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Synopsis

The problem of cross-shore beach face evolution in the swash zone is examined within

the framework of the shallow water theory. A system comprising the shallow water

and Exner equations is solved numerically using both uncoupled and fully coupled

approaches. The uncoupled model assumes that changes in bed height have a negligi-

ble effect on the flow over a swash event, whereas the fully coupled model updates the

hydrodynamic variables and beach profile simultaneously. Inorder to obtain accurate

results over a single swash event several new numerical solvers based on the method

of characteristics (MaC) and the MacCormack (1969) explicit finite-difference scheme

are detailed. Particular attention is given to the treatment of discontinuities. A proce-

dure for the explicit treatment of discontinuities, derived from techniques employed in

gas dynamical problems, is developed and applied. Certain rather novel shock captur-

ing approaches are also investigated. The shoreline boundary is discussed and a new

robust algorithm for the treatment of this boundary on both fixed and mobile beds is

presented. The resulting numerical models are used to simulate a variety of different

swash events on an initially plane sloping mobile beach. Predictions of beach face evo-

lution are made using the fully coupled approach and are compared with predictions

made using an uncoupled analytical beach evolution model based on that of Pritchard

and Hogg (2005). The fully coupled model leads to some interesting observations, in
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particular the possibility of local onshore sediment transport and the occurrence of

a seaward facing sediment bore in the backwash. A characteristics based analysis is

performed and reveals important differences in the flow structure of coupled and un-

coupled swash events. The maximum wave run-up is also considered and it is shown

that for the fully coupled system the run-up is significantly less than that predicted

by the Shen and Meyer (1963) theory and motion of the leading edge can no longer

be determined using simple ballistics concepts. Additionally, for verification purposes,

new quasi-analytical solutions are constructed for the mobile bed dam-break problem

using two distinct sediment transport formulae.
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CHAPTER 1

Introduction

Perhaps the most vivid image conjured up when one thinks of the coast is that of waves

breaking and the resulting turbulent bores. These bores move landward as steep foam-

ing white fronts driving water up and down the beach. The near-shore region where

the waves break and bores move shoreward is known as the surf zone. The cross-

shore extent of the surf zone varies between beaches, depending primarily on beach

slope. Gently sloping sand beaches tend to have several lines of breakers, in different

stages of breaking, in a wide surf zone, steeper beaches tends to have fewer lines of

breaking waves and a relatively narrow surf zone. Landwards of the surf zone is the

swash zone. The swash zone is the flow region successively covered and uncovered by

the run-up and backwash of a body of water known as the swash lens. Boundaries of

the swash zone are dynamic and at the landward boundary, known as the shoreline,

water depths are vanishingly small. It is for this reason that the shoreline is difficult

to define practically, particularly during the backwash when a thin film of water may

remain on the beach (Packwood, 1980). Fluid motion within the swash zone is under-

stood to be governed not only by incident bores but also infra-gravity waves. These

two forcing mechanisms do not act in isolation; instead one predominates according
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to incident wave shape and beach slope (Erikson et al., 2004). Infra-gravity waves are

low frequency (0.003-0.03Hz) non-breaking waves that tend to occur on very shallow

beaches in calm conditions; under more stormy conditions bores begin to dominate the

swash even on beaches with a very mild slope (Brocchini and Baldock, 2008). Swash

on steeper beaches is typically bore-driven, unless the beach is so steep the wave does

not break at all; instead, in this instance, the waves surge up and down the beach. It

is now widely understood that, excluding surging "breakers", there are three principal

breaker types classified as spilling, collapsing or plunging breakers with a continu-

ous transition in between types (Figure 1.2). How a wave breaks as it approaches the

near-shore depends on its period, height and the beach topography (Galvin, 1968).

The variables that determine how a given wave will break can be combined to give

a mathematical expression, this is the so-called surf similarity parameter (Mei, 1989).

Assuming that waves break and an incident bore is formed, motion in the swash zone

can be generalised in the following manner: upon reaching the initial shoreline po-

sition the bore collapses and climbs the beach as a progressively thinning tongue of

water or rarefaction wave. The wave running up the beach is termed the up-rush and

reaches a maximum height before it returns seaward under gravity as the backwash.

The collapse of an incident bore followed by the up-rush and subsequent backwash

comprises a single swash event. Despite the fact that in reality bore collapse occurs

over finite time and length scales several investigators (e.g. Freeman and Lelvlehaute

(1964); Barker and Whitham (1980); Chanson (2005); Guard and Baldock (2007» have

noted that the problem of bore collapse can effectively be reduced to that of the more

severe case of a dam-break on a slope. Moreover, Peregrine and Williams (2001) have

shown that a specific dam-break initial value problem actually produces an identical

flow field to that described by the only available analytical description of bore-driven

8
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Nearshore

Swash
zone Surf zone Shoaling zone

Figure 1.1: Schematicof the nearshore

swash, i.e. that of Shen and Meyer (1963)- see §2.1. Thus, the dam-break problem is

of particular relevance to any theoretical study of bore-driven swash. Clearly, unless

the surf has a very long period there will be interaction between swash events, with

the backwash of the previous event modifying the up-rush of the next event. Often

this interaction takes the form of a stationary turbulent hydraulic jump known as the

"backwash vortex" (Matsunaga and Honji, 1980).

The swash zone is perhaps the most dynamic region of the entire nearshore; here, flow

velocities are high (> 2 ms-I) and water depths are very small close to the leading

edge or wave tip. Due to these high flow velocities the swash zone is characterised

by rapid morphological change (Masselink and Puleo, 2006). Swash events typically

involve both sub- and supercritical flow, meaning that trans-critical flow is common

in the swash zone. Turbulence is another feature of the swash, being initially advected

into the swash zone by incident bores then being smoothed out during the up-rush

phase before forming again due to bed friction as water gathers speed in the back-

wash (Petti and Longo, 2001). Bed friction is clearly important in the swash zone,

however, the correct parameterisation of representative terms within a mathematical
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model is difficult. Although the Chezy law is often used it is a simple empirical rela-

tion derived under steady flow conditions and therefore unsuitable for describing the

highly unsteady swash flow (Hibberd and Peregrine, 1979). Attempts to incorporate

the more complex laminar boundary layer approximation have proved problematical,

breaking down near the shoreline in the backwash due to the extremely thin flow there

(Packwood, 1980). Another boundary layer approach, the momentum integral method

(Fredsee and Deigaard, 1992), in which a logarithmic velocity profile is assumed in the

boundary layer, is perhaps the most promising line of attack. The momentum integral

method, adapted for flow over a porous bed, was successfully applied in a swash con-

text by Clarke et al. (2004).

Collecting meaningful field data from the swash zone is a particularly challenging

task due to the small water depths and intermittent nature of the flow. These inher-

ent difficulties have historically led to problems when obtaining field data especially

for sediment fluxes and short term beach profile change. However, primarily due to

technological advances, field studies of the swash are becoming increasingly popular.

Studies of swash zone hydrodynamics have primarily investigated the variation of wa-

ter depth and velocity with time at a fixed cross-shore location using wire and photo-

graphic techniques (see Butt and Russell (2000) for a comprehensive review up to that

date). Measurements of instantaneous and net sediment transport in the swash zone

have benefited in recent years from the development of accurate non-obtrusive instru-

mentation. Use of optical backscatter sensors and acoustic Doppler velocimeters has

enabled measurement of sediment concentrations and flow velocities within the swash

zone. Importantly, field studies have shown that water in the run-up phase transports

much more sediment than water of the same velocity in the backwash (Masselink et al.,

2005). Moreover, the net sediment transport over a single swash event is often found to
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Figure 1.2: Breaker types. From top to bottom: Spilling, Plunging, Collapsing and

Surging. Rep~oduced from Galvin (1972)
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be a small difference between two large quantities (Osborne and Rooker, 1999).These

two findings have important implications for the modelling of beach evolution in the

swash zone.

The aim of this work is to develop a highly accurate wave-resolving numerical solver

for use over a single swash event. The model should have the ability to model bore-

driven swash in such a way that the hydro- and morphodynamics are fully coupled,

i.e. there will be no morphodynamical time stepping. In so doing it is envisaged that in-

formation will be obtained relating to the underlying (morpho) dynamics of the swash

zone. The effect of coupling on beachface evolution will also be investigated to see if

this makes modelling more realistic, Le.whether a coupled model allows the growth of

a beach under conditions that an uncoupled model does not. The following Chapter de-

tails some relevant work on swash zone and dam-break hydro- and morphodynamics.

Chapter 3 discusses the equations used to govern both the hydro- and morphodynam-

ical evolution as well as their decomposition into so-called characteristic form. The

numerical methods used for solution are detailed in Chapter 4, including methods for

the treatment of initial and boundary conditions. The derivation of suitable Rankine-

Hugoniot (jump) conditions as well as a comparison between shock-capturing and

shock-fitting approaches is given in Chapter 5. In Chapter 6 quasi-analytical solu-

tions to the mobile bed dam-break problem based on the Riemann wave technique are

presented for two distinct sediment transport formulae. These dam-break solutions

provide a means for checking the accuracy of the MOC and MacCormack codes, as

well as providing starting conditions for Shen and Meyer (1963) type swash events.

Chapter 7 presents analytical results and the results of a number of numerical experi-

ments describing uncoupled modelling of beachface evolution. Numerical results for

beachface evolution according to fully coupled models are presented in Chapter 8. Fi-
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nally, Chapter 9 provides conclusions of the work as well as outlining future research

topics that will further improve modelling of swash zone morphodynamics.
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CHAPTER2

Literature Review

2.1 Analysis of swash zone hydrodynamics

Whether or not a wave breaks is important as it determines how the water will behave

in the swash zone. For non-breaking waves Carrier and Greenspan (1958) found a set

of analytical solutions using the hodograph transformation, a technique in which the

shallow water equations are cast in characteristic form (refer to §3.4) and then tran-

formed in such a way that space and time become the dependent variables. Using this

technique allows the two first-order nonlinear shallow water equations to be reduced

to a single linear second-order equation the solutions of which are well documented

(lohnson, 1997). The Carrier and Greenspan (1958) solutions provide a valuable tool for

checking numerical schemes; however, their relevance to progressive waves arriving at

a beach is somewhat questionable as they require either a full reflection of the incident

wave, and the subsequent development of a standing wave, or an initial water velocity

of zero throughout the flow field. Moreover, inorder for waves not to break combina-

tions of wave height, wave period and beach slope are required that are relatively rare

on real beaches. In the majority of cases waves arriving in the near-shore will break
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z

x

Figure 2.1: Schematic of a bore climbing a planar beach showing the notation used in

the derivation of Whitham's characteristic rule.

and form bores. Consequently this thesis is concerned only with bore--driven swash.

Major advances in the theoretical analysis ofbore--driven swash were made by Whitham,

Meyer and co-workers (Whitham, 1958; Keller et al., 1960; Barker and Whitham, 1980;

Ho and Meyer, 1962; Shen and Meyer, 1963). The first of these came when research into

gas dynamical shock waves propagating into non-uniform regions led Whitham (1958)

to propose his, now famous, characteristic rule. The rule is in effect an approximation

allowing the differential relations valid along the characteristic arriving from the high

pressure side of the shock to be valid behind the shock front. Doing this provides an

ordinary differential equation for shock velocity in terms of the pressure immediately

in front of the shock. In the same paper Whitham (1958) speculatively applied this rule

within the framework of the shallow water theory to a bore moving into still water of

non-uniform depth. A summary of the characteristics rule, applied within the shallow

water framework, is given here. The Riemann invariants (R+) valid along advancing

characteristics in (dimensional) differential form are:

dR+ = du + 2dc +g tan f3dt = 0, (2.1.1)
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where the trajectory of the advancing characteristics is given by:

dxTt = U +c, (2.1.2)

where g is the acceleration due to gravity, u is the (depth-averaged) water velocity, h

is water depth, c = (gh)! is gravity wave celerity x is the horizontal distance, t is time

and tan fJ is the beach slope; see §3.4.1 for a derivation of (2.1.1) and (2.1.2). In order to

proceed it is necessary to denote values of variables immediately behind the bore with

the subscript b and also to note that tan fJ = ~where hi = hi (x) is the still water depth

in front of the bore, see Figure 2.1. Whitham's characteristic rule combines (2.1.1) and

(2.1.2) giving the following differential relation:

(2.1.3)

This differential relation can be augmented by the shallow water Rankine Hugoniot

conditions (see §5.3.1) to give an ordinary differential equation for bore velocity in

terms of the water depth in front of the bore. Crucially, if the still water depth in

front of the bore tends to zero at some point (as it does on a beach) the characteris-

tics rule requires that the bore height must also tend to zero as the bore approaches this

point while the bore velocity tends to some limiting value. While checking the validity

of Whitham's characteristic rule numerically for the case of a bore climbing a beach

Keller et al. (1960) noted that the behaviour of the bore near the shoreline was largely

independent of the initial conditions that gave rise to it. For an analogous gas dynami-

cal problem Guderly (1942) found a similarity solution that was shown by Payne (1957)

to exhibit similar "forgetfulness". In order to further investigate this forgetfulness Ho

and Meyer (1962) found an asymptotic solution for the climb of an initially uniform

bore (a bore with constant height and velocity behind the bore front) on a beach and

noted that it was a singularity in the governing equations at the shoreline location that
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was responsible for the bore "forgetting" its initial conditions. The work of Ho and

Meyer (1962) was extended to include the run-up by Shen and Meyer (1963). The au-

thors derived an analytical solution for the entire run-up and part of the backwash,

by the hodograph transformation of Carrier and Greenspan (1958), using only seaward

boundary data from the domain of dependence of the shoreline singularity, i.e. the

region between the bore path and limiting characteristic (refer to Figure 1 of Shen and

Meyer (1963». As such the solution is strictly only valid in the region close to the mov-

ing shoreline although it is a legitimate explicit solution to the non linear shallow water

equations throughout the entire swash zone. In dimensional form the Shen and Meyer

(1963) solution is:

(2.1.4)

with the maximim run-up Xmax given by:

u2
X - b
max - 2gtanf3' (2.1.5)

where Ub is the bore velocity at the initial shoreline position. Shen and Meyer (1963)

gave no explicit expression for the flow velocity, however, Peregrine and Williams

(2001) derived the solution for flow velocity corresponding to (2.1.4). In dimensional

variables this expression is:

( ) (Ubt-2gt2tanf3+2x)
u x,t = 3t . (2.1.6)

The flow field in a large proportion of the interior of the swash lens is dependent on

specific seaward boundary conditions; this was alluded to by Shen and Meyer (1963)

and later by Peregrine and Williams (2001). The Shen and Meyer (1963) solution implies

that when bore-driven swash is modelled using a fixed bed approach then virtually

the entire motion of the swash event close to the (moving) shoreline is determined by
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conditions at the point of bore collapse. Inparticular a single free parameter, the bore

velocity at the initial shoreline position, is responsible for determining the maximum

extent of the run-up in accordance with elementary energy (ballistics) concepts. The

theory indicates that throughout the run-up the leading edge is subject only to gravity

forces and, thus, the maximum potential energy gained by the particle at the leading

edge must be equal to its initial kinetic energy at the original shoreline position. One

of the last significant breakthrough in the mathematical analysis of bores was made by

Barker and Whitham (1980) who were able to obtain a similarity solution for the climb

of a bore on a beach using the method Guderly had employed in his gas dynamical

problem almost forty years earlier. The work confirmed the findings of Ho and Meyer

(1962) and provided algebraic expressions for the bore height (hb) and velocity (W) in

terms of terminal bore velocity at the original shoreline (Ub) and the still water depth

in front of the bore (hi (x). In dimensional form these expressions are:

(2.1.7)

and:

(2.1.8)

Most recently, Pritchard et al. (2008) have provided a quasi-analytical solution for

swash flows that is valid for a large range of incident bore conditions. The solution,

based on the hodograph transformation, is somewhat involved and breaks down at

the point of inception of a secondary bore. Interestingly, the work extends the findings

of Shen and Meyer (1963) showing that secondary bore formation does not necessarily

always occur in the backwash. Pritchard et al. (2008) illustrate certain cases for which

the shallow water theory appears to predict the formation of secondary bores in the

run-up. Though relatively complex, the solution should provide an important valida-

18



CHAPTER 2: LITERATURE REVIEW

tion tool for numerical solvers employed in swash zone modelling.

2.2 Numerical modelling of bore-driven swash

While Keller et aL (1960) provided a numerical solution for the climb of a bore over a

plane sloping beach, computation was terminated at the initial shoreline location. It

appears that the first numerical solution of swash zone run-up was implemented by

Freeman and Lelvlehaute (1964), who developed a numerical solution to the run-up

of a limiting solitary wave. Although Freeman and LeMehaute (1964) describe an ad-

ditional term in the momentum equation that allowed for a linear distribution of the

vertical velocity component this was not incorporated in the numerical computations;

consequently a bore formed at the front of the wave shortly after computation began.

Friction was included using the Chezy law, a relation derived empirically from steady

flow conditions (see §1). The numerical scheme employed was based on the method

of characteristics (MaC) in specified time interval (STI) form (see §4.2.1). Owing to the

Chezy friction term approaching infinity at the wave tip, as h -+ 0 there, the shoreline

(wet-dry) boundary was determined using a minimum cut-off depth. Water veloc-

ity at the tip was found using a stability criterion based on dimensional equivalence

as proposed by Abbott (1961). The model did not run as far as the backwash stage

and, although a paper on backwash was promised, it appears that it was never pub-

lished. Amein (1964) also presented solutions to the run-up of various long waves.

The numerical model employed was again a variant of the MaC but this time in the

more accurate grid of characteristics (GC) form (see §4.1.2). Interestingly, Amein (1964)

used a bore classification system, involving two types of bore, that determined how the

run-up was computed. The first type of bore, the "major bore", was defined as one in
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which "a major portion of the wave profile has caught up with the bore and has taken part in

its development"; the run-up was computed by feeding the bore velocity, obtained from

the numerical MaC solution, into the analytical solution of Shen and Meyer (1963).

The second bore type, the "minor bore", was defined as one in which, because of the

very long wavelengths, "only small portions of their wave profiles take part in the bore de-

velopment". For minor bores the run-up was computed numerically using the MOC

scheme. Due to the fact that Amein (1964) used the GC variant of the Moe the shore-

line boundary was dealt with implicitly within the model (see §4.1.2). As the schemes

of Freeman and Lelvlehaute (1964) and Amein (1964) were characteristics based they

utilised the primitive variable form of the shallow water equations and it was therefore

necessary to treat discontinuities explicitly using shock-fitting procedures (see §5.2).

Mader (1974) used the marker and cell (MAC) method developed at Los Alamos (see

e.g. Harlow and Amsden (1970» to solve the full Navier Stokes equations in order to

compute the run-up of a tsunami on a vertical cliff. The results were compared with

those obtained using the shallow water theory, with solutions provided by the MaC,

and it was noted that for long wave tsunamis the two models were in very close agree-

ment.

A major breakthough in numerical modelling of the swash zone came with the work

of Hibberd and Peregrine (1979) who used a Lax Wendroff explicit finite difference

scheme to compute the run-up and backwash of a uniform bore. The equations were

cast in conservation form, meaning that the scheme was shock-capturing. The work

was motivated by that of Houghton and Kasahara (1968) who had used the Lax Wen-

droff scheme and a conservation form of the shallow water equations to successfully

model trans-critical flow over a mountain ridge. In shock-capturing schemes disconti-
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nuities are represented by a steep gradient of the dependent variables over a few mesh

points rather than a moving internal boundary as in shock-fitting schemes. Depending

on their order of accuracy shock-capturing schemes either suffer from a large amount

of numerical diffusion or spurious numerical oscillations in the presence of disconti-

nuities (see §5.1 for further details). The Lax Wendroff scheme is second-order accu-

rate and therefore suffers from parasitic oscillations close to shocks, these oscillations

can very quickly threaten the overall stability of the solver. In their work Hibberd and

Peregrine (1979) were forced to employ the artificial diffusion term detailed by Lax and

Wendroff (1960) to overcome this problem. A major difficulty addressed by Hibberd

and Peregrine (1979) was the numerical treatment of the shoreline boundary. A rather

intricate procedure based on linear extrapolation, the Lax Wendroff scheme, a centred

difference scheme for both the mass and momentum equations and a minimum cut-off

depth was devised. Hibberd and Peregrine's work was seminal as, for the first time, a

quantitative description of the landward facing backwash bore predicted qualitatively

by Shen and Meyer (1963) was made avaliable. The scheme pioneered by Hibberd and

Peregrine (1979) influenced the development of swash zone modelling throughout the

1980s, with the model further developed to include the effect of bed friction by Pack-

wood (1980) who also simplified and improved the shoreline algorithm, which was

subject to numerical instability (Synolakis, 1986). Ryrie (1983) extended the code in

order to simulate the longshore currents generated by oblique bores. Kobayashi and

co-workers applied a similar model in a series of studies looking at the run-up and re-

flection on steep rough slopes and structures, see Kobayashi et al. (1987, 1989). By the

early 1990s numerical modelling of the swash zone had begun to utilise solvers based

on Riemann-type schemes that used both exact and approximate Riemann solvers; an

early example being the code developed by Watson et al. (1992). However, although
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Model xs,mQx TSlIJQslz hmin[m]

PW01 2.00 4.00

Option 1 1.767 3.936 10-6

Option 2a 1.749 3.873 10-6

Option 2b 1.749 3.878 10-6

Option 2d 1.749 3.875 10-6

Option 2ea 1.749 3.875 10-6

Option2ea 1.731 3.804 10-5

Option 2eb 1.767 3.875 10-6

Option 3 1.740 3.900 10-6

Option 4a 1.722 3.856 10-6

Option 4b 1.749 3.865 10-6

Option Sa 1.722 3.91 10-6

Option5b 1.731 3.852 10-6

Option 6 1.731 3.807 10-5

Table 2.1: Results of several different shoreline boundary treatments for a Riemann-

type scheme. The table shows the maximum computed run-up xs,max and

swash period TsllJQsh. Model PW01 gives the analytical results of Shen and

Meyer (1963) (~x = 0.09m). From Briganti and Dodd (2008) with permis-

sion of the authors.
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treatment of the shoreline boundary in Riemann-type schemes is relatively simple such

schemes have a tendency to under estimate the maximum run-up: see Briganti and

Dodd (2008),Table 2.1.Although Riemann-type solvers have dominated the literature

for the last fifteen years there have been some interesting departures. The work ofTitov

and Synolakis (1995)on solitary wave run-up is particularly important as it details a

simple, robust and reliable algorithm for the treatment of the shoreline boundary for

non-Riemann-type solvers (see §4.3.2 on this). Classical finite difference schemes are

also still in use. In particular, the explicit second-order accurate scheme developed

by MacCormack (1969) appears to be particularly well disposed for modelling flow

in the swash zone when suitable artificial diffusion is applied (Vincent et al., 2001).

The primary reason for this is that MacCormack's scheme uses a predictor-corrector

approach, this facilitates the inclusion of source terms when compared with one-step

schemes such as that of Lax and Wendroff (1960),see §4.2.3 for further details on this.

2.3 Modelling beach face evolution in the swash zone

Pritchard and Hogg (2005)developed an analytical model to predict beachface evolu-

tion over a single swash event, namely that of Shen and Meyer (1963).Several differ-

ent sediment transport formulae were investigated. Initially, an equilibrium transport

model is employed in which it is assumed that the same number of sediment particles

are deposited on the bed as are entrained from it, Le. no sediment remains suspended

in the water column. Pritchard and Hogg (2005)noted that for an equilibrium model,

due to the inherent asymmetry of the flow field, all swash models that use power-

law-based sediment transport formulae in which the hydro- and morphodynamics

are decoupled predict the net offshore transport of sediment everywhere on a beach.
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The inclusion of representative terms for advection and settling lag effects led to the

possibility of local onshore transport of sediment. Interestingly, the most important

factor was found to be the amount of sediment brought into suspension at initial bore

collapse rather than settling lag time.

Numerical modelling of beach change in the swash zone has a relatively short his-

tory. Beach evolution in the swash zone has been predicted both by using uncoupled

models, i.e. models that assume that changes in bed height have a negligible effect on

the flow over a swash event, and fully coupled morphodynamic models, which up-

date the hydrodynamic variables and beach profile simultaneously. Masselink and Li

(2001) used an uncoupled numerical model in order to study the effect of infiltration

on beachface gradient in the swash zone. The sediment fluxes were computed using

the transport formula of Bagnold (1966) calibrated for bedload only; however, the au-

thors noted that validation of bedload formulas against total load field measurements

gave sufficient confidence in the Bagnold model to predict the total load transport. In

passing it should be noted that although Bagnold type models do give realistic sedi-

ment fluxes for various flow conditions such models require careful calibration as cal-

ibration error is especially sensitive to the signal-to-noise ratio of the empirical data

(Puleo et al., 2005). The numerical solution was effected using a Lax Wendroff finite

difference scheme with artificial diffusion and the Hibberd and Peregrine (1979) shore-

line boundary treatment. Interestingly, Masselink and Li (2001) concluded that while

swash infiltration was important on gravel beaches it had a negligible effect on the

morphological evolution of sandy beaches. Karambas and Koutitas (2002) used a de-

coupled model, which employed a Bousinesq type approach for the hydrodynamics,

to model beachface evolution in the surf and swash zones under periodic wave action.

The sediment flux was computed using different transport formulae in the surf and
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swash zones. For the swash zone a pure bed load type sheet-flow formula was used.

The mathematical model incorporated representative terms for modelling both infiltra-

tion and exfiltration. The numerical solution employed a fourth-order accurate predic-

tor corrector scheme as the Bousinesq equations contain third-order derivatives. The

shoreline boundary was treated using a "dry bed" approach; this approach is straight

forward, using a cut-off depth to determine the shoreline location. If the calculated

value of h at a mesh point falls below this cut-off depth, Karambas and Koutitas (2002)

used 1 x 10-sm, then both hand u are set equal to zero at that mesh point. Both the

Masselink and Li (2001) and Karambas and Koutitas (2002) models appeared to be able

to simulate erosion and accretion of the beach in the swash zone over relatively long

periods.

Numerical models in which the hydro- and morphodynamics are directly coupled are

extremely rare in swash modelling. In a recent paper Dodd et al. (2008) describe the

development of a fully coupled 2D wave-resolving model based on the shallow wa-

ter theory with equilibrium sediment transport. The numerical scheme was of the

Riemann-type utilising Roe's approximate Riemann solver (Roe, 1981). Due to the fact

that cusps tend to form on gravel beaches provision was made for beach infiltration

using Darcy'S law (see Dicker (1969». The solver was successfully applied to model

the formation and development of beach cusps. This work utilised "tolerance depth"

approach to treat the shoreline boundary. The tolerance depth technique works by

searching for dry cells that will flood at the next time step and then wetting these cells

with the tolerance depth so that the Roe scheme can be applied without modification

at the shoreline (see §4.3.2 for details of various other shoreline boundary treatments).
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2.4 Fixed bed dam-break problem

The analytical solution to the so called "classical" dam-break problem, i.e. the instan-

taneous failure of a dam with a dry bed downstream (wet-dry dam-break) and no

friction, was provided, in the framework of the shallow water theory, by Ritter (1892).

Further analytical solutions have been found for differing dam-break problems some

exact and some approximate. Stoker (1948) gives an implicit analytical solution for the

inviscid case when there is water on the downstream side of the dam (wet-wet dam-

break) using a method of characteristics (MOC) based analysis (details of the MOC are

given in §3.4). Both Dressler (1952) and Whitham (1955) give analytical solutions that

incorporate friction for wet-dry dam-break waves on a horizontal bed. Dressler (1952)

used a perturbation technique to solve the Saint Venant equations approximately. In

the vicinity of the tip, Dressler noted that his solution broke down due to the fact that

it predicted that rate of change of water height, and consequently wave celerity, in-

creased without bound as the tip was approached. To rectify this Dressler (1952) sug-

gested that the tip region be treated as a boundary layer. Whitham (1955) assumed

that friction only became a significant factor within the tip region of the dam-break

wave. Following Dressler's suggestion the tip region was treated as a boundary layer'

separate from the main body of flow, which was presumed to obey the Ritter solution.

Friction in the tip region was assumed constant and the whole tip region taken to have

a constant velocity. Differential equations for the tip region were then formulated and

solved using a Taylor series expansion. Although arrived at by different means, the

solutions of Dressler (1952) and Whitham (1955) were compared by Whitham (1955)

1Although Whitham calls the tip region a boundary layer this is not true in the strict sense. Ina genuine

boundary layer there exists some form of velocity distribution. Whitham assumes a constant velocity for

the entire tip region.
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and found to give very similar results. Agreement was within 12% for the time range

of the data presented. It is interesting to note that using the simple coordinate trans-

formation proposed by Watson et al. (1992) the analytical solutions of Ritter (1892),

Dressler (1952) and Whitham (1955) can be applied to the dam-break on a slope. Hunt

(1982,1984) gave analytical solutions for dam-break waves in sloping prismatic chan-

nels, Le. channels in which both the cross-sectional shape and size are constant, based

on the simplifying assumptions of kinematic wave theory (see for example Hender-

son (1966». Chanson (2005) has given approximate MOC based analytical solutions

that include both friction and slope terms. However, these solutions are founded on

the rather unrealistic assumption that the initial outgoing, or backward, characteristic

behaves as though it were moving into water of constant depth. Recently, the hodo-

graph transformation (see §2.1) has been applied to the Saint Venant equations along

with suitable boundary conditions to provide exact analytical solutions for the instan-

taneous release of a finite length reservoir of water behind a lock (Hogg, 2006) and a

triangular reservoir of water on a slope (Ancey and Rentschler, 2008) .

