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Abstract 
 

Digital filtering (DF) techniques are receiving significant interest, because they 

can represent fine features such as vias, thin-panels and thin-wires in full-field 

solutions of electromagnetic problems with significant savings in 

computational costs. However, a limitation of this technique is that DF can 

only represent a fine feature as a plane or as an internal boundary. In other 

words, an internal boundary can represent the electromagnetic properties of a 

fine feature in one dimension or two directions. 

 

The DF technique is usually involved with time domain solvers such as the 

Finite-difference time-domain (FDTD) and the Transmission Line Modeling 

(TLM) methods. Both of them are commonly used to investigate the 

electromagnetic fields in the problem spaces. Here the TLM method is selected 

for demonstrating the DF technique. 

 

This thesis presents the formulation of TLM in three-dimensions in order to 

investigate the limitations of the DF technique and the solutions. As a result, 

new techniques have been developed. These techniques can be applied to the 

three dimensional TLM method in order to represent the fine features in three-

dimensions appropriately. 

 

The developed techniques were demonstrated using some examples of three-

dimensional embedded objects, such as conducting volumes and dielectrics.  

Their accuracy and efficiency are compared with the standard TLM method in 

the time and frequency-domain. The results show good agreement between 

these techniques and the standard TLM method. 
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1. Introduction 
 

 

 

 

 

 

1.1 Introduction and Objective of the Thesis 

 

Most popular methods used by scientists and engineers to analyse 

electromagnetic phenomena include analytical methods and or numerical 

methods such as Transmission Line Modelling (TLM) [1.1]-[1.2], Finite 

Difference Time Domain (FDTD) [1.3] - [1.4], Finite Element Method (FEM) 

[1.5] and Method of Moments (MOM) [1.6]. TLM and FDTD are differential 

equation based techniques for full field solutions of electromagnetic problems. 

These techniques solve Maxwell’s equations, by creating a mesh over the 

problem space and iteratively solving for the electromagnetic fields in the 

mesh. The accuracy of the solution depends on the resolution of the mesh and 

how well it represents the problem space.  

 

 In general, solving a complex problem using numerical methods incur high 

computational costs in computer-memory and simulation-time because a 

network with a very fine mesh (size of the mesh is smaller compared to the 

wavelength) is required. The general example of this problem is the modelling 

of a wire embedded inside a cabinet. The wire diameter is usually much 

smaller than the wavelength, while the mesh size is comparable to the 



Chapter1. Introduction 

 

12 

 

wavelength.  Problems of this type are described as multi-scale problems [1.7] 

as discussed in the next section. 

 

1.1.1 Multi-scale Problems 

 

Consider a thin wire located inside a regular mesh as shown in Fig.1.1.  

 

 

 

   

 

 

 

 

 

 

 

Fig.1.1 A thin wire of radius less than mesh size inside a regular mesh 

 

Fig.1.1 shows a thin wire with a radius smaller than the mesh size with 

spatial resolution or space-step  l . Therefore, it is impossible to 

simulate the model directly. The straightforward way to solve this 

problem is to decrease the size of the space step l to be less than or 

equal to the radius of thin wire. However, this solution requires high 

computational effort. Alternative methods avoiding these problems 

include applying (i) a hybrid mesh or (ii) a multi-grid mesh as 

illustrated in Fig.1.2 and 1.3 respectively.  

 

l



Chapter1. Introduction 

 

13 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.2 A thin wire of radius inside hybrid mesh  

 

 

 

 

 

 

 

 

 

 

 

Fig.1.3 A thin wire of radius inside multigrid mesh  

In Fig.1.2, The obvious advantage of the hybrid mesh is that the fine mesh is 

not required over the entire problem space. In addition, it is not mandatory for 

a node to be a square (2D) or a cube (3D) in space, and can be shaped 

according to the required resolution in each direction. Also, the small time step 
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is determined by the smallest cell. However, the disadvantage is the difficulty 

in precisely determining the loss of accuracy for high grading ratios. A 

complete theoretical development and implementation details regarding the 

hybrid mesh can be found in [1.2] and [1.8].      

 

From Fig.1.3, one can infer that the advantages of a multi-grid mesh are (i) 

locally applied fine mesh (ii) that other model developments are not required to 

describe the fine features. However, the main disadvantage is the difficulty in 

modelling the information transfer at the interface between the fine and coarse 

mesh regions because they have different spatial and temporal granularity.  At 

the moment, there exist several solutions to minimise and overcome this 

problem. One of the popular techniques that can be used to solve this problem 

is described in the next section. 

 

1.1.2 Transmission-Line Modelling Method 

 

The Transmission-Line Modelling (TLM) Method is a numerical method for 

investigating electromagnetic fields in the time or frequency domain. This 

work will focus on the time-domain TLM. Basically, physical systems can be 

modelled using a network of transmission-lines with propagating voltages and 

currents. For electromagnetic field modelling, the voltages and currents are 

related to the electric and magnetic fields. The TLM method can be applied to 

one, two and three dimensional problems. The one-dimensional TLM method 

is commonly used to study basic physical systems such as electrical circuits. 

The two-dimensional TLM method has the same fundamental and 

computational procedure as the one-dimensional TLM method and is used to 

solve two dimensional problems like planar microwave circuits. However, 

more practical problems require the three-dimensional TLM method.  The 
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three-dimensional TLM method will be considered and described in the next 

chapter. 

In Transmission-Line Modelling (TLM) method, a well-known technique that 

was developed for multi-grid mesh problems is the TLM multiple grid scheme 

method [1.2], [1.9] and [1.10] ,which uses a range of fine and coarse mesh 

regions, to describe the electromagnetic field behaviour in a problem space 

under the following four conditions, in order to maintain synchronism and 

connectivity in the modelling of different parts of space in TLM (the location 

at the interface between the fine and coarse mesh regions). The conditions are; 

(i) Charge conservation 

(ii) Energy conservation 

(iii) No reflections 

(iv) Zero delays 

However, it is not possible to follow all of these four conditions at the same 

time. Therefore, a compromise is required [1.2].  

There is also another technique that can be applied in TLM for the same 

purpose called Digital filtering (DF) technique [1.11] as introduced and 

described in section 1.1.3 and chapter 3 respectively. However, there are some 

limitations and conditions to apply this technique in the TLM method as 

discussed in Chapter 3. 

 

Another solution is to glue the two meshes together with an unstructured mesh 

[1.12].  

 

The objective of this thesis is to implement and further develop DF techniques 

for the TLM method to represent more general problems especially, the 
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properties of fine embedded objects in three-dimensions, with benefits in terms 

of computational cost savings. 

1.1.3 Digital Filtering Techniques  

 

The digital filtering (DF) technique is applied in the three-dimensional TLM 

method, in order to represent the behaviour of fine embedded features such as 

thin panels, wires and materials with frequency-dependent properties [1.13]- 

[1.15]. The DF technique combines four techniques—the Fast Fourier 

Transform (FFT), the Frequency-domain Prony’s method [1.16], Laguerre’s 

Method [1.17] -[1.19] and Bilinear-Z-transform.  They are employed to 

estimate the DF parameters of a fine feature. Then, these parameters are used 

to construct the digital filters representing the properties and field 

characteristics of the fine feature. Moreover, the purpose of these techniques is 

to substitute the fine embedded feature with a digital filter which gives the 

same behaviour, but with lower computational requirements. 

 

 

 

 

 

1.2 Outline of the Thesis 

 

Chapter two begins by introducing the basic theory of the TLM method. Then, 

the three-dimensional TLM method is described; first, the development of the 

three-dimensional node is presented. Details of the symmetrical condensed 

node (SCN) [1.2], [1.20]-[1.21] are then explained. Then, the propagation 

properties and the computations in the SCN meshes are given. The chapter also 

covers the techniques to excite and measure the field components at a node. 
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The SCN with capacitive and inductive stubs is described and the scattering 

and calculation of electromagnetic field in a stubbed SCN are given.  

 

Chapter three introduces the DF techniques. Then, it is demonstrated how to 

apply the FFT, the Frequency-domain Prony’s method, Laguerre’s Method and 

Bilinear-Z-transform to obtain the DF parameters. It is also shown how to 

employ these parameters in connection with the three-dimensional TLM 

method. The conditions for selecting the sampling interval for the techniques 

are described. In addition, the implementation of the digital filter and the use of 

DF techniques in a three-dimensional TLM simulation are summarised in 

schematic and block diagrams.  

 

Chapter four begins with discussion on the original research by investigating 

the problems and limitations of the DF techniques combined with the three-

dimensional TLM method. Then, the DF technique is developed to minimize 

and overcome these problems. The example of a thin-wire (conducting post) 

placed between two parallel metal plates inside a large volume of space with 

matched-boundary condition (Mur’s absorbing boundary in FDTD [1.22]) is 

presented in order to demonstrate the effectiveness of the proposed techniques. 

This example also provides the comparisons between the three-dimensional 

TLM method and the developed DF techniques in time- and frequency-domain 

and in terms of their respective computational costs. Some limitations and 

conditions of the developed DF techniques are described in the chapter.  

 

Chapter five investigates and develops the DF techniques given in chapter four 

to be able to use with general problems in three-dimensions. The DF 

techniques are developed and successfully applied to the representation of a 

fine-embedded object in a coarse mesh by extracting the DF parameters using 

a TLM fine mesh simulation. The methods and procedures are explained. The 

validations and limitations of the technique are also given. Examples of joining 
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DF-nodes to replicate the properties of conductors and dielectric materials are 

presented. At the conclusion, this technique is summarised in block diagrams. 

 

Chapter six summarises the conclusions of the work and outlines the strengths 

and weaknesses of the DF technique developed. Further work for the 

development of the DF techniques is then proposed.  
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2.  Three-Dimensional TLM 
 

 

 

 

 

 

2.1 Introduction and development of Three-

Dimensional TLM  

The three-dimensional TLM network originally developed by combining two-

dimensional shunt and series nodes [2.1] as shown in Fig.2.1 with a time step 

delay between them is known as the expanded node network [2.2]. The main 

advantage of this network is that three of the six field components 

 zyxzyx HHHEEE ,,,,, can be determined at each scattering point. 

 

Fig.2.1 An expanded node. 

The expanded node has been employed for solving three-dimensional 

electromagnetic problems over many years [2.3]. However, the complicated 
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topology of the computational cell causes errors and difficulty in modelling 

boundaries. The scattering points, where the field components are determined 

are spatially separated and cannot also be updated at the same time. Because of 

these problems, a more compact node was developed and is referred to as the 

asymmetrical condensed node [2.4]. It is simply a three-dimensional node, 

which all field components are calculated at the same point. In other words, all 

scattering processes of the node is placed at one point in the field space. The 

boundary conditions can be applied either at the node or in between nodes. 

Moreover, it is asymmetrical because the first connection to the node can be 

either to a shunt or to a series node, depending on the direction of the 

observation. More information on the asymmetrical condensed node can be 

found in [2.4] and [2.5]. Another compact three-dimensional node is the three-

dimensional symmetrical condensed TLM node (3D-SCN) introduced by Johns 

in 1986 [2.6] as illustrated in Fig.2.2. The 3D-SCN node whose scattering 

properties obtained by energy and charge conservation [2.7] minimises the 

problems of the expanded and asymmetrical condensed nodes. The 3D-SCN is 

explained in the next section.     

 

Fig.2.2 A three-dimensional symmetrical condensed TLM node. 
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2.2 Three-Dimensional Symmetrical Condensed Node 

 

The 3-D SCN node represents a block of space with size 
3l  where

zyxl  . It contains twelve ports in order to represent the two field 

polarisations at the centre of each face of the cell. Moreover, the scattering 

matrix of the node )(S  relating the vector of scattered voltages )( rV


 to the 

vector of incident voltages )( iV


is given in (2.1). 

ir VSV


     (2.1) 

where i and  r are incident and scattered ports respectively. 

Let us consider an incident voltage pulse excited into port 0 of the TLM node 

in Fig.2.2. This pulse is x-directed. Therefore, it is associated with the field 

components xE and yH . Maxwell’s equations relating these field 

components are  

t

E

y

H

z

H
xzy














                (2.2) 

t

H

z

E

x

E yxz














    (2.3) 

Equation (2.2) implies that an incident pulse on port 0 can scatter back into 

port 0 since it is reflected, port 1 because it is associated with xE  and yH , 

ports 2 and 3 because they are associated with xE  and zH . Equation (2.3) 
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implies that the pulse can also scatter into ports 10 and 11, since they are 

associated with xE  and yH .  

Moreover, let us consider that the magnitudes of the pulses scattered into ports 

0 and 1 are a and c respectively. The magnitudes of the pulses scattered into 

ports 2 and 3 are equal because of the symmetry of the node and are considered 

as b . Similarly, the magnitudes of the pulses scattered into ports 10 and 11 

have the same amplitude but have opposite signs and are considered as d and 

d respectively. When this procedure is applied to all ports, the S  can be 

determined through the use of the laws of conservation of power [2.7] as 

described in [2.1]. Consequently, it becomes the 12 x 12 matrix given in (2.4). 

