcuprate to the enone 36 next led to an unresolved mixture of diastereoisomers of the ketoester 37 which on saponification gave the carboxylic acid 29. in readiness for esterification with the oxazole substituted primary alcohol 28.
The oxazole substituted primary alcohol 28 was prepared from the known 2 -methyloxazole 13a following initial conversion into the corresponding phosphonium salt 38, followed by a Wittig reaction between 38 and 5 -tert-butyldimethylsilylpentanal 39^{25} using butyllithium as base, to produce the E-alkene 40a almost exclusively. Saponification of 40a followed by protection of the resulting carboxylic acid 40 b as the corresponding allyl ester 41 and removal of the tert-butyldimethylsilyl protection then gave the oxazoie substituted primary alcohol 28. suitably protected at the oxazole carboxylic ester terminus for deprotection under mild palladium(0) catalysis (Scheme 6). ${ }^{26}$
Esterification of the mono-oxazole carboxylic acid 29 with the mono-oxazole alcohol 28 in the presence of l-ethyl-3-13(dimethylamino) propyljcarbodimide hydrochloride containing 4 -(dimethylamino)pyridine next led to the ester 42 in a satisfactory 73% yield (Scheme 7), which was then deprotected sequentially using palladium(0) pyrrolidine (70% to the carboxylic acid) followed by 50% trifluoroacetic acid, leading to the trifluoroacetate salt of the amino acid 43.
The macrolactamisation of 43 to 44 was accomplished, in an

Scheme 6 Reagents and conditions: i, NBS-AIBN, $\mathbf{4 1 \%}$; ii, $\mathrm{PPh}_{3}, \mathbf{8 2 \%}$; iii, BuLi, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; iv, 5-tert-butyldimethylsilylpentanal $39,45 \%$; v, LiOH, THF- $\mathrm{H}_{2} \mathrm{O}, 99 \%$; vi, Allylbromide, $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}, 51 \%$; vii, AcOH, THF, $\mathrm{H}_{2} \mathrm{O}, 91 \%$.
unoptimised 20% yield, by treatment with diphenylphosphoryl azide in the presence of diisopropylethylamine under high dilution. ${ }^{27}$ Cyclodehydration of 44 using Burgess' reagent followed by oxidation of the resulting oxazole-oxazolineoxazole macrolide 45 in the presence of nickel peroxide, finally led to target tris-oxazole macrolide 30 (Scheme 7). This alternative approach to the macrolide core found in the ulapualides, kabiramides, halichondramides, mycalolides, and halishigamides has many attractions over the linear approach to tris-oxazoles used in our total synthesis of the ulapualide A stereostructure 1. We have plans in place to develop this protocol in a second generation synthesis of the ulapualides, which will be described in due course.

Scheme 7 Reagents and conditions: i. EDC•HCl. DMAP. $0^{\circ} \mathrm{C}, 73 \%$; ii, $\mathrm{Pd}(0)-$ pyrrolidine, 70%; iii, 50% TFA solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv. DPPA. DIPEA, DMF. 20\%: v. Burgess' reagent. THF: vi. $\mathrm{NiO}_{2} . \mathrm{C}_{\star} \mathrm{H}_{6} .46 \%$.

Experimental

General detaik

[All mps were determined on a Kofler hot stage apparatus and are uncorrected. Optical rotations were measured on a JASCO DIPA-370 polarimeter: $[a]_{0}$ values are recorded in units of 10^{-1} $\mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Ultraviolet spectra were recorded on a Philips PU 8720 spectrophotometer as dilute solutions in spectroscopic grade ethanol: ε values are recorded in units of $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. Infrared spectra were obtained using a Perkin-Elmer 1600 series FT-IR instrument as either potassium bromide dises, liquid films or as dilute solutions in spectroscopic grade chloroform. Proton NMR spectra were recorded on either a Bruker WM250 (250 MHz), a Bruker AM400 (400 MHz). a Bruker DRX (500 MHz) or a JEOL EX-270 (270 MHz) spectrometer as dilute solutions in deuterochloroform or d_{6}-dimethyl sulfoxide. Chemical shifts are recorded relative to a solvent standard and the multiplicity of a signal is designated by one of the following abbreviations: $s=$ singlet; $d=$ doublet; $t=$ triplet: $\mathrm{q}=$ quartet; $\mathrm{br}=$ broad: $\mathrm{m}=$ multiplet. All coupling constants, J, are reported in Hertz. Carbon-13 NMR spectra were recorded on either a Bruker AM400 (100.6 MHz) or JEOL EX-270 (67.8 MHz) instrument. The spectra were recorded as dilute solutions in deuterochloroform or d_{6}-dimethyl sulfoxide with chemical shifts reported relative to a solvent standard on a broad band decoupled mode and the multiplicities obtained using a DEPT sequence. The following symbolisms are used for the multiplicities in carbon-13 spectra: $q=$ primary methyl: $t=$ secondary methylene: $d=$ tertiary methine: $s=$ quarternary. Where required, assignment for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were confirmed by two-dimensional homonuclear (${ }^{(} \mathrm{H}$) and/or heteronuclear (${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$) correlation spectroscopy. Matrix dimensions for two dimensional spectra were either 1024 points $\times 256$ columns (homonuclear ${ }^{\prime} \mathrm{H}$) or 2048 points $\times 128$ columns (heteronuclear ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$), and were recorded on a JEOL EX-270 instrument. Mass spectra were recorded on a AEI MS-902, MM-70E or VG Autospec spectrometer using electron ionisation (EI) or fast atom bombardment (FAB) techniques. Microanalytical data were obtained on a Perkin-Elmer 240B elemental analyser. Flash chromatography was performed on Merck silica gel 60 as the stationary phase and the solvents employed were either of analytical grade or were distilled before use. All reactions were monitored by TLC using Merck silica gel $60 \mathrm{~F}_{2 s}$ precoated plastic backed plates, which were visualised with ultraviolet light and then with either vanillin solution, basic potassium permanganate solution, or phosphomolybdic acid solution.

Commonly used organic solvents were dried by distillation from the following: THF (sodium benzophenone ketyl), dichloromethane (calcium hydride) and methanol (magnesium methoxide). Other organic solvents and reagents were purified by accepted literature procedures. Solvents were removed on a Büchi rotary evaporator using water aspirator pressure. Petrol refers to light petroleum with distillation range $40-60^{\circ} \mathrm{C}$. Where necessary, reactions requiring anhydrous conditions were performed in a flame dried apparatus under a nitrogen atmosphere. A Büchi GKR-50 Kugelröhr apparatus was used for bulb-to-bulb distillations.

2-Methyl-4,5-dihydro-1,3-oxazole-4-carboxylic acid ethyl ester 12

A solution of triethylamine ($10.1 \mathrm{~g}, 100 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 ml) was added dropwise over 30 min to a stirred suspension of ethyl acetimidate hydrochloride (6.2 g .50 mmol) and L-serine ethyl ester hydrochloride ($8.45 \mathrm{~g}, 50 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ at $25^{\circ} \mathrm{C}$. The mixture was stirred overnight and then the solvents were removed in vacuo. The residue was washed with diethyl ether ($3 \times 25 \mathrm{ml}$) and the ethereal solution was then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. The residue was purified by Kugelröhr distillation under reduced pressure to give the oxazoline ($5.89 \mathrm{~g}, 75 \%$) as a pale yellow oil, bp $100-110^{\circ} \mathrm{C}$ at 11 mmHg (lit. bp ${ }^{12} 98.5-100^{\circ} \mathrm{C}$ at 11 mmHg); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1735$ and $1665 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.8-4.2$ $(3 \mathrm{H}, \mathrm{m}), 4.21(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 2.0(3 \mathrm{H}, \mathrm{s})$ and $1.35(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$.

[(1-Ethoxyethylidene)amino]acetic acid ethyl ester 14

Using a modification of the Cornforth procedure. ${ }^{14}$ a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of ethyl acetimidate hydrochloride $11(25.0 \mathrm{~g}$, 0.2 mol) in ether (100 ml) was shaken for 5 min in a separating funnel with a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of potassium carbonate ($33.1 \mathrm{~g}, 0.24 \mathrm{~mol}$) in water (70 ml). The separated aqueous phase was extracted with diethyl ether (30 ml) and a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of glycine ethyl ester hydrochloride $(28.2 \mathrm{~g}$. 0.2 mol) in water (30 ml) was then added to the combined ether extracts with further shaking for 15 min . The separated aqueous layer was once again extracted with diethyl ether (30 ml) and the combined ether phases were washed with water $(3 \times 30 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave a yellow oil which was distilled to give the imino ether ($20.7 \mathrm{~g} .59 \%$) as a colourless liquid, bp $90^{\circ} \mathrm{C}$ at 10 mmHg (lit. $\mathrm{bp}^{14} 85-86^{\circ} \mathrm{C}$ at 7.5 mmHg); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1745$ and 1677 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.24-4.09(4 \mathrm{H}, \mathrm{m}), 4.04(2 \mathrm{H}), 1.88$ (:CMe) and $1.31-1.24(6 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{c}}\left(69.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.2(\mathrm{q}), 164.8$
(q). 60.9 (d). 60.8 (d). 51.3 (d). 15.2 (t). 14.2 (t) and 14.2 (t) (Found: $m /=$ (EI) $173.1072 . \mathrm{C}_{1} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $M .173 .1052$).

2-Methyl-1.3-oxazole-4-carboxylic acid ethyl ester 13a

(a) Using a modification of the Comforth procedure. ${ }^{14}$ a solution of the imino ether $14(69.1 \mathrm{~g} .0 .40 \mathrm{~mol})$ in dry THF (150 ml) was added dropuise over 40 min to a stirred suspension of potassium tert-butoxide (49.2 g .0 .44 mol) in dry THF (150 ml) under a nitrogen atmosphere at $-10^{\circ} \mathrm{C}$. Ethyl formate $(35.5 \mathrm{ml}$. 0.44 mol) was added sequentially and after stirring at $-10^{\circ} \mathrm{C}$ for 1 h . dry diethyl ether (100 ml) was added to the brown solution. The mixture was held at this temperature for 1 h and was then evaporated in vacuo to leave the potassium enolate salt 15 as a hygroscopic yellow solid. Hot acetic acid (110 ml) was added to the vigorously stirred residue and reflux was maintained for 15 min before the mixiure was cooled to room temperature. The resulting orange solid was dissolved in water $(500 \mathrm{ml})$ and the solution was then basified cautiously with solid potassium carbonate before the aqueous mixture was extracted with diethyl ether ($3 \times 300 \mathrm{ml}$). The combined organic phases were washed with saturated brine (100 ml), then dried (MgSO_{4}) and evaporated in vacuo to leave a yellow liquid. Distillation of the crude material gave the oxazole ester (50.4 g , 81%) as a straw coloured liquid, bp $106-110^{\circ} \mathrm{C}$ at 20 mmHg (lit. bp ${ }^{14} 106-110^{\circ} \mathrm{C}$ at 12 mmHg) (Found: $\mathrm{C}, 54.2: \mathrm{H}, 5.8 ; \mathrm{N}$, 8.8. $\mathrm{C}, \mathrm{H}, \mathrm{NO}$, requires $\mathrm{C} .54 .2 ; \mathrm{H} .5 .8:$ N. 9.0%): $i_{\max }(\mathrm{ElOH})$ $\mathrm{nm} 217(4760)$: $v_{\text {man }}($ film $) / \mathrm{cm}^{-1} 1738,1592$ and $1109 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.12(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) .4 .37\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$ $\left.\mathrm{CH}_{3}\right) .2 .50(3 \mathrm{H}, \mathrm{s} .2-\mathrm{Me})$ and $1.37\left(3 \mathrm{H}, \mathrm{t} . \mathrm{J} 7 \mathrm{~Hz}, \mathrm{OCHCH}_{3}\right)$; $\delta_{\mathrm{c}}\left(67.8 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) 162.0(\mathrm{~s} . \mathrm{CO}), 160.9$ (s. 2-C). 143.4 (d, 5-C). 133.1 (s. $4-\mathrm{C}$). 60.7 (t. $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 13.9 (q. $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) and 13.4 (q. 2 -Me): $m /=$ (EI) 155 (M ${ }^{+}, 21 \%$), 126 (2), 110 (57) and 82 (12) (Found: m / z 155.0619. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires M 155.0582)
(b) Nickel peroxide ($5 \times 1 \mathrm{~g}$) was added portionwise over 2 h to a stirred refluxing solution of the oxazoline $12(5.1 \mathrm{~g}, 33$ mmol) in dry hexane (60 ml) under a nitrogen atmosphere. The mixture was stirred at reflux for a further 2 h and the hot solution was filtered through a Celite pad and then washed with hot ethyl acetate. The combined filtrates were evaporated in vacuo, and the residue was purified by distillation to give the oxazole ($2.1 \mathrm{~g}, 41 \%$) as an oil which showed identical spectroscopic data to those described under (a).

2-Methyl-1,3-oxazole-4-carboxylic acid 13b

Using a modification of the Cornforth procedure. ${ }^{14}$ a solution of potassium hydroxide (4.34 g .77 mmol) in water (20 ml) was added in one portion to ethyl 2 -methyl-1,3-oxazole-4-carboxylate $13 \mathrm{a}(10 \mathrm{~g} .64 \mathrm{mmol})$ and the mixture was then heated under reflux for 1 h . The mixture was cooled to ambient temperature over 1 h and then evaporated in vacuo. The residue was acidified with concentrated hydrochloric acid (to pH 1) and then cooled in ice for 30 min . The precipitate was filtered and freeze dried to leave the oxazole acid $(5.4 \mathrm{~g}, 66 \%)$ as a white crystalline solid, mp $180-181^{\circ} \mathrm{C}$ (water) (lit. $\mathrm{mp}{ }^{14} 183-184^{\circ} \mathrm{C}$) (Found: C, 47.3; $\mathrm{H}, 4.1 ; \mathrm{N}, 10.9 . \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}_{3}$ requires $\mathrm{C}, 47.2 ; \mathrm{H}_{4}$, $4.0 ; \mathrm{N}, 11.0 \%) ;\rangle_{\max }(\mathrm{EtOH}) / \mathrm{nm} 213(5610) ; y_{\text {max }}(\mathrm{KBr} \mathrm{disc}) / \mathrm{cm}^{-1}$ $3436,1718,1590,1164,1107$ and $984 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) $12.96\left(1 \mathrm{H}, \mathrm{br}\right.$ s. $\left.\mathrm{CO}_{2} \mathrm{H}\right), 8.58$ (1H. s, $\left.5-\mathrm{H}\right)$ and $2.43(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}) ; \delta_{c}\left(67.8 \mathrm{MHz}, d_{6}-\mathrm{DMSO}\right) 162.5\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right), 162.2(\mathrm{~s}$, 2-C), 145.2 (d, 5-C), 133.5 (s, 4-C) and 13.7 (q, 2-Me); $m /=$ (EI) $127\left(\mathrm{M}^{+}, 54 \%\right), 110$ (11) and 82 (7) (Found: $m / z 127.0287$. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{3}$ requires $\mathrm{M}, 127.0269$)

3-Hydroxy-2-\{(2-methyl-1,3-oxazot-4-ylcarbonyl)amino propionic acid methyl ester 16a

Thionyl chloride (25 ml) was added to the oxazole acid 13b (5.3 $g, 42 \mathrm{mmol}$) with stirring, and the mixture was then heated under reflux for 4 h . The excess thionyl chloride was removed
in vacuo, and the residue was then azeotroped with toluene to give the corresponding acid chloride 13 c as a cream solid. which was used immediately without further purification. A solution of the acid chloride in dry dichloromethane (25 ml) was added dropwise over 15 min to a stirred solution of DL-serine methyl ester hydrochloride (7.15 g .46 mmol) and triethylamine (12.8 ml .92 mmol) in dry dichloromethane (50 ml) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$. The mixture was stirred for 20 h at ambient temperature and then evaporated in vacuo. The residue was diluted with saturated sodium hydrogen carbonate solution (30 ml), then extracted with ethyl acetate ($4 \times 30 \mathrm{ml}$) and the combined organic phases were washed with saturated brine (30 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave the oxazole serine derivative ($7.3 \mathrm{~g} .77 \%$) as a light brown solid. A small portion was purified by chromatography on silica to give the product as a white crystalline solid, mp $97-98^{\circ} \mathrm{C}$ (ethyl acetate-petrol) (Found: $\mathrm{C}, 47.2$; H. 5.4; N. 12.1. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 47.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 12.3 \%) ; i_{\max }(\mathrm{EtOH}) / \mathrm{nm} 222(3330)$ and 233sh (3290); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3405 \mathrm{br}, 1746,1674.1601$, 1509 and $1106 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.09\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 7.70$ ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.4 \mathrm{~Hz}, \mathrm{~N} H), 4.81(1 \mathrm{H}$, ddd, J $7.4,3.7$ and 3.7 Hz . $4-\mathrm{H}), 4.15-3.95(2 \mathrm{H}, \mathrm{m}, 5 \mathrm{H}), 3.81$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 2.91 (1H. br t. J $5.6 \mathrm{~Hz}, \mathrm{OH}$) and $2.48\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{Me}\right)$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 170.5 (s, 2-C), 161.6 (s, $\mathrm{CO}_{2} \mathrm{Me}$), 160.8 (s, $\left.2^{\prime}-\mathrm{C}\right), 141.3$ (d, $5^{\prime}-\mathrm{C}$), 135.3 (s, 4'-C), 62.7 (t, 5-C), 54.3 (d, 4-C). 52.6 (q, CO2Me) and 13.6 (q. $2^{\prime}-\mathrm{Me}$): $m / z(E I) 210\left(\mathrm{M}^{+}-\mathrm{H}_{2} 0.4 \%\right.$), 198 (17), 197 (7), 169 (21), 110 (100) and 82 (11) (Found: $m / z 198.0592$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right) . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires M, 198.0582).

