
On Emotion, Learning and Uncertainty:
A Cognitive Modelling Approach

by Roman V Belavkin, MSc

Thesis submitted to The .University of Nottingham

for the degree of Doctor of Philosophy, August 2002

BEST COpy

AVAILABLE

V.ariabIe print quality

11

Contents

1 Introduction 1
1.1 Emotion and Intelligence 1
1.2 The Need to Include Emotion in Cognitive Models 2
1.3 Review of Emotion Research 3
1.4 Data Relating Intelligence and Emotion 5
1.5 Objectives 6
1.6 Overview of the Thesis 7

2 Analysis of ACT Theory and ACT-R Architecture 9
2.1 Symbolic Processing 9
2.2 Subsymbolic Processing 11
2.3 Learning 16
2.4 Changes to the ACT-R Architecture 19
2.5 The Tower of Nottingham Model 20
2.6 Properties of the ACT-R Conflict Resolution 22
2.7 Decision Making and the Principle Components of Emotions 26
2.8 ACT-R and the Inverted-U Effect 29
2.9 Summary 30

3 A Model of the Yerkes and Dodson Experiment 31
3.1 Model Overview 32
3.2 Running Experiments Using the Model 38
3.3 Learning in the Model 44
3.4 Summary 53

4 Model Results and Analysis 54
4.1 The Data 54
4.2 Criteria for Comparing Model Results with the Data 56
4.3 The GfT-Model 58
4.4 The Sp-Model 63
4.5 Discrepancy of the Model Performance 67
4.6 The A-Model 68
4.7 Conclusions 76

CONTENTS

5 Uncertainty, Noise and Emotion
5.1 Noise and Uncertainty
5.2 The H-Model with Noise Decay
5.3 More Noise, More Experience, More Information
5.4 Dynamics of Motivation
5.5 Annealing Analogy
5.6 ACT-R and a Two-Dimensional Model of Emotions
5.7 Conclusions

6 Optimist: A New Conflict Resolution and Learning Algorithm
6.1 Cost and Success Probability
6.2 Plausibility of a Solution
6.3 Problem Solving as an Observation of a Poisson Process
6.4 Failure, Success and First Success Probabilities
6.5 Estimation of the Expected Cost
6.6 The Optimal Moment to Give Up
6.7 Recursive Estimation of the Expected Cost
6.8 Resolving the Conflict
6.9 Method Performance
6.10 Analogies with Neural Network Theories
6.11 Comparison with the ACT-R parameters
6.12 OPTIMIST Conflict Resolution for ACT-R
6.13 Testing the Model Using OPTIMIST Conlict Resolution
6.14 OPTIMIST and Theories of Choice
6.15 Summary

7 Discussion
7.1 Contributions of This Work to Cognitive Modelling
7.2 On a Role of Emotion in Learning
7.3 New Methods in Computer Science
7.4 Future Work
7.5 Summary

References

APPENDICES

A Code of the Dancer Model Explained
A.1 Global Parameters Settings
A.2 Declarative Memory
A.3 Procedural Memory
A.4 Parameters Settings

B Some Modifications to the ACT-R Architecture

iii

78
79
83
85
89
90
91
92

94
95
96
98
99

100
101
103
106
108
112
114
115
119
123
124

126
126
129
129
131
131

132

142
142
142
151
175

177

CONTENTS IV

C Implementation of the OPTIMIST Conflict Resolution for ACT-R 178
C.1 Loading Instructions 178
C.2 Global Variables 178
C.3 Functions 179

D Posterior Poisson Distribution 183

Abstract

A problem of emotion and cognition is considered within a unified theory of cognition.

There is a strong case for modern cognitive models to take arousal component of emotion

into account because of its significant influence on performance (e.g. the inverted-U ef­

fect). Several hypotheses have been proposed to explain this effect, but they have not been

integrated into cognitive architectures. Based on the analysis of the ACT-R (Anderson &

Lebiere, 1998) cognitive architecture the mechanisms that can be used to model this effect

are identified. Then a model of the classical Yerkes and Dodson experiment is introduced.

The model matches the data by modifying several parameters, particularly noise and goal

value in the conflict resolution strategy. Thus, the model supports the idea that the char­

acter of decision making changes for different arousal and motivational states. The effect of

these changes on learning is analysed using information theory. In particular, randomness

in behaviour due to a noise increase leads to a faster entropy reduction. Thus, noise can

improve learning in the initial stage of problem exploration or upon changes in the environ­

ment. Furthermore, dynamic motivation can optimise the expenditure of effort. Therefore,

emotion may play an important role in adaptation of cognitive processes. It is argued

that the current conflict resolution mechanism in ACT-R does not explain the dynamics

suggested by the model. A new theory and algorithm are proposed that use posterior es­

timation of expected costs. There are three main contributions of the thesis: 1) Ways of

including the effects of emotion and motivation into cognitive models; 2) The analysis of

the role of emotion in learning and intelligence; and 3) The introduction of a new machine

learning algorithm suitable for applications not only in cognitive modelling, but in other

areas of computer science.

v

Acknowledgements

I would like to thank Frank Ritter, David Elliman and David Wood for providing brilliant

support, inspirational discussions, and patient reading of drafts during the supervision

of this thesis. I also wish to thank my father, Viacheslav Belavkin, for clarifying some

of the mathematical issues. This work was funded by the ESRC Centre for Research in

Development, Instruction, and Training (CREDIT), the University of Nottingham, and by

an Overseas Research Studentship from the Committee of Vice Chancellors and Principles

(CVCP), United Kingdom.

vi

To Rachel and her dog Didi and also to my parents.

vii

1

CHAPTER 1

Introduction

'A test of true thinking must involve emotion' (Picard, 1997, page 12).

The subject of emotion has puzzled many psychologists, philosophers and neurobiologists

since William James first attempted to define emotion (James, 1884). Many theories of

emotion, sometimes quite contradictory, have appeared since then (see Plutchik, 1994;

LeDoux, 1996; Lambie & Marcel, 2002, for reviews). Recently the subject of emotion

has attracted the attention of the computer science and artificial intelligence communities,

and has emerged into a new area of research, sometimes referred to as affective computing

(Picard, 1997).

Although without a doubt emotion is a very important component of human and

animal psychology, one of the most intriguing and interesting question remains unanswered:

Is emotion a necessary component of intelligence? And if it is, how should it be included

into the AI theory?

1.1 Emotion and Intelligence

The idea that emotion is important for intelligence is not new, and the term emotional

intelligence, introduced by Salovey and Mayer (1990), has been the subject of a popular

book by the philosopher Daniel Goleman (1995). It is known from experimental psychology

that emotion is closely related to many cognitive processes, particularly decision making

(Tversky & Kahneman, 1981; Johnson & Tversky, 1983), memory (Brown & Kulik, 1977),

and perception. Recently there have been claims, based on some experimental evidence

(Damasio, 1994), that damage to the brain limiting the influence of emotion impairs intel­

ligence. Particularly, Damasio studied patients who due to some accidents and operations

1. INTRODUCTION 2

had restricted connections in the brain between the frontal lobe, normally associated with

the executive functions and control, and the areas in the autonomic nervous system (ANS),

which is believed to be responsible for emotions. These patients, as described by Damasio in

his book, although apparently fully recovered after their operations, displayed remarkable

abnormalities in their behaviour. In particular, they were very indecisive when it came to

choosing between many similar options, and they had a tendency to repeat the same errors

many times. Thus, it was claimed, the lack of emotion impaired their decision making

and learning mechanisms. However, as noted by Sloman (1999), these claims are a little

premature, as the damaged areas of the brain are not yet sufficiently understood.

1.2 The Need to Include Emotion in Cognitive Models

Cognitive modelling is the area of cognitive science in which theories of cognition are eval­

uated by comparing the performance of computer simulations with data from psychological

experiments. Recent progress in cognitive modelling has facilitated the testing of a broad

range of psychological and cognitive theories. Extensive work in experimental psychology

has been reproduced and reconsidered by cognitive modellers within the unified theories of

cognition and their implementations, such as SOAR (Newell, 1990) and ACT-R (Anderson

& Lebiere, 1998). This work has produced n.ew insights into our understanding of percep­

tion, memory, learning, decision making. The knowledge acquired has been invaluable for

advancing artificial intelligence research. There have been few attempts, however, to study

emotion within the cognitive modelling framework, even though the need to incorporate

emotions into the cognitive theory was pointed out early on by Herbert Simon (1967).

On the other hand, it is becoming evident that cognitive models have approached

the stage where the effect of emotion should be taken into account (Belavkin, Ritter, &

Elliman, 1999). Recently some researchers have been successful in simulating quite com­

plex tasks, such as solving various non-trivial puzzles (Anderson, Kushmerick, & Lebiere,

1993; Jones, Ritter, & Wood, 2000), playing chess (Gobet & Jansen, 1994), the interaction

with graphical user interfaces (Ritter, Baxter, Jones, & Young, 2000; Fleetwood & Byrne,

2001), airtraffic control (Taatgen, 2001), and even the navigation of vehicles and aeroplanes

(Salvucci & Macuga, 2001; Schoppek, Holt, Diez, & Boehm-Davis, 2001). The performance

of subjects in these tasks can be greatly influenced by emotional experiences. Furthermore,

some models, such as the Tower of Nottingham model (Jones et al., 2000), consider child

1. INTRODUCTION 3

subjects, and their emotions are easily observable. Yet few of these computer simulations

say much about the emotion. It seems that apart from a few studies (e.g. Ritter, 1993) in

cognitive science and modelling the subject of emotion has been neglected.

1.3 Review of Emotion Research

Perhaps the biggest challenge in emotion research is the fact that there is no unified theory of

emotion. Psychologists and philosophers still cannot agree on the fundamental point in the

subject about what comes first: feeling or thought. Do we feel afraid because we run from a

bear (James, 1884), or do we run from the bear because we are afraid (Cannon, 1915, 1929;

Bard, 1934)? This debate has been transformed more recently into the discussion between

the followers of the cognitive appraisal traditions of Schachter and Singer (1962), in which

cognition is considered to be the main elicitor of emotions, and their critics (e.g. Zajonc,

1980; LeDoux, 1990). The latter favour the idea that emotions arise from subconscious

appraisal processes and may occur independently of any conscious awareness of the reasons

causing the emotion (unlike cognitive appraisal). The main argument against cognitive

appraisal was the fact that people sometimes can feel sad without clearly understanding

the reasons why. In addition, the results of some more recent experiments suggest that

feelings associated with at least primary emotions (e.g. fear) can occur ahead of their

conscious awareness (LeDoux, 1990). Also, some stroke patients described by Damasio

(1994) reported that they no longer felt sadness or happiness in certain scenes of movies

they had previously watched, although their memories and experiences suggested that they

should have. Thus, reasoning about emotion can occur without the emotional experience

itself.

Despite the great controversy of different theories a number of computational mod­

els have been developed (see Hudlicka & Fellous, 1996; Picard, 1997, for reviews). For ex­

ample, a very influential model of cognitive appraisal have been proposed by Ortony, Clore,

and Collins (1988). This model allows the mapping of external stimuli and agent's internal

representations onto a set of emotions. There are other models of cognitive appraisal, such

as the rule-based model by Scherer (1993), which allow reasoning about emotions based on

the subject's motivations, environmental factors, etc. Another example is the categorisation

model by Roseman, Antoniou, and Jose (1996).

Cognitive appraisal models are used in agent architectures to express emotions by

1. INTRODUCTION 4

intelligent agents and robots (e.g. Bates, Loyall, & Reilly, 1992; Cahn, 1990; Scheutz &

Logan,2001). Although these models can correctly predict which emotions a subject would

feel, unfortunately, these symbolic representations do not explain what happens to the

thinking process itself as a result of these emotions. For example, what are the implications

of assembling the Tower of Hanoi in an angry or a happy mood? It is clear that the .cognitive

appraisal models alone cannot explain the contribution of emotion to intelligence.

An important development in this area became the work by Frijda (1986) who

proposed a theory in which emotions are seen as a control system of an agent. In this theory

and its computational implementation (Frijda & Swagerman, 1987) emotions monitor the

goals satisfaction and may change the behaviour of an agent accordingly by sending interrupt

signals. A similar approach has been adopted by Oatley and Johnson-Laird (1987).

A different approach to understanding emotion and its relation to cognition was

suggested by Aaron Sloman and his group (Sloman, 2001). They see emotions, as well

as other psychological phenomena, as a consequence of the architectural requirements of

different animals or agents, which is necessary to survive or achieve their goals. By defining

more sophisticated requirements for agent architectures they look into what states these

architectures support. It is claimed that behaviour similar to emotional reactions could be

observed in these agents. For example, some regulatory mechanisms can put an agent into

different modes depending on the situation in the environment or the agent itself, similar

to the states associated with primary emotions such as fear or anxiety. Unfortunately the

lack of reference to psychological theories does not allow their architectures to be tested

against experimental data.

Some of the more psychologically grounded research is the work of Dorner and

colleagues. Their PSI-theory attempts to integrate cognition, emotion and motivation using

connectionist approach (Dorner & Hille, 1995; Bartl & Dorner, 1998). PSI was implemented

as a computational model and tested on1 data from subjects. Some of the important

features of this work are emotional modulations of information processing and action control.

In addition, PSI is able to express its emotions using a picture of a human face. The

emotions observable in PSI's facial expression and behaviour resembled the expressions of

the subjects. PSI is remarkable because it is one of the few attempts to compare emotions

expressed by a model and their effect on behaviour with data. This approach of testing

theoretical predictions by grounding them in experimental data will be adopted throughout

this thesis.

1. INTRODUCTION 5

1.4 Data Relating Intelligence and Emotion

As was mentioned earlier, emotion is believed to be involved in cognitive processes crucial

for intelligence, such as motivation, decision making and memory. One may wonder if there

exists any experimental data supporting these claims, and which can be tested on a model.

Some of the examples of such experiments can be found in the studies of the inverted-U

effect (see Easterbrook, 1959; Anderson, 1990, for reviews).

The first experiment in which the inverted-U effect was observed is the famous

'dancing mouse' experiment of Yerkes and Dodson (1908). In this experiment they studied

the speed of learning in mice under different levels of stimulation and task difficulty. The

mice were placed into a discrimination chamber with two exits, and they were trained for

several days always to escape through one particular door marked by a white card. If a

mouse tried to escape through a door with the black card, it received an electrical shock.

The order of the doors was changed randomly, so the mice had to learn to choose the door

based on its colour rather than on its position. They studied learning in several groups,

each trained using different strength of electrical signals and under different conditions of

visual discrimination. The main result was that mice trained with a medium signal learned

faster than those trained with either a weak or a strong stimulus. Thus, it was found that

performance (speed of learning) increases only up to a certain level of stimulation, and

stronger signals hinder the performance. This effect was especially noticeable if the task

was more difficult (Le. in darker conditions with poorer discrimination).

A series of other experiments demonstrated the inverted-U effect in various tasks

(e.g. Naatanen, 1973; Gupta, 1977; Anderson & Revelle, 1982), which led to the inverted-U

hypothesis that cognitive performance is curvilinearly related to the level of arousal (see

Figure 1.1). Arousal is a generalised term describing different levels of activation of the

ANS, such as fatigue or alertness, and it is related to the levels of external or internal

stimulation, such as sensory inputs, emotion, etc (for discussion of the term arousal see

Hebb, 1955; Thayer, 1978; Humphreys & Revelle, 1984; Anderson, 1990). The level of

arousal can be observed experimentally, for example using GSR (galvanic skin response) or

EDR (electrodermal response).

The multidimensional nature of arousal helps to explain the inverted-U phe­

nomenon. For example, Humphreys and Revelle (1984) suggested that different cognitive

parameters ('memory capacity', 'information transfer', etc) depend differently on arousal,

1. INTRODUCTION 6

max

Activation (arousal)

FIG URE 1.1: The inverted-U hypothesis relating cognitive performance to the level of
arousal.

and, as a result, performance is a curvilinear (inverted-U) function of arousal with maxi­

mum at a particular point, which may also depend on a task and individual differences.

Although the inverted-U hypothesis as well as the term arousal itself have been

periodically criticised (Broen & Storms, 1961; Neiss, 1990), there exists a wide range of

experimental data supporting the phenomenon (see Anderson, 1990, for a review). In

particular, a number of experiments was devoted specifically to the relation between per­

formance and arousal associated with strong emotions such as anxiety (Mandler & Sarason,

1952; Liebert & Morris, 1967; Wine, 1971; Matthews, 1985), and their results are in favour

of the Yerkes and Dodson law.

The value of the inverted-U phenomenon and experiments for this research is

that they provide data relating the two crucial concepts: performance, which is related to

intelligence, and arousal, which is an important characteristic of emotional experience.

1.5 Objectives

In this research the subject of emotion will be considered from the practical point of the

need to include the effect of emotion on problem solving in cognitive models. Avoiding

the controversy of many different theories, definitions of emotions and related philosophical

questions we shall start from modelling a particular classical experiment - the Yerkes

and Dodson inverted-U experiment. The reason why this experiment has been chosen is,

perhaps, its importance and popularity. Indeed, despite its significant age the article is

referenced practically in every work related to arousal and the inverted-U effect (the 'Web

of Science' web-site found over 700 citations). In addition, the task itself is not very difficult:

1. INTRODUCTION 7

the model has to learn which of the two doors to choose. A cognitive model that predicts

the results of such an experiment may help us to understand the functional relation between

cognition and the principal components of emotions (Le. arousal).

The objectives of the study are listed below:

1. Analyse the state of the art in cognitive architecture and the results of some models

in order to determine the methods suitable for creating the model.

2. Create a model of the Yerkes and Dodson experiment which is sufficiently complex to

obtain a fair match with the data.

3. Analyse the model results and articulate its implications for the nature of the effects

of arousal on cognitive processes.

4. Test whether there is any consistent discrepancy due to the limitations of the current

theory. Refer to other cognitive modelling work to see whether similar problems have

been observed.

5. If such discrepancies are found, propose methods to improve cognitive models' per­

formance on tasks in which the effects of emotions are important.

6. Develop a new theory that could incorporate the suggested changes.

7. Analyse the value of this work and its implications for other areas of AI and computer

science.

1.6 Overview of the Thesis

In the next chapter we shall briefly describe and analyse ACT-R (Anderson & Lebiere,

1998) - currently the most popular cognitive architecture.! Then some interesting results

of existing ACT-R models and related problems will be outlined. The properties of some

variables and mechanisms in ACT-R, particularly the decision making, learning and memory

mechanisms, will be analysed, and a method to model the inverted-U effect by modifying

parameters of these mechanisms will be proposed.

The model of the Yerkes and Dodson experiment will be described in Chapter 3,

and its complete code in Appendix A. The results of several modifications of the model

1 The majority of ACT-R models presented for the Fourth International Conference on Cognitive Modelling
2001 was overwhelming.

1. INTRODUCTION 8

will be presented in Chapter 4. It will be shown that performance under different levels

of stimulation (and arousal) corresponds to different values of motivational and random­

ness determinants of the ACT-R decision making mechanism. The possible implications of

arousal on memory will be also considered.

Chapter 5 will consider the implications of different modes of decision making on

the effectiveness of learning. By using the information theory approach it will be shown

how randomness in behaviour controlled through the noise variance in ACT-R helps the

model to learn faster at certain stages of problem solving. It will be suggested that the level

of randomness (noise) reflects the level of uncertainty about the task. It will be shown that

the level of noise controlled dynamically by entropy parameter can significantly improve the

match between model and data. The dynamics of the decision making parameters will be

compared with some known search and optimisation techniques. It will be suggested that

emotion and arousal shift the decision making strategy dynamically in a similar way to the

heuristic methods already known in AI. Thus, emotion may indeed make problem solving

more adaptive and improve intelligence.

The current ACT-R theory does not include the proposed dynamics. A new algo­

rithm for decision making and learning will be described in Chapter 6. This new method

possesses the dynamics of motivation and randomness, which is controlled automatically

through the interaction with the environment. In addition, the proposed algorithm allows

us to reduce the number of variables in ACT-R. An implementation of the new algorithm for

ACT-R will be presented, and the model using this new algorithm will be compared with the

data. Some animal learning and neural theories will be presented to support the plausibil­

ity of the new method. The similarities and differences of the algorithm to various modern

optimisation techniques will be outlined. The self-adaptiveness and low computational cost

of the new method suggest that it can be employed for problems outside the cognitive mod­

elling domain, particularly, for search and optimisation problems with unknown solutions

distributions.

The discussion of the results and conclusions of the thesis will be presented in the

final chapter.

9

CHAPTER 2

Analysis of ACT Theory and ACT-R Architecture

In this chapter we shall briefly outline the ACT-R cognitive architecture (Anderson &

Lebiere, 1998) and the underlying theory. Allen Newell pointed out in his book that ACT-R

was perhaps the most complete theory and suggested it (along with his own architecture

SOAR) as one of the best candidates for the unified theory of cognition (Newell, 1990). At

the moment of writing this thesis ACT-R became the most popular and widely accepted

cognitive architecture. In this chapter we shall describe the main equations and mechanisms

of ACT-R, which are particularly important for this study. Some interesting results of

recent cognitive models implemented in ACT-R will be presented. In particular, the Tower

of Nottingham model (Jones et al., 2000), which indicated that the role of noise in ACT-R

conflict resolution should be studied more thoroughly. The influence of the ACT-R conflict

resolution parameters on the character of decision making will be investigated on examples

and using asymptotic analysis. The described properties of ACT-R will be compared with

theories of human decision making, motivation and some proposed explanations of the

inverted-U effect. Finally, a way to model these phenomena using ACT-R will be suggested

in the end of the chapter.

2.1 Symbolic Processing

On the surface of ACT-R lays a symbolic goal-directed production system. New goals are

put on the goal-stack and compared with the IF part of production rules, of which one is

selected and fired. ACT-R follows the assumption that there are two types of knowledge

- declarative and procedural. Therefore, symbols (memory units) in ACT-R are classified

into two categories.

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 10

2.1.1 Declarative Memory

Declarative knowledge represents objects or facts, which we acquire from the environment.

The corresponding symbols in ACT-R are called chunks and they form the declarative

memory. Altogether chunks represent ACT-R'S current knowledge of the problem it is

working on and the environment. For instance, Figure 2.1 illustrates schematically a chunk

that represents the fact that 3 plus 4 is 7. Another example could be a fact 'fish is an

animal that lives in water'.

Chunks in ACT-R can be further categorised by their chunk-type. These types

represent templates for particular types of knowledge facts. We could compare the chunk­

types with classes, and chunks with objects (instances of classes).

3 4

7

FIGURE 2.1: A chunk representing addition fact 3 + 4 = 7.

2.1.2 Procedural Memory

Procedural knowledge represents the skills needed to manipulate the declarative facts in

order to solve a problem. One may think of the procedural knowledge representing the

sub-conscious processes of modification of the working memory contents (Le. setting a new

goal) or actions in the outside world.

Procedural knowledge is encoded in ACT-R in the form of production rules. The

left-hand side of a rule (IF part or antecedent) must contain a goal (one of the chunks)

and possibly several constraints (also chunks) to be matched against. The right-hand side

(THEN part or consequent) can perform several actions, such as modify the goal, create a

new goal, create several new chunks, remove the current goal, etc.

ACT-R matches production rules by the type of a goal-chunk (not by its contents).

For example, if the goal is to find the 'sum of 3 and 4', ACT-R looks for a rule with an

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 11

addition chunk-type as a goal. An example of the corresponding rule is shown schematically

on Figure 2.2. The rule also looks for a constraint chunk representing the answer to the

problem - the fact that 3 + 4 = 7. If such fact is found in the memory, then the goal-chunk

is modified by filling in the answer.

IFhGOAL E~?zAIIDf:~?J
THEN

e
FIGURE 2.2: Schematic representation of a production rule: IF the goal is to find the sum
3 + 4 and there is known addition FACT 3 + 4 = 7, THEN the answer is 7.

One might think that the above described process is a bit confusing, because the

answer was already known. However, experiments show that we usually do not have to

recalculate the sum 3 + 4 every time we need the answer. Instead, we quickly recall the

answer because we have dealt with this problem many times before. If the answer was

not known, then ACT-R model would need to use other production rules to calculate the

required result. For example, adding 1 several times: 3+ 1 = 4, 4+ 1 = 5, etc. The problems

of cognitive arithmetics have been modelled using ACT-R by Lebiere and Anderson (1998).

2.2 Subsymbolic Processing

The subsymbolic level of ACT-R is, perhaps, its main distinguishing feature from other

cognitive architectures. In brief, all the symbols in ACT-R (chunks and production rules)

have values attached to them (activations, utilities, etc). Moreover, the symbols can be

connected by a web of associations, which also have values. These values are controlled by

the rational analysis mechanism, which acts beneath the symbolic level of the production

system. This mechanism can be seen as a type of statistical optimisation (e.g. Bayesian

networks). The subsymbolic values can be learned from experience, and may also depend

on time. Activations and associations affect many processes in the production system, such

as choice of production rules, retrieval of knowledge facts, retrieval times (latencies), etc.

Subsymbolic computations can be controlled through many global parameters,

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 12

such as noise variance, goal value, retrieval and utility thresholds and so on. These param­

eters can dramatically alter the behaviour of ACT-R models. Many of these parameters

are used by cognitive modellers to adjust the performance of their models and test theories

(e.g. Jones et al., 2000; Lovett, Daily, & Reder, 2000).

One may think that subsymbolic computations is a step back from the pure sym­

bolic production system approach in a sense defined by Post (1943) and used by Newell and

Simon (1972). SOAR, for example, does not use subsymbolic computations. Although it

is theoretically possible to realise the effects of the subsymbolic computations using many

production rules, the benefits of the automatic, parameter-controlled subsymbolic mecha­

nisms are enormous and save a lot of resources for model testing and verification. Moreover,

the theory behind the subsymbolic computations of ACT-R has a long history and was in­

spired by works in cognitive psychology and neuroscience. For example, many constraints

implemented in ACT-R Version 4 were derived from the neural implementation of ACT-R

- the ACT-RN (Lebiere & Anderson, 1993).

2.2.1 Conflict Resolution

Conflict resolution is a process of selecting one rule out of several matching the current goal

state. Many production systems realise different algorithms to overcome such conflicts.

ACT-R uses a powerful statistical method that arises from series of studies of subjects'

choice behaviour.

In ACT-R each production rule has an expected gain E value attached to it (also

sometimes called utility U). In order to resolve the conflict, ACT-R compares the expected

gains of the rules in the conflict set and selects the one with the highest gain. The expected

gain is defined as:

(2.1)

Here Pi is called the expected probability of rule i, and it represents the probability that the

goal will be achieved if the rule fires, G is the goal value (usually measured in time units), Ci

is the expected cost representing the effort (also in time units) required to achieve the goal if

rule i fires, and ~(s) is called the expected gain noise. The noise here is some random value

added to each rule in a conflict set on every cycle. This random value ~ is calculated for

each rule individually from logistic distribution with the mean value of zero, and variance

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 13

determined by the parameter s:
2 _ 71"2 s2

(7 - -3-.

Thus, equation (2.1) describes a distribution of E with the mean value PG - C and vari­

ance controlled by the parameter s. Noise adds a nondeterministic flavour to the conflict

resolution in ACT-R, because when s > 0 all production rules even with the same value of

PG - C will have slightly different expected gains E.

As one can see, expected probability ~ and cost Ci in (2.1) are properties of a

production rule, while goal value G and noise s are global parameters.

The conflict resolution using expected gains (2.1) enabled the modelling of many

characteristics of human problem solving. For example, ACT-R models can predict the

results of probability matching experiments (Friedman et al., 1964), in which subjects dis­

played that their choice depends on the rate of successes. Friedman et al. showed, that

although subjects choose according to the probability of success (or reinforcement), the

proportion of choice of an alternative with the maximum success probability (P = 1) never

reaches 1. As one can see from (2.1), expected gain E of a rule increases linearly with the

probability P. However, the addition of noise increases the chance of rules with smaller

probabilities to win the competition, which corresponds to the opportunistic choice be­

haviour of humans and animals.

In addition to the probability of success, Myers, Fort, Katz, and Suydam (1963)

showed that the choice depends also on the value of a reward (pay-off). This property is re­

flected in ACT-R in G, the goal value parameter in equation (2.1), which can shift the choice

towards the rules with higher probabilities. It has been shown (see Figure 2.3) that ACT-R

can successfully match the results of these probability matching experiments (Anderson,

1990; Anderson et al., 1993).

2.2.2 Chunk Activation

Chunks (declarative memory units) have activation values defined as:

Ai = Bi + L Wj Sji ,
j

(2.2)

where Bi is the base-level of activation of chunk i, Wj is the source activation from chunk

j, and Sji is the strength of association between chunk i and chunk j.

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE

1.0,..-_______ --,

10 Cents
-Theory

8 0.9 ······Data

~
~ 0.8

........
.•. ..,. I 0.7 ..••••• No Payoff

-'
..........

.. '
0.6 -1------.-------1

0.6 0.7 0.8
Experimental Probability

14

FIGURE 2.3: Proportion of choice as a function of different payoffs and probability (from
Anderson & Lebiere, 1998, page 69). The model reproduces data from Myers et al. (1963).

The idea behind Wj and Sji is as follows. Activation of the goal chunk (the source

of activation) is spread evenly between the other chunks matched by the production rule

(constraints), such that each jth chunk in the production left-hand side receives its part

of the goal activation Wj. This part is then multiplied by Sji, which represents how useful

chunk i was in the past whenever j was the goal. In fact, Sji is an estimate of a logarithm of

the probability that i will be successfully retrieved (see Anderson, Lebiere, & Lovett, 1998,

for further details). The products WjSji are then summed over all chunks j which referred

to i. So, the more productions retrieve a chunk, the higher its activation becomes.

The stochastic and time-dependent nature of memory is reflected in ACT-R in Bi .

Base level is a function of time:

(2.3)

where f3 = B(O) is the base level constant (activation of a chunk when it is created), -dInt

reflects the decay of the base level in time t, where d controls the decay rate, 6 (S1) is the

permanent activation noise added only at creation time, and 6(S2) is the activation noise

added at every cycle. The parameters S1 and 82 control the variance of the corresponding

noise.

Activations of chunks influence the times needed to retrieve them. One can see

from equation (2.3) that because the base-level decays in time, the facts acquired earlier are

harder to recall. However, equation (2.3) reflects only part of the dynamics of the activation

in time. The base-level learning mechanism of ACT-R reinforces the activation of a chunk

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 15

whenever it is used by production rules. This mechanism will be described later in this

chapter.

2.2.3 Production Strength

Similar to chunks, productions in ACT-R have their own activations Sp called production

strength. As with activations affecting the times to retrieve chunks, production strengths

affect the time needed to retrieve production rules. However, current versions of ACT-R

do not provide as many parameters to control the strength as for the chunks' activations.

Particularly, there is no base level constant /3, nor is there any controlled noise ~ added to

the strengths of productions.

Production strength decays in time similarly to chunk activation. The decay rate

is controlled by a separate d parameter. The mechanism of learning production strength is

also similar to the learning of base-levels and will be described later.

The production strength mechanism has been criticised recently (ACT-R work­

shop, 2001) for its inconsistency with the conflict resolution. Indeed, productions have two

completely independent values: expected gain E and production strength Sp. One of the

main reasons for keeping production strength is that expected gain (2.1) does not reflect

which of the productions were learned earlier or later, nor how recently a production has

been used. At the ACT-R workshop in 2001 Neils Taatgen proposed an alternative to pro­

duction strength in a form of time-decaying expected gain noise for each production (e.g.

replacing the global noise ~(s) in (2.1) by ~ (Si(t))). The nature of the noise decay, however,

was not explained. In this work noise decay will be explained by uncertainty reduction (see

Chapter 5). A new conflict resolution algorithm described in Chapter 6 naturally imple­

ments the rule-based decaying noise, and can potentially address the issues of production

strength.

2.2.4 Retrieval Times

Time periods between the decisions are probably some of the most often studied variables in

psychological experiments. A great deal of ACT-R theory is dedicated to retrieval times (or

latencies), which describe the simulated time periods between the cycles (firing of production

rules). The success of ACT-R in cognitive modelling is partly explained by its elaborate

theory of activation-based retrieval, which provides good predictions of the timing data.

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 16

The time needed to retrieve chunk i in production rule p is defined as:

(2.4)

where F and f are scaling factors (by default F = 1 sec, f = 1), Ai is the activation

of chunk i, and Sp is the strength of production p.1 One can see that times to retrieve

chunks exponentially increase for lower activations and production strengths. The retrieval

threshold parameter defines the activation level, below which a chunk can no longer be

retrieved. By default the retrieval threshold is set to zero, thus the time of retrieval failure

is e-sp .

If a production rule matches more than one chunk, then the latency is simply a

sum of retrieval times of all the chunks in the production:

2.3 Learning

If ACT-R could not learn, it would not be a good candidate for a theory of mind. Thanks

to a number of learning mechanisms ACT-R can acquire information in the form of symbols

and subsymbolic values and transform dramatically the knowledge of a model during its

run. In this section only the learning mechanisms that are important for this work will be

outlined. The descriptions of other mechanisms, such as association strength learning, which

is not used here, can be found in the ACT-R book (Anderson & Lebiere, 1998, Chapter 4).

2.3.1 Learning Symbols

The initial contents of the declarative memory of an ACT-R model can be encoded by the

programmer. This will allow ACT-R to start working on a problem. However, chunks

may be added and modified by ACT-R's learning mechanisms during the model run. New

chunks can be acquired from the outside world if ACT-R has ways of interacting with it,

for example using the perceptual-motor extensions of ACT-R (Byrne & Anderson, 1998) or

the Eye and Hand (Baxter & rutter, 1996; Ritter et al., 2000) mechanisms of the Tower of

Nottingham simulation (Jones et al., 2000). The model described in the next chapter uses

lInstead of chunk activation Ai, the retrieval time definition in the ACT-R book (Anderson & Lebiere,
1998) uses the match score MiP' which is used for partial matching mechanism. In case of a perfect match
M ip = Ai. Because in this work partial matching is not used, we write Ai in the retrieval equation.

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 17

its own simple perception-action model capable of creating and modifying chunks in the

model memory based on the information in the simulated environment.

The production rules should also be encoded beforehand by the programmer, but

there is a mechanism in ACT-R, which allows it to learn new rules. This mechanism is

called production compilation, which takes its roots from the analogy mechanism of the

earlier versions of ACT-R, and has a long history. Production compilation is quite different

from the chunking mechanism in SOAR(Rosenbloom & Newell, 1987). There are more

constraints and consequently more limitations. The constraints, however, allow modellers

more control over what is learned in the models.

ACT-R follows the proceduralisation theory of skill acquisition, that is procedural

knowledge is formed from declarative. Particularly, from declarative representations of

dependencies between events or goal states. These representations are encoded in ACT­

R in the form of chunks of a special type dependency, which become the skeletons for

new production rules. Production compilation is described in detail in the ACT-R book

(Anderson & Lebiere, 1998).

2.3.2 Learning the Conflict Resolution Parameters

When a goal or a subgoal is completed, it is removed from the stack. A goal can be removed

from the stack with two outcomes: success or failure. 2 A success occurs in the following

situations:

1. When the goal is removed by a rule with the explicit : success flag.

2. When the goal is removed by any other rule without the : failure flag.

A failure is registered in one of the following situations:

1. When the goal is removed by a rule with the explicit : failure flag.

2. When the goal is removed because no productions have been found to match the

current goal (instantiation failure).

ACT-R keeps track of which productions set the goals in the first place. So, when

a goal is completed, ACT-R can update the number of successful or failed completions of

2It is also possibile to have a neutral outcome which does not change anything.

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 18

the goal for the corresponding rule. Each rule has its number of successes and failures.

Using these numbers ACT-R can empirically estimate the probability Pi in equation (2.1):

Pi = Successesi (2.5)
Successesi + Failuresi

The number of successes by default is set to 1, thus the initial value of probability of any

rule Pi = 1. Anderson and Lebiere (1998, page 135) explain that it makes prospects of

new productions optimistic. This approach, however, is biased, and it will be discussed in

Chapter 5.

ACT-R also keeps track of the time elapsed between the times at which a goal was

pushed on and popped off the stack. Thus the average cost of the production can also be

estimated:
c- _ Effortsi ()

~ - Successesi + Failuresi ' 2.6

where efforts is the cumulative time spent in all instances the production was used.

The described above mechanism of learning probabilities ~ and costs Ci in ACT-R

is called parameters learning. The initial values of successes, failures, and efforts can be

set directly, which is useful when the probabilities and costs should be set in advance, or

change slowly.

It has been noticed in many animal learning experiments that not only the number

of successes and failures is important, but also their timing (Baum, 1973; Mark & Gallistel,

1994). Particularly, more recent outcomes playa greater role in determining the choice

behaviour. It has been proposed that animals are matching the reinforcement rate by

estimating the rate of a Poisson process (Myerson & Miezin, 1980). ACT-R has a mechanism

for events discounting making recent successes and failures more important than the older

ones. As a result the probabilities and costs become decaying functions over time, and the

learning is more adaptable (see Lovett & Anderson, 1996; Lovett, 1998). Due to the great

computational overhead of the events discounting mechanism it was not used in this study.

However, the new conflict resolution algorithm proposed in Chapter 6 uses posterior Poisson

distribution to estimate the expected costs of production rules. Thus, it implements the

idea more directly. Also, the algorithm is computationally cheaper.

2.3.3 Learning Chunk Activations and Production Strengths

If a chunk is not used, then its activation base-level decays according to equation (2.3).

However, the base-level may increase each time the chunk is retrieved. This mechanism is

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 19

defined by the base-level learning equation:

(2.7)

where tl, t2, ... ,tn are the time lags since chunk i has been used. As a result of this, learning

chunks that are used more frequently have high activations, and activations of the rarely

needed chunks decay below the retrieval threshold.

A similar mechanism is used for the production strength learning:

(2.8)

As was mentioned earlier, the decay rates d in equations (2.7) and (2.8) are set indepen­

dently. The default values of d are .5.

2.4 Changes to the ACT-R Architecture

Some of the definitions described in this chapter do not match exactly the definitions in

the ACT-R book (Anderson & Lebiere, 1998). Particularly, the expected probability was

defined originally as a product of sub-probabilities q and r, where q was the probability that

the rule fires if it is selected, and r was the probability that the goal would be achieved. The

definition of P = qr, although seeming to be justified, led to a lot of problems in models,

such as a decrease of P for rules, which should have been more successful. The q part of

the expected probability has been abandoned in ACT-R Version 5.