Re (1946) provided the first numerical solution to the one-dimensional dam-break

problem in order to determine flow that would result from enemy sabotage of a dam on

the river Rhine. Friction was included in the scheme using the Chezy law formulation,

and there was also a body of water present downstream of the dam. Computations

for the numerical MOC based scheme were carried out by hand. The ground-breaking

work of Re (1946) was followed by that of Faure and Nahas (1961). This study dealt

with both wet-wet and wet-dry dam-break problems incorporating both slope and

friction terms. Solution was by numerical MOC, using a GC based model (see §4.1.2);

computation was carried out on an IBM 7090 supercomputer. The results compared

well with experiments executed by the authors. A similar method was used by Dra-
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cos (1970) to examine surge waves in open channels of any geometry; interestingly,

this scheme obtained second order accuracy through the use of a predictor corrector

method. Sakkas and Strelkoff (1973) solved the problem for a dam-break with a dry

downstream region, again utilising a predictor corrector MOe GC scheme for second

order accuracy. Unusually, the tip region was treated separately using Whitham's an-

alytical solution. The analytical solution was employed when it became impractical to

further reduce step size through the insertion of additional advancing characteristics.

Rajar (1978) looked at results for dam-break flow in a prismatic channel that included

the formation and propagation of shocks. Both the Lax Wendroff scheme and the first-

order dissipative scheme proposed by Cunge (1970) were used in the study. Rajar

(1978) found certain expected conclusions such as the fact that Cunge scheme could

only very approximately simulate shocks due to a large amount of smearing and the

Lax Wendroff scheme being overpowered by instabilities after the formation of shocks.

Far more interesting was that introducing a dissipative term into the Lax Wendroff

scheme gave the scheme stability but spoiled the accurate simulation of shocks. Shock

velocities were in fact found to be too low by around 20%, and Rajar (1978) concluded

that the only truly accurate way to represent shocks in highly unsteady flow, such as

that due to dam failure, was via shock-fitting.

Recently, as is the case for swash modelling, Riemann-type schemes have become stan-

dard for solution of hydrodynamical dam-break type flow. A comparison between

various state-of-the-art numerical schemes was undertaken by Zoppou and Roberts

(2003) for the one-dimensional dam-break problem. A recent, and interesting, depar-

ture is the work of Mohammadian et al. (2007) who have developed a ID conservative

STI MOC solver that is capable propagating shocks at the correct strengths and speeds.

The scheme works by ensuring that the interpolation step is performed in terms of con-
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served variables based on a finite volume approach (see e.g. LeVeque (1992». Moham-

madian et al. (2007) successfully apply the scheme to fixed bed wet-wet dam-break

problems and dam-break problems that involve shock-shock interactions.

2.5 Mobile bed dam-break problem

Although experimental work on mobile bed dam-break flow dates back almost thirty

years (Chen and Simons, 1979), the theoretical literature is very recent. Moreover, very

few laboratory experiments involving dam-break flows with mobile beds have been

conducted. Itwould appear that, other than the pioneering work of Chen and Simons

(1979), the only published results are the experiments of Cap art and Young (1998) and

those presented in Fraccarollo and Capart (2002). Contrary to the modelling of mobile

bed swash flow the majority of numerical mobile bed dam-break have the hydrody-

namical and bed evolution equations fully coupled. In an early attempt, Capart and

Young (1998) used a shock-capturing upwind scheme to model dam-break flow over

a mobile bed comprising relatively large grained, low density sediment. The math-

ematical model developed was one of two-layer, two-phase flow. The model cou-

pled the shallow water equations to a bed evolution equation which was split into

two components: an advection-reaction equation that governed the evolution of bed

particles moving with the flow and a fourth equation governing the evolution of the

non-moving bed particles. Sediment load was treated in a non-equilibrium manner,

Le. the rate of sediment exchange between the bed and the flow was assumed to be pro-

portional to the difference between the unsteady instantaneous sediment load and the

equilibrium load obtained under steady flow. The results from the numerical scheme

were compared with experimental data that utilised digital image analysis to trace both
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the free surface evolution and the motion of individual sediment grains. In order to fa-

cilitate analysis Capart and Young (1998) plotted curves of u ± c in the physical (x, t)

plane and interpreted these as being the hydrodynamic characteristics of the flow. It

is noted here that this interpretation is incorrect, as the hydrodynamic characteristic

velocities of sediment laden flow are not given simply by u ± c, but are in fact more

complex (see §3.4.2). The results of Capart and Young (1998) have important implica-

tions; in both the numerical model and the experimental results a shock was observed

to form virtually instantaneously upon dam failure. The shock then remained station-

ary for a short period of time before propagating upstream of the original dam site with

increasing speed. Overall the numerical results compared well with the experimental

data. Capart and Young (1998) noted that the main differences were in the region of

the shock, claiming that the physical limitations of the governing equations were re-

sponsible for any discrepancies. Fraccarollo and Cap art (2002) readdressed the mobile

bed problem employing a sheet flow model? that considered the bed boundary as a

phase interface between solid- and fluid-like behaviour. This idea of a boundary be-

ing a transition interface between solid- and fluid-like behaviour comes from granular

flow theory (e.g Jenkins and Askari (1991); Takahashi (1991)). The approach differs

from the technique typically used in alluvial hydraulics (e.g Hsu and Chu (1965); Lai

(1991)) primarily because it does not neglect the thickness of the sediment transport

layer or the associated inertial effects. Flow in the vertical plane was discretised as a

set of three homogenous regions separated by sharp interfaces after the work of Ab-

bott and Minns (1979). Here, the velocity in the sediment layer was assumed to be

equal to that of the clear water layer above, an assumption that would appear to be

2Sheetflow refers to multiple layer bedload type flow (see §3.3) in which the bedload is made up from

a number of adjacent layers of moving particles each in contact with one another.
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valid for such high Froude number flow. Under these conditions a system of equations

was derived that coupled the hydro- and morphodynamics. The characteristic form of

these equations was then solved using an exact Riemann solver (see Chapter 6 for a de-

tailed description of this solution technique). Characteristic curves were again plotted

(this time incorporating all relevant terms) and used for analysis. On top of the con-

clusions reached by Cap art and Young (1998) there was an extra observation resulting

from the inertial effect of the sediment. At the tip region the model predicted bulking

and subsequent deceleration of the flow leading to the formation of a sediment bore at

the wave tip. When compared against experimental evidence Fraccarollo and Capart

(2002) concluded that results were very favourable within a limited time window. Be-

yond this window, however, agreement was poor and long term evolution was deemed

a fruitful avenue for further work. Ferreira and Leal (2003) developed a mathematical

model of both wet-wet and wet-dry mobile bed dam-break flow based on the shallow

water and Exner equations. Closure of the system was obtained using the total load

equilibrium formula of Ackers and White (1973) for the sediment flux. The equation

system was solved numerically using the MacCormack scheme with an additional to-

tal variation diminishing (TVD) step; effectively using self-adaptive artificial viscosity

to inhibit parasitic numerical oscillations. The TVD algorithm requires a Roe (1981)

approximation to the Jacobian matrix; somewhat peculiarly in their TVD step Ferreira

and Leal (2003) only derived the Roe approximation for the shallow water equations

as opposed to the full shallow water Exner system. The results of the numerical model

were compared with laboratory data and it was observed that while the model gave a

good qualitative description of the flow the Ackers and White formula underestimated

the total sediment load. In particular, the model predicted less scour than was actually

observed in the vicinity of the original dam location.
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Cao et a1. (2004) used an approximate Riemann solver to solve a set of equations, com-

prising the continuity of flow containing sediment, conservation of momentum for

sediment-laden flow and continuity of sediment discharge. In their system Cao et a1.

(2004) included all terms in the momentum equation, even those typically neglected

in alluvial channel work (see Hsu and Chu (1965) for details). The results obtained

were similar to those of Fraccarollo and Capart (2002) with one principle difference: at

the front of the wave, two distinct drops in water surface elevation were predicted, the

first at the tip and the second further back. The second fall in free surface elevation was

shown to be directly accountable to inclusion of all terms in the momentum equation

and was directly in line with a contact discontinuity (see §5.3.3) relating to the sediment

concentration, i.e. the line separating the flow that is saturated with sediment from that

flow which is not.

32



CHAPTER3

1D Mathematical Model

3.1 Introduction

It is widely accepted that water motion in the swash zone is well represented by the

shallow water or long wave model (Peregrine, 1972). In the shallow water model wave-

length is considered to be much greater than water depth. The nonlinear shallow water

equations can be derived from the principles of conservation of fluid mass and momen-

tum using certain simplifying assumptions. In particular, it is assumed that the flow

is inviscid and irrotational (Le. there is no vorticity in the flow). Clearly, the condition

of zero vorticity ceases to hold when waves break and collapse in onto themselves.

A second assumption is that the vertical accelerations in the fluid are negligible and

the pressure distribution is purely hydrostatic. The assumption of hydrostatic pressure

allows the horizontal flow velocity to be considered depth uniform. Although the pres-

sure is clearly not hydrostatic at the point where a bore collapses, due to large vertical

accelerations in the fluid, the time for which this assumption fails to hold is very small

when compared with the duration of a swash event (Freeman and Lelvlehaute, 1964).
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3.2 Governing Equations

3.2.1 Nonlinear Shallow Water Equations (NLSWE)

Assuming that the water is incompressible and of constant density p, then for flow with

a depth uniform velocity the 1D continuity equation can be derived relatively simply.

To aid the derivation of the differential form of the governing equations frequent use is

made of the following notation:

1X
2 ~ d = [ ]X2a x_. .Xl X Xl (3.2.1)

Considering the element of water of unit width between Xl and X2 in Figure 3.1, the

total mass of water in the element is given by:

1X
21h

+
B

1
x2

P dzdx = ph dx,
~ B ~

(3.2.2)

where subscripts 1and 2 denote the value of flow variables at those respective loca-

tions. From the law of conservation of mass (continuity) it follows that the rate of

change of mass of water in the element between Xl and X2 is equal to the net flux of

water mass into (or out of) the element, i.e:

a 1X2 X-a ph dx = [puh] 1.t Xl X2 (3.2.3)

Thus we have:

a 1X2 X-a h dx + [uh] 2 = o.
t Xl Xl (3.2.4)

To obtain the differential form of the continuity equation it is easiest to proceed by

integrating (3.2.4) over an arbitrary time interval tl to t2,where tl < t2, giving:

1t21x2 ah a(uh)-+--dxdt = 0
t1 Xl at ax (3.2.5)
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which follows from (3.2.1) and the fact that:

[ ]

t2
X2 t2 X2 ah

[ h dx = [ [ :;- dxdt.lXI i; lXI ut
tl

(3.2.6)

Because the independent variables were defined arbitrarily and Xl and X2 are indepen-

dent of time, (3.2.5) can be generalised to give:

ah a(uh) _ 0at + ax - . (3.2.7)

This is the so-called conservation form of the continuity equation as it is written in

terms of the conserved variables mass and momentum. It is possible to obtain another

form of the continuity equation, known as the primitive variable form, by applying the

chain rule to (3.2.7) giving:

ah ah au-+u-+h- = o.at ax ax (3.2.8)

The momentum equation comes from Newton's second law, i.e. that force is equal to

rate of change of momentum. For the element of fluid of unit width between Xl and

X2 it follows that, if the difference in the pressure on the ends of the element is purely

hydrostatic, it is given by:

[ r: ]X2 _ [pg2h2]XX2
1

•pg lB {(h + B) - z}dz Xl (3.2.9)

Variation in the bed height between Xl and X2 gives rise to additional forces at the ends.

For a continuous bed 1 it follows that the net additional force due to bed slope is given

by:

1XI dBpgh-d dx.
X2 X

(3.2.10)

In the x-direction the momentum flux across Xl is:

(3.2.11)

IThe case of a discontinuous bed is more complex. A solution to this problem was given by Needham

and Hey (1991) and is detailed in §5.3.1
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and across X2 is:

(3.2.12)

The rate of change of momentum in the element of fluid between Xl and X2 is:

a lx2:) puh dx.
ut XI

(3.2.13)

Thus, the net momentum flux in the x-direction is:

a r2 Xat lXI puhdx+p[hu2]x~· (3.2.14)

Equating the force to the rate of change of momentum gives:

a lX2
' [ 1 1X2 lX2 dBat XI uh dx + hu

2 + 2gh2 Xl + Xl gh dx dx = O.

To obtain the differential form (3.2.15) is integrated over an arbitrary period of time.r,

(3.2.15)

(3.2.16)

Again, because the independent variables were defined arbitrarily the general form of

(3.2.16) is:

(3.2.17)

Employing the chain rule and (3.2.7), (3.2.17) can be written in primitive variable form

as:

au au a(h+B) _ 0at +uax +g ax - (3.2.18)

3.2.2 Bed Evolution (Exner) Equation

The total volumetric sediment transport rate (see §3.3) in the x direction is q • Assuming

that q is proportional to the volume rate of flow, then q = q(u,h). Referring to Figure
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z

u(x,t) - h(x,t)

B(x,t)

Figure 3.1: Definition sketch for mobile bed flow in the swash zone

3.1 the total volume of sediment entering a region at Xl is:

(3.2.19)

and the total volume of sediment leaving the region at X2 is:

(3.2.20)

where, = i!po is constant, with po being the porosity of the bed material. The total

volume of sediment in the region Xl to X2 is:

lX
2

10
B rdzdx = B dx.

Xl 0 Xl
(3.2.21)

Using the law of conservation of mass it follows that the rate of change of mass of

sediment in the region Xl to X2 is equal to the net flux of sediment mass into (or out of)

this region, i.e:

(3.2.22)

Again integrating over an arbitrary time interval tl to t21where tl < t21 gives:

l.t21X2 aB aq- +,- dxdt
tl Xl at ax o. (3.2.23)
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By the same reasoning as above this gives us the differential form of (3.2.23) as:

dB ;rdq = 0at + ':> ax . (3.2.24)

Equation (3.2.24) is referred to in the literature as the bed evolution or Exner equation.

Closure of (3.2.24) is obtained by specifying a particular form for q. The forms for q

employed in this thesis are discussed below.

3.3 Sediment Transport Processes and Formulae

Sediment can be transported by water in four principal modes: sliding, rolling, saltat-

ing ("jumping") and in suspension. If sediment either slides or roles it remains in con-

stant contact with the bed; hence, these modes of sediment transport are referred to

collectively as bed load transport. It is also usual to consider saltating sediment as

being part of the bed load. Suspended sediment particles follow irregular paths of-

ten spending long periods of time suspended in the water; hence, this mode of sedi-

ment transport is referred to as suspended load transport. Bed load transport is driven

by intergranular interaction whereas the principle mechanism behind suspended load

transport is fluid turbulence (Fredsee and Deigaard, 1994). Generally suspended load

transport dominates in faster flows and bed load transport dominates in slower flows;

however, other factors such as sediment grain size and flow depth also contribute to

the dominant type of transport. It is rare for either type of transport to act in isolation,

instead bed load and suspended load transport tend to act together to give the total

load sediment transport.

Sediment transport in the swash is complex, and although it is generally agreed that

bed load is the predominant form of transport in the backwash, a large amount of sed-

iment is brought into suspension at bore collapse, leading to a considerable amount of
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suspended load in the run-up particularly on fine grained beaches (Butt et al., 2004).

Field data obtained by Masselink and Hughes (1998), from the swash zone of a medium

sand beach, indicated that sediment was transported primarily as bed load, and it is

accepted that bed load is the dominant mode of transport under normal conditions on

gravel beaches (Horn and Mason, 1994).

The variation in sediment transport modes over a single swash event presents con-

siderable difficulty when formulating a mathematical model of the swash. Deciding

which type of transport to use, and when, is still the topic of considerable uncertainty

and debate (Masselink and Puleo,2006). Indeed, it has been postulated that the tradi-

tional separation of sediment transport modes into bed load and suspended load is not

applicable in the swash (Butt and Russell, 2000). In light of this uncertainty it seems

justifiable to use a total load approach for transport in the swash zone. Thus, following

Hudson and Sweby (2003) this work primarily uses a simple power-law-formulation

for total load transport (see Grass (1981) for a derivation) of the form

(3.3.1)

where A is a dimensional constant with units s2m -1. The value of A is determined by

the bed material and type of flow under consideration.

3.3.1 Relating A to physical parameters

Suitable values for A can be found from specific empirical data or alternatively can

be computed from a simplification of standard sediment transport formulae such as

those of Meyer-Peter and Muller or van Rijn. There are numerous sediment transport

formulae employed by Engineers in the coastal zone and an excellent description of

many can be found in SouIsby (1997). Here the relation between (3.3.1) and the Meyer-
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Peter and Muller (MPM) formula is made explicit. The same approach can be used

with any of the bed load formulae given in Soulsby (1997). The MPM formula may be

written as:

(3.3.2)

where Dso is the median grain diameter, Prel is the ratio of densities of sediment and

water, '0 = 2g(P£~~~)D50 and 'Ocr is the value of '0 at the threshold of motion, /R being the

coefficient of friction. Setting 'OCT = 0 and equating (3.3.1) and (3.3.2) gives:

8 (fR) ~
A == g (Prel - 1) "2 . (3.3.3)

3.3.2 Closing the Exnerequation

Owing to its role in the model, A will be referred to as a sediment mobility parameter

throughout this thesis. The sediment transport formulae discussed above are derived

from steady flow conditions and swash zone flows are inherently unsteady. However, a

simple cubic velocity power-law-formula for q has been shown to be a good descriptor

of sediment transport in the swash (see e.g. Masselink and Hughes (1998); Butt et al.

(2004); Hsu and Raubenheimer (2006)). It is the absence of any other commonly used

swash zone sediment transport formulae that motivates the use of velocity power-law-

formulae in this thesis. Closure of (3.2.24) can be obtained by inserting (3.3.1) to give

the conservation form of the Exner equation:

(3.3.4)

Application of the chain rule provides the primitive variable form of (3.3.4) as:

aB 3A.% 2au = 0at + ,:>u ax ' (3.3.5)
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which can be used to determine bed evolution. Power-law based sediment transport

formulae, such as (3.3.1), are based on the underlying premise that a portion of the

fluid power delivered to the bed is able to initiate mobilisation and transport sediment

as both bed load and suspended load. As such, such transport formulae are often re-

ferred to in the literature as being "energetics-based" (Bagnold, 1966). Energetics-based

transport models where q is of the form given by (3.3.1) have been criticised because a

vanishingly thin film ofwater can still transport a finite amount of sediment. Pritchard

and Hogg (2005) have shown that use of a model in which q = q(u,h) has little effect

on the overall sediment transport pattern in the swash zone. The principal contribu-

tion of the h term is a reduction in the onshore/ offshore transport at the landward limit

of the swash due to the very small water depth there. In this thesis a simplified total

load formula that takes water depth into account is also employed to obtain closure of

(3.2.24). This sediment transport relation is of the form:

- 3q = Au h, (3.3.6)

where A is a dimensional constant with units s2m-2. Putting (3.3.6) into (3.2.24) gives:

(3.3.7)

Again, application of the chain rule allows (3.3.7) to be recast in primitive variable form

as:

aB A-;r 3ah 3A-;r 2hau = 0at + ,:>u ax + ,:>U ax . (3.3.8)

3.3.3 Values for sediment mobility parameters from field data

Determing suitable sizes for the sediment mobility parameters in (3.3.1) or (3.3.6) is dif-

ficult; for representative values this work utilises the field data ofMasselink et al. (2005)
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collected in the swash zone of a medium sand (D50=0.27-O.29mm) dissipative beach to

compute order of magnitude estimates. Masselink et al. (2005) present measured val-

ues of total sediment flux, water height and water velocity for a typical swash event.

The total suspended sediment flux presented in their paper with units Kgm-1s-1, and

denoted here by qt, can be converted into a volumetric flux q by dividing through by

sediment density ps, i.e.:

-1q = qtPs . (3.3.9)

In this work a value of 2650kgm-3 was used for ps, cf. Soulsby (1997). Using values

of q computed like this, as well as the Masselink et al. (2005) data for hand u in the

middle of the run-up and again in the middle of the backwash for a fixed cross-shore

location, average values of A=O.004s2m-1 and A=0.015s2m-2 were obtained. Although

these are clearly "ball park" figures it seems reasonable to assume that they are at least

characteristic of values found on sand beaches.

3.4 Characteristic Decomposition

Inorder to facilitate notation, the subscripts, x and , t are used in this section to denote

partial derivatives with respect to space and time.

3.4.1 Shallow water system: fixed bed case

In this decomposition a combination of equations (3.2.8) and (3.2.18) is sought such that

derivatives of the two dependent variables can be combined into ordinary derivatives

in a single direction. For the system of governing equations comprising only (3.2.8)

and (3.2.18) two such directions exist; these new directions are known as characteristic

directions (Courant and Friedrichs, 1976). There are two approaches to transform the
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system of equations comprising (3.2.8) and (3.2.18) into characteristic form: the matrix

approach and the direct combination approach (Lai, 1986). Although mathematically

more elegant (jeffrey, 1976), the matrix approach is not as intuitive as direct linear com-

bination; for this reason the latter method is employed here. It should also be noted

that, as the bed is fixed, for a plane sloping beach B,x is constant. Combining (3.2.8)

and (3.2.18) in the following manner (3.2.8) + Jl(3.2.18)and factorising gives:

h,t + (u + pg)h,x + PU,t + (h + Jlu)u,x + JlgB,x = O. (3.4.1)

Introducing the total derivative- !!£f where:

d() d() dx d()
Tt = Tt + dt dX ' (3.4.2)

letting ¥t = A reduces (3.4.1) to:

dh du
dt + Jl"dt + JlgB,x = 0, (3.4.3)

with:

(3.4.4)

It follows from A = (u + Jlg) that:

A-u
Jl=-. g (3.4.5)

Using (3.4.5) the relation A = (h+,tU) can be re-arranged to give a quadratic in A of the

form:

A2 - 2uA+ u2 - hg = O. (3.4.6)

This is the characteristic (quadratic) polynomial and is solved to give the roots:

dx tA = - = U ± (gh)2 = U ± c.
dt

(3.4.7)

2W = ft + iff, fx' i.e. the time rate of change following a fluid particle.

43



CHAPTER 3: 1 D MATHEMATICAL MODEL

From (3.4.7) and (3.4.3) it follows that:

dh c du dx
dt + gTt + flgB,x = 0, for dt = u +c (3.4.8)

and:

dh cdu dx
dt - g dt + flgB,x = 0, for dt = u - c. (3.4.9)

Recalling that c = (gh)! then h = ~. Using this to replace h in (3.4.8) and (3.4.9), and

dividing through by ~ yields:

(3.4.10)

as fl = ~ from the relations given by (3.4.4). Hence, from this it can be seen that:

d(u+2c+gB,xt)_0 f dx_=r=s=": _ , or -dt _ u + c (3.4.11)

and:

d(u-2C+gB,xt)_0 f dx __dt _ , or dt _ U c. (3.4.12)

(3.4.11) and (3.4.12) are the compatibility, or Riemann, equations for the characteris-

tic equations (3.4.7). Characteristic equations thus describe the propagation paths of

infinitesimally small disturbances, or wavefronts, whereas compatibility (Riemann)

equations describe the signal, or relationship between dependent variables, which is

carried by a particular wavefront. (3.4.11) and (3.4.12) therefore state that the quantity

U ± 2c + gB,xt remains constant along a characteristic curve moving with the velocity

u ± c relative to a stationary frame of reference.

3.4.2 Shallow water-Exner system: mobile bed case

Sediment flux given by q = Au3

For the system of governing equations comprising (3.2.8), (3.2.18) and (3.3.5) to be hy-

perbolic, three characteristic directions should exist. To find these directions we again
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employ the direct combination approach. Combining (3.2.8), (3.2.18) and (3.3.5) with

the combination factors p and w in the following manner:

~ = p(3.2.8) + (3.2.18) +w(3.3.5), (3.4.13)

gives:

~ = ph,t + puh,x + phu,x +gh,x +U,t+UU,x+gB,x + 3A~wu2u,X +wB,t = O. (3.4.14)

Simplifying (3.4.14) with the aim of obtaining the total (material) derivative:

~ = ph,t + (pu +g)h,x +U,t+ (ph +U+ 3A~wu2)u,x +wB,t +gB,x = O. (3.4.15)

Introducing the total derivative (3.4.15) reduces to:

dh du dB~=p-+-+w-=O.dt dt dt
(3.4.16)

Putting:

A = dx = pu + g = ph + u + 3A~wu2 = g,
dt p w (3.4.17)

gives:

A= pu+g =u+£,
p p

A = ph+u+3A~wu2,

(3.4.18)

(3.4.19)

\ - g
1\.- ,

W
(3.4.20)

so that, from (3.4.17):

1'- = _g_
A-u (3.4.21)

and:

w = K.
A

(3.4.22)

Using (3.4.21), (3.4.22) and (3.4.16) the Riemann equations are:

(3.4.23)
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where k = 1,2,3 denotes each of the characteristic families. Next, putting (3.4.21) and

(3.4.22) into (3.4.17) gives:

(3.4.24)

Rearranging (3.4.24) and simplifying gives the characteristic (cubic) polynomial:

(3.4.25)

the discriminant of which is:

(3.4.26)

where:

(3.4.27)

and:

(3.4.28)

For the system of governing equations to be hyperbolic, then D < 0; this implies that

the roots of the cubic, and consequently the characteristic wave speeds, are all real

and distinct (Courant and Friedrichs, 1976). H D = 0 then the system of governing

equations is parabolic and only two distinct families of characteristics exist. For values

of D > 0 only one of the roots is real, the other two being complex, and the system is

elliptic. For physically realistic situations where h ~ 0 it can be shown that for (3.4.25),

D < O. The governing equations are therefore hyperbolic with wave speeds found

directly from (3.4.25) using Cardano's formula (see Spiegel and Liu (1999»:

1 e 2u
Al = 2(-r):z cos("3) +3' (3.4.29)

1 e+ 27r 2u
'\2 = 2(-r):z cos( 3 ) +3'

1 e +47r 2u
'\3 = 2( -r):z cos( 3 ) +3'

(3.4.30)

(3.4.31)
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where:

E> = COS":'1 ( R 3) .
(-f)~

(3.4.32)

The characteristic equations are given by (3.4.17) as:

dx
-=Ak'dt

(3.4.33)

Letting A -+ 0 leads to recovery of the well known hydrodynamic C- and C+ wave

speeds with C- corresponding to Al = U - (gh)~ and C+ to A2 = U + (gh)L The bed

deformation speed Cb, A3, then becomes zero.

Sediment flux given by q = Au3h

The approach employed above can be used for the system of governing equations com-

prising (3.2.8), (3.2.18) and (3.3.8). Combining (3.2.8), (3.2.18) and (3.3.8):

R = p(3.2.8) + (3.2.18) +w(3.3.8) = 0, (3.4.34)

and simplifying, again with the aim of obtaining the total derivative:

R = flh,t + (flu +g +wA~u3)h,x +U,t+ (flh + U+3wA~u2h)u,x +wB,t +gB,x = O.

(3.4.35)

Thus, (3.4.35) reduces to:

(3.4.36)

with:

(3.4.37)

Hence:

(3.4.38)

and:

(3.4.39)
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so that:

A - U 3A~gu2
1l=-h-- A . (3.4.40)

Hence, from (3.4.36), the Riemann equations are:

(3.4.41)

As is the case above, k = 1,2,3 denotes the respective characteristic families. Next, the

characteristic polynomial can be derived from equation (3.4.37):

(3.4.42)

Rearranging (3.4.42) and simplifying gives the cubic characteristic polynomial:

(3.4.43)

As is the case when q = Au3, the roots of (3.4.43) can be shown to be both real and

distinct and are given by (3.4.29), (3.4.30) and (3.4.31) where:

E> = C05-1 (_R_)
v'-f3 '

r = 3(u2 - gh - 3A~gu2h) - 4u2,
9

R
= -18u(u2 - gh - 3A~gu2h) - 54A~gu3h + 16u3

54 .

