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Abstract

Nosocomial pathogens are usually organisms such as fungi and bacteria that

are associated with infections caused in a hospital environment. Examples

include Clostridium difficile, Pseudomonas aeruginosa, Vancomycin-resistant

enterococcus and Methicillin-resistant Staphylococcus aureus (MRSA). MRSA,

like most of the nosocomial pathogens, is resistant to antibiotics and is one of

the most serious causes of infections. In this thesis we assess the effects of an-

tibiotics and antiseptics on carriage and transmission of MRSA. We use highly-

detailed patient level data taken from two Intensive Care Unit (ICU) wards

in St. Guys and Thomas’s hospital in London, where patients were receiving

daily antimicrobial treatment and a decolonisation protocol was used. We work

in discrete time and employ three different patient-level stochastic models in a

Bayesian framework to explore the effectiveness of antimicrobial treatment on

MRSA in discrete time. We also develop suitable methods of model assessment.

The first two models assume that there is no transmission between patients in

the ICU wards. Initially a Markov model is used, assuming perfect swab test

specificity and sensitivity, to describe the colonisation status of an individual

on a daily basis. Results are obtained using Gaussian random walk Metropolis-

Hastings algorithms. We find some evidence that decolonisation treatment and

Oxazolidinone have a positive effect in clearing MRSA carriage.

The second model is a hidden Markov model and assumes perfect swab test

specificity but imperfect sensitivity. We obtain the results using data- aug-

mented Markov Chain Monte Carlo (MCMC) algorithms to make inference for

the unobserved patient colonisation states. We find evidence that the Antisep-

tic treatment used during the decolonisation period is effective in the clearance

of MRSA carriage.

In the third case we assume that there is MRSA transmission between the pa-
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tients in the ICUs. We use three different stochastic transmission models which

overcome many of the unrealistic assumptions of other models. A data- aug-

mented MCMC algorithm is employed in order to estimate the transmission

rates of MRSA between the patients assuming imperfect swab test sensitivity.

We found no or limited evidence that antibiotic use affects the transmission

process, whereas antiseptic treatment was found to have an effect.
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CHAPTER 1

Introduction

The research presented in this thesis considers the effects of antimicrobial treat-

ment on carriage and transmission of methicillin-resistant Staphylococcus aureus

(MRSA) in an intensive care unit (ICU) environment. MRSA is a bacterium that

is resistant to many classes of antimicrobials and is a common cause of nosoco-

mial infections. Using stochastic modelling and Bayesian analysis, our aim in

this thesis is to discover whether antimicrobial treatment can have an effect on

MRSA colonisation.

1.1 Motivation

Nosocomial pathogens are pathogens typically found in a hospital setting and

are responsible for nosocomial acquired infections. Nosocomial acquired infec-

tions usually occur in patients who have been hospitalised for a different reason

than the infection. Such infections add to functional disability and emotional

stress of the patient and may, in some cases, lead to disabling conditions that

reduce the quality of life, [Ducel et al., 2002], or even death.

Most nosocomial acquired infections are caused by bacteria, but viruses and

fungi can also be involved. Most of nosocomial pathogens are resistant to some

classes of antibiotics. This raises the possibility of infections against which none

of the current antimicrobial agents are effective, [Sébille et al., 1997]. Antibiotic

resistance increases the morbidity and mortality associated with infections and

contributes to rising costs of care resulting from prolonged hospital stays and
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the need for more expensive antimicrobials, [Struelens, 1998]. One of the com-

mon antimicrobial resistant infections is caused by Staphylococcus aureus with

most cases due to MRSA.

Mathematical models are important tools in analysing the spread and control of

infectious diseases, [Grundmann and Hellriegel, 2006]. Over the recent years,

many models have been introduced in the literature trying to explain the trans-

mission dynamics of nosocomial pathogens in hospitals. Mathematical mod-

elling offers a way to explore the relations between several factors that influ-

ence the acquisition and transmissibility of a nosocomial pathogen. Deciding

which factors and how they should be quantified is where clinical medicine

meets mathematics, [Weinstein et al., 2001].

The motivation behind this thesis is to explore the role of antimicrobial treat-

ment on transmission and carriage of MRSA in two intensive care unit wards

of a London hospital. Stochastic mathematical modelling is going to be used for

this purpose with the help Bayesian inference and Markov chain Monte Carlo

techniques.

1.2 Staphylococcus aureus - MRSA

Staphylococcus aureus is a bacterium that can be found in the nose or on the skin

of about one third of humans, [Kluytmans et al., 1997]. It can usually be found

in the nares but throat, perineum and axillae are also carriage sites. Studies

have shown that in a healthy population, about 20% of individuals are per-

sistent Staphylococcus aureus nasal carriers, approximately 30% are intermittent

carriers, and about 50% non-carriers, [Wertheim et al., 2005]. Once Staphylococ-

cus aureus enters the blood stream, it can be harmful and cause from mild infec-

tions such as skin and soft-tissue infections to more serious ones like sepsis that

can sometimes be fatal, [Weber, 2005]. Factors that can lead to the development

of antimicrobial resistant pathogens such as Staphylococcus aureus in hospitals,

include transmission via health care workers and the use of antimicrobial treat-

ment for infections, [Tenover and McGowan Jr, 1996].

MRSA belongs to a Staphylococcus aureus group of strains which is resistant to

methicillin and other antibiotics. It is one of the most widespread nosocomial
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pathogens and it can cause serious infections. Since it is resistant to many an-

timicrobials, it is difficult and expensive to be treated effectively. MRSA first

appeared in the UK in 1961, [Enright et al., 2002], and since then it has been an

endemic problem in hospitals, especially in ICU wards and nursing homes in

many countries around the world. Without treatment, MRSA can stay in the

body for large periods ranging from several months to more than three years,

[Robicsek et al., 2009; Scanvic et al., 2001; Vriens et al., 2005].

To fight MRSA in ICU wards, several control measures and rational use of an-

tibiotics need to be taken into account. There have been great efforts to design

proper control strategies that can be used for the detection and eradication of

MRSA, although it is still under debate which approaches could improve its

control and reduce its clinical impact. These strategies include early detection of

asymptomatic MRSA carriers which may lead to rapid isolation and minimise

the possibility of transmission, improvement of the hand hygiene protocol for

health-care workers, decolonisation strategies using antiseptic as well as thor-

ough environmental cleaning and careful antimicrobial treatments, [Harbarth,

2006].

Several mathematical models have been used to predict the impact of differ-

ent control measures in order to eradicate MRSA transmission. Most of them

suggest that improving the health worker hand hygiene is the most effective

control strategy, [Austin and Anderson, 1999; McBryde et al., 2007; Raboud

et al., 2005] along with the reduction of colonised patients admitted in the ward,

[Cooper et al., 1999]. There are also a number of models that relate antibiotic

consumption with MRSA colonisation, [Tacconelli et al., 2008].

1.2.1 The role of antimicrobial treatment

As an attempt to limit the spread of MRSA, many hospitals use either topical

or oral antimicrobial treatment in order to eradicate MRSA from individuals

who are colonized. Antibiotics that are not effective against MRSA encourage

acquisitions, [Dancer, 2008]. Thus, many studies have focused on the investi-

gation of the relationship between antibiotic treatments and MRSA resistance.

Most of them have underlined that antimicrobial use can increase the risk of

MRSA colonisation or infection, [Loeb et al., 2003; Muller et al., 2006; Tacconelli
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et al., 2008]. Others on the other hand, have found little change to the spread of

MRSA when antibiotic control strategies were used, [Carling et al., 2003].

In [Lodise et al., 2003] a prediction model showed that 80% of the nosocomial

and 60% of the community-acquired Staphylococcus aureus bacteremia will be

methicillin resistant. This model indicated that there are no differences between

the use of antimicrobial treatment and MRSA prediction. Other studies how-

ever, have shown that the use of control practices was related with a decrease of

MRSA, while some antibiotics were found to help its spread. More specifically,

the use of Fluoroquinolones, third-generation Cephalosporins, Macrolides and

Amoxicillin were related to increased MRSA incidents, [Aldeyab et al., 2008;

Dancer, 2001; Mahamat et al., 2007; Monnet et al., 2004; Muller et al., 2006; We-

ber et al., 2003]. Nevertheless, there is a lot of uncertainty about the kind and

amount of antimicrobial treatment which can be a threat to MRSA transmis-

sion. This is due to heterogeneity between the studies that differ in the length

of time each antimicrobial treatment was prescribed as well as the lack of data

on the duration of antimicrobial use and dosages, [Tacconelli et al., 2008].

Antimicrobial treatment using Linezolid and Vancomycin is considered to be

MRSA targeting. There are many surveys in the literature that try to find which

one eradicates MRSA more efficiently. Many of them have shown that Line-

zolid is as effective as Vancomycin for the treatment of MRSA, [Dennis et al.,

2002] and that Linezolid is related to shorter hospital stays, [Itani et al., 2010].

Others claim that Linezolid can be more effective than Vancomycin in surgical

sited infections, [Stevens et al., 2002; Weigelt et al., 2004] but can be equivalent

to Vancomycin in the treatment of complicated skin and soft tissue infections,

[Weigelt et al., 2005].

1.2.2 Decolonisation strategies

Decolonisation is considered an important part of infection control strategies.

Decolonisation policies can help control MRSA in ICU wards. Previous studies

have shown that the introduction of a Chlorhexidine based decolonisation pro-

tocol in an ICU can dramatically reduce the transmission of susceptible MRSA

strains, [Batra et al., 2010; Kypraios et al., 2010]. There are also studies outside

the ICU ward i.e. in Macfarlane et al. [Macfarlane et al., 2007], which report
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successful decolonisation using a protocol for MRSA. Other studies however,

found that such policies were not that effective, [Kurup et al., 2010], or other

practices such as hand hygiene were more efficient, [McBryde et al., 2007].

These differences might be due to variability in the use of protocols or other

control strategies, [Edgeworth, 2011].

In the next section we present the data we are going to use, which form the

basis for the development of the stochastic models described in the following

chapters in this thesis.

1.3 Data

The dataset we are going to use in this thesis was provided by Guy’s and St.

Thomas’ Hospital Trust (GSTT), London where a four-year study was carried

out in two ICU wards, located on adjacent floors. The data are very detailed

and include three main tables which contain:

1. Information about each patient’s condition and the antimicrobial and an-

tiseptic treatment they were receiving daily in the ICU ward.

2. Each patient’s hospital and ICU admission and discharge dates (these

dates can be different as a patient can be admitted in a general ward and

then, after some days, enter the ICU ward).

3. Information about the dates MRSA tests were taken as well as their results

for each patient in the ICU ward.

It is the daily treatment information that makes this data set especially unusual,

and which also leads to much of our novelty in our modelling.

All patients were admitted to the two 15-bed general ICU wards between 1

January 2002 and 20 April 2006. MRSA screening swab samples (from anterior

nares, axillae, groin) were taken from all patients on day of admission and every

Monday morning. When there was a clinically suspected infection, swab sam-

ples from different parts of the body were also taken. A surface antiseptic pro-

tocol was introduced from 26 April 2004 where MRSA colonised patients had
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1% (w/v) Chlorhexidine gluconate (Hibitane; Derma, Stotfold, Bedfordshire,

UK) applied to the nostrils, around the mouth, and at tracheostomy sites four

times daily; 1% Chlorhexidine acetate powder (CX Antiseptic Dusting Pow-

der, Adams Health, UK) applied to groin, axillae, and skinfolds daily and were

washed daily with 4% Chlorhexidine (Hibiscrub, SSL International, UK) ap-

plied by a wet cloth. Patients with negative MRSA tests had the same protocol

apart from Hibitane use twice daily and 2% (w/v) triclosan (Aquasept, Med-

lock Medical) instead of Hibiscrub, [Batra et al., 2010].

MRSA was identified from pooled screening swabs using mannitol salt agar

plates (Baird Parker) until July 2004 when a selective mannitol broth method

was introduced, [Batra et al., 2008; Edgeworth et al., 2007]. Isolates were con-

firmed to be MRSA by tube coagulase and disc diffusion testing methods using

methicillin discs, [Batra et al., 2010; Kypraios et al., 2011].

In this thesis we are going to use three groups of data which are subsets of

the dataset provided by Guy’s and St. Thomas’ Hospital Trust. These are the

following:

• MRSA Data Set which includes the MRSA swab tests taken from anterior

nares, axillae, groin as mentioned above.

• Wounds Data Set which includes the MRSA swab tests taken from any

wound on patient’s body.

• Respiratory Data Set which includes the MRSA swab tests taken from res-

piratory site on the body (sputum, nasopharyngeal aspirates, bronchial

washings or via bronchoalveolar lavage).

It is important to note that these three datasets are not comparable. Their main

difference is that the tests they include come from different part of the body for

each dataset. They also differ in the number of patients as well as they do not

include the same patients.

1.3.1 Assumptions

• We assume that each test can have only two outcomes; a positive “+” and

a negative “−”.

6
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• We assume that all patients have at least one test during their stay in the

ICU.

• We account for only one screening per test day per patient. However,

some patients had more than one screening tests on the same day. In this

case, since positive tests were considered more reliable that the negatives,

we kept the positive one if there was any, otherwise one of the negative

tests.

• We assume that there are no patients in isolation in the ICU wards.

• We ignore any information given about patient bed or ward changes.

• We consider each patient who is readmitted to the ICU ward as a new

patient. We make this assumption also for patients who might changed

ward.

1.3.2 Summary Statistics

Tables 1.1, 1.2 and 1.3 show some basic statistics for the three datasets; MRSA,

Wounds and Respiratory respectively, in total and in each ward separately.

MRSA Data Set

Statistic Ward 1 Ward 2 Both Wards

no. of patients 1855 1998 3853

average stay/patient (days) 11.24 10.91 11.07

median stay/patient (days) 6 6 6

average no. of tests/patient 2.12 2.12 2.12

no. of tests 3946 4244 8190

no. of positive tests 463 447 910

proportion of positive tests 0.1104 0.1053 0.1111

days of study 1581 1580 1581

total no. of days in ICU 20856 21813 42669

total no. of days antimicrobials prescribed 27712 28022 55734

Table 1.1: Summary statistics for the MRSA Data Set for Ward 1 (second col-
umn), Ward 2 (third column) and both (fourth column).
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Wounds Data Set

Statistic Ward 1 Ward 2 Both Wards

no. of patients 1298 1389 2687

average stay/patient (days) 14.5631 14.1547 14.3520

median stay/patient (days) 10 9 10

average no. of tests/patient 3.6494 3.3707 3.5053

no. of tests 4737 4682 9419

no. of positive tests 325 411 736

proportion of positive tests 0.0686 0.0877 0.0781

days of study 1581 1579 1581

total no. of days in ICU 18903 19661 38564

total no. of days antimicrobials prescribed 25854 25645 51499

Table 1.2: Summary statistics for the Wounds Data Set for Ward 1 (second col-
umn), Ward 2 (third column) and both (fourth column).

Respiratory Data Set

Statistic Ward 1 Ward 2 Both Wards

no. of patients 863 876 1739

average stay/patient (days) 16.1726 16.3835 16.2789

median stay/patient (days) 10 11 10

average no. of tests/patient 1.8609 1.8047 1.8326

no. of tests 1606 1581 3187

no. of positive tests 255 225 480

proportion of positive tests 0.1587 0.1423 0.1506

days of study 1569 1578 1581

total no. of days in ICU 13957 14352 28309

total no. of days antimicrobials prescribed 18624 18088 36712

Table 1.3: Summary statistics for the Respiratory Data Set for Ward 1 (second
column), Ward 2 (third column) and both (fourth column).

Figures 1.1, 1.2 and 1.3 display the number of tests taken in each ward during

the study period as well as the number of positive tests found for the MRSA,

Wounds and Respiratory Data Set respectively. It can be seen that the number

of positive tests becomes smaller at the second half of the study period. This is

due to the decolonisation protocol that began at around the second half of the

study period.
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Figure 1.1: Graph displaying the number of tests taken during the study pe-
riod (black line) and the number of positive tests for the same pe-
riod (red line) for each ward for the MRSA Data Set.
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Figure 1.2: Graph displaying the number of tests (black line) taken during the
study period (black line) and the number of positive tests (red line)
for the same period (red line) for each ward for the Wounds Data
Set.
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Figure 1.3: Graph displaying the number of tests (black line) taken during the
study period (black line) and the number of positive tests (red line)
for the same period (red line) for each ward for the Respiratory
Data Set.
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1.3.3 Antimicrobial Treatment

During the study, 77 different antimicrobials were prescribed to patients in the

two ICU wards depending on their clinical condition. However, only 18 of

these, classified in 11 antimicrobial groups, may have an effect against MRSA

and thus will be considered in this thesis. Table 1.4 contains these 18 antimicro-

bials as well as the antimicrobial group they belong to. Antimicrobials belong-

ing to the same antimicrobial group have similar effects.

Antimicrobial Group Antimicrobial

Aminoglycoside
Amikacin

Gentamicin
Antiseptic Chlorhexidine

Cephalosporin
Ceftazidime
Cefuroxime

Glycopeptide
Teicoplanin
Vancomycin

Macrolide
Clarithromycin
Erythromycin

Nitroimidazole Metronidazole

Oxazolidinone Linezolid

Penicillin

Amoxicillin
Co-amoxiclav
Flucloxacillin

Pip Taz Tazocin
Polymyxin Colistin

Quinolone Ciprofloxacin

Rifamycin Rifampicin

Table 1.4: Table showing all the antimicrobial treatment that was MRSA tar-
geting and was used during the study (first column), classified in
antimicrobial groups (second column) .

Tables 1.5, 1.6 and 1.7 contain details about the number of days each of the

antimicrobial treatment was used in each ward and in both wards for the MRSA

Data Set, Wounds Data Set and the Respiratory Data Set respectively.
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GROUP Ward 1 Ward 2 Both Wards

Aminoglycoside 2588 2600 5188

Antiseptic 8690 9049 17739

Cephalosporin 3690 3686 7376

Glycopeptide 4733 4599 9332

Macrolide 2782 2556 5338

Nitroimidazole 2491 2694 5185

Oxazolidinone 204 139 343

Penicillin 1297 1125 2422

Polymyxin 191 228 419

Quinolone 828 938 1766

Rifamycin 528 98 626

Table 1.5: Number of days each antimicrobial treatment was received in ward
1, ward 2 and both wards, for the MRSA Data Set.

GROUP Ward 1 Ward 2 Both Wards

Aminoglycoside 2472 2477 4949

Antiseptic 8186 8515 16701

Cephalosporin 3167 3164 6331

Glycopeptide 4557 4420 8977

Macrolide 2548 2340 4888

Nitroimidazole 2143 2386 4529

Oxazolidinone 190 139 329

Penicillin 1137 1003 2140

Polymyxin 191 221 412

Quinolone 764 884 1648

Rifamycin 499 96 595

Table 1.6: Number of days each antimicrobial treatment was received in ward
1, ward 2 and both wards, for the Wounds Data Set.
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GROUP Ward 1 Ward 2 Both Wards

Aminoglycoside 1842 1862 3704

Antiseptic 5420 5624 8044

Cephalosporin 2279 2130 4409

Glycopeptide 3389 3241 5530

Macrolide 2036 1891 3927

Nitroimidazole 1404 1558 2962

Oxazolidinone 146 106 252

Penicillin 824 661 1485

Polymyxin 174 210 384

Quinolone 677 742 1419

Rifamycin 433 63 496

Table 1.7: Number of days each antimicrobial treatment was received in ward
1, ward 2 and both wards, for the Respiratory Data Set.

Figures 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 show the number of patients who were

receiving each antimicrobial treatment each day during the study period for

wards 1 and 2 for the three datasets. It can be seen in all three datasets that the

use of the Antiseptic increases dramatically after the second half of the study

period. This is because of the antiseptic protocol which was commenced that

period.

14



CHAPTER 1: INTRODUCTION

0 500 1000 1500

0
4

8

Aminoglycoside

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0
10

Antiseptic

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0
4

8

Cephalosporin

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0
6

Glycopeptide

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0
4

Macrolide

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0
3

6

Nitroimizadole

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0
3

Oxazolidinone

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0
3

6

Penicillin

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0.
0

1.
5

Polymyxin

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0
3

Quinolone

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

0 500 1000 1500

0.
0

2.
5

Rifamycin

Study Period

N
um

be
r 

of
 p

at
ie

nt
s

MRSA Data Set − Ward 1

Figure 1.4: Antimicrobial treatment use over the study period. The plots
present the number of patients receiving each antimicrobial treat-
ment each day over the study period for the MRSA Data Set, ward
1.
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Figure 1.5: Antimicrobial treatment use over the study period. The plots
present the number of patients receiving each antimicrobial treat-
ment each day over the study period for the MRSA Data Set, ward
2.
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Figure 1.6: Antimicrobial treatment use over the study period. The plots
present the number of patients receiving each antimicrobial treat-
ment each day over the study period for the Wounds Data Set, ward
1.
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Figure 1.7: Antimicrobial treatment use over the study period. The plots
present the number of patients receiving each antimicrobial treat-
ment each day over the study period for the Wounds Data Set, ward
2.
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Figure 1.8: Antimicrobial treatment use over the study period. The plots
present the number of patients receiving each antimicrobial treat-
ment each day over the study period for the Respiratory Data Set,
ward 1.
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Figure 1.9: Antimicrobial treatment use over the study period. The plots
present the number of patients receiving each antimicrobial treat-
ment each day over the study period for the Respiratory Data Set,
ward 2.
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1.4 Statistical Inference

Mathematical models have been widely used to describe the spread of antimi-

crobial -resistant bacteria. They can be divided into two categories; determin-

istic models and stochastic models. Deterministic models are simple to analyse

and thus were used to describe the transmission of nosocomial pathogens be-

tween patients in single wards, [Austin et al., 1999; Haber et al., 2010; Lipsitch

et al., 2000; Sébille et al., 1997]. However, stochastic models are more preferable

especially when small populations such as intensive care units are concerned,

[Grundmann and Hellriegel, 2006; Pelupessy et al., 2002]. They are more real-

istic and it is a natural way to describe disease transmission, [Andersson and

Britton, 2000; O’Neill, 2010]. In this thesis only stochastic models are going to

be considered.

Data that come from infectious diseases are usually partially observed and can

make their analysis more complicated, [O’Neill, 2010]. Patients infected by

nosocomial pathogens are often asymptomatic so their colonisation status can

only be partially observed by swab tests. Such data are usually analysed using

Bayesian inference with the help of Markov Chain Monte Carlo (MCMC) algo-

rithms, [Gibson and Renshaw, 1998; O’Neill, 2002; O’Neill and Roberts, 1999;

Streftaris and Gibson, 2004].

In the following section we are going to present some general information about

Bayesian inference and MCMC algorithms that is required in the next three

chapters; 2, 3 and 4. A more extensive literature review as well as more infor-

mation about the methodology used is given in each chapter separately.

1.5 Bayesian Inference - MCMC

Over the last two decades the use of Bayesian methods in applied statistics

problems has greatly increased. Bayesian inference is the process of fitting a

probability model to data and summarising the result using a probability dis-

tribution on the model parameters and unobserved quantities, [Gelman et al.,

2004].
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1.5.1 Bayes’ Theorem

Here we are going to review the fundamentals of the Bayesian theory. A more

detailed approach can be found in [Bernardo et al., 1994].

The Bayesian approach begins specifying a model for the observed data Y given

the model’s unknown parameters denoted by θ. The model then can be given

in the form of a likelihood function π (Y|θ). Since the parameter vector θ is un-

known, all the initial information (i.e. before seeing the data) about θ can be

summarised in the form of a probability distribution, π (θ), called the prior dis-

tribution. Inference concerning θ requires the combination of the likelihood and

the prior to determine the posterior distribution, π (θ|Y), using Bayes’ theorem as

follows:

π (θ|Y) = π (Y|θ)π (θ)

π (Y)
∝ π (Y|θ)π (θ) , (1.5.1)

where π (Y) = ∑θ π (Y|θ)π (θ) for the discrete case, where the sum is all over

possible values of θ or π (Y) =
∫

π (Y|θ)π (θ) dθ in the case of continuous θ.

The latter integral is a normalising constant so that π (θ|Y) defines a valid prob-

ability distribution. Its computation has been the source of most of the practical

difficulties in Bayesian inference, mainly because in high dimensions the result-

ing distribution cannot always be written in closed form. This difficulty can be

overcome with the use of MCMC methods.

Prior Distributions

In this section we present the most popular approaches for choosing a prior

distribution.

Informative Priors

Informative priors are usually used when some information is known about the

parameter θ before the data are obtained.

Conjugate priors

Conjugate priors are distributions that lead the posterior to have the same dis-

tributional family as the prior. Their choice can be more computationally con-

venient than others.

Non-informative priors
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Non-informative priors contain very little or no information about parameter θ

so allow the information from the likelihood to be interpreted probabilistically.

1.5.2 Markov Chain Monte Carlo

MCMC is the most popular method for Bayesian computation as it can handle

complex problems and it is easy to program,[Berger, 2000]. MCMC is based

on drawing values of parameter vector θ from approximate distributions and

then correcting those draws to better approximate the target posterior distribu-

tion π (θ|Y). The samples are drawn sequentially from a Markov chain whose

stationary distribution is the desired joint posterior distribution of interest.

In this section we are going to present the main idea of MCMC and its basic well

known algorithms. More information about the theory and applications can be

found in [Gilks and Spiegelhalter, 1996], [Tanner, 1996], [Robert and Casella,

2004] and [Brooks et al., 2011].

The idea of MCMC comes from Metropolis et al., [Metropolis et al., 1953] and

was then generalised by Hastings, [Hastings, 1970]. Simulations following this

scheme are said to use the Metropolis-Hastings algorithm, [Chib and Green-

berg, 1995].

The Metropolis-Hastings algorithm

In a Bayesian setting, the main aim of the Metropolis-Hastings (MH) algorithm

is to generate samples from a posterior density π (θ|Y) known up to a normalis-

ing constant. For the MH algorithm, at each time t, the next state θt+1 is chosen

by first sampling a candidate point θ∗ from a proposal density q (·|θt). The pro-

posal distribution might depend on the current point θt. The candidate point

θ∗ is then accepted with probability a (θt, θ∗) where

a (θt, θ∗) = min
(

1,
π (θ∗|Y) q (θt|θ∗)
π (θt|Y) q (θ∗|θt)

)
. (1.5.2)

If the candidate point is accepted, the next state becomes θt+1 = θ∗, otherwise

the chain does not move i.e. θt+1 = θt.

Pseudocode for this algorithm is as follows:
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Metropolis-Hastings Algorithm

1. Give initial values to θ0.

2. t = 0

3. Repeat the following steps:

Sample θ∗ ∼ q (·|θt)

Draw a uniform (0, 1) random variable U

If U ≤ a (θt, θ∗)

set θt+1 = θ∗

Else

set θt+1 = θt

t = t + 1

The parameters of the vector θ in the MH algorithm can be updated in many

ways. Firstly, they can be updated all together, as a block, so they can be either

all accepted or rejected. Secondly, they can be updated separately so that in

each iteration t there will be an update of each of the parameters in θ. Lastly,

there can be a combination of updates where some of the parameters in θ are

updated separately and others as a block.

Gibbs Sampler

The Gibbs sampler was introduced by Geman and Geman, [Geman and Ge-

man, 1984] and is a special case of the Metropolis-Hastings algorithm where

the probability of accepting the candidate is always unity, [Casella and George,

1992; Gelfand and Smith, 1990].

Suppose we have the parameter vector θ which consists of n parameters, θ =

(θ1, θ2, ..., θn). In each iteration of the Gibbs sampler, each subvector θi, i =

1, ..., n of θ is drawn conditional on the value of all the others. More specifically,
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let θ−i be the vector θ with subvector θi removed. The functions πi (θi|θ−i, Y)

are called the full conditional distributions of π (θ|Y). So in the Gibbs sampler,

in each iteration t, we sample from the joint posterior distribution π (θ1, θ2, ..., θn)

using the full conditional distributions. So each of the parameters θi is condi-

tional on the latest values of the components of θ.

Pseudocode for this algorithm is as follows:

Gibbs Sampler Algorithm

For each iteration t = 1, ...T, repeat:

Draw θt+1
1 from π

(
θ1|θt

2, θt
3, . . . , θt

n
)

Draw θt+1
2 from π

(
θ2|θt+1

1 , θt
3, . . . , θt

n

)
·
·
·
Draw θt+1

n from π
(

θn|θt+1
1 , θt+1

2 , . . . , θt+1
n−1

)
t = t + 1

Proposal Distributions

In the Metropolis-Hastings algorithm, a proposal distribution is required to

simulate the next parameter values. The proposal distribution may depend on

the latest previous value of the parameter, but it is independent of all earlier val-

ues of the parameters so that the Markov property holds. A common choice for

a proposal distribution is to use Gaussian proposals. This proposal distribution

is normal centered at the current parameter value and the only thing that needs

to be specified is the variance σ for each parameter. This approach is called ran-

dom walk Metropolis. If σ is too low, the Metropolis steps are too short so the

chain moves too slowly to the target distribution. On the other hand, if σ is too

high, the algorithm almost always rejects the new candidate value and does not

move, [Gelman et al., 1996]. A quite general rule is to choose σ in a way such

that the acceptance rate for each candidate parameter is around 0.25, [Roberts

et al., 1997], although others suggest that acceptance rated around 0.5 is also

optimal, [Carlin and Louis, 2009]. However, these results usually vary with the
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dimension and true posterior correlation structure of parameter vector θ. More

information on this can be found in the references mentioned in this section.

The Gaussian proposal distribution is symmetric and this can simplify the com-

putation of the parameter updates in the Metropols-Hastings algorithm. As-

sume we have the probability in (1.5.2),

a (θt, θ∗) = min
(

1,
π (θ∗|Y) q (θt|θ∗)
π (θt|Y) q (θ∗|θt)

)
.

To calculate the ratio of proposal distribution using Gaussian random walk we

will have,

q (θt|θ∗)
q (θ∗|θt)

=
N
(
θ∗, σ2)

N (θt, σ2)
=

1√
2πσ2 e−

1
2σ2 (θt−θ∗)2

1√
2πσ2 e−

1
2σ2 (θ

∗−θt)
2 = 1. (1.5.3)

thus, the Metropolis-Hastings update probability becomes,

a (θt, θ∗) = min
(

1,
π (θ∗|Y)
π (θt|Y)

)
.

Burn-in

With the term burn-in we refer to the practice of discarding the early iterations

of MCMC to diminish the effect of the starting distribution [Gelman et al., 2004].

The length of the burn-in usually depends on the starting values and how fast

the MCMC chain converges to the target distribution. Burn-in can be deter-

mined from MCMC trace plots, [Gilks and Spiegelhalter, 1996]. However, Gel-

man et al., [Gelman et al., 2004], suggest discarding the first half of the MCMC

iterations as a burn-in.

Thinning

When computer storage is a problem, we can keep only every kth simulation

draw from each sequence and discard the rest of them. This practice is called

thinning. k can be set to some value high enough that successive draws of pa-

rameter θ are approximately independent, [Gilks and Spiegelhalter, 1996]. Fur-

thermore, the amount of thinning should be chosen in a way so that the full

sample will have more information than the amount that is discarded.
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1.6 Thesis Outline

In this chapter we presented some information about Staphylococcus aureus and

MRSA and some background information about the previous work that has

been done considering the control strategies and the use of antimicrobial treat-

ment for this pathogen. We also gave a description of the data analysed in this

thesis and gave the fundamentals of Bayesian inference and MCMC that are

going to be used in the following chapters.

The remaining chapters of this thesis are organised as follows:

In Chapter 2 we use a discrete time Markov Model to look at the effects of

antimicrobial treatment on carriage levels of MRSA, ignoring patient-to-patient

transmission. Swab test sensitivity and specificity are assumed to be perfect.

Maximum likelihood and MCMC techniques are used to obtain the parameter

estimates followed by an investigation of model assessment. Lastly, we present

some simulation results as well as the results obtained form the three datasets

used.

In Chapter 3 a discrete time hidden Markov model is used to investigate the

effect of antimicrobials on MRSA carriage, again without taking into account

patient-to-patient transmission. We still assume perfect swab test specificity

but imperfect sensitivity. Thus, to obtain our parameter estimates we use a

data augmentation MCMC algorithm. We then discuss model assessment and

display the results from the simulations and from the three datasets used.

In Chapter 4 we use three discrete time stochastic transmission models to ex-

plore the effect of antimicrobial treatment on MRSA transmission. We assume

imperfect swab test sensitivity and perfect specificity. Results are obtained us-

ing a data-augmented MCMC algorithm to infer the unobserved patient coloni-

sation times. Then we describe the model assessment and lastly we present the

results from simulations and the GSTT datasets for the three models.

In Chapter 5 we conclude discussing the main results drawn for this research

and any model limitations. We also present possible future work.

All results and graphics for this thesis have been obtained using the C program-

ming language and the R statistical software.

27



CHAPTER 2

Modelling the effect of

antimicrobial treatment on carriage

levels of MRSA using Markov

models

2.1 Introduction

In this chapter we look at the effects of antibiotics and antiseptic treatment on

MRSA carriage levels of colonised patients. Throughout this chapter we as-

sume that there is perfect swab test sensitivity and specificity. Moreover, we

make the assumption that there is no person-to-person transmission so we use

only a within-patient modelling approach. We will include only the patients

who have at least one positive test. The reason we do this is because we have

ignored patient-to-patient transmission and thus we cannot draw any conclu-

sions about the effect of antimicrobial treatment when a patient has only nega-

tive tests.

We will use a discrete-time Markov chain to model the colonisation status of an

individual on a daily basis taking into account daily antimicrobial treatment.

The data we are going to use come from the two 15-bed ICUs from St. Guy’s

and Thomas’ hospital in London as described in section 1.3.

Earlier work using Markov Models to analyse whether antimicrobial treatment
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can influence carriage levels of MRSA has been done by Kypraios et al. in

[Kypraios et al., 2011]. In their work they use discrete time Markov models

to assess the effects of antimicrobial treatment considering three models: one

using a 1-day timescale, and two using a 1-week timescale considering either

one antimicrobial at a time or multiple antimicrobial use. For the weekly tran-

sition models, they included only tests that took place at weekly intervals and

assumed that an antimicrobial had been received that week only if the patient

was receiving it for four or more days that week. There was strong evidence

that antiseptic treatment had an effect on reducing MRSA carriage while an-

tibiotic treatment was not associated with changes in MRSA carriage. One lim-

itation of this work is that there is no discussion about assessing model fit.

The work in this chapter uses a similar model as the model for daily transitions

used in [Kypraios et al., 2011]. The MRSA Data Set that includes only the pa-

tients with at least one positive test is also the same as the one used in [Kypraios

et al., 2011]. However, here we will obtain results from two more data sets: the

Wounds Data Set and the Respiratory Data Set for which we will also consider

only patients with at least on positive test. Furthermore, this chapter includes a

detailed analysis of model assessment which has not been done in any previous

works.

For the model’s parameter estimation, a Frequentist and a Bayesian approach

are used utilising maximum likelihood estimation and Markov Chain Monte

Carlo (MCMC) methods respectively. We initially validate our methods using

simulated data and then, using the GSTT data, we obtain results making several

different assumptions for the three different data sets; MRSA Data Set, Wounds

Data Set and Respiratory Data Set. We then assess the model fit using two

different methods discussed in Section 2.6.

We find that antiseptic treatment has an effect on the clearance of MRSA car-

riage for the MRSA Data Set. Moreover, Oxazolidinone seems to be effective

in reducing MRSA carriage for all the three data sets while Macrolide and

Cephalosporin seem to have the opposite effect. These results are in agreement

with the findings in [Kypraios et al., 2011]. Finally, it was not always clear that

the model fit was adequate.

In Section 2.2 we present some summary statistics of the data we are going to

use in this chapter. In Section 2.3 we describe the model, in Section 2.4 the
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Likelihood, in Section 2.5 we discuss the inference methods and in Section 2.6

the model assessment methods. In Sections 2.7 and 2.8 we validate our methods

using simulated data and present the results from the three data sets (MRSA

Data Set, Wounds Data Set and Respiratory Data Set). Finally, Section 2.9 gives

an overview of the methods and the results discussed in the previous sections

as well as model’s limitations and suggestions for possible improvements.

2.2 Data

In this chapter we perform our analysis by including only patients that have

at least one positive test. The reason we do this is that, since we are interested

in the effects of antimicrobial treatment on MRSA carriage levels, it is better to

include in our study those patients who had acquired the infection. Another

reason is that including all patients is computationally demanding. However,

for comparison, in Section 2.8 we have a case where we include the results for

patients with no positive tests, to show that these results do not differ much

from the those that include only the positive patients.

The data sets we use for our main study in this chapter will be subsets of the

MRSA, Wounds and Respiratory Data Sets described in the previous chapter

1. We are going to refer to them as p-MRSA Data Set, p-Wounds Data Set and

p-Respiratory Data Set to distinguish them from the original and complete data

sets.

Tables 2.1 and 2.2 give some basic statistics of the three data sets.
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Statistic p-MRSA p-Wounds p-Respiratory
number of patients 545 351 302

average stay/patient (days) 18.510 26.603 26.473

median stay/patient (days) 12 17 19

average no. of tests/patient 3.121 6.752 2.884

no. of tests 1701 2370 871

no. of positive tests 910 736 480

proportion of positive tests 0.5349 0.3105 0.5510

days of study 1574 1566 1547

total no. of days in ICU 10088 9338 7995

total no. of days antimicrobials prescribed 7322 6773 5863

Table 2.1: Summary statistics for the p-MRSA, p-Wounds and p-Respiratory
Data Sets.

Antimicrobial p-MRSA p-Wounds p-Respiratory
Aminoglycoside 1119 1058 908

Antiseptic 3715 3752 2902

Cephalosporin 1327 1014 892

Glycopeptide 2900 2691 2404

Macrolide 1278 1096 1099

Nitroimidazole 1136 941 760

Oxazolidinone 118 129 89

Penicillin 639 625 450

Polymyxin 161 173 136

Quinolone 549 397 468

Rifamycin 128 80 108

Table 2.2: Number of days each antimicrobial group was prescribed for the p-
MRSA, p-Wounds and p-Respiratory Data Sets.
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2.3 Model

We are modelling the effects of antimicrobial treatment on carriage levels of

MRSA in patients in the two 15-bed ICU wards. We extract information from

the swab tests results from each patient, their antimicrobial treatment they had

during their stay as well as the length of their stay in the ICU. We also con-

sider that the colonisation status of each patient is independent of the others.

This means that every patient has the same probability of becoming colonised

with MRSA and in particular this probability does not depend on the colonisa-

tion status of any other patient. Moreover, we assume that the swab tests have

perfect sensitivity and specificity. Sensitivity denotes the proportion of actual

positive tests which are observed correctly and specificity denotes the propor-

tion of negative tests which are observed correctly.

We will use a two-state discrete time Markov chain to model the colonisation

status of an individual. We assume that each day a given patient can be in either

one of the following states: colonised (C) or not colonised (N).

Let {Xn : n ≥ 0} be a stochastic process, where n denotes the number of days

patient has stayed in the ICU (n = 0 is the first day) and Xn denotes the coloni-

sation status of the individual. So, Xn ∈ {C, N}.

Furthermore, a patient each day can be either “on” or “off” antimicrobial treat-

ment, meaning that they are given antimicrobials or not on that day. In this

study we consider only one antimicrobial treatment at a time. If a patient re-

ceives antimicrobial treatment on day n then we assume they are “on” antimi-

crobial treatment otherwise they are “off” antimicrobial treatment. So, for each

patient we define ∆(n) ∈ {ON, OFF} , where ∆(n) is the antimicrobial state on

day n . We have made the assumption that antimicrobials have an immediate

effect on patients.

Moreover, we suppose that the process {Xn : n ≥ 0} is a Markov chain and that

it satisfies the Markov property,

P (Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X1 = i1, X0 = i0) = P (Xn+1 = j|Xn = i) ,

where i0, i1, ..., in−1, i, j ∈ {C, N}.
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The Markov chain is not time-homogeneous, since the one-step transition ma-

trix depends on whether the individual is “on” or “off” antibiotics. We assume

that the daily transition probabilities are independent of which particular pa-

tient is being considered.

Then the one-day transition matrix, for a patient whose current antimicrobial

state is ∆ is

P∆(n−1) =

( N C

N p∆ 1− p∆

C q∆ 1− q∆

)
,

where

p∆ = Pr(Xn = N|Xn−1 = N, ∆ (n− 1) = ∆),

q∆ = Pr(Xn = N|Xn−1 = C, ∆ (n− 1) = ∆),

and

0 ≤ p∆ = p0 + α1{∆=ON} ≤ 1,

0 ≤ q∆ = q0 + β1{∆=ON} ≤ 1.

Here, p∆ = p0 + α1{∆=ON} is the transition probability that a patient remains

in a non-colonised state where p0 is the baseline probability when a patient

is “off” antimicrobial treatment and α is the antimicrobial contribution to the

patient on that day. This means that when a patient is “off” antimicrobial treat-

ment we have the transition probability p0 and when a patient is “on” we have

the transition probability p0 + α. Similarly, q∆ = q0 + β1{∆=ON} is the transi-

tion probability that a patient goes from a colonised state to a non-colonised

state, where q 0 is the baseline probability when a patient is “off” antimicrobial

treatment and β is the antimicrobial contribution to the patient on that day. So,

when a patient is “off” antimicrobial treatment we have the transition probabil-

ity q0 and when a patient is “on” antimicrobial treatment we have the transition

probability q0 + β.

