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Abstract 

The capability of the QqQLit hybrid triple quadrupole linear ion trap mass spectrometer 

to profile endogenous metabolites has been assessed by the analysis of three different 

families of metabolites; nucleotides from bacteria and N-acyl ethanolamines and N-acyl 

glycerols from rat tissues. 

Mass spectrometry methods were developed based on employing a survey scan, either 

precursor ion or neutral loss, coupled with full product ion spectra. This approach 

identified families of metabolites with a common structural core and provided the 

structural information for the reliable identification of known and unknown metabolites. 

By targeting structural similarities, this approach has opened the window of metabolites 

that can be profiled beyond the constraints of available references standards. 

A method to profile phosphate containing endogenous metabolites, particularly 

nucleotide metabolites, was based on the identification of the phosphate moiety following 

collision induced dissociation. Employing a precursor ion scan, this approach was 

successfully applied to the analysis of nucleotides in bacterial samples Escherichia coli 

MG 1655 and Pseudomonas aeruginosa. A more comprehensive profile of nucleotides 

was observed compared to targeted approaches. Furthermore, a considerable number of 

additional analytes were identified which were unlikely to be nucleotides and probably 

result from other endogenous phosphate containing metabolites, demonstrating the scope 

of the approach outside nucleotides alone. 

The use of this methodology was also successful in the profiling ofN-acyl ethanolamines 

and N-acyl glycerols. Targeting core structures common to each family of metabolite, 

the ethanolmine and glycerol moiety, precursor ion and neutral loss survey scans were 

successfully employed in identifying a wider number of these metabolites in various rat 

tissues than previously reported. The profile of rat testi was notably different from other 
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tissues investigated due to the presence of MAG and NAB C22:5; analytes not detected in 

other tissues by this method. Furthermore, as far as it can be ascertained, MAG C22:5 

has not been previously reported in rat tissues. 

A quantitative method based on precursor ion - product ion transitions was developed 

based on the NABs and MAGs identified by the survey scans. By employing this method 

to analyze various rat tissues harvested immediately after death and five hours post 

mortem, quantitative data was obtained not only for a broad range of NABs and MAGs at 
~ 

basal levels but also an insight into postmortem changes of these analytes. 
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CHAPTER 1 



1 Introduction 

1. 1 Metabolite Profiling 

Primary and secondary metabolites are relatively small molecules «1500 Daltons) 

present in biological systems. Primary metabolites are found in all prokaryotic and 

eukaryotic cells and are involved in growth, development, and reproduction where 

secondary metabolites, commonly found in plants, are involved in traits such as crop 

resistance, taste, colour, and aroma (Laurentin et ai., 2008). The presence and relative 

levels of these compounds are the result of gene expression and environmental factors 

(Ceglarek et ai., 2009b). As such metabolite profiling methods have become one of the 

tools employed in the understanding of gene function, drug metabolism, disease and diet 

(Ceglarek et ai., 2009b; Cunnick et ai., 1972; Raamsdonk et ai., 2001). Essentially, 

metabolite profiling or metabolomics is the study of metabolites, involving identifying 

and/or measuring levels of these analytes in biological materials. The terms 

metabolomics, metabonomics and metabolite profiling have essentially become 

interchangeable, although there have been calls for the phrase metabolomics to be used 

only where the analysis of metabolites is in reference to the genome (Villas-Boas et ai., 

2005). 

Metabolomics complement other 'omics' such as transcriptomics and proteomics to 

provide a greater understanding of a given biological system (Witkamp, 2005). The 

study of transcriptomics measures the levels of messenger ribonucleic acid (mRNA) 

resulting from the transcription of a gene (Feng et ai., 2008). This however does not 

necessarily accurately describe the amount of active protein synthesized at the ribosomes 

because of mRNA splicing and post-translational modification such as phosphorylation 

and glycosylation, mechanisms employed to control protein activity (Cho, 2007). 

Complementary to this approach is proteomics, described as the analysis of the all 

proteins expressed by a genome or cell or tissue type, including post translational 

modifications (Dierick et ai., 2002). Metabolomics is the analyses of small molecules 
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which can be synthesised / catabolised by active proteins and as such complements the 

other two areas of analysis, providing an insight into the workings of a biological system. 

The study of metabolomics has found application in understanding silent gene function. 

By the disruption or mutation of a gene of interest, a possible function can be identified 

by measuring the metabolite phenotype resulting from the genetic change (Fiehn, 2001). 

Such an approach is advantageous when assigning function to silent genes which, when 

deleted, can appear to have no obvious measurable influence on an organism's 

phenotype, such as cell growth. The lack of phenotypical change can be due to 

compensation at the metabolite level, which however can be measured, and the role of the 

silent gene may be characterized (Raamsdonk et at., 2001). 

Measuring changes and relative levels of metabolites has been successfully employed in 

the identification of disease states that are due to inherited genetic disorders, pathogens or 

other health issues such as diabetes. Inherited genetic disorders are commonly screened 

in new born babies (Horning and Horning, 1971; Jones and Bennett, 2002) using a 

targeted approach to measure metabolites which are biomarkers for a given illness. 

Disease states caused by pathogens, such as urinary tract infection, can affect metabolite 

levels, and it has been demonstrated that a select number of amino acids and related 

compounds can be used as biomarkers for the presence of one of the causes of this 

infection (Ramautar et at., 2008). Diseases such as diabetes, gout and alcoholic liver 

disease have also been identified by the measurement of specific metabolites (Cunnick et 

at., 1972). 

The analysis of metabolites, particularly the monitoring of mUltiple metabolites, is not a 

simple task because of the nature of their chemistry and wide-ranging dynamic levels 

(Stitt and Fernie, 2003). There are a large number of metabolites, although numbers vary 

considerably depending on the biological source. Within the plant kingdom there are an 
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estimated 200,000 metabolites, combining both prunary and secondary metabolites 

(Fiehn, 2001), where species of yeast and bacteria have been reported to have 

approximately 600 and 1692 metabolites respectively (Luo et at., 2007). Metabolite vary 

greatly in structures, although fractions of these metabolites (e.g. lipids) do possess a 

common structural backbone (Schwab, 2003). Furthermore, metabolite - enzyme 

reactions can be very quick, from time scales of half an hour to fractions of a second 

(Stitt and Fernie, 2003). This requires stringent sample extraction and preparation, 

ensuring all biological processes are stopped at the time of sample collection, leading to 

accurate metabolite profiles comparable between experiments. 

1.1.1 Approaches to metabolite profiling 

Metabolite profiling can be undertaken by two main analytical approaches, a targeted 

methodology or global methodology (Ceglarek et at., 2009b). A targeted approach is 

commonly adopted where the metabolites of interest are known prior to analysis and 

hence only a predetermined list of analytes is measured. If performed using mass 

spectrometry, this methodology is typically very specific and sensitive. An example of 

this targeted approach was the successful profile of twenty nucleotides and structural 

analogous from stimulated and unstimulated Chinese hamster ovary cells (Cordell et aI., 

2008). Both the extraction and analysis were biased towards predetermined analytes. 

This approach is the more widely used of the two methods and, in some respects, the 

simpler, although the principle has drawbacks. The obvious issue is that metabolites of 

interest must be known prior to analysis, so the approach is not suitable for an unknown 

metabolic pathway. Furthermore, reference standards are commonly employed to 

optimize instrumental conditions. For the investigation of a gene for which the biological 

role is unknown, this approach is not appropriate as it would be difficult to predict which 

analytes to measure. Furthermore, the effects of disease or drugs can also cause a new, 

untargeted metabolite to be produced, which could be of biological significance but, as it 

is unknown, will not be observed or measured (Fiehn, 2001; Raamsdonk et at., 2001; Stitt 

and Fernie, 2003). 
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The alternative methodology is a global approach, where the approach is not biased 

towards a specific group of analytes and the aim is to detect all the metabolites within a 

biological sample. Such an approach is more appropriate where it is not clear from the 

outset exactly w~ich metabolites are of interest, and in this case it is common to compare 

a control group against an 'altered' group (Ceglarek et at., 2009b). Although this 

approach will provide a wide picture of the metabolites present, it has the potential of 

missing low-level analytes due to the non-biased approach. Furthermore, this 

methodology has difficulties due to the potentially huge number of detected analytes and 

the requirements of identifying unknown compounds. To help with this issue, this 

approach is commonly supplemented by multivariate analysis methods, such as principle 

components analysis. By reducing the volume of data obtained, analytes which vary 

between a control and an affected can be more easily observed (Fiehn, 2001). This 

approach has been successfully employed in identifying metabolite variation in wild type 

and gene knockout plants. Using a global approach, employing gas chromatography time 

of flight mass spectometer (GC-TOF), ~ 1000 peaks were detected from leaf extracts and 

~ 500 from the plants tubers, enabling comparison of metabolite levels to be undertaken 

by multivariate approaches (Weckwerth et at., 2004). This publication highlights another 

limitation to this approach, namely the difficulty in identifying the considerable number 

of analytes detected. While spectral libraries help, and are more prominent for gas 

chromatography mass spectometry (GC-MS), a number of analytes could not be 

identified at the time consequently making links to known biological networks difficult. 

The use of accurate mass instrumentation for such profiling can provide information, 

such as an analytes empirical formula, aiding the identification of unknowns 

1.2 Instrumentation for metabolite profiling 

The study of endogenous metabolites can be challenging due to the diversity and 

sometimes the low levels of analytes of interest. A number of analytical approaches have 

been employed to tackle this task, commonly being highly specific or sensitive, or both. 

Nuclear magnetic resonance is a technique that has been employed extensively in the 

field of metabolomics and metabolite profiling, commonly in a global approach. Coupled 
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with multivariate data processing techniques, this analytical tool has been applied to the 

analysis of genetically modified mice modelling neurological disorders found in children 

(Pears et ai., 2005), the identification of individuals with and without coronary heart 

disease (Brindle et al., 2002), and the source of various ginseng samples by profiling of 

metabolites (Kang et al., 2008). Structural elucidation, as with certain types of mass 

spectrometry techniques, can be undertaken by nuclear magnetic resonance, enabling the 

approach to be a useful tool for unknowns (Skoog D et al., 1998). 

Various chromatography methods have also been employed extensively in the analysis of 

endogenous metabolites, commonly coupled to detectors such as Ultraviolet / visible light 

(UVNIS) but more recently, to mass spectrometry. Capillary electrophoresis has found 

successful application in the analysis of nucleotides (Grob et al., 2003; Lin et al., 1997; 

Nguyen et al., 1990; Oneill et al., 1994). Gas chromatography (GC) and high 

performance liquid chromatography (HPLC) have also been used in the field of 

endogenous metabolites (Jhaveri et aI., 2006; Kondo et aI., 1998a; Maccarrone et aI., 

2001; Richardson et aI., 2007). Mass spectrometry has also been employed extensively 

in this scientific field and is discussed in more detail in the following sections. 

1.2.1 Mass Spectrometry 

Alongside nuclear magnetic resonance, mass spectrometry has been one of the major 

analytical tools in the field of metabolomics, due to high specificity and sensitivity. The 

principles by which mass spectrometers work vary; however, the premise that all mass 

spectrometers adhere to is the measurement of an ion's mass to charge ratio (mlz) 

(Hoffmann, 1996). The internal workings of all mass spectrometer instruments can be 

can be divided into three discreet roles: the ionization of molecules of interest, the mass 

analyzer (an area of the instrument where analytes are discriminated by their mass to 

charge ratio) and the detector, which detects and reports a signal from any ions emerging 

from the mass analyzer. The first two will be considered in greater detail in the following 

sections 
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1.2.1.1/on sources 

A number of ionization mechanisms have been employed in the introduction of analytes 

into a mass spectrometer, however, chromatography is common! y employed in 

conjunction with mass spectrometry in the field of metabolite profiling and hence the ion 

sources which bridge the gap between these two techniques are described. 

Electron ionization 

Electron ionization is a technique based on the bombardment of electrons onto an analyte 

in gaseous form, producing radical cations or anions under a vacuum. As such, this 

method is used extensively as an interface between gas chromatography and the mass 

spectrometer, commonly a single quadrupole (although GCTOF and GC-MSIMS are 

commercial available at this time). This ionization method is suitable for relatively 

small, thermally stable molecules. The use of this approach has been successfully 

applied to the unbiased analysis and comparison of wild type versus genetically modified 

Arabidopsis plants (Fiehn et al., 2000). 326 analytes were quantified, although only half 

were identified using reference standards and MS libraries. A drawback to this approach 

is that additional derivatization steps are sometimes required to improve chromatography 

or analyte volatility, and this ionization technique is not suitable for large biological 

molecules, which can undergo complete fragmentation, resulting in few structurally 

significant ions. Furthermore, it is not uncommon for the molecular ion to be either fully 

fragmented or to be only present at very low intensities (Hoffman and Stroobant, 2005). 

Atmospheric pressure ionization 

The development of atmospheric pressure ionization made a huge impact in the analysis 

of large, thermally labile biological molecules, such as proteins as well as non-volatile 

small molecules from solution. Furthermore, the approach enabled the coupling of liquid 

chromatography with mass spectrometry, combining the advantages of both techniques 

(Hoffman and Stroobant, 2005). The development was so important to the field of 

bioanalysis that the Nobel prize was awarded to John B. Fenn for his roles in its 

7 



conception I. Electrospray ionization, commonly referred to as ESI, was the first of the 

atmospheric pressure ionization techniques to be developed. Ions are formed by elution 

of solvent and analytes through a capillary with a high potential voltage. Highly charged 

small droplets are formed and travel down a pressure and potential gradient towards the 

inlet of the MS (Yamashita and Fenn, 1984), see Error! Reference source not found .. 

There are two theories as to analyte ion formation. The first is that with the additional 

presence of an inert gas (commonly nitrogen) and temperatures between ~25 and 300°C, 

droplets desolvate and subsequently reduce in size to a point where coulombic forces on 

the surface overcome surface tensions and the droplets breakup into smaller droplets. 

This mechanism continues until the solvent has completely desolvated, leaving a single 

ion. An alternative mechanism suggests that charged ions are repelled from the surface 

of the droplet by the charges on the solvent (Gaskell, 1997; Griffiths et at., 2001). Ions 

formed are subsequently pulled into the MS by a potential gradient. The ions formed are 

typically the result of the addition or loss of a proton, depending on the functional groups 

on the molecule. Furthermore, molecules with multiple sites of protonation / 

deprotonation can form multiple charges; this is especially true of large biomolecules 

such as proteins and peptides (Hoffman and Stroobant, 2005). Therefore, the mlz of a 

protonated ion can be described as:-

Where mlz 

M 

nH 

mlz = [M + nH] / nH 

mass to charge ration 

mass of a molecule (amu) 

number of protons 

However, other adducts can also form an ion with an analyte, such as sodium or NH/. 

Since the invention of ESI, alternative atmospheric ionization techniques have been 

explored that rely on some of the principles of ESI, atmospheric pressure chemical 

1 http://nobelprize.org/nobel prizes/chemistry/laureates/2002/public.html - accessed on 15
th 

June 2009 
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ionization In particular. These methods share similarities with ES I. Atmospheric 

pressure chemical ionization is a technique that is more typically appl ied to more polar 

compounds. As with ESI, analytes in solution elute out of a capillary under a stream of 

warm nitrogen to facili tate desolvation. A corona needle is present within the source at a 

high electrical potential. Mobile phase molecules, which are gaseous as this stage, 

become protonated (or otherwise charged by an adduct) due to the corona needle and 

subsequently pass the charge onto the gaseous analyte present (Hoffman and Stroobant, 

2005). 
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Figure l. l. Pictorial representation of atmospheric pressure ionization forming positive ions. 
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Mass Selectors 

1.2.1.2 Quadrupoles 

Quadrupole mass analyzers are comprised of four parallel rods, which are either circular 

or hyperbolic in cross section. Each opposing rod has a RFIDC voltage applied that 

alternates, causing attraction and repulsion for a given charge and thereby causing it to 

oscillate between the rods. The voltage and frequency applied is specific for the stable 

flight for a given mlz. Ions with an alternative mlz have an unstable flight, causing the 

ion to be lost via contact with the rods. The quadrupole essentially works as a mass filter, 

varying the voltage and frequency of the rods so that only one mlz can pass through the 

quadrupole at a time. Unlike other mass analyzers, such as time of flight, this form of 

mass filter has nominal mass resolution of approximately 1 amu (Hoffman and Stroobant, 

2005; Hoffmann, 1996). 

A further development of this technique is the addition of a collision cell which enables 

the formation of product ions through collision induced dissociation (CID). This section 

of the instrument is typically of a quadrupole or hexapole arrangement, but only with an 

RF voltage applied, pulling and focusing the ions through the cell. The cell is filled with 

an inert gas, typically either helium or nitrogen, and ions are accelerated into the inert 

molecules, converting their kinetic energy into internal energy. With sufficient internal 

energy, bonds are broken and/or rearranged and product ions are formed. The conversion 

of kinetic energy into internal energy is dependent on the mass of the neutral molecule, 

molecular weight of the analyte, kinetic energy applied and the charge on the ion (Wells 

and McLuckey, 2005). The conversion of kinetic energy into internal energy for a 

singularly charged ion can be described as follows:-

Where 
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N = 

Total available energy translated from kinetic to internal 

mass of the neutral molecule 

molecular weight of the analyte 

kinetic energy 

The collision energIes involved in CID within tandem quadrupoles or ion traps are 

commonly within 1 - 150 V. Fragmentation by this route favors an even electron ion and 

formation coupled with a neutral species, as described below (for a protonated species):-

Where 

B 

= 

= 

= 

protonated precursor ion 

product ion 

Neutral fragment 

Ions are formed predominately by either a simple bond cleavage or a rearrangement 

(Sleno and Volmer, 2004) although charge remote fragmentation, where the charge on 

the ion is not directly responsible for the fragmentation can occur; this can be common in 

alkyl chains (Thomas et ai., 2009). 

The collision cell sits between the first mass filter and a second mass filter so that 

pseudomolecular ions are initially selected, fragmented, and the resulting product ions 

identified by the second mass filter. Such an arrangement is commonly called a triple 

quadrupole mass spectrometer, although technically the collision cell is not always of a 

quadrupole design, and hence the phrase tandem quadrupole mass spectrometer has also 

been used to describe this MSIMS arrangement (Hoffmann, 1996). 

Tandem quadrupole mass spectrometer instruments are very sensitive, selective 

instruments, especially when operated in multiple reaction monitoring (SRM) mode, and 

are commonly used in quantitative analysis. In such a mode the instrument's quadrupoles 

are set to allow only a specific pseudomolecular ion and the resulting product ion through 
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the instrument to the detector. If more than one analyte is to be monitored, the instrument 

skips from one mass transition to the next, rather than scan through all possible masses. 

Because of the selectivity and sensitivity of such an instrument run in a multiple reaction 

monitoring (SRM) mode, this technique has been employed extensively in the targeted 

analysis of metabolites (Kingsley and Marnett, 2007; Magnes C et at., 2005; Richardson 

et at., 2007; Williams et at., 2007). Tandem quadrupole mass spectrometer instruments 

can be run in full scan mode, recording full product ion spectra; however, this is not a 

common approach, especially when combined with liquid chromatography, due to the 

constraint of comparatively slow scan speeds and the reduced sensitivity (Hoffman and 

Stroobant, 2005; Li A et aI., 2005). 

Due to the nature of the tandem quadrupole mass spectrometer alignment, alternative 

scanning methodologies can be applied that have found a place in the analysis of drug 

metabolites as well as endogenous metabolites; namely, precursor ion or neutral loss 

scans. In either case, the quadrupoles scan through a preselected mass range and identify 

either a product ion or a neutral loss, which represents a core structure common to a 

group or family of analytes. The precursor ion scan employs the first quadrupole to scan 

through the mass range, the pseudomolecular ions are fragmented in the collision cell and 

the third quadrupole is fixed, only allowing product ions of a preselected mlz to pass onto 

the detector. The neutral loss scan is performed in a similar manner although the third 

quadrupole scans through the mass range but offset by a mass equivalent to the mass of 

the neutral sought (Hoffmann, 1996). The subsequent total ion chromatogram produced 

demonstrates the intensity and the pseudomolecular ion of compounds identified by this 

approach. However, full product ion spectra of the analyte of interest are not identified 

by this approach (Hoffman and Stroobant, 2005). Further confirmation of knowns or 

identification of unknowns would require other instrumentation to full product ion 

spectra or accurate mass measurements of the pseudomolecular ion. 
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1.2.1.3 Ion trap 

Ion trap mass spectrometers can be sub-divided into 3D ion traps and 2D linear ion traps; 

however, they both perform a similar function when measuring analytes. Unlike a triple 

quadrupole instrument, where ions are filtered by their respective mlz as they pass 

through a quadrupole, ion traps store all the ions present in a region of space and 

subsequently expel them to measure the relative intensities of the ions present. By the 

nature of their operation, full product ion spectra are produced. This makes these 

instruments ideal for the analysis of compounds where strong confirmation of a known 

analyte is required or where structural elucidation is needed. Furthermore, full product 

ion spectra can help in the identification of unknowns (Ortori et al., 2007). These 

instruments have been successfully employed in quantification, although 3D traps are 

relatively smaller than linear ion traps and can suffer from space charging effects to a 

greater degree (Mueller C A et al., 2005). This is a phenomenon where too many ions 

in the trap cause a shielding effect, reducing the effect of the voltages applied to the ions 

in the trap (Hoffmann, 1996). Some instruments, however, have addition scan steps to 

limit the effects of this problem. 

Ion traps have been applied to the analysis of endogenous and drug metabolites, 

predominantly in a targeted role (Fu et aI., 2007; Hansen et al., 2001; Liu et al., 2005; 

Zhang et al., 2009b). Although it is stated that ion traps cannot perform precursor ion or 

neutral loss survey scans (Hoffman and Stroobant, 2005), it could be argued that this is 

not strictly true, although it is fair to say that the precursor ion or neutral loss survey 

scans performed only consider a relatively small number of the most intense 

pseudomolecular ion in any given scan. As such, the precursor ion or neutral loss 

capabilities of an ion trap are not as complete as a tandem quadrupole instrument 

Nevertheless, ions traps have been employed in the determination of endogenous and 

drug metabolites using precursor ion and neutral loss scans from in vivo samples 

(Rochfort et aI., 2008; Triolo et al., 2005). 

The full product ion spectra obtained from an ion trap instrument can provide greater 

confidence in the identification of analytes as compared to single SRM transitions 
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commonly used by tandem quadrupole instruments (Thomas et al., 2009). As with 

quadrupole instruments, the mass accuracy of ion traps is classed as nominal. 

1.2.1.4 Time offlight and quadrupole time offlight mass spectrometers 

Time of flight instruments work on a different principle than quadrupole and ion traps 

and consequently offer advantages and disadvantages compared to the other techniques. 

Where quadrupole and ion traps instruments rely on an ion's stability within a RFIDC 

field to identify the mlz, TOF calculates an ion's mlz by the time it takes to travel a 

predetermined distance. More recent TOF instruments employ a number of features to 

improve mass accuracy and resolution, such as reflectors and ion pushers, but the 

discussion of such techniques falls outside the scope of this thesis (Hoffman and 

Stroobant, 2005). 

An advantage of TOF instruments over quadrupole or ions traps is the increased mass 

accuracy and resolution, with modem instruments measuring accurately down to 5 parts 

per million (ppm) or better and a resolution of around 20000 full width at half maximum 

(FWHM)2. As such, known analytes can be identified with confidence and unknowns 

can be theorized because of the empirical formula calculated from the ions recorded mlz. 

However, it should be borne in mind that, as the mass of an analyte increases, so does the 

number of possible empirical formulas that match the measured mlz. 

TOF instruments do not technically 'scan' through the mlz of ions, but rather collect all 

the ions present in a pulse, a feature which makes TOF instruments suitable for the global 

metabolite profiling methodology (Chan and Cai, 2008; Plumb et al., 2006; Ramautar et 

al., 2008). Because of the mode of operation, a large mass range is measured without the 

subsequent loss of scan speed or resolution. Furthermore, TOF instruments can be 

combined with a quadrupole and a collision cell, enabling not only accurate mass 

measurements of pseudomolecular ions but also allowing them to obtain accurate mass of 

2 Agilent 6200 TOF - http://www.chem.agilent.com/en-us/products/instruments/ms/6220accurate

masstoflcms/pages/default.aspx - accessed 16th June 2009 
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the resulting product ions. Such an orientation is a useful tool in the analysis of 

unknowns that may arise in a global metabolite profile. Using a QTOF, novel brain lipid 

N-acyl Taurines were identified by comparison of reference standards with those 

obtained from biological material (Saghatelian and Cravatt, 2005). 

1.2.1.5 Orbitrap 

The Orbitrap is a relatively new mass analyzer manufactured by Thermo Scientific. Ions 

are trapped and constrained around a central electrode and two outer electrodes. 

Electrostatic and centrifugal forces cause the ions to oscillate in both radial and axial 

directions and it is the detection of the axial oscillation frequency which enables a give 

ions mlz to be calculated. The Orbitrap has similar or slightly better mass accuracy and 

resolution when compared to time of flight instruments, with accuracy of < 2 parts per 

million (ppm) and mass resolution of up to 60000 (FWHM) (Dunn et al., 2008). There is 

however a tradeoff between mass resolution and scan speed (Lim et al., 2007). The 

Orbitrap has been successfully employed in quantification and compares well against a 

tandem quadrupole instrument, when run in relatively low resolution mode of 15000 

FWHM (Zhang et al., 2009a). Due to the instrument's accuracy and resolution, coupled 

in some cases with a linear trap, it has potential for the analysis of drug or endogenous 

metabolites. Consequently, the instrument has been successfully employed in the 

analysis of drug interactions with human liver microsomes, identifying up to 58 drug 

metabolites (Lim et al., 2007) 

1.2.2 Hybrid quadrupole linear ion trap 

The hybrid quadrupole linear ion trap mass spectrometer (QqQLit) is a relatively new 

mass spectrometer manufactured by Applied Biosystems and sold under the commercial 

name of QTrap®. The configuration of the instrument is that of a tandem quadrupole 

mass spectrometer, but with the unique feature of converting the last quadrupole into an 

ion trap on demand. Scan functions common to both tandem quadrupole and ion trap 

instruments are possible using this instrument; however, the capability to perform 
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mUltiple scan functions one after the other has great potential for the analysis of 

endogenous metabolite and is not possible using a tandem quadrupole or an ion trap 

alone. A schematic diagram of the instrument can be found in Figure 1.2. 

1.2.2.1 Scan Functions o/the QqQLit 

A list of the various scan functions of the QqQLit can be found in Table 1.1. A number 

of these functions have direct relevance to the analysis of endogenous analytes and are 

described in more detail. 

Enhanced product ion scan 

Enhanced product ion (EPI) scan is a specific term adopted by Applied Biosystems to 

describe a scan function which produces a full product ion spectrum from a selected 

pseudomolecular ion. This scan is performed by the selection of pseudomolecular ions 

by the first quadrupole, the fragmentation in the collision cell and the accumulation and 

subsequent expulsion of product ions in the third quadrupole while acting as an ion trap. 

Where the instrument can perform such a task while running Q3 as a standard quadrupole 

mass filter, scan speeds are slower (Hopfgartner et ai., 2004). 

It should be noted that a feature of the EPI spectra scan function has an advantage over 

MS/MS spectra obtained in 3D or 2D linear ion traps. Product ion formation within ion 

traps is typically formed by the isolation of a pseudomolecular ion, followed by 

fragmentation and the subsequent ejection of the resulting product ions (Douglas D et at., 

2005). In this instance, there is a low mass cut-off in which ions less than approximately 

one-third of the mlz of the pseudomolecular ion are unstable and are lost from the trap 

(Hopfgartner et ai., 2004). This low cut-off does not apply to the QqQLit, as product 

ions from the pseudomolecular ion are not formed in the third quadrupole acting as an ion 

trap but rather in the collision cell, and the subsequent issue with stability of low mass 

ions below one-third of the mlz of the pseudomolecular ion is negated. The observation 
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-
Figure 1.2. A schematic diagram of the QqQLit tandem quadrupole linear ion trap. QI acts as mass filters, where the collision ceUs either act 

as an ion guide, allowing the flow of pseudomolecular ions through, or cause the fragmentation of ions by the application of collision energy. 

Q3 can either act as a mass fllter or, unique to this instrument, act as a linear ion trap, where either pseudomolecular ions or product ions can 

be stored and subsequently ejected. QO can be used as an ion store when scan functions, such as enhanced production spectra, are performed. 

Image obtained from QqQLit brochure3 

1 hup ://www3jlQQ li edbiosystems.comlcms/groups/psm marketingldocum ents/generaldocuments/cms 040200.pdf - accessed on 15'h June 2009 
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Table 1.1. A list of possible scan functions of the QqQLit and the modes in which each section of the 

instrument is run. The capability to perform such scans, and perhaps more importantly the ability 

to perform a number of scans in succession makes this MS instrument a potentially useful tool in the 

analysis of endogenous metabolites. Scan functions were obtained from literature reference 

(Hopfgartner et al., 2003). 

Scan mode 01 Collision cell 03 

01 Scanning Ion guide Ion guide 

03 Ion guide Ion guide Scanning 

Product ion scan Fixed Fragment Scanning 

Precursor ion scan Scanning Fragment Fixed 

Neutral loss scan Scanning Fragment Scanning (with offset) 

SRM Fixed Fragment Fixed 

Enhanced single MS (EMS) Ion guide Ion guide Trap / scan 

Enhanced product ion (EPI) Fixed Fragment Trap / scan 

MS3 Fixed Fragment 
Isolate / fragment trap / 

scan 

Time delayed fragmentation (TDF) Fixed Trap / no fragmentation Fragment / trap / scan 

Enhanced resolution (ER) Ion guide Ion guide Trap / scan 

Enhanced multiple charged (EMC) Ion guide Ion guide Trap / scan 
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of low mass ions can be advantageous as they may provide structural information for the 

elucidation of unknowns but also as they could playa pivotal role in precursor ion scans. 

Enhanced resolution scan 

Enhanced resolution on the QqQLit is a useful scan function that is more applicable to 

the analysis of peptides than smaller molecules; nevertheless, the information provided 

can be of use in the analysis of small endogenous metabolites. The enhanced resolution 

scan collects ions within a 30 amu of the pseudomolecular ion of interest in Q3, 

following which a slow scan at 250 amu / sec is performed. The resolution of the scan is 

considerably better than that demonstrated for EPI spectra (6000 compared to 0.3 - 0.5 

FWHM at 1000 amu / sec). Consequently, this slow scan enables the isotopic 

distribution of the pseudomolecular ions to be calculated and hence the charge state 

(Hopfgartner et at., 2004). 

The novel scan methodologies of this instrument have started to find analytical 

applications, although it would be fair to say the instrument has also been employed as a 

standard tandem quadrupole instrument in the analysis of drugs, drug metabolites and 

sterols (Bueno et at., 2007; Coles and Kharasch, 2007; Li A et at., 2005; McDonald et 

at., 2007). 

1.2.2.2 Scan combinations using information dependent acquisition 

The feature of the QqQLit which sets it apart from QQQ and ion trap instruments is the 

capability to link a number of the scan functions in detailed Table 1.1 together on the fly. 

In such an orientation, the first scan is commonly in the form of survey scan, following 

which, if the detected analyte signal meets certain criteria (such as intensity), further 

scans will be initiated to provide a more targeted analysis of the analyte of interest. Four 

combined scan functions that have application in the analysis of endogenous and drug 

metabolites are set out in Table 1.2. 
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EMS - EPI(n) - MS3 

This compilation of scan methods, as described in Table 1.2, is an approach that could be 

employed in the analysis of endogenous analytes. The instrument is set to scan for the 

most intense pseudomolecular ions and an EPI spectrum is perfonned for each ion 

detected in each survey scan. MS3 can also be perfonned if further elucidation of the 

spectra is required. This approach is limited in respect to analyte intensity. Unless the 

analytes of interest are the most intense in a given scan, they are not selected for EPI 

spectra and hence overlooked. Proficient sample clean up is therefore required to remove 

interfering analytes, which would otherwise cause difficulties. Alternatively, inclusion or 

exclusion lists can be applied, but this requires knowledge of expected analytes or 

interfering compounds. 

Phospholipids have been investigated in vitro in cell cultures using the EMS - EPI(n) 

scan function. Extracted samples were analyzed by an enhanced MS scan, identifying the 

most prominent pseudomolecular ion and subsequently recording an EPI spectrum to add 

confidence in the identification (Zhao et at., 2008). 

SRM-EPI(n) 
This method is a more selective approach than EMS - EPI(n) - MS3. Predetennined lists 

of analytes are identified by both their pseudomolecular and product ion transition and an 

EPI spectrum is obtained for detected analytes present at levels above a specified 

threshold. This is a specific method producing results similar to a targeted method, using 

either 3D or 2D linear ion traps (Fu et at., 2007; Hansen et at., 2001). Drug and potential 

phase I and phase II drug metabolite toxicology screening methods have employed the 

SRM - EPI(n) method to identify known analytes of interest and to obtain greater 

confidence in identification than possible with SRM transitions alone (Herrin et at., 2005; 

Li A et at., 2005; Mueller C A et ai., 2005). This approach has also been successfully 

applied in the analysis of endogenous metabolites. The investigation of 

endocannabinoids in human plasma has been successfully undertaken by this approach, 

with the EPI spectra providing greater confidence in the identification of an analyte than 

if an SRM approach alone had been used (Thomas et at., 2009). 
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Table 1.2. A list of scan combinations possible with the QqQLit mass spectrometer. Information 

obtained from recent publication of the QqQLit (Hopfgartner et al., 2004). 

Combination 

EMS - EPI(n) - MS 

SRM - EPI(n) 

PC - ER - EPI(n) 

NL - ER - EPI(n) 

Description 

Screening method coupled with 

EPI spectra 

Targeted SRM method coupled 

with EPI spectra 

Precursor ion screening method 

coupled with EPI spectra 

Neutral loss screening method 

coupled with EPI spectra 

Comments 

Scans for the most intense 

pseudomolecular ions and produces a full 

product ion spectra 

Identifies predetermined analytes following 

which full product ion spectra is obtained for 

confirmation 

Identifies analytes with a common mOiety 

and obtains full product ion spectra for 

confirmation 

Identifies analytes with a common moiety 

and obtains full product ion spectra for 

confirmation 
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This approach has also been applied to the profiling of endogenous steroids in human 

serum for the identification of endocrine diseases by identifying imbalances of known 

steroids levels (Ceglarek et aI., 2009a). 

The approach described is dependent on understanding in advance the analytes of interest 

and reference standards are often required for SRM transition optimization. This 

approach does not take into account analytes that may be present, and of biological 

relevance, but are not preselected for analysis, either because of a lack of reference 

standards or because they are unknown. 

PC - ER - EPI(n) / NL - ER - EPI(n) 

The coupling of precursor ion or neutral loss survey scans with an enhanced resolution 

scan, followed by an EPI scan, is an alternative approach to either the global or targeted 

metabolite profiling approaches. Rather than a targeted methodology, this approach 

identifies analogous analytes that have a similar structural moiety that form either an ion 

or a neutral under collision-induced dissociation. As such, a full quota of reference 

standards is not required, although an understanding of the fragmentation is necessary 

(Hopfgartner et ai., 2004). The use of precursor ion or neutral loss scans for the 

identification of analytes is a common approach for tandem quadrupole instruments 

(Hoffman and Stroobant, 2005; Hoffmann, 1996). The drawback to performing precursor 

ion or neutral loss survey scans on traditional tandem quadrupole instruments is the lack 

of information gleaned regarding the analytes of interest, specifically product ions. The 

QqQLit, however, enables a combined scan of both precursor ion / neutral loss survey 

scans and EPI spectra, providing greater confidence in analyte identification and also 

helping identify unknowns. 

The methodology of precursor ion scans coupled with EPI spectra has found successful 

application in the analysis of endogenous metabolites. Endogenous long chain fatty 

Acyl-CoAs have been studied by the neutral loss scanning of 507 daltons, targeting the 

adenine diphosphate moiety. Subsequent identification was obtained from the EPI 

spectrum (Magnes C et ai., 2005). N-acylhomoserine lactones, quorum sensmg 
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molecules employed by bacteria Yersinia pseudotuberculosis to determine population 

density, have been investigated by this approach (Ortori et at., 2007). Furthermore, this 

approach has been employed to identify sphingolipids in cell cultures. By the use of 

three precursor ion scans, sphingolipids and sphingolipids subspecies were identified and 

an SRM method was developed to quantify the analytes detected (Shaner et at., 2008). 

1.2.3 Application of QqQLlT technology to metabolite profiling 

The PC - ER - EPI(n) / NL - ER - EPI(n) methods sits in-between the two common 

approaches for metabolite profiling. Consequently, it is not as stringent as the targeted 

methodology, which only identifies preselected analytes and, conversely, it is not as 

broad as the global methodology, targeting families of metabolites rather than all 

detectable analytes. Targeted approaches, commonly employing SRM scans, often 

require a full range of references standards for each analyte to be analyzed. Where 

commercially available or in house synthesis is possible, such methods can be developed. 

However, if such reference standards are not easily available it can limit the scope of 

analysis, usually to the analytes where such standards are commercially available and 

ignoring potentially biologically relevant metabolites (Fiehn, 2008). Furthermore, 

targeted approaches can make the assumption that all the relevant metabolites of a given 

biological process are known. This may not be the case and potentially important 

metabolites could be overlooked. Conversely, global approaches do not generally make 

an assumption of the analytes present in the matrix; hence there is not a bias towards any 

particular analytes. However, in cases where a broad class of compounds are of interests 

such as lipids, there may be some bias towards this group as a whole. Nevertheless, 

when attempting to identify as many analytes as possible, low level analytes could be 

missed, especially where instrumental settings are not specifically optimized. 

Furthermore, global approaches collate a considerable volume of data which often 

requires complicated analysis, typically with multivariate approaches (Fiehn, 2001). 

By targeting a core structural similarity of endogenous metabolites, this approach has the 

potential to identify families of metabolites, both known and unknown analogues. 
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Although reference standards are required for initial instrumental optimization and to 

gleam an understanding of the fragmentation patterns of a given class of analytes, a full 

complement of standards are not required unlike the targeted approach. Additionally, it 

is not assumed that all the analytes are known prior to analysis, with the possibility of 

identifying previously unknown analytes or for compounds where reference standards are 

not readily available. 

There is an inherent bias in this approach, both for instrumental setting but also 

chromatography (if performed). This is potentially advantageous for those analytes 

which are present at low levels and require such steps for successful analysis. Where it 

has been previously been noted that global methodologies using GC-MS observe a large 

number of analytes of which only a subsection are identified (Fiehn, 2008; Weckwerth et 

al., 2004). The more focused approach of identifying families of metabolites may allow 

the job of identifying unknowns easier. Furthermore, the volume of data obtain by this 

approach will not be as great as global methodologies and would not require complicated 

data processing, although this could be applied if required. Hence, there is potential to 

apply the novel scanning modes available in a QqQLIT mass spectrometer to provide an 

alternative approach to metabolite profiling. 

1.2.4 Aims of the thesis 

• To evaluate and optimise QqQLIT mass spectrometry for profiling of endogenous 

metabolites that consist of structural analogues or have a core structural moiety 

• To develop a method for the analysis of phosphate-containing metabolite families 

focused on a precursor ion or neutral loss survey scan coupled with EPI spectra 

and application of the method to mammalian and bacterial samples. 

• To develop and apply the QqQLIT profiling approach to two families ofbioactive 

lipid molecules (N-acylethanolamines and mono-acylgycerols) and to assess the 

methods capabilities for endogenous metabolite profiling in rat tissues. 
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2 Use of Hybrid Quadrupole Linear Ion Trap Mass 

Spectrometry for Profiling of Phosphate Containing 

Metabolites 

2.1 Introduction 

Phosphate containing metabolites, including the nucleotide family and related biological 

compounds, were initially selected to assess the capabilities of the hybrid quadrupole

linear ion trap (QqQLit) in detecting and profiling endogenous metabolites. Nucleotides 

are relatively small molecules with a molecular weight of less than 600 Da. The structure 

of this family can be broken down into three constituent groups: a base, the most 

common being adenine, cytidine, guanine, uracil, and thymine). Bases are attached to a 

five carbon sugar, either ribose or 2' - deoxyribose (deoxyribose lack an OH groups from 

the 2' - carbon), forming a nucleoside (thymine is commonly attached to a deoxyribose). 

The addition of one to three phosphate groups to the ribose sugar via an ester linkage, 

commonly at the 5 position (although linkages at 2 and 3 are also known), forms a 

nucleotide (Mathews et ai., 1998; Stryer, 1999). Typical structures can be found in 

Figure 2.1 

Within biological systems, the role of nucleotides is varied. Monophosphate nucleotide 

polymers form the base of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). 

Adenosine triphosphate (ATP) is commonly used in the cell as a source of energy, 

although guanine triphosphate (GTP) can also play this role (Stryer, 1999). Cyclic 

adenosine monphosphate (cAMP) has a role as secondary messenger, affecting 

metabolism within a cell and is found in both pro- and eukaryotic cells (Antoni, 2000). 

Uracil diphosphate (UDP) has the role of carrying glucose, forming UDP glucose, an 

intermediate in the production of the glucose polymer glycogen, an important store of 

chemical energy (Mathews et ai., 1998). 
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Other endogenous molecules synthesized from adenine nucleotides such as nicotinamide 

adenine dinucleotide (NADl, nicotinamide adenine dinucleotide phosphate (NADPl 

and flavin adenine dinucleotide (FAD) are structurally similar to nucleotides (Stryer, 

1999). These molecules contain a base and a ribose sugar in addition to two phosphate 

groups and act as co-enzymes, predominantly in oxidation reactions (in the case of NAD+ 

and FAD) or reduction (in the case of NADP+) (Mathews et at., 1998). Acetyl CoA, an 

important precursor in the production of fatty acids palmitate, has ADP as a core part of 

the structure (Mathews et at., 1998). 

2.1.1 Nucleotide extraction methods 

A number of sample preparation methods have been successfully applied to the extraction 

of nucleotides from both prokaryotic and eucaryotic cells. Acidic extractions have been 

demonstrated to be successful as a method for the removal of proteins from a sample 

matrix (Polson et at., 2003) by precipitation. Acetic acid followed by filtering of debris 

was applied in the extraction oftriphosphates from Escherichia coli MG1655 cells (Nazar 

et at., 1970). It is worth noting that extraction was approximately five times more 

efficient with the additional freeze thaw stage prior to acid extraction, aiding in cell lysis. 

Trichloroacetic acid followed by neutralization using sodium hydroxide was applied to 

the extraction of nucleotide from fish tissue. In this instance, a phosphate buffer was also 

used to control pH; however, this buffer is not compatible with electrospray ionisation 

(ESI), as it can cause ion suppression (Nguyen et at., 1990). Trichloroacetic acid has also 

been applied in the extraction of nucleotide in human plasma (Lin et at., 1997). However 

trifloroacetic acid has been compared against trichloroacetic acid and formic acid for 

nucleotide recoveries from Escherichia coli MG1655 cells and was found to perform 

slightly better. Again, a neutralization step was required (Dutta and O'Donovan, 1987). 

Alternatively, perchloric acid has been successfully used in the extraction from cell 

cultures (Oneill et at., 1994), however it has been reported to leave a precipitate once 

neutralized and dried down, which is incompatible with LC-MS (Cordell et at., 2008). 

Nevertheless, the 
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Figure 2.1. Structure of nucleotides and other phosphate - based containing compounds. 
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analysis of nuc1eotides by LC-MS has been successfully accomplished with use of 

perchloric acid as an extractant from plant and mammalian cells (Cai et aI., 2002; 

Richards et aI., 2002). The disadvantage of the use of acid extraction is the requirement 

for a further neutralization step and the potential degradation due to the low pH. 

Organic solvents have also been used in the extraction of nuc1eotides and, where they 

have been demonstrated to precipitate proteins, they do not need the additional step of 

neutralization. A comparative study of organic and acid extraction methods was assessed 

on African green monkey kidney cells. U sing trichloroacetic acid (5 and 10%), 

perchloric acid and methanol, it was reported that methanol gave the highest recoveries -

approximately 2-4 times greater than perchloric acid (which gave better results than 

either trichloroacetic acid extractions), although the authors admit the increase in 

recoveries could be due to the speed at which the organic extraction took place compared 

to the acid extractions (Loregian et aI., 1994). Acetonitrile and ethanol have also been 

demonstrated to work as extract solvents for nuc1eotides (Grob et at., 2003) and the use 

of hexane following a methanol extraction has been shown to improve peak shapes by the 

subsequent removal of the endogenous phospholipids (Cordell et at., 2008). 

2.1.2 Methods of nucleotide analysis 

The analysis of nuc1eotides has been undertaken by a variety of approaches, although the 

majority have been focused on separation by chromatography techniques, typically high 

performance liquid chromatography using anion exchange, reversed phase or ion pair 

modes (Werner, 1993). The chromatographic techniques have been coupled 

predominantly with UV as a tool for identification, although more recently mass 

spectrometry has also been employed due to greater specificity and sensitivity (Cordell et 

aI.,2008). 

2.1.2.1 Nucleotide analysis by capillary electrophoresis 

Capillary electrophoresis is an established separation technique and is advantageous 

compared to HPLC due to the small sample volumes required (Ng et aL 1992). This 
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approach has been employed in a number of nucleotide assays. The analysis of adenine, 

guanine, uracil and cytidine mono-, di- and triphosphates in mouse lymphona cells using 

capillary electrophoresis coupled with a UV detector has been reported (Grob et aI., 

2003). Nucleotides AMP and GMP along with their respective nucleosides, have been 

successfully analyzed in human plasma using capillary electrophoresis coupled with an 

amperometric detector (Lin et aI., 1997). Mono-, di- and triphosphates have also been 

identified in hybridoma cells using capillary electrophoresis (Oneill et aI., 1994) and 

capillary electrophoresis was employed in comparing nucleotide extraction methods from 

mouse lymphoma cells (Grob et aI., 2003). A drawback to capillary electrophoresis can 

be limited sensitivity compared to HPLC (Grob et aI., 2003) and its difficulty with 

connecting to MS. 

2.1.2.2 High performance liqUid chromatography 

The use of HPLC has been extensive in the analysis of nucleotides. Early methods used 

ion exchange chromatography as a tool in the separation of these endogenous analytes. 

Mouse fibroblast cells and rat liver were successfully investigated for the presence of 

ribose and deoxyriboes nucleotides by the use of an anion exchange column for the 

fractionation of nucleotides, followed by reversed phase chromatography (Maybaum et 

aI., 1980). Triphosphate nucleotides have been investigated in bacterial samples of 

Escherichia coli Luria strain B and Pseudomonas aeruginosa using an anion exchange 

column coupled with UV detection (Dutta and O'Donovan, 1987). Anion exchange 

chromatography was again employed in the analysis of triphosphate nucleotides, but in 

eucaryotic monkey kidney cells (Loregian et aI., 1994). A slightly wider group of 

nucleotides were analyzed using anion exchange coupled with reverse phase 

chromatography in fibroblast cells. Uracil, cytidine and thymine deoxyribose and ribose 

mono-, di- and triphosphates were successfully detected by this method, although the use 

of two separation techniques is time consuming (Maybaum et aI., 1980). 

A feature of ion exchange chromatography is elution of salts, which are required to 

displace analytes retained in the stationary phase. Such salts are less than ideal if MS is 
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to replace less specific techniques, such as UV (Tuytten et aI., 2002). An alternative to 

ion exchange chromatography is the use of ion pairing agents, which, when added to the 

mobile phase, aid in the separation of polar analytes by helping with retention in the 

hydrophobic stationary phase without the elution of strong concentrations of salts 

(Snyder et aI., 1997). The use of ion pair reversed phase chromatography has become the 

preferred method of nucleotide separation (Werner, 1993) and has been successfully used 

in the analysis of adenine monophosphate (AMP), adenine diphosphate (ADP) and ATP 

from myocard tissue (Ingebretsen et aI., 1982) and in the analysis of adenine and 

guaranine mono-, di- and triphosphates, as well as of inosine monophosphate from small 

intestine mucosa (Tikhonov Yu et aI., 1990). In both those instances, UV was used as the 

detector. However, not all ion pairing agents are compatible with mass spectrometry, 

particularly those based on a quaternary ammomum structure such as 

tetrabutylammonium phosphate and tetraethylbutylammonium phosphate as they are non 

volatile (Cai et aI., 2002; Luo et aI., 2007). Nevertheless, volatile ion pairing agents such 

as N,N-dimethylhexylamine (DMHA) are available have been successfully employed in 

the separation and analysis of nucleotides by reversed phase HPLC and mass 

spectrometry (Cai et al., 2002; Cordell et al., 2008; Tuytten et aI., 2002). 

2.1.2.3 LC-MS 

The coupling of MS to HPLC has a number of advantages over the use of UV detection 

that can aid in the analysis of these compounds. The number of possible nucleotides, the 

range of endogenous concentrations (mM to below nM) and the endogenous background 

matrix have all made the analysis of a large number of nucleotides by UV detection 

challenging (Maybaum et aI., 1980). MS, however, with increased selectivity and 

sensitivity is better suited to the analysis of these analytes. 

HPLC with the addition of an ion paring agent has been coupled with quadrupole time of 

flight (QTOF) in the analysis of ATP and GTP (both reoxyribose and ribose sugars) from 

glioma cells (Cai et aI., 2002). LC-MS/MS have also been employed in the selective 

analysis of AMP, GMP, cyclic adenine monophosphate (cAMP) and cyclic guanosin 
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monophosphate (cOMP), (Witters et al., 1996) in addition to the identification of 

deoxyribose triphosphates from blood (Hennere et al., 2003). Ion traps have been used 

in conjunction with HPLC in the targeted analysis of NAD+ in eukaryotic cells (Evans et 

al., 2002), and in the analysis of cyclic monophosphates in tobacco plant cells (Richards 

et al., 2002) 

Despite the advantages of LC-MS few methods have widened the range of possible 

nucleotide analytes. A method for the simultaneous analysis of mono-, di- and 

triphosphates of the bases adenine, gurnine, cyticine and uracil was developed (Tuytten et 

al., 2002). This assay targeted a greater number of nucleotides than most other methods 

published previously, but did not include deoxyribose nucleotides or cyclic nucleotides 

such as cAMP and cOMPo Another methodologies have increased the number of 

nucleotides identified even further to include the cyclic nucleotides and co-factors such as 

NAD+, NADP+, FMN and FAD, but again the deoxyribose nucleotides were not included 

in the targeted analysis (Cordell et al., 2008). 

2.1.2.4 An alternative approach to MS nucleotide analysis 

An issue with the targeted LC-MS approaches is that although highly selective and 

specific, there is an inherent reliance on reference standards for the optimum tuning of 

the instrument and selective reaction monitoring (SRM) transition selection. 