(3.4.44)

(3.4.45)

(3.4.46)

Equation (3.4.46) can be simplified to show that R is independent of A giving:

(3.4.47)

3.4.3 Variation of eigenvalues with Froude number

In Figure 3.2 the three eigenvalues (wave speeds) associated with the shallow water-

Exner equations, with q = Au3, are given as a function of Froude number; also plot-

ted on the figure, for comparative reasons, are the two wave speeds associated with
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<D

A1(gh)--;
A2(gh)--;
A3(gh)--;
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/'

=V
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Figure 3.2: Variationof dimensionlesswave speeds with Froude number (Fr) for q =

Au3 transport (A = 0.001 s2m-l, p= 0.4).

purely hydrodynamical (fixed bed) flow (denoted by subscript h). To provide repre-

sentative values of the wave speeds h is fixed at 1m and u increased from 0 to 15.66

ms ", values of A = 0.001 s2m-1 and p = 0.4 are used. When the wave speeds are

examined the value of A2 is least effected by the bed mobility and corresponds closely

to the purely hydrodynamical incoming wave speed (A2h)' The behaviour of the Al

and A3 wave speeds is intriguing. For subcritical flow the Al wave speed is in rel-

atively close agreement with the purely hydrodynamical outgoing wave speed (Alh)'

However, as (gh) i ----t u, i.e. as the Froude number (FT) approaches unity, the agree-

ment begins to deteriorate. Once the flow has become supercritical (FT > 1) the A3

wave speed begins to assume similar values to A1h. The results for the q = Au3h case

are very similar, although the agreement between hydro- and morphodynamic wave

speeds deteriorates more rapidly for supercritical flow as the Froude number increases

(cf. Figure 3.3). Interestingly, similar behaviour has been noted for the shallow water-
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A.1(gh)-;
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Figure 3.3: Variationof dimensionlesswave speeds with Froudenumber (Fr) for q =

Exner system with closure provided by the Meyer-Peter-Muller sediment transport

formula (Savary, 2007). It is worth noting that, for both the q = Au3 and q = Au3h

sediment transport formulae, as A, A ----t 0 the value of (AI ----t "-Ih) for Fr < 0 and

(A3 ----t "-Ih) for Fr > O. By analogy to the fixed bed case, Savary (2007) reasons that

for subcritical flow the essential information about hydrodynamical variables is prop-

agated along characteristics whose wave speeds are given by Al and "-2 whereas for

supercritical flow this information is carried by characteristics with wave speeds given

by A2 and A3. Savary (2007)concludes that information concerning sediment thus prop-

agates primarily along characteristics with wave speeds given by A3 and Al for sub-

and supercritical flow respectively. Results concerning the wave structure of a mobile

bed dam-break obtained inChapter 6 appear to support this hypothesis.
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3.5 Eigenvalues of the shallow water-Exner system at the wave

tip

For the shallow water system it is well known that at the wave tip h --+ 0 and the

system of governing equations degenerates from hyperbolic to parabolic. Analysis of

the wave speeds, or eigenvalues, at the wave tip for the shallow water-Exner system

leads to some interesting conclusions.

Closure given by q = Au3

Evidence from the Riemann wave solution developed in Chapter 6 and the work of

Dodd et al. (2008), using the same set of equations solved via a Riemann-type scheme,

suggests that the water depth at the wave tip tends to zero. Assuming that h --+ 0 at

the tip, evaluating the wave speeds analytically at h = 0 gives:

'\3 = u, (3.5.1)

(3.5.2)

(3.5.3)

giving the relationship:

(3.5.4)

Thus, it follows that, unlike the shallow water system, with q = Au3 the shallow water-

Exner system remains hyperbolic at the wave tip. If the Riemann equation (3.4.23) for

the third characteristic family (k = 3) is considered at h = 0, the implication of (3.5.1) is

that (3.4.23) is undefined there. This finding may have important implications for the

solution of the shallow water-Exner system close to the shoreline.
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Closure given by q = Au3h

Evidence from the Riemann wave solution developed in Chapter 6 again suggests that

h -+ 0 at the wave tip when q = Au3h. Thus, evaluating the wave speeds analytically

at h = 0 gives:

Al = 0,

(3.5.5)

(3.5.6)

(3.5.7)

giving the relationship:

(3.5.8)

Like the shallow water system, the shallow water-Exner system with q = Au3h there-

fore becomes parabolic at the wave tip.

3.6 Eigenvectors of the shallow water-Exner system

The roots of the characteristic polynomial give the eigenvalues for the respective shal-

low water and shallow water-Exner systems. The eigenvectors for the shallow water

system are well known and can be found in many text books, e.g. Toro (2001). Here the

right eigenvectors are derived for the primitive variable form of the shalllow water-

Exner system with closure given by either q = Au3 or q = Au3h. It is necessary to use

these eigenvectors when constructing the Riemann wave solution in Chapter 6.

3.6.1 Closure given by q = Au3

Putting the shallow water-Exner system into vector form:

f,t +A(f)f,x = 0,
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where:

£= u

h

B

and:

u h o
A(£) = g u g

The right eigenvectors Rk are found using:

(3.6.2)

where k = 1,2,3 denotes each of the characteristic families, and:

rk
1

Rk = rk
2

rk
3

to give:

u h 0 rk rk1 1

g U g rk = Ak rk
2 2

0 3A~U2 0 rk rk
3 3

Multiplying out and setting r~= 1 gives the right eigenvectors of the system as:

Rk = ~Siu
3A~u2(Ak-U)

Akh

1
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3.6.2 Closure given by q = Au3h

Again, putting the shallow water-Exner system into vector form:

f,t + A(f)f,x = 0, (3.6.3)

where:

h

f= u

B

and:

u h 0

A(f) = g u g

A,u3 3A,u2h 0

Generic right eigenvectors Rk are found as above, giving:

u h o rk rk
1 1

rk =Ak rk
2 2

rk rk3 3

g u g

Multiplying out and setting r~ = 1 gives the right eigenvectors of the system as:

1

3.6.3 A note on the sediment flux formulation used for closure

Throughout this work the main form of the sediment flux used for closure of the shal-

low water-Exner system is of the form q = Au3• Some additional work is also pre-

sented for the shallow water-Exner system closed using a sediment flux of the form
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q = Au3h; however, it should be made clear that the analysis for this sediment flux is

by no means as detailed as the analysis undertaken for the q = Au3 case.
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Numerical Methods

4.1 Hydrodynamic (fixed bed) solver

A key component of this research is the comparison between uncoupled and fully cou-

pled modelling of beach face evolution in the swash zone. It is therefore necessary

to have an accurate and robust means of modelling swash zone hydrodynamics. The

floating grid method of characteristics, often referred to as the grid of characteristics

(MOe GC) method, is widely regarded as being the most accurate numerical scheme

for solution of the shallow water equations (Cunge et al., 1980).MOC GCmethods are

also attractive for modelling swash zone flows as the downstream (shoreline) bound-

ary requires no explicit treatment. Additionally, when using MaC GC schemes it is

possible to prescribe time varying seaward boundary conditions using the incoming

Riemann invariants. It is for these reasons that this research focuses purely on a MOC

based solver for uncoupled swash zone hydrodynamical modelling.
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4.1.1 The method of characteristics

In a recent paper Guard and Baldock (2007) outline a first-order accurate MOC GC

method for use in the swash zone; this method is the same as that detailed by Amein

(1964). Neither Amein (1964) nor Guard and Baldock (2007) provide any technique

for dealing with the embedded shocks that often arise in the backwash of bore-driven

swash. Both of these models are thus of limited use in terms of application to bore-

driven swash; moreover, they are formally only first-order accurate. Part of the work

undertaken in this thesis was to improve the simple MOC GC schemes of Amein (1964)

and Guard and Baldock (2007). Consequently, a new second-order accurate MaC GC

scheme was developed that is capable of detecting and evolving embedded shocks

such as those found in the backwash of swash due to a uniform bore. A description of

the scheme in the absence of shocks is provided below, details of the shock detection

and fitting procedures are given in §§5.4.2 and 5.4.4 respectively.

4.1.2 MOC GC technique

Notation

Throughout this section a subscript notation of the form (n, 5) will be used in order to

identify individual incoming (C+) and outgoing (C-) characteristics, as well as mesh

points on the characteristic grid. Outgoing (C-) characteristics are determined by the 5

subscript, with the first C- characteristic (Le. the seaward boundary) taking the value

5 = 1. Subsequent C- characteristics are denoted by uniform increments of 5, so that

along the second C- characteristic 5 = 2 etc. It then follows that the value of n de-

termines the number of the incoming (C+) characteristic under consideration. This

notation allows for easy identification of mesh points within the characteristic grid.
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,
s=l :

t s=smax
,,

C-t:,,'
,,,

I
I
I,

c

x

Figure 4.1: The region of integration for a single swash event showing the limiting

characteristics, i.e, the seaward boundary characteristic (bold solid line)

the shoreline boundary c- characteristic (solid line) and the last C+ char-

acteristic (dashed line).

For example, the intersection of the first incoming (C+) characteristic with the third

outgoing (C-) characteristic would occur at point (1,3). Refer to Figures 4.1- 4.3 for a

schematic representation of this system.

Initial and boundary conditions

When treated as an initial value problem a swash event is governed by the singular-

ity at the instant of its initiation (Le. the moment of bore collapse). Thus, the MOC

GC model begins with initial conditions at the origin of the coordinate system (that

is the point x = 0, t = 0). It is important to note that at the coordinate origin water

depth (h) assumes all values between an upper and lower limit. Seaward boundary

conditions are established through integration along a suitable outgoing (C-) charac-

teristic in accordance with the following procedure. As a consequence of the singular

nature of a swash event it is necessary to specify the value of R- on all outgoing (C-)
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Figure 4.2: Close-up of the initial, seaward boundary, characteristic (bold solid line)

and the adjacent C" characteristic illustrating the notation employed to

describe the MaC GC scheme.

characteristics between an upper and lower limit. The lower limit for R- determines

the characteristic that will represent the seaward boundary (Le. 5 = 1) and the up-

per limit, alongside other factors, determines how close the model gets to the actual

shoreline. Therefore, in choosing a lower bound for R- it is necessary to ensure that

it will furnish information for the entire region of integration under study. In this case

the region of integration lies between the seaward boundary characteristic and the C-

chracteristic representing the position of the run-up tip where h -+ 0, see Figure 4.1.

The first outgoing (C-) characteristic that fulfils these criteria is the one that is initially

coincidental with the t axis in the x - t plane; again, refer to Figure 4.2 and the C-

characteristic denoted by 5 = 1 for clarification. Along this characteristic ~~ is initially

zero, hence u = c, and therefore recalling that R- = u - 2c + B,xgt, and that t = 0 at

this point, it follows that this is satisfied when u = C = ~co where Co = (gho)!. Hence
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R- = -~co for all time on this seaward boundary characteristic. Specification of R+ at
•

the seaward boundary completes the information required to determine both the inde-

pendent (x and t) and dependent (u and c) variables in the manner detailed later on in

this section.

Determining the number of incoming (C+) characteristics

It should be immediately obvious from the above that the size of the timestep, as well

as the upper time limit on the seaward boundary, will directly determine the number of

incoming (C+) characteristics. Thus, if the time step on the seaward boundary is fixed

at 1 x 10-6s, and the upper time limit is set to 45, then the model will require 4 x 106

incoming (C+) characteristics and the maximum value of n will be nmax = 4 x 106•

In order to conserve memory the model employs a variable timestep on the seaward

boundary; this is set up such that there is a large density of C+ characteristics at earlier

times.

Determining the number of outgoing (C-) characteristics

The maximum number of outgoing (C-) characteristics, Smax, is set as a parameter in

the following manner. As described above, the value of R- on outgoing characteris-

tics lies within the range -~eo ~ R- < 2eo, and so the value of R- on each of the

Smax C- characteristics is assigned by incrementing the initial value of - ~eo by the

amount (s~co) on each subsequent C- characteristic. This continues until the shoreline
mox

boundary double characteristic, on which R- = 2eo, is approached with the last C-

characteristic being prescribed as that on which R- = 2eo - (s~co). It can be seen from
max

this that the number Smax of outgoing (C-) characteristics has a direct bearing on how
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Figure 4.3: Computational mesh for MaC GC fixed bed scheme showing close-up of

a typical (subcritical) cell.

close to the run-up tip the solution proceeds.

Formally defining the seaward boundary characteristic

The solution is systematically advanced along subsequent outgoing (C-) characteris-

tics one at a time, starting with the seaward boundary. The seaward boundary (SB) is

taken to be an outgoing (C-) characteristic; in this section values on this characteristic

are denoted by the subscript s = 1. A requirement of the MaC GC technique detailed

here is that the value of R+ is known for all time on the SB characteristic. Due to the

fact that R+ is specified on the SB characteristic, and the fact that R- is known for all

time along the SB characteristic, all that is required is to solve the following system of

equations in order to determine values for u and c at any prescribed point in time tn,l:

(4.1.1)
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(4.1.2)

As the system comprises a set of two simultaneous equations with two unknowns, U

and c, it is readily solved yielding:

(4.1.3)

and:

(4.1.4)

On the seaward boundary characteristic it has been established that R;t = - ~co.From

this the value of U and c at any point (n, 1) can be computed if the R+ value is specified

on the seaward boundary characteristic. Using this information, along with the size

of the timestep ~t, an approximation to the location X of point (n,1) (second-order

accurate in time) is made using:

Xn,t = Xn-l,l + ~t (Un-U - Cn-l,l +Un,t - Cn'l)' (4.1.5)

The scheme assumes that the value of x, U and C are known at the initial time step.

The scheme then increments n by 1 and t by the prescribed amount, values of Un+l,l

and Cn+l,l are then determined using (4.1.4) and (4.1.3). The next point on the seaward

boundary Xn+l,l can now be located in an identical fashion to that described above.

This process continues until the time limit (set as a parameter) is reached.

Creating the grid of characteristics

The first point on each of the outgoing (C-) characteristics lies at the origin, with each

C- characteristic being distinguished by its unique value of R-, where ~co :s; R- :s; 2co.

It follows from this that the initial location (i.e. Xl,s = 0,5 = 1 ... smax) of each C-

characteristic is known. The scheme also requires that the value of U and C are known
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at the origin. These values are determined from values of R+ and R- through relations

derived from (3.4.11) and (3.4.12) as being:

(Ril - R1s)C - , ,1,s - 4 (4.1.6)

and:

(4.1.7)

Note that the time dependent B,xgt term has dropped out as we are at the origin and

t = O. Although the value of R- is prescribed, and therefore presents no problems,

the value of R+ at the origin, point (1,1), is generally constant at 2co; it can vary de-

pending on initial conditions. The scheme now begins work on the first outgoing (C-)

characteristic shoreward of the seaward boundary. Conditions are known on the (s-I)th

C- characteristic, and now that conditions have also been established at point (1, s) the

scheme proceeds as follows. The difference forms of (3.4.11) and (3.4.12) are:

Un,s+ 2cn,s = Un,s-l + 2Cn,s-l - (tn,s - tn,s-l)B,xg (4.1.8)

and:

Un,s - 2cn,s = Un-l,s - 2Cn-1,s - (tn,s - tn-l,s)B,xg. (4.1.9)

It is possible to construct second-order difference approximations for the characteristic

equations (3.4.7):

Xn,s = Xn-l,s + ~((un,s - Cn,s+ Un-l,s - Cn-1,s) (tn,s - tn-l,s)) (4.1.10)

and:

Xn,s = Xn,s-l + ~((Un,s + Cn,s+ Un,s-l + Cn,s-t}(tn,s - tn,s-l)). (4.1.11)

It follows that (4.1.8) and (4.1.9) can be combined to give:

Cn,s = ~{un,s-l - Un-l,s +2(Cn,s-l + Cn-l,s) + (tn,s-l - tn-l,s)B,xg}. (4.1.12)
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To compute tn,s an expression for un,s is obtained from (4.1.9) and inserted into (4.1.10)

and (4.1.11) to provide two expressions for Xn,s which are then equated, rearranged and

simplified to give:

tn,s = {tn,s-l (3cn,s + Cn,s-l - 2Cn-l,s + Un-l,s + Un,s-l + tn-l,sB,xg) -

tn-I,s(Cn,s - 3Cn-l,s + 2Un-l,s + tn-l,sB,xg) + 2(Xn-l,s - Xs-l,n) } X

{ - 2cn,s - Cn-l,s + Un-l,s - Cn,s-l -

}

-l

Un,s-l + tn-l,sB,xg - tn,s-IB,xg , (4.1.13)

with cn,s given by (4.1.12). The value of cn,s is substituted, along with the value of

tn,s, into (4.1.8) or (4.1.9) to yield up un,s. Finally, from (4.1.10) or (4.1.11) xn,s can be

obtained. Next n is incremented and the scheme then moves onto the next point on this

particular outgoing (C-) characteristic. The scheme proceeds like this until n reaches a"

maximum value. This maximum value for n is equal to the number of incoming (C+)

characteristics for the reasons described above.

4.1.3 A note on the formal accuracy of MOC GC schemes

The scheme employed by both Amein (1964) and Guard and Baldock (2007) uses a lin-

ear approximation for the characters tic slopes based on known values at the previous

time step. The scheme outlined here uses an averaging of the characteristic slopes be-

tween their old and new values. By analogy with the rectangular rule of quadrature

Lister and Roberts (1956); Lister (1960) have shown that MOC GC schemes employ-

ing linear slopes are formally first-order accurate. Lister and Roberts (1956); Lister

(1960) have also shown that MOC GC schemes using characteristic slopes based on

wave speed averages are formally second-order accurate using the trapezoidal rule of

quadrature.
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4.2 Morphodynamic (mobile bed) solvers

In the course of this research two numerical solvers were developed successfully to

model single swash events on a mobile beach. Initially, an attempt was made to extend

the MaC GC scheme to solve the full shallow water-Exner system. This was only

successful for certain flow problems. The MaC GC method and results for both dam-

break and tidal flow over a sand dune are described in the paper of Kelly and Dodd

(2008). The MOC GC scheme proved unsuitable for simulating mobile bed swash flow.

In particular, the wave structure is such that the use of a characteristics grid becomes

prohibitively difficult especially when embedded shocks develop in the flow. Instead,

a specified time interval (STI) MaC scheme with explicit shock fitting was developed

alongside two more conventional finite difference shock capturing solvers based on

the scheme of MacCormack (1969). The principle motivation for developing a MOC

scheme with shock fitting is that such a scheme inherently reveals the underlying flow

(morpho )dynamics as it is based on the characteristics of wave propagation. The reason

for simultaneously developing a shock capturing type scheme is that it can be used for

comparative reasons. Moreover, shock capturing schemes can start from discontinuous

initial conditions and thus be used to give some insight into the wave structure of the

mobile bed dam-break problems examined in Chapter 6. Finally, it should be relatively

easy to extend such a shock capturing finite difference solver in order to model multiple

swash events on a mobile beach.

4.2.1 Specified time interval (STI) method of characteristics

The primitive variable form of the shallow water-Exner equations (3.2.8), (3.2.18) and

(3.3.5) describing both the water and sediment motion can be solved simultaneously
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Figure 4.4: Characteristics attending to an ordinary mesh point for the mobile bed

MOC STI scheme (sub-critical flow).

using a MaC based numerical scheme. The solution technique employed here belongs

to the specified time interval (STI) class of MaC schemes first outlined for unsteady

mobile bed flow by Wu (1973) and discussed in more detail by Lai (1986). Such a

scheme has not before been used to successfully simulate highly unsteady transcritical

flow such as that found in the swash zone. The Riemann equations (3.4.23) are put into

Euler difference form and integrated numerically on a regular x - t grid with spatial

increments of Sx and time step !It. Referring to Figure 4.4 the difference equations

used are:

(Us,n+1 - Ui) + (A g ) (hs,n+l - hi) + 1
9 (Bs,n+1 - Bi) = 0,

k,i - u, /~k,i
(4.2.1)

where i = a,b,c and k = 1,2,3 respectively. Equations (4.2.1) can be rewritten as a

linear system of equations of the form:

Us,n+l + (A .~ u.) hs,n+1 + }. Bs,n+1 = LZ,i'
k,1 I k,1

(4.2.2)

with:

* _ ghi gBi
Lk,i - u, + (1 ) + ~.

~k,i - Ui ~k,i
(4.2.3)

The linear system (4.2.2) can then be solved simultaneously in order to provide explicit

expression for hs,n+l, us,n+1 and Bs,n+l' Written in the notation of Figure 4.4 these are:

(4.2.4)
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g{ Lib - Lia + (Xi - Xi:)} Bs,n+1
Usn+l= ( )', A2b - U2 - Ala + Ul

* (Ala - UI) ( UI )hs,n+1 = Lla - g Us,n+l + Ala - 1 Bs,n+l,

(4.2.5)

(4.2.6)

where:

N* = Ala - UI - A3c +U3.
A2b - U2 - A la + UI

(4.2.7)

It is now possible to detail the STI MaC scheme developed as part of this research.

Schemes that are both first- and second-order accurate in both space and time are

presented. The formal accuracy of the STI MOC schemes is not discussed further here

as the proof is somewhat involved. The interested reader is referred to Gustafsson et al.

(1992) in which the formal accuracy of STIMOC schemes with space line interpolation

is rigorously proved for generic systems of conservation laws.

In the main body of the flow the solution procedure is as follows:

1. Assume the slope of each of the three characteristic families at (5, n + 1) is equal

to that at (s,n).

2. The locations of a, band c can then be found using extrapolation backwards in

time.

3. First approximations for the dependent variables (h, U and B) at (s,n + 1) are

then computed using interpolated values of h, U and B at a, band c in (4.2.4)-

(4.2.6). The order of accuracy in space depends on the interpolation procedure

used to find values at a, b and c. If the order is > 1 the solution becomes prone to

parasitic oscillations around gradient discontinuities (Gibbs phenomenon). These

oscillations can be removed by employing the Engquist et al. (1989) filter detailed

in §5.1.4IPor second-order accuracy in time an average of the hi, u., B, and Ak

lit is worth noting that shock capturing finite difference and finite volume solvers also suffer from the
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values at (5, n) and (5, n + 1) for i = a, b, c, k = 1,2,3 is made and used in (4.2.4)-

(4.2.6).

4. These new values for h and u are used in (3.4.29), (3.4.30) and (3.4.31) to recalcu-

late the slope at (5, n + 1).

5. Steps 2-4 are repeated until successive values of dependent variables at (5, n + 1)

agree within a specified error limit.

In this scheme any order of accuracy can be obtained in space by selecting the appro-

priate interpolating polynomial. Note that, unlike the MaC GC scheme which does so

implicitly, the scheme must satisfy the CFL stability criterion so that

I fl.t I < _1_
tu - lA-maxi

(4.2.8)

where A-max is the maximum wave speed found. Solution of the three-equation system

is simultaneous so there is no iteration to a steady state or morphodynamical time-

stepping. At the flow boundaries special procedures are required and these are detailed

in §4.3.

4.2.2 Initial time step for dam-break Ie

For the dam-break initial conditions equivalent to an SM63 swash event, or indeed

for any dam-break initial conditions, all of the dependent variables are multivalued

at t = o. The MOC solution is therefore started at an initially small time (tI). Values

of the dependent variables at tl are provided by a Riemann wave solution procedure;

Gibbs phenomenon when steep gradients in the dependent variables are present. Whilst a filter is used

here to remove Gibbs type oscillations, such oscillations are usually cured in shock capturing schemes by

the use of a flux Iimitter (LeVeque, 1992).
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details of this procedure are given inChapter 6. This practice of starting at a finite time

is always necessary when MOC schemes are used to solve dam-break type problems.

In the case of wet-dry rigid bed MOC numerical solvers the values of the dependent

variables at the start time are typically provided by the Ritter analytical solution (see

for example Sakkas and Strelkoff (1973».

4.2.3 Finite difference method - MacCormack's scheme

Itwas mentioned in the introduction that the scheme developed by MacCormack (1969)

is particularly suitable for application to swash flow, as source terms are easily treated.

Another reason for choosing the MacCormack scheme is that a numerical approxima-

tion of the Jacobian matrix is not necessary. The MacCormack scheme is a finite differ-

ence predictor corrector scheme with second-order accuracy in both space and time.

The scheme is a variant of the Lax and Wendroff (1960) scheme, as are all second-order

space centred explicit schemes (Hirsch, 1988). The basic idea behind such schemes can

be summarised as follows:

• Approximate the dependent variables (J) at time t + flt by a Taylor series expan-

sion truncated at the second order term, i.e.:

(4.2.9)

• Express the time derivatives in terms of the space derivatives, obtained from the

governing equations

• Approximate the space derivatives using central differences
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The MacCormack predictor corrector sequence is:

update step:

Is = i: - :; (f:+1-e - i:-e) + botS~,

- bot
is = i: - ~X (isH - Is-HE) +MSs,

In+1= (Is + is)
Js 2'

(4.2.10)predictor step:

corrector step: (4.2.11)

(4.2.12)

where S represents the source terms with S being the value of S computed using the

values of the dependent variables obtained by the predictor step. The parameter €

can be either 0 or 1. The predictor step is a first-order forward (€ = 0) or backward

(€ = 1) difference in space. The corrector step is a first-order backward (€ = 0) or

forward (€ = 1) difference in space. The scheme obtains second-order accuracy as

a consequence of the cancelling out of the first-order truncation errors in the update

step. The computational stencil for the MacCormack scheme is given in Figure 4.5.

A problem with the scheme arises when shocks are present in the flow as the exact

solution ceases to be Taylor expandable, thus the truncation errors no longer cancel

out exactly (Moretti, 1971). The MacCormack scheme is particularly sensitive to the

direction of shock propagation, much more so than any other Lax Wendroff variant.

An analysis by Lerat and Peyret (1974)illustrates that the choice of the direction for

predictor corrector steps is key to minimising parasitic oscillations around shocks. In-

deed, it can be shown that the choice of € for a particular shock direction is crucial in

deciding if the scheme is dissipative or not. This feature can be beneficial, as choosing

the correct direction for the predictor and corrector steps has a stabilising influence on

oscillations. The predictor corrector direction is particularly important when dealing

with very strong shocks such as backwash bores. Moreover, the instabilities inherent in

the MacCormack scheme around such strong shocks tend to cause the scheme to blow

up after relatively few time steps. Thus, the instabilities around shocks require special
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Figure 4.5: Computational stencil for the MacCormack predictor-corrector scheme.

treatment. An in depth discussion of the techniques, merits and drawbacks of shock

capturing schemes is postponed until the following Chapter.

4.2.4 Conservation form

MacCormack's scheme is used in the context of this work as a shock capturing scheme.

In shock capturing schemes the governing equations must be in conservation form for

the shock development to be correctly approximated, see §5.1. In conservation form

the MacCormack scheme can be written:

corrector step: fs

fn M ( n n) ns - ~x Fs /1-<: - Fs-<: + ~tSs'

n ~t - - -
fs - ~x (Fs+<: - Fs-1+<:) + MSs,

(is +Is)
2

(4.2.13)predictor step: is

(4.2.14)

update step: f~+l (4.2.15)

where f represents the vector of conserved variables i.e.:

f = uh

B

h

and F represents the vector of flux conservative variables, i.e.:
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uh

and the source terms 5 are:

5=

o

o

4.2.5 Treatment of source terms for the conservation form

For purely hydrodynamical (fixed bed) swash events the non-dimensionalisation of

Hibberd and Peregrine (1979) allows the shallow water equations to be re-written

without the beach slope term. This approach is ingenious as, for frictionless flow, it

obviates the need to treat any source terms when using a numerical solver. Unfortu-

nately, for fully coupled morphodynamical flow it is impossible to remove the source

terms. Thus, when the governing equations are written in conservation form the issue

of source terms must be addressed. When using a MacCormack scheme source terms

have traditionally been approximated using a pointwise approach i.e.:

(4.2.16)

It is known, however, that such an approximation is unstable in the presence of an

irregular bottom topography (Hubbard and Garcia-Navarro, 2000). The instabilities

generated by a pointwise approach often lead to the failure of a scheme to conserve

mass. For this reason it has been suggested by certain researchers, e.g. Hubbard and

Garcia-Navarro (2000); Vincent et a1. (2001); LeVeque (2002), that source terms be ap-

proxima ted in the same manner as the flux gradient terms. Thus, in this work the
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Figure 4.6:Characteristics based treatment of the upstream (seaward) boundary for

mobile bed flow

source terms are discretised at each step using forward or backward differences, i.e.:

(4.2.17)

where € = 0 for forward differences and € = 1 for backward differences. Such an

approach has proven extremely stable throughout the course of this research.

4.3 Boundary conditions for non-GC schemes

With the exception of the MOC GC scheme, described in §4.1.1,which treats bound-

aries implicitly, all the schemes described above make use of the following boundary

treatments.

4.3.1 Upstream (seaward) transmissive boundary

A characteristics based method, developed from that outlined by Sieben (1997), for

treating the upstream boundary that allows for a limited spatial domain is presented

here. Referring to Figure 4.6, the boundary is fixed in space at Xs-l; this is denoted by

the bold line in the figure. An additional "ghost" cell, Xs-2, is introduced on the nth time
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level. The point X:_2 is located at a distance of !:lx to the left of the upstream boundary.

Values of all the dependent variables (h,u and B) are computed at X~_2 using linear

extrapolation from values at X~_l and x:. Next, the STI MOC procedure described in

§4.2.1 is used to compute values of h,u and B at x:~l.This procedure is applied at the

end of each time step in order to obtain boundary data for the next time. This type of

treatment allows waves to exit the computational domain, i.e. is transmissive, and has

been successfully employed in the STI MOC solver.

As the work here involves only one spatial dimension it is possible to simplify handling

of the upstream boundary. By ensuring that the upstream domain is sufficiently long,

the tail of the rarefaction wave is allowed to move unhindered until the computation

has finished. An approach such as this requires no explicit treatment of the upstream

boundary and was used with the STI MOC and MacCormack based finite difference

schemes.

4.3.2 Downstream (shoreline) boundary

Background

The downstream shoreline boundary represents the interface of land and water and,

as such, the boundary is of a wet-dry type. Wet-dry boundaries, like the analogous

gas-vacuum boundaries of gas dynamics, are particularly difficult to treat numerically.

When using MOC GC schemes the shoreline boundary is dealt with implicitly; how-

ever, as the wave tip is approached certain problems become apparent. In the fixed bed

case dose to the shoreline boundary, incoming and outgoing characteristics have very

similar slopes as h -+ 0 and in fact ~7 -+ U for both characteristic families. Thus, the

intersection of opposing families of characteristics can become infrequent, leading to
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Figure 4.7:Downstream (shoreline) boundary treatment using a time dependent

space step for mobile bed flow

poor definition close to the tip. For frictionless flow the shoreline comprises a double

characteristic as h = 0 there, therefore 1ft is identical for both C+ and C- characteristics.