Another change in ACT-R Version 5 is related to G parameter (goal value). In

ACT-R 4 the mechanism called goal discounting was subtracting the cost of a rule from the

goal value of a subgoal. This resulted sometimes in negative goal values in deep goal stacks.

Because such behaviour led to undesired effects, the goal discounting mechanism was also

abandoned in Version 5.

The problems described above were encountered by the author during the design

of the model described in the next chapter. The model was written before the release of

ACT-R 5. Two of the significant improvements included in ACT-R 5 were separately coded

and included in the model described in the next chapter. Particularly, two hook-functions

realise the changes described in this section (see Appendix B).

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 20

FIGURE 2.4: The Tower of Nottingham and four of 21 wooden blocks used to build the
Tower of Nottingham (Wood & Middleton, 1975)

2.5 The Tower of Nottingham Model

Many ideas for this work were inspired by the results of the Tower of Nottingham model

(Jones et al., 2000), which was used to study cognitive development. It is hard to create

a model of a young learner. Children's behaviour is often very hard to predict. The idea

used by Jones was first to create a fair model of adult subjects assembling the Tower of

Nottingham puzzle (Wood & Middleton, 1975) shown on Figure 2.4, and then to achieve a

match with the data from seven-year old children by modifying the original adult model.

The model was implemented in ACT-R Version 3, and it used the Nottingham Eye

and Hand perception-action module (Baxter & Ritter, 1996; Ritter et al., 2000) to interact

with the task simulation. The model achieved a fair match with the data from adult subjects

at default parameters settings. Then, in order to match young problem solvers, Jones

modified several architectural parameters, such as number of chunks in working memory,

retrieval threshold, fovea and parafovea sizes (perception), and other parameters. All the

modifications tried were based on prominent theories of development.

It is not necessary to describe here all the results of Jones' work. However, there

was one particular adjustment that deserves our special attention. It was the model with

increased noise ~ in the conflict resolution mechanism (see equation (2.1)). This simple

modification alone produced excellent results. Other single manipulations could not produce

such a good model fit. The EGN6 model (with parameter : egn set to 6.0) produced a

particularly good match for the data, such as time needed to complete each layer and the

number of constructions assembled on each layer (Figure 2.5 from Jones et al., 2000).

The fact that children seemed to be more 'noisy' or, speaking in ACT-R terms,

less rational than adults, led to some interesting speculations and questions. For example,

it may indicate that emotions playa greater role in children's learning and problem solving

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 21

80 12
o ?yo subjects .I!l o 7yo subjects 0.10

60 • EGN6 model ~ • EGN6 model

'iii'
~ 8
c:

" 0 c: tl 6 140

I 4 ~ 20
2

0 0
SIze6 SIzeS S1ze4 Slze3 Slze2

FIGURE 2.5: Time taken to assemble each layer and number of constructions assembled on
each layer of the Tower by children and EGN6 model (from Jones et al., 2000).

(Belavkin et al., 1999). Indeed, joy and frustration are more observable in children. Another

question was whether we could model even younger children by further increasing the noise.

Or could these or better results be produced by modifying some other parameters in conflict

resolution?

An attempt to model 3-4 year old children's behaviour by simply increasing the

noise did not lead to the desired result: although the model as the 3-4 year old children

could no longer solve the problem (Belavkin et al., 1999) it would not give up on a hopeless

task. The model could ran for several simulated hours, which obviously is very far from

the behaviour of 3-4 years old children who cannot solve the puzzle. Perhaps, part of the

problem may have been addressed to the limitations of the model. However, the inability

of ACT-R to evaluate its own performance in such situation may also indicate that there is

a problem with the architecture.

Finally, the model showed some consistent discrepancies with the data: the number

of errors and constructions for the first layer was usually a bit lower than for the subjects.

This mismatch could be fixed by a further increase of the expected gain noise. However,

this would result in a longer time needed by the model to solve the problem and many

more errors during assembling the other layers of the Tower. It was suggested that noise in

conflict resolution should decay towards the end of the task (Belavkin, 2001).

The results of the Tower of Nottingham pointed to the need for a closer study of

the ACT-R conflict resolution mechanism and the influence of its parameters on problem

solving.

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 22

2.6 Properties of the ACT- R Conflict Resolution

In this section the properties of the conflict resolution in ACT- R are analysed. The results of

this analysis became the starting point in the research presented here. First, let us consider

one example.

Example Imagine a simple and everyday situation: a pedestrian is walking along the

main road , and suddenly his way is blocked by a car on a side-road , which has stopped

to pass the vehicles on the main road. In this situation the pedestrian has at least two

alternatives:

1. Wait until the car pulls out

2. Go around the car

We can model this situation in ACT- R, encoding the above alternative decisions in pro­

duction rules. Because they both satisfy the same goal (to cross the side- road), we have a

conflict, which in ACT- R will be resolved by comparing the expected gains of the rules.

Assume that executing the first rule , given that the car pulls out immediately, will

take 5 seconds (C1 = 5), and 10 seconds will be required to go around the car (C2 = 10).

This information may have been learned from previous experience. Because it is not certain

that the car is going to pull out immediately, the expected probability of the first rule is less

than for the second. Let PI = .5 and P2 = .8. Then for G = 20 seconds (the default value)

the mean values of the expected gains will be EI = .5 · 20 - 5 = 5 and E2 = .8·20 - 10 = 6.

So, for G = 20 the second rule will have higher priority because EI < E2 .

PIE) Expected Gain Dis(fibulions, G = 20

E=PG·C

- Rule I : P= 5.C= 5
_ Rule2:P = .8.C=1O

PIE) Expected Gain Distributions. G = 15

E= PG · C

~ Rule I : P=.5.C= 5
~ Rulc 2: P= .8. C= 10

FIGURE 2.6: An example of how the priority of rules in conflict resolution changes for
different values of G. Left: G = 20 , EI < E2 ; Right: G = 15, EI > E 2 .

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 23

Not only expected probabilities and costs of rules affect the conflict resolution. In

the above example one can easily check that for lower goal values, such as G = 15, the

first rule will have higher expected gain, and it will be selected, despite its lower expected

probability (Figure 2.6, right). Also, if the noise variance is high the choice will become

more random and less dependent on Ps and Cs of rules in the conflict set.

The distributions of expected gains of the two rules with noise s = .56 are shown

on Figure 2.6. The left plot illustrates distributions when G = 20, and for G = 15 on the

right plot. One can see from Figure 2.6 that changing the goal value can be compared with

changing the perspective at which we look at the two distributions, which can be compared

with two hills. Such an analogy with a change of perspective was used by Tversky and

Kahneman (1981) in their theory of decision framing, when they explained the difference

in decision priority of subjects for the same problem presented in a different context.

2.6.1 Asymptotic Analysis of Choice Probability

In the example described above we have seen how the choice of a rule can be affected by

the goal value and noise. Let us put these observations into a more precise mathematical

form.

Consider a conflict set of n production rules. The probability P(i) that rule i will

be selected is given in closed-form approximation by the Boltzmann 'soft-max' equation:

(2.9)

where Ei is the evaluation of ith rule (PiG - Cd, and T is called the noise temperature,

which is related to the variance and noise s parameters as:

(2.10)

The term temperature comes from statistical thermodynamics. The 'soft-max'

equation (2.9) was used before to compare the behaviour of neurons with Boltzmann ma­

chines (Hinton, Sejnowski, & Ackley, 1984). One can see that ACT-R behaves in a similar

way, and T in this context describes its temperature.

Let us analyse how the choice probability P(i) depends on ~ and Ci for extremely

high or low goal values G and noise temperature T. Consider the simplest case of only two

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 24

rules (n = 2). Then the probability of choosing the first of the two rules will be:

The behaviour of the system can be predicted by the asymptotic values of the above function

at extreme values of G and T:

1. Let T -+ 0 (no noise), G = constant = 1. Then

P(l) -+ 1 for El > E2

P(l) -+ 0 for E1 < E2 .

The behaviour in this case is completely deterministic. Note that if PI = P2 and

C1 = C2, then EI = E2 and none of the rules will have an advantage (all rules

initially have the same default values of probabilities and costs). We speculate that

the system in this case behaves similarly to Elliot, a patient described by Damasio as

unable to choose from equal opportunities and learning slowly (Damasio, 1994). It

will be shown in Chapter 5 that noise not only helps to choose randomly, but also can

accelerate learning.

2. Let T -+ 00 (high noise), G = constant = 1. Then

In this case the choice becomes completely random. It does not depend on the past

experience at all.

3. Let G -+ 0 (low goal value), T = constant = 1. Then

P(l) -+ 1 for C1 < C2 , VI{

P(l) -+ 0 for C1 > C2 , VPi .

The choice is determined only by costs Ci and does not depend on probabilities Pi.

Thus, a rule with a lower cost will always win regardless of its expected probability.

The system behaves as if it is trying to put in as little effort as possible and does not

'care' about the success.

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE

4. Let G ~ 00 (high goal value), T = constant = 1. In this case

P(l) ~ 1 for PI > P2 , VGi

P(l) ~ 0 for PI < P2 , VGi.

25

This case is opposite to the previous one: the choice does not depend on costs Gi ,

and is determined only by the expected probabilities Pi. The system does not pay

attention to the effort (time) it spends trying to achieve the goal whatever the cost.

Properties 1-4 are useful because they can predict the behaviour of models with dif­

ferent settings of the conflict resolution parameters. We shall use these properties through­

out this study. For example, a model with dynamical G and T will be presented in Chapter 5.

The asymptotic properties will be used to analyse the advantages of the dynamical model.

2.6.2 Noise Relative to the Goal Value

In the Performance chapter of the ACT-R book (Anderson et al., 1998), while discussing the

probability matching experiments, the authors point to the importance of the G IT ratio.

Indeed, property 4 suggests that when noise is high, it is possible to match the probability

better by increasing goal value G. In the Tower of Nottingham model (Jones et al., 2000)

the goal value was set to the default value G = 20 in all experiments. One may wonder

whether the results of the EGN6 model, shown on Figure 2.5, could be reproduced by

decreasing G instead of increasing the noise. Let us consider what happens to the choice

probability (2.9) if we increase or decrease G and T simultaneously, while keeping the ratio

G IT constant.

Let T ~ 00 and G ~ 00. In this case, like in 3, asymptotes of P(l) are determined

by the value of PI:

e
P(l) ~ -- for PI = 1

e+1

P(l) ~ _1_ for H = 0 .
e+1

So, if we increase both G and T keeping the ratio G IT constant, then probabilities I{ become

more important than costs Gi (P(l) > P(2) if PI > P2 because e :::::: 2.71 > 1).

Similarly, for both G ~ 0 and T ~ 0 the costs become more important. It means

that even when GIT is constant the value of G changes the choice strategy emphasising the

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 26

influence of either the probabilities (high G) or the costs (low G) . Now, returning to the

Tower of Nottingham question, one may see that decrease of G with the same proportion

of noise as in EGN6 model would more likely produce different results.

It is convenient to normalise the noise temperature with respect to G. Let us

define the relative noise as:
1

T = -T ·100%.
G

(2.11)

One may see that relative noise fixates the G IT ratio. For example, T = 20% gives G IT =

1/5 for any G.

P(E) No ise independent or G peE) Noise rela li ve 10 G

Goal Value Goa l Value

FIGURE 2.7: Distributions of expected gains as a function of G. Left: noise is independent
of G; Right: noise is relative to G. On each plot two close distributions are shown for
G = 15 and G = 40.

Figure 2.7 shows close distributions of expected gains for different values of G

when noise is independent of G (left), and when noise is relative to G (right) . One may

see that with independent noise, the increase of G from 15 to 40 separates the distributions

further from each other. When noise is relative to G, the increase of G separates the means,

but also changes the variances proportionally.

In this work the terms relative noise T and noise temperature T will be used

to describe the noise settings. The variance and s parameter values can be found using

equations (2 .11) and (2 .10).

2.7 Decision Making and the Principle Components of Emotions

The performance of subjects in a certain task is determined in the end by which decisions

or actions they take. It is well- known that human decision making is based more on some

simple heuristics rather than on sophisticated statistical analysis of probability distributions

(Tversky & Kahneman, 1974). The so-called subjective probability is greatly determined by

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 27

the context in which a problem is presented. This phenomenon has been described as the

framing of decisions by Tversky and Kahneman (1981).

As was mentioned earlier and shown in the example, the choice in ACT-R does not

rely entirely on the experience stored in the form of Ps and Cs of the rules. Asymptotic

properties 1-4 show precisely how the choice can be influenced by two other parame­

ters: goal value (G) and noise (T). Thus, the subjective probabilities influencing subjects'

choice should not be confused with the empirical probabilities Pi in the expected gain equa­

tion (2.1). Rather the expected gains and their distribution can be viewed as an ACT-R

representation of one's subjective state of mind determining the choice, and the choice

probability (2.9) is a better representation of the subjective probability.

The influence of G and T on the choice probability (2.9) can be compared with the

influence of various behaviour moderators (e.g. motivation of achievement, confidence) on

the decision making strategy and the resulting performance. Indeed, goal value parameter

is usually associated with the value of a pay-off and relfects the motivation to achieve

the goal. ACT-R models of choice behaviour for different values of rewards confirm that

idea (see Figure 2.3). Moreover, the aversive stimulation will result in a goal to avoid the

stimulus, and high G can also represent this situation for a high motivation to avoid the

loss.

Different levels of stimulation (physical, mental, chemical, etc) are known to be

related to the level of arousal. As mentioned earlier, this multidimensional measure is used

to reflect the different levels of activation of the autonomic nervous system, which can be

influenced by many factors (Thayer, 1978; Humphreys & Revelle, 1984). Different levels

of arousal are resulting in different types of behaviour: low cost, energy saving actions at

a low arousal, while more energy intense actions characterise a high arousal. Properties 3

and 4 show that ACT-R avoids costly decisions under low G and is more likely to spend

more efforts for high G. This suggests that the behaviour in a low or high arousal states

can be modelled in ACT-R using low and high goal values.3

Confidence, or the 'feeling of knowing', is important for the success in problem

solving. Properties 1 and 2 show that at high noise the choice is less dependent on the em­

pirically learned information. Perhaps the amount of relative noise could be associated with

the confidence of a problem solver. Indeed, two models with exactly the same knowledge

3Note that high noise in the conflict resolution can also result in choosing costly productions. However,
use of relative noise T makes this effect negligible.

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 28

and probability settings would behave differently under different noise settings. A good

example is the Tower of Nottingham model when noise increase in the same model leads to

more errors.

Furthermore, Tversky and Kahneman (1981) point out that behaviour of subjects

in a choice involving a loss is risk taking (more random). In ACT-R this corresponds to

the conflict resolution with high noise. On the contrary, if a choice involves gains, then

the pattern of subjects' behaviour is risk aversive (less random). This situation can be

modelled in ACT-R with low noise settings. Losses and gains are accompanied by negative

and positive emotional experiences. Thus, the conflict resolution in ACT-R with high or low

relative noise T can represent the decision making of subjects influenced by the negative or

positive emotions respectively.

Despite the great variety of emotions, most of their classifications follow the two­

dimensional pattern (e.g. Russell, 1983, 1989). The first dimension is the strength or

intensity of the emotion, and it is associated with the arousal. The second is called the

valence dividing the emotions into negative or positive. Throughout this thesis we shall

refer to arousal and valence as the principle components emotions. Hopefully, this distinc­

tion (principle components of emotions rather than emotions) will help us to reduce the

ambiguity of the mapping from emotions to the parameters of ACT-R. The summary of

relations between different behaviour moderators discussed in this section and the values of

ACT-R conflict resolution parameters is suggested in Table 2.1.

TABLE 2.1: Conflict resolution settings and types of choice behaviour.

G IT settings
low T

high T

low G

high G

Corresponding behaviour
risk aversive, choice involving gains,
high confidence, positive valence of
emotions

risk taking, choice involving losses,
low confidence, negative valence of
emotions

spending less efforts, low motivation,
low level of stimulation, low arousal

ready to spend more efforts, high
motivation, high level of stimulation,
high arousal

2. ANALYSIS OF ACT THEORY AND ACT- R ARCHITECTURE 29

2.8 ACT- R and the Inverted- U Effect

The inverted- U hypothesis relating arousal to performance has been a subj ect of many

debates. Humphreys and Revelle (1984) suggested that the maximum of cognit ive perfor­

mance for a particular level of stimulation can be explained by the multidimensional nature

of arousal. They argued that if arousal affects several cognitive processes, such as 'infor­

mation transfer ' and 'memory,4, then the effects of these processes on performance may be

different for particular levels of arousal and may even have the opposing dependencies . The

result of the combination of several factors is an inverted- U function with a maximum in

one point .

The performance of an ACT- R cognitive model can be affected by many parame­

ters, such as activations of chunks, strengths of productions, and conflict resolution param­

eters . If these parameters depend differently on the levels of stimulation, then the model

will express the inverted- U behaviour. For example, Figure 2.8 illustrates a model of the

inverted- U law explained by the dynamics of G and T in ACT- R: an increase of stimulation

(arousal) corresponds to an increase of b oth G and T ; the growth rate of G and T , however ,

is not the same, and the performance is better (e.g. the fastest learning), when the ratio

G /T has its maximum value.

Using the data of the most famous experiment on the inverted- U effect - the

Yerkes and Dodson experiment - we shall study the above hypothesis by modifying several

architectural parameters of ACT- R.

G (goal value)

max

't (noise)

min l-_lllllliiiiiiliii
Activation (arousal)

FIGURE 2. 8: A model of inverted- U effect using ACT- R conflict resolution parameters G
(goal value) and T (noise temperature). The best performance corresponds to the maximum
of G /T ratio .

4It is not qui te clear , however , to which parameters in ACT- R the terms 'information transfer ' and
'memory ' used by Humphreys and Revelle correspond .

2. ANALYSIS OF ACT THEORY AND ACT-R ARCHITECTURE 30

2.9 Summary

In this chapter the main features and mechanisms of the ACT-R cognitive architecture have

been described. Some important results of several cognitive models have been discussed

in order to identify the areas in ACT-R theory of particular interest for this research.

Specifically, the conflict resolution mechanism has been analysed and compared with some

other decision making theories, and a way to model the effects of arousal and valence on

decision making has been proposed. The most important variables that can significantly

influence the performance of an ACT-R model and contribute to the inverted-U effect have

been described. Table 2.2 provides a summary of these variables, their ACT-R parameters

names, and related equations.

TABLE 2.2: Summary of important variables and equations

Var. Name Equations Parameter Default val.

Pi expected probability (2.1), (2.5) 1.0
Ci average cost (2.1), (2.6) .05 sec
G goal value (2.1) :g 20 sec
8 expected gain noise 8 (2.1) :egs nil
T noise temperature (2.9), (2.10)
T relative noise (2.11)
(3 base level constant (2.3) :b1c 0
82 chunk activation noise 8 (2.3) :ans nil
d base-level decay rate (2.7) :bll .5
d production strength decay rate (2.8) :sl .5

31

CHAPTER 3

A Model of the Yerkes and Dodson Experiment

In this chapter a model of the Yerkes and Dodson experiment will be described. In this

experiment, as has been described earlier, they studied learning in mice in a two-choice

task. Yerkes and Dodson called their experiment a 'dancing mouse' task, and referred to

mice as 'dancers'. For this reason the model was also named 'Dancer'.

It is necessary to clarify that this is not the first time when ACT-R, officially a

theory of human mind, is used to model the behaviour of animals. For example, Lovett

and Anderson (1995, 1996) used ACT-R to model choice behaviour of pigeons (Herrnstein,

1961). Moreover, the main properties of choice behaviour of animals and human subjects

(Le. probability matching, dependency on reinforcement) are quite similar (see Lovett,

1998). Because the Yerkes and Dodson experiment is a simple two-choice task, modelling

it with ACT-R seems plausible.

The Dancer model consists of two main parts: an ACT-R cognitive model of the

mouse and task simulation with its graphical representation and user interface. The first

section of this chapter will be dedicated to the design concept of the cognitive model, its

organisation, components, and operation. The perception, decision making, and action

stages of the model will be outlined. The outline of experiments and calibration of model

parameters will be explained in the second section. The goals, strategies, learning and the

resulting behaviour of the mouse will be explained in the third section. In addition, the

complete code of the model is presented and described in Appendix A.

3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 32

3.1 Model Overview

Any model is a simplification of the reality. The assumptions made in the beginning of

designing a model are crucial for both the success of the experiment and the correct inter­

pretation of its results. In this section the main objectives that motivated the design and

assumptions of the model will be outlined. The level of details in which the mouse and the

environment is represented is motivated not only by the requirements of this study, but also

by the possibility of future reuse of the model.

3.1.1 Objectives

The main goal of building the model is not to explain the data of the Yerkes and Dodson

experiment as best as possible, but rather to see how the inverted-U effect can be obtained

using different parameters of the ACT-R architecture.

The task of the Yerkes and Dodson experiment is relatively simple: the mouse

has to learn to always choose the door with the white card on it regardless of whether the

door is on the left or right. The data collected in the experiments is the number of errors

produced by the mouse. The main result of the Yerkes and Dodson work is that moderate

levels of stimulation, and hence arousal, result in better performance than at low or more

extreme values. The inverted-U effect was studied and observed by psychologists in many

other studies using similar experiments (e.g. Mandler & Sarason, 1952; Naatanen, 1973;

Gupta, 1977; Anderson & Revelle, 1982; Matthews, 1985).

In the previous chapter using asymptotic analysis we predicted the effect of differ­

ent values of parameters in the conflict resolution on performance of ACT-R models. We are

going to build a model, where these predictions can be tested experimentally. In order to

do this we need a task where a goal can be achieved using different strategies with different

costs and success probabilities. The choice of these strategies depends on which production

rules are selected during the conflict resolution. Because the choice of strategy affects the

performance of the model, we are going to study how the performance depends on G and

T parameters, and if it does, then what the dependency looks like, and where is the point

of optimal performance. In addition, the effect of other mechanisms of ACT-R, such as the

production strength learning, will be investigated.

Finally, the way the inverted-U effect occurs should be reusable in other tasks and

experiments. In order to achieve that the knowledge representation model, goal generation

3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 33

scheme, and production rules must be as abstract as possible, and not related to the specific

task. It needs to be fundamentally in the architecture. To make the model look more

realistic the behaviour of the mouse should be emergent based on the mouse motivations

and conditions of the environment.

3.1.2 Model Assumptions

Because our interest is mainly in the area of learning and performance, the model has rather

simple assumptions about perception and action. In particular, we assume that the mouse

can always distinguish between the black and the white cards on the doors regardless of the

lighting conditions, and the effect of these conditions is in the way this information is used

for learning.

Indeed, lateral inhibition in the perceptual system of animals makes the edges

and differences between the brightness of objects more pronounced (Hartline, Wagner, &

Ratcliff, 1956). So, we assume that although mice do not have particularly good sight

in general, their visual system must be sufficient to see where the darker door is located.

However, we assume that the darker conditions should make it less obvious to use the colour

information when learning new rules.

3.1.3 Task Simulation

The task simulation was developed for the model using Common Lisp and the GARNET

GUI library (Myers et al., 1990). The user interface consists of several windows. The main

window shown on Figure 3.1 represents the discrimination chamber with the Dancer (a

mouse in the Yerkes and Dodson experiment) and three rooms (the main room and two

escape boxes). The doors of the escape boxes are marked by white and black cards. The

location of white and black cards can be random, or controlled by the predefined order such

as in the original experiment (see Table 3.1).

Other windows in the simulation include the control panel window with gadgets

to set up the parameters of the model, and several windows for real-time graphical repre­

sentation of the results.

3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 34

FIGURE 3.1: The main window representing the discrimination chamber with two escape
doors.

3.1.4 Model Organisation

The model can be divided into three modules based on their functionality: perception,

cognition, and action. These modules, their components, and information flows between

them are shown schematically on Figure 3.2.

Perception

Sensors:
~ visiol1
~ sk;n

Cognition Action

Movements:
- steps
- (urns

FIGURE 3.2: Block diagram of the main modules and information flows in the Dancer
model.

Information about the environment is gathered in the perception module, which

includes a rather simple set of sensors: visual and skin sensors . Also a particular set of

rules in the model is responsible for determining the distance and direction to an object in

the environment when the mouse is attending it. This is the navigation subsystem. Both

3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 35

sensory and navigation information require interaction with the simulated environment.

The cognitive module consists of several groups of production rules with specific

functionality, and acting on specific types of goals. Such a distinction allows dividing

the cognitive module into several subsystems. For example, the recognition system may

receive a goal from perception or from the long term memory (declarative memory). The

information gathered from the environment and analysed by recognition system is used to

determine the current state of the mouse. The current state of the mouse is represented by

one chunk selfO.

Several production rules are responsible for assessing the success or failure of a

previously set goal based on the current state. These rules represent the appraisal sys­

tem. The successes or failures information is used to learn new production parameters (see

equations (2.5) and (2.6)).

Some production rules may add new declarative memory elements (chunks) to

the long term memory, while another set of rules use ACT-R'S production compilation

mechanism to learn new production rules. These rules represent the learning subsystem.

New goals are set based on the current state of the mouse and its motivations.

Goal states are represented in the model by chunks of the same type as the self chunk, but

with the desired values in their slots. The goals are then passed to the control system which

generates commands for action.

The last module is responsible for actions the mouse can perform in the environ­

ment. These actions are steps and turns. The actions change the current state of the mouse,

and as a result the information on the inputs of the sensory module changes as well. This

way the perception, cognition and action cycle is complete in the model.

3.1.5 Object Oriented Knowledge Representation

ACT-R enables the use of object oriented approach in organisation of the chunk-types

(classes of declarative knowledge units). By means of the: include command chunk-types

may inherit properties of their parent, more general chunk-types. This allows creating

a simple, and still quite powerful hierarchical knowledge representation of objects in the

simulated environment. In addition, it allows the generalisation of the production rules,

because in ACT-R rules operate not only on goals of a specified chunk-type, but also on all

its subclasses.

3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 36

For example, the most elementary object in the model is a point in space and time

represented by a chunk-type location. All other objects are represented in the model by

chunks of types that inherit the location chunk-type. Although different classes of objects

in the simulated world, such as rooms and doors, are represented by chunks of different

types, the production system uses one single rule called object-location to determine the

distance and direction to all objects, because it looks for a goal of the location type.

3.1.6 Blackboards Concept and Means-Ends Analysis

The most important declarative knowledge elements in the model are chunks representing

states of the mouse itself. These are chunks of the type self, which is a subclass of the

object type (see Appendix A for definitions). There is always at least one chunk of this

type in the working memory: chunk self 0 representing the current state of the mouse.

The values of the slots of this chunk represent different relations of the mouse with the

outside world, such as which objects are around, which box it is currently in, and whether

the mouse feels good or bad, and so on. Many production rules in the model analyse the

information from the perceptual inputs to fill in the specified slots of the current state

chunk. Although there are many rules in the system operating on chunks of type self, the

production system is organised in such a way that usually the rules look only into specific

slots of these chunks. Such organisation of production systems is known as blackboards

concept (Erman, Hayes-Roth, Lesser, & Reddy, 1980), and chunks of type self here serve as

the blackboard.

The information gathered from the environment and analysed is used to generate

the goal states. If something in the current state does not correspond to the desired state,

then the mouse tries to minimise this difference. This principle is known as means-ends

analysis, and it is used throughout in the model to make the behaviour of the mouse

emergent from the difference between the current and the desired states.

3.1.7 Perception, Cognition and Action Loop

The model uses serial organisation where each of the three modules works one after an­

other in sequence: the perceptual, cognitive, and, finally, action cycles. Figure 3.3 shows

schematically this process.

In order to separate production rules of the perception, cognition, and action

3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 37

FIGURE 3.3: Block diagram presenting three stages of the model: perception, cognition

(decision making) , and action.

modules from each other, the rules act on goals of different types . Rules from the perceptual

module act on goals of type perception, while rules from the action module need goals of

type action (see Appendix A for the definition). Goals used by rules of the cognitive module

are mainly representations of objects such as current state of the mouse, goal states, rooms,

exits , etc.

The model uses chunk sensors (the only chunk of type perception holding the

current outputs of all the sensors in the perceptual system) as a predicate to determine

whether it should enter the perceptual or cognitive cycle. Starting from chunks of type self

representing the current or goal states of the mouse, the model checks for the values of the

slots in the sensors chunk: if the values are nil , then the sensors chunk becomes the focus

of the model and the model automatically enters the perceptual cycle because only the rules

from the perceptual module operate this type of goal.

After the information from the environment has been gathered , the focus returns

to the goal of type self. Now, using the new information from the perceptual system, rules

from the cognitive module may alter the representation of the mouse own current state,

representation of some objects in the environment , assess the completion of previously set

goals, learn new rules, and possibly create new goal states. The difference between the

current and the goal state is analysed and the goals of type action are created.

Finally, the model enters the action cycle because rules from the action module

operate on goals of type action. Rules from the action module make calls to the simulation