Consequently, only analytes preselected are identified. The possibility of employing the 

QqQLit to undertake survey scans, such as precursor ion or neutral loss, to target a core 

structural similarity present in families of endogenous metabolites leads to an approach 

less reliant on reference standards and enables, in theory, the identification of all analytes 

with the selected core structure. This includes unknowns which would be overlooked by 

a targeted method but could be biologically relevant. With full product ion spectra for 

each analyte confident identification of known analytes and identification of unknowns is 

possible. 
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In the case of phosphate containing endogenous metabolites, in particularly nucleotides, a 

precursor ion scan can be employed to target the resulting phosphate ion [P03r formed 

the under collision induced dissociation (CID). With the addition of an enhanced 

resolution scan to more accurately identify the pseudomolecular ion and its charge state, 

coupled with an EPI scan to obtained full product ion spectra, the method will be able to 

identify nucleotides by the pseudomolecular ion and product ion spectra. Furthermore, 

analytes for which reference standards are not immediately available may be tentatively 

identified by an understanding of the product ion spectrum. This approach, although it 

requires reference standards to initially understand nucleotide CID fragmentation patterns 

and optimize MS parameters such as collision energies and declustering potentials, is not 

as targeted as a SRM methods. The approach has the potential to identify any analyte 

which forms a [P03r under CID conditions. This not only includes nucleotides and 

structural analogous but endogenous metabolites such as phosphorlated carbohydrates, 

sugar nucleotides, and glycerophospholipids. 

2.1.3 Aims 

The aims of this chapter are as follows: 

• To develop a method for the analysis of nucleotides based around the 

identification of a core structure present in all nucleotides. 

• To assess the methodology for the analysis ofnucleotides in biological materials. 
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2.2 Methods 

2.2.1 Chemicals 

All nucleotide standards AMP, ADP, ATP, cAMP, GMP, GDP, GTP, cGMP, UMP, 

UDP, UTP, CMP, CDP, CTP, NAD+, NADH, NADP+, NADPH, FAD (see Figure 2.1) 

and 8-bromoadenosine 3',5'- cyclic monophosphate (employed as an internal standard) 

were purchased from Sigma Aldrich (Poole, UK). N,N-dimethylhexylamine (DMHA) 

and acetic acid were purchased from Acros Organics (Geel, Belgium). Methanol (HPLC 

grade) was purchased from Fisher (Loughborough, UK). Water was filtered through a 

Milli-Q system (18.2 mn) and all mobile phases were filtered through a 0.47 Jlm nylon 

filter (Watman, Maidstone, UK) before use. 

2.2.2 Liquid chromatography equipment and conditions 

Chromatography was carried out on a Shimadzu series lOAD Jl VP liquid 

chromatography system equipped with binary pumps, a vacuum degasser and a SILHTc 

autosampler and column oven (Shimadzu, Columbia, MD, USA). 

The liquid chromatography method was based on work carried out by Dr. Rebecca 

Cordell (Cordell et aI., 2008), a former PhD in the School of Pharmacy, Nottingham 
, 

University, but subsequently adjusted by Monika Huszar, a PhD student visiting the 

laboratory on an Erasmus scheme. All separations were conducted on a Waters 

Symmetry (C18 150 x 2.1 mm; 3.5 Jlm particle size) column with a flow rate of 0.2 

mL/min gradient elution mobile phase consisting of A (95% water, 5% methanol and 5 

mM DHMA, adjusted to pH7 with acetic acid) and B (20% water, 80% methanol and 5 

mM DHMA). The gradient started at 0% B, increasing to 53% B after 15 min; this was 

maintained for 7 min following which %B was reduced to 0 after 3 min and the column 

re-equilibrated at 0% B for 5 min. Column temperature was maintained at 40°C and 

sample temperature was maintained at 4°C in the autosampler during analysis. Injection 
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volume was 10 JlL. DHMA was employed as an ion pairing agent to improve retention 

of polar nucleotides on a reverse phase column 

2.2.3 Mass spectrometry equipment and development 

All MS experiments were conducted on a 4000 QTrap® hybrid triple-quadruple-linear 

ion trap mass spectrometer (Applied Biosystem, Foster City, CA, USA) equipped with a 

TurboIon source used in ESr. A Windows XP (Microsoft, Redmond, W A, USA) 

workstation running Analyst (version 1.4.1) was used for data acquisition and processing. 

2.2.3.1 Initial instrumental tuning for nucleotide analysis 

Tuning of the instrument was conducted by direct infusion of nucleotide standards at a 

concentration of 10 JlM in ESI-. The optimum source temperature was set at 300 oC, N2 

gas flow at 20 mL/min, N2 curtain gas at 25 mL/min and the ion spray voltage at -4200 

v. 

2.2.3.2 Development of a precursor ion survey scan coupled with enhanced resolution 

and enhanced product ion spectra 

The MS method developed for the detection of nucleotides comprised a number of scans 

that ran sequentially. Initial identification of nucleotides was performed by a precursor 

ion scan, following by an enhanced resolution scan which performed a more accurate 

scan of the target pseudomolecular ion. Information-dependant acquisition selected (or 

deselected) the target ion according to a set criteria, following which an EPI scan was 

performed to obtain the full product ion spectra of the target ion. A flow diagram 

depicting the various scan functions and conditions optimized for the precursor ion scan 

used to investigate nucleotides can be found in Figure 2.2. 

Precursor ion scan 

The precursor ion survey scan method was initially developed by direct infusion of 

reference standards and obtaining full product ion spectra under CID in ESr. Following 

the identification of a product ion common to all nucleotides, a phosphate 
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Precursor Ion Survey Scan (m/z 79) 
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Figure 2.2. A flow diagram demonstrating the various scan functions involved in precursor ion 

survey scan used for the analysis of nucleotides. 
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moiety mlz 79, an optimum collision energy and declustering potential of -80 and -80 V, 

suitable for all analytes, was selected. 

The mass accuracy of the precursor ion survey scan was assessed to evaluate whether an 

enhanced resolution scan was necessary. Precursor ion scan speeds of 275, 550 and 1100 

amu / sec were employed to measure the mass of the nucleotide reference standards (10 

J..lM, n=6). Furthermore, the precision of the precursor scans, run at increasing scan 

speeds, was assessed on reference standards (10J..lM, n=6). Two methods comprised of 

precursor ion scans of 500 and 1000 amu /sec coupled with an EPI scan at 1000 amu / 

sec, resulting in total cycle times of 2.4 and 2.04 sec respectively. The third method had 

a precursor ion scan of 1000 amu /sec but an EPI scan speed of 4000 amu / sec, resulting 

in a total cycle time of 1.4 sec. The extracted ion chromatograms from each reference 

standard were plotted and the peak areas calculated. The scan speed of 500 amu/sec was 

subsequently chosen for all analysis on the basis of mass accuracy, see Table 2.1. 

Information independent acquisition 

Inclusion and exclusion lists were not employed and the cut off, by which ions exceeding 

a specific number of counts caused the instrument to perform an EPI spectra, was set at 

4000 counts. Former target ions were excluded for 60 sec. 

Enhanced resolution 

The enhanced resolution scan parameters were not adjusted from those preselected and 

optimised by the software. The scan rate was 250 amu / sec with a linear ion trap fill 

time of 20 msec. At this scan speed the resolution will be in the order of 6000 FWHM 

and capable of accurately identifying the pseudomolecular ion and charge state. 

Enhanced product ion scan 

Following the precursor ion scan and enhanced resolution scan, an EPI scan was attached 

to the method to obtain full product ion spectra from analytes identified by the precursor 

ion scan to containing a phosphate moiety (denoted by a product ion of mlz 79). EPI scan 

is a specific term adopted by Applied Biosystems to describe a scan function which 
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produces a full product ion spectrum by the selection of pseudomolecular ions by the 

first quadrupole, the fragmentation in the collision cell and the accumulation and 

subsequent ejection of product ions out of the third quadrupole while acting as an ion trap 

(Hopfgartner et aI., 2004). 

A collision energy for the EPI scan was required that would produce structurally 

significant product ions for a range of analytes. Unlike an SRM experiment, one 

collision energy is allowed for the EPI scan and must be acceptable, as far as that is 

possible, for all analytes expected. However, a spread of that collision energy is possible 

to increase range of product ions formed. To this end reference standards (10 JlM) were 

infused directly into the ESI source, the collision energy ramped and the full product ion 

spectra collected. Taking all reference standards into account, a compromise of -30 ± 20 

V was selected which, for the most part, demonstrated the structurally significant product 

ions for each analyte. The EPI scan mass range was from 70 to 900 amu and scanned at a 

speed of 1000 amu / sec and a fixed ion trap fill time of 100 ms was selected. 

2.2.3.3 Development of an SRM method 

To evaluate the extraction methods (see 2.2.5), a sensitive and specific assay was 

developed using a specific targeted SRM scan. Reference standards (see Table 2.3) were 

infused at a concentration of 10 JlM and ions formed in ESr. The automated SRM 

development software was used to optimize declustering potential, collision energy and 

optimum product ion fragment for each analyte. The most intense parent ion for each 

analyte, the deprotonated pseudomolecular ion [M-Hr, was selected as the precursor for 

each analyte and the most abundant product ion was chosen as the transition ion. A dwell 

time of 15 msec was chosen for each SRM transition. 8-bromoadenosine 3',5'-cyclic 

monophosphate was used as an internal standard, as successfully applied previously 

(Cordell et aI., 2008). 
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2.2.4 Application on biological samples 

To evaluate the capabilities of the QqQLit for the analysis of nucleotides, bacteria were 

selected as the biological source because of the ease in production. Pseudomonas 

aeruginosa PAOI and Escherichia coli MG1655 were available and kindly supplied by 

Nigel Halliday, Institute of Infection, Immunity and Inflammation, Medical School, 

University of Nottingham. Sample preparation was as follows: 

Escherichia coli MG 1655 was grown on agar medium and stored at -80°C until ready to 

be used. A colony was removed and placed in LB growth medium overnight, following 

which three 1: 1000 dilutions were made of the overnight culture in LB growth medium. 

These cultures were grown for a further five hours, the optical densities measured (650 

nm) as a gauge of cell growth and resulting broths pooled. 5.0 ml of bacterial culture 

were rapidly drawn up into a 20 ml syringe containing 15 ml of precooled (-20°C) 

quenching fluid (70 mM HEPES solution in 60% (v/v) methanol, pH adjusted to 7 with 

aqueous sodium hydroxide) and mixed. The suspension was centrifuged for 10 min, 

10,000 g at -20°C and the supernatant discarded. PBS (5ml) was added and then 

vortexed. The suspension was then spun down for 10 min at 10,000 g at -20°C, the 

supernatant discarded and the cell pellet stored at -80°C until extracted. 

Pseudomonas aeruginosa PAOI was grown as a batch culture in Nutrient Yeast Broth. 

(Nutrient broth No.2 25.0 gil, yeast extract 5.0 gil), at 37°C on an orbital shaker at 200 

r.p.m. Cell density (OD60onm) was determined using a Thermo Scientific Biomate 3 

spectrophotometer measuring at a wavelength of 600 nm. 

At a cell density of OD600nm=2.0, samples were harvested by rapid addition and mixing of 

5 ml of the bacterial culture into 15 ml of ice cold 0.9% (w/v) sodium chloride. A 

volume of the quenched culture, equivalent to 2.5 ml of a culture with OD600= 1.0, was 

pelleted by centrifugation (5 min, 5 000 r.c.f., at _5°C), to produce a standard size cell 

pellet. Once the supernatant was discarded, cell pellets were washed by resuspending in a 

10 ml aliquot of the ice cold saline solution, and pelleted again by centrifugation (5 min, 
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5 000 r.c.f., at _5°C). After discarding the supernatant the cell pellets were stored at -80 

°C until metabolite extraction was carried out. 

2.2.5 Extraction method selection 

A number of approaches have been used in recent years for the extraction of nucleotides. 

Acid extractions have been employed numerous times, including perchloric acid, 

trifluoroacetic acid, tricloroacetic acid and acetic acid however degradation of 

nucleotides has been noted (Grob et at., 2003; Nazar et at., 1970). Solvent extractions, 

which do not require a neutralization step, have also been demonstrated to work 

(Loregian et al., 1994). Hence, the optimum extraction method was investigated a little 

further. Three methods, based on those previously described in the literature (Cordell et 

at., 2008; Dutta and O'Donovan, 1987; Grob et at., 2003; Nazar et at., 1970; Ng et at., 

1992), were assessed on the basis of precision and recovery of nucleotide reference 

standard peak areas (1 O/-1M, n=6) using an SRM method developed. The methods were 

based on an acid extraction, acid extraction followed by neutralization and an organic 

extraction using methanol and hexane. The acidic extraction employed acetic acid rather 

than other acids, such as perchloric, which has been noted to leave insoluble precipitate 

post-neutralization which can causes losses due to adsorption (Cordell et at., 2008; 

Perrett et at., 1989) and can give poorer yields (Nazar et al., 1970). The most successful 

of the three methods was then assessed for reproducibility of endogenous nucleotides 

determined in Pseudomonas aeruginosa bacterial extracts. Extraction methods were as 

follows: 

Acetic acid extraction method 

500 /-1L of aqueous acetic acid (1 M) stored at -20°C was added to the cell pellet along 

with 8 - Bromoadenosine 3',5' - cyclic monophosphate (acting as an internal standard). 

(100 /-11 of 10 /-1M solution). Samples were homogenized, following which two freeze 

thaw cycles were performed using liquid nitrogen twice (mixed between each stage). The 

resulting solution was spun down (-5°C) and the supernatant removed to a clean tube. 
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Samples were evaporated to dryness using a rotory evaporation and stored at -80°C until 

ready for analysis. Extracts were reconstituted in 50 III mobile phase A prior to analysis. 

Acetic acid & sodium hydroxide method 

The same procedure as for the acetic acid extraction was followed, except for the addition 

of 500 III of 1 M sodium hydroxide to the recovered supernatant to provide an expected 

pH 7 (ratio of acid to base was measure using a pH meter on acetic acid and sodium 

hydroxide alone). 

Organic solvent extraction method 

500 ilL methanol:H20 (1: 1) stored at -20°C was added to the cell pellet along with 8 -

Bromoadenosine 3', 5' - cyclic monophosphate (acting as an internal standard) (100 III of 

10 IlM solution). Samples were homogenized, following which two freeze thaw cycles 

were performed using liquid nitrogen. The resulting solution was spun down (-5°C) 

supernatant removed. Ice-cold hexane (1 mL) was added to the supernatant and the 

solution mixed and again spun down for 5 min (-5°C). The methanol/aqueous layer was 

removed and stored at -80°C until ready for analysis. Extracts were reconstituted in 50 III 

mobile phase A prior to analysis. 

All standards and biological samples/extracts were kept in ice when not being physically 

handled. 

The evaluation of the extraction methods was conducted in collaboration with Monika 

Huszar, a PhD student visiting the laboratory on an Erasmus scheme from Hungary. 
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2.3 Results and discussion 

2.3.1 Survey scan ion selection 

Nucleotide reference standards were infused in ESr ion and product ion spectra 

examined for common structural fragments with the potential of being a marker for 

nucleotides or structural analogues. The instrument was run in Esr rather than ESI+ 
* 

because of the better overall signal. Nucleotides in ESt have been observed to form 

[M+Nat and [M + N,N-DMHA + Ht (when employing DHMA as an ion pairing agent) 

adducts (Cai et ai., 2002; Witters et ai., 1996), which essentially dilute the signal strength 

of the analyte of interest, whereas in ESrmode only the [M-Hr pseudomolecular ion has 

been reported to be formed (Tuytten et aI., 2002). 

It was observed that all reference standards fragmented under CID generate a mlz 79 

[P03r and a mlz 97 [P04H2r product ion; see Figure 2.3. Such fragments have been 

previously reported in monophosphates, diphosphates and cyclic cytidine monophosphate 

(cCMP), cyclic guanosine monophosphate (cGMP), and cyclic adenosine monophosphate 

(cAMP) and used as transitions for SRM experiments (Cordell et ai., 2008; Tuytten et al., 

2002; Witters et al., 1996). In an effort to select the more appropriate of these two ions 

for a precursor ion scan, the profile of intensity against collision energy was plotted (see 

Figure 2.4; in this instance only the triphosphates have been plotted for the sake of 

clarity). It was observed that of the two product ions, mlz 79 generated a more intense 

signal for all mono, di and triphosphates reference standards. As this would result in 

greater sensitivity, mlz 79 was chosen as the signature product ion for the precursor ion 

scan. 
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Molecular Formula = 03P 
Monoisotopic Mass = 79 Da 

79-H 

Where R Nucleotide base 

·0 
n 

----I 
97: 

R 

, , 
/ 

OH 

Molecular Formula = H20 4P 
Monoisotopic Mass = 97 Da 

n Number of phosphate groups, 1 to 3 

Figure 2.3 Common product ions observed under CID for all nucleotide (and structural analog) 

reference standards. The ion of m/z 79 has previously been assigned in mono and di phosphates as 

well as cAMP, cCMP, cGMP (Cordell et al., 2008; Tuytten et al., 2002; Witters et al., 1996) 
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it more suitable as marker for the precursor ion scans. 



2.3.2 Mass accuracy of the precursor ion scan and use of the enhanced 

resolution scan 

2.3.2.1 Precursor ion scan speed 

The survey scan mode in the QqQLit is used to identify possible analytes of interest 

which, if preceded by an enhanced production scan, will be used to assign the mlz of the 

compound designated to undergo EPI spectra (Hopfgartner et aI., 2004). If the survey 

scan is a precursor ion scan (or neutral loss), as is the instance in this case, then it is 

recommended that an enhanced resolution scan is used to more accurately depict the mlz 

of the pseudomolecular ion of interest rather than relying on the mass accuracy of the 

precursor ion (or neutral loss) scan alone. In an attempt to identify the mass accuracy of 

the precursor ion scan and potentially reduce the complexity and time of the overall scan 

by removing the enhanced resolution scan, the influence of precursor ion scan speed on 

mass accuracy was investigated. 

Mass Accuracy of the precursor ion scan 

Using the same mass range, three scan speeds were selected: 275, 550 and 1100 amu / 

sec, and the mlz of the pseudomolecular ion of nucleotide reference standards was 

measured. The mass accuracy of the precursor ion scan was found to be dependent on 

the scan speed, with a slow precursor ion scan of 275 amu / sec demonstrating a mean 

accuracy of -0.2, the scan of 550 amu / sec gave a mean accuracy of 0.2 greater than 

expected and the faster scan of 1100 amu / sec is, on average, +0.4 amu greater than 

expected. Following consultation with an instrumental specialist at Applied Biosystems 

it became apparent that the QqQLit does not compensate for mass accuracy shifts caused 

by a change in the speed of the survey scan. Therefore, for the identification of 

pseudomolecular ions of interest, the enhanced resolution scan is more accurate than the 

precursor ion scan alone, even if a reasonable scan speed of 550 amu / sec is employed. 

An additional reason for the use of the enhanced resolution scan is the increased 

resolution it has compared to the precursor ion scan; see Figure 2.5. This is of 

importance when measuring the isotopic cluster of the pseudomolecular ion, its charge 
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state and consequently the mass of the molecule. The mlz of pseudomolecular ion 

(deprotonated in ESr) is calculated by: 

Where mlz 

M 

nH 

mlz = [M - nH] / nH 

mass to charge ration 

mass of a molecule (amu) 

number of protons 

The compounds of interest in this work will have a pseudomolecular carbon isotope 

cluster of M and M+ 1 corresponding to e l2 and e13
, the latter being present at 1.1 %. 0 17 

is also present but only at 0.04% (McLafferty and Turecek, 1993). If the 

pseudomolecular is singularly deprotonated then the two isotopes of the pseudomolecular 

ion will be one amu apart. However, if the pseudomolecular ion is doubly charged (the 

result of a loss of two protons in ESr) then subsequently the mass difference between the 

isotope cluster will be half an amu apart (Hoffman and Stroobant, 2005). As such the 

charge state and mass of an analyte can be calculated. The enhanced resolution scan 

option enables the identification of the charge state of the pseudomolecular ion where the 

precursor ion does not have the necessary resolution (see Figure 2.5); hence this scan 

function was employed in all precursor ion scans. 

Precursor ion precision 

The peak area precision of extracted ion chromatograms from a precursor ion scan was 

assessed at different precursor ion scan speeds on nucleotide reference standards. Three 

methods were evaluated, two composed of precursor ion scans of 500 and 1000 amu /sec 

coupled with an EPI scan at 1000 amu / sec, resulting in total cycle times of 2.4 and 2.04 

sec respectively. The third method had a precursor ion scan of 1000 amu /sec, but an 

EPI scan speed of 4000 amu / sec, resulting in a total cycle time of 1.4 sec. Reference 

standards were separated by the chromatography described in section 2.2.2 and peak 

areas were measured from the extracted ion 
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Figure 2.5. A comparison of the (a) precursor ion scan and the (b) enhanced resolution scan of the [M-Hr ion of GMP observed after a precursor ion 

scan (coupled with EPI) at 550 amu / sec. The resolution of the enhanced resolution is greater than the precursor ion scan and allows for the 

identification of the isotopic pattern, confirming the charge state of the ion and subsequent identification of the molecular mass. 
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chromatograms of nucleotide reference standards. The measured precision for each 

reference standard can be found in Table 2.1. The reproducibility of all the methods 

appear poor in Table 2.1 and outside the accepted limits for bioanalytical methods (US 

Department of Health and Human Services, 2001). This is to be expected as the number 

of data points across the chromatography peak is on average six and hence does not 

accurately describe the peak shape, although the precision and number of data points 

improved with the fastest scan. It has been previously demonstrated that a precursor ion 

scan on a QqQLit has successfully been used as a quantitative method in the analysis of 

N-acylhomoserine lactones (Ortori et aI., 2007). If such an approach was required for the 

investigation of nucleotides, a faster precursor ion scan could be employed, reducing the 

overall cycle time and increasing the number of data points across the peak. As such, 

quantification of nucleotides by the survey scan was not investigated further. 

2.3.3 Nucleotide fragmentation patterns 

The precursor ion survey scan coupled with the full product ion spectra has the potential 

to identify the nucleotide reference standards described in Figure 2.1, as well as structural 

analogues that have a phosphate moiety. To this end an understanding of the product ion 

spectra of nucleotide reference standards was required, not only to confirm the identity of 

known analytes but to aid in identifying analytes which were structurally similar. 

Furthermore, the phosphate moiety is not specific to nucleotides but is found in other 

endogenous biological compounds such as phospholipids. An understanding of 

nucleotide fragmentation under CID should aid in the identification of analytes that 

belong to the nucleotide family. The EPI spectra of reference standards were examined 

for product ions relating to common structural similarities. The fragmentation patterns of 

the reference standards can be found in Figure 2.6, Figure 2.7, Figure 2.8, Figure 2.9 and 

Figure 2.10. 

All nucleotide reference standards demonstrated a mlz 79 ion under EPI conditions, be it 

at a relatively low ion intensity, but the larger molecules such as FAD, NAD+, NADP+ 

did 
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one different EPI scan speed was assessed on peak area precision. PI - precursor ion scan, EPI - enhanced product ion scan 

Scan speed of Total cycle Precision of extracted ion chromatogram 

survey scan Time (sec) %RSO (n=6) 

constituents 

(amu / sec) 

AMP GMP CMP UMP AOP GOP COP UOP ATP GTP CTP UTP cAMP cGMP 

PI - 500 2.4 sec 62.1 56.5 82.3 64.6 75.0 64.8 53.7 46.9 68.4 64.3 70.9 108.0 125.1 54.3 

EPI - 1000 

PI-1100 2.0 sec 64.4 48.4 34.9 79.0 40.2 84.7 50.2 41.3- 63.4 83.4 68.0 60.5 41.1 92.2 

EPI - 1000 

PI-1100 1.4 56.8 44.7 27.6 45.7 33.6 30.5 44.6 32.2 49.6 76.4 63.0 49.4 50.4 69.9 

EPI- 4000 
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not. The optimum collision energy required to generate a mlz 79 ion (-80 V) is relatively 

high for other structurally significant ions, causing such ions to further fragment. 

Therefore, where a spread of collision energies were applied for the EPI scan, they are 

relatively low and result in low intensity or unobservable mlz 79 product ions. The lack 

of this ion is not critical as the triggering of the EPI scan by the PI scan demonstrates the 

presence of the mlz 79 ion for a given analyte. 

All nucleotides tested appear to fragment forming an ion of the respective base. Adenine 

nucleotides form an mlz 134 ion [Cs~Nsr under CID, uracil nucleotides form an mlz 

111 ion [C4H3N20 2L guanine nucleotides form an mlz 150 ion [CSH4NsOr and cytidine 

nucleotides form a mlz 11 0 ion [C4H3N30r. Base ions have been previously observed 

for the cyclic nucleotides, cAMP and cGMP (Witters et aI., 1997). Furthermore, adenine 

and guanine nucleosides have been observed to cleave between the sugar and the base 

forming a base ion, however this was under ESI+ conditions (Zhu et aI., 2001) Such 

fragments are diagnostic in the identification of unknowns as it demonstrates the presence 

of a base, strongly suggesting a nucleotide or structurally similar compound. 

Diphosphate reference standards fragmented to form a product ions at mlz 159. This ion 

is likely to be [HP20 6r by the loss of two phosphates. The mlz 273 ion observed in 

diphosphate fragmentation is likely to be the ribose sugar and two phosphates but with 

the loss of water [CSH70 9P2r. It is not clear at this time where the loss of H20 occurs, be 

it from the ribose sugar or from one of the phosphate moieties. There appears to be little 

information in the literature regarding this fragment and it would mostly likely be the 

product of a number of fragmentation steps. 

Triphosphate reference standards also form mlz 159 product ions (as observed with 

diphosphates) and has been previously reported to be the loss of two phosphates as 

[HP20 6r (Tuytten et aI., 2002). Furthermore deoxyribose triphosphates have also been 

observed to form this ion under CID conditions (Hennere et aI., 2003). Triphosphates 

also appear to lose [H3P04] as a neutral, forming product ions of mlz 480, 384, 385 and 

424 for ATP, CTP, UTP and GTP respectively (Buckstein et at., 2008; Chen et aI., 2009). 
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As observed with diphosphates, triphosphates also fonn a mlz 273 ion. Again this ion is 

likely to be [CSH70 9P2f and as with diphosphates, the mechanisms involved in its 

fonnation is likely to be by a number of fragmentations steps. The presence of these two 

ions, mlz 159 and mlz 273, indicates the presence of two or more phosphates and can be 

used as a diagnostic tool. 

Cyclic AMP and cyclic GMP reference standards fragment to generate a product ion 

spectra similar to AMP and GMP. Both cyclic nucleotides demonstrate a loss of the mlz 

79 [P03f ion, along with their respective bases of mlz 134 ion [Cs14Nsf and mlz 150 ion 

[CSH4NsOr, and are comparable with previously reported spectra (Buchholz et at., 2001; 

Witters et aI., 1996; Witters et al., 1997). 

NAD+, NADP+, NADH and NADPH have strong structural similarities and demonstrate 

similar product ion spectra to adenine nucleotides. The base ion at mlz 134 ion was 

fonned under CID, as were the ions indicative of two or more phosphates moieties, mlz 

159 and mlz 273. Both NAD+ and NADP+ fonn ions at mlz 540 and 640 respectively 

with the loss of nicotinic acid as a natural (Buchholz et al., 2001) and FAD fragments to 

fonn AMP as an ion at mlz 437 as previously observed (Buchholz et al., 2001) 

The EPI spectra of the nucleotide reference standards investigated show structurally 

significant ions that not only provide strong evidence in the identification of knowns but 

will also aid in the identification of unknowns. The optimization of the collision energy 

is not ideal for all reference standards investigated and a number of structurally important 

ions have relatively low intensities. However, for the most part, identification of an ion 

indicative of a nucleotide base and the presence of one or more than one phosphate group 

was achieved. A list of prominent production ions for each reference standard can be 

found in Table 2.2 
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Table 2.2. The pseudomolecular ion and prominent product ions of nucleotides and structurally 

related analytes. Reference standards were infused into the QqQLit (lO"M) in ESr and fragmented 

under CID with a collision energy of -35 ± 20V. 

Analyte [M-Hr (m/z) Prominent product ions (m/z) 

AMP 346 211,134,79 

UMP 322.97 211,97,79 

CMP 322.1 211,110,97,79 

GMP 362 211, 150,79 

ADP 425.93 328,273,159,134,79 

UDP 402.95 273,159,111,79 

CDP 401.99 304,273,175,159,79 

GDP 441.92 344, 159, 150,79 

ATP 505.99 408,273, 159,79 

UTP 483 385,273,159,111,79 

CTP 482 358,273,159,79 

GTP 522.02 273,159,150,79 

NAD+ 662.1 540, 273, 328, 79 

NADP+ 742.1 79,620,408,274,159,79 

FAD 784.18 437,346,241,79 

NADH 663 541,426,329,273,159,134 

NADPH 744 684,622,561,408,273,159,134 

cAMP 328 134,79 

cGMP 344 150,79 

52 



100% 

90% 

80% 

70% 

60% 
~ 
~ 50% 

., 
a:: 40% 

30'10 

20'10 

10'10 

100'10 

90'10 

80% 

70'10 

60% 
~ 
~ 50'10 

., 
a:: 40'10 

30% 

20'10 

10'10 

97 

(C) 

9.0 

100 

193.0,211.1 

150 200 250 300 350 400 450 500 550 
WZ, amu 

159.0 

150 200 

273.0 

'I 328.1 /353.0 

250 300 350 
WZ, amu 

506.0 

408.0 

400 450 500 550 

100% 

90% 

80% 

70'10 

60% 
~ 

~ 50'10 

., 
a:: 40'10 

30% 

20% 

10'10 

100'10 

90% 

80'10 

70% 

60'10 
~ 
~ 50'10 

., 
a:: 40% 

30'10 

20'10 

10% 

426.0 

N~N 
328'-2H ~.J- '> 

o 10 ~N 134 II ! II ----- ---------------
p : i p , 0 273 - Hp 

HO/( 1'oY; '1'0 
o i HO i 

(b) 

79-H : : -------- 1~?_:_~j 

159.0 328.1 

j"0 
13r 

175.0 214.0 273.0 366.0 408.0 
I /291.0 

100 150 200 250 300 350 400 450 500 550 
WZ, amu 

328.1 

(d) 

134.1 

79.0 107.1 

80 1 00 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 
m/z, amu 

Figure 2.6. EPI spectra of (a) AMP, (b) ADP, (c) ATP and (d) cAMP reference standards and proposed fragmentation under CID with a 

collision energy of 30 ± 20 V. Ions were formed under ESrconditions by direct infusion of reference standards. 
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Figure 2.8. EPI spectra of (a) GMP, (b) GDP, (c) GTP, (d) cGMP and proposed fragmentation under CID with a collision energy of 30 ± 20 V. 

Ions were formed under ESrconditions by direct infused of reference standards. 
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Figure 2.9. EPI spectra of (a) UMP, (b) UDP, (c) UTP and (d) FAD and proposed fragmentation under CID with a collision energy of 30 ± 20 

V. Ions were formed under ESr conditions by direct infused of reference standards. 
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Figure 2.10. EPI spectra of (a) NAD+, (b) NADH, (c) NADP+ and (d) NADPH and proposed fragmentation under CID with a collision energy of 

30 ± 20 V. Ions were formed under ESr conditions by direct infused of reference standards. 
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2.3.4 Assessment of the precursor ion scan coupled with EPI to identify 

nucleotide reference standards in a chromatographic run 

The ability of the precursor ion scan to correctly identify reference standards (1 0 ~M) 

was subsequently assessed along with the expected EPI spectra. Successful identification 

of all nucleotide reference standards (mono-, di- and triphosphates, as well as cAMP, 

cGMP, FAD, NAD+, NADH, NADP+ and NADPH) and EPI spectra was obtained for all 

standards; a total ion current can be found in Figure 2.11 

2.3.5 SRM method for nucleotide measurements 

To establish the most appropriate extraction method, a multiple reaction monitoring 

method was developed to assess the most appropriate extraction method on recovery and 

preCISIOn. Triple quadrupole instruments are typically run in SRM mode when 

quantification is required due to the sensitivity and selectivity the approach affords 

(Hoffman and Stroobant, 2005). 

Nucleotide precursor ions were selected on intensity; in the case of all standards 

measured this was a de-protonated pseudomolecular ion [M-Hr. Product ions were again 

selected on intensity, and one SRM transition per analyte was selected on this basis. 

Each SRM transition, optimum declustering potential and collision energy can be found 

in Table 2.3. The transitions selected are in accordance with previously published 

methods where mono and diphosphates generate an intense mlz 79 ion [P03r and where 

triphosphates generate a more abundant mlz 159 [HP20 6r (Hennere et al., 2003; Tuytten 

et al., 2002). Another published method reports using a different set of product ions with 

the aim of increasing the selectivity of analytes one amu apart (Cordell et aI., 2008), 

however the SRM transitions selected here demonstrated the required specificity. 
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Figure 2.11. Total ion current of nucleotide reference standards (lO",M) successfully identified by the use of the precursor ion scan identifying analytes 

with a product ion of mlz 79. Each analyte triggered a comparable enhanced spectra with those obtained from direct infusion experiments. . 
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2.3.6 Nucleotide extraction from biological matrix 

2.3.6.1 Optimum extraction method 

The three extraction methods were initially evaluated on mono-, di- and triphosphate 

reference standards. An acidic extraction, acidic extraction followed by sodium 

hydroxide and an organic extraction method. The recoveries and precision can be seen in 

Table 2.4. The acetic acidic extraction demonstrates a few erroneous results. ADP, CDP, 

GDP, cAMP and cGMP all exhibit reproducibility worse than expected, and ATP 

recoveries at 125.6% demonstrate that the extraction method is possibly enhancing the 

signal artificially. The cause of this is unknown at this time. The acetic acid / sodium 

hydroxide method again demonstrated variability greater than expected, especially for 

UMP, CMP, GMP and cGMP. Both methods centered on the acid extraction 

demonstrated poor chromatography compared to the organic extract and this is likely to 

be reason for the poor reproducibility of some of the analytes. The cause of this may be 

due to phospholipids which were predominantly removed in the organic extraction by the 

use of hexane. It is fair to say that the extraction recoveries are quite varied between 

analytes for each extraction method, an explanation for this is not currently forthcoming 

although it might be due to the poor stability of these compounds at room temperature 

although care was taken to keep all sample extracts on ice where ever possible. The 

organic extraction demonstrated better precision than either of the other two extraction 

methods and the recoveries are also acceptable, being comparable with those previously 

reported (Cordell et aI., 2008). Furthermore, the organic extraction method has an 

additional hexane step that should have the advantage of removing some of the 

hydrophobic lipids present, which could be a source of ion suppression. For these 

reasons, the organic extraction was deemed the most suitable method to proceed with. To 

demonstrate that the method was capable of extraction from biological samples and to 

evaluate reproducibility, the methodology was further tested on Pseudomonas aeruginosa 

samples (n=6); see Table 2.5. 
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The reproducibility is reasonable and within expected tolerances (US Department of 

Health and Human Services, 2001). Although reproducibility should be within 15% or 

20% if at the LLOQ, the LLOQ has not been established, so a value of 20% was allowed. 

An organic extraction was also assessed without the use of hexane on Pseudomonas 

aeruginosa bacterial samples, but very poor peak shape was observed, probably due to 

co-eluting phospholipids compounds, leading to difficulties in peak assignment and very 

poor reproducibility. Similar results have been reported when extracting nucleotides 

from Chinese hamster ovary cells (Cordell et aI., 2008). 

2.3.7 Nucleotides detected in Pseudomonas aeruginosa and Escherichia 

coli MG1655 bacteria using the precursor ion survey scan 

Following the optimum extraction method selection an analysis of Pseudomonas 

aeruginosa and Escherichia coli MG1655 samples was carried out using the precursor 

ion survey scan previously described to evaluate the approach for the profiling of 

nucleotide in biological samples. An organic extraction, as described in section 2.2.5, was 

used on both bacterial strains (n=6). 

Pseudomonas aeruginosa 

Nucleotides detected in Pseudomonas aeruginosa can be found in Table 2.6. All but 

CMP, CTP, cAMP, NADH and NADPH were identified. Those observed were identified 

on the basis of retention time and enhanced production ion spectra compared to reference 

standards, see Figure 2.12, Figure 2.13, and Figure 2.14. Whereas the identification of 

most nucleotides detected can be confirmed by reference spectra, a number of anal ytes 

were tentatively identified as nucleotides when reference standards were not available at 

the time for confirmation. Identification was based upon the pseudomolecular ion and 

the resulting EPI spectra and discussed in section 2.3.7.1. 
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Table 2.3. Optimum SRM transition, declustering potential and collision energies for nucleotide and 

base - phosphate related reference standards. Reference standards were infused under Esr 
conditions, source temperature was set at 300°C, N2 gas flow set at 20 mL/min, N2 curtain gas of 25 

mL/min and an ion spay voltage of -4200 v. 

Reference Retention Precursor ion (mlz) Product ion (mlz) OP (V) CE (V) 

standard time I min 

AMP 8.5 346.0 78.9 -90 -66 

UMP 7.2 322.9 79.0 -70 -58 

CMP 6.6 322.0 79.0 -75 -76 

GMP 6.5 362.0 79.1 -95 -72 

AOP 11.7 425.9 79.1 -100 -86 

UOP 11.0 402.9 78.9 -100 -88 

COP 12.7 401.9 78.8 -100 -74 

GOP 10.8 441.9 78.9 -105 -88 

ATP 13.6 505.9 158.8 -90 -46 

UTP 13.2 483.0 158.8 -100 -46 

CTP 13.1 481.9 158.8 -105 -38 

GTP 13.2 522.0 158.9 -110 -46 

NAO+ 6.3 662.1 540.2 -80 -18 

NAOP+ 11.2 742.1 620 -85 -22 

FAD 14.6 784.2 97.1 -140 -84 

NAOH 8.5 663.2 541 -80 -18 

NAOPH 13.2 744.1 622.1 -95 -20 

cAMP 10.4 327.9 134 -95 -34 

cGAMP 8.56 343.9 150.1 -95 -34 

cAMP-BR 12.2 406.0 212.0 -120 -40 
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Table 2.4. Precision and recovery of various extraction methods on nucleotide reference standards (lOJ1M), analyzed by an SRM method 

Nucleotide Acetic acidic Acetic acidic/sodium hydroxide Methanol I hexane 

Precision (%RSD) Recovery (%) Precision (%RSD) Recovery (%) Precision (%RSD) Recovery (%) 

AMP 8.1 71.3 14.5 55.7 12.9 51.0 

UMP 7.3 104.9 35.3 71.6 11.8 70.8 

CMP 7.5 63.4 33.7 39.0 15.3 46.2 

GMP 10.0 80.8 23.9 80.5 14.3 79.7 

ADP 47.0 63.4 11.3 69.2 13.4 68.6 

UDP 16.0 73.7 14.1 65.5 11.1 60.6 

CDP 46.9 67.0 23.7 64.4 13.0 65.9 

GDP 52.3 76.9 6.8 85.9 8.8 87.8 

ATP 7.3 125.6 18.2 93.3 10.7 91.8 

UTP 7.3 56.9 14.8 51.6 9.4 53.7 

CTP 12.2 80.5 19.9 53.1 19.9 62.6 

GTP 20.9 50.0 16.1 56.1 11.6 37.7 

cAMP 50.4 63.5 12.7 55.7 9.3 52.3 

cGMP 50.2 49.6 22.9 47.1 16.1 51.3 

Table 2.5 Precision of a methanol/hexane extraction method on nucleotides from Pseudomonas aeruginosa bacteria, analyzed by an SRM 

method. 

Statistic Nucleotide 

AMP UMP CMP GMP ADP UDP CDP GDP ATP UTP CTP GTP cAMP cGMP 

%RSD 21.2 11.5 14 20.2 16.7 20.5 8.5 15.4 20.8 10.6 3.3 17.1 
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Table 2.6. Nucleotides and structurally similar compounds detected in Pseudomonas aeruginosa 

bacteria using a precursor ion survey scan coupled with an EPI spectra. The retention times, 

pseudomolecular ion and prominent product ions are listed. Analytes in grey are tentative 

identifications of other nucleotides or structural analogues highlighted and identified by the 

precursor ion survey scan (mlz 79) and the EPI spectra. 

Analyte Retention time (min) [M-Hr (mlz) Prominent product ions 

AMP 7.9 346.0 211, 134,79 

UMP 7.1 322.9 211,111,97,79 

GMP 6.7 362.0 211, 150, 79 

AOP 11.5 425.9 328,273, 159, 134, 79 

UOP 10.4 402.9 273, 159, 111, 79 

COP 11.5 401.9 304,273, 159,79 

GOP 10.8 441.9 344,273, 159, 150,79 

ATP 12.5 505.9 408,273, 159,79 

UTP 13.4 483.0 385, 273, 159, 111 

GTP 13.3 522.0 273, 159,150, 79 

NAO+ 5.9 662.1 540,426,408,328,273,159,134 

NAOP+ 11.3 742.1 620,540,408,273,159 

FAO 14.6 784.2 437,346,241,97 

dAMP 9.8 330.1 195,134,97,79 

dCOP 9.5 386.0 159, 79 

dTOP 11.4 401.0 275, 159, 97, 79 

UOP(G) 7.7 565.1 403,385,323,273,159,111,97,79, 

Acetyl Co A 16.5 808.1 728.3,461,408,273,159,134,79 
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Table 2.7. Nucleotide and structurally similar phosphate containing endogenous analytes detected in 

Escherichia coli MG1655. Analytes were identified using a precursor ion survey scan (mlz 79) and 

confirmed by comparison of EPI spectra with reference standard spectra. Analytes in grey are 

tentative identifications of other nucleotides or structural analogues highlighted and identified by the 

precursor ion survey scan (mlz 79) and the EPI spectra. 

Analyte Retention time (min) [M-Hr (mlz) Prominent product ions 

AMP 7.7 346.0 211,134,79 

UMP 6.7 322.9 211, 111, 97, 79 

GMP 7.0 362.0 211,150,79 

ADP 9.8 425.9 328,273, 159, 134, 79 

UDP 9.5 402.9 273, 159,79 

CDP 8.9 401.9 304,273, 159,79 

GDP 9.3 441.9 344, 159, 150,79 

ATP 10.4 505.9 408,273,159,79 

UTP 10.3 483.0 385,273, 159,79 

CTP 9.7 481.9 385, 273, 159, 79 

GTP 11.5 522.0 425, 159, 79 

NAD+ 4.5 662.1 540,426,408,328,273,159,134 

FAD 11.76 784.1 437, 346, 79 

dADP 14.6 410.0 134, 159, 79 

dATP 15.9 490.0 159,257,392,410,79 

dCDP 12.62 386.0 159,257,79 

dTMP 9.5 321.0 195, 79 

dTTP 14.3 481.0 159,257,401,79 

UDP(G) 6.6 565.1 403,385,323,273,159,111,97,79, 

Acetyl CoA 16.5 808.1 728.3,461,408,273,159,134,79 
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Figure 2.12 EPI spectra of nucleotides (a) AMP, (b) ADP, (c) ATP, (d) CDP, (e) GMP and (f) GDP detected in Pseudomonas aeruginosa 

bacteria using a precursor ion survey scan and confirmed by comparison of EPI spectra with reference standard spectra. 
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Figure 2.13 EPI spectra of nucleotides (a) GTP (b) UMP, (c) UDP, (d)UTP, (e) FAD, and (1) NADP+ detected in Pseudomonas aeruginosa 

bacteria using a precursor ion survey scan and confirmed by comparison of EPI spectra with reference standard spectra. 
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Figure 2.14. EPI spectra of nucleotides (a) cGMP and (b) NAD+ detected in Pseudomonas aeruginosa bacteria using a precursor ion survey 

scan and confirmed by comparison of EPI spectra with reference standard spectra 
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Escherichia coli MG1655 

The majority of nucleotides for which reference standards were readily available were 

identified in Escherichia coli MG1655 and can be found in Table 2.8, excluding CMP, 

NADP+, NADH, NADPH, cAMP and cGMP. Furthermore a number of analytes were 

tentatively identified as nucleotides but reference standards were not immediately 

available to confirm identification. Identification was based upon the pseudomolecular 

ion and similar product ions observed in the EPI spectra of nucleotide reference standards 

and discussed in section 2.3.7.1. 

Ten additional nucleotides or structurally similar compounds were flagged by the 

precursor ion scan and tentatively identified. Deoxyribose adenine monophosphate 

(dAMP), deoxyribose cytidine diphosphate (dCDP), deoxyribose thymine diphosphate 

(dTDP), uridine diphosphate glucose/galactose (UDP(G) and Acetyl CoA were 

tentatively identified in Pseudomonas aeruginosa and deoxyribose adenine diphosphate 

(dADP) , deoxyribose adenine triphosphate (dATP), deoxyribose cytidine diphosphate 

(dCDP), deoxyribose thymine monophosphate (dTMP), deoxyribose thymine 

triphosphate (dTTP), uridine diphosphate glucose/galactose (UDP(G) and Acetyl CoA 

were tentatively identified in Escherichia coli MG 1655 . Identification was undertaken 

by examining the EPI spectrum for ions observed in previously in the literature or in 

structurally similar reference standards, ie AMP and dAMP. See section 2.3.7.1 

There appear to be few analytical approaches that have performed a wide profile of 

nucleotides in biological materials, so it is difficult to make an absolute comparison 

between intracellular analytes detected here and those previously reported. Furthermore, 

it has been reported that comparisons between nucleotides from bacterial samples that 

have been extracted by different protocols can produce different results (Buckstein et aI., 

2008). Nevertheless, one published technique has demonstrated a method to quantify a 

relatively large profile of intracellular nucleotides from Escherichia coli MG 1655 

(Buckstein et aI., 2008), for which comparisons can be made. The overlap of nucleotides 

identified compares well with those observed by the precursor ion method, identifying 

ADP, UDP, ATP, UTP, CTP, GTP, FAD, dATP, dTTP, UDP(G) and acetyl CoA. 
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However, CDP, GDP, cCDP and dTMP identified in this chapter were not identified in 

the previously reported Escherichia coli MG1655 extract, nor were any monophospates 

as reference standards were not used. The triphosphates have also been identified 

previously in Escherichia coli using HPLC and UV (Dutta and O'Donovan, 1987). 

CMP, NADP, NADH, NADPH, cAMP and cGMP were not detected by the precursor ion 

methodology, suggesting that if they are present in the Escherichia coli extracts, they are 

below the limit of quantification. Both dTMP and dCDP, tentatively identified by this 

method, have been previously observed in Escherichia coli MG 1655 (Sandlie and 

Kleppe, 1982; Weiss, 2007). The triphosphates observed in the Pseudomonas aentginosa 

extracts here have been observed previously (Dutta and O'Donovan, 1987). Furthermore, 

AMP, ADP and ATP have all been previously identified in Pseudomonas aeruginosa as 

part of an effort to optimize extraction (Lundin and Thore, 1975). Overall, the method 

based on the precursor ion scan of the phosphate group (coupled with EPI spectra) 

profiled a greater number of nucleotides than previously observed by targeted methods. 

2.3.7.1 Arguments for the tentative nucleotide identification of certain nucleotide in 

bacterial samples 

The nucleotide dAMP was tentatively identified in Pseudomonas aeruginosa by the EPI 

spectra Figure 2.15. The pseudomolecular ion at mlz 330.1 is as expected for the [M-Hr 

ion. A low intensity ion at mlz 195 could be a cleavage between the base and the ribose 

sugar resulting in an ionised deoxyribose group with one phosphate. The product ion mlz 

134 ion is indicative of adenine and has been previously observed for structurally similar 

analyte AMP and cAMP (Cordell et at., 2008; Witters et at., 1996). The ions mlz 79 and 

97 are present, indicative of a phosphate moiety, and have previously been reported for 

structurally similar nucleotide AMP (Cordell et aI., 2008; Tuytten et at., 2002). 

Tentative identification of dCDP was made in both Escherichia coli MG 1655 and 

Pseudomonas aeruginosa by the EPI spectra, see Figure 2.15 (only spectrum of deop 

from Escherichia coli MG 1655 shown for sake of repetition). The pseudomolecular ion 
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Figure 2.15 EPI spectra of tentatively identified (a) dAMP in Pseudomonas aeruginosa and (b) dCDP in Pseudomonas aeruginosa and Escherichia coli 

MG1655. Tentative identification was obtained using the precursor ion survey scan (mlz 79) and EPI spectra. 
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[M-Hr at mlz 386 is as expected. An mlz 79 is observed along with an mlz 159 ion, 

indicating the presence of at least two phosphate groups. Both ions have been previously 

identified as phosphate product ions of CDP, the ribose fonn of this nucleotide (Cordell 

et al., 2008; Tuytten et al., 2002). There lack of both a base ion and the ion comprised of 

two phosphates and a ribose sugar (-H20) observed in CDP could make this identification 

a little weak. 

dTDP was tentatively identified in Pseudomonas aeruginosa by the resulting product ion 

spectra Figure 2.16. The pseudomolecular ion matches the expected [M-Hr. An ion at 

mlz 275 is detected and is consistent with a deoxyribose and two phosphates. There is no 

observable ion indicative of the thymine base; however it is seen as a neutral loss with the 

cleavage of the mlz 275 from the pseudomolecular ion. A mlz 79 is observed along with 

an mlz 159 ion, indicating the presence of at least two phosphate groups. A mlz 79 has 

previously been shown previously to result from the loss of [P03r from nucleotide 

(Cordell et aI., 2008) where mlz 159 has been identified to be resulting from dTTP 

(Hennere et aI., 2003) 

UDP(G) was tentatively identified in both Escherichia coli MG1655 and Pseudomonas 

aeruginosa by the resulting EPI spectra (see Figure 2.16. Only the spectrum from 

Escherichia coli MG 1655 is shown for sake of repetition). The identification of the 

tenninal sugar, whether it was glucose or galactose, could not be established. The 

difference between the two sugars is the orientation of the hydroxyl groups and, as such, 

identification by the methodology described in this chapter was not possible. The 

pseudomolecular ion matches the expected [M-Hr and has been previously reported 

(Coulier et aI., 2006). The EPI spectra of tentatively identified UDP(G) and UDP 

reference standard (see Figure 2.9) have strong similarities. Both fragment to fonn mlz 79 

and m/z 159 ion, indicating the presence of phosphate moieties (Cordell et al., 2008; 

Tuytten et al., 2002). A mlz 273 ion is also observed, as with all di and tri phosphate 

nucleotides observed in this chapter, indicating the presence of two or more phosphate 

moieties plus a ribose sugar. The base ion is also observed at m/~ 111. An ion at mlz 403 

is probably the result of a cleavage between the tenninal phosphate and the glucose, 
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Figure 2.16. EPI spectra of tentatively identified dTDP from (a) Pseudomonas aeruginosa and (b) UDP(G) from Pseudomonas aeruginosa and 

Escherichia coli MG1655 . Tentative identification was obtained using the precursor ion survey scan (mlz 79) and EPI spectra. 
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fonning UDP as an ion. 