Consequently, under these conditions, it is impossible to define the actual tip using a

MOC GC scheme. It is, however, possible to get ever closer to the tip with the inclusion

of additional advancing (C+) characteristics. Furthermore, it is theoretically possible

to reach the tip when friction is included in the model (Sakkas, 1972). In a paper con-

ceming fixed bed dam-break type flows, Abbott (1961) argued that letting h -- 0 at the

tip is physically unrealistic. Instead, he suggested that, even in the absence of friction,

the tip respresented a "wall" of water moving over the dry bed; for flow with depth

averaged velocity Abbott stated that the structure of the wall was irrelevant. What was

important was to establish relations between the height of the wall h. and its velocity

u•. For dimensional equivalence Abbott suggested a simple relationship between h;

and u; of the form:

1
u. = K(gh.)'1., (4.3.1)
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Figure 4.8: Snapshots of water height at t=Ss for a fixed bed wet-dry dam-break

showing the effect of thin film depth (hit) on wave profile and tip velocity.

where 1( is the constant of proportionality. Experimental results can be used to deter-

mine a suitable value for 1(, and Abbott illustrated that his "stability criterion" approach

gave a better approximation for actual physical dam-break flows than the Ritter solu-

tion. Abbott's approach is particularly suitable for cases when bed friction is included

and Freeman and Lelvlehaute (1964) used this technique in their STI MaC computation

of limiting solitary wave run-up.

There appear to be four primary methods of attack when treating a wet-dry boundary

using a classical hyperbolic solver such as the MacCormack scheme. The simplest, in

coding terms, is to employ the so-called "thin film" technique; indeed, this is the only

method discussed here that does not require explicit tracking of the wet-dry boundary.

When using the thin film technique conditions are set up such that a thin film of water

covers the "dry" region. If the film is made thin enough then the solution replicates the

actual wet-dry case reasonably well. Figure 4.8 illustrates water depth profiles for a
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fixed bed dam-break obtained using the hybrid MacCormack-mLxF solver (see §5.1.5)

with various thin film depths compared with the Ritter (1892) analytical solution. The

analytically determined position of the wet-dry boundary in the figure is indicated

by the square. Although, at the scale shown, the results for the thinnest film appear

almost perfect the numerical tip position is still 6% short of the analytical position.

Further thinning of the film only improves results marginally. The simplest genuine

wet-dry treatment is to use a first-order projection of the water surface slope to deter-

mine where the shoreline intersects the beach. The interested reader can find full details

of this procedure in Sielecki and Wurtele (1970). Better results are obtained using an

extrapolative predictor step followed by a corrector step based on a time centred differ-

ence scheme; this technique was pioneered by Hibberd and Peregrine (1979) and from

here on in this technique is referred to as the HP79 algorithm. Another, rather inge-

nious, approach is to use a transformation of the independent variables that effectively

fixes the position of the shoreline. This approach was initially employed by L'atkher

and Shkol'nikov (1978) and Takeda (1984); more recently the technique was used to

successfully model the run-up of both non-breaking and breaking solitary waves by

Li and Raichlen (2002). The most novel idea is that of Aida (1977) who considered the

beach as comprising a ladder of small steps and applied a weir formula to each step. In

the course of this research the HP79 algorithm was tried but suffered from severe spu-

rious oscillations when used in the mobile bed model even with the corrections pro-

posed by Packwood (1980). Instead, following Titov and Synolakis (1995) treatment

of the shoreline boundary in this work uses a time dependent space step for which

Sx = llx(t) for the last mesh point (shoreline position). However, the algorithm devel-

oped in Titov and Synolakis (1995) requires that the beach slope is known a priori, this

criterion is not met for the mobile bed problem when the sediment transport formula
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q = q(u) only. Therefore, referring to Figure 4.7, the following algorithm is presented

for the shoreline boundary. It should be noted that treatment of the bed height at the

tip (B*) depends on the form of q employed for closure. InChapter 6 quasi-analytical

solutions are derived for the mobile bed dam-break for which q = Au3 and q = Au3h.

These solutions indicate that when q = Au3, B* is governed by a shock relation de-

rived from the Exner equation and when q = Au3h, B* -+ O. For this reason two

distinct treatments for the bed height at the wave tip that depend on the form given to

q are presented below.

Run-up

Assuming that at time t the location of the shoreline boundary x, = x~ is known, then,

with the subscript 5 representing the last fixed nodal point on a beach whose slope

(tan~) is initially constant, the algorithm is summarised as follows:

1. At time t the velocity at the shoreline boundary!!Jt- = u* is set equal to that at the

previous fixed node (u* = us). Or, u; is obtained by (linear) extrapolation from

the previous two (5 and 5 -1) or (quadratic) extrapolation from the previous three

(5,5 -1and 5 - 2) fixed nodes.

2. An initial guess for X~+6t is made using the formula X~+6t= x~ + u~L\t.

3. u~+6t is set equal to that at the previous fixed node, Le. U~+6t= U;+6t or computed

using either linear or quadratic extrapolation.

4. x~+6t is re-computed using the formula X~+6t = x~ + {(u~+d;+u~)L\t}

5. U extrapolation is used to find u~+6t, steps 3 and 4 are repeated until values of

x~+6t agree to within a specified error limit.
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6. The water depth at the shoreline boundary h; is set equal to zero.

7. (a.) If sediment flux is given by q = Au3 the value of the bed height is set using

the beach slope (tan f3) and the shock relation at the shoreline boundary i.e:

B*= A~u: +x*(t+~t)tan,6. (4.3.2)

(b.) H sediment flux is given by q = Au3h the value of the bed height is set using

the beach slope only i.e. B*= x.(t + ~t) tan,6.

8. H, at time t + ~t, the shoreline boundary position z, exceeds the next fixed mesh

point (5 + 1) the value of 5 is incremented by 1 and this fixed mesh point is in-

troduced. The dependent variables here are determined by an interpolation from

the values at the previous fixed mesh point (Xs-l) and those at x •.

Backwash

Treatment of the backwash is much the same as the run-up; the differences being that in

step 4 the bed level at the tip is computed using an extrapolation procedure employing

data from the previous two mesh points. Instep 5 if the shoreline has receded beyond

a fixed mesh point then that mesh point is no longer used in the computational proce-

dure.

This approach differs from that of Titov and Synolakis (1995) as here the shoreline po-

sition is tracked explicity through time using an extrapolative procedure. Titov and

Synolakis (1995) use a horizontal projection of the free surface and specify the shore-

line position as being where this line intercepts the beach, cf. Figure 2 of their paper.

The algorithm presented here has proven to be extremely robust when used with both

conventional finite difference (MacCormack) and STI MOC type schemes.
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4.3.3 Stencil for the penultimate mesh point when using MacCormack based

schemes

For MacCormack based solvers treatment of the penultimate meshpoint is slightly dif-

ferent to that of meshpoints in the main body of flow. The reason for this is that Sx is

variable between mesh points 5 and 5 + 1 at time level n when point 5 + 1 corresponds

to the shoreline boundary. Thus, with €=O, Sx = r(t) for the forward difference step

or, with €=l,!!.x = r(t) for the backward difference step. No special treatment of the

penultimate mesh point is necessary when using the STI MOC solver.

4.3.4 Treatment of the penultimate mesh point in shock capturing schemes

If a shock capturing scheme is to be employed it is necessary to use the conservation

form of the governing equations. Casting the equations in conservation form can gener-

ate problems for numerical solvers as the tip is approached. This occurs because h - 0

whilst u tends towards some finite limiting value u; and u is necessarily computed

using:

uh
u=-h ' (4.3.3)

meaning that any small errors in the computation are amplified. This can lead to nu-

merical instability and even code failure. A suitable solution to this problem is to em-

ploy the primitive variable form of the governing equations in the vicinity of the tip

such that a value for u is obtained directly. Numerical experiments using the shock

capturing schemes described above have shown that it is sufficient to employ primitive

variables only when computing values of the dependent variables at the penultimate

mesh point before the tip.
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4.4 Model verification

It is essential to check that the numerical schemes described above are capable of repro-

ducing analytical solutions obtained for the same equation set. The system of partial

differential equations comprising (3.2.8), (3.2.18) and (3.3.5) reduces to a system com-

prising only the shallow water equations (3.2.8) and (3.2.18) if A is set equal to zero.

There are a number of known analytical solutions to the shallow water equations (Car-

rier and Greenspan, 1958; Shen and Meyer, 1963; Spielvogel, 1976; Synolakis, 1986)

but, as was discussed in §2.1, only the Shen and Meyer (1963) SM63 is representative of

bore-driven swash. For this reason the SM63 solution is used to verify the numerical

schemes described in this thesis. Thus, in order to test the validity of the STI MOC and

MacCormack based schemes, as well as the shoreline boundary treatment, A is set at

A = 1 x 1O-12s2m-1 in order to 'fix' the bed and the following initial conditions used:

h(x,O) = h, }
'Ix ~ 0 (4.4.1)

u(x,O) = 0

and:

h(x,O) = ° } 'Ix> 0, (4.4.2)
u(x,O) = 0

with:

B(x,O) = O.lx. (4.4.3)

Computational parameters employed are given in table 4.4. Two solvers based on the

MacCormack scheme are developed in Chapter 5; for reasons given in that chapter

only results obtained using the MacCormack-modified Lax Friedrichs (mLxF) hybrid

scheme are presented here. Results of both the STI MOC and MacCormack numeri-

cal schemes are compared with the SM63 analytical solution in Figures 4.9 to 4.11. In
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Parameter Value used

/).x 1 x 10-2 m

M 1 x 10-3 s

Courant N°. Variable

eB 1 x 10-12

htol 1 x 10-6 m

tr 1 x 10-2 s

Table 4.1: Computational parameters used for the verification of both STI MOC and

MacCormack based numerical schemes.

Figure 4.9 pre~ictions were made using the MacCormack-mLxF hybrid scheme with

a value of Sx = 1 x 1O-2m. Results shown in Figure 4.10 were obtained using the

second-order accurate (in space and time) STI MOC solver. For both solvers the initial

data was provided by the Riemann wave solution where the value of tt (see Chapter 6

for details on tt and the Riemann wave solution) was set equal to the value of Sx. By

employing the Riemann wave solution in this wayan excellent approximation of the

initial tip velocity is achieved. Note that for the last two times t = 8 and t = 10 s shown

the water is retreating off the beach, Le. the backwash has begun. Maximum discrep-

ancy of both numerical schemes from the SM63 solution is found closest to the orig-

inal dam/shoreline location at all the times shown. For both schemes the maximum

discrepency between analytical and numerical solutions is less than 2.5% in the figures

provided. The most likely cause of this discrepency is the small amount of bed mobility

required by both schemes; scour is at a maximum at the original dam/ shoreline loca-

tion for the mobile bed problem. It should also be noted that the MacCormack-mLxF
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hybrid scheme does not perform as well as the STIMOC scheme. The cause of this

is likely to be the inaccuracy introduced at the gradient discontinuity corresponding

to the tail of the upstream rarefaction. The innaccuracy is a consequence of numerical

diffusion; details of this are given in §5.1.5.The fact that the error decreases as distance

from the gradient discontinuity increases appears to substantiate this assumption.

Figure 4.11 illustrates shoreline evolution according to the SM63 analytical solution,

STIMOC and MacCormack-mLxF numerical schemes. For this test a value of tu =

5 x 1O-3mwas used and quadratic extrapolation used to determine u at the shoreline.

Clearly the agreement between analytical and numerical results, from both STIMOC

and MacCormack-mLxF schemes, is excellent. The maximum discrepency between

the numerical and analytical solutions is within 1.25%. Interestingly, the numerical

scheme slightly over predicts the run-up. From this it can be concluded that the shore-

line boundary treatment introduced in §4.3.2works exceedingly well for the fixed bed

case. Note that the results presented in Figure 4.11 are dimensionless but retain a de-

pendence on the beach slope (tant1= 0.1). Typically, in the literature, results are pre-

sented in dimensionless form with the beach slope scaled to unity, see e.g. Hibberd

and Peregrine (1979).In Chapter 7 suitable non-dimensional variables are derived for

the shallow water-Exner equations and used for the presentation of results thereafter;

however, beach slope is not scaled out as, for a mobile bed, it is no longer time inde-

pendent. Further validation is carried out in Appendix D, where results of the STI

MOC and MacCormack finite difference schemes are compared with the morphody-

namic dam-break solutions developed in Chapter 6. In Appendix D, results obtained

using the MOC GC scheme detailed in §4.1.1are also validated for test cases that in-

clude a comparison with the SM63 analytical solution. In all the cases considered all

schemes are found to perform very well.
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Figure 4.9: Comparison of analytical (lines) and Mac-mLxF numerical (circles) pre-

dictions of the water height h at times shown for SM63 swash with A =
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Figure 4.10: Comparison of analytical (lines) and STI MOC numerical (circles) pre-

dictions of the water height 11at times shown for SM63 swash with

85



CHAPTER 4: NUMERICAL METHODS

0
V

Ii)
C'1

0
C'1

N Ii)-- (\j~,.......
0 0.c (\j--Cl Ii)"-'- ~

0,...

to

0

0 2 4 6 8 10 12 14 16 18 20

h-1X 0

Figure 4.11: Comparison of analytical and numerical predictions of the instantaneous

shoreline position for SM63 swash with A = 1x 1O-10s2m-l here Sx =
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Discontinuous Flow

5.1 Shock Capturing Schemes

5.1.1 The philosophy behind shock capturing

Shock capturing schemes grew out of a desire to keep the coding of numerical schemes

as simple as possible. If the same technique can be used for both continuous and dis-

continuous regions of flow then the shock does not have to be treated explicitly as

a moving internal boundary. The principle idea behind shock capturing schemes is

therefore that discontinuous regions can be thought of as continuous regions in which

the dependent variables change rapidly. In a preliminary look at devising a numeri-

cal scheme for discontinuous gas dynamical flow, von Neumann and Richtmyer (1950)

found inspiration from the physical problem where viscous effects in a gas act to smear

out any shocks between discontinuous regions. Thus, von Neumann and Richtmyer

(1950) proposed introducing artificial viscoscity (dissipation) into the Euler equations

of gas dynamics. This artificial dissipation is formulated such that its value is very

low in continuous regions but increases dramatically in regions where the dependent

variables change rapidly in space. Lax (1954) was the first to note, what is now a fun-
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Figure 5.1: Formation of parasitic oscillations near a shock. Initial configuration (solid

line) and profile after two time steps (dashed line) following the argument

of Moretti (1969).

damental premise, that for shock capturing schemes the equations of motion should be

cast in conservation form so that:

(5.1.1)

where f is a vector of the variables conserved in time, such as mass and momentum

in shallow water flow, and F a vector of the flux conservative variables (see §4.2.4).

Note that for discontinuous flow the variables represented by F are only conserved in

a frame of reference for which the discontinuity remains stationary.

5.1.2 On the instability of shock capturing schemes

Inevitably in shock capturing schemes the width of a shock will be grid dependent

and scaled according to the mesh spacing. Ideally, shock capturing schemes should

resolve the shock over 2 mesh points; however, this is not possible due to the devel-

opment of parasitic oscillations on the high side of the shock. Many researchers have

acknowledged that instabilities are always present in shock capturing schemes based

88



CHAPTER 5: DISCONTINUOUS FLOW

on finite-differences and attribute them to second-order effects (see for example Lax

and Wendroff (1960); Hirsch (1988}). Moretti (1969) has demonstrated succinctly that

the inception and development of parasitic oscillations is actually a first-order effect.

Moretti's explanation does not appear to be widely known within the hydraulic mod-

elling community and it is therefore summarised here.

The argument is based on an underlying supposition of shock capturing schemes that

there is a continuous transition of dependent variables across a shock rather than a

jump; thus, the Taylor expansion (4.2.9) remains valid across the shock. The simplest,

non-stationary shock is one moving with constant velocity separating two uniform

regions as depicted in Figure 5.1. At the initial time it is assumed that the shock is

bracketed by mesh points 2 and 3; also, all the dependent variables (f) are higher on

the left side of the shock than the right side (always true for an unsteady shock moving

from left to right). For the numerical scheme the condition:

(5.1.2)

is assumed to hold, and is obviously the case if ~t is small enough. While (5.1.2) is

true it follows that first-order effects will dominate over second-order effects. Now

consider the first computational step. Using a centred difference scheme the approxi-

mation to the x-derivatives at points 2 and 3 will be negative. Consequently, according

to (5.1.1), over this time step all the dependent variables will increase at points 2 and 3.

At the next time step the numerical x-derivatives are negative at 1, 2 and 4 and posi-

tive at 3. It follows from (5.1.1) that the value of all dependent variables increase at 1,

2 and 4 and decrease at 3; the profile of f is now the same as that shown in Figure 5.1.

Parasitic oscillations are beginning to develop on the high side of the shock and the

solution is already becoming disassociated from the physical problem. The behaviour
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illustrated in Figure 5.1 is independent of the growth of f with respect to the initial

shock strength. In the words of Moretti (1969):

"This is a common, typical situation, due to a bold, but hardly justifiable attempt to compute

derivatives across a discontinuity; and it is afirst-order effect. The introduction of higher order

terms, as in the Lax Wendroff technique, is irrelevant as far as this effect is concerned."

Interestingly, the relatively large truncation error associated with first-order schemes

acts like artificial dissipation. This means that for reasonable mesh spacings first-order

schemes smear shocks over several mesh intervals. Thus, first-order methods limit

the problem of parasitic oscillations without recourse to additional artificial dissipa-

tion terms. Unfortunately, a typical consequence of this first-order dissipation is the

spreading of the shock far from its original location. Use of extremely fine mesh spac-

ing reduces smearing but increases computation time and, if fine enough, causes os-

cillations as predicted by Moretti. The existence of oscillations around data extrema,

such as shocks, in first-order schemes is investigated mathematically by Breuss (2005).

Second-order schemes suffer oscillations in the vicinity of strong shocks due to the

Gibbs phenomenom (Moretti, 1987). Artificial dissipation can be used to reduce the

amplitude of these oscillations in second-order schemes and many ingeneous meth-

ods employing adaptive dissipation terms have been derived; for details of many see

Hirsch (1988). The majority of these methods, such as the common total variation di-

minishing (TVD) schemes, apply dissipation locally in the vicinity of the shock by re-

ducing the scheme to first-order accuracy there, thus ensuring that the scheme remains

monotone. Another popular approach to the treatment of shocked flow is to use the

essentially non-oscillatory (ENO) family of shock capturing schemes. These methods

tend to employ a high nth order difference scheme, typically third-order or higher,

which reduces to (n-1)th order in the vicinity of a shock. Such schemes, by definition,
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allow small oscillations near shocks; the magnitude of these oscillations must be con-

trolled using some form of limiter. As there is an entire literature dedicated to limiters

to keep the numerics as simple as possible itwas decided to use a simple second-order

Lax Wendroff type scheme in this work. An unavoidable side effect of using artifical

dissipation in second-order schemes is the smearing of shocks over additional mesh

points. Thus, it becomes apparent that resolving the shock over two mesh points does

not appear practical using such techniques. Another possibility is to filter out any high

frequency oscillations at the end of each time step. If implemented correctly such fil-

tering has the advantage of allowing the shock to be resolved over two or three mesh

points; the flow is also allowed to remain completely inviscid throughout the compu-

tational region. Details and limitations of this type of filtering technique for swash

modelling are discussed in §5.1.4 below.

5.1.3 Entropy violating shocks

It is well known that many finite difference schemes, including MacCormack's scheme,

allow for the formation of stationary "expansion shocks" within transcritical (sonic) rar-

efactions, see e.g. Harten (1989). Expansion shocks do not satisfy the entropy condition,

which states that entropy has to increase across discontinuities, i.e.:

(5.1.3)

where W is the shock velocity. That is, characteristics of one family must converge

to the Hugoniot locus (shock path). If (5.1.3) does not hold then characteristics diverge

from the Hugoniot locus and an expansion shock forms. Expansion shocks are unstable

and the addition of any amount of viscosity smears this type of shock into a rarefaction

fan. A transcritical rarefaction wave contains a "sonic point" where u = (gh) lleading

91



CHAPTER 5: DISCONTINUOUS FLOW

to a vertical characteristic, i.e. zero wave speed. For the Lax Wendroff family of differ-

ence schemes the numerical dissipation increases with the local Courant number (see

Hirsch (1988) for a full explanation of this). At a sonic point the local Courant number

is zero and the artificial dissipation is at a minimum, thus the solution is not smeared

into a rarefaction wave and the expansion shock remains.

5.1.4 Classic filtering

By the late 1980s finite-difference schemes had largely become redundant for mod-

elling gas dynamical flow, with Riemann-type schemes taking over (this happened

in hydraulic modelling a few years later). However, when compared to traditional

finite-difference schemes Riemann-type schemes are computationally expensive, par-

ticularly for multi-dimensional flow. This led Engquist et al. (1989) to investigate the

possibility of stabilising the Lax Wendroff family of difference schemes using non-

linear conservation law filters. The filters developed by Engquist et al. (1989) are dis-

crete filters based on certain premises, in particular the filter must:

• be able to effectively locate meshpoints where the solution oscillates and leave

smooth regions of flow alone

• be able to determine if the oscillation is a local maximum or minimum and thus

whether the dependent variable requires decreasing or increasing

• be conservative, i.e. a reduction at one mesh point must be balanced by an addi-

tion at an adjacent mesh point and vice-versa
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If there is a local extremum in the conserved quantity I at point 5 on the mesh then the

simplest filter given by Engquist et al. (1989) is

(5.1.4)

where Is F is the filtered value and ~+, ~_ are forward and backward differences respec-

tively. The results obtained by Engquist et al. (1989) illustrated that the introduction of

a filter improved the accuracy of a classical Lax Wendroff solver to such an extent that it

was now in line with Riemann-type schemes. Moreover, the filter is a post processing

device and, as such, it should be possible to use it with any numerical scheme includ-

ing those based on the Mac.

There are two ways of implementing the Engquist non-linear filter; the dependent vari-

ables can be filtered directly, or a field by field decomposition can be undertaken in the

spirit of Roe (1981) and the local characteristic variables filtered instead. Even if the fil-

ter is applied to the characteristic variables the eigenvectors and wave strengths need

only be computed when a correction is necessary. For Riemann-type solvers the eigen-

vectors and wave strengths must be computed for every mesh point, increasing the

computational cost considerably. The CPU time for the classical schemes employing

a filter is therefore a fraction of the CPU time of Riemann-type solvers: unfortunately,

Engquist et al. (1989) do not provide a quantitative measure of the difference in this

computational cost.

In this work the simplest algorithm presented in Engquist et al. (1989) was adapted

and coded for use with the MacCormack scheme to solve the shallow water-Exner

system in conservation form. The scheme was found to work very well with mod-

erately strong shocks, such as an incident uniform bore, and results compared with

the standard MacCormack scheme, and the STI MOC scheme with shock fitting, are
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illustrated in Figures 5.8 and 5.9. However, a major problem became apparent when

using the filtered MacCormack scheme in order to simulate swash zone flows. When

the solver was used to simulate fixed, or mobile, bed swash driven by a uniform in-

cident bore the scheme broke down during the backwash phase. Breakdown occured

when the backwash bore was in the final stages of existence. The reason apparently

being the very high strength of this bore caused by the extremely thin water in front

of it. It is possible that this problem could be alleviated by employing the more com-

plex filter described in Engquist et al. (1989)based on field by field decomposition of

the governing equations. However, the motivation for employing a shock capturing

scheme within the framework of this thesis is to develop a simple, robust and compu-

tationally cheap solver; undertaking complex decompositions obviously defeats this

purpose. Moreover, when tested for certain wet-dry dam-break type problems, the

filtered MacCormack scheme exhibited a stationary expansion shock in the rarefaction

fan. These two problems motivated the development of the hybrid scheme outlined

below.

5.1.5 Hybrid scheme

The accuracy of second-order schemes and the numerical dissipation of first-order

schemes can be combined to good effect. This was first realised by Harten and Zwas

(1972)who pioneered the development of self-adjusting hybrid schemes. Such schemes

provide accurate solutions in regions of continuous flow and non-oscillatory, smeared,

shock profiles in regions where the flow variables are discontinuous. The simplest self-

adjusting hybrid methods comprise a weighted average of low-order and high-order

schemes such that:
1Bore strength, as referred to here, is the ratio of high side to low side values of the dependent variables.
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F(f,s) = O(f,s)Fdf,s) + {1-O(f,s)}FH(f,s),

where FLand FH represent the lower and higher order fluxes respectively. The function

6(f,5), sometimes referred to as the "switch function", must be chosen such that it is

close to zero when f is smooth and approaches a value of unity at discontinuities. An

appropriate form for 0 is given by Holden and Risebro (2002) as being: ,

1
6(£, 5) = 1 - 1 I£ I '+ ,X,x

(5.1.5)

where (x,x is approximated numerically by:

f ~ £s+! - 2fs + £s-1
x,x (~X)2 (5.1.6)

Clearly the value of 0 given by (5.1.5) is ~ 0 in continuous regions where £,x,x is small.

Around a shock £,x,x becomes large, thus 0 --+ 1 and the scheme becomes first-order.

When the MacCormack scheme is used to provide the high-order fluxes careful con-

sideration must be given the choice of a suitable first-order scheme. At first glance the

Cole-Murman (1974) scheme seems appropriate as this is known to be the least dissi-

pative first-order finite difference scheme in existence (Harten, 1989). However, like

the MacCormack scheme, the Cole-Murman scheme admits expansion shocks; such a

hybrid scheme would therefore require some form of entropy fix (see LeVeque (2002».

In order to keep the code for the hybrid scheme as simple as possible, a first-order

scheme that gives the unique physical solution is required. One of the few finite-

difference schemes known to give the correct physical solution at sonic points is the

Lax Friedrichs (LxF) scheme. A modified LxF (mLxF) scheme having only half the nu-

merical dissipation of the original LxF scheme was introduced by Tadmor (1984). As

with the original LxF scheme the artificial dissipation within the mLxF scheme does

not vanish at sonic points. This property means that the mLxF scheme always gives
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the physically valid solution for transonic rarefactions, see e.g. Leveque (2002). The

mLxF scheme, written in the notation of this thesis, is:

It is important to note that, for dimensional consistency, all variables used for com-

putations in the hybrid scheme should be dimensionless. During the course of this

work, the MacCormack-mLxF hybrid scheme has been found to be extremely rapid

and robust when computing mobile bed swash flow. The only apparent downside to

the scheme is the smearing of shocks over a relatively large number of mesh points.

For the problems considered here shocks can be smeared over between 4 and 10 mesh

points. In order to validate the MacCormack-mLxF hybrid solver the numerical re-

sults are compared with the Stoker (1948) analytical solution for the wet-wet dam-

break problem. The test case is challenging as it contains both a shock and transonic

rarefaction. Results are presented in Figure 5.2 and were obtained using a mesh spac-

ing ofAx=O.Olm. As the Stoker solution is for an immobile bed, the bed was fixed

in the MacCormack-mLxF solver by setting A=lxlO-10s2m-1. Although the shock

is smeared the strength and position are extremely well predicted by the numerical

scheme. For the test case considered in Figure 5.2 the relative error between the nu-

merical and analytical shock strength is < 0.5%. Only visual comparisons are made for

the shock position. Quantitative comparisons of the numerical prediction of the shock

location and the exact shock location are difficult because the numerical schemes smear

the shock over several mesh points. Application of the Breuss filter described in §5.1.6

below removes smearing and provides results that are clearly in excellent agreement

with the analytical solution, the relative error between the numerical and analytical

shock strength remains < 0.5%. Moreover, as predicted, the hybrid solution does not
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exhibit a stationary expansion shock at the sonic point. There is some rounding of the

gradient discontinuities at the begining and end of the rarefaction region. This could

almost certainly be minimised by a more careful consideration regarding the form of

the switch function e.
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5.1.6 Breuss Filter

In a recent paper and report (Breuss and Welk, 2006; Breuss, 2006) Breuss provides de-

tails of a new conservative non-linear filter that removes the smearing effect around

shocks associated with first-order and dissipative second-order schemes for gas dy-

namical applications. Classical non-linear filters such as that discussed in §5.1.4 apply

corrections based on variations in local curvature of the dependent variables and are

designed for schemes with second-order or higher accuracy. Such filters are neces-

sarily applied discretely at each time step. The Breuss filter was conceived to work

with schemes that deliberately employ dissipation to ensure stability around shocks

and is thus an anti-diffusion tool. As long as the finite difference scheme accurately

predicts the shock velocity and strength the filter need only be applied at the data

output stage and is therefore computationally inexpensive. It is also possible to ap-

ply the filter after a preset number of timesteps if the accuracy of the numerical solver

is questionable. The results presented by Breuss (2006) show that when used with a

conventional second-order TVD scheme the filtered solutions give improved accuracy

over ENO type schemes in the vicinity of shocks. Moreover, once filtered the shock is

only smeared over a maximum of 3, typically 2, mesh points - the best resolution of

a shock possible using a shock capturing scheme. Here a brief overview of the Breuss

filter is provided; in depth mathematical analysis and rigorous validation is given in

Breuss and Welk (2006). The filter works by first identifying all mesh points belonging

to the smeared shock. Identification of such points at time level n is achieved employ-

ing the following criteria:

Jump in the conserved variable (I):
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Figure 5.2: Snapshots of Stoker (1948) analytical solution (red line) and solution by

MacCormack-mLxF hybrid solver (squares) without (left) and with (right)

Breuss filtering at t=1,2,3 and 4s.
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Figure 5.3: Schematic diagram illustrating removal of artificial diffusion by Breuss fil-

tering.