3. A MODEL OF THE YERKES AND DODSON EXPERIMENT

; .. ~ ~,It..

~~~.~~~~~,It.. 

,It..~ 

,It..~ 

,It.. 

,It.. 
A 

FIGURE 3.4: A typical trace of one test. 

38 

which perform the required state changes , and also set the values of the sensors to nil . 

Thus, the model automatically proceeds to the perception cycle again after the action has 

been completed. 

The serial organisation of the model excludes interaction between perception, cog­

nition and action separating them into three independent stages. This seriality is artificial, 

but is sufficient and useful simplification for the purposes of this study. In future the model 

can be extended taking advantages of the ACT- R 5 and its perceptual- motor extensions. 

3.2 Running Experiments Using the Model 

In this section we outline what the model is doing in each test, what the experiments consist 

of and what we measure in these experiments. In addition, the problem of calibration model 

parameters will be discussed. 

3.2.1 Outline of One Test 

In each test of the Yerkes and Dodson experiment the mouse was required to escape the 

discrimination chamber through one of the escape doors. Figure 3.4 illustrates a trace of 

one model run simulating this test. 

On the screen the Dancer is represented by an arrow object. Starting in the centre 

of the main box the dancer analyses information obtained from the visual system about 

what it sees ahead , and from the skin sensors about the level of external stimulus. The 

analysed information is gathered in slots of the chunk self 0 representing the current state 

of the dancer. The current state is then compared against the two objectives: 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 39 

1. The level of external stimulus must be zero. 

2. The mouse must not be in the main box. 

Because there is no stimulation in the main box, the first objective is fulfilled from 

the beginning. In order to meet the second requirement the mouse has to look around 

and see all the objects surrounding it. These objects together form a chunk representing 

the environment, which then can be identified. Once the box the mouse is in has been 

recognised as the main box, the model creates a new goal to escape the box. This goal is 

represented by a chunk of the same type as the current state chunk. The difference is that 

the goal state describes the mouse placed in the complement of the current environment 

(not in the main box). 

When the model has a goal to escape the current room, the dancer looks for the 

exits. There are two exits from the main box, and at this point the model has to make the 

crucial decision: which exit to choose. Figure 3.4 shows the case when the dancer chose 

the left door with a black card on it. Once the dancer enters the left box the skin sensors 

immediately detect the high level of external stimulus (an electrical shock in the original 

experiment). The visual and recognition systems register that the environment has changed 

and the mouse is no longer in the main box. 

Although the second objective (to escape the main box) is complete, the high level 

of external stimulation signals a failure to achieve the top goal. At this point the model 

can learn new production rules to choose a different exit based on the information about 

the most recent choice it has made. 

When the dancer detects some non-zero level of external stimulus it sets a new 

goal, which is a chunk describing a state with zero level. To achieve this goal the dancer can 

use two strategies: to move into another point in the same box, or to escape the current box 

altogether. Figure 3.4 shows the dancer first trying to move around several points inside 

the same box, and only after several failures escapes the box. The model learns that the 

first strategy, although is cheaper, does not lead to a success. The second strategy requires 

more efforts, but always achieves the goal. 

When the mouse escapes the left box it automatically enters the main box back 

again. After the environment has been recognised the model creates a new goal to escape 

the main box again through one of its exits. The situation, however, is now different from 

the one in the beginning of the task: the model has learned after the last failure a new 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 40 

production rule to choose another door. If this new rule fires, then the dancer will make 

the right choice. Because both new and old production rules compete in the conflict set, 

and there is some noise in the conflict resolution, there is a possibility that the dancer will 

choose the wrong door again. Figure 3.4 shows the dancer choosing on the second attempt 

the door on the right with the white card on it. Once the dancer enters the right box the 

system detects that both objectives are fulfilled and the task is completed. 

3.2.2 Running Series of Tests 

In their experiment Yerkes and Dodson subjected each mouse to 10 tests per day for up to 

30 days (training series). In each test the position of the black door was changed according 

to Table 3.1. On the first two days (preference series) denoted by letters A and B there 

was no electrical shock behind the black door, and the mouse was allowed to escape the 

main box through any door. After the first two days (preference series) the mouse was 

only allowed to escape through the door with the white card, and if it attempted to escape 

through another door (with the black card) the aversive stimulus (electrical shock) was 

used. The number of errors for each day was recorded, and if the mouse did not produce 

any errors for three consecutive days, the experiment was terminated. The authors referred 

to this moment as the perfect habit formation. 

As in the original experiment the model was run for up to 320 tests (2 training 

and 30 learning days with 10 tests per one simulated day) with the positions of the doors 

defined in Table 3.1. Figure 3.5 shows an example of a typical error curve obtained in 

one experiment (left) and a curve of simulated time required by each test (right). In this 

example the perfect habit was formed on simulated day 5. The average amount of time 

needed to complete each test in this example is 14.6 simulated seconds. 

3.2.3 Calibration of Model Initial Parameters 

Because the ACT-R learning mechanisms use time decaying variables (production strength, 

chunk activations, etc), setting realistic time parameters is very important for the final 

model performance. 

The model needs on average 244 cycles to complete each test. Nevertheless, the 

amount of simulated time the model spends during these 244 cycles depends very much 

on retrieval times (2.4), which contribute to latencies between the cycles. The minimal 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 41 

TABLE 3.1: Positions of white cardboards for two preference series (day A and B without 
stimulation) and twenty-five training series. Each series consists of 10 tests per day. Letter 
'r' or '1' denotes a position on the right or left (from Yerkes & Dodson, 1908). 

Tests-4 1 2 3 4 5 6 7 8 9 10 

Seriesl 
A 1 r 1 r 1 r 1 r 1 r 
B r 1 r 1 r 1 r 1 r 1 
1 r 1 r 1 r 1 r 1 r 1 
2 1 1 r r 1 r 1 1 r r 

3 r r 1 r 1 1 r 1 r 1 
4 1 1 1 r r r 1 r r 1 
5 r 1 r 1 r 1 r 1 r 1 
6 1 1 r 1 r r 1 r 1 r 

7 r 1 1 1 r r r 1 r 1 

8 r r 1 1 r 1 r 1 r 1 
9 r r r I 1 1 r 1 r 1 
10 1 1 1 I r r r r 1 r 

11 r 1 r r r I 1 1 r 1 
12 r I r 1 r r I 1 r 1 
13 r 1 r 1 1 1 r r r 1 
14 I I 1 I r r r r I r 

15 r I r r r I 1 I r 1 
16 I r 1 I 1 r r r 1 r 

17 r r r r 1 I 1 1 r 1 
18 I r I r r I 1 r 1 r 

19 r 1 r 1 r 1 r 1 r 1 
20 1 I 1 r 1 r 1 r r r 

21 r 1 I r r 1 1 r r I 

22 1 1 r r 1 I r r 1 r 

23 r 1 I 1 1 r r r r 1 

24 I r I I 1 r r r 1 r 

25 r r r r I I I I r 1 

(default) action time in ACT-R is 50 milliseconds. So, if all the production rules fire at the 

minimal 50 milliseconds, then the model will spend on average 12 simulated seconds in each 

test. 

As defined by the retrieval latency equation (2.4), the reaction times in ACT-R 

directly depend on two parameters: production strength Sp and chunk activation Ai. Low 

production strength values and low activations result in higher latencies, thus increasing 

the amount of simulated time needed by the model to complete each test. The production 

strength learning and the base level learning mechanisms of ACT-R implement the power 



ErrOfS 

" 

\ 
\ 

'" 

3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 

\ 
\ 
\ 

Errors per day 

'" • 5 
Day a 

. " 

Seconds 
40 

10 

A 

Time to complete one test 

4 , 

Days 

42 

10 

FIGURE 3.5: Typical error curve (left) and time trace obtained in one experiment. In this 
example the model needed 50 tests to form the perfect habit (no errors produced after 
testing day 5). 

law of practice increasing strengths of rules and activations of chunks used more frequently. 

This way with practice the reaction times in the model decrease. 

The set of production rules the model starts with simulates a very basic knowledge 

that the mouse must have used during all its life. Indeed, these are productions responsible 

for orientation, navigation, exploration, basic movements control, etc, so the latencies of 

these rules should be minimal. It is achieved by setting high values of production strengths 

directly or, if production strength learning mechanism is switched on, by setting the creation 

times and references parameters of the productions (see Appendix A). 

New production rules learned by the model initially have low strength, and hence 

higher latencies. However, with practice the strengths may increase due to the strength 

learning mechanism. Using parameter d in the strength learning equation (2.8) controls 

the speed of strength decay and learning, which allows the testing of different hypotheses . 

The effect of this parameter on model performance will be explained in the next chapter 

together with the results of the Sp- model. 

Many production rules use two chunks in the model: chunk self 0 describing the 

current state of the mouse, and chunk sensors representing the sensory inputs. Because 

these chunks are used practically in every production rule, their activations must be very 

high, and they should not affect the reaction times. Activations can be set directly or, if the 

base level learning mechanism is switched on, by setting the creation time and references 

parameters of the chunks (see Appendix A). 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 43 

Activations of chunks learned during the model run are initially low, but may 

increase due to the base level learning mechanism. The d parameter in the base level 

learning equation (2.7) controls the speed of activation decay and learning, and allows the 

testing of different hypotheses. 

Finally, it is necessary to take into account the amount of time spent not only 

during each test, but also between the tests and during each training day. The decay of 

chunk activations and production strengths between the training days particularly can play 

a significant role in matching the model performance to the data. In order to take these 

effects into account the ACT-R simulated time in the model is increased by 60 seconds 

between each test, and by a large time interval (an approximation of several hours) between 

each simulated day. 

3.2.4 Mapping the Conflict Resolution Parameters 

The level of the electric stimulus in the original experiment was varied from 125 to 500 in 

Martin's units of stimulation (Yerkes & Dodson, 1908). The authors distinguished between 

three levels of stimulation: weak (50 rv 150), medium (150 rv 250), and strong (250 rv 500). 

There is currently no parameter in ACT-R that can represent the level of external stimu­

lation, but because this external stimulation forces the mouse to set a goal to escape, we 

may roughly relate different levels of stimulation to different values of this goal (parame­

ter G in ACT-R). The control panel has a gauge gadget to set the goal value (parameter 

G) of ACT-R. Obviously there is no conversion table from Martin's units to values of G 

parameter, so it was necessary to find the most appropriate values empirically. 

Each model run (one test) requires on average 244 cycles to complete, and ACT-R 

simulated time needed is approximately 15 simulated seconds. The costs of production rules 

usually do not exceed 30 seconds. Thus, the lowest goal value can be set to 20 seconds (the 

default value in ACT-R). 

The next step is to determine the high boundary of goal values corresponding to 

the high levels of stimulation. One may suggest that the highest goal value is life, which is 

probably true considering that the high stimulation was electrical shock. Another approach 

to determine the highest values of G can take advantage of the asymptotic properties. 

Indeed, at high values of G the costs of production rules should have little influence on 

conflict resolution. The expected probabilities P, even if they are very small, must determine 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 44 

the choice. Using the empirical information about the costs of production rules in the model 

one may set C ~ 500 - 1000 as the highest values. Indeed, suppose two rules compete in 

the conflict set, and let CI = 30 (high cost), C2 = 0 (low cost). Let also the expected 

probabilities of both rules be very small, for example PI = .2 and P2 = .1. Note that the 

probability of the first rule (with the highest cost) is slightly larger. Now, if C = 500 it is 

elementary to check that the expected gain (PC - C) of the first rule will be greater: 

.2·500 - 30 = 70 > .1·500 - 0 = 50 . 

So, the goal value varies linearly from 20 (weak stimulation) to 500 (strong stimulation) 

seconds. 

The model controls the expected gain noise s parameter of ACT-R through relative 

noise T equation (2.11). Thus, the increase of G increases noise temperature T (and noise s) 

proportionally keeping the percentage of the noise in conflict resolution constant. Relative 

noise was varied in the model between T = 1 % and 20%. 

3.3 Learning in the Model 

The model can use many of the learning mechanisms offered by the ACT-R architecture. 

Table 3.2 shows a summary of the learning processes in the model. The mechanisms can 

be first divided into two classes: symbolic and subsymbolic. While symbolic learning is 

concerned with creating new or modifying the existing knowledge units in the memory, 

the subsymbolic mechanisms are modifying and learning new values of various subsymbolic 

parameters of these knowledge units. Both symbolic and subsymbolic learning can be 

classified further according to whether it is related to procedural or declarative knowledge 

units (production rules and chunks). 

TABLE 3.2: Summary of ACT-R learning mechanisms used in the model. 

Symbolic 

Subsymbolic 

Declarative 
Adding new chunks 

Modifying existing chunks 

Base level learning 

Procedural 
Learning new production rules 

Probability learning 

Cost learning 

Production strength learning 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 45 

3.3.1 Learning Declarative Memory Units 

The model has the capacity to learn new chunks representing the objects in the outside 

world based on their visual properties. The recognition mechanism can distinguish between 

the new objects and those the model has seen before. However, sometimes the model may 

fail to recognise some objects (i.e. due to a failure to retrieve a chunk, or because of the 

noise in the conflict resolution). Thus, the model may create several chunks to denote the 

same object. Although this is not a problem for one test, in a longer run, such as 300 tests, 

the model can learn up to several thousand chunks. Due to the complexity in the working 

memory such learning creates it becomes extremely hard to debug the model and separate 

the effects produced on the model performance by parameters manipulation from the erratic 

behaviour of the overloaded program. For this reason the rule acquiring the representations 

of new objects was removed from the model during the tests, and when the model started 

it already had chunks representing the objects in the task (walls, doors and rooms). 

The model, however, still needs the recognition mechanism, because it is important 

for learning the chunks' activations. The new chunks the model creates are mainly the new 

goal states. Once a goal is completed it can be removed from the memory or the chunk 

may merge with another chunk if it has identical type and slot values. 

The values of chunk slots can be modified by production rules during the model 

run. For example slots of the current state chunks are rapidly updated as the mouse acquires 

new information about its own state. New values may determine what production rules the 

model will consider next. 

3.3.2 Learning Declarative Memory Parameters 

In order to recognise an object the mouse is observing ahead, it has to retrieve a chunk from 

memory describing an object with similar visual properties. The retrieval time depends on 

the chunk's activation as described by equation (2.4). The model can use the base level 

learning mechanism of ACT-R to learn new activation values, so the more often the chunk 

is retrieved the higher its activation becomes, and as a result the object is recognised faster. 

Figure 3.6 illustrates the dynamics of activations of all chunks in declarative memory of the 

model during 100 tests (the base level learning and activation noise were switched on). 

The curves in the top part of Figure 3.6 represent high and slowly changing activa­

tions. These are of the chunks representing the current state of the mouse, the recognition 



3. A MODEL OF THE YERKES AND DODSON EX PERIMENT 

Act ivat ion 
20 

15 

10 

A B 

Chunk Activations 

5 

Days 
10 II 

FIGURE 3.6: Dynamics of activations of all chunks in the model during 100 tests. 

46 

buffer , and the sensory input. The curves in the lower part of the graph are activations of 

chunks representing the objects in the environment and their properties. 

The retrieval threshold, activation base level constant, and activation noise param­

et ers are used in the model to create the errors of omission, that is when the mouse cannot 

retrieve certain chunks (e.g. chunks encoding the colour information). The d parameter in 

base level learning equation (2.7) can be used to control the speed of activation decay. 

3.3.3 Production Compilation 

When the mouse sets a goal to escape the main box, it faces a dilemma: which door to 

choose? A choice of one of two objects is represented in the model by a chunk of a special 

type choice (see Appendix A). The model starts with two simple production rules matching 

the choice chunk goal: 

Chooselst: 
IF the goal is a choice between first and second 

THEN focus on first 

Choose2nd: 
IF the goal is a choice between first and second 

THEN focus on second 

When the choice chunk appears in the model as a goal, then one of the production rules 

above may fire selecting one of the alternatives. Thanks to the noise in the conflict resolution 

the two rules above realise random choice of the doors. 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 47 

In order to learn which door to choose the model needs to learn new production 

rules that use features of the doors as constraints. These rules are added into the procedural 

memory of the model using the production compilation mechanism of ACT-R. After the 

dancer has entered the wrong door and a failure has been registered, the model recalls the 

last choice it has made, and creates a chunk of dependency type with the choice chunk in the 

goal slot (see Appendix A). This dependency chunk is used by the production compilation 

mechanism to learn new production rules for making the choice, that is to choose another 

door in the same situation (goal state). 

The compilation of a new rule occurs when a special production rule (learning rule) 

considers the dependency chunk as a goal, modifies it, and pops it off the goal stack. There 

are three special learning rules in the model that can perform this task (see Appendix A 

for the precise code). These rules analyse the choice chunk, which contains the information 

about which door the dancer chose on the last attempt. A new production rule to be created 

should be similar to the two simple choice rules shown above: the new rule also matches 

the choice goal. The new rule, however, should also consider the properties of the objects 

in the choice as constraints, and based on these properties the rule should choose the object 

opposite to the one selected in the last attempt (because it led to the failure). Below is an 

example of a rule that the model may learn: 

IF 
AND 

THEN 

the goal is a choice between first and second 
first is a black door 
focus on second 

Note that the above rule uses only one feature of the objects - colour. Another feature is 

the door's position (left or right), and the model can learn to choose based on the position 

information: 

IF 
AND 

THEN 

the goal is a choice between first and second 
first is a door on the left 
focus on second 

Finally, the model may learn a rule that pays attention to both features: 

IF 
AND 

THEN 

the goal is a choice between first and second 
first is a black door on the left 
focus on second 

What kind of a new rule is learned depends on which of the three learning rules is 

used when the dependency chunk is in focus, and it is determined by the conflict resolution. 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 48 

Two of the three learning rules create new productions paying attention only to one fea­

ture: colours or positions of the doors, such as the first two rules shown above. These two 

learning rules implement one- dimensional reflection learning. The third learning rule im­

plements two-dimensional learning, that is the new production it creates uses both features 

as constraints: colours and positions of the doors , such as in the third rule shown above. 

A model of one and two dimensional learning using production compilation mechanism in 

ACT- R was first realised by Taatgen (1997). 

Learning new production rules allows the model to make the choice considering 

more conditions. One may notice, however, that some of the rules the model learns are 

potentially more successful than the others. The first rule that pays attention only to 

the colour will be the most successful, because it realises the correct strategy: avoid the 

black door. The second rule has a 50% chance to succeed because the positions of the 

doors and are, in fact, random. The third rule will be successful every time it fires , but 

because the left- hand-side includes one unnecessary constraint (door position), there are 

fewer situations when it can be applied. The model learns which rules are more successful 

using the probability learning mechanism described below. 

3.3.4 Learning Production Probabilities and Costs 

The model learns both expected probabilities and costs of production rules. These param­

eters are used to calculate the expected gains of the rules using the utility equation (2.1) 

of the ACT-R conflict resolution. Figure 3.7 shows traces of probabilities P, costs C, and 

expected gain values (PG - C for default G = 20) learned during the first 120 tests (12 

days). 

E",~clctJ Prob.1bililics c Production Costs PG·c Expected Gains 

A II I 2 J ~ i I> ' _ 9 Ii.! I I 

Days 
A II I 1 J ~ S " 

Days 
" I I ! l • S I> 1 • ., 10 I I 

Days 

FIGURE 3.7: From left to right traces of expected probabilities, production costs, and 
expected gains as they are learned in the model during 120 tests (2 training and 10 testing 
days). Note a sudden change in values when the stimulation is switched on after the two 
training days. 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 49 

Figure 3.7 shows values of P, C, and PC - C of all the production rules in the 

model, but not all rules are competing on a given cycle. Thanks to the modular organisation 

of the model and the blackboards concept in each particular situation (particular goal state) 

there are usually only few conflicting rules. There are two conflicts in the model that are 

particularly important for the model performance: 

1. A conflict between rules that make choice of one of the two doors. 

2. A conflict between rules selecting the strategy to escape the stimulation in a room 

with the black card. 

The first conflict occurs when the choice of one of the two doors appears as the 

goal. As was mentioned earlier, there are initially only two rules making this choice, but 

more rules can be learned later through production compilation. After one of these rules 

has fired, the dancer escapes the main box through the chosen door. The appraisal system 

of the model registers a success or a failure of the decision made previously. Using the 

parameters learning mechanism ACT- R learns empirically probabilities P and costs C of 

the production rules (see equations (2.5) and (2 .6)). 

P 

0.' 

A • 

Expee.ed Probabilities 

, 
Days 

- - - CIIOICE21 14 
- - - CHOICfI466 
- - - - CHOlCEIl89 
- ~ - - CHOICEI 1S9 
- ---- CHOICE II H 
•• _ • •• - CHOICf.l'SO 

CHOOSF.2NO 
- O IOOSEIST 

9 10 II 

c 
10 

A • 

Production Costs 

, 
Days 

... - _. CHOICEn 14 

- - - CHOICF. 14o\(1 
- - _. CHOICF.1219 

CHOICF. 11S9 
CHOICf. l l11 
CHOIa;,9SO 
CllOOSElNI) 

- _.. .. ... CHOOSE1S"r 

9 10 II 

FIGURE 3.8: Learning of the expected probabilities (left) and costs (right) for production 
rules making choice. 

Figure 3.8 shows for 120 tests the learning of probabilities and costs for productions 

making the choice. Note that during the two training days A and B (first 20 tests) there are 

only two rules participating in the conflict: choosel st and choose2nd. The probabilities and 

costs of these rules remain approximately the same for the first 20 tests. After the training 

the stimulation is switched on, the number of rules increases up to eight, and the number 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 50 

of curves on the plots increases correspondingly. The new production rules are named by 

ACT- R automatically based on the goal type, which is choice in this case. Thus, new rules, 

which are learned by ACT- R spontaneously, have names such as CHOICE2314. The plots 

were generated automatically during the model run. 

As was mentioned earlier the new rules learned by the model have more constraints. 

One can see from Figure 3.8 that costs of the new productions are higher than that of .the 

two simple choice rules (choosel st and choose2nd). If the new rules , however, realise the 

successful strategy (i .e. the strategy to avoid a door with the black card), then their success 

probability will be high (P = 1). The model may also learn a wrong strategy. One can see 

from the figure that probabilities of some new rules quickly decay and reach values close to 

P = .5. Probability learning mechanism allows the model to distinguish between rules that 

implement more or less successful strategy. 

The performance of the model will depend on how well it can distinguish between 

high and low probabilities. Asymptotic properties of conflict resolution in ACT- R imply 

that higher goal values should improve the distinction by probabilities even if the relative 

noise remains the same. Figure 3.9 shows examples of learning expected gains for G = 20 

(left) and G = 150 (right), and the relative noise T = 10%. One can see that variance 

between expected gains for different rules is higher for the large values of G. 

PG -C Expected Gains 

- - - CHOICE!) I" 
- - - CHQICf. I .j6fi 

- - - - CHO.Clil U9 
- ~ - - CHOlCE I1S9 
----- CHOICEII 1-) 
----_ • • CHO'Cm~jU 

• .•• .• .• •. CHOOSF.v.-O 

- OlOOSF.IST 

A " 
4 , 9 10 11 

Days 

PG -C 

A • 

Expected Gains 

, 
Days 

9 10 11 

FIGURE 3.9: Learning the expected gains for G 20 (left) and G = 150 (right). The 
relative noise T = 10% in both examples. Note how the difference between high and low 
expected gains increases with G. 

The second conflict occurs when the mouse enters the box with a simulated elec­

trical shock. The model then immediately sets a goal to escape the stimulation. There are 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 51 

two production rules in the model that match this goal state. These rules differ only in the 

right- hand sides realising different strategies: 

Find Better Point: 
IF the goal is a state with no stimulation 

THEN set a new goal to move into another point 
within the same box; 

Find Better Environment: 
IF the goal is a state with no stimulation 

THEN set a new goal to escape the box altogether. 

Unlike the latter rule, the first rule sets the goal which requires only few steps to complete . 

Hence the model learns that the effort required by the first strategy is always less than the 

cost of escaping the box. However , in this task the first rule can never achieve success, and 

the model learns that the expected probability of the first rule is much smaller than that of 

the second rule. Figure 3.10 shows learning probabilities and costs of the above two rules. 

P Expected Probabilities 
1 --

•••••••••• H ND·DETTEk-ENVIRON/r>t f.NT 
_ ' :INIJ. BETTEIt. I"OINT 

A • , 6 9 10 11 

Days 

c 
10 

--------, 

A • 

Produc tion Costs 

FI ND· RF.TTlUt· F.NV III.ON MF.,., r 
----- Fl ND. OETTER. POINT 

, 
Days 

8 9 10 11 

FIGURE 3.10: Learning probabilities (left) and costs (right) for two productions matching 
the 'avoid stimulation' goal. 

Again , according to the asymptotic properties of the ACT- R conflict resolution (see 

Section 2.6) the choice of strategy in this situation will greatly depend on the goal value 

(G) parameter. Figure 3.11 shows learning the expected gains of the two rules for G = 20 

(left) and G = 150 (right). The relative noise in both tests was T = 20%. One can notice 

that at low goal values the difference between expected gains of both rules is marginal, and 

although the find better point rule may never lead to the success, the model still may often 

try this rule. The resulting behaviour is that after entering the wrong box at low G values 

the dancer does not immediately escape the box, and wanders around attempting to find 

a better point inside it. On the contrary, at high G the dancer immediately escapes the 

electrical box. 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 

PG-C 

'''' 

' 00 

'" 

Expected Gains 

..•••.••• . l' INI>.8f.TTIlR-F.NVIROl"MIlNT 
- FIf'lO-OF.TTEM ·POINT 

~ .. ........ "" . ... " ..... " ...... " ."""' .... ""."""" .. """' .. '" .......... .. 

A • , 
Days 

10 II 

PG -C 

'''' 
Expected Gains 

, 
Days 

FINO· BETTER·ENVIRONMENT 
FlND.nETTER·POINT 

10 II 

52 

FIGURE 3. 11 : Learning the expected gains for two productions matching the 'avoid stimu­
lation' goal with G = 20 (left) and G = 150 (right). 

3.3.5 Learning Production Strength 

The model can use the production strength (Sp) learning mechanism (see equation (2.8)). 

Production strength (Sp) of a rule determines how fast it fires , and affects the reaction time 

as explained by the ACT- R retrieval latency equation (2.4). 

We assume that all the production rules the model has initially have high pro­

duction strengths, so during the model run they do not affect the reaction times. The 

strengths of the new production rules learned during the task are low initially and decay 

quickly, but with practice their strengths increase. Figure 3.12 illustrates the dynamics of 

strength values for the six production rules learned during 100 tests (ten simulated testing 

days). 

Strength 

4 

2 

o 

- I 

A 8 

Production Strengths 

CHOtCE57 15 
CHOtCE5743 
CHOICE5849 
CHOtCE5987 
CHOICE6327 
CfIOICE6600 

2 4 5 6 

Days 
7 9 10 II 

FIGURE 3. 12: Dynamics of strengths (Sp) of new productions learned during 100 tests. 



3. A MODEL OF THE YERKES AND DODSON EXPERIMENT 53 

If the new rule has not been used for a long period of time and Sp has decayed, then 

the production rule may fail to fire altogether. If the same rule is re-Iearned repeatedly, 

then the strength increases as well. Parameter d in equation (2.8) controls the speed of 

production strength decay. Use of this parameter will be explained together with the model,. 

results in the next chapter. 

3.4 Summary 

We described the main features of the Yerkes and Dodson experiment simulation and the 

Dancer model. The general behaviour of the model during each test as well as the learning 

processes have been outlined. In the next chapter the results of series of tests ran at different 

parameters settings will be presented. The results will be compared against the data from 

the Yerkes and Dodson experiment. The data consists of three sets: set I (medium visual 

discrimination), set II (good visual discrimination) and set III (slight visual discrimination). 

Analysis of the comparison of the model results with each test will be presented. Finally, 

the U-shaped performance curves obtained by Yerkes and Dodson in set I and set III of the 

experiments will be compared with the matching models. 



54 

CHAPTER 4 

Model Results and Analysis 

In this chapter the results of the Dancer model will be presented and analysed. The per­

formance of the model under different settings will be compared with the data from Yerkes 

and Dodson (1908). It is important to note, however, that achieving the perfect fit with the 

data was never the goal of this work. In this chapter the model behaviour will be studied 

as a function of several subsymbolic parameters in the ACT-R architecture. In particular, 

four crucial parameters will be manipulated: expected gain noise variance, goal value, pro­

duction strength learning and base-level activation of colour chunks. Investigating just five 

values of each parameter results in 54 = 625 combinations, which may take quite a long 

time to investigate: each experiment consisting of up to 300 tests takes about one minute to 

complete on 700MHz processor computer; for each parameters setup the model runs at least 

20 experiments; thus, in ideal situation of continuous run it takes ~ 208 hours of machine 

time (more than eight days) to complete all the tests. For this reason the parameters were 

manipulated with quite a rough precision (e.g. relative noise values of T = 1%, 5%, 10% 

and 20%). The data was used for reference points indicating how the model fit changes 

with regards to parameters manipulation. So, while the errors reported for the best models 

will seem to be quite high (e.g. 10%), it is important to remember that these are not the 

smallest errors possible. 

4.1 The Data 

The original paper reports results (records of errors produced by mice in the experiments) 

of three experimental sets with different conditions of visual discrimination: medium (set I), 

good (set II), and slight discrimination (set III). In each set the performance of mice was 



4. MODEL RESULTS AND ANALYSIS 55 

measured for several levels of electrical stimulation. Table 4.1 shows the levels of stimulation 

and the corresponding number of subjects used for each of the three experimental sets. The 

errors for each subject were reported, and then the average number of errors produced 

by the mice in a particular experimental setup (condition and strength of stimulus) were, 

shown on charts. These experimental distributions of errors will be shown in this chapter 

on charts along with the errors produced by the corresponding models (see Figures 4.6, :4.14 

and 4.15). 

TABLE 4.1: Levels of stimulation and number of subjects used for each condition of dis­
crimination and training (from Yerkes & Dodson, 1908). 

Condition of discrimination Strength of stimulus N. of subjects 
125 4 

Set I (Medium, Medium) 300 4 
500 4 
135 4 
195 4 

Set II (Good, Easy) 255 4 
375 4 
420 4 
135 2 
195 2 

Set III (Slight, Difficult) 255 2 
375 2 

Figure 4.1 (based on data from Yerkes & Dodson, 1908) shows the main results 

of the experiments: the numbers of tests required to form the perfect habit (no errors for 

three consecutive days). Abscissae represent levels of stimulation, and ordinates represent 

the average number of tests required. Three curves corresponds to data of set I, II, and 

III (medium, good and slight discrimination). One can see that in set I and III the best 

performance was at moderate levels of stimulation. In set II the performance improved 

almost linearly the level of stimulation. Thus, the inverted-U effect was only observed 

when visual discrimination was not perfect. 

First, the model will be compared with data from set II (good visual discrimi­

nation). We start with set II because it has the most precise data (five different levels of 

stimulation as opposed to three and four in set I and III). Furthermore, the data of set II 

is easier to model because visual discrimination is high, and the relation between the level 

of stimulation and performance is simpler (linear) than in set I or III. 



4. MODEL RESULTS AND ANALYSIS 

Tests Performance (Yerkes & Dodson, 1908) 
350 

300 

250 

200 

150 

100 

50 

100 200 300 400 

Stimulation 

........-e Set I 
0-0-0 Set II 
.......... Set Jll 

500 

56 

600 

FIGURE 4.1: Performance curves (from Yerkes & Dodson, 1908): ordinates represent the 
average number of tests required to form the perfect habit ; abscissae represent levels of 
stimulation. Three curves represent results of set I, II , and III (medium, good and slight 
discrimination) . 

The first model will study only the influence of the ACT- R conflict resolution 

parameters on task performance. It will be shown that increase of stimulation corresponds 

to an increase of goal value G and possibly also to an increase of relative noise T . The 

second model will consider the implications of different production strength learning rates 

on performance. Finally, a way to simulate different conditions of visual discrimination by 

modifying activations of colour chunks in the working memory will be introduced. The 

third model will be compared with the results of set I and set III . It will be shown how the 

model can reproduce the inverted- U effect observed in these experiments. 

4.2 Criteria for Comparing Model Results with the Data 

Fitting cognitive models to a data collected in a small- scale, insensitive experiment is a task 

where standard statistical tests, such as the null- hypothesis (Ho) test, may lead to bizarre 

conclusions (Grant , 1962). Although the kind of test we are looking for is similarity between 

theoretical model and data , the attempt to prove Ho can be self- defeating. Indeed , because 

the data is very noisy and the models (as well the architectures they are implemented in) 



4. MODEL RESULTS AND ANALYSIS 57 

are usually based on rather simplified theories of mind, it is clear from the beginning that 

the data and model results are drawn from very different populations. Thus, there is no 

need to reject the null-hypothesis. Moreover, as Grant points out, proving Ho would leave 

the researcher even more unsatisfied because he/she would know that the result is not really, 

reflecting the truth. 

Correlation provides a more smooth measure of similarity of a model witb the 

data. However, high correlation alone cannot justify the model (e.g. the model results may 

have consistent differences from the data in every point). Grant (1962) points out several 

simple, but quite effective methods for estimation of a model fit. These methods have 

practical advantages over more sophisticated techniques such as the Ho test. For example, 

the root-mean-square error (RMS) is a reliable measure of discrepancy between the model 

and the data: 

RMS = JE{eD = JE{(Y/ - Yi)2} , 

where Y/ are theoretical and Yi are data points. Another excellent index for evaluation of 

the model performance the variance of errors: 

Another method suggested by Grant is estimating the discrepancy at individual 

points. This is particularly valuable in our case because the variance of the data is not 

homogeneous: the deviation of the errors in the final stage of the experiment is smaller 

than at the beginning. Thus a model with significant discrepancy in the final stage of the 

run (usually after 10th simulated day) will be particularly suspect, and a model with a 

smaller correlation and a slightly higher RMS may be preferable if the discrepancy in the 

final stage is smaller. 

In this chapter the root-mean-square errors (RMS) will be reported as percentage 

of the maximum error a model can produce (i.e. maximum error of 10 corresponds to 

RMS = 100%). In our investigation a model that produced a smaller error will be preferable 

over a model with a higher correlation. The Dancer model managed to produce candidates 

with RMS of 5% - 10%. 

Although an error of 10% may seem generous, it is important to remember that 

these errors were achieved with quite a rough parameters manipulation procedure. In 

addition, as can be seen from Table 4.1, the data itself is based on a very limited number 

of measurements, which is quite common for psychological experiments. 



4. MODEL RESULTS AN D ANALYSIS 58 

Finally, linear regression of the model on data will be calculated and plotted on 

a regression graph. An example is shown on Figure 4.2. The coefficient of determination 

R2 will be reported as it is usually a better estimation of model performance than the 

correlation coefficient . Figure 4.2 is produced by fitting a data set to itself, and it is an 

example of a perfect model: the points are perfectly situated on the regression line and the 

plot is symmetrical. Ideally RMS = 0% and R2 = 1. The mean of the data points is shown 

by the vertical line, and the mean of the theoretical points by the horizontal line. Their 

intersection , the centre of gravity, is another important criterion: ideally the model should 

produce on average the same number of errors as the subj ects . 

Model 
10 

o 

R2= I 

5 

Data 
10 

FIGURE 4 .2: Linear regression for a theoretical p erfect model: R2 = 1, RMS = 0%. 

4.3 The G IT- Model 

The model described in this section was used t o study the effect of conflict resolution 

parameters, namely the goal value G and relative noise T , on the model performance. On 

the subsymbolic level only the expected probabilities and costs of the production rules were 

learned . The production strength and the base level learning mechanisms were switched 

off and did not influence the results. Because the model does not take into account the 

possibility of low visual discrimination , the results will be first compared with the data for 

good visual discrimination (set II , Yerkes & Dodson, 1908). 



4. MODEL RESULTS AND ANALYSIS 59 

4.3.1 Influence of the Expected Gain Noise 

The conflict resolution mechanism of ACT- R selects the rule with the highest expected gain 

(or utility) value determined by the equation (2.1). However, when the noise variance is 

extremely high, the rules with low expected probabilities and high costs may still win over 

the more successful and efficient rules, thus leading to performance degradation. Figure 4.3 

illustrates distributions of errors (based on 20 model runs) produced by the model during 320 

tests (two training and 30 testing simulated days) for three levels of relative noise in conflict 

resolution: T = 20%, T = 10%, and T = 1 %. One may see that as the noise decreases the 

overall performance of the model improves, which corresponds to the predictions. 

F .... mn Enon 

~~'" ·l~· · ·······~· · ··· ··· lL·· ···· 
I I · I o. 

I ' " 1 

, " " .. .. " .. ,,,,,,, ,, ,,,, n " ".""" ,n,. ,,,.,," " " " .. . , .. " " " ,,,,,. " n ,,,, ,,,, ,,,,,,, •• ,,.,,,, ' ,c:-, -:-c, .C:-. -:-c. ,c:-, -:-c, .c:-. ::"C. "c::-" ,::"C, "C::-,,,:C::. "C:-,,,:C:: •• -:-c" .::::, " -::C • .,::::, . -::e" ,=."" 
o..y, Dayt O=oy. 

FIGURE 4.3: Distributions of errors for three different levels of relative noise. From left to 
right T = 20%, 10%, and 1%. 

4.3.2 Influence of the Goal Value 

The goal value (G) in the utility equation (2.1) ·determines the maximum mean value of 

expected gain E. It was shown earlier in the asymptotic analysis of conflict resolution 

...... Enon 

:~ :~:~ 
, , . " • • • • , • • " " """ u" n" " .,," ,,,. ,,.,,""" ' " , , • • • , , • • " " ,,,,, ,,,,,,,,,,,,,,,,,, , . ..... ,. "" '" ""'-, ,c:-,-c-, ,-C-. -:-, .--:-. -:-:. ,:-:c, u-:-: .. ":-:Cu -'-,, .. "'"C:-:-" ."'" ""'" .. ...,-" .""'.C::-" ,=--•••. 

thYI (bys Day, 

0 . 50 T _ \(I'I. F.rrou 0 .. 100 r .. IQ'l. F.rrou G ,, ~ T = I ()'l. 

: . :~ :~. , ' . , , . 
l~ l · 1 '· 

A .' IJ " ."'~ 1 1 11111' IJ ~"~I. nl ' nnl' "HV ~ n~ A .' I "'."'~ l l ' I I" ' ~ ~ I ' "I, nl l ~nl' »'n'n~ A I ' ,) . 1. " ' . 1 1 1 1 1 ' I.n~ " "~ .' l n»I' U~" ~ ~~ 
OI YS (3)'1 0.)'$ 

Enon F .. mm 0 . 100 T _ I<J. &mil O .. S(X) T " "" 

.~. . . 

: .... 

FIGURE 4.4: Distributions of errors for three goal values (from left to right G = 50, 100, 
and 500), and for three levels ofrelative noise (from bottom to top T = 1%, 10%, and 20%). 



4. MODEL RESULTS AND ANALYSIS 60 

(see Section 2.6) that high values of G emphasise the influence of P, while low G values 

make C more important . Moreover, this effect is observable even if the relative noise 

T = tT remains constant. Thus, the decrease of the goal value should reduce the effect 

of probabilities on the outcomes of conflict resolution. This should lead to degradation of 

performance, because the success of the model in each test depends on selection of the rules 

with high probabilities. 

Figure 4.4 demonstrates the distributions of errors for three goal values (from left 

to right G = 50, 100, and G = 500), and for three levels of relative noise (from top to 

bottom T = 20%, 10%, and 1 %). As expected the performance of the model improves with 

the goal value increase. Note that the effect is particularly noticeable for low noise. 

Tests 

"" 
JOO 

,,. 

200 

'" 
100 

'0 

Perfect Habit Formation 

.....-. T= 20% 
0-0-0 T= 10% 

-- T= 1% 

50 100 ISO 

Goal Value 

Errors 

lOO 20 

A verage Number of Errors 

.-.... T= 20% 
0-0-0 T= 10% 
......... T= 1% 

so 100 ISO 

Goal Value 
lOO 

FIGURE 4.5: Performance as a function of the goal value parameter for three levels of 
relative noise T. Left: the number of tests needed by the model to form the perfect habit. 
Right: average number of errors produced during the first 50 tests. 

4.3.3 Analysis of the Results 

Figure 4.5 shows performance of the model as a function of the conflict resolution parame­

ters: expected gain noise and goal value. The left graph shows performance as the number of 

tests required to form the perfect habit. The right graph shows the average number of errors 

produced during the first 50 tests. The performance is shown on ordinates, while abscissae 

represent different goal values. Different curves correspond to different noise settings. One 

can see that increase of the goal value dramatically improves the performance, while higher 



4. MODEL RESULTS AND ANALYSIS 61 

noise leads to performance degradation. The effect of the noise is more pronounced at the 

high goal values, while the effect of the goal value is more noticeable for lower noise. 

Note that noise increase leads to a greater variance on the left plot (number of 

tests needed to form the perfect habit), but to a smaller variance on the right plot (the 

number of errors during the first 50 tests). When model results are compared with the data 

a model producing on average the same performance usually has much greater variances. 

One might suggest that in order to achieve the same variation as in the data the model 

would probably need to start with a greater noise, but should have less noise closer to the 

end of the experiment. 

4.3.4 Matching the Data of Set II 

Lovett and Anderson (1990, 1995, 1996) used different values of the G parameter to model 

different values of stimulus (i.e. payoff). The results of the Dancer model provide further 

evidence for this idea, and performance improvement with the increase of the strength 

of stimulus can be explained by the increase of the goal value parameter in the model. 

However, the most important implication of the inverted-U law is that performance may in 

fact decrease if the stimulation level is too high. The results of the G /T -model suggest that 

this effect can be explained by increase of the relative noise (T) at extremely high levels of 

stimulation. 

Statistical analysis of the model performance supports further this idea. Table 4.2 

shows root mean square errors (RMS) and coefficients of determination (R2) for the G/T­

model ran at different G and T settings compared with the Yerkes and Dodson data from 

set II. Good matches in terms described in Section 4.2 (minimising RMS, maximising R2, 

etc) are shown in bold. One can see from the table that increase of stimulation from 135 to 

420 units corresponds to increase of the goal value (in our case from 50 to 500). Figure 4.6 

shows the learning curves for the selected in Table 4.2 model settings compared with the 

data of set II (left) and corresponding regression plots (right). 

Note that in the data of set II there was no noticeable degradation of performance 

at high levels of stimulation. One can see from Table 4.2 that all the best matches are for 

the noise setting T = 10%. Nevertheless, at high levels of stimulation (375 and 420) the 

model with higher noise setting T = 20% and G = 500 provides better correlation than 

the model with lower noise. Thus, relative noise is more likely to increase at extremely 



4. MODEL RESULTS AND ANALYSIS 62 

high levels of stimulation. Later in this chapter a model taking into account the different 

conditions of discrimination will be introduced. The results of this model compared with 

the data from set I and III further support the idea that noise increases at a high level of 

stimulation, which also explains the degradation of performance (Le. the inverted-U effect) .. 

The increase of noise can be understood taking into account the circumstances of 

the Yerkes and Dodson experiment. The stimulation was an electrical shock, which at high 

values should have resulted in a lot of fear of an error in mice because the penalty was so 

severe. It was noted earlier that high relative noise in conflict resolution may correspond to 

the behaviour with low confidence (see Table 2.1), which explains why the model suggests 

the noise increase at high levels of stimulation. 

TABLE 4.2: Comparison of the G/T-model with the data from set II (good visual dis­
crimination). Data for different stimulation levels compared with model performance under 
various levels of noise (T) and goal values (G). The best matches in terms described in 
Section 4.2 are shown in bold and on Figure 4.6. Increase of stimulation corresponds to 
increase of G and possibly T at high levels of stimulation. 

Stimulation 135 195 255 375 420 
T G rms R'1. rms R'1. rms R'l. rms R'1. rms R'1. 

20 19.7% .67 18.5% .73 19.8% .66 19.5% .58 17.3% .76 
50 9.6% .58 9.6% .72 10.0% .78 13.0% .53 10.0% .67 

1% 100 14.3% .58 11.3% .80 12.8% .76 16.9% .50 12.5% .67 
150 17.8% .59 15.2% .78 14.6% .90 21.0% .51 13.9% .70 
500 16.1% .62 14.2% .77 13.0% .92 18.9% .55 12.3% .71 

20 9.9% .70 11.4% .89 14.5% .70 15.0% .58 11.9% .69 
50 11.8% .55 12.9% .78 15.8% .61 16.9% .44 14.0% .57 

5% 100 11.8% .54 13.6% .77 15.4% .72 17.1% .46 14.3% .62 
150 13.1% .45 15.8% .66 17.9% .58 18.7% .34 16.4% .50 
500 13.6% .53 15.7% .74 17.8% .66 18.3% .44 16.1% .57 

20 15.4% .70 14.9% .69 14.1% .88 14.9% .70 14.0% .74 
50 8.1% .85 9.6% .80 8.9% .94 10.0% .81 8.7% .86 

10% 100 6.6% .83 7.4% .90 9.4% .86 10.0% .75 9.1% .81 
150 6.9% .79 9.1% .79 8.2% .98 10.7% .72 8.9% .75 
500 6.3% .83 8.6% .83 9.0% .93 9.8% .79 7.2% .85 
20 19.4% .62 17.8% .66 17.4% .84 17.4% .68 18.5% .62 
50 12.4% .75 14.2% .71 14.1% .91 13.6% .79 12.7% .80 

20% 100 12.5% .66 13.7% .75 14.6% .80 15.1% .58 13.6% .66 
150 11.6% .67 12.8% .79 15.0% .68 14.3% .57 13.3% .65 
500 10.4% .76 11.3% .82 12.2% .89 12.0% .80 11.0% .85 

Although the match between the G /T -model and the data is not perfect, the 



4. MODEL RESULTS AND ANALYSIS 63 

analysis of the results allows us to make the following qualitative conclusions: 

1. Under-performance for low levels of stimulation may be explained by the model with 

the low goal value (G). 

2. Improvement of performance with increase of the stimulation can be explained by 

increase of the goal value (G). This also corresponds to the idea that motivation of 

the subjects to choose the door correctly increased for stronger stimuli. 

3. At extremely high levels of stimulation the noise (T) may also increase, which may 

explain degradation of performance in set I and III. 

4.4 The Sp-Model 

Successful performance of the model depends not only on learning new production rules and 

their statistical parameters, but also on the ability to retrieve these rules quickly, that is on 

strengths of the new production rules. If a rule has not been used for some period of time, 

then it can get 'forgotten'. This effect can be simulated in ACT-R using the production 

strength. The model takes into account time intervals between the tests as well as between 

the training days. The model described in this section uses the production strength learning 

mechanism to study the possible implications of strength learning and different decay rates. 

4.4.1 Influence of Production Strength Learning 

Production strength Sp affects the time necessary for a production rule to fire (see equa­

tion (2.4)). Low production strength results in longer latencies and higher costs. The 

production strength learning mechanism of ACT-R increases the strength of productions 

that are used more frequently. The speed of the production strength learning can be con­

trolled by the: 51 parameter or d in equation (2.8). 

As was explained earlier the model is organised in such a way that only the new 

production rules learned during the model run can be significantly affected by the strength 

learning mechanism. Initially these new rules have low production strengths and, as a result, 

relatively higher costs. With practice or repetitive learning the strength may increase. 

Figure 4.7 shows the dynamics of strengths (top) and costs (bottom) of the pro­

duction rules learned during the model run. The graphs are shown for three settings of the 



4. MODEL RESULTS AND ANALYSIS 

Errors Model (T= 10%. G = 50) vs Data (sct 2. 135) 

A " I 2 ] .. .5 6 7 S 9 10 11 12 13 14 15 1617 111 1920 21 22 n 24 25 26 2718 29 30 

Days 

Errors Model (T= 10%. G = 100 ) vs Data (set 2. 195) 

A a I ]":5 6 7 8 9 1() I I 12 13 14 ]S 16 17 18 192Q 21 22 23 24 2S Ui 272829 30 

Errors 

Days 

Model (T = 10%. G = 150 ) vs Data (set 2. 255) 

........ Model 
0-<'.-0 Data 

A J) I 3 4 5 6 1 II 9 10 II 12 13 14 U 16 17 18 192021 22 23 24 2j 26 27 211 29 30 

Errors 

Days 

Model (T = 10%. G = 500 ) vs Data (set 2. 375 ) 

........ Model 
0--0--0 Data 

A 8 I 3 " 5 6 7 II 9 10 11 1213 14 1:5 16 17 18 1920 21 22 2) 14 25 26 27 2829 30 

Errors 
8 

Days 

Model ( T = 10%. G = 500) vs Data (set 2. 420 ) 

........ Model 
0-0-0 Data 

A H 1 2 J " 5 6 7 8 9 10 II 12 13 14 15 16 17 18 1920 21 22 2] l4 25 26 27 2829)0 

Days 

Model 
10 

Model 
10 

.1. 

R2= .85 

, 
Data 

R2 =.90 

, 
Data 

R2= .98 

1 I. 

, 
Data 

R2 = .79 

Data 

R2 = .85 

, 
Data 

64 

10 

10 

10 

10 

10 

FIGURE 4 .6: Comparison of G IT - model performance with data from the set 2 (good visual 
discrimination). Left : learning curves. Right : regression plots. 



4. MODEL RESULTS AND ANALYSIS 65 

: 81 parameter (from bottom to top 81 = .1, .3, and .5). One can see that higher decay rates 

(higher : 81 value) result in a slower strength learning and higher costs of the productions. 

The increase of the costs means that the model will require higher G values to achieve the 

same kind of performance, and for the same goal values the model with a slower strength 

decay will perform better than a model with a faster decay. 

Figure 4.8 shows the learning curves produced by the Sp model for the -three 

settings of the : 81 parameter (from bottom to top .1, .3, and .5), and for different goal 

values (from left to right G = 50, 100, and 500). The relative noise was set to T = 10%. 

One may notice that performance improves slightly for a lower: 81 setting. 

Strengt h . Strength Learning - 0.1 

c 

..-- .~. -~ . , .. -.-

1-:jt%~~:::~;~: 

A • I I , ~ t , I I , 10 II Il n ,. IS III n II " 10 

[)'.Iys 

Production Costs 

All I I) ." "" IClIIUU .4 U II1UJlt,XI 

0." 

Strength . Strength Learning - 0.3 

c .. 
,. II I 1 ) • , " , • , 10 II n U 14 I'" 11 tl It 10 

Days 

Production Costs 

1\ II I 1 ) 4 , " I • , 101\ I} Il 14 U '" IT II I' XI 

Da" 

Strength . Strength Learning. 0 .,5 

A • I I ) 4 ) , 1 • , 10 \I II 1) 14 IS .6 Il 11 1,10 

0." 
c Production COSts 

" • I I ) 4 , " f • , 10 II n U 14 IS" If II 1' 10 

0." 

FIGURE 4.7: Dynamics of production strengths (top) and costs (bottom) for three values 
(from left to right) of production strength learning parameter: .1, .3, and .5. 

4 .4.2 St rength of Stimulus a nd Rat e of Forgetting 

Figure 4.9 shows performance of the model as a function of the goal value and production 

strength learning parameters. On the left graph performance is measured in the number 

of tests required to form the perfect habit, and on the right it is the average number of 

errors produced during the first 50 tests. Three curves correspond to three values of : 81 

parameter (.1, .3, and .5). One can see that decrease of the strength decay rate slightly 

improves the performance of the model. 

One may speculate that performance improvement with the increase of stimulus 

is due to a lower decay rate of the knowledge learned under a stronger stimulus (e.g. due 

to a higher initial activation). There is evidence supporting the idea that memories formed 



4. MODEL RESULTS AND ANALYSIS 66 

I\rmu r:.rro r ~ F..rrou o .~ T . IO'It ( sl . O.S) 

~ tfuT" ,,. ~ Itw -.. 1 Ht : .. :.-..... . 
,-'~ , ·!E~ ,-~ 
• ". I I , • J . , •• ~1":II .. " .... 1.1t,.":'1J1. "l'IJ'llI",. ' "., I ,.,., , . ItlllllllOll"U" "."llnto"", nlOl'lJII ' . - . - , - , ,...:. . • - , ....:. ,:":'. --•• :..:. .. ...:." --U1O:..:. .. --•• =, .. -= .. =.,=.,,="'= ... =.=" .. =,. 

Ooy. Oily, Dlys 

&mll f:.non 0 _ 100 1 _ 10'-' (d _ O.l) F.rrors . . . 
l~ l~- l~'- '"'' 
, I , .... 

, ' , , . . . -
A t ' " . t . ~ • • ltl I11Itl.""nl. ltl'l 'I~Ul' n,.n ~". 

"'" 
F.m)n r:no r~ O_XIO T . I~ (,1_0.1 ) 

FIGURE 4.8: Distributions of errors for three levels of production strength learning (from 
bottom to top sl = .1 , .3, and .5) , and for three goal values (from left to right G = 50, 100, 
and 500). Noise T = 10%. 

Tests T= 10% 

3~' 

300 

,,., 

200 

I,., 

100 

,., 

20 so 100 I SO 

Goal Vallie 

............ 51=0.5 
0-0-0 51 = 0.3 
........... 51 =0.1 

"'" 

Errors 

20 

Average Number of Errors 

so 100 I SO 

Goal Vallie 

........... sl =0.5 
0--<>-<> sl = 0.3 
........... sl =0.1 

FIGURE 4.9: Performance as a function of the goal value and three values of strength 
learning parameter. Left: the number of tests needed by the model to form the perfect 
habit . Right: average number of errors produced during the first 50 tests. 

in highly emotional states (high level of arousal) are stronger. This phenomenon is known 

as 'flashbulb' memories (Brown & Kulik, 1977) . However, it is not clear whether this effect 

infl uences learning proced ural knowledge (skills). If it does , then the model indicates that 

it can be modelled using production strength in ACT- R, and that it is more likely that the 

decay rate decreases under a stronger stimulation. 



4. MODEL RESULTS AND ANALYSIS 67 

4.5 Discrepancy of the Model Performance 

In previous sections we discussed the influence of strength of stimulus on performance and 

ways of modelling it in ACT-R. The models discussed did not take into account the second 

experimental parameter - conditions of discrimination. The model managed to produce 

a fair match with the data from set II of the Yerkes and Dodson experiment (good visual 

discrimination). However, use of G, T, or Sp parameters alone did not allow the matching 

of data from the other sets when visual discrimination was not perfect. When compared 

with the data from set I (medium visual discrimination) the best match was only R2 ~ .5 

and RMS ~ 15%. 

Errors Model (T = 10%, G = 500) vs Data (set 1, 300 ) 

o 

-- Model 
0-0-0 Data 

A B I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 2021 2223 24 25 26 27 282930 

Days 

Model 
10 

o -,' 
§o-'c9, 

0 

R2= .46 

, , 
, 

0 
, 

0 , , 
0 , 

0..,' 
, 

, 
0 

0 

5 10 

Data 

FIGURE 4.10: Comparison of GIT- model performance with the data from set I (medium 
discrimination): Left : learning curves. Right: regression plot. Note the discrepancy: the 
model produces less errors in the initial (days 1- 8) and more errors in the final (days 9- 20) 
stages of the experiment. 

The discrepancy can also be seen from visual comparison of the learning curves. 

A typical example is shown on Figure 4.10. On the left plot data from set I (stimulation 

300) is compared with the best matching GIT- model (T = 10%, G = 500). One can see 

that the data curve has a different character: although there are more errors produced in 

the first stage, after the fifth day errors decay much faster. Perfect habit in the data is 

formed on day 8, while the model achieved the same performance only on day 11. Plot on 

the right of Figure 4.10 shows the corresponding mean- square regression. One can see that 

the mean number of errors for the model (horizontal line) is smaller than that of the data 

(vertical line). The coefficient of determination R2 = .46. The model produces less errors 

in the initial stage of the run, but more errors in the final stage. 



4. MODEL RESULTS AND ANALYSIS 68 

In fact, a similar pattern can be observed in the results of the G IT -model (see 

Figure 4.6). Indeed, the model overperforms in the initial stage of the experiment and 

underperforms in the final. In general the model forms the perfect habit later than the real 

mice. This could be overcome by reducing the noise, but then the match in the initial stage 

would be even worse. 

One possible solution to resolve this issue could be a decaying noise in conflict 

resolution. The idea that noise can be dynamic and decay over time was suggested before 

(Belavkin, 2001, also proposed by Taatgen at the ACT-R workshop, 2001). The model with 

decaying noise will be introduced and discussed in the next chapter. However, the expected 

gain noise hardly has any relevance with the condition of visual discrimination. It is clear 

that some additional variable should be incorporated into the model to account for the 

different levels of visual discrimination. In the next section a model that uses activation 

parameters of chunks in working memory will be described. 

4.6 The A-Model 

As was mentioned earlier the model does not use any sophisticated models of the visual 

system, so it is not possible to achieve the desired effect by directly reducing the lighting in 

the simulated environment. However, it is possible to adjust the model parameters in order 

to simulate the effect. The mouse could learn the' correct strategy only if it paid attention 

to the colour properties of the doors. With the darker conditions, however, the task became 

more difficult because the key feature (door colour) became less obvious. 

In the model the correct learning happens when one of the two learning rules 

with colour chunks in the condition fires. If these learning rules fail to retrieve the chunks 

representing the colour of the door, then the rule will fail to fire altogether, and, as a result, 

the model will not learn the correct strategy. This means that we can use activation of the 

colour chunks in order to simulate different lighting conditions. 

4.6.1 Influence of Activation Parameters 

There are several factors in the model that are influenced by chunk's activation: 

• Lower activation results in a longer retrieval time, and consequently longer latency 

time. This increases the cost of the production rule, thus reducing its chance to win 

in the conflict resolution process. 



4. MODEL RESULTS AND ANALYSIS 69 

• If the activation of a chunk is below the retrieval threshold , then the rule may not fire 

at all. 

Figure 4.11 illustrates the way activation parameters were used to simulate dif­

ferent discrimination conditions. The retrieval threshold was set to the default value of ° 
(shown by the horizontal dotted line). The: ans parameter controlling the activation noise 

variance was set to .15. The activation base level (A) of the chunks black and white was' used 

to control the mean of activation distribution. Figure 4.11 demonstrates from left to right 

the dynamics of colour chunks activations for three values of base level activation (A = .5, 

0, and -.2). 

Activation Colourchunk5 aClivalions (base !c\'c! 0 . .5) 

I 1 , " i , , • , iO 

I}J)'5 

Activat ion Colour chunks activations (base level 0.0) , 

" • I l ) " , • 1 • ., 10 

Days 

AClivation Colour chunks activations (base level · 0 .2) , 

" • I ! ) " ) , 1 • • 10 

o.ys 

FIGURE 4.11: Different lighting conditions simulated using activations of colour chunks 
with different base levels (from left to right A = .5, 0, and -.2), and retrieval threshold at 
0. 

Figure 4.12 shows the learning curves produced by the model run at different 

activation base levels of colour chunks (from top to bottom A = .5 , 0, and -.2) and three 

goal values (from left to right G = 50, 150, and 500, noise T = 1%). Performance of the 

model improves significantly for higher values of A. The character of the learning curves 

corresponds better to the shapes of the learning curves from the first experimental set: the 

model produces more errors in the initial stage, but once the correct strategy has been 

learned , the errors decay much faster. 

Figure 4.13 shows the performance curves (perfect habit on the left and errors 

during the first fifty tests on the right) as a function of goal value (G) and activation base 

level (A). The upper plots show performance of the model for T = 10%, and the lower for 

T = 1%. Three curves on each graph represent performance for three different values of 

A. One may see that activation of the colour chunks affects significantly the performance 



4. MODEL RESULTS AND ANALYSIS 

F.Jn.fi O . UO T .. I'J- 11\ .·0.2 aM"'O, U) 

:~"".' , , . . ... 

, , 
t - , •. . . . 

~ .' !J'J. ~ "~lllllll'~I'OI'~ ~llnnMn~n ~ ~~ 

I}a)'~ 

Ermn 0.50 T . I~ (" . 0.0 .111,._0.1$) r~",n 0 . 156 T = I% (1\ .. 0.0 :aN:O.U ) 

:~ :~ ; . ..,' .... , .. ; 
I ... J , , 
• ' :-:-:-::-:-:-:"""7":-:-:-::-::-::-::-::~7.7.:::=== 

~ . ' " " " ' WN "II,,~,, ~nl'~ ~I'n»~»~"'~W All 1, •• ""~I"'I"'I'~n~~ftllllnMnun~~~ 
Days 0.,.. 

o JOT I" (A OS 015) F.rmn O. ISO T .. I'J. fA _ OSanuO.U) k -- --: ·· !L 

.~ ...... . 
i ········· . ... ."'. 

A~I II 0 1 ."'.""ll l' u~n l" '~II»»N»~n»~» 
D~ys 

Error. O=~ T . I <;\ (AzeO.OaM _ OUl 

: rAT 
:~··~L 

'~'~"~'~"~'~"~'~."~"~Ul'~"~''''~''~.'~'''~11 1-'''~'.~:»--•• 
I>:'YI 

;~ ........... -
, . -.. . f ' ....... _ .. 

• ~. ~~:-:-:-::-;-:-::-::-::-::-::-::-:~=::=::= 
AI, II', ""~II""I"!~I" I~~llu»:' n ~n~~~ All I) ' , ""~II»UI.u~nl'~.lln»~n~n~~. .1. I I" ' 7 ".'111111'UI.nl'"M1IUU"»» n ' ~. 

- - -

70 

FIGURE 4.12: Distributions of errors for three base levels of colour chunks (from top to 
bottom A = -.2, 0, and .5), and for three goal values (from left to right G = 50, 150, and 
500) . Noise T = 1%. 

especially during the first five days (right plots) . Particularly, when the expected gain noise 

is low, the number of tests needed to form the perfect habit does not change very much for 

different A values (bottom left). However, there is much greater variation in the performance 

during the initial stage (bottom right) . This suggests that the discrepancy between the 

model and data shown on Figure 4.10 can be reduced by varying the A parameter of the 

model (activations of colour features of the doors). 

4 .6.2 Matching the A-Model to the Data of Set I and" I 

Results indicate that the A- model is indeed better suited for modelling the data from set I 

and III (medium and slight discrimination conditions). In particular , the A- model ran 

at A = - .2 produced a good match with the data, and it is significantly better than for 

the G IT - model. Table 4.3 reports R 2 and RMS for different settings of G and T for the 

A- model with A = -.2 compared with set I (medium visual discrimination). 

By looking at Table 4.3 one may notice that the better matches are now located in 

the area of lower noise (T = 1%, 5%). This can be explained by the fact that low activation 

of colour chunks reduced the performance of the model, thus the noise should be lower in 

order to compensate for the additional errors the model produces. 

Figure 4.14 illustrates one-to- one comparison of the learning curves from set I with 

the best model results in terms described in Section 4.2 (shown in bold in Table 4.3). One 



Tests 
JSO 

2SO 

200 

ISO 

100 

SO 

Tests 
JSO 

JOO 

'SO 

200 

ISO 

100 

SO 

20 

4. MODEL RESULTS AND ANALYSIS 

.......... A = 0.5 
0-0-0 A =0.0 
.......... A = -0.2 

T= 10% 

so 100 ISO 

Goal Value 

T= 1% 

.......... A =0.5 
1>-<>--0 A = 0.0 
.......... A = -0.2 

so 100 I SO 

Goal Value 

lOll 

lOll 

Errors 
10 

20 

Errors 
10 

SO 

SO 

T = 10% 

100 150 

Goal Value 

T= 1% 

.-.-. A=O.5 
<>-<>-<> A = 0.0 

--- A =-0.2 

.-.-. A = O.S 
<>-<>-0 A = (J .G 
--- A =-O.2 

100 I SO 

Goal Value 

71 

lOll 

FIGURE 4.13: Performance as a function of the goal value parameter for three levels of 
relative noise T. Left: the number of tests needed by the model to form the perfect habit . 
Right: average number of errors produced during the first 50 tests. 

can see that at a low level of stimulation the performance is not good, and in fact the model 

(and mice) did not form the perfect habit. The model reproduces this behaviour with G = 50 

and T = 5%. The best performance is at a moderate level of stimulus , which corresponds to 

the model with low noise (T = 1%) and high goal values (G = 150 r..J 500). Further increase 

of the level of stimulus leads to performance degradation, which is reflected in the model 

by increase of noise (T = 5% r..J 10%). There is , however, a significant discrepancy with the 

data: the errors in the data decay faster than those of the model in the final stages of the 

experiment (after day 10). Note that a similar discrepancy was observed in the Tower of 



4. MODEL RESULTS AND ANALYSIS 72 

TABLE 4.3: Comparison of the A-model with the data from set I (medium discrimination). 
Data for different stimulation levels compared with model performance under several levels 
of noise (T) and goal values (G). The best matches in terms described in Section 4.2 are 
shown in bold and on Figure 4.14. 

Stimulation 125 300 500 
T G rms R"L. rms R"I. rms R2 

20 29.2% .27 39.5% .15 40.7% .16 
50 15.6% .59 30.3% .57 21.0% .89 

1% 100 15.2% .52 21.8% .51 13.9% .86 
150 15.6% .61 16.6% .76 12.4% .90 
500 18.7% .55 13.2% .77 12.7% .79 

20 20.9% .27 28.0% .43 29.1% .50 
50 12.2% .54 16.8% .54 10.2% .86 

5% 100 13.6% .58 17.1% .42 8.1% .88 
150 19.5% .46 15.4% .53 11.0% .72 
500 20.7% .42 16.0% .46 10.5% .71 

20 21.9% .27 28.7% .35 31.7% .15 
50 10.7% .66 20.0% .64 16.8% .82 

10% 100 12.5% .56 17.1% .54 11.3% .77 
150 11.0% .59 20.5% .74 15.1% .86 
500 11.1% .54 16.2% .71 12.4% .82 

20 18.3% .33 25.0% .64 27.3% .33 
50 13.0% .49 21.9% .42 18.7% .57 

20% 100 11.8% .49 17.5% .67 16.0% .62 
150 12.5% .62 22.6% .60 20.1% .76 
500 13.0% .45 20.5% .50 17.0% .84 

Nottingham model, and a decrease of the expected gain noise variance towards the end of 

a task was proposed as a solution (Belavkin, 2001). 

Set III (slight visual discrimination) is the most difficult to model because only 

two subjects were used to collect data for each setting. Thus, the experimental distribution 

. is very approximate. Nevertheless the A-model was compared with the data of set III 

and managed to produce a fair match. Table 4.4 shows the results of this comparison 

and learning curves from the best matches in terms described in Section 4.2 are shown on 

Figure 4.15. 

Again, the results indicate that performance at a low level of stimulus is reproduced 

better by the model with low goal value (G = 50). The best performance of subjects is 

at the moderate level of stimulation, which corresponds to the model with higher goal 

values (G = 150", 500). Finally, high levels of stimulation hinder the performance, which 



4. MODEL RESULTS AND ANALYSIS 

Errors Model (T = 5%. G = 50) vs Dala (sel I. 125 ) 

1\ IJ I 2. 1 .. 5 6 7 S 9 10 II 1213 14 IS 16 11 18 1920 21 22 2) 2415 26 2728 29 30 

Days 

Errors Model (T = 1%. G = SOU) vs Dala (sel I. 30U ) 

.......... Model 
0-0--0 Data 

II Ii I 2. 3 .. S 6 7 I 9 10 II 12 IJ 14 IS 16 17 II 1920 21 22 n 24 2j 26 27 282930 

Days 

Errors Model (T = 10%. G = SOU) vs Data (sel I. SOU ) 

1\ 8 I 2. 1 4 !'i 6 1 8 9 10 1\ 12 Il 14 15 16 17 18 192011 :u 2] 24 :15 26 272129 ]() 

Days 

Model 
10 

Model 
10 

R2= .S4 

o 

.' 

.d.' 

CKJ'~' 
•• 0>0 

Dala 

R2 =.77 

.I. O . . / / 1 

o .>-6~ 
," 0 

,,' 0 

, 
Data 

R2= .82 

, 
Data 

73 

.' 

10 

10 

10 

FIG URE 4.14: Comparison of the learning curves from set I (Yerkes & Dodson, 1908) with 
the A- model. Left: learning curves. Right: regression plots. 

is reflected in the model by increase of noise (T = 5% rv 10%). Again, the model fails 

to match well the decay of errors in the data in the final phase of the experiment (after 

day 10). 

4.6.3 Reproducing the U-€ffect 

Let us return to Figure 4.1 (adopted from Yerkes & Dodson, 1908) that shows aU- shaped 

dependencies of performance with respect to the strength of stimulus for medium and 

slight discrimination conditions (curves for set I and III). These experimental results first 

discovered by Yerkes and Dodson became the foundation for the inverted- U law. Having 

found the model settings that fit better the profiles of the experimental learning curves, we 

may now compare the performance of these models with the performance of subj ects for 



4. MODEL RESULTS AND ANALYSIS 

Errors Model (T = 1%. G = 50) vs Data (set 3. 135 ) 

A 1I I 1 ] .. S 6 7 8 9 10 11 12 I ] 14 15 16 17 18 1920 21 22 13 24 25 26 272829)() 

Days 

Errors Model (T = 1%. G = 150) vs Data (set 3. 195 ) 

......... Model 
C>-<>-O Data 

A a I '2 3 .. 5 6 7 R 9 10 II 12 Il 14 IS 16 17 18 192021 21 23 24 25 26 27 282930 

Days 

Errors Model (T = 10%. G = 150) vs Oat. (set 3. 255) 

1\ R I 2 ) 4 .5 6 7 II 9 10 II 12 13 14 IS Hi 17 18 1920 21 222) 14 :U 26 27 2~ 'Z9 30 

Days 

Errors Model (T = 10%. G = 500) vs Data (set 3. 375) 

A B I 1" 5 6 7 I 9 10 II 12 I) 14 IS 16 17 18 1920 21 22 1) 14 2$ 16 27 28 29 30 

Days 

Model 
10 

Model 
10 

Model 
I. 

R2= .73 

o 

0° ~ ... ~ 
o ,, 0 

o,'~., 0 

~ ... . ;. 

, 
Data 

R2= .82 

0,'" 

o 

~.,' ., 

4 " 0 
J>6 

, 
Da!;1 

R2= .69 

, 
Data 

R2=.61 

<> 

, 
Data 

.-

74 

10 

10 

10 

.' 

10 

FIGURE 4.15 : Comparison of the learning curves from set III (Yerkes & Dodson, 1908) 
with the A- model. Left: learning curves. Right: regression plots. 



4. MODEL RESULTS AND ANALYSIS 75 

TABLE 4.4: Comparison of the A-model with the data from set III (slight discrimination). 
Data for different stimulation levels compared with model performance under several levels 
of noise (T) and goal values (G). The best matches in terms described in Section 4.2 are 
shown in bold and on Figure 4.15. 

Stimulation 135 195 255 375 
T G rms R"L. rms R"l. rms R"L. rms R"l. 

20 33.1% .07 33.9% .33 36.4% .19 39.6% .18 
50 11.4% .73 20.5% .72 22.2% .60 16.7% .75 

1% 100 15.8% .60 12.7% .72 15.8% .57 11.1% .76 
150 19.3% .49 10.0% .82 14.3% .64 11.8% .72 
500 23.4% .31 12.9% .77 14.2% .65 13.9% .60 
20 23.4% .12 24.7% .48 26.4% .40 27.7% .35 
50 16.1% .44 14.9% .58 11.3% .64 10.8% .63 

5% 100 17.9% .48 14.4% .61 10.2% .67 9.5% .70 
150 23.2% .29 16.6% .62 13.0% .62 12.8% .60 
500 24.1% .25 18.6% .56 13.4% .59 13.4% .56 

20 23.3% .23 28.1% .17 27.9% .29 30.5% .15 
50 14.3% .42 16.9% .68 16.3% .60 15.4% .63 

10% 100 16.8% .38 13.5% .66 12.3% .58 10.6% .65 
150 13.6% .47 15.3% .74 14.5% .69 13.1% .72 
500 15.1% .36 15.6% .66 12.3% .66 12.5% .61 
20 22.1% .10 23.0% .55 22.7% .65 26.3% .36 
50 15.6% .36 18.9% .56 17.8% .43 18.0% .53 

20% 100 17.3% .16 15.8% .65 15.4% .42 15.9% .45 
150 15.1% .41 19.3% .57 18.2% .65 18.7% .60 
500 13.9% .47 19.2% .53 16.3% .63 16.1% .65 

the corresponding stimulation. 

Figure 4.16 compares the performance curves obtained in the Yerkes and Dodson 

experiments of set I and III with the model. Abscissae represent values of electric stimulus 

in units of stimulation; ordinates represent the number of tests required to form the perfect 

habit. Points on the model curves were obtained from the results of the A-model (see 

Table 4.3 and Figure 4.14 for set I and Table 4.4 and Figure 4.15 for set III). One can see 

that the model reproduces quite well the U-shaped effect. The model, however, forms the 

perfect habit significantly later than mice at a high level of stimulation. It will be shown 

in the next chapter that introduction of a dynamic noise in the model enables to overcome 

this problem. 



Tests 
'so 

JOO 

'so 

200 

ISO 

100 

100 

4. MODEL RESULTS AND ANALYSIS 

U-Curve (A-Model vs Set I ) 

200 300 400 600 

Stimulation 

Tests 

"" 
300 

'so 

'00 

ISO 

100 

100 

U-Curve (A-Model vs Set 3 ) 

'00 300 40tI 

Stimu lation 

...-..-. Model 
C>-O-O Data 

76 

600 

FIGURE 4.16: Comparison of the performance curves. Left: set I (medium discrimination) 
compared with the A- model results (see also Figure 4.14). Right: set III (slight discrimi­
nation) compared the performance of the A- model (Figure 4.15). 

4 .7 Conclusions 

In this chapter the behaviour of the Dancer model has been studied with regards to manipu­

lation of several parameters of the ACT- R cognitive architecture. It has been demonstrated 

that results of the Yerkes and Dodson experiment can be reproduced by modifying param­

eters of the conflict resolution mechanism, which is a model decision making. In particular , 

the strength of stimulus can be modelled by the goal value parameter G. The degradation 

of performance for exptermely high stimulation (inverted- U effect) can be modelled using 

two parameters: 

• Increased relative noise T in conflict resolution . 

• Further decrease of activations of chunks representing the door features. Note that 

Humphreys and Revelle (1984) suggested to explain the inverted- U effect by the 

reduced shot- term memory capacity for high arousal. 

One might suggest that the variation in performance that mice demonstrated in 

these experiments was due to the changes in the decision making system under different 

condit ions. The reasonable question here is whether such changes serve any useful function. 

Furthermore, analysis of the discrepancy between the model and data in the initial and the 

final stages of the experiments as well as the variances in data and model suggest that G and 



4. MODEL RESULTS AND ANALYSIS 77 

T may change not only between different experiments, but also during each experiment. 

In particular, the results suggest a decrease of noise temperature towards final stages of 

the experiment. Such dynamics would allow the model to fit better the distributions of 

errors. As noted earlier, the Tower of Nottingham model (Jones et al., 2000) had a similar. 

discrepancy, and a similar solution by decaying noise has been proposed (Belavkin, 2001). 

Noise decay was also discussed by Taatgen at the ACT-R workshop in 2001. 

We have also considered the implications of different production strength decay 

rates on the model performance. It has been shown that slower decay rates reduce the 

retrieval times of new production rules and facilitate the performance. This effect can 

further contribute to the improvement of performance from weak to medium stimuli. 

Although the manipulations of several parameters improved the model fit to data, 

the theory as it stands does not fully explain the values of some parameters. For example, 

why and how the noise temperature in conflict resolution should change? In the next 

chapter the role of the noise and its implication on learning will be analysed using entropy 

reduction in the system. It will be shown that dynamically changing G and T not only can 

improve the model performance, but also may optimise the learning process. The need for 

an alternative conflict resolution theory will be exposed. 



78 

CHAPTER 5 

Uncertainty, Noise and Emotion 

Noise in the ACT-R conflict resolution process was introduced to match the performance of 

subjects in probability matching experiments (Anderson, 1993; Lovett & Anderson, 1995). 

It is considered mainly as an artifact necessary to overcome the limitations of ACT-R 

cognitive models and to account for the stochastic nature of the human brain. Indeed, 

because cognitive models are usually have very few rules as opposed to human brain, without 

noise the behaviour of ACT-R models would be just too deterministic and predictable. The 

nature of the noise is addressed mainly to the complexity of the human brain. But is this 

its only useful application? 

The Dancer model discussed in previous chapters demonstrated that noise and goal 

value can be used to model the different behaviour under different levels of stimulation (and 

arousal). The level of arousal is regulated by the autonomic nervous system through various 

mediators such as hormones and neurotransmitters. The conscious awareness of these states 

is attributed by many psychologists to primary emotions. Fear, for example, is a very basic 

reaction initiated in the amygdala causing adrenaline release into a blood preparing the 

body for a hazard detected in the environment (LeDoux, 1990). The amygdala also sends 

signals to other parts of the brain, but the exact purpose of these transmissions is not yet 

fully understood. The noise increase in the model simulating the behaviour at extremely 

high levels of stimulus could be explained by the intrusion of the autonomic nervous system 

into the decision making system of the brain. Similar interactions are known between 

other parts of the brain and occurring during the experiences of other primary emotions. 

For example, dopamine and serotonine transmissions are known to be active particularly 

during the experiences of joy and distress. It is possible to imagine that the character of 

decision making changes during the experience of these emotions as well. 



5. UNCERTAINTY, NOISE AND EMOTION 79 

Analysis of the results of the Dancer model suggested that the conflict resolution 

parameters should be dynamically modified. For example, it is more likely that noise 

gradually decays during the experiment. Indeed, if the noise is somehow related to the 

experience of fear and flee reaction after receiving an electrical shock, then a decrease of 

errors during the experiment would reduce the number of such experiences, thus making 

decision making less noisy and more certain. Noise decay was suggested to improve the 

performance of other cognitive models (Belavkin, 2001, or Taatgen in his talk at the ACT­

R workshop 2001). 

In this chapter the role of the noise in learning and problem solving will be con­

sidered in a greater detail. It will be shown that noise decay may correspond to uncertainty 

reduction during the learning process, and that noise decay optimises the learning process 

in a way similar to simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983). It will be 

shown also that dynamic control of the goal value may further improve the learning process 

and performance of a problem solver. We speculate in the end of this chapter about the 

role of emotion and motivation on problem solving and intelligence due to their effect on 

decision making similar to some optimisation techniques. 

5 .1 Noise and Uncertainty 

Let us consider an ACT-R model from a machine'learning point of view. The model is to 

learn and solve a problem trying to achieve maximum performance and efficiency. It was 

shown that an increase of noise in conflict resolution leads to a degradation of performance 

on a task. The noise, however, is necessary to choose at random production rules when all 

the options have equal expected gains. For example, when beginning to solve a problem for 

the first time, there is no information about the expected probabilities or costs. Hence, all 

the expected gains are equal. But once the information has been learned from the experience 

should not the noise be removed? 

The expected probability Pi in the ACT-R utility equation (2.1) represents only 

the past experience. If a rule was successful in all previous applications, however, such that 

~ = 1, it does not guarantee that the rule will lead to a success next time it is applied. The 

rule may be missing some condition or the environment may change, and the previously 

successful rule may lead to a failure. For example, in the Yerkes and Dodson task the model 

may learn a rule to avoid the door on the left, and it can work fine for some time until 



5. UNCERTAINTY, NOISE AND EMOTION 80 

the order of the doors is changed. Without the noise the model will have to fail using the 

wrong rule at least as many times as it succeeded before, in order to equalise its chance 

with the other production rules in the system. Such learning by mistakes is not the best 

strategy particularly if the price of an error is high. Noise in the conflict resolution, however,. 

increases the chance that another rule will fire, and, if it is successful, the model may learn 

by successes of another rule. 

The example above illustrates that noise in conflict resolution is useful if the en­

vironment is changing. The possibility of the environment change imposes an uncertainty 

on the knowledge acquired during the past experience (Le. the uncertainty of a success of 

decisions based on this knowledge). The information gained reduces this uncertainty, but 

it never ceases. One may view the noise in conflict resolution as a reflection of the uncer­

tainty (or entropy) in the environment. If the uncertainty could be measured or estimated, 

then one could also define how significant the effect of noise (randomness) on the decision 

making process should be. That is if no information about the environment is available 

(high entropy), then the decision making should be completely random (high noise). On 

the contrary, if there is no uncertainty (zero entropy), then the decision making should be 

completely deterministic (no noise). 

The entropy H of a system with states ~ is defined as 

H{O = -E{lnP(~)} = -LP(~)lnP(~), 
~ 

(5.1) 

where E{-} denotes the expected value, and P(~) is the probability of state ~. It is quite 

difficult to estimate the entropy of a large system (e.g. the environment) with many states. 

We may, however, consider the problem from a different perspective. Let us consider a 

problem solver with n decisions (e.g. production rules implemented in ACT-R), and let 

~ E {O, 1} be a set of two states of the problem solver: failure (~ = 0) and success (~ = 1). 

Now we can estimate the uncertainty that the problem solver achieves the success state 

(~ = 1). Let us call HOI calculated over just two states an entropy of success: 

HOI = - [P(O) In P(O) + P(l) In P(l)) , (5.2) 

where P(l) and P(O) are probabilities of success and failure respectively (note that P(O) = 

1 - P(l)). 



5. UNCERTAINTY, NOISE AND EMOTION 81 

The probability of success can be written as 

P(l) = LP(l,i) = LP(ll i)P(i) , 
i i 

where P(l, i) is the joint probability of event 1 and ith rule, P(l I i) is the conditional" 

probability of 1 given that ith rule has fired, and P( i) is the probability that ith rule fires. 

Note that for ACT-R P(i) is the choice probability given by the Boltzmann equation (2.9). 

The conditional probability P(l I i) is not known. ACT-R, however, records the 

information about the successes and failures of each rule in a form of expected (or empirical) 

probabilities Pi attached to each production rule (see equation (2.5)). Because the tests of 

each rule are independent, the empirical probability (2.5) asymptotically converges to the 

conditional probability P{l I i).l So, we can use ACT-R expected probabilities to calculate 

P{l): 

P(l) ~ L Pi P{i). 
i 

The probability of failure is simply P(o) = 1 - P(l). Now using expected probabilities I1. 
and calculating P{i) by equation (2.9) we can estimate the probability of success: 

P{l) = 1 """ p,. eE;/r . L:i eE;/r L: t 

Therefore, the entropy HOI of success in achieving the goal can now be calculated byequa­

tion (5.2). 

Note that it is more convenient to use the following formula for calculating the 

empirical probabilities I1.: 

Successesi 
Pi=~------~~~----­

Successesi + Failuresi + 1 

This is because by default ACT-R sets initially all the probabilities Pi = 1 (the number 

of successes is set to 1 initially). Anderson and Lebiere justify this in order to make the 

prospects of a new production optimistic (Anderson & Lebiere, 1998, p. 135). This approach, 

however, is biased and not very convenient for calculating the entropy. Indeed, if at the 

beginning all I1. = 1, then the uncertainty of a success HOI = 0, which contradicts the idea 

that initial state should be the maximum entropy state (no experience). The above formula 

for the empirical probability is more suitable to estimate the entropy: it makes the initial 

values Pi = 1/2, which corresponds to the maximum entropy. 

lit will be shown in Chapter 6 that this probability can be expressed through goal value G and cost C. 



5. UNCERTAINTY, NOISE AND EMOTION 

Errors 
10 
9 

A 

P 

Errors per day 

4 5 

Days 

Expected Probabilities 

10 