More explicitly, when a patient is “off” antimicrobial treatment then the transi-

tion matrix is
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POFF =

( N C

N p0 1− p0

C q0 1− q0

)
,

and when a patient is “on” antimicrobial treatment the transition matrix be-

comes

PON =

( N C

N p0 + α 1− p0 − α

C q0 + β 1− q0 − β

)
,

2.4 Likelihood

Patient i’s data, i = 1, ..., Np, where Np is the number of patients with at least

one positive test, consist of a sequence of observations each of which is defined

by the quantity (n0, t; j, k)(i), where n0 > 0 is the observation day, t > 0 is the

number of days until the next swab test and j and k denote the state that the

patient is on day n0 and on day n0 + t respectively, j, k ∈ {C, N}. Moreover,

suppose that the colonisation status of a patient i is observed on day n0 and on

day n0 + t but not in between. We define as Γ(i)
jk (n0, t) the probability that pa-

tient i who is observed on day n0 and then on day n0 + t goes from colonisation

state j to colonisation state k. Then,

Γ(i)
jk (n0, t) =

(
n0+t−1

∏
l=n0

P∆(l)

)
jk

, j, k ∈ {C, N}.

Furthermore, denote by Si = {(n0, t; j, k)}(i) the set of all the observations for

patient i, i.e. and let S =
⋃

i Si. Then, the likelihood when all patient informa-

tion is taken into account is given by

L (p0, q0, α, β;S) =
Np

∏
i=1

∏
(n0,t;j,k)(i)∈Si

Γ(i)
jk (n0, t)1{0≤p0+α≤1, 0≤q0+β≤1}. (2.4.1)
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2.4.1 Example

Suppose that patient i’s data can be described by the diagram below:

}C
ON

e
ON

e
OFF

}
ON

C e
OFF

e
OFF

e
OFF

e
ON

}
OFF

N e
OFF

}N
OFF

Each bullet denotes one day of patient i’s stay in the ICU ward. We assume the

first day is day 1. The black bullets denote that the patient had a test on that

day. Moreover, we have information about what antimicrobial treatment was

given to the patient each day.

Then, in order to find the probability that the patient goes from state C to state

C in three days, Γ(i)
CC(1, 3), considering that the patient was receiving antimicro-

bial treatment the first two days but not the third one, we multiply two times

the transition matrix when the patient is “on” antimicrobial treatment by the

transition matrix that corresponds to “off” antimicrobial treatment. From the

derived matrix we only need the probability in the cell of the CC transition.

Γ(i)
CC(1, 3) =

(
P∆(1)=ON × P∆(2)=ON × P∆(3)=OFF

)
CC

=

( p0 + α 1− p0 − α

q0 + β 1− q0 − β

)2

×
(

p0 1− p0

q0 1− q0

)
CC

.

Similarly we compute the probabilities Γ(i)
CN(4, 5) and Γ(i)

NN(9, 2) as shown be-

low.

Γ(i)
CN(4, 5) =

(
P∆(4)=ON × P∆(5)=OFF × P∆(6)=OFF × P∆(7)=OFF × P∆(8)=ON

)
CN

=

( p0 + α 1− p0 − α

q0 + β 1− q0 − β

)2

×
(

p0 1− p0

q0 1− q0

)3
CN

.

Γ(i)
NN(9, 2) =

(
P∆(9)=OFF × P∆(10)=OFF

)
NN

=

( p0 1− p0

q0 1− q0

)2
NN

.

So, the likelihood for patient i can then be computed as follows,

L (p 0, q 0, α, β;Si) = Γ(i)
CC(1, 3)× Γ(i)

CN(4, 5)× Γ(i)
NN(9, 2).
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Next section shows the methods we used to obtain the estimates for the model’s

parameters.

2.5 Inference

We are interested in finding estimates for all the parameters of the model. We

used two different methods to achieve this, Maximum Likelihood Estimation

(MLE) and Bayesian inference using MCMC algorithms. We have data S , as

described above, and we wish to estimate the parameters p0, q0, α and β.

For MLEs we used optim in R using the Nelder-Mead algorithm to perform

optimisation.

For MCMC we used a Gaussian random walk Metropolis scheme [Gilks and

Spiegelhalter, 1996].

2.5.1 Prior distributions

We assume non-informative prior distributions for all the model parameters so,

we use independent Uniform U(0, 1) distributions for each one.

Combining the prior information for each parameter and the likelihood given

in (2.4.1) we get the following posterior density function,

π (p0, q0, α, β | S) ∝ L (p0, q0, α, β;S)π(p0)π(q0)π(α)π(β),

where from (2.4.1) we have 0 ≤ p0 + α ≤ 1, 0 ≤ q0 + β ≤ 1 and we assume that

p0, q0, α and β are a priori independent.

2.5.2 Updating the parameters

We update each of the parameters p0, q0, α and β using a Gaussian random

walk Metropolis scheme. We cannot use Gibbs sampling because (2.4.1) gives

us intractable full conditional distributions.

Let ω(t) denote the set of current model parameters at iteration t and ω∗ be

the proposed new set of these parameters. We use a multivariate normal pro-
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posal distribution N(ω∗, σ2
ω∗) to propose the parameters, where N(µ, σ2) is the

normal distribution with mean µ and standard deviation σ.

Standard deviation σω∗ is chosen so that the acceptance rate is around 0.25

[Roberts et al., 1997].

We sample a candidate point ω∗ from a gaussian density g
(
ω∗|ωt) ∼ N

(
ωt, σ2

ω∗
)
.

Then, the probability that the candidate point ω∗ is accepted is:

α
(
ωt, ω∗

)
= min

(
1,

L (ω∗;S)π (ω∗) g
(
ωt|ω∗

)
L (ωt;S)π (ωt) g (ω∗|ωt)

)
.

where π(ω∗) is the prior distribution of parameter ω∗ and
g(ωt|ω∗)
g(ω∗|ωt)

= 1 as

shown in 1.5.3.

If the candidate ω∗ is accepted then the next step becomes ωt+1 = ω∗, oth-

erwise, the chain does not move, i.e. ωt+1 = ωt. In order to allow the chain

to reach stationarity, we discard the first l values as a burn-in period. Burn-in

period formalities are discussed in [Gilks and Spiegelhalter, 1996].

A Pseudocode for this algorithm is as follows:

Gaussian Random Walk MCMC Algorithm

1 Assign initial values to the parameters of interest ω

2 For t = 1 . . . Niter, Niter is the number of iterations

– Propose ω∗ ∼ N
(
ωt, σ2

ωt

)
– Draw a uniform U (0, 1) random variable u

– If u ≤ α
(
ωt, ω∗

)
· set ωt+1 = ω∗

– Else

· set ωt+1 = ωt

3 End For loop

4 Return values {ω1, ω2, ..., ωn}
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2.6 Model Assessment for Markov Models

In this section we discuss how to assess the model fit.

Initially we present some previous work on goodness-of-fit tests for Markov

models. Then, we consider model assessment of a Markov model without

taking into account the information about antimicrobial treatment. Later, we

discuss how we can include antimicrobial treatment and point out limitations

that might arise and finally, we explain how we obtained the model fit for our

model.

2.6.1 Background Information

Kalbfleisch and Lawless in [Kalbfleisch and Lawless, 1985] proposed a goodness-

of-fit statistic for equally spaced longitudinal data for a continuous time Markov

model. The patients were observed at the same time and the Markov model

was time homogeneous. They found the contingency tables of the observed

and expected transition counts for each time interval. They used the matrix

of the estimated transition probabilities to find the expected transition counts.

Then for each contingency table a Pearson chi-squared statistic was calculated

to test the fit of the Markov model. This goodness-of-fit test was also proposed

by Stavola, [De Stavola, 1988].

Gentleman et al. in [Gentleman et al., 1994] applied the estimation methods of

Kalbfleisch and Lawless presented in [Kalbfleisch and Lawless, 1985] to lon-

gitudinal partially observed data using continuous-time, time-homogeneous

Markov models. For the model fit, they compared the observed to the expected

values based on the model. In order to do this, the authors calculated the ob-

served and expected counts using either the number of people in each time state

or transition counts. To calculate the observed counts, they assumed that the

time of the disease onset was known and that a patient who had not been ob-

served at time tu remained at the same state as at their earlier inspection time.

It is suggested that these assumptions might not have a considerable effect if

the observations are frequent. Expected times were obtained by summing the

probability an individual is at state u at time tu for example, given their initial

state, over all individuals who were being observed at time tu. Then, to assess
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the goodness-of-fit, the observed transition counts, say for state u to v, Ouv were

compared to the expected transition counts Euv either looking at the matrix of

observed minus expected values or through

Muv =
(Ouv − Euv)

2

Euv
.

However, they do not give a formal way of assessing whether the difference

between observed and expected values is statistically significant.

On the other hand, Aguirre-Hernandez and Farewell (AH/F) [Aguirre- Hernán-

dez and Farewell, 2002] proposed a Pearson-type statistic to examine the good-

ness -of-fit of stationary and time homogeneous Markov regression models of

order one. They grouped the observations in H categories according to their

type and the time intervals between the transitions. Then, they propose the

statistic

T = ∑
H

(nh − eh)
2

eh
,

where nh denotes the total number of observed transitions in cell h and eh is

the expected number of transitions in cell h. The estimated transition probabili-

ties are obtained by generating independent bootstrap samples from the model

specified by the null hypothesis and calculating the goodness-of-fit for each

statistic. They simulated the observed states based each time on the existing

observed states and then refitted the model and calculated the statistic for each

simulation. Then, the value of the statistic of the observed data is compared

with the simulated values to compute the significance level.

Later, Titman and Sharples [Titman and Sharples, 2008] proposed a modifica-

tion of this test that includes processes with an absorbing state in the case of

Markov models and then an extension for misclassification-type hidden Markov

models. Moreover, Titman in [Titman, 2009] proposed an approximation of

the asymptotic null distribution of the goodness-of-fit tests for panel, observed,

continuous time multi-state Markov models and hidden Markov models. This

work had the potential to improve applicability of the goodness-of-fit tests de-

scribed in [Aguirre- Hernández and Farewell, 2002] and [Titman and Sharples,

2008] as bootstrapping in many cases can be computationally expensive.

All the methods described above refer to continuous-time Markov models that
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are time-homogeneous. Only Kalbfleisch and Lawless in [Kalbfleisch and Law-

less, 1985] investigated briefly the case of a Markov model being non- homoge-

neous but only for certain cases. Later in this section we analyse how we assess

the model fit for the time-homogeneous case i.e when antimicrobial treatment

is not included and then for the non-homogeneous case including the antimi-

crobial information.

2.6.2 Model assessment of the Markov model: theoretical con-

siderations

Here we are going to discuss about how feasibly we can perform model assess-

ment and discuss any difficulties and limitations we meet when we include the

information about antimicrobial treatment.

We classify the number of observed transitions in groups according to each

day interval. Let us focus on a given k-day interval and assume that we have

n = n(k) patients who have such an observed transition. If we sum up the

numbers of transitions of each day interval we have a summary matrix

observed =

(
XNN XNC

XCN XCC

)
,

where Xjk, j, k ∈ {C, N} denotes the number of transitions from state j to state

k. Moreover, suppose that XNN + XNC = nN and XCN + XCC = nC.

The corresponding model for XNN for example, is

XNN =
nN

∑
j=1

Yj, (2.6.1)

where Yj ∼ Bernoulli(pj), Yj independent, pj = pj(p0, q0, α, β, z̃j) and z̃j is

the antimicrobial treatment information for each day during the k-day inter-

val. More explicitly, z̃j indicates whether patient j is “on”/“off” antimicrobial

treatment on each of the k days. Similar representation holds for XNC, XCN and

XCC.
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No information about antimicrobial treatment

In the following we consider the asymptotic behaviour of XNN via equation

(2.6.1).

In the case where we ignore any data on the antimicrobial treatment in our

model, Yj ∼ Bernoulli(p), p = p(p0, q0), Yj independent. Then from the Central

Limit Theorem,

∑nN
j=1

(
Yj − E[Yj]

)√
Var

(
∑nN

j=1 Yj

) D−→ N(0, 1) as nN → ∞,

where D−→means convergence in distribution.

Then,

∑nN
j=1

(
Yj − p

)√
nN p (1− p)

=
∑nN

j=1 Yj − nN p√
nN p (1− p)

D−→ N(0, 1).

Now for the standard χ2 approach consider the quantity

K :=
(XNN − E(XNN))

2

E(XNN)
+

(XNC − E(XNC))
2

E(XNC)
. (2.6.2)

Recall the standard argument that K is χ2 distributed with 1 degree of freedom,

as follows. Since E[XNN ] = nN p we have

E[XNC] = E[nN − XNN] = nN − E[XNN] = nN (1− p)

and

(XNC − E (XNC))
2 = (nN − XNN − nN + E (XNN))

2 = (XNN − E (XNN))
2 .

So, from (2.6.2) we have
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(XNN − E (XNN))
2
{

1
E (XNN)

+
1

nN − E (XNN)

}
= (XNN − E (XNN))

2
{

1
nN p

+
1

nN (1− p)

}
=

(XNN − E (XNN))
2

nN p (1− p)

=

(
XNN − E (XNN)√

nN p (1− p)

)2
D−→ χ2

1.

Similarly we can show that the quantity

(XCN − E (XCN))
2

E (XCN)
+

(XCC − E (XCC))
2

E (XCC)

is also χ2 distributed with 1 degree of freedom.

Including information about antimicrobial treatment

We now see if it is possible to extend the above approach to the case where

we have antimicrobial treatment data. In this case we still consider the model

(2.6.1) but now we have Yj ∼ Bernoulli(pj), pj = pj(p0, q0, α, β, z̃j), Yj inde-

pendent and where z̃j is the antimicrobial information for each day during the

k-day interval. Now, z̃j only has finitely many options (at most 2k, but in actual

data we typically see less than 2k different antimicrobial treatment patterns),

and so it follows that pj can only take finitely many values for given p0, q0, α

and β.

Thus, from (2.6.1),

E (XNN) =
nN

∑
j=1

pj,

Var (XNN) =
nN

∑
j=1

pj
(
1− pj

)
.

In both cases we condition on knowing nN.

Recall Liapounov’s Theorem ([Loève, 1963], p.275):
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Lemma 2.6.1. If X1, X2, ..., Xn are independent with zero means and variances σ2
1 , σ2

2 ,

. . . , σ2
n and s2

n = σ2
1 + ... + σ2

n and there exists δ > 0 with

∑n
i=1 E|Xi|2+δ

s2+δ
n

→ 0, as n→ ∞

then s−1
n ∑n

i=1 Xi
D−→ N(0, 1).

We will use Lemma 2.6.1 to establish the following result.

Lemma 2.6.2. If the pjs are uniformly bounded away from 0 and 1 (i.e. there exists

δ1 > 0, δ2 < 1 such that δ1 < pj < δ2 for all j), then,

XNN −∑nN
j=1 pj√

∑nN
j=1 pj

(
1− pj

) D−→ N(0, 1) as nN → ∞.

Proof. We have that XNN = ∑nN
j=1 Yj so

wj = Yj − pj has E[wj] = 0 and Var[wj] = Var[Yj] = pj(1− pj) = σ2
j , say.

Now,

wj =

{
1− pj with prob pj,

0− pj with prob 1− pj,

so

|wj| =
{

1− pj with prob pj,

pj with prob 1− pj,

and

|wj|2+δ =

{
(1− pj)

2+δ with prob pj,

p2+δ
j with prob 1− pj.

Thus,

E|wj|2+δ = pj(1− pj)
2+δ + p2+δ

j (1− pj) and s2
n = σ2

1 + ...+ σ2
n = ∑n

j=1 pj(1− pj).

So, the condition ∑n
i=1 E|Xi|2+δ

s2+δ
n

→ 0 in Lemma 2.6.1, as n→ ∞ is equivalent to

∑n
j=1{pj

(
1− pj

)2+δ
+ p2+δ

j
(
1− pj

)
}(

∑n
j=1 pj

(
1− pj

)) 2+δ
2

→ 0 as n→ ∞. (2.6.3)

43



CHAPTER 2: MODELLING THE EFFECT OF ANTIMICROBIAL TREATMENT ON
CARRIAGE LEVELS OF MRSA USING MARKOV MODELS

To show that (2.6.3) holds, let δ = 2. Recall that the pj’s are bounded away from

0 and 1. Then, there exists ε > 0 such that 0 < ε < pj
(
1− pj

)
,

so that (
n

∑
j=1

pj
(
1− pj

))2

> n2ε2. (2.6.4)

Also, pj
(
1− pj

)4
+ p4

j
(
1− pj

)
is maximised at pj =

1
2 , so

0 < pj
(
1− pj

)4
+ p4

j
(
1− pj

)
≤
(

1
2

)4

,

so,
n

∑
j=1

(
pj
(
1− pj

)4
+ p4

j
(
1− pj

))
≤ n

(
1
2

)4

. (2.6.5)

(2.6.4) and (2.6.5) imply that

∑n
j=1

(
pj
(
1− pj

)4
+ p4

j
(
1− pj

))
(

∑n
j=1 pj

(
1− pj

))2 ≤
n
(

1
2

)4

n2ε2 → 0 as n→ ∞,

as required.

The standard χ2 approach invites us to consider again the quantity in (2.6.2)

K :=
(XNN − E (XNN))

2

E (XNN)
+

(XNC − E (XNC))
2

E (XNC)
.

We next show that the latter sum is not generally asymptotically a χ2-distribution.

Again, we have

E (XNC) = E (nN − XNN) = nN − E (XNN) ,

so

(XNC − E (XNC))
2 = (nN − XNN − nN + E (XNN))

2 = (XNN − E (XNN))
2 .
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Then (2.6.2) simplifies to

(XNN − E (XNN))
2
{

1
E (XNN)

+
1

nN − E (XNN)

}
=

nN (XNN − E (XNN))
2

E (XNN) (nN − E (XNN))

=
nN

(
XNN −∑nN

j=1 pj

)2(
∑nN

j=1 pj

) (
∑nN

j=1

(
1− pj

)) .

We require that, as nN → ∞,

nN(
∑nN

j=1 pj

) (
∑nN

j=1

(
1− pj

)) ∼ 1
∑nN

j=1 pj
(
1− pj

) ,

in order to use the Central Limit Theorem result. In the case where pj = p, for

all j, this is true since then(
nN

∑
j=1

pj

)(
nN

∑
j=1

(
1− pj

))
= (np) (n (1− p)) = n2p (1− p) .

Specifically,

nN

(
XNN −∑nN

j=1 pj

)2(
∑nN

j=1 pj

) (
∑nN

j=1

(
1− pj

)) =

(
XNN −∑nN

j=1 pj

)2(
∑nN

j=1 pj(1− pj)
) · nN ∑nN

j=1 pj
(
1− pj

)(
∑nN

j=1 pj

) (
∑nN

j=1

(
1− pj

))
so by Slutsky’s Theorem ([Fisz, 1963], p.238), if

nN ∑nN
j=1 pj

(
1− pj

)(
∑nN

j=1 pj

) (
∑nN

j=1

(
1− pj

)) P−→ L as nN → ∞,

where P−→means convergence in probability and L is a non-zero constant, then

K
L
=

nN

(
XNN −∑nN

j=1 pj

)2

L
(

∑nN
j=1 pj

) (
∑nN

j=1

(
1− pj

)) D−→ χ2
(1).

One case of practical interest is that each pj is chosen at random from m alterna-

tives p̃1, ..., p̃m with probabilities α1, ..., αm respectively. Then by the Strong Law
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of Large Numbers, as nN → ∞ we have

1
nN

nN

∑
j=1

pj
(
1− pj

) a.s−→
m

∑
i=1

αi p̃i (1− p̃i)

1
nN

nN

∑
j=1

pj
a.s−→

m

∑
i=1

αi p̃i

1
nN

nN

∑
j=1

(
1− pj

) a.s−→
m

∑
i=1

αi (1− p̃i) ,

where a.s−→means almost surely.

Thus

L =
∑m

i=1 αi p̃i (1− p̃i)

(∑m
i=1 αi p̃i) (∑m

i=1 αi (1− p̃i))
.

In practice we could estimate p̂1, . . . , p̂m and α̂1, . . . , α̂m from the antimicrobial

treatment data and model parameters, and thus find L. However, in practice

nN may not be that large which makes this approach less appealing.

Later in this section we will show a simulation based method in order to per-

form model fit.

2.6.3 Model assessment for the Markov model

Here we discuss how we assess the model fit for the Markov model in this

thesis.

Model Fit when antimicrobial information is not included

As shown at the beginning of this section, when antimicrobial treatment is not

included, we can use the standard chi-squared goodness-of-fit procedure to as-

sess how well the model fits the data.

For each day interval we have the observed transition counts XNN, XNC, XCN, XCC

and we use the MLE results p̂0, q̂0, α̂, β̂ to find the E[XNN], E[XNC], E[XCN], E[XCC]

under the model. Then we calculate the test-statistic
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χ2 = ∑
i,j∈ {C,N}

(
Xij − E[Xij]

)2

E[Xij]
. (2.6.6)

For example, to calculate the χ2 for the k-day interval we do the following:

assume that we have obtained the ML Estimates to be p̂0, q̂0, α̂ and β̂. Then the

transition matrix when the patient is “off” antimicrobial treatment will be,

POFF =

(
p̂0 1− p̂0

q̂0 1− q̂0

)
.

Since we are interested in the k-day interval we raise the matrix POFF to the

power of k.

(POFF)
k =

(
p̂0 1− p̂0

q̂0 1− q̂0

)k

=

(
p′ 1− p′

q′ 1− q′

)

where

p′ = p′ ( p̂0, q̂0) and q′ = q′ ( p̂0, q̂0) .

Then we use (2.6.6) to find the χ2 statistic using E[XNN] = nN p′, E[XNC] =

nN(1− p′), E[XCN] = nCq′ and E[XCC] = nC(1− q′). The asymptotic distribu-

tion of (2.6.6) is χ2
2, as discussed in [Kullback et al., 1962] and [Anderson and

Goodman, 1957].

We assume that for all the k-day intervals, the χ2
2 statistics are independent, so

if say, there are m k-day intervals, their sum will also be chi-squared distributed

with 2m degrees of freedom, [Lindgren, 1993], i.e. ∑m
i=1 χ2

2(i) ∼ χ2
2m, where χ2

2(i)

is the χ2
2 statistic for the i-day interval.

Model Fit when antimicrobial information is included

When antimicrobial information is included, we cannot easily compare the test

statistic result with the χ2 distribution. We followed the idea of (AH/F), [Aguirre-

Hernández and Farewell, 2002].

We simulate 500 independent samples from the model using the posterior means

of the parameters p0, q0, α and β.
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For each one of the samples we find the transition counts for each day interval.

We find the transition counts as follows: For each patient i we condition on each

observed state and we simulate a Markov chain until the next state, using the

observed daily antimicrobial treatment to specify each transition probability. In

this way the counts nN and nC remain the same as in the observed data.

Then, we group the transitions according to the day intervals they refer to. So,

for each day interval we have counts for the transitions N → N, N → C, C → N

and C → C.

Thus, at the end we have 500 counts for each transition, for each day interval.

The model fits when each of the observed counts for each transition for each

day interval, lie within the relevant equal-tailed 95% quantile formed from the

500 samples.

Another way to do this is by simulating a Markov chain conditioning only on

each patient’s first state. This method gives us slightly different results with the

model fit to be a little bit worse than the previous method. In the Appendix we

have table (A.4) which shows the model fit using both methods for the antisep-

tic treatment for the p-MRSA data set.

In the next sections we present the results obtained from the methods above,

firstly using simulated data and then using the GSTT data.

2.7 Simulation

In order to validate our Frequentist and Bayesian approaches described in Sec-

tion 2.5 we first consider estimation based on simulated data. In this section

we obtain the estimates of the model parameters ignoring data about patient

antimicrobial use so, as a consequence we have α = β = 0.

We simulated 10000 daily transitions with probabilities p0 = 0.8697 and q0 =

0.1283, where p0 and q0 are the baseline probabilities for remaining to a non-

colonised state and going from a colonised state to a non-colonised state re-

spectively. We used these particular values since they are the MLEs of the real

data without including any information about antimicrobial treatment. Once

we simulated the data set, we estimated the parameters of interest using MLEs
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and MCMC. We initially assumed that we have a fully observed Markov chain

with one day intervals between the tests and then having a partially observed

Markov Chain with two-day intervals, three-day and so on up to an interval of

one week.

Calculations of Standard Errors

Once we obtained the MLEs for the model parameters we calculated the stan-

dard errors for each parameter. In order to do that we needed to find the Hes-

sian matrix derived from the second derivatives of the likelihood with respect

to the parameters. Let ω denote the set of model parameters. Then the Hessian

matrix is given by

H (ω) =
∂2lnL (ω;S)

∂ω∂ω
′ .

Taking the negative expectation of this matrix we get the Fisher information ma-

trix,

I (ω) = −E (H (ω)) .

The inverse of the information matrix I (ω) gives us the variance-covariance ma-

trix var (ω) whose off diagonal elements are the asymptotic covariances of the

parameters and the diagonal elements are the variances of the parameters. The

standard errors are the square roots of the diagonal elements of this variance-

covariance matrix.

In practice, we use optim in the R statistical package to find the MLEs. Optim

can also give us the hessian matrix H.

Calculation of Standard Deviation

To get the standard deviations from the MCMC posterior distributions, we used

the following formula

s =

√√√√ 1
N − 1

N

∑
i=1

(xi − x̄)2,

where N is the length of the sample size, xi, i = 1, 2, ..., N is the estimate of the
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parameter x in each MCMC iteration and x̄ = N−1 ∑N
i=1 xi.

2.7.1 Results

For the MCMC algorithm, we used independent uniform U(0, 1) prior distri-

butions for p0 and q0. We ran the algorithm for 50000 iterations and discarded

the first 1000 as a burn in period. Figure 2.1 gives an example of the trace plots

given by the MCMC algorithm.
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Figure 2.1: Trace plots for p0 and q0 using simulated data and assuming that
we have daily transitions.

Table 2.3 shows the results from the MLEs, the summary statistics of the pos-

terior distributions for one-day intervals, 3-day intervals, and 7-day intervals,

and the posterior correlation between p0 and q0. It can be clearly seen that the

parameter estimates are consistent with the values set. Furthermore, we notice

that as day intervals increase, the posterior correlation between p0 and q0 also

increases. Density plots in Figure 2.2 show the results of MCMC in each case.

We can see that MLEs and MCMC output are in agreement and that estimation

improves when the observations are more frequent.

We also performed the chi-squared goodness-of-fit test to the model. In order to

obtain the expected frequencies for the 3-day interval transitions and 7-day in-
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1-day Interval
parameters MLE(st.error) E [ · |S ]

p0 0.8703 (0.0047) 0.8701 (0.0047)
q0 0.1247 (0.0046) 0.1249 (0.0046)

p0, q0 posterior correlation −0.0010
3-day Interval

parameters MLE(st.error) E [ · |S ]
p0 0.8700 (0.0059) 0.8699 (0.0059)
q0 0.1215 (0.0056) 0.1219 (0.0056)

p0, q0 posterior correlation −0.3048
7-day Interval

parameters MLE(st.error) E [ · |S ]
p0 0.8627 (0.0131) 0.8556 (0.0275)
q0 0.1316 (0.0126) 0.1384 (0.0263)

p0, q0 posterior correlation −0.9520
Table 2.3: MLEs, summary statistics and posterior correlation for p0 and q0

using the simulated transitions for intervals of 1-day, 3-days and
7-days without antimicrobial treatment. The true values are p0 =
0.8697 and q0 = 0.1283.

terval transitions we raise the obtained transition matrix P∆ (as defined above)

to the power of 3 and 7 respectively. Results are shown in Table 2.4. It can be

seen that the chi-squared statistic in all cases is close to zero and thus the model

fits reasonably well using the critical value χ2
2 = 13.82 at the 0.001 significance

level.

Goodness of fit
Day Intervals

1 3 7
χ2

2 0.0010 0.0028 0.00001
Table 2.4: Chi-squared statistic for the simulated data for day intervals of 1-

day, 3-days and 7-days without antimicrobial treatment.

Chi-squared statistic should be zero for the 1-day intervals. Next we show that

when there are only daily transitions the χ2 statistic is 0, as follows.

Suppose we have the matrix with the counts of observed transitions XNN, XNC,

XCN and XCC in each cell,

observed =

(
XNN XNC

XCN XCC

)
,

and that XNN + XNC = nN and XCN + XCC = nC.
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The transition matrix is

POFF =

(
p 0 1− p 0

q 0 1− q 0

)
.

So, the likelihood will be,

L (p0, q0) = pXNN
0 (1− p0)

XNC qXCN
0 (1− q0)

XCC . (2.7.1)

The MLEs for (2.7.1) are:

p̂0 =
XNN

nN
, (2.7.2)
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Figure 2.2: Kernel density plots for p0 and q0 from the simulated data and
for simulated 1-day, 3-day and 7-day transition intervals without
antimicrobial treatment. The true values are p0 = 0.8697 and
q0 = 0.1283.
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and

q̂0 =
XCN

nC
. (2.7.3)

Now for the χ2 statistic we need to calculate

χ2 =
(XNN − eNN)

2

eNN
+

(XNC − eNC)
2

eNC
+

(XCN − eCN)
2

eCN
+

(XCC − eCC)
2

eCC
,

(2.7.4)

where eNN, eCN, eNC and eCC are the expected transitions.

However, eNN = p̂0nN = XNN
nN

nN = XNN and similarly we can show that

eNC = XNC, eCN = XCN and eCC = XCC. So (2.7.4) becomes

χ2 =
(XNN − XNN)

2

XNN
+

(XNC − XNC)
2

XNC
+

(XCN − XCN)
2

XCN
+

(XCC − XCC)
2

XCC
= 0.

For k-day intervals, where k ≥ 2, the likelihood becomes too complicated to be

maximised in a general way. The following example shows that the chi-squared

statistic cannot be zero in all cases.

Example

Let us assume that we have the following summary matrix for the 2-day be-

tween test intervals, (
XNN XNC

XCN XCC

)
=

(
1 9

9 1

)
. (2.7.5)

Also assume that XNN + XNC = nN = 10 and XCN + XCC = nC = 10.

The transition matrix for the 2-day intervals in general is

(
p0 1− p0

q0 1− q0

)
·
(

p0 1− p0

q0 1− q0

)

=

(
p2

0 + q0(1− p0) (1− p0)(1− q0 + p0)

p0q0 + q0(1− q0 + p0) q0(1− p0) + (1− q0)
2

)
. (2.7.6)

Let p̂0 and q̂0 be the model’s ML estimates for the 1-day intervals. In order to
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have χ2 = 0 we need for example for the first cell of matrix (2.7.6), to have a

similar form as in (2.7.2), i.e.

p̂2
0 + q̂0(1− p̂0) =

XNN

nN
=

1
10

. (2.7.7)

However, maximising the likelihood for the matrix (2.7.5) we find that p̂0 =

q̂0 ≈ 0.5. So

p̂2
0 + q̂0(1− p̂0) ≈

1
2
6= 1

10
.

So the chi-squared statistic cannot generally be zero for test intervals of more

than one day.

We also assessed the model fit using simulations. Table 2.5 shows the equal-

tailed 95% quantiles. The same table contains the observed counts for each day

interval and transition. We can see that the model fits very well for every day

interval, as all the observed counts lie in the equal-tailed 95% quantiles and that

the model fit agrees with the fit using chi-squared goodness-of-fit test.

Day Intervals
1 3 7

obs. counts 4250 1165 395
N → N (4065, 4569) (1077, 1263) (349, 440)

obs. counts 657 491 312
N → C (615, 682) (470, 519) (297, 333)

obs. counts 658 502 292
C → N (615, 683) (475, 531) (276, 330)

obs. counts 4398 1158 393
C → C (4126, 4623) (1093, 1268) (359, 451)

Table 2.5: Model fit for the model using simulated data with 1-day, 3-day and
7-day interval transitions. The intervals in red color show that the
equal-tailed 95% quantiles include the number of the observed tran-
sition counts.

2.7.2 Using the day intervals from the p-MRSA Data Set

Next we derive the parameter estimates for the simulated data using the between-

test intervals from the p-MRSA Data Set. So now we do not use a sequence of

fixed day-intervals between the tests but the sequence of day-intervals found

in the p-MRSA Data Set where tests are taken in irregular day-intervals. Table

2.6 shows the results of MLEs, the summary statistics of the posterior density,
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and the posterior correlation between p0 and q0 . Figure 2.3 shows the marginal

posterior density estimates from the MCMC output while from the scatterplot

in Figure 2.4 we can see that p0 and q0 are highly correlated.

The reason why mean numbers of the posterior distributions of the model’s

parameters are different from the MLE values is that the posterior distribution

might be left skewed or right skewed. This will have an effect on the mean

making it smaller or bigger than the mode of the distribution.

Finally, Table 2.7 shows the results of the related chi-squared goodness-of-fit

test. It can be seen that the model fits quite well using the critical value χ2
2 =

13.82 at the 0.001 significance level. The sum is ∑7
i=1 χ2

2 (i) = 10.8912 which

means that the model fits well using the critical value χ2
14 = 36.12 at the 0.001

significance level. Table 2.8 present the results for the model fit using simula-

tions. The model also fits very well for this case.

no antimicrobial treatment
parameters MLE (st. error) E [ · |S ] (s.d.)

p0 0.8542 (0.0148) 0.8716 (0.0134)
q0 0.1366 (0.0139) 0.1412 (0.0147)

p0, q0 posterior correlation −0.7806
Table 2.6: MLEs, summary statistics for p0 and q0 and posterior correlation

between p0 and q0 using the simulated transitions and the day in-
tervals from the p-MRSA Data Set without antimicrobial treatment.
The true values are p0 = 0.8697 and q0 = 0.1283.

Goodness of fit
Day Intervals

1 2 3 4 5 6 7
χ2

2 0.1166 0.0105 1.8898 0.1228 3.5211 3.6979 1.5325
Table 2.7: Chi-squared statistic for the simulated transitions using the day in-

tervals from the p-MRSA Data Set assuming no antimicrobial treat-
ment.
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Figure 2.3: Kernel density plots for p0 and q0 for the simulated transitions us-
ing the day intervals from the p-MRSA Data Set without antimicro-
bial treatment. The true values are p0 = 0.8697 and q0 = 0.1283.

Day Intervals
1 2 3 4 5 6 7

obs. counts 23 31 14 22 19 29 190
N → N (16, 25) (22, 32) (9, 17) (14, 24) (13, 23) (21, 34) (168, 204)

obs. counts 0 3 5 7 10 20 124
N → C (0, 6) (2, 12) (2, 10) (5, 15) (6, 16) (15, 28) (122, 160)

obs. counts 1 4 9 11 9 18 126
C → N (0, 6) (2, 10) (5, 14) (6, 16) (7, 17) (17, 32) (112, 144)

obs. counts 19 23 23 20 23 40 168
C → C (13, 21) (16, 25) (18, 27) (15, 25) (14, 25) (26, 41) (150, 181)
Table 2.8: Model fit for the model using simulated data but with the day inter-

vals from the p-MRSA Data Set. The intervals in red color show that
the equal-tailed 95% quantiles include the number of the observed
transition counts.
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Figure 2.4: Scatterplot showing the correlation between p0 and q0 for the simu-
lated transitions using the day intervals from the p-MRSA Data Set
without antimicrobial treatment.

2.8 Results using GSTT Data

In this section we fit the model described in Section 2.3 to the GSTT data. Since

we are interested in patient test transitions, only those patients who had at least

two swab tests were included. The summary statistics for the three data sets are

given in Tables 2.9 and 2.10.

We initially find the estimates for p0 and q0 from the p-MRSA Data Set ignoring

information about the antimicrobial treatment. Then, we fit the model consid-

ering all antimicrobial different treatments that were used as one group. Due

to model fit inadequacy in some cases, we will make the following different

assumptions in order to achieve a better fit.

Firstly, we will use the data excluding information before each patient’s first

positive test and considering again all antimicrobial different treatments that

were used as one group. The reason we do this is that throughout this chapter

we do not consider any patient-to-patient MRSA transmission. However, we

notice that some of the patients become colonised after staying for some time

in the ICU ward. Take for example a patient with tests −, +, +. The − → +

transition is (under the assumption of perfect sensitivity and specificity) due to

57



CHAPTER 2: MODELLING THE EFFECT OF ANTIMICROBIAL TREATMENT ON
CARRIAGE LEVELS OF MRSA USING MARKOV MODELS

Statistic p-MRSA p-Wounds p-Respiratory
number of patients 382 304 185

average stay/patient (days) 24.633 29.601 34.535

median stay/patient (days) 17 21 26

average no. of tests/patient 4.026 7.641 4.075

no. of tests 1538 2323 754

no. of positive tests 747 689 363

proportion of positive tests 0.485 0.296 0.481

days of study 1574 1566 1547

total no. of days in ICU 9410 9090 6389

total no. of days antimicrobials prescribed 6878 6622 4751

Table 2.9: Summary statistics for the p-MRSA, p-Wounds and p-Respiratory
Data Sets for patients who were included in the analysis.

colonisation. We assume that the probability of colonisation is independent of

other patient colonisation states. However, this might be unrealistic, so if we

ignore the −→ + transition, we try to minimise the impact of this assumption.

Secondly, we will take Chlorhexidine, Linezolid and Vancomycin as one group

because Chlorhexidine was used for the antiseptic treatment during the de-

colonisation period and has been used before for this purpose, [Batra et al.,

2010; Kypraios et al., 2010], and Linezolid and Vancomycin are considered as

an effective treatment for MRSA, [Stevens et al., 2002; Weigelt et al., 2004]).

Thirdly, we will consider each antimicrobial treatment separately and we will

also present the results using the MRSA Data Sets that includes all patients ini-

tially without antimicrobial treatment and then including the antiseptic treat-

ment.

Finally, we will also find the parameter estimates for each antimicrobial treat-

ment for the p-Wounds Data Set and the p-Respiratory Data Set as well as for

the data that start from the patients first positive test. In each case we will

perform simulated goodness-of-fit tests to assess the model fit as described in

section 2.6.2.
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Antimicrobial p-MRSA p-Wounds p-Respiratory
Aminoglycoside 1048 1035 719

Antiseptic 3564 3711 2393

Cephalosporin 1175 965 649

Glycopeptide 2745 2635 1910

Macrolide 1188 1055 847

Nitroimidazole 1020 910 590

Oxazolidinone 116 129 82

Penicillin 577 606 333

Polymyxin 161 173 125

Quinolone 511 374 407

Rifamycin 126 80 98

Table 2.10: Number of days each antimicrobial group was prescribed for the
p-MRSA, p-Wounds and p-Respiratory Data Sets for patients who
were included in the analysis.

2.8.1 p-MRSA Data Set

For the analysis of the p-MRSA Data Set, 382 patients were considered whose

summary statistics are shown in Tables 2.9 and 2.10.

Results excluding antimicrobial treatment

We fitted the model assuming that there was no information about antimicro-

bial treatment. The results using MLE, the summary statistics of the posterior

distributions and the posterior correlation between p0 and q0 are given in Table

2.11. The density plots in Figure 2.5 show the results from MCMC.

no antimicrobial treatment
parameters MLE (st. error) E[ · |S ] (s.d.)

p0 0.8697 (0.0147) 0.8537 (0.0403)
q0 0.1284 (0.0158) 0.1455 (0.0426)

p0, q0 posterior correlation −0.9702
Table 2.11: MLEs, summary statistics for parameters p0 and q0 and posterior

correlation between p0 and q0 for the p-MRSA Data Set ignoring
antimicrobial treatment.
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Figure 2.5: Kernel density plots for p0 and q0 from the p-MRSA Data Set as-
suming no antimicrobial treatment.

We perform the chi-squared goodness-of-fit test using the p-MRSA Data Set

using the transitions of one day, two days, three days etc. up to one week day

intervals. The results are displayed in Table 2.12. We can see that the model

does not fit very well as some of the values of χ2
2 are much bigger than the

critical value χ2
2 = 13.82 at the 0.001 significance level. The sum of χ2

2 (i), i =

1, ...7, ∑7
i=1 χ2

2 (i) = 102.6351 also shows that the model does not fit well using

the critical value χ2
14 = 36.12 at the 0.001 significance level. Table 2.13 presents

the results from the simulations. It can be seen that the results are in agreement

with the results from the chi-squared goodness-of-fit tests. A plausible reason

for this is that the model is too simplistic, ignoring antimicrobial use.

60



CHAPTER 2: MODELLING THE EFFECT OF ANTIMICROBIAL TREATMENT ON
CARRIAGE LEVELS OF MRSA USING MARKOV MODELS

Goodness of fit
Day Intervals

1 2 3 4 5 6 7
χ2

2 35.6432 6.4387 5.9308 13.677 0.9297 2.5234 37.4817
Table 2.12: Chi-squared statistic for the model using the p-MRSA Data Set ig-

noring antimicrobial treatment.