(5.1.7)

Lax entropy condition:

(5.1.8)

The points at the beginning (X~,) and end (x~,) of the smeared shock are thus readily de-

termined. The filter then successively eliminates each decreasing slope linking a local

maxima and minima of f by employing two discontinuous waves one travelling right

from x:, and the other left from x~,. The filter is terminated when both discontinuities

meet and only a single jump between the maximum and minimum f values remains.

The conserved variables remain conserved as the discontinuous wave moving right

increases the integral over f at a constant rate whilst that moving left decreases the

integral over f at an equal rate.

100



CHAPTER 5: DISCONTINUOUS FLOW

Following the explanation given by Breuss (2006) the filter can be better understood by

considering the case shown in Figure 5.3. The PDE that describes the Breuss filter is:

(5.1.9)

where G = G(a) is defined as:

{

0 ifa<O
G(a) = -

1 if a> O.

Thus, as /,X < 0 (note that a similar argument can be provided for the case where

/,x > 0), it follows that (5.1.9) becomes:

(5.1.10)

as signum(!,x)= -1. To to eliminate the smearing of the discontinuity shown in Figure

5.3 it is necessary to remove the amount IsH - 1s+2 from IsH and add it to Is. Accord-

ing to (5.1.10) there is inflow into cell s as IsH - IsH < 0 and there can be no outflow

from s to s -1 as Is-1 - Is-2 = O. Equation (5.1.10) can be written in difference form

as:

(5.1.11)

The value of IIT is chosen to ensure stability such that, if the points at the limits of the

smeared shock (points 1ST and ISTH in Figure 5.3) are denoted as IJ and Is~' then:

(5.1.12)

Considering Figure 5.3 then at point 5:

(5.1.13)

hence:

{H1 _ er llT - fT
Js - Js + llx - sl-1'

(5.1.14)
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Similarly,at point S +1in Figure 5.3:

(5.1.15)

hence:

{T+1 fT I!::.T fT
)5+1 = 5+1 - I!::.x = 5r+1· (5.1.16)

Insummary the procedure is:

• compute I!::.T, which stabilises the filter, using:

• update f at these locations using:

fT+1= fT + M andfT+l = fT _ l!iT.~ ~ ~. ~ ~ ~

• if SI - Sr = 1filtering is complete.

Note that T denotes the filter step with fl being the original unfiltered variables. Re-

sults of the hybrid scheme both with and without Breuss filtering are shown in Figure

5.2.It is dear from the figure that without filtering the shock is smeared over 10mesh

points, whereas the filtered solution smears the shock over 3 mesh points. The loca-

tion and strength of the shock are accurately predicted both being within 1% of the

analytical value for the time window illustrated.

5.2 Shock fitting

5.2.1 The philosophy behind shock fitting

Modem shock fitting schemes for inviscid flow grew out of the desire to treat disconti-

nuities in a mathematically impeccable manner such that numerical schemes remained
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stable and shock width was not grid dependent. The differential form of the equations

of motion are invalid in regions where it is not possible to differentiate the depen-

dent variables, this is precisely what happens across a shock. Thus, it is correct to use

these equations only in smooth regions and to connect smooth regions together across

shocks using the Rankine Hugoniot, or jump, conditions. Such an approach alleviates

parasitic oscillations and resolves each shock over a single mesh point. Additional ben-

efits include the possibility of using coarser meshes, and therefore faster computation.

Unfortunately, the downside is a more complex code. Coding shock fitting schemes

for relatively few shocks in one spatial dimension, whilst far more complex than an

equivalent capturing scheme, is achievable. However, for flow with many shocks and

shock-shock interactions, coding becomes prohibitively complex even in one spatial

dimension. Under shock fitting methodologies a shock must be tracked through time

as a separate data structure. Thus, a shock acts as a moving internal boundary interact-

ing with, and modifying, the surrounding flow.

5.2.2 Types of fitting procedure

There are two principle methodologies used to fit shocks for one-dimensional flow in

state-of-the-art gas dynamical solvers, both stem from the seminal work of Moretti

(1971). The simplest of these fitting procedures treats shocks as an internal boundary

separating regions of continuous flow; the so-called "shock as a boundary" approach.

The shock is treated exactly as any other boundary and the mesh is adjusted such that

the position of each shock corresponds to a fixed mesh point. The mesh point denot-

ing the shock location thus corresponds to the downstream boundary of one region

and the upstream boundary of the next region. Dependent variables at the boundaries

are related to each other via the jump conditions. In unsteady flow the shock bound-
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ary moves in time; this approach therefore requires a re-meshing at each time step in

accordance with the evolution of the shock boundary. The second, more complex, tech-

nique treats the shock as an embedded boundary allowed to wander freely between,

and across, fixed mesh points in the original computational region; this approach is

known as "floating shock fitting" (Moretti, 1973). This method requires the introduc-

tion of special additional data points for each shock that contain information about all

the dependent variables on both the high and low sides of that shock. Ineither proce-

dure all shocks within the flow are dealt with explicitly and are thus resolved at a single

point in space. Unfortunately in swash zone flow the presence of a moving shoreline

boundary complicates the use of the shock as a boundary method, for this reason the

floating shock fitting technique was employed in this work.

5.3 Rankine Hugoniot (jump) conditions

As shock fitting requires the explicit formulation of the Rankine Hugoniot (jump) equa-

tions these equations are derived below for the shallow water-Exner system of govern-

ing equations. Techniques to fit purely hydrodynamical shocks are also detailed in this

chapter. However, as the Rankine Hugoniot equations associated with the shallow wa-

ter equations are well known, their derivation is relegated to Appendix C where it is

also shown that a characteristic path represents the limit of a weak shock.

5.3.1 Rankine Hugoniot conditions for the shallow water-Exner system

The morphodynamic Rankine Hugoniot (jump) conditions may be obtained directly

from the integral form of the governing equations which are derived in Chapter 3. If

water mass is conserved then the rate of change of the total amount of mass in any
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domain X2 > X > Xl is necessarily balanced by the net inflow across X2 and Xl, thus:

d 1x2

dt Xl h dx + [hu]~i = o. (5.3.1)

Assuming unsteady flow then the shock position, will vary in time so that' = ,(t).

Here it is assumed that the shock lies between Xl and X2, i.e. X2 > '( t) > Xl. Splitting

the range of integration in (5.3.1) either side of the shock using:

(5.3.2)

and applying Leibnitz's theorem for the differentiation of an integral to the integral

terms, (5.3.1) becomes:

Note that hl,-(t) and hl'+(t) are the values ofh(x, t) as X - ,(t) from below and above

respectively; note also that Xl and X2 are time independent hence their derivatives with

respect to time are zero. Ifwe let the spatial extent of the shock become very small then

l'-(t) ah d- x-O
Xl at (5.3.4)

and:

t" ah dx _ O.
J,+(t) at

Letting W = ~ and simplifying (5.3.3) gives:

(5.3.5)

[h(u - W)];i = o. (5.3.6)

From the integral form of the momentum equation:

d 1x2
[ h2]X2 1dt uh dx + hu2 + g2 + gh dz = 0,x, x, CSl,2

(5.3.7)
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where CBl,2 denotes the line integral along the bed. Here z is defined such that z =
B(x), hence h(z) == h(B(x)); thus, dz = ~~dx. As long as the bed profile is continuous

then the last term on the LHS of (5.3.7) can be expressed as:

1 lx2 dB
gh dz == gh-d dx.

Cbl,2 Xl X
(5.3.8)

Clearly the function h(x, t) is not well defined along the face of a bed step. As, at

any point, h measures the vertical distance between the bed and the free surface it

follows that at the bed step the water surface must itself be discontinuous. In their

work on alluvial river flow Needham and Hey (1991) provide a method of overcoming

the problem of a bed step; what follows here is a summary of their method:

Firstly, h is defined along the bed step such that:

(5.3.9)

where d' is a positive differentiable function, monotone in z, that satisfies the end con-

ditions:

(5.3.10)

Hence, at a step discontinuity in the bed:

r gh dz == [gd(z)];~.
lCBI)'

(5.3.11)

In order to derive the jump conditions associated with the momentum equation it is

necessary to have a workable form of d'(z); this has been provided by Needham and

Hey (1991) who used empirical observations to justify that d'(z) can be considered as

a simple linear function of z, The form of d' (s) is found by ensuring that (5.3.10) is

satisfied and is given as:

(5.3.12)
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Integration of (5.3.12) with respect to z gives d(z) as:

(5.3.13)

Evaluating [gd(z)]ii and simplifying gives:

(5.3.14)

At a bed discontinuity we can therefore use the relationship:

(5.3.15)

in equation (5.3.7). Next, splitting the range of integration using:

(5.3.16)

and applying Leibnitz's theorem for the differentiation of an integral to the integral

terms (5.3.7) becomes:

Ifwe let the spatial extent of the shock become very small then Xl -+ ,- (t) and X2 -+

,+ (t) hence:

l'-(t) a(uh)
-- dx-+O

Xl at (5.3.18)

and:

iX2 a(uh)
--dx-+O.,+ (t) at (5.3.19)

Simplifying (5.3.17) gives:

(5.3.20)
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Finally, using this approach the integral form of the bed-updating (Exner) equation is:

(5.3.21)

Splitting the range of integration as above, equation 5.3.21 becomes:

d 1'-(t) d lX2
dt B dx + dt B dx + ~[q]~~ = o.

Xl '+(t)
(5.3.22)

Application of Leibnitz's theorem for differentiation of an integral to the integral terms

in (5.3.22) gives:

Again letting the spatial extent of the shock become very small then Xl ~ ,- (t) and

(5.3.24)

and:

lX2 aB
-dx~O.,+ (t) at (5.3.25)

Simplification of (5.3.23) therefore gives:

[BW - ~q]~~= o. (5.3.26)

Using a sediment transport flux of the form q = Au3 provides the shock relation as:

(5.3.27)
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5.3.2 Bore relations for a uniform bore advancing into still water over a mo-

bile bed (q = Au3)

Referring to Figure 5.4, with UL = 0 and BL = 0 the morphodynamic Rankine Hugoniot

(jump) condition for the sediment continuity (Exner) equation becomes:

BH = A~u~
W' (5.3.28)

and from the Rankine Hugoniot condition associated with continuity equation:

(5.3.29)

Finally the Rankine Hugoniot condition associated with the conservation of fluid mo-

mentum becomes:

(5.3.30)

Putting (5.3.28) and (5.3.29) into (5.3.30) gives:

Letting:

(5.3.32)

gives:

(5.3.33)

We are required to take the positive root if the bore is to move forwards with increasing

x, thus:
1

w= [g(h~;hDr
Note that for physically realistic solutions tp > 0 requiring that:

(5.3.34)

(5.3.35)
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u-or

Figure 5.4: Schematic of a uniform bore advancing into still water over a mobile bed

Letting A -+ 0 in (5.3.34) means that, as BH -+ 0 from (5.3.28), we recover the expres-

sion for a purely hydrodynamical bore moving into still water Le.

(5.3.36)

5.3.3 Analysis of the wave tip discontinuity when q = Au3

Using the shock relations derived in §5.3.1 Needham and Hey (1991) have shown that,

for alluvial flows, it is not possible for the shallow water-Exner system to admit contact

discontinuities. Importantly, the case for which h = 0 at both sides of the discontinuity

was not considered by Needham and Hey (1991), as this is not expected to occur in

alluvial flows. The Riemann wave solution developed in Chapter 6, however, indicates

that this is precisely the situation that does occur for mobile bed flows with a moving

wet-dry boundary. Results for the mobile bed dam-break show that water height does

in fact tend to zero at the wave tip while both bed height and water velocity tend

to some limiting value. This means that downstream of the tip, at Xl, values for all

dependent variables h, u and B are zero, as the water has not yet reached this point,
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whereas immediately upstream u and Bhave some finite value but h is again zero. It

follows that (5.3.27)becomes:

(5.3.37)

However, the analysis of §3.5has shown that tip velocity (corresponding to W) is equal

to water particle velocity u at the tip (from (3.5.1», therefore at the tip (5.3.37)reduces

to:

(5.3.38)

The remaining shock relations (5.3.6)and (5.3.20)are satisfied trivially. The proper-

ties of contact discontinuties found in gas dynamics are summarised by Chorin and

Marsden (1993)as being:

• Some,but not all, of the dependent variables are discontinuous across the contact.

• The contact moves with the local fluid velocity u.

• The contact moves along the trajectory of a characteristic.

The discontinuity found at the wet-dry interface obeys all the above criteria, if h can be

considered continuous. On the basis of this analysis it would seem that the "sediment

bore" found at the wave tip is best described as a contact discontinuity. However,

there is a further criterion required for the rigorous definition of a contact discontinuity

(jeffrey, 1976):

"A degenerate shock with speed W that coincides with an eigenvalue A~ on either side of the

shock is known as a contact discontinuity"

i.e., characteristics either side of a contact discontinuity must run parallel with the path

of the discontinuity. A discussion of this last point is left until Chapter 6 where the

wave structure of a mobile bed dam-break is analysed.
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B

x

Figure 5.5: Schematic diagram of the sediment bore observed at the wave tip (x = Xl)

when a transport formula of the form q = Au3 is used

Alternative derivation of the tip relation - B = A~U2

It is possible to arrive at (5.3.38) using a different approach. Here considering conser-

vation of sediment it follows that:

q = Vsu, (5.3.39)

where Vs is the volume of sediment per unit area. Equation (5.3.39) is based on the

assumption that sediment is advected by the flow. For the one dimensional case the

volume of sediment per unit area at a specific abscissa is just the bed height there with

an allowance made for bed porosity, i.e.:

Vs = (1- p)B. (5.3.40)

Thus, from (5.3.39) it follows that:

(5.3.41)

Using the notation of Figure 5.5 then the volume of sediment passing through Xl is

given by q = Au~, thus from (5.3.39):

(5.3.42)
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5.4 Implementation of shock fitting procedure for swash flow

5.4.1 Shock detection

If a shock is present in the initial data its position and velocity at this time tend to be

known. Inmany cases of unsteady flow, however, a shock will not be present initially

but will develop at some later time. The GC variant of the MaC is particularly well

suited to the detection of embedded shocks. Mesh points inGC schemes are defined at

points of characteristic intersection, it is therefore straightforward to modify a GC code

to check for the intersection of characteristics of the same family. In theory, such an

intersection point is the position of shock inception in the x-t plane. An average value

of the two characteristic slopes can be taken to give an estimate for shock velocity at

this point. This type of detection scheme was implemented for use with the decou-

pled MOC GC scheme developed in§4.1.1. There are large drawbacks when using GC

schemes with shock fitting, in particular the extremely irregular "floating" mesh. For

this reason when treating shocked flow using explicit fitting techniques it is easier to

employ MOC STI or traditional finite difference schemes which are based on regularly

spaced grids. This necessitates the development of a robust procedure capable of de-

termining the time and place of shock inception and providing a good estimate of the

initial shock velocity. Since the mid 1970s the trend in numerical hydraulic modelling

has been towards the use of shock capturing schemes; the early work that utilised shock

fitting has consequently been buried under over 30 years worth of literature focusing

almost uniquely on shock capturing schemes. Moreover, other than those based on

the intersection of same-family characteristics, it has proven impossible to trace any

procedures for the detection of embedded shocks in the hydraulic literature. Thus, it

is necessary to turn to the field of gas dynamics where embedded shocks have been
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treated explicitly for over 35 years (Moretti, 2002). A discussion of these techniques

and their adaption for swash flows is given in the relevant sections below.

5.4.2 Shock inception on a characteristics grid

In the course of this work a shock detection procedure for the uncoupled MOC GC

scheme detailed in §4.1.1 was developed. It is well known that shocks form when char-

acteristics belonging to the same family intersect and values of the dependent variables

consequently become multi-valued (Whitham, 1974). For a MOC GC scheme it is log-

ical to determine the point of shock inception by finding the interception point of two

adjacent same family characteristics. This approach was suggested for use with MOC

STI schemes to detect the inception of tidal bores by Dronkers (1964). A subroutine

based on this idea was coded and employed in the MOC GC code to detect the incep-

tion of a backwash bore. During the course of numerical experiments it was found that

occasionally the routine led to the detection of non-physical shocks. This was almost

certainly due to the extremely large number of characteristics present within regions

were the flow variables were rapidly changing. A modification to the original routine

was therefore made to increase reliability. In the new routine, instead of using directly

adjacent characteristics, a prescribed number of characteristics (typically ~ 5) were

missed out before intersection was checked for. This new routine was found to be reli-

able for the entire range of boundary value problems tested. An estimate for the initial

shock velocity Win was found by averaging the wave speeds of the two intersecting

characteristics.
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5.4.3 Shock inception on a fixed grid

There appear to be two primary techniques for the detection of embedded shocks on

a fixed grid currently in use in the field of gas dynamics. One is a variant of crossing

characteristics and was pioneered by DiGiacinto and Valorani (1989). In this approach a

search is made for all mesh points where wave speeds decrease moving from one mesh

point s to the next s + 1, Le. compression regions. At any mesh points where this occurs

a shock is deemed to be present at the mid-point (s+ !) between the cells. The Mach

number of each of the shocks detected in this way is then computed. What DiGiacinto

and Valorani (1989) define as Mach number is best thought of in a hydraulics context

as a relative Froude number Frel, given by:

(5.4.1)

where the L subscripts denote variables on the low side of the shock. A value for Win

is computed by averaging the relevant wave speeds of the mesh points at sand s + 1

bracketing the shock, Le:

(5.4.2)

where k denotes the characteristic family. DiGiacinto and Valorani (1989) propose an

empirical interpolating formula to find the value of the dependent variables (f) at the

low side of the shock of the form:

f. = fi + tu { (Is - /5-1) + 2Y ((/5+1 - /s))}
L s 2(1 +Y) Sx 3~x'

(5.4.3)

Here Y is an empirical coefficient that determines how the values are interpolated or

extrapolated. Thus, (5.4.3) is based on not only the variable jump within the cell but

the trend of flow variables in the adjacent cell. If the Mach number is greater than some

prescribed minimum value the shock is assumed to be physical. This technique has the
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advantage that it can be calibrated to allow for the early detection of shocks. The other

approach, developed by Moretti (1971), is simpler. Moretti's approach consists of, at

the end of each time step, identifying the mesh interval (s, s + 1) where the gradient

of a chosen dependent variable is greatest. If this maximum gradient then increases in

time for a prescribed number of consecutive steps (results presented in this thesis used

5 consecutive steps, however, the shock is detected only marginally later if more steps

are used) a shock is placed at the mid-point of the mesh interval (s + !). The number

of consecutive steps is again an empirical parameter Y. The initial shock speed Win is

determined using (5.4.2).

In this work both procedures were tested and it was found that not only was Moretti's

procedure easier to code it was also much less sensitive to variations in the empiri-

cal parameter Y. For this reason the Moretti (1971) detection technique was employed

in the shock detection procedure developed for the STI MOC code. Also, following

Moretti (1971), it is noted that the early detection of shocks, in which the shock initially

moves as a characteristic (Le. the limit of a weak shock, see Appendix C), is preferable

to late detection where the shock has already built up some strength. Numerical exper-

iments indicate that when a shock is detected too late the forbidden act of differentating

across a discontinuity has already occured. Consequently, parasitic oscillations grow

up and propagate into the main body of the flow causing the appearance of wiggles.

Such instabilities can, under certain circumstances, cause a catastrophic failure of the

code.

5.4.4 Shock evolution on a characteristics grid

The procedure detailed in this section was successfully employed to treat embedded

hydrodynamic (fixed-bed) shocks on a characteristics grid. In this section the words
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Figure 5.6: Schematic of the characteristics grid illustrating shock development

shock and bore will be used interchangeably. Letting the subscripts Hand L denote

quantities behind and in front of a shock respectively, then from (C.O.21), and the fact

that hH > hL, we have the following relation:

(5.4.4)

Thus, characteristics on the low side of the shock will meet the shock path as W > UL +

CL. This enables the water velocity and water height on the low side of the shock to be

computed by the GC MOC method up until the point of shock arrival. Characteristics

on the high side of the shock will reach the bore line as UH + CH > W. The procedure

devised for shock fitting on a characteristics grid therefore proceeds as follows: Firstly,

the check detailed in §5.4.2 is made for shock inception. If a shock is present Win is

calculated in the manner outlined and a flag set to indicate the presence of the shock.

The movement of the shock is now tracked in the x-t plane along a ''boreline''. The

subsequent position of the shock can be determined either when (i) it is intercepted by

the next characteristic arriving from the high side or (ii) it intercepts a characteristic on

the low side, see Figure 5.6. As the solution proceeds along a C- characteristic a check
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is made for the possibility of this characteristic or any C+ characteristic attending to it

intersecting the boreline. The bore velocity and the water height immediately behind

the bore are not constant for unsteady flow. The bore is modified by wave components

carried by characteristics overtaking from the high side, and by characteristics on the

low side carrying information about the water into which the bore is moving (Le. the

depth variation and water particle velocity). It is, therefore, necessary to update hn, ht..

UH, UL and W when the boreline intercepts a characteristic of either family. Referring

to Figure 5.6 and denoting flow variables at t (Le. the point where this high side C+

characteristic last crossed a C- characteristic) by the subscript t, it follows that:

(5.4.5)

Putting (C.O.l) and (C.0.2) into (C.0.7) gives:

(5.4.6)

Recalling that CH = (ghH)!' and putting this relation and (5.4.6) into (5.4.5) and re-

placing W with the expression given by (C.0.2l), then dividing through by (ghL)! and

rearranging gives:

(5.4.7)

where:

R= CH,
CL

(5.4.8)

and:

(5.4.9)

Application of a common denominator ..j2R(l +R2)! gives:

R4-l----~ + 2R - e = O.
..j2R(l + R2)!

(5.4.10)
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Equation (5.4.10) was first given by Lelvlehaute (1963). A value for o can be computed

directly as the variables tf, tn, Ut, Ct, UL and CL are all known, (5.4.10) is solved using an

iterative procedure. In this work the bisection method was employed (see Press et al.

(2007», to yield R. Values for hH, UH and Ware then found through rearrangement

of the relevant equations. The characteristic family whose crossing initiated the shock,

in the case of a hydrodynamical backwash bore the C+ family, are terminated at the

boreline and play no further part in the computational procedure. It should be men-

tioned that modification of the bore by overtaking wave components is a continuous

process; Ho and Meyer (1962) give a method that allows for the continued modification

of a bore by more expeditious wave components. If the characteristics are close enough

together then the development of the bore will be well approximated by the numerical

MaC GC scheme detailed here (see Amein (1964».

The above approach is complicated somewhat by an unstructered grid, inparticular the

irregular manner in which the GC scheme moves forward through time. When flow

with a mobile bed is considered the addition of a third characteristic family means that

it is not always possible to compute the flow in front of the shock prior to shock ar-

rival. The reasons for this will become clear when type 2 shocks are discussed in the

following section.

5.4.5 Shock evolution on a fixed grid

In shock fitting schemes the position of the shock must be tracked through time. Ad-

ditionally, for unsteady flow, values of all dependent variables on the high side of the

shock, as well as the shock velocity, must be computed at each time step. Morphody-

namic shocked flow is more complex than pure hydrodynamic shocked flow as three

distinct shock types can exist. Sieben (1997, 1999) has classified the three shock types
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for the shallow water-Exner system. Each shock type corresponds to a different charac-

teristic configuration at the shock; the possible characteristic configurations are shown

in Figure 5.7. The method used to fit shocks necessarily varies according to the type

of shock under consideration. The following text, used in conjunction with Figure 5.7,

outlines the fitting procedures developed for use with the MOe STI scheme presented

in§5.4.3.

Type 1 or type 3 (hydrodynamic) shock

1. An initial estimate for the new shock location Xw at n + 1 is made using the value

of the shock speed at n. This is assumed to be known in the case of a pre-existing

shock or is computed by the method given in §5.4.3 for the first time step follow-

ing the detection of an embedded shock.

2. Values of all dependent variables (h, u, and B) more than one mesh point away

on the low and high sides of the shock are computed using the MaC technique

detailed in§4.2.1.

3. Values of all dependent variables (h, u, and B) at point L on the low side of the

shock are computed directly by the MaC technique detailed in §4.2.1.

4. Using high side values from the previous time step an estimate of the C- charac-

teristic wavespeed (AI) is arrived at point H. Using this approximation a linear

extrapolation backwards in time made to find the location of the base of this char-

acteristic. Values for the dependent variables at the base point are determined

using a linear interpolation in space between values at node points bracketing

the base location.
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5. The 3 Rankine Hugoniot equations are solved simultaneously with the difference

form of the Riemann equation (4.2.1)valid along the C- characteristic (k = 1)

arriving from the high side. This set of equations presents a system comprising

4 nonlinear equations in 4 unknowns (hHI UH, RH and W) and is solved numer-

ically using a globally convergent Newton Raphson technique (see Press et al.

(2007». This yields up new values for hH,UH and RH as well as W in typically

< 10 iterations.

6. Using an average of wn and the newly computed value of W a new estimate for

the shock location Xw at n + 1 is made. Step 4 is then repeated until successive

values of hHI UH, RH and W agree within a specified error limit.

7. Values of the independent variables at the meshpoint adjacent to the low side of

the shock are computed by linear interpolation between the low side of the shock

(point L) and the next supercritical node.

8. Values of the independent variables at the meshpoint adjacent to the high side

of the shock are computed by linear interpolation between the high side of the

shock (point H) and the next subcritical node.

Type 2 (morpho dynamic) shock

1. Computation by the Moe procedes up until the fixed mesh point immediately

preceeding the new shock location values at this mesh point are not computed.

An initial estimate for this new shock location Xw at n + 1 is made using the value

of the shock speed at n. This is assumed to be known in the case of a pre-existing

shock or is computed by the method given in §5.4.3for the first time step follow-

ing the detection of an embedded shock.
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Figure 5.7:Configuration of characteristics in the x-t plane attending to a.) type 1, b.)

type 2 and c.) type 3 ~hocks. The shock path is shown by the thick line

whereas C+, C- and Cb characteristics are represented by thinner solid,

dotted and dashed lines respectively.
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2. Estimates of the C+ and Cb wave speeds on the low side (at point L) and the C-

and Cb wave speeds on the high side (at point H) of the shock are made using

values from the previous time step. The base points of these characteristics are

found using linear extrapolation backwards in time. Values for the dependent

variables at the base point of each characteristic are determined using a linear

interpolation in space between values at node (or shock base) points bracketing

the charateristic base locations.

3. The 3 Rankine Hugoniot equations are solved simultaneously with the 2 Riemann

difference equations (4.2.1) valid along the C+ (k = 2) and Cb (k = 3) character-

istics arriving from the low side and the 2 Riemann difference equations (4.2.1)

valid along the C- (k = 1) and Cb (k = 3) characteristics arriving from the high

side. This set of equations presents a system comprising 7 nonlinear equations

in 7 unknowns (hL, UL, BL, hu, UH, BH and W) and is again solved numerically

using a globally convergent Newton Raphson technique. Again, convergence is

usually obtained within 10 iterations.

4. Using an average of wn and the newly computed value of W a new estimate for

the shock location Xw at n + 1 is made. Steps 2 and 3 are then repeated until

successive values of hLI UL, BLI hHI UH, BH and W agree within a specified error

limit.

5. Values of the independent variables at the meshpoint adjacent to the low side of

the shock are computed by linear interpolation between the low side of the shock

(point L) and the next supercritical node.

6. Values of the independent variables at the meshpoint adjacent to the high side

of the shock are computed by linear interpolation between the high side of the
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shock (point H) and the next subcritical node.

Note that in both cases interpolation of variables across a shock is prohibited for ob-

vious reasons. Thus, a check is made to determine if the fixed mesh points to be used

for interpolation bracket the shock. If this is the case interpolations are made between

base values at the appropriate side of the shock and the adjacent mesh point. It should

be clear from the descriptions given that at the two mesh points immediately bracket-

ing the shock the overall solver is spatially only first-order accurate, even if the MOC

STI solver is second-order accurate in space. This is typically the case in shock fitting

schemes and does not adversly affect the global accuracy of the solver (Moretti, 2002).

The algorithms developed above have proven robust and capable of dealing with both

(pre-existing) incident bores (type 3 shocks) and the embedded backwash bores (type

2 shocks) that develop for SM63initial conditions on a mobile bed, see Chapter 8.

5.5 Comparison of fitted and captured shocks on a mobile bed

As an example test case the propagation of a uniform bore over a mobile bed is con-

sidered. An analytical solution to this problem was derived in §5.3.2. For the results

shown in Figures 5.8 and 5.9 a relatively large space step was used (~x = 5 x 10-2m)

and the time step was fixed at ~t = 5 x 1O-3s. Figure 5.8 illustrates the results obtained

using the standard shock capturing MacCormack scheme. The figure shows that, re-

gardless of filtering, the shock is smeared over 4 mesh points. Parasitic oscillations

are present on the high side of the shock for the standard non-filtered MacCormack

scheme. Interestingly, these oscillations are found to be (relatively) much worse for the

bed height than the water height. The Engquist filter successfully supresses the oscil-

lations providing a stable solution, albeit a smeared one. The same problem but with
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a fitted shock is shown in Figure 5.9. It is important to note that although data is com-

puted at the specific shock location within the code it is only outputed at fixed mesh

points. This means that although the shock appears to be spread over two mesh points

in Figure 5.9, within the shock fitting code it is actually resolved over a single nodal

point. The results for both water and bed height are oscillation free and the shock is

computed crisply with no smearing. Predictions for the location of the shock front for

both the fitting and capturing schemes are in excellent agreement with the analytical

result. In order to compare the shock fitting and hybrid shock capturing schemes the

climb of a bore on a mobile beach is considered. Figure 5.10 shows snapshots of water

depth at 0.25sintervals as the bore approaches the initial shoreline position, at xh, -1=10

in the figure. This test used A=0.004s2m-1, p=Oand ~x=O.OOlm. The main figure illus-

trates results computed using the hybrid MaCormack-mLxF shock capturing scheme

and the MOe STI scheme with shock fitting. Inset is a close up of the last two profiles

with circles denoting grid points. The plot illustrates excellent agreement between the

two schemes both in terms of the shock location and strength. As is to be expected, the

hybrid scheme has smeared the shock over a relatively large number of mesh points.