Acetyl CoA was tentatively identified again in both Escherichia coli MG 1655 and 

Pseudomonas aeruginosa extract; EPI spectrum can be found in Figure 2.17. The EPI 

spectra appears to have a number of ions in common with ADP and has aided in the 

identification. Where Acetyl CoA has been studied in the past by MS, it has 

predominantly but not exclusively been under ESI+ conditions (Burns et aI., 2005; Gao et 

al., 2007; Kaushik et al., 2009). The pseudomolecular ion matches the expected [M-Hr 

of 808.1 and has been previously reported (Coulier et aI., 2006). The ion at mlz 728 

would fit the ion with the loss of [P03H2] from position 2 of the ribose sugar. The ion at 

mlz 408, previously observed as a product ion of acetyl Co A (Hennere et aI., 2003) could 

be the fonnation of ADP after the loss of [P04H2] from position 2 of the ribose sugar. 

An ion at mlz 159 is observed indicating the presence of two or more phosphate moieties. 

Furthennore, an ion at mlz 273 is present, indicating two or more phosphate moieties plus 

a ribose sugar. The adenine base is observed, although relatively small, at mlz 134. 

Tentative identification of dADP was made in Escherichia coli MG 1655 extract by the 

resulting EPI spectra, see Figure 2.18. and shares similar product ions with the EPI 

spectra of ADP; see Figure 2.18. The pseudomolecular ion at mlz 410.0 was as expected 

for the [M-Hr ion. A low intensity ion at mlz 275 was indicative of the deoxyribose 

joined to two phosphate groups, where the mlz 134 ion was indicative of adenine. An 

mlz 79 [P03 -] was present indicating one phosphate group as observed with ADP (Cordell 

et aI., 2008) as was mlz 159, previously observed in triphosphate and thought to be 

[HP20 6L indicative of two phosphate groups (Tuytten et aI., 2002). 

Tentatively identified dA TP also demonstrates structurally infonnative EPI spectra; see 

Figure 2.18, a demonstrates similarities to ATP. The pseudomolecular ion at mlz 490.0 

was as expected for the [M-Hr ion (Chen et aI., 2009). A mlz 79 ion is present, albeit at 

a low intensity, along with mlz 159, indicating two or more phosphate moieties and was 

previously observed (Hennere et aI., 2003). An ion at mlz 329 was observed and has 

been previously reported as the result of the tenninal phosphate [P04H3] lost as neutral 
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Figure 2.17. EPI spectra of tentatively identified Acetyl CoA in Pseudomonas aeruginosa and Escherichia coli MG1655. Tentative identification 

was obtained using the precursor ion survey scan (mlz 79) and EPI spectra. Location of the charge is a best estimate. 
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Figure 2.18. EPI spectra of tentatively identified of (a) dADP and (b) dA TP in Escherichia coli MG 1655. Tentative identification was obtained 

using the precursor ion survey scan (mlz 79) and EPI spectra. 
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(Chen et aI., 2009) Additionally mlz 275 is detected, indicative of the deoxyribose joined 

to two phosphate groups. dTMP has a relatively simple EPI spectra, as do the other 

monophosphates observed in this chapter; see Figure 2.19. The pseudomolecular ion at 

mlz 321.1 was as expected for the [M -Hr ion. The cleavage yielding a mlz 79.0 ion 

indicates a phosphate moiety where the ion at mlz 195.1 is most likely the cleavage of the 

base as a neutral, leaving the deoxyribose adjoined to a phosphate as an ion. A small 

base ion is observed at mlz 125.1, but it is likely most of the base is lost as a neutral 

through the generation of mlz 195 ion. 

The EPI spectra of dTTP is more informative than dTMP; see Figure 2.19. The 

pseudomolecular ion at mlz 481.0 was as expected for the [M-Hr ion (Chen et aI., 2009). 

A small mlz 79 [P03 -] phosphate ion is observed. The ion mlz 159 [HP206nS observed 

and indicative of two phosphates and has been previously observed in the CID product 

ion spectrum of dTTP (Hennere et aI., 2003). An ion indicative of the loss of the terminal 

phosphate group as a neutral [P04H3] is observed at mlz 383 and has been previously 

assigned (Chen et aI., 2009). Intestinally no thymine base ion is observed, nor is a neutral 

loss seen. However, it could be speculated that the ion associated with the neutral loss of 

the thymine base underwent further fragmentation, losing a phosphate moiety and 

forming the ion at mlz 275. 

It is worth noting that AMP, ADP and ATP have the same molecular formula as dGMP, 

dGDP and dGTP respectively and therefore would be isobaric and could not be 

discriminated by their respective pseudomolecular ions. Deoxyribose guanine standards 

were not available at the time of this work and so identification by retention times could 

not be ascertained although it is unlikely that AxP and dGxP would coelute because of 

structural differences. Furthermore, it would be expected that dGMP, dGDP and dGTP 

would fragment under CID to form a base ion at mlz 150 as observed for GMP, GDP and 

GTP reference standards and cGMP (Witters et aI., 1996). As this ion was not observed 

in any EPI spectra or AMP, ADP, and ATP spectra, it is assumed that if present, these 

three deoxyribose guanine nucleotides were below the limit of detection. 
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Figure 2.19. EPI spectra of tentatively identified of (a) dTMP and (b) dTTP in Escherichia coli MG1655. Tentative identification was obtained 

using the precursor ion survey scan (mlz 79) and confirmation based on the EPI spectra. 
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2.3.8 Additional analytes containing a phosphate group 

Where a number of nucleotides and tentatively identified nucleotides have been 

successfully profiled in the two bacterial samples, a wide number of other analytes have 

also triggered the enhanced production ion scan. In both Pseudomonas aernginosa and 

Escherichia coli MG 1655 samples, conservatively 70 other compounds triggered an 

enhanced production ion scan due to the presence of a phosphate group, see Table 2.9 

and Table 2.10. These spectra have a number of product ions coupled with a extracted 

ion chromatographic peak of an S:N of at least 3: 1. It was not possible to identify these 

analytes as nucleotides and hence, the majority of phosphate containing metabolites 

remain unidentified. 

There are a number of possible classes of compounds the unidentified analytes could 

belong to. Glycerophospholipids, for example, are prevalent in the cell walls of gram 

negative bacteria (Nikaido and Vaara, 1985; Stryer, 1999) and it has been demonstrated 

that at least one subclass of glycerophospholipids (See Figure 2.20) can undergo CID to 

generate an mlz 79 with the appropriate collision energ/. 
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Figure 2.20. Diacylglycerophospbate and monoacylglyceropbospbate bave been demonstrated to 

fragment yielding a mlz 79 product ion under CID . 
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Table 2.9. Unidentified analytes containing a phosphate, detected in Pseudomonas aeruginosa using the precursor ion survey scan coupled with 

EPI spectra. Analytes in italics are possibly the same compound, differing by [M-Hr and [M+Na-2Hr adducts. Such adducts have been 

previously reported in ESr (Keller et ai., 2008; Tong et ai., 1999) 

Unknowns detected in Pseudomonas aeruginosa extract 

Analyte (mlz) Retention time (min) Charge state Analtye (mlz) Retention time (min) Charge state 

296.8 1.3 1 606 9.2 1 

245.2 2.5 1 618 9.5 1 

293 3.3 1 547.1 9.7 1 

412.8 3.8 1 442 10.8 1 

292.9 4.2 1 448 11.6 1 

314.9 4.3 1 661.1 12.4 1 

412.8 4.64 1 678.1 12.7 1 

292.8 4.8 1 595.7 13.9 2 

390.8 4.8 1 399.1 14.0 1 

456.9 5.2 1 549.3 15.2 1 

562.1 6.1 1 535.1 15.3 2 

531.1 6.8 1 432.5 17.0 2 

565.1 7.0 1 660.8 18.8 2 

466 8.8 1 483.6 22.2 2 
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Table 2.10. Unidentified analytes containing a phosphate, detected in Escherichia coli MG1655 using the precursor ion survey scan coupled 

with EPI spectra. Analytes in italics are possibly the same compound, differing by [M-Hr and [M+Na-2Hr adducts. Such adducts have been 

previously reported in ESr (Keller et al., 2008; Tong et al., 1999) 

Analyte (mlz) Retention time (min) 

562.6 4.4 

289 5.7 

259.9 5.8 

261 6.4 

259 6.6 

288.9 6.8 

587 7.3 

241 7.3 

606.1 7.6 

625.3 7.9 

563.1 8.3 

565 8.9 

394.8 9.0 

618.2 9.5 

640.2 9.5 

618.2 9.5 

547.1 9.7 

569.1 9.9 

302 10 

321.1 10.1 

547.1 10.3 

512.8 11.7 

207.5 12.1 

Unknowns detected in Escherichia coli MG1655 extract 

Charge state 

1 

1 

1 

1 

1 

Analyte (mlz) 

329.9 

363 

423.9 

678.1 

700 

463.9 

424 

595.7 

339 

495.1 

490 

417 

535.1 

382.5 

403.8 

725.1 

560.1 

731.3 

660.7 

775.4 

509.7 

765.1 

Retention time (min) 

12.5 

12.6 

12.7 

13.3 

13.4 

13.5 

13.8 

15.2 

15.4 

15.8 

16.0 

16.7 

17.9 

18.4 

18.9 

20.0 

20.2 

20.3 

20.9 

21.4 

21.56 

21.6 

Charge state 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

3 

2 
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There are a number of other glycerophospholipids subclasses present in a biological 

system that could also, in theory, trigger an EPI scan due to the presence of a phosphate 

moiety. The use of the hexane in the extraction process is likely to have removed a 

number of lipids from the extract (Cordell et aI., 2008) and precludes them from being 

the additional source of endogenous phosphate moieties, however, they demonstrate that 

other phosphate containing compounds can breakdown under CID to generate a mlz 79 

product ion. Another class of endogenous metabolites to contain phosphate metabolites 

are the phosphorylated carbohydrates involved in glycolysis, the conversion of glucose 

into pyruvate. Glucose-6-phosphate, fructose 1,6-bisphosphate and 6-phosphogluconate 

are representative of the small molecules involved in this wide spread metabolomic 

pathway (Stryer, 1999). These molecules contain one or more phosphates and have been 

demonstrated to fragment under CID to form mlz 79 [P03r and / or mlz 97 [H2P03] - and 

have been found in Escherichia Coli K12 (Buchholz et aI., 2001). 

It is worth noting that some co-eluting analytes in Table 2.9 and Table 2.10 (highlighted 

in bold) are probably different adducts of the same compound. Each pair is 22 amu apart 

and might be the result of a deprotonated molecule [M-Hr and a doubly deprotonated 

molecule with the addition of a sodium adduct [M+Na-2Hr. Although the latter adduct 

has been previously reported (Keller et at., 2008; Tong et al., 1999), it might be rather 

unusual. 

It could be said that the prevalence of the phosphate group in biological systems 

demonstrates a limitation of the methodology when applied solely to the analysis of 

nucleotides. Where the approach taken in this chapter has successfully identified a 

number of nucleotides in bacterial samples and tentatively identified others, the method is 

not selective for the detection of nucleotides alone because of the prevalence of the 

phosphate group in many endogenous compounds. Where such analytes can, on the most 

part, be distinguished from nucleotides, their presence causes the data analysis task to be 

considerably more complex and time consuming. 

82 



2.4 Conclusion 

The analytical approach taken in this chapter has been to use the QqQLit mass 

spectrometer for the analysis of phosphate containing endogenous analytes, although the 

analysis has been predominantly focused towards nucleotides and structural analogs. By 

the use of a precursor ion scan, coupled with full product ion spectra, known analytes and 

analytes for which reference standards were not immediately available were identified. 

By monitoring a common structural moiety, the methodology is not as targeted as SRM 

approaches commonly taken, consequently, the scope of analytes identified is not limited 

by the availability of reference standards. In comparison to a previous, relatively broad 

targeted method (Buckstein et aI., 2008), analyzing nucleotide in Escherichia coli 

MG1655, the method described in this chapter compared well. All analytes identified in 

that previous work were identified by the method described in this chapter; furthermore, a 

number of deoxy nucleotides were also identified. As such this method is advantageous 

over other methods currently purposed for nucleotide analysis. Where previous methods 

have led a targeted approach, in most instances the scope of analytes has been relatively 

limited, this approach is not so reliant on reference standards and as such a greater 

number of nucleotides and structurally related analytes have been identified in one 

method than previously reported. 

If this method was to be applied to answer biological questions, the identification of those 

analytes tentative ascertained would be required. This could be achieved by the 

purchasing of standards and comparing product ions spectra or, if difficult to obtain, by 

obtaining the accurate mass of those endogenous compounds by TOF or FTICR to obtain 

a likely empirical formula. 

The precursor ion survey scan speed was assessed on the basis of mass accuracy with the 

aim of removing the enhanced resolution scan if redundant. It was found that the mass 

accuracy of the precursor ion scan was dependant on scan speed, and the speed 

recommended by the software gave the best accuracy of +0.2amu. Faster precursor ion 
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scan could be used, although the resulting mass shift should be remembered when 

interpreting the results. Furthermore, the enhanced resolution step provides greater 

resolution of the pseudomolecular ions of interest, allowing the charge state to be 

identified. The precision of extracted ion peak areas obtained from a precursor ion scan 

was also assessed. Although the speeds assessed were too slow for reproducible 

measurements to be made, by increasing the scan speed an improvement in precision was 

observed. Quantification of nucleotides by a precursor ion scan could in theory be 

achievable by increasing the scan speeds further if such an approach was required, 

although knowledge of the resulting mass shift would be needed. 

Where nucleotides have been the focus of the work in this chapter, the phosphate moiety 

has been the target for this method and it is clear that a wider range of phosphate 

containing analytes have been identified other than nucleotides alone. Although 

commonly found in glycerolphosolipids, these lipids had to be removed during extraction 

due to the overwhelming signal produced and detrimental effect on chromatography. 

However, other endogenous phosphate containing compounds are likely to be present and 

contribute to the wide number of unknowns detected. Phosphorylated carbohydrates and 

nucleotide sugar have all been previously demonstrated to fragment under the correct 

CID conditions to yield a mlz 79 ion. Where the tentative identification of nucleotides, 

for which reference standards were not immediately available, was achieved by an 

understanding of the CID product ion spectra, this was difficult for other classes of 

analytes without a knowledge of prominent product ions. Hence, if this approach were to 

be more focused on other such analytes, the use of reference standards would be required 

to understand the resulting fragmentation patters. A full range of reference standards is 

not required but rather enough to understand likely product ions. 

The scope of the methodology outlined in this chapter falls wider than profiling of just 

endogenous metabolites. The use of the precursor ion scanning method has found 

application in the field of proteomics, specifically in the analysis of phosphorlayted 

proteins. Where a number of MS approaches have been applied to the analysis of these 

proteins and peptide digests, a mlz 79 product ions have been observed for 
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phosphorlayted amino acids serine, threonine and, tyrosine (Annan et al., 2001; Ede1son

Averbukh et al., 2006). Furthermore a similar approach outlined in this chapter, 

employing the QqQLit to monitor mlz 79 product ions, has been applied to the analysis of 

phosphorlayted peptides (Williamson et al., 2006). 

It has been demonstrated here that the approach of targeting a common structural moiety 

can be a successful method for the profiling of endogenous metabolites. Where this 

method has been used to profile nuc1eotides, there are other endogenous families of 

metabolites for which this method could equally be applied, and its application to two 

related families ofbioactive lipids is considered in the next chapters of this thesis. 
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CHAPTER 3 
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3 Investigation of endocannabinoids and structural 

analogs using the QqQLIT 

3.1 Introduction 

N-acylethanolamines (NABs) and mono-acylglycerols (MAGs) are lipid classes of which 

some specific compounds are known to act as signaling molecules in the nervous system 

(on CB1 and CB2 receptors) and other tissues/organs (Devane et aI., 1992). The most 

widely known of these endocannabinoids are N-arachidonylethanolamine (anandamide, 

ABA C20:4 ethanolamine) and 2-arachidonylglycerol (2-AG, C20:4 glycerol). 

Structurally similar compounds N-palmitoylethanolmine (PEA, C16:0 ethanolamine), N

oleoylethanolamine (OEA, C18:1 ethanolamine) and 2-linoleoyl glycerol (2-LG, C18:2 

glycerol) can modulate the effect of ABA C20:4 and 2-AG C20:4 via competition for 

catabolic pathways but are not agonists for CB 1 and CB2 receptors and have been called 

entourage compounds (Ben-Shabat et at., 1998; Di Marzo, 1998; Hanus et at., 2001; 

Porter et at., 2002; Sugiura et at., 1995); see Figure 3.1. These classes of compounds are 

comprised of an acyl chain of varying length and degree of saturation coupled to an 

ethanolamine or glycerol moiety. Previous studies have identified a range of NABs and 

MAGs in mammalian tissue (Fu et aI., 2007; Kondo et at., 1998a; Mechoulam et at., 

1995), but relatively few of these have been investigated for pharmacological and 

physiological relevance. The presence of a wide range of N-acylethanolamines (NAB) 

and mono-acylglycerols (MAG) with acyl chains of differing length and degrees of 

saturation suggest that mammalian tissues can synthesize these compounds from a range 

of precursor lipids. Despite the discovery of several bioactive NABs and MAGs, there 

have been few detailed studies of the NAB and MAG profiles of tissues/organs in 

mammalian species (Huang et at., 2001; Saghatelian et at., 2004). The reason for this 

absence of information is mainly due to the lack of suitable analytical methods to provide 

comprehensive profiling of the individual members of the of NAB and MAG lipid 

groups. 
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3.1.1 Nomenclature 

Endocannabinoids have been referred to in the literature by a number of nomenclatures. 

Full systematic names and shorthand names and nomenclatures are all commonly used 

when describing lipids, detailing the number of carbons, double bonds and positioning of 

double bonds. For this work the latter approach will be taken, following the method set 

out for naming fatty acids (IUPAC-IUBMB, 1992), and which has also been previously 

used to describe endocannabinoids (Leung et aI., 2006; Saghatelian and Cravatt, 2005). 

For example, N-acylethanolamine C20:4 n-6 describes a compound with 20 carbons 

counting from the carbonyl group. The 4 depicts 4 double bonds and n-6 describes the 

position of the first double bond, counting from terminal carbon. Further double bonds 

have a saturated carbon in between. As NAEs and MAG have similar structures apart 

from the end moiety, NAE or MAG will be placed before the name. Additionally, short 

hand names for some of the more commonly studied analytes will be used. 

3.1.2 Endocannabinoids and their biological action 

Interest in these endogenous lipid classes has arisen due to their affinity for and ability to 

modulate the cannabinoid receptors 1 and 2 (CB 1 and CB2) and G-protein-coupled 

receptors found in mammalian tissue (Mathews et ai., 1998). CB 1 receptors are 

predominantly found in the central nervous system (CNS) in the end terminus of nerve 

cells. These receptors are also detected in the pituitary gland, immune cells and 

reproductive tissues. CB2 occurs predominately in immune cells but not exclusively, 

having also been identified in the CNS (Howlett, 2002; Pertwee, 2006). 

The role of the CB 1 receptor and its associated agonists on the CNS has been of interest 

due to its effect on pain relief (Jhaveri et aI., 2006; Walker and Huang, 2002; Walker et 

al., 2002). Activation of the CB 1 receptors limits neurotransmitters crossing the 

presynaptic cleft by modulating function of Ca2+ and Na+ channels. See Figure 3.2 for a 

diagrammatical description (Rea et al., 2007). 
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Endocannabinoids have been identified to have roles outside pain. Embroyonic 

development may also appear be affected by this class of compounds. Work reported in 

the literature (Maccarrone et aI., 2000) demonstrated a link between decreased expression 

and inactivity of fatty acid amide hydrolase (a major metabolic route for AEA) in 

peripheral lymphocytes and an increased risk of miscarriage. It has been demonstrated 

that boar spermatozoa contain ABA, CB 1 receptors and also N

acylphosphatidylethanolamine-selective phospholipase D (NAPE) and fatty acid amide 

hydrolase (F AAH), enzymes involved in the synthesis and metabolism of AEA 

(Maccarrone et aI., 2005). Endocannabinoids have also been demonstrated to affect 

appetite (Mechoulam et aI., 2006) and have been linked to obesity (Sharkey, 2006). 

The biosynthetic pathway for NABs and MAGs are only partially understood (Ahn et ai., 

2008; Simon and Cravatt, 2008) at this time. Known routes for synthesis and degradation 

are described in Figure 3.3. These include metabolic pathways demonstrated in vitro but 

not been observed in vivo. Metabolic pathways are similar to arachidonic acid, which is a 

precursor of many biologically active compounds. The involvement of endocannabinoid 

signaling in a variety of different pathways has triggered a need to measure changes in 

endocannabinoid levels in tissues. 

3.1.3 Measurement of Endocannabinoids 

The analysis of endocannabinoids in biological tissues provides information as to the 

basal levels of compounds of interest and to changes that may occur following 

interventions. For such analysis, methodologies must be sensitive, selective and robust. 

Sensitivity is particularly important in the analysis of endocannabinoids, as some analytes 

are detected in the low pmol/g concentration range (Richardson et aI., 2007; Williams et 

ai.,2007). The most prevalent tool for the analysis of endocannabinoids to date has been 

chromatography coupled with mass spectrometry. 

The methodologies employed in the analysis of endocannabinoids in biological tissues to 

date fall under three broad categories: 
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Figure 3.2 - A diagram describing the role of endocannabinoids and CBI receptors on the mediation 

of neurotransmitters. Anandamide (AEA C20:4) and 2-arachidonylglycerol (2-AG C20:4) are 

synthesized on demand following an increase of Ca ++ from activation of a postsynaptic ion channel. 

Ca ++ levels cause the formation of N-acyl phosphatidylethanolamine (NAPE) from 

phosphatidylethanolamine (PhosEA) and phosphatidylcholine (PhosC) via the N-acyltransferase 

(NAT). 2-AG is synthesized from diacylglycerol (DAG) to 2-AG by diacylglycerol lipase (DGL). 

Both AEA and 2-AG travel to the presynaptic neuron where CB receptors are activated, which in 

turn inhibit Ca ++ channels and reduce neural activity. 2-AG is metaboli zed by monoacylglycerol 

lipase (MGL) to arachidonyl acid and glycerol where AEA is metabolized by fat ty acid amide 

hydrolase (FAAH) to arachidonic acid and ethanolamine. The diagram was obtained from the 

literature (Rea et aI. , 2007) and reproduced with the kind permission of Dr David Finn. 
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• Targeted, which relies upon the use of standards to optimize the instrument for 

source/ion optic voltages as well collision energies. Additionally, the 

fragmentation pattern of each compound is required before selecting the transition 

ions for multiple reaction monitoring (SRM). Not all standards are commercially 

available or easily synthesized. 

• Global. Reliant on either a knowledge of compounds of interest or studying two 

or more different biological samples and identifying differences. Access to a 

comprehensive list of standards is not a pre-requisite for such an approach 

• Hypothesizing possible compounds and confirming those by the use of accurate 

mass and the fragmentation patterns compared to standards. 

The coupling of chromatography and mass spectrometry can take a number of forms, but 

the two that have been most widely used in the analysis of endocannabinoids are GC-MS 

and LC-MS or LC-MS/MS. Several groups have successfully employed GC-MS in the 

analysis of endocannabinoids from biological tissues (Bisogno et at., 1997; Fontana et 

aI., 1995; Kondo et at., 1998a; Maccarrone et aI., 2001; Obata et aI., 2003). While this 

technique has been successfully used, prior to analysis a lengthy derivatization step is 

required as well as extraction and purification, making this a complex and difficult 

procedure. LC-MS alternatively does not require a derivatization step and is therefore 

advantageous in comparison to GC-MS. Furthermore, the use of LC-MSIMS adds a 

further mass filter that GC-MS does not process, improving sensitivity and selectivity. 

Early methods of endocannabinoid analysis used single quadrupole instruments (Carrier 

et aI., 2004; de Lago et at., 2005; Huang et at., 1999; Wagner et aI., 2001). Identification 

was based on the parent ion mass to charge (mlz) ration and retention time compared to 

standards. Such methodologies required a targeted approach with an understanding of 

the analytes of interest prior to analysis. With the use of triple quadrupoles, greater 

selectivity and sensitivity have been achieved and a number of targeted, quantitative 

methods have been reported in recent years 
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Figure 3.3. Biosynthetic and metabolomic pathways of AEA and 2-AG from in vitro and in vivo 

studies. Metabolomic pathways are similar to arachidonic acid, which metabolizes to form 

biologically active compounds. Abbreviations are N-acyl-phosphatidylethanolamines (NAPE), 

glycerophopspho-N-arachidonoylethanolamine (GP-NArE), fatty acid amide hydrolase (FAAH), N

acylethanolamine-hydrolyzing acid amidase (NAAA), cyclooxygenase (COX), lipoxygenases (LOX), 

cytochrome P450 (CP450), hydroxyeicosatetraenoic acid ethanolamine (HETE-EA), 

epoxyeicosatrienoic acid ethanolamine (ETE-EA), monoacylglycerol lipase (MAGL) and 

diacylglycerol lipase (DAGL). Based on information in publications (Abn et al., 2008; Moody et al., 

2001; Simon and Cravatt, 2008; Snider et al., 2007; Tsuboi et al., 2007; Yu et al., 1997) 
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(Felder et al., 1996; Kingsley and Marnett, 2007; Movahed et al., 2005; Richardson et 

al., 2007; Vogeser et al., 2006; Vogeser and Schelling, 2007; Williams et ai., 2007). Ion 

traps have also been employed in this field, providing targeted analysis with the 

additional benefit of full product ion spectra for greater selectivity (Fu et ai., 2007; 

Hansen et aI., 2001). A global approach, identifying known and novel endocannabinoids, 

was demonstrated using a mass spectrometer to scan through potential analytes rather 

than specifying those of interest beforehand (Saghatelian and Cravatt, 2005; Saghatelian 

et al., 2004). By the comparison of tissues from wild type and FAAH (an enzyme known 

to catabolise ABA C20:4 among other NABs) defective mice, the pseudomolecular ions 

of NABs and MAGs varying in concentrations were identified and quantified. 

Additionally, a novel class of compounds was detected, containing compounds that were 

also substrates of F AAH; the N-acyl taurines, C22:0, C23:0, C24:0 and C24: 1. Further 

work was required to identify the novel class and Fourier-transform ion cyclotron 

resonance mass spectrometry (FT-ICR) was employed to obtain an accurate mass 

measurement and consequently an empirical formula. Standards were subsequently 

synthesized and the MS/MS spectra compared against those observed in biological 

tissues. 

Further work again employed an untargeted global approach to investigate tissues from 

wild type and fatty acid amide hydrolase defective mice (Mulder and Cravatt, 2006). 

This work led to the identification of O-phoshorylcholine-ABA and a proposed 

alternative route for NAE catabolism. 

A different methodology to identify novel endocannabinoids has been used with some 

success (Huang et aI., 2001). Using LC coupled with an ion trap and a Q-TOF, 

hypothetical endocannabinoid structures were studied and subsequently targeted III 

extracted bovine brain. This approach heralded the discovery of N-arachidonyl y

aminobutyric acid and N-arachidonylalanine. The use of accurate mass and product ion 

spectra from both an ion trap and Q-TOF enhanced identification. Such an approach has 

the obvious limitation that it is reliant on correctly hypothesizing unknown structures. 
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3.1.3.1 Scope oj Quantitative Analysis 

Since the identification of ABA C20:4 (Devane et al., 1992) and 2-AG C20:4 

(Mechoulam et al., 1995), a number of targeted LC-MSIMS methods have been 

developed to qualify and quantify these compounds in biological tissues. While AEA 

C20:4 was identified as a CBl agonist, docosatetraenylethanolamide (DEA, C22:4) and 

homo-y-linolenylethanolamide (20:3) have also been observed to mediate the CB 1 

receptor (Hanus et al., 1993). However, there are few reported methods which actively 

look for these two CBl agonists alongside AEA and 2-AG C20:4. In fact, a search on 

AEA in Pub Med gives 1947 hits, whereas a search on docosatetraenylethanolamide 

gives 6. Entourage compounds (PEA CI6:0, OEA C18: 1, 2-LG CI8: 1), although not 

active at cannabinoid receptors, can modulate endocannabinoid actions by influencing 

their metabolism (Mechoulam et al., 1998). Again, such compounds are only quantified 

in a relatively small number of targeted approaches (Nomura et al., 2008; Richardson et 

at., 2007; Williams et at., 2007) or identified by global methodologies where metabolism 

was interrupted (Nomura et al., 2008). 

Table 3.1 and Table 3.2 demonstrate the range of N-acylethanolamines and mono

acylglycerols that have either being identified in biological tissue or have been 

synthesized and tested for CB 1 and CB2 activity. The list is pooled from a number of 

publications; as of yet, no one methodology has been demonstrated to identify all of these 

classes of compounds. 

The ability of the QqQLIT instrument to survey for structurally similar compounds, 

coupled with EPI spectra to aid in the identification, could potentially be used in the 

identification of NABs, MAGs and other structurally similar metabolites. As 

demonstrated with nucleotides, compounds with a common structural moiety can be 

identified using the approaches of precursor ion scanning coupled with full product ion 

spectra. NAEs such as anandamide NAE C20:4, OEA NAE CI8:I and PEA NAE CI6:0 

all contain an ethanolamine moiety that could be used in identification. MAGs 2-AG 

C20:4 and 2-LG C18: 1 contain a glycerol moiety that again could be used in 
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identification. Other NABs or MAGs consisting of such moieties should also be 

detectable by such an approach. 

The targeted approaches to date are limited by the need for standards for instrumental 

setup and optimization. The lack of standards covering the range of known NAEs and 

MAGs has limited the scope of these methods. The purpose of this chapter is to access 

the survey scan - product ion scan methodology employed in identifying nucleotides to 

identify NABs and MAGs. The method, identifying NAEs and MAGs by structural 

similarities that each class contains, has the potential to identify a far greater range of 

analytes without the need for standards for each compound. Additionally, it has the 

potential to identify structural analogs which have not been previously identified. 

The role and function of NABs and MAGs in vanous tissues has yet to be fully 

understood and the ability to provide a fuller picture of the analytes present in a given 

tissue will aid in understanding the role of these compounds. 

3.1.4 Aims 

The aims of this chapter were: 

• To establish an analytical method to identify NAEs and MAGs using survey scans 

coupled with full product ion spectra. 

• Apply the methodology to identify known and novel NAEs or MAGs in rat brain. 
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Table 3.1. A list of known NAEs taken from the following publications: (Fontana et al., 1995; Hanus 

et al., 1993; Kondo et al., 1998a; Nomura et al., 2008; Sheskin et al., 1997; Sugiura et al., 1999; 

Sugiura et al., 2000; Williams et al., 2007). 

Acyl Chain Routinely Studied Identified but not Synthesized and assessed for CB 1 

routinely studied / CB2 activity 

C24:1 - ,/ -
C22:6 - ,/ ,/ 

C22:5 - ,/ ,/ 

C22:4 - ,/ ,/ 

C22:1 - - -

C22:0 - ,/ -

AEA C20:4 ,/ ,/ ,/ 

C20:3 - ,/ ,/ 

C20:2 - ,/ 

C20:1 - ,/ ,/ 

C20:0 - ,/ 

C18:2 - ,/ ,/ 

OEA C18:1 ,/ ,/ ,/ 

C18:0 - ,/ ,/ 

PEA C16:0 ,/ ,/ ,/ 
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Table 3.2. A list of known MAGs taken from the following publications: (Hanus et aJ., 1993; Kondo 

et at., 1998a; Nomura et at., 2008; Sheskin et at., 1997; Sugiura et at., 1999; Sugiura et at., 2000; 

Williams et at., 2007) 

Acyl Chain 

C22:6 

C22:5 

C22:4 

C22:1 

C22:0 

C20:5 

2-AG C20:4 

C20:3 

C20:2 

C20:1 

C20:0 

C18:3 

2-LG C18:2 

C18:1 

C18:0 

C16:0 

Routinely Studied Identified but not routinely 

studied 

Synthesized and assessed 

for CB1 I CB2 activity 
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3.2 Methods 

3.2.1 Chemicals 

Acetonitrile, anhydrous chloroform, ethanol, toluene, ethyl acetate, hexane, ammonium 

acetate and formic acid were obtained from Fisher Scientific (Loughborough, UK). 

Anandamide, 2-AG, virodhamine, 2-LG, OEA, PEA, prostaglandin E2 glycerol ester, 

prostaglandin D2 glycerol ester, prostaglandin F2a glycerol ester, deuterated anandamide 

(AEA-d8) and deuterated 2-AG (2-AG-d8) were obtained from Cayman Chemicals/ 

Alexis (Nottingham, UK). Noladin ether was obtained from Tocris Cookson (Bristol, 

UK). HPLC grade water, purified using an Elga system to 18I! (Elga, High Wycombe, 

UK), was used for all experiments. All glassware used in the endocannabinoid extraction 

method was silanized using trichlorotrimethyl silane, obtained from Sigma-Aldrich 

(Steinheim, Germany), followed by wash stages with toluene and then methanol prior to 

use. All solvents and chemicals were of HPLC grade or higher. 

Mobile phases were filtered using 0.47 ~m nylon filters (Whatman, Maidstone, UK) 

before use. 

3.2.2 Tissue collection 

Whole brains were collected from Sprague-Dawley rats (Charles River, UK, fed on 2018 

teklad global 18% protein rodent diet). The animals were stunned by a blow to the head 

followed rapidly by decapitation, typically within 3--4 seconds. Brain tissues were 

immediately collected and frozen on dry ice. All samples were stored at -80°C until 

required. Tissue collection was carried out by Professor David Kendall and Dr. Victoria 

Chapman, School of Biomedical Sciences, University of Nottingham 
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3.2.3 Tissue extraction 

Tissues were extracted by a previously published method (Richardson et aI., 2007). The 

left hemisphere of each brain was homogenized by hand in a silanized glass homogenizer 

in 8 ml of ethyl acetate I hexane (9:1 v/v). Water (10% of extracted volume) was added 

and the content transferred to a centrifuge tube. Centrifugation was performed at 7000 x 

g for 15 min and the temperature maintained at 4°C, resulting in two layers. The 

supernatant was removed and the process repeated a further two times to optimize 

recovery. Supernatants were then subsequently pooled and the solvent removed by 

centrifugal evaporation, set at room temperature, for approximately 40 min. 

3.2.4 Preparation of standards 

ABA, ABA-d8, OEA and PEA ImM stock solutions were prepared in ethanol. 2-AG, 

AG-d8 and 2-LG were prepared in acetonitrile. All stock solutions were stored at -80°C 

and diluted as appropriate in ethanol, acetonitrile or mobile phase immediately before 

sample preparation and analysis. 

3.2.5 LC-MS/MS instrumentation and conditions 

All survey and MS/MS experiments were conducted on a 4000 QTRAP® (QqQLit) 

(Applied Biosystem, Foster City, CA, USA) equipped with a TurboIon source used in 

positive ion electro spray mode. A Windows XP (Microsoft, Redmond, W A, USA) 

workstation running Analyst (version 1.4.1) was used for data acquisition and processing. 

Accurate mass measurements were conducted on a Waters Q-TOF (Waters, UK) and 

controlled by a Windows XP workstation running MassLynx (version 1.4). Initial 

instrument setup was performed by direct infusions of standards ABA and 2-AG (25JlM). 

Masses between mlz 60 and 1000 were collected using a ramped cone voltage of 18 and 

25 v. The instrument was run in single stage MS mode with the reflector set to V 

formation. Monoisotopic masses of potential NABs and MAGs were obtained and 
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compared against theoretical values. The difference was reported in parts per million 

(ppm) (Huang et aI., 2001) and calculated as follows: 

ppm = (measured mass - theoretical mass / theoretical mass) * 106 

3.2.5.1 MS parameters 

Initial instrumental settings were obtained using direct infusion of AEA, OEA, PEA and 

2-AG in 1: 1 (v/v) mobile phase A and B. All compounds form strong [M+Ht pseudo 

molecular ions. 

3.2.5.2 Declustering potential 

Declustering potential (DP) is a manufacture-specific name for the voltage applied to 

draw ions into the mass spectrometer from the ionsource (referred to as cone voltage by 

other instrument manufacturers). The DP can have a profound effect on the sensitivity of 

a method: too low a value and too few ions are drawn in, too high and the ions can 

fragment prior to reaching the first quadrupole and are not detected. The DP applied for 

the survey scan methodology was required to cover the range of known and potentially 

unknowns analytes found in biological tissues. Using NAE standards, the optimum DP 

was assessed. 

The optimum DP for each of the standards was obtained by direct infusion of standards in 

50:50 (v/v) mobile phase A:B and fitted with an ESI source in positive mode while 

systematically increasing the declustering potential from 0 to 400 V. The DP for 

ethanolamine survey scans was set at 60 V and at 90 V for the glycerol survey scan. 

3.2.5.3 Survey scan collision energy 

PI or NL survey scans are designed to identify a specific mlz product ion or neutral loss 

resulting from CID fragmentation of the pseudomolecular ion. One parameter crucial for 

the formation of these ions is the collision energy (CE), not to be confused with the CE 
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associated with the EPI scan following a PI or NL scan, which is separate. As with the 

DP, to establish the optimum CE for NAEs and MAGs, reference standards were 

employed. 

AEA C20:4, OEA CI8:l, PEA C16:0 and 2-AG C20:4 were infused, the collision energy 

increased between 5 and 130 volts and the intensity of the product ion mlz 62 

(ethanolamine moiety) for NAEs and mlz 287 for MAGs was plotted. A CE of 35V was 

selected for NAEs and 20 V for MAGs. 

3.2.5.4 Precursor ion and neutral loss scan parameters 

The mlz 62 precursor ion scan ranged from 200 to 800 amu in 2 seconds and the mlz 92 

neutral loss scan ranged from 200 to 800 amu in 2.2 seconds. In both methods the 

quadrupoles were set to unit resolution. The mass range chosen was thought to cover the 

range of analytes expected. The scan speed was chosen by the software but was 

subsequently tested and used on the basis of mass accuracy, with such a speed providing 

measurements no greater than +0.3 amu in error. Such errors are inherent in these scans 

on this instrument, and are corrected for by the enhanced resolution scan that follows 

each survey scan. 

3.2.5.5 EPI optimization 

The EPI scan function utilizes the linear ion trap to store, concentrate and scan product 

ion spectra. A critical factor for the production of product ion spectra is the collision 

energy applied to the molecular ion. In this instance, where a variety of structures and 

masses are analyzed, a spread of collision energies was applied. AEA C20:4, OEA 

CI8:l, PEA C16:0 and 2-AG C20:4 were infused and the collision energy and collision 

energy spread increased. Where the optimum CE for survey scans should yield the most 

intense signal, this is not necessarily the case for the EPI scan. In this instance the 

desired result is a spread of structurally significant product ions. Achieving this can be a 

fine balancing act due to the limited number of reference standards available and the 
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prospect of unknowns with a variety of masses and structures. Consequently, Collision 

energies of35 ± 20 V for NABs and 30 ± 10 V for MAGs were chosen. 

3.2.5.6 Limit of detection 

To compare the sensitivity of the survey scans with other analytical methods, the lower 

limit of detection (LLOD) was determined. The LLOD is often defmed in terms of signal 

to noise ratio (SIN) - the lowest concentration that demonstrates an analyte signal three 

time that of the background noise (Kharbouche et al., 2009; Martens-Lobenhoffer et at., 

2009). 

The LLOD for PI 62 and NL 92 survey scans (coupled with EPI scanning) was calculated 

on standards ABA, OEA, PEA and 2-AG using the LC-MS/MS method. Three injections 

were carried out per concentration. Due to the slow duty cycle of these scans, and to the 

consequently reduced number of data points across a peak, it was not always possible to 

achieve an SIN value of 3: 1; therefore the lowest detectable peak and the resulting SIN 

was recorded. 

3.2.5.7 Chromatography 

Chromatography was performed as described in a published method (Richardson et aI., 

2007) and carried out on a Shimadzu series lOAD VP liquid chromatography system 

equipped with binary pumps, a vacuum degasser, a SILHTc autosampler and column 

oven (Shimadzu, Columbia, MD, USA). The LC column was a Thermo Hypersil

Keystone HyPurity Advance column (100 x 2.lmm i.d., 3 ~m particle size) with a 

mobile phase flow rate of O.3mllmin. Gradient elution mobile phases consisted of A 

(water, 1 giL ammonium acetate and 0.1% formic acid) and B (acetonitrile, 1 giL 

ammonium acetate and 0.1 % formic acid). The gradient started at 45% B, increasing to 

55% after 2 min and then increasing again to 65% at 6.5 min; this was maintained until 9 

min, with subsequent re-equilibration at 45% B for a 6 min period. Column temperature 
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was maintained at 40°C and sample temperature was maintained at 4°C in the auto 

sampler during analysis. 

3.2.6 Compound identification and wider searching 

Identification of unknowns was based upon the mlz of the pseudomolecular ion and the 

resulting product ions, comparing common fragment patterns with structurally similar 

reference standards. To further identify compounds, and to identify them within the 

literature, two approaches were taken. One was to search for chemical names in literature 

search engines. This approach had mixed results, as not all publications describe analytes 

by their full systematic name. The other was by structural/empirical searches on web

based databases that link to the literature. No one approach was sufficient, and instead a 

mixed approach, using both methods, was required to uncover the appropriate 

information. The databases used are listed below:-

• National Institute of Health's molecular libraries initiative 

(http://pubchem.ncbi.nlm.nih.gov /) 

• Lipid Maps (http://www.lipidmaps.org/) 

• Lipid Library (http://www.lipidlibrary.co.ukl) 

• SciFinder (http://www .cas.org/products/scifindr/sfwebD 
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3.3 Results and discussion 

3.3.1 Optimization of MS parameters 

3.3.1.1 Declustering potential 

The optimum declustering potential (DP) for each of the standards was obtained by direct 

infusion while systematically increasing the declustering potential from 0 to 400V. 

Optimum values of 51, 70, 50 and 60 V respectively were obtained; see Figure 3.4. Over 

the range of saturation (4 double bonds to an unsaturated acyl chain) and acyl chain 

length (C20 down to C16) of the standards infused, there is significant overlap in the 

optimum declustering potentials for the NAEs. For MS experiments where only one DP 

is employed, this fortuitous overlap enables one value to be applicable to reference 

standards and also to be the best estimate of an optimum value for untested NAEs that 

might be encountered in biological tissues. 

For MAGs, only MAG 2-AG C20:4 was available at the time of this work and the 

declustering potential for all MAGs is consequently taken from MAG 2-AG C20:4. 

3.3.1.2 Survey scan collision energy 

AEA C20:4, OEA CI8:1, PEA C16:0 and 2-AG C20:4 were infused and the collision 

energy increased between 5 and 130 volts and the intensity of the product ion mlz 62 

(ethanolamine moiety) for NAEs and mlz 287 for MAGs was plotted; see Figure 3.5. 

Optimum values of 41, 35 and 35 were obtained for NAEs. With a wide optimum value 

and overlap of the NAEs, a CE of 35V was selected. Only 2-AG was available for 

MAGs and consequently the optimum CE (20V) for MAGs was taken from this standard. 
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Figure 3.4. Optimum declustering potential for the pseudomolecular ions of AEA, OEA, PEA and 2-

AG. The NAEs demonstrate significant overlap, enabling a general value of 60V to be chosen which 

will be applicable not only to the standards infused but more likely than not also to other, 

unobtainable NAEs. For MAGs, only 2-AG was available at the time of this work; hence the 

declustering potential for all MAGs is taken from 2-AG. 
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3.3.2 Development of PI and NL scan modes 

AEA C20:4, PEA C16:0 and OEA C18:0 reference standard solutions were used to 

develop survey scans for NAEs, and MAG 2-AG C20:4 for MAGs. All reference 

standards produced a strong [M+Ht pseudomolecular ion. MSIMS product ion spectra 

rather than EPI spectra were employed to determine suitable product ions for precursor 

ion or neutral loss scans due to differences between results of the two scan functions, see 

section 3.3.5. EPI was subsequently used for analyte identification latter on. 

The pseudomolecular ion of AEA fragments under CID to produce an informative pattern 

of product ions; see Figure 3.6. The mlz 330 [M+Ht (- 18) ion suggests a loss of H20 

from the pseudomolecular ion. Product ion mlz 287 [M+H-C2H7NOt is the result of a 

cleavage of the amide bond with the loss of the ethanol amide moiety as a neutral, 

probably due to a charge migration mechanism. The ion mlz 269 is the likely result of the 

same cleavage but with the additional loss of water to form [M+H-C2H7NO-H20t, the 

mechanism of which is unknown at this time. A large mlz 62 ion was observed and can 

be attributed to the ethanolamine moiety, with the subsequent loss of [M+H-C20H300] as 

a neutral. Identification of these ions is consistent with that reported by other groups 

(Huang et al., 2001; Kasai et aI., 2003; Koga et aI., 1997; Liu et al., 2006). Similar 

fragmentation of the amide C-N bond has previously been observed in N-acylhomoserine 

lactones (Morin et aI., 2003) and aromatic amides (Tu and Harrison, 1998). Ions mlz 259 

[M+H-C3H7N02t and 245 [M+H-C4H9N02t are the likely results of cleavages along the 

acyl chain, close to the amide group and indicative of the length and saturation of the acyl 

chain, along with mlz 287 and 269. A very recent publication has attempted to assign the 

multitude of product ions from mlz 91 up to 259 that result from CID of AEA C20:4 and 

of other unsaturated NAEs and MAGs (Thomas et aI., 2009). Such ions are thought to 

occur due to charge remote fragmentation, a common mechanism for long chain alkyls to 

undergo, assuming collision energies are high enough (Cheng and Gross, 2000). Where 

product ions have been assigned structures, it is difficult to use these ions to ascertain 

structures of unknowns, due to the high and potentially confusing number of ions which 

occur under 
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Figure 3.6. MSIMS spectra of NAE AEA C20:4 collected by direct infusion ESI+ mode. A curtain 

gas of 15, capillary voltage of 4000V, source temperature of 175°C, gas values of 25 (no units), 

collision gas of 9 (no units) and collision energy of 20 V were used. The most intense 

pseudomolecular ion was the protonated [M+H] + ion at mlz 348. High mass fragments of m/z 287, 

259 and 245 provide information as to the length and saturation of the acyl chain. The ion m/z 62 is 

indicative of the ethanolamine moiety. 
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these conditions. Furthennore, this work has assigned mlz 259 and 245 not as bond 

cleavages close to the acyl bond, as described in Figure 3.6, but rather between the 2nd 

and 3rd and between the 3rd and 4th carbons next to the tenninal end of the acyl chain, 

respectively. Theoretically, the source of these fragments could come from either 

location, and to clarify this point deuterated standards could be employed. Previous work 

conducted on N-arachidonylglycine (similar to ABA C20:4, with the same acyl chain but 

differs by a R-CONHCH2COOH rather than R-CONHCH2CH20H end moeity) using the 

accurate mass capabilities of a QTOF instrument identifies the mlz 245 ion resulting from 

the cleavage as described in Figure 3.6 rather than close to the terminal carbon (Huang et 

aI., 2001). Nevertheless, the question as to the exact source of these two ions does not 

affect their use as a diagnostic tool for the identification of ABA C20:4 or of other NAEs 

where standards are not available. 

OEA CI8:I and PEA C16:0 provided significantly different spectra (Figure 3.7 and 

Figure 3.8, respectively). OEA CI8: I demonstrated a reduced intensity of the high mass 

ions resulting from the amide cleavage (and resulting loss of water) compared to the 

polyunsaturated ABA C20:4, and no ions indicative of the cleavage of the acyl chain 

were detected. The strongest, high mass ions were the protonated pseudomolecular ion 

[M+Ht and the loss of water [M+H - 18]+, with the additional loss of 'OH radical (or 

NH3) [M+H - 17t at mlz 308.3 and 309.3, respectively. An intense ion at mlz 62, 

indicative of the ethanolamine moiety, was present. The spectrum was consistent with 

others previously reported (Koga et al., 1997; Richardson et al., 2007). 

NAB PEA CI6:0, with an unsaturated acyl chain, demonstrated less fragmentation, 

leading to higher mass ions, than monosaturated NAB OEA CI8:I and polyunsaturated 

ABA; see Figure 3.8. Neither ions resulting from the amide cleavage nor any from the 

acyl chain were detected. The lack of these diagnostic ions was independent of the 

collision energy. As with NAB OEA CI8:1, the strongest high mass ions are the 

protonated pseudomolecular ion [M+Ht and the loss of water [M+H-I8f with the 

additional loss of 'OH radical (or NH3) [M+H-17t at mlz 282.3 and 283.3, respectively. 
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Figure 3.7. MSIMS spectra of NAE OEA ClS:l under ESI+ cm conditions. A curtain gas of 15, 

capillary voltage of 4000V, source temperature of 175°C, gas values of 25 (arbitrary units), collision 

gas of 9 (arbitrary units) and collision energy of 20 V were used. There is a lack of high mass 

fragmentation occurring from the acyl chain, unlike the polyunsaturated AEA. Fragmentation from 

the cleavage of the amide bond and subsequent loss of water is present, but at lower relative levels 

compared to AEA. The ion m/z 62, indicative of the ethanolamine moiety, is present. 

450 

400 

350 

300 
i!:-
.~ 

~ 250 r62 

200 

150 

100 

50 

60 80 100 120 140 

;82---1 
0' : 

I ! ! 
: .~OH 
i NH, i 
l~?:_t! 

23 

2 

160 180 200 220 240 260 280 300 
mlz 

Figure 3.S. MSIMS spectra of NAE PEA C16:0 under ESI+ CID conditions. A curtain gas of 15, 

capillary voltage of 4000V, source temperature of 175°C, gas values of 25 (arbitrary units), collision 

gas of 9 (arbitrary units) and collision energy of 20 V were used. There is a lack of high mass 

fragmentation occurring from the acyl chain unlike the polyunsaturated AEA. Additionally, 

fragmentation from the cleavage of the amide bond is not detected. The ion m/z 62, indicative of the 

ethanolamine moiety, is present. 
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An intense ion at mlz 62, indicative of the ethanolamine moiety, is present. The spectrum 

is consistent with another reported (Richardson et aI., 2007). AEA C20:4, PEA C 16:0 

and OEA C18:1 fragmentation under CID conditions produces the ethanolamine mlz 62 

product ions. As this ion is indicative of the ethanolamine group and structurally core to 

all NAEs, it was chosen as the identifier for a PI survey scan. 

MAG 2-AG C20:4 MSIMS spectra can be found in Figure 3.9. There are strong 

similarities between the fragmentation pattern of MAG 2-AG C20:4 and AEA C20:4. 

The mlz 287 ion is the result of a cleavage of the ester linkage [M+H - C3Hg0 3t, and 269 

is likely the further fragmentation of that ion by the loss of H20 [M+H - C3Hg0 3 - H20t. 