Day Intervals
1 2 3 4 5 6 7

obs. counts 17 19 19 8 17 31 243
N → N (19, 16) (18, 28) (18, 29) (12, 22) (13, 24) (26, 40) (189, 228)

obs. counts 10 11 15 18 14 26 132
N → C (1, 8) ( 2, 12) (5, 15) (5, 15) ( 7, 17) (17, 31) (146, 186)

obs. counts 8 11 8 12 10 26 72
C → N (0, 4) (3, 12) (2, 9) (6, 17) ( 6, 17) (14, 28) (95, 126)

obs. counts 7 20 9 21 20 24 185
C → C (10, 15) (19, 28 ) ( 8, 15) (16, 27) (13, 24) (22, 36) (130, 161)
Table 2.13: Model fit for the model of the p-MRSA Data Set without antimi-

crobial treatment. The intervals in red color show that the equal-
tailed 95% quantiles include the number of the observed transition
counts.

Including antimicrobial treatment

We also obtain estimates from the model including the information about an-

timicrobial treatment. The results from the MLEs and the summary statistics

of the posterior distributions are given in Table 2.14. The posterior correla-

tions between p0, q0, α and β are shown in Figure 2.6. It can be seen that all

the parameters are highly correlated. Figure 2.7 shows the posterior density

plots of p0 + α and q0 + β which are the probabilities that a patient remains in a

non-colonised state and goes from a colonised state to a non-colonised state re-

spectively when they are “on” antimicrobial treatment, along with the density

plots of p0 and q0 which are the same probabilities but when patients are “off”

antimicrobial treatment. In broad terms, it appears that there is some effect on

the transition matrix from receiving antimicrobials.

Table 2.15 shows the equal-tailed 95% quantiles from the model fit simulations.

In the same table there are also the observed counts for each day interval and

transition. We can see that the model does not fit very well as many of the

observed counts are outside the equal-tailed 95% quantiles.

A reason for this is that the model including antimicrobial treatment is probably
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still not detailed enough to give a good fit to the data. After the classification of

the antimicrobials, it is possible to get better answers since each antimicrobial’s

contribution to the model is different.

Antimicrobial treatment
parameters MLE (st. error) E[ · |S ] (s.d.)

p0 0.7142 (0.0743) 0.6893 (0.1373)
q0 0.2416 (0.0669) 0.2721 (0.1266)
α 0.1825 (0.0759) 0.1591 (0.1104)
β −0.1313 (0.0682) −0.1109 (0.0971)

Table 2.14: MLEs and summary statistics for p0, q0, α and β using the p-MRSA
Data Set including antimicrobial treatment.
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Figure 2.6: Posterior correlations between p0, q0, α and β using the p-MRSA
Data Set including antimicrobial treatment.
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Day Intervals
1 2 3 4 5 6 7

obs. counts 17 19 19 8 17 31 243
N → N (17, 25) (16, 25) (16, 25) (10, 20) (12, 23) (23, 38) (178, 216)

obs. counts 10 11 15 18 14 26 132
N → C (2, 10) (4, 14) (8, 18) (6, 15) (8, 18) (19, 33) (159, 196)

obs. counts 8 11 8 12 10 26 72
C → N (1, 6) (4, 14) (3, 10) (9, 19) (8, 18) (16, 30) (106, 138)

obs. counts 7 20 9 21 20 24 185
C → C (9, 14) (16, 27) (7, 14) (14, 24) (12, 22) (19, 34) (118, 151)

Table 2.15: Model fit for the model using the p-MRSA Data Set including an-
timicrobial treatment. The intervals in red color show that the
equal-tailed 95% quantiles include the number of the observed
transition counts.
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Figure 2.7: Kernel density plots for p0 and p0 + α, q0 and q0 + β for the p-MRSA
Data Set including antimicrobial treatment.
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Starting from first positive test

Here we obtain the parameter estimates from the model including antimicrobial

treatment starting from the date that a patient was first found colonised. The

reason is that in this chapter we only look at the MRSA carriage levels on each

patient separately. We do not take into account that there is MRSA transmission

between the patients which is unrealistic in some sense. So, starting from a

patient’s first positive test is one way to overcome this restriction.

The number of patients with at least one transition was 290. The results from

the MLEs and the MCMC are given in Table 2.16. The density plots of p0 + α

and q0 + β along with the density plots of p0 and q0 are given in Figure 2.8.

The results of the equal-tailed 95% quantiles of the simulations for the model fit

are given in Table 2.17 along with the transition counts from the observed data.

We can see that the model does not fit well as some of the observed transitions

counts are again outside the equal-tailed 95% intervals.

starting from first positive test
parameters MLE (st. error) E[ · |S ] (s.d.)

p0 0.8823 (0.0378) 0.8685 (0.0496)
q0 0.0877 (0.0206) 0.1113 (0.0301)
α 0.0791 (0.0393) 0.0892 (0.0506)
β 0.0003 (0.0223) −0.0240 (0.0313)

Table 2.16: MLEs and summary statistics for p0, q0, α and β using the p-MRSA
Data Set including antimicrobial treatment and starting from pa-
tients’ first positive test.

Day Intervals
1 2 3 4 5 6 7

obs. counts 3 2 1 1 2 12 134
N → N (3, 4) (1, 2) (1, 2) (0, 1) (1, 3) (9, 16) (117, 139)

obs. counts 1 0 1 0 1 5 37
N → C (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 8) (32, 54)

obs. counts 8 11 8 12 10 26 72
C → N (0, 4) (2, 10) (1, 7) (5, 15) (5, 15) (13, 25) (90, 122)

obs. counts 7 20 9 21 20 24 185
C → C (11, 15) (21, 29) (10, 16) (18, 28) (14, 25) (25, 37) (135, 166)

Table 2.17: Model fit for the model using the p-MRSA Data Set including an-
timicrobial treatment and starting from patients’ first positive test.
The intervals in red indicate that the observed transition counts are
included in the equal-tailed 95% quantiles.
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Figure 2.8: Kernel density plots for p0 and p0 + α, q0 and q0 + β for the p-MRSA
Data Set including antimicrobial treatment and starting from pa-
tients’ first positive test.

Classification of the antimicrobial treatment

So far, we have considered the antimicrobial treatment as a whole. However,

only a few antimicrobials were actually MRSA-targeting. These include Chlorhex-

idine, which is an antiseptic and was mostly used during the decolonisation pe-

riod. Other antimicrobials were Vancomycin and Linezolid which are known to

be MRSA targeting (Section 1.2.1). The MLEs and the MCMC results consider-

ing Chlorhexidine, Linezolid and Vancomycin as one group, are given in table

2.18. Figure 2.9 shows the posterior density plots of p0 + α and q0 + β along

with the density plots of p0 and q0. Comparing this plot with the one in Figure

2.7, we can see that MRSA targeting antimicrobial treatment may have an effect

in clearing MRSA carriage.

The results from the equal-tailed 95% quantiles from the simulations for the

model fit are shown in Table 2.19. Again, we can see that the model fit is not

adequate.
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MRSA targeting antimicrobials
parameters MLE (st. error) E[ · |S ] (s.d.)

p0 0.8560 (0.0218) 0.8167 (0.0624)
q0 0.1010 (0.0206) 0.1375 (0.0576)
α 0.037 (0.0292) 0.0460 (0.0691)
β 0.0347 (0.0292) 0.0344 (0.0797)

Table 2.18: MLEs and summary statistics for p0, q0, α and β using the MRSA
targeting antimicrobials from p-MRSA Data Set.

Day Intervals
1 2 3 4 5 6 7

obs. counts 17 19 19 8 17 31 243
N → N (19, 26) (17, 26) (17, 27) (10, 19) (12, 22) (24, 38) (180, 218)

obs. counts 10 11 15 18 14 26 132
N → C (1, 8) (3, 13) (6, 17) (6, 16) (9, 19) (19, 33) (157, 194)

obs. counts 8 11 8 12 10 26 72
C → N (0, 6) (3, 13) (2, 10) (8, 18) (7, 17) (16, 28) (105, 136)

obs. counts 7 20 9 21 20 24 185
C → C (9, 15) (18, 28) (7, 15) (15, 25) (12, 23) (21, 34) (120, 151)

Table 2.19: Model Fit for the model using MRSA targeting antimicrobials of the
p-MRSA Data Set. The intervals in red indicate that the observed
transition counts are included in the equal-tailed 95% quantiles.

Considering each antimicrobial separately

In this section we are presenting only the MCMC results. The reason is that

for some of the antimicrobials we were not able to get estimates via MLE due

to the fact that the likelihood is very flat, causing numerical problems for the

optimisation methods.

It is known that some of the antimicrobials are more effective than others in

treating MRSA. For this reason we fit the model to data which consist of one

antimicrobial treatment only . This means that for each group we assume that

a patient is “on” a antimicrobial treatment the day they take this particular an-

timicrobial, otherwise they are considered “off” antimicrobial treatment mean-

ing that they are not receiving any antimicrobial treatment.

Tables A.1, A.2 and Figures A.1, A.2 show the results from the MCMC for the

parameters for each antimicrobial group when all patients’ tests are included.

It can be seen that patients on Oxazolidinone and Penicillin are more likely to

be protected against MRSA carriage. Moreover, patients on Oxazolidinone, Ri-

famycin and Polymyxin have a higher probability to be cleared while Macrolide
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Figure 2.9: Kernel density plots for p0 and p0 + α, q0 and q0 + β for the MRSA
targeting antimicrobials from p-MRSA Data Set.

has a smaller probability to protect a patient against MRSA. It is also noted that

decolonisation treatment using Chlorhexidine (Antiseptic) seems to be effec-

tive.

The results of the equal-tailed 95% quantiles from the simulations for the model

fit are shown on Table A.3. The equal-tailed 95% quantiles for each antimicro-

bial group are compared with the number of observed counts for each day in-

terval and each transition . It can be seen that the model does not fit very well

as some of the equal-tailed 95% intervals do not include the observed transition

counts.

Next, we obtained the parameter estimates for all antimicrobial groups starting

from the date that a patient was first found colonised. Tables A.5, A.6 and Fig-

ures A.3, A.4 show the results from the MCMC for the parameters p0, q0, α and

β for each antimicrobial group. The results show that patients on Aminoglyco-

side, Penicillin, Glycopeptide and Nitroimidazole can prevent against coloni-

sation. On the other hand, colonised patients on Oxazolidinone are more likely

to become non-colonised while Quinolone has the opposite effect.
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The equal-tailed 95% quantiles from the simulations for the model fit in Table

A.7 show that there has been some improvement but again some of the ob-

served transitions counts are outside the equal-tailed 95% intervals.

2.8.2 Results from the MRSA Data Set without antimicrobial

treatment

In this section we present the results from the MRSA Data Set, as presented in

Section 1.3, without taking into account any of the antimicrobial treatment. Ta-

ble 2.20 shows the summary statistics of the posterior density for parameters p0

and q0. Figures 2.10 and 2.11 present the density plots and the posterior correla-

tion between parameters p0 and q0. It can be seen that p0 has a larger value for

this data set compared to the p-MRSA Data Set, This is reasonable considering

that in the MRSA Data Set there are a lot more non-colonised to non-colonised

transitions, since there are a lot more negative tests in this data set. We also

notice that p0 and q0 are moderately correlated comparing to the strong corre-

lation between them on the p-MRSA Data Set. The reason for this difference

is that p-MRSA Data Set contains only patients with at least one positive test

which causes more dependencies in the data.

Table 2.21 shows the results of the related chi-squared goodness-of-fit test. It

can be seen that the model does not fit well using the critical value χ2
2 = 13.82

at the 0.001 significance level. The sum ∑7
i=1 χ2

2 (i) = 357.5058 also shows that

the model does not fit well using the critical value χ2
14 = 36.12 at the 0.001

significance level.

no antimicrobial treatment
parameters E[ · |S ] (s.d.)

p0 0.9853 (0.0009)
q0 0.0750 (0.0055)

p0, q0 posterior correlation −0.3034
Table 2.20: Summary statistics for p0 and q0 using the MRSA Data Set without

antimicrobial treatment.
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Figure 2.10: Kernel density plots for p0 and q0 using the MRSA Data Set with-
out antimicrobial treatment.
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Figure 2.11: Scatterplot presenting the posterior correlation between p0 and q0
using the MRSA Data Set without antimicrobial treatment.
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Goodness of fit
Day Intervals

1 2 3 4 5 6 7
χ2

2 182.1831 85.5282 33.1261 23.6780 5.0990 5.4498 22.4416
Table 2.21: Chi-squared statistic for the model using the MRSA Data Set with-

out antimicrobial treatment.

2.8.3 Results from the MRSA Data Set including the antiseptic

treatment

We also derive the parameter estimates for the MRSA Data Set including the

antiseptic treatment. Table 2.22 shows the summary statistics of the posterior

densities for the parameters p0, q0, α and β, while Figures 2.12 and 2.13 show the

density plots of p0 + α and q0 + β and posterior correlations between the model

parameters respectively. It can be seen that the antimicrobial treatment seems

to have an effect both on clearing and protecting against MRSA colonisation

comparing to the relevant results from the p-MRSA Data Set. We also notice

that parameters are correlated but not as much as in the p-MRSA data set.

Finally, Table 2.23 shows the results of the model assessment. We can see that

the model does not fit well as some of the observed counts are outside the equal-

tailed 95% quantiles.

Antiseptic
parameters E[ · |S ] (s.d.) 95% CI

p0 0.9801 (0.0014) (0.0977, 0.9830)
q0 0.0565 (0.0064) (0.0445, 0.0696)
α 0.0112 (0.0019) (0.0074, 0.0151)
β 0.0499 (0.0132) (0.0247, 0.0769)

Table 2.22: Summary statistics for p0, q0, α and β using the MRSA Data Set
including antiseptic treatment.
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Figure 2.12: Kernel density plots for p0 and p0 + α, q0 and q0 + β using the
MRSA Data Set including antiseptic treatment.
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Figure 2.13: Scatterplot illustrating correlations between p0, q0 , α and β for the
MRSA Data Set including antiseptic treatment.
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Day Intervals
1 2 3 4 5 6 7

obs. counts 155 298 301 242 228 357 1643
N → N (159, 165) (294, 305) (295, 309) (239, 253) (218, 233) (346, 365) (1615, 1659)

obs. counts 10 11 15 18 14 26 132
N → C (0, 6) (4, 15) (6, 21) (6, 21) (9, 24) (17, 36) (115, 159)

obs. counts 8 11 8 12 10 26 72
C → N (0, 3) (1, 8) (1, 7) (3, 13) (4, 14) (11, 26) (88, 119)

obs. counts 7 20 9 21 20 24 185
C → C (12, 15) (23, 30) (10, 16) (19, 29) (16, 25) (24, 38) (137, 168)

Table 2.23: Model fit for the model using the MRSA Data Set including the
antiseptic treatment. The intervals in red indicate that the observed
transition counts are included in the equal-tailed 95% quantiles.

2.8.4 p-Wounds Data Set

In this section we present the results coming from the p-Wounds Data Set. Ini-

tially we look at the whole data set, and then only starting from the first positive

test.

Tables A.8, A.9 and Figures A.5, A.6 show the parameters estimates from the

p-Wounds Data Set. We can see that Oxazolidinone has the greatest effect

in preventing a non-colonised patient from becoming colonised, followed by

Penicillin and Polymyxin. Moreover, it can be seen that Macrolide, Rifamycin,

Aminoglycoside and Oxazolidinone have higher probability to clear detectable

MRSA carriage.

The results from the simulations to check the model fit are shown in Table A.10.

We can see that the model does not fit well as again some of the observed tran-

sition counts are outside the equal-tailed 95% quantiles.

The parameter estimates for the p-Wounds Data Set starting from patients’ first

positive test are shown in Tables A.11, A.12 and Figures A.7, A.8. The number

of patients with at least two tests was 259. We notice that Oxazolidinone and

Penicillin have the greatest effect in the prevention of MRSA carriage. In ad-

dition, Macrolide, Oxazolidinone, Rifamycin and Aminoglycoside are the most

effective in the clearance of detectable MRSA carriage levels.

Table A.13 shows the equal-tailed 95% quantiles for the model fit simulations.

It can be seen there has been some improvement to the model fit but still some

of the observed transition counts are outside the equal-tailed 95% quantiles.
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2.8.5 p-Respiratory Data Set

Here, we estimate the parameters p0, q0, α and β from the p-Respiratory Data

Set.

The results are shown in Tables A.14, A.15 and Figures A.9, A.10. It can be seen

that almost none of the antimicrobials have a great effect on the prevention of

MRSA carriage. On the other hand, we can see that only colonised patients on

Oxazolidinone, are more likely to become non-colonised.

Table A.16 shows the results from the model fit simulations. Again it is obvious

that the model does not fit well.

Finally, Tables A.17, A.18 and Figures A.11, A.12 show the parameter estimates

for the p-Respiratory Data Set starting from patients’ first positive test. The

number of patients included in the analysis was 135. We conclude that no

antimicrobial group has any significant effect in protecting against colonisa-

tion. However, Oxazolidinone is again the most effective in the clearance of

detectable MRSA carriage.

The equal-tailed 95% quantiles from the model fit simulations on Table A.19

show that the model fits very well.

2.9 Summary

In this chapter we investigated the effects of the antimicrobial treatment on

MRSA carriage. A discrete time Markov chain model was used for the mod-

elling of the colonisation status of individual patients. We also assumed that

the colonisation status of each patient does not depend on the status of other

patients and that the swab test is perfectly accurate. Finally, we showed that

decolonisation treatment was effective in most of the cases in clearing MRSA

carriage.

We used two different methods to find the estimates for the model parame-

ters, MLE and MCMC algorithm. We found that the results using these two

methods are in agreement, but in some cases MLE failed to produce any results

probably because of the limited information we had for some of the antimicro-

bial groups. The MCMC converges to valid parameter estimates since some
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numerical issues with the MLEs were overcome by the MCMC approach. To

assess how well the model fit the data, typical chi-squared test was used with

2 degrees of freedom for each day interval when no antimicrobial treatment

was assumed. When antimicrobial treatment was present, a simulation based

model fit was used.

For the method validation we initially used simulated data ignoring any infor-

mation about the antimicrobial treatment. The results were in agreement using

the two different methods and the model fit was very good. Similar answers

derived when simulated data was used along with the day intervals taken from

the p-MRSA Data Set.

When the GSTT data was used we found that antimicrobial treatment can have

a preventing role against MRSA carriage but cannot help in its clearance. Sim-

ilar results were obtained when only the data starting from each patient’s first

positive test were used. In both cases the proposed model did not fit well.

The results for each antimicrobial separately for the three different data sets

showed that Oxazolidinone and Penicillin are significantly the most effective in

protecting against colonisation in the p-Wounds Data Set. Oxazolidinone was

also found to help in the clearance of MRSA carriage in both p-MRSA Data

Set and p-Respiratory Data Set. We also found that in the p-MRSA Data Set,

Nitroimidazole and Cephalosporin can clear MRSA carriage while Macrolide

and Cephalosporin were found to have the opposite effect. The findings for

Macrolide and Cephalosporin agree with the literature, [Dancer, 2001; Monnet

et al., 2004; Tacconelli et al., 2008]. In the p-Wounds Data Set we found evidence

that Macrolide has an effect in the clearance of MRSA carriage. In addition,

decolonisation treatment appears to be effective only in the p-MRSA Data Set.

However, we detected a poor model fit for all three data sets.

Results for the p-MRSA data set are also in agreement with the study in [Kypraios

et al., 2011], where antiseptic treatment seemed to have an effect in reducing

MRSA carriage levels. However, limited evidence was found that any antibi-

otic treatment has an effect. It was also found that Oxazolidinone has an effect

on the clearance of MRSA carriage while Cephalosporin was found to increase

non-colonised to colonised transitions.

In the case where the patients with no positive tests from the MRSA Data Set
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were included, we found that when we ignored antimicrobial treatment the

model fit was very poor as in the relevant p-MRSA Data Set case. When anti-

septic treatment was included we also found that decolonisation was effective

but the model fit was still poor.

When the data starting from first positive test were used for all the three dif-

ferent data sets, we found the same answers with the difference that in the

p-MRSA Data Set along with Oxazolidinone, Rifamycin, Cephalosporin were

found to be effective in the MRSA clearance. On the other hand, Quinolone

was found to have the opposite results. The latter result is consistent with the

findings in [Tacconelli et al., 2008], [Weber et al., 2003] and [Monnet et al., 2004].

For all the three Data Sets the model fit improved but again it was not accept-

able apart from the p-Respiratory Data Set when only the tests starting from the

first positive are considered.

Our results about the effectiveness of Oxazolidinone are in agreement with the

literature, [Dennis et al., 2002; Itani et al., 2010]. Furthermore, results that anti-

septic treatment can clear MRSA carriage are consistent with previous findings

in [Batra et al., 2010], [Kypraios et al., 2010] and [Macfarlane et al., 2007].

Overall, there is some evidence that antibiotics have an effect against MRSA

carriage. Antiseptic treatment was also found to be effective in some cases.

However, in most cases the proposed model did not fit well. A possible ex-

planation is that the assumption of perfect accuracy for the swab test might be

flawed. In the next chapter we relax this assumption and look at the effect of

antibiotics on MRSA carriage assuming imperfect swab test sensitivity.
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CHAPTER 3

Modelling the effect of

antimicrobial treatment on carriage

levels of MRSA using hidden

Markov models

3.1 Introduction

In this chapter as also in the previous one we are interested in the effects of

antimicrobial treatment on MRSA carriage levels. In Chapter 2 we used a dis-

crete time Markov model to describe the colonisation status of an individual

patient on a daily basis assuming perfect swab test specificity and sensitivity.

We obtained the results from the three data sets, p-MRSA Data Set, p-Wounds

Data Set and p-Respiratory Data Set, that were also used in Chapter 2, using

a Gaussian random walk Metropolis-Hastings algorithm in a Bayesian frame-

work. However, we found that the model did not provide an entirely adequate

fit to the data. A possible reason for this might be the assumption we made that

swab test specificity and sensitivity are perfect.

In this chapter we will assume that the swab test has imperfect sensitivity while

we will still consider perfect specificity. In other words, we make the assump-

tion that some negative tests might actually be false-negatives while we con-

sider positive tests as accurate. We are going to use a discrete-time hidden
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Markov model (HMM) to explore the daily colonisation status of an individual

and the outcomes of the swab tests.

A hidden Markov model is a Markov process {Xn : n ≥ 0} in which the states

are unobserved (hidden). However, another stochastic process is observable,

{Yn : n ≥ 0}, where Yn = Yn(Xn). HMMs have been used in the literature be-

fore to describe disease progression considering screening measurement error.

Satten and Longini in [Satten and Longini Jr, 1996] and Jackson et al. in [Jack-

son et al., 2003] used a HMM to study HIV and chronic diseases respectively

via Maximum likelihood estimation methods. Moreover, Guihenneuc-Jouyaux

et al. [Guihenneuc-Jouyaux et al., 2000] proposed a hierarchical model in a

Bayesian framework to analyse a hidden Markov process with application to

HIV progression with measurement error. The authors used MCMC methods

to obtain the parameter estimates of interest, specifically using a Gibbs sampler.

Parameter estimation of HMMs in a Bayesian framework is also discussed by

Robert et al. in [Robert et al., 1993]. The authors use a Gibbs sampler to obtain

the parameters estimates of a hidden Markov model.

Data Augmentation was introduced in 1987 by Tanner and Wong [Tanner and

Wong, 1987] and is a way to augment the observed data so that it is easier to

analyse by having more information about the data. This method was firstly

used by Dempster et al. [Dempster et al., 1977] to handle missing data and

solve maximum likelihood problems via the EM algorithm.

Here we will use data augmentation to deal with the unobserved states and es-

timate the model parameters. We are going to validate our methodology using

simulated data and then apply it to the three data sets, p-MRSA Data Set, p-

Wounds Data Set and p-Respiratory Data Set. Similarly to the previous chapter,

we will use a subset of each of the three data sets that contains only the patients

with at least one positive swab test. We then assess the model fit discussed in

section 3.5.

Results show that Oxazolidinone can help in MRSA clearance in all three data

Sets while Antiseptic treatment can protect against MRSA as well as reduce

its carriage for the p-MRSA Data Set. On the other hand, we find that some

antimicrobials such as the Macrolide or Cephalosporin do not offer any protec-

tion against MRSA colonisation. The model assessment shows that the model

fit was not acceptable in some cases.
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The chapter plan is the following. In Section 3.2 we introduce the model we

are going to use. Section 3.3 describes the likelihood and Section 3.4 how we

make the inference. Section 3.5 contains information about the model assess-

ment and Section 3.6 presents the results from the simulations for the validation

of our methods. The results from the three data sets are shown in Section 3.7

and finally Section 3.8 contains a summary of the all the methods and results

discussed in the chapter.

3.2 Model

We will use the same basic Markov model for the evolution of patient carriage

status introduced in Chapter 2. There, we made the assumption that swab tests

results had perfect sensitivity and specificity. In this chapter we assume that

sensitivity is imperfect but specificity is still 100%. More explicitly we consider

that positive tests are observed correctly but some of the negative tests might

be false negatives. We will use a discrete time hidden Markov model to model

the colonisation status of an individual.

Consider the Markov process {Xn : n ≥ 0} as described in Chapter 2, section

2.3, with state space {C, N} where n denotes the number of days patient has

stayed in the ICU, C is the colonised state and N the non-colonised state. How-

ever, we do not observe this process but the process {Yn : n ≥ 0}, Yn ∈ {C, N}.
We assume that Yn is related to Xn by the following relationship,

Yn =


N if Xn = N

N w. p. (1− φ)

C w. p. φ
if Xn = C

, (3.2.1)

where φ is the swab test’s sensitivity i.e. the probability that a colonised patient

is observed as being colonised when tested.

Next, as in Chapter 2, we assume that ∆(n) denotes the antimicrobial state on

day n, so ∆(n) ∈ {ON, OFF} . We also assume that antimicrobial treatment acts

immediately. The transition matrix for the Markov chain {Xn : n ≥ 0} is,
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P∆(n−1) =

( N C

N p∆ 1− p∆

C q∆ 1− q∆

)
,

where

p∆ = Pr(Xn = N|Xn−1 = N, ∆ (n− 1) = ∆),

q∆ = Pr(Xn = N|Xn−1 = C, ∆ (n− 1) = ∆),

and

0 ≤ p∆ = p 0 + α1{∆=ON} ≤ 1,

0 ≤ q∆ = q 0 + β1{∆=ON} ≤ 1.

Here p∆ = p0 + α1{∆=ON} is the transition probability that a patient remains

in a non-colonised state where p0/p0 + α is the baseline probability when a

patient is “off”/“on” antimicrobial treatment that day. Similarly, q∆ = q0 +

β1{∆=ON} is the transition probability that a patient goes from a colonised state

to a non-colonised state, where q0 / q0 + β is the baseline probability when a

patient is “off”/“on” antimicrobial treatment that day. So, when a patient is

“off” antimicrobial treatment then the transition matrix is

POFF =

( N C

N p0 1− p0

C q0 1− q0

)
,

and when a patient is “on” antimicrobial treatment the transition matrix be-

comes

PON =

( N C

N p0 + α 1− p0 − α

C q0 + β 1− q0 − β

)
,
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3.3 Likelihood

Consider patient i, i = 1, ..., Np, where Np is the number of patients with at least

one positive test, who is observed on day n0 > 0 and then after t days goes from

state j to state k, where j, k ∈ {C, N}. If we know the true states j and k then,

as defined in (2.4) the probability that patient i who is observed on day n0 goes

from colonisation state j to colonisation state k in t days is

Γ(i)
jk (n0, t) =

(
n0+t−1

∏
l=n0

P∆(l)

)
jk

, j, k ∈ {C, N}. (3.3.1)

In a hidden Markov model, however, it is not simple to work out one transition

at a time because we also need to take into account all the possible true coloni-

sation states. So, for hidden Markov models one can proceed via the formula

P(Y|θ) = ∑
X

P(X|θ)P(Y|X, θ), (3.3.2)

where, X is the unobserved true process, Y is the observed process and θ is

the parameter vector, i.e. θ = (p, q, α, β, φ). Probability P(X|θ) can be obtained

from (3.3.1) and

P(Y|X, θ) = φδ1 (1− φ)δ2 × δ3, (3.3.3)

where, δ1 is the number of true positive test results, i.e. the total number of

positive test results, δ2 is the number of false negative test results, i.e. the total

number of times that the X process is in state C but the observed process Y

is in state N, and δ3 = 1 if and only if there are no false positive test results,

otherwise δ3 = 0, i.e. there is no possibility that process X is in state N while

process Y is in state C.

For example, let us assume that patient i’s data are given by the following dia-

gram:

}C
ON

e
ON

}N
ON

e
ON

}C
ON

where each bullet denotes one day of patient i’s stay in the ICU ward. The black

bullets denote that patient i had a test on that day. We assume that the first day
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is day 1.

The observed transitions C → N → C may come from either the true transitions

C → C → C or C → N → C. So, using (3.3.2) we have

P(Y = C → N → C|θ) =

P(Y = C → N → C|X = C → C → C, θ)P(X = C → C → C|θ)+

P(Y = C → N → C|X = C → N → C, θ)P(X = C → N → C|θ),

where,

P(Y = C → N → C|X = C → C → C, θ) = φ2(1− φ),

P(X = C → C → C|θ) = Γ(i)
CC(1, 2) + Γ(i)

CC(3, 4),

P(Y = C → N → C|X = C → N → C, θ) = φ2 and

P(X = C → N → C|θ) = Γ(i)
CN(1, 2) + Γ(i)

NC(3, 4)

However, one complication for X is that, if for example a patient has k negative

results, then there are 2k possible values for X, and so the numerical evaluation

of this formula is not trivial. An alternative is to use data-augmented MCMC

algorithms, which can naturally take account of the unobserved X values by

including them as latent variables.

In the next Section we will describe the data-augmented MCMC algorithm we

used for the parameter estimation.

3.4 Inference

In this section we will describe how we make the inference for the model. We

used a data-augmentation MCMC algorithm to obtain the model parameters

from the data. In this way, we could incorporate the true colonisation states for

each patient.

The basic idea of the Data Augmentation algorithm is the following. Assume

that we have the observed data y with a parameter vector θ and that we are

interested in sampling from the posterior π(θ|y) ∝ π(y|θ)π(θ), where π(y|θ)
is a probability density function and π(θ) is the prior density of the parameter

θ. However, π(θ|y) might be intractable. To overcome this problem we can
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construct augmented data x such that it is easier to sample from the posterior

density π(θ|y, x) ∝ π(y|θ, x)π(x|θ)π(θ). The Data Augmentation algorithm

has two steps. The Imputation-step (I-step) where we sample from π(x|y, θ),

and the Posterior-step (P-step) where we sample from π(θ|y, x). Steps I and P

are then iterated until the algorithm reach convergence.

The data augmentation algorithm can be simulated using MCMC methods.

That is because inference for x is actually based on a sequence of random draws

from a Markov chain having stationary distribution π(θ, x|y). Thus, the I-step

and P-step of the data augmentation algorithm can be considered as a two-step

Gibbs sampler. Furthermore, if any of the two steps of the Data Augmentation

algorithm is difficult to do directly, they can be replaced by a sequence of Gibbs

or Metropolis steps assuming that they have π(θ, x|y) as a target distribution.

A discussion of the recent work on Data Augmentation algorithm as well as

some applications using MCMC methods can be found in [van Dyk and Meng,

2001]. More information about MCMC methods for HMMs can be found in

[Cappé et al., 2005].

In the rest of this section we will describe the MCMC algorithm we used for the

inference, giving pseudocode at the end.

3.4.1 Prior distributions

We need to sample from the posterior distributions for the model parameters

p0, q0, α, β and φ. Initially, we set the prior distributions for these parameters

as follows,

φ ∼ Beta(κ, λ),

p0, q0, α, β ∼ U(0, 1),

where U(0, 1) is the uniform distribution and Beta(κ, λ) is the beta distribution

with shape parameters κ and λ, i.e. with probability density function f (x) ∝

xκ−1(1− x)λ−1 for 0 < x < 1. We will use uninformative priors so κ = λ = 1,

but this can be easily relaxed.

We are going to augment the observed data Y. We set θ = (p0, q0, α, β, φ) as

the parameter vector and X the “unobserved” true data. Then, using Bayes
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theorem we can derive the posterior density function assuming a priori inde-

pendence between the parameters:

π(X, θ | Y) ∝ π(Y | X, θ)π(X, θ) = π(Y | X, θ)π(X | θ)π(θ),

where π(Y | X, θ) can be obtained from equation in (3.3.3), π(X | θ) can be

obtained from equation in (3.3.1), and π(θ) is the prior density of the model

parameters θ.

3.4.2 Updating the parameters

We update parameters p0, q0, α and β using a random walk Metropolis scheme

and parameter φ using a Gibbs step. The parameters are updated one at a time

and then we update the augmented data.

To update φ, we draw samples from the beta distribution

π (φ | p0, q0, α, β, X, Y) ∝ Beta (nTP + 1, nFN + 1) ,

where nTP is the number of true positive tests and is known from the data, and

nFN is the number of false negative tests and is unknown.

We update parameters p0, q0, α and β using a Gaussian random walk Metropo-

lis scheme. This is similar to the scheme we followed in Chapter 2. Let ω(t)

denote the set of current model parameters at iteration t and ω∗ be the pro-

posed new set of these parameters. We use a multivariate normal proposal dis-

tribution N(ω∗, σ2
ω∗) to propose the parameters, where N(µ, σ2) is the normal

distribution with mean µ and standard deviation σ.

Standard deviation σω∗ is chosen so that the acceptance rate is around 0.25

[Roberts et al., 1997].

We sample a candidate point ω∗ from a gaussian density g
(
ω∗|ωt) ∼ N

(
ωt, σ2

ω∗
)
.

Then, the probability that the candidate point ω∗ is accepted is:

a
(
ωt, ω∗

)
= min

(
1,

π (ω∗|φ, X, Y)π (ω∗) g
(
ωt|ω∗

)
π (ωt|φ, X, Y)π (ωt) g (ω∗|ωt)

)
.
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where π(ω∗) is the prior distribution of parameter ω∗, g
(
ωt|ω∗

)
and g

(
ω∗|ωt)

are the proposal densities for a move from ωt to ω∗ and vice versa, and
g(ωt|ω∗)
g(ω∗|ωt)

=

1 as shown in 1.5.3,

so the acceptance probability is

a
(
ωt, ω∗

)
= min

(
1,

π (ω∗|φ, X, Y)π (ω∗)

π (ωt|φ, X, Y)π (ωt)

)
.

Next, we update the augmented data X. Let X∗ be the proposed augmented

data and X the current augmented data. We generate X∗ as follows: first, we

assume that each negative test is a false negative. Then, with a constant proba-

bility z, each test result becomes positive independently of all the other negative

tests. Then, X∗ is accepted with probability

a(X, X∗) = min
(

1,
π(X∗ | Y, ω, φ)π(Y | X∗, ω, φ)g(X | X∗)
π(X | Y, ω, φ)π(Y | X, ω, φ)g(X∗ | X)

)
,

where g(X | X∗) and g(X∗ | X) are the proposal densities for a move from X to

X∗ and X∗ to X respectively and g(X|X∗)
g(X∗|X)

= znFN−n∗FN (1− z)n∗FN−nFN , where n∗FN

is the proposed number of false negative tests.

Pseudocode for this algorithm is as follows:
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Data Augmented MCMC Algorithm

1 Give initial values to the parameters of interest ω, φ

2 For t = 1 . . . Niter, Niter is the number of iterations

a. Update φ using Gibbs Sampler

b. Update parameters ω

Propose ω∗ ∼ N
(
ωt, σωt

)
Draw a uniform (0, 1) random variable U

If U ≤ α
(
ωt, ω∗

)
· set ωt+1 = ω∗

Else

· set ωt+1 = ωt

c. Update Data X

– If a test is negative

Draw a uniform (0, 1) random variable U

If U ≤ z

· the test remains negative

Else

· the test is a false negative

Draw a uniform (0, 1) random variable U

If U ≤ α
(
Xt, X∗

)
· set Xt+1 = X∗

Else

· set Xt+1 = Xt

3 End For loop

4 Return values {ω1, φ1, ω2, φ2, ..., ωNiter , φNiter}
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3.5 Model Assessment

In this section we are going to discuss about the methods we used to assess

model fit. We are going to give some information about the goodness-of-fit for

HMMs found in the literature and then we will describe the methods we used.

3.5.1 Background Information

MacKay Altman in [MacKay Altman, 2004] proposed a graphical method to

assess the goodness-of-fit of stationary HMMs. In this study, an estimated cu-

mulative distribution function (CDF) based on HMMs estimates is calculated

and then, this estimated CDF is compared graphically to the observed empiri-

cal CDF. This approach however, is applied to time-series data.

Bureau et al. in [Bureau et al., 2003] applied a continuous-time hidden Markov

model to longitudinal data of a binary disease outcome. Parameter estimation

is carried out using maximum likelihood methods via the EM algorithm. For

model assessment, the authors proposed the use of the Kaplan-Meier estimator

to the transitions between specified pairs of observed subsequent states. Then,

these empirical estimates are plotted along with estimates using simulated data.

However, it is stated that dependencies in the observed data can result in a bad

fit between the observed and expected plots. Another approach presented in

the same work, was constructing contingency tables in which the observed and

expected counts were grouped by taking into account the last two observed

states. Then, they computed a χ2 statistic to assess the fit using these counts. It

is stated that although this χ2 statistic does not follow a known distribution, it

provides a useful method for comparing models.

Satten and Longini in [Satten and Longini Jr, 1996] suggested a method to pre-

dict an observation Yk conditional on the previous observations by calculating

the distribution

P(Yk = yk | Yj = yj, j = 1, 2, .., k− 1) =
P(Yj = yj, j = 1, 2, ..., k)

P(Yj = yj, j = 1, 2, ..., k− 1)
.

Then, all these probabilities are grouped in contingency tables according to the

time period and compared to the observed probabilities.
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Titman and Sharples in [Titman and Sharples, 2008] proposed a modification

of the Pearson-type goodness -of-fit test proposed by Aguirre-Hernandez and

Farewell (AH/F) in [Aguirre- Hernández and Farewell, 2002]. This modifica-

tion applies to misclassification-type hidden Markov models. The authors fol-

lowed the method in [Aguirre- Hernández and Farewell, 2002] to group obser-

vations, but since the observed states are not coming from a Markov process,

they conditioned on all previous observations up to the current time in order to

estimate an expected state at that time. A drawback of this method is that the

derived statistic cannot be compared to a known null distribution. The authors,

as also in [Aguirre- Hernández and Farewell, 2002], suggest bootstrapping the

distribution and then refitting the model and calculating the statistic as a possi-

ble solution, but they also state that this can be computationally expensive.

All the models discussed above take into account continuous-time, time- ho-

mogeneous hidden Markov models. However, we are using a discrete-time

non-homogeneous HMM and we also have extra covariate data in the form

of the daily treatment information, so the methods described above cannot be

applied directly.

3.5.2 Model assessment of a HMM model: theoretical consid-

erations

In this section we are going to investigate whether a similar approach to model

assessment discussed to that discussed in 2.6.2 is also possible for hidden Markov

models.

Suppose we have the observation process introduced in (3.2.1), {Yn : n ≥ 0}
where,

Yn =


N if Xn = N

N w. p. (1− φ)

C w. p. φ
if Xn = C

,

Suppose that we focus on the observations for a k-day interval, so the summary

matrix is

observed =

(
YNN YNC

YCN YCC

)
.
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Suppose in addition that for patient i we have the k-day transition matrix for

process {Xn : n ≥ 0},

P∆ =

(N C

N pi 1− pi

C qi 1− qi

)
,

so that pi, qi are functions of p0, q0, α, β, and z̃i, where z̃i is patient i’s antimicro-

bial information for each day during the k-day interval.

Consider now that observations arise from the true process {Xn : n ≥ 0} start-

ing at state C and assume that we have nC such transitions. Then we have,

ξC
i =


1 observe : CC w.p. (1− qi)φ

2

2 observe : CN w.p. (1− qi)φ(1− φ) + qiφ

3 observe : NC w.p. (1− qi)φ(1− φ)

4 observe : NN w.p. (1− qi)(1− φ)2 + qi(1− φ)

,

where ξC
i , i = 1, 2, 3, 4 is a vector indicating the observed transition assuming

that the true process {Xn : n ≥ 0} starts at state C.

Similarly for the observations when the true process starts in state N, so that

we have nN such transitions

ξN
i =


1 observe : CC w.p. 0

2 observe : CN w.p. 0

3 observe : NC w.p. (1− pi)φ

4 observe : NN w.p. pi + (1− pi)(1− φ)

.

where ξN
i , i = 1, 2, 3, 4 is a vector indicating the observed transition assuming

that the true process {Xn : n ≥ 0} starts at state N.

Thus, each of the observed transition counts (YNN, YCN, YNC, YCC) can be ex-

pressed as a sum of a number of ξC
i s and ξN

i s. So, for example, for YNN we will

have

YNN =
nC

∑
j=1

1{ξC
i =4} +

nN

∑
j=1

1{ξN
i =4}. (3.5.1)

Consider now the special case where nC = nN = n. We are going to prove that

Liapounov’s theorem holds for YNN. Similar results hold for YCN, YNC and YCC.
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Consider the model in (3.5.1), then we have

YNN =
n

∑
j=1

Zj, (3.5.2)

where Zj = ZC
j + ZN

j and ZC
j ∼ Bernoulli(rj

1) and ZN
j ∼ Bernoulli(rj

2), where

rj
1 = (1− qj)(1− φ)2 + qj(1− φ) and rj

2 = pj + (1− pj)(1− φ).