3-Chloro-2-\{(2-methyl-1,3-0xazol-4-ylcarbonylaminolpropionic acid methyl ester 16 b

Thionyl chloride (3 ml) was added cautiously to the oxazole serine derivative $16 a(1.0 \mathrm{~g}, 4.4 \mathrm{mmol})$ under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$ and the solution was then stirred at ambient temperature for 12 h . The excess thionyl chloride was evaporated in vacuo to leave a residue which was quenched with water (25 ml). The aqueous mixture was extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$) and the combined organic extracts were washed with saturated brine (30 ml), then dried (MgSO_{4}) and evaporated in vacuo to leave the oxazole serine chloride ($1.04 \mathrm{~g}, 96 \%$) as a cream solid. A small portion was recrystallised to give a white crystalline solid, mp $104-105^{\circ} \mathrm{C}$ (from ethyl acetate-petrol) (Found: $\mathrm{C}, 43.9 ; \mathrm{H}, 4.6 ; \mathrm{N}, 11.5 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 43.8$; $\mathrm{H}, 4.5 ; \mathrm{N}, 11.4 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 214$ (10240); $v_{\max }\left(\mathrm{CHCl}_{3}\right)$ $\mathrm{cm}^{-1} 3401,1751,1678,1600,1505$ and $1107 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.07\left(1 \mathrm{H}\right.$, s. $\left.5^{\prime}-\mathrm{H}\right) .7 .64(1 \mathrm{H}$, br d, $J 7.8 \mathrm{~Hz}, \mathrm{NH}), 5.09$ (1 H , ddd, $J 7.8,3.6$ and $3.4 \mathrm{~Hz}, 4-\mathrm{H}$), 4.01 ($1 \mathrm{H}, \mathrm{dd}, J 11.3$ and $3.4 \mathrm{~Hz}, 5-\mathrm{H}) .3 .90(1 \mathrm{H}$, dd, $J 11.3$ and $3.6 \mathrm{~Hz}, 5-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$) and $2.44\left(3 \mathrm{H}, \mathrm{s} .2^{\prime}-\mathrm{Me}\right)$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.8$ (s, 2-C), 161.5 (s, $\mathrm{CO}_{2} \mathrm{Me}$). 160.3 (s, $2^{\prime}-\mathrm{C}$), 141.1 (d, $\left.5^{\prime}-\mathrm{C}\right), 135.3$ (s. $\left.4^{\prime}-\mathrm{C}\right), 52.9(\mathrm{~d}, 4-\mathrm{C}), 52.6\left(\mathrm{q}, \mathrm{CO}_{2} \mathrm{Me}\right), 44.8(\mathrm{t}, 5-\mathrm{C})$ and 13.6 (q, $2^{\prime}-\mathrm{Me}$); m / z (EI) 211 (M ${ }^{+}-\mathrm{Cl}, 9 \%$), 210 (9), 189 (32). 187 (82), 151 (42). 123 (18) and 110 (100) (Found: $m / z 194.0283$. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{M}, 194.0275$).

2-((2-Methyl-1,3-oxazol-4-ylcarbonyl)aminolacrylic acid methyl ester 19

1,8-Diazabicyclo[5.4.0]undec-7-ene ($4.3 \mathrm{ml}, 28.6 \mathrm{mmol}$) was added dropwise over 10 min to a stirred solution of the serine chloride 16 b ($7.1 \mathrm{~g}, 28.6 \mathrm{mmol}$) in dry dichloromethane (70 $\mathrm{ml})$ under a nitrogen atmosphere at ambient temperature. The yellow solution was stirred for 3 h , then washed with dilute hydrochloric acid ($2 \mathrm{M}, 2 \times 30 \mathrm{ml}$) and the separated organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and then evaporated in vacuo to leave the olefin ($1.6 \mathrm{~g}, 95 \%$) as a white solid; a small sample was recrystallised from $1: 1$ ether-hexane, mp $128-129^{\circ} \mathrm{C}$ (Found: C, 51.3; $\mathrm{H}, 4.7 ; \mathrm{N}, 13.1 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 51.4 ; \mathrm{H}, 4.8$; $\mathrm{N}, 13.3 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 222$ (11260) and 259 (11640); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3370,1724,1685,1592,1519$ and 1106 ;
$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.19(1 \mathrm{H}$, br s. $\mathrm{N} H), 8.12\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right)$, 6.71 (IH. s. $5-\mathrm{H}) .5 .97$ (1H. s. $5 . \mathrm{H}) .3 .89\left(3 \mathrm{H}\right.$. s. $\left.\mathrm{CO}_{2} \mathrm{Me}\right)$ and $2.50(3 \mathrm{H}, \mathrm{s} .2-\mathrm{Me}): \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.9$ (s. $\left.2-\mathrm{C}\right) .161 .3$ (s. CO, Me). $1 \leq 9.0$ (s. 2'-C). 141.1 (d. 5^{\prime}-C). 135.9 (s. 4^{\prime}-C) 130.7 (s. 4-C). 108.9 (t. 5-C). 52.8 (q. $\mathrm{CO}_{2} \mathrm{Me}$) and 13.5 (q. 2^{\prime}-Me): $m /=$ (El) $210\left(\mathrm{M}^{\circ} .31 \%\right.$). 195 (5). 179 (3), 178 (10). 151 (4) and $110(100)$.

3-Bromo-2-((2-methyl-1.3-oxazol-4-ylcarbonyl)aminolacrylic acid methyl ester 20

A solution of bromine $(0.4 \mathrm{ml} .7 .7 \mathrm{mmol})$ in dry dichloromethane (12 ml) was added dropwise over 2 h to a stirred solution of the olefin 19 (1.6 g .7 .7 mmol) in dry dichloromethane (49 ml) under a nitrogen atmosphere at $-78^{\circ} \mathrm{C}$. Triethylamine (1.1 ml , 7.7 mmol) was added in one portion and the mixture was then warmed to ambient temperature over 2 h . The mixture was washed with saturated brine (30 ml). then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vucuo to leave an orange gum. Purification by chromatography on silica using $2: 1$ diethyl ether-petrol as eluent gave the vinyl hromide $(2.1 \mathrm{~g} .91 \%)$ as a white crystalline solid. mp 107-108 ${ }^{\circ} \mathrm{C}$ (ether-petrol) (Found: C. 37.6; H, 3.2; N, 9.9. $\mathrm{C}_{9} \mathrm{H}, \mathrm{BrN}, \mathrm{O}$ \& requires C . 37.4: H. 3.1: $\mathrm{N}, 9.7 \%$); $\lambda_{\max }{ }^{-}$ $(\mathrm{EtOH}) / \mathrm{nm} 222$ (4560) and 255 (4570): $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{Cm}^{-1} 3376$, 1737.1696. 1625. 1595 and $1111: \delta_{H}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.30$ (1H. brs. NH). 8.15 (IH.s. $5^{\circ}-\mathrm{H}$). 7.19 (1H. s. $5-\mathrm{H}$). $3.83(3 \mathrm{H}$, s. $\mathrm{CO}_{2} \mathrm{Me}$) and $2.50(3 \mathrm{H} . \mathrm{s}, 2 \cdot \mathrm{Me})$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.0$ (s. 2-C). 161.4 (s. CO2Me). 157.8 (s. 2'-C). 141.7 (d, 5'-C), 134.7 (s. 4^{\prime} - C). 131.3 (s. 4-C). 113.3 (d. 5-C). 52.6 (q. $\mathrm{CO}_{2} \mathrm{Me}$) and 13.4 (q. $2^{\prime}-\mathrm{Me}$): $m /=$ (El) 259. 257 (M' - OMe. 2 and 2\%), 209 (88). 110 (100) and 82 (20)

2'-Methyl-4,5-dihydro-2,4'-bi(1.3-oxazolyl)-4-carboxylic acid methyl ester 17a

Silver trifluoromethanesulfonate (13.7 g .53 mmol) was added in one portion to a stirred solution of the oxazole serine chloride 16 b (11.15 g .45 mmol) in dry benzene $(225 \mathrm{ml})$ at room temperature under a nitrogen atmosphere. The suspension was heated under reflux for 6 h . then cooled to ambient temperature and evaporated in vacuo. The residue was partitioned between ethyl acetate (300 ml) and saturated sodium bicarbonate solution (300 ml). with vigorous stirring for 30 min . The separated aqueous layer was extracted with ethyl acetate ($3 \times 200 \mathrm{ml}$) and the combined organic phases were then washed with saturated sodium bicarbonate solution ($3 \times 150 \mathrm{ml}$). The second aqueous extract was washed further with ethyl acetate ($3 \times 100 \mathrm{ml}$) and the combined organic phases were then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave the oxazole-oxazoline ($9.50 \mathrm{~g}, 99 \%$) as a straw coloured oil: $y_{\text {ma }}\left(\mathrm{CHCl}_{3} \mathrm{Vcm}^{-1} 2956,1741,1675\right.$, 1587. 1216 and $1108 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.07(1 \mathrm{H}, \mathrm{s}, 5 \cdot-\mathrm{H})$, 4.93 (IH, dd, $J 10.5$ and $7.9 \mathrm{~Hz}, 4-\mathrm{H}), 4.68(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $7.9 \mathrm{~Hz} .5-\mathrm{H}), 4.56(1 \mathrm{H} . \mathrm{dd} . J 10.5$ and $8.6 \mathrm{~Hz}, 5-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$) and 2.50 (3H. s. $2^{\prime}-\mathrm{Me}$); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.1$ (s. 2-C), 161.5 (s. $\mathrm{CO}_{2} \mathrm{Me}$), 158.9 (s. 2^{\prime} - C), 140.3 (d, $\left.5^{\prime}-\mathrm{C}\right), 128.7$ (s. 4'-C). 68.6 (t. S-C). 67.1 (d. 4-C). 51.4 (q. $\mathrm{CO}_{2} \mathrm{Me}$) and 12.4 (q. 2^{\prime}-Me): $m /=$ (EI) $210\left(\mathrm{M}^{+}, 5 \%\right), 151$ (61), 126 (100), 110 (25) and 82 (14) (Found: $m /=210.0651 . \mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires M, 210.0648).

2'-Methyl-4-phearluelemy-4,5-1Mydro-2,4'-bi(1,3-oxazolyl)-4 carboxylic acid methyl ester 17

A solution of potassium hexamethyldisilazide in toluene (1.8 $\mathrm{ml}, 1.5 \mathrm{M} .2 .7 \mathrm{mmol}$) was added dropwise to a stirred solution of the oxazoline ester 17 a (540 mg .2 .6 mmol) in dry THF (5 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The resulting orange solution was quenched with a solution of phenylselenyl bromide (728 mg .3 .1 mmol) in dry THF (2 ml), and then allowed to warm to ambient temperature. The solvent was evaporated in vacuo to leave a brown oil that was purified by column chromatography using hexane-diethyl ether (1:1) as
eluent to give the selenide ($433 \mathrm{mg}, 45 \%$) as a yellow oil: $V_{\text {man }}($ thin film $) / \mathrm{cm}^{-1} 1729,1644,1597$ and $1439: \delta_{\mathrm{H}}(270 \mathrm{MHz}$. CDCl_{3}) 8.01 (1H. s), 7.75-7.53 (2H. m), 7.30-7.17 (3H. m), 4.78 ($1 \mathrm{H}, \mathrm{d}, J 10.6 \mathrm{~Hz}, \mathrm{CH} H), 4.56$ (IH, d, J $10.6 \mathrm{~Hz}, \mathrm{CHH}$). 3.7 ($3 \mathrm{H}, \mathrm{s}$. OMe) and $2.42\left(3 \mathrm{H}, 2^{\prime}-\mathrm{Me}\right) ; \delta_{\mathrm{c}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.8$ (s). 162.3 (s), 159.8 (s). 143.5 (s), 141.7 (d), 139.2 (s). 137.7 (d). 129.7 (d). 128.9 (d), 126.3 (s). 75.5 (t), 53.0 (q) and 13.7 (q): m/: (FAB) (Found: $m /=209\left(\mathrm{M}^{+}-\mathrm{PhSe}\right) . \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires M 209. 20\%). 103 (52). 81 (48) and 43 (100). The selenide was found to partially oxidise and eliminate to the bi-oxazole ester 18 upon standing overnight.

$\mathbf{2 '}^{\prime}$-Methyl-4,5-dihydro-2,4'-bi(1,3-oxazolyl)-4-carboxylic acid ethyl ester 17c

Triethyloxonium tetrafivoroborate (11 ml of a 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 11 \mathrm{mmol}$) was added to a suspension of 2-methyl-oxazole-4-carboxamide ${ }^{25}(1.26 \mathrm{~g}, 10 \mathrm{mmol})$ in dry dichloromethane (25 ml) and the resulting solution was stirred under nitrogen atmosphere for 6 h . L-Serine ethyl ester hydrochloride $(1.70 \mathrm{~g}, 10 \mathrm{mmol})$ and triethylamine $(2.80 \mathrm{ml} .22 \mathrm{mmol})$ were introduced and the mixture was then stirred overnight at ambient temperature. The mixture was evaporated to dryness in vacuo to leave an off-white solid which was preadsorbed onto silica and purified by flash chromatography using 2% methanol in chloroform as eluent to give the product ($210 \mathrm{mg}, 10 \%$) as a pale yellow oil (starting material (720 mg. 43%) was also recovered); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1735,1670$ and $1585 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.08(1 \mathrm{H}, \mathrm{s}, 5 \cdot \mathrm{H}), 4.90(1 \mathrm{H} . \mathrm{dd}, J 11$ and $8 \mathrm{~Hz}, 4-\mathrm{H})$, $4.66(1 \mathrm{H}, \mathrm{dd}, J 9$ and $11 \mathrm{~Hz}, 5-\mathrm{H}), 4.58(1 \mathrm{H}, \mathrm{dd}, J 11$ and 9 Hz , $5-\mathrm{H}), 4.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.51\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{Me}\right)$ and $1.31(3 \mathrm{H}$, t. $\left.J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right): \delta_{\mathrm{c}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.7$ (s), 162.4 (s), 159.9 (s), 141.1 (d), 129.9 (s), 69.6 (t), 68.5 (d), 61.7 (t), 14.0 (q) and 13.6 (q) (Found: $m / z 224.0788 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires M, 224.0795).

2'-Methyl-2,4'-bi(1,3-oxazolyl)-4-carboxylic acid methyl ester 18a

(a) Nickel peroxide ($5 \times 790 \mathrm{mg}$, Aldrich) was added portionwise over 2.5 h to a stirred refluxing solution of the oxazoleoxazoline $17 \mathrm{a}(3.9 \mathrm{~g}, 18.8 \mathrm{mmol})$ in dry benzene (25 ml) under a nitrogen atmosphere. The reflux was maintained for a further 2 h and the hot mixture was filtered through a Celite pad which was then washed with hot ethyl acetate ($3 \times 50 \mathrm{ml}$). The combined extracts were evaporated in vacuo and the residue was then purified by chromatography on silica using ethyl acetate as eluent to give the bi-oxazole ($0.76 \mathrm{~g}, 27 \%$) as a white solid, along with some recovered oxazole-oxazoline and the olefin 19 in varying amounts.
(b) Distilled 1,4-dioxane (12.8 ml) was added to a stirred mixture of caesium carbonate ($10.4 \mathrm{~g}, 31.9 \mathrm{mmol}$), copper(iI) bromide (100 mg) and the vinyl bromide $20(4.6 \mathrm{~g}, 15.9 \mathrm{mmol})$ under a nitrogen atmosphere. The slurry was heated to $40^{\circ} \mathrm{C}$ for 22 h , next cooled to ambient temperature and ethyl acetate (100 $\mathrm{ml})$ was then added. The mixture was washed with saturated brine ($2 \times 50 \mathrm{ml}$). The combined organic phases were dried (MgSO_{4}) and evaporated in vacuo to leave a residue which was then purified by chromatography on silica using ethyl acetate as eluent to give the bi-oxazole ($1.35 \mathrm{~g}, 40 \%$) as a white solid.
(c) N-Bromosuccinimide ($7.3 \mathrm{~g}, 41 \mathrm{mmol}$) was added to a stirred solution of the oxazole-oxazoline $17 \mathrm{a}(8.6 \mathrm{~g}, 41 \mathrm{mmol})$ in dry benzene (860 ml) under a nitrogen atmosphere at room temperature. The solution was irradiated (sun lamp, 300 W) for 18 h at $25^{\circ} \mathrm{C}$ and then evaporated in vacuo to leave a brown residue. Purification by chromatography on silica using two columns, the first with ethyl acetate as eluent and the second using 1% methanol-chloroform gave the bi-oxazole (4.78 g , 56%) as colourless crystals, mp $130-131^{\circ} \mathrm{C}$ (ethyl acetate) (Found: C, 51.6; $\mathrm{H}, 3.8 ; \mathrm{N}, 13.2 . \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 51.9 ; \mathrm{H}$, $3.9 ; \mathrm{N}, 13.5 \%) ; \lambda_{\max }(\mathrm{ErOH}) / \mathrm{nm} 208$ (9990) and 246 (11030);
$v_{m a n}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1744, 1725, 1688, 1641 and 1588: $\delta_{\mathrm{H}}(270$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 8.28 (1 H. s. $5-\mathrm{H}$), 8.26 ($1 \mathrm{H} . \mathrm{s} .5^{\prime}-\mathrm{H}$). 3.94 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$) and 2.55 (3 H. s. 2 ' -Me): $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} . \mathrm{CDCl}_{3}\right.$) 162.6 (s. $\mathrm{CO}_{2} \mathrm{Me}$). 161.1 (s. $2-\mathrm{C}$). 155.6 (s. $2^{\prime} \cdot \mathrm{C}$). 143.4 (d. $5-\mathrm{C}$). 139.0 (d, $5^{\prime}-\mathrm{C}$), 133.9 ($\mathrm{s} 4-\mathrm{C}$). 129.4 (s. $4^{\prime}-\mathrm{C}$), 52.0 ($\mathrm{q}, \mathrm{CO}_{2} \mathrm{Me}$) and 13.5 ($\mathrm{q}, 2^{\prime}-\mathrm{Me}$): $\mathrm{m} /=$ (EI) 208 ($\mathrm{M}^{-}, 100 \%$), 177 (4). 149 (8) and 110 (75) (Found: $m /=208.0458$. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires M. 208.0452).
(d) Pyridine ($0.18 \mathrm{ml}, 2.2 \mathrm{mmol}$) and 30% aqueous hydrogen peroxide (0.5 ml .4 .4 mmol) were added sequentially to a stirred solution of the selenide $17 \mathrm{~b}(404 \mathrm{mg} .1 .1 \mathrm{mmol})$ in dichloromethane (5 ml). The mixture was stirred vigorously for 1 h and then $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{ml})$ and chloroform (10 ml) were added sequentially, and the mixture was partitioned. The organic extract was dried and evaporated in vacuo to leave an off-white solid which was purified by chromatography on silica using chloroform-methanol ($100: 1$) as eluent to give the bi-oxazole ($216 \mathrm{mg} .94 \%$) as a white solid. $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$ (ethyl acetate) which showed identical spectroscopic data to those recorded previously.