Most important is the location and strength of the shock, as the smearing can be almost

eliminated using the Breuss filter, cf. Figure 5.12. Results for bed height and water

velocity are the same qualitatively and are therefore not presented. A detailed study

of this problem that includes snapshots and contour plots of all dependent variables

is made in §8.2. Finally, a rigorous test of the shock fitting scheme is to examine the

behaviour of h, u and B immediately behind the front (at x = '(t» of a uniform bore as

it climbs a mobile beach. This problem was originally studied for a fixed bed by Keller

et al. (1960),see §2.1. Here the test was carried out on a mobile bed with an initially

uniform bore of strength 1.6. Results for all flow variables are shown in Figure 5.11.
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Figure 5.8: Uniform bore moving over a mobile bed (A=0.004s2m-1, p=O). Snapshots

of water and bed elevations after 100 time steps using MacCormack shock

capturing scheme with (solid) and without (dashed) the Engquist nonlin-

ear filter.
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Figure 5.9: As in Figure 5.8 but using STI MOC shock fitting scheme (circles) and an-

alytical solution (solid line).
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Figure 5.10: Snapshots of water depth for a bore climbing a mobile beach with

A=O.004s2m-1and p=O. Blue solid line shows hybrid shock capturing

solution and red dashed line isMOe solutionwith shock fitting.

For this test problem there are three distinct phases. The bore first moves through a

region of uniform depth before encountering the beach toe (at S = Omin the figure).

It then climbs the sloping beach and finally it collapses at the initial shoreline position

(s = 10m in the figure). In the region of uniform depth all quantities behind the bore,

and the bore speed, should remain constant; Figure 5.11 illustrates that this is clearly

the case. As the bore then climbs the beach the water particle velocity behind it ini-

tially decreases and then increases rapidly as the shoreline is approached. The bore

velocity continues to increase right up until bore collapse. Note that the bore velocity

always remains less than the water velocity immediately behind the bore front other-

wise the bore would collapse as a rarefaction wave. Water height immediately behind

the bore decreases as the bore moves up the beach rapidly decreasing as the shoreline

is approached. At the initial shoreline location it can be seen that the water height does
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Figure 5.11: Values of dependent variables immediately behind an initially uniform

subcritical incident bore as the bore approaches the original shoreline (at

S=10m), also shown is the bore velocity (W).

indeed tend to zero while the bore and water particle velocities tend to a finite limit.

Interestingly, bed mobility does not appear to have a major effect on the hydrodynam-

ics and the results obtained are qualitatively very similar to those given by Keller et al.

(1960) for an initially uniform subcritical bore.
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5.6 Comparison of hybrid and WAFresults

A typical Riemann type solver is that based on the weighted average flux (WAF) scheme;

this scheme has been widely employed for modelling swash zone hydrodynamics (see

for example Watson et al. (1992); Brocchini et al. (2001); Antuono et al. (2007». Details

of the WAF scheme can be found inToro (1999). Figure 5.12 shows a comparison for re-

sults obtained using a WAF solver! with those obtained using the MacCormack-mLxF

solver. The test problem is the wet-wet dam-break described in §5.1.5 and a mesh

spacing of t!.x =0.01m is used. Figure 5.12 provides a snapshot of the water depth 3s

after dam collapse. Both unfiltered and filtered MacCormack-mLxF results are shown

in the figure and the analytical solution is provided as a reference. Clearly, the filtered

MacCormack-mLxF solver better predicts the location of the shock as well as being

less oscillatory at adjacent high side points. In the bottom close-up it can be seen that

the shock is smeared over 4 mesh points for the WAF scheme but only 3 mesh points

for the filtered MacCormack-mLxF scheme. Not so clear from the figure is the smear-

ing of the gradient discontinuities at the beginning and end of the rarefaction fan by

both schemes. The smearing due to the MacCormack-mLxF scheme is far more severe

than that of the WAF scheme. As mentioned in §5.1.5, the excessive smearing of gra-

dient discontinuities by the MacCormack-mLxF scheme is a direct consequence of the

simple switch function given by (5.1.5).

lThese results were kindly provided by Dr. R. Briganti and were computed using the WAF-HLL solver

detailed in Briganti and Dodd (2008).

129



CHAPTER 5: DISCONTINUOUS FLOW

1+-----.
0.8

E 0.6
'--'
..J:::

004

0.2

OArIJ:§: 0.3 \
..c 0.2 \

9 9.1 9.2
x(m)

OL_----~----~----~----~------~--~
-30

o Mac-mLxF
+ WAF

---- Stoker (1948)

10 20 30

0.8

E 0.6
'-'
..c

0.4

0.2

-20 -10 o
x(m)

0.4

~ 0.3
..c 0.2

9.1 9.2
x(m)

20

schemes both without (top) and with (bottom) Breuss filter.

130

OL-----_L------~----~------~----~------~
-30 -20 -10 0 10

x (m)
30

Figure 5.12: Comparison of numerical results at 3000 time-steps with Stoker (1948)

analytical solution using WAF-HLL and MacCormack-mLxF hybrid



CHAPTER 6

Mobile bed dam-break:

quasi-analytical solutions

6.0.1 Background

Itwas stated in the introduction that dam-break flows are closely related to swash zone

flows. In particular, dam-break events comprise alternative (and more accessible) ini-

tial value problem interpretations of the boundary value problem defined when a bore

reaches the shoreline (see e.g. Pritchard and Hogg (2005); Guard and Baldock (2007».

Consequently, when simulating swash on fixed beaches or dam-breaks on fixed slop-

ing beds using a MOC based solver the Ritter (1892) solution is often used to provide

initial conditions (Sakkas and Strelkoff, 1973). By analogy it should be possible to use

the same approach for mobile bed problems. For this reason quasi-analytical solu-

tions for the shallow water-Exner mobile bed dam-break based on the q = Au3 and

q = Au3h sediment flux formulations are constructed here. The validity of using the

solution to a flat bed problem to provide initial conditions for a sloping bed problem

at some small start time does not appear to have been discussed in the literature. With
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x

Figure 6.1:Wave structure for the shallow water-Exner mobile bed dam-break for

both sediment flux formulations (refer to the accompanying text for de-

tails).

this in mind in Appendix A a scaling argument is used to show that this approach is in

fact valid. The quasi-analytical mobile bed dam-break solutions are later used to gen-

erate initial values of the dependent variables when modelling Shen and Meyer (1963)

type swash events, and also provide a valuable check on the accuracy of the other nu-

mercal schemes developed to solve the shallow water-Exner equations. Furthermore,

an accurate solution for the mobile bed dam-break with a q = Au3 sediment flux for-

mulation will allow for checking of the validity of the shock relation (5.3.38) derived

in §5.3.3. The solution technique employed is based on the so-called Riemann wave

approach pioneered for use with dam-break flows by Fraccarollo and Capart (2002).

6.0.2 Wave structure

In order to develop Riemann wave solution for the shallow water-Exner mobile bed

dam-break a qualitative a priori knowledge of the wave structure is necessary. In the

appendix of a recent paper, Dodd et al. (2008)give snapshots of h, u and Bfor the shal-

low water-Exner mobile bed dam-break problem when q = Au3. This solution was
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Figure 6.2: Mobile bed dam-break in the flume at the University of Nottingham (Pic-

ture courtesy of Dr. R. Munro)

constructed by Dodd et al. (2008) using a Riemann-type numerical solver based on

Roe approximations. From these snapshots and the work presented in Fraccarollo and

Capart (2002) for the two phase mobile bed dam-break problem, it has been possible

to deduce the wave structure that represents the solution of the shallow water-Exner

dam-break problem. Initially, in the region x < 0 the }q (C-) family of characteristics

form a centred simple wave up to the point where a constant state region develops. The

'\1 simple wave is represented by region (i) of Figure 6.1; this corresponds physically

to a rarefaction wave. The constant state region, region (ii) of Figure 6.1, is followed

further downstream by a'\3 (Cb) centred simple wave - region (iii) of Figure 6.1. From

Figure 17 of Dodd et al. (2008), the A, rarefaction fan seems to be terminated by an un-

usual discontinuity in both bed height and water velocity, the water height apparently

tending to zero there. The wave tip thus comprises a wedge of sediment that moves

over the dry downstream reach as a kind of "sediment bore". This ties in with the

eigenvalue analysis undertaken in §3.6 in which it was shown that for h = 0 the water

velocity tends to the celerity of the bed deformation, Le. U ---7 '\3. Thus, this discontinu-

ity in water velocity and bed height travels as a Cb characteristic. Itwas postulated in
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§3.6 that the sediment bore at h = 0 is a kind of contact discontinuity; if so, it is unlike

the contact discontinuities found in gas dynamics as the characteristics either side of

it certainly do not run parallel to it. Instead, this discontinuity appears to be what, in

gas dynamics, is known as an "intermediate discontinuity" (Ieffrey, 1976). An interme-

diate discontinuity is a discontinuity whose velocity is equal to one of the eigenvalues

of the state immediately behind it. A similar wave structure to that described above

was observed when the hybrid MacCormack solver described in §5.1.5 was employed

to solve the shallow water-Exner equations with q = Au3 h. The initial conditions there

were for a wet-wet dam-break with the upstream depth set at 1m and the downstream

depth set at 1 x 1O-8m, i.e. a wet-dry dam-break employing a "thin film" treatment

of the wave tip. The primary difference observed when compared with the q = Au3

formulation was that the bed height appeared to tend to zero at the wave tip. Other-

wise, apart from a narrower constant state region, the wave structure appeared to be

the same.

The wave structure described above contains two centred simple waves each corre-

sponding to a distinct characteristic family. For a centred simple wave comprising the

kth characteristic family the eigenvalues of this family are given by Ak = t. This prop-

erty and the fact that each of these characteristic families has associated generalised

Riemann invariants allows a Riemann wave solution to be constructed, cf. Fraccarollo

and Capart (2002).

It appears reasonable to assume that as the sediment becomes less and less mobile, i.e.

as A -+ 0, the wave structure of the mobile bed problems should get ever closer to the

fixed bed solution of Ritter (1892). It is shown later in this chapter that as A -+ 0 the

width of the constant state region tends to zero for both transport fomulae, leaving a

single rarefaction wave, thus providing a valuable check on the validity of the models
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developed in §6.0.4.

6.0.3 Generalised Riemann invariants

The right eigenvectors for the shallow water-Exner system were derived in §3.6. From

the details given by Jeffrey (1976) and deductions made above about the wave struc-

ture of a shallow water-Exner morphodynamic dam-break it is to be expected that,

in a system comprising two independent and three dependent variables, there will be

two generalised Riemann invariants associated with the Al simple wave region and

two generalised Riemann invariants associated with the A3 simple wave region. Fol-

lowing the procedure outlined in Jeffrey (1976) the generalised Riemann invariants for

the shallow water-Exner system are found from the equation:

dh du dB
7=7 T3

k'1 2
(6.0.1)

q = Au3 formulation

Inserting the components of the right eigenvectors, found in §3.6.1, into (6.0.1) and

rearranging gives:

(6.0.2)

and:

dB = (3A~U~~~k - u)) dh. (6.0.3)

Integrating (6.0.2) and (6.0.3) yields the generalised Riemann invariants:

!(Ak- u)
U - h dh = Kl (6.0.4)

and:

(6.0.5)
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where KI and K2 are constants of integration. When k = 1 the generalised Riemann

invariants are associated with the Al rarefaction fan and when k = 3 the generalised

Riemann invariants are associated with the A3 rarefaction fan.

q = Au3h formulation

Inserting the components of the right eigenvectors, found in §3.6.2, into (6.0.1) and

rearranging gives:

du = (Ak; u) dh (6.0.6)

and:

(6.0.7)

Integration of (6.0.6)and (6.0.7)yields the generalised Riemann invariants:

/ (Ak-u)U - h dh = K3 (6.0.8)

and:

(6.0.9)

where K3 and K4 are constants of integration. Again, when k = 1 the generalised

Riemann invariants are associated with the Al rarefaction fan and when k = 3 the

generalised Riemann invariants are associated with the A3 rarefaction fan.

6.0.4 Constructing the solution

q = Au3 formulation

The solver integrates (6.0.4)and (6.0.5)using the Euler difference forms of (6.0.2)and

(6.0.3)i.e.:

(6.0.10)
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and:

B = B· 3A~uJ(Akj - Ui) (h - h.)1+ A hi'ki i
(6.0.11)

where the subscript i refers to values on the previous chracteristic. The initial C- char-

acteristic is defined as that which represents the tail of the first rarefaction fan of the

dam-break. It follows that, as this characteristic is moving into still water of constant

depth ho, along this characteristic U = 0 and h = ho = for all time. Hence, the wave

speed along this characteristic is given by the relation Al = -(gho)! = -co. The bed

level must be equal to the initial reference level BreI along this characteristic as q = Au3•

With this information known the scheme proceeds by incrementing the value of Al by

a fixed amount. As we have a centred simple wave then it follows that Al = 7 and

therefore the abscissa x can be computed from the value of Al and the value of t that

is specified. Next, it is necessary to devise a generic scheme that allows us to compute

values of the independent variables at this point. To this end (6.0.11) is rearranged to

give an expression for h:

(6.0.12)

A value for B is chosen using an iterative procedure (e.g. the bisection technique) such

that when the corresponding value of h, obtained from (6.0.12), and u, obtained from

(6.0.10), are inserted into (3.4.29) to compute AI, this value and the value of 7 agree

to the desired level of accuracy. The newly computed dependent variables are then

used to update the eigenvalues and right eigenvectors at this point before the solution

continues in this fashion, traversing the Al rarefaction fan until h ::; hcs ( where hcs

is the water height inside the constant state region). It is not possible to use (6.0.12)

when computing the value of dependent variables along the first characteristic to the

right of the initial C- characteristic as u, = 0 in this case and consequently (6.0.12) is
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undefined. Instead a rearrangement of (6.0.10) is used to compute h from the value of u

determined by an iteration technique. Finally, (6.0.11) is used to find B once the correct

value of u has been determined.

The value of hcs cannot be known a priori as it forms part of the solution, cf. Fraccarollo

and Capart (2002). It is therefore necessary to make an initial guess at the value of hcs

and then use some criterion to refine this guess. In this work the refinement criterion

is that the volume of sediment is conserved to a pre-specified level of accuracy. Once

h ~ hcs it is deemed that the At rarefaction fan has ended and the constant state region

begun. The abscissa for the end of the constant state region is found by inserting hcs

and Ucs into (3.4.31) to find A3 and recalling that, as the A3 simple wave has begun,

A3 = t . The scheme then traverses the A3 (Cb) rarefaction fan in a manner identical

to that detailed for the At (C-) fan until the specified cut off depth hco is reached. The

final step is to check that sediment mass is conserved as described in §6.0.5.

q = Au3h formulation

The procedure is similar to that detailed above except that (6.0.10) and (6.0.11) are re-

placed with:

h - h. _..:..,,(b_-_b....:.j!,_)A...:.:.:kj:..___- ,+-= 2A~uj (3Akj - 2Uj)
(6.0.13)

and:

(6.0.14)

in the Al fan, and:

h h (u-uj)hj= j+..!..,__""':":"""":'
Akj - Uj

(6.0.15)

and:

(6.0.16)
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in the A3 fan. Note that the same approach as that used for q = Au3 is employed along

the first outgoing (C-) characteristic.

6.0.5 Sediment conservation

In order to check that sediment mass is conserved once the downstream (wave tip)

boundary is reached, i.e. h < heo, the following procedure is employed:

• The total volume of sediment per unit area scoured out (MB_) is computed through

the numerical integration of the total area below the line Brej

• The total volume of sediment per unit area deposited (MB+) is computed through

the numerical integration of the total area above the line Brej

• The check IMB+ - MB_I < tol is made, where tol is a user specified tolerence.

If sediment mass is conserved to the required degree of accuracy the value chosen for

hes is assumed to be correct. If the required accuracy is not met, the scheme incre-

ments or decrements the height of water in the constant state region hes by a prescribed

amount and the entire computation procedure is repeated.

6.1 Self-similarity

As is the case for the Ritter (1892) and Stoker (1948) dam-break solutions, the above

solutions can be shown to be self-similar. This self-similarity comes about as a direct

consequence of the wave structure for both transport formulae comprising a constant

state region bordered on either side by centred simple waves. Inboth simple wave re-

gions the eigenvalues are given simply by t, thus the characteristics are straight lines
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passing through the origin. It follows that values of the dependent variables can there-

fore be written as a function of T as opposed to functions of x and t separately. A corol-

lary of this is that the dependent variables propagate unchanged along the respective

characteristics in each rarefaction fan. As one member of each straightline family also

borders the constant state region it follows that the entire solution dilates at the rate T'

6.2 Validation

Itwas stated above that a good, and currently the only test of the validity of the above

solution is to let A - 0 and see if the Ritter analytical solution is recovered. Figure

6.3 provides snapshots of water height (top) and velocity (bottom) when a value of

1 x 1O-8s2m-l was employed for A. It is not possible to set A equal to zero because

(6.0.12)becomes undefined. Initial conditions are given by:

{

ho
h(x,O) = 0

ifx<O
(6.2.1)

if x> 0

with:

u(x,O) = 0 and B(x,O) = 0 "i/x,

where the intitial water height, ho, = 1m. Values of x and h have been made dimen-

sionless by dividing through by ho and u non-dimensionalised by dividing through by

(gho) !. On the plots the Ritter solution is repesented by the solid green line and the

numerical solution by black circles. The snapshots are presented at 1 second intervals

between 0 and 5 seconds inclusive. Values at the tip are denoted by green crosses for

the analytical solution and black squares for the numerical solution. It should be noted

that for clarity the numerical solution in the main figures are plotted every 5000data

points (all data points are shown on the inset figure). The tip velocity is well approxi-
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mated being within 0.4% of the Ritter analytical value. Inset in the top of the figure is a

close up of the constant state region at t = 15; it is clear that the width of this region has

shrunk considerably as the theory suggests. As would be expected the same constant

state region exists in the velocity profile. Computed height values throughout the flow

domain are within 0.25% of the Ritter analytical heights at t = 15; this holds for all time

as the solution is self-similar. The agreement between numerical and analytical results

is exceptional; any discrepancy between results is down to a combination of numerical

error and analytical difference due to the small amount of bed mobility that must be in-

troduced in order for the model to remain bounded. The same verification test was also

performed using the q = Au3h model and results of comparable accuracy obtained.

The relationship between the predicted and computed "sediment bore" height is now

investigated in order to prove that the corresponding shock relation derived in §5.3.3

is indeed valid.

6.3 Non-dimensionalisation

Before presenting results for the mobile bed dam-break suitable non-dimensional time

and length scales are derived for the system of equations comprising (3.2.8), (3.2.18)

and (3.2.24). In this thesis non-dimensional scales are derived purely for the coherent

presentation of results, consequently all analysis employs dimensional variables. Sub-

scripts, x and ,t are again used to denote partial derivatives with respect to space and

time. Representing dimensionless variables with an asterisk and taking

* x * t h* h * u B* B d * qx = -, t = -, = -h ,U = -, =-B an q =-,
Xo To 0 Uo 0 qo

(6.3.1)

suitable non-dimensional variables can be obtained for both flux formulations consid-

ered in this thesis. Note that ~ is already dimensionless.
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Figure 6.3: Comparison of "fixed bed" numerical solution with the Ritter analytical

solution. For plot details see the accompanying text.
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6.3.1 Sediment flux given by q = Au3

Substituting (6.3.1) into the governing equations gives:

(3.2.8) ho h: u*uoho h* h*houo * 0 (6.3.2)-+ - t· + ,x' + u x' = I~' Xo Xo'

(3.2.18) Uo * u*u~ * gBo B* gh; h* 0 (6.3.3)-+ -u t· + --u x' + - x' - - x' = ITo' x.>: x.>: x.:>
(3.2.24) -+ BoB*. 3Ao~u~u*2 * • - 0 (6.3.4)To ,t + Xo u,x - .

When non-dimensionalising it seems sensible to set Bo = ho and also Xo = ho and take
1

the Froude scaling of Peregrine (1972), Le. To = hJg-! and Uo = (gho)L Using these

variables in (6.3.2) and (6.3.3) when simplified gives:

h*,t· + u*h*,x' + h*u*,x' = 0 (6.3.5)

and:

u* t· + u*u* x' + B* x' - h* x' = O., , I , (6.3.6)

Considering the generic form of (6.3.4) i.e.:

(6.3.7)

then:

B* .+(~qOTo)q* =0,t XoBo ,x' . (6.3.8)

For a sediment flux of the form q = Au3 then:

q - q
o - q* (6.3.9)

so:

(6.3.10)

Thus, (6.3.8) becomes:

(6.3.11)
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where o is the dimensionless "bed evolution" parameter given by:

o = Asg. (6.3.12)

The non-dimensional variables then are:

(6.3.13)

6.3.2 Sediment flux given by q = Au3h

Applying the same approach as in the q = Au3 case the non-dimensional form of the

mass and momentum equations is identical, i.e. (6.3.5) and (6.3.6) respectively. When

q = Au3h then (6.3.9) becomes:

(6.3.14)

From (6.3.7) it follows that:

B* (sqOTo) * 0,to + XoBo q ,x· = . (6.3.15)

The quantity:

(6.3.16)

can be re-written in terms of g and h« using the Froude scaling employed above to give

the dimensionless bed evolution parameter it for this form of sediment flux, where:

(6.3.17)

meaning that the non-dimensional form of the Exner equation is:

B*t. + h* x. + iTu*3 x. = o., , , (6.3.18)

The non-dimensional variables are identical to those given by (6.3.13).
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6.3.3 Values for the bed evolution parameters eT and et

A procedure to determine order of magnitude estimates for A and A is given in §3.3.3.

The values so obtained can be used along with suitable porosity values to decide on

suitable estimates for the dimensionless parameters er and iT in the swash. The porosity

of varying grain sizes is well understood (Soulsby, 1997) and a reasonable range for

sand beaches is:

o ~ p ~ 0.5. (6.3.19)

Using the value A=0.004s2m-1, obtained in §3.3.3, and assuming a typical value of

0.4 for beach porosity a value of er = 0.0654 is found from (6.3.12). Similarly, with

A=0.015s2m-2, again obtained in §3.3.3, iT = 0.15 from (6.3.17). It is also useful to have

likely maximum and minimum values for er in order to compute bed profiles at these

extrema. Using field data kindly provided by G. Masselink (personal communication,

2008) for sand beaches the method of §3.3.3 provided the following range for er:

0.001 ~ er ~ 0.2, (6.3.20)

and iT:

0.075 s iT ~ 0.5. (6.3.21)

6.4 Shock relation at the wave tip

The Riemann wave solution detailed above can be employed to check the validity of

the shock relation (5.3.38). Using the Riemann wave value of tip velocity, predictions

for the height of the sediment bore for a number of different values of o = A~g (cor-

responding to different combinations of A and p, see §6.3.1) were made using (5.3.38).

Agreement between the predicted value and the computed value was checked for dif-
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0' hco % diff. between predicted and computed B.

0.01 5 x 10-6 0.06

0.04 5 x 10-6 0.02

0.01 1 x 10-6 0.03

0.04 1 x 10-6 0.01

Table 6.1: Comparison of bed heights predicted using (5.3.38) and computed by the

Riemann wave technique.

ferent values of the minimum cut-off depth hcoi a brief selection of results so obtained

is presented in Table 6.4. The agreement between the predicted and observed solutions

is excellent and improves as the cut-off depth is decreased. This occured for all values

of er tested suggesting convergence between predicted and computed values and indi-

cating that the relation (5.3.38) is valid. It is therefore possible to predict bed height at

the wave tip as a function of the water velocity there.

6.5 Example results for q = Au3 and q = Au3h

The Riemann wave models developed for the q = Au3 and q = Au3h sediment flux

formulations have been run with a number of different values of the respective bed

evolution parameters. Representative order of magnitude estimates for the bed evolu-

tion parameters were computed from field data as described in §3.3.3. Example results

that clearly indicate the configuration of dependent variables within the flow field are

presented here. Figures 6.4, 6.5 and 6.6 show results from the q = Au3 sediment flux

formulation for er = 0.00981, 0.039 and 0.2 respectively. The initial conditions for all

figures are given by (6.2.1) with ho = 1m. Snapshots are presented at 1 second intervals
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between 0 and 5 seconds inclusive. The figures show that increasing the bed evolution

parameter o has a significant effect on tip velocity and the height of the sediment bore

at the wave tip. As would be expected on physical grounds increased sediment mobil-

ity magnifies the amount of scour at the inital dam location. Thus, for a higher value of

A the water is moving a greater mass of sediment and the tip velocity is consequently

reduced. Similar results are found when the q = Au3h sediment flux model is run;

however, behaviour at the wave tip is very different. At the tip model results confirm

that sediment is conserved to machine accuracy if the water depth and bed height at the

tip tend to zero. This would appear to validate the assumption made above concerning

water depth and bed height at the tip for this sediment flux formulation. Figures 6.8

and 6.7 illustrate results obtained using a q = Au3h sediment flux.

6.5.1 Bed profile and tip velocity when q = Au3h

Figure 6.9 illustrates snapshots of the (dimensionless) instantaneous sediment flux given

by q = Au3h where A = 1.5 x 1O-2s2m-2 and p = o. It is interesting to note that the

maximum flux does not occur at the tip, as in the q = Au3 case, but much further back

in the flow. The instantaneous flux at the tip itself is zero. This is clearly a consequence

of a transport formula for which q ex: h. The low water depths begin to dominate over

the water velocity a fair way back into the flow thus reducing transport as the tip is

approached. Without a storage term present the effect of this decrease in transport

downstream is the accumulation of sediment on the bed.

For the mobile bed cases illustrated here the tip velocities exceed the fixed bed tip ve-

locity predicted by the Ritter (1892) solution. On initial consideration this result seems

unusual, but the reason is obvious when Figure 6.10 is examined. The bed gradient,

B,x, at the tip is negative and therefore provides additional acceleration compared to
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the Ritter case where the fixed bed remains horizontal. Physically, this result would

appear to be unsound as experimental evidence suggests that mobile bed dam-breaks

travel slower than their fixed bed counterparts (Zech et al., 2008). This result challenges

the validity of using a q = Au3h sediment transport formula for governing equations

without a storage term.
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Figure 6.4: Snapshots of dimensionless dependent variables from the quasi-analytical

solution for mobile bed dam-break with q = Au3 where A = 1 x

1O-3s2m-1 and porosity is zero (hence (T = 0.00981).
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Figure 6.5: Snapshots of dimensionless dependent variables from the quasi-analytical

solution for mobile bed dam-break with q = Au3 where A = 4 x

1O-3s2m -1 and porosity is zero (hence a = 0.039).

150



CHAPTER 6: MOBILE BED DAM-BREAK: QUASI-ANALYTICAL SOLUTIONS

0.8
0 0.6s::c

0.4

0.2

0
-20 -15 -10 -5 0 5 10 15 20

x/h
0

1.5

o~--~~~~~~~--~--~--~~--~--~
-20 -15 -10 -5 5 10 15 20

0.3

os:
iD

-0.2~--~--~~--J_--~----~--~----~--~
-20 -15 -10 -5 o

x/h o

5 10 15 20

Figure 6.6: Snapshots of dimensionless dependent variables from the quasi-analytical

solution for mobile bed dam-break with q = Au3 where A = 0.02 x

1O-3s2m-l and porosity is zero (hence o = 0.2).
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Figure 6.7: Snapshots of dimensionless dependent variables from the quasi-analytical

solution for mobile bed dam-break with q = Au3h where A = 1.5 x

10-2s2m-2 and porosity is zero (hence it = 0.00981).
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Figure 6.8: Snapshots of dimensionless dependent variables from the quasi-analytical

solution for mobile bed dam-break with q = Au3Jt where A = 4 x

1O-3s2m-2 and porosity is zero (hence it = 0.039).
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Figure 6.9: Snapshots of dimensionless instantaneous sediment fluxes (with q =
Au3h) for the dam-break of Figure 6.7.

6.6 Comparison with experimental results

For completeness a brief, and simple, comparison is made between certain measured

profiles obtained in the laboratory at the Universite catholique de Louvaine, detailed

in Fraccarollo and Capart (2002), and the theoretical solution described above with

sediment flux of the form q = Au3• No comparison is made with the experimental

results of Capart and Young (1998) as these involved sediment with a density almost

equal to that of water. The density ratio used in the Capart and Young (1998) tests

was 7f = 1.048; such low density sediment is not found on real world beaches. The

Louvaine tests used PVC pellets of uniform diameter (3.5 mm) with a relative density

7; = 1.54. Although the density ratio is still low compared with that of medium grain

sand (for which e; = 2.65) the results are clearly presented, thus facilitating a compar-

ison with the theoretical results. Full details of the tests are given in Fraccarollo and

Capart (2002) and will not be repeated here.