Then,

Zj =


0 w.p. 1− pj

1 − pj
2

1 w.p. pj
1

2 w.p. pj
2

,

where pj
1 = rj

1(1− rj
2) + rj

2(1− rj
1) and pj

2 = rj
1rj

2.

So,

E[YNN] =
n

∑
j=1

Zj =
n

∑
j=1

(
pj

1 + 2pj
2

)
and

Var(YNN) =
n

∑
j=1

(
pj

1(1− pj
1) + 4pj

2(1− pj
1 − pj

2)
)

Lemma 3.5.1. If the p1
j ’s and p2

j ’s are uniformly bounded away from 0 and 1, then as

in Lemma 2.6.2

YNN − E[YNN ]√
Var(YNN)

D−→ N(0, 1), as n→ ∞.

Proof. We have that YNN = ∑n
j=1 Zj so wj = Zj − E[Zj] has E[wj] = 0 and

Var[wj] = Var[Zj] = pj
1

(
1− pj

1

)
+ 4pj

2

(
1− pj

1 − pj
2

)
= σ2

j .

So we have

wj =


0− (pj

1 + 2pj
2) with prob 1− pj

1 − pj
2,

1− (pj
1 + 2pj

2) with prob pj
1,

2− (pj
1 + 2pj

2) with prob pj
2,
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so,

|wj| =


pj

1 + 2pj
2 with prob 1− pj

1 − pj
2,

|1− (pj
1 + 2pj

2)| with prob pj
1,

|2− (pj
1 + 2pj

2)| with prob pj
2,

and

|wj|2+δ =


(pj

1 + 2pj
2)

2+δ with prob 1− pj
1 − pj

2,

|1− (pj
1 + 2pj

2)|2+δ with prob pj
1,

|2− (pj
1 + 2pj

2)|2+δ with prob pj
2,

thus,

E[|wj|2+δ] =
(

1− pj
1 − pj

2

)
|
(

pj
1 + 2pj

2

)
|2+δ + pj

1|1−
(

pj
1 + 2pj

2

)
|2+δ

+ pj
2|2−

(
pj

1 + 2pj
2

)
|2+δ

and

s2
n = σ2

1 + ... + σ2
n =

n

∑
j=1

(
pj

1

(
1− pj

1

)
+ 4pj

2

(
1− pj

1 − pj
2

))
.

So, the condition ∑n
i=1 E|Xi|2+δ

s2+δ
n

→ 0 in Lemma 2.6.1, as n→ ∞ is equivalent to

∑n
j=1 E[|wj|2+δ](

∑n
j=1

(
pj

1

(
1− pj

1

)
+ 4pj

2

(
1− pj

1 − pj
2

))) 2+δ
2
→ 0 as n→ ∞. (3.5.3)

To show that (3.5.3) holds, let δ = 2. Recall that the pj
i’s, i = 1, 2, are bounded

away from 0 and 1. Then, there exists ε > 0 such that 0 < ε < pj
1

(
1− pj

1

)
+

4pj
2

(
1− pj

1 − pj
2

)
,

so that

(
n

∑
j=1

(
pj

1

(
1− pj

1

)
+ 4pj

2

(
1− pj

1 − pj
2

)))2

> n2ε2. (3.5.4)

Also let
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c =
(

1− pj
1 − pj

2

)
|
(

pj
1 + 2pj

2

)
|4 + pj

1|1−
(

pj
1 + 2pj

2

)
|4

+ pj
2|2−

(
pj

1 + 2pj
2

)
|4,

and let
(

1− pj
1 − pj

2

)
≤ 1,

(
pj

1 + 2pj
2

)
≤ 3, 1−

(
pj

1 + 2pj
2

)
≤ 4 and

2−
(

pj
1 + 2pj

2

)
≤ 5.

Then,

0 < c ≤ 962,

so
n

∑
j=1

c ≤ 962n, (3.5.5)

(3.5.4) and (3.5.5) imply that

(3.5.3) ≤ 962n
n2ε2 → 0 as n→ ∞.

Thus, in the special case where for the model in 3.5.1 when nC = nN = n,

YNN − E[YNN ]√
Var(YNN)

D−→ N(0, 1), as n→ ∞.

We are not going to consider other possibilities for nC → ∞, nN → ∞ although

in principle these could also be considered along similar lines.

In the following section we present another way to assess the model fit.

3.5.3 Model assessment using simulations

To assess the model fit of the hidden Markov model described in this chapter,

we will use simulations similar to those described in the previous chapter. We

simulate 500 data sets using the posterior means of the model parameters and

find the transition counts for each day interval. So, for each of the patients we
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simulate a Markov chain using the parameters p0, q0, α and β, which corre-

spond to the simulated true process, {Xn : n ≥ 0}. Then, in order to create the

observed process {Yn : n ≥ 0} we assume that each one of the positive tests of

process {Xn : n ≥ 0} might be observed with error. One complication here is

that, due to imperfect sensitivity, we cannot condition on each observed state

and simulate the Markov chain until the next state because non-colonised states

might be observed with error.

A possible solution to this problem is to use the negative predictive value as a way

to determine whether an observed non-colonised state is observed correctly.

The negative predictive value is the probability that a patient with a negative test

is not colonised. The negative predictive value can be found using Bayes theorem

as follows: Define ψ to be the negative predictive value then,

ψ = P(X = N | Y = N)

=
P(Y = N | X = N)P(X = N)

P(Y = N | X = N)P(X = N) + P(Y = N | X = C)P(X = C)
. (3.5.6)

Now, since specificity is 100%, it will be P(Y = N | X = N) = 1 and we also

have P(Y = N | X = C) = 1− φ.

So from (3.5.6)

ψ =
P(X = N)

P(X = N) + (1− φ)P(X = C)
. (3.5.7)

We can obtain estimates for P(X = N) and P(X = C) from our MCMC al-

gorithm and thus estimate ψ. For each iteration, k, we obtain the number of

false negative tests nk
FN. The number of true positive tests nTP is known from

the data so it is fixed. Let Ntests be the number of all tests, then P(X = N) =

Ntests − nTP − nk
FN and P(X = C) = nTP + nk

FN. Thus, 3.5.7 can be easily calcu-

lated.

Then, for the model assessment, we use the posterior mean of ψ to adjust the

proportion of times we start in an N (non-colonised) state for each simulated

transition. That is, if an observed transition starts in an N state, we assume with

probability equal to ψ that this observed N state is a true N state. Once this is

done we follow the same process described in Section 2.6.3.

In the next section we will validate our method using simulated data.
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3.6 Simulation

In this section we validate the methodology described above using simulated

data. Initially, we use simulated transitions and day intervals for each patient

but keeping the same number of patients and patient length of stay in the ICU

from the p-MRSA data set without considering any information about the an-

timicrobial treatment. Then, we are going to use the day intervals from the

p-MRSA Data Set again without the information about antimicrobial treatment.

3.6.1 Simulated Data

Initially we simulated data sets using daily, 2-day, 3-day intervals and so on up

to an interval of one week. We used the values of p0, q0 and φ that obtained

from the p-MRSA Data Set without taking into account the antimicrobial treat-

ment (the results for this data set are presented later in this chapter). So, we

set p0 = 0.8859, q0 = 0.0800 and φ = 0.8568. The summary statistics for the

daily, 3-day and 7-day intervals are shown in Table 3.2. It can be seen that the

simulated values obtained for these three data sets are very close to the values

set. Moreover we can see that as day intervals increase, the posterior correla-

tion between p0 and q0 also increases. Figures 3.1 and 3.2 show the posterior

density estimates from the MCMC output for p0 and q0, and φ respectively. The

negative predictive value for the three data sets was ψ = 0.8586 for the daily

interval, ψ = 0.8395 for the 3-day interval and ψ = 0.7925 for the 7-day interval

transitions.

Table 3.1 shows the equal-tailed 95% quantiles from the model fit simulations.

In the same table there are also the observed counts for each day interval and

transition. We can see that the model fits very well for every day interval, as all

the observed counts lie in the equal-tailed 95% quantiles.

3.6.2 Using the day intervals from the p-MRSA Data Set

To verify that our method works using irregular day-intervals, we simulated

data using the day-intervals from the p-MRSA Data Set. To simulate the data

we set p0 = 0.8859, q0 = 0.0800 and φ = 0.8568. We used these values because
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Day Intervals
1 3 7

obs. counts 2761 744 249
N → N (2700, 2787) (706, 768) (224, 265)

obs. counts 644 329 187
N → C (617, 704) (303, 365) (169, 211)

obs. counts 612 283 154
C → N (576, 663) (260, 315) (138, 177)

obs. counts 2285 598 184
C → C (2231, 2320) (565, 621) (161, 199)

Table 3.1: Model fit for the model using simulated data with 1-day, 3-day and
7-day interval transitions. The intervals in red color show that the
equal-tailed 95% quantiles include the number of the observed tran-
sition counts.

1-day Interval
parameters E[ · |Y] (s.d.) 95% CI

p0 0.8887 (0.0065) (0.8760, 0.9014)
q0 0.0835 (0.0063) (0.0712, 0.0958)

p0, q0 posterior correlation −0.2906
φ 0.8580 (0.0083) (0.8411, 0.8746)

3-day Interval
parameters E[ · |Y] (s.d.) 95% CI

p0 0.8826 (0.0090) (0.8640, 0.8998)
q0 0.0828 (0.0112) (0.0624, 0.1065)

p0, q0 posterior correlation −0.5104
φ 0.8425 (0.0271) (0.7904, 0.8968)

7-day Interval
parameters E[ · |Y] (s.d.) 95% CI

p0 0.8561 (0.0231) (0.8037, 0.8923)
q0 0.0938 (0.0235) (0.0539, 0.1437)

p0, q0 posterior correlation −0.9549
φ 0.8050 (0.0532) (0.7083, 0.9125)

Table 3.2: Summary statistics and posterior correlation for p0, q0 and φ using
the simulated transitions for intervals of 1-day, 3-days and 7-days
without antimicrobial treatment. The true values are p0 = 0.8859,
q0 = 0.0800 and φ = 0.8568.

these are the parameter estimations for the p-MRSA Data Set excluding the

antimicrobial treatment information.

Simulating data using the day-interval structure from the p-MRSA Data Set

means that we will keep the same number of patients and number of transi-

tions for each patient as in the p-MRSA Data Set. A problem that arises when

simulating a data set of this kind (i.e. when including only patients with at
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Figure 3.1: Kernel density plots for parameters p0 and q0 from the simulated
data and for simulated 1-day, 3-day and 7-day transition intervals
without antimicrobial treatment. The true values are p0 = 0.8859
and q0 = 0.0800.
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Figure 3.2: Kernel density plots for sensitivity φ from the simulated data and
for simulated 1-day, 3-day and 7-day transition intervals without
antimicrobial treatment. The true value is φ = 0.8568.
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least one positive test) is that the output will almost always also include pa-

tients with only negative tests. Here we will investigate two cases of simulated

data. The first generates a data set that has the same structure as the p-MRSA

Data Set. This means that it includes patients with no positive tests. The second

case uses only the patients of the first case that have at least one positive test.

We will show that in both cases the model fits equally well.

Case 1: Simulated data set with the p-MRSA day-interval structure

The simulated data set we are using here has the same structure as the p-MRSA

data set as shown in Section 2.2. The summary statistics of the posterior density

are shown in Table 3.3. It can be seen that the parameter estimates are very close

to the values we set to construct the simulated data set. Figures 3.3 and 3.4 show

the marginal posterior density estimates from the MCMC output for p0 and q0

and φ respectively. The posterior mean of the negative predictive value ψ was

found equal to 0.8472. The correlation between p0 and q0 is shown in Figure

3.5. We notice that parameters p0 and q0 are strongly correlated.

no antimicrobial treatment
parameters E[ · |Y] (s.d.) 95% CI

p0 0.8645 (0.0167) (0.8275, 0.8935)
q0 0.0930 (0.0003) (0.0590, 0.1323)

p0, q0 posterior correlation −0.8009
φ 0.8596 (0.0018) (0.7735, 0.9444)

Table 3.3: Summary statistics for p0, q0 and φ for the simulated transitions us-
ing the day intervals from the p-MRSA Data Set without antimicro-
bial treatment. The true values are p0 = 0.8859, q0 = 0.0800 and
φ = 0.8568.

Finally, The results of the equal-tailed 95% quantiles as well as the transition

counts from the observed data are shown in Table 3.4. We can see that the

model fits very well.

96



CHAPTER 3: MODELLING THE EFFECT OF ANTIMICROBIAL TREATMENT ON
CARRIAGE LEVELS OF MRSA USING HIDDEN MARKOV MODELS

0.80 0.85 0.90 0.95

0
5

10
15

20
25

Kernel Density Estimate for p0

p0

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
5

10
15

20

Kernel Density Estimate for q0

q0

D
en

si
ty

Figure 3.3: Kernel density plots for p0 and q0 for the simulated transitions us-
ing the day intervals from the p-MRSA Data Set without antimicro-
bial treatment. The true values are p0 = 0.8859 and q0 = 0.0800.
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Figure 3.4: Kernel density plot for sensitivity φ for the simulated transitions
using the day intervals from the p-MRSA Data Set without antimi-
crobial treatment. The true value is φ = 0.8568.
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Day Intervals
1 2 3 4 5 6 7

obs. counts 19 23 19 19 21 43 174
N → N (17, 26) (18, 28) (13, 22) (13, 24) (14, 24) (29, 45) (157, 191)

obs. counts 9 10 8 11 11 22 143
N → C (2, 11) (5, 15) (4, 14) (6, 16) (8, 18) (20, 36) (125, 158)

obs. counts 2 8 7 11 8 17 140
C → N (0, 6) (3, 12) (4, 12) (6, 16) (7, 17) (11, 24) (119, 153)

obs. counts 12 20 17 18 21 25 175
C → C (8, 13) (16, 25) (12, 20) (13, 23) (12, 23) (18, 31) (161, 196)
Table 3.4: Model fit for the model using simulated data but with the day inter-

vals from the p-MRSA Data Set. The intervals in red color show that
the equal-tailed 95% quantiles include the number of the observed
transition counts.
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Figure 3.5: Scatterplot showing the correlation between p0 and q0 for the simu-
lated transitions using the day intervals from the p-MRSA Data Set
without antimicrobial treatment.
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Case 2: Simulated data set having the p-MRSA Data Set day-interval

structure but including only the patients with at least one positive test of

Case 1.

In this section we use the same data set as in Case 1 but include only the patients

with at least one positive test. So for this dataset we had to remove 79 patients

who had only negative tests.

Table 3.5 shows the summary statistics of the posterior densities of the param-

eters. It can be seen that the parameter estimates are different to the values we

set to construct the simulated data set. This is because in this case we have

excluded some patients. Figures 3.6 and 3.7 show the marginal posterior den-

sity estimates from the MCMC output for p0 and q0 and φ respectively. Finally,

Figure 3.8 shows the correlation between p0 and q0. The posterior mean of the

negative predictive value was found equal to φ = 0.8272.

Table 3.6 shows the 95% quantiles of the model fit. It can be seen that the model

fit is quite satisfactory.

no antimicrobial treatment
parameters E[ · |Y] (s.d.) 95% CI

p0 0.6527 (0.0876) (0.4434, 0.7818)
q0 0.2569 (0.0043) (0.1577, 0.4139)

p0, q0 posterior correlation −0.8900
φ 0.9789 (0.0190) (0.9291, 0.9993)

Table 3.5: Summary statistics for p0, q0 and φ for the simulated transitions us-
ing the day intervals from the p-MRSA Data Set without antimicro-
bial treatment and including patients with at least one positive test.
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Figure 3.6: Kernel density plots for p0 and q0 for the simulated transitions us-
ing the day intervals from the p-MRSA Data Set without antimi-
crobial treatment and including patients with at least one positive
test.
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Figure 3.7: Kernel density plot for sensitivity φ for the simulated transitions
using the day intervals from the p-MRSA Data Set without antimi-
crobial treatment and including patients with at least one positive
test.
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Figure 3.8: Scatterplot showing the correlation between p0 and q0 for the sim-
ulated transitions using the day intervals from the p-MRSA Data
Set without antimicrobial treatment and including patients with at
least one positive test.

Day Intervals
1 2 3 4 5 6 7

obs. counts 9 10 9 7 8 25 130
N → N (8, 16) (6, 15) (4, 12) (4, 12) (4, 13) (14, 27) (102, 135)

obs. counts 9 10 8 11 11 22 143
N → C (2, 11) (5, 14) (5, 13) (6, 14) (6, 14) (20, 33) (137, 171)

obs. counts 2 8 7 11 8 17 140
C → N (1, 7) (5, 16) (5, 14) (7, 18) (7, 18) (13, 24) (120, 154)

obs. counts 12 20 17 18 21 25 175
C → C (7, 13) (12, 22) (10, 19) (11, 22) (11, 22) (18, 29) (160, 195)
Table 3.6: Model fit for the model using simulated data but with the day inter-

vals from the p-MRSA Data Set and including patients with at least
one positive test. The intervals in red color show that the equal-
tailed 95% quantiles include the number of the observed transition
counts.
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3.7 Results using GSTT Data

In this section we fit the hidden Markov model to the GSTT data. Initially, we

use only the p-MRSA Data Set and fit the model under various assumptions.

Next, we obtain the parameter estimates for the p-Wounds and p-Respiratory

Data Sets.

3.7.1 p-MRSA Data Set

Firstly, we will ignore the information about the antimicrobial treatment and

find only the baseline probabilities p0 and q0 and sensitivity φ. Secondly, we

will consider all antimicrobial treatment as one group both for the whole p-

MRSA Data Set and starting from first positive test. We make the latter assump-

tion because in this chapter we have ignored that there is patient-to-patient

transmission in the ICU ward. Lastly, we will consider each antimicrobial treat-

ment separately.

We also perform model assessment under all the assumptions listed above. We

will see that the model fit is not always adequate.

Results assuming no antimicrobial treatment

Here we present the results of fitting the model without taking into account

the information about antimicrobial treatment. From the MCMC output, we

derived the posterior mean of probability p0 of patients who remain in a non-

colonised state equals to 0.8859, while the probability of MRSA clearance, q0,

is 0.0800. Moreover, the posterior mean of the swab test sensitivity, φ equals

to 0.8568. Swab test sensitivity ranges between 66.7%− 87% according to the

body site the swab is taken, [Hope et al., 2004; Keene et al., 2005]. The posterior

mean of the negative predictive value ψ is 0.8453. Table 3.7 shows the summary

statistics of the posterior distributions of p0, q0 and φ as well as the posterior

correlation between p0 and q0. It can be seen that parameters p0 and q0 are

highly correlated, possibly because here we consider only patients with at least

one positive test and there might be some dependencies in the data.

Figure 3.9 presents the density plots for p0 and q0 and Figure 3.10 shows the
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density plot for sensitivity φ.

no antimicrobial treatment
parameters E[ · |Y] (s.d.) 95% CI

p0 0.8859 (0.0139) (0.8549, 0.9100)
q0 0.0800 (0.0140) (0.0559, 0.1114)

p0, q0 posterior correlation −0.6821
φ 0.8568 (0.0326) (0.7931, 0.9218)

Table 3.7: Summary statistics for p0, q0 and φ for the p-MRSA Data Set without
antimicrobial treatment.
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Figure 3.9: Kernel density plots for p0 and q0 from the p-MRSA Data Set as-
suming no antimicrobial treatment.

Table 3.8 shows the results of the 95% quantiles as well as the transition counts

from the observed data. We can see that the model fit is not adequate as some

of the observed transition counts are not in the 95% intervals.
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Figure 3.10: Kernel density plot for sensitivity φ from the p-MRSA Data Set
assuming no antimicrobial treatment.

Day Intervals
1 2 3 4 5 6 7

obs. counts 17 19 19 8 17 31 243
N → N (8, 19) (13, 25) (12, 24) (13, 25) (14, 28) (24, 41) (180, 234)

obs. counts 10 11 15 18 14 26 132
N → C ( 6, 14) ( 10, 19) (13, 23) (14, 24) ( 12, 22) (25, 39) (173, 207)

obs. counts 8 11 8 12 10 26 72
C → N (9, 18) (17, 29) (6, 15) (12, 22) ( 13, 25) (26, 40) (172, 203)

obs. counts 7 20 9 21 20 24 185
C → C (2, 9) (1, 8 ) ( 1, 8) (1, 9) (1, 8) (3, 14) (31, 62)
Table 3.8: Model fit for the model of the p-MRSA Data Set without antimicro-

bial treatment. The intervals in red color show that the equal-tailed
95% quantiles include the number of the observed transition counts.

3.7.2 Results from the MRSA Data Set

Excluding antimicrobial treatment

In order to see differences between the results from the p-MRSA Data Set and

those from the MRSA Data Set, we will present here the results from the MRSA

Data Set (this is the data set including patients with no positive tests as de-
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scribed in 1.3). We will not take into account any of the antimicrobial treatment.

Table 3.9 shows the summary statistics of the posterior density for parameters

p0 and q0 and φ. Figures 3.11, 3.12 and 3.13 present the density plots of the

parameters parameters p0, q0 and φ and the posterior correlation between pa-

rameters p0 and q0. It can be seen that probability p0 is higher that the relevant

probability of the p-MRSA Data Set. The reason for this is that MRSA Data Set

includes also patients with no positive tests, thus there are a lot more transi-

tions from a non-colonised to a non-colonised state and this has an impact on

probability p0. Here we can see that p0 and q0 are moderately correlated com-

paring to the relevant p-MRSA Data Set result. MRSA Data Set contains all the

patients and thus there are less dependencies in the data.

no antimicrobial treatment
parameters E[ · |S ] (s.d.)

p0 0.9983 (0.0007)
q0 0.0057 (0.0025)

p0, q0 posterior correlation −0.3696
φ 0.3017 (0.0123)

Table 3.9: Summary statistics for p0, q0 and φ using the MRSA Data Set with-
out antimicrobial treatment.
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Figure 3.11: Kernel density plots for p0 and q0 for the MRSA Data Set without
antimicrobial treatment.

105



CHAPTER 3: MODELLING THE EFFECT OF ANTIMICROBIAL TREATMENT ON
CARRIAGE LEVELS OF MRSA USING HIDDEN MARKOV MODELS

0.26 0.28 0.30 0.32 0.34 0.36

0
5

10
15

20
25

30

Kernel Density Estimate for φ

φ

D
en

si
ty

Figure 3.12: Kernel density plots for φ for the MRSA Data Set without antimi-
crobial treatment.
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Figure 3.13: Scatterplot presenting the correlation between p0 and q0 for the
MRSA Data Set without antimicrobial treatment.

Table 3.10 shows the results from the model fit. The posterior mean of the neg-

ative predictive value ψ was fount to be equal to ψ = 0.6785. It can be seen that

the model does not fit well as some of the observed counts are outside the 95%

quantiles.

The main complication in using the MRSA data set in our analysis is that the

MCMC algorithm needs a lot of time to converge. The data augmentation al-

gorithm we described in section 3.4 requires in every MCMC iteration the up-

106



CHAPTER 3: MODELLING THE EFFECT OF ANTIMICROBIAL TREATMENT ON
CARRIAGE LEVELS OF MRSA USING HIDDEN MARKOV MODELS

Day Intervals
1 2 3 4 5 6 7

obs. counts 155 298 301 242 228 357 1643
N → N (142, 157) (268, 290) (276, 295) (227, 245) (209, 228) (336, 357) (1683, 1631)

obs. counts 10 11 15 18 14 26 132
N → C (8, 23) (18, 39) (20, 40) (15, 33) (14, 32) (26, 47) (143, 192)

obs. counts 8 11 8 11 10 26 72
C → N (7, 14) (16, 26) (17, 27) (7, 18) (10, 25) (29, 41) (168, 195)

obs. counts 7 20 9 21 20 24 185
C → C (1, 8) (5, 15) (1, 9) (4, 15) (4, 14) (9, 21) (61, 88)

Table 3.10: Model fit for the MRSA Data Set excluding antimicrobial treatment.
The intervals in red color show that the equal-tailed 95% quantiles
include the number of the observed transition counts.

date of each of the negative tests, which makes it very time consuming espe-

cially when the number of parameters updated is also large. An example is

that the MRSA Data Set including antimicrobial treatment needs 130 hours to

run 100, 000 iterations to reach convergence. For this the reason we have not

displayed any results for this case.

3.7.3 Results from the p-MRSA Data Set including antimicro-

bial treatment

Next, we obtain the parameter estimates including information about antimi-

crobial treatment. We consider all antibiotics and the antiseptic as one group.

This means that a patient receiving any of the antimicrobials or treated with the

antiseptic is “on” antimicrobial treatment, otherwise they are “off”. Table 3.11

presents the summary statistics of the posterior distributions for parameters p0,

q0, α and β. We can see that antimicrobial treatment seems to have a protective

effect when a patient is in a non-colonised state. On the other hand, there is

no strong evidence antimicrobial treatment can clear MRSA from colonised pa-

tients. Sensitivity φ is again around 85%. Posterior correlations of the model

parameters are shown in Figure 3.15 where we can see that all the parameters

are strongly correlated, possibly because of the dependencies in the data as we

only consider patients with at least one positive test. The density plots of the

probability a patient remains in a non-colonised state, p0 + α, and the probabil-

ity that a patient goes from a colonised state to an non-colonised one, q0 + β,

while they are “on” antimicrobial treatment are shown in Figure 3.14. The same

Figure, also shows the density plots of p0 and q0 which are the respective prob-

abilities when a patient is “off” antimicrobial treatment.
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Antimicrobial treatment
parameters E[ · |Y] (s.d.) 95% CI

p0 0.7783 (0.0784) (0.6056, 0.8924)
q0 0.1310 (0.0521) (0.0543, 0.2526)
α 0.1197 (0.0810) (−0.0044, 0.2953)
β −0.0525 (0.0517) (−0.1697, 0.0269)
φ 0.8576 (0.0340) (0.7913, 0.9251)

Table 3.11: Summary statistics for p0, q0, α, β and φ using the p-MRSA Data
Set including antimicrobial treatment.
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Figure 3.14: Kernel density plots for p0 and p0 + α, q0 and q0 + β for the p-
MRSA Data Set including antimicrobial treatment.

Table 3.12 presents the equal-tailed 95% quantiles from the model fit simula-

tions along with the observed transition counts for each day interval. The neg-

ative predictive value was estimated around 0.8389. It can be seen that the

model does not fit well as some of the observed transition counts are outside

the equal-tailed 95% quantiles.
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Figure 3.15: Posterior correlations between p0, q0, α and β using the p-MRSA
Data Set including antimicrobial treatment.

Day Intervals
1 2 3 4 5 6 7

obs. counts 17 19 19 8 17 31 243
N → N (4, 13) (6, 17) (6, 17) (6, 16) (6, 18) (11, 26) (100, 142)

obs. counts 10 11 15 18 14 26 132
N → C (3, 13) (7, 18) (6, 18) (8, 21) (8, 19) (15, 32) (124, 158)

obs. counts 8 11 8 12 10 26 72
C → N (5, 15) (8, 21) (5, 15) (7, 18) (8, 19) (16, 32) (123, 156)

obs. counts 7 20 9 21 20 24 185
C → C (11, 22) (16, 30) (12, 24) (14, 28) (15, 29) (32, 51) (206, 257)
Table 3.12: Model fit for the model of the p-MRSA Data Set including antimi-

crobial treatment. The intervals in red color show that the equal-
tailed 95% quantiles include the number of the observed transition
counts.

Next, we consider the model including antimicrobial treatment but starting

from a patient’s first positive test.

Starting from first positive test

In this chapter, as well as the previous one, we consider the MRSA carriage

levels on each patient separately, so we assume that there is no transmission

between the patients. One way to deal with this constraint is to make infer-
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ence for the model parameters excluding the patients’ information before they

were found positive for the first time. The summary statistics of the model’s

parameter estimates is shown in Table 3.13, and Figure 3.16 presents the pos-

terior density plots of parameters p0, p0 + α, q0 and q0 + β. It can be seen that

antimicrobial treatment has a positive effect on protecting non-colonised pa-

tients from MRSA carriage but it cannot help much on its clearance. We can

also notice that sensitivity φ has a lower value comparing to the one when the

whole p-MRSA Data Set was used. A possible reason for this is that our model

assumes that if a patient has a negative test after a positive it is more likely that

this test would be false negative. Finally, Table 3.14 presents the results from

the 95% quantiles from the simulations for the model fit. Again, some of the

observed transition counts are outside of the equal-tailed 95% quantiles which

suggests a poor fit.

Antimicrobial treatment
parameters E[ · |Y] (s.d.) 95% CI

p0 0.9079 (0.0472) (0.7730, 0.9712)
q0 0.0482 (0.0188) (0.0186, 0.0927)
α 0.0753 (0.0478) (0.0103, 0.2107)
β −0.0085 (0.0182) (−0.0518, 0.0208)
φ 0.7857 (0.0377) (0.7123, 0.8594)

Table 3.13: Summary statistics for p0, q0, α, β and φ using the p-MRSA Data Set
with antimicrobial treatment starting patients’ first positive test.

Day Intervals
1 2 3 4 5 6 7

obs. counts 3 2 1 1 2 12 134
N → N (0, 5) (1, 8) (0, 5) (1, 8) (1, 7) (4, 14) (36, 64)

obs. counts 1 0 1 0 1 5 37
N → C (1, 7) (2, 11) (1, 8) (3, 12) (3, 11) (7, 19) (78, 104)

obs. counts 8 11 8 12 10 26 72
C → N (1, 8) (3, 13) (1, 7) (3, 12) (3, 11) (8, 21) (77, 105)

obs. counts 7 20 9 21 20 24 185
C → C (4, 12) (9, 21) (4, 13) (10, 21) (9, 20) (22, 38) (170, 217)

Table 3.14: Model fit for the model of the p-MRSA Data Set including antimi-
crobial treatment starting from first positive test. The intervals in
red color show that the equal-tailed 95% quantiles include the num-
ber of the observed transition counts.

The above results make us consider each antimicrobial group separately. The

results are presented in the following section.
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Figure 3.16: Kernel density plots for p0 and p0 + α, q0 and q0 + β for the p-
MRSA Data Set with antimicrobial treatment starting from first
positive test.

Considering each antimicrobial group separately

In this section we present the results of each antimicrobial group separately of

the p-MRSA Data Set, p-Wounds Data Set and p-Respiratory Data Set. For each

group, if a patient has received a particular antimicrobial treatment one day we

assume that they are “on” this antimicrobial that day. Otherwise they are “off”

that antimicrobial.

Parameter estimates are shown in Tables B.1, B.2 and B.3, and in Figures B.1

and B.2. It can be seen that swab test sensitivity (Table B.3), φ, is around 0.85.

Results of the estimates for the negative predictive value ψ are also shown in

Table B.3. Considering the antimicrobial groups (Tables B.1 and B.2) there is

evidence that patients on Oxazolidinone, Nitroimidazole, Cephalosporin and

Rifamycin groups have higher probability to clear MRSA carriage. Moreover,
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there is little evidence that Oxazolidinone protects against MRSA, while on the

other hand, Macrolide and Cephalosporin groups have the opposite effect. Fi-

nally, decolonisation treatment using Chlorhexidine seems to be effective on

both protecting against MRSA recolonisation and on MRSA clearance.

Considering the model assessment, Table B.4 shows the equal-tailed 95% quan-

tiles from the simulations for each antimicrobial treatment. It can be seen that

the model fit is not so good as some of these quantiles do not include the ob-

served transition counts.

Next, we obtain the parameter estimates from the p-MRSA Data Set starting

from patients’ first positive test. The results are shown in Tables B.5 and B.6 and

Figures B.3 and B.4. Table B.7 shows the estimates of the swab test sensitivity,

φ and negative predictive value ψ. In Table B.6, we notice that Oxazolidinone,

Rifamycin and Cephalosporin have a positive effect on the clearance of MRSA

carriage. Moreover, Glycopeptide may protect against MRSA colonisation but

on the other hand, it can be seen that Rifamycin has the opposite effect. Lastly,

Antiseptic use seems to help in the clearance of MRSA.

Table B.8 shows the equal-tailed 95% quantiles for the model fit simulations. It

can be seen that some of the observed transition counts are outside the quantiles

and as a result the model does not fit adequately.

3.7.4 p-Wounds Data Set

This section includes the results from the p-Wounds Data Set firstly considering

all the data and later starting from patients’ first positive test.

Parameters estimates are presented in Tables B.9 and B.10 and Figures B.5 and

B.6. It can be seen that Oxazolidinone, Glycopeptide, Macrolide and Penicillin

are effective in clearing MRSA carriage. In contrast, Macrolide has a negative

effect on preventing MRSA colonisation. The results of swab test sensitivity, φ

and the estimates for the negative predictive value ψ are shown in Table B.11.

The results for the model fit simulations are shown in Table B.12. Negative

predictive value ψ was found to be around 0.64. It can be seen that the model

fit is not adequate.

In the case of starting from patients’ first positive test, the results can be seen in
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Tables B.13 and B.14 and Figures B.7 and B.8. There is some evidence that Ox-

azolidinone, Rifamycin, Macrolide and Aminoglycoside can help in the clear-

ance of MRSA carriage. Moreover, Aminoglycoside and Macrolide may not

protect against MRSA. The estimates of sensitivity φ and the estimates for the

negative predictive value ψ are shown in Table B.15.

Table B.16 shows the results from the model fit simulations. The negative pre-

dictive value was around 0.61. It can be seen that the model does not fit well as

again some of the observed transition counts are outside the equal-tailed 95%

quantiles.

3.7.5 p-Respiratory Data Set

Here we include the results from the p-Respiratory Data Set.

Tables B.17 and B.18 and Figures B.9 and B.10 present the results for the param-

eters p0, q0, α and β. It can be seen that Oxazolidinone is effective in the clear-

ance of MRSA. On the other hand, Quinolone, Nitroimidazole and Macrolide

may not prevent from MRSA colonisation. Swab test sensitivity results and the

estimates for the negative predictive value ψ are shown in Table B.19.

Regarding the model fit, Table B.20 show the equal-tailed 95% quantiles ob-

tained by the simulations. It can be seen that the model does not fit well.

Finally, Tables B.5 and B.22 and Figures B.11 and B.12 show the parameter es-

timates for Respiratory Data Set starting from patients’ first positive test. We

can see that Oxazolidinone can help in MRSA clearance, while Polymyxin and

Quinolone might have a negative effect on protection against MRSA colonisa-

tion. Table B.23 show the estimates for sensitivity φ and the negative predictive

value ψ.

The model assessment simulation results are shown in Table B.24. It can be seen

that the model fit is acceptable.

3.8 Summary

In this chapter a discrete time hidden Markov model was used to model the

colonisation status of individual patients and assess the effects of antibiotics
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and antiseptics on carriage levels of MRSA. We assumed that there was imper-

fect swab test sensitivity so that some of the negative test results might be false

negative. However, we considered perfect specificity. We found that Oxazo-

lidinone and the Antiseptic treatment are effective in the clearance of MRSA

carriage.

The parameter estimates for the HMM model were obtained using a data aug-

mented MCMC algorithm in a Bayesian framework. This algorithm enabled

us to estimate the true, unobserved, Markov process of patients’ colonisation

states. For the model assessment we used simulated data sets based on the pa-

rameters’ estimates obtained by the MCMC and compared their distributions

to the observed data.

To validate our methodology we used simulated data initially with fixed day-

intervals and then using the day-intervals from the p-MRSA Data Set. In both

cases we did not take into account information about the antimicrobial treat-

ment. We found that the estimated values for the parameters were in agree-

ment with the values set while constructing the simulated data set. We found

that the model fitted adequately.

The results using the GSTT data showed that the antimicrobial treatment can

protect against MRSA colonisation but it cannot help to its clearance. The same

results were drawn when the data including only the information after patients’

first positive test were used. In each case the model did not fit very well.

Looking at each antimicrobial group separately, all three data sets obtained that

Oxazolidinone can be effective on MRSA clearance. This result is in agreement

with previous reports and more specifically on the effectiveness of Linezolid

which belongs to the Oxazolidinones, [Dennis et al., 2002; Itani et al., 2010]. In

addition, Nitroimidazole, Cephalosporin and Rifamycin seem to have similar

effects for the p-MRSA Data Set and Macrolide and Penicillin for the p-Wounds

Data Set. However, in some cases, we found some evidence that Macrolide and

Cephalosporin might not can be protective against MRSA. This result is con-

sistent with the literature, [Dancer, 2001; Monnet et al., 2004; Tacconelli et al.,

2008]. Lastly, decolonisation policy found to help clear MRSA only for the p-

MRSA Data Set. The model fit was adequate in some cases.

Considering only the data starting from patient’s first positive test, we derived
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that Oxazolidinone can help on MRSA clearance in all the three data sets. More-

over, we obtained that the same effect holds for Rifamycin and Cephalosporin

for the p-MRSA Data Set, Rifamycin, Macrolide and Aminoglycoside for the

p-Wounds Data Set. On the other hand, no evidence was found that any an-

timicrobial can prevent MRSA colonisation apart from Glycopeptide on the p-

MRSA Data Set. Antiseptic treatment can be effective on the MRSA clearance

only for the p-MRSA Data Set. The model fitted better in this case.

In conclusion, some of the antimicrobial treatment seems to be effective against

MRSA carriage. Decolonisation policy however seem to have an effect for the

p-MRSA Data Set, result that is consistent with the literature, [Batra et al., 2010;

Kypraios et al., 2010; Macfarlane et al., 2007]. Nonetheless, the model fit was

not good enough in many cases. This suggests that the assumption we made

that there is no MRSA transmission between the patients was not appropriate.

In the following chapter we will overcome this constraint assuming that MRSA

can be transmitted between patients.
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CHAPTER 4

Assessing the effect of antimicrobial

treatment on MRSA transmission

4.1 Introduction

In this chapter we are going to examine the effects of antimicrobial treatment on

the transmission of MRSA. In Chapters 2 and 3 we investigated the effects of an-

tibiotics and antiseptics on within-host carriage levels of MRSA using a Markov

chain and a hidden Markov chain model respectively. Both models however,

showed some evidence of lack of fit, at least using the criteria we adopted. One

possible reason for this is our assumption that our models did not account for

transmission between the patients. In this chapter we are going to relax this

assumption using an individual-level discrete-time stochastic epidemic model

that takes (indirect) person-to-person MRSA transmission into account. Thus,

we will follow a different approach than in the previous chapters, assuming

that MRSA is transmitted to patients either from the background or indirectly,

for example via the hands of healthcare workers. We will investigate the impact

of antimicrobial treatment on the transmission of MRSA.

Mathematical models have been used over the years to describe the spread of

antimicrobial resistant nosocomial bacteria. Simulation studies using determin-

istic models have been proposed by Sébille et al., [Sébille et al., 1997], who used

a model to describe person-to-person and person-healthworker transmission

in an ICU ward. Results showed that staff member handwashing had an effect
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in reducing their colonisation but there was only a slight decrease in patient

colonisation. Austin et al. in [Austin et al., 1999] used a compartmental deter-

ministic model to show how infective control measures and antibiotic reduction

policies can have an effect on Vancomycin-resistant Enterococcus (VRE) trans-

mission in an ICU. They found that not only measures such as handwashing

and cohorting were effective but also careful antibiotic use. A similar model

to [Austin et al., 1999] was proposed by Lipsitch et al. [Lipsitch et al., 2000].

In their work the cycling strategy is proposed, in which a first class of antibi-

otics is used for infection treatment, for a period of time, and when resistance

is detected, this treatment is replaced by a second class of antibiotic treatment

in which resistance is rare or absent. Results showed resistance was decreas-

ing according to patient turnover within the ward. A similar study has been

performed by Haber et al., [Haber et al., 2010], where a simulation study is pro-

posed using a deterministic and a stochastic model that describe the transmis-

sion dynamics of drug-sensitive and drug-resistant bacteria. The authors as-

sessed the effectiveness of switching from a first class of antibiotics, for which

there were resistant bacteria, to a second class of antibiotics. Then, they ex-

plored how effective is the latter class to successfully treat the patients and

reducing the frequency of resistance to other antimicrobials. Results showed

that the proposed protocol can have an effect when there is an early switch to

second class of antimicrobials.

Many studies have used stochastic models to analyse the spread of nosocomial

pathogens. A stochastic Markov chain model was proposed by Pelupessy et

al., [Pelupessy et al., 2002], for the transmission dynamics and importance of

different colonisation routes of bacteria in a hospital ward using longitudinal

data on the number of colonised patients. One of the basic assumptions was

that surveillance swabs’ sensitivity was perfect. They used maximum likeli-

hood methods to obtain the transmission rates for two data sets of data, VRE

and Pseudomonas aeruginosa, which were taken from different ICUs.

An extension to the Markov model in [Pelupessy et al., 2002] was introduced

by Cooper et al. in [Cooper and Lipsitch, 2004], where hidden Markov mod-

els (HMM) were used to infer patients’ unknown colonisation times. The data

they used were time series with at least 40 continuous months of data having

an average of at least on case per month, for MRSA, VRE and third generation
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cephalosporin resistant Gram-negative rods (R-GNR), coming from a surveil-

lance study over 40 months from ICU wards at 41 U.S hospitals. Three different

models were fitted to these data, namely, a simple Poisson model, a standard

HMM using a Poisson observation model, and a HMM model based on the SIS

epidemic model. A Newton-type algorithm was used for likelihood maximi-

sation. Model assessment was made using Akaike information criterion and a

parametric bootstrap method.