2'-Methyl-2,4'-bi(1.3-oxazolyl-4-carboxylic acid ethyl ester 18b

Freshly prepared nickel peroxide ($5 \times 1 \mathrm{~g}$) was added portionwise every 0.5 b to a stirred solution of crude oxazoline 17 c ($1.44 \mathrm{~g}, 6.42 \mathrm{mmol}$) in dry benzene (25 ml) heated under reflux. The mixture was heated under reflux for a further 2.5 h then cooled and filtered through a Celite pad. The Celite pad was washed with ethyl acetate ($3 \times 20 \mathrm{ml}$) and the solvents were then removed in vacuo to leave the crude product as an off-white solid. Purification by flash chromatography on silica using 2% methanol in chloroform as eluent afforded unreacted starting material ($150 \mathrm{mg}, 11 \%$), (eluted second) and the bi-oxazole ($0.67 \mathrm{~g}, 47 \%$) as a white solid, mp $129-130^{\circ} \mathrm{C}$ (ethyl acetatepetrol) (Found: C. 54.1: H. 4.5; N, 12.7. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C , 54.05: H. 4.5: N. 12.6\%): ${ }^{2}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3000,1730,1640$ and $1580 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.28(1 \mathrm{H}, \mathrm{s} .5-\mathrm{H}), 8.27(1 \mathrm{H}, \mathrm{s}$, $5^{\prime}-\mathrm{H}$). 4.42 ($2 \mathrm{H} . \mathrm{q}, J 7 \mathrm{~Hz} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.56 ($3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{Me}$) and $1.40\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.8(\mathrm{~s})$, 161.0 (s). 155.7 (s), 143.5 (d), 139.3 (d), 134.7 (s), 129.8 (s). 61.3 (t), 14.4 (q) and 13.7 (q) (Found: $m /=222.0651 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M, 222.0641$).

2'-Methyl-2,4'-bl(1,3-oxazolyl)-4-carboxylic seid 21a

A solution of potassium hydroxide ($3.4 \mathrm{~g}, 60 \mathrm{mmol}$) in water (50 ml) was added to the bi-oxazole 18 a ($10.4 \mathrm{~g}, 50 \mathrm{mmol}$), and the mixture was heated under reflux for 1 h . The mixture was cooled to ambient temperature evaporated in vacuo, then acidified with concentrated hydrochloric acid (pH 1) and cooled in ice for 30 min . The precipitate was filtered. then washed with water (20 ml) and freeze dried to leave the bi-oxazole acid (6.25 g. 64%) as a cream solid. $\mathrm{mp}>210^{\circ} \mathrm{C}$ (decomp.) (Found: C . 49.3; H, 3.0; N. 14.4. $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 49.2$; H, 2.9; N , 14.4\%); $\lambda_{\text {ma }}(E t O H) / \mathrm{nm} 208$ (6430), 247 (7700) and 254 (7750); $v_{\text {max }}(\mathrm{KBr} \mathrm{disc}) / \mathrm{cm}^{-1} 3143,1681$. 1644 and $1122: \delta_{\mathrm{H}}(270 \mathrm{MHz}$, d_{s}-DMSO) $8.7 \mathrm{~s}(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.72\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right)$ and $2.44(3 \mathrm{H}$, $\left.\mathrm{s}, 2^{\prime}-\mathrm{Me}\right)$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} \mathrm{d}_{\mathrm{d}}-\mathrm{DMSO}\right) 162.6$ (s. $\mathrm{CO}_{2} \mathrm{H}$). 161.8 (s, 2-C), 155.1 (s. $\left.2^{\prime}-\mathrm{C}\right), 144.9$ (d, 5-C), 140.4 (d, $\left.5^{\prime}-\mathrm{C}\right), 134.2$ (s, $4-$ C). 129.0 (s, $4^{\prime}-\mathrm{C}$) and 13.4 ($\mathrm{q}, 2^{\prime}-\mathrm{Me}$); $m / 2$ (El) 194 ($\mathrm{M}^{+}, 13 \%$), 150 (12), 110 (100) and 82 (10) (Found: $m / 2$ 194.0299. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M .194 .0328$).

3-Hydroxy-2- $\left(2^{\prime}\right.$-methyl-2,4'-bl 1,3 -oxazoly $)$-4 ylcarboaylamino)propionic acid methyl ester 22a

Thionyl chloride (50 ml) was added to the bi-oxazole acid 21a (6.25 g .32 mmol), and the stirred suspension was then heated under reflux for 6 h . The excess thionyl chloride was evaporated in wacuo and the residue was next azeotroped with toluene to leave the corresponding acid chloride 21 b as a cream solid which was used immediately without further purification. A
solution of the acid chloride in dry dichloromethane (90 ml) was added dropwise over 20 min to a stirred solution of DLserine methyl ester hydrochloride (5.5 g .35 mmol) and triethylamine (10 ml .71 mmol) in dry dichloromethane (62 ml) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$. The brown solution was stirred at ambient temperature for 14 h . evaporated in vacuo. and then diluted with saturated sodium bicarbonate solution (200 ml). The aqueous mixture was extracted with ethyl acetate (4×200 ml) and the combined organic extracts were washed with saturated brine (100 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave the amide ($8.4 \mathrm{~g} .88 \%$) which crystallised as a cream solid. mp $141-142^{\circ} \mathrm{C}$ (ethyl acetate) (Found: C. 48.5: H. 4.5: $\mathrm{N} .14 .2 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C. 48.8: H. 4.4: $\mathrm{N}, 14.2 \%$); $i_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 222(13640), 235$ (13380) and 254 (13970); $r_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3402 \mathrm{br}, 1746,1676,1596,1508$ and 1115 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.23$ ($1 \mathrm{H}, \mathrm{s}, 5{ }^{\prime}-\mathrm{H}$), 8.14 ($1 \mathrm{H} . \mathrm{s}, 5 "-\mathrm{H}$), 7.80 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.9 \mathrm{~Hz}, \mathrm{~N} H$), 4.87 (1 H , ddd, $J 7.9,3.8$ and 3.8 Hz . $4-\mathrm{H}$). $4.20-3.95$ ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$). 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$). 2.80 ($1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}, \mathrm{OH})$ and $2.57\left(3 \mathrm{H}, \mathrm{s} .2^{\prime \prime}-\mathrm{Me}\right) ; \delta_{\mathrm{c}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.4$ (s. 2-C), 163.1 (s. $\mathrm{CO}_{2} \mathrm{Me}$), 160.3 (s, 2'-C), 154.9 (s, 2"-C), 141.2 (d, $\left.5^{\prime}-\mathrm{C}\right), 139.0\left(\mathrm{~d}, 5^{\prime \prime}-\mathrm{C}\right), 136.5\left(\mathrm{~s}, 4^{\prime}-\mathrm{C}\right), 129.4\left(\mathrm{~s}, 4^{\prime \prime}-\mathrm{C}\right), 62.7$ (t. 5-C), $54.4(\mathrm{~d}, 4-\mathrm{C}), 52.5\left(\mathrm{q}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and 13.7 ($\mathrm{q}, 2^{n-\mathrm{Me}) \text {; } ; ~}$ m / z (EI) 295 ($\mathrm{M}^{+}, 7 \%$), 277 (4), 265 (71), 264 (25), 236 (87), 177 (100), 149 (24) and 110 (32) (Found: $m /=236.0641 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $M, 236.0639$).

3-Chloro-2-[2'-methyl-2,4'-bi(1,3-oxazolyl)-4-ylcarbonylaminolpropionic acid methyl ester 22b

Thionyl chloride (45 ml) was added cautiously to the bi-oxazole serine derivative 22a (8.4 g .28 mmol) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$. The solution was stirred for 12 h at ambient temperature and the excess thionyl chloride was then evaporated in vacuo. The residue was quenched with water (200 ml) and the aqueous layer was then extracted with ethyl acetate ($4 \times 200 \mathrm{ml}$). The combined organic phases were washed with saturated brine (100 ml), then dried (MgSO_{4}) and evaporated in vacuo to leave the bi-oxa=ole serine chloride ($8.7 \mathrm{~g}, 97 \%$) which crystallised as a cream solid, $\mathrm{mp} 137-138^{\circ} \mathrm{C}$ (diethyl ether) (Found: C, 46.0; H, 4.0; $\mathrm{N}, 13.1 ; \mathrm{Cl}, 11.0 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 46.0 ; \mathrm{H}, 3.9 ; \mathrm{N}, 13.4 ; \mathrm{Cl}, 11.3 \%$); $\lambda_{\text {man }}(\mathrm{EtOH}) / \mathrm{nm}$ 218 (10440) and 255 (10270): $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3401,1748$, 1681, 1650 and $1588: \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.24\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right)$, $8.16\left(1 \mathrm{H}, \mathrm{s}, 5^{n}-\mathrm{H}\right), 7.75(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.9 \mathrm{~Hz}, \mathrm{~N} H), 5.16$ (1 H, ddd, $J 7.9,4.0$ and $3.6 \mathrm{~Hz}, 4-\mathrm{H}$), $4.04(1 \mathrm{H}$, dd. $J 11.2$ and $3.6 \mathrm{~Hz}, 5-$ H), 3.93 (1 H. dd, $J 11.2$ and $4.0 \mathrm{~Hz} .5-\mathrm{H}$). $3.82\left(3 \mathrm{H}, \mathrm{s}. \mathrm{CO}_{2} \mathrm{Me}\right.$) and $2.56\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.5(\mathrm{~s}, 2-\mathrm{C})$, 162.9 (s, $\mathrm{CO}_{2} \mathrm{Me}$), 159.8 (s. $\left.2^{\prime}-\mathrm{C}\right), 154.9$ (s, $2^{n \prime}-\mathrm{C}$), 141.2 (d. $5^{\prime}-\mathrm{C}$). 139.0 (d, $5^{\prime \prime}-\mathrm{C}$), 136.1 (S. 4^{\prime}-C), 129.4 (s. $4^{*}-\mathrm{C}$), 52.7 (d, 4-C). 52.7 (q. $\mathrm{CO}_{2} \mathrm{Me}$), 44.4 (t, 5-C) and 13.5 ($\mathrm{q}, 2^{\prime \prime}-\mathrm{Me}$); m/z (EI) 315 (M ${ }^{+}, 1.5 \%$), 3.3 (4), 278 (15), 256 (41), 254 (88), 177 (100). 149 (21) and 110 (28) (Found: $m /=313.4532 . \mathrm{C}_{12} \mathrm{H}_{12}-$ $\mathrm{ClN}_{3} \mathrm{O}_{5}$ requires $M, 313.4528$).

2- $\mathbf{2}^{\prime}$ - Methyl-2,4'bi(1,3-oxazolyl)-4-ylcarbonylaminoacrylic acid methyl ester 24

1,8-Diazabicyclo[5.4.0]undec-7-ene ($900 \mu \mathrm{l}, 6 \mathrm{mmol}$) was added dropwise to a stirred solution of the chloride $22 \mathrm{~b}(1.87 \mathrm{~g}$, 6 mmol), in dry dichloromethane (20 ml), at room temperature under a nitrogen atmosphere. The mixture was stirred for 3 h and then washed with 2 M hydrochloric acid ($2 \times 10 \mathrm{ml}$) and the layers were separated. The organic phase was dried (MgSO_{4}) and the solvent was removed in vacuo to leave the olefin ($1.52 \mathrm{~g}, 92 \%$) as an off-white solid. A small portion was recrystallised from diethyl ether-hexane ($1: 1$) and had mp 148$149^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 52.0 ; \mathrm{H}, 4.06: \mathrm{N}, 15.5 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $52.0 ; \mathrm{H}, 4.0 ; \mathrm{N}, 15.2 \%): v_{\max }\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3383,1715,1694$, 1582.1515 and $1203 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $8.20(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.12\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right) .6 .66(1 \mathrm{H}, \mathrm{s}, E=\mathrm{CH}), 5.94$ $(1 \mathrm{H}, \mathrm{d}, J \mid \mathrm{Hz}, \mathrm{Z}=\mathrm{CH}), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and $2.49(3 \mathrm{H}, \mathrm{s}$,
$2-\mathrm{Me}): \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.2(\mathrm{~s}, \mathrm{CO}), 163.2(\mathrm{~s}, \mathrm{CO}), 158.9$ (s.2-C). 154.7 (s. 2'-C). 141.6 (d. 5-C). 139.3 (d. $5^{\prime}-\mathrm{C}$). 137.3 (s. 4-C). 130.9 (s. $4^{\prime}-\mathrm{C}$). 129.9 (s. $\mathrm{CCO}_{2} \mathrm{Me}$). 110.1 (t. CCH_{2}). 53.1 (q. $\mathrm{CO}_{2} \mathrm{Me}$) and 13.9 (q. 2-Me): m/: (EI) 277 (M $\mathrm{M}^{-} .51 \%$) and 177 (100).

3-Bromo-2-\{2'-methyl-2,4'-bi(1,3-oxazolyl)-4-yicarbonylaminoacrylic acid methyl ester 25
A solution of the alkene 24 (1.52 g .5 .5 mmol) in dry dichloromethane (50 ml) was cooled to $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere and then a solution of bromine ($282 \mu \mathrm{l} .5 .5 \mathrm{mmol}$) in dry dichloromethane (3.0 ml) was slowly added dropwise. Triethylamine ($840 \mu \mathrm{l}, 5.5 \mathrm{mmol}$) was added and the resulting mixture was then allowed to warm to room temperature over 2 h . The mixture was washed with brine (15 ml). dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The semi-solid residue was purified by flash chromatography on silica gel using ether-petrol ($1: 1$) as eluent to give the vinyl bromide ($1.73 \mathrm{~g} .88 \%$) as a white crystalline solid. $\mathrm{mp} 140^{\circ} \mathrm{C}$ (Found: $\mathrm{C} .40 .4: \mathrm{H}, 2.8 ; \mathrm{N}, 11.55$; Br , 22.3. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 40.45 ; \mathrm{H}, 2.8: \mathrm{N}, 11.8$; Br , $22.5 \%) ; v_{m a n}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3367. 1730, 1691, 1587, 1470 and 1113: $i_{\max }(E t O H) / n m 221.5$ (1602). 235.2 (1562) and 256.1 (1667): $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) 8.30(1 \mathrm{H} . \mathrm{br} \mathrm{s}, \mathrm{N} H), 8.22$ (1H.s. $5-\mathrm{H}) .8 .09(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}, \mathrm{CHBr}), 3.70(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}$) and $2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.2$ (s, CO). 162.2 (s, CO). 157.8 ($\mathrm{s}, 2-\mathrm{C}$). 155.5 ($\mathrm{s}, 2^{\prime}-\mathrm{C}$), 141.9 (d, 5-C). 139.2 (d, $\left.5^{\prime}-\mathrm{C}\right), 136.1$ (s, 4-C), 131.2 (s, 4'-C), 129.5 (s. $\mathrm{CCO}_{2} \mathrm{Me}$). 115.1 (d. CHBr), 52.9 (q. $\mathrm{CO}_{2} \mathrm{Me}$) and 13.8 (q, $2-\mathrm{Me}) ; \mathrm{m} /=$ (EI) 358 and $356\left(\mathrm{M}^{+}, 0.6 \%\right), 326$ and 324 (\mathbf{M}^{+}- OMe. 3) and 276 (M^{*} - Br. 100).

2'-Methyl-4,5-dihydro-2,4':2',4"-ter(1,3-oxazole)-4-carboxylic acid methyl ester 23a

Silver trifluoromethanesulfonate (12.5 g .49 mmol) was added in one portion to a stirred solution of the bi-oxazole serine chloride $22 \mathrm{~b}(10.0 \mathrm{~g}, 41 \mathrm{mmol})$ in dry benzene $(100 \mathrm{ml})$ under a nitrogen atmosphere, and the slurry was then heated under reflux for 6 h . The mixture was cooled to ambient temperature, evaporated in vacua and then the grey residue was slurried in ethyl acetate (300 ml) and saturated sodium bicarbonate (200 ml) with vigorous stirring for 30 min . The separated aqueous layer was extracted with ethyl acetate ($3 \times 100 \mathrm{ml}$) and the combined organic phases were washed with sodium hydrogen carbonate ($3 \times 100 \mathrm{ml}$). The second aqueous extract was washed with further ethyl acetate ($3 \times 100 \mathrm{ml}$) and the total combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave the bi-oxazole-oxazoline ($5.3 \mathrm{~g}, 62 \%$) which crystallised as a pale yellow solid, mp $181-182{ }^{\circ} \mathrm{C}$ (ethyl acetate); $i_{\text {max }}(E t O H) / n m \quad 240$ (13520) and 255 (13940); $v_{\text {mar }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1742$. 1682, 1639, 1586 and $1113 ; \delta_{H}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.26\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 8.22$ (1H, s. $\left.5^{\prime \prime}-\mathrm{H}\right), 4.95(1 \mathrm{H}$, dd. $J 10.6$ and $7.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.71(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and $7.9 \mathrm{~Hz}, 5$. H), 4.60 ($1 \mathrm{H}, \mathrm{dd}, J 10.6$ and $8.7 \mathrm{~Hz}, 5-\mathrm{H}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and $2.54\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.9(\mathrm{~s}, 2-\mathrm{C})$, 162.6 (s, CO2Me). 159.6 (s. $\left.2^{\prime}-\mathrm{C}\right), 155.8$ (s. $\left.2^{\prime \prime}-\mathrm{C}\right) .141 .0$ (d, $\left.5^{\prime}-\mathrm{C}\right), 139.2$ (d, $\left.5^{\prime \prime}-\mathrm{C}\right), 130.9$ (s, $\left.4^{\prime}-\mathrm{C}\right), 129.5$ (s, $\left.4^{\prime \prime}-\mathrm{C}\right), 69.7$ (t, 5C), 68.3 (d. 4-C). 52.5 (q. CO2Me) and 13.6 (q, $2^{\prime \prime}-\mathrm{Me}$); $m /=$ (EI) 277 (M+, 14\%), 218 (100), 208 (24), 190 (78), 177 (37), 149 (11) and 110 (35) (Found: $m / z 277.0653 . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires M, 277.0699).

2"-Methyl-4-pheryibelenyl-4,5-dihydro-2,4': 2^{\prime},4"-teroxazole-4 carboxylic acid methyl ester 236

A 1.5 M solution of potassium hexamethyldisilazide in toluene ($0.54 \mathrm{ml}, 0.8 \mathrm{mmol}$) was added dropwise to a stirred solution of the oxazoline ester 23 ($215 \mathrm{mg}, 0.8 \mathrm{mmol}$) in dry THF (5 ml) at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The resulting orange solution was immediately quenched with a solution of phenyl-
selenyl bromide (275 mg .1 .2 mmol) in dry THF (3 ml). and then allowed to warm to room temperature. The solvent was then evaporated in yacuo to leave the selenide as a brown oil ($145 \mathrm{mg} .43 \%$) which was used directly without purification.