Ions mlz 259 [M+H-C4Hg04t and mlz 245 [M+H-CsHlO04t are the probable results of 

cleavages along the acyl chain close to the ester linkage. Such a fragmentation pattern 

might be expected as both AEA C20:4 and 2-AG C20:4 have the same acyl chain. 

Where NAEs produce an ethanolamine ion under CID, MAGs do not form a glycerol 

product ion. However, the ion mlz 287 cleaves from the pseudomolecular ion to produce 

a neutral of 92 amu, the neutral glycerol moiety. This neutral allows the use of an NL 

survey scan in identifying MAGs. The fragmentation ions compare well against the 

previously reported literature (Richardson et aI., 2007). 

Noladin Ether (NE), a known CBl agonist (Hanus et aI., 2001), has been detected in rat 

brain (but not spleen, heart or liver) (Fezza et aI., 2002). This analyte is structurally 

similar to MAG 2-AG C20:4, and differs only in the bridge between the glycerol and acyl 

chain -the former linkage having ether where the latter is an ester. Fragmentation under 

CID conditions (see Figure 3.10) yields a loss of mlz 273 at the same location as MAG 2-

AG C20:4 yields mlz 287 - [M+H-C3Hg03t; consequently both compounds demonstrate 

a neutral loss of 92 Daltons. Therefore a neutral loss scan of 92 Daltons will not be 

specific for MAGs but also NE and structural analogues (Richardson et aI., 2007). 

However, where both endogenous compounds fragment to form [M+H-C3Hg03t under 

CID, only MAG 2-AG C20:4 fragments to form [M+H-C3Hg0 3-H20t, the loss of water 

from that ion. Consequently this is a diagnostic ion which can be used to discriminate 

between the ester and ether linked analogue. 
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Figure 3.9. MS/MS spectra of MAG 2-AG C20:4 collected by direct infusion ESI+. A curtain gas of 

15, capillary voltage of 4000 V, source temperature of 175°C, gas values of 25 (arbitrary units), 

collision gas of 9 (arbitrary units) and collision energy of 25 V were used. The most intense 

pseudomolecular ion was the protonated [M+Ir] ion at mlz 379. High mass fragments of mlz 287, 

259 and 245 provide information as to the length and saturation of the acyl chain (as with AEA, due 

to the C20:4 acyl chain). The site of protonation is a best estimate. 
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Figure 3.10. MSIMS spectra of Noladin Ether collected by direct infusion ESI+. A curtain gas of 15, 

capillary voltage of 4000 V, source temperature of 175°C, gas values of 25 (arbitrary units), collision 

gas of 9 (arbitrary units) and collision energy of 25 V were used. The most intense pseudomolecular 

ion was the protonated [M+H+] ion at m/z 365. High mass fragments of m/z 273, 245 and 232 provide 

information as to the length and saturation of the acyl chain. The site of protonation is a best 

estimate. 
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3.3.3 Testing precursor ion and neutral loss survey scans on reference 

standards 

To demonstrate that the precursor ion and neutral loss survey scans were able to correctly 

identify NABs and MAGs in a chromatographic run, the methods were tested against 

their respective reference standards. ABA C20:4, OEA C18:1 and PEA C16:0 were 

made up to a concentration of 500nM in ethanol. MAG 2-AG C20:4, which has poor 

ionization efficiency under ESI+ conditions in comparison with NABs (Richardson et aI., 

2007), was made up separately at 10 IlM in ethanol. Injections of the two mixes were 

made and separation was carried out as specified in section 3.2.5.7. MS analysis was 

performed by the two survey scans coupled with EPI product ion spectra. 

The extracted chromatograms of the precursor ion and neutral loss survey scans can be 

seen in Figure 3.11. All analytes were successfully detected, and the resulting EPI spectra 

generated matched those obtained from direct infusion experiments of the reference 

standards. 

3.3.3.1 Structural variations of NAE and MAG metabolites and compatibility with survey 

methodology 

Where metabolites have strong structural similarities to NABs and MAGs, there remains 

the possibility that variations could cause an incompatibility with either the LC or mass 

spectrometry to the extent that detection is not observed. Additions to the ethanolamine 

or glycerol moieties, or changes to the acyl chain that in tum change fragmentation of the 

molecule, leading to the lack of these signature ions being formed, would render such 

analytes undetectable by the methods described here. Furthermore, changes to the acyl 

chain that cause an increase in polarity of the molecule could have a detrimental effects 

on the chromatography. To look into this possibility, prostaglandinglycerols standards 

were used to access the suitability of the methodology for at least one class of metabolite. 

Prostaglandinglycerols PGE2-G, PGD2 and PGF2u were purchased and analyzed by the 

NL method. Using this method, all three compounds were detected. The 
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Figure 3.11. Extracted ion chromatograms of (a) NAE AEA C20:4, NAE OEA C18:1 and NAE PEA 

C16:0 and (b) MAG 2-AG C20:4 from precursor ion and neutral loss survey scan respectively. The 

resulting EPI spectra generated for each analyte matched those obtained from direct infusion 

experiments. 
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chromatography was not ideal, with elution of the analytes around 2 minutes 

demonstrating little retention on the column; nevertheless, they were detected and EPI 

spectra obtained to confirm identification. The results provide greater confidence that the 

methodology is suitable for metabolites of MAGs, and in all likelihood NAEs, where the 

ethanolamine or glycerol moieties remain intact. Where known metabolites are not 

detected, this is in all probability due to concentrations below the LLOD of the 

methodology rather than other limitations of the method. 

3.3.4 Further use of NAE and MAG reference standards for identifying 

fragmentation pattern trends 

3.3.4.1 NAEs 

Where nucleotides fragment to form common ions i.e. loss of a base or the loss of two 

phosphates, NAEs and MAGs do not appear to have those common ions but rather 

common neutral losses. Further work was therefore required to better understand the 

trends in product ion formation from the families of NAEs and MAGs. Additional 

standards docosatetraenoyl ethanolamide (DEA, C22:4 ethanolamine), dihomo - 'Y -

linolenoyl ethanolamide (C20:3 ethanolamine) and 2-linoleoyl glycerol (2-LG, C18:2 

glycerol) were infused in ESI+ and fragmented under the same CID conditions as the 

other NAEs and MAGs. Resulting EPI spectra were compared to AEA and 2-AG EPI 

spectra respectively to identify trends in the product ion spectra 

DEA C22:4 acyl chain is longer than AEA C20:4 by C2H4 and this difference is borne out 

in the product ions; see Figure 3.12. The diagnostic ions resulting from cleavages 

between the amide bond mlz 315 [M+H-C2H7NOt and mlz 297 [M+H-C2H7NO-H20t, 

as well as the acyl chain mlz 287 [M+H-C3H7N02t and mlz 273 [M+H-C4H9N02t are 

present. Where DEA differs from AEA by an increase of the acyl chain by C2~ (28 

amu), these ion fragments also differ by +28amu from those detected in AEA. As 

expected, the pseudomolecular ion (and loss of water [M+H - 18t is also increased by 

+ 28amu. The presence of these ions provides information as to the length and saturation 

of the acyl chain 
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Figure 3.12. EPI spectra of (a) AEA C20:4 and (b) DEA C22:4 standards. A comparison of these 

two spectra aided the comprehension of fragmentation patterns and identification of structural 

similar compounds. DEA C22:4 has a longer acyl chain than NAE AEA C20:4 by C2IL (28 amu). 

hence the molecular weight is +28 amu greater than NAE AEA C20:4. Ions indicative of the acyl 

chain length and saturation in (a) AEA C20:4 ml :, 287, 269 and 245 have also increased by 28 amu in 

spectrum (b); consequently, these ions are djagnostic when calculating the length and sa turation of 

the acyl chain. 
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Dihomo - y -linolenoyl ethanolamide (C20:3) acyl chain differs to AEA C20:4 by one 

double bond i.e. 2H. Again, C20:3 product ions of NAE demonstrate this difference; see 

Figure 3.13. Dihomo - y -linolenoyl ethanol amide has one less double bond, but the 

same acyl chain length, when compared to AEA; consequently the pseudomolecular ion 

and the loss of water is 2 amu greater. The ions resulting from the cleavage of the amide 

bond mlz 289 [M+H-C2H7NOt and subsequent loss of water [M+H-C2H7NO-H20t are 

also 2 amu greater than those observed with AEA. Where AEA demonstrates 2 

cleavages along the acyl chain, dihomo - y -linolenoyl ethanolamide has one, mlz 261 

[M+H-C3H7N02t. 

There appears to be a trend that ions resulting from the carbon - carbon cleavage of the 

acyl chain are less likely to occur as the acyl chain becomes more saturated. Acyl chain 

fragments [M+H-C3H7N02t and [M+H-C4H9N02t are detected in NAE AEA C20:4 

and DEA C22:4. Only [M+H-C3H7N02t is detected in dihomo - y -linolenoyl 

ethanolamide (C20:3) and it is not observed in NAE OEA CI8:1 or NAE PEA CI6:0. 

MS/MS spectra ofNAE Linoleoyl EA CI8:2 from other sources (Kasai et aI., 2003) and 

online lipid web sites (http://www.lipidmaps.org/) also demonstrate a lack of these two 

ions. Furthermore, the presence of the high mass ions, resulting from the cleavage of the 

amide bond (and loss of water), [M+H-C2H7NOt, [M+H-C2H7NO-H20t, appears to be 

less abundant with an increase in saturation of the acyl chain. Whereas they are clearly 

present in AEA C20:4, DEA C22:4 and NAE CI8:2, their intensity is low in 

monounsaturated OEA CI8:I and not detectable in saturated PEA CI6:0. These trends 

have not, to the best of the authors knowledge, been previously reported in the 

endocannabinoid literature. 

3.3.4.2 MAGs 

2-LG C18:2 has 2 less double bonds and C2H4 less on the acyl chain than 2-Ag C20:4 

and the product ions reflect the difference. MAG 2-LG C18:2 was infused under the 

same conditions as MAG 2-AG C20:4 and formed a strong [M+Ht pseudomolecular ion; 

see Figure 3.14. The product ion spectrum is similar to that of 2-AG under CID 
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ethanolamide C20:3. A comparison of these two spectra aided the comprehension of fragmentation 

patterns and identification of structural similar compounds. NAE dihomo - y -Iinolenoyl 

ethanol amide C20:3 has one less double bond, but the same acyl chain length compared to AEA: 

consequently, the psudomolecualr ion and the loss of water is 2 amu greater. The ions resulting from 

the cleavage of the amide bond and subsequent loss of water a re also 2 amu greater than those 

detected in AEA. Where AEA C20:4 demonstrates 2 cleavages along the acyl chain. NAE dih ol11o - y 

-linolenoyl ethanolamide C20:3 has one. 
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conditions. The cleavage of the ester linkage occurs, as does the subsequent loss of water 

(rnlz 263 and 245). The mass difference of MAG 2-AG C20:4 and MAG 2-LG C18:2 is 

24 amu; consequently, these fragments are rnlz 24 less than those detected in 2-AG C20:4 

(rnlz 287 and 269). Unlike 2-AG C20:4 fragmentation along the acyl chain, [M+H -

C4Hg0 4t and [M+H - CsHlO04t does not appear to occur. 

MAG 2-LG C 18:2 has a notable lack of fragmentation along the acyl chain compared to 

polyunsaturated 2-AG C20:4. A similar trend is observed with monosaturated and 

saturated compounds OEA CI8:I and PEA CI6:0 compared to polyunsaturated NAE 

AEA C20:4. This observation would indicate that there is a trend for the polyunsaturated 

chains to fragment to a greater degree under CID conditions. Such a trend in MAGs has 

not been previously noted in the literature. It has been previously reported, however, 

that the degree of acyl chain saturation has a substantial effect on the fragmentation 

pattern of fatty acid methyl esters under EI (Murphy, 1993), be it by mechanisms 

involving free radicals or by different product ions. 

The trends in acyl chain length / saturation and the associated pseudomolecular ion 

[M+Ht and the loss of water observed in NAEs and MAGs have previously been 

observed in phospholipids and employed as a means of identification (Wang et at., 2005). 

Furthermore the same approach (along with other product ions) have been used in the 

identification of acyl-homo serine lactones (Ortori et at., 2007). Consequently, the use of 

the [M+Ht and [M+H - H20t, coupled with other product ions observed from NAE and 

MAG reference standards could be employed to identify other analytes for which 

reference standards were not available. A systematic list of compounds with varying acyl 

chain lengths and degrees of saturation was tabulated for NAEs and MAGs to aid in 

identification of unknowns (see Table 3.3 and Table 3.4). It is assumed that acyl chains 

will have an even number of carbons, due to the formation of fatty acids via acetyl CoA 

(Stryer, 1999). The pseudomolecular ion and subsequent loss of water are listed, 

providing initial mass and identification for each analyte. Ions indicative of the cleavage 

of amide or ether linkage (and subsequent loss of water) were included, as these provide 

additional information on the length and saturation of the acyl chain (Kasai et aI., 2003), 
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Figure 3.14. EPI spectra of MAG 2-AG C20:4 (a) and MAG 2-LG C18:2 (b) standards infused. A 

comparison of these two spectra aided the comprehension of fragmentati on patterns and 

identification of structural similar compounds. MAG 2-LG C18:2 has a shorter, di-saturated acyl 

chain compared to MAG 2-AG C20:4 by C2 (24 amu); hence the molecular weight is -24 amu less 

than MAG 2-AG C20:4. Ions from the cleavage of the ester linkage, indicative of the aC~' 1 chain in 

MAG 2-AG C20:4 (a) 287 (and the subsequent loss of water 269), have also dec reased b~ 2..t amu in 

spectrum MAG 2-LG C 18:2 (b); consequently, these ions are diagnostic when calculating the length 

and saturation of the acyl chain . 
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Table 3.3. A table of theoretical and experimental NAE molecular ions and prominent product ions 

under CID conditions. Those in bold are obtained under experimental conditions with standards. 

All other compounds are the theoretical protonated pseudomolecular ions and expected product ions 

that may occur. Although [H+Mt - 18 and [H+Mt - 17 are observed experimentally, only [H+Mt -

18 has been included in the list 

Acyl Chain [M+H] Product Ions (mlz) 

C24:8 396.3 378.3 335.3 317.3 307.3 293.3 

C24:7 398.3 380.3 337.3 319.3 309.3 295.3 

C24:6 400.3 382.3 339.3 321.3 311.3 297.3 

C24:5 402.3 384.3 341.3 323.3 313.3 299.3 

C24:4 404.4 386.3 343.3 325.3 315.3 301.3 

C24:3 406.4 388.3 345.3 327.3 317.3 303.3 

C24:2 408.4 390.3 347.3 329.3 

C24:1 410.4 392.3 349.3 331.3 

C24:0 412.4 394.3 

C22:7 370.3 352.3 309.3 291.3 281.3 267.3 

C22:6 372.3 354.3 311.3 293.3 283.3 269.3 

C22:5 374.3 356.3 313.3 295.3 285.3 271.3 

C22:4 (DEA) 376.3 358.3 315.3 297.3 287.3 273.3 

C22:3 378.3 360.3 317.3 299.3 289.3 275.3 

C22:2 380.4 362.3 319.3 301.3 

C22:1 382.4 364.3 321.3 303.3 

C22:0 384.4 366.3 

C20:6 344.3 326.3 283.3 265.3 255.3 241.3 

C20:5 346.3 328.3 285.3 267.3 257.3 243.3 

C20:4 (AEA) 348.3 330.3 287.3 269.3 259.3 245.3 

C20:3 350.3 332.3 289.3 271.3 261.3 247.3 

C20:2 352.3 334.3 291.3 273.3 

C20:1 354.3 336.3 293.3 275.3 

C20:0 356.4 338.3 

C18:6 316.2 246.3 203.3 185.3 175.3 161.3 

C18:5 318.2 274.3 231.3 213.3 203.3 189.3 

C18:4 320.3 302.3 259.3 241.3 231.3 217.3 

C18:3 322.3 304.3 261.3 243.3 233.3 219.3 

C18:2 324.3 306.3 263.3 245.3 

C18:1 (OEA) 326.3 308.3 265.3 247.3 

C18:0 328.3 310.3 

C16:5 290.2 272.3 229.3 211.3 201.3 187.3 

C16:4 292.2 274.3 231.3 213.3 203.3 189.3 

C16:3 294.2 276.3 233.3 215.3 205.3 191.3 

C16:2 296.3 278.3 235.3 217.3 

C16:1 298.3 280.3 237.3 219.3 

C16:0 (PEA) 300.3 282.3 
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Table 3.4. A table of theoretical and experimental MAG [H+Mt pseudomolecular ions and 

prominent product ions under em conditions. Those in bold are obtained under experimental 

conditions with standards. All other compounds are the theoretical protonated pseudomolecular ions 

and expected product ions that may occour. 

Acyl Chain [M+H] Product Ions (mlz) 

C24:8 427.3 409.3 335.3 317.3 307.3 293.3 

C24:7 429.3 411.3 337.3 319.3 309.3 295.3 

C24:6 431.3 413.3 339.3 321.3 311.3 297.3 

C24:5 433.3 415.3 341.3 323.3 313.3 299.3 

C24:4 435.3 417.3 343.3 325.3 315.3 301.3 

C24:3 437.3 419.3 345.3 327.3 

C24:2 439.3 421.3 347.3 329.3 

C24:1 441.3 423.3 349.3 331.3 

C24:0 443.3 425.3 351.3 333.3 

C22:7 401.3 383.3 309.3 291.3 281.3 267.3 

C22:6 403.3 385.3 311.3 293.3 283.3 269.3 

C22:5 405.3 387.3 313.3 295.3 285.3 271.3 

C22:4 407.3 389.3 315.3 297.3 287.3 273.3 

C22:3 409.3 391.3 317.3 299.3 

C22:2 411.3 393.3 319.3 301.3 

C22:1 413.3 395.3 321.3 303.3 

C22:0 415.3 397.3 323.3 305.3 

C20:6 375.3 357.3 283.3 265.3 255.3 241.3 

C20:5 377.3 359.3 285.3 267.3 257.3 243.3 

C20:4 (2-AG) 379.3 361.3 287.3 269.3 259.3 245.3 

C20:3 381.3 363.3 289.3 271.3 261.3 247.3 

C20:2 383.3 365.3 291.3 273.3 

C20:1 385.3 367.3 293.3 275.3 

C20:0 387.3 369.3 295.3 277.3 

C18:6 347.3 329.3 255.3 237.3 227.3 213.3 

C18:5 349.3 331.3 257.3 239.3 229.3 215.3 

C18:4 351.3 333.3 259.3 241.3 231.3 217.3 

C18:3 353.3 335.3 261.3 243.3 233.3 219.3 

C18:2 (2-LG) 355.3 337.3 263.3 245.3 

C18:1 357.3 339.3 265.3 247.3 

C18:0 359.3 341.3 267.3 249.3 

C16:5 321.3 303.3 229.3 211.3 201.3 187.3 

C16:4 323.3 305.3 231.3 213.3 203.3 189.3 

C16:3 325.3 307.3 233.3 215.3 205.3 191.3 

C16:2 327.3 309.3 235.3 217.3 

C16:1 329.3 311.3 237.3 219.3 

C16:0 331.3 313.3 239.3 221.3 
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although they are not detected for saturated NAEs. Ions resulting from the fragmentation 

of the acyl chain were also included for polyunsaturated NAEs and MAGs, but not for 

mono saturated or saturated chains - as the EPI of standards demonstrate, these analytes 

do not fragment to fonn these ions. 

Where a range of standards was available to base these proposed ions on for NAEs 

(C22:4 to CI6:0), only two were available for the MAGs. Although the end moiety of 

MAGs is different from NABs, other constituents of the molecules are the same· , 

consequently, there are strong similarities between the EPI spectra of the 2 classes of 

compounds. This is demonstrated by the spectra of NAE AEA C20:4 compared to MAG 

2-AG C20:4 and of NAB C18:2 compared to MAG CI8:2. The predicted product ions of 

MAGs in Table 3.4 are subsequently based not only on the two MAG standards available 

but also on data obtained from NAB standards. 

The list was subsequently employed m the identification of MAGs and MAGs m 

biological tissues. 

3.3.5 Differences in MS/MS spectra and EPI Spectra 

It was noted that there are differences in the spectra obtained from the QqQLIT when 

captured in MSIMS or EPI mode. Product ion survey scans are performed in MS/MS 

mode, and are undertaken by fixing the first quadrupole for the mlz of the 

pseudomolecular ion. Fragmentation occurs in the collision cell and product ions are 

observed by scanning the third quadrupole through the appropriate mass range. 

Alternatively, the EPI spectrum is obtained slightly differently, although the first steps 

are the same. The first quadrupole is fixed for mlz of the pseudomolecular ion. 

Fragmentation occurs in the collision cell and the resulting product ions pass into the 

third quadrupole. However, rather than being scanned out, ions are stored for a 

predetermined time as the quadrupole is acting as a linear ion trap, following which the 

ions are expelled and recorded. 
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Marked differences in the spectra were noticeable for NAEs at the lower mass range. 

The low mass ethanolamine ion mlz 62 present in AEA C20:4, OEA C18:1 and PEA 

CI6:0 MS/MS spectra are absent in the EPI spectra (see Figure 3.15). Such a difference 

could be attributed to the low mass cut-off rule that ion traps suffer from (Raymond, 

1997), where product ions have to be within one third of the mass of the pseudomolecular 

ion in order to be stable in the ion trap. Ions outside that range are unstable and are lost 

from the trap. The QqQLIT, however, has been reported to not be effected by this issue 

(Hager and YvesLeBlanc, 2003). 

After discussions with an ABI technical representative, it is clear that the reasons for the 

lack of the mlz 62 product ion under EPI conditions is that low mass ions «75amu) are 

not stable in the ion trap (irrespective of the mlz of the original pseudomolecular ion) and 

are not retained long enough for them to be identified. This does not appear to affect the 

stability of ions of this mass when the ion trap is run as a quadrupole. To the best of the 

author's knowledge, this has not been reported in the literature. PI surveys scans were 

run in MS/MS mode and not affected by this issue and it was taken into account when 

interpreting EPI spectra. 

3.3.6 Limit of detection 

The LLOD for PI 62 and NL 92 survey scans (coupled with EPI scanning) was calculated 

on standards NAE AEA C20:4, NAE OEA CI8:1, NAE PEA CI6:0 and MAG 2-AG 

C20:4. Three injections were carried out per concentration. Results can be seen in Table 

3.5. The LLODs are could be described by two criteria. The more common description 

being the lowest concentration which demonstrates an extracted ion chromatogram with a 

S:N ration of 3: I or greater. In practice, it was difficult to obtain a peak with such a S:N 

and hence those concentrations demonstrating a peak S:N closest to 3: 1 were selected 

The second, perhaps more specific to the QqQLIT, is the lowest concentration which 

generated a recognizable EPI spectrum. The latter is dependent not only on instrument 
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sensitivity but also a threshold set in the software to limit false positives. In samples with 

a high matrix background signal, it would be likely that this LLOD might be increased. 

The LLOD for both criteria are described in Table 3.5 The LLODs obtained are higher 

than previous targeted SRM approaches (Richardson et aI., 2007) by approximately an 

order of magnitude, as is expected due to the extended scan speed of the survey scan 

compared to a targeted SRM method. The LLOD of MAG 2-AG C20:4 is considerably 

higher than that of the NABs. This has been previously noted (Richardson et aI., 2007) 

and is thought to be due to ionization efficiency under the conditions used. Greater 

sensitivity for 2-AG C20:4 has been achieved by the addition of silver to replace the 

proton as the adduct (Kingsley and Mamett, 2007). The resulting fragmentation is 

sparse, however, with only the loss of water. With the deficiency of structurally 

diagnostic ions, this approach lacks the specificity for a precursor ion or neutral loss 

survey scan. Ironically, 2-AG C20:4 is abundant in rat brain at far greater levels than 

ABA C20:4, which it could be said, makes up for the lack of sensitivity (Richardson et 

al., 2007; Williams et ai., 2007). 

The silver adduct of ABA C20:4, unlike 2-AG C20:4, was demonstrated to have few of 

the sensitivity advantages of a protonated pseudomolecular ion. 

Table 3.5. The LLOD of the survey scan employed to detect NAEs and MAGs. The LLOD was 

calculated on two criteria. The lowest concentration demonstrated an extracted ion chromatogram 

peak with a S:N ration of 3: 1 or greater or the the lowest concentration to generate an EPI spectrum. 

Compound Limit of Detection SIN Limit of Detection with EPI 

(PMol on column) spectrum (PMol on column) 

AEAC20:4 0.25 6 0.5 

OEAC18:1 0.20 17 0.5 

PEAC16:0 0.25 12 0.5 

2-AG C20:4 2.5 20 37.5 
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3.3.7 Identification of NAEs and MAGs in rat brain 

PI62 and NL92 survey scans were undertaken on rat brain (n=6) to identify all NAEs and 

MAGs above the limit of detection. Both methods detected a range of NAEs and MAGs 

in rat brain extract that were varying in acyl chain length and saturation. The 

identification of analytes was performed by reference to retention times and comparison 

of EPI spectra where standards were available. Where this was not possible, product ion 

spectra were compared with theoretical ions listed in Table 3.3 and Table 3.4. 

Additionally, accurate mass was obtained by use of TOF MS and compared against the 

theoretical monoisotopic masses. Detected NAEs and MAGs are demonstrated in Table 

3.6 and Table 3.7. A TIC of the precursor ion and neutral loss scan can been observed in 

Figure 3.16. 

3.3.7.1 NAEs Detected in Rat Brain 

Table 3.6. NAEs detected in rat brain tissue using PI62 survey scan coupled with EPI. Compounds 

were additionally identified by TOF and the mass error in ppm is stated. ND indicates that the 

compound was not detected using TOF. 

Acyl Chain [M+Hf RT [M+H+] (mlz) Error 

(min) Expected Product ions (mz) measure by TOF (ppm) 

C24:1 410.4 10.6 392.3 410.4025 7.9 

DEA C22:4 376.3 7.10 358.3,315.3,297.3,287.3,273.3 ND ND 

C22:1 382.4 9.73 364.3, 321.3, 303.3 382.3693 3.5 

AEA C20:4 348.3 5.30 330.3, 287.3, 269.3, 259.3, 245.3 348.2901 1.1 

C20:1 354.3 8.08 336.3, 311.3, 293.3, 275.4 354.3374 2.1 

C20:0 356.4 9.51 338.3 356.3532 2.5 

C18:2 324.3 5.5 306.3, 263.3, 245.3 324.2876 6.5 

OEA C18:1 326.3 6.17 308.3,265.3,247.3 326.3053 0.2 

C18:0 328.3 7.36 310.3 328.3225 4.6 

PEA C16:0 300.3 5.80 282.3 300.2907 3.3 
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DEA C22:4 was detected and demonstrated an EPI spectrum consistent with that 

obtained from a standard, with the loss of water and the ions formed from the cleavage of 

the amide bond and acyl chain, See Figure 3.17. The retention times were also 

consistent. However, it would be fair to say the intensity of the pseudomolecular ion is 

greater and the lower mass fragments less intense in the biological DEA C22:4 compared 

to DEA C22:4 standard. AEA C20:4 was detected and demonstrated an EPI spectrum 

consistent with that of AEA C20:4 standard, See Figure 3.17. The loss of water is 

observed as are ions occurring from the cleavage of the amide bond and acyl chain. The 

retention time was consistent with that observed with standards. NAE OEA C 18: 1 was 

detected in rat brain. The EPI spectra and retention time is consistent with that obtained 

from reference standards. The protonated pseudomolecular ion is observed along with 

the loss of water. Additionally, ions originating from the amide bond cleavage are 

observed although, as expected, relative intensities are very low. See Figure 3.18. NAE 

PEA C16:0 was detected in rat brain. The EPI spectra and retention time is consistent 

with that obtained from standards. The protonated pseudomolecular ion is observed 

along with the loss of water. See Figure 3.18 

The identification of known NAEs demonstrated the capability of the methodology to 

profile NAEs in biological matrix. Furthermore, an additional six NAEs were tentatively 

identified by this method and are described below 

Tentative identification of other NAEs in rat brain 

For NAEs identified by the survey scan, but where no standards were available, the EPI 

spectrum was compared with theoretical product ions listed in tables Table 3.3. 

Additionally, the spectrum was compared with a compound of similar structures where a 

standard was available. Furthermore, the accurate mass was measured for all compounds 

detected, using LC-TOF-MS and the mass error calculated in ppm (although not all were 

detected, due to a lack of sensitivity of the LC-TOF-MS instrumentation). 
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NAB C24: 1 was tentatively identified by the precursor ion survey scan. Further 

identification of the analyte was undertaken by the comparison of the EPI spectra with 

theoretical ions in Table 3.3. Additionally, the EPI spectra were compared to NAE OEA 

CI8: 1, another mono saturated NAE for which standards were available; see Figure 3.19. 

NAE C24: 1 has a longer acyl chain by C6H12 (84 amu); consequently, the [M+Ht ion is 

84 amu greater than NAE OEA C 18: 1. The subsequent loss of 17 (OH) mlz 393.5 and 

18 (H20) mlz 392.5 is also 84 amu greater than those fragments detected from CI8: 1. 

The presence of a high mass ion, indicative of amide bond cleavage [M+H-C2H7NOt 

(mlz 349.3), is present, but at low intensity; however, the subsequent ion indication of the 

loss of water from this ion, [M+H-C2H7NO-H20t, was not observed. As low mass ions 

are also not observed this could be due to insufficient collision energy. As observed with 

NAB OEA C18:1 standard no fragments from the cleavage of the acyl chain are 

observed. The measurement of this compound by TOF gave a 7.9 ppm error from the 

theoritical monoisotopic mass. This is slightly higher than the expected mass error range 

for this instrument (± 5ppm); This could conclude that the strength of confidence in the 

identification of this analyte is not as perhaps as strong as other NAEs, althoug known 

MAG 2-AG C20:4 also demonstarted a slightly larger than expected mass error 

Two additional monounsaturated NAEs were detected: NAE C20: 1 and NAE C22: 1. The 

prominent diagnostic ions match those listed in Table 3.3. In the same theme with NAB 

C24: 1, the EPI spectra of these two compounds were compared with reference standard 

OEA CI8:1; see Figure 3.20. NAE C20:1 and NAE C22:I differ from OEA CI8:I by an 

extension of the acyl chain by C2H4 (28amu) and C4Hg (56amu), respectively. 

Consequently, the pseudomolecular ion and the subsequent loss of water of each analyte 

is 28 amu and 56 amu greater. The ions indicative of the amide bond cleavage [M+H

C2H7NOt and the subsequent loss of water [M+H-C2H7NO-H20t are also respectively 

28 amu and 56 amu greater compared to those observed from NAE OEA C18: 1. 

Analytes were observed by LC-TOF-MS with a ppm mass error of 0.2 and 3.3, providing 

additional confirmation of their identification. 
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Figure 3.19. Identification of NAE C24:1. EPI spectra of (a) OEA C18: 1 and (b) NAE C24: I from 
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Saturated NABs, NAB C18:0 and NAB C20:0, were detected and identification was aided 

by comparisons with Table 3.3. As with saturated acyl chains, diagnostic ions were 

limited to the pseudomolecular ion and the loss of H20 and 'OH or NH Additional 3. 

identification was made by comparing them with the EPI spectrum of NAE PEA C 16:0; 

see Figure 3.2l. NAB C18:0 and NAB C20:0 differ from NAE C16:0 by C2H4 (28amu) 

and C4H6 (56 amu) respectively. Consequently, the [M+Hr of NAE C18:0 and NAE 

C20:0 are 28amu and 56 amu greater than NAB CI6:0. Additionally, ions indicating the 

loss of water [M+H - H20r (18 amu) and [M+H - 'OHr or NH3 (17 amu) are also 28 

amu and 56 amu greater, respectively. As with the NAE C 16:0 EPI spectrum, NAE 

C 18:0 and NAB C20:0 spectra demonstrate no fragmentation of the amide bond or acyl 

chain, resulting in few diagnostic ions. With fewer ions the confidence in such 

identifications could be deemed to be weaker than those with a greater abundance of 

confirmatory ions. Nethertheless, both analytes were observed by LC-TOF-MS with a 

ppm mass error of 4.6 and 2.5, providing additional confirmation to their identification. 

Unsaturated NAB C18:2 was identified by comparison with Table 3.3. Additional 

identification was made by comparing spectra with reference standard NAE OEA CI8:1; 

see Figure 3.22. NAB C18:2 differs from OEA C18: 1 by one additional double bond; 

consequently, the [M+Ht of NAB C18:2 is 2 amu less than OEA CI8:l. Additionally, 

ions indicating the loss of water [M+H - H20r (18 amu) and [M+H - 'OHr or NH3 

(17amu) are also 2 amu less. Ions indicative of a cleavage across the amide bond [M+H

C2H7NOt (mlz 263.3) and subsequent loss of water [M+H-C2H7NO-H20r (mlz 245.3) 

are also 2 amu less compared to those observed from NAE OEA CI8:l. 

Retention time patterns 

To provide further confidence in the identification of NAEs detected, the trends in 

retention times were observed and compared against standard materials. As reversed 

phase chromatography is employed as a tool for separation, it would be expected that 

shorter acyl chains would elute faster than longer acyl chains, due to fewer interactions 

with the stationary phase. Additionally, compounds with fewer double bonds will elute 
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Figure 3.22. A comparison of EPI spectra of OEA CI8: I standard and NAE C I 8:2 identified in rat 
brain. NAE CI8:2 has a less saturated acyl chain by one double bond, resulting in a lack of Hl 
(2amu), and consequently the IM+Ht of NAE C18:2 is 2 amu less than OEA CI8:l. Additionally, 
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later than polyunsaturated compounds. This separation is due to the cis double bonds 

which cause the acyl chain to bend, resulting in a reduction of the tight packing between 

the acyl chain and the stationary phase required for hydrophobic interactions. Such 

patterns in retention times have previously been observed in phosphatidylcholine species 

on C18 stationary phase (Kuksis, 1987). It can be seen from Table 3.6 that analytes 

detected, when compared against reference standards, follow these trends. For example, 

NAB PEA CI6:0, NAB C18:0 and NAB C20:0 elute in order: from shortest to longest 

acyl chain. The same can be seen for NAB OEA CI8:1, NAB C20:I, NAB C22:1 and 

NAB C24: 1, which also elute in order, with the shortest acyl chain first. Additionally, 

OEA CI8:0, NAB C18:1 and NAB CI8:2 elute in that order. With the increase in the 

number of double bonds, attraction to the stationary phase is reduced and resulting 

retention times are shorter. 

Use of the nitrogen rule for analyte identification 

One additional piece of evidence corroborating the identification of the purposed analytes 

is their adherence to the nitrogen rule. A compound that contains no, or an even number, 

of nitro gens will have an even molecular weight mass. Consequently, a compound that 

contains an odd number of nitro gens will have an odd molecular weight mass 

(McLafferty and Turecek, 1993). All NABs contain one nitrogen atom; hence it would 

be expected that the molecular weight of each compound would be odd. This is the case 

for all NABs detected. 

3.3.8 Biological relevance of NAEs detected in rat brain 

NAB ABA C20:4, the first of the endocannabinoids to be discovered, has been previously 

identified in rat brain alongside entourage compounds OEA CI8:1 and PEA C16:0 

(Richardson et at., 2007; Williams et at., 2007). 

DEA C22:4, reported here, has previously been observed in porcine brain tissue (Hanus 

et aI., 1993) and has been demonstrated to exhibit endocannabinoid effects to the same 

extent as NAE ABA C20:4 (Barg et aI., 1995). Although clearly a relevant NAE in the 
1.+0 



endocannabinoid story, this analyte has been studied very little in comparison to NAE 

AEA C20:4; this is predominantly due to a lack of standards (Fowler, 2007). 

NAE C24: I ethanolamine, reported here, has been previously identified in mouse brain 

(Leung et aI., 2006). By the use of NAPE-PLD(-I-) and NAPE-PLD(+I+) mice, they 

demonstrated that NAE C24:1 ethanolamine was biosynthesized via NAPE-PLD. 

Similar results were observed for other unsaturated and monounsaturated NAEs (PEA 

CI6:0, CI8:0, OEA CI8:1, and C20:0). Additional work (Nomura et aI., 2008) 

demonstrated that by inhibiting F AAH and MAGL (known NAE and MAG metabolizing 

enzymes), C24:1 ethanolamine levels in mice brain increase along with other NAEs and 

MAGs. Further work (Saghatelian et aI., 2004) also concludes that NAE C24: 1 

ethanolamine is a ligand for F AAH. Whether NAE C24: 1 ethanolamine is a substrate for 

CB 1 or CB2 has yet to be reported. However, considering that the acyl chain is 

monounsaturated and does not have the same degree of saturation as known CB 1 & CB2 

substrates (Ahn et ai., 2008; Sheskin et ai., 1997), it seems unlikely. 

NAE C18:0 (Leung et ai., 2006; Maccarrone, 2006; Saghatelian et ai., 2004) and NAE 

C18: 1 (Mulder and Cravatt, 2006) are previously reported NAEs. Although substrates 

for FAAH along with NAE C20:4 (Nomura et ai., 2008; Saghatelian et aI., 2004), they 

are not routinely measured along with entourage compounds NAE PEA C 16:0 and NAE 

OEA CI8:l. 

NAEs C18:2 has been demonstrated in vitro to be inactive against the CB l receptor. 

NAE C20:0 has not been assessed; however, considering the lack of double bonds along 

the acyl chain, it would be unlikely that it would demonstrate any activity (Sheskin et aI., 

1997). Both compounds have been demonstrated to be substrates for fatty acid amide 

hydrolase (Nomura et aI., 2008) and have the potential for being entourage compounds, 

competing with NAE AEA C20:4 for metabolism. 

NAE C20:0 has previously been identified in mouse brain (Leung et aI., 2006) and was 

demonstrated to be metabolized by F AAH along with other NAEs - AEA C20:4, OEA 
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CI8:I and PEA CI6:0. The CB I and CB2 activity of this NAE has not been accessed as 

with others; however, as with C22: I, the lack of double bonds along the acyl chain may 

preclude a direct effect on the cannabinoid receptors (Sheskin et aI., 1997). 

NAE C20: I has been identified previously in rat frontal cortex using a targeted approach 

(Williams et aI., 2007) as well as in mouse brain (Saghatelian et aI., 2004). However, in 

the latter study NAE C20: I was not detected in wild-type mice but only in F AAH knock

out mice, animals incapable of generating F AAH, an enzyme known to be involved in the 

catabolism of NAEs, including AEA C20:4, OEA C18:1 and PEA CI6:0. Studies 

conducted in vitro to determine CB I and CB2 activity have demonstrated little effect on 

the endocannabinoid receptors (Sheskin et aI., 1997) however, as a ligand for F AAH, this 

is an important analyte to study when profiling NAEs 

NAE C20:3, a known CB I agonist (Hanus et aI., 1993) previously identified in porcine 

brain, was not detected in brain extractions analyzed here. Presumably this is due to 

endogenous levels below the LLOD of this methodology. 

NAE C22: 1 has been observed once before in mouse brain (and spine) (Saghatelian et aI., 

2004). As with NAE C20: 1, NAE C22: 1 was not detected in wild-type mice but only in 

FAAH knock-out mice, animals incapable of generating FAAH. Activity towards CB I 

and CB2 receptors has not been assessed. Previous work (Sheskin et aI., 1997) 

demonstrates that ligands for CB I and CB2 require at least three double bonds along the 

acyl chain; it appears unlikely that this NAE will have a direct effect on the cannabinoid 

receptors. However, as a substrate for FAAH, this analyte is likely to exert an entourage 

effect towards AEA C20:4 and hence is an important analyte to profile when 

investigating the endocannabinoid system. 

The analytes detected by this method have been previously identified in biological tissue 

(rat or mouse); however, such identifications have been an accumulation of a number of 

methodologies. Such methods have focused predominantly on targeted approaches. 

relying on reference standards or on more global approaches comparing two or more 
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tissue states and observing the associated changes. The precursor ion methodology 

described here has successfully identified a range of NABs, which previous methods have 

been unable to achieve. A number of the NABs are commonly studied; however, a 

number are not, and an analytical method capable of identifying the scope of analytes 

observed here is valuable in the field of endocannabinoids. 

3.3.8.1 MAGs detected in rat brain 

Table 3.7. MAGs detected in rat brain tissue using NL92 survey scan coupled with EPI. Each 

compound was additionally identified by TOF and the mass error in ppm is stated. ND indicates the 

compound was not detected using TOF. 

Acyl Chain [M+H] RT Prominent Product Ions [M+H] Error 

(mlz) (ppm) 
measured 

byTOF 

C22:4 407.3 7.10 389.3, 333.3, 315.3, 297.3,287.3, 273.3 407.3161 1.3 

2-AG C20:4 379.3 5.92 361.3, 305,3287.3, 269.3, 259.3, 245.3 379.2879 9.5 

C20:3 381.3 6.52 363.5, 307.3, 289.3, 271.3, 261.3, 247.3 ND ND 

C18:1 357.3 6.89 339.3, 283.3,265.3,247.3 357.2994 1.5 

C18:0 359.3 7.6 341.3, 285.3, 267.3, 249.3 359.3151 1.4 

C16:0 331.3 6.7 313.3, 257.3, 239.3, 221.3 331.2832 3.3 

It was demonstrated in section 3.3.2 that both MAGs, containing an ester linkage, and 

noladin ether, containing an ether linkage, produce a neutral loss of 92amu under CID in 

positive. However, there is some variability as to reported levels of NE in brain tissues in 

rat. An early publication reports levels of 1 - 65 pmol/g (Fezza et al., 2002) where later 

publications demonstrated NE in rat brain, if detected, of 0.2pmol/g (Oka et al., 2003; 

Richardson et al., 2007). The latter values are below the LLOD of the NL scan employed 

here and would theoretically not be detected by this technique. In practice, this was 

found to be the case, and NE was not detected in brain tissue by this methodology. 
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MAGs detected and confirmed by reference standards 

2-AG C20:4 was detected and demonstrated an EPI spectrum consistent with that of 2-

AG C20:4 reference standard; see Figure 3.23. The loss of water from the 

pseudomolecular ion is present as are ions indicative of the amide bond cleavage (m/~ 

287.2 and 269.2) and fragmentation along the acyl chain (mlz 259.3 and 245.3). The 

monoisotopic mass calculated by LC-TOF-MS was slightly higher than expected, at 9.5 

ppm, where the expected mass error should range between ± 5.0 ppm. 

Tentative identification of other MAGs 

MAG C22:4 was tentatively identified by the neutral loss survey scan. Initial 

identification was based on theoretical ions in Table 3.4. Additional confirmation was 

obtained from a comparison with MAG 2-AG C20:4. MAG C22:4 has a longer acyl 

chain by C2H4 (28 amu), and consequently the [M+Hr ion is 28 amu greater than MAG 

2-AG C20:4. Ions indicative of the loss of water [M+H - H20t (mlz 333) as well as ions 

from the cleavage of the ester linkage [M+H-C3Hg0 3t (mlz 315), [M+H-C3Hg0 3-H20t 

(mlz 297) and acyl chain [M+H-C4Hg04t (mlz 287) are also +28 amu greater than those 

detected from 2-AG; see Figure 3.24. In this instance only one of the two expected acyl 

chain fragments was observed. The psuedomolecular ion is the base peak, demonstrating 

that the collision energy used may be less than optimal for this compound, resulting in 

fewer product ions and hence the lack of the second acyl chain fragment. Measurement 

by LC-TOF-MS of this compound observed the monoisotopic mass to within 1.3 ppm of 

the theoretical value addings additional evidence to the correct assessment of this analyte. 

MAG C20:3 was detected by the NL92 survey scan. To aid in the identification, a 

comparison of diagnostic product ions was made against theoretical ions listed in Table 

3.4. Additionally, the EPI spectrum was compared against that of MAG 2-AG C20:4 

standard; see Figure 3.25. MAG C20:3 is structurally similar to 2-AG C20:4, varying by 

one double bond on the acyl chain; the consequence being that the mass of the two 

compounds varies by 2 amu (H2)' As can be seen when comparing the two spectra, MAG 

C20:3 has a pseudomolecular ion 2 amu greater that MAG 2-AG C20:4. 
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Figure 3.23. A comparison of 2-AG C20:4 EPI spectra obtained from (a) standards and (b) rat brain 

tissue. The fragmentation patters are very similar. The loss of water from the pseudomolecular ion 

is present as are ions indicative of the amide bong cleavage (mlz 287.2 and 269.2) and fragmentation 
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Figure 3.24. Tentative identification of MAG C22:4. EPI spectra of (a) reference standard 2-AG 

C20:4 and (b) MAG C22:4 from rat brain. MAG C22:4 has a longer acly chain by C2iL (28 amu) 

and consequently the [M+HI+ ion is 28 amu greater than MAG2-AG C20:4. Ions at 333, 315, 297 

and 287, indicative of fragmentation around the ester bond and the acyl chain, are al so +28amu 

greater than those detected in MAG2-AG C20:4 EPI spectra. 
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Furthermore, ions indicative of the loss of water [M+H - H20t (mlz 363.3) as well as 

ions from the cleavage of the ester linkage [M+H-C3H803t (mlz 289.3), [M+H-C3H80 3-

H20t (mlz 271.3) and acyl chain [M+H-C4H8N04t (mlz 261.3) are also +2 amu. There 

was only one fragment originating from the cleavgae of the MAG C20:3 acyl chain, 

whereas MAG 2-AG C20:4 demonstrates two. This could be due to less saturation, as, 

looking at MAG standards, it was observed that MAG C18:2 demonstrated no acyl chain 

fragmention. No TOF measurement was obtained for this analyte, presuambly because 

the endogenous level was below the detection limit of the instrument. 

MAG CI8:I and MAG C18:0 were also detected in rat brain by the NL92 survey scan. 

Diagnostic product ions match theoretical values predicted in Table 3.4. The protonated 

pseudomolecular ions are present, as are the subsequent loss of water [M+H - H20t as 

well as the ions indicative of the ester cleavage. For further confirmation, both MAG 

CI8:I and MAG C18:0 EPI spectra were compared against 2-LG C18:2 standard because 

there was a clear structural incremental variation in these compounds, with a loss of 

saturation from MAG C18:0 through to 2-LG CI8:2. Figure 3.26 shows the EPI spectra 

of C18:2 (2-LG) standard and MAG CI8:I and MAG C18:0 detected in rat brain. The 

three compounds vary by the addition of one double bond from C18:0 to CI8:2, with the 

decrease of 2 amu (H2), respectively. Consequently each [M+Ht decreases by 2 amu, 

respectively. Furthermore, the productions also demonstrate this pattern. The ion formed 

by the loss of water from the pseudomolecular ions also decreases by 2 amu, as do the 

ions indicative of a cleavage across the ester linkage [M+H-C3H803t and [M+H

C3H80 3-H20t. Measurements by LC-TOF-MS of both MAG C18:0 and MAG C18:1 

provide good additional evidence that the identification of these two compounds (mass 

errors of -2.8 and 3 ppm, respectively) is correct. It should be noted, however, that the 

product ion intensities resulting from the ester linkage (and loss of water) for MAG 

C18:0 are relatively low compared to MAG CI8:I and reference standard MAG 2-LG 

C 18:2. This could be due to the lack double bonds along the acyl chain, although a 

mechanistic reason for this is unknown at this time. Certainly another saturated MAG 

tentatively identified, MAG C16:0, also demonstrates very low intensity ester linkage 

fragments. Additionally, 
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saturated NAB reference standard PEA C16:0 demonstrates no fragmentation of the 

amide bond where polyunsaturated ABA C20:4 demonstrated a high degree of 

fragmentation. Nevertheless, with such a difference in intensity of ions for the purposed 

MAG C18:0, it could be said the identification of this analyte is not as strong as other 

MAGs listed here. 

MAG C16:0 was identified by the NL92 survey scan. Diagnostic product ions match 

with those listed in Table 3.4 although [M+H-C3H803-H20t the cleavage of the ester 

linkage followed by the loss of water was not detectable. Additional confinnation was 

made by comparing EPI spectra of MAG C16:0 with standard 2-LG C18:2; see Figure 

3.27. MAG C16:0 has a shorter acyl chain compared to MAG C18:2 by C2H4 and 4 

additional hydrogens because of its saturated acyl chain, resulting in a mass difference of 

24 amu. Hence the [M+Ht is mlz 24 less than 2-LG C18:2, and consequently the loss of 

water and the ion indicative of cleavage from the ether linkage is also mlz 24 less than 

those observed from 2-LG C18:2. Additional confinnation of identification was made by 

use of LC-TOF-MS, where the monoisotopic mass was measured to be within 1.5 ppm of 

the expected value. 

As observed with MAG C18:0 EPI spectrum, the relative intensity of the ions resulting 

from the cleavage of the ester linkage is very low. 

Further evidence of identification using the nitrogen rule 

MAGs, as with NABs, follow the nitrogen rule. MAGs do not contain a nitrogen atom 

and consequently it would be expected that the molecular masses would be even 

(McLafferty and Turecek, 1993). This is the case for all MAGs detected. 
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Identified MA Gs in biological tissue 

2-AG C20:4 is a well characterized endocannabinoid and has been identified by previous 

targeted methodologies (Richardson et al., 2007; Williams et al., 2007). 2-LG CI8:2, 

observed previously (Richardson et aI., 2007) in various brain regions, was not identified 

by this technique. Where it is has been observed previously, concentrations were in the 

region of two orders of magnitude less than MAG 2-AG C20:4, ranging from 0.1 to 4.3 

nmol/g. Although it is difficult to perfonn a direct comparison and identify these as on

column concentrations, it suggests that MAG 2-LG C18:2 is below the LLOD for this 

technique in rat brain. 

MAG C 18: I identified by this methodology has been demonstrated in vitro to have little 

affinity as CB I or CB2 receptor agonists, unlike 2-AG C20:4 (Sugiura et aI., 2000). 

However, MAG C18:1 (along with MAG CI6:0) has been detennined to be catabolised 

by MAGL, an enzymatic degradation route of 2-AG C20:4 (Nomura et al., 2008). As 

such the resulting competition between these MAGs and 2-AG C20:4 for catabolism by 

MAGL portray them as possible entourage compounds along with 2-LG CI8:2. As 2-LG 

C18:2 has been demonstrated in vitro to potentiate the effect of 2-AG C20:4 on motor 

behaviour (Ben-Shabat et al., 1998) the role of MAG C 18: 1, although not fully explored 

in the area of endocannabinoids, is also likely to playa similar role. 

MAG C18:0 has been previously reported in rat brain (Saghatelian et aI., 2004). The 

role, if any, of unsaturated MAG C18:0 on the endocannabinoid systems is currently 

unknown. However, considering C18:2 has been demonstrated in vivo and in vitro (Ben

Shabat et aI., 1998) to show entourage effects, and considering that monounsaturated 

MAG C18: 1 is a substrate for MAGL (Nomura et aI., 2008), it is possible that this 

compound also undergoes similar catabolomic pathways and warrants further 

investigation. 