Forrester and Pettit, [Forrester and Pettitt, 2005], used a stochastic epidemic

model to estimate the transmission rates of patients with MRSA in an ICU

ward. The swabs were taken at fixed intervals twice a week. The authors

described the probability of colonisation as a function with three parameters,

namely background pressure, pressure from non-isolated colonised patients

and from isolated colonised patients. The model fit was assessed using a de-

viance information criterion. A limitation of this study is the assumption that

colonisations within each swab-test interval were considered unrelated to each

other and occurred by either a colonised patient in a previous interval or back-

ground.

A later work by Forrester et al. [Forrester et al., 2007], uses a stochastic epidemic

model to estimate the transmission rate parameters of a nosocomial pathogen

and is an extension of [Forrester and Pettitt, 2005]. The model, as in [Forrester

and Pettitt, 2005], consisted of three colonisation rate parameters, namely back-

ground rate, non-isolated, and isolated colonised rate but it also accounted

for the importation probability i.e. the probability that a patient was already

colonised on admission, and that there was imperfect swab test sensitivity while

specificity was assumed to be perfect. For the inference, MCMC algorithms

were used in a Bayesian framework. This methodology was applied to MRSA

data taken from an ICU ward.

Another study using the methodology in [Forrester et al., 2007] is described in

Kypraios et al., [Kypraios et al., 2010]. A stochastic transmission model was

used to estimate the importance of undetected MRSA carriage and the effect

of barrier precautions in the prevention of MRSA transmission in eight ICU

wards. The model was fitted to data in a Bayesian framework using data-

augmentation MCMC algorithms.

To our knowledge there has not been any similar work considering the effect
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of antimicrobial agents on MRSA using stochastic transmission models. In this

chapter we are going to extend and adapt the methodology described in [For-

rester et al., 2007] and [Kypraios et al., 2010] and apply it to the antimicrobial

treatment data introduced in Chapter 1. We are going to fit three different mod-

els to the data and obtain estimates using MCMC methods. Finally we give

information about the model adequacy.

The outline of the chapter is as follows: in Section 4.2 we describe the models

we are going to use and Section 4.3 gives the likelihood. In Section 4.4 we

give the MCMC methodology and in Section 4.5 we describe how we assess the

model. In Section 4.6 we present results using simulated data and in Section

4.7 we present the results obtained from the three data sets, namely the MRSA

Data Set, Wounds Data Set and Respiratory Data set. Finally we conclude this

chapter discussing any limitations of the proposed models.

4.2 Model

In this chapter we assume that there is transmission between the patients in

an ICU ward. Thus, we will divide the patients into two groups according

to which ICU ward they were admitted into. The summary statistics as well

as information about the antimicrobial treatment for each ICU ward and each

data set is shown in 1.3.2 and 1.3.3.

We consider the two ICU wards, ward 1 and ward 2. In each ward, a pa-

tient i is admitted at time ai and discharged at time di during the study pe-

riod. There might be multiple admissions or discharges occurring at the same

time, but we treat the patients as separate admission episodes. We will use

an individual-level stochastic epidemic model to describe the transmission dy-

namics of MRSA within each ICU ward. We will work in discrete time so we

will assume that events occur daily.

Patients who enter the ward can be either susceptible (S) or colonised (C) with

MRSA bacteria. Susceptible patients can acquire MRSA indirectly via the hands

of healthcare workers or by background transmission. Background transmis-

sion includes the nosocomial transmission coming from outside the ward such

as transmission from colonised healthcare workers or contaminated hospital
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equipment.

Moreover, some patients might be already colonised with MRSA before they

enter the ICU ward. When a patient enters the ICU already colonised, we will

refer to them as “colonised on admission” and when a patient is colonised dur-

ing their stay in the ICU we will refer to them as “colonised on the ward”.

We assume that once a patient becomes colonised, they remain in this state until

they leave the ward. The reason for this is because of the duration of colonisa-

tion with MRSA bacteria that can last for several months [Robicsek et al., 2009].

Patients in the ICU ward undergo tests in order to determine whether they

are colonised or not. We assume imperfect sensitivity φ and that specificity is

100%. Sensitivity φ denotes the probability that an observed positive test is

actually positive, while specificity denotes the probability that a negative test is

observed correctly.

Finally, a patient can be “on” or “off” antimicrobial treatment each day during

their stay in the ICU, which means that they receive antimicrobials or not that

day. We define ∆(n) ∈ {ON, OFF} be the antimicrobial state on day n.

We have also made the following assumptions:

1. All patients in the ICU have at least one test.

2. Patients are admitted at the start and discharged at the end of each day.

3. Antimicrobial treatment is received after admission and before discharge.

4. Swab tests were taken at the start of the day, after admission.

5. If a swab test is found positive on patient’s admission date we assume

that the patient has imported MRSA.

6. Colonised patients remain colonised until they leave the ward.

7. If a patient is colonised on their admission to the ward they can transmit

MRSA the same day.

8. If a patient becomes colonised in the ward they can transmit the bacterium

from the following day.
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9. If a patient becomes colonised in the ward on their discharged day they

are ignored as they leave the ward.

We define q(n) as the colonisation pressure acting on a given susceptible on day

n, where n refers to a day during the study period. The basic assumption of the

model is that a susceptible patient on day n remains susceptible on day n + 1

with probability e(−q(n)), with all susceptibles behaving independently in this

respect.

We will consider three different transmission models to describe the transmis-

sion process.

Susceptibily Model : This model assumes that a susceptible patient receives dif-

ferent colonisation pressure from background transmission and colonised pa-

tients according to whether or not they receive antimicrobial treatment. We do

not take the antimicrobial state of colonised patients into account. Specifically,

we have

q(n) = β01OFF + β̃01ON + β1Cn1OFF + β̃1Cn1ON, (4.2.1)

where “∼” means “on” antimicrobial treatment, 1∆ denotes the indicator func-

tion of the event ∆(n) ∈ {ON, OFF} , Cn denotes the number of colonised pa-

tients on day n, β0/β̃0 is the background transmission rate to susceptibles being

“off”/“on” antimicrobial treatment respectively and β1/β̃1 is the transmission

rate to susceptibles being “off”/“on” antimicrobial treatment from the number

of colonised patients at day n.

Figure 4.1 represents the Susceptibility Model in (4.2.1).

Infectivity Model : In this model we do not take into account whether the suscep-

tible is “on” antimicrobial treatment or not. However, we assume that coloni-

sation pressure on a susceptible comes from the background rate and from

colonised patients being “off”/“on” antimicrobials. Here, we do not take the

antimicrobial state of susceptible patients into account. More specifically,

q(n) = β0 + β1Cn + β
′
1C̃n, (4.2.2)

where “∼” means “on” antimicrobial treatment, Cn/C̃n denotes the number

of colonised individuals who are “off”/“on” antimicrobial treatment on day
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β̃0β0

β1 β̃1

C∗n

Sn S̃n

Figure 4.1: Graph representing the Susceptibility Model in (4.2.3) where “∼”
means “on” a given antimicrobial treatment. Susceptible patients
who are “off”/“on” antimicrobial treatment, receive colonisation
pressure from either the background, β0/β̃0, or by colonised pa-
tients, β1/β̃1. “∗” denotes that antimicrobial treatment information
has not been taken into account for that patient group.

n, β0 is the background transmission and β1/β
′
1 are the transmission rates to

susceptible on day n from Cn/C̃n respectively.

Infectivity Model (4.2.2) is represented in Figure 4.2.

β0

β1 β
′
1

Cn

S∗n

C̃n

Figure 4.2: Graph representing the Infectivity Model in (4.2.3) where “∼” means
“on” a given antimicrobial treatment. Susceptible patients re-
ceive colonisation pressure from either the background, β0, or by
colonised patients, β1/β

′
1 who are “off”/“on” antimicrobial treat-

ment. “∗” denotes that antimicrobial treatment information has not
been taken into account for that patient group.

Full Model: This model assumes that both susceptible and colonised individuals

can be “on” or “off” antimicrobial treatment receiving at the same time back-
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ground pressure according to their antimicrobial state. Specifically we have

q(n) = β01OFF + β̃01ON + β1Cn1OFF + β
′
1C̃n1OFF + β̃1Cn1ON + β̃

′
1C̃n1ON,

(4.2.3)

where “∼” means “on” antimicrobial treatment, 1∆ denotes the indicator func-

tion of the event ∆(n) ∈ {ON, OFF} , Cn/C̃n denotes the number of colonised

individuals who are “off”/“on” antimicrobial treatment on day n, β0/β̃0 is the

background transmission rate to susceptibles being “off”/“on” antimicrobial

treatment respectively, β1/β
′
1 is the transmission rate to Sn from Cn/C̃n and

β̃1/β̃
′
1 is the transmission rate to S̃n from Cn/C̃n.

A representation of the Full Model (4.2.3) is presented in Figure 4.3.

β̃0β0

β1

β̃1 β
′
1

β̃
′
1

Cn

Sn

C̃n

S̃n

Figure 4.3: Graph representing the Full Model in (4.2.3) where “∼” means “on”
a given antimicrobial treatment. Susceptible patients depending on
their antimicrobial state receive colonisation pressure from either
the background, β0/β̃0, or by colonised patients, β1/β

′
1 who are

“off” (β1/β̃1) or “on” (β
′
1/β̃

′
1) antimicrobial treatment.

4.3 Likelihood

The data of patient i, i = 1, ..., N, where N is the total number of patients in the

ward, consist of the following quantities,

• admission time ai,

• discharge time di,
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• test dates ti =
(

t(1)i , t(2)i , ..., t(mi)
i

)
, where mi is the number of tests of pa-

tient i,

• test results ri =
(

r(1)i , r(2)i , ..., r(mi)
i

)
,

• information about the antimicrobial treatment they were receiving each

day δi =
(

δ
(1)
i , δ

(2)
i , ..., δ

(li)
i

)
, where li denotes the number of days in the

ICU of patient i.

The probability that a patient acquires MRSA on day n is given by 1− exp(−q(n)).

We define ψi, i = 1, . . . , N, be the colonisation status of each patient i, i.e.

ψi =


0 if colonised in the ward

1 if colonised on admission

2 if not colonised

, (4.3.1)

We also assume that each patient i has a colonisation time ci. If a patient was

colonised in the ward, then ai ≤ ci ≤ di. However, when a patient enters the

ward they might be already colonised with MRSA. In this case we set ci =

ai − 1. If patient i was never colonised, ci = ∞.

It is important to note that patient i with a colonisation time ci ≤ ∞, joins the

number of colonised patients Cn the next day.

We define z as the probability that a patient is colonised on admission. Let na
c

denote the number of patients in the ward who were admitted colonised. Then,

na
c = ∑N

i=1 1{ψi=1}.

We assume that colonisation times are not observed.

Let a = (a1, a2, ..., aN), d = (d1, d2, ..., dN), δ = (δ1, δ2, ..., δN), t = (t1, t2, ..., tN)

and r = (r1, r2, ..., rN) be the vectors of all the admission times, discharge times,

antimicrobial information, test dates and test results respectively. These quan-

tities are observed and thus they are assumed known.

Furthermore, we define nTP and nFN be the number of true positive and false

negative tests in the ward. Since we have assumed that specificity is perfect, the

number nTP is known, while the assumption for imperfect sensitivity implies

that nFN is unknown.
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Let admission times, a, discharge times, d, antimicrobial treatment δ and test

dates t be defined by vector y = (a, d, δ, t). Note that vector y does not have an

underlying probability model while we have a model for test results r with pa-

rameters θ, where θ =
(

β0, β̃0, β1, β̃1
)

for the Susceptibility Model, θ =
(

β0, β1, β
′
1

)
for the Infectivity Model and θ =

(
β0, β̃0, β1, β̃1, β

′
1, β̃

′
1

)
for the Full Model.

We would like to estimate the parameters θ given y and r. However, the like-

lihood π(r|θ, y) is intractable due to unknown colonisation times. Thus, we

will need to augment the observed data y with the colonisation times c and

therefore we have

π(c, r|θ, y) = π(r|c, θ, y)π(c|θ, y), (4.3.2)

where c contains all the ci’s and ψi’s. The term π(c|θ, y) contains information

for patients who are colonised on admission as well as colonised in the ward

and can be expressed as

π (c | θ, y) = zna
c (1− z)N−na

c × ∏
j:ψj=0

(1− exp(−q(cj)))

 ∏
i:ψi 6=1

exp

(
−

min(di,ci−1)

∑
n=ai

q(n)

)
, (4.3.3)

where,

• zna
c (1− z)N−na

c takes into account those individuals colonised on admis-

sion,

•
(

∏j:ψj=0(1− exp(−q(cj)))
)

gives the pressure on the susceptible j just

before they become colonised on day cj, and

• ∏i:ψi 6=1 exp
(
−∑

min(di,ci−1)
n=ai q(n)

)
gives the total colonisation pressure to

susceptible patients during their time in the ward.

The term π(r|c, θ, y) in equation (4.3.2) gives the probability of the observed

test results and is given by

π(r|c, θ, y) = φnTP(1− φ)nFN . (4.3.4)
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Taking into account equations (4.3.4) and (4.3.3) the likelihood can be written

as follows

π(c, r|θ, y) ∝ φnTP(1− φ)nFN zna
c (1− z)N−na

c× ∏
j:ψj=0

(1− exp(−q(cj)))

 ∏
i:ψi 6=1

exp

(
−

min(di,ci−1)

∑
n=ai

q(n)

)
. (4.3.5)

4.4 Inference

We are interested in finding the estimates for the parameters for each of the

three models. For this purpose we will use a data-augmented Markov Chain

Monte Carlo (MCMC) algorithm in a Bayesian framework. The methodol-

ogy we are going to use was introduced by O’Neill and Roberts, [O’Neill and

Roberts, 1999], where the authors used Bayesian inference for partially ob-

served data using MCMC methods. We are going to follow the same meth-

ods presented by Kypraios et al., [Kypraios et al., 2010], and Forrester et al.,

[Forrester et al., 2007], for the estimation of the parameters of interest. The

difference is that the aforementioned articles are in continuous time while we

conduct our analysis in discrete time, and also we use different models to take

account of the antimicrobial treatments.

4.4.1 Prior distributions

We would like to draw samples from the posterior density

π(θ, c | r, y) ∝ π(r, c | θ, y)π(θ),

where π(θ) is the prior density of θ. We assume that individual parameters in

θ are a priori independent.

We set non-informative prior distributions for the parameters φ and z as fol-

lows,

φ, z ∼ Beta(1, 1),

where Beta(1, 1) is the beta distribution with parameters α = 1 and β = 1
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respectively, i.e. φ, z ∼ U(0, 1).

We also set non-informative priors for each of the model’s remaining parame-

ters. Specifically we have

Susceptibility Model:

β0, β̃0, β1, β̃1 ∼ Exp(10−3),

Infectivity Model :

β0, β1, β
′
1 ∼ Exp(10−3),

Full Model:

β0, β̃0, β1, β̃1, β
′
1, β̃

′
1 ∼ Exp(10−3),

where Exp(10−3) is the exponential distribution with mean and standard devi-

ation 103.

4.4.2 Updating the parameters

We update the parameters z and φ using Gibbs steps from their full conditional

distributions. Let θ−z be the vector θ with parameter z removed. Then we have

z | θ−z, y, c, r ∼ Beta(1 + nTP, 1 + nFN),

φ | θ−φ, y, c, r ∼ Beta(1 + na
c , 1 + N − na

c).

We update the parameters βi, i = 1, 2, ..., m, where m is the number of β param-

eters for each model, using a Gaussian random walk Metropolis algorithm. For

each iteration k, let β
(k)
i denote the current parameter and β∗i be the candidate.

Using a univariate normal proposal distribution N(β∗i , σi), β∗i > 0, we draw

the proposal value β∗i , where σi is chosen in a way that the acceptance rate is

around 0.25 [Roberts et al., 1997].

The probability that the candidate point β∗i is accepted is:

min

1,
π

(
β∗i |θ−β

(k)
i

, y, c, r
)

g
(

β
(k)
i |β

∗
i

)
π

(
β
(k)
i |θ−β

(k)
i

, y, c, r
)

g
(

β∗i |β
(k)
i

)
 ,
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where,

π

(
β∗i |θ−β

(k)
i

, y, c, r
)

is the full conditional distribution of β∗i , and g
(

β∗i |β
(k)
i

)
and g

(
β
(k)
i |β

∗
i

)
are the proposal densities for a move from β

(k)
i to β∗i and vice

versa. It is shown in 1.5.3 that
g
(

β
(k)
i |β

∗
i

)
g
(

β∗i |β
(k)
i

) = 1.

Then, we update the colonisation times. Let uC
C denote the set of patients with

a colonisation time ci 6= ∞, i = 1, . . . , N. This set includes both patients

“colonised on admission” and “colonised on ward”. Let also nC be set uC
C’s

number of patients. Let uA
C be the set of patients whose colonisation time was

added by the algorithm and nA denote the number of patients in it, and uN
C

denote the set of patients with no positive tests and let nN denote its number

of patients. Vector uN
C is fixed, while uC

C and uA
C are latent variables and are

updated in each iteration. Also, uA
C = uN

C ∩ uC
C.

Vector ψ will be updated in each iteration along with the colonisation times.

Next, we update the colonisation times with Metropolis-Hastings steps. With

equal probability we either

• Move an existing colonisation time.

An existing patient i is chosen uniformly at random from the uC
C set. If uC

C

is empty we skip this move. With probability w we propose that patient i

is admitted positive and thus we set c∗i = ai − 1 and ψ∗i = 1. Otherwise,

ψ∗i = 0 and we set a new colonisation time chosen uniformly at random

from [ai, h], where h = min(( fi− 1), di) and fi is the date of patient i’s first

positive test. We assume that once a patient is colonised they remain so

until they leave the ward. A patient can be colonised on any day before

their first positive test, if it exists. If patient i does not have any positive

test then fi = ∞.

The proposed move is accepted with probability

min
(

1,
π(c∗, r | θ, y)
π(c, r | θ, y)

· qc,c∗

)
(4.4.1)

where qc,c∗ is given as follows,
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– if ψ∗i = 1 then,

{
qc,c∗ = 1 if ψi = 1

qc,c∗ = (h− ai + 1)−1 1−w
w if ψi = 0

,

– if ψ∗i = 0 then,

{
qc,c∗ = 1 if ψi = 0

qc,c∗ = (h− ai + 1) w
1−w otherwise

.

• Add a new colonisation time.

An individual i say, is chosen uniformly at random from the set of patients

included in uN
C but not in uA

C . Thus, this set includes patients who have

ci = ∞, i.e. patients who are not colonised. If this set is empty we skip

this move.

As before, we assume with probability w that patient i is admitted posi-

tive, so ψ∗i = 1. Otherwise, we choose a colonisation time uniformly at

random from the interval [ai, di].

The proposed move is accepted with probability

min
(

1,
π(c∗, r | θ, y)
π(c, r | θ, y)

· qc,c∗

)
where the proposal ratio qc,c∗ is

– if ψ∗i = 1 then,

qc,c∗ =
nN − nA

w (nA + 1)

– if ψ∗i = 0 then,

qc,c∗ =

(
nN − nA) (di − ai + 1)
(1− w) (nA + 1)

If this move is accepted then the chosen patient included in the uA
C set.
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• Remove (a previously added) colonisation time.

We remove a colonisation time ci for individual i who is chosen uniformly

at random from the set uA
C . If set uA

C is empty we skip this move. The

proposed move is accepted with probability

min
(

1,
π(c∗, r | θ, y)
π(c, r | θ, y)

· qc,c∗

)
,

where the proposal ratio qc,c∗ is

– if ψi = 1 then,

qc,c∗ =
nAw

(nN − nA + 1)
,

– if ψi = 0 then,

qc,c∗ =
nA(1− w)

(di − ai + 1)(nN − nA + 1)
.

Pseudocode for this algorithm is as follows:
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Data Augmented MCMC Algorithm

1 Set initial values to the parameters of interest θ

2 Set initial colonisation times c

3 For k = 1 ... niter, niter is the number of iterations

– Update φ , z using Gibbs Sampler

– Update parameters β

Propose β∗j ∼ N
(

βk
j , σj

)
Draw a uniform (0, 1) random variable U

If U ≤ α
(

βk
j , β∗j

)
· set βk+1

j = β∗j

Else

· set βk+1
j = βk

j

– Update colonisation times c

– With equal probability chose one of the following moves

1. Move an existing colonisation time

2. Add a new colonisation time

3. Remove (a previously added) colonisation time

– Accept the new colonisation time c∗ with probability:

min
(

1,
π(c∗, r | θ, y)
π(c, r | θ, y)

· qc,c∗

)
.

5 End For loop

4 Return values θ

In the next section we will discuss about model assessment.
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4.5 Model Assessment

Model assessment for transmission epidemic models is not a well established

topic. The reason for this is that there are no standard methods one can follow

to test the model adequacy, especially for complex models. Forrester et al. in

[Forrester et al., 2007] use two methods to assess goodness-of-fit for epidemic

models, namely the posterior predictive assessment method and a cross valida-

tion technique.

Posterior predictive checks are discussed in [Rubin, 1984] and [Gilks and Spiegel-

halter, 1996] and more extensively in [Gelman et al., 2004]. This method com-

pares replicated data generated under the model to the observed data. For an

adequate model fit the replicated data should look similar to the observed data.

Forrester et al. [Forrester et al., 2007] use posterior prediction to check whether

the number of colonised patients in the observed data is similar to the number

of colonised patients coming from the simulated data sets. The results showed

that their model can predict adequately the number of observed colonised pa-

tients over the study period.

The authors in [Forrester et al., 2007] used a cross validation method to compare

the observed data yj to the expected data Yj|y−j from the data y−j with the

jth element missing. Then, they used two checking functions, the Freeman-

Tukey residual and the tail-area probability to make the comparison between

the observed and expected data. Results showed an acceptable fit in the first

case but poor fit for the second case. This method is also discussed in [Gelfand

et al., 1992].

Furthermore, the authors in [Forrester et al., 2007] suggest alternative methods

for assessing the goodness-of-fit of an epidemic model without investigating

them further. These include Bayesian p-values [Bayarri and Berger, 1999], a

simulation based approach [Dey et al., 1998], use of Bayesian latent residuals

[Aslanidou et al., 1998] and prequential approaches for model assessment [Ar-

jas and Gasbarra, 1997].

In this project, we have daily data from the antimicrobial treatment information

so it is difficult to use any of the methods mentioned above. We will therefore,

adopt a different approach concerning the model assessment. For each of the

three models, we will simulate 200 data sets using the posterior means from the
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parameter estimates given by MCMC. Then we will compare the distribution

of the number of colonised patients per day during the study period from the

simulated data sets, to the number of colonised patients from the observed data.

In the following sections we will see how we assess the model using simulated

and the GSTT’s Data.

4.6 Simulation

In order to validate our methods which were described previously, we will use

simulated data. Ignoring any antimicrobial treatment information we will use

the model:

q(n) = β0 + β1Cn. (4.6.1)

We simulated data using the data structure of the MRSA Data Set ward 1, i.e.

we used the admission times, discharge times and dates of tests to simulate

a new data set. For the simulation we used the values we obtained from the

MRSA Data Set so we set β0 = 0.0011, β1 = 0.0021, φ = 0.5522 and z = 0.1570.

We ran the MCMC algorithm for 10,000,000 iterations with a thin of 10 iterations

and we discarded the first 10, 000 as “burn in”. The parameter trace plots of

first 300,000 iterations are shown in Figure 4.4 and the relevant density plots in

Figure 4.5. It can be seen that the model obtained correctly the values for the

parameter set.

Table 4.1 shows the summary statistics of the parameter estimates obtained by

the MCMC.

No antimicrobial treatment
Ward 1

parameters E[ · |θ, y, c, r] (s.d.) 95% CI
β0 0.0012 (0.0010) (0.00003, 0.0039)
β1 0.0024 (0.0005) (0.0013, 0.0034)

β0, β1 posterior correlation −0.5289
φ 0.5561 (0.0253) (0.5062, 0.6057)
z 0.1577 (0.0135) (0.1322, 0.1852)

Table 4.1: Summary statistics for the transition rates β0, β1 sensitivity φ and
importation probability z from the simulated data using the data-
structure of the MRSA Data Set, ward 1.
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Figure 4.4: MCMC trace plots for each of the parameters of the simulated data
using the data-structure of the MRSA Data Set ward 1.

Figure 4.6 shows the model assessment using the simulation method we de-

scribed in Section 4.5. The Figure shows three plots. In the first, the observed

data lie within the equal-tailed 95% quantile of the simulated values. The sec-

ond one compares the number of colonised patients from the observed data to

the mean number of colonised patients over the study period obtained by the

simulations, and the third plot presents the number of colonised patients from

the observed data along with the median of the colonised patients obtained by

the simulations. In all cases we can see that the model fit is acceptable.
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Figure 4.5: Kernel density plots for each of the parameters of the simulated
data using the data-structure of the MRSA Data Set ward 1.
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Model Assessment for the Simulation

Figure 4.6: Assessment for the simulated data assuming no antimicrobial treat-
ment. The first line shows the 95% quantile (grey area) of the num-
ber of colonised patients from the model fit simulations data com-
pared to the observed number of colonised patients (black line).
The Second line shows the mean number of colonised patients (red
line) from the simulations compared to the observed number of
colonised patients (black line). The third line shows the median
of the number of colonised patients (green line) from the simu-
lations compared to the observed number of colonised patients
(black line).
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In Appendix C, section C.1, there are also the results from another two simula-

tions we performed along with the model assessment results. For both simu-

lations we used the MRSA Data Set structure, i.e. MRSA Data Set’s admission

times, discharge times and dates of tests.

Table C.1 show the results from the simulation when we set the same values we

obtained from the MRSA Data Set without taking into account antimicrobial

treatment information, so we set β0 = 0.0011, β1 = 0.0021, φ = 0.5522 and

z = 0.1570. Figure C.1 presents the model fit results where we can see that the

model fits adequately.

Table C.2 show the results from the MCMC for simulated data when random

values were set for their generation and assuming no antimicrobial treatment

information. We set β0 = 0.003, β1 = 0.005, φ = 0.75 and z = 0.08. Figure C.2

presents the model assessment where we can see that the model fit is adequate.

4.7 Results using the GSTT Data

In this section we are going to fit the Susceptibility Model, Infectivity Model and

the Full Model to the GSTT data set. We will start by fitting the MRSA Data

Set to each model, initially without taking into account antimicrobial treatment

and later presenting the results from each antimicrobial separately. We also

present the results from the model assessment. Finally, we obtain the parameter

estimates and present the model assessment for the Wounds and Respiratory

Data Sets.

4.7.1 MRSA Data Set

Here we are going to present the results from the MRSA Data Set. At the be-

ginning we will not take into account any information about the antimicrobial

treatment and obtain only the baseline rates for each ICU ward i.e. the rates

that are not related with antimicrobial use. Then, we will consider each antimi-

crobial treatment separately for each of the three models. In each case we will

examine the model fit using the simulation-based method described earlier.
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Ignoring antimicrobial treatment

We fit the model ignoring the antimicrobial treatment information. So, we use

the model in (4.6.1).

Table 4.2 shows the summary statistics for the posterior distributions of β0, β1,

φ and z. It can be seen that in both wards the background transmission rates

are a lot smaller that the rate coming from the colonised patients. Furthermore,

sensitivity φ is quite low in both wards. This probably has to do with the as-

sumption that when a patient becomes colonised remains so until they leave

the ward. So if a patient’s test is found positive, then we assume that the rest of

their negative tests, if any, are false negatives.

Importation probability z on the other hand, is large compared to other studies

i.e. [Thompson, 2004], where importation probability in general ICUs is found

to be around 10%. In our case, this might be due to the fact that throughout

our study we made the assumption that any re-admitted patient is considered

a new patient.

In the same table we give the posterior correlation between β0 and β1 for ICU

wards 1 and 2. We can see that β0 and β1 are highly correlated. Figure 4.7

shows the density plots from posteriors β0 and β1 for each ICU ward while

Figures 4.8, 4.9 and 4.10 present the density plots of the posteriors φ and z and

the correlation between β0 and β1 for each of the ICU wards respectively.

No antimicrobial treatment
Ward 1

parameters E[ · |θ, y, c, r] (s.d.) 95% CI
β0 0.0011 (0.0009) (0.00003, 0.0036)
β1 0.0021 (0.0005) (0.0010, 0.0032)

β0, β1 posterior correlation −0.4766
φ 0.5522 (0.0249) (0.5035, 0.6014)
z 0.1570 (0.0142) (0.1304, 0.1863)

Ward 2
parameters E[ · |θ, y, c, r] (s.d.) 95% CI

β0 0.0013 (1.2693× 10−6) (0.00004, 0.0042)
β1 0.0024 (0.0005) (0.0013, 0.0034)

β0, β1 posterior correlation −0.5763
φ 0.4779 (0.0252) (0.4292, 0.5282)
z 0.1639 (0.0147) (0.1358, 0.1940)

Table 4.2: Summary statistics for the transition rates β0, β1 sensitivity φ and
importation probability z from the MRSA Data Set.

138



CHAPTER 4: ASSESSING THE EFFECT OF ANTIMICROBIAL TREATMENT ON
MRSA TRANSMISSION

0.000 0.002 0.004 0.006 0.008

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Kernel Density Estimate for β0

β0

D
en

si
ty

0.000 0.002 0.004

0
20

0
40

0
60

0

Kernel Density Estimate for β1

β1

D
en

si
ty

Ward 1

0.000 0.004 0.008

0
10

0
20

0
30

0
40

0
50

0

Kernel Density Estimate for β0

β0

D
en

si
ty

0.000 0.002 0.004

0
20

0
40

0
60

0
80

0

Kernel Density Estimate for β1

β1

D
en

si
ty

Ward 2

Figure 4.7: Kernel density plots for transmission rates β0 and β1 for ward 1
(first line) and ward 2 (second line).
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Figure 4.8: Kernel density plots for sensitivity φ for ward 1 (first line) and
ward 2 (second line).
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Figure 4.9: Kernel density plots for importation probability z for ward 1 (first
line) and ward 2 (second line).
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Figure 4.10: Scatterplots showing the correlation between parameters β0 and
β1 for ward 1 (first line) and ward 2 (second line).
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Figure 4.11 shows the model assessment. We simulated 200 data sets from

model (4.6.1), obtained the number of colonised patients per day over the study

period for each simulated data set and compared the equal tailed 95% quantile

of these values to the number of colonised patients taken from the observed

data. It can be seen in Figure 4.11 that the model fit is adequate.
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Figure 4.11: Assessment for the baseline model for ICU wards 1 and 2 where
the black line shows the number of people colonised in the ward
during the study period and the grey area is the equal=tailed 95%
quantile from the simulated data.
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Including antimicrobial treatment

Next, we are are going to examine whether the antimicrobial treatment has any

effect on MRSA transmission. Thus we are going to present the results con-

sidering each antibiotic and the antiseptic separately. We assume that when a

patient takes an antimicrobial one day they are “on” this antimicrobial that day,

otherwise they are considered “off” antimicrobial treatment.

In all of our models we found that swab test sensitivity φ is around 0.55 for

ward 1 and 0.47 for ward 2 while importation probability z is 0.15 for ward 1

and 0.16 for ward 2. We can see that sensitivity φ is quite low in both wards so,

at the end of this section we will do the analysis for some of the antimicrobials

using sensitivity estimated from the data.

Susceptibility Model

Results of the transmission rate parameters β0, β̃0, β1 and β̃1 are shown in Ta-

bles C.3 and C.4 where we can actually see the ratios log(β0/β̃0) an log(β1/β̃1)

for wards 1 and 2 respectively. We use the log ratios because it is easier to de-

termine whether an antimicrobial has an effect. If a log ratio is bigger that 0

then the antimicrobial treatment has an effect otherwise it does not. So, in Table

C.3 it can be seen that Antiseptic may have a positive effect on reducing the

background transmission of MRSA on ward 1 and a smaller effect for ward 2.

Rifamycin seems also to have a positive effect on ward 1. On the other hand, Ri-

famycin and Oxazolidinone seem to have a negative effect on the MRSA trans-

mission coming from the background in ward 2. A negative effect also seem

to have Polymyxin and Quinolone in ward 1. Table C.4 shows the results from

patient-to-patient transmission, where there is evidence that the Antiseptic is

effective in reducing MRSA transmission among patients in both wards and

Rifamycin in ward 1. The difference in the results in the two wards is because

antimicrobial treatment was received for a different time period in each ward.

We can see in Table 1.5 for example, that Rifamycin was received much fewer

days in ward 2 (98) than in ward 1 (528). This can affect the parameter estimates

as there is not much information to draw significant conclusions. Furthermore,

Aminoglycoside, Macrolide and Penicillin may also to help reduce MRSA in

both wards, although not significantly.

Tables C.5 and C.6 show the results from swab test sensitivity φ and importation
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probability z respectively, for each antimicrobial group.

The results from model assessment are shown in Figures C.3 and C.4 for ward

1 and C.5 and C.6 for ward 2. It can be seen that the model fit is acceptable.

Infectivity Model

Tables C.7 and C.8 show the results from the background pressure β0 and the

transmission rates to the susceptible given by log(β1/β
′
1) for wards 1 and 2. It

can be seen in Table C.7 that background transmission rate is between 0.0007−
0.0010 for ward 1 and between 0.0009− 0.0016 for ward 2 with Antiseptic hav-

ing the lowest value in both wards.

In Table C.8 there is evidence that Antiseptic can reduce the transmission of

MRSA in both wards. In contrast, Macrolide seems to have the opposite result

in both wards.

The results from sensitivity φ and importation probability z are shown in Tables

C.9 and C.10 respectively.

Finally, Figures C.7 and C.8 show the model fit for ward 1 and Figures C.9 and

C.10 show the model fit for ward 2. We can see that the model fit is adequate.

Full Model

The results from the transmission parameters for the Full Model are shown in

Tables C.11, C.12 and C.13. From Table C.11 we can see that there is some evi-

dence that Antiseptic help in the reduction of background MRSA transmission

in both wards. On the other hand, Oxazolidinone and Rifamycin may have a

negative effect on the reduction of MRSA transmission.

Tables C.12 and C.13 show the results from the rates when colonised patients

are “off” and “on” antimicrobial treatment respectively. It can be seen that Anti-

septic is effective in reducing MRSA transmission in both cases for both wards,

while there is some evidence that Penicillin might be effective when the suscep-

tible is receiving antimicrobial treatment and the colonised not. Glycopeptide

has the same effect but when both susceptible and colonised receive antimicro-

bial treatment. Moreover, Rifamycin may have a positive effect on the reduc-

tion of MRSA transmission for colonised “off” antimicrobial treatment in ward

1, but has the opposite effect in ward 2 when colonised patients are “on” an-

timicrobial treatment. This is probably because there is much more information
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about Rifamycin in ward 1 than in ward 2. There is also some evidence that

Quinolone may have the a negative effect against MRSA transmission when

both susceptible and colonised receive the antibiotic. The NAs mean that we

were not able to obtain the parameter estimates for these antimicrobial treat-

ment groups for this model, possibly due to small number of data of that an-

timicrobial treatment available, and the large number of model parameters and

thus the MCMC algorithm could not converge.

Tables C.14 and C.15 show the estimates for parameters φ and z respectively.

The model assessment results are presented in Figures C.11 and C.12 for ward

1 and C.13 and C.14 for ward 2. We have not displayed the model fit results for

the parameters we could not obtain the parameter estimates. From the plots it

can be seen that the model fit is acceptable.

Estimating φ from the data

Here we will check if our results remain the same when we estimate sensitivity

from the data and use its value as fixed. Then we will obtain the parameter

estimates for the Antiseptic and Glycopeptide.

To calculate the sensitivity in each ward from the data, we take the ratio of

the number of positive swab tests over the number of all tests. To find the

number of positive swab tests we assume that if a patient has negative tests after

a positive has been found, then all those tests are considered false-negative.

This has been also done in [Kypraios et al., 2010].

We found that φ = 0.7369 for ward 1 and φ = 0.6937 for ward 2. These values

are higher than those estimated from the model because the model assumes that

patients with no positive test might be also colonised in the ward, and thus all

their negative tests after their colonisation time are considered as false-negative.

This can have an effect on the ratio as there will be more positive swab tests.

The parameter estimates of the transmission rates obtained for the Susceptibility

Model are presented in Tables C.16 and C.17, for the Infectivity Model in Tables

C.18 and C.19 and for the Full Model in Tables C.20, C.21 and C.22. It can be

seen that there are not any major differences to the parameters comparing to

those when sensitivity φ is estimated by the model.
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Importation probability z was found to be around z = 0.116 which is a little

lower than previously. The estimates for z for the three models can be found in

Table C.23.

Model assessment for all models in wards 1 and 2 is presented in Figures C.15

and C.16 for the Antiseptic and in Figures C.17 and C.18 for Glycopeptide. It

can be seen that the model fit is adequate for the Susceptibility Model, but not so

good for the other models.

4.7.2 Wounds Data Set

Here we will present the results obtained from the Wounds Data Set. In all

three models test’s sensitivity was found to be around 0.268 for ward 1 and

0.347 for ward 2. Importation probability was estimated around 0.17 in ward 1

and around 0.105 in ward 2.

Susceptibility Model

Table C.24 shows the MCMC estimates for the background parameters β0 and

β̃0. We can see that Antiseptic may have an positive effect on the MRSA trans-

mission in both wards. Results concerning person-to-person transmission are

given in Table C.25. It can be seen that Antiseptic, Aminoglycoside, Glycopep-

tide and Cephalosporin can help in the reduction of MRSA transmission in both

wards but not significantly.

The parameter estimates for sensitivity φ and importation probability z are

shown in Tables C.26 and C.27 respectively. Figures C.19 and C.20 show the

model assessment for ward 1 and Figures C.21 and C.22 show the model as-

sessment for ward 2. It can be seen that in both wards the model fits well.

Infectivity Model

Infectivity Model’s results for the background transmission are shown in Table

C.28. It can be seen that for all antimicrobials the rates do not differ much

with each other. Table C.29 shows the results from the rates on susceptibles

coming from colonised individuals that are “off”/“on” antimicrobial treatment.

We can see that there is strong evidence that Antiseptic has a positive effect in

MRSA transmissibility when colonised patients receive antimicrobial treatment

in both wards. On the other hand, Macrolide has the opposite effect. Rifamycin
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seems also to have a negative effect on MRSA transmission in ward 1. This

result cannot be compared to the result in ward 2 since in ward 2 Rifamycin

was received for much fewer days. (Table 1.6)

Tables C.30 and C.31 present the parameter estimates for swab test sensitivity

φ and importation probability z.

Finally, ward’s 1 model assessment is displayed in Figures C.23 and C.24 and in

Figures C.25 and C.26 for ward 2. The model seems to fit better in ward 1 than

in ward 2.

Full Model

Considering the Full Model for the Wounds Data Set, Table C.32 gives the results

from the rates on the susceptibles coming from the background. It can be seen

that Antiseptic and Glycopeptide may have a positive effect against transmis-

sibility of MRSA in both wards, but not significant.

Tables C.33 and C.34 display the results from the transmission rates from a

colonised individual when they are “off” /“on” antimicrobial treatment. It

can be seen that Aminoglycoside and Cephalosporin may have a positive effect

against MRSA transmission when colonised patients are “off” antimicrobials.

In Table C.34, there is some evidence, but not significant, that Aminoglycoside,

Antiseptic and Glycopeptide may have a positive effect against MRSA trans-

mission in ward 1. The NAs as above, mean that we were not able to obtain the

parameter estimates for these particular antimicrobial groups due to MCMC

convergence issues.

The parameter estimates for sensitivity φ for each antimicrobial group are shown

in Table C.35 and importation probability’s z results are given in Table C.36.

Finaly, Figures C.27 and C.28 show the model fit for ward 1 and Figures C.29

and C.30 the model fit for ward 2. It can be seen that the fit is not adequate

especially for ward 2.

4.7.3 Respiratory Data Set

Here we are going to show the results given by the Susceptibility Model, Infectiv-

ity Model and Full model for the Respiratory Data Set. The swab test sensitivity

and importation probability is the same for the three models. Sensitivity φ is
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around 0.56 and 0.48 for wards 1 and 2 respectively, and importation probabil-

ity z is around 0.14 for ward 1 and around 0.12 for ward 2.

Susceptibility Model

The results for the transmission rates from the Susceptibility Model are shown

in Tables C.37 and C.38. Table C.37 presents the results from the background

transmissibility. It can be seen that Antiseptic and Aminoglycoside may have

an effect against MRSA transmission in both wards, while there is some evi-

dence that Cephalosporin, Macrolide and Quinolone might have the opposite

effect.

From the results in Table C.38 we can see that Antiseptic and Aminoglycoside

may help in reducing the transmission of MRSA in both wards. On the other

hand, Quinolone might have the opposite effect. Again, the NAs mean that we

were not able to obtain the parameter estimates for these particular antimicro-

bial groups. Sensitivity φ and importation probability z results are shown in

Tables C.39 and C.40 respectively.