 

acbbdd

cabbdd

bbacdd

bbcadd

ddacbb

ddcabb

bbacdd

bbcadd

ddacbb

ddcabb

ddbbac

ddbbca

S



























  (2.4) 

 

For a lossless network where the total scattered power is equal to the total 

incident power, the unknown parameters cba ,, and d can be determined 
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[2.1]. Therefore, S  for a lossless network can be obtained as shown in (2.5) 

and is referred to as a regular mesh. 

  

001111

001111

110011

110011

110011

110011

110011

110011

110011

110011

111100

111100

5.0

























S

          (2.5) 

 

2.2.1 The Connection Process for the Regular SCN Mesh 

  

In order to establish the connection process between regular SCN nodes, 

suppose that an incident voltage pulse is excited into port 10 at node (x, y, z) in 

Fig.2.3 at time-step k , such that   1,,10 zyxV i
k . It will propagate along the 

x-direction with the electric field polarised in the z-direction generating the 

scattered voltages as given in (2.6). 

        5.0,,,,,,,, 1098  zyxVzyxVzyxVzyxV r
k

r
k

r
k

r
k  (2.6) 

The other scattered voltages are equal to zero. These scattered voltages will 

then propagate into the neighbouring nodes at the next time-step 1k . 
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Consequently, the incident voltages at the neighbouring nodes can be obtained 

as given in (2.7). 

 

Fig.2.3 A cluster of SCN nodes. 
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    5.0,,1,, 101  zyxVzyxV r
k

i
k    (2.7a) 

     5.0,,1,, 011  zyxVzyxV r
k

i
k    (2.7b) 

    5.0,,,1, 981  zyxVzyxV r
k

i
k    (2.7c) 

    5.0,,,1, 891  zyxVzyxV r
k

i
k     (2.7d) 

 

The new incident voltages in (2.7) are then scattered into other ports of these 

nodes to obtain the scattered voltages that propagating into the neighbouring 

nodes at the next time-step 2k .   

Equation (2.7) also implies that it takes two time-steps for a wave to propagate 

the distance of a block of space or the distance between two adjacent nodes 

l . Thus, the velocity within 3D-SCN, v , is [2.1] 

t

l
v






2
     (2.8) 

where t is the time discretisation. 
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2.2.2 Modeling of the 3D-SCN Boundary 

 

The boundary of the three-dimensional TLM model is a plane adjacent to the 

3D-SCN as shown in Fig.2.4. If the boundary has an impedance value of bZ , 

the new incident voltage on the port adjacent to this boundary will be 

       
r

nk
b

bi
nk V

ZZ

ZZ
V 














1     (2.9) 

 

Fig.2.4 A SCN adjacent to a boundary [2.7]. 

In general, there are three boundary conditions for the three-dimensional TLM 

model. They are the absorbing (matched) [2.8], the conducting (short-circuit) 

and the magnetic (open-circuit) boundary conditions. The new incident 

voltages on the port adjacent to these boundaries can be obtained as given in 

(2.10). 
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For absorbing boundary,   001 
r

nk
i

nk VV    (2.10a) 

For open-circuit boundary,   r
nk

r
nk

i
nk VVV  11    (2.10b) 

For conducting boundary,   r
nk

r
nk

i
nk VVV  11   (2.10c) 

 

2.2.3 Calculating the field components from SCN mesh 

 

In the SCN mesh, the electric and magnetic field components can be 

determined at any point from the  yx ,  and z -directed voltages  zyx VVV ,,

and currents  zyx III ,,  respectively. In general, they are calculated either at 

the node or in between nodes.  The electric and magnetic field components at 

the node can be calculated as given in (2.11) and (2.12) respectively [2.1].  
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Similarly, the electric and magnetic field components placed between nodes 

can be calculated. For instance, the zE  and yH components in between nodes 

 zyx ,,  and  zyx ,,1 in Fig. 2.3 can be calculated as given in (2.13) and 

(2.14) respectively. 
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    (2.13) 
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1110
    (2.14) 

where  CLZ  000  [2.9] is the impedance of the transmission-line and 

0Z  is equal to 377  for the model of free space.  

The calculations of electric current and charge are not covered here but can be 

found in Ref. [2.1]. 
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2.2.4 Computational procedure in a SCN mesh 

 

The first step in the computational procedure of the three-dimensional SCN 

mesh is the assignment of initial conditions such as the input excitations, the 

time step, the size of nodes and the boundary conditions. Then, the scattered 

voltages at each node are determined from the scattering matrix )(S related to 

the incident voltages )( iV as given in (2.1). At the next time step, the new 

incident voltages are obtained from the neighbouring nodes as described in 

section 2.2.1 during the connection process. In addition, the new incident 

voltages are calculated from the scattered voltages at the same node, within 

those nodes adjacent to the boundary as explained in section 2.2.2 during the 

connection process. Moreover, the outputs—all electromagnetic quantities—

can be determined and calculated at any simulation stage. The complete 

computation procedure for the three-dimensional SCN mesh can be 

summarised in a schematic diagram as shown in Fig. 2.5. 
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       End 

Fig.2.5 Schematic diagram of the computation procedure for the SCN mesh. 

 

 

Initial conditions, Input data 

The input excitations, the time step, the boundary 

conditions, the size of nodes, the initial conditions  

 

 

Scattering process 

Calculate the scattering voltages at each node 

(equation 2.1) 

 

 

Connection process 

Calculate the new incident voltages obtained from the 

scattering voltages of the neighbouring nodes  

 (section 2.2.1) 

 

 

Boundary conditions 

Calculate the new incident voltages obtained from the 

scattering voltages at the same node, within those 

adjacent to the boundary (section 2.2.2) 
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2.3 Modelling of the SCN with loaded stubs 

The use of stubs is required to model fine features and non-uniform materials 

such as dielectric, magnetic and lossy materials. The node with stubs can be 

constructed by adding six extra ports, stub-ports 12, 13, 14, 15, 16 and 17, to 

the SCN. As a result, the scattering matrix now has a size of 18x18. But, the 

ports 0-11 are still connected to the neighbouring nodes as in the regular SCN. 

The stub-ports are used in the calculation of the electric and magnetic fields. In 

addition, the stub-ports 12, 13 and 14 are open-circuited, adding capacitance to 

the node. These ports are referred to as capacitive stubs. On the other hand, the 

stub-ports 15, 16 and 17 are short-circuited, adding inductance to the node. 

These ports are referred to as inductive stubs. 

Suppose that xŶ is the characteristic admittance of the x-directional capacitance 

stub normalized to the characteristic admittance of free space  0Y , which is 

[2.1] 

4
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Similarly, the y-directional and z-directional capacitive stubs are 
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Similarly, suppose that xẐ is the characteristic impedance of the x-directional 

inductive stub normalized to the characteristic impedance of free space  0Z , 

which is 

 4
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   (2.16a) 

Similarly, for the y-directional and z-directional inductive stubs are 
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   (2.16b) 

4
2ˆ

0

















z

yx

tu
Z r

z


   (2.16c) 

The scattering matrix of the SCN with loaded stubs can now be obtained as 

given in (2.17) 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
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where     
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Note that Ŷ  and Ẑ in (2.18) refer to the corresponding directional stubs 

appropriately.  In addition, they must correspond to real positive component 

values to maintain the stability. Further details on the SCN with loaded-stubs 

can be found in Ref. [2.1] and [2.7].  

In the computational procedure of the three-dimensional TLM model, the 

scattering process of the SCN nodes with loaded-stubs occurs between the 

scattering process of the regular SCN nodes and the connection process. This 

can be simply summarized in a schematic diagram as shown in Fig. 2.6.  

The SCN with capacitive, inductive and Lossy stubs [2.1] are not explained 

here as all modeling in the project is done in the presence of the SCN with 

loaded-stubs.  

 

2.4 Example TLM simulation 

In order to demonstrate the accuracy of the simulation program created for the 

project, this section presents a comparison between the three-dimensional SCN 

stub loaded model simulation and the analytical result for the structure shown 

in Fig.2.7. 

The model in Fig.2.7 is a 3 mm x 5 mm x 10 mm (thickness x width x height) 

silicon block placed in a problem space of 801 mm x 5 mm x 10 mm, with a 

space step l of 1 mm. The boundary conditions at the extremities of the 

problem space are such that it is matched at Xmin-Xmax, open-circuited at 

Ymin-Ymax and conducting at the top and the bottom (Zmin-Zmax). In 

addition, the dielectric block has a relative permittivity r  of 16 at room 

temperature. 
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  End 

Fig.2.6 Schematic diagram of computation procedure for the SCN mesh with load-stubs. 

 

Initial conditions, Input data 

The input excitations, the time step, the boundary 

conditions, the size of nodes, the initial conditions  

 

Scattering process for regular SCN nodes 

Calculate the scattering voltages at each node 

(equation 2.1) 

 

 

Connection process 

Calculate the new incident voltages obtained from the 

scattering voltages from the neighbouring nodes  
 (section 2.2.1) 

 

 

Boundary conditions 

Calculate the new incident voltages obtained from the 

scattering voltages at the same node, within those 

adjacent to the boundary (section 2.2.2) 
 

 

Scattering process for SCN nodes with 

load-stubs  

Calculate the scattering voltages (equation 2.15-2.18) 
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Fig.2.7 The model of the three-dimensional SCN mesh with dielectric block. 

 

The simulation results for the model in Fig.2.7 in the time-domain were 

obtained by exciting a Gaussian pulse shaped input voltage  inV  of 1 V peak 

amplitude and 85 ns temporal half-width in the Z-direction on the ABCD plane 

as defined by equation (2.19). Its propagation will be in the X-direction. The 

time-domain reflected and transmitted voltages (output) are obtained by 

observing the voltage at EFGH and IJKL planes as given in equations (2.20) 

and (2.21) respectively.  
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where NY and NZ  are the number of nodes in Y and Z –directions. 

The output voltages on EFGH and IJKL planes are shown in Fig.2.8 and 2.9 

respectively.  

 

Fig.2.8 The time-domain results observed from EFGH plane, where the first pulse with 

magnitude of 1 V at time between 7-22 ns approximately, is the input voltage. And the 

second pulse at time between 26-45 ns is a reflected voltage with amplitude of 0.18 V 

approximately.  

 

Fig.2.9 The time-domain results observed from IJKL plane where the voltage pulse 

between 26-45 ns is a transmitted voltage with magnitude of 0.95 V approximately. 
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The time-domain reflected and transmitted voltages in Fig.2.8 and 2.9 can be 

transformed into the discrete frequency-domain results—the reflection and 

transmission coefficients (S11 and S21)—by applying the Fast Fourier 

Transform (FFT). These frequency-domain results are compared with the 

analytical results, which are simply calculated by employing Fresnel’s 

reflection formulae [2.10]-[2.11] which is summarised in (2.22)-(2.23) for the 

comparisons as shown in Fig. 2.10 and 2.11.  
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where 



 22 sin

2
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d
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2
0 k , d is the thickness of the sample, 

is the wave-length in the free space,  n is the complex refractive index of the 

sample,   is the angle of the incident wave and  'R  is given in (2.24).  
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 For the model in Fig.2.7, d , n and  are 3 mm, 4 and 0 respectively. 
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Fig.2.10 The diagram shows the comparison between the discrete frequency-domain 

reflected voltage (red line) obtained by applying FFT from the time-domain reflected 

voltage in Fig. 2.8 and the analytical result (green dots) between 0-3.5 GHz.       

 

 

 

Fig.2.11 The diagram shows the comparison between the discrete frequency-domain 

transmitted voltage (red line) obtained by applying FFT from the time-domain 

transmitted voltage in Fig. 2.9 and the analytical result (green dots) between 0-3.5 GHz. 

 



Chapter2. Three-Dimensional TLM 
 

44 

 

Fig.2.10 and 2.11 shows good agreement between the TLM simulation and the 

analytical results. 

 

2.5 The errors and limitations in three-dimensional 

TLM method 

 

There are a variety of errors that occur in three-dimensional TLM simulations. 

Therefore, the TLM method must be used with caution in order to obtain 

results of a required accuracy. The main sources of errors [2.12] include (i) the 

coarseness (ii) the velocity errors and (iii) the misalignment of boundaries and 

dielectric interfaces in inhomogeneous structures. These errors and some 

techniques used to minimise them are explained below. 

  

2.5.1 Coarseness Error 

 

The coarseness error occurs when the size of the TLM nodes used in the TLM 

mesh simulation is larger than the geometric features; for instance, in case of 

planar structures containing such regions. This error can be simply minimised 

by using a network with a very fine mesh instead. Nevertheless, this results in 

high computational costs such as large memory requirements and can be very 

time consuming to compute. A better solution is to apply a network with 

variable mesh size to obtain more accurate results [2.13]-[2.14]. Another 

approach proposed by Shih and Hoefer [2.15] is to use the coarse meshes with 

different l to calculate the structural response multiple times. Then, the 

obtained results are extrapolated to 0l . Consequently, the coarseness error 

may be minimised. 
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2.5.2 Velocity error 

 

In a TLM mesh, the propagation velocity depends on the direction of the 

propagation and on the frequency at which the wavelength   is small 

compared to the mesh size l . In addition, when   is large compared to l , 

it is known that the fields can propagate with the same velocity in all directions 

[2.1]. Typically the mesh size l must be smaller than a tenth of the smallest 

wavelength of interest. In other words, the three dimensional TLM requires the 

spatial sampling or space-step l  to be at least as fine as 10/ . 