MAG C22:4, identified here, has been synthesized and demonstrated to have little affinity 

for CB 1 or CB2 receptors compared to 2-AG C20:4 (Sugiura et al., 1999; Sugiura et aI., 
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2000). It has not, to the best of the author's knowledge, been previously identified in 

biological tissue. 

C20:3, also observed by this method in rat brain tissue, has previously been tested for 

CB1 or CB2 activity (Sugiura et aI., 1999; Sugiura et al., 2000). Unlike C22:4, C20:3 

demonstrated comparable activity to C20:4, but only in the n-9 double bond 

configuration. C20:3n-6 and C20:3n-3 demonstrated considerably less activity. The 

location of the double bonds in MAG C20:3 identified by this methodology cannot be 

identified at this current time, so a possible physiological role cannot be confirmed. 

3.3.9 NAE and MAG Metabolites 

It has been demonstrated that both ABA C20:4 and 2-AG C20:4 can be catabolised via 

various enzymatic pathways to form a number of new compounds. These structures 

maintain either an ethanolamine or glycerol moiety and hence could potentially be 

identified by the PI62 or NL92 survey scan methods. 

3.3.9.1 Metabolism by cyc/ooxygenases-2 

Whereas catabolism of arachidonic acid by cyclooxygenase-2 forming prostaglandins is 

well established, it has also been observed for endocannabinoids in vitro studies (Kozak 

et al., 2004; Kozak et aI., 2002a; Yang et al., 2005). Both ABA C20:4 and 2-AG C20:4 

have been shown to be a substrate for cyclooxygenase-2 metabolism to form 

ethanolamide and glycerol esters forms of PGE2, PGD2 and PFG2a• Using the PI and NL 

survey scan methodologies, these metabolites were not identified in rat brain tissue. Such 

findings are in agreement with the current literature. Although endocannabinoids are a 

potential substrate for cyclooxygenase-2, only where F AAH activity has been disrupted 

are cyclooxygenase-2 metabolites of anandamide been observed in vivo (Weber et aI., 

2004). 
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3.3.9.2 Metabolism by cytochrome P450 and lipoxygenase 

Both AEA C20:4 and 2-AG C20:4 are known substrates for lipoxygenase. In vitro 

studies have shown 2-AG C20:4 to be metabolized by lipoxygenase to 12-

hydroxyeicosatetraenoicacid glyceryl ester and 15-hydroxyeicosatetraenoic acid glyceryl 

ester. Both metabolites are structurally similar to MAG 2-AG C20:4, but with oxidation 

on the 12th and15
th 

carbon from the ester linkage (Kozak et ai., 2002b; Moody et aI., 

2001). The survey scans for both ethanolamines and glycerol groups did not identify any 

lipoxygenase metabolites of AEA C20:4, 2-AG C20:4 or any of their structural analogs. 

Where those lipoxygenase metabolites have been previously identified in vitro, such 

metabolites have not been identified in vivo. If such compounds are present it is assumed 

they are below the limit of detection of this technique. 

Cytochrome P450 from human kidney and liver micro somes has been demonstrated in 

vitro to oxygenate anandamide to form single monooxygenated hydroxyeicosatetraenoic 

acids (HETEs) and epoxyeicosatrienoic acids (EETs), like species including 20-HETE -

ethanol amide, 14, 15-EET - ethanolamide and 5,6-EET - ethanol amide. Where these 

results were obtained in vitro from human CP450, Wistar rat brains have also been 

demonstrated to contain a form of this enzyme (Warner and Gustafsson, 1994), leading to 

the possibility that such metabolites could be formed. Such metabolites have a similar 

product ion pattern compared to NAE AEA C20:4 (Bornheim et ai., 1995; Snider et ai., 

2007) and hence would in theory be detected by this methodology if present in 

concentrations above the LLOD. As no oxygenated compounds such as these were 

detected in brain samples, it is assumed that they are not present, below the LLOD or that 

other synthesis / metabolomic pathways are involved. 
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3.4 Conclusion 

The application of survey scans coupled with full product ion spectra has successfully 

identified a range of endocannabinoid and structural analogs in rat brain. Known NAEs 

DEA C22:4, AEA C20:4, OEA CI8:I and PEA CI6:0, for which standards were 

available, were identified. Additionally NAE C24:I, NAE CI8:0, NAE C20:I and NAE 

C22: 1, for which standards were not available, were also identified. MAGs 2-AG C20:4 

was identified, as well as MAG C22:4, MAG C20:3, MAG CI8:I, MAG C18:0 and 

MAG CI6:0, for which standards were not available. To the best of the author's 

knowledge, MAG C22:4 has not been previously identified in biological tissues. 

It has been demonstrated that the method outlined in this chapter has the sensitivity and 

specificity to identify compounds containing ethanolamine or glycerol moiety and to 

produce full product ion spectra for further confirmation. Compounds for which 

standards were not available have been identified based on product ion spectra compared 

to structurally related standards with the addition of accurate mass measurments. This 

additional evidence provides greater confidence in the identification of less saturated 

analytes which form fewer structurally significant ions. To take the identification of 

these compounds to completion, synthesis of standards would be the most appropriate 

way. By comparison of retention times and product ion spectra a more complete 

identification could be made. 

This methodology has demonstrated an advantage over other targeted and global 

methodologies employed in the field of endocannabinoids by identifying a greater profile 

of NAEs or MAGs. Targeted approaches to date have not demonstrated the range of 

NAEs and MAGs observed with this technique because of the reliance on standards, a 

number of which are not commercially available and can be difficult to synthesize in the 

laboratory. Global methodologies, comparing differences between a control and an 

enzyme deficient tissue, successfully identified known and novel endocannabinoid-like 

structures (Saghatelian et aI., 2004). However, the identification of analytes lacked the 

specificity of the approach described in this chapter, basing identification on the 
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pseudomolecular ion. Further work, however, was required to complement the technique 

to identify unknowns, using FT -ICR and MSIMS of standards compounds. A limitation 

of this approach is that only analytes affected by the absence of the knocked out / 

removed enzymes are identified; those analytes which may be biologically significant but 

not affected by the chosen variation in the samples are not observed. 

A limitation of the proposed identification of NAEs and MAGs is the inability to identify 

double bond location on the acyl chain. It was attempted by the study of the AEA C20:4 

and 2-AG C20:4 EPI spectra but due to the large number of ions resulting from 

fragmentation of the acyl chain, it was difficult to assign double bond location with 

confidence. 

Fast atom bombardment (FAB) coupled with CID has been previously used for the 

structural elucidation of NAEs (Kasai et aI., 2003). Pseudomolecular ions formed by 

lithium adducts [M+Lit demonstrated greater fragmentation along the acyl chain 

compared to [M+Ht species and enable the determination of double bond location. It is 

unclear as to whether an ethanolamine ion or glycerol neutral loss would be generated 

under CID from pseudomolecular ions formed by lithium adducts, and hence be detected 

by the PI62 or NL92 survey scan. Such an approach could be complementary to the 

survey scans. With the identification of NAEs and MAGs known a targeted approach 

could be taken to isolate on the [M+Lit and fragment to produce a product ion spectra 

that may identify double bond location. 

Atmospheric pressure chemical ionization has been demonstrated to identify double 

bonds' location in polyunsaturated fatty acid methyl esters (Van Pelt et aI., 1999). By the 

addition of acetonitrile adducts across the double bond, and subsequent product ions 

formed under CID, the location of unsaturated bonds was accomplished. Whether the 

characteristic ion and neutral of the ethanolamine and glycerol moieties would be 

observed with acyl chain adducts is unclear. Again, in a similar vein, this approach could 

be attempted as an additional, targeted step if double bond location became of critical 

importance. 
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Where the approach taken here is an effective method for identifying NAEs and MAGs, 

the method could equally be applied for the profiling of other endocannabinoids that vary 

in the end moiety. N-acyl taurines, with a distinctive end moiety that fragments under 

CID to generate the representative mlz 124 ion (Saghatelian et aI., 2004), could be 

targeted using the surveying methodology. N-arachidonylalanine also form under CID an 

end moiety detectable by a precursor ion or neutral loss survey scan (Huang et aI., 2001). 

Both compounds and structural analogues could be applicable to the use of this 

methodology. 

Whereas this method has demonstrated the ability to identify and profile NAEs and 

MAGs in rat brain, the approach could be taken and applied to other tissue. The roles of 

all the NAEs and MAGs identified here are not fully defined within the sphere of 

endocannabinoids and the variation of such compounds in different tissues has not been 

fully investigated. The profile of NAEs and MAGs in other tissues would be valuable to 

the investigation and understanding of the endocannabinoid system, and these are 

considered in the next chapter. 
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4 The identification and Distribution of NAEs and MAGs 

in Rat Tissue Determined by Precursor and Neutral 

Loss Survey Scans 

4.1 Introduction 

Following the successful identification of NAEs and MAGs in brain tissue, a further 

study was conducted using the QqQLIT precursor ion and neutral loss survey scans 

coupled with EPI spectra to profile and compare NAEs and MAGs in a variety of rat 

tissues. Where work to date has investigated the role of endocannabinoids in tissues 

outside the nervous system, the focus has predominantly been on the well-established 

endocannabinoids, for which standards are readily available. Little work has been 

undertaken to identify the range of NAEs and MAGs present. This methodology has the 

potential to provide a comprehensive profile of related NAEs and MAGs along with 

metabolites, if present in sufficiently high concentrations. 

4.1.1 NAE and MAG profiles in rat tissue 

To date there have been few reports of comparative NAE and MAG profiles in 

mammalian tissues. Most studies have focused on tissue-specific analysis, identifying a 

relatively small number of specific NAEs and MAGs in a given tissue. The result of this 

approach is invariably narrow, often ignoring known CB 1 and CB2 agonists because of 

the unavailability of reference standards (Fowler, 2007). Some methods that have 

profiled a wider range of analytes have limitations. One approach employed TLC 

coupled with GC-MS to profile MAGs in rat brain, liver, spleen, lung, kidney and plasma 

(Kondo et aI., 1998a). Although successfully identifying C20:4 and C18:0, C18:2 and 

C22:6 glycerol, the method lacked the selectivity to discriminate MAG species with 14, 

16 or 18 carbons on the acyl chain. 
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An alternative, more selective approach was taken using SPE and GC-MS to identify a 

number of NAEs and MAGs in kidney, testis, heart, liver, spleen and liver of rat (Schmid 

et aI., 2000). Although identification of a number of analytes was achieved, the range 

was not as extensive as other targeted methods performed on single tissues (Nomura et 

at., 2008; Williams et at., 2007) or as comprehensive as the list of compounds identified 

in chapter 3. A further drawback to the GC-MS approach was the additional chemical 

derivatization stage required, which added complexity to the sample preparation. 

Where investigations into various tissue types have been conducted, the approaches have 

been narrowly focused. A GC-MS method was applied to rat liver, spleen, lungs, heart, 

aorta, cortex, medulla, and papilla, investigating for changes in MAG 2-AG C20:4 

following bile duct - ligation to simulate cholestatic liver disease (Avraham et aI., 2008). 

Where 2-AG may be of sole interest to the investigation, an understanding of other 

MAGs and NAEs may have proved useful. Conversely, LC-MSIMS has been applied in 

the detection of NAE AEA C20:4 in various brain regions (hippocampus, cerebellum, 

striatum and thalamus) along with the spleen and the skin of rats and humans (Felder et 

aI., 1996), but other NAEs, known CB 1 agonists or entourage compounds, were not 

investigated. This is not to say such work is not of great use, but a fuller profile of NAEs 

and MAGs was not achieved due to methodology limitations. 

Previous work conducted in the reproductive tissues of rat has demonstrated a wider 

analysis of NAEs and MAGs than commonly observed in other tissues. HPLC coupled 

with a fluorescence detector have successfully identified PEA 16:0, NAE C16:1, NAE 

CI8:0, OEA CI8:1(n-7), NAE CI8:1(n-9), NAE CI8:2(n-6) and AEA 20:4 (n-6) in rat 

testi (Sugiura et aI., 1996), although the profile of NAEs identified was not complete. 

Furthermore, MAGs were not targeted in this analysis. The ability to analyze a larger 

profile of analytes compared to other work in the literature was due the group's ability to 

synthesis reference standards in house. A similar approach taken, again employing GC

MS, profiled NAEs and MAG CI8:1n-9, MAG CI8:1n-7, MAG CI8:2n-6 and MAG 

C20:4n-6 (Schmid et aI., 2000). As with the previous methods, reference standards, 

excluding AEA C20:4, were synthesised in house. TLC and GC-MS were also used in 
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the analysis of NABs in rat testi, again identifying the same NAEs mentioned previously 

plus one additional not commonly identified in brain, NAE C22:5 (Kondo et aI., 1998a). 

An LC-MS approach has successfully been applied in the identification of NAEs in a 

number of brain regions as well as rat kidney, testi, liver, heart and thymus (Koga et aI., 

1997). Although a reasonable range of tissues were analysed, providing an understanding 

of the NAB distribution within the rat, only ABA C20:4, OEA C20:4 and PEA C20:4 

were analysed, forsaking a number of other biologically significant NAEs and MAGs. 

Furthermore, identification was performed on the [M+Ht ion alone. Where such an 

approach is inherent within the instrumentation used, the use of full product ion spectra 

employed in this chapter will provide greater selectivity. 

4.1.2 Tissues 

The following tissues were selected for profiling: brain, spinal cord, heart, lungs, liver 

and testi. Selection was based on incorporating major organs and additionally where 

some previous work in the literature was available for comparison. 

4.1.3 Aims 

The aims of this section of work were as follows: 

• Apply the methodology developed in chapter 3 to profile various tissues in rat 

• Identify a wider profile ofNAEs and MAGs present than previously determined 

in rat tissue. 

• Identify other endogenous metabolites which contain an ethanolamine or glycerol 

moiety. 
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4.2 Methods and Materials 

4.2.1 Chemicals 

Acetonitrile, anhydrous chloroform, ethanol, toluene, ethyl acetate, hexane, ammonium 

acetate and formic acid were obtained from Fisher Scientific (Loughborough, UK). 

Anandamide, 2-AG, virodhamine, 2-LG, OEA, PEA, prostaglandin E2 glycerol ester, 

prostaglandin D2 glycerol ester, prostaglandin F2u glycerol ester, deuterated anandamide 

(AEA-d8) and deuterated 2-AG (2-AG-d8) were obtained from Cayman Chemicals / 

Alexis (Nottingham, UK). HPLC grade water, purified using an Elga system to 18'0 

(Elga, High Wycombe, UK), was used for all experiments. All glassware used in the EC 

extraction method was silanized using trichlorotrimethyl silane, obtained from Sigma

Aldrich (Steinheim, Germany), followed by wash stages with toluene and then methanol 

prior to use. All solvents and chemicals were of HPLC grade or higher. Mobile phases 

were filtered using 0.47 J.lm nylon filters (Whatman, Maidstone, UK) 

4.2.2 Tissue collection 

Tissues and organs were collected from six Sprague-Dawley rats (Charles River, UK). 

The animals were stunned by a blow to the head followed rapidly by decapitation, 

typically within 3-4 seconds. The animals underwent immediate dissection, recovering 

brain, heart, lungs, liver, testi and spinal tissue, following which collected tissues were 

immediately frozen on dry ice. All tissues were subsequently stored at -80°C until 

required. Tissue collection was carried out by Professor David Kendall, Dr. Victoria 

Chapman and Dr. Stephen Alexander, School of Biomedical Sciences, University of 

Nottingham. Mean weights and standard deviation of tissues are listed in Table 4.1 

4.2.3 Tissue extraction 

Tissues were extracted by the method detailed in the paper by Richardson et at 

(Richardson et aI., 2007). Tissues were homogenized by hand in a silanized glass 
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homogenizer in 8 ml of ethyl acetate !hexane (9: 1 v/v). 10% of its volume of water was 

added and the contents transferred to a centrifuge tube. Centrifugation was perfonned at 

7000g for 15 min and the temperature maintained at 4°C. The supernatant was removed 

and the process repeated a further two times to optimize recovery. Supernatants were 

then subsequently pooled and the solvent removed by centrifugal evaporation. 

Extractions were reconstituted in 200 III ethanol and vortexed for 3 min. 100 III was 

removed from each of the tissue replicates and then pooled, dried down and reconstituted 

in 100 III of ethanol. This extract was analyzed by the two survey scan methodologies 

previously described in section [3.2], chapter 3. The remaining 100 Jll of samples were 

refrozen and stored at -80 for further analysis where required. 

Table 4.1. Mean weight (n=6) and standard deviation of tissues extracted from the Sprague-Dawley 

rats. 

Statistic Tissue 

Brain (left Heart Lung Liver Testis Spine 

hemisphere) 

Mean Weight (g) 0.909 1.107 0.745 0.770 1.171 0.152 

Stdev 0.026 0.101 0.038 0.043 0.159 0.019 

4.2.4 Liquid chromatography and mass spectrometry methods 

The same LC conditions detailed in section 3.2.5 in chapter 3 were used here. The 

parameters for both MS systems have been described in chapter 3. As with brain 

extracts NAEs and MAGs were detected in the various tissues using a precursor ion mlz , 

62 and a neutral loss mlz 92 survey scans (coupled with an EPI scan). Accurate mass 

measurement using a TOF-MS was conducted where applicable as previously stated in 

section 3.2.5, chapter 3. 
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4.3 Results and Discussion 

4.3.1 NAE and MAG profiles in rat tissues 

Using a precursor ion and neutral loss survey scan coupled with full product ion spectra a 

number of known and unknown NABs and MAGs were identified. Well-established 

ABA C20:4, OEA CI8:1, PEA C16:0 and 2-AG C20:4 and 2-LG C18:2 were identified 

in tissues. Additionally, NABs and MAGs previously observed in chapter 3 and for 

which reference standards were not available were also identified in the tissue extracts. 

Analytes not previously identified in chapter 3 were also observed in certain tissues. The 

resulting profiles of NABs and MAGs demonstrate distribution is tissue dependent; see 

Table 4.2 and Table 4.3. 

NAEs 

Table 4.2 illustrates the range of NABs detected, with acyl chains spanning from C 16 up 

to C24 and containing between zero and 5 double bonds. NAB ABA C20:4, NAB OEA 

C18:1 and NAB PEA C16:0 were detected in all tissues except lung and heart, where 

NAB ABA C20:4 was not present or below the LLOD. 

It is clear that there is a variation of NAB distribution dependent on the tissue. Spinal 

tissue and brain (described in section 3.3.5, chapter 3) clearly contains the majority, but 

not all, of the NABs detected. 

MAGs 

A range of MAGs detected in the various tissues are listed in see Table 4.3. The acyl 

chains detected span from C 16 up to C22 and contain between zero and five double 

bonds. As observed with NAB profiles, spinal cord tissue (and brain, described in section 

3.3.5, chapter 3) contains the majority, but not all, of MAGs detected across the spectrum 

of tissues. 
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Table 4.2. NAEs detected in various rat tissues by the precursor - ion survey scan (mlz 62). There is 

a clear variation in the profIle of NAEs in each tissue. A * indicates the detection of a 

chromatographic peak with the expected [M+Ht and the expected RT but no EPI triggered. 

Acyl Chain [M+H] RT Brain Spinal cord Testi Heart Liver Lung 
C24:1 410.4 10.6 ./ ./ 

C22:5 374.3 5.98 

DEAC22:4 376.3 7.10 ./ ./ 

C22:1 382.3 9.68 ./ ./ 

AEA C20:4 348.3 5.30 ./ ./ ./* 

C20:1 354.3 7.86 ./ ./ 

C20:0 356.3 9.22 ./* ./ 

C18:2 324.3 5.3 ./ ./* ./ ./ 

OEA C18:1 326.3 6.17 ./ ./ ./ ./ ./ ./ 

C18:0 328.3 7.36 ./ ./ ./ ./ ./ 

PEA C16:0 300.3 5.80 ./ ./ ./ ./ ./ 

Table 4.3. A list of compounds detected in various rat tissues by the neutral loss survey scan (mlz 92) 

containing a glycerol moiety. There is a clear variation in the profIle of MAGs in each tissue. 

Acyl Chain [M+H] RT Brain Spinal cord Teste Heart Liver Lung 

C22:5 405.3 6.58 ./ 

C22:4 407.3 7.10 ./ ./ ./ ./ 

2-AG C20:4 379.3 5.92 ./ ./ ./ ./ 

C20:3 381.3 6.52 ./ ./ ./ 

C20:1 385.3 8.56 ./ 

2-LG C18:2 355.3 5.97 ./ ./ ./ ./ 

C18:1 357.3 6.89 ./ ./ ./ ./ ./ ./ 

C18:0 359.3 8.42 ./ ./ 

C16:0 331.3 6.7 ./ ./ 
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It was noticed that a few analytes expected to be detected were not observed by the 

precursor ion or neutral loss survey scans employed. This lack of detection is probably 

due to endogenous levels being below the LLOD of the methods. When compared to the 

targeted SRM approach developed in chapter 5, the survey scans are approximately -5 to 

10 times less sensitive. Nevertheless, the survey methods developed in chapter 3 and 

employed in this chapter have identified a range of NABs and MAGs in the low pmol/g 

levels (Richardson et aI., 2007) not previously achieved by other analytical 

methodologies. The distribution of NABs and MAGs in each rat tissue will now be 

considered in detail. 

4.3.1.1 NAEs and MAGs detected in rat testi 

NAEs detected in rat testi 

A number of NEAs were identified in rat testi (see Table 4.2), including the well

established endocannabinoid NEA ABA C20:4 and the entourage compounds NEA OEA 

CI8: 1 and NEA PEA CI6:0. The identification of these compounds was undertaken by 

comparison of the retention time and EPI spectra with reference standards, as already 

described in section 3.3.3 chapter 3. 

Additionally, NEA CI8:2 and NEA CI8:0, for which standards were not available, were 

also observed. These were previously observed in brain tissue and described in chapter 3. 

EPI spectra of NABs detected in testi tissue can be found in Figure 4.1. 

One other NAB was identified that had not been previously detected in rat brain by this 

method: NAB C22:5. Identification was based upon the EPI spectra compared to those 

hypothesized in Chapter 3. The pseudomolecular ion and resulting loss of water were 

observed. Ions indicative of the amide bond cleavage and subsequent loss of water, 

[M+H-C2H7NOt and [M+H-C2H7NO-H20t, are also observed at mlz 313.3 and 295.3. 

Two ions originating from the cleavage of the acyl chain, [M+H-C3H7N02t and [M+H

C4H9N02t, are also observed at mlz 285.3 and 271.3. 
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Figure 4.1. EPI spectra of NAEs detected in rat testi: (a) NAE C22:5, (b) NAE C20:4, (c) NAE CI8:2, (d) NAE CI8:1, (e) NAE C18:0 and (I) NAE 

C16:0. 
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Further confidence in identification was gained from the comparison of the EPI spectra 

with the reference standard spectra of NAE DEA C22:4; see Figure 4.2. NAE C22:5 has 

one additional double bond compared to NAE DEA C22:4; hence the pseudomolecular 

ion is 2 amu less, and the loss of water from [M+Ht is also 2 amu less, than that 

observed with NAE DEA C22:4. The two ions indicative of a cleavage across the amide 

bond, [M+H-C2H7NOt and [M+H-C2H7NO-H20t (mlz 313.3 and 295.3), and ions 

resulting from a cleavage of the acyl chain, [M+H-C3H7N02t and [M+H-C4H9N02t 

(mlz 285.3 and 271.3), are all 2 amu less than those observed from DEA C22:4. 

One additional step was undertaken to provide further evidence as to the identification of 

this compound by accurate mass measurement using LC-TOF-MS. C22:5 was identified 

by retention time and the theoretical monoisotopic [M+Ht, measured with an error of 1.5 

ppm, providing additional confidence as to its identification. 

MAGs detected in rat testi 

A number of MAGs were identified in testi tissue. Commonly identified MAG 2-AG 

C20:4 and entourage compound 2-LG C18:2 were observed. Identification was 

confirmed by comparison of EPI spectra and retention times of standards. Additionally, 

MAG C22:4, MAG CI8:1, and MAG C16:0 were also observed and identification was 

made as previously stated in chapter 3. EPI spectra of MAGs detected in testi tissue can 

be found in Figure 4.3. 

Another observed MAG not previously identified in chapter 3 was MAG C22:5. 

Identification was based upon the EPI spectra compared to those hypothesized in Chapter 

3. The pseudomolecular ion and resulting loss of water were observed. Ions indicative 

of the ester linkage cleavage and subsequent loss of water, [M+H-C3Hg03t and [M+H

C3Hg0 3-H20t, are observed at mlz 313.3 and 295.3. Two ions originating from the 

cleavage of the acyl chain, [M+H - C4Hg0 4t and [M+H - C5H lO04t, are also observed at 

mlz 285.3 and mlz 271.3. 
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Figure 4.2. A comparison of EPI spectra from (a) DEA C22:4 reference standard and (b) NAE C22:5 

extracted and detected in testi by precursor ion survey scan coupled with EPI. C22:5 has one extra 

double bond compared to C22:4 and is consequently H2 (2 amu) less. This 2 amu difference is 

observed in the pseudomolecular ion and the subsequent loss of water. Additionally, the two ions 

indicative of a cleavage across the amide bond, rM+H-C2H7NO( and rM+H-C2H7NO-H 20 I+. and ions 

resulting from a cleavage of the acyl chain, rM+H-C3H7N0 21+ and IM+H-C~H9N02 1 + , are all 2 amu 

less than those observed from DEA C22:4. The double bond locations of NAE C22:5 are not 

identified here, but nominally positioned at n-6 for the sake of the structure 
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As an additional step to aid in the identification, comparison of the EPI spectrum with the 

standard spectrum of MAG 2-AG C20:4 was undertaken; see Figure 4.4. MAG C22:5 

has one additional double bond and an extra C2~ on the acyl chain compared to 2-AG 

C20:4. Consequently, [M+Ht of MAG MAG C22:5 (mlz 405) is 26 amu greater than 

that of 2-AG C20:4. The loss of water from the pseudomolecular ion is also 26 amu 

greater than that observed with 2-AG C20:4. The two ions indicative of a cleavage 

across the ester linkage, [M+H-C3Hg03t and [M+H-C3Hg0 3-H20t (mlz 313.2 and 

295.3), and ions reSUlting from a cleavage of the acyl chain, [M+H - C4Hg0 4t and [M+H 

- C5HlO0 4t (mlz 285.2 and 271.4), are all 26 amu greater than those observed from MAG 

2-AG C20:4. 

To provide further evidence as to the identification of this compound, accurate mass 

measurements by LC-TOF-MS were employed. MAG C22:5 was identified by retention 

time pattern and the theoretical monoisotopic [M+Ht ion, with an error of 10.3 ppm. 

Such an error is slightly greater than expected of 5ppm, however, the known MAG 2-AG 

C20:4 was observed to have a mass error of9.5 ppm. 

Testi NAEs and MAGs in the literature 

Previously targeted analyses of rat testi have identified more NAEs when compared to 

tissues such as brain, where work has predominantly been focused on AEA C20:4 and 

MAG 2-AG C20:4, the more routinely studied ECs. The range of analytes identified in 

the literature compare well with those detected by this method. Using TLC and HPLC, 

PEA CI6:0, NAE CI6:1, NAE CI8:0, OEA CI8:1, NAE C18:2 and AEA C20:4 have 

been reported (Sugiura et aI., 1996). NAE C16:1 was not observed with the methodology 

described here. Where it has been previously observed it was the least abundant (0.9% of 

total NAE) of all NAEs encountered, and the lack of identification by this method is 

likely due to endogenous concentrations below the LLOD. NAE C22:5 identified here 

was not identified in the published reference, due to the nature of the targeted approach. 

An alternative method employing TLC and GC-MS identified C22:5 (n-6) NAE (Kondo 

et aI., 1998b), along with PEA CI6:0, NAE CI8:0, OEA CI8:1n-7, n-9, NAE C18:2 and 

AEA C20:4. 
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There are few studies of MAG profiles in testi to date; however, in confinnation of 

results presented here, MAG CI8:I (n-9, n-7), MAG CI8:2 (n-6) and MAG C20:4 (n-6) 

were identified in a Zucker rat testi (Schmid et aI., 2000) using SPE followed by a 

targeted GC-MS method (and an additional derivatization step). Despite extensive 

searching of the available literature, MAG C22:5, observed here, has not been found to 

be previously reported in rat testi. 

4.3.1.2 NAEs and MAGs detected in rat liver 

NAEs detected in rat liver 

Known NAEs and endocannabinoid entourage compounds NAE OEA CI8:1 and NAE 

PEA CI6:0 were observed and identified by comparison with standard retention times 

and EPI spectra. 

AEA C20:4 was identified by retention time and pseudomolecular ion only. In this 

instance both analytes were identified by the MS system; however, EPI was not triggered 

by the software because the intensities of both pseudomolecular ions were below the 

threshold determined to cause the instrument to switch to EPI mode. The setting of this 

threshold was applied to reduce the number of false positives resulting from background 

ions. As a result of the threshold, in conjunction with low endogenous intensities, no EPI 

were obtained. Despite the lack of EPI spectra there was sufficient evidence from the PI 

scan and the retention time to be reasonably confident of the identity of the peaks. 

NAE CI8:2, for which standards were not available, were also observed. Identification 

was made by comparison of theoretical product ions in section 3.3.4, chapter 3. EPI 

spectra of the NAEs detected in rat liver can be found in Figure 4.5. 
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MAGs detected in rat liver 

Known MAGs 2-AG C20:4 and entourage compound MAG 2-LG C18:2 were observed 

in liver tissues and identification confirmed by comparison of EPI spectra and retention 

time with available standards. 

MAG C18:1 and MAG CI6:0, for which standards were not available, were also 

observed. Both compounds were previously described in section 3.3.4, chapter 3. EPI 

spectra can be found in Figure 4.6 

Liver NAEs and MAGs in the literature 

The profile of NAEs and MAGs identified here compares well with those previously 

obtained employing a GC-MS targeted method with a SPE clean up stage (Schmid et aI., 

2000). NAEs reported in that method were NAE CI6:0, NAE CI8:0, NAE CI8: In-9, 

NAE CI8:1n-7 and NAE CI8:2n-6. AEA C20:4 n-6 was not detected, however. NAE 

AEA C20:4 was identified here using the survey methodology, although endogenous 

levels were so Iowan EPI was not triggered and identification was consequently based on 

the pseudomolecular ion and the R T obtained from reference standards. 

The same GC-MS method also identified MAG CI8:1n-9, MAG CI8:1n-7, MAG 

CI8:2n-6 and MAG C20:4n-6. Again, such results compare well with the method 

detailed in this chapter, although MAG C16:0 was not identified by the targeted method 

but detected by the survey scan method described here. 

4.3.1.3 NAEs and MAGs detected in rat heart 

NAEs detected in rat heart 

NAE OEA C18:1 and NAE PEA C16:0 were observed and identified by comparison of 

EPI spectra and retention time against standards. NAE AEA C20:4 was not observed, 

indicating that, if present, the endogenous levels fall below the LLOD of this method. 
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One other NAE was observed in heart tissue: CI8:0. Identification was perfonned as 

described in section 3.3.5.1, chapter 3. EPI spectra of NAEs detected in rat heart tissue 

can be found in Figure 4.7 

MAGs detected in rat heart 

Heart tissue has a noticeable lack of MAGs compared to other tissues, with only three 

identified. MAG 2-AG C20-4 and MAG 2-LG CI8:2 were observed, and identification 

confinned by comparison of EPI spectra and retention time with available standards. 

MAG CI8: 1, for which standards were not available, was also observed, and previously 

described in section 3.3.5.2, chapter 3. 

Heart NAEs and MAGs in the literature 

Previous analysis of heart tissue from a Zucker rat demonstrates similar NAE profiles to 

those observed here (Schmid et aI., 2000). Employing a targeted method, using SPE and 

GC-MS with a derivatization step, NAE CI6:0, NAE CI8:0, NAE C18:1n-9, NAE 

CI8:In-7 and NAE CI8:2n-6 were identified. NAE AEA C20:4n-6 was not identified, 

due to endogenous levels, nor was it observed by the survey method described in chapter 

3. MAG CI8:In-9, MAG CI8:In-7, MAG CI8:2n-6 and MAG C20:4n-6 were identified 

by the targeted GC-MS method. These results compare well with the MAGs detected by 

the survey scan method, which also identified MAG CI8:I, MAG C18:2 and MAG 

C20:4. 

4.3.1.4 NAEs and MAGs in rat lung 

NAEs 

Lung tissue appears to contain fewer detectable NAEs compared to other tissues 

examined. Neither AEA C20:4 nor DEA C22:4 were detected above the LLOD. OEA 

CI8:1 and PEA CI6:0 were observed and identified by comparison of EPI spectra and 

retention time with standards. 
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One other NAE was observed in lung tissue: CI8:0. Identification was perfonned by 

comparison of product ions with theoretical ions listed in chapter 3. EPI spectra can be 

found in Figure 4.9. 

MAGs 

Lung extract demonstrates a varied number of MAGs. Commonly studied MAG 2-AG 

C20-4 and entourage compound MAG 2-LG C18:2 were observed. Confinnation was 

obtained by comparison of product ions and retention time of available standards. 

MAG C22:4, MAG C20:3, MAG CI8:1, and MAG 16:0 for which standards were not 

available, were observed. Previous identification has been described in section 3.3.5.2, 

chapter 3. 

Lung NAEs and MAGs in the literature 

AEA C20:4 was not identified in rat lung using the precursor ion survey method detailed 

in this chapter 3, furthermore endogenous levels fell below the limit of quantification in a 

previous, targeted GC-MS study (Yang et aI., 1999). AEA C20:4 has, however, been 

identified in other rodent lung tissue, including mice (Weber et aI., 2004) and guinea pig 

(Jia et aI., 2002). As this endocannabinoid has been previously observed in lung tissue 

(albeit from other rodents), the lack of detection could be attributed to endogenous levels 

below the LLOD. Where there is little information in the literature regarding other NAEs 

in rat lung, entourage compounds OEA C18:1 and PEA C16:0 were identified, as well as 

NAE C 18:0, by the methodology described here. 

2-AG C20:4, identified by the neutral loss method presented here, has been previously 

identified in rat lung (Avraham et aI., 2008). Another previous study (Kondo et al.. 

1998a) has profiled other MAGs, although a lack of selectivity prohibited the 

qualification and quantification of MAG CI4:0, MAG CI6:1, MAG C16:0 and MAG 

CI8:1. MAG CI8:0, MAG C18:2, MAG C20:4 and MAG C22:6 were quantified, 

however. These results do not compare well against those obtained by the method 

described in this chapter (MAG C22:4, MAG 2-AG C20:4, MAG C20:3, 

180 



100'II. 

90% 

60% 

70% 

60% 
~ 
<= 50% 

0; 
a:: 40% 

3O'J, 

2O'Ao 

10% 

100'II. 

90% 

60% 

70% 

60% 
~ 
<= 50% 

0; 

'" 40% 

XJ'lI. 

20% 

10'!10 

(a) 

(d) 

'''" ~', 

;, 1211 

.'0 

~f~'~11~lJ:892 ", .. ' , 
7,., uto 1 L 2212 

100 150 

3153 

2973 

mlz,amu 

2453 

,2833 

~a 2814 

250 
mIz, amu 

3333 

3373 

"'2 

3">2 
31 3 

350 

4073 

~ 
.... 
<= 

0; 
a:: 

~ 
<= 

0; 
a:: 

450 

100'II. 

90% 

60% 

70% 

60% 

50% 

40% 

100'II. 

90% 

!KJ'I(, 

70% 

!KJ'I(, 

50% 

40% 

XJ'lI. 

2O'Ao 

10% 

2873 

(b) 
2893 

37R3 

90.8 364.2 

36 3 

350 
mIz, amu 

3393 

(e) 285.3 

2473 

3673 

121' ~ 135' 

1

193

°'11' ~o '1' etc.'l '1 6 (631 1911 2833 
L II: '" 0 ',2134!56C 'j "",32" 

100 150 2DO 250 300 350 
mIz, amu 

400 0450 

100'II. 3613 

90% 

60% 
(c) 

70'1(, 2893 

60% 
~ 

E 50% 

0; 

'" 40% 2713 

3O'J, 

2O'Ao 

10% 363' 

291. 3073 

250 350 400 
mIz, amu 

100'II. 313.3 

90% (f) 
60% 

70% 

60% 
~ 

<= 50% 

0; 
40% '" 

331.3 

3O'J, 

2O'Ao 

350 
mIz, amu 

Figure 4.10. EPI spectra of MAGs detected in rat lung (a) MAG C22:4, (b) MAG C20:4, (c) MAG C20:3, (d) MAG CI8:2, (e) MAG CI8:) and (0 MAG 

C16:0 

I X I 



MAG 2-LG C18:2 and CI8:1). Analytes MAG C22:4 and MAG C20:3 were missed by 

the previous method. MAG C22:6 was not identified by the neutral loss method, 

presumably due to endogenous levels below the LLOD of the method, levels previously 

reported to be of an order of magnitude less than MAG 2-AG C20:4. The neutral loss 

survey method described in this chapter provides a greater, more complete picture of 

NABs and MAGs in rat lung than previously reported. 

MAG C20:3 was also demonstrated (Sugiura et ai., 1999; Sugiura et at., 2000) to display 

similar activity as MAG 2-AG C20:4 against CB 1 and CB2 endocannabinoid receptors, 

but only in the n-9 double bond configuration. 

4.3.1.5 NAEs and MAGs detected in rat spinal cord 

NAEs 

NABs detected in spinal cord tissue cover the majority of analytes detected in other 

tissues. Known NABs ABA C20:4 and DEA C22:4, along with entourage compounds 

OEA C18:1 and PEA CI6:0, were observed and identified by comparison ofEPI spectra 

and retention time with standards. 

Other NABs, for which standards were not available, were detected: NAB C24: 1, NAE 

NAB C22:1, NAB C20:1, NAB C20:0, NAB CI8:2, and NAB C18:0 Identification was 

performed as described in Chapter 3. EPI spectra can be found in Figure 4.11 and Figure 

4.12. 

MAGs 

2-AG C20-4 and 2-LG C18:2 were identified by companson of product IOns and 

retention time compared to standards. 

MAG C22:4, MAG C20:3, MAG C18: 1 and MAG CI6:0, for which standards were not 

available, were previously observed in chapter 3 and their identification described there. 

EPI spectra can be found in Figure 4.13. 
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An additional MAG was detected in rat spinal cord, MAG C20: 1. To aid in the 

identification, a comparison of diagnostic product ions was made against theoretical ions 

listed in Table 4, Chapter 3. Additionally the EPI spectrum was compared against that of 

2-AG C20:4 standard; see Figure 4.14. MAG C20: 1 is structurally similar to 2-AG 

C20:4, varying by three double bonds on the acyl chain and consequently 6 amu. As can 

be seen when comparing the two spectra, MAG C20: 1 has a pseudomolecular ion 6 amu 

greater that 2-AG C20:4. Additionally, ions indicative of the loss of water [M+H-H20r 

(mlz 367.3) as well as ions from the cleavage of the ester linkage [M+H-C3Hg0 3
r (mlz 

293.3), [M+H-C3Hg0 3-H20r (mlz 275.3) are also +6 amu greater. The low mass ions 

from ~ mlz 91 to 200 commonly observed with MAG (and NAB) reference standards and 

are the result of fragmentation of the acyl chain, are at reletively low intensity. This lack 

of ions could be the result of the CE being slightly too low for this specific analtye. 

Spinal Cord NAEs and MAGs in the literature 

The commonly investigated NABs have been measured numerous times in rat spinal 

cord. ABA C20:4 and PEA C16:0 have been reported in rat spinal tissue with 

investigations into spinal cord and peripheral injury on endocannabinoid levels (Garcia

Ovejero et ai., 2009; Petrosino et aI., 2007). ABA C20:4, OEA C18:1 and PEA C16:0 

have been measured during the investigation of fatty acid amide hydrolase knockout mice 

and alternative metabolomic pathways (Mulder and Cravatt, 2006). Other NAEs have 

not been studied in such detail, although one investigation of spinal cord in fatty acid 

amide hydrolase knockout mice, using a global approach, identified NAB C16:0, NAE 

C18:0, NAE CI8:1, NAE C20:0, NAE C20:1, NAE C22:0, NAB C22:1, NAE C24:L 

NAE C24:0 and NAE C26: 1 in wide type mice (Saghatelian et aI., 2004). These results 

compare well with those observed by the precursor ion survey scan method; see Table 

4.2. Although NAE C24:0 and NAE C26: 1 were not observed by the precursor ion 

survey scan method described in this chapter, such differences could be species 

dependent. 

2-AG C20:4, a most abundant endocannabinoid, has been investigated in rat spinal tissue. 

Levels have been reported during investigation into spinal cord and peripheral injury on 
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endocannabinoid levels (Garcia-Ovejero et at., 2009; Petrosino et at., 2007). MAG 2-AG 

C20:4 has also been assessed in its role as an analgesic under stress conditions (Suplita et 

aI., 2006). 

Other MAGs have not been studied in as much detail in rat spinal tissue. A global 

approach, mentioned previously, investigating fatty acid amide hydrolase knockout mice, 

observed MAG CI6:0, MAG C18:0 and MAG C18:1 (Saghatelian et al., 2004). These 

MAGs were identified by the neutral loss method employed in this chapter, as were 

MAG C20:3 and MAG C22:4, which were not identified in the global method. Again, 

such differences could be species specific. 

4.3.1.6 Discrepancies in NAE OEA C18:1 Spectra 

It was noticed that EPI spectra of OEA CI8: I detected in testi, heart, lung, liver and 

spinal cord tissue had an additional product ion at mlz 186.2, which was not previously 

observed in OEA CI8:I extracted from brain tissue nor in OEA C18:1 reference 

standards. It was also noted, however, that the EPI spectra of reference standard OEA 

CI8: 1, analyzed on the same day as the tissue extracts, also demonstrated this product 

ion. While these spectra could be due to an additional co-eluting analyte and mis

identified as OEA C 18: 1, it is more likely the discrepancies originated from an isobaric 

source of contamination. Such a theory is substantiated by the presence of the additional 

product ion in the reference standard OEA CI8:I EPI spectrum run on the day of 

analysis. 

Although not proven conclusively, the likely cause of the contamination is from the 

polypropylene glycols (PPG) reference standards used in the tuning of the instrument's 

resolution and sensitivity. The PPG standard solution used consists of a number of 

polymers varying in repeating units, of which one forms a doubly charged 

pseudomolecular ion at mlz 326, nominally isobaric with OEA C 18: I. This PPG could be 

the cause of the unexpected mlz 186.2 product ion. It is unlikely that the PPG reference 

standard fragments to an mlz 62 product ion, as there is not a continuous triggering of EPI 
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scans throughout the chromatography run due to the continual presence of 

pseudomolecular ion fragmenting to form mlz 62 leaching from a post-column point. Nor 

did an additional mlz 326 pseudomolecular ion peak occur at a single time point other 

than when OEA CI8: I eluted. Consequently, the ion is only detected when the first 

quadrupole is selective for mlz 326 and when both NAE OEA CI8:1 and the PPG 

standard enter the collision cell and product ions are scanned out under EPI conditions. 

The lack of an mlz 62 product ion from the PPG standard means the precursor ion scan is 

not adversely effected, nor would it cause a false positive if an SRM method were to be 

implemented, as a likely SRM transition for OEA C18: 1 would be mlz 326 to 62. 

Nevertheless, all analysis following this experiment contained an additional cleaning step 

to remove any potential contamination and the issue did not subsequently arise. 

4.3.2 Biological precursors and metabolites 

4.3.2.1 NAE and MAG metabolites 

Metabolites of prominent NAE and MAG (AEA C20:4 and 2-AG C20:4) identified in the 

literature are listed in Figure 4.15. It has been demonstrated that NAEs and MAG can be 

metabolized by cyclooxygenases-2 to form prostaglandins with either ethanolamine or 

glycerol end groups. Additionally, oxidation of the acyl chain has been demonstrated by 

enzymes cytochrome P450 and lipoxygenase. Tissue extracts, once analyzed by both the 

precursor ion and neutral loss survey scan methods, were examined for the presence of 

possible metabolites. This was performed by identifying and searching for the protonated 

pseudomolecular ions of metabolites previously identified in in vitro studies. Where an 

EPI spectrum was triggered from a sought [M+Ht, the spectrum was studied for product 

ions which might be related to the purposed structure. However, as observed in brain 

tissues, no metabolites were identified. 

Oxygenated metabolite derivative of arachidonic acid, determined to have been fonned 

by cytochrome P450, have recently been detected in benign rat brain, kidneys and spleen 

(approximately Ig of tissue) (Chen et aI., 2008) using a targeted LC-MSIMS method. 

The protonated pseudomolecular ions were not observed, but rather silver adducts with 
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Figure 4.15. Biosynthetic and metabolomic pathways of AEA and 2-AG. Metabolomic pathways are 

similar to arachidonic acid, which metabolizes to form biologically active compounds. Abbreviations 

are N-acyl-phosphatidylethanolamines (NAPE), glycerophopspho-N-arachidonoylethanolamine (GP

NArE), fatty acid amide hydrolase (FAAH) , cyclooxygenase (COX), lipoxygenases (LOX), 

cytochrome P450 (CP450), hydroxyeicosatetraenoic acid ethanolamine (HETE-EA), 

epoxyeicosatrienoic acid ethanolamine (ETE-EA), monoacylglycerol lipase (MAGL) and 

diacylglycerol lipase (DAGL). Based on information in publications (Abn et al., 2008; Moody et al .• 

2001; Simon and Cravatt, 2008; Snider et al., 2007; Yu et al., 1997). 
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detected by the neutral loss survey scan methodology employed here. The structure is similar to that of 2-AG, so fragmentation would be expected to 

lead to a neutral loss of 92, the glycerol group indicating that if present endogenous levels are below the LLOD of the neutral loss survey scan method. 
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the addition of AgBF4' Two 2-epoxyeicosatrienoyl glycerols (2-EO) were identified, (2-

11,12-EO) and (2-14,15 - EO), which vary in the site of oxygenation across the double 

bond. Although thought to be metabolite derivative of arachidonic acid, a glycerol 

moiety is present, making identification by the neutral loss survey scan described in 

chapter 3 a possibility. It was demonstrated that kidney and spleen had roughly 

comparable levels of each 2-EO, whereas brain contained predominantly the II,12-EO 

form. Neither of these metabolites were identified using the survey scan approach 

described here in any of the tissues analyzed. Structurally both of these epoxides are 

similar to 2-AO (see Figure 4.16), and hence it is probable a neutral loss of 92 would be 

observed in CID conditions. The fact that neither analytes are observed with this method 

is most likely due to endogenous levels being below LLOD of this method. 

4.3.2.2 Biological precursors 

NAE precursors 

Although biosynthetic pathways of NABs have not been fully established (Ahn et aI., 

2008), a number of precursors have been previously identified in mouse (Liu et al., 2006; 

Simon and Cravatt, 2008) and rat (Astarita et aI., 2008) brain tissue; see Figure 4.17. 

These precursors, however, were not identified in rat tissues analyzed by the precursor 

ion and neutral loss methods described in chapter 3. Although each compound in Figure 

4.17 is different, there are strong structural similarities: each analyte contains the ABA 

C20:4 structure attached to a phosphate group. This linkage onto the ethanolamide 

moiety may hinder mlz 62 product ion formation under CID and consequently preclude 

these analytes from detection by the precursor ion survey scan discussed here. 

A previous study of phosphoanandamide does not provide direct evidence for the lack of 

an mlz 62 product ion under CID, but goes someway to suggest this is the case (Liu et al., 

2006). It was demonstrated that the analyte cleaves between the carbon and the terminal 

oxygen of the ethanolamine moiety, resulting in a P04H2 neutral. This cleavage and the 

subsequent loss of the oxygen remove the possibility of an mlz 62 ethanolamine ion being 

formed by further fragmentation. Additionally, there appears to be no evidence of a 
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cleavage resulting in an ion containing an intact NAE AEA C20:4 group, which could 

undergo further fragmentation, resulting in a mlz 62 ion. Because of the structural 

similarities of the analytes in Figure 4.17 and the addition of a phosphate group attached 

to the ethanolamide moiety, it is unlikely they will generate an mlz 62 ion under CrD, 

hence precluding detection by the precursor ion survey scan described in this chapter 

Alternative reasons for the lack of detection could be endogenous levels, which could lie 

below the limit of detection of the survey scan methods described here. Lack of 

protonation of the analytes in positive Esr is not necessarily a reason for lack of 

observation. With the phosphate group, the analytes will de-protonate, as was observed 

with diacyl-NAPE (Astarita et al., 2008); however, phosphoanandamide was identified as 

a [M+Ht ion. None of the NAE biological precursors described in Figure 4.17 have 

been identified using the survey scan methodology described in this chapter and a 

number of possible reasons for that have been discussed. Nevertheless, with strong 

structural similarities these compounds may be identifiable with an alternative survey 

scan, possibly targeting the phosphate group. 

MAG precursors 

A limitation of the instrument was observed that highlighted the care required when 

assigning the pseudomolecular ion from a neutral loss (or precursor ion) survey scan. 

The neutral loss survey scan of nerve tissue identified a pseudomolecular ion at mlz 647.6 

that fragmented under crD to generate a neutral loss of 92amu. The instrument 

subsequently performed an enhanced resolution scan on the identified pseudomolecular 

ion. The resulting spectrum did not identify mlz 647.6 as the monoisotopic ion, as would 

be expected. Rather, it identified the M+2 isotope of an ion at mlz 645.6; see Figure 4.18. 

The instrument subsequently selected the most intense ion present, mlz 645.6, for EPr and 

ignored the ion mlz 647.6. There could be two explanations for the presence of the mlz 

645.6 ion. The mass accuracy of the neutral loss survey scan could be +2amu in error. 
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Figure 4.17. Three biological precursors of AEA that have been previously identified in the literature: (a) Phosphoanandamide (Liu et al., 

2006) identified in mouse brain tissue under positive ESI conditions, (b) (Simon and Cravatt, 2008) and (c) diacyl-NAPE with sn-l C18:0 and 

sn-2 C20:4 from rat brain under negative ESI conditions. None of the above were identified by the precursor ion survey scan method in the 

tissues analyzed. 

194 



However, this was previously assessed and the mass accuracy was deemed to be at most 

+O.5amu, and hence is unlikely to be the cause. Alternatively, a second compound co

eluted with mlz 647.6 has an mlz within ±IO amu of the ion selected by the neutral survey 

(and hence is included in the enhanced resolution scan) and is also in greater abundance. 

Because the second ion is observed in the enhanced resolution scan and demonstrates a 

more intense signal, it is selected to undergo EPI and the ion observed to lose a neutral of 

92amu. Such mis-identification demonstrates a limitation of the system. The system can 

wrongly select an ion for EPI because of a co-eluting, more intense ion. It is possible to 

run the instrument without the enhanced resolution scan, however, the resolution and 

clarity of the neutral loss (or precursor ion) scans make it difficult to ascertain with 

confidence the isotopic pattern, and hence the charge state, of the pseudomolecular ion. 