The model assessment is shown in Figures C.31 and C.32 for ward 1 and in C.31

and C.32 for ward 2. It can be seen that the model fits adequately.

Infectivity Model

Tables C.41 and C.42 present the results from the transmission rates coming

from the background and among patients respectively for the Infectivity model.

In can be seen in Table C.41 that Antiseptic may have an effect against MRSA

transmission, while in Table C.42 there is strong evidence that Antiseptic re-

duces MRSA transmissibility in both wards. On the other hand, Rifamycin

seems to have the opposite effect. Tables C.43 and C.44 display the results from

sensitivity φ and importation probability z respectively.

Model assessment for the Infectivity Model is shown in Figures C.35 and C.36

for ward 1 and in C.37 and C.38 for ward 2. We can conclude that the model fit

is acceptable.

Full Model

Finally, for the Full Model, Table C.45 shows the results from the background

transmission rate on the susceptibles when they are “off”/“on” antimicrobial

treatment. There is some evidence that Antiseptic and Aminoglycoside may re-
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duce the background transmission of MRSA in both wards, while Cephalosporin

and Macrolide might have the opposite effect.

Tables C.46 and C.47 present the results from the rates when colonised individ-

uals are “off” and “on” antimicrobial treatment respectively. We can see that

Aminoglycoside and Antiseptic may protect from MRSA transmission when

colonised patients have not received antimicrobial treatment.

Tables C.48 and C.49 present the parameter estimates for swab test sensitivity

φ and importation probability z.

Finally, Figures C.35 and C.36 show the model fit for ward 1 and Figures C.37

and C.38 show the model fit for ward 2. We can see that the model does not fit

very well.

In the next section we are going to discuss the methodology and results pre-

sented in this chapter.

4.8 Summary

In this chapter we looked at the effects of antimicrobial treatment on MRSA

in the two ICU wards using three different stochastic transmission models.

More specifically, a model that was taking into account only the antimicro-

bial treatment information received by the susceptible patients (Susceptibility

Model); a model that was considering antimicrobial treatment received from

the colonised patients (Infectivity model) and a model that was combining Sus-

ceptibility Model and Infectivity Model (Full Model). We also took into account the

possibility that a patient might be already colonised when he/she enters the

ward. Moreover, we assumed that there was imperfect swab test sensitivity but

we assumed 100% specificity. Results showed that the Antiseptic treatment was

the most effective almost in all cases.

We obtained the estimates of the parameters of interest for all three models us-

ing a data augmented MCMC algorithm in a Bayesian framework. Using this

algorithm we were able to infer each patient’s unknown colonisation time, if

any. To assess the model adequacy we followed a simulation based approach.

According to this approach, for each model, we used the parameter posterior

means given by the MCMC to simulate several data sets and compute the num-
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ber of colonised patients for each data set and for each model over the study

period. We then compared these values to the observed data for each model.

Initially, we used simulated data to validate our methodology. To do that, we

used the data structure from the MRSA Data Set ward 1 ignoring antimicro-

bial treatment information and simulated data using the same values for the

parameters as those found when the MRSA Data Set was used. The estimated

parameters from the simulated data set were in agreement with the values set

and the model fit was adequate.

Next, we used the GSTT data ignoring the antimicrobial use and then we looked

at each antimicrobial treatment separately for each model. For the MRSA Data

Set, we found that Antiseptic can have a positive effect in reducing MRSA trans-

mission coming from background in all the three models in both wards. Con-

sidering the transmission rate on susceptibles from the colonised patients in

the ward, we saw that the Antiseptic was again the most effective for the re-

duction of MRSA transmissibility in all cases. Furthermore, the Susceptibility

Model showed, although not significantly, that Aminoglycoside and Macrolide

may help in reducing the MRSA transmission in both wards. Macrolide was

found to have the opposite effect in the Infectivity Model. When colonised pa-

tients were “on” antimicrobial treatment, the Full Model showed Glycopeptide

may help reduce MRSA in both wards and that Quinolone may increase trans-

missibility. The model fitted adequately in all cases.

In the case where sensitivity was estimated from the data we did not find any

major differences in the parameter estimates in the results comparing to those

where sensitivity was estimated from the model. However, the model fit was

adequate only for the Susceptibility Model.

For the Wounds Data Set, we found evidence that Antiseptic is effective on re-

ducing MRSA transmission coming from the background. Susceptibility Model

and the Full Model also had the same results for Glycopeptide and Cephalosporin.

Considering patient-to-patient transmission, Susceptibility Model and Full Model

agreed that Aminoglycoside and Cephalosporin may have an effect on reduc-

ing transmission when colonised patients are “off” antimicrobial treatment in

both wards. Infectivity Model showed opposite results for Macrolide. Further-

more, Antiseptic was found effective against MRSA transmissibility at the Sus-

ceptibility Model and Infectivity Model. The model fit was adequate only for the
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Susceptibility Model.

Respiratory Data Set results showed that the Susceptibility Model and the Full

Model almost agreed that Antiseptic and Aminoglycoside may have an effect

on MRSA background transmission. The three models showed that Antiseptic

is effective against person-to-person transmission. When a colonised person is

“off” antimicrobial treatment the Susceptibility Model and the Full Model showed

that in most cases Aminoglycoside might have a positive effect against MRSA

transmissibility, while Cephalosporin and Macrolide have a negative effect. The

Infectivity Model seemed to support that only for Rifamycin. In addition, the Full

Model also showed that colonised patients who receive Aminoglycoside may

not be able to transmit MRSA to patients who also receive these antimicrobials.

The model fit was acceptable for the Susceptibility and Infectivity Models but not

for the Full Model.

In all three data sets we found that sensitivity was quite low. This might has

to do with our assumption that all negative tests after a patient’s first positive

are false-negative. In addition, importation probability was in some cases quite

high which is probably due to the assumption that re-admitted patients are

considered as new patients in the ward.

Some of our findings are consistent with the literature. In most of our cases

we obtained that the decolonisation protocol using antiseptic treatment had an

effect on MRSA transmission. This results are in agreement with the studies in

[Batra et al., 2010], [Kypraios et al., 2010] and [Macfarlane et al., 2007]. We also

found in some cases that Cephalosporin, Macrolide and Quinolone may have a

negative effect against MRSA transmissibility. These results were also found in

[Muller et al., 2006], [Weber et al., 2003], [Dancer, 2001], [Monnet et al., 2004],

[Mahamat et al., 2007] and [Aldeyab et al., 2008].

To conclude, we found evidence that Antiseptic can reduce MRSA transmission

from background and between patients. However we did not find any signif-

icant results which show that the antimicrobial treatment used has an effect

against MRSA transmissibility. Maybe if more or different assumptions were

made and if we had more information for some of the antibiotic treatment, we

could be able to come to more certain conclusions.
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Conclusions and Future work

5.1 Conclusions

In this thesis we used stochastic modelling and Bayesian inference to investi-

gate the effect of antimicrobial treatment on carriage and transmission of methi-

cillin -resistant Staphylococcus aureus (MRSA). We considered a Markov model

and a hidden Markov model to describe antimicrobial treatment effectiveness

on carriage levels of MRSA and three different transmission models to look at

MRSA transmission in two ICU wards.

The data we used to apply our methodology were provided from Guy’s and

St. Thomas’ Hospital Trust in London. The data set came from a four-year

study that was carried out in the two hospital’s ICU wards and was very de-

tailed, containing information about the decolonisation protocol that was fol-

lowed and the daily antimicrobial prescription that each patient was receiving

during that period. We used three groups of this data set, namely MRSA Data

Set, Wounds Data Set and Respiratory Data. In Chapter 1 we gave informa-

tion about these three data sets as well as details for the different antimicrobial

groups that were used in this thesis.

In Chapter 2 we considered an individual level discrete-time Markov model

to look at the effects of antimicrobials on carriage levels of MRSA. Two of our

main assumptions in this chapter were perfect sensitivity and specificity, and

ignoring MRSA transmission between patients. The latter assumption made

us use only those patients who had at least on positive MRSA test. To ob-
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tain the model’s parameter estimates we used two methods; Maximum like-

lihood estimation methods and Metropolis-Hastings MCMC algorithms. We

looked at several cases and the main results showed evidence that decolonisa-

tion treatment had an effect in clearing MRSA carriage. There was also some

evidence that Oxazolidinone might have an effect on MRSA clearance, while

Cephalosporin, Macrolide and Quinolone were found to have the opposite ef-

fect. To assess the model fit, we initially proved that the typical chi-squared

goodness-of-fit test holds in the case where no antimicrobial treatment is taken

into account but there might be some practical issues when antimicrobial infor-

mation is included. To overcome this, we used a simulation method for model

assessment. Nonetheless, the model did not fit adequately in some of the cases

considered.

The lack of fit of some cases in Chapter 2, made us relax some of our assump-

tions in Chapter 3 and consider a model taking into account imperfect sensitiv-

ity. In this chapter we used an individual level discrete-time hidden Markov

model to allow for the possibility of observing false negative swab tests in the

data. We still assumed perfect specificity and ignored patient-to-patient trans-

mission, as we did in Chapter 2. We used the same data as in the previous

chapter, i.e. only the patients who had at least on positive test. The model’s

parameters were estimated using a data-augmented MCMC algorithm. This

algorithm helped us infer the unobserved patients’ transition states. Results

showed little evidence that Oxazolidinone and antiseptic treatment may have a

positive effect on the clearance of MRSA carriage while there were not any clear

results about the effect of other antimicrobial treatment. To assess the model’s

fit we proved that a chi-squared goodness-of-fit test cannot be used under a

hidden Markov model, so we followed a simulation approach. However, the

model fit was not acceptable in some of the cases considered.

In Chapter 4, we considered imperfect sensitivity and perfect specificity. We

also accounted for person-to-person transmission in order to look at the effects

of antimicrobial treatment. We used a novel approach employing three differ-

ent individual level discrete-time transmission models, namely the Susceptibil-

ity Model which took into account only antimicrobial treatment that is received

from susceptible patients; the Infectivity Model which considered only colonised

patients’ prescribed antimicrobial treatment, and the Full Model which con-
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tained the antimicrobial information from both susceptible and colonised pa-

tients. For the analysis we used the data sets that included all patients, even

those who had never had a positive test. To obtain the parameter estimates we

used data-augmented MCMC algorithms to infer patients’ colonisation times

which were not observed. Results showed evidence that Antiseptic treatment

has a positive effect on MRSA transmission and that in most cases Macrolide,

Cephalosporin and Quinolone have the opposite effect. We assessed each model’s

fit using a simulation method, and we found that in most cases the models fit-

ted adequately.

Overall, the work in this thesis considered a variety of ways to investigate the

effect of antimicrobial treatment on carriage and transmission of MRSA. To our

knowledge, there are not any other studies in the literature that consider the ef-

fects of antimicrobial treatment on MRSA or other nosocomial pathogens in so

much detail. However, there remain model limitations and assumptions that

could be improved. In the next section we discuss some potential improve-

ments.

5.2 Future Work

Modelling improvements should be taken into account. In Chapter 4 we have

used three different models to account for MRSA transmission between the pa-

tients. A possible extension to this approach might be to investigate which

of the three models can explain better the effects of antimicrobial treatment

on MRSA. A possible way to do that is by using Bayesian model choice via

reversible-jump Markov chain Monte Carlo algorithms. This method has been

used for epidemic modelling by O’Neill and Marks in [O’Neill and Marks,

2005]. Another improvement for this chapter is to assume that there is some

possibility that a patient can be decolonised once they are found MRSA posi-

tive. However, this approach would need also to take into account imperfect

sensitivity and involve some extra parameters that may make the analysis more

complicated.

There are also some assumptions we made in this project that might be relaxed

to allow a more realistic approach of analysis of the data.
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First of all, throughout this thesis we considered only one antimicrobial treat-

ment at a time. Nevertheless, looking at the effects of multiple antimicrobial

use might be a more realistic assumption. This approach has been examined

for MRSA carriage levels by Kypraios et al., [Kypraios et al., 2011], where two

models for weekly transitions were used. For the analysis, a multiple logistic

regression model was employed using a Bayesian model averaging method.

Another parameter we ignored in this work is information about isolated pa-

tients. In the data there is detailed information of which patients were isolated

and when. It would be interesting to explore if antibiotics and antiseptic treat-

ment have different effects when patients are in isolation. Similar studies have

been done, for example in [Kypraios et al., 2010] and [Forrester et al., 2007], but

only for the assessment of the effect of control policies. However, these studies

are not conclusive as there was weak evidence that isolation has an effect on

reducing MRSA transmissibility.

Moreover, in this study, we have accounted for only one test per patient per

test day, the positive test where available, otherwise a negative test taken ran-

domly from any body site that day. However, tests might have different results

according to the body site the swab has been taken from. This can be included

in the analysis allowing for more detailed and realistic outcomes.

Another assumption we made in this thesis is that patients who were re-admitted

in the ICU wards were considered as new admissions, even those who had just

changed ward. This is not quite realistic as some of these patients might have

been already colonised with MRSA when they entered the ward for the sec-

ond time. In addition, we could possibly use the information available about

patient bed changes. Knowing each patient’s bed position and whether or not

they changed bed or ward can affect MRSA transmission. Figure 5.1 shows the

plan of the two ICU wards, where we notice the position of each bed and beds

in isolation. The red circles are the positions of hand-cleaning facilities used for

healthcare workers’ hand hygiene.

We have not also taken into account the fact that different MRSA strains re-

act differently in antimicrobial treatment. This is mainly because some MRSA

strains may be resistant to a class of antibiotics and others are not. However,

this approach may require a much larger data set in order to obtain significant

results.
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Figure 5.1: First graph: Plan for ward 1. Second graph: Plan for ward 2.
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APPENDIX A

Appendix for the Markov Model

A.1 p-MRSA Data Set

p0 q0
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside 0.7597 (0.1264) (0.4513, 0.8848) 0.2348 (0.1282) (0.1072, 0.5477)

Antiseptic 0.8422 (0.02908) (0.7739, 0.8801) 0.1100 (0.0252) (0.0764, 0.1691)

Cephalosporin 0.8934 (0.0127) (0.8652, 0.9146) 0.1055 (0.0138) (0.0821, 0.1355)

Glycopeptide 0.7285 (0.1133) (0.4356, 0.8811) 0.3008 (0.1481) (0.1228, 0.6193)

Macrolide 0.8809 (0.0174) (0.8413, 0.9072) 0.1294 (0.0195) (0.0995, 0.1736)

Nitroimidazole 0.8726 (0.0197) (0.8275, 0.9003) 0.1278 (0.0201) (0.0979, 0.1753)

Oxazolidinone 0.8639 (0.0188) (0.8180, 0.8922) 0.1296 (0.0198) (0.0995, 0.1774)

Penicillin 0.7608 (0.1282) (0.4488, 0.8811) 0.2367 (0.1318) (0.1122, 0.5612)

Polymyxin 0.8302 (0.0804) (0.5570, 0.8877) 0.1692 (0.0842) (0.1087, 0.4545)

Quinolone 0.8245 (0.0910) (0.5353, 0.8920) 0.1822 (0.0973) (0.1089, 0.4883)

Rifamycin 0.8469 (0.0617) (0.6186, 0.8903) 0.1506 (0.0649) (0.1043, 0.3864)

Table A.1: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-MRSA Data Set.
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α β
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside −0.0959 (0.1546) (−0.4293, 0.1965) 0.2132 (0.1869) (−0.0767, 0.6176)

Antiseptic −0.1703 (0.1273) (−0.3922, 0.0673) 0.3860 (0.1742) (0.0572, 0.6929)

Cephalosporin −0.1903 (0.0792) (−0.3812,−0.0692) 0.1618 (0.0812) (0.0361, 0.3576)

Glycopeptide −0.0171 (0.1217) (−0.3096, 0.2094) −0.0463 (0.1209) (−0.3009, 0.2216)

Macrolide −0.3089 (0.1221) (−0.5680,−0.0990) 0.1606 (0.1030) (−0.0087, 0.3888)

Nitroimidazole −0.2448 (0.1187) (−0.4884, 0.0444) 0.2151 (0.1214) (0.0140, 0.4715)

Oxazolidinone 0.0806 (0.0628) (−0.0884, 0.1576) 0.6358 (0.1742) (0.2388, 0.8680)

Penicillin 0.0376 (0.1839) (−0.4188, 0.3778) 0.0658 (0.2530) (−0.3347, 0.6950)

Polymyxin −0.2549 (0.2630) (−0.7758, 0.1451) 0.3562 (0.2906) (−0.1311, 0.8283)

Quinolone −0.2406 (0.1728) (−0.6001, 0.0442) 0.1022 (0.1552) (−0.1625, 0.4597)

Rifamycin −0.3084 (0.2519) (−0.7947, 0.1101) 0.4733 (0.2626) (−0.0301, 0.8564)

Table A.2: Summary statistics for parameters α and β for each antimicrobial
group for the p-MRSA Data Set.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 17 19 19 8 17 31 243

Aminoglycoside (15, 25) (13, 24) (14, 25) (9, 19) (10, 22) (22, 36) (171, 209)
Antiseptic (17, 25) (16, 26) (16, 26) (10, 20) (12, 22) (23, 38) (180, 218)

Cephalosporin (20, 26) (16, 26) (17, 28) (11, 20) (13, 23) (24, 40) (195, 236)
Glycopeptide (15, 24) (13, 23) (13, 25) (9, 18) (10, 21) (22, 37) (173, 211)

Macrolide (20, 26) (18, 27) (16, 26) (9, 19) (13, 23) (25, 39) (192, 225)
Nitroimidazole (18, 25) (16, 26) (17, 27) (10, 20) (13, 23) (25, 40) (189, 226)
Oxazolidinone (19, 26) (18, 27) (18, 28) (12, 21) (13, 24) (25, 40) (188, 226)

Penicillin (17, 25) (14, 25) (14, 26) (9, 19) (11, 22) (21, 36) (172, 210)
Polymyxin (19, 26) (17, 26) (16, 27) (10, 20) (12, 23) (24, 38) (179, 216)
Quinolone (18, 26) (17, 26) (16, 26) (11, 20) (12, 23) (23, 39) (180, 214)
Rifamycin (20, 26) (18, 27) (17, 28) (11, 20) (12, 23) (24, 38) (181, 221)

N → C
obs. counts 10 11 15 18 14 26 132

Aminoglycoside (2, 11) (5, 16) (9, 20) (7, 17) (9, 21) (21, 35) (165, 202)
Antiseptic (2, 10) (4, 14) (8, 18) (6, 16) (8, 19) (19, 34) (156, 195)

Cephalosporin (1, 7) (4, 14) (6, 17) (6, 15) (8, 18) (17, 33) (138, 178)
Glycopeptide (3, 12) (7, 17) (9, 21) (7, 17) (10, 20) (20, 35) (164, 202)

Macrolide (1, 7) (3, 12) (7, 18) (7, 17) (8, 18) (17, 32) (149, 183)
Nitroimidazole (1, 9) (4, 14) (7, 17) (5, 15) (8, 18) (17, 31) (147, 186)
Oxazolidinone (1, 8) (2, 12) (5, 16) (5, 14) (6, 18) (17, 32) (147, 186)

Penicillin (2, 10) (5, 16) (8, 20) (6, 16) (9, 20) (21, 35) (165, 201)
Polymyxin (1, 8) (3, 13) (7, 17) (6, 16) (8, 18) (19, 33) (158, 196)
Quinolone (1, 8) (4, 13) (7, 18) (5, 15) (8, 19) (18, 34) (160, 195)
Rifamycin (1, 7) (3, 12) (6, 17) (5, 15) (8, 19) (19, 33) (154, 193)

C → N
obs. counts 8 11 8 12 10 26 72

Aminoglycoside (1, 7) (6, 17) (4, 11) (10, 21) (9, 19) (17, 31) (112, 144)
Antiseptic (0, 5) (6, 15) (3, 10) (9, 19) (7, 18) (17, 29) (107, 138)

Cephalosporin (0, 5) (3, 12) (3, 10) (6, 17) (7, 17) (14, 27) (91, 124)
Glycopeptide (1, 7) (7, 17) (3, 12) (10, 22) (10, 20) (18, 32) (113, 144)

Macrolide (0, 5) (3, 12) (2, 10) (6, 18) (7, 18) (15, 29) (101, 132)
Nitroimidazole (0, 5) (4, 13) (3, 10) (7, 18) (7, 18) (15, 29) (100, 130)
Oxazolidinone (0, 5) (2, 12) (2, 9) (7, 18) (8, 18) (14, 28) (96, 128)

Penicillin (1, 7) (7, 16) (3, 11) (9, 21) (9, 20) (17, 31) (111, 143)
Polymyxin (0, 6) (4, 14) (3, 10) (8, 19) (8, 18) (16, 30) (105, 137)
Quinolone (0, 6) (4, 14) (2, 10) (9, 19) (8, 19) (17, 30) (106, 135)
Rifamycin (0, 5) (4, 13) (2, 10) (8, 18) (7, 18) (16, 29) (101, 134)

C → C
obs. counts 7 20 9 21 20 24 185

Aminoglycoside (8, 14) (14, 24) (6, 13) (12, 23) (11, 21) (19, 32) (113, 145)
Antiseptic (10, 14) (16, 25) (7, 14) (14, 24) (12, 23) (20, 33) (118, 150)

Cephalosporin (10, 15) (19, 28) (7, 14) (16, 27) (13, 23) (23, 36) (133, 166)
Glycopeptide (8, 14) (13, 24) (5, 13) (11, 23) (10, 20) (18, 32) (112, 143)

Macrolide (10, 15) (19, 28) (7, 15) (15, 27) (12, 23) (21, 35) (124, 156)
Nitroimidazole (10, 15) (18, 27) (7, 14) (15, 26) (12, 23) (21, 35) (125, 157)
Oxazolidinone (10, 15) (19, 29) (8, 15) (15, 26) (12, 22) (22, 36) (127, 160)

Penicillin (8, 14) (15, 24) (5, 14) (12, 24) (10, 21) (18, 32) (113, 146)
Polymyxin (9, 15) (17, 27) (7, 14) (14, 25) (11, 22) (20, 34) (119, 151)
Quinolone (9, 15) (17, 27) (7, 15) (14, 24) (11, 22) (19, 33) (121, 150)
Rifamycin (10, 15) (18, 27) (7, 15) (15, 25) (12, 23) (20, 34) (122, 155)

Table A.3: Model fit for each antimicrobial group for the p-MRSA Data Set.
The intervals in red indicate that the observed transition counts are
included in the equal-tailed 95% quantiles.
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Figure A.1: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
from the p-MRSA Data Set. The continuous line shows the proba-
bilities p0 and q0 whereas the dashed line shows the probabilities
p0 + α and q0 + β.
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Figure A.2: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antiseptic
from the p-MRSA Data Set. The continuous line shows the proba-
bilities p0 and q0 whereas the dashed line shows the probabilities
p0 + α and q0 + β.
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A.1.1 Model fit example

Day Intervals
1 2 3 4 5 6 7

N → N
obs. counts 17 19 19 8 17 31 243

Condition on each state (7, 16) (10, 21) (12, 22) (11, 21) (11, 23) (22, 36) (159, 205)
Condition on initial state (17, 26) (15, 25) (15, 26) (11, 22) (11, 21) (22, 38) (149, 201)

N → C
obs. counts 10 11 15 18 14 26 132

Condition on each state (4, 12) (8, 19) (7, 16) (11, 22) (12, 22) (17, 32) (133, 165)
Condition on initial state (2, 10) (4, 14) (7, 17) (7, 17) (8, 18) (17, 32) (134, 164)

C → N
obs. counts 8 11 8 12 10 26 72

Condition on each state (6, 15) (10, 20) (7, 16) (7, 15) (9, 18) (17, 30) (131, 160)
Condition on initial state (0, 7) (6, 15) (3, 11) (8, 18) (9, 19) (17, 31) (128, 159)

C → C
obs. counts 7 20 9 21 20 24 185

Condition on each state (8, 15) (11, 21) (6, 14) (10, 20) (8, 17) (23, 37) (136, 173)
Condition on initial state (8, 15) (17, 26) (8, 16) (12, 23) (12, 23) (20, 36) (138, 188)

Table A.4: Model fit for the p-MRSA Data Set including only the antiseptic
treatment. The intervals in red indicate that the observed transition
counts are included in the equal-tailed 95% quantiles.
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A.1.2 After first positive test

p0 q0
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside 0.9430 (0.0094) (0.9234, 0.9591) 0.0840 (0.0084) (0.0686, 0.1015)

Antiseptic 0.9332 (0.0157) (0.8976, 0.9595) 0.0662 (0.0157) (0.0505, 0.0857)

Cephalosporin 0.9496 (0.0084) (0.9319, 0.9643) 0.0789 (0.0080) (0.0643, 0.0954)

Glycopeptide 0.9391 (0.0107) (0.9153, 0.9573) 0.0915 (0.0107) (0.0753, 0.1148)

Macrolide 0.9470 (0.0087) (0.9282, 0.9623) 0.0892 (0.0084) (0.0737, 0.1069)

Nitroimidazole 0.9445 (0.0088) (0.9259, 0.9603) 0.0889 (0.0085) (0.0733, 0.1069)

Oxazolidinone 0.9465 (0.0084) (0.9286, 0.9613) 0.0844 (0.0075) (0.0705, 0.0999)

Penicillin 0.9441 (0.0088) (0.9252, 0.9597) 0.0884 (0.0080) (0.0737, 0.1053)

Polymyxin 0.9475 (0.0082) (0.9294, 0.9623) 0.0877 (0.0076) (0.0735, 0.1037)

Quinolone 0.9482 (0.0083) (0.9299, 0.9632) 0.0899 (0.0081) (0.0747, 0.1068)

Rifamycin 0.9472 (0.0083) (0.9290, 0.9618) 0.0850 (0.0076) (0.0720, 0.1015)

Table A.5: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-MRSA Data Set starting from patients’ first positive
test.

α β
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside 0.0320 (0.0256) (−0.0323, 0.0668) 0.0363 (0.0304) (−0.0167, 0.1016)

Antiseptic 0.0111 (0.0210) (−0.0299, 0.0528) 0.0716 (0.0215) (0.0328, 0.1167)

Cephalosporin −0.0521 (0.0636) (−0.2025, 0.0399) 0.0832 (0.0444) (0.0131, 0.1859)

Glycopeptide 0.0245 (0.0174) (−0.0120, 0.0568) −0.0096 (0.0175) (−0.0437, 0.0249)

Macrolide −0.2067 (0.2512) (−0.8086, 0.0342) 0.1063 (0.1690) (−0.0453, 0.5548)

Nitroimidazole 0.0074 (0.0727) (−0.1579, 0.0628) 0.0020 (0.0410) (−0.0491, 0.0876)

Oxazolidinone −0.0107 (0.0701) (−0.2028, 0.0580) 0.6866 (0.1708) (0.2991, 0.9075)

Penicillin 0.0282 (0.0307) (−0.0518, 0.0648) 0.0034 (0.0373) (−0.0569, 0.0895)

Polymyxin −0.3499 (0.2638) (−0.8679, 0.0355) 0.4030 (0.2920) (−0.0635, 0.8821)

Quinolone −0.5445 (0.2351) (−0.9149,−0.0403) 0.2221 (0.1481) (−0.0204, 0.5483)

Rifamycin −0.3889 (0.02622) (−0.9027, 0.0345) 0.4753 (0.2576) (0.0238, 0.8893)

Table A.6: Summary statistics for parameters α and β for each antimicrobial
group for the p-MRSA Data Set starting from patients’ first positive
test.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 3 2 1 1 2 12 134

Aminoglycoside (3, 4) (1, 2) (1, 2) (0, 1) (1, 3) (9, 16) (117, 139)
Antiseptic (2, 4) (1, 2) (1, 2) (0, 1) (1, 3) (9, 16) (115, 138)

Cephalosporin (2, 4) (1, 2) (1, 2) (0, 1) (1, 3) (10, 16) (116, 138)
Glycopeptide (3, 4) (1, 2) (1, 2) (0, 1) (1, 3) (9, 16) (117, 139)

Macrolide (3, 4) (0, 2) (0, 2) (0, 1) (1, 3) (10, 16) (112, 134)
Nitroimidazole (3, 4) (1, 2) (1, 2) (0, 1) (1, 3) (10, 16) (114, 136)
Oxazolidinone (3, 4) (1, 2) (0, 2) (0, 1) (1, 3) (10, 16) (117, 139)

Penicillin (3, 4) (1, 2) (1, 2) (0, 1) (1, 3) (9, 16) (117, 139)
Polymixin (3, 4) (1, 2) (1, 2) (0, 1) (1, 3) (9, 16) (115, 139)
Quinolone (3, 4) (1, 2) (1, 2) (0, 1) (0, 3) (10, 16) (115, 136)
Rifamycin (3, 4) (1, 2) (0, 2) (0, 1) (1, 3) (10, 16) (115, 139)

N → C
obs. counts 1 0 1 0 1 5 37

Aminoglycoside (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 7) (31, 54)
Antiseptic (0, 2) (0, 1) (0, 1) (0, 1) (0, 2) (1, 8) (33, 56)

Cephalosporin (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 7) (32, 55)
Glycopeptide (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 7) (31, 54)

Macrolide (0, 1) (0, 2) (0, 2) (0, 1) (0, 2) (1, 7) (37, 58)
Nitroimidazole (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 7) (35, 56)
Oxazolidinone (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 7) (32, 54)

Penicillin (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 7) (32, 54)
Polymixin (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 7) (32, 55)
Quinolone (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 7) (35, 56)
Rifamycin (0, 1) (0, 1) (0, 1) (0, 1) (0, 2) (1, 7) (32, 56)

C → N
obs. counts 8 11 8 12 10 26 72

Aminoglycoside (0, 3) (2, 10) (1, 8) (5, 15) (5, 15) (12, 25) (90, 120)
Antiseptic (0, 3) (1, 9) (1, 7) (4, 15) (5, 15) (13, 26) (91, 123)

Cephalosporin (0, 4) (2, 10) (2, 9) (5, 16) (6, 16) (12, 26) (88, 117)
Glycopeptide (0, 4) (1, 9) (1, 7) (5, 14) (5, 15) (11, 26) (90, 120)

Macrolide (0, 4) (2, 10) (1, 8) (5, 16) (6, 16) (13, 26) (92, 124)
Nitroimidazole (0, 4) (2, 11) (1, 8) (5, 15) (6, 16) (14, 27) (91, 125)
Oxazolidinone (0, 4) (1, 9) (1, 8) (4, 14) (6, 16) (11, 25) (86, 117)

Penicillin (0, 4) (1, 9) (1, 7) (5, 15) (5, 15) (12, 25) (88, 119)
Polymixin (0, 4) (1, 9) (1, 7) (4, 14) (6, 16) (12, 26) (89, 121)
Quinolone (0, 4) (2, 11) (1, 7) (5, 15) (5, 14) (12, 26) (92, 122)
Rifamycin (0, 4) (2, 9) (1, 8) (4, 14) (5, 15) (12, 25) (90, 120)

C → C
obs. counts 7 20 9 21 20 24 185

Aminoglycoside (11, 15) (21, 29) (9, 16) (18, 28) (15, 25) (24, 38) (136, 167)
Antiseptic (11, 15) (21, 29) (10, 16) (18, 28) (15, 25) (24, 37) (134, 166)

Cephalosporin (11, 15) (21, 29) (8, 15) (17, 28) (14, 24) (24, 37) (139, 169)
Glycopeptide (11, 15) (22, 30) (10, 16) (18, 28) (15, 25) (24, 39) (136, 167)

Macrolide (11, 15) (21, 29) (9, 16) (17, 28) (14, 24) (24, 37) (132, 164)
Nitroimidazole (11, 15) (20, 29) (8, 16) (18, 28) (14, 24) (23, 36) (132, 165)
Oxazolidinone (11, 15) (22, 30) (9, 16) (19, 29) (14, 24) (25, 39) (140, 170)

Penicillin (11, 15) (22, 30) (10, 16) (18, 28) (15, 25) (24, 38) (137, 168)
Polymixin (11, 15) (22, 30) (10, 16) (18, 28) (14, 24) (24, 37) (135, 167)
Quinolone (11, 15) (20, 29) (10, 16) (18, 28) (15, 25) (24, 37) (135, 165)
Rifamycin (11, 15) (21, 29) (9, 16) (18, 29) (15, 25) (24, 38) (137, 167)

Table A.7: Model fit for each antimicrobial treatment group of the p-MRSA
Data Set starting from patients’ first positive test. The intervals in
red indicate that the observed transition counts are included in the
equal-tailed 95% quantiles.
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Figure A.3: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
from the p-MRSA Data Set after first positive test. The continu-
ous line shows the probabilities p0 and q0 whereas the dashed line
shows the probabilities p0 + α and q0 + β.
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Figure A.4: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antiseptic
from the p-MRSA Data Set after first positive test. The continu-
ous line shows the probabilities p0 and q0 whereas the dashed line
shows the probabilities p0 + α and q0 + β.
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A.2 p-Wounds Data Set

p0 q0
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside 0.7977 (0.0149) (0.7672, 0.8257) 0.5023 (0.0323) (0.4402, 0.5677)

Antiseptic 0.7931 (0.0185) (0.7546, 0.8281) 0.5087 (0.0418) (0.4297, 0.5930)

Cephalosporin 0.7872 (0.0153) (0.7554, 0.8165) 0.5164 (0.0331) (0.4538, 0.5827)

Glycopeptide 0.7887 (0.0173) (0.7534, 0.8212) 0.4923 (0.0380) (0.4192, 0.5682)

Macrolide 0.8051 (0.0143) (0.7759, 0.8323) 0.4801 (0.0313) (0.4211, 0.5430)

Nitroimidazole 0.7876 (0.0151) (0.7566, 0.8156) 0.5199 (0.0326) (0.4575, 0.5860)

Oxazolidinone 0.7918 (0.0141) (0.7627, 0.8183) 0.5137 (0.0304) (0.4545, 0.5746)

Penicillin 0.7881 (0.0146) (0.7591, 0.8154) 0.5124 (0.0315) (0.4523, 0.5754)

Polymyxin 0.7926 (0.0138) (0.7645, 0.8188) 0.5194 (0.0304) (0.4615, 0.5815)

Quinolone 0.7967 (0.0141) (0.7673, 0.8229) 0.5189 (0.0317) (0.4584, 0.5826)

Rifamycin 0.7948 (0.0137) (0.7668, 0.8205) 0.5131 (0.0306) (0.4534, 0.5742)

Table A.8: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-Wounds Data Set.

α β
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside −0.0412 (0.0479) (−0.1389, 0.0488) 0.1661 (0.1076) (−0.0482, 0.3661)

Antiseptic 0.0015 (0.0185) (−0.0540, 0.0547) 0.0203 (0.0622) (−0.0997, 0.1443)

Cephalosporin 0.0615 (0.0368) (−0.0158, 0.1277) 0.0229 (0.0962) (−0.1598, 0.2144)

Glycopeptide 0.0215 (0.0292) (−0.0368, 0.0770) 0.0555 (0.0636) (−0.0672, 0.1815)

Macrolide −0.0719 (0.0408) (−0.1547, 0.0058) 0.3013 (0.0841) (0.1287, 0.4534)

Nitroimidazole 0.0578 (0.0384) (−0.0227, 0.1270) −0.0168 (0.1025) (−0.2102, 0.1885)

Oxazolidinone 0.1629 (0.0482) (0.0353, 0.2226) 0.1618 (0.2030) (−0.2776, 0.4748)

Penicillin 0.0821 (0.0380) (0.0032, 0.1494) 0.0939 (0.1113) (−0.1213, 0.3117)

Polymyxin 0.0649 (0.1027) (−0.2057, 0.1862) −0.1123 (0.2652) (−0.4670, 0.4548)

Quinolone −0.0874 (0.0800) (−0.2584, 0.0537) −0.0119 (0.1211) (−0.2472, 0.2220)

Rifamycin −0.0136 (0.1335) (−0.3411, 0.1716) 0.2336 (0.2083) (−0.2263, 0.5032)

Table A.9: Summary statistics for parameters α and β for each antimicrobial
group for the p-Wounds Data Set.

178



APPENDIX A: APPENDIX FOR THE MARKOV MODEL

Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 316 213 179 125 96 59 35

Aminoglycoside (314, 345) (206, 234) (148, 173) (99, 121) (83, 102) (49, 65) (28, 41)
Antiseptic (315, 346) (205, 235) (148, 174) (98, 121) (83, 102) (49, 65) (28, 40)

Cephalosporin (316, 349) (205, 234) (147, 172) (100, 120) (83, 102) (48, 65) (28, 39)
Glycopeptide (316, 348) (206, 236) (149, 173) (99, 120) (82, 101) (49, 65) (28, 40)

Macrolide (316, 348) (206, 237) (150, 174) (100, 121) (83, 102) (50, 65) (28, 40)
Nitroimidazole (315, 347) (204, 235) (149, 174) (99, 122) (81, 103) (49, 64) (28, 40)
Oxazolidinone (314, 347) (207, 234) (147, 172) (100, 121) (82, 102) (49, 65) (27, 40)

Penicillin (314, 348) (206, 234) (146, 173) (99, 121) (82, 101) (49, 65) (28, 40)
Polymyxin (313, 347) (203, 234) (148, 173) (99, 121) (83, 101) (49, 65) (28, 40)
Quinolone (314, 347) (204, 235) (146, 174) (99, 121) (82, 103) (49, 64) (28, 40)
Rifamycin (314, 348) (205, 234) (149, 173) (98, 121) (82, 101) (50, 65) (27, 40)

N → C
obs. counts 101 86 44 29 33 21 13

Aminoglycoside (71, 103) (64, 92) (50, 75) (33, 55) (27, 46) (15, 30) (7, 20)
Antiseptic (71, 101) (64, 93) (48, 75) (33, 55) (27, 46) (15, 31) (8, 20)

Cephalosporin (68, 100) (64, 94) (51, 75) (34, 54) (27, 46) (15, 31) (9, 20)
Glycopeptide (69, 100) (63, 92) (49, 74) (33, 55) (27, 47) (15, 31) (8, 20)

Macrolide (68, 100) (62, 93) (49, 73) (33, 54) (26, 45) (15, 30) (8, 20)
Nitroimidazole (70, 102) (64, 94) (48, 74) (32, 55) (26, 48) (16, 31) (8, 20)
Oxazolidinone (70, 103) (64, 92) (50, 75) (32, 53) (27, 47) (14, 31) (8, 20)

Penicillin (69, 103) (65, 92) (50, 76) (33, 55) (27, 47) (15, 30) (8, 20)
Polymyxin (69, 104) (64, 96) (50, 75) (32, 55) (27, 46) (15, 31) (8, 20)
Quinolone (69, 102) (63, 95) (48, 76) (32, 54) (26, 46) (15, 31) (8, 20)
Rifamycin (68, 102) (65, 93) (49, 73) (33, 55) (28, 47) (15, 30) (8, 20)

C → N
obs. counts 100 65 48 40 30 16 11

Aminoglycoside (83, 110) (72, 94) (46, 61) (37, 51) (22, 33) (14, 23) (7, 14)
Antiseptic (84, 109) (71, 93) (46, 61) (36, 51) (21, 33) (13, 22) (7, 14)

Cephalosporin (84, 111) (72, 92) (47, 61) (36, 51) (23, 33) (13, 22) (7, 14)
Glycopeptide (83, 110) (73, 93) (46, 61) (37, 52) (22, 33) (14, 22) (7, 14)

Macrolide (83, 109) (69, 90) (46, 61) (36, 51) (22, 33) (13, 22) (7, 14)
Nitroimidazole (84, 111) (72, 93) (46, 60) (36, 50) (21, 33) (13, 22) (7, 14)
Oxazolidinone (82, 110) (71, 92) (45, 61) (36, 50) (22, 34) (14, 22) (7, 14)

Penicillin (83, 111) (71, 92) (45, 61) (36, 50) (22, 33) (13, 22) (7, 14)
Polymyxin (83, 111) (71, 91) (46, 61) (37, 50) (22, 33) (14, 22) (7, 14)
Quinolone (83, 111) (72, 93) (47, 62) (38, 50) (22, 33) (13, 22) (7, 14)
Rifamycin (83, 109) (71, 93) (47, 61) (38, 51) (22, 34) (13, 22) (7, 14)

C → C
obs. counts 88 60 29 22 9 9 4

Aminoglycoside (78, 104) (31, 53) (16, 30) (11, 25) (6, 17) (2, 11) (1, 8)
Antiseptic (78, 104) (31, 53) (15, 31) (11, 25) (6, 17) (3, 12) (1, 8)

Cephalosporin (76, 104) (33, 53) (15, 30) (10, 26) (5, 16) (2, 12) (1, 8)
Glycopeptide (78, 105) (32, 52) (16, 30) (10, 25) (5, 17) (3, 11) (1, 8)

Macrolide (79, 105) (35, 55) (15, 31) (11, 26) (6, 17) (3, 12) (1, 7)
Nitroimidazole (76, 104) (31, 53) (16, 31) (12, 25) (6, 18) (3, 11) (1, 8)
Oxazolidinone (78, 105) (32, 53) (15, 31) (12, 25) (5, 17) (3, 11) (1, 8)

Penicillin (76, 104) (32, 53) (16, 32) (11, 26) (6, 17) (3, 12) (1, 8)
Polymyxin (76, 103) (33, 53) (15, 31) (12, 25) (6, 17) (3, 11) (1, 8)
Quinolone (77, 104) (32, 52) (15, 30) (11, 24) (6, 17) (3, 11) (1, 7)
Rifamycin (79, 105) (31, 53) (16, 30) (11, 24) (5, 17) (3, 12) (1, 8)

Table A.10: Model fit for each antimicrobial treatment group of the p-Wounds
Data Set. The intervals in red indicate that the observed transition
counts are included in the equal-tailed 95% quantiles.
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Figure A.5: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
from the p-Wounds Data Set. The continuous line shows the prob-
abilities p0 and q0 whereas the dashed line shows the probabilities
p0 + α and q0 + β.
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Figure A.6: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antiseptic
from the p-Wounds Data Set. The continuous line shows the prob-
abilities p0 and q0 whereas the dashed line shows the probabilities
p0 + α and q0 + β.
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A.2.1 After first positive test

p0 q0
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside 0.8050 (0.0191) (0.7656, 0.8403) 0.4795 (0.0330) (0.4176, 0.5460)

Antiseptic 0.7831 (0.0296) (0.7205, 0.8371) 0.4887 (0.0456) (0.4027, 0.5820)

Cephalosporin 0.8003 (0.0196) (0.7598, 0.8363) 0.4877 (0.0339) (0.4243, 0.5569)

Glycopeptide 0.7804 (0.0259) (0.7263, 0.8283) 0.4702 (0.0408) (0.3939, 0.5540)

Macrolide 0.8101 (0.0188) (0.7716, 0.8454) 0.4557 (0.0317) (0.3950, 0.5196)

Nitroimidazole 0.7908 (0.0206) (0.7478, 0.8282) 0.5042 (0.0348) (0.4382, 0.5756)

Oxazolidinone 0.7952 (0.0194) (0.7554, 0.8314) 0.4917 (0.0324) (0.4298, 0.5574)

Penicillin 0.7915 (0.0201) (0.7498, 0.8291) 0.4883 (0.0334) (0.4254, 0.5560)

Polymyxin 0.7984 (0.0188) (0.7606, 0.8338) 0.4954 (0.0318) (0.4334, 0.5590)

Quinolone 0.8026 (0.0190) (0.7635, 0.8380) 0.4963 (0.0335) (0.4318, 0.5646)

Rifamycin 0.7976 (0.1929) (0.7580, 0.8335) 0.4918 (0.0324) (0.4313, 0.5563)

Table A.11: Summary statistics for parameters p0 and q0 for each antimicro-
bial group for the p-Wounds Data Set starting from patients’ first
positive test.