$2^{\prime \prime}-$ Methyl-2,4': $2^{\prime}, 4^{\prime \prime}-t e r(1,3$-oxazole)-4-carboxylic acid methyl ester 26a

(a) Solid N-bromosuccinimide (3.6 g .20 mmol) was added to a stirred solution of the bi-oxazole-oxazoline 23a $(5.7 \mathrm{~g}, 20$ mmol) in dry benzene (565 ml) under a nitrogen atmosphere at room temperature. The solution was irradiated for 23 h (sun lamp, 300 W) at $25^{\circ} \mathrm{C}$ before the solvent was evaporated in vacuo to leave a brown residue. Purification by chromatography on silica using 1% methanol-chloroform as eluent gave the ter-oxazole ($2.8 \mathrm{~g}, 50 \%$) which crystallised as colourless needles, mp $217-218^{\circ} \mathrm{C}$ (ethyl acetate-petrol) (Found: C. S1.9: H, 3.2; $\mathrm{N}, 15.2 . \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 52.3 ; \mathrm{H}, 3.3 ; \mathrm{N}, 15.3 \%$); $i_{m a}(E t O H) / n m 202$ (10010), 249 (13130) and 255 (13600); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1747(\mathrm{CO}), 1654,1605,1588$ and 1115 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.41(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) .8 .31\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 8.25$ ($1 \mathrm{H}, \mathrm{s}, 5^{\prime \prime}-\mathrm{H}$), $3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and 2.56 ($3 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\mathrm{Me}$); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.0\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 161.3$ (s. 2-C), 156.3 (s, 2'-C), 155.5 (s, 2"-C), 143.8 (d, 5-C), 139.2 (s, $\left.5^{\prime}-\mathrm{C}\right), 134.4$ (s. $\left.5^{\prime \prime}-\mathrm{C}\right), 130.7$ (s. $\left.4-\mathrm{C}\right), 129.6\left(2 \times \mathrm{s} .4^{\prime}\right.$ and $\left.4^{\prime \prime}-\mathrm{C}\right), 52.3$ (q. $\mathrm{CO}_{2} \mathrm{Me}$) and 13.8 (q. $2^{\prime \prime}-\mathrm{Me}$); $m /=$ (El) (Found: $\mathrm{M}^{+}, 275.0491$. $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $M .275 .0542,100 \%$), 244 (10), 216 (2), 149 (11). 124 (3) and 110 (63). This same ter-oxazole was produced from the same oxazoline 23 a using nickel peroxide in 40% yield according to the procedure described for the preparation of the bi-oxazole 18.
(b) Distilled 1,4-dioxane $(800 \mu \mathrm{l})$ was added to a mixture of caesium carbonate ($348 \mathrm{mg}, 1.1 \mathrm{mmol}$), copper(m) bromide ($2 \mathrm{mg}, 0.006 \mathrm{mmol}$) and the vinyl bromide 25 ($190 \mathrm{mg}, 0.5$ mmol). under an atmosphere of nitrogen and the mixture was then heated to $40^{\circ} \mathrm{C}$ for 22 h . The mixture was cooled to room temperature, then diluted with ethyl acetate $(10 \mathrm{ml})$ and washed with 1 M hydrochloric acid $(2 \times 5 \mathrm{ml})$. The separated aqueous washings were back extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$), and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to leave the crude product as a pale orange solid. Purification by flash chromatography on silica gel using ethyl acetate as eluent afforded the ter-oxazole as a white solid ($76 \mathrm{mg}, 62 \%$), mp $217-218^{\circ} \mathrm{C}$, which showed identical spectroscopic properties to those described earlier.
(c) Pyridine ($0.04 \mathrm{ml}, 0.5 \mathrm{mmol}$) and hydrogen peroxide (0.11 $\mathrm{ml}, 1.1 \mathrm{mmol}$) were added sequentially to a stirred solution of the selenide 23 b ($106 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (5 ml). The mixture was stirred vigorously for 1 h and then 1 M HCl (5 ml) and chloroform (10 ml) were added sequentially and the mixture was partitioned. The organic extract was dried and evaporated in vacuo to leave an off-white solid which was purified by chromatography on silica using chloroform-methanol ($100: 1$) as eluent to give the ter-oxazole ($48 \mathrm{mg}, 71 \%$) as a white solid, mp $218-220^{\circ} \mathrm{C}$ (ethyl acetate-petrol), which showed identical spectroscopic data to those recorded previously.

2'-Methyl-2,4'-bi(1,3-oxazolyl)-4-carboxylic acid amide 21c

Liquid ammonia (2 ml) was added to a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of the bi-oxazole ester $18(0.11 \mathrm{~g}, 0.5 \mathrm{mmol})$ in methanol and the reaction flask was then lightly stoppered, allowed to warm to room temperature over ca. 2 h , and then left to stand overnight. The solution was evaporated to dryness in vacuo to leave the amide ($96 \mathrm{mg}, 99 \%$) which recrystallised from ethyl acetate-petrol as white needles, mp $224-230^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 49.5 ; \mathrm{H}, 3.6 ; \mathrm{N}, 21.8 . \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 49.7 ; \mathrm{H}$, 3.6: $\mathrm{N}, 21.8 \%$); v_{man} (Nujol) $/ \mathrm{cm}^{-1} 3480,3410,3200,1660,1610$, 1585,1400 and $1100 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right) 8.45$ (2 H, br s) and $2.6(3 \mathrm{H}, \mathrm{s})$ (Found: $m / 2193.0522 \mathrm{C}_{8} \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $M, 193.0557$).

2"-Methyi-4,5-dihydro-2,4': $\mathbf{2}^{\prime}, 4^{\prime \prime}-\mathrm{ter}(1,3-0 x a z o l e)-4$-carboxylic acid ethyl ester 23 c

(a) Silver trifluoromethanesulfonate (1.19 g .4 .62 mmol) was added to a stirred solution of the ethyl ester corresponding to the chloride 22 b (0.69 g .2 .10 mmol) in dry benzene (25 ml). under a nitrogen atmosphere and the resulting solution was then stirred and heated under reflux for 6 h . The solution was cooled to $25^{\circ} \mathrm{C}$ and the solvent was then removed in vacuo. The residual grey sticky solid was dissolved in ethyl acetate (50 ml) and the solution was then washed with saturated aqueous sodium bicarbonate ($3 \times 25 \mathrm{ml}$) and saturated brine (3×25 ml). The aqueous washings were re-extracted separately with ethyl acetate ($3 \times 25 \mathrm{ml}$), and the combined organic extracts were then dried and evaporated in vacuo to leave the crude product $(0.60 \mathrm{~g} .98 \%)$ as a yellow solid. Chromatography on silica using ethyl acetate as eluent gave the bi-oxa-ole-oxazoline as a white solid. $\mathrm{mp} 157-158^{\circ} \mathrm{C}$ (ethyl acetate): $r_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3105, 3070. 1725, 1670. 1640 and $1590: \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.21 (1 H. s), 8.17 (1 H. s), 4.88 (1H. dd, J 11 and 9 Hz), 4.64 $(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 4.55(1 \mathrm{H} . \mathrm{dd} . J 11$ and 9 Hz$), 4.20(2 \mathrm{H}, \mathrm{m}), 2.49$ ($3 \mathrm{H}, \mathrm{s}$) and $1.26(3 \mathrm{H}, \mathrm{t} . J 7 \mathrm{~Hz})$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.6$ (s). 162.8 (s), 159.8 (s). 156.0 (s). 141.2 (d). 139.4 (d), 131.1 (s), 129.7 (s), 69.9 (t), 68.6 (d). 61.9 (t), 14.1 (q) and 13.8 (q) (Found: m / z 291.0833. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $M .291 .0854$).
(b) Triethyloxonium tetrafluoroborate (1.1 ml of a 1 M solution in DCM, 1.1 mmol) was added to a suspension of the bi-oxazole amide 21c (0.1 g .1 mmol) in dry dichloromethane (10 ml) and the resulting solution was stirred under an atmosphere of nitrogen for 6 h . L-Serine ethyl ester hydrochloride $(0.19 \mathrm{~g} .1 .1 \mathrm{mmol})$ and triethylamine (0.31 ml .2 .2 mmol) were introduced and the mixture was then stirred overnight at ambient temperature. The mixture was evaporated to dryness in vacuo to leave an off-white solid which was preadsorbed onto silica and purifed by flash chromatography using 2% methanol in chloroform as eluent to give the product ($35 \mathrm{mg}, 12 \%$) as a pale yellow oil. Starting material ($74 \mathrm{mg}, 39 \%$) was also recovered. The product showed identical spectroscopic properties to those described above.

$\mathbf{2 "}^{\prime \prime}-$ Methyl-2,4': 2',4"-ter(1,3-oxazole)-4-carboxylic acid ethyl

 ester 26bFreshly prepared nickel peroxide ($5 \times 3.55 \mathrm{~g}$) was added portionwise every 0.5 h to a stirred solution of the bi-oxazoleoxazoline $23 \mathrm{c}(2.70 \mathrm{~g}, 9.28 \mathrm{mmol}$) in dry benzene (100 ml) heated under reflux. The mixture was heated under reflux for a further 2.5 h then cooled and filtered through a Celite pad. The Celite pad was washed with ethyl acetate ($3 \times 30 \mathrm{ml}$) and the solvents were then removed in wacuo to leave the crude product as an off-white solid. Purification by flash chromatography on silica using 2% methanol in chloroform as eluent gave unreacted starting material ($41 \mathrm{mg}, 15 \%$) (eluted second) and the ter-oxazole ($1.02 \mathrm{~g}, 38 \%$) as a white solid, mp $222-224^{\circ} \mathrm{C}$ (ethyl acetate-petrol); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 244 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3170, 2920, 1725, 1645 and $1575 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.41$ ($1 \mathrm{H}, \mathrm{s}$), $8.31(1 \mathrm{H}, \mathrm{s}), 8.27(1 \mathrm{H}, \mathrm{s}), 4.43(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 2.57(1 \mathrm{H}$, s) and $1.41(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}) ; \delta_{C}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.6(\mathrm{~s})$, 160.6 (s), 156.0 (s). 155.1 (s), 143.4 (d). 138.9 ($2 \times \mathrm{d}$), 134.3 (s), 130.5 (s), 129.3 (s), 61.1 (t), 13.8 (q) and 13.5 (q) (Found: m / z 289.0685. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $M .289 .0697$).

2"-Bromonethyl-2,4':2',4"ter(1,3-oxazole)-4-carboxylic acid methyl exter 27

A stirred solution of the ter-oxazole $26 \times(0.89 \mathrm{~g}, 3.2 \mathrm{mmol})$. N-bromosuccinimide (633 mg .3 .6 mmol) and AIBN (45 mg) in distilled carbon tetrachloride (178 ml) was irradiated (sun lamp, 300 W) under reflux for 23 h in a nitrogen atmosphere. The mixture was cooled to ambient temperature, then evaporated in nacuo. and the residue was purified by chromatography on silica eluting with 7:1 dichloromethane-diethyl ether and then with
1% methanol-chloroform to give the methyl bromide (202 mg . 46% based on recovered starting material) as a white solid (methanol), $\mathrm{mp}>230^{\circ} \mathrm{C}$ (decomp.) (Found: C. 40.9: H, 2.3: N , 11.9. $\mathrm{C}_{12} \mathrm{H}_{3} \mathrm{BrN}_{3} \mathrm{O}_{3}$ requires C. 40.7: H. 2.3: N, 11.9\%); ; max $(\mathrm{EtOH}) / \mathrm{nm} 245$ (17345) and 255 (19310): $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1729, 1654. 1577, 1114 and $1100 ; \delta_{\mathbf{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.43$ $(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.37\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 8.32\left(\mathrm{l}, \mathrm{H}, \mathrm{s}, 5^{\prime \prime}-\mathrm{H}\right) .4 .52(2 \mathrm{H}, \mathrm{s}$. $\left.\mathrm{CH}_{2} \mathrm{Br}\right)$ and $3.95\left(3 \mathrm{H}, \mathrm{s} . \mathrm{CO}_{2} \mathrm{Me}\right): \delta_{\mathrm{c}}\left(67.8 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}\right)$ 161.1 (s. $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 161.0 .155 .4$ and $155.0\left(3 \times \mathrm{s}, 2.2^{\prime}\right.$ and $\left.2^{\prime \prime}-\mathrm{C}\right)$. 145.9, 142.3 and $141.3\left(3 \times \mathrm{d}, 5,5^{\prime}\right.$ and $5^{\prime \prime}-\mathrm{C}$). 133.5, 130.2 and 129.8 ($3 \times \mathrm{s} .4 .4^{\prime}$ and $4^{\prime \prime}-\mathrm{C}$). 52.2 ($\mathrm{q}, \mathrm{CO}_{2} \mathrm{Me}$) and 21.1 (t . $\mathrm{CH}_{2} \mathrm{Br}$); $m /=$ (EI) (Found: m / z 354.9656, (16%). $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{BrN} \mathrm{N}_{3} \mathrm{O}_{5}$ requires $M, 354.9627,353$ (17), 274 (100) and 242 (5).

$4^{\prime \prime}$-Methoxycarbonyl-4,2':4',2"-ter(1,3-0xazolyl)-2-ylmethyltriphenylphosphonium bromide 5

A stirred solution of the oxazole bromide 27 ($159 \mathrm{mg}, 0.45$ mmol) and triphenylphosphine ($236 \mathrm{mg}, 0.90 \mathrm{mmol}$) in distilled benzene (20 ml) was heated under reflux for 17 h in a nitrogen atmosphere. The mixture was cooled to ambient temperature and the precipitate was then filtered off and washed with dry diethyl ether (50 ml). The residue was dried in vacuo to give the phosphonium salt ($210 \mathrm{mg}, 76 \%$) as a hygroscopic, cream powder; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.35(\mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.30(1 \mathrm{H}, \mathrm{s}$, $\left.5^{\prime}-\mathrm{H}\right), 8.21$ ($1 \mathrm{H}, \mathrm{s}, 5^{\prime \prime}-\mathrm{H}$), 7.94 (6H. m. Ar), 7.80 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.68(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.20\left(2 \mathrm{H}, \mathrm{d}, J 14.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$ and $3.94(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$); $\delta_{\mathrm{c}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.2$ (s, $\mathrm{CO}_{2} \mathrm{Me}$). 155.3 and 155.2 ($3 \times \mathrm{s}, 2,2^{\prime}$ and $2^{\prime \prime}-\mathrm{C}$), 143.9, 142.1 and 139.4 ($3 \times \mathrm{d}, 5,5^{\prime}$ and $5^{\prime \prime}-\mathrm{C}$), 135.4 (d, Ar), 134.4 and 130.8 ($3 \times \mathrm{s}, 4,4^{\prime}$ and $4^{\prime \prime}-\mathrm{C}$), 134.2 (d, Ar), 134.1 (d, Ar), 130.5 (d, Ar), 130.3 (d, Ar), 117.7 (s. Ar), 116.9 (s, Ar), 52.3 (q, $\mathrm{CO}_{2} \mathrm{Me}$) and $26.6\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{r}-\mathrm{c}}\right.$ $54 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$) which was used directly without further purification.

4-(2-Hydroxy-1-methoxycarbonylethylcarbamoyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylic acid tert-butyl ester 32

Triethylamine ($1.81 \mathrm{ml}, 13.0 \mathrm{mmol}$) was added dropwise, over 2 min , to a stirred solution of serine methyl ester hydrochloride $(0.58 \mathrm{~g} .3 .7 \mathrm{mmol})$ in dry dichloromethane (15 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. A solution of Garner's acid $31{ }^{21}(0.91 \mathrm{~g}$, 3.7 mmol) in dry dichloromethane (5 ml) was added in one portion followed by $\mathrm{HOBt}(0.54 \mathrm{~g}, 4.0 \mathrm{mmol})$ and the resulting suspension was then stirred at room temperature for 15 min . A solution of DCC ($0.83 \mathrm{~g}, 4.0 \mathrm{mmol}$) in dry dichloromethane (5 ml) was added to the suspension over 10 min and the mixture was then stirred at room temperature for 17 h . The mixture was evaporated in vacuo to leave a solid which was taken up in ethyl acetate (20 ml), washed with saturated aqueous sodium bicarbonate solution ($3 \times 15 \mathrm{ml}$), 10% aqueous citric acid solution ($3 \times 15 \mathrm{ml}$) and brine ($2 \times 10 \mathrm{ml}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave a residue which was purified by chromatography on silica using a $3: 1$ ethyl acetate-petrol as eluent to give the amide $(0.9 \mathrm{~g}, 74 \%)$ as a straw coloured oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3423,2980,1743,1681,1456$, 1368, 1094 and $1053 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO at $\left.80^{\circ} \mathrm{C}\right) 7.81$ (1 H , dd, $J 24.4$ and $7.6 \mathrm{~Hz}, \mathrm{NH}$), 4.87 ($\mathrm{IH}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $4.46-4.39$ ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $2^{\prime}-\mathrm{H}$), 4.15-4.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{I}^{\prime}-\mathrm{H}$), 3.93-3.87 (1H, $\mathrm{m}, \mathrm{l}-\mathrm{H}), 3.81-3.72$ (1H, m, 1-H), $3.68-3.63$ (lH, br m, 1-H), $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), .1 .48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and 1.41 ($9 \mathrm{H}, \mathrm{s},{ }^{\prime} \mathrm{Bu}$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.0$ (175.4), 153.0 (151.3), 95.3 (94.8). 81.8 (80.8), 66.2 (65.7), 60.5 (59.2), 28.3 26.2, 25.0, 24.9 and 24.4; m / z (FAB) (Found: $\mathrm{M}^{+}+1,347.1813$ (35\%). $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}, \mathrm{N}_{2}$ requires $M, 347.1818$).