Consequently, the propagation in the TLM mesh can be considered as non-

dispersive.  

 

The general dispersion of the three-dimensional TLM node is given in (2.25) 

[2.16] 

  0det 0 


IePS
ljk

   (2.25) 

 

where I is the identity matrix, 0k is the propagation constant along the 

transmission lines. S is a scattering matrix and P is a connection matrix 

which contains the plane wave propagation constants. 

 

The dispersion of velocity of waves relative to the propagation in the TLM 

mesh is shown in Fig. 2.12 
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Fig. 2.12 The dispersion of the velocity of waves in the TLM mesh [2.17]. 

 

The propagation properties of the three-dimensional TLM node at 45
o

 can be 

found from the distance travelled, which is  22 l and the velocity of 

propagation in the model TLMu obtained as given in (2.26). 
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where TLu  is the velocity of propagation on each line. 
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More detail on the dispersion properties of the three-dimensional SCN without 

stub-loading can be found in [2.17] and [2.18] whereas for the SCN with stub-

loading can be found in [2.19].  

The velocity error can be prevented by selecting a suitable value for the mesh 

size and using equation (2.26) for the propagation without dispersion. This 

error can be also be eliminated by employing the same solutions discussed 

under the coarseness error in section 2.5.1. 

 

2.5.3 Misalignment of boundaries and dielectric interfaces in 

inhomogeneous structures 

 

 

 Dielectric substrate Conducting plate  

 

 

  

 

 

 

 

 

 

 

 At node boundary 

         

             At half way between nodes  2/l  

Fig.2.13 The misalignment of dielectric interfaces and conducting boundaries in the 

three-dimensional TLM model of a planar structure [2.17].  
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Some three-dimensional inhomogeneous structures such as microstrips, may 

have a dielectric interface located halfway between nodes  2/l  while the 

conducting boundaries are located across nodes as illustrated in Fig.2.13. The 

three-dimensional TLM method cannot be used directly to model it because the 

boundaries can be located either in between nodes or at the surface of nodes. 

One method to solve this problem is to employ a three-dimensional TLM 

method with an alternating node configuration as proposed by Saguet and Pic 

[2.20]. Another method proposed by M. Panitz [2.21] allows the placement of 

boundaries at non-integer space-steps places without compromising the time-

step of the simulation. The advantage of this method is that it does not 

introduce a significant error to the simulation. 

 

2.6 Conclusion 

The three-dimensional TLM method has been introduced and the details of the 

three-dimensional SCN were given in this chapter. The computation procedure 

for the three-dimensional SCN mesh was explained and summarised in a 

schematic diagram. Moreover, the usage of loaded-stubs in modelling material 

permittivity and permeability in the SCN was shown. The demonstration of the 

SCN loaded-stubs in three-dimensional TLM model showed that the three-

dimensional TLM program developed for the project provides acceptable when 

accuracy compared to an analytical result. In addition, the simulation errors 

and mitigation of these errors in the three-dimensional TLM method were 

discussed. 
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3. Digital Filtering Techniques with Three-

Dimensional TLM Models 
 

 

 

 

 

This chapter presents a technique based on digital filters (DF) to represent fine 

features in time-domain TLM simulations. It begins by introducing DF 

techniques for time-domain numerical simulation methods, e.g., finite-

difference time-domain (FDTD) and TLM. Then, the Fast Fourier Transform 

(FFT), the frequency-domain Prony method and the Bilinear-Z-transform 

employed to estimate the DF parameters are described. Finally, this technique 

is demonstrated with an example of SCN loaded-stubs in this chapter. 

     

 

3.1 Introduction to the DF techniques 

 

Fine features such as thin panels, wires and complex materials with frequency 

dependent properties [3.1]-[3.3] require significant resources and high 

computational costs in a time-domain simulation. The straightforward method 

to describe and implement fine features in full-field solutions of 

electromagnetic problems such as FDTD [3.4]-[3.5] and TLM is to use a very 

fine mesh to adequately capture every detail of the fine features. As a result, 

unavoidably high computing costs are required to run the simulation. For 
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example, in the case of wires, the size of the TLM nodes must be significantly 

smaller than the diameter of the wire. Therefore, the DF technique has been 

developed in order to solve these problems. It has also been successfully 

applied to represent thin panels as given in Ref. [3.6]. 

The techniques used to create a DF to represent a fine feature are the Fast 

Fourier Transform (FFT), the frequency-domain Prony method [3.7]-[3.8] and 

the Bilinear-Z-transform. These techniques are employed to extract the DF 

parameters from the scattering data of the fine feature given in frequency-

domain. The frequency-domain Prony method and the bilinear Z-transform are 

applied to obtain the discrete time-domain functions referred to as the DF 

functions are obtained. Finally, they are employed in the three-dimensional 

TLM mesh at the surface between nodes to represent the properties of the fine 

feature. The complete procedures and the related equations are described in 

sections 3.2 and 3.3. 

  

3.2 Extraction of DF parameters for the fine feature  

As mentioned in the previous section, the DF parameters are obtained from the 

scattering data of the fine feature in frequency-domain. This data can be 

obtained by experimental, analytical or simulation results. In addition, they 

may also be obtained by using an FFT to transform the discrete time-domain 

data to the discrete frequency-domain data. An example usage of the FFT is 

shown in section 3.4.      

Suppose that a fine feature has a two-port scattering matrix as given in (3.1). 

 
   
   













RT

TR
S f     (3.1) 
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where  R  and  T are the frequency-dependent reflection and 

transmission  coefficients respectively. 

Consider  R  and  T as a frequency-dependent complex coefficient )(sF

, which can be written in a standard Pade form as shown in (3.2). 
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where ia  and ib  are unknown coefficients, NP  is the number of poles,  and 

is is the complex frequency of the i
th

 pole. 

The frequency-domain Prony method is employed to find the unknown 

coefficients  ia  and ib in (3.2) from a set of NS  measurements of F as 

given in (3.3). These unknown coefficients can be obtained from (3.4) [3.6]. 
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where   is the real part and T  indicates the transpose. H  and R are 

matrices as shown in (3.5)-(3.7). 
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Note that the value of NP is selected depending on the type of the transient 

and that the selection of NP affects the accuracy of the results.   

The matrix   10 HHH   where  
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and 
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After the unknown coefficients ia and ib are obtained from (3.4), )(sF in 

(3.2) can be transformed by using Laguerre’s method [3.9]-[3.11] to put it into 

the form 

     
     110

110
)(










NPppp
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ssssss

ssssssb
sF




   (3.8) 

where 
0zs and 0ps  are the zeros and poles. 

)(sF in (3.2) may be converted into the discrete time-domain by using the 

bilinear Z-transform as given in (3.9). 
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where t is the time discretisation which can be obtained from (2.8) for three-

dimensional TLM.  

After some manipulation, )(sF in (3.8) can be written in the form 
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where  
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Equation (3.10) may be expanded into partial fractions as given in (3.12). 
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where  iii ABBB 0'   

The complete derivation of formulae from (3.8) to (3.12) with an example of 3 

poles is given in the Appendix.    



Chapter 3. Digital Filtering Techniques with Three-Dimensional TLM Model 
 

58 

 

)(zF in (3.12) is the time-dependent complex coefficient. It will be employed 

as the DF in the three-dimensional TLM mesh as described in the next section. 

 

3.3 The use of DF for three-dimensional TLM mesh 

 

As mentioned, the digital filters (DFs) are placed at the surface between nodes 

in a three-dimensional TLM mesh to represent the properties of a fine feature. 

This also means that they are accounted as part of the “connection” process in 

TLM. In the other words, in the computational procedure of the three-

dimensional TLM mesh with DFs, the DF functions are employed to calculate 

new incident voltage  i
nk V1 after the “connection” process of the regular 

SCN nodes and before the “boundary condition” process. This can be simply 

summarised in a schematic diagram as illustrated in Fig. 3.1. 

Suppose that )(zF in (3.12) is the reflection coefficient )(zR at the surface 

between the three-dimensional TLM nodes. The relationship between )(zR  

and TLM voltages is given by    zVzVzR r
k

i
k 1)(  . Therefore, (3.12) can 

be expressed in the form 
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where iX are the state variables of the system.  
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      End 

Fig.3.1 Schematic diagram of the computation procedure for the three-dimensional TLM 

mesh with DFs. 

Initial conditions, Input data 

The input excitations, the time steps, the boundary 

conditions, the size of nodes, the initial conditions  

 

 

Scattering process  

Calculate the scattering voltages at each node 

(equation 2.1) 

 

 

Connection process for DFs 

Calculate the new incident voltages obtained from DF 

functions with the scattering voltages from the 

neighbouring nodes (equation 3.13 or 3.14) 

 

 

Connection process for regular SCN 

nodes 

Calculate the new incident voltages obtained by the 

scattering voltages from the neighbouring nodes  

 (section 2.2.1) 

 

Boundary conditions 

Calculate the new incident voltages obtained by the 

scattering voltages at the same node, within those 

adjacent to the boundary (section 2.2.2) 
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Equation (3.13) can be put into matrix form 

  XBVBV ri  '0                     (3.14) 

where 

rVzXAzX '1' 11              (3.15) 

where 
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  (3.16a) 

and    T0001'1       (3.16b) 

Moreover, Equations (3.13) and (3.14) can be put in a compact form 

 ri VDFV       (3.17) 

where  DF is the DF transfer function. 

Equation (3.17) can also be implemented as an internal boundary with no 

features present in the three-dimensional TLM mesh.  The simulation example 

demonstrating the DF techniques applied to the three-dimensional load-stub 

model is presented in the next section.  
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3.4 Example of the DF techniques for the three-

dimensional TLM mesh with load-stubs. 

The section presents an example of the three-dimensional TLM mesh of a 

structure with dielectric material modelled with load-stubs as illustrated in 

Fig.3.2. It also shows how to extract the DF parameters from time-domain 

simulation results of a TLM model in Fig.3.2. The method of obtaining the 

frequency-dependent coefficients by using an FFT is presented. The 

comparisons of the results in time- and frequency- domains, against the 

analytical results are given with the associated computational costs. 

 

3.4.1 Example of the DFs extraction  

 

 

Fig.3.2 The model of the three-dimensional SCN mesh with a dielectric block of 30r . 

The space-step of the model is 1 mm.  mml f 1  
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The model in Fig.3.2 is a 4 mm x 5 mm x 10 mm (thickness x width x height) 

dielectric block with r  of 30 placed in a problem space of 800 mm x 5 mm x 

10 mm. The space step of the model  fl is 1 mm. The external boundary 

conditions are matched for Xmin-Xmax, open-circuited for Ymin-Ymax and 

conducting for Zmin-Zmax. Note that, conducting boundaries are represented 

as metals or as conducting plates (blue plates in Fig.3.2) at the top and the 

bottom of the models.  

 The time-domain simulation results are obtained by exciting the input voltage

 inV with a Gaussian pulse of 1 V in Z-direction, with half-width of 7.5 ns 

and X-directional propagation on the ABCD plane by using the same equation 

(2.19).  The results are observed at planes EFGH and IJKL in the Z-direction, 

by using equations similar to (2.20) and (2.21), as illustrated in Fig.3.3 and 3.4 

respectively. 

 

 

Fig.3.3   The time-domain results in Z-direction observed at EFGH plane where the first 

pulse with   magnitude of 1 V at time between 5-21 ns approximately is the input 



Chapter 3. Digital Filtering Techniques with Three-Dimensional TLM Model 
 

63 

 

voltage and the second pulse at time between 30-50 ns is a reflected voltage 

 reflectV with magnitude of 0.32 V and -0.37 approximately. 

 

Fig.3.4 The time-domain results in Z-direction observed at IJKL plane where the voltage 

pulse between 30-50 ns is a transmitted voltage  transV with magnitude of 0.83 V. 

The time-domain voltage results in Fig.3.3 and 3.4 can be transformed to 

frequency-dependent reflection and transmission coefficients by applying an 

FFT as below. 

First, the reflected and input voltages ( reflectV and inV ) in Fig.3.3 must be 

separated by assuming that the input voltage has a magnitude of zero. The 

alternative method is to observe only the incident voltage that is opposite to the 

X-directional propagation as given in (3.18a). Consequently, the reflected 

voltage is obtained as shown in Fig.3.5.   
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Note that, in general, the output voltage observed on plane EFGH is considered 

as the sum of the incident voltages in the opposite (3.18a) and the same 

direction as the X-directional propagation (3.18b) on plane EFGH. As 

mentioned, the reflected voltage can be obtained directly from (3.18a). The 

input voltage is also obtained directly from (3.18b). Therefore, the sum of both 

voltages (3.18c) will give the result as shown in Fig.3.3.     

Secondly, the input voltage must be obtained separately for it to propagate the 

same distance as the reflected and transmitted voltages in order to achieve the 

correct phase angle for the reflection and transmission coefficients 

correspondingly.  