The results shown in Figures 6.11 and 6.12 are presented in the same self-similar co-

ordinates as used by Fraccarollo and Cap art (2002). In Figure 6.11, o = 0.0164; this
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Figure 6.10: Profile at t=Ls for the dam-break of Figure 6.7 (with q = Au3h); inset:

close-up of the tip region.

is obtained by computing A using (3.3.3) with /R = 0.014 as suggested by Fraccarollo

and Capart (2002) and taking p = 0.4. Clearly, the quantitative agreement between the

theoretical result and experimental result is poor for this value of (J". The theoretical re-

sult gives the tip location as being almost twice as far downstream as the experimental

result. In constructing Figure 6.11 a value of p = 0.4 is used for the bed porosity as

no value is given in Fraccarollo and Capart (2002); the bed porosity would almost cer-

tainly be lower for the PVC pellets used in the experiment. Employing a lower value

for p has the effect of increasing the value of (J". In terms of the tip position, sediment

bore height and scour depth, numerical experiments have shown that using a larger

value for (J" increases the level of agreement between the theoretical and experimental

results up to a value of (J" ~ 0.2. Following this somewhat ad hoc approach a value of

(J" = 0.2 is used to obtain the results shown in Figure 6.12. The value of A, and thus /R,

that a (J" value of 0.2 corresponds to depends on the value assigned to p = 1 - ~-1 in

accordance with (6.3.12) and (3.3.3). In both plots the theoretical solution captures the

qualitative features of the flow reasonably well, the experimental results clearly exhibit
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both the central region (corresponding to the constant state region of the theoretical

model) and the sediment bore at the wave tip. The theoretical solution captures the

two simple wave regions, although it over estimates the free surface slope in the first

(upstream) region and underestimates it in the second (downstream) region.

It is beyond the scope of this thesis to provide a quantitative analysis of the agreement

between experimental and theoretical data. However, to give an idea of the quantita-

tive differences between the experimental data and the Shallow water-Exner theory

for the mobile bed dam-break, in Figure 6.12 the tip position is over estimated by

approximately 20% in the theoretical model. Such a discrepency is doubtless due to

the simplified nature of the governing equations and sediment transport formula used

to obtain the quasi-analytical solution. The inclusion of friction into the governing

equations would almost certainly improve the level of agreement between theory and

experiment.
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Uncoupled swash simulations

In this chapter results for swash simulations corresponding to SM63type initial condi-

tions and for swash driven by a uniform bore of the same initial specification as that

detailed in HP79 are presented. For these simulations the bed is assumed to be fixed

so that the beach profile is only updated at the end of the swash event; i.e. morpho-

dynamical time stepping is adopted. Such an approach is referred to as being uncou-

pled throughout this thesis. Data for the SM63 simulations are obtained analytically

using the explicit formulations for hand u given by Peregrine and Williams (2001).

It is possible to simulate swash similar, although not identical, to that of HP79 using

the numerical GC MOC solver by specifying R+ as explained in Guard and Baldock

(2007). This approach requires that the backwash bore be explicitly fitted. The GC

MOC code can successfully run such swash events up until the collapse of the back-

wash bore and example results are shown in Appendix D. A problem arises, however,

when the backwash bore collapses as the logic of the code dictates the initiation of

another dam-break event at this point. LOgistically,the GC MOC code becomes pro-

hibitively complex. Consequently, data for the HP79 swash simulations are obtained

using the MacCormack-mLxF hybrid shock capturing code described in §5.1.5. The
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z

x

Figure 7.1: Initial conditions for SM63 swash

hybrid solver based around the q = Au3 transport formulation was chosen as it has

undergone more rigerous validation than the solver developed for the q = Au3h for-

mulation. For the HP79 simulations, in order to decouple the hydro- and morphody-

namics, a value of A = 1 x 10-10s2m-1 is used and bed porosity is set to zero. To

obtain the numerical results the shoreline boundary algorithm developed in §4.3.2 is

employed without any modification.

7.1 SM63swash

7.1.1 Analytical solution for both flux formulations

Pritchard and Hogg (2005) give analytical solutions for net sediment flux in the swash

zone based on hydrodynamical information provided by the SM63 solution. In their

paper Pritchard and Hogg (2005) develop several total load models based on differing

formulations of q including q = Au3h. No explicit solution is given for a sediment

flux of the form q = Au3• Moreover, as the primary focus of the paper is on the effect

of sediment advection and settling lag, details of the solution for the simple transport

formulae are not given. This motivates the derivations provided here.
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Figure 7.2: Contours of dimensionless instantaneous sediment flux (q*) where top:

q* = U*3. Bottom: q* = u*3h*; the shoreline is bold and contours are

individually labelled.
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An analytical expression for the instantaneous sediment flux where q(x, t) = Au3(x, t)

is obtained by substituting (2.1.6) into (3.3.1):

SA ((gho)!t - gt2 tan,6 + x) 3

q(x, t) = 27 t3 (7.1.1)

Similarly, an analytical expression for the instantaneous sediment flux where q(x, t) =

Au3 (x, t)h(x, t) is obtained by substituting (2.1.6) and (2.1.4) into (3.3.6):

(7.1.2)

Figure 7.2 shows contours of instantaneous sediment fluxes according to (7.1.1) and

(7.1.2); all variables have been non-dimensionalised using (6.3.13). As the principal

focus of this work is on the coupled modelling of beachface evolution, data is only

presented here for the representative values of a and it computed in §6.3.3.

7.1.2 Uncoupled beachface evolution for SM63 swash

Following Pritchard and Hogg (2005), respective net fluxes Q over a swash event for

each transport formula are given by:

(7.1.3)

or:

ltd(X) ltd (x)
Q(x) = q(u,h)dt = A u3hdt,

ti(X) ti(X)
(7.1.4)

where tj(x) is the time of inundation and td(X) the time of denudation. Expressions

for the inundation and denudation times at a specific cross-shore location x can be

obtained by setting (2.1.4) equal to zero and solving the resulting quadratic giving:

t. _ 4(gho)l- (16hog-Sgxtan,6)l
1- 2gtan,6 (7.1.5)
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and:

t _ 4(gho)! + (16hog - 8gxtan,8)!
d - 2gtan,8 . (7.1.6)

The net fluxes over one swash cycle according to each sediment transport formula can

thus be computed analytically by integrating up (7.1.3) and (7.1.4); results so obtained

are shown in Figure 7.3. In order to compute the change in bed level at each cross-shore

point it is necessary to integrate (3.3.5) with respect to time yielding:

[ ]
td(r) ltd(r) aq

- B = ~ -dt.
ti(r) ti(r) aX (7.1.7)

Applying Leibniz's rule to the RHS of (7.1.7):i:aq a t: atj(x) atd(X):;-dt = :;- q(x,t)dt + q(X,ti)-:l- - q(X,td)-:l-'
tier) ox ox tier) ox ox

(7.1.8)

Hence:

(7.1.9)

Thus, as well as being dependent on Q, the change in bed level at each cross-shore 10-

cation is also dependent on two additional terms. For the cases considered throughout

the duration of this research the contribution due to these additional terms, i.e.:

(7.1.10)

was found to be at least an order of magnitude less than the ~ term. Indeed, ata~r)=
u; -1 and at$~r) = u; -1 and qu, -1 = B*. Thus, for flow in which the tip motion is

symmetrical, like fixed bed SM63 and HP79 flow (until the formation of a backwash

bore), (7.1.10) should be zero.

Figures 7.4 and 7.5 illustrate the final beach profile as predicted using the uncoupled

analytical model for each q formulation; results have been non-dimensionalised using

the scaling given in Chapter 3. It can be seen that the beach is eroded everywhere;
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this is a direct consequence of the velocity asymmetry over the swash cycle caused

by the backwash being of a longer duration than the run-up. The principal effect of

setting q = q (u, h) is to reduce the impact the swash has on morphology further up the

beach due to the very low water depths experienced there. Pritchard and Hogg (2005)

have shown that when using a sediment flux which is an increasing function of Iu I and

driven by SM63 hydrodynamics, offshore transport will always result. However, it is

interesting to note that for the case of the HP79 incident bore not all the net transport

is offshore. Itwill also be shown in Chapter 8 that net offshore transport is not the rule

for both SM63 and HP79 swash when the hydro- and morpho dynamics are directly

coupled.

7.2 HP79 swash

The simplest physically realisable bore is the so-called "uniform bore" for which height

and velocity everywhere behind the bore front remain constant (Miller, 1968). It was

the relative ease of providing boundary conditions for such a bore that motivated the

choice of an initially uniform bore for detailed study by HP79. A definition sketch of

the variables used in this section for a uniform bore approaching a plane sloping beach

is given by Figure 7.6. Bores in the nearshore are usually subcritical, supercritical bores

are uncommon on real beaches (Packwood, 1980), with u < c behind the bore front.

For the uniform bore case applying the bore relations with h, =1 for a supercritical

bore gives:

(7.2.1)
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Figure 7.3: Top: Dimensionless net sediment flux (Q*) after one SM63 swash cycle for

uncoupled transport model using Q* = Jt:(~;) u*3 ar . Bottom: dimen-

sionless net sediment flux (Q*) after one SM63 swash cycle for uncoupled

transport model using Q* = rtdeX*) u*3h dt*.J tj(x*)
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z

Figure 7.6: Notation and initial bathymetry for a uniform bore approaching a plane

sloping beach.

up to the beach toe. Equation (7.2.1)is a cubic inequality in he that has only one real

positive root (Hibberd, 1977):

he = 2.215. (7.2.2)

Thus, a supercritical bore surfing over water of depth 1m must have he > 2.215m;

all bores with hB ~ 2.215m are subcritical. Following HP79 and referring to Figure

7.6, a bore of amplitude hB = O.6mmoving into undisturbed water with hi = 1.0m is

considered. This corresponds to an initial bore strength, defined as (hB + hi)hi -I, of

1.6. The toe of the beach is located at x=-10m and the original shoreline position is

at x=Om. For the test case illustrated here a mesh spacing of ~x=O.01m was used as

convergence tests indicate that any gain in accuracy obtained by any further reduction

in mesh spacing is very small (cf. Appendix D). The time step was fixed at ~t =

Hgho)-!~x. A problem associated with using a fixed time step is the possibility of

exceeding the Courant number. Consequently, a check is made within the code that

ensures the CFLcondition is not violated.
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7.2.1 Flow variables and instantaneous sediment fluxes

Figure 7.7 shows contours of non-dimensional water height and velocity in the physi-

cal plane for swash driven by a uniform bore. With the beach slope scaled out, the re-

sults are found to be in excellent qualitative agreement with those presented in HP79;

a quantitative comparison is not possible as the HP79 data is no longer in existence

(personal communication, S. Hibberd, 2006). Importantly, the shoreline trajectory is in

excellent agreement with that shown in Figure 8 of HP79, confirming the robustness

of the present algorithm. Contours of dimensionless instantaneous sediment fluxes

with q* = u*3 and q* = u3h* for this swash event are shown in Figure 7.8. While the

discontinuity in q* = u*3 flux is relatively pronounced across the backwash bore, the

discontinuity in the q* = u3h* flux is much less severe. The primary differences be-

tween these instantaneous fluxes and those of SM63 swash are related to the time of

flow reversal and the flow depth. The implications of these differences for beach face

evolution are now examined.

7.2.2 Uncoupled beachface evolution for HP79 swash

Water motion for the swash event forced by a uniform bore on a fixed beach has been

described in detail by HP79. Here the change in beach profile, as predicted using the

uncoupled approach, is considered for this type of swash event. The primary hydro-

dynamical differences between HP79 and SM63 swash are that HP79 swash is deeper,

leads to the formation of a backwash bore and involves the net influx of water thus

establishing a new shoreline position. The influx of water and backwash bore have

important implications for uncoupled beachface evolution. The deeper water at the

seaward side of the backwash is relatively slow moving. The effect of this deeper wa-
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Figure 7.7: Top: contours of dimensionless water height h* = 0.1 to 2.4 at intervals of
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Figure 7.8: Contours of dimensionless instantaneous sediment flux (q*) for HP79

swash where top: q* = u*3. Bottom: q" = u*3h*; the shoreline is bold

and contours are individually labelled.
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ter is to retard the velocity of shallower water, further onshore, leading to the formation

of a backwash bore. Thus, the backwash bore rapidly brings the shoreline motion to an

effectivestandstill, it then collapses propagating energy offshore as a rarefaction wave,

after which the body ofwater performs small oscillations on the beach eventually com-

ing to rest. A new shoreline position,landward of the original shoreline, is established.

The net influx of water onto the beach brings with it a net influx of sediment leading

to a positive net sediment flux in the newly created subaqueous region between the

original and new shoreline positions. This occurs for both sediment flux formulations.

For sediment flux of the type q = q(u), landwards of the new shoreline position the

net sediment flux is everywhere negative, cf. Figure 7.10.This is in agreement with the

findings for SM63swash and occurs for the same reason; the larger values of sediment

flux found in the run-up are more than offset by the amount of sediment transported

in the longer duration backwash. However, seawards of the point of formation of the

backwash bore the flow regime is very different. Here flow reversal occurs much later

in the swash cycle than for the SM63 case. Moreover, when flow reversal does occur

the negative velocities are relatively small and the water rapidly comes to rest. As a

consequence of this there is a large velocity asymmetry between run-up and backwash

in this region coupled with much deeper water than for SM63swash. A comparison

between the SM63and HP79 instantaneous fluxes at fixed cross-shore locations equat-

ing to 3D,40,60, and 80%of the run-up of each swash type is shown in Figure 7.9. The

figure highlights the similarity of the fluxes for both swash types high~r up the beach

and the very different nature of the fluxes further seawards. This velocity skewness

accounts for the positive net sediment flux in the newly created subaqueous region ob-

served for both sediment flux formulations. As the change in bed level is effectively
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given by:

fiB* = _ oQ*
ox*'

(7.2.3)

because a and 0" > 0, it follows that wherever ~ < 0 and Q* > 0 a net deposi-

tion of sediment will occur. From Figure 7.10 the uncoupled model thus predicts net

onshore transport for the entire newly created subaqueous region. As the new shore-

line location is approached from the landward side the amount of offshore transport

increases between the point of maximum run-up until just before the new shoreline

at which point it begins to decrease. Note also that this model predicts a discontinu-

ity in the final beach profile at the new shoreline position that connects the regions of

net onshore and offshore transport. A similar "swash ridge" is also present in the fi-

nal beach profile predicted by the fully coupled model with this sediment transport

formula (see Chapter 8). For the q = q(u,h) sediment flux Figure 7.11 illustrates that

in the new subaqueous region the net flux is positive. Moreover, everywhere in this

region ~ < 0 and Q* > 0 thus net accretion will again occur here. The close-up in

Figure 7.11 shows that the net sediment flux landwards of the new shoreline is qualita-

tively similar to that governed by q* = u*3. The primary qualitative difference is that

~ remains < 0 slightly further up the beach than when q* = u*3. As for the SM63

swash, the magnitude of Q* is greatly reduced in this region due to the shallow water

depths found there. Importantly, no discontinuity is observable in the net sediment

flux for this transport formulation.
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CHAPTER 8

Fully coupled swash simulatons

In this chapter results for some representative swash simulations obtained using the

fully coupled approach are presented. As the shallow water and Exner equations are

solved simultaneously the evolution of the beach face has a direct and immediate im-

pact on the hydrodynamics. Simulations of both SM63 and HP79 swash are run using

the q = Au3 sediment transport formula. For the q = Au3 based SM63 simulations all

data are obtained using the STI MOC scheme with explicit shock detection and fitting

based on the procedures detailed in Chapter 5. For the q = Au3 based HP79 simula-

tions all data presented were obtained using the MacCormack-mLxF hybrid shock cap-

turing scheme. Comparisons made with results obtained using the STI MOC scheme

illustrate that the results of the shock capturing scheme are reliable. Results from sim-

ulations of HP79 swash with sediment flux governed by q = Au3h are also presented

for comparative purposes.
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8.1 SM63swash with q = Au3

8.1.1 Model set-up

The initial bathymetry comprises a plane sloping beach whose slope tanf3 = 0.1 (1:10).

Using the hydrodynamical initial conditions (4.4.1) that, for a fixed bed, provide the

SM63 flow field (see Peregrine and Williams (2001)) swash events are presented for

three values of the bed evolution parameter (T. For all of the test cases illustrated

here ho=lm, and all calculations are run until the water has retreated back past the

initial shoreline position set at x=O. The model uses a mesh spacing of ~x=O.Olm as

convergence tests indicate that any gain in accuracy obtained by any further reduc-

tion in mesh spacing is very small indeed (cf. Appendix D); the time step is fixed at

f!.t = 1(gho) - ~Sx. A problem associated with using a fixed time step is the possibility

of exceeding the Courant number. Consequently, a check is made within the code that

ensures the CFL condition is not violated.

8.1.2 Flow structure

Figures 8.1-8.3show contours of h, u and B for a mobile beach for three distinct values

of the bed evolution parameter (T. It is noted that the qualitative behaviour of all de-

pendent variables is the same irrespective of the value assigned to (T. At the moment

of dam/bore collapse there is an instantaneous acceleration of water and a sediment

bore forms immediately at the shoreline. After this initial acceleration the flow is dom-

inated by gravity and the consequent decrease in water velocity over time causes the

sediment bore progressively to reduce in height as the swash climbs the beach. When

flow at the tip finally reverses, although the sediment bore now vanishes to zero height
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it leaves behind a berm formed over approximately the upper third of the beach.

Further back, within the main body of the flow, two gradient discontinuities form in

all dependent variables at the instant of dam/bore collapse, these correspond to those

marking the beginning and end of the constant state region for the mobile bed dam-

break over an initially flat bed governed by (3.2.8),(3.2.18)and (3.3.5);see Chapter 6 for

a detailed analysis of the flat bed problem. The first of these gradient discontinuities

forms, and continues to move, seaward of the initial shoreline location and is therefore

outside our domain of interest. The second gradient discontinuity forms landwards of

the initial shoreline position and climbs the beach propagating along a characteristic

until it, and the flow local to it, reverses. Once the flow has reversed a compression

wave begins to build up on the downstream side of the gradient discontinuity and,

as also occurs in analogous gas dynamical problems (Moretti and DiPiano, 1983),this

very soon develops into a shock wave. The characteristic grid shown in Figure 8.5

illustrates this. It can be seen that the gradient discontinuity initially moves as a char-

acteristic (the limit of a weak shock) and later grows into a fully developed shock. Here,

the shock takes the form of a relatively slow-moving seaward facing bed step (Le. it

forms due to the coalescence of Cb characteristics). This moving bed step appears to be

akin to the sediment bores found in steady alluvial flows (Needham and Hey, 1991).

The water arriving from the landward side of the slowly retreating bed step meets it

almost as though it were unmoving and, similar to flow over a fixed bed step, forms a

hydraulic jump over it. The strength of the shock, defined as BHBL'l, is relatively weak

(BHBL'l < 1.1for (J' = 0.0654);thus, the change in slope of the two hydrodynamic char-

acteristics as they cross the shock path is barely noticeable in Figure 8.5.

H the wave structure is further examined using Figure 8.5 differences with the fixed

bed structure immediately become apparent. The first difference relating to the fixed
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bed case is that the wave speed of the incoming characteristics remains positive and

these characteristics terminate at the shoreline; in fact, only the Cb characteristic slope

changes sign. At the shoreline itself the governing equations do not degenerate from

hyperbolic to parabolic as in the fixed bed case, Le. three distinct eigenvalues remain.

The analysis of §3.5 reveals that the tip follows the trajectory of a Cb characteristic.

8.1.3 Beachface evolution

Figure 8.6 shows the position of the shoreline in the physical plane for a mobile bed

swash event with o = 0.0654. The limiting effect of bed mobility on run-up is fairly

severe with the maximum run-up of the coupled model only around 70% of the un-

coupled solution for this o value. For the entire range of a values tested in this work,

increasing o leads to a decrease in the maximum run-up distance. A lower tip velocity

at the point of bore collapse is ultimately responsible for this decrease in maximum

run-uPi however, the flow dynamics are also more complex than in the fixed bed case.

Interestingly, over a mobile bed, maximum run-up is greater than that expected from

the ballistics theory prediction based on the initial tip velocity; this is discussed further

in §8.1.5.
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Figure 8.1: Space-time plot showing showing contours of dimensionJess water d pth

(h*) for SM63 type swash with a = 0.01 top, a = 0.0654middle and a = 0.2

bottom.

179



CHAPTER 8: FULLY COUPLED SWASH SIMULATONS

xlO 4

1.8 2
X)O

x· 1.5
,,)0

x· .. 5
x)O

Figure 8.2: Space-time plot showing showing contours of dimensionless water veloc-

ity (u*) for SM63 type swash with (J = 0.01 top, (J = 0.0654 middle and

(J = 0.2 bottom.
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Figure 8.3: Space-time plot showing showing contours of dimensionless change in

beach level (~ B*) for SM63 type swash with a = 0.01 top, u = 0.0654

middle and a = 0.2 bottom.
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The sediment bore at the tip is an extremely effective transporter of sediment as it

causes a (progressively decreasing) jump in bed height at each cross-shore location it

passes up until flow reversal at the tip. For the mobile beach casewhen flow reverses at

the tip, initially it does not accelerate as quickly as itwould on a fixed beach as the stoss

side of the berm reduces the local beach gradient; note that it does not reverse the local

gradient - a condition that would lead to a pool of water being left at the upper limit

of the swash zone. Water in the backwash strips sediment from the beach as it retreats

over the berm and although backwash velocities are high the mechanism of transport

at the tip is not as efficient as the sediment bore associated with the run-up. Thus,

a portion of the berm remains even when the water has drained back off it. Further

seaward the trough created by the dam/bore collapse is extended and deepened as

sediment is removed by the high velocity backwash.

8.1.4 Relationship between final beach profile and bed evolution parameter

(£7)

Figure 8.7 illustrates the final beach profile for both coupled and uncoupled beach evo-

lution for (T =0.01, 0.0654 and 0.2. Numerical experiments using the fully coupled

model have shown that values of (T within the range 0.01 :5 (T :5 0.2 (see §6.3.3)all lead

to net onshore transport. The final volume of onshore transport per unit width (Q+)

initially increases with increasing (T up to a limit value (T = (Tmax. Interestingly, once

(Tmax is exceeded the net volume of sediment transported onshore begins to decrease.
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bile beach where sediment flux is of the form q = Au3 and 0"==0.0654.
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The left hand panel of Figure 8.8 summarises the variation of Q+ with a obtained

through numerical experiments. In the figure actual computed values are denoted by

circles and the solid line represents values interpolated using a cubic spline procedure.

From this figure crmax appears to be around 0.045.Assuming a porosity of 0.4, the max-

imum onshore transport occurs for a sediment mobility value of A ~ 0.003s2m-2; this

value for the sediment mobility parameter is consistent with those obtained from the

Masselink et al. (2005)swash data for sand with a median grain size, D50, in the range

0.27-0.29mm, see §3.3.3. Interestingly, the right hand panel of Figure 8.8 shows that

the amount of sediment mobilised at dam/bore collapse continues to increase with in-

creasing crwithin the range of a values considered here. This implies that the initial tip

velocity, which is directly linked to crt, also plays an important role in determing the

net amount of sediment transported onshore for a given swash event.

Within the range of cr values presented here the amount of sediment stripped off the

beach seaward of the zero--crossing always increases with increasing cr. Final beach

profiles and details of the regions of accretion are shown in Figure 8.9 for the typical

value a = 0.0654and the limit values given in (6.3.20). It is worth pointing out that

the use of a lower value of A, and thus cr, in the backwash, as suggested by a number

of researchers (see for example Masselink and Li (2001);Masselink et al. (2005», in the

coupled model would further increase the net onshore transport. Thus, it would ap-

pear from the numerical results that feedback between hydro- and morphodynamics

is enough to allow for the net onshore transport of sediment over a single swash event

even when settling lag and infiltration are ignored. This is an important finding and is

at odds with the uncoupled results of Pritchard and Hogg (2005)discussed in Chapter

7.
1Initial tip velocity decreases with increasing a, no quantitative analytical relationship has been found.
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Figure 8.7: Left: change in bed level relative to the initially plane beach for uncoupled

(dashed) and fully coupled (solid) transport models after one SM63 swash

cycle. Right: final beach profile for uncoupled (dashed) and fully coupled

(solid) transport models. Top: (J = 0.01, middle: (J = 0.0654, bottom:

a = 0.2. Dot-dashed lines show the initial bed profile.
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Figure 8.8: Left: variation of the (dimensionless) amount of net onshore transport with
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8.1.5 Analysis of shoreline motion in the run-up when q = Au3

In Appendix B an asymptotic equation is derived that enables analysis of the terms

affecting the shoreline motion; as the derivation makes use of (5.3.38)the equation is

valid only for the run-up. The equation (B.O.14)is:

(8.1.1)

For the flat mobile bed case the quantities ~ and * can be accurately evaluated just

behind the wave tip using the quasi-analytical solution derived in Chapter 6, although

(B.O.14)does not, of course, hold in that case. Results for CT=0.0654 are shown in Fig-

ure 8.10 and reveal how both quantities change with time. Both ~ and ~,appear to

asymptote to a small limiting value, possibly zero, as time increases, as would be ex-

pected for such a self-similar solution. Numerical experiments on a flat bed show that

both the STI MaC and MacCormack solvers converge to the quasi-analytical solution
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Figure 8.10:Variation of ~ (solid line) and ~ (dashed line) with t at the meshpoint

immediately before the wave tip for the mobile bed dam-break when

a =0.0654.

for ~ and ¥X as Sx is decreased, providing a valuable check on the accuracy of these

solvers. When the SM63 initial conditions are employed the behaviour of ~ and ~

in the run-up is qualitatively similar to the flat bed dam-break. Figure 8.11 shows the

variation of ~ and ~ with time for the run-up of an SM63 swash event with 0"=0.0654

obtained using the second-order STI MaC scheme with Ax =D.O'l.m.No (quasi) ana-

lytical solution is available for comparison in this case. Both ~ and ~ tend to a small

finite value; the magnitude of this value is at its minimum at the maximum run-up.

The term 3A~g¥X¥t, which is always> 0, and ~,which is always < 0, in (B.0.14) act

to reduce and increase run-up respectively. Moreover, as the factor (1+ 2A~g) is al-

ways> I, it acts to increase run-up by decreasing the effect of gravity. Thus, the overall

run-up is greater than that predicted for the same initial shoreline velocity using the

ballistics approach.
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Figure 8.11: Variation of ~ (left) and ~ (right) with time at the meshpoint immedi-

ately before the shoreline during the run-up according to the Riemann

wave solution with (T =0.0654.

8.2 HP79 swash

8.2.1 Model set-up

The initial conditions for these simulations are identical to those described in §7.2 .

However, rather than fixing the seaward boundary at x=-10m like HP79, it is allowed to

extend seaward far enough so that it is never reached by the simple wave issuing from

the beach toe for the time interval considered. This is done to avoid the complexity

of imposing a characteristics type boundary with a mobile bed; the procedure for a

characteristics based transmissive boundary treatment for mobile bed flow is given in

§4.3.1. As in HP79 the initial bed profile is a planar beach and for all the tests carried

out here a beach slope (tan (3) of 0.1 (1:10)is used. Due to the mobility of the bed a new

set of bore relations must be derived for the governing equations (3.2.8), (3.2.18) and

(3.3.5), these are described in Chapter 5. As in §7.2 all of the test cases illustrated here

use a mesh spacing of ~x=O.Olm and the time step is fixed at M = ~(gho) -i Sx. Again,

a check is made within the code that ensures that the CFL condition is not violated.
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8.2.2 Results for q = Au3

Here comprehensive results are presented for representative values of the bed evolu-

tion parameter (er). The contour plots of Figures 8.12 and 8.13, complemented by the

snapshots given in Figures 8.14 and 8.15, illustrate that in both the run-up and back-

wash the behaviour of the hydrodynamical flow variables is in very close qualitative

agreement to that found by HP79. The pattern of flow over time also appears to be

the same as that for a fixed beach, i.e. bore collapse, run-up and formation of a back-

wash bore. However, if the wave structure is studied in depth using the characteristic

grid, shown in the bottom panel of Figure 8.13, discrepancies with the fixed bed case

are again apparent. In terms of the overall characteristic pattern results are similar to

the SM63 mobile bed swash event up until formation of the backwash bore. The in-

coming uniform bore is similar to the fixed bed case in that it is a "hydrodynamical"

bore formed by the coalescence of incoming hydrodynamic (C+) type characteristics.