$\mathbf{2 '}^{\prime}, \mathbf{2}^{\prime}$-Dimethyl-2', 3',4',5'-tetrahydro-2,4'-bi(1,3-oxazolyl)-4,3'dicarboxylic acid $\mathbf{3}$ 'tert-butyl ester 4 -methyl ester 34 a

A solution of Burgess' reagent $(0.77 \mathrm{~g}, 3.2 \mathrm{mmol})^{22}$ in dry THF (10 ml) was added to a solution of the amide $32(0.96 \mathrm{~g}, 2.8$ mmol) in dry THF (20 ml) and the mixture was heated under
reflux for 2 h in a nitrogen atmosphere. The mixture was evaporated to dryness in vacuo and the residue was purified by chromatography on silica using $1: 1$ petrol (bp $40-60^{\circ} \mathrm{C}$)-ethyl acetate as eluent to give the corresponding oxazoline 33 ($6.1 \mathrm{~g} .61 \%$) as an oil: $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $50^{\circ} \mathrm{C}$. single diastereomer) 4.83-4.79 (1 H. m. 2'-H), 4.61-4.56 (2H. m, 1'-H and $2-\mathrm{H}$). 4.43 ($1 \mathrm{H} . \mathrm{dd} . J 10.4$ and $8.8 \mathrm{~Hz} .1^{\prime}-\mathrm{H}$). 4.16 (1 H . dd. $J 9.1$ and $6.9 \mathrm{~Hz}, 1-\mathrm{H}), 4.04$ (1 H . dd. $J 9.0$ and $3.2 \mathrm{~Hz} .1-\mathrm{H}$), 3.78 ($3 \mathrm{H} . \mathrm{s} . \mathrm{CO}_{2} \mathrm{Me}$) and $1.67-1.44$ ($15 \mathrm{H} . \mathrm{m} .2 \times \mathrm{Me}$ and ${ }^{\prime} \mathrm{Bu}$); $\delta_{\mathrm{c}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, single diastereomer) $171.4,169.1,151.3$, 106.4. 95.2. 80.4, 70.2, 68.3, 66.7. 55.0, 52.8. 52.4. 28.4. 25.2 and 24.3: $m /=$ (EI) (Found: $\mathrm{M}^{+}-\mathrm{CH}_{3}, 313.1395(11 \%) . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M .313 .1400$).
DBU (0.53 ml .3 .5 mmol) was added dropwise over 2 min , to a stirred solution of the oxazoline (1.04 g .3 .2 mmol) in dry dichloromethane (30 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Bromotrichloromethane ($0.34 \mathrm{ml}, 3.5 \mathrm{mmol}$) was added dropwise over 10 min and the mixture allowed to warm to room temperature over $24 \mathrm{~h} .{ }^{23}$ The mixture was quenched with saturated ammonium chloride ($2 \times 20 \mathrm{ml}$), and the separated aqueous phase was then extracted with ethyl acetate (2×20 ml). The combined organic extracts were dried (MgSO_{4}), and then evaporated in vacuo to leave a residue which was purified by chromatography on silica using $1: 1$ petrol-ethyl acetate as eluent to give the oxazole ($0.8 \mathrm{~g}, 75 \%$) as a mixture of rotamers; $v_{\mathrm{max}}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2980.1703,1368$. and $1110: \delta_{\mathrm{H}}(360 \mathrm{MHz}$, CDCl_{3}, major rotamer) $8.21(1 \mathrm{H}, \mathrm{s}), 5.20-5.07(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, 4.29-4.09 ($2 \mathrm{H} . \mathrm{m}, 1-\mathrm{H}$), $3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right) .1 .75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.60\left(3 \mathrm{H} . \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.30\left(9 \mathrm{H} . \mathrm{s} .{ }^{\prime} \mathrm{Bu}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major rotamer) 164.0 (s), 161.3 (s), 150.9 (s), 143.6 (d), 133.4 (s). 95.1 (s), 80.5 (s$), 67.4$ (t), 55.0 (d), 52.1 (q), 28.0 (q), 25.1 (q) and 23.9 (q): m/: (FAB) (Found: $\mathbf{M}^{+}+1,327.1531$ (11\%). $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M, 327.1556$).

4-Hydroxymethyl-2'.2'-dimethyl-, 2',3',4', 3'tetrahydro-2,4'bi(1,3 -oxazolyl)-3'-carboxylic acid zert-butyl ester

A solution of DIBAL-H (1.5 M in toluene. 5.1 ml) was added dropwise, over 30 min , to a stirred solution of the oxazole ester $34 \mathrm{a}(1.0 \mathrm{~g} .3 .06 \mathrm{mmol})$ in dry dichloromethane $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h . The mixture was quenched with methanol (20 ml) followed by magnesium sulfate ($\mathbf{2 0} \mathrm{g}$) and the filtered suspension was evaporated in wacuo to leave a viscous yellow residue. The residue was added to a saturated solution of potassium sodium tartrate and the mixture was stirred vigorously for 2 h . The mixture was extracted with ethyi acetate ($2 \times 200 \mathrm{ml}$), and the combined organic extracts were then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave a yellow residue. The residue was purified by chromatography on silica using $1: 1$ petrol-ethyl acetate as eluent to give the oxazole alcohol ($0.55 \mathrm{~g}, 61 \%$) as a yellow oil: $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{1}\right.$, major rotamer) $7.55(1 \mathrm{H}, \mathrm{s})$, $5.13-4.98$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $4.58\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right.$), $4.26-4.04$ $(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.78(1 \mathrm{H}, \mathrm{br} s \mathrm{OH}), 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.59(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3}$) and $1.29(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}) ; \delta_{\mathrm{c}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.7$ (s), 151.2 (s), 140.6 (s), 134.9 (d), 95.0 (s), 80.4 (s), 67.4 (t), 56.7 (t), 55.1 (d). 28.1 (q). 25.2 (q) and 24.2 (q); $m /=$ (EI) (Found: \mathbf{M}^{+}, $298.1535(1.26 \%) \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires M, 298.1529).

4-Formyl-2', 2'-dimethyl-2', 3',4',5'-tetrahydro-2,4'-bi(1,3-oxa-zolyl)-3'-carboxylic acid rerr-beryl ester 34b

A solution of pyridine-sulfur trioxide complex $0.87 \mathrm{~g}, 5.49$ mmol) in DMSO (5 ml) was added dropwise, over 2 min , to a stirred solution of the alcohol (from above) $(0.50 \mathrm{~g}, 1.7 \mathrm{mmol}$), DMSO (5 ml) and triethylamine ($4.71 \mathrm{ml}, 33.8 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. The mixture was stirred at room temperature for 2 h and then quenched with a 10% solution of potassium hydrogen sulfate (10 ml). The separated aqueous layer was extracted with diethyl ether ($3 \times 25 \mathrm{ml}$) and the combined organic extracts were then dried $\left(\mathrm{MgSO}_{4}\right)$,
and evaporated in vacuo. The residue was purified by chromatography on silica using ethyl acetate as eluent to give the oxazole aldehyde $(0.4 \mathrm{~g} .79 \%)$ as a colourless oil. $\delta_{\mathrm{H}}(360 \mathrm{MHz}$. CDCl_{3}, major rotamer) $9.95(1 \mathrm{H} . \mathrm{s}) .8 .24$ ($1 \mathrm{H} . \mathrm{s}$). $5.2(-5.07$ $(1 \mathrm{H}, \mathrm{m}), 4.31-4.12$ ($2 \mathrm{H} . \mathrm{m}$). 1.76 ($3 \mathrm{H}, \mathrm{s}$). $1.58(3 \mathrm{H} . \mathrm{s})$ and 1.31 $(9 \mathrm{H}, \mathrm{s})$. which was used without further characterisation.

8-(Diethoxyphosphoryl)-7-oxooctanoic acid ethyl ester 35

A solution of n-butyllithium (2.35 M in hexane. 14.4 ml) was added dropwise, over 10 min to a stirred solution of dimethyl methylphosphonate in dry THF (80 ml) under a nitrogen atmosphere at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and a solution of diethyl pimelate (5.0 g .23 .1 mmol) in dry THF (40 ml) was then added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then quenched with saturated ammonium chloride solution (100 ml). The separated aqueous layer was extracted with diethyl ether ($2 \times 50 \mathrm{ml}$) and the combined organic phases were washed with saturated brine (50 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using ethyl acetate as eluent to give the β-ketophosphonate ($1.6 \mathrm{~g} .24 \%$) as a straw coloured oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3477,2953,1730.1259$ and 1185; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.08\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $\left.3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{POCH})_{3}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{POCH}\right.$) , $3.05\left(2 \mathrm{H}, \mathrm{d} . \mathrm{J}_{\mathrm{P} \text { - }}\right.$ $22.7 \mathrm{~Hz}, 8-\mathrm{H}), 2.59(2 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, 6-\mathrm{H}), 2.26(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, $2-\mathrm{H}), 1.64-\mathrm{l} .53(4 \mathrm{H}, \mathrm{m} .4-\mathrm{H}$ and $5-\mathrm{H}), 1.34-1.25(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $1.22\left(3 \mathrm{H}, \mathrm{t} . J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right): \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 201.3 (s), 201.2 (s), 173.1 (s), 59.7 (t), 52.6 (q), 52.5 (q), 43.4 (t), 40.8 (d), 33.6 (t), 27.9 (t), 24.2 (t$), 22.5$ (t) and 13.8 (q), m / z (EI) $294\left(\mathrm{M}^{+}, 2 \%\right), 249\left(\mathrm{M}^{+}-\mathrm{OEt}, 15 \%\right)$ and $231\left(\mathrm{M}^{+}-(\mathrm{OMe})_{2}\right.$. 26%).
4-(8-Ethoxycarbonyl-3-oxooct-1-enyl)-2',2'-dimethyl-2', 3',4', $\mathbf{5}^{\prime}$ -tetrahydro- 2,4 '-bi(1,3 -oxazolyl)- $\mathbf{3}^{\prime}$-carboxylic acid tert-butyl ester 36
Barium hydroxide octahydrate ($0.4 \mathrm{~g}, 1.4 \mathrm{mmol}$) was added in one portion to a stirred solution of the β-ketophosphonate 35 ($0.4 \mathrm{~g}, 1.4 \mathrm{mmol}$) in dry THF (8 ml) under a nitrogen atmosphere at room temperature. The suspension was stirred for 30 min and a solution of the aldehyde $34 \mathrm{~b}(0.4 \mathrm{~g}, 1.4 \mathrm{mmol})$ in 40:1 THF- $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was then added in one portion. The mixture was stirred at room temperature for 3 h then quenched with saturated sodium bicarbonate solution (20 ml) and extracted with dichloromethane ($3 \times 20 \mathrm{ml}$). The combined organic extracts were washed with brine (20 ml), dried (MgSO_{4}) and evaporated in vacuo to leave a viscous oil. Purification by chromatography on silica using $2: 1$ petrol-ethyl acetate as eluent gave the alkene ($0.5 \mathrm{~g}, 71 \%$) as a yellow oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 2936,1698,1627,1379,1368$ and $1097 ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, CDCl_{3}, major rotamer) $7.77(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{d}, J 15.6$ $\mathrm{Hz}, 9-\mathrm{H}), 6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.6 \mathrm{~Hz}, 8-\mathrm{H}), 5.15-5.00(1 \mathrm{H}, \mathrm{m}$, $15-\mathrm{H}), 4.29-4.22$ ($1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}$), 4.15-4.09 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}, 19-\mathrm{H}$), 4.12 ($2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.64-2.60(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.30$ $(2 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, 2-\mathrm{H}), 1.76-1.54(9 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) and 1.49-1.21 ($15 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}$ and ${ }^{\prime} \mathrm{Bu}$); $\delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 200.0 (s), 173.8 (s). 160.2 (s), 151.3 (s), 139.4 (s), 137.7 (s), 129.3 (s), 127.3 (s), 95.3 (s), 81.3 (s), 67.3 (t), 60.2 (t), 55.1 (d), 41.5 (t), 34.1 (t), 28.7 (t), 28.1 (q), 25.2 (q), 24.7 (t), 24.2 (q), 23.7 (t) and 14.2 (q).

4-(8-Ethoxycarbonyl-1-methyl-3-0xooctyl)- $2^{\prime}, 2^{\prime}$-dimethyl$2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}$-tetrahydro-2,4'-bi(1,3 -oxazolyl)-3'-carboxylic acid rert-butyl ester 37

A solution of methyllithium (1.6 M in diethyl ether, $6.7 \mathrm{ml}, 10.7$ mmol) was added dropwise over 20 min to a stirred suspension of copper iodide ($1.0 \mathrm{~g}, 5.4 \mathrm{mmol}$) in dry diethyl ether (20 ml) at $-5^{\circ} \mathrm{C}$ under an argon atmosphere and the resulting yellow solution was stirred at $-5^{\circ} \mathrm{C}$ for 30 min . A solution of the enone 36 (300 mg .0 .65 mmol) in dry diethyl ether (15 ml) was
added dropwise over 10 min to the cuprate solution at $-5^{\circ} \mathrm{C}$ and the mixture was stirred at $-5^{\circ} \mathrm{C}$ for 3 h . The mixture was quenched with a $1: 1$ mixture of saturated ammonium chloride-ammonium hydroxide solution (20 ml) and the separated aqueous layer was then extracted with diethyl ether (2×30 $\mathrm{ml})$. The combined organic phases were washed with saturated brine (30 ml), then dried (MgSO_{4}) and evaporated in vacuo. The residue was purified by chromatography on silica using 1:1 petrol-ethyl acetate as eluent to give the 3 -methyl ketone (168 mg. 55%) as a viscous oil; $v_{\text {man }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1696: \delta_{\mathrm{H}}(360 \mathrm{MHz}$. $\left.\mathrm{CDCl}_{3}\right) 7.30(1 \mathrm{H} . \mathrm{s}, 14-\mathrm{H}) .5 .29-4.95(\mathrm{IH}, \mathrm{m}, 15-\mathrm{H}), 4.22-4.16$ (1H, m. 19-H). $4.13-4.02$ (1H. br m. 19-H). 4.11 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.30-3.24(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 2.83(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $16.9 \mathrm{~Hz}, 8-\mathrm{H}$). 2.51 (1 H. dd. $J 8.1$ and $17.2 \mathrm{~Hz}, 8-\mathrm{H}$), 2.36 ($2 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, 6-\mathrm{H}$), 2.27 (2H, t, J $7.4 \mathrm{~Hz}, 2-\mathrm{H}$), $1.72-1.41$ ($9 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) and $1.31-1.09(18 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}_{3} \cdot{ }^{\mathrm{B}} \mathrm{Bu}$ and $9-\mathrm{CH}_{3}$): $\delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 209.2$ (s). 173.6 (s), 162.8 (s), 151.2 (s). 133.1 (s), 94.9 (s), 80.1 (s), 67.5 (t), 60.2 (t), 55.2 (d), 48.3 (t), 42.9 (t), 34.1 (t), 28.6 (t), 28.1 (q), 26.8 (d), 25.1 (q). 24.6 (t), 24.5 (q). 23.1 (t), 19.4 (q) and 14.2 (q); m / z (FAB) (Found: $\mathrm{M}^{+}+1.481 .2944$ (10%). $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{O}_{7} \mathrm{~N}_{2}$ requires M, 481.2915).

4-(8-Carboxy-3-0xooct-I -enyl)-2',2'-dimethyl-2',3',4',5'-tetrahydro-2,4'-bi(1,3-oxazolyl)-3'-carboxylic acid tert-butyl ester 29

Lithium hydroxide ($22 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added in one portion to a solution of the ester 37 ($60 \mathrm{mg}, 0.17 \mathrm{mmol}$) in a $3: 1$ mixture of THF- $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml})$, and the mixture was then stirred at ambient temperature for 2 h . Water (2 ml) was added, followed by ethyl acetate (10 ml) and the mixture was then acidified to pH 1 with $2 \mathrm{M} \mathrm{HCl}(0.5 \mathrm{ml}$ added dropwise). The separated aqueous layer was extracted with ethyl acetate (3×10 ml), and the combined organic extracts were then washed with brine (20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave the carboxylic acid ($20 \mathrm{mg}, 99 \%$) as a viscous oil: $\delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{1}\right) 7.32$ ($1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}$), $5.12-4.98$ (1H, m, 15-H), 4.24-4.15 (1H, m, 19-H). 4.13-4.03 (1H, m, 19-H). 3.32-3.26 (1H, m, 9-H). 2.88-2.82 (1H, m, 8-H), $2.58-2.46$ ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), $2.40-$ $2.27(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $6-\mathrm{H})$ and $1.73-1.12\left(18 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right.$, ' Bu and $9-\mathrm{CH}_{3}$).

4-Ethoxycarbonyl-1,3-oxazol-2-ylnethyltriphenylphosphonium bromide 38

Solid N-bromosuccinimide (6.9 g .39 mmol) and AIBN (400 mg. $20 \% \mathrm{w} / \mathrm{w}$) were added to a stirred solution of the oxazole ester $13 \mathrm{a}(2.0 \mathrm{~g}, 13 \mathrm{mmol})$ in carbon tetrachloride (40 ml) and the suspension was then heated under reflux in a nitrogen atmosphere for 17 h . The mixture was cooled to room temperature, then evaporated to dryness in vacuo to leave a solid residue. Purification by chromatography on silica using $1: 1$ toluene-ethyl acetate as eluent gave the corresponding bromome thyloxazole ($1.23 \mathrm{~g}, 41 \%$) as a yellow oil: $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$) $\mathrm{cm}^{-1} 1726,1580,1317,1114$ and $664 ; \delta_{\mathbf{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.25$ $(1 \mathrm{H}, 5,5-\mathrm{H}), 4.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.39(2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .1 .40\left(3 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right): \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$, CDCl_{3}) 160.5 (CO), 159.9 (2-C). 144.7 (5-C), 134.1 (4-C), 61.3 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{2} \mathrm{Br}\right)$ and $14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; m / z(\mathrm{El}) 235$, $233\left(\mathrm{M}^{+}, 6,6 \%\right), 190,188(15,15), 154$ (91). 110 (4) and 82 (7). A solution of triphenylphosphine ($2.4 \mathrm{~g}, 9.2 \mathrm{mmol}$) in dry diethyl ether (17 ml) was added to a solution of the bromomethyloxazole ($1.1 \mathrm{~g}, 4.6 \mathrm{mmol}$) in dry diethyl ether (5 ml) under a nitrogen atmosphere and the solution was then stirred at room temperature for 24 h . The mixture was evaporated to dryness in vacuo to leave a yellow solid which was triturated in pentane ($3 \times 30 \mathrm{ml}$). The residue was evaporated to dryness in wocwo to leave the phosphonium salt $(1.9 \mathrm{~g}, 82 \%)$ as a pale yellow solid, $\mathrm{mp}>300^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathbf{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), 8.07 (IH, s, 5-H), $7.94-7.53$ (15H, m. 3 Ar), $6.10\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}\right.$
$\left.14.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right) .4 .28\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 1.32 $\left(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, which was used without further characterisation.