α β
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside −0.0799 (0.0767) (−0.2388, 0.0581) 0.1854 (0.1257) (−0.0648, 0.4046)

Antiseptic 0.0259 (0.0400) (−0.0528, 0.1048) 0.0193 (0.0707) (−0.1191, 0.1580)

Cephalosporin −0.0139 (0.0793) (−0.1891, 0.1172) 0.0683 (0.1215) (−0.1575, 0.3044)

Glycopeptide 0.0455 (0.0391) (−0.0321, 0.1208) 0.0584 (0.0709) (−0.0782, 0.1998)

Macrolide −0.0754 (0.0654) (−0.2129, 0.0417) 0.3486 (0.0950) (0.1399, 0.5063)

Nitroimidazole 0.0803 (0.0554) (−0.0427, 0.1732) −0.0904 (0.1126) (−0.2932, 0.1441)

Oxazolidinone 0.1572 (0.0566) (0.0098, 0.2275) 0.2599 (0.2180) (−0.2391, 0.5283)

Penicillin 0.1227 (0.0479) (0.0144, 0.2020) 0.1185 (0.1265) (−0.1232, 0.3580)

Polymyxin 0.0137 (0.1410) (−0.3473, 0.1845) −0.0377 (0.2830) (−0.4372, 0.4900)

Quinolone −0.1743 (0.1300) (−0.4476, 0.0574) −0.0026 (0.1350) (−0.2524, 0.2558)

Rifamycin 0.0618 (0.1123) (−0.2220, 0.2053) 0.1969 (0.2282) (−0.2637, 0.5182)

Table A.12: Summary statistics for parameters α and β for each antimicrobial
group for the p-Wounds Data Set starting from patients’ first posi-
tive test.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 140 91 83 57 46 32 14

Aminoglycoside (138, 159) (80, 98) (62, 81) (42, 57) (39, 53) (23, 33) (10, 18)
Antiseptic (138, 159) (80, 99) (64, 81) (43, 57) (39, 53) (22, 34) (10, 18)

Cephalosporin (138, 160) (80, 98) (63, 80) (43, 57) (39, 53) (23, 34) (11, 19)
Glycopeptide (139, 161) (80, 99) (64, 81) (43, 57) (38, 53) (23, 33) (10, 18)

Macrolide (140, 161) (81, 100) (64, 81) (43, 58) (39, 52) (23, 34) (11, 18)
Nitroimidazole (136, 158) (78, 96) (61, 79) (41, 56) (37, 52) (21, 33) (10, 18)
Oxazolidinone (138, 159) (81, 99) (62, 81) (43, 58) (39, 53) (23, 34) (10, 19)

Penicillin (140, 160) (80, 99) (64, 81) (43, 57) (39, 52) (23, 33) (10, 19)
Polymyxin (139, 160) (80, 99) (63, 81) (42, 57) (38, 53) (22, 34) (10, 19)
Quinolone (137, 159) (81, 100) (63, 81) (43, 58) (39, 53) (22, 34) (11, 19)
Rifamycin (138, 160) (79, 100) (63, 81) (42, 57) (39, 53) (23, 34) (11, 19)

N → C
obs. counts 47 31 18 13 19 8 7

Aminoglycoside (28, 49) (24, 42) (19, 38) (12, 28) (12, 26) (7, 17) (3, 11)
Antiseptic (27, 49) (23, 41) (20, 37) (12, 27) (12, 26) (6, 18) (3, 11)

Cephalosporin (27, 49) (24, 42) (20, 37) (13, 27) (12, 26) (6, 17) (2, 10)
Glycopeptide (25, 48) (23, 41) (19, 37) (13, 27) (11, 26) (7, 17) (3, 11)

Macrolide (26, 47) (21, 40) (19, 37) (12, 27) (12, 26) (6, 17) (2, 10)
Nitroimidazole (29, 51) (25, 43) (21, 39) (14, 29) (13, 28) (7, 18) (2, 11)
Oxazolidinone (27, 49) (22, 40) (19, 39) (12, 27) (12, 26) (6, 17) (2, 11)

Penicillin (27, 47) (22, 42) (19, 37) (12, 27) (13, 26) (6, 17) (2, 11)
Polymyxin (27, 48) (23, 42) (20, 38) (13, 27) (12, 26) (6, 18) (2, 10)
Quinolone (27, 50) (21, 41) (20, 38) (12, 27) (11, 26) (6, 18) (2, 10)
Rifamycin (26, 49) (22, 43) (20, 38) (13, 28) (12, 26) (6, 17) (2, 10)

C → N
obs. counts 100 65 48 40 30 16 11

Aminoglycoside (79, 106) (70, 91) (46, 60) (37, 51) (22, 33) (13, 22) (7, 14)
Antiseptic (80, 106) (70, 92) (45, 61) (37, 50) (22, 33) (13, 22) (7, 14)

Cephalosporin (78, 105) (70, 90) (46, 60) (37, 50) (22, 33) (13, 22) (7, 13)
Glycopeptide (76, 106) (70, 91) (45, 61) (36, 51) (22, 34) (13, 22) (7, 14)

Macrolide (78, 106) (68, 89) (44, 61) (36, 50) (22, 33) (13, 22) (7, 14)
Nitroimidazole (77, 101) (67, 89) (43, 58) (34, 49) (20, 32) (12, 21) (7, 14)
Oxazolidinone (78, 105) (68, 91) (45, 60) (37, 50) (22, 33) (13, 22) (7, 14)

Penicillin (79, 106) (72, 91) (46, 61) (37, 50) (21, 33) (13, 22) (7, 13)
Polymyxin (80, 107) (69, 92) (45, 61) (36, 50) (22, 33) (12, 22) (7, 14)
Quinolone (81, 107) (69, 91) (45, 61) (36, 50) (22, 33) (13, 22) (7, 14)
Rifamycin (79, 107) (69, 91) (45, 61) (36, 49) (22, 33) (13, 22) (7, 14)

C → C
obs. counts 88 60 29 22 9 9 4

Aminoglycoside (82, 109) (34, 55) (16, 31) (11, 25) (6, 17) (3, 12) (1, 8)
Antiseptic (82, 106) (32, 54) (16, 32) (11, 25) (5, 16) (3, 12) (1, 8)

Cephalosporin (83, 108) (34, 54) (16, 31) (12, 24) (6, 17) (3, 11) (1, 8)
Glycopeptide (81, 111) (34, 54) (16, 32) (11, 25) (5, 17) (3, 12) (1, 8)

Macrolide (82, 110) (36, 57) (15, 32) (12, 25) (6, 17) (3, 11) (1, 8)
Nitroimidazole (86, 111) (36, 58) (18, 34) (12, 27) (7, 18) (4, 13) (1, 8)
Oxazolidinone (83, 109) (34, 57) (17, 32) (11, 25) (6, 17) (3, 12) (1, 8)

Penicillin (82, 109) (34, 53) (16, 31) (12, 24) (6, 18) (3, 12) (2, 8)
Polymyxin (81, 107) (32, 56) (16, 32) (12, 26) (6, 17) (3, 12) (1, 7)
Quinolone (81, 107) (33, 56) (16, 32) (11, 26) (6, 17) (3, 11) (1, 8)
Rifamycin (80, 108) (34, 56) (16, 32) (12, 26) (6, 17) (3, 12) (1, 8)

Table A.13: Model fit for each antimicrobial treatment group of the p-Wounds
Data Set starting from patients’ first positive test. The intervals in
red indicate that the observed transition counts are included in the
equal-tailed 95% quantiles.
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Figure A.7: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
from the p-Wounds Data Set after first positive test. The continu-
ous line shows the probabilities p0 and q0 whereas the dashed line
shows the probabilities p0 + α and q0 + β.
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Figure A.8: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antiseptic
from the p-Wounds Data Set after first positive test. The continu-
ous line shows the probabilities p0 and q0 whereas the dashed line
shows the probabilities p0 + α and q0 + β.
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A.3 p-Respiratory Data Set

p0 q0
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside 0.7871 (0.0312) (0.7193, 0.8422) 0.1961 (0.0311) (0.1413, 0.2631)

Antiseptic 0.8115 (0.0271) (0.7523, 0.8584) 0.1620 (0.0274) (0.1143, 0.2212)

Glycopeptide 0.7884 (0.0324) (0.7175, 0.8457) 0.1788 (0.0320) (0.1219, 0.2480)

Cephalosporin 0.8102 (0.0274) (0.7506, 0.8578) 0.1716 (0.0261) (0.1265, 0.2287)

Macrolide 0.8012 (0.0297) (0.7376, 0.8538) 0.1846 (0.0297) (0.1325, 0.2480)

Nitroimidazole 0.8020 (0.0276) (0.7421, 0.8501) 0.1743 (0.0267) (0.1280, 0.2332)

Oxazolidinone 0.8080 (0.0256) (0.7519, 0.8526) 0.1736 (0.0251) (0.1293, 0.2277)

Penicillin 0.7973 (0.0273) (0.7371, 0.8452) 0.1823 (0.0269) (0.1351, 0.2401)

Polymyxin 0.8144 (0.0253) (0.7593, 0.8586) 0.1713 (0.0250) (0.1268, 0.2251)

Quinolone 0.8274 (0.0255) (0.7712, 0.8708) 0.1707 (0.0259) (0.1255, 0.2281)

Rifamycin 0.8049 (0.0267) (0.7469, 0.8521) 0.1766 (0.0263) (0.1304, 0.2337)

Table A.14: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-Respiratory Data Set.

α β
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside 0.0876 (0.0730) (−0.0756, 0.2098) −0.0761 (0.0687) (−0.1968, 0.0783)

Antiseptic −0.0445 (0.0846) (−0.2428, 0.0900) 0.0828 (0.0753) (−0.0393, 0.2579)

Cephalosporin −0.1247 (0.1325) (−0.4314, 0.0774) 0.2531 (0.1900) (−0.0679, 0.6612)

Glycopeptide 0.0598 (0.0521) (−0.0515, 0.1564) −0.0047 (0.0489) (−0.0975, 0.0961)

Macrolide 0.0002 (0.0701) (−0.1630, 0.1175) −0.0031 (0.0893) (−0.1468, 0.2064)

Nitroimidazole −0.0053 (0.0976) (−0.2430, 0.1429) 0.1416 (0.1406) (−0.0701, 0.4788)

Oxazolidinone −0.0416 (0.2320) (−0.6764, 0.2026) 0.5032 (0.2289) (0.0043, 0.8222)

Penicillin −0.0038 (0.2010) (−0.5281, 0.2062) 0.1456 (0.2627) (−0.1485, 0.7742)

Polymyxin −0.4056 (0.2513) (−0.7968, 0.0641) 0.3140 (0.2300) (−0.0711, 0.7475)

Quinolone −0.2309 (0.1182) (−0.4929,−0.0328) 0.0611 (0.0919) (−0.0878, 0.2695)

Rifamycin −0.0091 (0.1852) (−0.5018, 0.2077) 0.1822 (0.1925) (−0.0952, 0.6403)

Table A.15: Summary statistics for parameters α and β for each antimicrobial
group for the p-Respiratory Data Set.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 33 28 23 12 15 13 11

Aminoglycoside (29, 39) (22, 34) (16, 28) (13, 23) (8, 17) (9, 19) (5, 14)
Antiseptic (29, 39) (23, 35) (17, 29) (12, 24) (8, 17) (9, 19) (5, 13)

Cephalosporin (29, 39) (22, 34) (17, 28) (13, 24) (8, 17) (9, 19) (5, 14)
Glycopeptide (30, 40) (22, 35) (17, 29) (11, 24) (8, 18) (9, 18) (5, 14)

Macrolide (29, 39) (22, 34) (17, 29) (13, 24) (8, 17) (9, 19) (5, 14)
Nitroimidazole (29, 40) (22, 35) (17, 28) (13, 24) (8, 17) (9, 19) (5, 14)
Oxazolidinone (30, 39) (23, 34) (17, 29) (12, 24) (8, 18) (9, 19) (5, 14)

Penicillin (28, 39) (22, 34) (17, 29) (12, 23) (8, 17) (9, 19) (5, 14)
Polymyxin (30, 40) (23, 35) (17, 29) (13, 24) (8, 17) (8, 19) (6, 14)
Quinolone (29, 39) (22, 34) (17, 29) (13, 24) (8, 17) (9, 19) (6, 14)
Rifamycin (29, 40) (22, 34) (18, 29) (12, 24) (8, 17) (9, 19) (5, 13)

N → C
obs. counts 10 14 15 21 9 14 8

Aminoglycoside (4, 14) (7, 19) (10, 21) (10, 20) (6, 16) (8, 18) (5, 13)
Antiseptic (4, 14) (7, 19) (9, 21) (9, 20) (7, 16) (8, 18) (6, 14)

Cephalosporin (4, 14) (8, 20) (10, 21) (9, 20) (7, 16) (8, 18) (5, 14)
Glycopeptide (3, 13) (7, 20) (9, 21) (9, 21) (6, 16) (9, 18) (5, 14)

Macrolide (4, 14) (7, 20) (9, 21) (9, 20) (7, 16) (8, 18) (5, 14)
Nitroimidazole (3, 14) (7, 19) (10, 21) (9, 20) (6, 16) (7, 18) (5, 13)
Oxazolidinone (4, 13) (8, 19) (9, 21) (9, 21) (6, 16) (8, 18) (5, 14)

Penicillin (3, 14) (8, 20) (9, 21) (10, 21) (7, 16) (8, 18) (5, 14)
Polymyxin (3, 13) (7, 19) (9, 21) (9, 19) (7, 16) (7, 18) (5, 13)
Quinolone (4, 14) (8, 20) (9, 20) (9, 20) (7, 16) (8, 18) (4, 13)
Rifamycin (3, 13) (7, 20) (9, 20) (9, 20) (6, 16) (8, 18) (6, 13)

C → N
obs. counts 5 3 10 12 4 6 7

Aminoglycoside (3, 11) (4, 14) (5, 14) (6, 16) (2, 10) (4, 12) (3, 10)
Antiseptic (2, 12) (4, 13) (4, 14) (6, 15) (2, 10) (4, 13) (3, 10)

Cephalosporin (3, 11) (5, 13) (5, 14) (6, 15) (3, 10) (4, 12) (3, 10)
Glycopeptide (2, 11) (4, 13) (4, 14) (6, 15) (3, 10) (4, 12) (3, 10)

Macrolide (3, 12) (3, 13) (5, 14) (6, 16) (2, 10) (4, 13) (3, 10)
Nitroimidazole (2, 11) (4, 13) (5, 14) (6, 16) (3, 10) (4, 12) (3, 10)
Oxazolidinone (2, 12) (4, 12) (4, 14) (5, 15) (3, 9) (4, 12) (3, 10)

Penicillin (3, 12) (5, 13) (5, 14) (6, 16) (3, 10) (4, 12) (3, 10)
Polymyxin (2, 12) (4, 13) (5, 15) (5, 16) (3, 9) (4, 12) (3, 10)
Quinolone (2, 12) (3, 13) (4, 14) (6, 16) (3, 9) (4, 13) (3, 10)
Rifamycin (3, 12) (4, 13) (5, 15) (6, 15) (2, 10) (4, 12) (3, 10)

C → C
obs. counts 33 26 16 14 10 12 7

Aminoglycoside (27, 35) (15, 25) (12, 21) (10, 20) (4, 12) (6, 14) (4, 11)
Antiseptic (26, 36) (16, 25) (12, 22) (11, 20) (4, 12) (5, 14) (4, 11)

Cephalosporin (27, 35) (16, 24) (11, 21) (10, 20) (4, 11) (6, 14) (4, 11)
Glycopeptide (26, 35) (16, 25) (12, 21) (11, 20) (4, 11) (6, 13) (3, 11)

Macrolide (26, 35) (15, 25) (12, 21) (10, 20) (4, 11) (5, 14) (4, 11)
Nitroimidazole (26, 36) (15, 25) (12, 21) (10, 20) (4, 11) (6, 14) (4, 11)
Oxazolidinone (26, 35) (17, 25) (11, 21) (10, 20) (5, 11) (6, 14) (4, 11)

Penicillin (26, 35) (16, 24) (11, 21) (10, 20) (4, 11) (6, 14) (4, 11)
Polymyxin (26, 36) (16, 25) (11, 21) (10, 20) (4, 11) (6, 14) (4, 11)
Quinolone (26, 36) (16, 26) (12, 22) (10, 20) (4, 11) (5, 14) (4, 11)
Rifamycin (26, 35) (16, 25) (11, 21) (11, 20) (4, 12) (6, 14) (4, 11)

Table A.16: Model fit for each antimicrobial treatment group of the p-
Respiratory Data Set. The intervals in red indicate that the ob-
served transition counts are included in the equal-tailed 95% quan-
tiles.
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Figure A.9: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
from the p-Respiratory Data Set. The continuous line shows the
probabilities p0 and q0 whereas the dashed line shows the proba-
bilities p0 + α and q0 + β.
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Figure A.10: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antiseptic
from the p-Respiratory Data Set. The continuous line shows the
probabilities p0 and q0 whereas the dashed line shows the proba-
bilities p0 + α and q0 + β.
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A.3.1 After first positive test

p0 q0
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside 0.9094 (0.0250) (0.8503, 0.9498) 0.1307 (0.0236) (0.0910, 0.1835)

Antiseptic 0.8938 (0.0305) (0.8221, 0.9432) 0.1266 (0.0231) (0.0880, 0.1792)

Glycopeptide 0.8843 (0.0332) (0.8082, 0.9379) 0.1335 (0.0282) (0.0855, 0.1972)

Cephalosporin 0.8893 (0.0282) (0.8242, 0.9349) 0.1400 (0.0237) (0.1001, 0.1923)

Macrolide 0.9000 (0.0279) (0.8358, 0.9444) 0.1340 (0.0249) (0.0932, 0.1905)

Nitroimidazole 0.9009 (0.0247) (0.8446, 0.9407) 0.1301 (0.0219) (0.0930, 0.1779)

Oxazolidinone 0.8974 (0.02421) (0.8434, 0.9377) 0.1335 (0.0210) (0.0974, 0.1798)

Penicillin 0.8956 (0.0255) (0.8396, 0.9373) 0.1375 (0.0224) (0.0990, 0.1877)

Polymyxin 0.9086 (0.0224) (0.8585, 0.8453) 0.1264 (0.0200) (0.0938, 0.1730)

Quinolone 0.9154 (0.0219) (0.8659, 0.9517) 0.1285 (0.0204) (0.0934, 0.1733)

Rifamycin 0.8996 (0.0254) (0.8410, 0.9407) 0.1320 (0.0220) (0.0948, 0.1805)

Table A.17: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-Respiratory Data Set starting from patients’ first
positive test.

α β
GROUP E[ · |S ] (s.d.) 95% CI E[ · |S ] (s.d.) 95% CI

Aminoglycoside −0.1283 (0.1172) (−0.4061, 0.0476) 0.0559 (0.0861) (−0.0858, 0.2507)

Antiseptic −0.0243 (0.0753) (−0.2000, 0.0938) 0.0647 (0.0681) (−0.0407, 0.2232)

Cephalosporin −0.0080 (0.1662) (−0.5613, 0.1381) 0.1042 (0.1811) (−0.1167, 0.5943)

Glycopeptide 0.0318 (0.0472) (−0.0649, 0.1233) 0.0097 (0.0400) (−0.0689, 0.0905)

Macrolide −0.0375 (0.0833) (−0.2417, 0.0898) 0.0468 (0.0969) (−0.1006, 0.2838)

Nitroimidazole −0.0744 (0.1090) (−0.3447, 0.0817) 0.1396 (0.1226) (−0.0445, 0.4246)

Oxazolidinone −0.1266 (0.2258) (−0.7439, 0.1128) 0.5308 (0.2368) (0.0150, 0.8572)

Penicillin −0.3619 (0.3088) (−0.8636, 0.09614) 0.3396 (0.3374) (−0.1147, 0.0861)

Polymyxin −0.4823 (0.2635) (−0.8934, 0.0142) 0.3311 (0.2129) (−0.0233, 0.7556)

Quinolone −0.4180 (0.1944) (−0.8155,−0.0798) 0.1289 (0.1052) (−0.0397, 0.3667)

Rifamycin −0.0875 (0.1702) (−0.5419, 0.1120) 0.1938 (0.1734) (−0.0543, 0.6161)

Table A.18: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-Respiratory Data Set starting from patients’ first
positive test.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 15 7 9 5 4 5 2

Aminoglycoside (13, 18) (7, 12) (4, 11) (4, 9) (2, 7) (1, 5) (1, 4)
Antiseptic (13, 18) (6, 12) (5, 11) (4, 9) (2, 7) (1, 5) (1, 4)

Cephalosporin (13, 18) (7, 12) (5, 11) (3, 9) (2, 7) (1, 5) (1, 4)
Glycopeptide (13, 18) (7, 12) (6, 11) (4, 9) (2, 7) (1, 5) (1, 4)

Macrolide (13, 18) (7, 12) (5, 11) (4, 9) (2, 7) (1, 5) (1, 4)
Nitroimidazole (13, 18) (7, 12) (5, 11) (3, 9) (2, 7) (1, 5) (1, 4)
Oxazolidinone (13, 18) (6, 12) (5, 11) (4, 8) (2, 7) (1, 5) (1, 4)

Penicillin (13, 18) (7, 12) (5, 11) (4, 9) (2, 7) (1, 5) (1, 4)
Polymyxin (13, 18) (7, 12) (6, 11) (3, 9) (3, 7) (1, 5) (1, 4)
Quinolone (13, 18) (7, 12) (5, 10) (3, 9) (2, 7) (0, 5) (1, 4)
Rifamycin (13, 18) (7, 12) (5, 11) (4, 9) (2, 7) (1, 5) (1, 4)

N → C
obs. counts 3 5 2 4 3 0 2

Aminoglycoside (0, 5) (0, 5) (0, 7) (0, 5) (0, 5) (0, 4) (0, 3)
Antiseptic (0, 5) (0, 5) (0, 6) (0, 5) (0, 5) (0, 4) (0, 3)

Cephalosporin (0, 5) (0, 5) (0, 5) (0, 5) (0, 5) (0, 4) (0, 3)
Glycopeptide (0, 5) (0, 5) (0, 5) (0, 5) (0, 5) (0, 4) (0, 3)

Macrolide (0, 5) (0, 5) (0, 6) (0, 5) (0, 5) (0, 4) (0, 3)
Nitroimidazole (0, 5) (0, 5) (0, 6) (0, 5) (0, 5) (0, 4) (0, 3)
Oxazolidinone (0, 5) (0, 5) (0, 5) (0, 5) (0, 5) (0, 4) (0, 3)

Penicillin (0, 4) (0, 5) (0, 6) (0, 5) (0, 5) (0, 4) (0, 3)
Polymyxin (0, 4) (0, 5) (0, 5) (0, 6) (0, 4) (0, 4) (0, 3)
Quinolone (0, 5) (0, 5) (0, 5) (0, 5) (0, 5) (0, 4) (0, 3)
Rifamycin (0, 5) (0, 5) (0, 5) (0, 5) (0, 5) (0, 4) (0, 3)

C → N
obs. counts 5 3 10 12 4 6 7

Aminoglycoside (1, 9) (3, 12) (4, 13) (5, 15) (2, 10) (4, 12) (3, 10)
Antiseptic (2, 10) (3, 11) (4, 13) (5, 15) (2, 10) (4, 12) (3, 10)

Cephalosporin (2, 10) (3, 12) (4, 13) (5, 15) (3, 10) (4, 13) (3, 10)
Glycopeptide (2, 10) (3, 12) (4, 13) (5, 15) (2, 10) (4, 13) (3, 11)

Macrolide (1, 10) (3, 12) (4, 13) (5, 15) (3, 10) (4, 12) (3, 11)
Nitroimidazole (2, 10) (3, 11) (4, 13) (6, 15) (2, 10) (4, 12) (3, 11)
Oxazolidinone (1, 9) (3, 11) (4, 12) (5, 14) (2, 10) (4, 12) (3, 11)

Penicillin (1, 10) (3, 12) (4, 13) (6, 15) (3, 9) (4, 12) (3, 11)
Polymyxin (2, 9) (3, 11) (4, 13) (5, 14) (2, 9) (4, 12) (3, 11)
Quinolone (2, 10) (3, 12) (4, 12) (5, 14) (2, 9) (4, 12) (3, 10)
Rifamycin (1, 10) (3, 12) (4, 13) (5, 15) (3, 10) (5, 12) (3, 10)

C → C
obs. counts 33 26 16 14 10 12 7

Aminoglycoside (29, 36) (17, 26) (12, 22) (11, 20) (4, 11) (6, 14) (4, 11)
Antiseptic (28, 36) (18, 26) (13, 22) (11, 21) (4, 12) (6, 14) (3, 11)

Cephalosporin (28, 36) (17, 26) (13, 22) (11, 21) (4, 11) (5, 14) (4, 11)
Glycopeptide (28, 36) (17, 26) (12, 22) (11, 21) (4, 11) (5, 14) (3, 11)

Macrolide (28, 37) (17, 26) (12, 22) (11, 21) (4, 11) (6, 14) (3, 11)
Nitroimidazole (28, 36) (18, 26) (13, 22) (11, 20) (4, 11) (6, 14) (3, 11)
Oxazolidinone (29, 37) (17, 26) (14, 22) (12, 21) (4, 11) (6, 14) (3, 11)

Penicillin (28, 36) (17, 26) (13, 22) (11, 20) (4, 11) (6, 13) (3, 11)
Polymyxin (29, 36) (18, 26) (13, 22) (12, 21) (5, 12) (6, 14) (3, 11)
Quinolone (28, 36) (17, 26) (14, 22) (12, 21) (5, 12) (6, 14) (4, 11)
Rifamycin (28, 37) (17, 26) (12, 22) (11, 21) (4, 11) (6, 13) (4, 11)

Table A.19: Model fit for each antimicrobial treatment group of the p-
Respiratory Data Set starting from patients’ first positive test. The
intervals in red indicate that the observed transition counts are in-
cluded in the equal-tailed 95% quantiles.
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Figure A.11: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
from the p-Respiratory Data Set after first positive test. The con-
tinuous line shows the probabilities p0 and q0 whereas the dashed
line shows the probabilities p0 + α and q0 + β.
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Figure A.12: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antiseptic
from the p-Respiratory Data Set after first positive test. The con-
tinuous line shows the probabilities p0 and q0 whereas the dashed
line shows the probabilities p0 + α and q0 + β.
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APPENDIX B

Appendix for the Hidden Markov

Model

B.1 p-MRSA Data Set

p0 q0
GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.8821 (0.03704) (0.8421, 0.9127) 0.0793 (0.0330) (0.0486, 0.1200)

Antiseptic 0.8617 (0.0210) (0.8134, 0.8956) 0.0582 (0.0155) (0.0331, 0.0924)

Cephalosporin 0.9187 (0.0109) (0.8950, 0.9381) 0.0538 (0.0110) (0.0344, 0.0773)

Glycopeptide 0.8779 (0.0222) (0.8265, 0.9136) 0.0939 (0.0221) (0.0580, 0.1447)

Macrolide 0.9080 (0.0134) (0.8787, 0.9310) 0.0713 (0.0141) (0.0471, 0.1022)

Nitroimidazole 0.8967 (0.0142) (0.8648, 0.9204) 0.0725 (0.0143) (0.0481, 0.1044)

Oxazolidinone 0.8879 (0.0134) (0.8583, 0.9105) 0.0728 (0.0133) (0.0497, 0.1021)

Penicillin 0.8777 (0.0170) (0.8395, 0.9054) 0.0828 (0.0167) (0.0551, 0.1198)

Polymyxin 0.8827 (0.0150) (0.8490, 0.9080) 0.0816 (0.0149) (0.0560, 0.1146)

Quinolone 0.8904 (0.0148) (0.8566, 0.9155) 0.0809 (0.0147) (0.0559, 0.1139)

Rifamycin 0.8860 (0.0144) (0.8539, 0.9100) 0.0787 (0.0141) (0.0548, 0.1099)

Table B.1: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-MRSA Data Set.
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α β

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside −0.0635 (0.0952) (−0.3236, 0.0571) 0.0958 (0.0866) (−0.0128, 0.3385)

Antiseptic 0.0552 (0.0368) (−0.0185, 0.1180) 0.0628 (0.0358) (0.0114, 0.1385)

Cephalosporin −0.2983 (0.1138) (−0.5728,−0.1245) 0.1733 (0.0773) (0.0538, 0.3593)

Glycopeptide −0.0052 (0.0439) (−0.1004, 0.0750) −0.0186 (0.0316) (−0.0815, 0.0454)

Macrolide −0.3924 (0.1552) (−0.7199,−0.1226) 0.1352 (0.0906) (−0.0100, 0.3392)

Nitroimidazole −0.3511 (0.1689) (−0.6903,−0.0587) 0.2078 (0.1145) (0.0146, 0.4467)

Oxazolidinone 0.0511 (0.0683) (−0.1328, 0.1252) 0.6942 (0.1727) (0.3042, 0.9214)

Penicillin −0.0269 (0.1592) (−0.5359, 0.1150) 0.0882 (0.1619) (−0.0638, 0.5999)

Polymyxin −0.3068 (0.2567) (−0.8124, 0.0878) 0.3585 (0.2497) (−0.0560, 0.8085)

Quinolone −0.2475 (0.1823) (−0.6752, 0.0098) 0.0559 (0.0989) (−0.0745, 0.3051)

Rifamycin −0.4063 (0.2493) (−0.7954, 0.9211) 0.4531 (0.2368) (0.0322, 0.8770)

Table B.2: Summary statistics for parameters α and β for each antimicrobial
group for the p-MRSA Data Set.

φ ψ

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.8593 (0.0346) (0.7921, 0.9276) 0.8321 (0.0125) (0.8042, 0.9158)

Antiseptic 0.8562 (0.0210) (0.8134, 0.8956) 0.8310 (0.0125) (0.8048, 0.9133)

Cephalosporin 0.8400 (0.0317) (0.7787, 0.9028) 0.8244 (0.0126) (0.7993, 0.9078)

Glycopeptide 0.8583 (0.0340) (0.7926, 0.9257) 0.8318 (0.0126) (0.8057, 0.8951)

Macrolide 0.8452 (0.0337) (0.7798, 0.9115) 0.8266 (0.0130) (0.7994, 0.8708)

Nitroimidazole 0.8518 (0.0341) (0.7847, 0.9185) 0.8297 (0.0132) (0.7814, 0.8828)

Oxazolidinone 0.8511 (0.0321) (0.7876, 0.9142) 0.8290 (0.0128) (0.7932, 0.8915)

Penicillin 0.8569 (0.0341) (0.7909, 0.9248) 0.8312 (0.0125) (0.8047, 0.8747)

Polymyxin 0.8564 (0.0326) (0.7926, 0.9206) 0.8313 (0.0122) (0.7879, 0.8736)

Quinolone 0.8532 (0.0324) (0.7910, 0.9176) 0.8299 (0.0123) (0.7839, 0.8725)

Rifamycin 0.8575 (0.0320) (0.7954, 0.9211) 0.8319 (0.0121) (0.7969, 0.8836)

Table B.3: Summary statistics for parameters φ and ψ for each antimicrobial
group for the p-MRSA Data Set.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 17 19 19 8 17 31 243

Aminoglycoside (17, 25) (17, 26) (18, 29) (12, 21) (14, 24) (26, 40) (196, 233)
Antiseptic (17, 25) (16, 26) (17, 28) (11, 21) (12, 23) (26, 40) (197, 236)

Cephalosporin (16, 25) (15, 24) (17, 27) (10, 20) (14, 24) (26, 41) (205, 243)
Glycopeptide (17, 25) (16, 26) (18, 28) (12, 21) (13, 24) (25, 41) (195, 231)

Macrolide (17, 25) (17, 26) (16, 26) (10, 19) (13, 23) (27, 41) (199, 238)
Nitroimidazole (15, 25) (15, 25) (17, 27) (10, 20) (13, 24) (26, 40) (198, 234)
Oxazolidinone (17, 25) (17, 27) (17, 28) (12, 22) (14, 25) (27, 41) (198, 235)

Penicillin (17, 25) (16, 26) (18, 28) (12, 21) (14, 24) (25, 40) (195, 230)
Polymyxin (16, 25) (17, 27) (17, 28) (12, 21) (14, 24) (26, 40) (197, 233)
Quinolone (17, 25) (18, 27) (18, 27) (12, 21) (13, 24) (26, 42) (195, 232)
Rifamycin (16, 25) (17, 27) (18, 28) (12, 21) (14, 24) (26, 41) (195, 232)

N → C
obs. counts 10 11 15 18 14 26 132

Aminoglycoside (2, 10) (3, 13) (5, 16) (5, 14) (7, 17) (17, 30) (142, 178)
Antiseptic (2, 10) (4, 14) (6, 17) (5, 15) (8, 19) (17, 31) (138, 177)

Cephalosporin (2, 10) (5, 15) (7, 17) (6, 15) (7, 17) (16, 30) (131, 170)
Glycopeptide (2, 10) (4, 14) (6, 16) (5, 14) (7, 18) (15, 31) (144, 179)

Macrolide (2, 10) (4, 13) (8, 18) (7, 16) (7, 18) (15, 30) (136, 175)
Nitroimidazole (2, 12) (5, 15) (7, 17) (6, 15) (7, 18) (17, 31) (141, 176)
Oxazolidinone (2, 10) (3, 13) (6, 16) (4, 14) (6, 17) (16, 30) (140, 175)

Penicillin (2, 10) (4, 14) (5, 16) (5, 14) (7, 17) (16, 32) (144, 179)
Polymyxin (2, 10) (3, 13) (6, 16) (5, 14) (7, 16) (16, 31) (142, 178)
Quinolone (2, 10) (3, 12) (6, 16) (5, 14) (6, 17) (15, 31) (142, 178)
Rifamycin (2, 10) (3, 13) (5, 16) (5, 14) (7, 16) (15, 31) (143, 179)

C → N
obs. counts 8 11 8 12 10 26 72

Aminoglycoside (1, 7) (4, 14) (2, 9) (7, 18) (6, 16) (13, 27) (94, 125)
Antiseptic (0, 6) (4, 13) (2, 9) (6, 17) (6, 17) (14, 28) (96, 127)

Cephalosporin (0, 7) (5, 14) (3, 11) (6, 18) (7, 17) (13, 26) (87, 116)
Glycopeptide (1, 6) (4, 14) (2, 9) (6, 17) (7, 17) (14, 27) (92, 125)

Macrolide (0, 7) (4, 14) (2, 10) (6, 18) (7, 17) (13, 26) (93, 125)
Nitroimidazole (1, 6) (5, 15) (2, 10) (7, 17) (7, 17) (14, 27) (93, 122)
Oxazolidinone (0, 6) (4, 13) (2, 9) (6, 16) (7, 17) (12, 25) (91, 121)

Penicillin (0, 7) (4, 14) (2, 10) (7, 17) (7, 18) (14, 27) (94, 125)
Polymyxin (1, 7) (4, 13) (2, 10) (7, 17) (6, 17) (14, 26) (92, 126)
Quinolone (1, 7) (4, 13) (2, 9) (7, 17) (6, 16) (13, 28) (93, 125)
Rifamycin (0, 7) (4, 13) (2, 9) (7, 16) (6, 17) (13, 27) (93, 124)

C → C
obs. counts 7 20 9 21 20 24 185

Aminoglycoside (8, 14) (17, 27) (8, 15) (15, 26) (14, 24) (22, 37) (132, 162)
Antiseptic (8, 15) (17, 27) (8, 15) (16, 27) (13, 23) (22, 36) (129, 159)

Cephalosporin (8, 14) (16, 26) (6, 14) (15, 26) (13, 23) (24, 37) (141, 170)
Glycopeptide (8, 14) (17, 27) (8, 15) (16, 27) (13, 23) (23, 36) (132, 165)

Macrolide (8, 15) (17, 27) (7, 15) (15, 26) (12, 23) (24, 37) (132, 163)
Nitroimidazole (9, 14) (16, 26) (7, 15) (16, 26) (13, 23) (23, 36) (135, 163)
Oxazolidinone (9, 15) (18, 27) (7, 15) (17, 27) (13, 23) (25, 37) (136, 165)

Penicillin (8, 15) (17, 27) (7, 15) (16, 26) (12, 23) (23, 36) (131, 162)
Polymyxin (8, 14) (18, 27) (7, 15) (16, 26) (13, 24) (23, 36) (131, 165)
Quinolone (8, 14) (17, 27) (8, 15) (16, 26) (13, 24) (22, 37) (132, 163)
Rifamycin (8, 14) (18, 27) (8, 15) (16, 26) (13, 24) (23, 36) (133, 163)

Table B.4: Model fit for each antimicrobial treatment group of the p-MRSA
Data Set. The intervals in red indicate that the observed transition
counts are included in the equal-tailed 95% quantiles.
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Figure B.1: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
for the p-MRSA Data Set. The continuous line shows the proba-
bilities p0 and q0 whereas the dashed line shows the probabilities
p0 + α and q0 + β.
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Figure B.2: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antiseptic
for the p-MRSA Data Set. The continuous line shows the proba-
bilities p0 and q0 whereas the dashed line shows the probabilities
p0 + α and q0 + β.
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B.1.1 After first positive test

p0 q0
GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.9747 (0.0080) (0.9572, 0.9884) 0.0337 (0.0074) (0.0206, 0.0495)

Antiseptic 0.9704 (0.0134) (0.9396, 0.9913) 0.0242 (0.0069) (0.0126, 0.0397)

Cephalosporin 0.9798 (0.0065) (0.9400, 0.9908 0.0238 (0.0063) (0.0189, 0.0438)

Glycopeptide 0.9661 (0.0098) (0.9447, 0.9833) 0.0422 (0.0093) (0.0256, 0.0625)

Macrolide 0.9777 (0.0074) (0.9612, 0.9902) 0.0365 (0.0075) (0.0232, 0.0527)

Nitroimidazole 0.9755 (0.0078) (0.9576, 0.9885) 0.0367 (0.0076) (0.0235, 0.0538)

Oxazolidinone 0.9766 (0.0072) (0.9607, 0.9890) 0.0330 (0.0069) (0.0210, 0.0481)

Penicillin 0.9761 (0.0077) (0.9589, 0.9892) 0.0353 (0.0076) (0.0221, 0.0519)

Polymyxin 0.9751 (0.0076) (0.9583, 0.9881) 0.0384 (0.0076) (0.0250, 0.0547)

Quinolone 0.9768 (0.0075) (0.9599, 0.9896) 0.0388 (0.0077) (0.0251, 0.0557)

Rifamycin 0.9763 (0.0073) (0.9602, 0.9890) 0.0363 (0.0071) (0.0235, 0.0517)

Table B.5: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-MRSA Data Set starting from patients’ first positive
test.