~~~'~-~~~~'~'--:~'~~~~-~:---~-~:~;~~~~~~r---::-:.~~~ 
(-----~ ~

0.5 ------------------'---"-----.

A

H

0.5

A

5

Days

Relative Entropy of Success

4 5

Days

10

10

82

FIGURE 5. 1: Dynamics of relative entropy of success during problem solving: error curve
(top) , probability learning (middle), and entropy change (bottom).

Because the number n of production rules may change due to learning new rules,

it is convenient to use the relative entropy:

HOl
Hrel = -H '

max

where Hmax = In 2 is the maximum entropy, when two states (success or failure) are equally

probable (i.e. P(l) = P(O) = 1/2).

Figure 5.1 illustrates an example of the dynamics of the uncertainty of a success

during problem solving. The top plot shows an error curve produced by the Dancer model.

The plot in the middle shows traces of expected probabilities of the productions making the

choice of a door (see Chapter 3). The lower plot illustrates the corresponding entropy of a

success . As can be seen from the graphs the entropy is at its maximum in the beginning

of the task. This is because during the first two days the dancer can escape through any

5. UNCERTAINTY, NOISE AND EMOTION 83

door and uses two simple productions to choose the door (see Section 3.3). The expected

probabilities of these rules ~ = 1/2. After the second day the model learns new production

rules to avoid the wrong door, and with experience learns their expected probabilities. With

more successes (or less errors) the entropy begins to decay. The lower plot of Figure 5.L

shows the entropy reduction during problem solving. One may notice from the graph, that

the entropy does not always decay: the graph shows a sudden increase of the entropy during

day 5 and 7. It corresponds to the increase of errors particularly during day 5, as can be

seen from the top plot, and to the changes in expected probabilities. In addition, ACT-R

learns new rules at this moment, which also may contribute to the increase of uncertainty.

In general the entropy of a success is proportional to the number of errors:

• Successful performance corresponds to the reduction of entropy.

• An increase of errors increases the uncertainty.

The results of the Dancer model discussed in the previous chapter suggest that

noise in conflict resolution may in fact follow the dynamics of the entropy. Indeed, degra­

dation of task performance was modelled with a noise increase. The suggested noise decay

corresponds to the decay of errors during the experiment.

5.2 The H-Model with Noise Decay

Before we proceed to the analysis of the implications of dynamic conflict resolution param­

eters on learning, let us test the idea of entropy-regulated noise on the working model. The

aim is to see what effect it produces on the model performance and whether the match with

the data can be improved.

The H-model (H for entropy) is a modified A-model, described in the previous

chapter. In this model relative noise T is dynamically controlled by the entropy parameter:

T(t) = ToHrel(t) , (5.3)

where t is time, To = T(O) is the initial value of the noise, Hrel (t) is relative entropy of success

for the task-related productions. In the Yerkes and Dodson experiment the task-related

productions are rules that make the choice of the door.