In this example, it can be simply obtained by removing the dielectric block in 

the model in Fig.3.2, and observing the input voltage at plane IJKL.  It has now 

travelled the same distance as the transmitted and reflected voltages, because 

this model is symmetrical and the distance from the voltage source to the 

observed plane IJKL (750 mm) is equal to the sum of the distances from the 

voltage source to the centre and from the centre to the observed plane EFGH 

(400 mm+350 mm = 750 mm). Consequently, the result is obtained as shown 

in Fig. 3.6.          
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Lastly, the FFT is applied to the reflected, transmitted and input voltages in 

Fig.3.5, 3.4 and 3.6 respectively. The reflection and transmission coefficients, 

)(sR  and )(sT , can be obtained as given in (3.19) and (3.20) 

 

  
  kVFFT

kVFFT
sR

in

reflect
)(      (3.19) 

  
  kVFFT

kVFFT
sT

in

trans)(
     (3.20) 

 

Fig.3.5 The time-domain reflected voltage occurred at time 30-50 ns. 
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Fig.3.6 The time-domain input voltage occurred at time 30-50 ns. 

Hence, the magnitudes of reflection and transmission coefficients are obtained 

as shown in Fig. 3.7 and 3.8. 

 

Fig.3.7 The frequency-dependent reflection coefficients magnitude )(sR at the 

frequency 0-3.5 GHz. 
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Fig.3.8 The frequency-dependent transmission coefficients magnitude )(sT  at the 

frequency 0-3.5 GHz. 

Then, )(sR and )(sT as shown by their magnitudes in Fig.3.7 and 3.8 

respectively, are employed to extract the DF parameters by following the 

equations (3.3)-(3.12). From this, )(zR  and )(zT are obtained.  

For this model, the approximation of DF parameters are based on three and 

four poles ( 3NP and 4NP ) for )(sT and )(sR  respectively. The time-step 

 t used in the equations (3.9) and (3.11) can be calculated by substituting the 

space-step of a designed model  DFl in Fig.3.9 into the equation (2.8) as 

given in (3.21). 

c

l
t DF

2


      (3.21) 

where c is speed of light.  

Both )(zR  and )(zT are used in the three-dimensional TLM mesh, as DFs or 

DF transfer functions as given in (3.17), by embedding at the surfaces between 

adjacent nodes to represent the properties of the dielectric block with r of 30.   
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3.4.2 Comparison and results  

 

As mentioned before, the original space step of the TLM model with load-

stubs in Fig.3.2 is 1 mm  mml f 1 . Let us consider that the designed model 

has the same physical properties, the observation places and boundary 

conditions but with a coarser mesh than the model in Fig.3.2 with a space-step 

of 5 mm  mmlDF 5 . The digital filters (DFs) or the internal boundary 

which contain the information of the dielectric block with r of 30.00 are 

embedded into the designed model instead of an explicit dielectric block as 

shown in Fig. 3.9. 

 

Fig.3.9 The model of the three-dimensional SCN mesh with the DFs or an internal 

boundary. The space-step of the model is 5 mm  mmlDF 5 . 

A comparison between the finely meshed model in Fig.3.2 and the coarsely 

meshed model with the DFs in Fig.3.9 can be made by exciting with the same 

Gaussian pulse of 1 V in the Z-direction on the ABCD plane. The propagation 
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is along the X-direction. Then, the time-domain output voltages, reflected and 

transmitted voltages in the Z-direction, can be observed on the planes EFGH 

and IJKL as illustrated in Fig. 3.10 and 3.11 respectively. Then, an FFT is 

applied to them in order to obtain the frequency-domain results as shown in 

Fig. 3.12 and 3.13. Moreover, the frequency-domain results can be compared 

with the analytical results which are calculated from the Fresnel’s reflection 

formulae as given in (2.22) and (2.23).  

 

 

Fig.3.10 The time-domain reflected voltages observed on the plane EFGH in the fine 

mesh with dielectric block model in Fig. 3.2 (red line) and the coarse mesh with DF model 

in Fig.3.9 (green dot).  
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Fig.3.11 The time-domain transmitted voltages observed on the plane IJKL in the fine 

mesh with dielectric block model in Fig. 3.2 (red line) and the coarse mesh with DF model 

in Fig.3.9 (green dot).  

 

Fig.3.12 The frequency-domain reflected voltages observed on the plane EFGH in the 

fine mesh with dielectric block model in Fig. 3.2 (red line) and the coarse mesh with DF 

model in Fig.3.9 (green dot) compared with  the analytical result (blue cross).  
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Fig.3.13 The frequency-domain transmitted voltages observed on the plane IJKL in the 

fine mesh with dielectric block model in Fig. 3.2 (red line) and the coarse mesh with DF 

model in Fig.3.9 (green dot) compared with  the analytical result (blue cross).  

 

The results in time- and frequency- domains show a good agreement between 

the two methods and the analytic results. Note that the maximum frequency for 

these comparisons is around 6 GHz because of the mesh dispersion in the TLM 

coarse mesh model. However, the maximum frequency shown in Fig. 3.12 and 

3.13 is 3.5 GHz because the bandwidth and energy of the input voltage in the 

Gaussian form is limited at 3.5 GHz.  

The computational requirements for both models are compared in Table 3.1.  
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TABLE 3.1 

The comparison of computational requirements between two models in Fig.3.2 and 3.9. 

Model Number of nodes 

(NX)x(NY)x(NZ) 

Number of 

time-steps 

Memory 

(kB) 

CPU 

Time (s) 

Fine mesh with a 

dielectric block model 

in Fig. 3.2  

 mml f 1  

800 x 5 x 10 4096 12,276 67.73 

Coarse mesh with DFs 

model in Fig. 3.9 

 mmlDF 5  

160 x 1 x 2 1024 2,532 0.84 

The computer used for the TLM simulation has an Intel®Core ™ i7 CPU 

clocked at 1.60 GHz and has an installed memory (RAM) of 4.00 GB. 

      

 

3.5 Conclusion 

This chapter introduced the DF techniques. It first explained how to extract the 

DF parameters from fine features. The FFT, the frequency-domain Prony 

method and the bilinear z-transform were used in the procedure to apply the 

DF techniques to the three-dimensional TLM mesh. This technique for the 

three-dimensional TLM mesh with load-stubs was demonstrated with an 

example. The comparison showed that the digital filters can replicate the 

properties of a fine feature producing good agreement and comparable 

accuracy to the simulation results in both time- and frequency- domains with 

much lower computational requirements as shown in Table 3.1.  
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However, the technique is limited to the internal boundary or plane in the 

three-dimensional TLM mesh. In the other words, only the responses of single 

node faces could be considered. The next chapter develops the DF techniques 

in order to be able to apply it to the problem of small three-dimensional 

structures. 
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4. Development of Digital Filtering Techniques 

within Three-Dimensional TLM Models 
 

 

 

 

 

The previous chapter has illustrated the technique based on digital filters (DF) 

to represent fine features in time-domain three dimensional TLM simulations 

for planes and boundaries. This chapter develops the DF technique for small 

three-dimensional structures. In detail, the method to construct a DF node from 

an arbitrarily shaped object is described. The TLM fine mesh with thin-wire 

model is used as an example to illustrate the technique and demonstrate the 

significant computational saving. This chapter also discusses the limitations of 

this technique, the solutions to which are fully described in chapter 5. 

 

 

4.1 The purpose of the development DF techniques  

 

The main problem of the DF techniques described in chapter 3 is that the DF 

can only represent a fine feature as a plane or as an internal boundary as shown 

in Fig.3.9. In the other words, this internal boundary can represent the 

electromagnetic properties of the fine feature in one dimension or in two 

directions (direct forward and backward). However, a fine feature can be three-

dimensional and the previously described technique is unable to provide its 
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electromagnetic properties in other dimensions. Therefore, a three dimensional 

DF technique is developed in order to apply digital filters to represent the 

properties of three dimensional fine features.  

 

This chapter describes the initial development of a DF node which can 

replicate the properties of a fine feature in the three-dimensional TLM mesh. 

However, there are conditions and limitations to this technique as described in 

the next section.  

 

 

4.2 The method to construct the DF node from a fine 

feature 

 

Chapter 3 shows that DF transfer functions can be embedded at the surface 

between three-dimensional TLM nodes. For the initial development of the DF 

technique, the DF transfer functions are now embedded inside an SCN node 

similar to the scattering matrix as shown in (2.17).  This also means that they 

are accounted as part of the “Scattering” process in three dimensional TLM 

simulations. Moreover, the SCN node with DF transfer functions is now 

referred to as a “DF node”. The procedure of the DF nodes’ creation is 

described as below.  

 

A fine feature such as a thin wire is modelled by employing DF embedded into 

a coarse mesh node under the following steps.  
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The steps are; (i) the fine feature must be first modelled in a TLM fine mesh 

with some cubical volume as a TLM coarse mesh node in order to construct 

the DF node. The relationship between the space steps of the cubical volume 

containing the fine feature in a fine mesh fl  and the coarse DF node DFl is 

given in (4.1) and is illustrated in Fig. 4.1. 

  fDF lnl      (4.1) 

where n is a ratio of the space steps between the fine mesh  and coarse DF-

node. 

 

(ii) The fine feature must be placed between two metal surfaces. Note that, this 

condition will be removed at a later stage in development of DF techniques.  

 

Fig.4.1 A fine feature with space step fl will be transformed to a DF node with space 

step DFl . 

(iii) Each face of the fine mesh is excited by a voltage pulse between the 

conducting plates and the scattered voltages are recoded. 

 

Generally, the cubical volume containing the fine feature is considered as a 

single coarse mesh node (DF node). This can be done by using the average 
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scattered and incident voltages     







 nnnVnnnV
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n n

r
f ,,, at each of the 

boundary faces of the cubical volume of fine cells containing the feature, 

except the boundary faces attached with metal plates, to be the scattered and 

incident voltages of the ports of the equivalent coarse TLM cell  i
DF

r
DF VV ,

respectively. These relations are,  
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    )(kV r
DF and )(kV i

DF  obtained by (4.2) and (4.3) in the discrete time-

domain are converted to the discrete frequency-domain by applying the  Fast 

Fourier Transform (FFT). Then, the frequency-dependent complex filter 

coefficients )(sF  are obtained from (4.4) below.    

 

 

   
  kVFFT

nkVFFT
sF

i
DF

r
DF 1

)(


           (4.4) 

 

 

where s is the complex frequency and   1 nk  indicates the time shift of 

the scattered voltage. This time shift is required in order to represent the 

responses of the fine mesh and coarse mesh TLM nodes in synchronism. 

Further detail on the time shifting of   1 nk
 is given in section 4.3.1.      
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Then, the frequency-dependent complex filter coefficients )(sF in (4.4) are 

used to find the DF transfer functions ()DF  by applying the frequency-

domain Prony method [4.1]-[4.4] and the Bilinear-Z-transform as described in 

chapter 3 using equations (3.2)-(3.17).  

 

As mentioned in chapter 2, the three dimensional SCN node is represented by a 

scattering matrix  relating the vector of scattered voltages to the 

vector of incident voltages  ikV


as given in (4.5). 

i
k

r
k VSV


                     (4.5) 

where k is time-step. 

 

Therefore, a DF node is constructed to relate the vectors of scattered and 

incident voltages  i
DF

r
DF VV


, in the form of a DF-node scattering matrix DFS

as given in (4.6). 

  
i

DFk
r

DFk VDFSV


                          (4.6) 

 

For this initial DF technique, consider the DF node as a three dimensional SCN 

node with twelve ports indexed as shown in Fig. 4.2 with the condition that the 

fine feature is placed between two metal plates as illustrated in Fig. 4.1. 

Therefore, DFS of this DF node is obtained in the form shown in (4.7).   

  

 

 

 

 S  r
kV
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Fig.4.2 A three-dimensional symmetrical condensed TLM node [4.5]. 

DFS  = 

(4.7) 

where ()ijDF is a DF transfer function relating an incident voltage into the port 

i to a scattered voltage from port j . 

 

Note that there is no ()ijDF at ports 0, 1, 6 and 7 in (4.7) because these ports 

contain the metal plates. Therefore, they are considered to be zero as there is 

no incident pulse or a scattered pulse. 
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4.3 The application of the initial DF technique. 

 

In this example, a three dimensional TLM fine mesh with a thin-wire model as 

shown in Fig. 4.3 is investigated. It is a thin-wire or a conducting post of 3 mm 

x 3 mm x 5 mm placed in an air-space of 5 mm x 5 mm x 5mm. In addition, 

the top and bottom of the thin-wire are attached to metal plates of 5 mm x 

5mm. This also means that the external boundary conditions at the top and 

bottom (Zmin, Zmax) are conducting. The boundary conditions at Xmin, 

Xmax, Ymin and Ymax are matched. The space step of the model is 1 mm

 mml f 1 . 

 

 

Fig.4.3 A fine mesh with thin-wire model. The space step is 1 mm  mml f 1 . 
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The DF node can be constructed from the thin-wire model in Fig.4.3 by first 

obtaining each coefficient ()ijDF by exciting the input or incident voltage

  







 nnnV
n n

i
f ,

 
by a Gaussian pulse of 1 V peak and 0.11 ns half-width in 

the Z-direction, with X-directional propagation at the ABCD plane as 

illustrated in Fig4.4. The outputs or scattering the Z-directed voltages 

  







 nnnV
n n

r
f , are observed at planes ABCD and EFGH in Xmin and Xmax 

planes. The Z-directed voltages are also observed at planes AECG and BFDH.  