2-[6-(tert-Butyldimethylsilyloxy)hex-1-enyl]-1.3-oxazole-4 carboxylic acid ethyl ester 40a

A solution of butyllithium ($\mathbf{2 . 3 5 \mathrm { M } \text {) in hexane (} 1 . 6 8 \mathrm { ml } . 2 . 6 9}$ mmol) was added dropwise over 10 min to a stirred suspension of the phosphonium salt $38(1.67 \mathrm{~g}, 2.69 \mathrm{mmol})$ in dry THF (40 ml) at $-30^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The deep red solution was stirred at room temperature for 30 min , and was then cooled to $-78^{\circ} \mathrm{C}$. A solution of 5 -tert-butyldimethylsilylpentanal $39(0.87 \mathrm{~g} .4 .04 \mathrm{mmol})$ in dry THF (9 ml) was added dropwise over 5 min to the ylide solution at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to warm to room temperature overnight. The mixture was quenched with saturated aqueous ammonium chloride solution (20 ml) and the separated aqueous layer was then extracted with diethyl ether ($2 \times 30 \mathrm{ml}$). The combined organic phases were washed with saturated brine (20 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using $5: 1$ petrol-ethyl acetate as eluent to give the olefin ($0.4 \mathrm{~g}, 41 \%$) as a viscous oil (Found: $\mathrm{C}, 60.9 ; \mathrm{H}, 9.3 ; \mathrm{N}, 3.9 . \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{NSi}$ requires C. $61.1 ; \mathrm{H} .8 .9 ; \mathrm{N}, 4.0 \%)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730,1664$, 1318 and $1114: \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.12(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.85$ ($1 \mathrm{H}, \mathrm{dt}, J 16.0$ and $7.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), 6.32 ($1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}$), $4.39\left(2 \mathrm{H}\right.$, q. J $\left.7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.65-3.61\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right)$, $2.30-2.28\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.58-1.54\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 1.39$ ($3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\prime} \mathrm{Bu}\right.$) and $0.05(6 \mathrm{H}, \mathrm{s} .2$, CH_{3}); $\delta_{\mathrm{c}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.6(\mathrm{CO}), 160.4(2-\mathrm{C}) .142 .9$ (5-C), 142.5 ($\left.2^{\prime}-\mathrm{C}\right) .133 .3$ (4-C), 115.8 ($\left.1^{\prime}-\mathrm{C}\right), 62.7$ ($\left.6^{\prime}-\mathrm{C}\right), 61.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 32.5$ (3'-C), 32.1 ($5^{\prime}-\mathrm{C}$), 25.9 (${ }^{\prime} \mathrm{Bu}$), 24.7 (4'-C), $18.3(\mathrm{q}-\mathrm{C}), 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $-5.3(\mathrm{Si}-\mathrm{Me}): m / 2$ (FAB) (Found: $\mathrm{M}^{+}+1,354.2119$ (77\%) $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NSi}$ requires M , 354.2101)

2-[6-(tert-Butyldimethylsilyloxy)hex-1-enyl]-1,3-oxazole-4 carboxylic acid 40b

Lithium hydroxide ($22 \mathrm{mg}, 0.51 \mathrm{mmol}$) was added in one portion to a solution of the ester $40 \mathrm{a}(60 \mathrm{mg}, 0.17 \mathrm{mmol}$) in a 3:1 mixture of THF- $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml})$, and the mixture was then stirred at room temperature for 2 h . Water (2 ml) was added, followed by ethyl acetate (10 ml) and the mixture was cooled to $0^{\circ} \mathrm{C}$ and then acidified to pH 1 with $2 \mathrm{M} \mathrm{HCl} \cdot(0.5 \mathrm{ml}$ added dropwise). The separated aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$) and the combined organic extracts were then washed with saturated brine (20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to leave the carboxylic acid (20 mg , 99%) as a white solid, mp $210-212^{\circ} \mathrm{C}$ (from ethanol); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3697,2930,1716,1601$ and $1110 ; \delta_{\mathrm{H}}(360$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.21(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.89(1 \mathrm{H}, \mathrm{dt}, J 16.0$ and 7.0 Hz , $\left.2^{\prime}-\mathrm{H}\right), 6.33\left(1 \mathrm{H}, \mathrm{dt}, J 16.0\right.$ and $\left.1.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.66-3.63(2 \mathrm{H}, \mathrm{m}$, $\left.6^{\prime}-\mathrm{H}\right), 2.32-2.30\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.59-1.56\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$, $0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\prime} \mathrm{Bu}\right)$ and $0.06\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 165.3\left(\mathrm{CO}_{2} \mathrm{H}\right), 162.5(2-\mathrm{C}), 144.3(5-\mathrm{C}), 143.6\left(2^{\prime}-\mathrm{C}\right)$, 133.9 ($4-\mathrm{C}$), 116.0 ($\left.1^{\prime}-\mathrm{C}\right), 63.2$ ($\left.6^{\prime}-\mathrm{C}\right), 32.9$ ($3^{\prime}-\mathrm{C}$), 32.6 ($5^{\prime}-\mathrm{C}$), 26.4 ('Bu), 25.1 (4'-C). 18.8 (q-C) and -4.9 (Si-Me); m / z (ES) (Found: $m / z\left(M^{+}+1\right), \quad 326.2583 . \quad \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{NSi}$ requires $\left(M^{+}+1\right) 326.1787$).

2-[6-(tert-Butyldimethylsilyloxy)hex-1-enyl]-1,3-oxazole-4carboxylic acid allyl ester 41

A solution of tricarpylmethylammonium chloride ($\mathbf{7 7} \mathbf{~ m g}, 0.2$ mmol) and allyl bromide ($23 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane $(0.3 \mathrm{ml})$ was added in one portion to a stirred suspension of the carboxylic acid 40b ($62 \mathrm{mg}, 0.2 \mathrm{mmol}$) and sodium hydrogen carbonate ($16 \mathrm{mg}, 0.2 \mathrm{mmol}$) in water (0.3 ml) at room temperature. The mixture was stirred vigorously at room temperature for 24 h , and then extracted with dichloromethane ($3 \times 10 \mathrm{ml}$).

The combined organic phases were dried (MgSO_{4}) and evaporated in vacuo. The residue was purified by chromatography on silica using 5:1 petrol-ethyl acetate as eluent to give the olefin ($35 \mathrm{mg}, 51 \%$) as a colourless oil; $\mathfrak{r}_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1731, 1664 . 1578. 1462, 1369, 1317. 1092 and 989: $\delta_{\mathbf{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.14(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) .6 .85(1 \mathrm{H} . \mathrm{dt} . J 16.0$ and $7.0 \mathrm{~Hz}, \mathrm{HC}=$ $\left.\mathrm{CHCH}_{2}\right), 6.32\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 6.01(1 \mathrm{H}, \mathrm{ddt}$. J 17.1. 10.4 and $5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$). 5.39 (1 H . dd, $J 17.2$ and $1.4 \mathrm{~Hz},=\mathrm{CHH}) .5 .29(1 \mathrm{H}, \mathrm{dd} . J 10.4$ and $1.1 \mathrm{~Hz},=\mathrm{CH} H), 4.82$ ($2 \mathrm{H}, \mathrm{d}, J 5.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}$), 3.66-3.61 ($2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}$), 2.31-2.28 ($2 \mathrm{H}, \mathrm{m} .3^{\prime}-\mathrm{H}$), $1.57-1.42$ (4H. m. 4^{\prime} and $5^{\prime}-\mathrm{H}$). 0.89 ($9 \mathrm{H}, \mathrm{s} .{ }^{\prime} \mathrm{Bu}$) and $0.05\left(6 \mathrm{H} . \mathrm{s} .2 \times \mathrm{CH}_{3}\right): \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.7(\mathrm{CO})$. 161.0 (2-C). 143.0 (5-C), 142.6 ($\left.2^{\prime}-\mathrm{C}\right) .133 .7$ (4-C), 131.7. 119.0. 115.8 ($1^{\prime}-\mathrm{C}$), 65.7. 62.7 ($6^{\circ}-\mathrm{C}$). 32.5 ($3^{\prime}-\mathrm{C}$). 32.1 ($5^{\prime}-\mathrm{C}$), 25.9 ('Bu), 24.7 (4'-C). 18.3 and -5.4 (Si-Me); m / z (FAB) (Found: $\mathrm{M}^{+}+1.366 .2094(66 \%) . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NSi}$ requires $M, 366.2101$).

2-(6-Hydroxyhex-1-enyl)-1,3-oxazole-4-carboxylic acid allyl ester 28

A solution of the silyl ether 41 ($115 \mathrm{mg}, 0.3 \mathrm{mmol}$) in a $3: 1: 1$ mixture of $\mathrm{AcOH}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{ml})$ was stirred at room temperature for 2 h . The mixture was basified with saturated sodium hydrogen carbonate solution and the separated aqueous phase was then extracted with dichloromethane (3×10 $\mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using $5: 1$ petrol-ethyl acetate as eluent to give the corresponding alcohol ($70 \mathrm{mg}, 91 \%$) as a straw coloured oil: $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2936,1732,1664,1316,1116,990$ and 663 : $\delta_{\mathbf{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.14(1 \mathrm{H}, \mathrm{s} 5-\mathrm{H}) .6 .85(1 \mathrm{H}, \mathrm{dt}, J 16.0$ and $\left.7.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.32\left(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) .6 .01(1 \mathrm{H}, \mathrm{ddt}$. $J 17.1,10.4$ and $\left.5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.39(1 \mathrm{H} . \mathrm{dd}, J 17.2$ and $1.4 \mathrm{~Hz},=\mathrm{CHH}) .5 .29(1 \mathrm{H}, \mathrm{dd} . J 10.4$ and $1.1 \mathrm{~Hz},=\mathrm{CHH}) .4 .82$ ($2 \mathrm{H}, \mathrm{d} . J 5.9 \mathrm{~Hz} . \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.66-3.61$ ($2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}$), 2.31-2.28 ($2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$) and $1.57-1.42\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$; $\delta_{\boldsymbol{c}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.8$ (CO), $161.0(2-\mathrm{C}), 143.1$ (5-C), 142.2 ($\left.2^{\prime}-\mathrm{C}\right), 133.9(4-\mathrm{C}), 131.7,119.1,116.0\left(1^{\prime}-\mathrm{C}\right), 65.8 .62 .5\left(6^{\prime}-\mathrm{C}\right)$. $32.5\left(3^{\prime}-\mathrm{C}\right), 32.0\left(5^{\prime}-\mathrm{C}\right)$ and $24.6\left(4^{\prime}-\mathrm{C}\right)$.

4-\{8-f6-(4-Allyloxycarboayl-1,3-oxazol-2-yl)hex-5-enyloxycarb-onyl)-1-methyl-3-oxooctyl\}-2', 2'-dimethyl-2', 3',4',5'-tetra-hydro-2,4'-bi(1,3-oxazolyl)-3'-carboxylic acid tert-butyl ester 42
1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride ($37 \mathrm{mg}, 0.19 \mathrm{mmol}$) was added in one portion to a stirred solution of the acid 29 ($77 \mathrm{mg}, 0.18 \mathrm{mmol}$) and the alcohol 28 ($50 \mathrm{mg}, 0.20 \mathrm{mmol}$) in dichloromethane (6 ml) at $0^{\circ} \mathrm{C}$ containing 4-(dimethylamino)pyridine (11 mg, 0.09 mmol). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then at room temperature overnight before it was evaporated to dryness in vacuo. The residue was diluted with ethyl acetate (10 ml) and water (2 ml), and the organic layer was then separated, washed with saturated sodium bicarbonate (15 ml) and water (15 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in wacuo. The residue was purified by chromatography on silica using $1: 1$ petrol-ethyl acetate as eluent to give the ester ($89 \mathrm{mg}, 73 \%$) as an oil; $v_{\mathrm{mar}}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3156,2253,1793,1730,1720,1368,1096$ and $889 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) 8.14$ (1 H, s, 9-H). $7.31(1 \mathrm{H}, \mathrm{s}, 30-\mathrm{H})$, 6.83 ($1 \mathrm{H}, \mathrm{dt}, J 16.0$ and $7.0 \mathrm{~Hz}, 11-\mathrm{H}$), 6.33 ($1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}$, $10-\mathrm{H}), 6.01$ ($1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.4$ and $5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.37 ($1 \mathrm{H} . \mathrm{dd} . J 10.4$ and $1.4 \mathrm{~Hz}=\mathrm{CHH}), 5.27(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $1.1 \mathrm{~Hz},=\mathrm{CHH}), 5.08-4.96(1 \mathrm{H}, \mathrm{m}, 31-\mathrm{H}), 4.82(2 \mathrm{H}, \mathrm{dt}$, $J 5.6$ and $1.3 \mathrm{~Hz}, 3-\mathrm{H}), 4.23-4.03(4 \mathrm{H}, \mathrm{m}, 32-\mathrm{H}$ and $15-\mathrm{H})$, 3.31-3.26 (1H, m, 24-H), 2.83 ($1 \mathrm{H}, \mathrm{dd}, J 16.8$ and 5.8 Hz , $23-\mathrm{H}), 2.51$ (1H, dd, J 16.9 and $7.8 \mathrm{~Hz}, 23-\mathrm{H}), 2.40-2.27$ (6 H , $\mathrm{m}, 12 \mathrm{H}, 17-\mathrm{H}$ and $21-\mathrm{H}), 1.73-1.55(10 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 14 \mathrm{H}$ and $\left.2 \times \mathrm{CH}_{3}\right), 1.48-1.08\left(15 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}, 19-\mathrm{H}, 20-\mathrm{H}\right.$ and $\left.{ }^{\prime} \mathrm{Bu}\right)$ and $0.90-0.80(3 \mathrm{H}, \mathrm{m}, 25-\mathrm{H}) ; \delta_{\mathrm{C}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 210.5(\mathrm{~s}), 173.6$ (s), 162.8 (s), 161.7 (s). 160.9 (s). 151.2 (s), 144.9 (s), 143.1.
141.8, 133.8 (s), 133.1, 131.7. 119.0 (t). 116.1. 94.9 (s), 80.1 (s). $67.4(t), 65.7(t), 63.8(t), 55.1,48.3(t), 42.9(t), 34.0(t), 32.2(t)$. 29.6 (t), 28.6 (t), 28.2. 28.1, 28.0 (t), 26.8, 25.0, 24.7 (t), 24.6. 24.2, 23.1 (t), 19.3 (q); $m /=$ (FAB) (Found: $\mathrm{M}^{+}+1,686.3677$ $(100 \%) . \mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{10} \mathrm{~N}_{3}$ requires $M, 686.3654$).

Bis-oxazole amino acid ester 43

Pyrrolidine ($33.1 \mu \mathrm{l}, 0.4 \mathrm{mmol}$) was added in one portion to a stirred solution of the ester (42) $(0.18 \mathrm{~g}, 0.3 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium ($18 \mathrm{mg}, 0.016 \mathrm{mmol}$) and triphenylphosphine (4.1 mg .0 .016 mmol) in dichloromethane (2 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h . diluted with dichloromethane (10 ml) and then washed with $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{ml})$. The separated organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by chromatography on silica using $9: 1$ dichloro-methane-methanol as eluent to give the acid $(0.11 \mathrm{~g}, 70 \%)$ as an opaque oil. A $\mathbf{5 0 \%}$ solution of trifluoroacetic acid in dichloromethane (1 ml) was added to the acid ($20 \mathrm{mg}, 0.03 \mathrm{mmol}$) and the resulting mixture was stirred at room temperature for 1 h . The mixture was then evaporated in vacuo to leave the TFA salt which was not purified further.

4-Hydroxymethyl-9-methyl-6,18,26-trioxa-3,28,29-triazatricyclo[23.2.1.1 ${ }^{\text {si }}$]nonacosi-1(27),5(29),7,23,25(28)-pentaene-2,11,17-trione 44

Diisopropylethylamine ($37 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added in one portion to a stirred solution of the salt $43(51 \mathrm{mg}, 0.08 \mathrm{mmol})$ in dry DMF (16 ml) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then diphenylphosphoryl azide ($0.034 \mathrm{~g}, 0.12 \mathrm{mmol}$) was added and the mixture was stirred for a further 3 min and then left at room temperature for 5 days. The mixture was diluted with ethyl acetate (20 ml) and poured into ice-cold water. The separated aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$) and the combined organic extracts were washed with water ($6 \times 30 \mathrm{ml}$) and brine (30 ml), then dried (MgSO_{4}) and evaporated in vacuo. The residue was purified by chromatography on silica using ethyl acetate as eluent to give the amide ($14 \mathrm{mg}, 36 \%$) as an oil; $V_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3399,1715,1688$ and $1596 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, CDCl_{3}, major rotamer) $8.20(1 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}), 8.02(1 \mathrm{H}, \mathrm{d}, J 7.4 \mathrm{~Hz}$, $\mathrm{NH}) .7 .45(1 \mathrm{H}, \mathrm{s}, 21-\mathrm{H}) .6 .93(1 \mathrm{H}, \mathrm{dt}, J 16.2$ and $6.8 \mathrm{~Hz}, 2-\mathrm{H})$, 6.37 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), $5.46-5.42$ ($1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}$), $4.27-4.10(4 \mathrm{H}, \mathrm{m}$, $23-\mathrm{H}$ and $6-\mathrm{H}), 3.42-3.37(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.03(1 \mathrm{H}, \mathrm{dd}, J 16.7$ and $11.0 \mathrm{~Hz}, 14-\mathrm{H}), 2.62-2.56(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}), 2.54-2.35(6 \mathrm{H}, \mathrm{m}$, $12-\mathrm{H}, 8-\mathrm{H}$ and $3-\mathrm{H}), 1.84-1.61(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 1.50-1.22$ ($6 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H}$ and $11-\mathrm{H}$) and $0.97-0.91(3 \mathrm{H}, \mathrm{m}, 16-\mathrm{H})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 209.5$ (s), 173.6 (s), 161.0 (s), 160.8 (s), 145.3 (s), 144.4 (s). 141.7 (d), 140.5 (d), 136.1 (s), 134.2 (d), 132.1 (d), 128.6 (d), 116.0 (d), 64.6 (t), 63.8 (t), 48.3 (t), 43.0 (t), 34.4 (t), 31.9 (t), 29.7 (t), 28.6 ($t), 27.8$ (t), 24.7 (t), 23.4 (t), 19.4 (q): $m / z(E I)$ (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 469.2223$ (100%). $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $M, 469.2167$).