The results of this model ran at different initial noise To settings and for different

goal values were compared with the data of sets I and III from Yerkes & Dodson, 1908. The

5. UNCERTAINTY, NOISE AND EMOTION 84

TABLE 5.1: Comparison of the H-model with decaying noise and the data of set I (medium
discrimination). Data for different stimulation levels compared with model performance
under levels of noise (T) and goal values (G). The best matches in terms described in
Section 4.2 are shown in bold and on Figure 5.2.

Stimulation 125 300 500
To G rms R"L. rms R"L. rms R"L.

20 20.1% .38 32.5% .25 27.5% .64
50 18.7% .59 16.2% .83 16.8% .68

1% 100 19.0% .55 11.4% .94 14.0% .78
150 16.6% .60 7.7% .84 7.0% .85
500 20.3% .51 11.1% .79 12.2% .72
20 13.2% .48 18.7% .66 17.2% .65
50 14.4% .60 11.1% .76 8.6% .79

5% 100 21.1% .39 14.3% .71 12.8% .74
150 17.1% .59 12.0% .65 8.9% .80
500 14.2% .75 8.8% .86 7.9% .85

20 13.9% .33 19.5% .41 17.8% .58
50 11.9% .49 15.3% .62 9.8% .85

10% 100 12.5% .65 10.1% .83 6.5% .85
150 14.0% .46 13.0% .68 9.7% .75
500 12.1% .69 11.6% .81 7.1% .88

20 13.0% .51 20.1% .48 16.8% .62
50 11.2% .61 12.4% .83 10.4% .74

20% 100 10.1% .64 16.9% .69 10.8% .83
150 11.2% .61 13.2% .75 10.3% .66
500 9.8% .72 15.8% .57 8.7% .85

analysis is presented in Tables 5.1 and 5.2. One can notice that the model can start now

with the higher noise settings as opposed to the A-model, because noise is decaying. The

best matches in the sense described in Section 4.2 are shown in bold. The learning curves

of the selected models are compared with the experimental curves on Figures 5.2 and 5.3.

Firstly, the match between the model and the data in the mean points has improved

(see Tables 4.3,4.4 and Figures 4.14,4.15). Secondly, and more importantly, the variances of

the errors distributions correspond to each other much better. The improvement of model

performance due to the dynamic noise control is illustrated in Table 5.3 by comparing

correlations R2 and RMS errors of the two models: a model with static noise (left) and the

dynamic noise model (right). One can see that introduction of dynamic noise control into

the model increased R2 and reduced RMS practically in every case.

Figure 5.4 illustrates the U-shaped performance curves of the H -model compared

5. UNCERTAINTY, NOISE AND EMOTION

Errors Model (TO= 20%. G = 1(0) vs Data (SCI I. 125)

A I) I 2] • S 6 7 II 9 10 II 12 13 14 IS 16 17 IS 192021 222324 2S 26 27 28 29 30

Days

Errors Model (TO = 5%. G = 5(0) vs Dala (SCI I. 300)

........ Modcl
! 0--0-0 Data

1\ II 1 2] 4 S 6 1 II 9 10 II 11 1314 IS 16 17 III 192021 222324 2S 26 27 2S 21))0

Days

Errors

7 -r'

Model (TO= 10%.G =5(0) vs Data (SCI 1.5(0)

........ Model
0--0--0 Data

1\ H I 2 J 4 S 6 7 1\ 9 10 II 12 13 14 IS 16 17 18 1920 21 222] 24 25 26 2121129 30

Days

Model
10

o '

Model
10

R2= .64

.;. ..

1 0 '" ##'# ,

to. 0 .J;;"
Q,Ql'

" "

,
Data

R2 = .86

t·· 1 '

l
Data

R2= .88

l

Data

85

10

10

10

FIGURE 5.2: Comparison of the results of model with dynamic noise with the data set I
(medium visual discrimination). Left: learning curves. Right: regression plots.

with the data of set I and III. Again, as predicted, the model fits data much better than

a model with static noise settings (see Figure 4.16). These results illustrate that dynamic

control of the expected gain noise using equation (5.3) can indeed improve the fit between

the model and data .

5.3 More Noise, More Experience, More Information

Redundancy, defined as 1 - Hrel , can be a good estimator of the information accumulated

by a system. So, we can use the reduction in entropy to test how well the model learns

under different parameter settings.

Because the choice probability P(i) in ACT- R depends on the learned information

and noise temperature T (see equation (2 .9)), the entropy of success HOI is not convenient

5. UNCERTAINTY, NOISE AND EMOTION 86

TABLE 5.2: Comparison of the H-model with decaying noise and the data of set III (slight
discrimination). Data for different stimulation levels compared with model performance
under levels of noise (T) and goal values (G). The best matches in terms described in
Section 4.2 are shown in bold and on Figure 5.3.

Stimulation 135 195 255 375

To G rms R2 rms R2 rms R"l. rms R'I

20 15.6% .65 26.5% .59 27.3% .31 24.5% .58
50 22.6% .38 9.4% .90 18.1% .54 15.9% .57

1% 100 23.1% .34 11.0% .84 15.4% .64 14.2% .62
150 21.4% .41 14.2% .76 10.1% .68 10.9% .67
500 25.0% .24 15.8% .72 14.3% .62 14.9% .53

20 17.6% .22 14.6% .64 16.3% .50 16.2% .48
50 20.0% .34 12.6% .75 9.9% .67 11.4% .57

5% 100 24.2% .24 17.1% .62 15.4% .57 14.8% .53

150 21.8% .38 14.6% .70 12.2% .60 11.5% .65

500 20.4% .46 10.8% .88 10.3% .68 10.2% .71

20 17.6% .14 19.3% .46 16.5% .49 18.8% .36

50 14.5% .50 15.0% .67 11.3% .60 10.6% .64

10% 100 17.6% .52 13.3% .76 8.4% .71 9.2% .68
150 17.8% .35 14.4% .62 10.1% .65 11.3% .55
500 17.7% .52 12.0% .79 9.2% .68 9.5% .68

20 15.3% .42 20.1% .56 15.5% .57 16.7% .57

50 16.4% .29 14.9% .74 10.3% .66 11.8% .59

20% 100 14.8% .48 13.2% .74 11.5% .63 10.3% .68
150 16.3% .35 14.9% .69 8.3% .79 11.4% .56

500 15.4% .47 13.5% .73 9.3% .70 9.8% .67

for estimating the learning in the system under different noise settings. In order to make

this estimation independent of the conflict resolution mechanism let us assume that the

choice of a rule is completely random P(i) = ~. In this case probability of a success P(l)

will depend only on the learned empirical probabilities:

1
P(l) = - Epi .

n .
~

The entropy associated with this probability (calculated similarly by equation 5.2) can

be used to estimate the knowledge accumulated in the system in the form of empirical

probabilities ~, because it is independent of the way the decisions are made. We shall refer

to it as the entropy 0/ knowledge Hk.

Although the noise may seem to hinder the performance, it in fact helps the

learning process. Figure 5.5 illustrates the probability learning in the Dancer model for

5. UNCERTAINTY, NOI SE AND EMOTION

Errors Model (TO = 10%. G = 50) vs Data (set 3. 135)

I!. B I 2 3 .. 5 6 7 S 9 10 II 12 I) 14 1.5 16 17 18 1920 21 22 23 24 1$ 26 272829 30

Days

Errors Model (TO = 1%. G = 50) vs Data (set 3. 195)

.......... Model
0-0-<> Data

A H I 2] 4 5 6 7 1\ 9 10 11 12 IJ 14 IS 16 17 18 192021 II 2J 24 25 26 272829 30

Days

Errors Model (TO = 10%. G = 100) vs Data (set 3. 255)

A H I 2 3 .. S 6 1 8 9 10 II 12 I] 14 Ij 16 17 18 192021 22 23 24 2526 27 282930

Days

Errors Model (TO = 10%. G = 500) vs Data (set 3. 375)

A H I 2] 4 S 6 1 II 9 10 11 12 I] '4 I S 16 17 18 192021 !2 ZJ 24 2S 26 21 28 29 30

Days

Model
to

Model
I •

o "
.-6

R2=.50

,
D,lIa

R2= .90

, ~ .,/

</"
0<>/

,~'/.Q

o 0" 00

Model
10

Model
10

,
Data

R2= .71

Q'"

08,/';
"

,
Data

R2 = .68

o .,,'
0 0 , . '

i o.~l··'" 0 1•.
9~ 0

,
Data

87

10

10

10

"

I.

FIGURE 5.3: Comparison of the results of model with decaying noise with the data from
set III (slight visual discrimination) . Left: learning curves. Right: regression plots.

different noise settings. The left plot illustrates a trace of Ps of production rules during 110

tests with noise T = 1 %, and the right plot for T = 20%. One may see that probabilities on

the right plot were updated much more often, thus have more correct values. The entropy

related to these probabilities is shown on Figure 5.6. One may see that by day 10 the

entropy on the right plot decayed significantly more than on the left plot. Thus, by day 10

the model with a greater noise gained more information than the model with less noise.

Tests U-Curve

""
300

250

200

150

100

50

100 200

5. UNCERTAINTY, NOISE AND EMOTION

(H·Model vs Set I)

......... Model
0-0-0 Data

300 400 500 600

Stimulation

Tests
350

300

250

200

150

100

50

100

U·Curve (H-Model vs Set 3)

200 300 400

Stimulation

........ Model
, 0-0-0 D.Ha

500

88

600

FIGURE 5.4: Comparison of the performance curves. Left: set I (medium discrimination)
compared with the H- model (see also Figure 5.2) . Right: same for set III (slight discrimi­
nation) (see Figure 5.3).

TABLE 5.3: Comparison of models with static and dynamic noise variance to data.

Strength Static noise Dynamic noise

Data set of stimulus R2 rms R2 rms

125 .54 12.2% .64 10.1%
Set I 300 .77 13.2% .86 8.8%

500 .82 12.4% .88 7.1%
135 .73 11.4% .50 14.5%

Set III 195 .82 10.2% .90 9.4%
255 .69 14.5% .71 8.4%
375 .61 12.5% .68 9.5%

It is becoming clear that the dynamics of noise in the conflict resolution following

the entropy can have a very useful purpose:

1. Noisy behaviour in the beginning of problem exploration supports gaining information

about the task or the environment more quickly.

2. After the important information has been acquired, the reduction of noise narrows

the search and encourages concentration on more successful decisions. If the learned

knowledge is correct for the task or the environment, then keeping the noise low should

improve performance.

P

0.'

5. UNCERTAINTY, NOISE AND EMOTION

Probabi lity Learning (T = 1%)
.:----------_._--------------

if~~----------- --------- -----
~ I

, ,
Days

10

0.'

P Probabi lity Leaming (T = 20%)

-:0~"-------------­

: "l
:_,~ I !
~ ~!. !

~1; .. ,,~.'.:-{ .. ·~.7.: ~.:.:::~.-: ~.:.~:_

,
Days

10

89

F IGURE 5.5: Probability learning under a low noise (left) and a high noise conditions
(right) .

H

0.'

Entropy of Knowledge (T = 1%)

. ,
Days

10

H

0.'

Entropy of Knowledge (T = 20%)

4 ,

Days
10

F IGURE 5.6: Dynamics of entropy under a low noise (left) and a high noise conditions
(right) .

3. If the environment changes and the numb er of errors suddenly increases, then a noise

increase widens the search and allows the speeding- up of the learning process again.

5.4 Dynamics of Motivation

Noise is not t he only parameter in the conflict resolution that can optimise the learning

process. It was shown in the previous chapter that performance of the model is also very

sensit ive to the goal value (G) . It has been known that cognitive performance depends on the

motivation to achieve the goal (Atkinson , 1957, 1974). Theories of achievement motivation

(e.g. Atkinson, 1974; Revelle & Michaels, 1976) support the idea that motivation is a

function of probability of success, and hence it may change with experience. Moreover , the

5. UNCERTAINTY, NOISE AND EMOTION 90

results of the Dancer model indicate that G and T tend to change in opposite directions.

Following this idea one could suggest that G should have a low value at the beginning of the

task exploration, but a higher value in the end. The reasonable question here is whether

such dynamics of G could further help learning.

The asymptotic analysis of the ACT-R conflict resolution helps to understand the

benefits of the dynamics of G. According to property 3 (see Section 2.6), at low G AqT-R

gives the priority to rules with lower costs, thus allowing the exploration of more options.

When not much is known about the task and which production rules are more successful,

such behaviour is a better strategy. However, if the 'cheap' productions do not achieve

the success, then an increase of G should allow exploration of the more expensive options.

Moreover, according to asymptotic property 4 at higher G ACT-R gives the priority to rules

with high expected probabilities. So, once the probabilities have been learned the high value

of G will allow the system to concentrate on the more successful rules not considering their

costs very much. As a result, the success rate should be improved.

The conflict resolution can be considered as a search problem where G controls the

type of the search: low G implements the breadth-first search, while high G corresponds to

the depth-first search strategy. A search method combining these two strategies is known

as a best-first search (from breadth to depth), so the gradual increase of G during problem

solving implements the best-first search method.

5.5 Annealing Analogy

The above described dynamics of the conflict resolution parameters G and T implements

yet another well-known heuristics - the optimisation by simulated annealing (Kirkpatrick

et al., 1983). By looking at the 'soft--max' Boltzmann equation (2.9) for the choice prob­

ability in ACT-R (probability that ith rule will be selected in the conflict set), one may

consider the expected gain E = PG - C as a negative energy, and noise temperature T as

the temperature of the system. According to simulated annealing the following optimisation

strategy applies:

• Problem solving should begin in a high temperature, high energy state, which implies

low goal value G and high noise T. This makes the exploration process more random.

Note that such behaviour corresponds well to the exploration stage of problem solving

in subjects. For example, when children start to tackle the Tower of Nottingham

5. UNCERTAINTY, NOISE AND EMOTION 91

puzzle, they are just playing with blocks and trying some simple constructions.

• During problem solving the system should cool down (annealing schedule defines the

speed of cooling). This corresponds to an increase of G and decay of T. In ACT-R it

should make the choice less random and more dependent on the learned information.'

Note that when more information becomes known about the task, subjects express

more confidence.

• In order to avoid local maxima (glass state) the system should melt up. This cor­

responds to a noise increase and goal value decrease. A similar situation in ACT-R

model is illustrated on Figure 5.1: entropy increases on day 6 when additional errors

occur. The entropy increase should be reflected in the conflict resolution by noise

increase and decrease of the goal value.

• The crystallisation state corresponds, perhaps, to the goal state in problem solving,

or in case of multiple solutions to a state when the perfect solution path has been

discovered. In this case T --t O.

5.6 ACT-R and a Two-Dimensional Model of Emotions

When humans encounter a success or a failure, a change in the environment, an impasse,

or reach the final goal in a problem, they also experience emotions such as joy, frustration,

surprise, anxiety, or excitement. In Section 2.8 we suggested a mapping between the values

of the ACT-R conflict resolution parameters and two principle components of emotions

correspoinding to the two-dimensional model of Russell (1983, 1989). The first dimension

is arousal representing the strength of an emotion. The second dimension is called valence,

and it represents whether an emotion is positive or negative. This mapping of values of

arousal and valence to the goal value and relative noise was presented in Table 2.1, and it

was based on the analysis of the ACT-R architecture. Now, after the results of the Dancer

model have been compared with the data, we may further support the idea that some effects

of emotional states on behaviour can be modelled in ACT-R using the conflict resolution

parameters:

• The relation between the strength of stimulus and the goal value (G) in ACT-R models

indicates that arousal can be related to G. 2

2Note that constant relative noise T = t;T = const increases the noise temperature T proportionally to

5. UNCERTAINTY, NOISE AND EMOTION 92

• A decrease of the relative noise (T) during successful problem solving coincides with

the experience of positive emotions, such as joy, experienced by subjects on successes.

Negative emotions, such as frustration on a failure during problem solving, corre­

sponds to an increase of T in the model due to errors. Thus, the valence can be

represented by changes of T.

The influence of positive and negative emotions on decision making has beeri no­

ticed in subjects in a number of studies (e.g. Tversky & Kahneman, 1981; Johnson &

Tversky, 1983; Nygren, Isen, Taylor, & Dulin, 1996). The mapping between some aspects

of the decision framing theory and the ACT-R parameters have been also suggested in Ta­

ble 2.1. In particular, it considers the effect of G and T emphasising or diminishing the

influence of the expected probabilities P and costs C on decision making. In this chapter

we have discussed the implications of different modes of decision making on learning and

information gain in the Dancer model. It has been shown that dynamical transition between

these modes that is characteristic to human and animal problem solving (noise decay and

goal value increase) optimises learning and exploration processes similar to many known

heuristics. Moreover, it has been shown that the dynamical control over the relative noise

T not only facilitates the performance of the model, but also improves the fit with the data.

Returning to the question of what role emotion could play in learning processes, we

now may speculate that by controlling the decision . making strategy emotion and motivation

adjust the behaviour to optimise the performance and adapt to changes in the environment.

5.7 Conclusions

In this chapter entropy reduction was used to analyse the learning in the model. The notion

of entropy has been used before with regards to emotion and motivation in the series of

works by Dorner and colleagues (Dorner & Hille, 1995; Bartl & Dorner, 1998). Emotion

and motivation plays a great role for action control in their PSI theory. Another example

of uncertainty and noise temperature used for control in cognitive architectures is the work

of Hofstadter on modelling analogy (Hofstadter & Marshall, 1993; Hofstadter & Mitchell,

1994). In this chapter it was shown how to compute the entropy using internal parameters

of ACT-R. This value was used to control the noise temperature in conflict resolution. This

modification alone greatly improved the model fit to the data.

an increase of G.

5. UNCERTAINTY, NOISE AND EMOTION 93

Furthermore, the discussion in this chapter illustrates how the varying noise and

goal value can help a cognitive model to learn quicker and improve its performance. A

similar regulatory mechanism in the brain would allow an animal to adapt quicker to a

changing environment. Moreover, it would be naive to assume that such mechanisms have ..

not been discovered by nature during the evolution.

The adaptive changes in the body are closely related to the regulatory func~ions

of the autonomic nervous system. We now can see that emotional and motivational mech­

anisms may indeed be involved also in the adaptation of the mind. Although a cognitive

model cannot be considered as the proof of some processes in the brain, the results of the

Dancer model suggest that the decision making and motivational mechanisms in the brain

are adaptable and emotional subsystems are closely related to this adaptation.

In the next chapter the ACT-R conflict resolution theory will be revisited in an

attempt to create an alternative algorithm, where the dynamics and adaptation discussed in

this chapter occurs naturally. It will be shown that the new algorithm not only can reduce

the number of parameters in ACT-R theory, but also has potentially wider applications for

search and optimisation problems.

CHAPTER 6

Optimist: A New Conflict Resolution and

Learning Algorithm

94

The results and analysis of the Dancer model, discussed in previous chapters, emphasised

the need for a dynamic, entropy related conflict resolution mechanism. Such algorithm not

only would allow cognitive models to fit better the adaptive nature of human and animal

learning, but also could be potentially useful for other AI applications, because conflict

resolution is in effect a search problem.

Unfortunately, ACT-R theory as it stands cannot explain the decay of noise and

dynamics of motivation. In this chapter a new conflict resolution method will be described.

First, the expected gain equation (2.1) will be revised. Taking from the optimistic approach

of ACT-R, it will be shown that probability Pi and cost Ci can be united using the Poisson

distribution. Then, a method of recursive estimation of the expected cost will be presented.

A conflict between several alternative decisions will be resolved by introducing randomness

into the estimated costs of the decisions. It will be shown how the method quickly converges

to the most optimal solution.

It will be shown that the algorithm possesses properties of some known search and

optimisation methods, such as best-first search and optimisation by simulated annealing

(Kirkpatrick et al., 1983). However, the algorithm presented here is self-controlled. The

method performance will be demonstrated on a search program.

Finally, the method will be compared with the ACT-R conflict resolution. The

variables corresponding to the goal value and expected gain noise variance in ACT-R become

dynamic: they are statistically learned during the task and environment exploration. The

evolution of these variables corresponds to that suggested by cognitive models, such as the

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 95

Dancer model with the noise decay due to the entropy reduction. In addition, it will be

shown that the number of parameters in ACT-R can be reduced.

6.1 Cost and Success Probability

In order to achieve the goal state a problem solver should take a series of actions that will

produce changes in the system or the environment, and probably the problem solver itself

(its memory, position, etc). Each action requires some effort or cost, which is associated

with a loss paid by the problem solver executing the action (measured in time, energy,

or monetary units). The sum of costs of all the actions required to achieve the goal will

represent the cost of the whole solution path.

Many problems have multiple possible solutions. For example, there are many

ways to assemble the Tower of Nottingham, and all of them may have different costs. Let

us consider the conflict resolution as a search in the x x c space, where X E x are different

decisions and C E c are the costs of these decisions. The number of decisions represents

the breadth of the search, while costs define the depth. If costs of different solution paths

leading to the goal state were known in advance, then the problem of conflict resolution

could be easily solved: a solution with the smallest cost would be the favourite.

In the real world there is always a degree of uncertainty, and often even the same

solution will have a slightly different cost every time it is applied to a problem. Therefore,

we may consider costs as random variables.

Let P(C) be a probability to solve the problem at cost C (probability that the

cost is exactly C). The expected value of the cost is:

E{C} = LC P(C) ,
c

where the summation is made across all possible values of C. If cost is measured in time

units, then for continuous time:

E{t} = 10
00

tP(t)dt,

where P(t) is the probability distribution function of times needed to achieve the goal state

for t E [0,00]. Note that the distribution function P(t) defines the probability to achieve

the success at any point on t. That is the value of the expected probability P for given C

or G in the ACT-R utility equation (2.1).

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 96

Knowledge of the distribution functions P(t) for different rules (or decisions) would

allow the problem solver to calculate their expected costs E { t}, and hence would allow

the choice of the best strategy. The problem is that nothing is known about the cost

distributions P(t). The only way to find what the distributions are is by sampling the costs

of different strategies, which is by trying to solve the problem using these strategies many

times.

As we can see, the whole idea of resolving the conflict using the costs seems to

lose any meaning. Moreover, an example in the next section will illustrate that some costs

are very hard to measure directly. It will be shown in this chapter, however, that it is not

necessary to explore the solution paths in full, and that expected costs can be estimated

without reaching the goal state.

6.2 Plausibility of a Solution

In order to illustrate the difficulty of sampling the costs of various strategies let us consider

the following example: let the goal be to write the novel 'War and Peace' using one type­

writer. AssJlme that we have a choice of two subjects that can type: Alexei Tolstoy and

a chimpanzee (Figure 6.1). Suppose, that nothing is known about the literature talents of

both typists. Moreover, let the success of the goal state only be detected when the novel is

finished, and no intermediate information about the progress can be received.

It took Leo Tolstoy seven years to write 'War and Peace'. Probability theory

tells us that a chimp randomly typing on the typewriter could also produce the desired

result, although it would probably take several billions of years. So, theoretically using a

chimpanzee can be a solution.

Of course no one would ever seriously expect a chimpanzee to write the six tomes

novel. But how could a machine find the correct strategy? It may seem at first that the

difference between the machine and a human choosing between such alternatives is in the

knowledge available to them, and if a machine had the same amount of information, it would

be able to exclude the second alternative from the consideration. But what if a human also

did not have such information? In this case probably any human after waiting for some

time would loose patience and try another alternative. Obviously the ability to give up

on hopeless strategies without exploring them in full is an important property of human

behaviour (unlike the Tower of Nottingham model with increased noise that never gave up).

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 97

FIGURE 6.1: It took Leo Tolstoy 7 years to write 'War & Peace'. A chimp can probably
type the same thing in several billions of years. How long should we wait to realise that a
chimpanzee is not the best solution? The ability to give up on bad strategies in time is an
important feature of human problem solving.

The challenge for a machine is to decide how soon it should give up and try another option?

What makes us think that some actions are feasible for the cause of the desired

effect, but some are not , and, as a result, allows us to narrow the search? Perhaps we should

provide the machine with some fitness criteria that will allow it to distinguish between good

and bad solutions, which take too much effort to be found. As machines acquire more

knowledge this problem will be more likely for all intelligent systems.

Let us call a feasible (practical) solution such an action (a series of actions, a choice

of strategy, etc), that its expected cost E {C} is less than some finite value G:

E{C}::::;G<oo.

In other words, if two events, action X E x and the desired outcome Y E y, are separated

by a small expected cost, then we may say that X is a plausible solution for achieving goal

Y. On the other hand, events separated by large expected costs are usually not considered

to be related to each other. One could see problem solving as a search for these relations,

that is such x ' ~ x that produce Y at small expected costs.

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 98

6.3 Problem Solving as an Observation of a Poisson Process

In previous section a solution of a problem was characterised by having a relatively small

expected cost. The existence of such solution would also imply that it could be reliably

repeated on the same or a similar problem with relatively similar cost.

Let us imagine a computer solving a problem using a particular algorithm, and

each time after the goal state Y has been achieved, the computer is restarted and is given

the task of solving the same problem again (6.2).

FIGURE 6.2: A computer solves the problem in a loop. If the expected cost of the algorithm
is E { C}, then we shall observe the goal state at a rate>. = 1/ E { C}.

Let the cost C of the algorithm be random with the expected value E {C}. Then

we shall observe the goal state Y on average every E {C} seconds, or at a rate>. = 1/ E { C}.

We may consider this process as an observation of the random event Y on time interval

[0, t] at rate >. . Such processes are known as Poisson processes, and the probability P(n) of

observing n events by time moment t is given by the Poisson distribution formula:

P()
= (>.t)n -At

n I e,
n.

n = 0,1,2 , (6.1)

Here>. is the mean count rate, n = 0,1,2, ... is the number of observations of the event by

time moment t.

Note that when>. = 0 (or E{C} = 00) the probability (6.1) becomes zero, which

corresponds to a case when event Y is impossible. On the other hand, if the event is

possible, it implies that its mean rate must be >. > 0, or E {C} < 00. Perhaps, when solving

a problem one must be optimistic, that is to assume that the goal state is possible:

3G<00:E{C} ::; G, (>. > 0) .

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 99

The assumption above implies that events Y are described by the Gamma distribution, and

the probability of their observation is given by the Poisson formula (6.1).

6.4 Failure, Success and First Success Probabilities

Let us consider some special cases of the Poisson probability (6.1).

Failure probability is the probability that event Y will not occur (n = 0):

q(t) = P(n = 0) = e-At . (6.2)

The shape of the above function is shown on the left of Figure 6.3. One can see that if

A > 0 (goal state is possible), then the probability of a failure decreases exponentially with

time.

Success probability is the probability that event Y will occur at least once (n> 0):

p(t) = P(n > 0) = 1 - q(t) = 1 - e-At . (6.3)

The success probability is shown on the right plot of Figure 6.3, one can see that it increases

with time if A> O .

.~ . ~
t t

FIGURE 6.3: Left: probability of failure P(n = 0) decreases with time. Right: probability
of success P(n > 0) increases with time.

When solving a problem, especially for the first time, what we are interested in is

the first occurrence of the goal state. Moreover, often we do not need to solve exactly the

same problem again. Therefore, probability of the very first success is of special interest.

First success probability is the probability that event Y will occur exactly once (n = 1):

Pl(t) = P(n = 1) = Ate-At. (6.4)

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 100

.£ -~
1.

t= 1IA. time

FIGURE 6.4: Probability of the first success P(n = 1) has a unique maximum in t = 1/>.. =
E{t}.

The shape of the above function is shown on Figure 6.4. One may notice that it increases

with time up to a certain maximum and then decreases again.

Let us find the time moment corresponding to the maximum of the first success

probability:
1

t = >: .
We can see that this time moment corresponds to the expected cost E{t} (most likelihood

cost).

6.5 Estimation of the Expected Cost

Up to this point we have been talking about problem solving as an observation of a Poisson

process with rate >... In fact, equation (6.1) describes conditional (likelihood) probability

P(n I >..) of observing n events for a given value of>.. (time is a parameter). In reality, when

solving a problem, the rate >.. is unknown, and the expected cost is what we are trying to

estimate. What is known, however, is n (the number of successes) and t (the amount of

time spent).

Let us estimate>.. (and, hence, the expected cost E{C} = *) from the posterior

values of nand t. We shall consider and compare three common methods: maximum

likelihood, maximum of posterior estimate, and posterior mean estimate.

Maximum likelihood Let us find the maximum of the likelihood probability (6.1) for >..:

:>.. P(n I >..) = 0 => >..=~
t

t
E{C}~- .

n

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 101

One can use the above formula to estimate the expected cost, if the number of successes

n > o. Unfortunately, if no successes have been observed (n = 0), then the above formula

cannot be used.

Maximum of posterior estimate Let us consider the posterior probability P().. I n)

of).. for a given value of n and parameter t. One can show (see Appendix D) that when

a priori all the values of).. are equally probable, and the likelihood probability P(n I)..) is

described by equation (6.1), then P().. I n) can be found from the likelihood probability and

value of t parameter:

P().. I n) = tP(n I)..) . (6.5)

Note from the above formula that the probability of any).. > 0 increases with time.

Now, let us find the maximum of the posterior probability for)..:

t
E{C} ~-

n

One can see that the above estimation is identical to the maximum likelihood, and it cannot

be used if n = O.

Posterior mean estimate After observing n events by time moment t we can estimate

).. by calculating its expected value using the post~rior probability (6.5):

E{A} = (Xl)"P()..I n) d)" = roo)"t ()"t~n e->.t d)" = n + 1
Jo Jo n. t

t
~ E{C} ~ n+ 1 .

One can see that the above formula can be used to estimate the expected cost even when no

successes have yet been observed (n = 0). In the following sections we shall call C = n!l
an estimation of the expected cost, or simply the estimated cost.

6.6 The Optimal Moment to Give Up

In order to optimise the process of estimation of any parameter, such as the mean count

rate described in the previous section, it is important to make unbiased assessments such

that no information is lost due to the way the measurements are taken. The maximum

entropy principle, formulated by Jaynes (1957), suggests that statistical assessments should

be based on probability distributions with the highest uncertainty (entropy). This ensures

that the assessments of parameters are unbiased, and maximum information is extracted

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 102

from the data. Let us consider the entropy related to the probabilities of observing the goal

state (entropy of success) and determine its maximum.

When observing a system solving a problem in a loop, such as shown on Figure 6.2,

we may think of it as a system with random states described by n number of successes.

achieved by the time moment t. Let us consider the entropy of such a system:

Hn=-LP(n)lnP(n), n=0,1,2, ... (6.6)
n

Here P(n) is described by the Poisson distribution (6.1), which depends on the time pa­

rameter. Thus, the entropy Hn will also depend on different values of t. Note that the

summation in (6.6) is made over all possible states n = 0,1,2, However, it is not neces­

sary to consider all these sates.

Indeed, when solving a problem we are interested in only two possible outcomes:

failure (n = 0) and success (n > 0). Moreover, we may consider only the first success

(n = 1) as one state, and a set of other outcomes as another. The entropy of such binary

system can be easily calculated using equations (6.2) and (6.4) for the probabilities of these

states:

It is known from information theory that entropy reaches its maximum when all

states of the system are equally probable. One can easily check that when t = 1/>.. the

probability of a failure and the probability of the first success are equal:

PI(t) = q(t) = e- l
, t = 1/>.. .

Thus, the entropy HOI (t) reaches its maximum at t = 1/>.. (or t = E { t}). The shape of the

HOI (t) function, as well as the probabilities q(t) and PI (t), are shown on Figure 6.5. Note

that t = 1/>.. point also corresponds to the maximum of the first success probability (see

Figure 6.4). It is also possible to find the maximum of HOI (t) differentiating it by t.

Following the entropy maximisation principle the best moment to reassess >.. is at

t = 1/>... If after the reassessment we discover that the option (rule or strategy) we are

currently investigating is not the best one (i.e. there is an option with a smaller expected

cost), then this also will be the moment to change the strategy. Thus, the maximum entropy

principle suggests exactly how far we should explore each option, and when is the optimal

moment to give up.

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 103

\
\ Ho,(t)

, p,(t)
" :: / q (t)

,/ "'···Z~:~.~····
... _- -----.--~- ::..:.:.: .. -

t=I/A
time

FIGURE 6.5: Entropy HOI of a single success as a function of time parameter t. Maximum
of HOI corresponds to t = 1/>.. = E{t}, where probability of failure q(t) equals probability
of the first success PI (t).

Interestingly, motivation theory by Atkinson (1957, 1974) (see also Revelle &

Michaels, 1976) defined motivation of achievement as a function of the success and failure

probabilities, such that motivation reaches its maximum when the probability of success

equals the probability of failure. Thus, according to this hypothesis, which was based on

a series of psychological experiments, the maximum of motivation to achieve a goal should

be at t = E{C} = 1/>.. (see Figure 6.5), and in case of a failure the motivation to carry

on, perhaps, should decline. As has been shown above, this is also the moment of maxi­

mum entropy, and it is the best moment to reassess the expected cost and possibly change

strategy.

6.7 Recursive Estimation of the Expected Cost

Let us return to the example with a computer solving a problem (Figure 6.2), but with

one difference: the average time (expected cost E {C}) it takes the computer to solve the

problem is unknown. Also, this time we control when the computer is restarted. Our goal

is to restart the computer in such a way, that the goal state appeared at the highest rate

possible.

Let us denote by ~t the time intervals after which we restart the computer. If

we restart the computer too late ~t > E{C}, then obviously the rate at which the goal

state occurs will not be the highest. On the other hand, if we restart the computer too

early ~t < E{C}, then often the computer will not have enough time to finish solving the

problem.

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 104

Let us conduct a series of trials registering the first occurrence of the goal state

during time intervals tlt: if the goal state is registered, then we shall restart the computer

immediately after it; otherwise, we shall restart the computer after tlt. One may notice

that there are only two possible outcomes of such trials (binomial or Bernoulli trials):

Failure: the goal state has not been achieved, number of successes n does not change, the

overall effort (time) spent increases by C = tlt.

Success: the goal state is achieved, number of successes n increases by 1, the effort increases

by C < tlt.

By counting number of successes n and summing up the time spent t = C1 + ... + Ck in k

trials, we can estimate expected cost E{ C} using posterior mean formula:

- t
E{C};::::,C=-.

n+1
(6.7)

Now, starting with some small tlt = Cmin ' let us set each next tlt equal to the last estimation

of E{C}:
(6.8)

Note that the formula above describes reassessment of tlt at the moment of maximum

entropy, because each time moment Ck has been defined by the previous estimation of the

expected cost.

A typical dynamics of the estimated cost (6.7) is shown on Figure 6.6. This graph

was generated by the OPTIMIST demonstration program described later in this chapter. In

this example the expected cost E{C}, which was unknown to the algorithm, was set to

20, and only one single option was used in the conflict set (breadth set to 1). One can see

that while C < 20, no successes are registered (n = 0) and the estimated value C grows

exponentially. When C becomes greater than 20, the system spends enough efforts (time)

to register first successes (n = 1,2, ... > 0). As the number of successes grows, C decreases

converging to the expected cost E{ C} = 20.

An example of step by step calculation of Ck and tltk+1 during ten trials is shown

in Table 6.1. One can show that if the expected cost is finite (E {C} < 00), then with trials

the estimated cost C, and hence the restarting time tlt, will converge to E{C}:

lim tltk+1 = lim Ck = E{C} .
k-+oo k-+oo

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 105

40 C Dynamics of estimated cost
of a single rule (breadth = I)

20 __ ~{ft __ _

10

cycles
20

FIGURE 6.6: Estimated cost C converges to the expected cost E{C} with cycles k ~ 00.

The graph was generated by the OPTIMIST demonstration program with breadth set to 1
(no conflict), and the expected cost E{C} = 20 (depth).

Indeed, according d'Alembert's rule the series converges if after some kth trial the ratio:

CO:
I ~ A < 1 .

It is easy to check that on every failure (i.e. when the number of successes nk+1 = nk) the

ratio is greater than 1 and the series increases infinitely:

Ck+1 _ nk + 1 CI + ... + Ck+1 _ 1 CHI 1
--- - C C - + > ,

Ck nk+1 + 1 I + ... + k C I + ... + Ck

However, if E{C} < 00, then at some k + 1 step' ~tk+1 will become greater than E{C},

and a success will be registered (i.e nk+1 = nk + 1). The ratio then will be

CHI _ nk + 1 CI + ... + CHI _ nk + 1 (1 CHI)
Ck - nk+1 + 1 CI + ... + Ck - nk + 2 + CI + ... + Ck '

On success the cost is less than the latest estimation of the expected cost, that is Ck+1 <

Thus, the series converges if successes occur.

Because the restarting time ~t converges to E{C}, as a result, the goal state will

occur at the highest rate possible. The problem of the optimal restart schedule of the so­

called Las Vegas algorithms was considered by Luby, Sinclair, and Zuckerman (1993). Here

we considered a similar problem using posterior estimation of the rate of a Poisson process

and the maximum entropy principle.

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 106

TABLE 6.1: An example of estimation of expected cost E{C} in 10 trials. A failure occurred
in the first two (k = 1, 2, n = 0) and successes occurred in the following eight trials. Here
k is the trial number, n is the number of successes, C\ is the estimated cost, and b..tk+1 is
t he maximum waiting time on the next trial.

k n Ck b..t k+1

0 0 Cmin Co
1 0 b..t1 C1

2 0 b..t1 + b..t2 C2

3 1 .6.tl + .6.t2+.6.ta C3 2

10 8 .6.tl +·+.6.tlQ ClO 9

6.8 Resolving the Conflict

In previous sections we discussed how to estimate the cost of one particular algorithm

(decision or production rule) by estimating the rate of a hypothetical Poisson process. As

an illustration we used the example of a computer set into an endless loop performing the

algorithm. Now, returning to the problem of conflict resolution, let us consider a ehoice of

several computers tackling the same problem (Figure 6.7). However, only one computer can

be used at a time. Let us denote the alternatives (computers) by x, and suppose each of

them uses different algorithm with a different expected cost E {C (x)}. Our goal is to find

the fastest (cheapest) x .

FIGURE 6.7: The conflict represented by several computers using different algorithms to
solve the problem. The goal is to find the one with the fastest solution.