These voltages are considered as the scattered and incident voltages of the 

ports of an equivalent single coarse mesh node (DF node with space step of 5 

mm)  i
DF

r
DF VV ,

 by using equations (4.2) and (4.3) respectively.  The outputs 

are observed in time-domain as shown in Fig. 4.5-4.7. 

 

 

Fig.4.4 The time-domain input or incident voltage of 1 V in Z-direction on plane ABCD. 

 



Chapter 4. Development of Digital Filtering Techniques within Three-

Dimensional TLM Models 
 

84 

 

 

Fig.4.5 The time-domain output or scattering voltage in Z-direction on plane ABCD. 

 

 

 

Fig.4.6 The time-domain output or scattering voltage in Z-direction on plane ABCD. 
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Fig.4.7 The time-domain output or scattering voltage in Z-direction on plane AECG. 

 

Note that the output voltage in the Z-direction on plane BFDH is the same as 

that on plane AECG as illustrated in Fig.4.7. The rest of the output voltages in 

the X and Y-directions are zero. 

 

The next step is to shift the magnitude of the output voltages in Fig. 4.5-4.7 by   

  1 nk  time-steps where n is 5 in this case. For example, the new output 

voltage in Z-direction at plane ABCD is obtained as illustrated in Fig. 4.8. 
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Fig.4.8 The comparison between original and time-shifted output voltages in Z-direction 

at plane ABCD.  

 

The frequency-dependent complex filter coefficient )(sF  can be now 

determined by dividing each time-shifted Fourier transformed output voltage 

by the Fourier transformed input voltage as given in equation (4.4). Then, the 

DF transfer functions are obtained by following equations (3.2)-(3.17). For 

example, the DF transfer functions obtained by exciting 1 V in the Z-direction 

with X-directional propagation on plane ABCD in the Model in Fig. 4.3 will 

be ()10,10  jiDF , ()11,10  jiDF , ()8,10  jiDF  and ()9,10  jiDF . 

 

The other coefficients ()ijDF can be found by repeating the above process by 

exciting the input voltage on different faces of the cube. Consequently, the DF 

node of dimension 5 mm x 5 mm x 5mm for the thin-wire model in Fig.4.3 

was obtained with DF filters on each of the X, Y faces. 
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4.3.1 Explanation of the time shift for determining the 

coefficients DF function. 

 

This section explains why the magnitudes of the scattering or output voltages 

as illustrated in Fig. 4.5-4.7 are required to be shifted 1n  time-steps in 

determining the DF transfer functions.   

Assuming that; (i) the size of the cubical volume of the fine mesh model A and 

B are the same as the coarse mesh nodes A and B (DF nodes) as illustrated in 

Fig.4.9. In Fig.4.9, these models are shown in two dimensions (X and Z 

views). For the fine mesh model A and B, each model contains 5 x 5 TLM 

nodes at the surface. For the coarse mesh model A and B, each model contains 

only 1 TLM node. Consequently, the ratio of the space step between the fine 

mesh and the coarse mesh node is 5; (ii) the average incident and scattering 

voltages  r

av

i

av VV ,  between the fine mesh model and the coarse mesh node 

model are the same values as given in equations (4.2) and (4.3).  

 

The fine mesh model A and the coarse mesh node A are excited by the same 

characteristic shape and the magnitude of the average incident voltages at the 

left surface as shown in Fig.4.10. The field propagation for both models is in 

the X-direction. 
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 Fine mesh Model A       Fine mesh Model B  

 

 

 

           

 

             

 

Coarse mesh node A          Coarse mesh node B 

                 

 

 

                    

i
avV              

r

avV          
i

avV  

 

        Z 

                                                                                                               X 

Fig.4.9 The fine and coarse mesh models in X and Z view. 

 

 

 

 

Fine mesh TLM node 

Coarse mesh TLM node 
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Magnitude 

    = 
i

avV  of the fine mesh model A 

    = 
i

avV  of the coarse mesh node A  

 

 

        Time 

Fig.4.10 The average incident voltages  iavV at the left surface of the fine mesh model A 

and coarse mesh node A.  

Then, let us assume that the average scattering voltages  r
avV at the right 

surface of the fine mesh model A and the coarse mesh node A in Fig.4.9 are 

obtained from the propagation of 
i

avV with the same magnitude and shape as 

shown in Fig.4.11.  

In general, 
r

avV in Fig.4.11 will yield new incident voltages to the left surface 

of the fine mesh model B and the coarse mesh node B at the next time step as 

illustrated in Fig.4.9. Both magnitudes in time are shown in Fig.4.12. 

Fig.4.12 shows that the new incident voltages at the left surface of the fine 

mesh model B and the coarse mesh node B have the same magnitude but have 

a difference in time occurred due to the difference in the time-steps between 

the fine mesh and the coarse mesh.  

To obtain the new incident voltages for both models at the correct time-step, 

the magnitude of 
r

avV of the coarse mesh node A is shifted back 1n  steps as 

shown in Fig.4.13. Consequently, the new 
i

avV at the coarse mesh node B will 

be the same as that at the fine mesh model B as illustrated in Fig. 4.14.   
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   Magnitude 

     = 
r

avV  of the fine mesh model A 

= 
r

avV  of the coarse mesh node A 

          

       Time 

 

         

      

Fig.4.11 The average scattering voltages  r
avV at the right surface of the fine mesh model 

A and coarse mesh node A.  

    

     = 
i

avV  of the fine mesh model B 

Magnitude    = 
i

avV  of the coarse mesh node B 

 

      

       Time 

 

         

        1 time fine step      Fig.3 

                        1 time coarse step 

Fig.4.12 The average incident voltages  iavV at the left surface of the fine mesh model B 

and coarse mesh node B at the next time-step.  
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 Magnitude 

      
r

avV  of the fine mesh model A 

      
r

avV  of the coarse mesh node A  

       Time 

 

         

      

                       1n  time Fine steps 

Fig.4.13 The average scattering voltages  r
avV at coarse mesh node A is time shifted 1n

steps.  

 

 

 

   Magnitude 

      
i

avV  of the fine mesh model B 

      
i

avV  of the coarse mesh node B  

       Time 

 

         

               1 time Fine step       

       1 time Coarse step = n  time Fine steps 

Fig.4.14 The result of time shift 1n steps is new 
i

avV at the coarse mesh node B will be 

the same as the fine mesh models B. 
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The explanation in this section implies that the frequency-dependent complex 

filter coefficients )(sF for each DF transfer function require the time shift of 

the scattered voltage in order to obtain responses of the fine mesh and the 

coarse mesh TLM nodes synchronously.   

 

4.3.2 Comparison of the results  

 

To compare a fine mesh with a thin-wire model in Fig.4.3 and a DF coarse 

mesh node, a 3 mm x 3 mm x 5 mm thin-wire was embedded into a larger 

problem which contains long interconnects with a conduction post as shown in 

Fig. 4.15.   

 

Fig.4.15 A matched boundaries box consists of a thin-wire of 3 mm x 3 mm x 5 mm 

placed between two long metal plates. The space step of the model is 1 mm.    
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The model in Fig.4.15 is a large box with a size of 75 mm x 105 mm x 105 

mm. Its space-step is 1 mm  mml f 1 and all boundary conditions are 

matched. Moreover, the DF coarse mesh node, whose DF parameters are 

obtained by using three poles  3NP is placed between the two parallel 

metal plates at the same position as the thin-wire in the large coarse mesh 

model with a space step of 5 mm  mmlDF 5  as shown in Fig. 4.16.  

 

 

Fig.4.16 A matched boundaries box consists of a 5 mm x 5 mm x 5 mm DF node 

embedded between two long metal plates. The space step of the model is 5 mm.    
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Both models have the same voltage sources (red plane IJKL). They generate 

the same average input voltages of 1 V in the Gaussian form with a half-width 

of 0.2 ns at the IJKL plane. These input voltages are also excited between the 

nodes in the Z-direction with an X-directional propagation. 

 

A comparison between the models shown in Fig. 4.15 and 4.16 can be made by 

observing the average output voltages as follows; (i) the average reflected 

voltage at the plane ABCD; (ii) the average transmitted forward voltages at the 

plane EFGH; (iii) the average transmitted voltage to the front at the plane 

AECG; (iv) the transmitted voltage to the back at the plane BFDH. These 

comparisons are shown in Fig.4.17-4.24 in both the time and frequency 

domains.  

 

 

Fig.4.17 The time-domain average reflected voltages observed at the plane ABCD in the 

fine mesh with thin-wire model in Fig. 4.15 (red line) and the coarse mesh with DF node 

model in Fig.4.16 (green dot).  
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Fig.4.18 The frequency-domain average reflected voltages observed at the plane ABCD in 

the fine mesh with thin-wire model in Fig. 4.15 (red line) and the coarse mesh with DF 

node model in Fig.4.16 (green dot).  

 

 

Fig.4.19 The time-domain average transmitted forward voltages observed at the plane 

EFGH in the fine mesh with thin-wire model in Fig. 4.15 (red line) and the coarse mesh 

with DF node model in Fig.4.16 (green dot).  
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Fig.4.20 The frequency-domain average transmitted forward voltages observed at the 

plane EFGH in the fine mesh with thin-wire model in Fig. 4.15 (red line) and the coarse 

mesh with DF node model in Fig.4.16 (green dot).  

 

 

Fig.4.21 The time-domain average transmitted voltages to the front observed at the plane 

AECG in the fine mesh with thin-wire model in Fig. 4.15 (red line) and the coarse mesh 

with DF node model in Fig.4.16 (green dot).  
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Fig.4.22 The frequency-domain average transmitted voltages to the front observed at the 

plane AECG in the fine mesh with thin-wire model in Fig. 4.15 (red line) and the coarse 

mesh with DF node model in Fig.4.16 (green dot).  

 

 

Fig.4.23 The time-domain average transmitted voltages to the back observed at the plane 

BFDH in the fine mesh with thin-wire model in Fig. 4.15 (red line) and the coarse mesh 

with DF node model in Fig.4.16 (green dot).  
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Fig.4.24 The frequency-domain average transmitted voltages to the back observed at the 

plane BFDH in the fine mesh with thin-wire model in Fig. 4.15 (red line) and the coarse 

mesh with DF node model in Fig.4.16 (green dot).  

 

From Fig.4.17-4.24, the results obtained by employing the coarse mesh with 

the DF node model in Fig. 4.16 are close to the ones obtained by the fine mesh 

with a thin-wire in Fig. 4.15. The results agree up to 6 GHz, which is the limit 

for the coarse grid mesh dispersion.   

Note that the results show that the average transmitted voltage to the back at 

the plane BFDH is the same as the one to the front at the plane AECG in the 

time and frequency domains, because of the symmetry of the matched 

boundary box. 

The highest relative difference in the magnitude of the results can be found in 

Fig.4.19 because the magnitudes considered are very small. However, the 

absolute errors are still small, when compared with the 1 V excitation.  
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The computational requirements for both models are compared in Table 4.1.  

TABLE 4.1 

The comparison of computational requirements between two models in Fig.4.16 and 4.17. 

Model Number of nodes 

(NX)x(NY)x(NZ) 

Number of 

time-steps 

Memory 

(MB) 

CPU 

Time (s) 

Fine mesh with thin 

wire model  

 mml f 1  

75 x 105 x 105 2048 156 567.62 

Coarse mesh with DF 

node model 

 mmlDF 5  

15 x 21 x 21 512 48 6.24 

The computer used for the TLM simulation has an Intel®Core ™ i7 CPU 

clocked at 1.60 GHz and an installed memory (RAM) of 4.00 GB. 

 

Moreover, Fig.20 shows that the magnitude of the result obtained from the 

coarse mesh model with the DF node (green dots) swings after 3 GHz. 

Consequently, this produces the largest deviation in magnitude when compared 

with that of the fine mesh model (red line) at approximately 5 GHz. As 

mentioned, the DF node in this example is built using three poles  3NP and 

the number of samples used in determining the DF parameters from the fine 

mesh model in Fig.4.3 was around 200  200NS containing the sampling 

points between 0-15 GHz. This result can be improved by recreating the DF 

node with an increased number of poles as shown in Fig.4.25.  
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Fig.4.25 The diagram shows the reflected voltages obtained from a fine mesh model (red 

line) and coarse mesh with DF node models with different number of poles and sampling 

points for constructing the DF node. 

In Fig.4.25, the results obtained from the fine mesh and the coarse mesh with 

the DF node  200,3  NSNP  models (red line and green dots) are the same 

as that shown in Fig. 4.18. The new result obtained from the coarse mesh with 

a new DF node  100,3  NSNP  (blue line) produces more swing and is 

worse than the result with the same number of poles but with a higher number 

of sampling points (green dots). Moreover, the new result with the higher 

number of poles  150,5  NSNP  (pink line) is better than the others when 

compared with the result obtained from the fine mesh model (red line). 