The oxazole-oxazoline-oxazole macrolide 45

A solution of Burgess' reagent ($4.5 \mathrm{mg}, 0.02 \mathrm{mmol}$) in dry THF $(0.2 \mathrm{ml})$ was added to a solution of the amide $44(8 \mathrm{mg}, 0.02$ mmol) in dry THF (0.4 ml) and the mixture was heated under reflux for 2 h in a nitrogen atmosphere. The cooled mixture was evaporated to dryness in vacuo and the residue was purified by chromatography on silica using $1: 1$ petrol-ethyl acetate as eluent to give the oxazoline ($5.5 \mathrm{mg}, 72 \%$); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.01$ $(1 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, 8-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{d}, J 14.6 \mathrm{~Hz}, 14-\mathrm{H}), 6.98-6.84$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 6.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}, 15.9 \mathrm{~Hz}, 6-\mathrm{H}), 5.48-5.35(1 \mathrm{H}, \mathrm{m}$, $12-\mathrm{H}), 4.77-4.58(2 \mathrm{H}, \mathrm{m}, 2 \times 11-\mathrm{H}), 4.16-3.98(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $3.40(1 \mathrm{H}$, apparent d, J $4.8 \mathrm{~Hz}, 16-\mathrm{H}), 3.33-3.25(1 \mathrm{H}, \mathrm{m}$, 18-H), 2.96-2.87 (1 H, m, 18-H), 2.46-2.15 (6H, m, 20-H, 24-H and $4-\mathrm{H}), 1.87-1.35(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 1.29-1.03(6 \mathrm{H}, \mathrm{m}$, $23-\mathrm{H}, 22-\mathrm{H}$ and $21-\mathrm{H}$) and $0.90-0.76(3 \mathrm{H}, \mathrm{m}, 17-\mathrm{H})$.

The ter-oxazole macrolide 30

Freshly prepared nickel peroxide (150 mg) was added in three portions to a refluxing solution of the oxazoline 45 (50 mg) in dry benzene (3 ml) at one hour intervals. The mixture was heated under reflux for 2 h . and then filtered through Celite. The filtrate was concentrated in vacuo to leave a viscous mass. Purification by chromatography on silica using ethyl acetate as eluent gave the ter-oxazole macrolide as a white solid mp 140$142{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ; i_{\max }(\mathrm{EtOH}) / \mathrm{nm} 263$ (1888); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3019. 2929. 1715 and $1215 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) 8.07$ and 8.06 $(2 \times 1 \mathrm{H}, \mathrm{s} .8$ and $11-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 7.19$ (1H, dt, J 15.9 and $7.1 \mathrm{~Hz}, 5-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{dt}, J 15.9$ and $1.5 \mathrm{~Hz}, 6-\mathrm{H}), 4.08$ $(2 \mathrm{H}, 2 \times \mathrm{dt}, J 22.0$ and $10.8 \mathrm{~Hz} .1-\mathrm{H}), 3.43-3.39(1 \mathrm{H} . \mathrm{m} .16-\mathrm{H})$, $3.29(1 \mathrm{H}$, dd, $J 17.2$ and $6.0 \mathrm{~Hz}, 18-\mathrm{H}), 2.63-2.57(1 \mathrm{H}, \mathrm{m}$, $18-\mathrm{H}) .2 .49-2.35(6 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}, 24-\mathrm{H}$ and $4-\mathrm{H}) .1 .80-1.60(4 \mathrm{H}$. $\mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 1.46-1.16(6 \mathrm{H}, \mathrm{m} .23-\mathrm{H}, 22-\mathrm{H}$ and $21-\mathrm{H})$ and $0.93-0.78(3 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 210.25(\mathrm{~s})$, 173.86 (s). 162.77 (s). 156.57 (s), 154.26 (s), 146.65 (s), 143.23 (d), 137.27 (d), 137.02 (d), 133.40 (d), 131.76 (s), 130.39 (s), 115.2 I (d). 65.86 (t). 48.08 (t), 43.64 (t). 34.58 (t). 31.13 (t), 29.70 (t), 29.15 (t). 27.44 (d). 26.88 (t). 25.06 (t), 24.45 (t) and 18.96 (q); m / z (FAB) (Found: $\mathrm{M}^{+}+1,468.2154$ (7\%). $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $M, 468.2134$).

Acknowledgements

We thank the EPSRC for support of this work via Studentships (to M. R., D. E. P. and D. W.) and a Post-doctoral Fellowship (to S. K. C.), and Zeneca for a Research Studentship (to J. K). We also thank Pfizer and Zeneca for their generous financial support of our research program.

References

1 J. A. Roesener and P. J. Schever. J. Am. Chem Soc, 1986, 108, 846.
2 N. Fusetani, K. Yasumuro, S. Matsunaga and K. Hashimoto, Terrahedron Lett. 1989, 30, 2809.
3 (a) S. Matsunaga, N. Fusetani, K. Hashimoto, M. Norma, H. Naguchi and U. Sankaw, J. Org. Chem, 1989, 54, 1360; (b) M. R. Kernan, T. F. Molinski and D. J. Faulkener, J. Org. Chem. 1988, 53, 5014.
4 S. Matsunaga. N. Fusetani. K. Hashimoto. K. Koseke and M. Norma, J. Am. Chem. Soc, 1986, 108, 847.

5 J. Kabayashi. M. Tsuda, H. Fuse, T. Sasaki and Y. Mikami, J. Nat. Prod, 1997, 60, 150.
6 For example. the mono-oxazoles: rhizoxin, S. Iwasaki, H. Kobayashi, J. Furukawa, M. Namikoshi and S. Okuda,
J. Antibiot., 1984, 37, 354; and calyculin A: Y: Kato. N. Fusetani S. Matsunaga, K. Hashimoto. S. Fujita and T. Furuya. J. Am. Chem Soc. 1986, 108. 2780; the bis-oxazoles: hennoxazole A. T. Ichiba W. Y. Yoshida. P. J. Scheuer. T. Higa and D. G. Gravalos. J. Am. Chem. Soc. 1991, 113. 3173: muscoride A. A. Nagatsu. H. Kajitani and J. Sakakibara, Tetrahedron Lett, 1995. 36. 4097: diazonamide: N. Lindquist. W. Fenical, G. D. Van Duyne and J. Clandy. J Am Chem. Soc. 1991. 113, 2303.
7 For a review of this topic see: J. P. Michael and G. Pattenden. Angew. Chem. Int. Ed Engl., 1993. 32, 1.
8 (a) S. K. Chattopadhyay and G. Pattenden. Sinlett. 1997. 1345; (b) S. K. Chattopadhyay and G. Pattenden. Tetrahedron Letl., 1998, 39. 6095 and references cited therein.
9 D. W. Knight, G. Pattenden and D. E. Rippon. Synletr, 1990. 1. 36.
10 See the following paper S. K. Chattopadhyay and G. Pattenden. J. Chem. Soc, Perkin Trans 1, 2000. DOI: 10.1039/b000751j.

11 For a discussion on this topic see: (a) R. E. Moore. G. M. L. Patterson, S. Mynderse, J. Barchi, T. R. Norton, E. Furusawa and S. Furusawa, Pure Appl. Chem, 1986, 58, 263: (b) M. Ishibashi, R. E. Moore. G. M. L. Patterson. C. Xu and J. Clardy, J. Ong. Chem, 1986, 51, 5300.
12 A. I. Meyers, R. K. Smith and C. E. Whitten, J. Org. Chem., 1979. 44, 2250.
13 A. I. Meyers, D. L. Evans, D. K. Minster, U. Jordis, S. M. Hecht and A. L. Muzzu, J. Org. Chem., 1979. $44,497$.
14 J. W. Cornforth and R. H. Cornforth, J. Chem. Soc., 1947, 96.
15 Y. Hamada, M. Shibata and T. Shioiri. Tetrahedron Lett., 1985, 26. 6501.

16 A. I. Meyers and F. Tavares, Tetrahedron Letl., 1994. 35. 2481.
17 D. C. Waite, PhD Thesis, University of Nottingham, 1993.
18 A. McNeill, University of Nottingham, unpublished work.
19 (a) J. S. Panek, R. T. Beresis and C. A. Celatka, J. Org. Chem, 1996, 61, 6494; (b) J. S. Panek and R. T. Beresis. J. Org. Chem., 1996. 61. 6496; (c) P. Liu, C. A. Celatka and J. S. Panek, Tetrahedron Lett., 1997, 38, 5445; (d) C. A. Celatka. P. Liu and J. S. Panek. Tetrahedron Lett., 1997, 38. 5449.
20 S.-K. Yoo, Tetrahedron Lett. . 1992. 33. 2159. cf. K. J. Doyle and C. J. Moody. Tetrahedron, 1994, 50. 3761.
21 (a) P. Gamer and J. M. Park, J. Org. Chem., 1987, 52, 2361; (b) A. McKillop, R. J. K. Taylor, R. J. Watson and N. Lewis, Synthesis, 1994. 31: (c) A. D. Campbell, T. M. Raynham and R. J. K. Taylor. Synthesis, 1998, 12, 1707.
22 G. M. Atkins. Jr. and E. M. Burgess, J. Am. Chem. Soc., 1968, 90, 4744.

23 D. R. Williams, P. D. Lowder, Y.-G. Gu and D. A. Brooks. Tetrahedron Lett., 1997, 38, 331
24 M. Reader, PhD Thesis, University of Nottingham, 1995.
25 S. J. Danishefsky and W. H. Pearson, J. Org. Chem, 1983, 48, 3865
26 R. Deziel. Tetrahedron Lett., 1987, 28, 4371.
27 (a) P. Wipf, Chem. Rev. 1995, 95. 2115; (b) A. V. R. Rao, M. K.Gurjar, K.L. Reddy and A. S. Rao, Chem. Rev, 1995, 95, 2135.

28 T. Rinderspacher and B. Prijs. Helv. Chim. Acta, 1960, 43, 1522.

REFERENCES

F. Wöhler, Ann. Phys. Chem., 1828, 12, 253.
A. Fleming, Brit. J. Exp. Path., 1929, 10, 226.
3. (a) J. C. Sheehan, K. R. Henery-Logan, J. Am. Chem. Soc., 1957, 79, 1262.
(b) J. C. Sheehan, K. R. Henery-Logan, J. Am. Chem. Soc., 1959, 81, 3089.
P. W. Collins, S. W. Djuric, Chem. Rev., 1993, 93, 1533.
5. (a) E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, J. Am. Chem. Soc. 1969, 91, 5675. (b) E. J. Corey, T. K. Schaaf, W. Huber,U. Koelliker, N. M. Weinshenker, J. Am. Chem. Soc., 1970, 92, 397. (c) E. J. Corey, R. Noyori, T. K. Schaaf, J. Am. Chem. Soc., 1970, 92, 397.
(a) E. J. Corey, R. Imwinkelried, S. Pikul, Y. B. Xiang, J. Am. Chem. Soc. 1989, 111, 5493. (b) E.J. Corey, N. Imai, S. Pikul, Tetrahedron Lett., 1991, 32, 7515.
7. (a) E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc., 1987, 109, 5551.
(b) E. J. Corey, R. K. Bakshi, S. Shibata, C. P. Chen, V. K. Singh, J. Am. Chem. Soc., 1987, 109, 7925. (c) E. J. Corey, S. Shibata, R. K. Bakshi, J. Org. Chem., 1988, 53, 2861. (d) E. J. Corey, R. K. Bakshi, Tetrahedron Lett., 1990, 31, 611 .
8. (a) W. S. Johnson, Acc. Chem. Res., 1968, 1, 1. (b) W. S. Johnson, Angew. Chem., 1976, 88, 33. Angew. Chem. Int. Ed. Engl., 1976, 15, 9. (c) W. S. Johnson, Bioorg. Chem., 1976, 5, 51.
(a) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon, B. M. Gatehouse, J. Chem. Soc. Chem. Commun., 1980, 162. (b) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, J. Chem. Soc. Chem. Commun., 1980, 902. (c) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon, B. M. Gatehouse, Aust. J. Chem., 1981, 34, 1655. (d) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, Aust. J. Chem., 1982, 35, 557. (e) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon, B. M. Gatehouse, Aust. J. Chem., 1982, 35, 567. (f) J. E. Banfield, D. S. C. Black, S. R. Johns, R. I. Willing, Aust. J. Chem., 1982, 35, 2247.
(a) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Uenishi, J. Am. Chem. Soc., 1982, 104, 5555. (b) K. C. Nicolaou, N. A. Petasis, J. Uenishi, R. E. Zipkin, J. Am. Chem. Soc., 1982, 104, 5557. (c) K. C. Nicolaou, R. E. Zipkin, N. A.

Petasis, J. Am. Chem. Soc., 1982, 104, 5558. (d) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Am. Chem. Soc., 1982, 104, 5560.
(a) M. D. Lee, T. S. Dunne, M. M. Siegel, C. C. Chang, G. O. Morton, D. B. Borders. J. Am. Chem. Soc., 1987, 109, 3464. (b) M. D. Lee, T. S. Dunne, C. C. Chang, G. A. Ellestad, M. M. Siegel, G. O. Morton, G. O. McGahren, D. B. Borders. J. Am. Chem. Soc., 1987,109, 3466. (c) M. D. Lee, T. S. Dunne, C. C. Chang, M. M. Siegel, G. O. Morton, G.A. Ellestad, W. J. McGahren, D. B. Borders, J. Am. Chem. Soc., 1992, 114, 985.
(a) K. C. Nicolaou, C. W. Hummel, E. N. Pitsinos, M. Nakada, A. L. Smith, K. Shibayama, H. Saimoto, J. Am. Chem. Soc., 1992, 114, 10082. (b) R. D. Groneberg, T.Miyazaki, N. A. Stylianides, T. J. Schulze, W. Stahl, E. P. Schreiner, T. Suzuki, Y. Iwabuchi, A. L. Smith, K. C. Nicolaou, J. Am. Chem. Soc., 1993, 115, 7593. (c) A. L. Smith, E. N. Pitsinos, C.-K. Hwang, Y. Mizuno, H. Saimoto, G. R. Scarlato, T. Suzuki, K. C. Nicolaou, J. Am. Chem. Soc.. 1993, 115, 7612. (d) K. C. Nicolaou, C. W. Hummel, M. Nakada, K. Shibayama, E. N. Pitsinos, H. Saimoto, Y. Mizuno, K.-U. Baldenius, A. L. Smith, J. Am. Chem. Soc., 1993, 115, 7625. (e) K. C. Nicolaou, Angew. Chem., 1993, 105, 1462; Angew. Chem. Int. Ed. Engl., 1993, 32, 1377.
13. S. A. Hitchcock, S. H. Boyer, M. Y. Chu-Moyer, S. H. Olson, S. J. Danishefsky, Angew. Chem., 1994, 106, 928; Angew. Chem. Int. Ed. Engl., 1994, 33, 858.
(a) K. C. Nicolaou, Z. Yang, J.-J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan, E. J. Sorensent, Nature, 1994, 367, 630. (b) K. C. Nicolaou, P. G. Nantermet, H. Ueno, R. K. Guy, E. A. Couladouros, E. J. Sorensen, J. Am. Chem. Soc., 1995, 117, 624. (c) K. C. Nicolaou, J.-J. Liu, Z. Yang, H. Ueno, E. J. Sorensen, C. F. Claiborne, R. K. Guy, C.-K. Hwang, M. Nakada, P. G. Nantermet, J. Am. Chem. Soc., 1995, 117, 634. (d) K. C. Nicolaou, Z. Yang, J.-J. Liu, P. G. Nantermet, C. F. Claiborne, J. Renaud, R. K. Guy, K. Shibayama, J. Am. Chem. Soc., 1995, 117, 645. (e) K. C. Nicolaou, H. Ueno, J.-J. Liu, P. G. Nantermet, A. Yang, J. Renaud, K. Paulvannan, R. Chadha, J. Am. Chem. Soc. 1995, 117, 653. (f) K. C. Nicolaou, R. K. Guy, Angew. Chem., 1995, 107. 2047. Angew. Chem. Int. Ed. Engl., 1995, 34, 2079.
15. (a) R. A. Holton, C. Somoza, K. B. Kim, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu. S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile, J. H. Liu, J. Am. Chem. Soc., 1994, 116, 1597. (b) R. A. Holton, K. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Mirthi, L. N. Gentile, J. H. Liu, J. Am. Chem. Soc., 1994, 116, 1599.
16. A. Balog, D. Meng, T. Kamenecha, P. Bertinato, D. S. Su, E. J. Sorensen, S. J. Danishefsky, Angew. Chem., 1996, 108, 2976; Angew. Chem. Int. Ed. Engl., 1990. 35, 2801.
17. Z. Yang, Y. He, D. Vourloumis, H. Valberg, K. C. Nicolaou, Angew. Chem., 1997. 109. 170; Angew. Chem. Int. Ed. Engl., 1997, 36, 166.
18. D. Schinzer, A. Limberg, A. Bauer, O. M Bohm, M. Cordes, Angew. Chem., 1997. 109, 543; Angew. Chem. Int. Ed. Engl., 1997, 36, 523.
(a) K. C. Nicolaou, F. van Delft, T. Ohshima, D. Vourloumis, J. Xu, S. Hosokawa, J. A. Pfefferkorn, S. Kim, T. Li, Angew.Chem., 1997, 109, $2631 ;$ Angew: Chem. Int. Ed. Engl., 1997, 36, 2520. (b) K. C. Nicolaou, T. Ohshima, S. Hosokawa, F. van Delft, D. Vourloumis, J. Xu, J. A, Pfefferkorn, S. Kim. J. Am. Chem. Soc., 1998, 120, 8674.
X.-T. Chen, B. Zhou, S. K. Bhattacharya, C. E. Gutteridge, T. R. R. Pettus, S. J. Danishefsky, Angew. Chem., 1998, 110, 835; Angew. Chem. Int. Ed. Engl., 1998, 37, 789.
(a) K. C. Nicolaou, T. K. Chakraborty, A. D. Piscopio, N. Minowa, P. Bertinato, J. Am. Chem. Soc., 1993, 115, 4419. (b) A. D. Piscopio, N. Minowa. T. K. Chakraborty, K. Koide, P. Bertinato, K. C. Nicolaou, J Chem. Soc. Chem. Commun., 1993, 617. (c) K. C. Nicolaou, P. Bertinato, A D Piscopio, T. K. Chakraborty, N. Minowa, J. Chem. Soc. Chem. Commun., 1993, 619. (d) K. C. Nicolaou, A. D. Piscopio, P. Bertinato, T. K. Chakraborty, N. Minowa, K. Koide, Chem. Eur. J., 1995, 1, 318.
22. D. Romo, S. D. Meyer, D. D. Johnson, S. L. Schreiber, J. Am. Chem. Soc., 1993, 115, 9345.
23. C. M. Hayward, D. Yohannes, S. J. Danishefsky, J. Am. Chem. Soc., 1993, 115, 9345.
A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer. Jn., J. W. Leahy, R. E. Maleczka. Jr., J. Chem. Soc. Perkins Trans. 1, 1999, 1235.
25. K. C. Nicolaou, C. N. C. Boddy, S. Braise, N. Winssinger, Angew. Chem., 1999. 111, 2230; Angew. Chem. Int. Ed. Engl., 1999, 38, 2096.
26. K. C. Nicolaou, H. J. Mitchell, N. F. Jain, N. Winssinger, R. Hughes, T. Bando, Angew. Chem., 1998, 111, 253; Angew. Chem. Int. Ed. Engl., 1999, 38, 240.
(a) K. C. Nicolaou, H. Li, C. N. C. Boddy, J. M. Ramanjulu, T. Y. Yue, S. Natarajan, X.-J. Chu, S. Brase, R. Rubsam, Chem. Eur. J., 1999, 5, 2584. (b) K. C. Nicolaou, C. N. C. Boddy, H. Li, A. E. Koumbis, M. Takayanagi, S. Natarajan, N. F. Jain, T. Bando, H. Li, R. Hughes, Chem. Eur. J. 1999, 5, 2622. (c) K. C. Nicolaou, H. J. Mitchell, N. F. Jain, R. Hughes, N. Winssinger, S. Natarajan, A. E. Koumbis, Chem. Eur. J., 1999, 5, 2648. J. A. Roesener, P. J. Scheuer, J. Am. Chem. Soc., 1986, 108, 846. S. Matsunaga, N. Fusetani, K. Hashimoto, K. Koseke, M. Norma, J. Am. Chem. Soc., 1986, 108, 847.
(a) S. Matsunaga, N. Fusetani, K. Hashimoto, M. Norma, H. Naoguchi, U. Sankawa, J. Org. Chem., 1989, 54, 1360. (b) M. R. Kernan, T. F. Molinski, D. J. Faulkner, J. Org. Chem., 1988, 53, 5014.
N. Fusetani, K. Yasumuro, S. Matsunaga, K. Hashimoto, Tetrahedron Lett., 1989, 30, 2809.
J. Kobayashi, M. Tsuda, H. Fuse, T. Sasaki, Y. Mikami, J. Nat. Prod., 1997, 60, 150.
C. J. R. Fookes, S. W. Jeffery, J. Chem. Soc. Chem. Comm., 1989, 1827.
K. N. Raymond, C. J. Carrano, Acc. Chem. Res., 1979, 12, 183.
V. Admi, U. Afek, S. Carmeli, J. Nat. Prod., 1996, 59, 396.
(a) J. M. Wasylyk, J. E. Biskupiak, C. E. Costello, C. M. Ireland, J. Org. Chem. 1983, 48, 445. (b) B. M. Degnan, C. J. Hawkins, M. F. Lavin, E. J. McCaffrey, D. L. Parry, A. L. Van den Brenk, D. J. Watters, J. Med. Chem., 1989. 32, 1349. (c) F. J. Schmitz, M. B. Ksebati, J. S. Chang, J. L. Wang, M. B. Hossain, D. Van der Helm, M. H. Engel, A. Serban, J. A. Silfer, J. Org. Chem., 1989, 54, 3463. (d) C. J. Hawkins, M. F. Lavin, K. A. Marshall, A. L. Van den Brenk, D. J. Watters, J. Med. Chem., 1990, 33, 1634.
C. M. Ireland, A. R. Durso, R. A. Newman, M. P. Hacker, J. Org. Chem., 1982, 47, 1807.
J. S. Chanr, M. H. Engel, M. B. Hossain, F. J. Schmitz, A. Serban, J. A. Silter, D. Van der Helm, J. Org. Chem., 1989, 54, 3463.
W. --C. Liu, D. Smithslusarchyk, G. Astle, W. H. Trejo, W. E. Brown, E. Meyers. J. Antibiotics, 1978, 31, 815.
M. Norte, R. Gonzalez, J. J. Fernandez, M. Rico, Tetrahedron, 1991, 47, 7437.
Y. Y. Lin, M. Risk, S. M. Ray, D. Van Engen, J. Clardy, J. Golik, J. C. James, K. Nakanishi, J. Am. Chem. Soc., 1981, 103, 6773.
J. Maddock, G. Pattenden, P. G. Wight, J. Computer-Aided Molecular Design, 1993, 7, 573.
(a) M. Ishibashi, R. E. Moore, G. M. L. Patterson, C. Xu and J. Clardy, J. Org. Chem., 1986, 51, 5300. For a synthesis of scytophycin see I. Paterson, C. Watson, K-S. Yeung, P. A. Wallace, R. A. Ward, J. Org. Chem., 1997, 62, 452.