Let us record for each option x the following information: k(x) - the number of

times x was used , n(x) - number of successes for x, t(x) = C1(x) + .. . + Ck(x) (x) - the

effor ts (all time) spent using x. Now, after trying each option we can estimate its expected

cost:
- t(x)

E {C(x)} ~ C(x) = ----,-:,~
n(x) + 1

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 107

In order to resolve the conflict we introduce a mndom estimated cost:

C() = k(x) C(x) + ~(C(x))
x k(x) + 1 ' (6.9)

where ~ (C (x)) is a random variable, such that its expected value is equal to the estimated·

cost C(x):

E{~(C(x))} =C(x).

We shall call ~(C(x)) a mndom prediction. For example, we can use the following function:

~(C(x)) = rand E (0,2C(x)). One can see that expected value of the random estimated

cost (6.9) is also equal to the estimated cost:

By looking at equation (6.9) one can see that the random estimated cost consists

of two components: one based on the estimated cost tZ, and another one is the random

predication d:r. If k(x) = 0 (option x has not yet been used), then C(x) is determined

entirely by the random ~(Cmin), where Cmin is the initial smallest cost. As the number of

trials increases (k(x) > 0), the contribution of ~ becomes less noticeable.

However, if the number of failures increases (n(x) « k(x)), then C(x) grows

exponentially, and much faster than k(x) + 1 in the divisor of equation (6.9). As a result,

not only the expected value of C(x) grows exponentially, but also the contribution of ~

increases, because E{~} = C by definition. This way, with failures, the random estimated

cost increases on average and becomes more random. On the contrary, with successes

C(x) decreases. Thus, the contribution of ~ decays even faster because its expected value

collapses. This way, with successes, the random estimated cost decreases on average and

becomes less random.

The conflict between several alternative x is resolved by selecting the one with the

smallest random estimated cost:

x = arg min [C(x)] .

Thus, the algorithm is performing cost optimisation. As in previous sections, the maximal

waiting time for the next binomial trial is determined by the estimated cost of the last

chosen x:

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 108

Note that here j is the cycle number and it is not the same as k(x) - the number of times

x has been chosen. This is because on different cycles j different options x can be used,

and j = l:x k(x).
Because E{C(x)} = C(x) by definition, the random estimated cost C(x) has the.

same limit as C(x) (i.e. C(x) converges if E{C(x)} < 00). Thus, if finite solutions exist,

then the algorithm will eventually find the one with the smallest expected cost (i.e .. the

optimal solution).

Dynamics of estimated cost
(breadth = 20 rules)

100

cycles
200

FIGURE 6.8: An example of the dynamics of the estimated cost C(x) converging to the
optimal value.· The plot was generated by the OPTIMIST demonstration program with

breadth set to 20.

Figure 6.8 shows an example of the dynamics of the estimated cost during 200

cycles. This graph was generated by the OPTIMIST program (described later in this chapter)

with the conflict set of 20 alternatives (breadth set to 20). As in the example shown on

Figure 6.6, the expected cost of the optimal solution was set to 20. One can see that

prediction C converges to the optimal expected cost E{C} = 20.

6.9 Method Performance

In this section a program demonstrating some properties of the OPTIMIST conflict resolution

method will be described and its performance discussed.

6.9.1 OPTIMIST Demonstration Program

A program demonstrating the OPTIMIST method has been implemented in Common Lisp

and GARNET. The interface of the program is shown on Figure 6.9, which presents the

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 109

search space with alternatives x represented on the horizontal axis, and costs c on the

vertical axis. A set of gadgets controls the size of the search space (breadth and depth).

Figure 6.9 shows breadth set to 20 (i.e. a conflict set of 20 alternatives).

CI OpUll1iS"ll:>etnu

+­........
-+-.

+""-

~~ _ _ _ _ ___ +Iltau::cett

-. _-_-~ -- ----- IIIIiI

FIGURE 6.9: Interface of the OPTIMIST demonstration program

When one of the alternatives is selected by the algorithm, it is shown by a vertical

beam rising up from the corresponding x position (e.g. the second entry is selected on

Figure 6.9). The height of the beam represents the depth of the search, that is the maximal

cost the progTam is currently paying investigating the selected alternative (6t). Thus, the

higher the values of estimated costs C, the deeper the search 6t , and the taller the beams.

Horizontal line on Figure 6.9 represents the current 6t defined after the outcome of the last

trial (success or failure).

Successes or failures of the selected alternatives are determined by the interaction

with the environment (outside world), which is represented in the program by a distribution

of the real costs. These are the costs, which are not known to the problem solver initially

(i.e. expected costs E { C (x)}). The goal is to find an alternative with the optimal cost is

located (i.e. x with the smallest E{C(x)}). The real costs are represented on the screen

by thick horizontal bars. Their distribution shape is controlled by a user. Figure 6.9 shows

parabolic distribution with the smallest (optimal) cost positioned in the middle. Other

distributions available are random, linear, and unique distribution.

If the cost paid by the algorithm on selected x is enough to achieve the goal (the

beam rises higher than the real cost bar on that position), then a success is registered .

Otherwise , a failure occurs. Posterior information (k(x), n(x), and t(x)) is used to estimate

C (x). Estimated costs for all entries x are stored in the memory of the program and are

represented by thin horizontal bars.

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 110

6.9.2 Program Performance

The program demonstrates the behaviour of the algorithm with four distinguishable stages.

These stages are shown on four screenshots of Figure 6.10 taken during a run of the program

with 50 alternatives and parabolic distribution of the real costs. Figure 6.11 illustrates the,

dynamics of choice proportion for alternatives in the conflict set, and Figure 6.12 illustrates

the dynamics of 6.t (and C(x)) during these stages.

I) II) III) IV)

- - -- - -- - - -- - --- :
--- - -

~. '_ -,--._- -_ ::z._,_--_-- - -r- _ ~-
- --

':::':"'=;",::':~-==":"'i..:_::.-=-:,- _-

FIGURE 6.10: Search for the optimal solution in parabolic distribution with 50 alternatives.

I) II) III)

0+~==-==='~~=5~=-~5'0 o+l~--~~--~-"'2'=- I 25 50 o I ¢-
0 25

IV)

+-----~~----~50 0~l----~A~2b5----~50
FIGURE 6.11: Dynamics of choice proportion of alternatives in the conflict set.

100
cycles

II

ill

IV

200

FIGURE 6.12: Dynamics of the estimated cost (optimal cost set to 20) for a conflict set
of 50 alternatives (breadth 50). Four stages compared with thermodynamic system: I­
heating up, II - boiling, III - cooling down, IV - crystallisation.

In the beginning the search is completely random and not very deep, so many

alternatives are being selected, and the heights of the beams are small (Figure 6.10, I). The

choice of alternatives in the beginning is very random and broad (Figure 6.11, I). However,

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM III

50%
Proportion of reaching the first success

... -- .,.,....
--

.. Unique

.,~t~u

.:-~--:--=-===---==- ...
rule number

FIGURE 6.13: Left: OPTIMIST simulation with real costs set to a linear distribution, and
stop after the first success option switched on. The first rule from left is the optimal solution,
and it is shown to have reached the success. Right: proportion in per cent showing how
often each rule becomes the first to reach the success. In 452 tests out of 1000 (45%) the
first solution found was also the optimal one, and in another 23% of cases it was the second
best solution.

when no successes are registered the estimated costs begin to grow exponentially increasing

the search depth (stage I on Figure 6.12).

When the depth explored by the algorithm becomes greater than some real costs,

the first successes start to occur. For some period of time the number of successes is

comparable with the number of failures (Figures 6.10 and 6.11 , stage II). On successes flt

decreases, and increases on failures (see area II on Figure 6.12).

When the the more optimal solutions are found, the system starts to concentrate

on the better entries (stage III on Figures 6.10 and 6.11). Because the system registers

more successes than failures , flt decreases on average (area III on Figure 6.12).

Finally, the system stabilises choosing only the optimal alternative (Figures 6.10

and 6.11 , stage IV) and exploring the depth just enough to reach the success (area IV on

Figure 6.12).

Following the analogy with thermodynamic systems, these four stages can be com-

pared with heating up (I), boiling (II), cooling down (III), and crystallisation (IV) processes.

The algorithm is highly adaptive: if the distribution of the real costs changes, then

the system becomes random again because flt increases on failures. This process continues

until the algorithm finds another solution . Each time the environment changes, however, it

takes the system more time to adapt.

The first solution the algorithm finds is not necessarily the optimal. However , it

can be shown that the first is more likely to be the optimal solution. Indeed, the greater is

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 112

the real cost of a solution, the less is the chance of it to be explored in full. The following

experiment was conducted in order to test this prediction. The real costs were set to a

linear distribution (see Figure 6.13, left), and the program was set up to stop after the first

success. The program then was reset and launched again. The results of 1000 tests are

shown on the right of Figure 6.13. One can see that in 45% of tests the first solution found

was also the optimal solution. The second best solution reached the success in about ?3%,

and third best was lucky only in 12% of tests. Thus, in almost 70% of cases the first solution

found was either the best or second best solution. The results of such experiments, however,

depend greatly on the distribution of the real costs: if a solution is unique, then the first

found will also always be the optimal (because there are no other solutions); if there are

many similar solutions, then any of them can be found first with equal probability.

6.9.3 Search Heuristics and Optimisation

The method implements the best-first search strategy making a smooth transition from a

breadth-first to a depth-first search (see Figures 6.10 and 6.11). It is possible to notice

similarities of the behaviour of the method with the optimisation by simulated annealing

(Kirkpatrick et al., 1983). The distinguishable feature of the OPTIMIST algorithm is that

here the so-called annealing schedule (increase or decrease of the temperature of the system)

is controlled automatically. Moreover, the maximum entropy principle suggests that the

resulting schedule is close to the optimal.

6.10 Analogies with Neural Network Theories

The behaviour of the random estimated cost function (6.9) recalls of two important prop­

erties known from neural networks theories: plasticity and reinforcement learning. It was

suggested by Sejnowski (1977a, 1977b) that neural plasticity can be explained by the so­

called covariance learning rule, which is a variation on the Hebb rule. According to this rule,

the firing rate of incoming signal (presynaptic) is compared with the neuron's own average

firing rate (average postsynaptic), resulting in decrease or increase of the synapse. It was

proposed also by Bienenstock, Cooper, and Munro (1982) that the postsynaptic information

about the average of the neuron's own firing rate is stored in the threshold of a neuron, and

it changes over time. However, with time the period over which the postsynaptic activity

is averaged become longer, and, as a result, it takes longer to change the neuron's own

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 113

threshold and adapt. On the contrary, because the average own rate of a young neuron

is not settled enough, the behaviour is more random and synapses are more plastic. This

effect can explain why synaptic plasticity of some neurons decreases with age.

One can see that random estimated cost functions (6.9) manifest similar plasticity

properties: the larger the number k of times x has been used, the larger the number of

samples over which the random estimated cost is calculated, and consequently the :r.nore

samples are needed to change its expected value.

It is necessary to point out that the method requires an interaction with the

environment (or the problem space), which should provide the answer (success or failure)

to the system. In fact, such interaction between the components of a feedback system has

been viewed as defining the behaviour of animals (Baum, 1973) and later propagated on

the level of individual neurons (Sutton & Barto, 1981).

The information acquired during the binomial tests of rules acts similarly to reward

or penalty signals in reinforcement learning theories (Barto, 1985; Barto & Anandan, 1985).

Indeed, initially all alternatives x have equal chances to be selected from the conflict set,

because no posterior information is available (t(x) = 0, k(x) = 0, n(x) = 0), and the choice

is based entirely on random predictions~. As was shown earlier, with failures the value of

C(x), and consequently the expected value of C(x), increases. As a result, the chance of

the failed rule to be selected on the next trial decreases. This is similar to the inhibition

effect in neural networks. On the contrary, when successes occur the value of C(x) and the

expected value of C(x) decrease. This leads to excitation of the successful alternative x,

because its chance to be selected next time becomes higher.

Note that the excitatory or inhibitory information acquired with a success or failure

does not act as just binary reward or penalty signals. In addition to binary change of the

number of successes n(x), there is also continuous Ck added to the efforts sum t = C1 +
... + Ck changing the estimated cost C. The significance of the change in C value depends

on the distance between the previous estimation and realisation: C - C. If the realisation

C is much smaller than the estimated value (C « C), then the reward information will be

more significant. So, there may be rewards of different degrees. Similarly, negative distance

C - C will result in different degrees of penalty.

One may notice that if we represent the cost only by the time spent executing

actions, and we stop testing an alternative at At = C, then the realisation C cannot be

greater than C. Therefore, on failures the distance will always be zero, and hence penalty

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 114

will always have the same value. However, if we consider other objectives (e.g. the amount

of energy spent per time, sense of comfort or danger), then we shall be able to see realisations

greater than the predicted values. This way the penalties can also have different values.

6.11 Comparison with the ACT-R parameters

Let us take a look again at the ACT-R conflict resolution and its parameters and compare

them with the method proposed here. The first parameter in the utility equation (2.1) is

expected probability P calculated empirically by equation (2.5). In the OPTIMIST notation

this empirical probability would correspond to kti. Although probability is not used in the

OPTIMIST algorithm, one can use equations (6.2), (6.3) and (6.4) to calculate the values of

failure, success and the first success probabilities for any D..t.

The goal value parameter (G) in ACT-R specifies the maximal cost at which the

problem solver is expected to achieve the goal. In the OPTIMIST conflict resolution method

it corresponds to D..t, which is defined by the most recent C (see equation (6.8)). The value

of C, however, may change during problem solving (see Figures 6.6, 6.8, and 6.12), whereas

G in ACT-R is constant.

The next parameter in utility equation (2.1) is cost C, which is defined in ACT-R

by equation (2.6) as the average effort. In OPTIMIST notation it would correspond to clI.
It is, however, not used by the OPTIMIST method:

Finally, expected gain noise ~(s) in ACT-R corresponds to the random prediction

~(C). The difference is that in ACT-R noise variance is constant, whereas in OPTIMIST the

expected value of ~(C) is determined by the estimated cost (C), which increases on failures

and decreases on successes. Moreover, the contribution of ~ depends also on i(x) creating

the effect of noise decay with experience.

Note that k(x) is specific for every rule x, thus making noise in random estimated

costs of all rules different for every rule, and it depends on how often a rule has been used in

the past. This property realises Taatgen's idea to replace the production strength parameter

in ACT-R.

Table 6.2 summarises the parameters and equations used in both methods. Note

that although there is the same statistical information collected in both methods (n, k and

t), there are fewer parameters in the OPTIMIST method. Another important difference is

that the two static parameters, the goal value G and noise temperature T, correspond to one

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 115

TABLE 6.2: Comparison of parameters and their calculations between the ACT-R conflict
resolution mechanism and OPTIMIST method.

ACT-R OPTIMIST
number of successes
successes + failures
actual efforts spent

n+1
k+1

t

number of successes n
number of trials k

actual efforts spent t

expected probability

average cost

P _ n+I
- HI see equations (6.2), (6.3), and (6.4)

C = k!l
goal value G estimated cost

noise ~(T) random prediction

noise temperature T estimated cost - t
C = n+I

expected gain E PG - C + ~ random estimated cost (; _ kC+.;(C)
- k+I

conflict resolution max E conflict resolution min(;

dynamic variable C. The dynamics of noise and estimated cost in OPTIMIST corresponds

to the dynamics of G and T suggested by several cognitive models (see Chapter 5).

6.12 Optimist Conflict Resolution for ACT-R

In order to test the OPTIMIST conflict resolution on a working model, an overlay replacing

the standard conflict resolution of ACT-R has been written. It uses several hook functions of

ACT-R and allows switching between the two conflict resolution mechanisms. The code of

the OPTIMIST overlay is presented in Appendix C. It must be said that this is a very early

implementation of the overlay and so far it has been tested only with ACT-R Version 4

running the Dancer model. However, the first results, which will be presented here, are

quite encouraging.

6.12.1 Conflict Resolution by Random Estimated Costs

The first encouraging results are the fact that the model does run with using the new

algorithm and is able to accomplish the task. The model learns new rules and which of the

rules are better. The left plot of Figure 6.14 illustrates a typical trace of the number errors

produced by the model. The plot on the right shows the dynamics of ACT-R probabilities

for productions involved in choosing the door. One can see that the number of productions

increases.

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 116

Errors Errors per day

A " I 1) " j 6 1 • 9 10 II 12 I) \4 IS

Day,

Expected Probabilities

- - CHOIa:lllOU
- _ . CHOIce lIlli'
- - - CHOICF.l11200
- - • CHOICEZllm
. • • • CIIOICE!lUIl
. •••• CHOICE211",Sj
.•.. CilOOSE1ND

- CIlOOSElS'r

A 8 I 2) 4 , 6 1 • 9 10 II 12 Il ." IS '6

Days

FIGURE 6.14: Left: Errors trace produced by the model running with the OPTIMIST conflict
resolution . Right: Dynamics of standard ACT- R expected probabilities Pi for rules involved
in choosing the door.

These probabilities, however , are no longer used by the conflict resolution. Instead,

the parameters of each rule (see Table 6.2) are used to compute their expected costs C and

the conflict is resolved by choosing the smallest randomised estimated cost 6. The dynamics

of Cs is shown on the left plot of Figure 6.15. For comparison the standard ACT- R costs

of these rules are shown on the right plot. One may notice that although the costs of some

rules are small (e.g. for rules chooselst and choose2nd) their expected costs may be quite

large.

EIC)
10

Expected Costs

- - CHOICEmOU
- _. CHOICf..UllU
--- CIlOICF.UllOO
._. CHOtCF.211980
._ •• CIIOIC£1211 11
• CHOICE.llHH
........ Il00SE2NU
- CllOOS6 1ST

A It I 1) .a .5 " 1 • 9 10 II 12 I] I" IS 16

Days

C Production Cosu,

- - CHOICF.ll:20U
- - CHOICHl22l11
- - - CHOIC£211200
-_. CII0I0:2139.0
- • • - ClfOtCEllll1l

CHOICElJ'l-'H
CHOOSfUND

-- CHOOSI!IST

I 1) " S " 1 I \I 10 II 12 I} •• IS 16

Days

FIGURE 6.15: Left: Dynamics of expected costs Ci for rules involved in choosing the door.
Right: Dynamics of standard ACT- R costs Ci for rules involved in choosing the door.

6.12.2 Reinforcement

Because OPTIMIST no longer uses the goal value parameter (G) , it was necessary to come

up with a solution to present different levels of stimulation. Indeed, if the cost is only

measured by the time spent on a rule and its goal, then there is no way to distinguish

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 117

between different levels of rewards or penalties. Indeed, the time spent on choosing and

entering the wrong door, for example, is the same on average regardless of the strength of

stimulus.

In order to overcome this problem the reinforcement mechanism has been intro­

duced. It works by adding or subtracting an additional value to the efforts of rules. The

mechanism can be described as follows:

• If a goal is removed from the stack by a rule with the explicit: failure flag, then the

penalty value is added to the efforts of a rule that set the goal.

• If a goal is removed from the stack by a rule with the : success flag, then the reward

is subtracted from the efforts of a rule that set the goal.

• The values of penalty and reward are defined by the corresponding variables, which

can be controlled from the simulation (see Appendix C).

This mechanism is possibly not the best way to implement reinforcement, but it allowed the

Dancer model to simulate the behaviour for different values of strength of stimulus. The

implementation of the reinforcement mechanism can be reviewed in the future.

Figure 6.16 shows the dynamics of expected costs and the performance of the

model as a function of different penalty values. Three pairs of plots correspond to three

values of penalty: 0, 20 and 50 (from top to bottom). One can see that expected costs,

shown on the left plots, increase on average for greater penalties. If a rule, however, does not

lead to a failure, then its expected cost remains relatively low because its efforts represent

only the time spent executing the rule and achieving its goal. As a result, the variation

between the expected costs of more and less successful rules is greater for higher penalties,

and the model learns faster to avoid the wrong door.

6.12.3 Global Noise

The model with the OPTIMIST conflict resolution demonstrated unusually fast learning:

once the correct rules have been compiled, the number of errors decayed much quicker than

in the data. This can be explained by the following reasons:

• Real mice could consider more features of the doors (e.g. smell) and as a result could

learn more rules to choose the door.

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM

E{C} ExpeCled COSIS (Penalty = 0) ,.
Jl

:J<l

" :zo

(IIOICE2220 I S
CHQICE222718
CliOICE223200
CU01cr~23980

CHOla~2S8 1 7

CUQICE23245S
CliOOSE2ND
CUOOSE IST

"
10
S r· y4.~;;;:.;;;;;::.:·;:·::·y""w~r;;= ..

A 8 I 2: ") " S 6 7 8 9 10 II 12 13 14 IS 16

Days

E{C} Expecled COSIS (Penalty = 20)

'0

Jl

:J<l

"
20

CHOID:2220 I S
ClIQIC .. 1!222718
CIl0 1CE223200
CHOICE223980
CHOIO:22S8 17
(1I010:2]24.5S
CIIOOSE2ND
CHQOSI!IST

A 8 I 2 j 4 S 6 1 8 9 10 II 12 IJ 14 IS 16

Days

E{C} Expecled COSIS (Penalty = 50)

40

3S

: i :r
(11010-:222015
(110 10:222718
(110 10:223200
CHOICI~2n980

(1I0 10 !22.58 17
CHOIQ!2324SS
CIlQOSEZND
CtiOOSEIST

A 8 1 2. ") 4 S 6 7 8 9 10 11 12 13 14 IS 16

Days

Erros per day (Penalty = 0)

A 8 I '2 3 " S 6 7 8 9 10 II 12 13 14 IS

Errors
10

9

Days

Erros per day (Penalty = 20)

" B I 2 3 <1 S 6 7 8 I) 10 II 12 I] 14 IS

Errors
10

9

Days

Erros per day (Penalty = 50)

A 8 I 2. 3 " S 6 7 II 9 10 II 12 13 14 IS

Days

118

FIGURE 6.16: Model performance as a function of penalty value: Penalty 0 (Top), 20
(Middle) and 50 (Bottom). Left: Dynamics of expected costs Ci ; Right: Errors produced

by the model.

• The model and the mechanism is too idealistic.

In order to be able to adjust slightly the performance of the algorithm the OPTIMIST overlay

provides a mechanism to add noise to already randomised expected costs:

C(x) = k C(x) + ~(C(x)) + ((T. C())
k(x) + 1 x (6.10)

where (is the global expected cost noise - a random value with zero mean and variance

determined by T . C(x). Here T sets the variance as the ratio of expected cost C. Using

different values of T it is possible to make the behaviour of the OPTIMIST conflict resolution

less rational.

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 119

There is another reason for using the additional noise in the architecture. The

model demonstrated that performance increases as a function of the penalty value, which

represents the strength of stimulus. Thus, without involving other mechanisms the model

will not be able to express the inverted-U effect with performance degrading for extremely

high values of stimulation.

6.13 Testing the Model Using Optimist Conlict Resolution

In this section the results of the model will be compared with the data. The A-model,

described in Section 4.6, was using ACT-R with the OPTIMIST conflict resolution. The

model was tested for three values of the penalty parameter (10, 20 and 50) and three values

of global noise (T = 1%,5% and 15%).

The model results were evaluated on data from set I and III (Yerkes & Dodson,

1908). The fit to the data of set I is reported in Table 6.3 and for set III in Table 6.4. The

candidates for the best fit were selected according to the criteria described in Section 4.2

and are shown in bold in the tables. The comparison of learning curves (distributions of

errors) between the data and the corresponding model candidates are shown on Figure 6.17

for set I and on Figure 6.18 for set III.

TABLE 6.3: Comparison of the OPTIMIST model with the data of set I (medium discrim­
ination). Data for different stimulation levels c0mpared with model performance under
different penalty values and minimal noise (T). The best matches in terms described in
Section 4.2 are shown in bold and on Figure 6.17.

Stimulation 125 300 500
T Penalty rms R'I. rms R'I. rms R2

10 14.9% .51 17.6% .80 15.1% .74

1% 20 15.2% .61 17.7% .83 14.9% .84
50 18.0% .58 23.7% .78 19.3% .77
10 14.4% .40 21.0% .68 19.2% .77

5% 20 12.1% .62 18.0% .83 14.5% .82
50 14.4% .67 16.3% .77 12.1% .90
10 16.8% .53 26.1% .61 25.4% .67

10% 20 11.5% .55 19.5% .63 15.0% .84
50 12.6% .68 18.4% .71 12.3% .89

One can see that the results of the model with the OPTIMIST conflict resolution

are slightly better than those of the model with the traditional mechanism (see Tables 4.3,

4.4 and Figures 4.14, 4.15 for comparison). In particular, the errors decay faster and the

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM

Errors Model (T = 1%. Penalty = 10) vs Data (set I. 125)

1\ H 1 2. 3 4 S 6 7 8 9 10 II 12 I] 14 I S 16 17 1& 1920 21 :u 2324 lS 26 212829 30

Days

Errors Model (T = I %. Penalty = 20) vs Data (set I. 300)

1
" Model
. 0-0--0 Data

/I H 1 2: 3 4 S 6 7 R '" 10 II 12 13 14 IS 16 11 18 1920 21 22 23 24 25 26 272829 30

Days

Errors Model (T= IO%. Penalty=50) vs Data (set 1.500)

A H I 2: 3 " 5 6 7 Po 9 10 II 12 13 14 IS 16 11 III 19 2'02 1 22 2324 25 26 27 282930

Days

Model
10

Model
10

Model
10

i
o~

R2=.51

°0-'

0,.""-<;;

'/~<o '''i

Data

R2= .83

00.." "

o ",'
' ;'0

•• : · ... 0

,
DaHl

R2 = .89

10

10

---~---,
Data

10

120

FIGURE 6.17: Comparison of the results of model with OPTIMIST conflict resolution with
the data set I (medium visual discrimination). Left: learning curves. Right: regression
plots.

curves correspond better in the final stages of the experiments. Note that in order to achieve

this effect with the standard ACT- R mechanism it was necessary to gradually reduce the

expected gain noise variance during the model run by controlling it artificially through the

entropy parameter. As predicted, the new mechanism expresses a more adaptive behaviour

without the involvement of other computations (e.g. entropy). Indeed, the learning curves

and the fit of the OPTIMIST model are more similar to those produced by the H - model in

Section 5.2.

Table 6.5 shows the summary comparing the results of the three models: A- model

with standard mechanism, H - model with entropy controlled noise and the OPTIMIST model.

One may see that the H - model produced the best fit , and the OPTIMIST model the second

best. It is necessary, however, to point out that these results are based on a very imprecise

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 121

TABLE 6.4: Comparison of the OPTIMIST model with the data of set III (slight discrim­
ination). Data for different stimulation levels compared with model performance under
different penalty values and minimal noise (T). The best matches in terms described in
Section 4.2 are shown in bold and on Figure 6.18.

Stimulation 135 195 255 375

T Penalty rms RT rms R"l. rms R2 rms RT
10 18.0% .34 10.9% .80 15.5% .59 13.4% .61

1% 20 19.8% .43 12.9% .73 15.9% .62 14.7% .60
50 19.0% .54 10.3% .92 20.4% .57 15.9% .70

10 14.9% .40 18.3% .64 17.5% .65 18.0% .56

5% 20 16.0% .43 9.2% .87 15.1% .61 11.9% .71

50 18.9% .51 9.3% .84 13.7% .67 10.7% .77

10 20.2% .19 22.7% .56 23.0% .65 24.4% .41

10% 20 12.9% .53 14.8% .71 15.1% .61 12.9% .70

50 16.7% .54 9.9% .82 13.8% .64 10.5% .75

parameters estimation (only three values of penalty and global noise for the OPTIMIST

model), and, perhaps, a better fit could be achieved given a more precise tuning.

TABLE 6.5: Comparison of three models: A-model with static noise, H-model with noise
controlled by the entropy and a model with OPTIMIST conflict resolution.

Strength A-model H-model OPTIMIST

Data set of stimulus R2 rms R2 rms R2 rms

125 .54 12.2%. .64 10.1% .51 14.9%
Set I 300 .77 13.2% .86 8.8% .83 17.7%

500 .82 12.4% .88 7.1% .89 12.3%
135 .73 11.4% .50 14.5% .40 14.9%

Set III 195 .82 10.2% .90 9.4% .87 9.2%
255 .69 14.5% .71 8.4% .67 13.7%
375 .61 12.5% .68 9.5% .75 10.5%

Although the OPTIMIST model demonstrated some promising results, it does not

fully explain the nature of the inverted-U effect. Indeed, as noted earlier, the performance

of the model increases as a function of penalty (strength of stimulus), and it was necessary

to use an increased global noise T parameter in order to simulate the effect of an extremely

strong stimulus and to obtain a U-shaped performance curve (see Figure 6.19). A higher

initial value of relative noise To was also required by the H -model to match the data for a

strong stimulus.

Explaining the inverted-U effect was not the priority of this thesis. However, let

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM

Errors Model (T = 5%. Penalty = 10) vs Dma (se. 3. 135)

A B 1 2: 1 " 5 6 7 8 9 10 II 12 13 14 IS 16 17 18 1920 2 1 22 23 24 25 2617 28 '!9 30

Days

Errors Model (T = 5%. Penalty = 20) vs Om. (se. 3. 195)

A II I 'l) " 5 6 7 It 9 101 1 12 J3 14 15 16 17 18 1920 21 2223242526 27 2829 30

Days

Model (T = 5%. Penalty = 50) vs Dma (se. 3. 255)

........ Model
0-<::-<:> Data

1\ B I 2: 3 " S 6 7 It 9 10 I I]213 14 15 16 17 I II 192Q 21 222] 24 2526212829 30

Days

Errors Model (T = 10%. Penal.y = 50) vs Om. (se. 3. 375)

,\ B I 2 J " .s 6 7 8 9 10 II 12 13 1<1 IS 16 17 18 1920 2 1 22 23 2425 26 27 211 29 30

Days

Model
10

Model
.0

R2=.40

"' 0

,
Data

R2= .87

." 8.<;'0 ge ,

,
Dala

Model R2 = .67
I.

0

8
//~'~/

,~/ ci T

o
' ''00

o 000

Model
10

,
Data

R2 = .75

<;>/
o 0 '~'./

??" 0 '

,
Data

I Ii

.0

.0

10

10

122

FIGURE 6.18: Comparison of the results of model with OPTIMIST conflict resolution with
the data from set III (slight visual discrimination). Left: learning curves. Right: regression
plots ,

us identify possible reasons for the degradation of performance:

• There are some additional rules learned under a strong stimulus (e.g. a rule to avoid

the choice altogether) , which can make it more difficult to choose the correct rule .

• Strong stimulus affects the use of declarative knowledge units (e,g. the colour features

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 123

Tests U-Curve (Optimist vs Set I) Tests U-Curve (Optimist vs Set 3)

35")SO

......... Model Model
JOO 0--<>-0 Data JOO 0-0-0 Data

2SO 2SO

200 200

ISO ISO

100 100

SO SO

100 200 JOO 400 lOO "'" 100 200)00 400 lOO

St imulation Stimulation

FIGURE 6.19: Comparison of the performance curves. Left: set I (medium discrimination)
compared with the OPTIMIST model results (see also Figure 6.17). Right: set III (slight
discrimination) compared with the OPTIMIST model (see also Figure 6.18) .

chunks) , which in turn hinders the learning of the correct rules. Note that such

explanation of the inverted- U effect was proposed by Humphreys and Revelle (1984).

They argued that arousal impedes short- term memory.

Including these factors into the model may produce the effect similar to noise increase and

account for the inverted- U effect.

6.14 Optimist and Theories of Choice

One of the successes of the ACT- R conflict resolution mechanism is the possibility to predict

the choice behaviour of people. However, some models of human and animal behaviour, such

as the Tower of Nottingham model (Jones et al., 2000) and the Dancer model described in

this study, indicated the need for the revision of the ACT- R mechanism to incorporate more

dynamics. The new algorithm proposed here not only implements the additional properties ,

but also possesses properties of the current method .

One may argue that humans are satisfiers rather than optimisers, and that the

solution we usually use is not necessarily the optimal. Moreover, even if people have tried

the optimal solution once, they still may try other alternatives on some occasions. This

opportunistic behaviour of subjects was reported by Friedman et al. (1964), and it was

reproduced in ACT- R models by Anderson (1990 , 1993), Anderson et al. (1993).

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 124

Although in a long term the OPTIMIST algorithm behaves like an optimiser, its

behaviour in a short term can be described as satisfier. Indeed, the first solution found by

the method should not necessarily be the optimal one. Moreover, even if the first solution

found was the optimal, the program does not use it exclusively. Instead, the algorithm

explores other alternatives expressing the opportunistic behaviour.

The dependency of subjects' choice strategy on the value of payoff, reporte.d by

Myers et al. (1963) and predicted using different goal values in ACT-R (see Figure 2.3), can

also be reproduced in OPTIMIST using different distributions of real costs. Indeed, if some

options have distinctively lower real costs (high payoff) compared with the others, then the

choice will concentrate more on these options.

Finally, the OPTIMIST algorithm finds support in several studies on kinetics of

choice. First, a theory of the effect of reinforcement proposed by Baum (1973) suggested the

correlation law between the response rate and the rate of reinforcement (see also Herrnstein,

1961). Later a kinetic interpretation of this law was derived by Myerson and Miezin (1980),

and it used the Poisson distribution to explain the response frequency. This hypothesis was

supported by experimental data in a study of the response rates of rats (Mark & Gallistel,

1994), which also suggested that more recent rewards are more important.

These studies have not remained unnoticed by the ACT-R community, and the

events discounting mechanism, mentioned in Section 2.3, was introduced in ACT-R to im­

prove the conflict resolution and parameters learning mechanisms (Lovett & Anderson,

1996; Lovett, 1998). The new conflict resolution algorithm suggested in this study directly

uses the posterior Poisson distribution to estimate the rate of success (i.e. the rate of re­

inforcement). Thus, it provides a better support for the theories on kinetics of choice and

reinforcement.

6.15 Summary

In this chapter conflict resolution was considered as a search and optimisation problem. The

cost of a solution was considered as a random variable, and its posterior mean estimate was

derived from Poisson distribution. Optimal schedule for the restarts strategy was suggested

using the maximum entropy principle, and the method of choosing the alternatives by

comparing their random estimated costs was presented.

The performance of the method has been demonstrated on random distributions,

6. OPTIMIST: A NEW CONFLICT RESOLUTION AND LEARNING ALGORITHM 125

and properties of the method were compared with other heuristic techniques. It was shown

that the method implements the dynamics and adaptive properties suggested by the cogni­

tive models as well as some theories of animal and human learning.

The Dancer model using the new conflict resolution method has been tested and,

compared with the data. The working model proves that the OPTIMIST conflict resolution

method can be used as an alternative to theory of choice behaviour. The model using the

OPTIMIST algorithm demonstrated a more adaptable behaviour than with the standard

ACT-R conflict resolution.

126

CHAPTER 7

Discussion

The contributions and implications of this work span over three areas: improving cognitive

models, understanding of emotion within intelligent systems and creating new theory and

algorithm for use in other areas of AI and computer science. The plans for the future work

will be outlined in the end of this chapter.

7.1 Contributions of This Work to Cognitive Modelling

In the introduction chapter of this thesis the need to include the effects of emotion into cog­

nitive models was argued. The case was made that many theories and experiments suggest

the important role that emotion plays in intelligence. However, in cognitive modelling even

the most famous effects, such as the inverted-U law relating arousal (one of the principle

components of emotions) with cognitive performance, have been ignored so far. Although

several theories in psychology have tried to explain the inverted-U phenomenon by propos­

ing various effects of arousal on cognitive processes (e.g. Easterbrook, 1959; Humphreys &

Revelle, 1984) these theories have not been tested on a model. This work has presented

for the first time an ACT-R model of the well-known work in the area - the Yerkes and

Dodson experiment.

The effects of emotion and motivation on judgement have been discussed before

by Tversky and Kahneman (1981) in their decision framing theory (see also Tversky &

Kahneman, 1974; Johnson & Tversky, 1983). This theory have been compared with the

decision making mechanism of ACT-R (conflict resolution). The influence of the conflict

resolution parameters (goal value and noise variance) on performance of the architecture

(and models) has been analysed. Based on this analysis, the mapping between the conflict

7. DISCUSSION 127

resolution parameters and the principle components of emotions, arousal and valence, has

been suggested. In addition, the effect of production strength learning and activations of

working memory elements (chunks) has been considered.

The model has demonstrated how these parameters can be used to simulate thE!.

inverted-U effect. In particular, modifications of goal value and expected gain noise variance

proved to be very effective. This supports the idea that emotion is greatly involved in human

and animal decision making. In addition, the idea that arousal impedes short-term memory

(Humphreys & Revelle, 1984), which may explain the inverted-U effect, has been considered

and supported.

It has been shown that although different settings of the ACT-R conflict reso­

lution parameters can be used to represent different modes of affective decision making

(see Table 2.1), the current theory does not explain the dynamics of transition between

these modes. The lack of such dynamics in ACT-R has been associated with problems in

some other cognitive models, as mentioned in Section 2.5. In Chapter 5 of this thesis a

simple method was proposed to incorporate the decay of noise by controlling it with the

entropy parameter. This modification made the decision making of ACT-R more dynamic

and adaptable with the noise variance decaying with experience. Moreover, the noise may

increase if an unexpected error occurs. Such an increase of noise on failure may result in the

model choosing more diverse strategies, and may represent changes in behaviour associated

with emotional experiences during problem solving (e.g. joy or distress changing the arousal

and valence). The greater diversity of strategies used by subjects than by the associated

cognitive models was attributed to emotion (Dorner, 2001). The Dancer model using dy­

namic noise demonstrated a better fit with the data than models with static noise. Thus,

incorporating the entropy controlled noise can improve the performance of these models.

Computations of entropy have been used for control in cognitive architectures

before (e.g. Dorner & Hille, 1995; Hofstadter & Marshall, 1993). This work demonstrated

how entropy can be calculated using parameters of the ACT-R architecture and fed back to

control the model. In addition, this work presented entropy reduction as a tool for assessing

the quality of learning in cognitive models under different parameter settings. Thus, the

work showed how information theory combined with cognitive modelling can provide a new

framework for investigating the effects of various factors on the quality (or rapidity) of

learning.

Although the entropy control can provide a temporary solution for making noise

7. DISCUSSION 128

more dynamic, the current conflict resolution method does not explain the dynamics of

another parameter - the goal value. As was mentioned in Section 5.4, the achievement

motivation theories (Atkinson, 1957, 1974; Revelle & Michaels, 1976) further suggest the

idea that goal value parameter of ACT-R should not remain static. In Chapter 6 of thi!i.

thesis the current ACT-R conflict resolution theory was revised, and a new method proposed.