However, the model with the higher number of poles requires more memory 

and CPU time for the simulation (it requires 62MB in memory and 10.2s in 

simulation time).   
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4.4 Conclusion 

 

This chapter has described the initial development of the DF technique. This 

technique can duplicate small three-dimensional structures and provide the 

electromagnetic properties for more than one dimension correctly. The main 

difference between this technique and the previous one described in chapter 3 

is “the use of the time-shift” to determine the coefficients of the DF functions 

as described in section 4.3.    The limitations and the conditions of this 

technique were also explained. These limitations can be minimised by further 

developments of the DF technique as shown in the next chapter. The 

demonstration of a thin-wire model in the three-dimensional model is used as 

an example to confirm the initial DF technique by comparing the results 

between a fine mesh thin-wire model and a coarse mesh DF node model as 

illustrated in Fig. 4.15 and 4.16 respectively. Moreover, the comparison of the 

computational requirements of both models in Table 4.1 show that the time and 

frequency results obtained by the coarse mesh DF node model require much 

lower requirements than that obtained by the fine mesh thin-wire model.  This 

example also shows that selecting the number of poles  NP affects the 

magnitude and the characteristics of the results. A higher number of poles 

produces better results but requires more computational effort.  

The initial development of the DF technique applied to the three-dimensional 

TLM simulation can be summarised in Fig.4.26. 
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           End 

Fig.4.26 Schematic diagram of the computation procedure for the initial development DF 

technique applied with three-dimensional TLM simulation 

Initial conditions, Input data 

The input excitations, the time steps, the boundary conditions, the size 

of nodes, the initial conditions  

 

 

Scattering process  

Calculate the scattering voltages at each node 

(equation 2.1) 

 

 
Scattering process for DFs 

Calculate the new scattering voltages obtained from the DF functions with the 

incident voltages at the same node (equation 4.6) 

 

 

Connection process for regular SCN nodes 

Calculate the new incident voltages obtained by the scattering voltages from 

the neighbouring nodes (section 2.2.1) 

 

Boundary conditions 

Calculate the new incident voltages obtained by the scattering voltages at the same 

node, within those adjacent to the boundary (section 2.2.2) 
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5 Further Development of the DF Technique 
 

This chapter develops the initial DF technique in order to represent the three 

dimensional fine feature’s properties and provide the electromagnetic fields in 

every dimension correctly. It also presents how DF nodes may be combined to 

represent a complicated fine feature spanning across a number of coarse nodes. 

Then, some simulation examples with comparisons in the frequency and the 

time domain with analytical results and associated computational requirements 

are demonstrated.  

 

 

 

 

 

5.1 Introduction  

 

The DF technique applied to the problem of an arbitrarily shaped object 

embedded into a three-dimensional TLM node requires consideration of the 

responses or the electromagnetic fields at all surfaces surrounding the object 

embedded in order to construct a coarse mesh DF node. The DF nodes can also 

be combined to represent a larger object as fully described in section 5.2.  

 

As mentioned in the previous chapter, the object must be first modeled in a 

three-dimensional TLM fine mesh with the same cubical volume as the TLM 

coarse mesh node in order to construct the DF node from the relations given in 
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(4.1). The main advantage of the further DF technique is that it can be applied 

to any unknown object with the responses at the surface of the fine mesh 

required to create the DF node.  

 

The DF node for this technique can be constructed by applying the similar 

procedures as given in chapter 4 but the responses from every surface of the 

fine mesh in the cube volume must be determined to estimate the coefficients 

for DF function. This also implies the condition that the fine feature must be 

placed between two metal surfaces, as used, in the initial DF technique is taken 

out. The procedure to obtain the DF node can be summarized in the following 

steps. 

 

(i) The DF parameters of a DF node are obtained by first accurately 

simulating the immediate region containing the object using a suitably fine 

mesh and extracting the time dependence of the scattering parameters from the 

surfaces surrounding the fine nodes representing the embedded objects.  

(ii) These time-dependent scattering parameters are then time-shifted as 

described in section 4.3.  

(iii) The frequency-dependent scattering parameters are then found by 

Fourier Transforming the time domain responses obtained from (ii) and 

subsequently applying the Prony’s method to obtain the equivalent Poles and 

Zero’s. 

(iv) These frequency-domain responses are then transformed by applying 

the bilinear Z-transform in order to obtain the DF parameters for the DF 

transfer functions  DF .  

(v) As mentioned in chapter 2, a three-dimensional TLM scattering matrix 

S  relates the vector of scattered voltages  r
DFV


to the vector of incident voltages
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 i
DFV


. As a result, the DF-node is constructed to relate between
r

DFV


 and 
i

DFV


 

with  DF s in the form of a DF-node scattering matrix DFS  as given by 

(4.6). 

 

5.2 Demonstration of constructing a DF node for a 

fine embedded feature 

 

To demonstrate the construction of a DF node for a fine embedded feature, a 3 

mm x 3 mm x 3 mm metal conductor placed inside a cubical volume of 5 mm 

x 5 mm x 5mm with matched-boundary conditions as illustrated in Fig.5.1 is 

used as an example. Note that the RH side face of the conductor touches the 

volume boundary. 

 

Fig.5.1 A 3 mm x 3 mm x 3 mm metal conductor placed inside the cubical volume of 5 

mm x 5 mm x 5 mm with match-boundary condition. The space-step for this model is 1 

mm  mml f 1 . 
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The model in Fig. 5.1 is excited by an average incident voltage   







 nnnV
n n

i
f ,  

on the ABCD plane as illustrated in Fig. 5.2. Then, the average scattered 

voltages   







 nnnV
n n

r
f ,   can be determined by observing the average voltage 

at each boundary surface, ABCD, ABEF, AECG, CDGH and BFDH planes, 

except the boundary surface which touches the conductor—EFGH plane.  

Moreover, the DF parameters for each port in the DF node can be obtained 

from these voltages by following the steps described in section 5.1. Then, the 

scattering matrix DFS can be obtained by similarly exciting the remaining 

boundary surfaces in turn except the surface, which contains the conductor 

area.   

 

Fig.5.2 A fine mesh with metal conductor model is excited by an average incident voltage 

(red arrows on plane ABCD) to achieve the average scattered voltages (purple arrows) at 

each boundary surface except plane EFGH. 
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 For the boundary face, which contains the conducting face (the EFGH plane), 

the average incident voltage is applied over the EFGH plane except the 

conducting area. Then, the average scattered voltages can be obtained by 

observing the average voltage on each boundary surface—ABCD, ABEF, 

AECG, CDGH and BFDH planes—except the EFGH plane as illustrated in 

Fig. 5.3. 

 

Fig.5.3 The boundary area containing the conductor face is excited by an average 

incident voltage (red arrows) to achieve the average scatted voltage (purple arrows) at 

each boundary surface except plane EFGH. 

The average scattered voltages at plane EFGH are obtained differently from 

the others by first inserting an extra layer of TLM fine mesh nodes as shown in 

Fig. 5.4. Then, the average incident voltage is excited on the extended 

boundary area as usual, but the average scattered voltage is now obtained at 

plane E’F’G’H’ instead of EFGH as illustrated in Fig.5.5. 
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    Fig.5.4 A fine mesh with metal conductor model has extra TLM nodes between planes 

EFGH and E’F’G’H’. 

 

 

    Fig.5.5 The extra TLM nodes between planes EFGH and E’F’G’H’ observed in X and 

Z directions. 
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After all average scattered and incident voltages except the scattered voltages 

at plane EFGH are observed, they are substituted into (4.2) and (4.3) to obtain 

the scattered and incident voltages of the ports of the equivalent coarse DF 

node  i
DF

r
DF VV , respectively. Then, these voltages are converted into the 

discrete frequency-domain )(sF using (4.4). The average scattered and 

incident voltages at plane EFGH can be obtained from (5.1) and (4.3) 

respectively.  

 

n

nnV

V n n

extrai
f

r
DF





,
_

    (5.1) 

where extrai _  indicates a port at the extra nodes. )(sF  for this case is given by 

(5.2). 

  
  kVFFT

nkVFFT
sF

i
DF

r
DF 

)(
   (5.2) 

Note that, (5.1) and (5.2) are only used when the cubical volume’s boundary 

surface coincides with the embedded metal conductor. 

 

Then, )(sF obtained from these voltages is substituted into the procedure 

outlined in (3.2)-(3.17) and (4.6). As a result, all the required parameters of the 

DF node are obtained from all the surfaces.  
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5.3 Examples of the connection of DF nodes 

This section contains three simulation examples of the DF technique extension. 

(i) The first example is a metal conductor model. It shows that DF nodes can 

be combined to build up a more complicated model. (ii) The second example is 

a model of a silicon structure placed between two metal conductors. This 

example has a more complex configuration than the first example. The 

comparisons in the time and the frequency domains with analytical results are 

presented. (iii) The third example is a two-layer via model, which contains a 

dielectric substrate of r  between the layers. In addition, each layer is placed 

between conducting plates. There is also a conducting via, connected between 

top and bottom of the model, passed through a square hole between layers.  

 

5.3.1 The first example  
 

In this example, a 6 mm x 3 mm x 3 mm metal conductor placed inside a 

matched-boundary box of 10 mm x 5 mm x 5mm as illustrated in Fig. 5.6 is 

investigated.  

 

    Fig.5.6 A TLM fine mesh with a 6 mm x 3 mm x 3 mm of metal conductor model. The 

space-step for this model is 1 mm  mml f 1 . 
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The model in Fig.5.6 can be also constructed by joining two TLM fine 

meshes—the metal conductor models in Fig.5.1 (LH side) and Fig.5.7 (RH 

side)—together.  

 

 

 

 

 

 

 

 

Fig.5.7 A 3 mm x 3 mm x 3 mm metal conductor placed inside the cubical volume of 5 

mm x 5 mm x 5 mm with all match-boundary conditions. The space-step for this model is 

1 mm  mml f 1 . 

The DF A and B nodes are constructed by applying this technique to the fine 

mesh metal conductor models shown in Fig. 5.1 and Fig. 5.7 respectively. 

Therefore, a TLM coarse mesh model combining the DF A node (LH side) and 

the DF B node (RH side) as illustrated in Fig. 5.8 can represent the same 

characteristics and properties of the TLM fine mesh metal conductor model in 

Fig. 5.6. 
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Fig.5.8 A TLM coarse mesh with DF A and B nodes model. The space-step for this model 

is 5 mm  mmlDF 5 . 

 

5.3.2 Comparison of the results 

 

To compare the TLM fine mesh with a metal conductor in Fig. 5.6 and the 

TLM coarse mesh with two joining DF nodes in Fig.5.8, a metal conductor of 

6 mm x 3 mm x 3 mm is embedded into a 20 mm x 5 mm x 5 mm problem 

space with space step of 1 mm  mml f 1 as shown in Fig.5.9. The external 

boundaries conditions of this problem space are all matched. Furthermore, two 

DF nodes, DF A and B nodes, are constructed by the procedures described in 

the previous section. The DF A and B nodes represent the fine mesh with a 

metal conductor models as shown in Fig. 5.1 and Fig. 5.7 respectively. 

Consequently, the TLM coarse mesh with two joining DF nodes model is 

obtained as shown in Fig. 5.10. 
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    Fig.5.9 A TLM fine mesh with a 6 mm x 3 mm x 3 mm of metal conductor model. The 

space-step for this model is 1 mm  mml f 1 . 

 

 

Fig.5.10 A TLM coarse mesh with DF A and B nodes model. The space-step for this 

model is 5 mm  mmlDF 5 . 

The comparisons can be made by first exciting the average incident or input Y-

directed voltage of 1 V with a Gaussian form with half-width of 0.35 ns  at 

plane ABCD for both models (the positions X = 5 mm, Ymin-Ymax = 0 mm -5 

mm and Zmin-Zmax = 0 mm - 5 mm) as shown in Fig. 5.11. The propagation 

is along X-direction. After that, the average scattering or output voltages are 

observed and compared between both models. These consist of;  
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(i) The average reflected Y-directed voltages at the plane ABCD  

(ii) The average transmitted Y-directed voltages to the bottom 

boundary of the problem spaces at the plane CDGH 

 

(iii) The average transmitted Y-directed voltages to the top 

boundary of the problem spaces at the plane ABEF 

 

(iv) The average transmitted X-directed voltages to the front 

boundary of the problem spaces at the plane AECG 

 

(v) The average transmitted X-directed voltages to the back 

boundary of the problem spaces at the plane BFDH 

 

(vi) The average transmitted Y-directed voltages to the bottom 

boundary of the problem spaces at the plane GHKL 

 

(vii) The average transmitted Y-directed voltages to the top 

boundary of the problem spaces at the plane EFIJ 

 

(viii) The average transmitted X-directed voltages to the front 

boundary of the problem spaces at the plane EIGK 

 

(ix) The average transmitted X-directed voltages to the back 

boundary of the problem spaces at the plane FJHL 

 

(x) The average transmitted forward Y-directed voltages at the 

plane IJKL. 
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These comparisons are illustrated in Fig.5.12-5.31 in both the time and 

frequency domains.  

 

 

Fig.5.11 The time-domain average input Y-directed voltages at the plane ABCD. 

 

 

Fig.5.12 The time-domain average reflected Y-directed voltage at plane ABCD. 
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Fig.5.13 The frequency-domain average reflected Y-directed voltage at plane ABCD. 

Mean squared error (MSE) of the fine mesh with metal conductor model’s result with 

respect the coarse mesh with DF nodes model’s result between 0-6 GHz is 0.1687 dB. 