The characteristics also indicate that, as is the case for the fixed bed (Ho and Meyer,

1962), when the bore climbing the mobile beach collapses at the initial shoreline po-

sition it "forgets" all of the boundary data that determined its development up until

that point. Thus it is the information beyond the domain of dependence of the shore-

line singularity that determines the flow structure within the main body of the swash

lens. The primary difference compared with the fixed bed case lies in the properties

of the backwash bore. As was noted in §8.1.3 the C+ characteristic wave speeds al-

ways remain positive, so, unless the backwash bore were to move (at least initially)

landwards it cannot form due to a coalescence of these characteristics, as it does for the

fixed bed case. Instead, analysis of the characteristics shown in Figure 8.13 implies that

the backwash bore in the mobile beach case is a relatively slow moving sediment bore,
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or bed step, formed by the coalescence of C, characteristics. Like the SM63 mobile bed

swash event, the rapidly moving water meets the sediment bore almost as though it

were stationary and forms a hydraulic jump over it. As in the HP79 solution the life of

this backwash bore is cut short when the shoreline catches it up. Subsequent hydrody-

namic motion is similar to that described in HP79 with the backwash bore collapsing

and propagating energy seawards with a new shoreline position eventually being es-

tablished close to this point of collapse. However, the sediment bore leaves behind a

region of accretion comprising a bed profile that ramps up from the landward side ter-

minating in a beach face discontinuity; thus, a wedge shaped form is left on the beach

landwards of the final shoreline position, see the final panel of Figure 8.15.
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with q = Au3 (£T = 0.0654).
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The region of net accretion is much more extensive than the SM63 case and covers

the majority, though not all, of the beach landwards of the original shoreline position

(x > 0). It is of interest to note that the gradient discontinuity that leads to a sediment

bore for the mobile bed SM63 event does not do so in the corresponding uniform bore

case as flow reversal on its downstream side occurs much later due to the extended

duration of mass and momentum flux from the seaward side.

8.2.3 Results for q = Au3h

Here results are presented for the surf and run-up of the HP79 uniform bore over a

mobile bed with the sediment flux determined using q = Au3 h. It is important to stress

that these results have not been subject to such rigorous cross-checking as those pre-

sented in §8.2.2. Although the characteristic decomposition for this sediment transport

formulation is detailed in §3.4.2 the MaC solution has not been constructed. The results

presented here are therefore obtained using a version of the MacCormack-mLxF shock

capturing solver. Treatment of the shoreline boundary is the same as that detailed in

§4.3.2, Le. b.B. is set equal to zero at the wet-dry interface. This treatment is based on

an assumption, but one that appears to be justified by the quasi-analytical dam-break

solutions obtained in §6.0.4. The solver has been validated against the quasi-analytical

solution detailed in §6.0.4; agreement between numerical and quasi-analytical results

is found to be good.

Figures 8.16 - 8.17 again show that in the run-up and backwash the behaviour of the

hydrodynamical flow variables is in very close qualitative agreement to that found by

HP79. However, in contrast to the q = Au3 case, net onshore transport of sediment

occurs everywhere in the newly created sub-aqueous region of beach landward of the

original shoreline location at x· = O. Interestingly, the model predicts a very small
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amount of net offshore transport in the region bracketed by the zero contours lying

between x* = 20 and x* = 30. Initially, as the incident bore approaches the initial

shoreline position, a wedge of sediment is driven landwards by the incident bore in a

similar fashion to that observed for the q = Au3 case. At bore collapse, however, the

sediment wedge becomes a hump as the bed perturbation is zero at the wave tip; the

bed discontinuity therefore vanishes. Figure 8.18shows snapshots of the bed perturba-

tion during the run-up at the times specified on the figure. Once the bore has collapsed

the bed perturbation at the shoreline is zero and, initially, the perturbation is extremely,

small immediately behind the tip; the extent of the flow for which the bed perturbation

following the tip is virtually zero increases as time progresses, d. Figure 8.18. Note

that a time history in the sprit of Figures (8.14)and (8.15)is not presented here as the

relative magnitude of ~B* is too small to been seen clearly for sediment transport gov-

erned by q = Au3h.

The bed discontinuity under the backwash bore is not as pronounced as that found in

the q = Au3 case; this is a direct consequence of the fact that the values h at the point

of collapse of the backwash bore are very small, so, although the discontinuity in u is

large, the associated beach change is small as q = q(u,h). Consequently, the final beach

profile obtained using this sediment transport formula does not include the obvious

"wedge" landwards of the new shoreline that is observed for the q = Au3 case. Instead,

a small nick is observed at the point of backwash bore collapse. The change in beach

profile resembles a slightly asymmetrical hump gradually rising up from the landward

side to a maximum accretion, somewhere around x* ~ 6, before falling more rapidly

down to zero seaward of the original shoreline position, cf. Figure 8.19. Importantly,

with this sediment transport formulation, the effect of the swash event higher up the

beach is far more limited that for the same event with a q = Au3 sediment transport
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formula. The beach seaward of the original shoreline is eroded everywhere offshore

within the region shown. The same qualitative behaviour is observed for iT in the range

0.075 ~ {T ~ 0.5 and, Figure 8.18 shows snapshots of IlB* in the run-up as well as the

final beach change for {T = 0.245.
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Figure 8.16: Space-time plot showing contours of (top) dimensionless water depth

(h*) and (bottom) dimensionless water velocity (u*) for HP79 type swash

with q = Au3h (iT = 0.15).
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CHAPTER 9

Conclusions and recommendations

9.1 Review and conclusions

The work presented in this thesis aims to improve understanding and modelling of

beach face evolution in the swash zone forced by a single incident bore. In order to

achieve this a fully coupled one-dimensional mathematical model based on the shal-

low water-Exner system with wet-dry capabilities has been utilised. A similar theoret-

ical approach (in two-dimensions) was used in a swash context by Dodd et al. (2008)

to successfully simulate beach cusp formation and evolution. Such a model was in-

vestigated thoroughly in the course of this work. In particular, the wave structure is

detailed and the numerical problems associated with the wet-dry interface and forma-

tion and evolution of shock waves (bores) are addressed.

Two distinct numerical methods are presented to solve the shallow water-Exner equa-

tions in Chapter 4. One method is based on the highly accurate method of characteris-

tics (MOC) in which the governing PDEs are decomposed into an equivalent system of

ODEs. The characteristics based approach is useful as it gives a visual representation
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of the flow structure that provides valuable physical insight into swash zone (mor-

pho)dynamics. The specified time interval (STI)MaC scheme is very flexible and any

order of accuracy in space is easily obtained by use of a polynomial of corresponding

order for base point interpolations. Temporal accuracy above second-order is demand-

ing on memory; however, second-order accuracy in both space and time is shown to be

sufficient for swash simulations. The development of a STIMaC solver for rapid flow

transients over a mobile bed is new. Infact, such a scheme dispels a popular belief that

only multi-mode characteristics schemes! can accurately model rapid transients over

a mobile bed when specified time intervals are used (Lai, 1991).A more conventional

finite-difference approach using aMacCormack modified Lax Friedrichs self-adjusting

hybrid scheme, that incorporates anti-diffusion filtering, is also presented. The work

necessitated the development of a new algorithm to deal with the wet-dry (shoreline)

boundary on a mobile bed. So that the algorithm would be of practical use it was made

suitably generic enough to work with any conventional finite-difference or fixed grid

MaC type solver. Variations of this algorithm for the q = Au3 and q = Au3h sediment

transport formulations are detailed in §4.3.2. The algorithm is tested for a variety of

different conditions and found to be both robust and reliable (Chapters 7 and 8).

When using a MaC approach it is necessary to treat bores explicitly whenever they

occur using shock fitting procedures. InChapter 5 suitable shock relations are derived

and a new shock fitting algorithm suitable for flow over a mobile bed is developed

based on those devised for gas dynamical problems by Moretti (1971). The shock fit-

ting scheme is investigated and found to perform extremely well (Chapter 5). Explicit

1Multimode schemes combine both spatial and temporal (reachback) interpolation at the base points

of characteristics
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shock fitting becomes prohibitively difficult when multiple shocks and shock-shock in-

teractions occur in the flow. It is this reason that motivated the development of a more

conventional shock capturing scheme in tandem with the shock fitting approach. A

number of related shock capturing schemes are investigated in §5.1. Possible remedies

for the problem of parasitic oscillations around discontinuities that include non-linear

filtering and artificial dissipation are also investigated in §5.1. While direct non-linear

filtering at each time step is suitable to render incident bores oscillation free, it is found

that such a scheme is not capable of dealing with certain, high strength, backwash

bores without blowing up. Primarily for stability reasons a hybrid scheme based on

a weighted average of first and second-order solutions is found to be most suited to

modelling swash flows. The smearing effect due to artificial dissipation around dis-

continuities is removed using a conservative anti-diffusion filter recently devised by

Breuss and Welk (2006). Surprisingly good results are obtained using this filtered hy-

brid scheme. Numerical predictions are in excellent agreement with the analytical re-

sults for several challenging test problems even for relatively long run times. It should

be relatively easy to extend the hybrid shock capturing scheme in order to model mul-

tiple swash events, however, this has yet to be attempted.

In Chapter 6 two new quasi-analytical solutions are developed for mobile bed dam-

break flow. These quasi-analytical solutions are obtained using the Riemann wave

approach pioneered for dam-break flow by Fraccarollo and Cap art (2002). Such solu-

tions provide detailed insight into the wave structure of morphodynamic dam-breaks

from the perspective of two different sediment transport formulae. They also provide

invaluable validation tools for morphodynamical solvers and are used to validate both

the MaC and finite-d.ifference schemes presented in Chapter 4 of this thesis. Qualita-
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tive comparisons with the work of Fraccarollo and Capart (2002), Murray (2007) and

Zech et al. (2008) indicate that for the relatively simple shallow water-Exner system the

q = Au3 sediment flux better represents the physical behaviour of mobile bed dam-

breaks. Indeed, at the qualitative level, such a simple approximation performs sur-

prisingly well capturing many of the important physical flow features such as the two

rarefaction regions, roughly constant state region and sediment bore, or "debris snout",

at the wave tip. The brief quantitative comparisons made with the experimental data

given in Fraccarollo and Cap art (2002) show that considerable additional analysis is

required to improve the agreement between theory and reality.

Results of uncoupled beachface evolution obtained from analytical solutions devel-

oped in Chapter 7 illustrate that for SM63 swash net transport is everywhere offshore.

This occurs for both sediment transport formulae and is to be expected following the

work of Pritchard and Hogg (2005). However, for HP79 swash a net influx of water

and sediment leads to a positive net sediment flux in the newly created subaqueous

region between the original and new shoreline positions. In Chapter 8 results of fully

coupled modelling are presented and some interesting observations are made. Im-

portantly, when q = Au3, the coupling of hydro- and morphodynamics leads to the

net onshore transport of sediment on the beach for the entire range of bed evolution

parameters tested. This finding suggests that the water sediment interaction could

be primarily responsible for the net onshore transport of sediment observed on many

natural beaches. For swash driven by the uniform bore described in Hibberd and Pere-

grine (1979) results are obtained for two different sediment transport formulae. The

pattern of accretion is different for the q = Au3h formulation; however, net onshore

transport of sediment is also predicted for this sediment transport formulation.
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9.2 Recommendations

Mathematical modelling of beach face evolution in the swash zone is still in its infancy.

In particular, models in which the associated hydro- and morphodynamics are fully

coupled are currently extremely rare. As such, there remains a great deal of work still

to be done, meaning that swash zone sediment transport will remain an active research

area for many years to come. A number of suggestions for future research, informed

by the work undertaken in this thesis, are given below.

While a model based on the q = Au3 sediment flux formulation was thoroughly in-

vestigated an in-depth investigation was not conducted for the q = Au3h formulation.

It is highly recommended that a method of characteristics based solver be developed

for the q = Au3h formulation. The development of such a solver would undoubtedly

provide a great deal of insight into the associated dynamics. An investigation would

allow for a more detailed comparison between the wave structure associated with the

two sediment transport formulations.

The present model is rudimentary in that it does not account for infiltration, sediment

storage, settling lag, advection of sediment from the surf zone or bed shear stress. It

is recommended that infiltration be included in the model using Darcy's law follow-

ing the work of Packwood (1983) and Dodd et al. (2008). There is also scope for the

inclusion of exfiltration. The addition of a storage term to the shallow water-Exner

equations is common place in work on alluvial flow (see for example Lai (1991». Thus,

the inclusion of such a term within the context of swash zone flows should present no

major challenge. Similarly, the inclusion of settling lag and advection effects should
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also be relatively straight forward with the former only requiring a modification to the

sediment flux function. Modelling of bed shear stress in swash zone flow is, however,

more complex. Ideally to achieve realistic results use should be made of boundary

layer theory. A laminar boundary layer approach is known to be problematical in the

backwash due to the boundary layer thickness exceeding the flow depth (Packwood,

1980). To date only a handful of numerical models based on the shallow water equa-

tions have successfully incorporated a boundary layer approach for bed shear stress

in swash zone modelling (see e.g. Clarke et al. (2004». While inclusion of all, or even

just some, of these effects into a MOC based solver would doubtless prove extremely

challenging, incorporation into the hybrid finite-difference scheme should be far more

straightforward. Itwould be interesting to see how well the simple sediment transport

model employed within this thesis compares with much more complex models that

incorporate the effects listed above.

In this thesis hybrid solvers based on classical finite-difference schemes have proven

to be more than capable of dealing with some of the most challenging flow regimes

of the nearshore region. Classical difference schemes are extremely rapid, robust and

straightforward to code without the need for lengthy decomposition of the governing

equations. It would appear that classical finite-difference schemes have been given a

new lease of life by the development of robust and efficient non-linear filters. In partic-

ular, filters that remove smearing due to artificial dissipation seem to be well suited for

use in modelling swash flows. Such filters can be applied after thousands of time-steps

without any apparent loss of accuracy. The results using hybrid schemes and filters ob-

tained in Chapters 5, 7 and 8 are promising. In predicting the height and velocity of

shocks they have even been shown to outperform the commonly used weighted aver-
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age flux (WAF) schemes (§5.6). However, further work on the switch function is neces-

sary to alleviate the excessive smearing of gradient discontinuities. Another interesting

line of inquiry for swash modelling is the possible use of flux corrected transport (FCr)

schemes first introduced by Boris (1971). The FCr scheme began as a semi-Lagrangian

technique, however, FCT schemes are now fully Eulerian and employ two distinct cal-

culation steps. In the first step, a high order difference scheme is used to obtain the

solution at a new time, the scheme is stabilised through the explicit addition of arti-

ficial diffusion, this diffusion is then removed in an anti-diffusion step. FCr based

algorithms have long been used in gas dynamics with a great deal of success (see for

example Boris and Book (1973, 1976); Zalesak (1979); Boris et al. (1993». Such schemes

are comparable to the classical Lax Wendroff central difference schemes in continu-

ous flow regions in terms of their accuracy, computational expense and ease of coding

(Boris and Book, 1973). Moreover, they are known to model shocks extremely crisply

and do not suffer from parasitic oscillations. Importantly, it should be possible to em-

ploy the tip algorithm developed in §4.3.2 in an FCr type solver thus making treatment

of the shoreline relatively straightforward.

Finally, a comparison between data obtained from laboratory experiments, or the field,

and the theoretical results obtained here is of course extremely important. A brief qual-

itative comparison with mobile bed dam-break experiments carried out in the flume at

the University of Nottingham (Murray, 2007) reveals that the theory is able to capture

most of the flows more salient features. In particular, photographs of bed and water

surface profiles bear a striking resemblance to the profiles obtained in Chapter 6 when

the q = Au3 sediment flux formulation is used. Direct comparison of the Riemann

wave solution to the shallow water-Exner system and the data provided by Fraccarollo
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and Capart (2002) indicates that the theory needs to be extended to accurately predict

the physical behaviour of rapid flows over mobile beds. In-depth quantitative analysis

is thus deemed a fruitful avenue for further research.
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ApPENDIX A

Obtaining initial conditions for

SM63 swash on a mobile beach

A.O.I Discontinuous initial conditions

The discontinuity in all dependent variables at t = 0 prohibits the numerical solu-

tion from starting at this point when using the MOC STI solver, or the MacCormack-

mLxF hybrid solver if a genuine wet-dry boundary treatment is to be employed. The

MacCormack-mLxF hybrid solver can run directly from discontinuous initial condi-

tions if the thin film approach is used downstream, see §4.3.2. If the thin film is on a

slope, however, a special procedure must be employed to ensure that the film of wa-

ter downstream of the shoreline does not begin to accelerate down the slope before the

shoreline reaches it. When using genuine wet-dry boundary conditions for dam-break

initial conditions it is a necessary requirement that the solution is started at a finite time

tl' To obtain initial conditions at tt the flat bed Riemann wave solutions detailed in

Chapter 6 are employed. Such an approach is typical when simulating purely hydro-

dynamical dam-break problems on sloping beds using MOC based solvers for which
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the Ritter solution is used to provided initial values of hand u (Sakkas and Strelkoff,

1973). In this work the Riemann wave values of h, u and B obtained at tt are employed

directly as initial conditions for the main solver. The legitimacy of using initial values

derived for flow over a horizontal bed for sloping bed problems does not appear to

have been discussed in any of the previous literature. A scaling argument can be used

to show that such an approach is in fact legitimate. Letting B(x, t) = Bo(x) + b(x, t)

and employing the following scaling:

(A.D.1)

t' - T-1t- " (A.D.2)

(A.D.3)

(A.D.4)

(A.D.5)

where T is a dimensional time parameter and daggers denote scaled variables. Putting

these new scaled variables into the governing equations, with closure obtained using

q = Au3, gives:

(A.D.6)

(A.D.7)

and:

{ab' zau'}T-l~Agho at' +3(U'} ax' = D. (A.D.B)

It therefore follows that in the limit as T -+ Dthe g~ term in (A.D.7) becomes negligible

and the equation system approaches that of a flat bed. This approach requires that u

be characterised by a finite velocity and b by a finite perturbation; for the governing
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BEACH

equations used here both of these requirements are satisfied, cf. Chapter 6. The same

argument can also be put forward for the fixed bed case.

A.O.2 Convergence

The validity of the above approach can also be checked numerically. As the time at

which the initial solution is obtained, Le. tI, tends to zero values of the dependent

variables h, u and B should converge to a limit. Figure A.1 shows the convergence of

water height h as the value of tI is reduced from an initial value of 1x10-1s down to

5 X 1O-3s at a fixed location 0.4m up the beach. It is clear from the figure that the solu-

tion does indeed converge as tt -+ 0, further reduction of tt leads to little discernable

difference. Convergence was checked for a number of cross-shore locations and values

of the bed evolution parameter (0'), the trend illustrated by the top panel of Figure A.1

was observed in all cases; similar results were obtained for the water velocity u and bed

height B. The bottom panel of Figure A.1 illustrates convergence of the instantaneous

shoreline position as tI is decreased for a fixed tu. Perhaps the most rigorous numer-

ical test on the validity of this approach is to let A -+ 0 and compare the resulting

swash event with the SM63analytical solution, this was done in §4.4where excellent

agreement was found.
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Riemann equations at the wave tip

Au3for q

In Chapter 3 the Riemann equation (3.4.23) associated with the third characteristic fam-

ily (k = 3) was considered at the wave tip, Le. where h=O. It was found that (3.4.23) is

undefined there. This problem merits further investigation which is carried out here.

The characteristic polynomial for the shallow water-Exner system with q=Au3 is:

(B.0.1)

At h = 0 the eigenvalue of the third characteristic family is A = u. The subscript 3 is

dropped throughout this appendix for convenience. Expanding A in the limit h -+ 0 as:

(B.0.2)

Then assuming that O(h2) terms are negligible and putting (B.0.2) into (B.0.1) gives:

A~+3hAIA~ - 2u(A~ +2hAIAo)

+ (u2 - gh - 3A,gu2)Ao + (u2 - 3A,gu2)hAl + 3A,gu3 + O(h2) = O.(B.0.3)
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Taking Ao = u it follows from (B.O.t) that:

(B.0.4)

Therefore, at O(h), (B.0.3) becomes:

(B.O.5)

From this analysis it follows that for the third eigenvalue at the wave tip:

. Next, considering the Riemann equation (3.4.23) for the third characteristic family:

du g dh gdB
Tt + (A - u) dt +Adt = o. (B.0.6)

Considering the second term on the LHS of (B.0.6) in the limit h --+ 0 then:

_g_dh = -3A~ h-1dh
A - u dt gu dt' (B.O.7)

Employing the material derivative and recalling that A ~ u - (3A~u)-lh close to the

tip it follows that:

dh ah 1 ah- ~ - + (u - (3A~u)- h)-.dt at ax (B.0.8)

From (3.2.7):

ah + uah = -h au
at ax ax' (B.0.9)

combining (B.O.8)and (B.O.9)and simplifying, then in the limit h --+ 0:

g dh au ah__ - ~ 3A~gu- +g-.
A -u dt ax ax

(B.O.tO)

If x, is the shoreline position then (B.O.tO)can be re-written as:

_g_dh ~ 3A dx. au + ah
A - u dt ~g dt ax g ax'

(B.O.ll)
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Next, considering the third term on the LHS of (B.O.6). In the limit h -+ 0 it is possible

to use the shock relation associated with the Exner equation (see §5.3.3) and write Bas:

( )
2dx ..

B = A~ Tt + x .. tanf3, (B.O.12)

where the second term on the RHS represents the undisturbed bed height of an initially

planar beach. Thus:

dB = 2AJ:(dX,,) d2x.. adx ..
dt '" dt dt2 + tan f dt . (B.O.13)

Combining (B.O.6), (B.O.ll) and (B.O.13) and simplifying gives the equation:

(B.O.14)

which is valid as the tip is approached, i.e. in the limit h -+ O.
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Rankine Hugoniot conditions for

the shallow water system

Consider a discontinuity in water height h and water velocity u, where h(x, t) and

u(x, t), at the point x = ,(t) between the two points in space x = Xl (t) and x = X2(t)

so that XI(t) < ,(t) < X2(t). Rather than splitting the region of integration, as was

done in §5.I, here a Galilean coordinate system is employed. This is done in order

to facilitate the proof that a characteristic represents the limit of a weak shock. This

coordinate system is set so that it moves parallel to the bottom with the velocity of

the discontinuity W (where W = ~). This yields the two velocities relative to the

discontinuity VX1 and VX2 where:

(C.O.I)

and:

(C.O.2)

Here UX1 and UX2 are the absolute velocities of the water either side of the discontinuity

relative to a stationary coordinate system. Applying the law of conservation of mass or
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continuity to the system:

d 1X2(t)-d phdx = O.
t Xl (t)

Application of Leibnitz's theorem for the differentiation of an integral gives:

(CO.3)

(CO.4)

Ifwe let the spatial extent of the shock become very small then Xl -+ X2hence:

1X2(t) ah
Pat dx -+ O.

Xl (t)
(CO.5)

Recalling that:

(CO.6)

and rearranging we are left with:

(CO.7)

(CO.3) states that the rate of change of mass within the region Xl to X2 is zero. That is,

the mass of water in the column between Xl and X2 remains constant. (CO.7) states that

the mass flux is constant, and identical on both sides of the discontinuity (x = C(t).

Next, consideration of momentum gives:

(CO.8)

Ifwe assume hydrostatic pressure (i.e. p = pgh) this reduces to:

d 1X2(t) i 2 i 2
-d phv dx = -2Pghx2- -2Pghxl·t Xl (t)

(CO.9)

Applying Leibnitz's theorem for the differentiation of an integral to the LHS of (CO.9)

gives:

d 1x2 (t) 1x2 (t) a (hv) dX2 dXI
-d phv dx = P-at dx + p(hV)lx2dt - p(hv)lxl dt .
t Xl (t) Xl (t)

(CO.tO)
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This simplifies to:

(C.O.11)

but the spatial extent of the shock is very small and Xl --+ X2 so:

(C.O.12)

and the LHS of (C.O.9)becomes:

(C.O.13)

Substituting this back into (C.O.9)and re-arranging yields:

(C.O.14)

Here it isworth mentioning the point made by Stoker (1948) that water particles cannot

gain energy on crossing a shock front. Therefore, water particles will always move

from a region of lower total depth into a region of higher total depth'. This allows us

to define the front, or low, side of a bore as that side from which water particles depart.

The back, or high, side is the side at which water particles arrive. From (C.O.7)it follows

that:

(C.O.1S)

Substituting this relation into (C.O.14)then:

(C.O.16)

Hence, re-arranging and simplifying leads to the following relation (still in a moving

coordinate system):

(C.O.17)

lStoker credits this discovery to Rayleigh (1914)
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In the same fashion it can be shown that:

(CO.18)

These relations lead to some interesting conclusions. Firstly, as the height of the dis-

continuity tends to zero, i.e. as hX2 ---+ hXI, it follows that:

(CO.19)

That is VXI and VX2 tend to the characteristic celerities as the discontinuity becomes

vanishingly small/. Thus, a characteristic is the limit of a weak shock; a fact that is

often alluded to in the literature but seldom explained. Secondly, from (CO.17) and the

fact that hX2 < hXII then VXI < (ghXI) i .As VXI represents the velocity of the bore relative

to the velocity UXI of the water particles behind it, then the wave celerity in the water

behind the bore is greater than the relative bore velocity. This means that disturbances

originating behind the bore will eventually catch up the bore and therefore modify it:

see Stoker (1948), Freeman and Lelvlehaute (1964), or Amein (1964».

Derivation of bore velocity

Putting (CO.2) into (CO.18) and multiplying out gives a quadratic in W:

(CO.20)

This yields the roots:

I

( h ) t (h xl + h X2 ) :2
W = UX2 ± g XI:2 2hX2 • (CO.21)

By definition W > Iux21 so it follows that:

2This result was first pointed out by Abbott (1966)
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1

W ( h )1 (hX1 +hX2)2
= UX2 + g Xl ~ 2hx2 • (C.O.22)

Similarly, putting (CO.1) into (CO.17) gives:

(CO.23)
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Validation of numerical schemes

In this appendix results for various validation tests are presented for the numerical

schemes described in Chapters 4 and 5. The first two figures were constructed using

the second-order accurate GC MOC scheme developed in §4.1.2 for flow on a fixed bed.

Note that for all of the results presented the relative error between numerical and an-

alytical results is < 0.4%. Figure 0.1 illustrates the ability of the scheme to reproduce

the SM63 analytical height and velocity fields visually perfectly for both the run-up

and backwash. Figure D.2 shows a swash event due varying the incoming Riemann

invariant linearly on the seaward boundary characteristic R+ = 2co + l.SB,xgtSB (see

§4.1.2). Variables in the figure have been non-dimensionalised according to the scaling

employed by Peregrine and Williams (2001) which also scales out the beach slope. The

entire run-up and backwash up until the point of backwash bore collapse is shown.

There is no analytical data to verify the solution against but it is clear from the figure

that the backwash bore is resolved extremely crisply with no oscillations present in the

solution. The figure also illustrates how well the GC MOC scheme implicitly handles

the wet-dry (shoreline) boundary.

Figures 0.4 and 0.5 compare results of the first and second order accurate mobile
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Figure D.l: Snapshots of water velocity (top) and depth (bottom) at Is intervals com-

puted using second-order GC MOC scheme (red dashed) and SM63 ana-

lytical solution (cyan solid) for run-up (left) and backwash (right).
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bed STIMaC solvers with the quasi-analytical solution developed in Chapter 6 for the

wet-dry mobile bed dam-break. Results for both the first and second-order schemes

are clearly very good although the first-order scheme does exhibit a rather pronounced

smearing around gradient discontinuities. Note that the second-order scheme employs

the Engquist et al. (1989) filter (see §5.1.4) to reduce parasitic oscillations at the gradi-

ent discontinuities. The variable that suffers the maximum relative error in both first

and second-order MaC schemes when compared to the quasi-analytical predictions

is bed height (B). As would be expected the region where disagreement between the

quasi-analytical and numerical solutions is most pronounced is around the gradient

discontinuities. Within the main body of the flow, and at the bed discontinuity, the

maximum discrepancy is found to be < 3.5% and < 0.75% for the first-order and

second-order schemes respectively. For the other dependent variables (h and u) within

the main body of the flow, and at the bed discontinuity, the maximum discrepancy is

found to be < 2% and < 0.5% for the first-order and second-order schemes respec-

tively. Figure D.3 illustrates the results when the MacCormack-mLxF scheme is used

to solve the for the wet-dry mobile bed dam-break with discontinuous initial condi-

tions, also shown in the figure is the quasi-analytical solution. The results presented

in Figure D.3 were obtained using a "thin film" treatment for the shoreline boundary

(htf = 1 x lO-lOm). The results provide a valuable check on the wave structure as well

as illustrating certain limitations of the "thin film" technique. It is clear from the veloc-

ity plot that the MacCormack-mLxF scheme underestimates the tip velocity at smaller

times and that this estimation gets better as time goes on. Also evident in the figure are

some under- and overshoots at gradient discontinuities. Not so clear from the figure

is the small discontinuity in water depth observed at the wave tip; this bore is a conse-

quence of approximating a genuine wet-dry problem with a wet-wet one. Importantly,
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Figure D.2: Non-dimensional water surface elevation for a single swash event show-

ing run-up (top) and backwash (bottom) computed using second-order

GC MOC scheme. The backwash bore was detected and fitted using the

techniques detailed in §§5.4.2 and 5.4.4. Circles indicate the shoreline po-

sition.
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Figure 0.3: Snapshots of the wet-dry mobile bed dam-break problem with q = Au3

solved using the MacCormack-mLxF scheme (blue dashed lines) com-

pared with the quasi-analytical solution (red solid lines). Here tu =

O.Olm.
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the wave structure is in excellent agreement with that predicted in Chapter 6. Finally,

as no analytical solution is available for mobile bed SM63 type swash events, in Figure

D.6 a check for convergence is shown for the STI MaC solver. The check is made for

the final change in bed profile and instantaneous shoreline position for an entire SM63

swash event. It can be seen that for mesh spacings of O.01m and O.005m agreement in

the results of final bed profile are visually perfect. It is also clear from the figure that

the shoreline trajectory also converges as tu is reduced. A similar level of agreement

is obtained when using the MacCormack-mLxF solver.
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