The new method, called OPTIMIST, incorporates naturally the dynamic transition from a

random low effort search (high noise, low goal value) to a deterministic highly motivated

decision making behaviour (low noise, high goal value). The main insight of the method

_ to match and maximise the rate of an unknown Poisson process - is not entirely new

and was proposed to explain the choice behaviour of animals (Baum, 1973; Myerson &

Miezin, 1980; Mark & Gallistel, 1994). The thesis provided an algorithm that allows us to

incorporate such behaviour in cognitive models.

An implementation of the OPTIMIST algorithm as an overlay for ACT-R has been

provided. The overlay connects easily to existing models and provides the mechanism to

switch between the standard and the new conflict resolution methods without modifying the

model itself. The overlay was tested on the Dancer model and the results are promising:

similarly to the model with dynamic noise the match between the model and data has

improved.

The thesis does not imply that all cognitive models ought to take emotions into

account. However, based on the results of this work, we may now summarise those types of

models that could benefit from considering different arousal and motivational states:

• Models of tasks where many different strategies can be used, and where these strate­

gies are represented by several conflicting productions. If these models learn the

probabilities and costs of these productions, then the entropy controlled noise (5.3)

can improve the model performance .

• Models where the activations of chunks and errors of omission as a result of retrieval

failure influence the performance should consider that chunks' base level activation

may differ with respect to the level of arousal.

7. DISCUSSION 129

7.2 On a Role of Emotion in Learning

The results of the model described in this thesis as well as the results of some other models

indicate that a model with dynamic control of the conflict resolution parameters improved

the fit of the model to data. The changes of these parameters could reflect the shifts in'

judgements and decision strategies of subjects as they progress in learning about the task.

These changes coincide with intermediate failures and successes during problem solving,

which are as we know accompanied by emotions such as frustration or joy.

This research showed how arousal affects decision making in a particular model,

and also the implications of such changes on problem solving and learning process. Using

entropy reduction as a tool to assess the information gained by the system, it was shown

that there are situations where increased amounts of noise facilitates the rate of information

acquisition. In particular, an increase of noise at the beginning of a new problem, on

environmental changes, and on failures helps the system to learn more quickly. Furthermore,

an increase of motivation from low to high during problem solving optimises the efforts spent

on searching for the solution.

This work showed the similarities between the suggested dynamic control over the

conflict resolution parameters and some search and optimisation methods already known

and used elsewhere in AI. Thus, if indeed the changes in decision making of subjects are

the result of emotions and autonomic arousal, then we speculate that the interaction be­

tween ANS and cognition are an important heuristic function that improves the efficiency

of learning processes. The lack of such interaction could explain the oddly unintelligent

behaviour of the patients described by Damasio (1994) (see discussion in Section 1.1).

The function of emotion and its positive contribution to intelligence has been the

subject of many studies in philosophy, psychology and artificial intelligence. This thesis has

presented a different approach within the framework of a unified theory of cognition.

7.3 New Methods in Computer Science

Computer science has seen many examples recently of how discoveries in biology, psychology

and neuroscience quickly find applications in data processing, optimisation and computa­

tion. Methods such as genetic algorithms, ant colony optimisation, competitive learning

and self-organising maps are just a few examples.

7. DISCUSSION 130

In this work using a modern cognitive modelling technique we considered an im­

portant phenomenon of human and animals psychology - emotion and particularly its role

in decision making and learning. Some experiments on decision making suggest that our

judgements do not always agree with sophisticated statistical inferences. When making.

decisions, people often rely on some simple, flawed, but mostly efficient heuristics (Tversky

& Kahneman, 1974). As noted by Tversky and Kahneman, decision making systems €ould

be improved if they took into account the predictive nature of human mind, whose focus

is often on 'What will I feel then?' rather than on 'What do I want now?' (Tversky &

Kahneman, 1981, page 458).

Inspired by the results of the model the current conflict resolution method of ACT­

R has been revised, and a new algorithm proposed. The new algorithm has similar properties

to the current method, and yet it delivers new dynamics which is known to be consistent

with those that are characteristic for human and animal behaviour. The method makes few

assumptions about the distribution of solutions and, in fact, it is only assumed that solutions

exist (optimism principle). It has been shown using the maximum entropy principle how

deep each alternative should be explored and what is the optimal moment to give up and

try another option. As has been demonstrated on a simple search program, the method

quickly finds a good and in many cases the optimal solution. There are similarities with the

existing optimisation and search methods, such as simulated annealing, best-first search,

tabu search and maximum gradient methods. However, the complete autonomic and self­

adaptive behaviour of the method is its particular advantage. Such methods are especially

useful in situations where not much is known about the distribution of the solutions. These

properties suggest that the algorithm can be used as a meta-heuristic for many problems

outside the cognitive modelling domain, such as machine learning, robotics, decision making,

search and optimisation.

The conflict resolution method presented in this thesis aims to create an alterna­

tive theory of decision making to the methods currently used in the ACT-R architecture.

However, the demonstrated properties and cheap computation cost of the algorithm may

prove to be useful for solving other problems in computer science. Although the method

is yet to be tested on some classical optimisation problems with large search spaces, the

introduction ofa new technique is a valuable addition to the arsenal of the existing methods

in AI.

7. DISCUSSION 131

7.4 Future Work

There are several projects currently considered as the directions for the future work. The

following four developments derive from the research presented in this thesis:

1. Further testing and improvement of the OPTIMIST overlay for the ACT-R architec­

ture. The new conflict resolution should be tested on models of many experiments on

probability matching and choice behaviour (e.g. Friedman et aI., 1964; Myers et aI.,

1963; Herrnstein, 1961). The results should be compared with the existing models

(Lovett & Anderson, 1995, 1996).

2. Application of the OPTIMIST algorithm to classical optimisation problems such as

the Travelling Salesman problem. The comparison of the method with the existing

techniques will help to determine the weaknesses of the method, and possibly its

advantages.

3. It would also be interesting to transfer the Dancer model into ACT-R Version 5 and to

use the perceptual-motor capabilities (ACT-RPM, Byrne and Anderson (1998)). The

asynchronous behaviour of ACT-R 5 is potentially more useful for the new conflict

resolution scheme.

7.5 Summary

The work considers the problem of a function of emotion in cognition by modelling the im­

portant effect of arousal on cognitive performance. The phenomenon known as the inverted­

U effect has been explained by several theories, which have however not been tested on a

computational model. The results of the work favour the idea that emotion is important for

intelligence. Combining information theory and cognitive modelling the work demonstrated

explicitly on a model how changes in decision making strategy improve learning similar to

some known heuristic methods. The thesis suggested methods of incorporating the effects

of arousal on performance in cognitive models. The conflict resolution mechanism of ACT­

R has been revisited and a new theory has been proposed. The new algorithm, based on

estimating the rate of a Poisson process, adds a more dynamic approach to the conflict

resolution and makes the behaviour more adaptable. In addition, the new decision making

method can find application in other areas of AI and computer science.

132

References

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Anderson, J. R (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J. R, Kushmerick, N., & Lebiere, C. (1993). The Tower of Hanoi and goal

structures. In J. R Anderson (Ed.), Rules of the mind (pp. 121-142). Hillsdale, NJ:

Lawrence Erlbaum Associates.

Anderson, J. R, & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:

Lawrence Erlbaum Associates.

Anderson, J. R, Lebiere, C., & Lovett, M. (1998). Performance. In J. R Anderson &

C. Lebiere (Eds.), The atomic components of thought (pp. 57-100). Mahwah, NJ:

Lawrence Erlbaum Associates.

Anderson, K. J. (1990). Arousal and the inverted-U hypothesis: A critique of Neiss's

"Reconceptualizing arousal". Psychological Bulletin, 107(1), 96-100.

Anderson, K. J., & Revelle, W. (1982). Impulsivity, caffeine, and proof-reading: A test of

the Easterbrook hypothesis. Journal of Experimental Psychology: Human Perception

and Performance, 8, 614-624.

Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior. Psychological

Review, 64, 359-372.

Atkinson, J. W. (1974). Strength of motivation and efficiency of performance. In J. W.

Atkinson & J. O. Raynor (Eds.), Motivation and achievement. Washington D.C.: V.

H. Winston.

REFERENCES 133

Bard, P. (1934). Emotion: I. The neuro-humoral basis of emotional reactions. In C. Murchi­

son (Ed.), A handbook of general experimental psychology (pp. 264-311). Worcester:

Clark University Press.

Bartl, C., & Dorner, D. (1998). PSI: A theory of the integration of cognition, emotion and

motivation. In F. E. Ritter & R. M. Young (Eds.), Proceedings of the Second Euro­

pean Conference on Cognitive Modeling (pp. 66-73). Nottingham, UK: Nottingham

University Press.

Barto, A. G. (1985). Learning by statistical cooperation of self-interested neuron-like

computing elements. Human Neurology, 4, 229-256.

Barto, A. G., & Anandan, P. (1985). Pattern-recognizing stochastic learning automata. In

IEEE Transactions on Systems, Man and Cybernetics (Vol. 15, pp. 360-375).

Bates, J., Loyall, A. B., & Reilly, W. S. (1992, May). An architecture for action, emotion,

and social behaviour. Computer Science, Carnegie Mellon University, Pittsburgh, PA.

Baum, W. M. (1973). The correlation-based law of effect. Journal of the Experimental

Analysis of Behavior, 20, 137-153.

Baxter, G. D., & Ritter, F. E. (1996). Designjng abstract visual perceptual and motor

action capabilities for use by cognitive models (Tech. Rep. No. 36). ESRC CREDIT,

Psychology, University of Nottingham.

Belavkin, R. V. (2001). The role of emotion in problem solving. In C. Johnson (Ed.), Pro­

ceedings of the AISB'Ol Symposium on Emotion, Cognition and Affective Computing

(pp. 49-57). Heslington, York, England: AISB.

Belavkin, R. V., Ritter, F. E., & Elliman, D. G. (1999). Towards including simple emotions

in a cognitive architecture in order to fit children's behaviour better. In Proceedings of

the 1999 Conference of the Cognitive Science Society (p. 784). Mahwah, NJ: Lawrence

Erlbaum.

Bienenstock, E. L., Cooper, 1. N., & Munro, P. W. (1982). Theory for the development of

neuron selectivity: Orientation specificity and binocular interaction in visual cortex.

Journal of Neuroscience, 2, 32-48.

REFERENCES 134

Broen, W. E. J., & Storms, L. H. (1961). A reaction potential ceiling and response.

Psychological Review, 68, 405-415.

Brown, R., & Kulik, J. (1977). Flashbulb memories. Cognition, 5, 73-99.

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In The atomic components

of thought (pp. 167-200). Mahwah, NJ: Lawrence Erlbaum Associates.

Cahn, J. E. (1990). The generation of affect in synthesized speech. Journal of the American

Voice I/O Society, 8, 1-19.

Cannon, W. B. (1915, 1929). Bodily changes in pain, hunger, fear and rage. New York:

Appleton.

Damasio, A. R. (1994). Descartes' error: Emotion, reason, and the human brain. New

York, NY: Gosset/Putnam Press.

Dorner, D. (2001). Strategies in a complex game and their background. In E. M. Altmann,

A. Cleeremans, C. D. Schunn, & W. D. Gray (Eds.), Proceedings of the Fourth In­

ternational Conference on Cognitive Modeling (pp. 241-242). Mahwah, NJ: Lawrence

Erlbaum.

Dorner, D., & Hille, K. (1995). Artificial souls: Motivated emotional robots. In IEEE

Conference Proceedings, International Conference on Systens, Man, and Cybernetics;

Intelligent Systems for 21st Century (Vol. 4 to 5, pp. 3828-3932). Vancouver.

Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of

behaviour. Psychological Review, 66, 183-201.

Erman, L. D., Hayes-Roth, F., Lesser, V., & Reddy, D. (1980). The HARSLEY II speech

understanding system: Integrating knowledge to resolve uncertainty. Computing Sur­

veys, 12(2), 213-253.

Fleetwood, M. D., & Byrne, M. D. (2001). Modeling icon search in ACTR-R/PM. In

E. M. Altmann, A. Cleeremans, C. D. Schunn, & W. D. Gray (Eds.), Proceedings of

the Fourth International Conference on Cognitive Modeling (pp. 17-22). Mahwah,

NJ: Lawrence Erlbaum.

REFERENCES 135

Friedman, M. P., Burke, C. J., Cole, M., Keller, L., Millward, R B., & Estes, W. K.

(1964). Tw()-{;hoice behaviour under extended training with shifting probabilities

of reinforcement. In R C. Atkinson (Ed.), Studies in mathematical psychology (pp.

250-316). Stanford, CA: Stanford University Press.

Frijda, N. H. (1986). The emotions. Cambridge University Press.

Frijda, N. H., & Swagerman, J. (1987). Can computers feel? Theory and design of an

emotional system. Cognition and Emotion, 1 (3), 235-257.

Gobet, F., & Jansen, P. (1994). Towards a chess program based on a model of human mem­

ory. In H. J. van der Herik, 1. S. Herschberg, & J. W. H. M. Uiterwijk (Eds.), Advances

in computer chess (Vol. 7, pp. 35-60). Maastricht, The Netherlands: University of

Limburg.

Goleman, D. (1995). Emotional intelligence. New York: Bantam Books.

Grant, D. A. (1962). Testing the null hypothesis and the strategy and tactics of investigating

theoretical models. Psychological Review, 69(1), 54-61.

Gupta, B. S. (1977). Dextroamphetamine and measures of intelligence. Intelligence, 1,

274-280.

Hartline, H. K., Wagner, H. G., & Ratcliff, F. (1956). Inhibition in the eye of limulus.

Journal of General Physiology, 39(5),651-673.

Hebb, D. O. (1955). Drives and the C.N.S. (conceptual nervous system). Psychological

Review, 62, 243-254.

Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of

frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4,

267-272.

Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. (1984). Boltzmann machines: Constraint

satisfaction networks that learn (Tech. Rep. No. 119). Carnegie-Mellon University.

Hofstadter, D. R, & Marshall, J. B. D. (1993). A self-watching cognitive architecture of

high-level perception and analogy-making (Tech. Rep. No. 100). Indiana University

Center for Research on Concepts and Cognition.

REFERENCES 136

Hofstadter, D. R., & Mitchell, M. (1994). The Copycat project: A model of mental fluidity

and analogy-making. In K. Holyoak & J. Barnden (Eds.), Advances in connectionist

and neural computation theory, volume 2: Analogical connections (pp. 31-112). Ablex.

Hudlicka, E., & Fellous, J.-M. (1996). Review of computational models of emotion (Tech.

Rep. No. 9612). Arlington, MA: Psychometrix.

Humphreys, M. S., & Revelle, W. (1984). Personality, motivation, and performance: A

theory of the relationship between individual differences and information processing.

Psychological Review, 91 (2), 153-184.

James, W. (1884). What is an emotion? Mind, 9, 188-205.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106,

108,620-630, 171-190.

Johnson, E., & Tversky, A. (1983). Affect, generalization, and the perception of risk.

Journal of Personality and Social Psychology, 45, 20-31.

Jones, G., Ritter, F. E., & Wood, D. J. (2000). Using a cognitive architecture to examine

what develops. Psychological Science, 11 (2), 93-100.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, J. M. P. (1983). Optimization by simulated

annealing. Science, 220(4598), 671-680.

Lambie, J. A., & Marcel, A. J. (2002). Consciousness and the varieties of emotion experi­

ence: A theoretical framework. Psychological Review, 109(2), 219-259.

Lebiere, C., & Anderson, J. R. (1993). A connectionist implementation of the ACT-R

production system. In Proceedings of the 15th Annual Conference of the Cognitive

Science Society (pp. 635-640). Hillsdale, NJ: Lawrence Erlbaum Associates.

Lebiere, C., & Anderson, J. R. (1998). Cognitive arithmetic. In The atomic components of

thought (pp. 297-342). Mahwah, NJ: Lawrence Erlbaum Associates.

LeDoux, J. E. (1990). Information flow from sensation to emotion: Plasticity in the

neural computation of stimulus value. In M. Gabriel & J. Moore (Eds.), Learning

and computational neuroscience: Foundations of adaptive networks (pp. 3-51). MIT

Press.

REFERENCES 137

LeDoux, J. E. (1996). The emotional bmin. New York: Simon & Schuster.

Liebert, R. M., & Morris, L. W. (1967). Cognitive and emotional components of test

anxiety: A distinction and some initial data. Psychological Reports, 20, 975-978.

Lovett, M. C. (1998). Choice. In The atomic components of thought (pp. 255-296). Mahwah,

NJ: Lawrence Erlbaum Associates.

Lovett, M. C., & Anderson, J. A. (1995). Making heads or tails out of selecting problem

solving strategies. In Proceedings of the 17th Annual Conference of the Cognitive

Science Society (pp. 265-270). Hillsdale, NJ: Lawrence Erlbaum Associates.

Lovett, M. C., & Anderson, J. A. (1996). History of success and current context in problem

solving: Combined influences on operator selection. Cognitive Psychology, 31, 168-

217.

Lovett, M. C., Daily, L. Z., & Reder, L. M. (2000). A source activation theory of work­

ing memory: Cross-task prediction of performance in ACT-R. Journal of Cognitive

Systems Research, 1, 99-118.

Luby, M., Sinclair, A., & Zuckerman, D. (1993). Optimal speedup of Las Vegas algorithms.

In Ismel Symposium on Theory of Computing Systems (pp. 128-133).

Mandler, G., & Sarason, S. B. (1952). A study of anxiety and learning. Journal of Abnormal

and Social Psychology, 47, 166-173.

Mark, T. A., & Gallistel, C. R. (1994). Kinetics of matching. Journal of Experimental

Psychology, 20(1), 79-95.

Matthews, G. (1985). The effects of extraversion and arousal on intelligence test perfor­

mance. British Journal of Psychology, 76, 479-493.

Myers, B. A., Guise, D. A., Dannenberg, R. B., Zanden, V. V., Kosbie, D. S., Pervin, E.,

Mickish, A., & Marchal, P. (1990). Garnet: Comprehensive support for graphical,

highly-interactive user interfaces. IEEE Computer, 23(11), 71-85.

Myers, J. L., Fort, J. G., Katz, L., & Suydam, M. M. (1963). Differential monetary gains

and losses and event probability in a two-choice situation. Journal of Experimental

Psychology, 77,453-359.

REFERENCES 138

Myerson, J., & Miezin, F. M. (1980). The kinetics of choice: An operant systems analysis.

Psychological Review, 81(2), 160-174.

Niiiitiinen, R. (1973). The inverted-U relationship between activation and performance: ~

critical review. In S. Kornblum (Ed.), Attention and performance iv (pp. 155-174).

New York: Academic Press.

Neiss, R. (1990). Ending arousal's reign of error: A reply to Anderson. Psychological

Bulletin, 101(1), 101-105.

Newell, A. (1990). Unified theories of cognition. Cambridge, Massachusetts: Harvard

University Press.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice­

Hall.

Nygren, T. E., Isen, A. M., Taylor, P. J., & Dulin, J. (1996). The influence of positive affect

on the decision rule in risk situations. Organizational Behavior and Human Decision

Processes, 66, 59-72.

Oatley, K., & Johnson-Laird, P. N. (1987). Towards a cognitive theory of emotions. Cog­

nition and Emotion, 1 (1), 29-50.

Ortony, A., Clore, G. L., & Collins, A. (1988). The cognitive structure of emotions. Cam­

bridge, MA: Cambridge University Press.

Picard, R. W. (1997). Affective computing. Cambridge, Massachusetts. London, England:

MIT Press.

Plutchik, R. (1994). The psychology and biology of emotion (1st ed.). New York: Harper­

Collins College Publishers.

Post, E. L. (1943). Formal reductions of the general combinatorial decision problem.

American Journal of Mathematics, 65.

Revelle, W., & Michaels, E. J. (1976). The theory of achievement motivation revisited:

The implications of inertial tendencies. Psychological Review, 83(5), 394-404.

Ritter, F. E. (1993). Three types of emotions that can occur in a cognitive architecture like

Soar. In Workshop on Architectures Underlying Motivation and Emotion.

REFERENCES 139

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. (2000). Supporting cognitive models

as users. ACM Transactions on Computer-Human Interaction, 7(2),141-173.

Roseman, I. J., Antoniou, A. A., & Jose, P. E. (1996). Appraisal determinants of emotions:.

Constructing a more accurate and comprehensive theory. Cognition and Emotion,

10(3),241-277.

Rosenbloom, P., & Newell, A. (1987). Learning by chunking: A production system model

of practice. In D. Klahr, P. Langley, & R. Neches (Eds.), Production system models

of learning and development (pp. 221-288). Cambridge, MA: MIT Press.

Russell, J. A. (1983). Two pan-cultural dimensions of emotion words. Journal of Personality

and Social Psychology, 45, 1281-1288.

Russell, J. A. (1989). Measures of emotion. In The measurement of emotions (Vol. 4). New

York: Academic Press.

Salovey, P., & Mayer, J. D. (1990). Emotional intelligence. Cognition and Personality,

9(3), 185-211.

Salvucci, D. D., & Macuga, K. L. (2001). Predicting the effect of cell-phone dialing on driver

performance. In E. M. Altmann, A. Cleeremans, C. D. Schunn, & W. D. Gray (Eds.),

Proceedings of the 2001 Fourth International Conference on Cognitive Modeling (pp.

25-30). Mahwah, NJ: Lawrence Erlbaum.

Schachter, S., & Singer, J. E. (1962). Cognitive, social, and psychological determinants of

emotional state. Psychological Review, 69, 379-399.

Scherer, K. R. (1993). Studying the emotion-antecedent appraisal process: An expert

system approach. Cognition and Emotion, 7, 325-355.

Scheutz, M., & Logan, B. (2001). Affective vs. deliberative agent control. In C. Johnson

(Ed.), Proceedings of the AISB'Ol Symposium on Emotion, Cognition and Affective

Computing (pp. 1-10). Heslington, York, England: AISB.

Schoppek, W., Holt, R. W., Diez, M. S., & Boehm-Davis, D. A. (2001). Modeling behavior

in complex and dynamic situations - the example of flying an automated aircraft. In

E. M. Altmann, A. Cleeremans, C. D. Schunn, & W. D. Gray (Eds.), Proceedings of

REFERENCES 140

the Fourth International Conference on Cognitive Modeling (pp. 265-266). Mahwah,

NJ: Lawrence Erlbaum.

Sejnowski, T. J. (1977a). Statistical constraints on synaptic plasticity. Journal of Mathe~

matical Biology, 69,385-389.

Sejnowski, T. J. (1977b). Storing covariance with nonlinearly interacting neurons. Journal

of Mathematical Biology, 4, 303-321.

Simon, H. A. (1967). Motivational and emotional controls of cognition. Psychological

Review, 74, 29--39.

Sloman, A. (1999). Review of "Affective computing". AI Magazine, 127-133.

Sloman, A. (2001). Varieties of affect and the CogAff architecture schema. In C. Johnson

(Ed.), Proceedings of the AISB'Dl Symposium on Emotion, Cognition and Affective

Computing (pp. 39-48). Heslington, York, England: AISB.

Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks:

Expectation and prediction. Psychological Review, 88(2), 135-170.

Taatgen, N. A. (1997). A rational analysis of alternating search and reflection strategies

in problem solving. In Proceedings of the 19th A nnual Conference of the Cognitive

Science Society (pp. 727-732). Mahwah, NJ: Lawrence Erlbaum Associates.

Taatgen, N. A. (2001). A model of individual differences in learning air traffic control. In

E. M. Altmann, A. Cleeremans, C. D. Schunn, & W. D. Gray (Eds.), Proceedings of

the Fourth International Conference on Cognitive Modeling (pp. 211-216). Mahwah,

NJ: Lawrence Erlbaum.

Thayer, R. E. (1978). Toward a psychological theory of multidimensional activation

(arousal). Motivation and Emotion, 2, 1-34.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases.

Science, 185, 1124-1131.

Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of

choice. Science, 211, 453-458.

REFERENCES 141

Wine, J. (1971). Test anxiety and direction of attention. Psychological Bulletin, 76, 92-104.

Wood, D., & Middleton, D. (1975). A study of assisted problem-solving. British Journal

of Psychology, 66(2), 181-191.

Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of

habit formation. Journal of Compamtive Neurology and Psychology, 18, 459-482.

Zajonc, R. (1980). Feeling and thinking: Preferences need no inferences. American Psy­

chologist, 35, 151-175.

142

ApPENDIX A

Code of the Dancer Model Explained

A.1 Global Parameters Settings

Many parameters in the model are set to the default values of ACT-R. Below are the

settings used in all model modifications.

(sgp

)

:er t
:era t
:ut nil
:01 t

:pl t

•••
•••
•••
•••
•••

enable randomness
enable rational analysis
utility threshold
optimised learning
parameters learning

Note that utility threshold (parameter : ut) set to nil means that all production rules, no

matter how small their expected gains are, will be considered by the ACT-R architecture.

Other global parameters, such as the goal value (: g), expected gain noise s (: egs), activation

and production strength learning d (parameters :bll and :sl) can have different setting

(see Chapter 4).

A.2 Declarative Memory

The model starts with the initial declarative knowledge, but it also can add new chunks

during the run. In this section all the chunk-types used in the model are explained along

with the chunks the model contains initially.

Chunks in ACT-R are classified by their type. Each type defines the fixed number

of slots, which are usually used to describe properties of a particular class of objects. ACT­

R allows chunk-types to inherit properties (slots) from their parent chunk-types using the

A. CODE OF THE DANCER MODEL EXPLAINED 143

: include command. The description of chunks will be provided according to their types.

A.2.1 Perception

One special chunk holds the outputs of the sensory system:

(sensors ISA perception)

The separate type perception of this chunk ensures that only production rules from the

perceptual system will be considered by the ACT-R architecture when the sensors chunk

is in focus. In the current implementation the perceptual system has only two sensors, each

represented by one slot:

(Chunk-Type perception vision skin)

Slot vision holds the name of a visual chunk representing an image of the object right

ahead. Slot skin holds the value of external stimulation. Both slot values are supplied to

the model from the simulation based on where and how the mouse is located.

Visual properties of objects are represented by chunks of type image:

(Chunk-Type image image)

The only slot of the image chunk is used by other chunk-types, which inherit the image

type. Images are patterns on the basis of which objects can be identified. In the model they

are represented by different chunks of type image. Thus, every object in the memory can

have an image chunk associated with it. Below are the image chunks used by the model:

(black ISA image)
(white ISA image)
(black-white ISA image)
(left-to-main ISA image)
(right-to-main ISA image)
(w-wall-i ISA image)
(e-wall-i ISA image)
(s-wall-i ISA image)
(n-wall-i ISA image)
(sep-wall-i ISA image)

A.2.2 Recognition

Recognition of visual objects is performed through a dedicated recognition buffer chunk:

(buffer ISA recognition)

A. CODE OF THE DANCER MODEL EXPLAINED

This buffer has only one slot object defined by its chunk-type:

(Chunk-Type recognition object)

144

The value of the slot can either be nil or a chunk in the long-term memory representing

the object, that has been recognised. Recognition system is used in the model mainly to

reactivate the chunk each time the object is in the focus of the visual system. The· idea

is that if an object is new, then a new object chunk is created. If an object is recognised

based on its image, then the activation of a chunk representing the object increases (see

equation (2.7)).

A.2.3 Action

Commands to the motor system for performing actions are represented by chunks of a

special type action. For example, a command to step forward is represented by a chunk:

(goal ISA action forward t)

The separate chunk-type ensures that only production rules from the action system will be

considered by ACT-R when an action chunk is in focus. The chunk-type action allocates

one slot for each type of action:

(Chunk-Type action forward backward left right)

Only four types of actions are implemented in the model: step forward, step backward, turn

left, and turn right.

A.2.4 Space and Time

(Chunk-Type (point (:include image)) x y)

The chunk-type point is used to represent a point in the simulated world. It includes the

image inheriting an image slot, which can hold an image chunk. The other two slots x and

y hold the coordinates of a point with respect to the top left corner of the main window

in the simulation. The model can be extended to three dimensions by adding a third slot,

z. The coordinates are used by the simulation to perform specific calculations, such as to

calculate the relative direction and distance from the mouse to an object.

(Chunk-Type (location (:include point)) direction distance time)

A. CODE OF THE DANCER MODEL EXPLAINED 145

The chunk-type location represents relative from the mouse point of view location of a point

in space and time. The type extends the point chunk-type, thus the location type inherits

the x and y slots relating every location in the model to a physical point in the simulation.

The coordinates are used by the simulation to return the values of the direction and

distance slots. These two slots hold the relative location of a point.

The model is organised in such a way that precision of the location should not

necessarily be perfect. Because the information about locations is used mainly for locomo­

tion of the mouse (steps and turns), the precision of the distance and direction is derived

from the precision of the movements.

Slot distance holds the number of steps to a point, where a step is the smallest

distance a mouse can move by (the default value is 10 pixels). So, if a point is 43 pixels

ahead of the mouse, then the distance to it will be equal to exactly four steps. Distance to

any point within 10 pixels away from the mouse is alway considered zero.

Slot direction holds the number of smallest turns the mouse should do to face

a point. The smallest turn defines the maximum number of turn moves necessary to make

a full 3600 turn. In the model this number is set by default to four, and it makes the

smallest angle a mouse can turn by equal 900
• If the location is ahead of the mouse, then

the direction to it is considered zero. If the location is on the right, then the direction is set

to 1, and if it is on the left, then the direction is ~1. Direction 2 means that the point is

located behind. Such a rough precision is enough for the purposes of this study, and even

at this precision quite complex movements and trajectories of the mouse can be observed

in the model (see Figure 3.4). The precision of movements can be increased, if necessary.

Slot time is needed to distinguish between location at the current time moment

and locations in the future or past. Zero value in the time slot (t = 0) means that the

location describes the current moment. If location describes future or past, then the value

of the time slot is simply nil.

A.2.5 Objects

(Chunk-Type (object (:include location» danger in)

Chunks of type object are used in the model as internal representations of objects in the

simulated world. The chunk-type extends location type, so description of any object includes

its image and location in space and time. Thus representations of objects in the model may

A. CODE OF THE DANCER MODEL EXPLAINED 146

describe not only their current states, but also future or past states.

Because the location type extends points, every object has x and y coordinates.

These are the coordinates of geometrical centre of the corresponding object in the simula­

tion. The simulation uses these coordinates to return the information about the relative

distance and direction to an object. One may argue that a single point cannot p~ovide

enough information to describe an object's location, especially if it is a large object such

as a room. Ideally, the whole set of points an object consists of should be considered. For

the purposes of the described model, however, the location of geometric centre of an object

proved to be sufficient.

Slot image inherited from the point type holds visual characteristic of an object.

Its value is the name of an image chunk representing visual properties of the object, such

as an image or a colour.

Slot danger is included into the model to represent a possibly negative attitude

towards an object, and it can be used to model the so called somatic markers: if in the

past experience an object was identified as dangerous, then once it is in focus again it may

activate some subsystems (for example, it could increase arousal on alert state).

Slot in is used to describe the relation of an object to other objects. Particularly,

if an object is spatially located inside another object, then the value of the slot in of the

chunk representing this object will point to the chunk representing the container object.

For example, if the mouse is in the left box, then the value of in slot of a chunk representing

the current state of the mouse will point to the white box chunk. Note that such knowledge

representation scheme can be used to describe complex objects that have several smaller

'objects as their components: every simple object, which is a component of a more complex

object, would have the same value in its in slot: the name of the container object's chunk.

Together these chunks may represent components of a more complex object.

Below are chunks representing the simple objects of which the discrimination cham-

ber consists:

(unknown ISA object)
(w-wall ISA object image w-wall-i)

(e-wall ISA object image e-wall-i)

(s-wall ISA object image s-wall-i)

(n-wall ISA object image n-wall-i)
(sep-wall ISA object image sep-wall-i)

A. CODE OF THE DANCER MODEL EXPLAINED 147

Note that the model can start without the chunks above and learn new representations by

itself. However, this sometimes results in learning too many chunks for one object if the

model fails to recognise it. In order to make the results of the model more predictable in

many runs the model starts with the set of necessary chunks.

A.2.6 Special Classes of Objects

Specific classes of objects are represented in the model by chunks of types extending the

type object. These types have additional slots to describe the specific properties of the

subclasses of objects they represent.

Self States

The most important class of objects in the model memory is the internal representation of

the mouse itself. These representations describe the current, future or past states of the

mouse. The states in the model are objects described by chunks of a special type self

(Chunk-Type (self (:include object))
ahead left right behind feel)

In addition to the standard slots of type object, the self chunk-type includes information

about what objects are ahead, behind, and on the left or right sides. The values of these

four slots are used to form the environment object that the mouse is currently in. Slot

ahead receives its value during the perceptual cycle. Then, if the mouse turns left or right,

the production system is designed in such a way that the value of the ahead slot is passed to

the corresponding direction slot (see productions turn-left and turn-right). One may

see these four direction slots as an abstraction of the place-cells in the hippocampus.

The feel slot is designed to represent the subjective description of comfort. It

determines whether the mouse feels good or bad at the current moment. There may be

many factors and objectives involved in this property, but in the current model the value

of the slot is determined only by the skin receptors of the mouse.

Declarative memory of the model always contains at least one chunk of the self

type, and this is the chunk representing the current state of the mouse:

(self 0 ISA self distance 0 direction 0 time 0
ahead unknown left unknown right unknown behind unknown
feel nil)

One can see that' the location of this chunk describes zero distance in both space and time.

A. CODE OF THE DANCER MODEL EXPLAINED 148

Environments

The rooms or boxes the mouse can move around are represented by chunks of the environ­

ment type extending the object type:

(Chunk-Type (environment (:include object))
ahead left right behind other exit)

Slots ahead, left, right, and behind describe the objects, such as walls, surrounding the

mouse. The collection of the surrounding objects comprise the current environment the

mouse is in. A chunk of this type can be created once the mouse has seen all the objects

around, that is when values of the slots ahead, left, right, and behind of the chunk self

are not set to unknown. The mouse model can create a new environment chunk if the room

is visited for the first time. The model has the ability to recognise the environment if it has

previously visited the room.

Slot other in the environment chunk-type points to a chunk representing the

complement of the environment. In general, if A is the current environment, and U is the

universe, then the complement of A is A = U\A. Each environment chunk in the model

has a chunk denoting its complement. The complement is necessary to describe the goal

to escape the current box. In this case the goal is a state chunk with the complement

chunk as the value of the in slot. For example, the chunk not-main-box is the complement

of the main-box (in our case it is just a union of left and right boxes). So, an intention

of the mouse to escape from the main box will be represented by a goal chunk with the

not-main-box as the value of in slot.

Slot exit points to an object representing one or a collection of several exits from

the environment.

In the current model there are initially three environments representing the three

boxes in the simulation, and three environments representing their complements:

(left-box ISA environment
image Left-Box
ahead N-Wall
left W-Wall
right Sep-Wall
behind Left-To-Main
other Not-Left-Box
exit Left-To-Main)

(right-box ISA environment
image Right-Box
ahead N-Wall
left Sep-Wall
right E-Wall
behind Right-To-Main
other Not-Right-Box
exit Right-To-Main)

A. CODE OF THE DANCER MODEL EXPLAINED 149

(main-box ISA environment
image Main-Box
ahead Wayout
left W-Wall
right E-Wall
behind S-Wall
other Not-Main-Box
exit Wayout)

(not-main-box ISA environment other Main-Box)
(not-left-box ISA environment other Left-Box)
(not-right-box ISA environment other Right-Box)

Exits

Exits are objects of chunk-type exit:

(Chunk-Type (exit (:include object» from to)

Slots from and to contain names of the environments that the exit connects. Note that the

exit chunks describe the direction, so although two environments may be connected by only

one door there may be two exit chunks referring to it depending on the direction.

There are two doors between the three boxes in the simulation, so there are four

exit chunks:

(from-main-left ISA exit (from-main-right ISA exit
image Black image White
from Main-Box from Main-Box
to Left-Box) to Right-Box)

(from-left ISA exit (from-right ISA exit
image Left-To-Main image Right-To-Main
from Left-Box from Right-Box
to Main-Box) to Main-Box)

A.2.7 Choice

An important part of the model is dedicated to choosing from two or more opportunities.

A choice between alternatives is represented in the model by a chunk of type choice:

(Chunk-Type (choice (:include image» first second chosen)

A. CODE OF THE DANCER MODEL EXPLAINED 150

One can see that the choice type inherits slot image from image type. Thus, a choice, as

a single object, can have a visual representation. Slots first and second point to the

alternative objects. Note that if a choice is made from more than two opportunities, then

in this situation a choice can still be represented by a choice chunk: the choice between the

first and the other objects.

Slot chosen holds the chosen chunk after the choice has been made. If the value

is nil, then it indicates that the choice has not been made yet.

The model uses one chunk of type choice to represent the two alternative escape

doors from the main box:

(wayout ISA choice
image Black-White
first From-Main-Left
second From-Main-Right)

The above chunk representing a union of two exits from the main box is in the value of the

exit slot of the main-box environment chunk.

A. CODE OF THE DANCER MODEL EXPLAINED 151

A.3 Procedural Memory

Production rules can be classified by the type of the goal they operate on, as well as by

the rule's functionality. In this section the production rules of the model are explained and.

classified into small groups. ACT-R production compilation mechanism allows the model

to learn new rules during the model run. An example of a rule learned by the model is

presented in the end of this section.

A.3.1 Perception and Recognition

(p Perceive
=goal>

ISA
=sensors>

ISA
vision
skin

==>
!push!

)

(p See-Feel
=goal>

ISA
vision
skin

=buffer>
ISA

==>

self

perception
nil
nil

=sensors

perception
nil
nil

recognition

!bind!
!bind!
=goal>

=image (look-ahead)
=feel (feel-skin)

)

vision
skin

=buffer>
object

=image
=feel

nil

This production rule starts the per­

ception cycle of the model. The self

type of the goal ensures that the model

enters the perception cycle only when

the focus is a state chunk (i.e. of type

self). The constraint chunk of type

perception should have all the slot val­

ues set to nil.

This rule calls two functions from the

simulation, which return values for

specific types of sensors. Function

look-ahead returns the name of a

chunk representing the image of an ob­

ject ahead, and function feel-skin

returns the value of external stimula­

tion. The production also resets the

recognition buffer.

A. CODE OF THE DANCER MODEL EXPLAINED 152

(p New-Feeling
=goal>

ISA
skin

=self>
ISA
time

- feel
==>

=self>

perception
=feel

self
o
=feel

feel =feel
)

(p Start-Recognition
=goal>

==>

)

ISA perception
vision

=buffer>
ISA
object

!push!