 

 

Fig.5.14 The time-domain average transmitted Y-directed voltages to the bottom 

boundary of the problem spaces at the plane CDGH. 
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Fig.5.15The The frequency-domain average transmitted Y-directed voltages to the 

bottom boundary of the problem spaces at the plane CDGH. Mean squared error (MSE) 

of the fine mesh with metal conductor model’s result with respect the coarse mesh with 

DF nodes model’s result between 0-6 GHz is 0.019 dB. 

 

 

 

Fig.5.16 The time-domain average transmitted Y-directed voltages to the top boundary of 

the problem spaces at the plane ABEF. 
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Fig.5.17 The frequency-domain average transmitted Y-directed voltages to the top 

boundary of the problem spaces at the plane ABEF. Mean squared error (MSE) of the 

fine mesh with metal conductor model’s result with respect the coarse mesh with DF 

nodes model’s result between 0-6 GHz is 0.019 dB. 

 

 

Fig.5.18 The time-domain average transmitted X-directed voltages to the front boundary 

of the problem spaces at the plane AECG. 
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Fig.5.19 The frequency-domain average transmitted X-directed voltages to the front 

boundary of the problem spaces at the plane AECG. Mean squared error (MSE) of the 

fine mesh with metal conductor model’s result with respect the coarse mesh with DF 

nodes model’s result between 0-6 GHz is 0.0325 dB. 

 

 

Fig.5.20 The time-domain average transmitted X-directed voltages to the back boundary 

of the problem spaces at the plane BFDH. 
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Fig.5.21 The frequency-domain average transmitted X-directed voltages to the back 

boundary of the problem spaces at the plane BFDH. Mean squared error (MSE) of the 

fine mesh with metal conductor model’s result with respect the coarse mesh with DF 

nodes model’s result between 0-6 GHz is 0.0325 dB. 

 

 

Fig.5.22 The time-domain average transmitted Y-directed voltages to the bottom 

boundary of the problem spaces at the plane GHKL. 
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Fig.5.23 The frequency-domain average transmitted Y-directed voltages to the bottom 

boundary of the problem spaces at the plane GHKL. Mean squared error (MSE) 

of the fine mesh with metal conductor model’s result with respect the coarse 

mesh with DF nodes model’s result between 0-6 GHz is 0.3404 dB. 

 

 

Fig.5.24 The time-domain average transmitted Y-directed voltages to the top boundary of 

the problem spaces at the plane EFIJ. 
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Fig.5.25 The frequency-domain average transmitted Y-directed voltages to the top 

boundary of the problem spaces at the plane EFIJ. Mean squared error (MSE) 

of the fine mesh with metal conductor model’s result with respect the coarse 

mesh with DF nodes model’s result between 0-6 GHz is 0.3404 dB. 

 

 

Fig.5.26 The time-domain average transmitted Y-directed voltages to the front boundary 

of the problem spaces at the plane EIGK. 
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Fig.5.27 The frequency-domain average transmitted Y-directed voltages to the front 

boundary of the problem spaces at the plane EIGK. Mean squared error (MSE) 

of the fine mesh with metal conductor model’s result with respect the coarse 

mesh with DF nodes model’s result between 0-6 GHz is 0.6187 dB. 

 

 

Fig.5.28 The time-domain average transmitted Y-directed voltages to the back boundary 

of the problem spaces at the plane FJHL. 
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Fig.5.29 The frequency-domain average transmitted Y-directed voltages to the back 

boundary of the problem spaces at the plane FJHL. Mean squared error (MSE) 

of the fine mesh with metal conductor model’s result with respect the coarse 

mesh with DF nodes model’s result between 0-6 GHz is 0.6187 dB. 

 

 

Fig.5.30 The time-domain average transmitted forward Y-directed voltage at plane 

IJKL. 
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Fig.5.31 The frequency-domain average transmitted forward Y-directed voltage at plane 

IJKL. Mean squared error (MSE) of the fine mesh with metal conductor model’s result 

with respect the coarse mesh with DF nodes model’s result between 0-6 GHz is 0.0800 dB. 

 

In Fig.5.12-5.31, the mean squared error (MSE) and the maximum error are 

used to quantify the differences between the frequency-domain results of the 

two methods. Along with the maximum error, MSE provides a measure of the 

error distribution. The highest value of MSE between the two methods was 

found to be 0.6187 dB, which is a small value, in Fig.5.27 and Fig. 5.29. 

Consequently, the results show a good agreement between the two methods. 

The highest difference in relative magnitude of the frequency-domain results is 

1 dB approximately as illustrated in Fig. 5.23, Fig. 5.25, Fig. 5.27 and Fig. 

5.29 Moreover, the maximum frequency, given by the coarse mesh dispersion, 

for the comparison between two methods is 6 GHz.   

 

The relative difference in magnitude of the time-domain results can be found 

obviously in Fig.5.24 and Fig.5.26 which is because these magnitudes are very 

small but absolute errors are still small compared with 1 V excitation.  
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The computational requirements of the two methods are compared as shown in 

Table5.1.  

 TABLE 5.1 

The comparison of the computational requirements between two models in Fig.5.9 and 

5.10. 

Model Number of nodes 

(NX)x(NY)x(NZ) 

Number of 

time-steps 

Memory 

(kB) 

CPU 

Time (s) 

Fine mesh with a metal 

conductor model  

 mml f 1  

20 x 5 x 5 4096 1228 3.05 

Coarse mesh with the 

DF nodes model 

 mmlDF 5  

4 x 1 x 1 1024 672 0.67 

The computer used for the TLM simulation has Intel®Core ™ i7 CPU 

processor with 1.60 GHz and installed memory (RAM) of 4.00 GB. 

 

5.3.3 Second example  

 

The second example involves a more complex configuration. The example 

model is a 3 mm x 5 mm x 15 mm (thickness x width x height) silicon block 

placed in a problem space of 15 mm x 5 mm x 15 mm, with a space step of 1 

mm  mm 1 fl , PEC boundary conditions at the top and bottom of the model 

(Zmin-Zmax), open-circuit boundary conditions for Ymin-Ymax and matched 

boundary conditions for Xmin-Xmax, as shown in Fig.5.32. The relative 

permittivity r  of of this silicon block is 15.68 [5.1].  
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Fig.5.32 The TLM fine mesh with a silicon model, the space step of the model is 1 mm.   

 

A coarse mesh model with a space step of 5 mm  mm 5 DFl  for the 

configuration shown in Fig.5.32 can be built by joining three homogeneous 5 

mm x 5 mm x 5 mm
 
DF-nodes (Fig.5.33) where the DF parameters are 

obtained from a 3 mm x 5 mm x 5 mm blocks with the silicon embedded into a 

5 mm x 5 mm x 5 mm cubical volume with matched boundary conditions for 

all surfaces (Fig.5.34). In addition, the DF parameters for each DF functions in 

DF- SCN are obtained by using three and four poles. This coarse mesh model 

can be used to represent the same properties and characteristics as the fine 

mesh model in Fig.5.32 but with a much reduced computational cost. 
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Fig.5.33. The TLM coarse mesh with DF-nodes model (space step 5 mm). 

 

 

Fig.5.34. The DF-node model in the RH side was built by duplicating the properties of 

the cubical volume with embedded silicon model shown in the LH side.  
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Comparison between the finely meshed model in Fig.5.32 and the coarse mesh 

with DF-nodes model in Fig.5.33 can be made by exciting both with a 

Gaussian Z-directed voltage source of amplitude 1volt with half-width of 0.85 

ns on plane MNOP propagating along X-direction. The output voltages can be 

then be observed and the following comparisons made;  

 

(i) The average reflected Z-directed voltages on the plane MNOP 

 

(ii) The average transmitted forward Z-directed voltages on the plane 

QRST.  

 

These comparisons in time and frequency domains are illustrated in Fig.5.35-

5.38. Moreover, for this example, the frequency-domain results in Fig.5.36 and 

Fig.5.38 can be compared with analytical results which are readily calculated 

by using Fresnel’s reflection formula. The full formulation can be found in 

[5.2]-[5.3] but is summarised in (2.22) – (2.24) for completeness: 

 

For this example, the complex refractive index of the sample n and the angle 

of incidence  are 3.96 and 0 respectively. 
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Fig.5.35 The average reflected Z-directed voltage on plane MNOP in the time domain. 

 

 
 

Fig.5.36 The average reflected Z-directed voltage on plane MNOP in the frequency 

domain. MSE of the analytical result with respect the fine mesh with metal conductor 

model and the coarse mesh with DF nodes model results between 0.5-3.5 GHz are 0.00 

and 3.16 dB respectively. 



Chapter 5. Further Development of the DF Technique 
 

132 

 

 
Fig.5.37 The average transmitted forward Z-directed voltage on plane QRST in the time 

domain.
 

 

 

 

Fig.5.38 The average transmitted forward Z-directed voltage on plane QRST in the 

frequency domain. MSE of the analytical result with respect the fine mesh with metal 

conductor model and the coarse mesh with DF nodes model results between 0.5-3.5 GHz 

are 0.00 and 0.56 dB respectively.
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In Fig.5.35-5.38, the results obtained by the coarse mesh with DF-nodes model 

in Fig.5.33 are close to the ones obtained by the fine mesh with silicon model 

in Fig.5.32 and with the analytical results. The highest difference in relative 

magnitude of results is around 2.6 dB at the frequency of 2.76 GHz 

approximately as illustrated in Fig. 5.36. 

 

As mentioned, the DF parameters for each DF functions in DF- SCN are 

obtained by using three and four poles to construct the DF nodes in the coarse 

mesh with DF nodes model in Fig.5.33. The gaps of magnitude between the 

results of two methods can be decreased by increasing number of poles. 

However, the computational costs are required higher.    

 

The computational requirements are given in Table 5.2 again confirming that 

the proposed model gives much reduced computational demands. 

 

TABLE 5.2 

The comparison of the computational requirements of the two models in Fig.5.17 and 

5.18. 

Model Number of nodes 

(NX)x(NY)x(NZ) 

Number of 

time-steps 

Memory 

(kB) 

CPU 

Time (s) 

Fine mesh with a 

dielectric material  

 mml f 1  

15 x 5 x 15 4096 1480 4.187 

Coarse mesh with the 

DF nodes model 

 mmlDF 5  

3 x 1 x 3 512 644 0.359 

The computer used for the TLM simulation has Intel®Core ™ i7 CPU 

processor with 1.60 GHz and installed memory (RAM) of 4.00 GB. 
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5.3.4 The last example  
 

The example demonstrated in this section is a “two-layers of via model” as 

illustrated in Fig.5.39. A conducting via of 1 mm x 1 mm x 5 mm is connected 

between two metal conducting plates at top and the bottom (Zmax and Zmin) 

of a 102.5 mm x 7.5 mm x 5 mm rectangular air-space problem. There is a 

square hole of 2.5 mm x 2.5 mm (X x Y) located within the conducting plate at 

the centre of the problem. This hole allows the via passed through in order to 

connect between top and bottom of the air-space problem. The space-step of 

this model is 0.25 mm  mm25.0 fl . The boundaries conditions are PEC at the 

top and bottom of the model (Zmin-Zmax), open-circuit boundary conditions 

for Ymin-Ymax and matched boundary conditions for Xmin-Xmax. Examples 

of via designs can be also found in [5.4]-[5.7]. 

 

       Three conducting plates

 

   Fig.5.39 A via of 1 mm x 1 mm x 5 mm embedded into the centre of air-space box of 

102.5 mm x 7.5 mm x 5 mm.   mm25.0 fl  
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where, 

                     = metal box of 1 mm x 1 mm x 5 mm (X x Y x Z) 

 

      = a hole area (slot) of 2.5 mm x 2.5 mm (X x Y ) 

 

                      = Average Input Voltage Source area of 1 V.  

 

    = Observation area ‘i’ where i is 1, 2, 3 and 4 

 

The DF node for this case can be constructed by duplicating the properties of a 

via of 1 mm x 1 mm x 2.5 mm embedded inside a matched-boundaries’ cube 

of 2.5 mm x 2.5 mm x 2.5 mm as shown in Fig. 5.40. 

 

     2.5 mm  

 1 mm                     2.5 mm 

                                            2.5 mm                                                               

 

    2.5 mm 

 2.5 mm     

           1.5 mm    1 mm 

    2.5 mm 

Fig.5.40 A metal box of 1 mm x 1 mm x 2.5 mm embedded into a matched-boundaries’ 

cube of 2.5 mm x 2.5 mm x 2.5 mm with the space-step of 0.25 mm (LH side) is 

transformed to a DF node of 2.5 mm x 2.5 mm x 2.5 mm with the space-step of 2.5 mm 

(RH side). 

 

OB

i 

 

DF node 
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To compare between the fine mesh and coarse DF nodes models in Fig.5.40, 

two DF nodes in Fig.5.40 on RH side are embedded into the model in Fig. 5.39 

by replacing the conducting via at the same location. As a result, the coarse 

mesh with DF nodes model is obtained as shown in Fig.5.41. The space-step is 

2.5mm  mm5.2 DFl .   