For a synthesis of the related metabolite aplyronin see K. Yamada, M. Ojika, T. Ishigaki, Y. Yoshida, H. Ekimoto, M. Arakawa, J. Am. Chem. Soc., 1993, 115, 11020, and H. Kigoshi, M. Ojika, T. Ishigaki, K. Suenaga, ibid, 1994, 116, 7443.
D. G. I. Kingston, M. X. Kolpak, J. Am. Chem. Soc., 1980, 102, 5964.
(a) T. Ichiba, W. Y. Yoshida, P. J. Scheuer, T. Higa, D. G. Gravalos, J. Am. Chem. Soc., 1991, 113, 3173. (b) A. Nagatsu, H. Kajitani, J. Sakakibara, Tetrahedron Lett., 1995, 36, 4097.
R. E. Moore, G. M. L. Patterson, S. Mynderse, J. Barchi, T. R. Norton, E. Furusawa, S. Furusawa, Pure Appl. Chem., 1986, 58, 263.
Y. Kato, N. Fusetani, S. Matsunaga, K. Hashimoto, J. Am. Chem. Soc., 1986, 108, 2780.
(a) D. A. Evans, J. R. Gage, J. L. Leighton, J. Am. Chem. Soc., 1992, 114, 9434. (b) N. Tanimoto, S. W. Gerritz, A. Sawabe, T. Noda, S. A. Filla, S. Masamune, Angew. Chem. Int. Ed. Engl., 1994, 33, 673. (c) A. B. Smith III, G. K. Friestad, J. J. W. Duan, J. Barbosa, K. G. Hull, M. Iwashima, Y. Qui, P. G. Spoors, E. Bertounesque, B. A. Salvatore, J. Org. Chem., 1998, 63, 7596. P. A. Searle, T. F. Molinski, J. Am. Chem. Soc., 1995, 117, 8126.
51. C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, J. Am. Chem. Soc., 1998, 120, 5597.
52. (a) D. A. Evans, V. J. Cee, T. E. Smith, D. M. Fitch, P. S. Cho, Angew. Chem. Int. Ed. 2000, 39, 2533. (b) D. A. Evans, D. M. Fitch, Angew. Chem. Int. Ed., 2000, 39, 2536.
53. S. Iwasaki, H. Kobyashi, J. Furukawa, M. Namikoshi, S. Okuda, Z. Sato, I. Matsuda, T. Noda, J. Antibiotics, 1984, 37, 354.
54. (a) S. Kobayashi, M. Nakada and M. Ohno, Pure Appl. Chem., 1992, 64, 1121. (b) S. Kobayashi, M. Nakada and M. Ohno, Indian J. Chem., Sect. B, 1993. 32, 159. (c) M. Nakada, S. Kobayashi, S. Iwasaki and M. Ohno, Tetrahedron Lett., 1993, 34, 1035. (d) M. Nakada, S. Kobayashi, M. Shibasaki, S. Iwasaki and M. Ohno, Tetrahedron Lett., 1993, 34, 1039.
C. Cocito, Microhiol. Rev., 1979, 43, 145.
56. G. R. Delpierre, F. W. Eastwood, G. E. Gream, D. G. I. Kingston, P. S. Sarin, Lord Todd, D. H. Williams, J. Chem. Soc. C, 1966, 1653.
57. Y. K. Lam, D. Bogen, R. S. Chang, K. A. Faust, O. D. Hensens, D. L. Zink, C. D. Shwartz, L. Zitano, G. M. Garrity, M. M. Gagliardi, S. A. Currie, H. B. Woodruff, J. Antibiotics, 1991, 44, 613.
58. R. H. Schlessinger, Y. J. Li, J. Am. Chem. Soc., 1996, 118, 3301.
59. F. Tavares, J. P. Lawson, A. I. Meyers, J. Am. Chem. Soc., 1996, 118, 3303.
60. (a) D. A. Entwistle, S. I. Jordan, J. Montgomery, G. Pattenden, J. Chem. Soc. Perkin Trans. I, 1996, 1315. (b) D. A. Entwistle, S. I. Jordan, J. Montgomery, G. Pattenden, Synthesis, 1998, 603.
61. B. McKeever. G. Pattenden, Tetrahedron Lett., 1999, 40, 9317.
62. A. R. Carroll, B. F. Bowden, J. C. Coll, D. C. R. Hockless, B. W. Skelton, A. H. White, Aust. J. Chem., 1994, 47, 61.
63. P. Wipf. S. Venkatraman, J. Org. Chem., 1996, 61, 6517.
64. J. C. Muir, G. Pattenden, R. M. Thomas, Synthesis, 1998, 613.
65. N. Lindquist, W. Fenical, G. D. Van Duyne, J. Am. Chem. Soc., 1991, 113, 2303.
66. P. Wipf, S. Lim, J. Am. Chem. Soc., 1995, 117, 558.
67. D. R. Williams, D. A. Brooks, M. A. Berliner, J. Am. Chem. Soc., 1999, 121, 4924.
68. (a) S. Carmeli, R. E. Moore, G. L. M. Patterson, J. Am. Chem. Soc., 1990, 112, 8195. (b) S. Carmeli, R. E. Moore, G. L. M. Patterson, Tetrahedron Lett., 1991, 32, 2593.
73. D. M. James, E. Wintner, D. J. Faulkner, J. S. Siegel, Heterocycles, 1993, 35, 675.

For other synthetic work towards ulapualide see J. S. Panek, R. T. Beresis, C. A. Celatka, J. Org. Chem., 1996, 61, 6494. (b) J. S. Panek, R. T. Beresis, J. Org. Chem., 1996, 61, 6496. (c) C. A. Celatka, P. Liu, J. S. Panek, Tetrahedron Lett., 1997, 38, 5445. (d) C. A. Celatka, P. Liu, J. S. Panek, Tetrahedron Lett., 1997, 38, 5449. (e) P. Liu, J. S. Panek, Tetrahedron Lett., 1998, 39, 6143. (f) P. Liu, J. S. Panek, Tetrahedron Lett., 1998, 39, 6147.
79. J. W. Cornforth and R. H. Cornforth, J. Chem. Soc., 1947, 96.
80. Y. Hamada, M. Shibata and T. Shioira, Tetrahedron Lett., 1985, 26, 6501.
81. R. N. Misra, B. R. Brown, P. M. Sher, M. M. Patel, S. F. Hall, W-C. Han, J. C. Barrish, O. Kocy, D. N. Harris, H. J. Goldenberg, I. M. Michael, W. A.

Schumacher, M. L. Webbs, H. Monshizadegan, M. L. Ogletree, J. Med. Chem., 1993, 36, 1401.
82. N. Galeotti, C. Montagne, J. Poncet, P. Jouin, Tetrahedron Lett., 1996, 33, 2807.
83. N. Dahuron, N. Langois, A. Chiaroni and C. Riche, Heterocycles, 1996, 142, 635.
84. G. M. Atkins, E. M. Burgess, J. Am. Chem. Soc., 1968, 90, 4744.
85. P. Lafargue, P. Guenot, J. P. Lellouche, Heterocycles, 1995, 41, 947.
86. P. Wipf and C. P. Miller, Tetrahedron Lett., 1992, 33, 907.
87. D. L. Evans, D. K. Minster, U. Jordis, S. M. Hecht, A. L. Mazzu, A. I. Meyers, J. Org. Chem., 1979, 44, 497.
88. J. C. Barrish, J. Singh, S. H. Spergel, W.-C. Han, T. P. Kissick, D. R. Kronenthal, R. H. Mueller, J. Org. Chem., 1993, 58, 4494.
89. D. J. Rawlinson, G. Sosnovsky, Synthesis, 1972, 1; 1973, 567.
90. F. Tavares, A. I. Meyers, Tetrahedron Lett., 1994, 35, 6803.
91. D. R. Williams, P. D. Lowder, Y.-G. Gu, D. A. Brooks, Tetrahedron Lett., 1997, 38, 331.
92. G. Videnov, D. Kaiser, C. Kempter, G. Jung, Angew. Chem. Int. Ed. Engl., 1996, 35, 1503.
93. P. Wipf and C. P. Miller, J. Org. Chem., 1993, 58, 3604.
94. (a) D. B. Dess, J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277. (b) R. E. Ireland, L. Liu, J. Org. Chem., 1993, 58, 2899.
95. Y. Nagao, S. Yamado and E. Fujita, Tetrahedron Lett., 1983, 24, 2287.
96. P. Garner and J. M. Park, J. Org. Chem., 1987, 52, 2361.
97. (a) C. Alvarez-Ibra, S. Arias, G. Bannon, M. J. Fernandez, M. Rodrignez, V. Sinisterra, J. Chem. Soc., Chem. Commun., 1987, 1509. (b) I. Paterson, K.-S. Yeung, J. B. Smaill, Synlett, 1993, 774.
98. E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190.
99. (a) D. Caine, Org. React., 1976, 23, 1. (b) J. R. Hwu, Y. S. Wein, Y. J. Leu, J. Org. Chem., 1996, 61, 1493.
100. J. Mulzer, in 'Comprehensive Organic Synthesis', Pergamon Press, Oxford, 1991, 6, 323.
101. R. Deziel, Tetrahedron Lett., 1987, 28, 4371.
102. P. Wipf, Chem. Rev., 1995, 95, 2115.
103. S. Matsunaga, P. Liu, C. A. Celatka, J. S. Panek, N. Fusetani, J. Am. Chem. Soc. 1999, 121, 5605.

1(14. Y. Guindon, C. Yoakim, H. E. Morton, J. Org. Chem., 1984, 49, 3912.
105. D. A. Evans, J. Bartroli and T. L. Shih, J. Am. Chem. Soc., 1981, 103, 2127.
106. T. D. Penning, S. W. Djuric, R. A. Haack, V. J. Kalish, J. M. Miyashiro, B. W. Rowell and S. S. Yu, Synthetic Commun., 1990, 20, 307.
107. (a) S. D. Rychnovsky, D. J. Skalitzky, Tetrahedron Lett., 1990, 31, 945. (b) D. A. Evans, D. L. Rieger, J. R. Gage, Tetrahedron Lett., 1990, 31, 7099. (c) S. D. Rychnovsky, B. Rogers, G. Yang, J. Org. Chem., 1993, 58, 3511. (d) A. J. Robichaud, G. D. Berger, D. A. Evans, Tetrahedron Lett., 1993, 34, 8403.
108. D. A. Evans, R. L. Dow, T. L. Shih, J. M. Takacs, R. Zahler, J. Am. Chem. Soc., 1990, 112, 5290.
109. H. C. Brown, P. V., Ramachandran, J. Org. Chem., 1995, 500, 1.
110. (a) W. P. Griffith, S. V. Ley, Aldrichimica Acta, 1990, 23, 13. (b) W. P. Griffith, S. V. Ley, S. P. Marsden, J. Norman, Synthesis, 1994, 639.
111. H. Nagaoka, Y. Kishi, Tetrahedron, 1981, 37, 3873.
112. T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974.
113. F. D'Aniello, A. Mann, A. Schoenfelder, M. Taddei, Tetrahedron, 1997, 53, 1447.
114. (a) P. Herold, Helvetica Chimica Acta, 1988, 71, 354. (b) A. Mengel, O. Reiser, Chem. Rev., 1999, 99, 1191.
115. J. C. Heslin, C. J. Moody, J. Chem. Soc., Perkin Trans., I, 1988, 1417.
116. R. Noyori, H. Takaya, Acc. Chem. Res., 1990, 23, 345.
117. J. A. Dale, D. L. Dull, H. S. Mosher, J. Org. Chem., 1969, 34, 2543.
118. P. Wipf, W. Xu, H. Kim, H. Takahashi, Tetrahedron, 1997, 53, 16575.
119. E. J. Corey, N. Raju, Tetrahedron Lett., 1983, 24, 5571.
120. Negishi, E., Swanson, D. R., Rousset, C. J. J. Org. Chem., 1990, 55, 5406
121. (a) E. J. Corey, L. O. Weigel, A. R. Chamberlin, H. Cho, D. H. Hua, J. Am. Chem. Soc., 1980, 102, 6613. (b) E. J. Corey, B.-C. Pan, D. H. Hua, D. R. Deardorff, J. Am. Chem. Soc., 1982, 104, 6816. (c) P. Park, C. A. Broka, B. F. Johnson, Y. Kishi, J. Am. Chem. Soc., 1987, 109, 6205. (d) Y. Mori, M.

Asai, H. Furukawa, Heterocycles, 1992, 34, 1281. (e) B. H. Lipshutz, R. Moretti, R. Crow, Tetrahedron Lett., 1989, 30, 15. (f) A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer Jr., J. W. Leahy, R. E. Maleczka Jr., J. Am. Chem. Soc., 1997, 119, 947.
122. (a) H. C. Brown, J. A. Sikorski, S. U. Kulkarni, H. D. Lee, J. Org. Chem., 1982, 47, 863. (b) J. S. Cha, S. J. Min, J. M. Kim, O. O. Kwon, Tetrahedron Lett., 1993, 34, 5113.
123. L. H. Jones, PhD Thesis, University of Nottingham, 1998.
124. F. A. Carey, O. D. Dailey Jr., O. Hernandez, J. R. Tucker, J. Org. Chem., 1976, 41, 3975.
125. A. B. Smith III, T. J. Beauchamp, M. J. LaMarche, M. D. Kaufman, Y. Qiu, H. Arimoto, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc., 2000, 122, 8654.
126. P. Liu, J. S. Panek, J. Am. Chem. Soc., 2000, 122, 1235.
127. S. K. Chattopadhyay, G. Pattenden, Synlett, 1997, 1342.
128. M. Reader, PhD Thesis, University of Nottingham, 1995.