This mis-identification was only observed once. If, however, such an event occurred 

regularly, it could be addressed by further sample cleanup, reducing the number of 

possible extraneous analytes in the matrix. 

Ironically, the pseudomolecular ion and EPI spectra of the ion mlz 645.6, incorrectly 

selected for EPI, could be a 2-AG precursor and of interest in understanding the roles of 

MAGs (DAG, 1-octadecanoyl-2-(5Z,8Z, liZ, 14Z-eicosatetraenoyl)-sn-glycerol) 

(Bisogno et al., 1999). DAG (644.5 amu), if protonated, could form a pseudomolecular 

ion, with a monoisotopic mass of mlz 645.5. The detected pseudomolecular ion at mlz 

645.6 is consistent with a singularly charged protonated DAG molecule, and subsequent 

EPI spectra of mlz 645.6 is consistent with the structure of DAG; see Figure 4.19. 

Nevertheless, mlz 645.5 was not triggered by the NL92 survey scan, although a neutral 

loss of 92 amu is present. Therefore this compound will not be assigned as DAG; 

however, the EPI spectra have strong similarities to 2-AG and warrant further 

investigation. 
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Figure 4.18. The enhanced resolution scan of a compound identified by NL92 survey scan detected in 

nerve tissue. The pseudomolecular ion m/z 647.6 identified by NL92 survey scan is not the 

monoisotopic ion, as expected, but rather M+2. This indicates that the mass accuracy of the NL 

survey scan is 2 amu in error; (previous work demonstrated a mass accuracy +O.5amu) or that a co

eluting analyte with a pseudomolecular ion m/z 645.6 is present. 
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Figure 4.19. The EPI spectrum of compound m/z 645.5 detected from nerve tissue recovered 

immediately after death. The pseudomolecular ion and EPI spectrum are consistent with DAG, an 

MAG 2-AG C20:4 precursor. 
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4.3.3 Trends in the distribution of NAEs and MAGs in rat tissues 

It is noticeable that there is a variation in the profile of NAEs and MAGs detected across 

the tissues and that each tissue does not contain the same analytes. Some caution has to 

be taken when comparing profiles of NAEs and MAGs in different tissues without 

quantification. Concentrations of analytes vary between tissues. Tissues with low 

endogenous levels of analytes may demonstrate unusual profiles; this is not due to gross 

differences, but because analytes may be present at concentrations below the LLOD of 

this methodology. Previous quantitative analysis (Schmid et al., 2000) indicates that 

NAE and MAG levels in testi, heart and liver are within an order of magnitude of each 

other. Levels of AEA C20:4 and MAG 2-AG C20:4 in brain are roughly of an order of 

magnitude higher than those in the non-CNS tissues (Richardson et al., 2007), but OEA 

C 18: 1 and PEA C 16: 0 are substantially higher. Nevertheless, broad observations can be 

made from the results obtained from this study. 

A notable observation is the presence of C22:5 NAE and MAG in testi, but not in any 

other tissue examined in this chapter. C22:5 NAE has only been identified previously 3 

times; however, C22:5 MAG, despite an intensive search of the literature, has not been 

previously found. The selective presence of these compounds could indicate a specific 

role involved in the reproductive system. The effect on cannabinoid receptors CB I and 

CB2 by C22:5 NAE and MAG has yet to be determined. Due to the similar structure of 

DEA C22:4 (n-6), a known CB I agonist, it is possible that NAE C22:5 could playa part 

in the endocannabinoid system. Where the location of the double bonds along the acyl 

chain of this analyte (n-3 or n-6) has not been identified here, previous work has 

identified the bond position to be n-6 (Kondo et al., 1998a). According to previous work 

(Sheskin et aI., 1997), the position of the double bonds (as well as the number, which is 

required to be at least three) affects the activity of NAEs, with the n-6 series being greater 

than n-3. The activity of MAG C22:5 is difficult to estimate. The activity of MAG 

C20:5n-3 at CB I and CB2 receptors is similar to that of 2-AG C20:4n-6, but MAG 

C22:4n-6 is relativity low, indicating that the effect of acyl chain length is more critical 
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for MAGs compared to NABs (Sugiura et aI., 1999; Sugiura et al., 2000). The role of 

C22:5 NAB and MAG warrants further investigation. 

A trend is apparent with the longer acyl chain monosaturates. While monounsaturated 

OEA C18:1 is common amongst all tissues examined, C20:l, C22:l and C24:l NAB 

appear to only occur (above detectable limits) in brain and spinal tissue. Where synthesis 

and catabolism of C20: 1 and C22: 1 remains unclear, C24: 1 has been demonstrated to be 

synthesized via NAPE-PLD in mice (Leung et al., 2006) and catabolised by FAAH 

(Saghatelian et al., 2004), the same synthesis and degradation routes as other 

monounsaturated and unsaturated NABs (C16:0 - PEA, CI8:0, C18:1 - OEA, and 

C20:0). What is interesting is the absence (or below-detection levels) of C24: 1 

ethanolamine in tissues other than brain when NABs demonstrated to be synthesized and 

metabolized by the same routes are present in detectable levels. Such an observation 

could be explained by a highly selective metabolomic route in these tissues, not present 

in brain or spinal cord, which has yet to be determined. Whether C24: 1 ethanolamine is a 

substrate for CB 1 or CB2 has yet to be reported. However, considering the acyl chain is 

monounsaturated and does not have the same degree of saturation as known CB 1 & CB2 

substrates (Ahn et aI., 2008; Sheskin et aI., 1997), it seems unlikely. 

NAB C20:3, first observed along with C22:4 in brain tissue (Hanus et al., 1993), has not 

been identified in brain and spinal cord tissue nor in any other tissues by this method. 

With the use of standards, it is known to be identified by the precursor ion scanning 

method presented in chapter 3. This observation would indicate that, if present, C20:3 

NAB is below the LLOD of this method. 

NAB C22:4, a known CB I agonist that is rarely studied in comparison to C20:4, was not 

detected across the range of tissues analyzed, instead predominantly residing in brain and 

spinal tissues. Again, this may be an issue of low endogenous levels or indicating that 

alternative synthesis and catabolomic pathways are present 
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The NAB profiles of testi, heart, liver and lung have similar, but not identical, profiles. 

There is a trend in the non-CNS tissues for shorter, less saturated acyl chain NAEs 

compared to neural tissues. The exception is the identification of C20:4 and C22:4, 

known CB I agonists. MAG profiles are different from those of NABs. Heart, liver, testi, 

lung and liver appear to contain mid-chain MAGs from C 18 to C22, whereas brain and 

spinal cord also cover the shorter range of MAG down to C16. 

4.3.4 Occurrence of NAEs and MAGs and free fatty acids 

It could be questioned as to whether the distribution of NAEs or MAGs in tissues may be 

directly related to the distribution of free fatty acids. Although NAEs and MAGs are not 

generally thought to be synthesized directly from free fatty acids, and although the 

formation of ABA C20:4 from ethanolamine and arachidonic acid has been demonstrated 

to be possible in vitro (Devane and Axelrod, 1994), the distribution of free fatty acids 

could impinge on the distribution ofNAE or MAG precursors. According to reported but 

unpublished work (Sugiura et al., 1996), there is not a common distribution of NAEs and 

free fatty acids in rat brain. The profile of free fatty acids in rat heart does not appear to 

be similar to NABs or MAGs either. The presence of short chain saturated or 

monounsaturated free fatty acids is comparable to the presence of NAE and MAG 

analogs, however; where C20:4, C20:5, C22:4, C22:5 and C22:6 free fatty acids were 

observed in rat heart (Yaffee et al., 1980), the NAB and MAG equivalents, excluding 

MAG C20:4, were not observed. 
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4.4 Conclusions 

The use of precursor ion and neutral loss survey scans coupled with obtaining full 

product ion spectra has successfully profiled a range of NAEs and MAGs in various rat 

tissues. The majority of NAEs and MAGs detected in brain tissue are also observed in 

other tissues, although there were tissue specific variations. A profile of the NAEs and 

MAG in each tissue demonstrates differences between each tissue and prominent 

differences between non CNS tissues and brain / spinal cord. It was observed that the 

CNS tissues contain a range of NAEs from C 16 through to C24 and various degrees of 

unsaturation (0-4) where peripheral tissues generally contain shorter (C16 - C18) NAEs 

with 0 to 2 double bonds, although AEA C20:4 was found in liver and testi. Furthermore 

C22:5 was also observed in teste. MAG profiles across the tissues appear to be more 

uniform compared to NAEs although heart tissue was only found to contain 2-AG C20:4, 

2-LG C18:2 and MAG CI8:l. NAE C22:5 and MAG C22:5 were identified in rat testi 

but not in any other tissue. If these analytes are present in tissues other than testi, their 

endogenous levels fall below the LLOD for this methodology. The presence of these two 

compounds in testi might suggest a specific role with the reproductive system. 

A noticeable profile of NAE C24: 1, NAE C22: 1 and NAE C20: 1 was observed in brain 

and spinal tissue, but not in any other tissue analyzed. The reason for their selective 

presence is unclear at this time. 

The NAE and MAG profiles in each tissue are more comprehensive than those previously 

reported, the majority of which have reported a limited number of NAEs and MAGs. 

This again highlights the advantage of this alternative approach, where NAEs and MAGs 

have been identified in tissues not because of a preconceived understanding of what may 

be present but by structural similarities which they all possess. 
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The lack of NAB or MAG metabolites identified in the tissues analyzed was slightly 

disappointing but perhaps not surprising. The majority of endocannabinoid metabolites 

previously reported have been identified in vitro. Two oxygenated metabolites of 

arachidonic acid have been previously identified in rat brain, which in theory would be 

detectable using the neutral loss survey scan. These metabolites were not identified, 

presumably due to endogenous levels below the LLOD. 

AEA C20:4 precursors were not detected in any tissue in this study. While this may be 

due to low endogenous levels, a more likely explanation is the inability of the molecules 

to fragment and yield a mlz 62 production, due to the attachment of the ethanolamine 

moiety with a phosphate group. This is an inherent limitation of such methodology. 

Precursors or metabolites of NABs or MAGs that contain enough of a structural 

difference could affect the fragmentation and result in a lack of identification. For 

metabolites of NABs and MAGs that demonstrate greater structural similarity, such as 

prostaglandin analogs, it has been demonstrated that the lack of detection is not for this 

reason. 

The work in this chapter has highlighted a limitation of this method. In nerve tissue a 

compound ([M+H+] mlz 647.6) was identified by the neutral loss survey scan to possess a 

neutral loss of 92amu. The subsequent enhanced resolution scan chose an ion at mlz 

645.6 to be selected to EPI, due to its greater intensity compared to mlz 647.6. Although 

the ion mlz 645.6 fragmented to display a product ion spectra that resembled 

diacylgycerol, a known 2-AG precursor, the wrong ion was selected for EPI by the 

software. This point demonstrates that the selection of ions for EPI is not only dependent 

on the identification during the survey scan, but also on the intensity of ions observed 

when an enhanced resolution scan is taken. The most intense ion observed by the 

software in enhanced resolution mode will be selected for EPL not necessarily the ion 

observed by the survey scan to be of interest. This issue was only observed once with 

these samples; however, if this was to occur more frequently, further work would be 

required to either clean up the samples using different front end methods or to adjust the 

chromatography so that such compounds did not co-elute with analytes of interest. 
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While this method has demonstrated the profiles of NAEs and MAGs to differ depending 

on the tissue, the concentrations of the analytes would provide additional information. A 

limitation of this method is the lack of quantification, due to sensitivity combined with 

low endogenous analyte concentrations. The number of data points across an analytical 

peak can be increased by an increase of tissue material, but this is not a practical option 

when investigating small quantities of rodent tissues. An alternative approach would be 

to use the data obtained from these survey scans and to build up a targeted method 

capable of quantification. The combination of both methods would have the potential of 

identifying and measuring NAE and MAG levels previously not observed before, and this 

approach is investigated in the next chapter. 
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CHAPTER 5 
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5 Combining survey scans and targeted LC-MS-MS 

analysis to study post-mortem changes in NAE and 

MAG lipid classes in rat tissues 

5.1 Introduction 

5.1.1 Quantification of NAEs and MAGs 

The purpose of the work outlined in this chapter was to develop a method to provide a 

quantitative profile of NABs and MAGs detected in rat tissues previously identified 

qualitatively in chapters 3 and 4. Previous analytical methods for NAEs and MAGs have 

been limited, predominantly by the availability of reference standards to a relatively 

small list of key compounds (Fowler, 2007). As such, the profile of NAEs and MAGs 

reported in previous studies is not complete and potentially useful information may be 

missed due to lack of a comprehensive profiling method. Consequently, a quantitative 

methodology expanding the range of NAEs and MAGs measured was the focus of this 

chapter, based on the range of NABs and MAGs identified in rat tissue in the previous 

chapter. 

The precursor ion and neutral loss survey scan methods used in chapters 3 and 4 

identified a wider range of NABs and MAGs in rat tissue than previously reported by 

other methods. This was due to the alternative approach taken, using precursor ion and 

neutral loss survey scans to identify analytes based on structural similarities rather than 

relying on reference standards. However, the sensitivity of the precursor / neutral loss 

survey approach is limited when compared with targeted methods, due to the time taken 

for quadrupoles to scan through the desired mass range (Hoffman and Stroobant. 2005). 

Where a number of NABs and MAGs are at relatively low concentrations, as is expected 

in rat tissues (low pmol / g) (Richardson et aI., 2007; Williams et al., 2007), the use of 

the survey scan method is unlikely to provide sufficient sensitivity to analyse the full 
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complement of NABs and MAGs previously detected due to endogenous levels and 

limited tissue sample. 

The alternative was to design a targeted LC-MS/MS approach that would be expected to 

benefit from an increase in sensitivity, and which incorporated all of the NAEs and 

MAGs identified in the previous survey scans. Such an approach afforded advantages 

not open to other previously reported targeted methods. 

The approach of developing an SRM methodology based on the understanding of analyte 

fragmentation from a limited number of reference standards has been previously 

demonstrated (Scholz et al., 2005). Although concerned with the metabolism of 

xenobiotic compounds rather than endogenous metabolites, the approach taken was 

similar. By the use of a limited number of N-acetyl-L-cysteine standards, MSIMS spectra 

were obtained and a common neutral loss was observed from a sub-structure common to 

all analytes. SRM transitions were subsequently prepared for a wider range of known 

analytes, for which standards were not employed. The precursor ion was known and the 

product ion identified by the understanding of the neutral loss. This approach, using 

MSIMS spectra to identify a common moiety across a number of structurally similar 

compounds and to generate SRM transitions from such, is similar to the tactic taken in 

this chapter. 

5.1.2 Post-mortem changes in tissue levels of NAEs and MAGs 

A number of papers have detailed the effects of post-mortem changes in NAEs and 

MAGs levels post-mortem in mammalian brain tissue (Kempe et aI., 1996; Patel et al., 

2005; Schmid et aI., 1995; Sugiura et al., 2001). These studies have not only illustrated 

that NAB and MAG levels change substantially post-mortem, but also that not all NAE 

and MAG concentration profiles post-mortem are the same. Such an observation has led 

to the conclusion that there may be multiple synthetic or degradation pathways involved 

in the metabolism of NABs and MAGs that may have selective substrate specificity. To 

date, only a relatively small number of NABs and MAGs have been measured at various 
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time points post-mortem. However, by applying the data obtained in chapters 3 and 4, a 

quantification of a far wider range was possible. 

Due to the interest in AEA C20:4 and availability of reference standards, this NAE has 

been the focus of several post-mortem tissue studies. AEA C20:4 levels have been 

observed to increase in rat brain by two orders of magnitude when tissue was left at room 

temperature for five hours post-mortem; furthermore, levels continue to rise for up to 48 

hours (Kempe et at., 1996). Further work conducted on pigs, cows and sheep also 

display similar increases, although not to the same degree, with levels approximately 

doubling after five hours and continuing for up to 24 hours. Similar increases were also 

observed with OEA CI8: 1, PEA CI6:0 and NAE C18:0 (Schmid et at., 1995). 

Further work conducted on FAAH knock-out mice (as FAAH is known to degrade 

NAEs) and URB597 (a FAAH inhibitor) treated animals demonstrated that relative 

increases of OEA C18:1 and PEA C16:0 varied from AEA C20:4 over a period of 24 

hours post mortem, suggesting alternative metabolism mechanisms were involved. 

Conversely for MAGs, 2-AG C20:4 levels in mouse brain were studied over 24 hours 

post-mortem and demonstrated an overall decrease (Patel et at., 2005). 

Where it has been demonstrated that NAE and MAG levels are affected post-mortem, the 

number of NAEs and MAGs measured have been relatively small and focused 

predominantly in brain tissue. Applying a quantitative method to profile the wider range 

of NAEs and MAGs detected in the tissues discussed in chapter 4 will highlight possible 

differences in metabolisms currently unreported. This chapter further extends the 

application of the methods described in chapters 3 and 4. By employing the data of 

NAEs and MAGs detected in the previous two chapters into a quantitative method an 

approach far broader in the scope than previous methods is achieved. 
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5.2 Aim 

The aims of this section of work were as follows 

• Produce a quantitative method for the analysis of all the NAEs and MAGs 

identified in rat tissues in Chapters 3 and 4 based on the EPI spectra obtained in 

those chapters and the limited reference standards available. 

• Quantify and compare the levels of NAEs and MAGs III rat tissues when 

dissected immediately after death and five hours post-mortem. 
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5.3 Methods 

5.3.1 Liquid chromatography and survey scanning mass spectrometer 

methods 

The parameters for LC - MS survey scanning used have been described previously in 

section 3.3.1 chapter 3. Briefly, all extracts from tissues collected five hours post

mortem were analyzed using the precursor ion mlz 62 and a neutral loss mlz 92 survey 

scans (coupled with an EPI scan) to identify NAEs and MAGs present. 

5.3.2 Establishing a multiple reaction monitoring method 

The precursor ion and neutral loss profiling methods detailed in chapters 3 and 4 

successfully identified a number of known and unknown NAEs and MAGs in rat tissues 

and organs. To provide quantitative information of the analytes detected, a more 

sensitive approach was deemed necessary, especially if further studies were to analyze 

smaller tissue weights. Triple quadrupole instruments performing quantification 

experiments commonly operate in multiple reaction monitoring mode, performing 

analyses which are sensitive and selective (Hoffman and Stroobant, 2005). Reference 

standards are commonly required to optimize instrumental parameters but also to select 

which product ions (and retention times, if liquid chromatography is employed) are 

appropriate for the identification of each analyte (Richardson et at., 2007; Williams et aI., 

2007). By combining results from the precursor ion and neutral loss approaches with a 

targeted SRM approach, it was possible to operate a multiple reaction monitoring method 

without the full range of reference standards. A full understanding of analyte product 

ions were available from the two survey scans, allowing multiple reaction monitoring 

transitions (the setting of the first and last quadrupole allowing a specific 

pseudomolecular ion, and resulting production ion, through to the detector (Hoffman and 

Stroobant, 2005)) to be applied without all the relevant reference standard materials. 

Declustering potentials and collision energies for analytes where reference standards 

were unavailable were estimated using NAE and MAG standard analogues. 
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5.3.2.1 SRM Transitions 

For the NAEs DEA C22:4, AEA C20:4, OEA CI8:I and PEA CI6:0, SRM transitions 

were chosen by the direct infusion of each reference standard and by selecting the 

[M+Ht pseudomolecular ion and the most intense product ion. For all NAEs this ion 

was mlz 62, the ethanolamine ion. In the case of 2-AG C20:4 and 2-LG CI8:2, no 

glycerol product ion was formed under CID conditions; rather, a neutral and an ion 

corresponding to the acyl chain ion were formed. This ion, mlz 287.3 and 263.3 (2-AG 

C20:4 and 2-LG CI8:2, respectively), was selected, again based on relative abundance. 

Previous targeted endocannabinoid work has employed the same transitions (Jhaveri et 

ai., 2006; Richardson et ai., 2007; Thomas et ai., 2009; Williams et al., 2007). 

Where standards were not available for NAEs and MAGs, SRM transitions were selected 

on the data obtained from EPI spectra in chapter 3. SRM transitions chosen for NAEs 

follow the same trend as those NAEs where standards were available. The [M+Ht 

pseudomolecular ion identified in the EPI scan and the mlz 62, the ethanolamine ion, 

were chosen; see Table 5.1. Transitions for MAGs again follow a similar pattern to those 

where standards were available; the [M+Ht pseudomolecular ion identified in the EPI 

survey scan and the product ion resulting from a cleavage of the ester linkage, see Table 

5.2. 

5.3.2.2 Dec/ustering potentials and collision energies optimization 

Declustering potentials for reference standard NAEs DEA C22:4, AEA C20:4, OEA 

CI8:I, PEA CI6:0 and 2-AG C20:4 were optimized by the direct infusion of standards 

and by systemically increasing the declustering potential (0 up to 400 V) while 

monitoring the pseudomolecular ion for the maximum intensity. For NAEs and MAGs, 

where a reference standard was not available, declustering potentials were based on 

experimental values obtained from structural analogues AEA C20:4 and 2-AG C20:4 

respectively. Where the voltage chosen may not be optimum, it is a best estimate and this 

approach has been used before (Gillum et ai., 2008; Scholz et ai., 2005). For NAEs it 

can be seen in figure 4, chapter 3 that the optimum declustering potential for N AE 
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reference standards C20:4 to CI6:0 is relatively broad and changes of ± 25 V for any of 

the reference standards infused would have little effect on sensitivity. Consequently, the 

voltage selected should be acceptable for NABs and MAGs where reference standards 

were not available. 

Optimum collision energies for reference standard DEA C22:4, AEA C20:4, OEA CI8: 1, 

PEA CI6:0, 2-AG C20:4 and 2-LG C18:2 were obtained by direct infusion of standards 

and by systemically increasing the collision energy (0 up to 130 V) while monitoring the 

relevant product ion for the maximum intensity. For NAEs where standards were not 

available, the same value obtained for ABA C20:4 was used. For MAGs where standards 

were not available, the collision energy of 2-AG was selected. 

The collision energies for analytes where reference standards are not available were 

based on a structural analogue. For NAEs it can be seen in figure 5, chapter 3 that the 

optimum collision energy for NAE reference standards C20:4 to C 16:0 is relatively broad 

and changes of ± 20 V for any of the reference standards infused would have little effect 

on sensitivity. Consequently, the voltage selected should be acceptable for NAEs and 

MAGs where references standards were not available. A list of the chosen declustering 

potentials and collision energies can be found in Table 5.1 and Table 5.2. 

5.3.3 Internal standards 

AEA-d8 and 2-AG-d8 were used as internal standards for NAEs and NAGs respectively. 

It is fair to say that the use of a wider number of deuterated internal standards has been 

reported for the quantification of NAEs and MAGs (Williams et at., 2007); however, in 

that instance, synthesis of these standards was performed inhouse. The use of just one 

deuterated reference standard for NABs and one for MAGs has been employed 

previously where in-house synthesis was not an option (Gillum et at., 2008; lhaveri et at., 

2006; Richardson et at., 2007; Thomas et at., 2009) 
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Table 5.1. SRM transitions, collision energies and declustering potentials selected for ~AEs 

previously identified by PI survey scan in chapters 3 and 4. Where standards were not available, the 

parent ion and product ion transition were obtained from the precursor ion survey scan and 

resulting EPI spectra. The chosen mlz 62.3 product ion represents the ethanolamine moiety of each 

compound. Collision energies and de clustering potentials were either obtained from reference 

standards or, where not available, the structural analogue AEA C20:4. 

Acyl Chain Precursor ion (mlz) Product Ion Collision Energy (V) Declustering 

(mlz) Potential (V) 

C24:1 410.4 62.3 41 51 

C22:5 374.3 62.3 41 51 

DEA C22:4 376.3 62.3 35 60 

C22:1 382.4 62.3 41 51 

C22:0 384.4 62.3 41 51 

AEAC20:4 348.3 62.3 41 51 

C20:1 354.3 62.3 41 51 

C20:0 356.4 62.3 41 51 

C18:2 324.3 62.3 41 51 

OEA C18:1 326.3 62.3 35 70 

C18:0 328.3 62.3 41 51 

C16:1 298.3 62.3 41 51 

PEA C16:0 300.3 62.3 35 50 
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Table 5.2. SRM transitions, collision energies and declustering potentials selected for :\IAGs 

previously identified by the neutral loss survey scan in chapters 3 and 4. Where standards were not 

available the parent ion and product ion transition were obtained from the neutral loss survey scan 

and resulting EPI spectra. The chosen product ion represents the acyl chain resulting from a 

cleavage of the ester linkage. Collision energyies and declustering potentials were either obtained 

from reference standards, or where not possible, a structural analogue 2-AG C20:4. 

Acyl Chain Precursor ion Product Ion Collision Energy Declustering 

(mlz) (m/z) (V) Potential (V) 

C22:5 405.3 313.3 17 60 

C22:4 407.3 315.3 17 60 

2-AG C20:4 379.3 287.3 17 60 

C20:3 381.3 289.3 17 60 

C20:2 383.3 291.3 17 60 

C20:1 385.3 293.3 17 60 

2-LG C18:2 355.3 263.3 20 90 

C18:1 357.3 265.3 17 60 

C18:0 359.3 267.3 17 60 

C16:1 329.3 237.3 17 60 

C16:0 331.3 239.3 17 60 
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Optimum collision energies and dec1ustering potentials of the two deuterated standards 

were selected by direct infusion and by increasing the required voltages where 

appropriate. SRM transitions were selected on the basis of the most intense signal. 

5.3.4 Validation of the method 

5.3.4.1 Accuracy and precision 

The accuracy and precision of the SRM method were evaluated intraday by the use of 

available standards ABA C20:4, OEA CI8:1, PEA CI6:0, 2-AG C20:4 and 2-LG CI8:2. 

Standards at 3 concentrations covering the range of expected endogenous levels (0.05, 

0.5, 5 nmol/g for NABs and 0.75, 0.5 and 10 mol/g for MAGs) were extracted as 

described in chapter 3, section 3.2.3 (n=5) along with a calibration, (see section 5.3.7.1) 

and the results were evaluated in accordance to published guidelines (US Department of 

Health and Human Services, 2001). 

5.3.4.2 Determination of the LLOQ 

Calculating the lower limits of quantification (LLOQ) for all analytes was not possible 

due to unavailability of reference standards. Therefore, a general approach was taken to 

access the LLOQ in rat tissue by using ABA C20:4 d8 and 2-AG C20:4 d8 to represent 

NABs and MAGs respectively. When deuterated standards behave as close to the non

dueterated standards as possible, it negates issues surrounding endogenous analyte levels 

and the need to remove them from calculations. The use of deuterated ABA C20:4 and 

2-AG C20:4 have previously been compared against non-deuterated AEA C20:4 and 2-

AG C20:4 for the assessment of recoveries and demonstrated to provide comparable 

results (Kingsley and Marnett, 2007). 

Brain, liver, lung, and testi (tissue wet weights of -100mg, n=6) were spiked with 

deuterated standards (concentrations 0.01, 0.02, 0.04, 0.06, 0.08 and 0.1 flM for NAEs 

and 0.1,0.3,0.5,0.7, and 0.9 nM for MAGs) and extracted as detailed in section 3.2.3, 

chapter 3. Once samples were extracted and solvent removed by evaporation, 
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reconstitution was performed with 100 JlI of ethanol. Extracts were analyzed using the 

SRM method described in section 5.3.2. The LLOQ was selected as the lowest 

concentration which demonstrated acceptable reproducibility of RSD less than 20% and a 

chromatographic peak with an S:N of no less the 10: 1 (US Department of Health and 

Human Services, 2001; Williams et aI., 2007). 

5.3.4.3 Determination of recoveries 

The recoveries of AEA C20:4 d8 2-AG C20:4 d8 were calculated in rat tissues by spiking 

in deuterated standards close to the limit of quantification. The use of deuterated 

standards for recoveries has previously been demonstrated to be comparative to non

deuterated standards (Kingsley and Mamett, 2007). Rat brain, liver, lung and testi 

(~50mg, n=6) were spiked with AEA C20:4 d8 and 2-AG C20:4 d8 at post-reconstituted 

concentrations of 0.06 JlM and 0.5 JlM, respectively prior to extraction. Samples were 

extracted as previously described in section 3.2.3, chapter 3 and reconstituted in ethanol. 

Subsequently, extracted and non-extracted AEA C20:4 d8 2-AG C20:4 d8 (present at the 

same theoretical concentration) were analyzed. 

5.3.4.4 Determination of Ion Suppression 

Ion suppression effects were assessed in rat brain tissues using deuterated standards of 

AEA C20:4 and 2-AG C20:4. Rat brain (~1 OOmg wet weight, n=6) were extracted as 

previously detailed in chapter 3, section 3.2.3. Extracts were spiked at the point of 

reconstitution with AEA C20:4 d8 and 2-AG C20:4 d8, resulting in a concentration of 0.5 

JlM and 1.0JlM, respectively. AEA C20:4 d8 and 2-AG C20:4 d8 (0.5 JlM and 1.0JlM, 

respectively) matrix free reference standards were analyzed alongside spiked reference 

standards. The level of ion suppression relative to the 100% value was determined for 

each analyte. The use of deuterated standards for the evaluation of ion suppression has 

been previously assessed (Richardson et ai., 2007) 
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5.3.5 Rat tissue collection five hours post mortem 

Tissues and organs were collected from six Sprague-Dawley rats (Charles River. UK). 

The animals were stunned by a blow to the head followed rapidly by decapitation, 

typically within 3-4 seconds. The animals were left in a fume cupboard for five hours at 

room temperature, following which tissues brain, heart, lungs, liver, testi and spinal tissue 

were dissected. Following dissection, tissues were immediately frozen on dry ice. All 

tissues were subsequently stored at -80°C until required. For tissue samples collected 

immediately after death, sample recovery was the same as described in chapter 4. Tissue 

collection was carried out by Professor David Kendall, Dr. Victoria Chapman and Dr. 

Stephen Alexander in the School of Biomedical Sciences at the University of 

Nottingham. 

5.3.6 Tissue extraction 

Tissues were extracted by the method detailed in the paper by Richardson et al 

(Richardson et al., 2007). Tissues were homogenized by hand in a silanized glass 

homogenizer in 8 ml of ethyl acetate: hexane (9: 1 v/v). 10% of its volume of water was 

added and the contents transferred to a centrifuge tube. Centrifugation was performed at 

7000g for 15 minutes and the temperature maintained at 4°C. The supernatant was 

removed and the process repeated a further two times to optimize recovery. Supernatants 

were then subsequently pooled and the solvent removed by centrifugal evaporation. 

Extractions were reconstituted in 200 Jil ethanol and vortexed for 3 minutes. 100 Jil was 

removed from each of the tissue replicates and pooled, dried down and reconstituted in 

100 Jil of ethanol, pooling and concentrating each tissue's extract for analysis by the two 

survey scan methodologies. The remaining 100 Jil of samples were refrozen and stored at 

-80°C for SRM analysis. The samples underwent two freeze-thaw process prior to SRM 

analysis; however, previous work has demonstrated that these physical changes to the 

extracts have little effect on NAB and MAG concentrations (Williams et al., 2007). 
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5.3.7 Tissue Analysis 

5.3.7.1 Calibration curves 

For quantification, calibration curves were produced using AEA C20:4, OEA C 18: 1, 

PEA C16:0 and MAGs 2-AG C20:4 and 2-LG C18:2 reference standards. Each standard 

was taken through the same extraction procedure as tissue samples (described in section 

3.2.3, chapter 3). Reference standard concentrations used were 0.005, 0.01, 0.02, 0.03, 

0.04, 0.05, 0.1, 0.5, 0.75, 1.0, 2.5, 5, 7.5, 10 and 50jlM for each analyte. Reference 

standards DEA C20:4 and NAE C18:0 are currently commercially available but were 

difficult to obtain at the time of this work, and so were not included in the calibration. 

For quantitative analysis of NAEs without available standards, it would have been 

possible to use peak areas alone and then to compare relative variations between tissue 

states as applied previously (Saghatelian and Cravatt, 2005; Saghatelian et al., 2004). 

Without standards for each individual analyte, absolute quantification was not possible; 

however it was possible to obtain a semi-quantitative estimate by the use of one of the 

closely structurally related NAE or MAG calibrations. Such values should be reasonably 

accurate, but errors might occur due to variation in the analyte ionization efficiency for 

each compound compared to the reference standard. For analytes where a calibration 

curve was obtained, direct comparison between the results obtained here and those in the 

literature would be possible. 

It has been previously noted that acyl chain length has an effect on the ionization 

efficiency of lipid-like compounds under ESI (Koivusalo et aI., 2001; Ortori et al., 2007). 

Consequently, taking this factor into account, NAEs and MAGs where reference 

standards were not available were assigned a calibration line dependant on the acyl chain 

length; see Table 5.4 and Table 5.5. 
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5.3.7.2 Survey Scan of tissue extracts 

Precursor ion and neutral loss survey scans were conducted on pooled tissues extracts for 

animals that were left for five hours post-mortem prior to dissection. Survey scans on 

tissues collected immediately post-mortem have been reported in section 4.3.1, chapter 4. 

5.3.7.3 SRM analysis tissue extracts 

Analysis using the SRM method was conducted on rat tissue extracts from samples 

recovered immediately after death and five hours after death (n=6 in each case). 

5.3.7.4 Statistical analysis of post-mortem data 

Levels of NAEs and MAGs recovered immediately after death and five hours post

mortem were tested for statistical significance by a Mann Whitney two-tailed test. This 

approach is a non-parametric method, determining the significant differences between the 

medians of two data sets, and does not rely on the data to have a Gaussian distribution 

(Roger, 1989). Such an approach has previously been employed in the comparison of 

endocannabinoid data (Jhaveri et at., 2006). 
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Table 5.3. Weights of tissues extracted from the Sprague-Dawley rats five hours post-mortem. n=6. 

Statistic Tissue 

Brain (left Heart Lung Liver Testis Spinal 

hemisphere) cord 

Mean Weight I g 0.939 0.947 0.764 0.769 1.065 0.143 

Stdev 0.084 0.066 0.052 0.031 0.053 0.019 

Table 5.4. Acyl chain length of NEAs and the calibration standard employed in quantification. 

Acyl Chain Calibration line employed 

C24:x - C20:x ABA C20:4 

C18:x OEA C18:1 

C16:x PEA 16:0 

Table 5.5. Acyl chain length of MAGs and the calibration standard employed in quantification. 

Acyl Chain 

C22:x - C20:x 

CI8:x- C16:x 

Calibration line employed 

2-AG C20:4 

j2-LG C18:2 
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5.4 Results and discussion 

5.4.1 Validation of the targeted SRM method 

5.4.1.1 Accuracy and Precision 

Accuracy and precision of the method can be found in Table 5.6. The results 

demonstrate reasonable accuracy and reproducibility. The accuracy is normally expected 

to be within 15 % of the expected outcomes (US Department of Health and Human 

Services, 2001), the majority of values obtained were within these tolerances. The 

accuracy of 5.0 nmol/g 2-AG C20:4 and 0.75nmol/g for 2-LG C18:2 were slightly 

outside however (74.1 and 76.8 respectively). The method also demonstrated reasonable 

precision, with the majority of values being below 15%, however PEA 16:0, 2-AG C20:4 

and 2-LG C18:2 demonstrated slightly higher than expected values of 21.1, 18.7 and 25.8 

% at 5 and 10 nmol/g, respectively. Nevertheless, the majority of values are within 

expected tolerances and are comparable with previous work (Richardson et at., 2007) 

5.4.1.2 Lower limit of quantification for SRM method 

The LLOQs for rat tissues can be seen in Table 5.7. The relative standard deviations for 

AEA C20:4 d8 in brain are higher than the expected < 20% (US Department of Health 

and Human Services, 2001). This was due to a sampling error, leading to the analysis of 

only 3 out 6 extracts. However, the peaks for all three injections gave a S:N ration of 

10: 1 or greater, an alternative definition for the LLOQ (Williams et at., 2007) and were 

subsequently allowed. There are no differences in LLOQs between tissues for 2-AG 

C20:4 d8, and very similar results are obtained for AEA C20:4 d8 in the different tissues. 

Previous reported LLOQ levels of 10 pmol/g for AEA and 100 pmol/g for MAG 

(Richardson et at., 2007) compare well with those observed here. 

As reference standards are not available for all the analytes analyses by this methodology, 

it is not possible to accurately assess the limit of quantification for all analytes. 

Therefore, as a best estimate, the limit of quantification for AEA C20:4 was applied to all 
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NAEs and consequently the limit of quantification for 2-AG C20:4 was applied to all 

MAGs. 

5.4.1.3 Recoveries 

The recoveries of AEA d8 and 2-AG d8 from rat brain, lung, liver, and testi can be found 

in Table 5.7. The levels of recovery are reasonable and are comparable with previous 

results (Kingsley and Mamett, 2007). AEA C20:4 recovery in testi was, however, 

slightly lower than results obtained from other tissues. Previous work has demonstrated 

however slightly better percentage recoveries, with levels in the mid- to high nineties and 

this could be due to the use of different extraction solvents and incorporating solid phase 

extraction (Richardson et al., 2007; Williams et al., 2007). 

The validation demonstrates that the method is suitable for the analysis of NAEs and 

MAGs in post-mortem tissues. Where a full validation of this method would be 

preferable, as outlined by various publications (Hartmann et aI., 1998; US Department of 

Health and Human Services, 2001), this is not possible due to unavailability of the 

majority of analytes of interest. Nevertheless, it was necessary to demonstrate the 

suitability of the method for the use which it was intended. By the use of deuterated 

standards AEA C20:4 d8 and 2-AG C20:4 d8, this has been successfully undertaken. The 

LLOQ, reproducibility, recoveries, intraday accuracy and ion suppression have been 

assessed and have been demonstrated acceptable in comparison to previous work in this 

area (Kingsley and Mamett, 2007; Richardson et aI., 2007; US Department of Health and 

Human Services, 2001; Williams et al., 2007). 

221 



Table 5.6 Intraday accuracy of and precision of NAEs and MAGs. (n=5) 

Analyte Concentration (nmoll g) Accuracy Precision 

Mean % Variation from expected (%RSD) 

0.05 low 102.5 13.9 

AEA C20:4 0.50 medium 93.6 14.8 

5.00 high 99.7 11.5 

0.05 low 114.9 10.0 

OEA C18:1 0.50 medium 110.8 8.1 

5.00 high 111.1 21.1 

0.05 low 110.3 17.2 

PEA C16:0 0.50 medium 112.6 8.2 

5.00 high 111.7 8.5 

0.75 low 86.4 8.3 

2-AG C20:4 5.00 medium 74.1 6.9 

10.00 high 85.7 18.7 

0.75 low 76.8 10.2 

2-LG C18:2 5.00 medium 96.9 14.9 

10.00 high 83 25.8 
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Table 5.7 The lower limit of quantification and % recovery of C20:4 AEA dS and C20:4 MAG dS. Recoveries were calculated on deuterated 

reference standards close to the LLOQ but ion suppression was calculated on deuterated reference standards at 0.5 p.1M and 1.0p.1M, 

respectively. 

LLOQ of AEA C20:4 dB LLOQ of 2-AG C20:4 dB % Recovery of AEA C20:4 dB % Recovery of MAG C20:4 dB 
Tissue 

(n=6) (n=6) 

LLOQ (pmol/g) %RSD LLOQ (pmol/g) %RSD (n=6) (n=6) 

Brain 2 (n=3) 42.2 50 (n=3) 13.3 83.1 (n=3) 89.9 (n=3) 

Liver 4 18.2 50 16.9 87 82 

Lung 4 21 50 12 85.1 81.9 

Testi 2 7.8 50 10.3 69.6 88.7 
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Figure 5.1. Extracted ion chromatograms of AEA C20:4, OEA C IS: I, PEA C16:0 and 2-AG C20:4 

reference standards analyzed with an SRM method, demonstrating the method works on NAE and 

MAG reference standards. 



5.4.1.4 Ion Suppression 

The ion suppression effects of brain tissue are demonstrated in Table 5.7. The effects 

were relatively small and comparable with previous evaluations of 83% and 96% 

(Richardson et at., 2007) 

5.4.2 Calibration and linearity 

Table 5.8 demonstrates the slope of the lines and linear regression for the NAEs and 

MAGs calibrated. 

The initial range of calibrants used, from 0.0 I IlM to 50 IlM, was relatively large but 

represented changes in post mortem tissues for some analtyes. In the instance of AEA 

C20:4, endogenous levels were relatively low and such a range was excessive; 

consequently, to improve accuracy of the quantification, a smaller calibration range was 

used in practice. For OEA C18:1 and PEA CI6:0, the endogenous levels, particularly 

five hours post-mortem, were high enough to justify using the range stated. The slopes of 

the line were forced through zero. A number of analytes around the limit of detection 

were better represented by this approach. 

Table 5.S. Calibrations of NAE and MAG reference standards. 

Calibrant Equation of the line R Calibration range used (~M) 

AEA C20:4 y=0.8792x 0.9997 0.01 -1.0 

OEA C18:1 y=1.4704x 0.9979 0.01 - 50.0 

PEA C16:0 y= 1.503x 0.9986 0.01 - 50.0 

2-AG C20:4 y=0.2632x 0.9994 0.5 - 50.0 

2-LG C18:2 y=0.2750x 0.9981 0.5 - 50.0 
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NABs and MAGs, for which reference standards were not available, were quantified 

using the calibrations of structural analogue reference standards. Such an approach does 

not necessarily provide data that would be as accurate as if individual calibrations were 

employed, but it does provide an estimate of concentrations for which comparisons can 

be made. The choice of calibration for each analyte was based on acyl chain length in an 

attempt to account, to some degree, for the differences in ionization efficiencies 

previously observed in structurally similar acyl chain-containing compounds (Koivusalo 

et ai., 2001; Ortori et ai., 2007). See Table 5.9 and Table 5.10. 

Where C24:1, C22:5, C22:4, C22:1, C20:1 and C20:0 use the AEA C20:4 calibration, the 

endogenous levels of these analytes varied by a thirtyfold difference. So to improve 

accuracy, the calibration range was tailored to fit with levels detected and hence the slope 

of the line varies slightly. The same can be seen for C18:2 and CI8:0. These two NAEs 

use the same calibration obtained from reference standard OEA C 18: 1, but there was a 

fivefold difference in concentrations; therefore the range of the calibration was adjusted 

accordingly, and the slope of the calibration line employed reflects that variation. The 

calibration line employed for each NAB (and MAG) was the same, independent of tissue. 

MAGs were also detected at differing levels and, as seen with NAEs, the calibration 

range employed in quantification was dependant on endogenous levels detected. Table 

5.10 illustrates the equation of the line and calibration range employed for MAGs where 

reference standards were unavailable. 

The quantification of NABs where a full complement of reference standards are not 

available has been previously demonstrated. Using AEA d4 and OEA d4, a two-point 

calibration line was constructed to quantify all NAEs detected in various biological 

tissues (Clement et ai., 2003; Leung et ai., 2006; Nomura et ai., 2008). 

NAE and MAG concentrations from tissues dissected immediately after death can be 

seen in Table 5.11 and Table 5.12. Standard deviations and relative standard deviations 

are also listed. 
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Table 5.9. NAEs and the reference calibration assigned to provide quantification. Where endogenous 

levels varied between analytes, the range of the calibration was adjusted accordingly. 

NAE Reference cali brant used Equation of the line Calibration range 

(~M) 

C24:1 AEA C20:4 y=1.0009x 0.01 - 50.0 

C22:5 AEA C20:4 y=1.0009x 0.01 - 50.0 

C22:4 AEA C20:4 y=1.0009x 0.01 - 50.0 

C22:1 AEA C20:4 y=1.0009x 0.01 - 50.0 

C20:1 AEA C20:4 y=1.0009x 0.01 - 50.0 

C20:0 AEAC20:4 y=0.8792x 0.01 -1.0 

C18:2 OEA C18:1 y=1.4173x 0.01 - 2.5 

C18:0 OEA C18:1 y=1.4704x 0.01 - 50.0 

Table 5.10. MAGs and the reference calibration assigned to provide quantification. Where 

endogenous levels varied between analytes, the range of the calibration was adjusted accordingly. 

MAG Reference cali brant used Equation of the line Calibration range 

(~M) 

C22:5 2-AG C20:4 y=0.2632x 0.5 - 50 

C22:4 2-AG C20:4 y=0.2521x 0.5 - 10 

C20:3 2-AG C20:4 y=0.2521x 0.5 - 10 

C20:1 2-AG C20:4 y=0.2521x 0.5 - 10 

C18:1 2-LG C18:2 y=0.2750x 0.5 - 50 

C18:0 2-LG C18:2 y=0.2750x 0.5 - 50 

C16:0 2-LG C18:2 y=0.2750x 0.5 - 50 
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The approach taken here, where SRM transitions have not originated from a complete set 

of reference standards but from full product ion spectra and an understanding of the 

fragmentation of a group of analytes has previously been employed (Scholz et at., 2005), 

be it metabolism of xenobiotic compounds rather than endogenous metabolites, the 

approach taken was similar. In this instance, SRM transitions were coupled with a full 

product ion scan and consequently demonstrate a slight decrease in sensitivity due to 

increase scan time. Where they argue that the slight loss in sensitivity is warranted by the 

increased selectivity of the full product ion spectra obtained, the approach taken here 

employs a precursor ion / neutral loss survey scan coupled with EPI spectra for initial 

identification. Therefore the more sensitive SRM alone method was employed. 

5.4.3 Quantification of NAEs and MAGs in rat tissues collected 

immediately after death 

5.4.3.1 General observations 

Levels ofNAEs and MAGs in rat tissues can be found in Table 5.11 and Table 5.12 

respectively, as well as total NAEs and MAGs in each tissue in Figure 5.2. Variation of 

NAE and MAG tissue distribution, previously observed in chapter 4, is more prominent 

with addition of concentrations. Non CNS tissues generally contain the shorter, more 

saturated NAEs; where longer chain NAEs are present, they occur at lower 

concentrations, although testi contain NAE C22: 5. Brain and spinal tissue contains a 

greater range of NAEs. It is notable that MAGs do not follow the same pattern as NAEs. 

There is generally a greater distribution of both long and short chain MAGs in non-eNS 

tissues than observed with NAEs. The fact that NAE and MAG profiles are dissimilar is 

perhaps not surprising, as the synthesis routes of the two classes of compounds are 

believed to be separate (Ahn et at., 2008). 

Reproducibility of NAEs and MAGs measurements, using the relative standard deviation 

(RSD), are generally within 20%, although some are higher than this value, particularly 

those present at lower concentrations. Nevertheless, the quantitative data provide a 
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Table 5.11. Quantification of NAEs in rat tissues. Mean, standard and relative standard deviation (%RSD) are stated (n=6). Analytes below 

the limit of detection are listed by a -. 

Tissue Statistic NAE Concentration '~mol/g} Total '~Mol/g} 

C24:1 C22:5 C22:4 C22:1 C20:4 C20:1 C20:0 C18:2 C18:1 C18:0 C16:0 

Mean 67.1 - 4.2 19 2.6 20.6 37.2 12.2 85.1 58.9 86.8 393.7 

Brain Stdev 30.4 - 1.4 6.1 0.6 8.4 15.4 1.7 17.8 13.8 22.7 

%RSD 45.4 - 33.5 32 22.5 40.8 41.5 13.9 20.9 23.5 26.1 

Mean - - - - - - - 14.6 9.6 - 69.6 93.8 

Liver Stdev - - - - - - - 6.4 7.1 - 19.8 

%RSD - - - - - - - 43.7 73.7 - 28.4 

Mean - - - - - - - 4.1 10 11.8 15.6 41.5 

Heart Stdev - - - - - - - 1.5 2.8 3 5.3 

%RSD - - - - - - - 35.6 27.8 25.3 33.7 

Mean - - 1.5 - - 2.8 - 14.7 41.5 37.7 36.9 135.1 

Lung Stdev - - 0.3 - - 0.5 - 4.3 10.2 10.6 9.7 

%RSD - - 20.1 - - 17.8 - 29.1 24.4 28.1 26.4 

Mean - 89.7 12.5 - 11 2.2 - 29.3 50.4 85.2 254.7 535 

Testi Stdev - 19.7 2.7 - 1.8 0.3 - 6.5 8.7 21.1 76.9 

%RSD - 22 22 - 16.1 15.2 - 22.3 17.2 24.7 30.2 

Mean 936.1 - 37.9 275.3 7.3 532.8 600.7 27.6 895.8 917.1 923.3 5153.9 
Spinal 

Stdev 237.6 5.7 68.8 1.8 140.2 182.1 3.9 115.4 187.2 83.2 -
Cord 

%RSD 25.4 - 15.1 25 24.6 26.3 30.3 14.2 12.9 20.4 9 
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Table 5.12. Quantification of MAGs in rat tissues (n=6). Mean, standard and relative standard deviation (%RSD) are stated (n=6). Analytes 

below the limit of detection are listed by a -. 

Tissue Statistic MAG Concentration {nmol/g} Total {nmol/g} 

C22:5 C22:4 C20:4 C20:3 C20:1 C18:2 C18:1 C18:0 C16:0 

Mean 0.2 0.6 11.1 0.5 - 0.2 6.8 0.3 2.1 21.8 

Brain Stdev 0.1 0.2 2.8 0.2 - 0.1 3.2 0.1 0.6 

%RSD 35.6 31.9 24.9 33.3 - 36.1 46.6 46.3 28 

Mean - 0.3 3.3 - 0.2 7.2 15.4 1.4 5.4 33.2 

Liver Stdev - 0.1 0.8 - 0 2.3 5.1 0.3 2.2 

%RSD - 36.5 23.5 - 14.6 31.9 33.1 21.2 41.7 

Mean - - 0.5 - - 0.2 0.4 0.2 0.3 1.6 

Heart Stdev - - 0.1 - - 0.1 0.1 0.1 0.1 

%RSD - - 24.2 - - 33.9 38 35.4 27.4 

Mean - 0.9 5.6 1 - 2.4 4.5 0.5 1.5 16.4 

Lung Stdev - 0.2 1.4 0.3 - 0.3 0.9 0.1 0.1 

%RSD - 26.9 25.9 26.2 - 12.8 18.9 12.8 4.7 

Mean 2.4 0.5 3.3 0.5 - 1.4 3 0.6 3.6 15.3 

Testi Stdev 0.7 0.2 1 0.2 - 0.4 0.8 0.2 1.1 

%RSD 30.1 33 30.9 33.7 - 30.3 25.4 32.6 31 

Mean - 1.4 31.4 2.9 4.4 1.1 31.5 2.5 4.1 79.3 
Spinal 

Stdev 0.2 4.5 0.7 0.6 0.2 4.9 0.8 0.5 -
Cord 

%RSD - 15.8 14.2 26 13.6 16.5 15.5 33.5 13.4 
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profile of NAE and MAG distribution in rat tissue previously not reported m the 

scientific literature. 