 

 
 

Fig.5.41 Two DF nodes of 2.5 mm x 2.5 mm x 2.5 mm are connected together and placed 

into the position as a conducting via in the centre of the rectangular air-space problem of 

102.5 mm x 7.5 mm x 5 mm with the space-step of 2.5 mm  mm5.2 DFl .  

 

The comparison between the fine mesh with a conducting via and the coarse 

mesh with DF nodes can be made by exciting the spatially averaged input Z-

directed voltage of 1 V in Gaussian form with half-width of 1 ns on plane    

at Xmin area between top and middle conducting plates. The propagation is 

along X-direction. Then, the spatially averaged output Z-directed voltages are 
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measured at the observation area,OB1, OB2, OB3 and OB4 and the following 

comparisons can be made;  

(i) The spatially averaged input Z-directed voltages at OB1 area;  

 

(ii) The spatially averaged reflected Z-directed voltages at OB1 area 

 

(iii) The spatially averaged transmitted backward Z-directed voltage at 

OB2 area  

 

(iv) The spatially averaged transmitted forward Z-directed voltage at 

OB3 area;  

 

(v) The spatially averaged transmitted forward Z-directed voltage at 

OB4 area.  

 

These comparisons are shown in Fig.5.42-5.50 in both the time and frequency 

domains. 

 

Fig.5.42 The spatially averaged input Z-directed voltages at OB1 area in the time 

domain. 
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Fig.5.43 The spatially averaged reflected Z-directed voltages at OB1 area in the time 

domain. 

 

 
 

Fig.5.44 The spatially averaged reflected Z-directed voltages at OB1 area in the 

frequency domain. 
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Fig.5.45 The spatially averaged transmitted backward Z-directed voltages at OB2 area in 

the time domain. 

 

 

Fig.5.46 The spatially averaged transmitted backward Z-directed voltages at OB2 area in 

the frequency domain. 
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Fig.5.47 The spatially averaged transmitted forward Z-directed voltages at OB3 area in 

the time domain. 

 

 

Fig.5.48 The spatially averaged transmitted forward Z-directed voltages at OB3 area in 

the frequency domain. 
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Fig.5.49 The spatially averaged transmitted forward Z-directed voltages at OB4 area in 

the time domain. 

 

Fig.5.50 The spatially averaged transmitted forward Z-directed voltages at OB4 area in 

the frequency domain. 

In Fig. 5.42-5.50, the maximum frequency for these comparisons is around 12 

GHz, limited by the 10/  rule and the mesh dispersion in the TLM coarse 

mesh. However, the frequencies shown in these figures are limited at 10 GHz, 
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because the energy of the input voltage—a Gaussian pulse with a half-width of 

0.85 ns—is band limited at 10 GHz. 

There are slight differences in the time-domain results shown in Fig. 5.43, Fig. 

5.45, Fig. 5.47 and Fig. 5.49, between the two methods. The highest difference 

in magnitude was found to be approximately 0.02V, which was found in 

Fig.5.49. 

In the frequency-domain results in Fig. 5.44, Fig. 5.46, Fig. 5.48 and Fig. 5.50, 

the highest magnitude difference of approximately 0.6 dB was found in the 

graph of the average reflected Z-directed voltages at OB1 area and the average 

transmitted forward Z-directed voltages at OB3 area. These errors occur in the 

high frequency range of 8-10 GHz. 

A comparison of the computational requirements of the two methods is given 

in Table5.3. 

TABLE 5.3 

The comparison of the computational requirements between two models in Fig.5.24 and 

5.26. 

 

Model Nodes 

(X)x(Y)x(Z) 

Time 

Steps 

Memory 

(MB) 

CPU 

Time (s) 

Fine mesh 

with two-

layer of a 

via 

410x30x20 4096 70.33 298.34 

Coarse 

mesh with 

the DF-

nodes 

41x3x2 512 2.56 0.87 

The computer used for the TLM simulation has an Intel®Core ™ i7 CPU 

clocked at 1.60 GHz and has an installed memory (RAM) of 4.00 GB. 
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5.4 Conclusion 

This chapter introduced and described further development of the DF 

technique. This technique developed from the initial DF technique can 

duplicate the properties of fine features in three-dimensions completely with 

computational cost savings. Another advantage of the presented technique is 

that the DF nodes can now be connected to represent a larger object. However, 

a typical disadvantage of the technique is that the highest frequency of the 

results is limited by the 10/ rule or by the mesh dispersion in TLM coarse 

mesh.  

Three examples were used to demonstrate the further development of the DF 

technique in this chapter;  

(i) The first example is a metal-conductor model, which demonstrated 

the method of joining DF nodes to represent complex embedded 

objects. In addition, the unusual way of extracting DF parameters 

from a boundary area attached to a metal conductor part was 

explained. 

 

(ii) The second example demonstrated the application of the further DF 

technique to the three-dimensional stub loaded SCN. The technique 

shows a good agreement with the standard TLM and the analytical 

results in the time and the frequency domains. 

 

(iii) The last example is a simple two-layer via model, which represents 

the connection between two DF nodes. It was excited by an input 

voltage fed into the top DF node between the top and the middle 

conducting plates. Then, the outputs were observed at the area 

between the middle and the bottom conducting plates. The results 
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between the fine mesh with the via and the coarse mesh with the DF 

nodes were found to be similar. Therefore, it was confirmed that the 

bottom DF node (the DF node located between the middle and the 

bottom conducting plates) can receive/transmit responses from/to 

the top DF node correctly. 
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6. Conclusions and Future Work 
 

 

The DF technique has been developed for the three-dimensional TLM method 

in order to investigate the electromagnetic fields and characteristic behaviors 

of fine embedded objects accurately.  This developed technique can be used for 

general problems in three-dimensions. The limitations and conditions of usage 

are discussed here. 

 

6.1 Conclusion 

 

The first chapter discussed the multi-scale problem in numerical methods by 

using an example of a thin wire inside a regular mesh to demonstrate the 

problems. The typical solutions for this problem include applying a multi-grid 

mesh or a hybrid mesh. Both of them are suitable for time-domain simulations 

such as TLM and FDTD. They also have some limitations and conditions 

when they applied to solve a problem.  

 

One popular technique that is used to solve multi-scale problems is the TLM 

multiple grid scheme method that uses fine and coarse meshes to observe 

electromagnetic fields under four conditions; 
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(i) charge conservation  

(ii)  energy conservation 

(iii)  no reflections  

(iv)  zero delays  

The DF technique is a recent technique that can be used to solve this problem 

and it has been developed as demonstrated in this thesis for general three-

dimensional problems. 

 

This chapter also introduced the basics of the TLM method and the DF 

techniques. 

 

Chapter 2 first provided the history of the three-dimensional TLM. The three-

dimensional TLM node was developed from the expanded and the 

asymmetrical condensed nodes. The recent TLM node is called the three-

dimensional SCN introducing by Johns in 1986. The chapter contains the 

mathematic equations describing the SCN and the procedures to employ three-

dimensional SCN nodes in a TLM simulation. These procedures were 

summarised in schematic diagrams.  

 

The use of stub loading in the three-dimensional TLM was discussed as it is 

necessary to model fine features such as dielectric and magnetic materials. 

Then, the example of the stub loaded model was presented in order to 

demonstrate the accuracy of the simulation program created for the project by 

comparing the simulation against an analytical result provided by Fresnel 

formulae [6.1]. 

 

The chapter also described the errors and limitations in the three-dimensional 

TLM method. The typical sources of errors are; 

(i) coarseness errors 
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(ii)  velocity error s 

(iii)  misalignment of boundaries and dielectric interfaces especially 

in inhomogeneous structures. 

Chapter 3 described the DF technique applied to three-dimensional problems 

combining four techniques; 

(i) The Fast Fourier Transform (FFT) 

(ii) The frequency-domian Prony’s method 

(iii) The Laguerre’s Method 

(iv) The Bilinear-Z-transform 

These four techniques were applied to the time-domain responses of a fine 

feature in a time-domain simulation in order to estimate the DF parameters. 

Then, the digital filters (DFs) were embedded at the surface between three-

dimensional TLM nodes and the calculation was accounted for the 

“connection” process in the TLM simulation. 

 

The fine mesh with a stub loaded model was used to determine the DFs next. 

These DFs were then placed at the same position as the stub loaded node, but 

with a coarse mesh model. The comparisons were made and it showed a good 

agreement between both methods; but the coarse mesh with DFs model had 

much lower computational requirements. 

 

The chapter also pointed out that the limitation of this technique is that only 

the responses of single node faces (one dimension) are considered because the 

DFs can only be placed between TLM nodes as a plane or as an internal 

boundary. 

 

Chapter 4 introduced a further development of the DF technique. In order to 

develop the technique, simply, the DF plane or the internal boundary was 
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extended to every external surface except for the surfaces connected to the 

conducting surfaces, to make a cube called the “DF node”. As a result, it 

provided the electromagnetic properties in two dimensions. Moreover, the DF 

node was a three-dimensional SCN node which contained many DF transfer 

functions as given in (3.17).  

 

The limitations and conditions of the initial development of the DF technique 

were; 

(i) The fine feature must be modelled in a TLM fine mesh with 

some cubical volume as a TLM coarse mesh node. 

(ii) The relationship between the space steps of the cubical volume 

containing the fine feature in a fine mesh fl  and the coarse DF 

node DFl is fDF lnl  . 

(iii) The fine feature must be placed between two metal conducting 

surfaces. 

The chapter also gave the explanation for the use of the time shifting in 

determining the coefficients of the DF function. Then, a fine mesh with a thin-

wire model placed in a large air-space problem was used to demonstrate the 

technique.  

 

Moreover, the example in this chapter showed that choosing the number of 

poles and sampling points  NSNP, to create the DF node, affects the 

characteristics of the results. It showed that the results can be improved by 

creating a DF node with an increased number of poles and sampling points.  

 

Chapter 5 provided further development of the DF technique demonstrating 

how to construct a DF node from fine embedded objects. The DF obtained 
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from this technique could provide the electromagnetic properties in every 

dimension. They could also connect to each other and could be combined to 

represent a complex object. The technique has the same conditions as the 

initial DF technique except that it is not necessary to place the object between 

two metal conducting surfaces. 

 

The examples in chapter 5 represented multiple applications. The first example 

illustrated the method’s capability in joining DF nodes to represent an 

embedded object. The second example was used to show that the accuracy is 

acceptable compared to the analytical results. The last example was used to 

show that the voltage responses from adjacent DF nodes are correct.  

 

The initial and further DF techniques have been developed to solve and 

minimise the multi-scale problems in three-dimensional TLM. The advantages 

of these were given. The disadvantages include the high frequency limitation 

of the result by 10/ rule and the large mesh dispersion in a coarse TLM 

mesh.  

  

6.2 Future work 

 

There are short and long term plans for future work.  

For short term plans, the developed DF technique was demonstrated with 

relatively simple examples such as dielectric materials and conducting objects. 

The technique needs to be applied to more general problems for complete 

validation. A microstrip line with two-vias model [6.2] is a sizable problem 
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that can be simulated to make comparisons between the DF techniques and the 

experimental results. Moreover, this model can be developed from the last 

example in chapter 5 as shown in Fig. 6.1 and Fig. 6.2. 

 

For longer term plans, as mentioned in chapter 3, the DF technique can be also 

applied to the FDTD method. In theory, the main difference between 3D-TLM 

and FDTD nodes is that, in FDTD, the electric and magnetic fields are not 

measured at the same point in space, and that it requires a half time-step to do 

so. But, in TLM, they can be measured at the same position and at the same 

time instance. Therefore, the developed DF technique should be able to be 

used in FDTD method by creating a DF node, which has the DF transfer 

functions  ()DF for both fields separately. However, it might require double 

the number of DF functions as the magnetic and electric fields are done 

separately in a DF-node scattering matrix  DFS  which may lead to high 

computational costs.   
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Fig.6.1 A fine mesh microstrip line with two vias model which contains the dielectric 

substrate of r between metal plates. Space step is fl    

 

Fig.6.2 A Coarse mesh microstrip line with DF nodes model of r . Space step is 

fDF lnl   
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Appendix 
 

The complete derivation of formulae from (3.8) to (3.12) with an example 

of 3 poles 

Equation (3.8) is  
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For 3NP , )(sF in (A1) can be obtained as given in (A2). 
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The bilinear Z-transform as given in (A3) is substituted to (A2). Then, )(zF

can be obtained by following step in (A4) and (A5).  
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Giving that, 
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Let 
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, )(sF in (A5a) can be obtained as given in (A5b). 
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Then, carry out multiplication in (A5b). 
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where 
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Then, 
i

i zAB 
0 is added and subtracted in the numerator inside the SUM of 

(A5c). We obtains 

 



 











3

1

3

1
000

1

)(

i

i
i

i

i
i

i
i

i
i

zA

zABzABzBB

zF
   

   

 



 























3

1

3

1
0

3

1
0

1

1

)(

i

i
i

i

i
ii

i

i
i

zA

zABBzAB

zF
  

 



 











NP

i

i
i

NP

i

i
ii

zA

zABB

BzF

1

1
0

0

1

)(
   (A5d) 

Let iii ABBB 0'  , then )(zF can be obtained as given in (A5e) which is the 

same as (3.12) in chapter 3. 
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