=image

recognition
nil

=buffer

(p Recognise-Object
=goal>

ISA recognition
object nil

=sensors>
ISA perception
vision =image

=image>
ISA image

=object>
ISA image
image =image

==>
=goal>

object =object
!pop!

)

This rule simply transfers a new value

from skin sensors into the feel slot

of the chunk representing the current."

state. Note that any value larger than

zero is considered by the model as an

aversive stimulus.

After the image ahead has been ac­

quired, this rule starts the recognition

process.

The production attempts to retrieve

an object chunk with the same visual

properties as the object ahead. If the

object has been recognised, the name

of the object is placed into the recog­

nition buffer, which marks the end of

the recognition process.

(p New-Ahead
=goal>

ISA
vision

=buffer>
ISA
object

==>

)

=self>
ISA
time
ahead

=self>
ahead

A. CODE OF THE DANCER MODEL EXPLAINED 153

perception
=image

recognition
=object

self
o
unknown

=object

After the object ahead has been recog­

nised, the rule puts the chunk repre­

senting the object into the ahead slot ..

of the current state chunk. An ad­

ditional constraint is that the object

ahead should be initially unknown.

Different rules (see below) treat the

situations when it is not the case.

(p New-Environment This rule similarly to the New-Ahead

puts the object ahead into the slot of

the current state chunk, after it has

been recognised. However, in this case

the previous value of the ahead slot

was not an unknown object and the

environment was not nil. Because the

=goal>
ISA
vision

=buffer>
ISA
object

=self>
ISA
time

- in
- ahead
- ahead

==>
=self>

in
ahead
left
right
behind

)

perception
=image

recognition
=object

self
0

nil
=object
unknown

nil
=object
unknown
unknown
unknown

object ahead is not what the dancer

"expected" to see, the rule registers

the change of the environment.

A. CODE OF THE DANCER MODEL EXPLAINED 154

(p Perception-Completed
=goal>

ISA perception
vision
skin

=buffer>
ISA
object

=self>
ISA
time
ahead
feel

==>
!pop!

)

A.3.2 Navigation

=image
=feel

recognition
=object

self
o
=object
=feel

(p Object-Coordinates
=goal>

ISA object
image =image
x nil
y nil

=image>
ISA image

==>
!bind! =x (get-x =image)

!bind! =y (get-y =image)

=goal>
x =x

y =y
)

This rule ends the perception cycle

once the new values from the sensors

have changed the corresponding slots ..

of the current state chunk.

This rule makes a call to the simula­

tion to return the coordinates of an

object in focus, if the current values

of x and yare nil. The simulation

returns the coordinates of the geomet­

rical centre of the object based on its

unique image name. If there is no ob­

ject with such a name, then the sim­

ulation returns some special coordi­

nates (e.g. (0, 0)) in order to avoid an

infinite loop.

The two rules below return the coordinates of one of the two objects in the choice

chunk. The coordinates of both objects in the choice are needed by the learning production

rules when the system learns to choose based on the features of the two objects (e.g. colour

or coordinates).

A. CODE OF THE DANCER MODEL EXPLAINED 155

(p First-Choice-Coordinates
=goal>

ISA choice
first =first
second =second

=first>
ISA object
image =image
x nil
y nil

= image >
ISA image

==>
!bind! =x (get-x =image)
!bind! =y (get-y =image)
=first>

x =x
y =y

)

(p Object-Location
=goal>

ISA location
x =x
y =y
distance nil
direction nil

=sensors>
ISA perception

- vision nil
==>

!bind! =distance
(steps-to =x =y)

!bind! =direction
(direction-to =x =y)

=goal>
distance =distance
direction =direction

)

(p Second-Choice-Coordinates
=goal>

ISA choice
first =first
second =second

=second>
ISA object
image =image
x nil
y nil

=image>
ISA image

==>
!bind! =x (get-x =image)
!bind! =y (get-y =image)
=second>

x =x
y =y

)

This rule makes a call to the functions

steps-to and direction-to the

point in the simulation. These func­

tions return values to the distance

and direction slots of the relative lo­

cation chunk in focus.

A. CODE OF THE DANCER MODEL EXPLAINED 156

A.3.3 Action

The rules below operate on goals of chunk-type action and execute the corresponding

functions in the simulation. When action functions are executed, the state of the model

is changed: the new coordinates of the current state chunk (self 0) are returned, and the

values of the sensors are reset to nil as a side-effect of the simulation functions. The latter

forces the model to enter the perceptual cycle after an action has been carried out.

(p Step-Forward (p Step-Backward

=goal> =goal>

ISA action ISA action

forward t backward t

==> ==>

!eval! (step-forward) !eval! (step-backward)

!pop! !pop!

))

Left turn and right turn productions also pass the values of the ahead, left,

right, and behind slots of the current state chunk.

(p Turn-Left (p. Turn-Right

=goal> =goal>

ISA action ISA action

left t right t

. =self> =self>

ISA self ISA self

ahead =ahead ahead =ahead

behind =behind behind =behind

left =left left =left

right =right right =right

time 0 time 0

==> ==>

!eval! (turn-left) !eval! (turn-right)

=self> =self>

ahead =left ahead =right

behind =right behind =left

left =behind left =ahead

right =ahead right =behind

!pop! !pop!

))

A. CODE OF THE DANCER MODEL EXPLAINED 157

A.3.4 Control Actions

The production rules in this group are creating the goals for action if the distance to the new

goal state of the mouse is not zero. If the distance is zero, then the goal state is achieved

and no further actions are needed. The current model uses only five production rules: one

for commanding a step forward action, two rules for commanding left or right turns; one

rule to pop the finished goal, and one rule for recalling and setting the last unfinished goal

if such exists. More rules can be used to perform a series of actions, such as several steps

forward, or combinations of steps and turns.

The Command-Left rule below checks if the goal state is not located ahead or on

the right. Then it creates the action goal with turn left. The location slots of the goal

state are set to nil, because after completing the action relative location of the goal state

changes. The navigation system will then update the values of the new location of the goal

state. The rule Command-Right is similar except for the opposite direction.

(p Command-Left (p Command-Right

=goal> =goal>

ISA self ISA self

direction =direction direction =direction

direction 0 - direction 0

direction 1 direction -1

time 0 - time 0

==> ==>

=goal> =goal>

distance nil distance nil

direction nil direction nil

=turn-left> =turn-right>

ISA action ISA action

left t right t

!push! =turn-left !push! =turn-right

))

A. CODE OF THE DANCER MODEL EXPLAINED 158

(p Command-Forward
=goal>

ISA self
x =x

y =y
- distance 0

direction 0

- time 0

=self>
ISA self

x =xO

y =yO
time 0

!eval! (no-obstacle =xO =yO =x =y)

==>

)

=goal>
distance nil
direction nil

=step-forward>
ISA action
forward

!push!

t

=step-forward

(p Action-Completed
=goal>

ISA
distance

self
o

direction 0

==>

)

- time
feel

=sensors>
ISA

- vision

=goal>
x

Y
!pop!

o
nil

perception
nil

nil
nil

If the goal state is directly in front

(direction 0), the distance to it is

not zero, and there is no obstacle be­

tween the two points, then create a

goal to step forward.

This rule pops the goal state off the

stack only if the direction and distance

to the goal state is zero. The coordi­

nates of the goal state are set to nil in

order to keep the declarative memory

of ACT-R cleaner (chunks with simi­

lar values of their slots simply merge

together).

A. CODE OF THE DANCER MODEL EXPLAINED 159

(p Action-Continue
=goal>

ISA self
time 0

=lastgoal>
ISA self

- distance nil
- direction nil
- distance 0
- direction 0
- time 0
=sensors>

ISA perception
- vision nil

==>
=lastgoal>

distance nil
direction nil

!push! =lastgoal
)

A.3.5 Environment Exploration

(p Explore-Left
=goal>

ISA self
direction 0

time 0
- ahead unknown

left unknown
=sensors>

ISA perception
- vision nil

==>
!bind! =x (get-self :left-x)

!bind! =y (get-self :left-y)

=turn>
ISA self
x =x
y =y

!push! =turn
)

This rule can retrieve an unfinished

goal state (those with non-zero dis­

tance and direction). If such a goaL

state exists in the memory, then reset

its location and push it on the stack.

This rule can be used for activation­

based retrievals of unfinished goals.

If the object on the left is unknown,

then set a new goal state located at

the own left side (function get-self

returns the coordinates). The navi­

gation rules will return zero distance

to this goal state, but the direction

equal to -1. The following goal will

be to turn left, thus facing the ob­

ject. Chunk sensors is checked so

that the rule only could fire after the

perceptual cycle has completed. The

two productions below are similar ex­

cept that the unknown object is on the

right or behind.

A. CODE OF THE DANCER MODEL EXPLAINED 160

(p Explore-Right (p Explore-Behind
=goal> =goal>

ISA self ISA self
direction 0 direction 0

time 0 time 0

- ahead unknown - ahead unknown
right unknown behind unknown

=sensors> =sensors>
ISA perception ISA perception

- vision nil - vision nil
==> ==>

!bind! =x (get-self : right-x) !bind! =x (get-self : back-x)
!bind! =y (get-self :right-y) !bind! =y (get-self :back-y)
=turn> =turn>

ISA self ISA self
x =x x =x
y =y y =y

!push! =turn !push! =turn
))

Once all the objects around have been seen the model may attempt to recognise

the current environment (or create a new environment chunk). The first rule below checks

if all the objects around correspond to the objects of some known environment. If this is the

case, then put the environment chunk into the in slot of the current state. The recognition

requir.es all the objects around to be in the same slots as in the environment chunk. If the

dancer is facing a wrong direction and the environment cannot be recognised, the second

rule makes the dancer turn around.

A. CODE OF THE DANCER MODEL EXPLAINED 161

(p Recognise-Environment (p Find-North-Left
=goal> =goal>

ISA self ISA self
in nil in nil

- ahead unknown - ahead unknown
- left unknown - behind unknown
- right unknown left unknown
- behind unknown - right unknown

ahead =ahead time 0

left =left !eval! (not (look-north-true))
right =right ==>
behind =behind !bind! =x (get-self : left-x)
time 0 !bind! =y (get-self :left-y)

=known-env> =turn>
ISA environment ISA self
ahead =ahead x =x
left =left y =y
right =right !push! =turn
behind =behind)

other =other
=other>

ISA environment
==>

=goal>
in =known-env

)
~

A. CODE OF THE DANCER MODEL EXPLAINED 162

A.3.6 Motivations and Appraisal

Behaviour of the dancer is derived from its motivations. It is assumed that there is an ideal

state the dancer is always trying to achieve. In the current model there are two objectives

that define the top motivations (see Section 3.2).

(p Escape
=goal>

ISA
time
in

==>
=escape>

ISA
in
feel

!push!
)

self
o
Main-Box

self
Not-Main-Box
o
=escape

(p Escape-Danger
=goal>

ISA self
time 0

- in nil
- feel 0

==>
=escape>

ISA self
feel 0

!push! =escape
)

This rule implements the first ob­

jective of the task - to escape the

Main-Box. Note that Not-Main-Box

is simply the complement of the main

box, and it is represented in the model

by a separate chunk.

This rule implements the second ob-

jective of the task, and it represents

an important motivation of the dancer

behaviour: avoid any aversive stim-

ulation. If the value of stimulation

in the current state is not zero (slot

feel), then create a new goal with the

desired value (feel 0). The rule re-

quires the dancer to be aware of the

environment it is in.

The two rules below implement appraisal of achieving the first obje~tive (to escape

the main-box). The first rule detects the success if the dancer is no longer in the Main-Box

and the level of stimulation is zero. On the contrary, if the dancer has escaped the Main-Box,

but the level of stimulation is not zero, then the second production detects a failure. Note

that changes in probabilities on successes and failures lead to entropy changes. The function

change-noise here can adjust the expected gain noise according to equation (5.3).

A. CODE OF THE DANCER MODEL EXPLAINED 163

(p Escape-Success (p Escape-Failure
=goal> =goal>

ISA self ISA self
- time 0 - time 0

in Not-Main-Box - in Not-Main-Box
feel 0 feel 0

=self> =self>
ISA self ISA self
time 0 time 0

- in Main-Box - in Main-Box
feel 0 - feel 0

=sensors> =sensors>
ISA perception ISA perception

- vision nil - vision nil
- skin nil - skin nil

==> ==>
=goal> =goal>

x nil x nil
y nil y nil
direction nil direction nil
distance nil distance nil
in nil in nil
feel nil feel nil

!pop! !pop!
!eval! (change-noise) !eval! (change-noise)

))

The two rules below implement the appraisal of achieving the second objective

after the focus has returned to the escape-danger goal. The first rule signals the success if

the level of stimulation is zero. Otherwise the second rule below registers the failure.

A. CODE OF THE DANCER MODEL EXPLAINED 164

(p Escape-Danger-Success (p Escape-Danger-Failure

=goal> =goal>
ISA self ISA self

- time 0 - time 0

- in nil - in nil

- in Not-Main-Box - in Not-Main-Box
feel 0 feel 0

=self> =self>

ISA self ISA self
time 0 time 0

feel 0 - feel 0

=sensors> =sensors>
ISA perception ISA perception

- vision nil - vision nil
- skin nil - skin nil

==> ==>
=goal> =goal>

x nil x nil

y nil y nil
direction nil direction nil
distance nil distance nil
in nil in nil
feel nil feel nil

!pop! !pop!
))

A. CODE OF THE DANCER MODEL EXPLAINED 165

A.3.7 Escape Strategies

When the model has a goal to escape the aversive signal (the goal created by the escape-danger

production), then it can use two strategies to achieve it. These strategies are selected by

the following production rules:

(p Find-Better-Point
=goal>

ISA self
x nil
y nil

- time 0

in nil
feel 0

=self>
ISA self
time 0

x =x
y =y
in =current

=sensors>
ISA perception

- vision nil
- skin nil

==>

)

!bind! =rx (random-xy =x =y
!bind! =ry (random-xy =x =y

=goal>
x =rx

y =ry
in =current

=change-point>
ISA
x

Y
!push!

self
=rx
=ry
=change-point

:x)
:y)

This rule sets a new goal with location

in a random point within the current

environment. The goal then causes

the dancer to move into this new lo­

cation. In the current model this rule

always leads to a failure, because the

stimulation is present in any point of

the box. However, it is not known to

the dancer, and because the cost of

the rule is relatively small it can get

selected several times before the prob­

ability has been learned. If the level

of stimulation is not high enough (G is

low in equation (2.1)), then the prob­

ability has to decrease significantly in

order to allow the other strategy to

win.

A. CODE OF THE DANCER MODEL EXPLAINED 166

(p Find-Better-Environment This rule implements the second strat­

egy - to escape from the current box.

Although the cost of this strategy is

higher than the cost of the previous

rule, the model learns that it leads to a

success. When the level of stimulation

is high (G is high in equation (2.1)),

then high probability becomes more

important in the conflict resolution

than the cost, and the model quickly

switches to using this strategy.

=goal>
ISA self

- time 0

in nil
feel 0

=self>
ISA self
time 0

in =current
=current>

ISA environment
other =other

==>
=goal>

in =other
=change-env>

ISA self

in =other

feel nil
!push! =change-env

)

A. CODE OF THE DANCER MODEL EXPLAINED 167

A.3.8 Escaping a Box

If the goal is to escape the current box, then first the model focuses on the chunk denoting

the exit from the current environment (see Focus-On-Exit below). The exit, however, can

be a choice of two doors. The way the model makes the choice will be described later.

When one particular door (chunk of type exit) is in the focus, then the Go-To-Exit rule

sets a new goal to be located at this exit. The simulation is designed in such a way that

the coordinates of the exit lead to the point just outside the current environment. Thus,

when the dancer moves to this point it leaves the current box automatically.

(p Focus-On-Exit (p Go-To-Exit

=goal> =goal>

ISA self ISA exit

in =other x =x

- time 0 Y =y

feel 0 direction =dir

=self> distance =dis

ISA self from =current

time 0 image =image

- in =other =image>

in =current ISA image

=current> =self>

ISA environment ISA self

exit =exit time 0

==> in =current

!push! =exit ==>

) =goal>
direction nil
distance nil

=gotoexit>
ISA self
x =x
y =y
direction =dir
distance =dis

!focus-on! =gotoexit
)

A. CODE OF THE DANCER MODEL EXPLAINED 168

• A.3.9 Choosing

The exit from the main box is a choice of two doors. Choosing and learning to choose the

right exit is important for the success in the task. The model starts with two simple rules for

~hoosing. These rules have equal properties and equal chances to be chosen in the conflict

resolution. During the first 20 training tests the mouse is allowed to escape the main box

~through any door, so the model learns similar production parameters for both rules.

(p Chooseist
=goal>

ISA
first
second
chosen

=first>
ISA

- x
- y
=second>

ISA
- x
- y

==>

)

=goal>
chosen

!push!

choice
=first
=second
nil

object
nil
nil

object
nil
nil

=first
=first

(p Choose2nd
=goal>

ISA
first
second
chosen

=first>
ISA

- x
- y
=second>

ISA
- x
- y

==>

)

=goal>
chosen

!push!

choice
=first
=second
nil

object
nil
nil

object
nil
nil

=second
=second

After the choice has been made, the dancer focuses on the selected door and then

proceeds for the exit. When it reaches the location of the exit the focus of the model returns

to the choice chunk, and the model can assess whether the choice made led to a success or

a failure by checking the new value of the feel slot. The first rule below pops the choice

chunk with a success if condition feel 0 is fulfilled. Otherwise the second rule below puts

the goal into the corresponding slot of a chunk of the special type dependency, which will

be used to learn new production rules.

A. CODE OF THE DANCER MODEL EXPLAINED 169

(p Choice-Success (p Choice-Failure
=goal> =goal>

ISA choice ISA choice
chosen =chosen chosen =chosen

=self> =self>
ISA self ISA self
time 0 time 0

feel 0 - feel 0

=sensors> =sensors>
ISA perception ISA perception

- vision nil - vision nil
- skin nil - skin nil

==> ==>
=goal> =learn>

chosen nil ISA dependency
!pop! goal =goal

) !focus-on! =learn
)

A.3.1D Learning New Rules

The two production rules chooselst and choose2nd make the choice blindly without paying

any attention to the features of both objects. If the positions of the white and black doors are

completely random, then there is no way the dancer can figure out which door to choose.

Indeed, the probabilities learned for both rules by ACT-R reflect the distribution of the

successful opportunity in the simulation. If the distribution is casual, then the probabilities

will be equal on average. In order to learn to choose the correct door the dancer has to

create new production rules with more complex conditions paying attention to the features

of the objects. The two properties to pay attention to are the location of each door (different

x coordinates), and the colour feature of each door. New rules in ACT-R are created using

the production compilation mechanism that uses a chunk of a special type dependency.

A. CODE OF THE DANCER MODEL EXPLAINED 170

(p Learn-CX-from-Failure
=goal>

ISA dependency
goal =choice

=choice>
ISA
image
first
second
chosen

=first>
ISA
image
x
y
from
to

=C1>
ISA

=second>
ISA
image
x
y
from
to

=C2>
ISA

==>

choice
=image
=first
=second
=chosen

exit
=C1
=X1
=Y1
=from
=to1

image

exit
=C2
=X2
=Y2
=from
=to2

image

The rule on the left implements two­

dimensional learning, when both fea­

tures (colour and position) of the

doors are used. If this rule fires, it

creates a new production that makes

choice of an object alternative to the

one chosen last, and it will pay atten­

tion to both x coordinates and colours

of the two objects. Note that the

colour property chunk has to be re­

trieved explicitly in order to be used.

Thus, if the system fails to retrieve the

colour chunks, then the rule will not

fire and the learning will not happen.

The A-model uses activations of the

colour chunks to simulate the dark vi-

sual discrimination conditions.

!bind!
!bind!

=other
=cs

(if (eq =chosen =first) =second =first)
(list =first =second)

!bind! =dcs (list =Y1 =to1 =Y2 =to2 =from)
=choice>

chosen nil
=modified>

ISA
image
first
second
chosen

choice
=image
=first
=second
=other

)

=goal>
goal
modified
stack
constraints
dont-cares

!pop!
!delete!
!delete!

=choice
=modified
=other
=cs
=dcs

=modified
=goal

A. CODE OF THE DANCER MODEL EXPLAINED 171

(p Learn-C-from-Failure
=goal>

ISA dependency
goal =choice

=choice>
ISA
image
first
second
chosen

=first>
ISA
image
x
y
from
to

=C1>
ISA

=second>
ISA
image
x
y
from
to

==>

=C2>
ISA

choice
=image
=first
=second
=chosen

exit
=C1
=X1
=Y1
=from
=to1

image

exit
=C2
=X2
=Y2
=from
=to2

image

This rule is similar to the one be­

fore with one exception: the new rule

compiled after the dependency goal is

popped will not pay attention to x co­

ordinates of the two doors (both =X1

and =X2 values are in the dont-cares

slot of the dependency chunk). Only

colour information will be used in the

new production rules, which is the

most successful strategy.

!bind! =other
!bind! =cs
!bind! =dcs
=choice>

(if (eq =chosen =first) =second =first)
(list =first =second)
(list =X1 =Y1 =to1 =X2 =Y2 =to2 =from)

chosen nil
=modified>

ISA
image
first
second
chosen

choice
=image
=first
=second
=other

)

=goal>
goal
modified
stack
constraints
dont-cares

!pop!
!delete!
!delete!

=choice
=modified
=other
=cs
=dcs

=modified
=goal

A. CODE OF THE DANCER MODEL EXPLAINED 172

(p Learn-X-from-Failure
=goal>

ISA dependency
goal =choice

=choice>
ISA
image
first
second
chosen

=first>
ISA

choice
=image
=first
=second
=chosen

exit
image =C1

==>

x =X1
y
from
to

=second>
ISA
image
x
y
from
to

=Y1
=from
=to1

exit
=C2
=X2
=Y2
=from
=to2

This rule is similar to the two rules

above, but here the new rule compiled

will not pay attention to the colour

features of the two doors (both =C1

and =C2 values are in the dont-cares

slot of the dependency chunk). Only

position information will be used in

the new production rules, which is not

a good strategy in this task.

!bind!
!bind!

=other
=cs

(if (eq =chosen =first) =second =first)
(list =first =second)

!bind! =dcs
=choice>

chosen
=modified>

ISA
image
first
second
chosen

(list =Y1 =C1 =to1 =Y2 =C2 =to2 =from)

nil

choice
=image
=first
=second
=other

)

=goal>
goal
modified
stack
constraints
dont-cares

!pop!
!delete!
!delete!

=choice
=modified
=other
=cs
=dcs

=modified
=goal

A. CODE OF THE DANCER MODEL EXPLAINED 173

A.3.11 Example of a Rule Compiled by the Model

(p Choice8041
=goal>

==>

)

isa CHOICE
image =image
first =first
second =second
chosen nil

=first>
isa EXIT
image =imagel
direction nil
distance nil
time nil
danger nil
in nil

=second>
isa EXIT
image Black
direction nil
distance nil
time nil
danger nil
in nil

=first>
isa EXIT
image =imagel
direction nil
distance nil
time nil
danger nil
in nil

=goal>
chosen =first

!push! =first

The rule on the left was com­

piled by ACT-R after the rule

Learn-C-from-Failure had fired.

The rule is very similar to the

chooselst or choose2nd rules except

that this rule pays attention to the

visual property of the objects, and

if the value is Black, then choose

another object.

A. CODE OF THE DANCER MODEL EXPLAINED 174

A.3.12 Final Production

(p

==>

)

Have-A-Rest
=goal>

ISA self
time 0
x =x
y =y

- in nil
- in Main-Box

feel 0
=sensors>

ISA perception
- vision nil
- skin nil

!bind! =nx (final-xy =x =y :x)
!bind! =ny (final-xy =x =y :y)
! Output! ("Have a nice day!")
!pop!
=relax>

ISA self
x =nx
y =ny

!focus-on! =relax

When the current state indicates that

both objectives are achieved, then this

rule ends the model run by rempving

the current state goal chunk from the

stack. Finally it sets the goal to locate

the mouse in the middle of the current

environment.

A. CODE OF THE DANCER MODEL EXPLAINED

A.4 Parameters Settings

(spp
(escape-failure
(escape-danger-failure
(choice-failure

:failure t)
:failure t)
:failure t))

175

The three productions above have explicit flag failure. It means that when one of these

production fires the goal is removed with the failure flag. Thus, it will be learned that a

rule, which set the goal initially, led to the failure.

Most of the production parameters can be learned by the model. However, the

model contains rules, which implement a very basic knowledge, that a mouse should have

used all its life. Thus, the values production strengths and probabilities of these produc­

tions should have been learned already and must not be affected significantly by the learning

mechanisms. The learning influences mainly the new rules created during the model run.

The code below sets the values of parameters of production rules according to these as­

sumptions.

First, the probabilities of productions choose1st and choose2nd are set to .5 and

they change slowly. These rules represent the random choice strategy between two rules.

(spp
(choose1st :eventual-successes 5000 :eventual-failures 5000)
(choose2nd :eventual-successes 5000 :eventual-failures 5000))

Second, the strengths of productions are set. There are two ways to do it in: ACT­

R, depending on whether the strength learning mechanism is switched on or not. Note

that rules here are separated into three groups: perception, action, and cognition (all other

rules).

(if (car (sgp :sl))
(progn

(spp :references 10000 :creation-time -10000000)

(let ((perception '(perceive see-feel
start-recognition recognise-object
new-ahead new-feeling new-environment
perception-completed object-coordinates
first-choice-coordinates
second-choice-coordinates
object-location recognise-environment))

A. CODE OF THE DANCER MODEL EXPLAINED 176

(action '(step-forward step-backward turn-left turn-right)))

(loop for p in perception do
(spp-fct (list p :references 10000000

:creation-time -10000000)))

(loop for p in action do
(spp-fct (list p :references 1000000

:creation-time -10000000)))))

(spp :strength 10.0))

Finally, some special chunks used by the model should not require long retrieval

times. These chunks have very high activations and do not affect the latencies. The activa­

tions are set using the code below. Again, the method depends on whether the base-level

learning mechanism is turned on.

(if (car (sgp :bll))
(progn

(set-base-levels
(self 0 11000000 -10000000)
(sensors 10000000 -10000000)
(buffer 10000000 -10000000)
(unknown 1000000 -10000000)
(black 1 0.0)
(white 1 0.0)))

(progn
(set-all-base-levels 10.0)
(set-base-levels-fct
(list (list 'black *base-level*)

(list 'white *base-level*)))))

177

ApPENDIX B

Some Modifications to the ACT-R Architecture

The changes in the ACT-R architecture mentioned in Section 2.4 are implemented using

two hook functions. These hooks are set in the header of the model:

(setf *cycle-hook-fn* (add-hook *cycle-hook-fn* 'null-all-failures))
(setf *firing-hook-fn* (add-hook *firing-hook-fn* 'null-z-n-1))

where add-hook function can add a new function to an existing hook:

(defun add-hook (old-hook new-hook)
"Adds a function to an existing hook"
(if (null old-hook)

(lambda (x) (funcall new-hook x))
(lambda (x) (funcall old-hook x) (funcall new-hook x))))

The first hook function disables the goal-discounting mechanism:

(defun null-z-n-1 (&optional instantiation)
(declare (ignore instantiation))
(setf *z-n-1* *g*))

The second hook function removes the number of failures on every cycle:

(defun null-all-failures (&optional instantiation)
(declare (ignore instantiation))
(dolist (p *procedural-memory*)

(setf (production-failures (cdr p)) (list 0.0))))

In addition, the number of successes is set in the model to a high value in order to minimise

the possible effect of subprobability q (see Section 2.4).

(spp :successes 100000)

ApPENDIX C

Implementation of the OPTIMIST Conflict

Resolution for ACT-R

178

Below is the code of the first implementation of the OPTIMIST conflict resolution algorithm

for ACT-R. It has been tested on a model with ACT-R Version 4. The algorithm works as

an overlay to the ACT-R architecture, and it can co-exist with the standard mechanism.

C.l Loading Instructions

The OPTIMIST conflict resolution overlay requires ACT-R code to be loaded because the

code uses some of its functions.

(load "optimist-cr" :if-source-newer :compile)

The following command should be added into the header of the model after the (clear-all)

command:

(setf *conflict-set-hook-fn*
(add-hook *conflict-set-hook-fn* 'optimist-cr))

(setf *firing-hook-fn* (add-hook *firing-hook-fn* 'reinforce-start))
(setf *firing-hook-fn* (add-hook *firing-hook-fn* 'new-z-n-l))
(setf *cycle-hook-fn* (add-hook *cycle-hook-fn* 'reinforce-end))

One can see that there are four functions called by three hook functions on every cycle.

These functions will be explained below. By setting the global variable *optimisU to nil

it is possible to switch off the OPTIMIST mechanism.

C.2 Global Variables

(defvar *optimist* t)

C. IMPLEMENTATION OF THE OPTIMIST CONFLICT RESOLUTION FOR ACT-R 179

Used as a predicate: If t, then use optimist conflict resolution.

(defvar *min-exp-gain-noise* nil)

If a number, then adds noise to instantiations in the conflict set. Similar to : egs parameter

of ACT-R (*exp-gain-noise*).

(defvar *min-c-noise* nil)

If a number, then adds noise to instantiations calculated as a proportion of their expected

costs. Typical values 0.01 ,...., 0.2. For example, if a production has expected cost C = 10,

then noise will be added with variance 10 multiplied by *min-c-noise*.

(defvar *minimal-cost* *default-action-time*)

Defines the smallest expected cost possible.

(defvar *reward* nil)

If a number, then subtract it from the efforts on successful completion of the goal.

(defvar *penalty* nil)

If a number, then add it to the efforts when the goal is completed with failure. Typical

values 1 ,...., 50.

C.3 Functions

C3.1 Service Functions

(defun unwrap (list)
(and list (if (not (listp list)) list (unwrap (car list)))))

Used to access the values of parameters in ACT-R, which are normally sorted in lists.

(defun add-hook (old-hook new-hook)
(if (null old-hook)

(lambda (x) (funcall new-hook x))
(lambda (x) (funcall old-hook x) (funcall new-hook x))))

Adds a function to an existing hook function.

C. IMPLEMENTATION OF THE OPTIMIST CONFLICT RESOLUTION FOR ACT-R 180

C.3.2 Computations for Individual Productions

(defun p-all-efforts (p)
(+ (unwrap (production-efforts p))

(unwrap (production-eventual-efforts p))))

This function returns all efforts spent executing the production. Calculates t in equa­

tion (6.7).

(defun p-all-uses (p)
(let «*command-trace* nil))

(if (numberp (unwrap (sgp-fct (list :sl))))
(1+ (unwrap (production-references p)))

(+ (unwrap (production-eventual-successes p))
(unwrap (production-eventual-failures p))))))

Returns the number of times the production was used. Corresponds to i + 1 number in

equation (6.9).

(defun p-e-cost (p)
(compute-costs (production-eventual-successes p) (list 0.0)

(list (p-all-efforts p))))

Returns the expected cost 0 of the production by equation (6.7).

(defun r-cost (mean)
(let* «c (if (> mean 0) mean *minimal-cost*))

(c-min (* 0.0001 2 c))
(c-max (* 0.9999 2 c)))

(max c-min (min (random c-max) c-max))))

Returns random cost with a given expected value. Corresponds to ((0) in equation (6.9).

(defun p-r-e-cost (p)
(let* «c (p-e-cost p))

(i (p-all-uses p))
(r (/ (+ (* (1- i) c) (r-cost c)) i)))

(and (numberp *min-exp-gain-noise*)
(incf r (noise *min-exp-gain-noise*)))

(and (numberp *min-c-noise*)
(incf r (noise (* c *min-c-noise*))))

r))

Returns the random estimated cost 6 of the production calculated by equation (6.9). In

addition, if *min-exp-gain-noise* or *min-c-noise* are numbers, then adds the corre­

sponding noise to the production.

C. IMPLEMENTATION OF THE OPTIMIST CONFLICT RESOLUTION FOR ACT-R 181

C.3.3 Main functions

(defun optimist-cr (&optional conflict-set)
(and *optimist* conflict-set

(let* «is conflict-set)
(ps (mapcar #'(lambda (x)

(instantiation-production x)) is))
(ecs (mapcar #'p-r-e-cost ps)))

(loop for i in is
and ec in ecs do
(setf (instantiation-gain i) (- *g* ec)))

(setf is (sort is #'(lambda (x y)

is)))

(> (instantiation-gain x)

(instantiation-gain y)))))

This is the main OPTIMIST conflict resolution function. The argument is the standard con­

flict set. The function sorts the set according to random estimated costs of the productions

and returns the new conflict set.

(defun new-z-n-1 (&optional instantiation)
(and *optimist* instantiation

(let «p (instantiation-production instantiation)))
(setf *z-n-1* (p-e-cost p))))),

This function implements the goal-discounting mechanism according to the estimated cost

of the production that is about to fire. This function, however, is not necessary and is

added for analysis purposes.

(defun reinforce-start (i)
(and *optimist*

(numberp *reward*)
(and i (production-success (instantiation-production i)))
(decf *time* *reward*))

(and *optimisU
(numberp *penalty*)
(and i (production-failure (instantiation-production i)))
(incf *time* *penalty*)))

If the goal is popped with success or failure flag, then this function adds a reward or penalty'

respectively to the standard ACT-R time before the parameters learning occurs (learning

the new cost of production that set the goal).

C. IMPLEMENTATION OF THE OPTIMIST CONFLICT RESOLUTION FOR ACT-R 182

(defun reinforce-end (i)
"Removes reward-penalty from *time* after learning"
(and *optimisU

(numberp *reward*)
(and i (production-success (instantiation-production i)))
(incf *time* *reward*))

(and *optimisU
(numberp *penalty*)
(and i (production-failure (instantiation-production i)))
(decf *time* *penalty*)))

This function removes the extra effort (reward or penalty) after the parameters learning

has occurred. Thus, the time in ACT-R remains unchanged.

183

ApPENDIX D

Posterior Poisson Distribution

If ,X is not known, then in order to estimate its value after observing n events we need to

know the posterior probability distribution P('x I n), which can be obtained from the joint

and prior probabilities of ,X and n using Bayes' formula:

P('x I n) = P(n, 'x) = P(n I 'x)P('x)
P(n) P(n)

Here P(n,'x) is the joint probability of n and ,x, P(n I ,x) is the likelihood probability of n

for given ,x, and P('x), P(n) are the prior probabilities of ,x and n.

In our case the likelihood probability P(n I ,x) is the probability of observing

n events for a given mean count rate ,x and parameter t, and it is given by the Poisson

distribution:

P(n I ,x) = (,Xtt e-At •
n.

The prior distribution P('x) is not known, but we do know that the rate must be positive:

,x E [0,00]. Let us assume the following hypothesis

where c is a constant and c; is small and positive. This hypothetical distribution has the

following properties: when c; ---7 0, the probability of a particular ,x becomes zero, which

makes all the values of ,x on [0,00] equally probable. On the other hand, if c; > 0, then it

means that very high rates ,x are less likely than smaller rates. One can also notice that

c = c; due to the normalisation:

D. POSTERIOR POISSON DISTRIBUTION 184

So, we can write

Using this hypothesis we can find the joint distribution:

The prior distribution of n can be found by integrating the above distribution over all .-\:

The posterior probability now can be written using the above joint probability PE(n,.-\) and

prior PE(n):

PE(.-\ In) = P~7' ~) = (t + c) (.-\(t +, c)t e-,\(t+E) .
En n.

Note that if we admit that all values of .-\ E [0,00] are equally probable (c = 0), then

(.-\t)n
Po(.-\ I n) = t-,-e-,\t = tP(n I .-\) .

n.

	288984_001
	288984_002
	288984_003
	288984_004
	288984_005
	288984_006
	288984_007
	288984_008
	288984_009
	288984_010
	288984_011
	288984_012
	288984_013
	288984_014
	288984_015
	288984_016
	288984_017
	288984_018
	288984_019
	288984_020
	288984_021
	288984_022
	288984_023
	288984_024
	288984_025
	288984_026
	288984_027
	288984_028
	288984_029
	288984_030
	288984_031
	288984_032
	288984_033
	288984_034
	288984_035
	288984_036
	288984_037
	288984_038
	288984_039
	288984_040
	288984_041
	288984_042
	288984_043
	288984_044
	288984_045
	288984_046
	288984_047
	288984_048
	288984_049
	288984_050
	288984_051
	288984_052
	288984_053
	288984_054
	288984_055
	288984_056
	288984_057
	288984_058
	288984_059
	288984_060
	288984_061
	288984_062
	288984_063
	288984_064
	288984_065
	288984_066
	288984_067
	288984_068
	288984_069
	288984_070
	288984_071
	288984_072
	288984_073
	288984_074
	288984_075
	288984_076
	288984_077
	288984_078
	288984_079
	288984_080
	288984_081
	288984_082
	288984_083
	288984_084
	288984_085
	288984_086
	288984_087
	288984_088
	288984_089
	288984_090
	288984_091
	288984_092
	288984_093
	288984_094
	288984_095
	288984_096
	288984_097
	288984_098
	288984_099
	288984_100
	288984_101
	288984_102
	288984_103
	288984_104
	288984_105
	288984_106
	288984_107
	288984_108
	288984_109
	288984_110
	288984_111
	288984_112
	288984_113
	288984_114
	288984_115
	288984_116
	288984_117
	288984_118
	288984_119
	288984_120
	288984_121
	288984_122
	288984_123
	288984_124
	288984_125
	288984_126
	288984_127
	288984_128
	288984_129
	288984_130
	288984_131
	288984_132
	288984_133
	288984_134
	288984_135
	288984_136
	288984_137
	288984_138
	288984_139
	288984_140
	288984_141
	288984_142
	288984_143
	288984_144
	288984_145
	288984_146
	288984_147
	288984_148
	288984_149
	288984_150
	288984_151
	288984_152
	288984_153
	288984_154
	288984_155
	288984_156
	288984_157
	288984_158
	288984_159
	288984_160
	288984_161
	288984_162
	288984_163
	288984_164
	288984_165
	288984_166
	288984_167
	288984_168
	288984_169
	288984_170
	288984_171
	288984_172
	288984_173
	288984_174
	288984_175
	288984_176
	288984_177
	288984_178
	288984_179
	288984_180
	288984_181
	288984_182
	288984_183
	288984_184
	288984_185
	288984_186
	288984_187
	288984_188
	288984_189
	288984_190
	288984_191