Although repetitious, NAE and MAG levels quantified in tissues have been further 

tabulated and compared with levels in the literature. 

5.4.3.2 NAE and MAG levels in rat brain tissue 

Brain (and spinal cord) tissue contains the widest range of NAEs in the tissue analyzed. 

Levels of AEA C20:4 detected here (2.6 ± 0.6 pmoVg) compare well against those 

reported from rat frontal cortices at 4.9 pmoVg (Williams et at., 2007) and are close but 

slightly lower than those observed in a variety of rat brain regions, which ranged from 

10.2 to 32.6 pmol/g (Richardson et aI., 2007). OEA C18: 1 measured here at 85.1 pmol/g 

were slightly higher than those previously reported from the frontal cortex, 36.1 pmol/g. 

Levels of NAEs previously observed in the literature vary considerably, but the levels 

reported here are within the extremes of 60 to 1600 pmol/g (Koga et aI., 1997; 

Richardson et al., 2007). PEA C16:0 levels reported here (86.8 ± 22.7 pmol/g) fall some 

way below the level recorded in various brain tissues (716 - 5000 pmol/g) (Richardson et 

al., 2007) by an order of magnitude, and are similarly distant from those observed 

previously from the frontal cortex (521 pmoVg) (Williams et at., 2007). Such variation in 

the literature suggests that differences in reported endogenous levels can be expected 

although there is not, as of yet, a reasonable explanation. 

C24: 1 levels in rat brain have not been detailed before, as far as it is possible to ascertain, 

but they have in mice. Levels described here at 67.1 pmoVg, are similar to those in 

mouse, 29 ~ 50 pmol/g (Leung et al., 2006; Nomura et al., 2008). NAE C20:0, NAE 

CI8:2, and NAE C18:0 have not been quantified in rat brain as far as can be ascertained. 

Again however, these compounds have been quantified in mice. C20:0 levels reported 

here (37.2 ± 15.4 pmol/g) are in close agreement with one previous study, 40 pmol/g 

(Leung et al., 2006), and almost double when compared to 24 ± 1.9 pmoVg (Nomura et 

al., 2008). NAE C18:0 levels observed here (58.9 ± 13.8 pmoVg) are less than those 
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published previously: -155pmoVg and 333 ± 42 pmoVg (Leung et al., 2006; Nomura et 

al., 2008). It is difficult to draw strong conclusions from these results as comparisons 

are being made across species; however, all reported values are well within an order of 

magnitude of those reported in mice and provide reasonable confidence in the results 

obtained. As far as it can be ascertained, quantitative values for NAE C22: 1 and NAE 

C20: 1 in rat brain have not been previously published. NAE C22:4 has been quantified 

in cultures of mouse neurons, microglial cells and rat astrocytes (Walter et al., 2002; 

Walter et aI., 2003), however it is difficult to draw a comparison between levels found in 

tissue and cell cultures. A comparison ofNAE levels in brain can be found in Table 5.13. 

2-AG C20:4 has been previously quantified in rat brain tissues (Kondo et aI., 1998a; 

Richardson et al., 2007; Williams et aI., 2007) (10.9 - 30.3, 8.1, and 4.75 nmol/g) and 

correlate closely with the levels reported in this chapter: 11.1 ± 2.8 nmol/g. Levels 

detected in mouse brain are also reasonably comparable at 3.7 ± 1.0 nmol/g (Nomura et 

al., 2008). 2-LG C 18:2 levels of 0.2 ± 0.1 nmol/g correlates closely with a previous LC

MS method (Richardson et al., 2007), which ranges from 0.11 - 4.3 nmoVg but differs by 

an order of magnitude with those previously described at 0.05 ± 0.04 nmol/g (Kondo et 

al., 1998a). This discrepancy could be due to differences in extraction methodology. 

MAG C22:5, MAG C22:4, MAG C20:3, MAG CI8:1, MAG CI8:0 and MAG C16:0 

were quantified in rat brain tissue. MAG CI8:I (6.8 ± 3.2nmol/g) and MAG C16:0 (2.1 

± 0.6nmol/g) compare favourably with those previously quantified in rat frontal cortices 

at 2.0 and 3.1 nmol/g (Williams et al., 2007). MAG CI8:0, 0.3 ± 0.1 nmoVg, also 

compares favourably against other levels previously detected in rat brain at 0.18 ± 0.23 

(Kondo et aI., 1998a). Furthermore, it should be mentioned that MAG CI8:1 and MAG 

C16:0 also compare well with those previously quantified in mouse brain, 2.2 ± 0.6 and 1 

± 0.1 nmol/g (Nomura et al., 2008). This suggested that some reasonable confidence can 

be placed on the 'semi-quantitative' results for MAGs in the brain, and levels quantified 

in mouse brain are roughly comparable with those in rat. Quantitative results of MAG 

C22:5, MAG C22:4, and MAG C20:3 in rat tissue have not, despite extensive searching, 

been found in the literature. A comparison of MAG levels can be found in Table 5.14 



Two recent publications in the field of endocannabinoids have quantified a reasonable 

number ofNAEs and MAGs (Leung et al., 2006; Nomura et al., 2008). Identification of 

analytes was based on the on the pseudomolecular ion (without the use of authentic 

standards for the majority of the analytes observed). Quantification of the detected 

analytes was performed by a two point calibration using AEA C20:4 d4 and OEA CI8:I 

d4 reference standards spiked into the extracts. The peak area for each analyte, based on 

the pseudomolecular ion, was quantified using the two point calibration line and not by 

individual reference standards (Leung et al., 2006; Nomura et aI., 2008). It could be said 

that the specificity of the approach taken is not as robust as the MS/MS method employed 

here. The approach taken to quantify each analyte is not dissimilar to the method 

described in this chapter and negates the issue of reference standard availability, although 

in this chapter the use of reference standards with various acyl chain lengths have been 

employed to counter, to some degree, the issue of differing ionization efficiencies 

observed with such analytes. 

Although the neutral loss survey scan employed in chapter 4 was unable to detect MAG 

C22:5 in brain, it was quantified in brain tissue by the SRM method described in this 

chapter, although levels were at the lower limit of quantification. This finding 

demonstrates that MAG C22:5 is not solely found in testicular tissue, but that levels in 

testi are an order of magnitude higher than in brain. 

5.4.3.3 NAE and MAG levels in rat liver 

Table 5.15 and Table 5.16 compare NAE and MAG levels in rat liver measured in this 

chapter with those in the literature. NAE levels are reasonably comparable to those 

previously reported, as are MAG levels, demonstrating these reported levels can be 

viewed with some confidence. An exception is C18:0, which was quantified here to be at 

levels an order of magnitude greater that previously measured. There is no clear 

explanation for this discrepancy at this time. 
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5.4.3.4 NAE and MAG levels in rat heart 

Table 5.17 and Table 5.18 compare NAB and MAG levels measure here in rat heart 

tissue with those in the literature. Levels of both NABs and MAGs are less than those 

previously reported. Although no obvious explanation is forthcoming, the extraction 

procedures were slightly different and could contribute to the differences observed. AEA 

C20:4, not detected by this method nor by a previous GC-MS approach in rat heart 

(Schmid et ai., 2000), was however previously quantified between the levels of 21 and 

126 pmol/g by the use of an LC-MS method (Koga et ai., 1997). The SRM method 

described in this chapter can quantify ABA C20:4 down to such levels, suggesting LLOQ 

is not a cause for such a discrepancy. As the mentioned method used LC-MS rather than 

the more selective LC-MS/MS employed here, misidentification may be the cause of the 

discrepancy. 

It is worth noting that DEA C22:4 and NAB C20:3, not observed in rat heart by the 

method described in this chapter was also not observed in a previous study which also 

analyzed this tissue type (Koga et ai., 1997) 

5.4.3.5 NAE and MAG levels in rat Lung 

A comparison of MAG levels measured here in rat lung with those in the literature can be 

found in Table 5.19. NAB DEA C22:4, NAB C20:1, NAE C18:2, OEA C18:1 and PEA 

C16:0 were quantified in rat lung, however it difficult to find other reported levels in the 

literature to compare against. Although one previous study attempted to quantify AEA 

C20:4, endogenous levels were below the limit of quantification for the methodology. 

OEA C18:1 and PEA C16:0 were not included in the analysis (Yang et ai., 1999). 

Similarly, work conducted on mouse lung, among other tissues, only focused on AEA 

C20:4 and prostamides, ignoring other NAEs (Weber et ai., 2004). The same can be said 

for the work on guinea pig, which again focused solely on AEA C20:4. 

235 



Table 5.13. A comparison of NAEs detected in rat brain with those observed in the literature. 

NAE Detected levels Previously detected levels Source Comment 

(pmol/g) (pmol/g) 

C24:1 67.1 ± 30.4 30.0(mouse brain) (Leung et al., 2006) Although there is some 

29.0(mouse brain) (Nomura et al., 200B) variation with values 

C22:4 4.2 ± 1.4 presented in the literature, 

C22:1 19.0 ± 6.1 most NAEs compare 

C20:4 2.6 ± 0.6 10.2 - 32.6 (Richardson et al., 2007) favorably. PEA C16:0 

4.9 (Williams et al., 2007) levels, however, are low, 

11.B - 77 (Koga et al., 1997) although they sit inside a 

2.S (mouse brain) (Leung et al., 2006) relatively wide window of 

4.1 (Nomura et al., 200B) values published 

C20:1 20.6 ± B.4 

C20:0 37.2 ± 1S.4 30.0 (mouse brain) (Leung et al., 2006) 

24.0 (Nomura et al., 200B) 

C1B:2 12.2±1.7 6.1 

C1B:1 BS.1 ±17.B 60 -1600 (Richardson et al., 2007) 

36.0 (Williams et al., 2007) 

7.3-929 (Koga et al., 1997) 

60.0 (mouse brain) (Leung et al., 2006) 

C18:0 5B.9 ± 13.8 1S0.0 (mouse brain) (Leung et al., 2006) 

333 (mouse brain) (Nomura et al., 200B) 

C16:0 86.8 ± 22.7 716 - SOOO (Richardson et al., 2007) 

522.0 (Williams et al., 2007) 

36.9 - 4B5 (Koga et al., 1997) 

110.0 (mouse brain) (Leung et al., 2006) 

167 (Nomura et al., 2008) 
--- --- -- -- - --------
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Table 5.14 A comparison of MAGs detected in rat brain with those observed in the literature. 

MAG Detected levels Previously detected levels Source Comment 

(nmol/g) (nmol/g) 

C22:S 0.2 ± 0.1 Good comparable results with the 

C22:4 0.6 ± 0.2 literature 

C20:4 11.1 ± 2.B 10.9 - 30.0 (Richardson et al., 2007) 

3.7 (mouse brain) (Nomura et al., 200B) 

C20:3 O.S ± 0.2 

C1B:2 0.2 ± 0.1 0.11 - 4.3 (Richardson et al., 2007) 

O.OS (Williams et al., 2007) 

C1B:1 6.B ± 3.2 2.0 (Williams et al., 2007) 

2.2 (mouse brain) (Nomura et al., 200B) 

C18:0 0.3 ± 0.1 

C16:0 2.1 ± 0.6 3.1 (Williams et aJ., 2007) 

1 Nomura et al., 2008) 
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Table 5.15 A comparison of NAEs detected in rat liver with those observed in the literature. 

NAE Detected levels Previously detected levels Source Comment 

(pmol/g) (pmol/g) 

C18:2 14.6 ± 6.4 Reasonable correlation between values 

C18:1 9.6 ± 7.1 29.3 - 66.4 (Koga et a/. , 1997) recorded here and those in the literature 

C16:0 69.6 ± 19.8 68.8 - 98.7 (Koga et a/. , 1997) 

0.89 (Kondo et a/., 1998a) 

Table 5.16 A comparison of MAGs detected in rat liver with those observed in the literature. 

MAG Detected levels (nmol/g) Previously detected levels (nmol/g) Source Comment 

C22:4 0.3 ± 0.1 Reasonable correlation between value 

C20:4 3.3 ± 0.8 1.8 (Kondo et a/., 1998a) recorded here and those in the literatur 

2.2 ± 1.07 (Avraham et al., 2008) although C18:0 is higher than previousl 

C20:1 0.2 observed 

C18:2 7.2 ± 2.3 1.27 (Kondo et a/., 1998a) 

C18:1 15.4 ± 5.1 

C18:0 1.4 ± 0.3 0.14 (Kondo et a/., 1998a) 

C16:0 5.4 ± 2.2 
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Table 5.17. A comparison ofNAEs detected in rat Heart with those observed in the literature. 

NAE Detected levels Previously detected levels Source Comment 

(pmol/g) (pmol/g) 

C18:2 4.1 ± 1.5 Levels slightly lower than those in the 

C18:1 10.0 ± 2.8 52 - 232 (Koga et aI., 1997) literature 

C18:0 11.8 ± 3.0 

C16:0 15.6 ± 5.3 56 - 233 (Koga et aI., 1997) 

Table 5.1S. A comparison of MAGs detected in rat heart with those observed in the literature. 

MAG Detected levels Previously detected levels Source Comment 

(nmol/g) (nmol/g) 

C20:4 0.5 ± 0.1 3.25 (Avraham et at., 2008) Levels slightly lower than those in the 

literature C18:2 0.2 ± 0.1 

C18:1 0.4 ± 0.1 

C18:0 0.2 ± 0.1 

C16:0 0.3 ± 0.1 
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NAB DEA C22:4, NAB C20: 1 and NAB C18:2 were not observed in the precursor ion 

scan of rat lung; however, they were identified by the SRM method detailed in this 

chapter. As calculated levels were low and close to the lower limit of quantification, it is 

perhaps to be expected that more NABs would be detected by the SRM method due to an 

increase in sensitivity over scanning methodologies. Identification was achieved by the 

SRM transitions listed in Table 5.1 and by retention times previously observed from 

precursor ion scans used on other tissues. It has not been possible to find levels in the 

literature to compare against and is thought (Scholz et al., 2005) to be the first reported 

levels of these NABs in rat lung. 

The values for MAG 2-AG C20:4 reported here sit within the range of previously 

reported values. MAG C18:0 is also comparable with previous result, but MAG CI8:2 is 

slightly higher than those published. 

As far as it can be ascertained, MAG C22:4, MAG C20:3, MAG CI8:1 and MAG C16:0 

have not been previously quantified in rat lung. 

5.4.3.6 NAE and MAG levels in rat testi 

Table 5.20 compares NAB levels measured here in rat testi with those in the literature. 

ABA C20:4, OEA C18:1 and PEA C16:0 were all quantified by the SRM method 

described in this chapter. ABA C20:4 levels are double previously detected levels 

(Sugiura et at., 1996). OEA C18:1 and PEA C16:0 levels are slightly greater, with those 

identified here being five- and three-fold greater than those in the literature. 

NAB C22:5, NAB C22:4, NAE C20:1 and NAB C18:0 were additionally measured. 

NAB C22:5 levels vary considerably with those previously reported in the literature 

(Kondo et at., 1998a; Richardson et at., 2007; Williams et at.. 2007), being over an order 

of magnitUde greater. NAB C18:0 was also calculated to be at higher levels here than 

those in the literature, at levels five-fold greater. MAG C22:5, NAB C22:4 and NAB 

C20: 1, as far as it can be ascertained, have not been previously measure in rat testi 
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Table 5.19 A comparison of MAGs detected in rat lung with those observed in the llterature. 

MAG 

C22:4 

C20:4 

C20:3 

C18:2 

C18:1 

C18:0 

C16:0 

Detected levels 

(nmol/g) 

0.9 ± 0.2 

5.6 ± 1.4 

1.0 ± 0.3 

2.4 ± 0.3 

4.5 ± 0.9 

0.5 ± 0.1 

1.5 ± 0.1 

Previously detected levels Source 

(nmol/g) 

0.59 ± 0.3 

13.7 ± 3.2 

0.46 ± 0.37 

0.14 ± 0.31 

(Kondo et a/., 1998a) 

(Avraham et al., 2008) 

(Kondo et al., 1998a) 

(Kondo et al., 1998a) 

Comment 

Levels fall within those observed 

in the literature except for C18:2 

which are almost a magnitude 

higher. 
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Table 5.20. A comparison of NAEs detected in rat Testi with those observed in the literature 

NAE Detected levels Previously detected levels Source Comment 

(pmol/g) (pmol/g) 

C22:5 89.7 ± 19.7 6.0 (Kondo et al., 1998a) Levels are generally higher than those 

C22:4 12.5 ± 2.7 presented in the literature 

5.0 (Kondo et al., 1998a; 
C20:4 11.0 ± 1.8 

6.0 ± 1.4 Sugiura et al., 1996) 

C20:1 2.2 ± 0.3 

9.0 (Kondo et al., 1998a; 
C18:2 29.3 ± 6.5 

5.6 ± 1.8 Sugiura et al., 1996) 

C18:1 50.4 ± 8.7 9.5 

C18:0 85.2 ± 21.1 21.4 ± 1.7 (Sugiura et al., 1996) 

C16:0 254.7 ± 76.9 73.9 ± 7.5 (Sugiura et al., 1996) 

242 



It is worth noting that a reasonable variety of NAEs were observed in one previously 

reported method, in rat testi, compared to the majority of published work in this area 

(Sugiura et al., 1996). The scope of analytes covered in this instance was possible in this 

instance by the in house synthesis of reference standards. 

5.4.3.7 NAE and MAG levels in rat spinal cord 

Table 5.21 and Table 5.22 compare NAE and MAG levels in rat spinal cord measured in 

this chapter with those in the literature. There is considerable variation in the literature 

concerning NAE and MAG (2-AG C20:4) levels. However, AEA C20:4 levels measured 

here are comparable with two previously reported values. OEA C18:1 is slightly less 

than previously reported levels and PEA C16: I levels are within the ranges previously 

published. The lower level of these two were the result of rats which had undergone a 

sham operation 3 days prior to tissue collection, which might affect the normal levels. 

MAG C20:4 levels in the literature vary considerably; however, levels reported here fall 

within the range of previously reported values. 

NAE C24:1, NAE C22:5, NAE C22:1, NAE C20:1, NAE C20:0, NAE C18:2 and NAE 

C 18: 0 were also semi -quantified in rat spinal cord tissue but, as far as can be ascertained, 

no quantification has been published to compare against. 

In the data presented in this chapter there appears to be a general trend for NAEs in brain 

to be lower than those found in spinal cord. Although AEA C20:4 levels are similar 

between the two tissues, most other NAEs are almost an order of magnitude higher in 

spinal cord compared to brain. The levels in spinal cord observed here are generally in 

keeping with those previously reported (Garcia-Ovejero et al., 2009; Huang et al., 1999; 

lhaveri et al., 2006; Petrosino et at., 2007; Suplita et at., 2006). NAEs levels in mouse 

spinal cord (although a different species) were also found to be higher than those in brain, 

with NAE CI6:0, NAE CI8:I, NAE CI8:0 and NAE C24:I levels found to be six, five, 

eleven and eight-fold higher in spinal cord compared to brain (Saghatelian et al., 2004). 

Elevated levels, although not to such extremes, were noted in a separate experiment in 
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Table 5.21. A comparison of NAEs detected in rat spinal cord with those observed in the literature. 

NAE Detected levels (pmol/g) Previously detected levels Source Comment 

(pmol/g) 

C24:1 936.1 ± 237.6 Levels reported fall within those 

C22:4 37.9 ± 5.7 previously published, although 

C22:1 275.3 ± 68.8 OEA C18:1 was observed to be 

10 (Jhaveri et at., 2006) slightly low 

C20:4 7.3 ± 1.8 30 (Petrosino et at., 2007) 

11 (Suplita et at., 2006) 

C20:1 532.8 ± 140.2 

C20:0 600.7 ± 182.1 

C18:2 27.7 ± 3.9 

C18:1 895.8 ± 115.4 1250 (Jhaveri et at., 2006) 

C18:0 917.1 ± 187.2 

5000 (Jhaveri et at., 2006) 
C16:0 923.3 ± 83.2 

260 (Petrosino et at., 2007) 
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Table 5.22. A comparison of MAGs detected in rat spinal cord with those observed in the literature 
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mouse, where levels were between three and four - fold higher in spinal cord compared to 

brain (Mulder and Cravatt, 2006) 

5.4.4 Comparison of NAE and MAG levels recovered immediately after 

death and five hours after death 

NAE and MAG levels quantified immediately after death and five hours post-mortem are 

plotted in a comparative fonnat in Figure 5.3 and Figure 5.4. Statistical analysis was 

perfonned on the median of each group and not the mean, therefore it may be more 

accurate to display the data as individual concentration data points and the median, 

however, it is easier to follow the data as portrayed. Such an approach has been 

previously used in the analysis and presentation of endocannabinoid data (Jhaveri et ai., 

2006). Where NEA or MAG level changes were deemed significantly different. they are 

highlighted in the figures and Table 5.23 and Table 5.24. In some instances, analytes 

were not measurable in tissue immediately after death but were present five hours post

mortem. In such instances, it is clear that a change in levels had occurred, but it was not 

possible to perfonn a statistical analysis. In such cases, a substitution method was 

employed by using a concentration half-way between zero and the LLOQ. Although 

such an approach has the limitation of potentially overestimating the level of the analyte 

(Baccarelli et ai., 2005), it is a simple method enabling statistical analysis to be 

undertaken. 

5.4.4.1 Post-mortem NAE and MAG changes in brain 

It can be observed in Table 5.23, Figure 5.3 and Figure 5.5 that all NABs detected in 

brain tissue increased significantly (P < 0.01 for all but C22:4 and C24: 1 which were P < 

0.05) when tissue was left for five hours compared to dissection immediately after death. 

AEA C20:4 has been previously observed to increase over a five hour period post

mortem in rat brain (Kempe et ai., 1996) as well as ABA C20:4, OEA CI8:I and PEA 

C16:0 in mouse brain (Patel et ai., 2005) and, along with NAB CI8:0, in pig, sheep and 

cow brain (Schmid et ai., 1995). Although it is clear all NABs increase, it has been 
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previously demonstrated in mouse brain that the mechanisms involved are not the same 

for all NAEs (Patel et ai., 2005). Furthermore, it is interesting to observe that NAE 

C22:5, not detected in rat brain immediately after death, is observed five hours post

mortem. 

NAE C24: 1 and C20:0 were both observed in brain and spinal cord, however only levels 

in brain were significantly elevated five hours post-mortem (P < 0.05 and P < 0.0 I 

respectively). This would suggest that there is a selective metabolic pathway for at least 

these two NAEs that is not common to both tissues. 2-AG C20:4 levels were observed to 

decrease five hours post-mortem in rat brain, however not to the extent to be deemed 

statistically significant (see Table 5.24), and do not drop to the extent observed in mouse 

brain (Patel et ai., 2005), which were approximately half of the original value. Where 2-

AG C20:4, 2-LG CI8:2, MAG C16:1 and CI8:1, reported in Figure 5.4, have been 

previously investigated in rat brain post-mortem, the results published are not directly 

comparable because of the five minute time course used (Sugiura et ai., 2001). Other 

MAGs detected in this chapter, MAG C22:4, MAG C20:3, MAG C18:2, MAG C20:1 

and MAG C18: 1, were observed to increase slightly, but not to statistically significant 

levels. The increase of MAG CI8:0 levels five hours post-mortem was considered to be 

statistically significant (P < 0.05), see Table 5.24. Such an increase is contrary to the 

majority of other MAGs, indicating that a specific pathway is involved in the brain (and 

also in all other tissues investigated in this chapter except heart). It has been previously 

noted that more than one selective MAG synthesis / degradation pathway is present in 

brain tissue which might explain the differences observed here, although in that instance 

the tissue was derived from mice (Sugiura et ai., 2001). As far as can be ascertained, the 

post- mortem changes of MAG CI8:0 have not been previously reported. 

5.4.4.2 Post-mortem NAE and MAG changes in rat spinal cord 

Levels of AEA C20:4, OEA CI8:I and NAE CI6:0 significantly increased (P < 0.01) 

after five hours post-mortem: see Figure 5.3, Figure 5.5 and Table 5.23 All other NAEs 

in spinal cord, except for C24: I and C20:0, also significantly increase five hours post-
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mortem. As NAE C24: 1 and NAB C20:0 levels did not increase; it suggests a selective 

mechanism specific for these two NABs. Furthennore it would appear such mechanisms 

are not shared by both spinal cord and brain. Such an observation has not, as far as can 

be ascertained, been previously reported. 

The MAGs observed in spinal cord post-mortem follow a similar trend to those in brain 

tissue; see Figure 5.4. Where there are changes in MAG levels, they are not deemed 

statistically significant except for MAG C18:0, which again, as observed in brain tissue 

and other non CNS tissues except heart, increased by significant levels (P < 0.01) five 

hours post-mortem, see Table 5.24. There appears to be no literature regarding spinal 

cord MAGs post-mortem to compare against. 

5.4.4.3 Post-mortem NAE and MAG changes in rat testi 

Levels of ABA C20:4, OEA CI8:I and NAB CI6:0, as well as of other NAEs detected, 

increased significantly after five hours post-mortem (P < 0.01), see Figure 5.3 and Table 

5.23. NAB C24:1, NAB C22:I and NAB C20:0 were not observed at either time point. It 

is worth noting that where brain and spinal tissue obtained certain NAEs five hours post

mortem which were not present immediately after death, notably C22:5, the reverse is not 

necessarily the same for testi. NAB C24: I and NAE C22: 1, not observed in testi 

immediately after death, are also not observed five hours post-mortem, indicating that 

mechanisms involved in post-mortem NAB increases are selective and not alike across all 

tissues. The exact mechanism is unknown at this time. There are no previous reports that 

can be found to compare the results obtained here. 

Levels of2-AG C20:4 did not significantly alter after five hours post-mortem as observed 

in brain and spinal cord. As observed with central nervous tissue, the levels of all other 

MAGs detected, excluding MAG C18:0, did not significantly change either, where as 

MAG C18:0 levels significantly increased (P < 0.01) after five hours post-mortem, see 

Table 5.24. 
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5.4.4.4 Post-mortem NAE and MAG changes in rat heart 

ABA C20:4 was below the limit of quantification in heart tissues collected immediately 

after death and five hours post-mortem. OEA C18:1 and PEA C16:0 were observed, but 

demonstrated no significant increases after five hours post-mortem. This is in contrast to 

OEA C18:1 and PEA C16:0 observed in all other tissues in this chapter and to those 

observed in mouse brain (Patel et at., 2005). Furthermore, no NAEs from C20:n up to 

C24:n, nor those with greater saturation than two double bonds, were observed in tissue 

recovered immediately after death, nor were levels observed to increase five hours post

mortem. It could be theorized that if such NAEs were present, they did not increase; 

otherwise it might be expected that they would reach recordable levels after five hours. 

However, this cannot be substantiated; as it is possible that even if levels did increase, 

they may still be below the limit of quantification after five hours. The lack of longer, 

less saturated NAEs, coupled with no observable increases in NAEs five hours post

mortem, might indicate that the synthesis or catabolic routes for NAEs in rat heart studied 

in this chapter are substantially different to those in other rat tissues. 

2-AG C20:4 levels in rat heart dropped by approximately half after five hours post

mortem. Such a significant decrease (P < 0.01) is greater than those observed in brain or 

spine but in line with those observed in other non-CNS tissues, lung and liver. Levels of 

other MAGs do not however exhibit a significant drop in concentration. 

5.4.4.5 Post-mortem NAE and MAG changes in rat liver 

ABA C20:4, OEA C 18: 1 and PEA C 16:0 levels all significantly increased after five hours 

post-mortem (P < 0.05), see Figure 5.3 and Table 5.23. This observation is comparable 

with NAEs levels five hours post-mortem in mouse brain (Patel et at., 2005) and AEA 

C20:4 in rat brain (Kempe et at., 1996). Excluding NAB C22: 1 and NAB C20:0, all other 

NAEs increased significantly. As observed in central nervous tissues, NAB C22:5 levels 

were observed to increase from below detectable levels to recordable values five hours 

post-mortem. A similar trend was observed for NAB C24:1, NAB C22:4 and AEA 

C20:4. 
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Excluding MAG C18:0, there is a general reduction in MAG levels five hours post

mortem. 2-AG C20:4, MAG C20:3, MAG C20: 1 and MAG C 18: 1 decreases in levels 

post-mortem were deemed significant (P < 0.05). As observed in all tissues examined in 

this chapter except heart, MAG C18:0 levels increase significantly (P < 0.01), see Figure 

5.4 and Table 5.24. 

5.4.4.6 Post-mortem NAE and MAG changes in rat lung 

It can be seen from Figure 5.3 and Table 5.23 that levels of AEA C20:4, OEA CI8: I and 

PEA CI6:0, as well as NAE C22:4, NAE C20:I, NAE CI8:2 and NAE CI8:0, all 

significantly increase (P < 0.0 I except for C20: I which was P < 0.05) after five hours 

post-mortem. This observation is comparable with those measured in CNS tissues and 

with those previously measured in mouse brain (Patel et al., 2005). Additionally, such 

increases compare well with other non-CNS tissues investigated here, except for heart. 

Worthy of note is the lack ofNAE C22:5 after five hours post-mortem, which is detected 

in all tissues except lung and heart after five hours post-mortem. As with most tissues, 

there is little information in the literature to compare against 

2-AG C20:4 levels were observed to significantly decrease five hours post-mortem (P < 

0.0 I) as observed in liver and heart tissues, but not CNS tissues. Other MAG levels also 

significantly decreased: MAG C22:4, MAG C20:3, MAG C18:2 and MAG CI8:I (P < 

0.01 except C18:1 which was P < 0.05). As observed in all tissues investigated in this 

chapter, MAG C18:0 levels increase significantly five hours post-mortem (P < 0.01). 

It can be seen from the results that not all NAEs and MAGs react to the same degree five 

hours postmortem; this is especially true in the instance of MAG CI8:0. Furthermore, 

the same changes are not observed across all tissue types. This could lead to the 

conclusion that the synthesis and / or catabolic pathways of these analytes may be 

selective for some of the analytes observed and are not necessary equivalent across all 

tissues. The theory that the formation of NAEs via at least two routes post-mortem has 
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been previously proposed (Patel et al., 2005). Work conducted on FAAH knockout mice 

demonstrated that not all NAE levels changes postmortem in the same way over time, 

suggesting alternative metabolism mechanisms were involved. AEA C20:4, OEA CI8:1, 

and PEA C 16:0 in wild type mice were all observed to increase in tissues left at room 
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Figure 5.3. Graphical comparison of NAEs from rat tissues collected immediately after death and 

five hours post-mortem. Statistical tests were carried out using non-parametric Mann-Whitney (* P 

< 0.05, ** P < 0.01). To enable a statistical analysis to be performed against levels only detected five 

hours post-mortem, a nominal value halfway between zero and the limit of detection was selected. 
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Figure 5.4. Graphical comparison of MAGs from rat tissues collected immediately after death and 

five hours post-mortem. Statistical tests were carried out using non-parametric Mann-Whitney (* P 

< 0.05, ** P < 0.01). To enable a statistical analysis to be performed against levels only detected fin 

hours post-mortem, a nominal value halfway between zero and the limit of detection was selected. 
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post-mortem. There is a general trend for NAE to increase five hours post-mortem. 



Brain Spinal cord 

_Ml>G> 
_M)(); 

~ ~ ~ 0 ~ 0 

I{) "t "t CO) T""" ('II T""" 0 0 

§ § 8 8 8 <X:i <X:i <X:i <ii 
U U U U 

/leyIOlain 

Uver 

-I\IIC\Q; 

~ 
Heart 

-I\IIC\Q; 
~ 0 

l1 
/leyIOlain 

Testi 
Lung _M)(}; 

Figure 5.6. % variation between MAGs in tissues recovered immediately after death and five hours 

post-mortem. MAG C18:0 levels increase significantly in all tissue (except heart) compared to most 

other MAGs which decrease five hours post-mortem. 
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Table 5.23. A comparison of NAEs from tissues collected directly after death and those left for five 

hours post-mortem at room temperature. Statistical tested were carried out using non parametric 

Mann-Whitney (* P < 0.05, ** P < 0.01). NS indicates not significant and ND indicates not detected 

in either samples. Those characters in bold are where the analyte in tissue recovered immediately 

after death were below the limit of quantification. To enable a statistical analysis to be performed 

against levels detected five hours post-mortem, a nominal value halfway between zero and the limit 

of detection was selected. 

Acyl Chain Brain Spinal cord Testi Heart Liver Lung 

C24:1 * NS NO NO ** NS 

C22:5 ** ** ** NO ** NO 

C22:4 * ** ** NO ** ** 

C22:1 ** * NO NO NO NS 

C20:4 ** ** ** NO * ** 

C20:1 ** ** ** NO * * 

C20:0 ** NS NO NO NO NO 

C18:2 ** ** ** NS ** ** 

C18:1 ** ** ** NS * ** 

C18:0 ** ** ** NS * ** 

C16:0 ** ** ** NS ** ** 
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Table 5.24. A comparison of MAGs from tissues collected directly after death and those left for five 

hours post-mortem at room temperature. Statistical tests were carried out using non-parametric 

Mann-Whitney (* P < 0.05, ** P < 0.01). NS indicates not significant and ND indicates not detected 

in either sample. Those characters in bold are where the analyte in one tissue group were below the 

limit of quantification. To enable a statistical analysis to be performed, a nominal value halfway 

between zero and the limit of detection was selected. 

Acyl Chain Brain Spinal cord Teste Heart Liver Lung 

C22:5 NS NO NS NO NO NO 

C22:4 NS NS NS NO NS ** 

C20:4 NS NS NS ** * ** 

C20:3 NS NS NS NS * ** 

C20:1 NS NS NO NO * NS 

C18:2 NS NS NS NS NS ** 

C18:1 NS NS NS NS * * 

* ** ** NS ** ** C18:0 

C16:0 NS NS NS NS NS NS 
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temperature post mortem for up to 24 hours. However, where levels ofOEA C18:1 and 

PEA CI6:0 were considerably higher after 24 hours in FAAH knockout mice compared 

to wide type mice; ABA C20:4 levels however did not increase. Although AEA C20:4 

levels immediately post mortem were higher than those detected in wild type, the levels 

did not rise to the extent observed in wild type mice 5 to 25 hours post mortem. This 

observation indicated that the increases of NAEs in wild type mice, and possibly other 

mammalian tissues, were not just the result of one mechanism. 

MAGs 2-AG C20:4, 2-LG CI8:2, MAG CI6:I, and MAG CI8:I post mortem levels 

have also been assessed in rat brain (Sugiura et al., 2001). Over a five minute time 

course post mortem, 2-AG C20:4 levels rapidly increased after one minute, followed by a 

rapid decrease, followed by a slower increase up to double original levels after 5 min. 

Conversely 2-LG CI8:2 levels remain static throughout the 5 min time course. MAG 

CI6:I and CI8:I levels, measured together as they could not be discriminated, were 

demonstrated to increase approximately 3 fold after 5 min. As 2-AG C20:4, MAG C 16: 1 

and C 18: 1 levels demonstrated different concentration profiles post mortem it 

demonstrates, as observed with NAEs, there are more than one synthesis or metabolomic 

routes taking place specific for some MAGs post-mortem. 

5.4.4.7 Possible causes of NAE level changes in tissue 5 hours postmortem 

There is a general trend for NABs to increase (although to different degrees depending on 

the tissue) postmortem in all the tissue studied excluding the heart. It is difficult to 

ascertain from this study alone whether such increases (and the relative increases across 

the tissues) are due to continued / increased synthesis, differences in catabolism, chemical 

degradation (there was no pH control in the postmortem tissues) or a combination of 

factors 

Postmortem NAE increases have been previously observed for AEA C20:4, OEA C 18: 1. 

and C 16:0 PEA in mouse brain and have been speculated to be the result of continued 

synthesis via NAPE (overwhelming catabolism via FAAH) in particularly for OEA 
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CI8:I and CI6:0 PEA. Furthermore alternative synthesis route post mortem have been 

speculated for AEA which are not thought to be prevalent in living rat (patel et aI., 2005). 

COX-2 may be responsible for differences in AEA C20:4 catabolism in rat liver and 

brain. It can be seen in Figure 5.5 that AEA C20:4 percentage increases post mortem in 

rat liver is slightly greater than that of brain (~7500 % increase compared to ~5000). It 

has previously been reported in mouse that COX-2 levels were undetectable in liver 

compared to brain (Naoi et al., 2006) and gene expression for COX-2 levels in the liver 

of Wistar-Kyoto rats was less that those found in brain (Ivanov et al., 2002). This 

difference in an enzyme known to catabolise AEA C20:4 may be responsible for the 

differences in percentage increases post mortem. It should be remembered however that 

prostamides, the result of AEA C20:4 catabolism by COX-2 were not detected by the 

precursor ion scan employed in chapter 4, therefore if this catabolism route is active, the 

resulting prostamides are at concentration too low for detection by the precursor ion 

method. 

Another observation is the reduced percentage increase postmortem of NAEs in lung 

compared to brain tissue (DEA C22:4, AEA C20:4, AEA C20:4 ~ 30, 12.5, and 20 fold 

respectively) , see Figure 5.5. It has been demonstrated that NAAA, known to catabolise 

AEA C20:4, NAE CI8:2, NAE CI8:1, NAE CI8:0, PEA CI6:0, and NAE C14:0 (Ueda 

et al., 200 I) is present in rat lung tissue at levels ~ 14 times than found in brain (Tsuboi et 

al., 2007). Such levels in the lung could be responsible for a greater rate of catabolism 

and result in a smaller increase of NAEs postmortem in lung tissue compared to brain, 

although it is fair to say that levels ofNAAA in brain compared to lung are lower in some 

instances when compared to NAE percentage increases comparing the two tissues. The 

product ofNAE catabolism by NAAA is ethanolamine and the respective arachdonic acid 

therefore if this metabolic route was prominent in postmortem lung tissue, the products 

would not be detectable by the precursor ion method described in chapters 3 and 4. 

PEA C 16:0 percentage increases post mortem in rat liver are considerably less than brain 

(~400% increase compared to 5000%). Such a decrease is not observed across the board 
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of NAEs and AEA 20:4 post mortem percentage increases in liver are slightly greater 

than in brain. Where the cause of this could be due to increased catabolism, it would be 

selective for PEA C16:0 but not AEA C20:4. As such it would appear that some of the 

synthesis / catabolism mechanisms at work in postmortem NAEs may be selective. 

It is worth noting that bacteria could be an alternative cause to the postmortem changes of 

NAEs and MAGs observed in this chapter. Lung tissue would perhaps be most prone to 

this due to the direct access to organisms in the air. Further work could explore this 

possibility by identifying levels / increases of bacterial in tissues left for 5 hours post 

mortem compared to tissues salvaged immediately after death. 
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5.5 Conclusions 

A quantitative method has been established for measuring a greater range of NAEs and 

MAGs than previously demonstrated. Previous approaches have predominantly been 

targeted and dependant on the availability of reference standards. Where more global 

efforts have been made, detectable analytes have generally been dependant on changes in 

levels between two or more samples. The approach taken here has widened the scope of 

analyte quantified by combining the information gathered on NAEs and MAGs by the 

precursor ion and neutral loss scans described in chapters 3 and 4 with a targeted SRM 

methodology. Hence this approach has combined the advantages of scanning for families 

of structural analogues with the specificity and sensitivity found with SRM approaches. 

The resulting method has quantified a wider range of NAEs and MAGs than previous 

targeted approaches. 

Quantification of NAEs AEA C20:4, OEA CI8:I and PEA CI6:I and of MAGs 2-AG 

C20:4 and 2-LG C20:4 was successfully achieved in rat brain, spinal cord, heart, lung, 

liver and testi. Quantitative data, based on calibration curves derived from structural 

analogues, were also recorded for NAEs C24:I, C22:5, C22:4, C22:I, C20:I, C20:0, 

CI8:2 and CI8:0 and MAGs C22:5, C22:4, C20:3, C20:1, CI8:1, CI8:0, C16:0 

providing a far greater distribution profile of these lipid compounds than previously 

reported. The profiles demonstrate that the distributions between tissues vary and that 

brain and spinal tissues contain the widest, but not a complete, distribution of NAEs and 

MAGs. 

It should be noted that not all the fatty acid precursors of the NAEs and MAGs detected 

in this chapter can be synthesized by rat (Mathews et at., 1998) and hence levels of 

analytes with a double bond position beyond C-9 will be to some degree diet dependant. 

Consequently the profile of NAEs and MAGs detected will vary depending on the feed of 

the animals. 
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Although a full validation of this method was not possible due to the unavailability of a 

substantial number of the analytes of interest, the method has been validated to a stage 

that demonstrates its suitability for the analysis ofNAEs and MAGs. 

By the use of this method a fuller profile of NAEs and MAGs has been recorded in rat 

tissues than has previously been observed. Where a number of such analytes do not 

directly affect the cannabinoid receptors, they can have an entourage effect on the CB I 

and CB2 ligands and hence are important to measure when investigating the biological 

effects of this class of compounds. Furthermore, a wider range of NAEs and MAGs has 

been quantified five hours post-mortem than previously identified. It was found that not 

all NAE and MAG level changes postmortem are equivalent, indicating the possibility of 

selective synthesis / degradation pathways. Furthermore, differences in changes between 

tissues also indicate such pathways are not uniform across tissue types. 

The targeted method developed in this chapter has been further applied to study the 

effects of acute / chronic administration of F AAH inhibitor (URN 597) on NAE and 

MAG profiles in rat tissue (data not included in this thesis) 
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CHAPTER 6 
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6 General Conclusions 

The unique features of the QqQLit hybrid mass spectrometer have been assessed in the 

field of metabolite profiling by the analysis of three different families of endogenous 

metabolites; nucleotides, N-acyl ethanolamines, and mono-acylglycerols from bacterial 

and mammalian cells. 

A method to profile phosphate containing endogenous metabolites, in particular 

nucleotide metabolites, was based around the identification of the phosphate moiety, 

which fragmented under CID to form a mlz 79 ion. A precursor ion scan was employed 

to identify the mlz 79 ion and full product ion spectra was used to confirm knowns or 

tentatively identify analytes where reference material was not immediately available. By 

applying the method to bacterial samples Escherichia coli MG 1655 and Pseudomonas 

aeruginosa, a comprehensive profile of nucleotide was captured. Furthermore, a number 

of nucleotides for which reference standards were not available at the time were also 

identified. This approach has extended the number of nucleotides previously identified in 

targeted methods which generally have been focused on a relatively small subset. Due to 

the large number of possible nucleotides (:::: 30), endogenous levels and similar chemistry 

(Maybaum et al., 1980), detection has been a challenge, especially without more selective 

methods such as MS. Where some methods have attempted to profile a broad range of 

nucleotides (Buckstein et al., 2008; Cordell et al., 2008; Tuytten et al., 2002), such 

approaches have preselected the analytes and as such, the profile of nucleotides was not 

as complete as the profile obtained by the methods described here. By expanding the 

possible number of nucleotides identified, this methodology provides a more 

comprehensive profile of nucleotides than previous methods and would be beneficial in 

the study of nucleotide's biological function. Furthermore, this approach is not just 

specific for the analysis of nucleotides, but other phosphate containing analytes. Where it 

could be applied to the study of phospholipids, nucleotide sugars and sugar phosphates, 

the scope could be widened to the study of other larger phosphate bonded compounds 

264 



such as phosphorylated proteins and their respective peptide digest (Williamson et al., 

2006). 

The use of this methodology was successful for the profiling of N-acyl ethanolamines 

(NAB) and monoacylglycerols (MAG). Ethanolamine and glycerol moieties enabled a 

precursor ion and neutral loss survey scans to be employed respectively. Application of 

this approach on rat-brain tissue identified not only analytes for which reference 

standards were available but also a number of analytes for which reference standards 

were not available. Furthermore, the application of the method on other rat tissues 

produced a wide profile of NABs and MAGs not previously observed. Interestingly, the 

profile of rat testi was notably different to other tissues investigated due to the presence 

of MAG and NAB C22:5; analytes not detected in other tissues by this method. 

Furthermore, as far as it can be ascertained, MAG C22:5 has not been previously reported 

in rat tissues. 

It is fair to say that a TIC of NABs and MAG obtained from a precursor ion and neutral 

loss survey scan (see Figure 3.16) is noisy and appears to contain split peaks when in fact 

these are the result of single compounds. Although when processing the data analytes are 

not initially identified from a TIC, the resulting chromatogram is confusing. It is likely 

that this is a feature of the instrument due to switching between the various scan 

functions. To ascertain this it would be possible to repeat this experiment but run the 

instrument only in a survey scan mode (without the EPI scan) and look at the resulting 

TIC. Smoother peaks, with a loss in peak splitting would be expected. 

The profile of NABs and MAGs observed was considerable broader than prevIOUS 

methods. Targeted methods have previously identified a relatively small number of 

analytes due to the low availability of reference standards. Where more global profiling 

methods have successfully identified a wider number of NABs and MAGs than targeted 

methods (Nomura et al., 2008; Saghatelian and Cravatt, 2005), identification was 

commonly based on changes due to a biological intervention thus analytes not 

specifically affected by that intervention were not necessarily reported. Furthermore, in 
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these instances specification was not as rigid as the methods described in this thesis due 

to identification being solely based on the pseudomolecular ion. Where there are number 

of key NABs and MAGs which interact directly with the endocannabinoid receptors, 

other NABs and MAGs playa role as entourage compounds and it is important to profile 

all analytes within these families when studying their biological effects (Williams et at., 

2007). This methodology has demonstrated the capability to undertake this task. 

Where the quantification capabilities of the phosphate survey method were accessed, this 

was not undertaken to the same degree with the two methods employed for identifying 

NABs and MAGs. Further work could include evaluating the quantification capabilities 

of these two methods. Never the less a targeted approach employing the data obtained 

from the survey scans was successful, quantifying a more comprehensive number of 

NABs and MAGs than previously published methods. It would be fair to say that a 

drawback to this approach is the additional time it required to quantify the analytes on a 

separate run. 

The analytical approach taken in this thesis has been successful in the profiling of 

families of endogenous metabolites and sits in-between a targeted and global approach, 

offering the advantages of both. It is not as focused as a targeted method and as such is 

not limited to only identifying analytes preselected prior to analysis. Conversely, the 

method is not as open ended as global approaches, with an inherent bias towards a given 

class of analytes. The result of which is a method optimized to observe a range analyte 

and in theory more sensitive than an unbiased global approach. On balance it is a 

valuable methodology for metabolite profiling. Nevertheless, it might not be suitable for 

occasions where a given analysis requires greater sensitivity or when no preconception of 

analytes of interest are known, for which other approaches may be more appropriate. 

A limitation of the method is the difficulty in identifying and confirming unknowns. 

Whilst GC-MS is relatively well supported with spectra libraries, LC-MSIMS is not, as 

yet, and of little use. The use of accurate mass can aid in the identification of unknowns 

but cannot be performed on the QqQLit and requires additional instrumentation. 
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At the start of this work (October 2005), the QqQLit was the only instrument capable of 

this approach. However, developments in mass spectrometry design since then have 

produced commercially available mass spectrometers potentially capable of the 

methodology employed in this thesis. For example, Waters have developed a new 

instrument, the Waters Xevo ™ TQ MS 5, which is built on the design of a tandem 

quadrupole. With additional technology in the collision cell this instrument can produce 

full product spectra within time scales compatible with chromatography. This instrument 

could most likely perform precursor ion I neutral loss survey scans coupled with full 

product ion spectra as performed by the QqQLit. Furthermore, because the Waters 

Xevo™ TQ MS is designed to work with ultra high performance liquid chromatography, 

a separation technique based on HPLC but results in shaper chromatography peaks (2-3 

sec), it is probable that the quadrupoles scan speeds are faster on this instrument than the 

QqQLit and hence could be advantageous in both sensitivity and possibly quantification. 

Another instrument, manufactured by Thermo Scientific, could also be applied to this 

field of analysis; the LTQ OrbitrapTM velos6
• This instrument is comprised of a linear ion 

trap and an OrbitrapTM, enabling MS/MS fragmentation in the linear ion trap and accurate 

mass in the OrbitrapTM. The scan speed of the ion trap is such that it is capable of 

performing a survey scan coupled with full product ion scan of ten of the most intense 

ions (consequently identifying structurally significant ions or calculating neutral losses), 

although this is not true precursor ion I neutral loss when compared to a tandem 

quadrupole instrument. Furthermore, being an iontrap, this part of the instrument would 

suffer from the one third rule. However, the OrbitrapTM, capable of < 2 ppm mass 

accuracy and up to 100,000 FWHM resolution (at mlz 400) could be employed in the 

providing confirmation of identification or greatly aiding in the identification of 

unknowns. Potentially both of these two scan functions could be applied in one 

chromatography run. 

5 http://www.waters.comlwaters/library.htm?locale-en US&cid= 1 0064408&lid= 1 0046828 - accessed 18
th 

June 

6 http://www.thermo.comleThermo/CMAlPDFslProductlproductPDF 51627.pdf - accessed 18
th 

June 2009 
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Hybridized techniques such as LC-MSIMS-NMR would also be advantageous to the 

analysis of metabolite profiling. Such combinations will no doubt become more 

accessible in the future and will be extremely useful in this field, providing sensitive 

analysis coupled with two independent techniques for the structural elucidation of 

unknowns. 

Although these new instruments could potentially perform similar scans to the QqQLit, it 

is worth noting that there appears to be a divergence of roles for mass spectrometers 

which has positive implications for bioanalysis. Tandem quadrupole instruments were 

the workhorse for small molecule quantification and accurate mass instruments were 

employed predominantly in analyte identification and global analysis. However the latter 

instruments are slowly improving in dynamic range and sensitivity to the extent that they 

can perform quantification. A demonstration of this was recently published comparing 

an OrbitrapTM and an ABI 4000 tandem quadrupole (Zhang et al., 2009a). Quantifying 

reference standards in rat plasma, the OrbitrapTM identified analytes by accurate mass 

measurements of their respective [M+Ht where the tandem quadrupole performed SRM. 

Comparable sensitivity was demonstrated. The tandem quadrupole required standards to 

optimize the electronics, whereas this was not necessary for the OrbitrapTM. Furthermore, 

the scanning of the OrbitrapTM enables unknowns to be captured and identified post 

analysis. Similarly, there is an example of LC-TOF being used in the quantitative 

analysis of 101 pesticides (Ferrer and Thurman, 2007). As the capabilities of these 

instruments improve in sensitivity, selectivity and dynamic range, the traditional roles 

commonly held by mass spectrometers may blur further in the future. Such 

improvements in analytical instrumentation can only be a positive step for the 

challenging field of analytical biochemistry and metabolite profiling 

268 



References 

Ahn ~ McKinney M~ Cravatt BF (2008). Enzymatic pathways that regulate 
endocannabinoid signaling in the nervous system. Chem Rev 108: 1687-707. 

Annan RS, Huddleston MJ, Verma R, Deshaies RJ, Carr SA (2001). A multidimensional 
electrospray MS-based approach to phosphopeptide mapping. Anal Chern 73: 393-404. 

Antoni FA (2000). Molecular diversity of cyclic AMP signalling. Front Neuroendocrinol 
21: 103-32. 

Astarita G, Ahmed F, Piomelli D (2008). Identification of biosynthetic precursors for the 
endocannabinoid anandamide in the rat brain. J Lipid Res 49: 48-57. 

Avraham Y, Magen I, Zolotarev 0, Vorobiav L, Nachmias A, Pappo ° et al (2008). 2-
Arachidonoylglycerol, an endogenous cannabinoid receptor agonist, in various rat tissues 
during the evolution of experimental cholestatic liver disease. Prostaglandins Leukot 
Essent Fatty Acids 79: 35-40. 

Baccarelli A, Pfeiffer R, Consonni D, Pesatori AC, Bonzini M, Patterson Jr DO et al 
(2005). Handling of dioxin measurement data in the presence of non-detectable values: 
Overview of available methods and their application in the Seveso chloracne study. 
Chemosphere 60: 898-906. 

Barg J, Fride E, Hanus L, Levy R, Matus-Leibovitch N, Heldman E et al (1995). 
Cannabinomimetic behavioral effects of and adenylate cyclase inhibition by two new 
endogenous anandamides. Eur J Pharmacol287: 145-52. 

Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MR, Vogel Z et al (1998). An 
entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl
glycerol cannabinoid activity. Eur J Pharmacol353: 23-31. 

Bisogno T, Me1ck D, De Petrocellis L, Di Marzo V (1999). Phosphatidic acid as the 
biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse 
neuroblastoma cells stimulated with ionomycin. J Neurochem 72: 2113 -9. 

Bisogno T, Sepe N, Me1ck D, Maurelli S, De Petrocellis L, Di Marzo V. (~997.). 
Biosynthesis, release and degradation of the novel endogenous cannablmlmehc 
metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem J 322 ( Pt 2): 
671-7. 

Bornheim L, Kim K, CHEN B, Correia A (1995). Microsomal Cytochrome P450-
Mediated Liver and Brain Anandamide Metabolism. Biochemical Pharmacologv 50: 677 

- 686. 

269 



Brindle ~T, ~tti ~, Ho~es E, Tranter G, Nicholson JK, Bethell HW et al (2002). Rapid 
and nonmvasive diagnosIs of the presence and severity of coronary heart disease using 
IH-NMR-based metabonomics. Nat Med 8: 1439-44. 

Buchholz A, Takors R, Wandrey C (2001). Quantification of intracellular metabolites in 
escherichia coli K12 using liquid chromatographic-electro spray ionization tandem mass 
spectrometric techniques. Anal Biochem 295: 129-137. 

Buckstein MH, He J, Rubin H (2008). Characterization of nucleotide pools as a function 
of physiological state in Escherichia coli. J Bacteriol190: 718-26. 

Bueno MJ, Aguera A, Gomez MJ, Hernando MD, Garcia-Reyes JF, Fernandez-Alba AR 
(2007). Application of liquid chromatography/quadrupole-linear Ion trap mass 
spectrometry and time-of-flight mass spectrometry to the determination of 
pharmaceuticals and related contaminants in wastewater. Anal Chem 79: 9372-84. 

Bums KL, Gelbaum LT, Sullards MC, Bostwick DE, May SW (2005). Iso-coenzyme A. 
J Bioi Chem 280: 16550-8. 

Cai Z, Song F, Yang MS (2002). Capillary liquid chromatographic-high-resolution mass 
spectrometric analysis ofribonucleotides. J Chromatogr A 976: 135-43. 

Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K et al (2004). 
Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, 
which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacal 
65: 999-1007. 

Ceglarek U, Kortz L, Leichtle A, Fiedler GM, Kratzsch J, Thiery J (2009a). Rapid 
quantification of steroid patterns in human serum by on-line solid phase extraction 
combined with liquid chromatography-triple quadrupole linear ion trap mass 
spectrometry. Clin Chim Acta 401: 114-8. 

Ceglarek U, Leichtle A, Brugel M, Kortz L, Brauer R, Bresler K et al (2009b). 
Challenges and developments in tandem mass spectrometry based clinical metabolomics. 
Mol Cell Endocrinol 301: 266-71. 

Chan W, Cai Z (2008). Aristolochic acid induced changes in the metabolic profile of rat 
urine. J Pharm Biomed Anal 46: 757-62. 

Chen JK Chen J, Imig JD, Wei S, Hachey DL, Guthi JS et al (2008). Identification of 
novel e~dogenous cytochrome p450 arachidonate metabolites with high affinity for 
cannabinoid receptors. J Bioi Chem 283: 24514-24. 

Chen P, Liu Z, Liu S, Xie Z, Aimiuwu J, Pang J et al (2009). A LC-MS/MS method for 
the analysis of intracellular nucleoside triphosphate levels. Pharm Res 26: 1504-15. 

270 



Cheng C,. Gross ML (2000). Applications and mechanisms of charge-remote 
fragmentatIon. Mass Spectrom Rev 19: 398-420. 

Cho WC (2007). Proteomics technologies and challenges. Geno Prot Bioinfo 5: 77-85. 

Cleme~t .~, Hawkins EG, Lichtman AH, Cravatt BF (2003). Increased seizure 
susceptIbIlIty and proconvulsant activity of anandamide in mice lacking fatty acid amide 
hydrolase. J Neurosci 23: 3916-23. 

Coles R, Kharasch ED (2007). Stereoselective analysis of bupropion and 
hydroxybupropion in human plasma and urine by LC/MSIMS. J Chromatogr B Ana(vt 
Technol Biomed Life Sci 857: 67-75. 

Cordell RL, Hill SJ, Ortori CA, Barrett DA (2008). Quantitative profiling of nucleotides 
and related phosphate-containing metabolites in cultured mammalian cells by liquid 
chromatography tandem electrospray mass spectrometry. J Chromatogr B Analyt Technol 
Biomed Life Sci 871: 115-24. 

Coulier L, Bas R, Jespersen S, Verheij E, van der Werf MJ, Hankemeier T (2006). 
Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography
electro spray ionization mass spectrometry. Anal Chem 78: 6573-82. 

Cunnick WR, Cromie JB, Cortell R, Wright B, Beach E, Seltzer F et al (1972). Value of 
biochemical profiling in a periodic health examination program: analysis of 1,000 cases. 
Bull N Y Acad Med 48: 5-22. 

de Lago E, Petrosino S, Valenti M, Morera E, Ortega-Gutierrez S, Femandez-Ruiz J et al 
(2005). Effect of repeated systemic administration of selective inhibitors of 
endocannabinoid inactivation on rat brain endocannabinoid levels. Biochem Pharmacol 
70: 446-52. 

Devane W A, Axelrod J (1994). Enzymatic synthesis of anandamide, an endogenous 
ligand for the cannabinoid receptor, by brain membranes. Proc Natl Acad Sci USA 91: 
6698-701. 

Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al (1992). 
Isolation and structure of a brain constituent that binds to the cannabinoid receptor. 
Science 258: 1946-9. 

Di Marzo V (1998). 'Endocannabinoids' and other fatty acid derivatives with 
cannabimimetic properties: biochemistry and possible physiopathological relevance. 
Biochim Biophys Acta 1392: 153-75. 

Dierick JF, Dieu M, Remade J, Raes M, Roepstorff P, Toussaint 0 (2002). Proteomics in 
experimental gerontology. Exp Gerontol 37: 721-34. 

271 



Douglas D, Frank A, Mao D (2005). Linear Ion Traps In Mass Spec. Mass Spectrom Re\' 
24: 1-29. 

Dunn ~, Broa~urst D, Brown M, Baker PN, Redman CW, Kenny LC et al (2008). 
Metaboh~ profilmg of serum using Ultra Performance Liquid Chromatography and the 
LTQ-Orbltrap mass spectrometry system. J Chromatogr B Analyt Technol Biomed Life 
Sci 871: 288-98. 

Dutta PK, O'Donovan GA (1987). Separation and quantitation of bacterial ribonucleoside 
triphosphates extracted with trifiuroacetic acid, by an ion exchange high performance 
liquid chromatography. Journal of Chromatography 385: 119-124. 

Edelson-Averbukh M, Pipkom R, Lehmann WD (2006). Phosphate group-driven 
fragmentation of multiply charged phosphopeptide anions. Improved recognition of 
peptides phosphorylated at serine, threonine, or tyrosine by negative ion electrospray 
tandem mass spectrometry. Anal Chem 78: 1249-56. 

Evans J, Wang TC, Heyes MP, Markey SP (2002). LCIMS analysis of NAD biosynthesis 
using stable isotope pyridine precursors. Anal Biochem 306: 197-203. 

Felder CC, Nielsen A, Briley EM, Palkovits M, Priller J, Axelrod J et al (1996). Isolation 
and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain 
and peripheral tissues of human and rat. FEBS Lett 393: 231-5. 

Feng X, Liu X, Luo Q, Liu BF (2008). Mass spectrometry in systems biology: an 
overview. Mass Spectrom Rev 27: 635-60. 

Ferrer I, Thurman EM (2007). Multi-residue method for the analysis of 101 pesticides 
and their degradates in food and water samples by liquid chromatography/time-of-flight 
mass spectrometry. J Chromatogr A 1175: 24-37. 

Fezza F, Bisogno T, Minassi A, Appendino G, Mechoulam R, Di Marzo V (2002). 
Noladin ether, a putative novel endocannabinoid: inactivation mechanisms and a 
sensitive method for its quantification in rat tissues. FEBS Lett 513: 294-8. 

Fiehn 0 (2001). Combining genomics, metabolome analysis, and biochemical modelling 
to understand metabolic networks. Comp Funct Genomics 2: 155-68. 

Fiehn 0 (2008). Extending the breadth of metabolite profiling by gas chromatography 
coupled to mass spectrometry. Trends Analyt Chem 27: 261-269. 

Fiehn 0, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000). 
Metabolite profiling for plant functional genomics. Nat Biotechnol18: 1157-61. 

272 



Fontana A, Di Marzo V, Cadas H, Piomelli D (1995). Analysis of anandamide an 
endogenous cannabinoid substance, and of other natural N-acylethanolami~es 
Prostaglandins Leukot Essent Fatty Acids 53: 301-8. . 

Fowler CJ (2007). The contribution of cyclooxygenase-2 to endocannabinoid metabolism 
and action. Br J Pharrnacol152: 594-601. 

Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, Mackie K et al (2007). Food intake 
regulates oleoylethanolamide formation and degradation in the proximal small intestine. J 
Bioi Chern 282: 1518-28. 

Gao L, Chiou W, Tang H, Cheng X, Camp HS, Bums DJ (2007). Simultaneous 
quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues 
by ion-pairing reversed-phase HPLC/MS. J Chrornatogr B Analyt Technol Biomed Life 
Sci 853: 303-13. 

Garcia-Ovejero D, Arevalo-Martin A, Petrosino S, Docagne F, Hagen C, Bisogno T et al 
(2009). The endocannabinoid system is modulated in response to spinal cord injury in 
rats. Neurobiol Dis 33: 57-71. 

Gaskell SJ (1997). Electrospray : Principles and Practice. J Mass Spectrom 32: 677 - 688. 

Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C et al (2008). N
acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, 
inhibits food intake. Cell 135: 813-24. 

Griffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y (2001). Electrospray and tandem mass 
spectrometry in biochemistry. Biochem J 355: 545-61. 

Grob MK, rsquo, Brien K, Chu 11, Chen DDY (2003). Optimization of cellular nucleotide 
extraction and sample preparation for nucleotide pool analyses using capillary 

electrophoresis. J Chrom B 788: 103-111. 

Hager J, YvesLeBlanc J (2003). High-performance liquid chromatography-tandem mass 
spectrometry with a new quadrupole/linear ion trap instrument. 1. Chromatogr A 1020: 3-

9. 

Hansen HH Ikonomidou C, Bittigau P, Hansen SH, Hansen HS (2001). Accumulation of 
the ananda.:nide precursor and other N-acylethanolamine phospholipids in infant rat 
models of in vivo necrotic and apoptotic neuronal death. J Neurochem 76: 39-46. 

Hanus L, AbuLafi S, Fride E, Breuer A, Vogel Z, Sha1ev DE et al (2001). 2-arachidonyl 
glyceryl ether, an endogenous agonist of the cannabinoid CB 1 receptor. Proc Natl Acad 

Sci USA 98: 3662-5. 

273 



Hanus L, ?op~er A~ Almog. S, Mechoulam R (1993). Two new unsaturated fatty acid 
ethanoiamides m bram that bmd to the cannabinoid receptor. J Med Chern 36: 3032-4. 

Hartmann C, Smeyers-Verbeke J, Massart DL, McDowall RD (1998). Validation of 
bioanalytical chromatographic methods. J Pharm Biorned Anal 17: 193-218. 

Hennere G, Becher F, Pruvost A, Goujard C, Grassi J, Benech H (2003). Liquid 
chromatography-tandem mass spectrometry assays for intracellular deoxyribonucleotide 
triphosphate competitors of nucleoside antiretrovirals. J Chromatogr B Analyt Technol 
Biomed Life Sci 789: 273-81. 

Herrin GL, McCurdy HH, Wall WH (2005). Investigation of an LC-MS-MS (QTrap) 
method for the rapid screening and identification of drugs in postmortem toxicology 
whole blood samples. J Anal Toxicol29: 599-606. 

Hoffman E, Stroobant V (2005). Mass spectrometry - principles and applications. Wiley. 

Hoffmann Ed (1996). Tandem Mass Spectrometry: a Primer. J Mass Spectrom 31: 129-
137. 

Hopfgartner G, Husser C, Zell M (2003). Rapid screening and characterization of drug 
metabolites using a new quadrupole-linear ion trap mass spectrometer. Journal of Mass 
Spectrometry 38:: 138-150. 

Hopfgartner G, Varesio E, Tschappat V, Grivet C, Bourgogne E, Leuthold LA (2004). 
Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules 
and macromolecules. J Mass Spectrom 39: 845-55. 

Horning EC, Homing MG (1971). Metabolic profiles: gas-phase methods for analysis of 
metabolites. Clin Chern 17: 802-9. 

Howlett AC (2002). The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68-

69: 619-31. 

Huang SM, Bisogno T, Petros TJ, Chang SY, Zavitsanos P~, Zipkin ~E et a~ (2001). 
Identification of a new class of molecules, the arachidonyl ammo aCIds, and 
characterization of one member that inhibits pain. J Bioi Chern 276: 42639-44. 

Huang SM, Strangman NM, Walker JM (1999~. ~iquid c~omatographic~mass 
spectrometric measurement of the endogenous cannabmOld.2-arachidonylglycerol m the 
spinal cord and peripheral nervous system. Zhongguo fao Ll Xue Bao 20: 1098-102. 

Ingebretsen OC, Bakken AM, Segadal L, Far~tad ~ (1982). Determin~tion of adenine 
nucleotides and inosine in human myocard by lOn-paIr reversed-phase hIgh-performance 
liquid chromatography. J Chrornatogr 242: 119-26. 

274 



IUPAC-IUBMB (1992). Biochemical nomenclature and related documents, 2nd edn. 

Ivanov . ~I, Pero RS., Scheck. AC, ~omanovsky AA (2002). Prostaglandin E(2)
synthesIzmg enzymes m fever: dIfferentIal transcriptional regulation. Am J Phvsiol Regul 
Integr Comp Physiol283: RII04-17. . 

Jhaveri MD, Rich~rdso~ D, Kendall DA, Barrett DA, Chapman V (2006). Analgesic 
effects of fatty aCId amIde hydrolase inhibition in a rat model of neuropathic pain. J 
Neurosci 26: 13318-27. 

Jia Y, McLeod RL, Wang X, Parra LE, Egan RW, Hey JA (2002). Anandamide induces 
cough in conscious guinea-pigs through VRI receptors. Br J Pharmacol137: 831-6. 

Jones PM, Bennett MJ (2002). The changing face of newborn screening: diagnosis of 
inborn errors of metabolism by tandem mass spectrometry. Clin Chim Acta 324: 121-8. 

Kang J, Lee S, Kang S, Kwon HN, Park JH, Kwon SW et al (2008). NMR-based 
metabolomics approach for the differentiation of ginseng (Panax ginseng) roots from 
different origins. Arch Pharm Res 31: 330-6. 

Kasai H, TSUBUKI M, Kazunori T, HONDA T, VEDA H (2003). Analyses of 
anandamide and endocannabinoid-like compounds using collision-induced dissociation in 
fast atom bombardment ionization-mass spectrometry and gas chromatography/chemical 
ionization-mass spectrometry. Anal Sci 19: 1593 -1598. 

Kaushik VK, Kavana M, Volz JM, Weldon SC, Hanrahan S, Xu J et al (2009). 
Characterization of recombinant human acetyl-CoA carboxylase-2 steady-state kinetics. 
Biochim Biophys Acta 1794: 961-7. 

Keller BO, Sui J, Young AB, Whittal RM (2008). Interferences and contaminants 
encountered in modem mass spectrometry. Anal Chim Acta 627: 71-81. 

Kempe K, Hsu FF, Bohrer A, Turk J (1996). Isotope dilution mass spectrometric 
measurements indicate that arachidonylethanolamide, the proposed endogenous ligand of 
the cannabinoid receptor, accumulates in rat brain tissue post mortem but is contained at 
low levels in or is absent from fresh tissue. J Bioi Chem 271: 17287-95. 

Kharbouche H, Sporkert F, Troxler S, Augsburger M, Man~in P, St~ub ~ ~20~9). 
Development and validation of a gas chromatogr~phy-negahve cheml.cal .1Om~atlOn 
tandem mass spectrometry method for the determinatIon of ethyl glucuron~de In h~lr an~ 
its application to forensic toxicology. J Chromatogr B Analyt Technol BlOmed Life SCI 

877: 2337-43. 

Kingsley PJ, Mamett LJ (2007). LC-MS-MS analysis of neutral eicosanoids. Afethods 

Enzymol433: 91-112. 

275 



Koga D, ~anta T, Fukushim~ T, ~o~a. H, Imai K (1997). Liquid chromatographic
atmosphenc pressure chemIcal lOllizatIon mass spectrometric detennination of 
anandamide and its analogs in rat brain and peripheral tissues. J Chromatogr B Biomed 
Sci App1690: 7-13. 

Koivus.alo .M, Haimi P, Hei.ki.nheimo L, Kostiainen R, Somerharju P (2001). QuantitatiYe 
determm~tlOn of ~h?sphohpid c?mpositions by ESI-MS: effects of acyl chain length, 
unsaturatlOn, and hPId concentratIon on instrument response. J Lipid Res 42: 663-72. 

Kondo S, Kondo H, Nakane S, Kodaka T, Tokumura A, Waku K et al (1998a). 2-
Arachidonoylglycerol, an endogenous cannabinoid receptor agonist: identification as one 
of the major species of monoacylglycerols in various rat tissues, and evidence for its 
generation through Ca- dependent and - independent mechanisms. Febs letters 429: 152 -
156. 

Kondo S, Sugiura T, Kodaka T, Kudo N, Waku K, Tokumura A (1998b). Accumulation 
of various N-acylethanolamines including N-arachidonoylethanolamine (anandamide) in 
cadmium chloride-administered rat testis. Arch Biochem Biophys 354: 303-10. 

Kozak K, Prusakiewicz J, Mamett LJ (2004). Oxidative metabolism of endocannabinoids 
by COX - 2. Curr Pharrn Des 10: 659 - 667. 

Kozak KR, Crews BC, Morrow JD, Wang LH, Ma YH, Weinander R et al (2002a). 
Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into 
prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J Bioi 
Chern 277: 44877-44885. 

Kozak KR, Gupta RA, Moody JS, Ji C, Boeglin WE, DuBois RN et al (2002b). 15-
Lipoxygenase metabolism of 2-arachidonylglycerol. Generation of a peroxisome 
proliferator-activated receptor alpha agonist. J Bioi Chern 277: 23278-86. 

Kuksis A (1987). Chromatography of lipids in biomedical research and clinical 

diagnosis, vol. 37. J Chrom Libr. 

Laurentin H, Ratzinger A, Karlovsky P (2008). Relationship between metabolic and 
genomic diversity in sesame (Sesamum indicum L.). BMC Genomics 9: 250. 

Leung D, Saghatelian A, Simon G, Cravatt B (2006~. Inactivati~n of N-acyl 
phosphatidylethanolamine phospholipase D reveals multiple mechanIsms for the 
biosynthesis of endocannabinoids. Biochemistry 45: 4720 - 4726. 

Li A, Alton D, Bryant M, W S (2005). Simult~e~usly quantif~ng parent drugs ~d 
screening for metabolites in plasma pharmacokinehc sam~les usmg select~d reactlOn 
monitoring information-dependent acquisition on a QTrap mstrument. Rapid Commllfl 

Mass Spectrom 2005: 1943-1950. 

276 



~im .HK, . Chen J, Sensenhauser C, Cook K, Subrahmanyam V (2007). Ytetabolite 
Idenhficah~n by data-dep~nde~t accurate mass spectrometric analysis at resolving power 
of 60,000 m external cahbrahon mode using an LTQIOrbitrap. Rapid Commun Mass 
Spectrom 21: 1821-32. 

~in H, X~ D, C~en H (1997). Simultaneous determination of purine bases, 
nbonucleosldes and nbonucleotides by capillary electrophoresis-electrochemistry with a 
copper electrode. J Chromatogr A 760. 

L!u J, Wa~g L, Harvey-White J, Osei-Hyiaman D, Razdan R, Gong Q et al (2006). A 
blOsynthehc pathway for anandamide. Proc Nat! Acad Sci USA 103: 13345-50. 

Liu Z, Chan KK, Wang 11 (2005). Tandem mass spectrometric analysis of 
cyclophosphamide, ifosfamide and their metabolites. Rapid Commun Mass Spectrom 19: 
2581-90. 

Loregian A, Scremln C, Schiavon M, Marcello A, Palu G (1994). Quantitative analysis of 
ribonucleotide triphosphates in cell extracts by high-Performance liquid chromatography 
and micellar electrokinetic capillary chromatography; a comparative study. Anal Chern 
66: 2981-2984. 

Lundin A, Thore A (1975). Comparison of methods for extraction of bacterial adenine 
nucleotides determined by firefly assay. Appl Microbiol 30: 713-21. 

Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007). Simultaneous 
determination of multiple intracellular metabolites in glycolysis, pentose phosphate 
pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J 
Chromatogr A 1147: 153-64. 

Maccarrone M (2006). Fatty acid amide hydrolase: A potential target for next generation 
therapeutics. Curr Pharm Des 12: 759 - 772. 

Maccarrone M, Attina M, Bari M, Cartoni A, Ledent C, Finazzi-Agro A (2001). 
Anandamide degradation and N-acylethanolamines level in wild-type and CB 1 
cannabinoid receptor knockout mice of different ages. J Neurochem 78: 339-48. 

Maccarrone M, Barboni B, Paradisi A, Bernabo N, Gasperi V, Pistilli MG et al (2005). 
Characterization of the endocannabinoid system in boar spermatozoa and implications for 
sperm capacitation and acrosome reaction. J Cell Sci 118: 4393-404. 

Maccarrone M, Valensise H, Bari M, Lazzarin N, Romanini C, Finazzi-Agro A (2000). 
Relation between decreased anandamide hydrolase concentrations in human lymphocytes 
and miscarriage. Lancet 355: 1326-9. 

Magnes C, Sinner F, Regittnig W, T P (2005). LC/MS/MS Method for Quantitative 
Determination of Long-Chain Fatty Acyl-CoAs. Anal. Chem. 77: 2889-2894. 

277 



Mart~ns-L?benhoffer J, B~cker A, Freude H, Bode-Boger SM (2009). Identification and 
quantIficatIOn of the atypIcal metabolite omithine-Iactam in human plasma by liquid 
chromatography-tandem mass spectrometry (LC-MSIMS). J Chromatogr B Analyt 
Technol Biomed Life Sci 877: 2284-9. 

Mathews C, Van Holde k, Ahem k (1998). Biochemistry, Second edn. Prentice Hall. 

Maybaum J, Klein FK, Sadee W (1980). Determination of pyrimidine ribotide and 
deoxyribotide pools in cultured cells and mouse liver by high-performance liquid 
chromatography. J Chromatogr 188: 149-58. 

McDonald JG, Thompson BM, McCrum EC, Russell DW (2007). Extraction and analysis 
of sterols in biological matrices by high performance liquid chromatography electro spray 
ionization mass spectrometry. Methods Enzymol 432: 145-70. 

McLafferty F, Turecek F (1993). Interpretation o/mass spectra, Fourth edn. University 
Science Books. 

Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR et al 
(1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that 
binds to cannabinoid receptors. Biochem Pharmacol50: 83-90. 

Mechoulam R, Berry EM, Avraham Y, Di Marzo V, Fride E (2006). Endocannabinoids, 
feeding and suckling--from our perspective. Int JObes (Lond) 30 Suppl 1: S24-8. 

Mechoulam R, Fride E, Marzo VD (1998). Endocannabinoids. Eur J Pharmacol 359: I -
18. 

Moody JS, Kozak KR, Ji C, Marnett LJ (2001). Selective oxygenation of the 
endocannabinoid 2-arachidonylglycerol by leukocyte-type 12-1ipoxygenase. Biochemistry 

40: 861-6. 

Morin D, Grasland B, Vallee-Rehel K, Dufau C, Haras D (2003). On-line high
perfonnance liquid chromatography-mass spectrometric detection and quantification of 
N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of 
biological matrices. J Chromatogr A 1002: 79-92. 

Movahed P, Jonsson BA, Bimir B, Wing strand JA, Jorgensen TD, Ermund A et at 
(2005). Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor 
(TRPVl) agonists. J Bioi Chem 280: 38496-504. 

Mueller C A , Weinmann W , Dresen S , Schreiber A, M G (2005 ). Development. of. a 
multi-target screening analysis for 30 I drugs using a QTrap hqUld 
chromatography/tandem mass spectrometry system and automated library searching. 
Rapid Commun Mass Spectrom 19: 1332-1338. 

278 



M~lder ~M, Cravatt BF (2006). E~docannabinoid metabolism in the mbsence of fatty 
aCId amId~ hydrolase (F AAH): DIscovery of phoshorycholine derivatives of N-acyl 
ethanolamInes. Biochemistry 45: 11267 - 11277. 

Murphy. RC (1993). Mass Spectrometry of Lipids (Handbook of Lipid Research), First 
edn. Spnnger. 

Naoi ~ Kogure S, Saito M, Hamazaki T, Watanabe S (2006). Differential effects of 
selectIve c~c1ooxyge~ase. (COX)-1 and COX-2 inhibitors on anorexic response and 
prostaglandIn generatIOn In various tissues induced by zymosan. Bioi Pharrn Bull 29: 
1319-24. 

Nazar R, Lawford H, Wong J (1970). An improved procedure for extraction and analysis 
of cellular nuc1eotides. Anal Biochern 35: 305 - 313. 

Ng M, Blaschke TF, Arias AA, Zare RN (1992). Analysis of free intracellular nuc1eotides 
using high-performance capillary electrophoresis. Anal Chern 64: 1682 - 1684. 

Nguyen A, Luong J, Masson C (1990). Determination of nuc1eotides in fish tissues using 
capillary electrophoresis. Anal Chern 62: 2490 - 2493. 

Nikaido H, Vaara M (1985). Molecular basis of bacterial outer membrane permeability. 
Microbiol Rev 49: 1-32. 

Nomura DK, Blankman JL, Simon GM, Fujioka K, Issa RS, Ward AM et al (2008). 
Activation of the endocannabinoid system by organophosphorus nerve agents. Nat Chern 
BioI 4: 373-8. 

Obata T, Sakurai Y, Kase Y, Tanifuji Y, Horiguchi T (2003). Simultaneous 
determination of endocannabinoids (arachidonylethanolamide and 2-arachidonylglycerol) 
and isoprostane (8-epiprostaglandin F2alpha) by gas chromatography-mass spectrometry
selected ion monitoring for medical samples. J Chrornatogr B Analyt Technol Biorned 
Life Sci 792: 131-40. 

Oka S, Tsuchie A, Tokumura A, Muramatsu M, Suhara Y, Takayama H et al (2003). 
Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) was not detected in the 
brains of various mammalian species. J Neurochern 85: 1374-81. 

Oneill K, Shao XW, Zhao ZX, Malik A, Lee ML (1994). Capillary electrophoresis of 
nuc1eotides on ucon-coated fused silica columns. Anal Biochern 222: 185-189. 

Ortori CA, Atkinson S, Chhabra SR, Camara M, Williams P, Barrett DA (2007). 
Comprehensive profiling of N-acylhomoserine lactones ~roduced by .Yersi~ia 
pseudotuberculosis using liquid chromatography coupled to hybnd quadrupole-Imear IOn 
trap mass spectrometry. Anal Bioanal Chern 387: 497-511. 

279 



Patel S, Carrier EJ, H? WS, Ra~emacher DJ, Cunningham S, Reddy DS et al (2005). The 
postmortal a~cum~ahon ofbram N-arachidonylethanolamine (anandamide) is dependent 
upon fatty aCId amIde hydrolase activity. J Lipid Res 46: 342-9. 

Pears MR, Cooper JD, Mitchison HM, Mortishire-Smith RJ Pearce DA Griffin JL 
(2005). High resolution 1 H NMR-based metabolomics indicates a ne~otransmitter 
cycling deficit in cerebral tissue from a mouse model of Batten disease. J Bioi Chern 280: 
42508-14. 

Perrett D, Herbert KE, Morris G, Simmonds HA (1989). Optimised conditions for the 
routine HPLC separation of nucleotides in cell extracts. Adv Exp Med Bioi 253B: 463-8. 

Pertwee RG (2006). The pharmacology of cannabinoid receptors and their ligands: an 
overview. Int JObes (Lond) 30 Suppll: SI3-8. 

Petrosino S, Palazzo E, de Novellis V, Bisogno T, Rossi F, Maione S et al (2007). 
Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. J 
neuropharm 52: 415-22. 

Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM et al 
(2006). UPLC/MS(E); a new approach for generating molecular fragment information for 
biomarker structure elucidation. Rapid Cornrnun Mass Spectrorn 20: 1989-94. 

Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R (2003). Optimization of protein 
precipitation based upon effectiveness of protein removal and ionization effect in liquid 
chromatography-tandem mass spectrometry. J Chrornatogr B Analyt Technol Biorned Life 
Sci 785: 263-75. 

Porter AC, Sauer JM, Knierman MD, Becker GW, Bema MJ, Bao J et al (2002). 
Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the 
CBl receptor. J Pharmacol Exp Ther 301: 1020-4. 

Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh Me et al (2001). 
A functional genomics strategy that uses metabolome data to reveal the phenotype of 
silent mutations. Nat Biotechnol19: 45-50. 

Ramautar R, Mayboroda OA, Derks RJ, van Nieuwkoop C, van Dissel JT, Somsen ~W 
et al (2008). Capillary electrophoresis-time of .f1ight-m.ass spec~rometry u~mg 
noncovalently bilayer-coated capillaries for the analysIs of ammo aCIds m human unne. 

Electrophoresis 29: 2714-22. 

Raymond EM (1997). An introduction to quadrupole ion trap mass spectrometry. J Mass 

Spectrorn 32: 351-369. 

280 



Rea K, Roche M, Finn DP (2007). Supraspinal modulation of pain by cannabinoids: the 
role of GABA and glutamate. Br J Pharmacol152: 633-48. 

Richar~s H, Das S, Smith CJ, Pereira L, Geisbrecht A, Devitt NJ et al (2002). Cyclic 
nucleohde content of tobacco BY-2 cells. Phytochemistry 61: 531-7. 

Richa!dson D, Ortori CA, Chapman V, Kendall DA, Barrett DA (2007). Quantitative 
profihng of endocannabinoids and related compounds in rat brain using liquid 
chromatography-tandem electrospray ionization mass spectrometry. Anal Biochem 360: 
216-26. 

Rochfort SJ, Trenerry VC, Imsic M, Panozzo J, Jones R (2008). Class targeted 
metabolomics: ESI ion trap screening methods for glucosinolates based on MSn 
fragmentation. Phytochemistry 69: 1671-9. 

Roger B (1989). Statistics - A guide to the use of statistical methods in the physical 
sciences. John Wiley & Sons. 

Saghatelian A, Cravatt BF (2005). Discovery metabolite profiling--forging functional 
connections between the proteome and metabolome. Life Sci 77: 1759-66. 

Saghatelian A, Trauger S, Want E, Hawkins E, Siuzdak G, Cravatt B (2004). Assignment 
of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43: 

14332-14339. 

Sandlie I, Kleppe K (1982). Effect of caffeine on nucleotide pools in Escherichia coli. 
Chern Bioi Interact 40: 141-8. 

Schmid PC, Krebsbach RJ, Perry SR, Dettmer TM, Maasson JL, Schmid HH (1995). 
Occurrence and postmortem generation of anandamide and other long-chain N
acylethanolamines in mammalian brain. FEBS Lett 375: 117-20. 

Schmid PC, Schwartz KD, Smith CN, Krebsbach RJ, Berdyshev EV, Schmid HH (2000). 
A sensitive endocannabinoid assay. The simultaneous analysis of N-acylethanolamines 
and 2-monoacylglycerols. Chern Phys Lipids 104: 185-9l. 

Scholz K, Dekant W, Volkel W, Pahler A (2005). Rapid detection and identification of 
N-acetyl-L-cysteine thioethers using constant neutral loss and theoretical multiple 
reaction monitoring combined with enhanced product-ion scans on a linear ion trap mass 
spectrometer. JAm Soc Mass Spectrom 16: 1976-84. 

Schwab W (2003). Metabolome diversity: too few genes, too many metabolites? 

Phytochemistry 62: 837-49. 

281 



Shaner RL, Allegood JC, Park H, Wang E, Kelly S, Haynes CA et al (2008). Quantitative 
analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion 
trap mass spectrometers. J Lipid Res. 

Sharkey KA (2006). Endocannabinoids: biology, mechanism of action and functions. Int 
JObes (Lond) 30 Suppl 1: S4-6. 

S~es~n T, Hanus L,. Slager J, Vogel Z, Mechoulam R (1997). Structural requirements for 
bmdmg of anandamlde-type compounds to the brain cannabinoid receptor. J Med Chern 
40: 659-67. 

Simon OM, Cravatt BF (2008). Anandamide biosynthesis catalyzed by the 
phosphodiesterase ODEI and detection of glycerophospho-N-acyl ethanolamine 
precursors in mouse brain. J Bioi Chem. 

Skoog D, Holler J, T N (1998). Principles ofInstrnrnental Analysis. 

Sleno L, Volmer DA (2004). Ion activation methods for tandem mass spectrometry. J 
Mass Spectrom 39: 1091-112. 

Snider NT, Kornilov AM, Kent UM, Hollenberg PF (2007). Anandamide metabolism by 
human liver and kidney microsomal cytochrome p450 enzymes to form 
hydroxyeicosatetraenoic and epoxyeicosatrienoic acid ethanolamides. J Pharmacol Exp 
Ther 321: 590-7. 

Snyder L, Kirkland J, Olajch J (1997). Practical HPLC Method Developrnant. 

Stitt M, Fernie AR (2003). From measurements of metabolites to metabolomics: an 'on 
the fly' perspective illustrated by recent studies of carbon-nitrogen interactions. Curr 
Opin Biotechnol14: 136-44. 

Stryer L (1999). Biochemistry, 4 edn. 

Sugiura T, Kodaka T, Nakane S, Miyashita T, Kondo S, Suhara Y et al (1999). Evid~~ce 
that the cannabinoid CB 1 receptor is a 2-arachidonoylglycerol receptor. Structure-activIty 
relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J 

Bioi Chem 274: 2794-801. 

Sugiura T, Kondo S, Kishimoto S, Miyashita T, ~akane S, Kod.aka T et al (2?00~. 
Evidence that 2-arachidonoylglycerol but not N-palmltoylethanolamme or anandamIde IS 
the physiological ligand for the cannabino~d CB2. receptor. Compari~on of the agonistic 
activities of various cannabinoid receptor lIgands III HL-60 cells. J BlOl Chern 275: 605-

12. 

282 



Sugiu~a T, Kondo S, Sukaga~a A, Nakane S, Shinoda A, Itoh K et at (1995). 2-
Arachldonoylglycerol: a possIble endogenous cannabinoid receptor ligand in brain. 
Biochem Biophys Res Commun 215: 89-97. 

Sugiura !, Kondo .S, Sukagawa .A, Tonegawa T, Nakane S, Yamashita A et at (1996). 
EnzymatIc synt~esls of anand~mlde, an endogenous cannabinoid receptor ligand, through 
N-acylphosphatIdylethanolamme pathway in testis: involvement of Ca(2+)-dependent 
transacylase and phosphodiesterase activities. Biochem Biophys Res Commlm 218: 113-7. 

Sugiura T, Yoshinaga N, Waku K (2001). Rapid generation of2-arachidonoylglycerol, an 
endogenous cannabinoid receptor ligand, in rat brain after decapitation. Neurosci Lett 
297: 175-8. 

Suplita RL, 2nd, Gutierrez T, Fegley D, Piomelli D, Hohmann AG (2006). 
Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress
induced analgesia. J neuropharm 50: 372-9. 

Thomas S, Hopfgartner G, Giroud C, Staub C (2009). Quantitative and qualitative 
profiling of endocannabinoids in human plasma using a triple quadrupole linear ion trap 
mass spectrometer with liquid chromatography. Rapid Commun Mass Spectrom 23: 629 -
638. 

Tikhonov Yu V, Pimenov AM, Vzhevko SA, Toguzov RT (1990). Ion-pair high
performance liquid chromatography of purine compounds in the small intestinal mucosa 
of children with coeliac disease. J Chromatogr 520: 419-23. 

Tong H, Bell D, Tabei K, Siegel MM (1999). Automated data massaging, interpretation, 
and e-mailing modules for high throughput open access mass spectrometry. J Am Soc 

Mass Spectrom 10: 1174-1187. 

Triolo A, Altamura M, Dimoulas T, Guidi A, Lecci A, Tramontana M (2005). In vivo 
metabolite detection and identification in drug discovery via LC-MSIMS with data
dependent scanning and postacquisition data mining. J Mass Spectrom 40: 1572-82. 

Tsuboi K, Takezaki N, Veda N (2007). The N-acylethanolamine-hydrolyzing acid 
amidase (NAAA). Chem Biodivers 4: 1914-25. 

Tu Y, Harrison AG (1998). Fragmentation of protonated amides through intermediate 
ion-neutral complexes: neighboring group participation. 1. Am. Soc. Mass. Spectrom. 9: 

454-462. 

Tuytten R, Lemiere F, Dongen WV, Esmans EL, Slegers H (2002). Short capillary ion
pair high-performance liquid chromatography coupled to electros?ray (t~dem) mass 
spectrometry for the simultaneous analysis of nucleoside mono-, dl- and tnphosphates. 

Rapid Commun Mass Spectrom 16: 1205-15. 

283 



Ue~a N, Yam~naka K, Yamamoto S (2001). Purification and characterization of an acid 
amIdase selectIve for N-palmitoylethanolamine, a putative endogenous anti-inflammatory 
substance. J Bioi Chem 276: 35552-7. 

US Department of Health and Human Services (2001). Guidance for industry : 
bioanalytical method validation. 

Van Pelt CK, Carpenter BK, Brenna JT (1999). Studies of structure and mechanism in 
acetonitrile chemical ionization tandem mass spectrometry of polyunsaturated fatty acid 
methyl esters. JAm Soc Mass Spectrom 10: 1253-62. 

Villas-Boas SG, Rasmussen S, Lane GA (2005). Metabolomics or metabolite profiles? 
Trends Biotechnol23: 385-6. 

Vogeser M, Hauer D, Christina Azad S, Huber E, Storr M, Schelling G (2006). Release 
of anandamide from blood cells. Clin Chem Lab Med 44: 488-91. 

Vogeser M, Schelling G (2007). Pitfalls in measuring the endocannabinoid 2-
arachidonoyl glycerol in biological samples. Clin Chem Lab Med 45: 1023-5. 

Wagner JA, Hu K, Bauersachs J, Karcher J, Wiesler M, Goparaju SK et al (2001). 
Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. 
J Am Coli Cardiol38: 2048-54. 

Walker JM, Huang SM (2002). Endocannabinoids in pain modulation. Prostaglandins 
Leukot Essent Fatty Acids 66: 235-42. 

Walker JM, Krey JF, Chu CJ, Huang SM (2002). Endocannabinoids and related fatty acid 
derivatives in pain modulation. Chem Phys Lipids 121: 159-72. 

Walter L, Franklin A, Witting A, Moller T, Stella N (2002). Astrocytes in culture 
produce anandamide and other acylethanolamides. J Bioi Chem 277: 20869-76. 

Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G et al (2003). 
Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Nellrosci 23: 
1398-405. 

Wang C, Yang J, Gao P, Lu X, Xu G (2005). Identification of phospholipid structures ~n 
human blood by direct-injection quadrupole-linear ion-trap mass spectrometry. Rapid 
Commun. Mass Spectrom. 19: 2443-2453. 

Warner M, Gustafsson JA (1994). Effect of ethanol on cytochrome P450 in the rat brain. 
Proc Natl Acad Sci USA 91: 1019-23. 

284 



Weber A, Ni J, Ling KH, Acheampong A, Tang-Liu DD Burk R et al (2004) F t" 
f 'd fr '. ' . onna IOn 

o prostaml es om anandamlde m FAAH knockout mice analyzed by HPLC with 
tandem mass spectrometry. J Lipid Res 45: 757-63. 

Weckwerth W, Loureiro ME, Wenzel K, Fiehn 0 (2004). Differential metabolic 
networks unravel the effects of silent plant phenotypes. Proc Nat! Acad Sci USA 101' 
7809-14. . 

Weiss B (2007). The deoxycytidine pathway for thymidylate synthesis in Escherichia 
coli. J Bacteriol189: 7922-6. 

Well~ JM, McLuckey SA (2005). Collision-induced dissociation (CrD) of peptides and 
protems. Methods Enzymol402: 148-85. 

Werner A (1993). Reversed-phase and ion-pair separations of nucleotides, nucleosides 
and nucleobases: analysis of biological samples in health and disease. J Chromatogr 618: 
3-14. 

Williams J, Wood J, Pandarinathan L, Karanian DA, Bahr BA, Vouros P et al (2007). 
Quantitative method for the profiling of the endocannabinoid metabolome by LC
atmospheric pressure chemical ionization-MS. Anal Chern 79: 5582-93. 

Williamson BL, Marchese J, Morrice NA (2006). Automated identification and 
quantification of protein phosphorylation sites by LCIMS on a hybrid triple quadrupole 
linear ion trap mass spectrometer. Mol Cell Proteomics 5: 337-46. 

Witkamp RF (2005). Genomics and systems biology--how relevant are the developments 
to veterinary pharmacology, toxicology and therapeutics? J Vet Pharmacol Ther 28: 235-
45. 

Witters E, Roef L, Newton R, Van Dongen W, Esmans E, Van Onckelen H (1996). 
Quantitation of cyclic nucleotides in biological samples by negative electrospray tandem 
mass spectrometry coupled to ion suppression liquid chromatography. Rapid Commlln 
Mass Spectrom 10: 225-231. 

Witters E, Van Dongen W, Esmans EL, Van Onckelen HA (1997). Ion-pair liquid 
chromatography-electrospray mass spectrometry for the analysis of cyclic nucleotides. J 
Chromatogr B Biomed Sci App1694: 55-63. 

Yaffee S, Gold A, Sampugna J (1980). Effects of prolonged starvation on plasma free 
fatty acid levels and fatty acid composition of myocardial total lipids in the rat. J Nlltr 
110: 2490-6. 

Yamashita M, Fenn J (1984). Electrospray ion source. Another variation on the free-jet 
theme. J Phys Chem 88: 4451 - 4459. 

285 



Yang HY, Karoum F, Felder C, Badger H, Wang TC, Markey SP (1999). GC \1S 
analysis of anandamide and quantification of N-arachidonoylphosphatidylethanolamides 
in various brain regions, spinal cord, testis, and spleen of the rat. J Neurochem 72: 1959-
68. 

Yang W, Ni J, Woodward DF, Tang-Liu DD, Ling KH (2005). Enzymatic fonnation of 
prostamide F2alpha from anandamide involves a newly identified intennediate 
metabolite, prostamide H2. J Lipid Res 46: 2745-51. 

Yu M, Ives D, Ramesha CS (1997). Synthesis of prostaglandin E2 ethanolamide from 
anandamide by cyclooxygenase-2. J Bioi Chem 272: 21181-6. 

Zhang NR, Yu S, Tiller P, Yeh S, Mahan E, Emary WB (2009a). Quantitation of small 
molecules using high-resolution accurate mass spectrometers - a different approach for 
analysis of biological samples. Rapid Commun Mass Spectrom 23: 1085-94. 

Zhang WD, Yang XL, Cao J, Li P, Yang ZL (2009b). Identification of key metabolites of 
tectorigenin in rat urine by HPLC-MS(n). Biomed Chromatogr 23: 219-21. 

Zhao S, Jia L, Gao P, Li Q, Lu X, Li J et al (2008). Study on the effect of 
eicosapentaenoic acid on phospholipids composition in membrane microdomains of tight 
junctions of epithelial cells by liquid chromatography/electro spray mass spectrometry. J 
Pharm Biomed Anal 47: 343-50. 

Zhu Y, Wong PS, Zhou Q, Sotoyama H, Kissinger PT (20?1). Identification. ~d 
determination of nucleosides in rat brain microdlalysates by lIqUid 
chromatography/electrospray tandem mass spectrometry. J Pharm Biomed Anal 26: 967-

73. 

286 


	517849_0001
	517849_0002
	517849_0003
	517849_0004
	517849_0005
	517849_0006
	517849_0007
	517849_0008
	517849_0009
	517849_0010
	517849_0011
	517849_0012
	517849_0013
	517849_0014
	517849_0015
	517849_0016
	517849_0017
	517849_0018
	517849_0019
	517849_0020
	517849_0021
	517849_0022
	517849_0023
	517849_0024
	517849_0025
	517849_0026
	517849_0027
	517849_0028
	517849_0029
	517849_0030
	517849_0031
	517849_0032
	517849_0033
	517849_0034
	517849_0035
	517849_0036
	517849_0037
	517849_0038
	517849_0039
	517849_0040
	517849_0041
	517849_0042
	517849_0043
	517849_0044
	517849_0045
	517849_0046
	517849_0047
	517849_0048
	517849_0049
	517849_0050
	517849_0051
	517849_0052
	517849_0053
	517849_0054
	517849_0055
	517849_0056
	517849_0057
	517849_0058
	517849_0059
	517849_0060
	517849_0061
	517849_0062
	517849_0063
	517849_0064
	517849_0065
	517849_0066
	517849_0067
	517849_0068
	517849_0069
	517849_0070
	517849_0071
	517849_0072
	517849_0073
	517849_0074
	517849_0075
	517849_0076
	517849_0077
	517849_0078
	517849_0079
	517849_0080
	517849_0081
	517849_0082
	517849_0083
	517849_0084
	517849_0085
	517849_0086
	517849_0087
	517849_0088
	517849_0089
	517849_0090
	517849_0091
	517849_0092
	517849_0093
	517849_0094
	517849_0095
	517849_0096
	517849_0097
	517849_0098
	517849_0099
	517849_0100
	517849_0101
	517849_0102
	517849_0103
	517849_0104
	517849_0105
	517849_0106
	517849_0107
	517849_0108
	517849_0109
	517849_0110
	517849_0111
	517849_0112
	517849_0113
	517849_0114
	517849_0115
	517849_0116
	517849_0117
	517849_0118
	517849_0119
	517849_0120
	517849_0121
	517849_0122
	517849_0123
	517849_0124
	517849_0125
	517849_0126
	517849_0127
	517849_0128
	517849_0129
	517849_0130
	517849_0131
	517849_0132
	517849_0133
	517849_0134
	517849_0135
	517849_0136
	517849_0137
	517849_0138
	517849_0139
	517849_0140
	517849_0141
	517849_0142
	517849_0143
	517849_0144
	517849_0145
	517849_0146
	517849_0147
	517849_0148
	517849_0149
	517849_0150
	517849_0151
	517849_0152
	517849_0153
	517849_0154
	517849_0155
	517849_0156
	517849_0157
	517849_0158
	517849_0159
	517849_0160
	517849_0161
	517849_0162
	517849_0163
	517849_0164
	517849_0165
	517849_0166
	517849_0167
	517849_0168
	517849_0169
	517849_0170
	517849_0171
	517849_0172
	517849_0173
	517849_0174
	517849_0175
	517849_0176
	517849_0177
	517849_0178
	517849_0179
	517849_0180
	517849_0181
	517849_0182
	517849_0183
	517849_0184
	517849_0185
	517849_0186
	517849_0187
	517849_0188
	517849_0189
	517849_0190
	517849_0191
	517849_0192
	517849_0193
	517849_0194
	517849_0195
	517849_0196
	517849_0197
	517849_0198
	517849_0199
	517849_0200
	517849_0201
	517849_0202
	517849_0203
	517849_0204
	517849_0205
	517849_0206
	517849_0207
	517849_0208
	517849_0209
	517849_0210
	517849_0211
	517849_0212
	517849_0213
	517849_0214
	517849_0215
	517849_0216
	517849_0217
	517849_0218
	517849_0219
	517849_0220
	517849_0221
	517849_0222
	517849_0223
	517849_0224
	517849_0225
	517849_0226
	517849_0227
	517849_0228
	517849_0229
	517849_0230
	517849_0231
	517849_0232
	517849_0233
	517849_0234
	517849_0235
	517849_0236
	517849_0237
	517849_0238
	517849_0239
	517849_0240
	517849_0241
	517849_0242
	517849_0243
	517849_0244
	517849_0245
	517849_0246
	517849_0247
	517849_0248
	517849_0249
	517849_0250
	517849_0251
	517849_0252
	517849_0253
	517849_0254
	517849_0255
	517849_0256
	517849_0257
	517849_0258
	517849_0259
	517849_0260
	517849_0261
	517849_0262
	517849_0263
	517849_0264
	517849_0265
	517849_0266
	517849_0267
	517849_0268
	517849_0269
	517849_0270
	517849_0271
	517849_0272
	517849_0273
	517849_0274
	517849_0275
	517849_0276
	517849_0277
	517849_0278
	517849_0279
	517849_0280
	517849_0281
	517849_0282
	517849_0283
	517849_0284
	517849_0285
	517849_0286
	517849_0287
	517849_0288
	517849_0289
	517849_0290
	517849_0291
	517849_0292
	517849_0293
	517849_0294
	517849_0295
	517849_0296
	517849_0297
	517849_0298
	517849_0299
	517849_0300
	517849_0301
	517849_0302
	517849_0303
	517849_0304
	517849_0305
	517849_0306
	517849_0307
	517849_0308
	517849_0309
	517849_0310