α β

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside −0.0007 (0.0272) (−0.0716, 0.0343) 0.0418 (0.0258) (−0.0035, 0.0978)

Antiseptic −0.0030 (0.0179) (−0.0376, 0.0339) 0.0483 (0.0151) (0.0218, 0.0811)

Cephalosporin −0.1095 (0.1075) (−0.3860, 0.0140) 0.0921 (0.0451) (0.0271, 0.2012)

Glycopeptide 0.0266 (0.0121) (0.0015, 0.0499) −0.0062 (0.0124) (−0.0312, 0.0179)

Macrolide −0.0879 (0.1542) (−0.6661, 0.0199) 0.0184 (0.0552) (−0.0309, 0.1918)

Nitroimidazole −0.0181 (0.0674) (−0.1555, 0.0317) 0.0013 (0.0274) (−0.0269, 0.0684)

Oxazolidinone −0.0671 (0.0956) (−0.3290, 0.0252) 0.7330 (0.1754) (0.3302, 0.9588)

Penicillin −0.0174 (0.0581) (−0.1469, 0.0311) 0.0398 (0.0405) (−0.0205, 0.1251)

Polymyxin −0.2249 (0.2639) (−0.8700, 0.0213) 0.1689 (0.2257) (−0.0372, 0.7235)

Quinolone −0.3335 (0.3046) (−0.9364, 0.0148) 0.0513 (0.0847) (−0.0380, 0.2763)

Rifamycin −0.5153 (0.2733) (−0.9494,−0.0069) 0.3270 (0.0142) (0.2703, 0.3260)

Table B.6: Summary statistics for parameters α and β for each antimicrobial
group for the p-MRSA Data Set starting from patients’ first positive
test.
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φ ψ

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.7786 (0.0374) (0.7052, 0.8516) 0.6013 (0.0134) (0.5787, 0.6264)

Antiseptic 0.7932 (0.0380) (0.7190, 0.8680) 0.6025 (0.0136) (0.5742, 0.3307)

Cephalosporin 0.7826 (0.0346) (0.7138, 0.8498) 0.6087 (0.0130) (0.5772, 0.3268)

Glycopeptide 0.7875 (0.0365) (0.7161, 0.8589) 0.6045 (0.0123) (0.5743, 0.3249)

Macrolide 0.7708 (0.0372) (0.6982, 0.8444) 0.5934 (0.0139) (0.5750, 0.3241)

Nitroimidazole 0.7765 (0.0374) (0.7036, 0.8501) 0.6100 (0.0139) (0.5713, 0.6451)

Oxazolidinone 0.7690 (0.0374) (0.6965, 0.8429) 0.5957 (0.0145) (0.5675, 0.6239)

Penicillin 0.7721 (0.0376) (0.6990, 0.8471) 0.5990 (0.0137) (0.5611, 0.6249)

Polymyxin 0.7792 (0.0385) (0.7046, 0.8552) 0.6098 (0.0132) (0.5716, 0.6274)

Quinolone 0.7771 (0.0382) (0.7027, 0.8522) 0.6110 (0.0178) (0.5711, 0.6365)

Rifamycin 0.7761 (0.0379) (0.7018, 0.8507) 0.6016 (0.0165) (0.5702, 0.6253)

Table B.7: Summary statistics for parameters φ and ψ for each antimicrobial
group for the p-MRSA Data Set starting from patients’ first positive
test.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 3 2 1 1 2 12 134

Aminoglycoside (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (105, 130)
Antiseptic (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (104, 129)

Cephalosporin (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (106, 129)
Glycopeptide (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (106, 130)

Macrolide (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (104, 127)
Nitroimidazole (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (106, 129)
Oxazolidinone (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (107, 130)

Penicillin (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (106, 128)
Polymyxin (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (105, 129)
Quinolone (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (105, 129)
Rifamycin (1, 4) (0, 2) (0, 2) (0, 1) (0, 3) (8, 15) (107, 128)

N → C
obs. counts 1 0 1 0 1 5 37

Aminoglycoside (0, 3) (0, 2) (0, 2) (0, 1) (0, 2) (2, 9) (41, 65)
Antiseptic (0, 3) (0, 2) (0, 2) (0, 1) (0, 3) (2, 9) (42, 66)

Cephalosporin (0, 3) (0, 2) (0, 2) (0, 1) (0, 2) (2, 9) (41, 65)
Glycopeptide (0, 3) (0, 2) (0, 2) (0, 1) (0, 3) (1, 9) (40, 65)

Macrolide (0, 3) (0, 2) (0, 2) (0, 1) (0, 2) (2, 9) (44, 66)
Nitroimidazole (0, 3) (0, 2) (0, 2) (0, 1) (0, 2) (2, 9) (41, 64)
Oxazolidinone (0, 3) (0, 2) (0, 2) (0, 1) (0, 2) (2, 9) (41, 64)

Penicillin (0, 3) (0, 2) (0, 2) (0, 1) (0, 2) (2, 9) (43, 65)
Polymyxin (0, 3) (0, 2) (0, 2) (0, 1) (0, 3) (2, 9) (42, 65)
Quinolone (0, 3) (0, 2) (0, 2) (0, 1) (0, 3) (2, 9) (41, 66)
Rifamycin (0, 3) (0, 2) (0, 2) (0, 1) (0, 3) (2, 9) (41, 64)

C → N
obs. counts 8 11 8 12 10 26 72

Aminoglycoside (1, 8) (4, 14) (2, 9) (7, 17) (5, 16) (12, 26) (85, 117)
Antiseptic (1, 7) (4, 14) (2, 9) (5, 16) (6, 16) (13, 26) (86, 118)

Cephalosporin (0, 7) (4, 14) (2, 10) (7, 17) (6, 17) (12, 26) (82, 114)
Glycopeptide (1, 7) (4, 13) (2, 9) (6, 16) (6, 15) (12, 25) (84, 115)

Macrolide (1, 7) (5, 14) (2, 9) (6, 16) (6, 16) (12, 26) (86, 118)
Nitroimidazole (1, 8) (4, 14) (2, 9) (6, 17) (6, 15) (13, 26) (85, 116)
Oxazolidinone (1, 7) (4, 14) (2, 9) (5, 17) (7, 17) (11, 25) (82, 114)

Penicillin (1, 7) (4, 15) (2, 9) (6, 16) (6, 16) (13, 24) (85, 117)
Polymyxin (1, 7) (4, 14) (2, 9) (5, 16) (6, 16) (12, 26) (86, 119)
Quinolone (1, 8) (4, 15) (2, 9) (6, 16) (6, 16) (12, 26) (88, 117)
Rifamycin (1, 7) (4, 13) (2, 9) (5, 16) (6, 16) (12, 26) (88, 117)

C → C
obs. counts 7 20 9 21 20 24 185

Aminoglycoside (7, 14) (17, 27) (8, 15) (16, 26) (14, 24) (24, 37) (140, 171)
Antiseptic (8, 14) (17, 27) (8, 15) (17, 27) (14, 24) (24, 37) (138, 169)

Cephalosporin (7, 14) (17, 27) (7, 14) (16, 26) (13, 23) (24, 37) (143, 174)
Glycopeptide (8, 14) (18, 27) (8, 15) (17, 27) (15, 24) (25, 38) (141, 172)

Macrolide (8, 14) (17, 26) (8, 15) (17, 27) (14, 24) (24, 38) (138, 171)
Nitroimidazole (7, 14) (17, 27) (8, 15) (16, 27) (15, 24) (24, 37) (140, 172)
Oxazolidinone (8, 14) (17, 27) (8, 15) (16, 27) (13, 23) (24, 39) (142, 173)

Penicillin (8, 14) (16, 27) (8, 15) (17, 27) (13, 24) (25, 37) (140, 171)
Polymyxin (8, 14) (17, 27) (8, 15) (17, 27) (14, 24) (23, 37) (138, 170)
Quinolone (7, 14) (16, 27) (8, 15) (17, 27) (13, 24) (24, 38) (140, 169)
Rifamycin (7, 14) (18, 27) (8, 15) (17, 28) (14, 24) (24, 38) (140, 169)

Table B.8: Model fit for each antimicrobial group for the p-MRSA Data Set
starting from patients’ first positive test. The intervals in red in-
dicate that the observed transition counts are included in the equal-
tailed 95% quantiles.
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Figure B.3: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
for the p-MRSA Data Set starting from patients’ first positive test.
The continuous line shows the probabilities p0 and q0 whereas the
dashed line shows the probabilities p0 + α and q0 + β.
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Figure B.4: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antiseptic
for the p-MRSA Data Set starting from patients’ first positive test.
The continuous line shows the probabilities p0 and q0 whereas the
dashed line shows the probabilities p0 + α and q0 + β.
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B.2 p-Wounds Data Set

p0 q0
GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.8370 (0.0224) (0.7892, 0.8766) 0.1978 (0.0426) (0.1223, 0.2902)

Antiseptic 0.8350 (0.0273) (0.7742, 0.8816) 0.1930 (0.0484) (0.1109, 0.3013)

Cephalosporin 0.8133 (0.0244) (0.7607, 0.8564) 0.2253 (0.0438) (0.1460, 0.3175)

Glycopeptide 0.8123 (0.0303) (0.7458, 0.8650) 0.1816 (0.0460) (0.1038, 0.2816)

Macrolide 0.8497 (90.0201) (0.8073, 0.8857) 0.1831 (0.0377) (0.1151, 0.2648)

Nitroimidazole 0.8122 (0.0238) (0.7605, 0.8545) 0.2279 (0.0437) (0.1490, 0.3205)

Oxazolidinone 0.8281 (0.0215) (0.7815, 0.8659) 0.2065 (0.0427) (0.1323, 0.2995)

Penicillin 0.8315 (0.0223) (0.7839, 0.8710) 0.1897 (0.0423) (0.1159, 0.2821)

Polymyxin 0.8266 (0.0218) (0.7797, 0.8659) 0.2168 (0.0433) (0.1401, 0.3126)

Quinolone 0.8325 (0.0229) (0.7843, 0.8729) 0.2112 (0.0466) (0.1307, 0.3125)

Rifamycin 0.8315 (0.0214) (0.7860, 0.8704) 0.2053 (0.0422) (0.1309, 0.2944)

Table B.9: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-Wounds Data Set.

α β

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside −0.1378 (0.1078) (−0.3767, 0.0395) 0.2459 (0.1411) (−0.0001, 0.5329)

Antiseptic −0.0242 (0.0474) (−0.1223, 0.0657) 0.0598 (0.0630) (−0.0616, 0.1884)

Cephalosporin 0.0870 (0.0604) (−0.0508, 0.1864) −0.0086 (0.1099) (−0.1934, 0.2394)

Glycopeptide 0.0734 (0.0464) (−0.0216, 0.1626) 0.0247 (0.0581) (−0.0866, 0.1440)

Macrolide −0.2312 (0.0858) (−0.4128,−0.0805) 0.3875 (0.1092) (0.1720, 0.5958)

Nitroimidazole 0.1018 (0.0508) (−0.0136, 0.1889) −0.0727 (0.0910) (−0.2270, 0.1345)

Oxazolidinone 0.1012 (0.0863) (−0.1271, 0.1947) 0.4502 (0.2047) (0.0329, 0.7827)

Penicillin 0.0079 (0.0696) (−0.1471, 0.1221) 0.2669 (0.1293) (0.0280, 0.5319)

Polymyxin −0.1004 (0.2066) (−0.6009, 0.1557) 0.2218 (0.2868) (−0.1990, 0.7532)

Quinolone −0.1551 (0.1494) (−0.5181, 0.0646) 0.0433 (0.1300) (−0.1670, 0.3371)

Rifamycin −0.2648 (0.2511) (−0.7742, 0.1114) 0.4524 (0.2259) (−0.0048, 0.7940)

Table B.10: Summary statistics for parameters α and β for each antimicrobial
group for the p-Wounds Data Set.
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φ ψ

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.6371 (0.0410) (0.5611, 0.7213) 0.6421 (0.0133) (0.6145, 0.6663)

Antiseptic 0.6361 (0.0413) (0.5589, 0.7206) 0.6418 (0.0134) (0.6134, 0.6662)

Cephalosporin 0.6398 (0.0401) (0.5636, 0.7204) 0.6431 (0.0130) (0.6155, 0.6662)

Glycopeptide 0.6174 (0.0385) (0.5463, 0.6972) 0.6357 (0.0136) (0.6074, 0.6607)

Macrolide 0.6385 (0.0395) (0.5642, 0.7198) 0.6427 (0.0130) (0.6160, 0.6661)

Nitroimidazole 0.6380 (0.0407) (0.5611, 0.7206) 0.6424 (0.0132) (0.6144, 0.6661)

Oxazolidinone 0.6326 (0.0423) (0.5542, 0.7205) 0.6406 (0.0139) (0.6113, 0.6658)

Penicillin 0.6255 (0.0415) (0.5479, 0.7110) 0.6383 (0.0142) (0.6080, 0.6639)

Polymyxin 0.6367 (0.0413) (0.5601, 0.7227) 0.6420 (0.0134) (0.6138, 0.6665)

Quinolone 0.6322 (0.0431) (0.5520, 0.7207) 0.6404 (0.0143) (0.6101, 0.6661)

Rifamycin 0.6305 (0.0415) (0.5521, 0.7141) 0.6399 (0.0139) (0.6104, 0.6647)

Table B.11: Summary statistics for parameters φ and ψ for each antimicrobial
group for the p-Wounds Data Set.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 316 213 179 125 96 59 35

Aminoglycoside (314, 345) (213, 242) (153, 178) (102, 124) (84, 104) (50, 65) (28, 40)
Antiseptic (315, 348) (214, 243) (152, 178) (102, 124) (84, 104) (49, 65) (27, 40)

Cephalosporin (314, 348) (214, 241) (154, 179) (102, 123) (83, 103) (49, 66) (28, 40)
Glycopeptide (317, 347) (214, 244) (154, 179) (103, 123) (83, 103) (49, 66) (27, 40)

Macrolide (316, 347) (215, 243) (153, 180) (103, 124) (85, 104) (50, 65) (28, 40)
Nitroimidazole (312, 348) (213, 242) (153, 179) (102, 124) (84, 103) (50, 65) (29, 40)
Oxazolidinone (315, 349) (215, 243) (153, 179) (103, 124) (84, 104) (49, 65) (28, 40)

Penicillin (318, 348) (215, 242) (154, 179) (102, 124) (85, 105) (50, 64) (28, 40)
Polymyxin (317, 348) (216, 244) (153, 180) (103, 123) (84, 104) (50, 65) (28, 41)
Quinolone (315, 345) (215, 244) (153, 176) (103, 124) (84, 104) (49, 65) (28, 41)
Rifamycin (315, 347) (214, 243) (155, 179) (102, 124) (84, 104) (50, 65) (29, 40)

N → C
obs. counts 101 86 44 29 33 21 13

Aminoglycoside (71, 103) (56, 85) (44, 69) (30, 52) (25, 45) (15, 30) (7, 20)
Antiseptic (69, 102) (55, 85) (44, 71) (30, 51) (25, 45) (15, 31) (8, 20)

Cephalosporin (68, 103) (57, 84) (43, 69) (30, 52) (25, 46) (14, 30) (7, 19)
Glycopeptide (69, 100) (55, 85) (44, 69) (31, 51) (25, 46) (14, 30) (8, 21)

Macrolide (69, 100) (55, 84) (43, 69) (29, 50) (25, 44) (15, 30) (7, 19)
Nitroimidazole (68, 104) (56, 85) (44, 69) (29, 51) (26, 45) (15, 30) (8, 19)
Oxazolidinone (67, 101) (56, 83) (43, 70) (30, 50) (25, 45) (14, 31) (8, 20)

Penicillin (69, 99) (56, 84) (44, 69) (30, 52) (24, 44) (15, 30) (8, 20)
Polymyxin (68, 99) (55, 83) (42, 69) (30, 51) (25, 45) (15, 30) (7, 19)
Quinolone (71, 101) (55, 84) (46, 69) (30, 51) (25, 45) (15, 30) (7, 20)
Rifamycin (69, 101) (56, 84) (44, 68) (29, 52) (25, 45) (15, 29) (8, 19)

C → N
obs. counts 100 65 48 40 30 16 11

Aminoglycoside (82, 107) (62, 85) (41, 58) (35, 49) (21, 32) (13, 21) (7, 14)
Antiseptic (81, 106) (63, 84) (41, 58) (35, 48) (21, 32) (13, 21) (7, 14)

Cephalosporin (82, 108) (62, 84) (41, 56) (35, 49) (22, 32) (13, 21) (7, 14)
Glycopeptide (81, 108) (60, 83) (41, 57) (34, 49) (21, 32) (13, 22) (7, 14)

Macrolide (82, 108) (61, 82) (41, 57) (32, 49) (21, 32) (13, 22) (7, 14)
Nitroimidazole (80, 108) (62, 84) (42, 57) (34, 48) (21, 32) (13, 22) (7, 14)
Oxazolidinone (79, 107) (62, 83) (40, 57) (33, 49) (21, 32) (13, 22) (7, 13)

Penicillin (81, 107) (63, 85) (40, 56) (33, 47) (20, 32) (13, 22) (7, 14)
Polymyxin (80, 107) (62, 84) (41, 58) (34, 48) (21, 32) (13, 22) (7, 14)
Quinolone (81, 107) (62, 84) (41, 57) (34, 49) (20, 32) (13, 22) (8, 14)
Rifamycin (81, 108) (62, 84) (40, 57) (33, 49) (22, 32) (13, 22) (7, 13)

C → C
obs. counts 88 60 29 22 9 9 4

Aminoglycoside (80, 106) (40, 62) (19, 36) (13, 27) (6, 18) (3, 12) (1, 8)
Antiseptic (82, 107) (41, 61) (19, 36) (14, 27) (6, 18) (3, 12) (1, 8)

Cephalosporin (79, 105) (41, 63) (21, 36) (13, 27) (7, 17) (4, 12) (1, 8)
Glycopeptide (80, 107) (41, 64) (20, 36) (13, 28) (6, 18) (3, 12) (1, 8)

Macrolide (80, 105) (42, 64) (19, 36) (13, 29) (7, 18) (3, 12) (1, 8)
Nitroimidazole (80, 108) (41, 63) (20, 35) (14, 27) (7, 18) (3, 12) (1, 8)
Oxazolidinone (81, 108) (42, 63) (20, 37) (12, 29) (7, 18) (3, 12) (2, 8)

Penicillin (81, 107) (39, 62) (20, 37) (14, 28) (7, 18) (3, 12) (1, 8)
Polymyxin (81, 107) (40, 62) (19, 36) (13, 27) (6, 18) (3, 12) (1, 7)
Quinolone (80, 107) (40, 63) (20, 36) (13, 28) (7, 19) (3, 12) (1, 7)
Rifamycin (79, 106) (41, 63) (20, 36) (13, 29) (7, 17) (3, 12) (1, 8)

Table B.12: Model fit for each antimicrobial treatment group of the p-Wounds
Data Set. The intervals in red indicate that the observed transition
counts are included in the equal-tailed 95% quantiles.
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Figure B.5: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
for the p-Wounds Data Set. The continuous line shows the proba-
bilities p0 and q0 whereas the dashed line shows the probabilities
p0 + α and q0 + β.
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for the p-Wounds Data Set. The continuous line shows the proba-
bilities p0 and q0 whereas the dashed line shows the probabilities
p0 + α and q0 + β.
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B.2.1 After first positive test

p0 q0
GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.9150 (0.0271) (0.8572, 0.9627) 0.0938 (0.0355) (0.0374, 0.1748)

Antiseptic 0.8870 (0.0421) (0.7907, 0.9544) 0.1129 (0.0431) (0.0429, 0.2103)

Cephalosporin 0.8855 (0.0293) (0.8231, 0.9372) 0.1253 (0.0413) (0.0592, 0.2189)

Glycopeptide 0.8724 (0.0387) (0.7853, 0.9351) 0.0852 (0.0368) (0.0306, 0.1723)

Macrolide 0.8968 (0.0248) (0.8442, 0.9413) 0.1169 (0.0358) (0.0582, 0.1977)

Nitroimidazole 0.8720 (0.0304) (0.8070, 0.9265) 0.1427 (0.0432) (0.0725, 0.2397)

Oxazolidinone 0.8961 (0.0269) (0.8382, 0.9438) 0.1064 (0.0348) (0.0503, 0.1853)

Penicillin 0.8981 (0.0257) (0.8427, 0.9436) 0.0982 (0.0319) (0.0455, 0.1704)

Polymyxin 0.8951 (0.0267) (0.8375, 0.9415) 0.1156 (0.0366) (0.0596, 0.2005)

Quinolone 0.9008 (0.0283) (0.8402, 0.9497) 0.1107 (0.0389) (0.0504, 0.2002)

Rifamycin 0.9009 (0.0263) (0.8446, 0.9470) 0.1047 (0.0343) (0.0501, 0.1826)

Table B.13: Summary statistics for parameters p0 and q0 for each antimicro-
bial group for the p-Wounds Data Set starting from patients’ first
positive test.

α β

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside −0.3027 (0.1994) (−0.7586,−0.0034) 0.2516 (0.1377) (0.0277, 0.5398)

Antiseptic −0.0018 (0.0550) (−0.1085, 0.1102) 0.0279 (0.0465) (−0.0644, 0.1227)

Cephalosporin 0.0198 (0.1405) (−0.4258, 0.1512) 0.0331 (0.1107) (−0.1290, 0.3323)

Glycopeptide 0.0820 (0.0464) (−0.0069, 0.1789) 0.0377 (0.0381) (−0.0390, 0.1160)

Macrolide −0.2447 (0.1369) (−0.5623,−0.0268) 0.3650 (0.1200) (0.1336, 0.5999)

Nitroimidazole 0.0844 (0.0522) (−0.0368, 0.1674) −0.0369 (0.0657) (−0.1556, 0.1053)

Oxazolidinone 0.0015 (0.1223) (−0.3400, 0.1325) 0.6236 (0.2038) (0.1633, 0.9016)

Penicillin 0.0267 (0.0708) (−0.1500, 0.1267) 0.2889 (0.1188) (0.0837, 0.5479)

Polymyxin −0.3106 (0.2675) (−0.8434, 0.0754) 0.2910 (0.2699) (−0.0987, 0.8195)

Quinolone −0.2628 (0.2351) (−0.7938, 0.0757) 0.0862 (0.1117) (−0.0876, 0.3468)

Rifamycin −0.2201 (0.2601) (−0.8272, 0.0981) 0.4634 (0.2346) (0.0486, 0.8687)

Table B.14: Summary statistics for parameters α and β for each antimicrobial
group for the p-Wounds Data Set starting from patients’ first posi-
tive test.
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φ ψ

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.6372 (0.0410) (0.5612, 0.7214) 0.6422 (0.0133) (0.6145, 0.6664)

Antiseptic 0.6362 (0.0413) (0.5589, 0.7206) 0.6419 (0.0134) (0.6135, 0.6662)

Cephalosporin 0.6399 (0.0401) (0.5637, 0.7205) 0.6431 (0.0131) (0.6156, 0.6662)

Glycopeptide 0.6174 (0.0385) (0.5464, 0.6972) 0.6357 (0.0137) (0.6074, 0.6608)

Macrolide 0.6386 (0.0395) (0.5643, 0.7198) 0.6428 (0.0130) (0.6160, 0.6661)

Nitroimidazole 0.6380 (0.0407) (0.5611, 0.7207) 0.6424 (0.0132) (0.6145, 0.6662)

Oxazolidinone 0.6326 (0.0424) (0.5542, 0.7205) 0.6406 (0.0139) (0.6113, 0.6659)

Penicillin 0.6256 (0.0416) (0.5480, 0.7110) 0.6383 (0.0142) (0.6081, 0.6639)

Polymyxin 0.6368 (0.0413) (0.5601, 0.7228) 0.6420 (0.0134) (0.6139, 0.6665)

Quinolone 0.6323 (0.0431) (0.5521, 0.7207) 0.6404 (0.0144) (0.6102, 0.6661)

Rifamycin 0.6305 (0.0416) (0.5522, 0.7141) 0.6400 (0.0139) (0.6105, 0.6648)

Table B.15: Summary statistics for parameters φ and ψ for each antimicrobial
group for the p-Wounds Data Set starting from patients’ first posi-
tive test.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 140 91 83 57 46 32 14

Aminoglycoside (126, 149) (80, 99) (66, 83) (44, 59) (40, 55) (24, 34) (11, 19)
Antiseptic (128, 150) (81, 99) (66, 83) (44, 59) (41, 55) (24, 35) (11, 19)

Cephalosporin (127, 150) (80, 100) (66, 83) (44, 59) (42, 55) (24, 35) (12, 19)
Glycopeptide (127, 150) (81, 99) (67, 84) (44, 59) (41, 54) (26, 35) (11, 19)

Macrolide (129, 152) (82, 100) (66, 84) (45, 60) (42, 55) (23, 35) (11, 19)
Nitroimidazole (129, 151) (81, 101) (65, 83) (45, 60) (42, 55) (24, 35) (12, 19)
Oxazolidinone (127, 150) (82, 100) (65, 83) (45, 59) (40, 54) (24, 34) (11, 19)

Penicillin (128, 152) (82, 100) (66, 83) (46, 59) (40, 55) (24, 35) (11, 19)
Polymyxin (127, 151) (80, 100) (65, 83) (44, 59) (42, 55) (24, 35) (12, 19)
Quinolone (127, 149) (81, 100) (65, 83) (44, 60) (42, 55) (24, 35) (11, 19)
Rifamycin (127, 151) (81, 99) (66, 84) (45, 59) (41, 55) (25, 35) (12, 19)

N → C
obs. counts 47 31 18 13 19 8 7

Aminoglycoside (37, 61) (22, 41) (18, 35) (11, 25) (10, 25) (5, 16) (2, 10)
Antiseptic (36, 59) (23, 40) (17, 35) (11, 25) (10, 24) (5, 15) (2, 10)

Cephalosporin (36, 60) (22, 42) (18, 35) (11, 25) (10, 23) (5, 16) (2, 9)
Glycopeptide (36, 60) (23, 41) (16, 34) (11, 26) (11, 24) (5, 14) (2, 9)

Macrolide (34, 57) (21, 40) (17, 35) (10, 25) (9, 23) (5, 16) (1, 10)
Nitroimidazole (35, 58) (21, 41) (18, 35) (10, 25) (10, 23) (4, 16) (2, 9)
Oxazolidinone (37, 60) (22, 40) (18, 35) (10, 24) (10, 24) (6, 15) (2, 10)

Penicillin (35, 58) (22, 40) (18, 34) (11, 24) (10, 24) (5, 16) (2, 10)
Polymyxin (35, 60) (22, 41) (18, 35) (10, 26) (10, 23) (5, 16) (2, 9)
Quinolone (38, 59) (22, 41) (18, 36) (10, 25) (10, 23) (5, 15) (1, 9)
Rifamycin (36, 60) (23, 41) (16, 34) (11, 25) (10, 24) (5, 15) (2, 9)

C → N
obs. counts 100 65 48 40 30 16 11

Aminoglycoside (87, 114) (62, 84) (40, 56) (33, 47) (20, 32) (12, 21) (7, 14)
Antiseptic (87, 113) (62, 83) (39, 56) (33, 48) (20, 32) (12, 22) (7, 14)

Cephalosporin (86, 113) (62, 83) (38, 55) (33, 48) (20, 32) (13, 22) (7, 14)
Glycopeptide (87, 115) (60, 84) (40, 56) (33, 48) (20, 31) (12, 21) (7, 14)

Macrolide (84, 112) (61, 82) (40, 56) (33, 47) (20, 32) (13, 22) (7, 13)
Nitroimidazole (85, 112) (62, 83) (40, 56) (33, 48) (20, 31) (13, 21) (7, 14)
Oxazolidinone (87, 115) (61, 84) (39, 55) (33, 47) (20, 31) (13, 21) (7, 14)

Penicillin (87, 114) (63, 84) (39, 56) (33, 47) (20, 31) (13, 21) (7, 14)
Polymyxin (86, 113) (61, 83) (39, 56) (32, 47) (20, 32) (13, 21) (7, 14)
Quinolone (87, 112) (61, 83) (40, 55) (33, 47) (20, 32) (12, 21) (7, 14)
Rifamycin (86, 113) (62, 83) (38, 55) (32, 48) (20, 31) (12, 21) (7, 14)

C → C
obs. counts 88 60 29 22 9 9 4

Aminoglycoside (74, 101) (41, 63) (21, 37) (15, 29) (7, 19) (4, 12) (1, 8)
Antiseptic (73, 101) (41, 63) (21, 38) (14, 29) (7, 19) (3, 13) (1, 8)

Cephalosporin (74, 102) (41, 63) (22, 39) (14, 29) (7, 18) (3, 12) (1, 8)
Glycopeptide (72, 100) (40, 65) (21, 37) (14, 29) (8, 19) (4, 12) (1, 8)

Macrolide (76, 103) (42, 64) (21, 37) (15, 29) (7, 19) (3, 12) (1, 8)
Nitroimidazole (75, 102) (42, 63) (21, 37) (13, 29) (7, 19) (3, 12) (1, 8)
Oxazolidinone (73, 100) (41, 64) (22, 37) (14, 29) (8, 19) (4, 12) (1, 8)

Penicillin (73, 101) (40, 62) (21, 38) (14, 29) (7, 19) (3, 12) (1, 8)
Polymyxin (75, 101) (42, 64) (21, 37) (15, 29) (7, 19) (4, 12) (1, 8)
Quinolone (75, 101) (41, 64) (21, 37) (15, 29) (7, 19) (3, 13) (1, 8)
Rifamycin (75, 102) (42, 63) (22, 38) (14, 30) (8, 19) (4, 13) (1, 8)

Table B.16: Model fit for each antimicrobial treatment group of the p-Wounds
Data Set starting from patients’ first positive test. The intervals in
red indicate that the observed transition counts are included in the
equal-tailed 95% quantiles.
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Figure B.7: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
for the p-Wounds Data Set starting from patients’ first positive test.
The continuous line shows the probabilities p0 and q0 whereas the
dashed line shows the probabilities p0 + α and q0 + β.
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Figure B.8: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antiseptic
for the p-Wounds Data Set starting from patients’ first positive test.
The continuous line shows the probabilities p0 and q0 whereas the
dashed line shows the probabilities p0 + α and q0 + β.
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B.3 p-Respiratory Data Set

p0 q0
GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.7921 (0.0362) (0.7122, 0.8550) 0.1403 (0.0339) (0.0801, 0.0211)

Antiseptic 0.8267 (0.0298) (0.7615, 0.8760) 0.1038 (0.0299) (0.0529, 0.1694)

Cephalosporin 0.8253 (0.0323) (0.7548, 0.8806) 0.1161 (0.0316) (0.0613, 0.1843)

Glycopeptide 0.7963 (0.0378) (0.7135, 0.8607) 0.1154 (0.0354) (0.0551, 0.1935)

Macrolide 0.8140 (0.0346) (0.7367, 0.8735) 0.1272 (0.0347) (0.0683, 0.2032)

Nitroimidazole 0.8115 (0.0320) (0.7406, 0.8656) 0.1222 (0.0309) (0.0692, 0.1907)

Oxazolidinone 0.8205 (0.0281) (0.7590, 0.8688) 0.1172 (0.0291) (0.0665, 0.1809)

Penicillin 0.8089 (0.0319) (0.7395, 0.8639) 0.1286 (0.0324) (0.0714, 0.1971)

Polymyxin 0.8269 (0.0272) (0.7671, 0.8739) 0.1189 (0.0285) (0.0688, 0.1799)

Quinolone 0.8371 (0.0278) (0.7771, 0.8855) 0.1226 (0.0291) (0.0699, 0.1844)

Rifamycin 0.8172 (0.0295) (0.7520, 0.8683) 0.1208 (0.0306) (0.0679, 0.1875)

Table B.17: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-Respiratory Data Set.

α β

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.1129 (0.0834) (−0.0784, 0.2473) −0.0707 (0.0613) (−0.1725, 0.0693)

Antiseptic −0.0737 (0.1127) (−0.3483, 0.0910) 0.0923 (0.0729) (−0.0212, 0.2683)

Cephalosporin −0.2280 (0.2020) (−0.6918, 0.0745) 0.2715 (0.2028) (−0.0563, 0.7016)

Glycopeptide 0.0773 (0.0583) (−0.0416, 0.1884) 0.0072 (0.0434) (−0.0763, 0.0945)

Macrolide −0.0148 (0.0946) (−0.2417,−0.1333) 0.0201 (0.0919) (−0.1259, 0.2427)

Nitroimidazole −0.0246 (0.1291) (−0.3412,−0.1660) 0.1376 (0.1401) (−0.0665, 0.4805)

Oxazolidinone −0.0825 (0.2443) (−0.7108, 0.1881) 0.5499 (0.2338) (0.0447, 0.8814)

Penicillin −0.1449 (0.2849) (−0.7386, 0.1952) 0.2645 (0.3008) (−0.1064, 0.8498)

Polymyxin −0.4273 (0.2446) (−0.8142, 0.0366) 0.2974 (0.2082) (−0.0390, 0.07369)

Quinolone −0.2530 (0.1460) (−0.5857,−0.0188) 0.0350 (0.0890) (−0.1003, 0.2438)

Rifamycin −0.0751 (0.2255) (−0.6542, 0.1921) 0.2222 (0.1950) (−0.0581, 0.6868)

Table B.18: Summary statistics for parameters α and β for each antimicrobial
group for the p-Respiratory Data Set.

214



APPENDIX B: APPENDIX FOR THE HIDDEN MARKOV MODEL

φ ψ

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.8751 (0.0498) (0.7756, 0.9701) 0.8027 (0.0175) (0.7440, 0.8525)

Antiseptic 0.8710 (0.0506) (0.7705, 0.9687) 0.8112 (0.0181) (0.7413, 0.8622)

Cephalosporin 0.8720 (0.0528) (0.7672, 0.9741) 0.8013 (0.0189) (0.7396, 0.8434)

Glycopeptide 0.8672 (0.0505) (0.7678, 0.9677) 0.7998 (0.0182) (0.7400, 0.8318)

Macrolide 0.8773 (0.0516) (0.7750, 0.9764) 0.8034 (0.0181) (0.7440, 0.8642)

Nitroimidazole 0.8775 (0.0515) (0.7765, 0.9765) 0.8236 (0.0179) (0.7444, 0.8639)

Oxazolidinone 0.8714 (0.0512) (0.7710, 0.9699) 0.8013 (0.0183) (0.7415, 0.8524)

Penicillin 0.8803 (0.0529) (0.7750, 0.9804) 0.8043 (0.0185) (0.7435, 0.8550)

Polymyxin 0.8789 (0.0498) (0.7799, 0.9744) 0.80411 (0.0173) (0.7461, 0.8435)

Quinolone 0.8807 (0.0508) (0.7787, 0.9758) 0.7946 (0.0177) (0.7455, 0.8639)

Rifamycin 0.8750 (0.0516) (0.7728, 0.9732) 0.8125 (0.0182) (0.7425, 0.8633)

Table B.19: Summary statistics for parameters φ and ψ for each antimicrobial
group for the p-Respiratory Data Set.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 33 28 23 12 15 13 11

Aminoglycoside (27, 38) (21, 33) (17, 28) (12, 24) (9, 18) (9, 19) (5, 13)
Antiseptic (26, 38) (22, 33) (17, 28) (13, 24) (8, 18) (9, 19) (5, 14)

Cephalosporin (26, 37) (22, 33) (17, 29) (13, 24) (9, 18) (9, 19) (6, 14)
Glycopeptide (27, 38) (22, 34) (18, 29) (12, 24) (9, 18) (8, 19) (6, 14)

Macrolide (26, 37) (22, 33) (17, 29) (13, 24) (9, 18) (9, 19) (5, 14)
Nitroimidazole (26, 38) (22, 34) (17, 29) (13, 24) (8, 18) (9, 19) (5, 14)
Oxazolidinone (26, 38) (22, 34) (17, 29) (13, 24) (8, 17) (9, 19) (5, 14)

Penicillin (27, 38) (22, 34) (17, 28) (13, 24) (8, 17) (9, 19) (5, 14)
Polymyxin (27, 38) (23, 35) (17, 29) (13, 24) (8, 17) (10, 18) (5, 14)
Quinolone (26, 38) (22, 33) (17, 29) (13, 25) (8, 17) (8, 19) (6, 14)
Rifamycin (27, 37) (22, 34) (17, 29) (13, 25) (8, 17) (8, 19) (5, 14)

N → C
obs. counts 10 14 15 21 9 14 8

Aminoglycoside (5, 16) (8, 20) (10, 21) (9, 20) (6, 15) (7, 18) (6, 14)
Antiseptic (5, 17) (8, 20) (9, 21) (9, 20) (6, 16) (8, 18) (5, 14)

Cephalosporin (6, 17) (9, 20) (9, 21) (9, 20) (6, 15) (8, 18) (5, 13)
Glycopeptide (4, 16) (8, 19) (9, 20) (8, 20) (6, 15) (8, 18) (5, 13)

Macrolide (5, 17) (8, 20) (9, 21) (9, 20) (6, 15) (8, 18) (5, 13)
Nitroimidazole (5, 17) (8, 20) (9, 20) (8, 20) (6, 16) (7, 17) (5, 14)
Oxazolidinone (5, 17) (8, 19) (9, 21) (9, 20) (6, 16) (8, 18) (5, 14)

Penicillin (5, 16) (8, 20) (10, 21) (9, 20) (7, 16) (8, 18) (5, 13)
Polymyxin (5, 16) (7, 19) (9, 21) (9, 19) (6, 16) (8, 17) (5, 14)
Quinolone (5, 16) (9, 20) (9, 21) (8, 20) (6, 16) (8, 19) (5, 13)
Rifamycin (5, 16) (8, 20) (9, 21) (8, 20) (7, 16) (8, 18) (5, 13)

C → N
obs. counts 5 3 10 12 4 6 7

Aminoglycoside (4, 14) (5, 14) (5, 14) (6, 15) (3, 9) (4, 12) (3, 10)
Antiseptic (3, 14) (5, 13) (5, 14) (6, 15) (2, 10) (4, 12) (3, 10)

Cephalosporin (4, 15) (5, 14) (5, 14) (6, 15) (2, 9) (4, 13) (3, 10)
Glycopeptide (4, 14) (4, 14) (5, 14) (6, 15) (2, 10) (4, 12) (3, 10)

Macrolide (4, 14) (4, 14) (5, 14) (5, 15) (3, 10) (4, 12) (3, 10)
Nitroimidazole (4, 15) (4, 14) (5, 14) (6, 16) (3, 10) (4, 12) (3, 10)
Oxazolidinone (4, 14) (4, 14) (4, 14) (5, 15) (2, 9) (4, 12) (2, 10)

Penicillin (4, 14) (5, 14) (5, 15) (6, 15) (3, 10) (4, 12) (3, 10)
Polymyxin (4, 14) (4, 14) (5, 14) (6, 15) (2, 9) (4, 12) (2, 10)
Quinolone (4, 14) (4, 13) (5, 14) (5, 15) (2, 9) (4, 12) (3, 10)
Rifamycin (4, 14) (4, 14) (5, 15) (6, 15) (2, 9) (4, 12) (3, 10)

C → C
obs. counts 33 26 16 14 10 12 7

Aminoglycoside (24, 34) (15, 24) (12, 21) (11, 20) (4, 11) (6, 14) (4, 11)
Antiseptic (24, 34) (15, 24) (12, 21) (11, 20) (4, 11) (6, 14) (4, 11)

Cephalosporin (23, 34) (15, 24) (12, 21) (11, 20) (5, 11) (5, 14) (4, 11)
Glycopeptide (24, 34) (15, 24) (12, 21) (11, 20) (4, 12) (6, 14) (4, 11)

Macrolide (24, 34) (15, 25) (12, 21) (11, 20) (4, 11) (6, 14) (4, 11)
Nitroimidazole (23, 34) (15, 25) (12, 21) (10, 20) (4, 11) (6, 14) (4, 11)
Oxazolidinone (24, 34) (15, 25) (12, 21) (11, 21) (5, 12) (6, 14) (4, 12)

Penicillin (24, 34) (15, 24) (11, 21) (11, 20) (4, 11) (5, 14) (4, 11)
Polymyxin (24, 34) (15, 25) (12, 21) (11, 20) (5, 12) (6, 14) (4, 12)
Quinolone (24, 34) (15, 24) (12, 21) (11, 21) (5, 11) (6, 14) (4, 11)
Rifamycin (24, 34) (15, 24) (11, 21) (11, 20) (5, 12) (6, 14) (4, 11)

Table B.20: Model fit for each antimicrobial treatment group of the p-
Respiratory Data Set. The intervals in red indicate that the ob-
served transition counts are included in the equal-tailed 95% quan-
tiles.
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Figure B.9: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibi-
otics for the p-Respiratory Data Set. The continuous line shows the
probabilities p0 and q0 whereas the dashed line shows the proba-
bilities p0 + α and q0 + β.
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Figure B.10: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antisep-
tic for the p-Respiratory Data Set. The continuous line shows the
probabilities p0 and q0 whereas the dashed line shows the proba-
bilities p0 + α and q0 + β.
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B.3.1 After first positive test

p0 q0
GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.9339 (0.0252) (0.8755, 0.9747) 0.0904 (0.0272) (0.0442, 0.1501)

Antiseptic 0.9232 (0.0335) (0.8494, 0.9812) 0.0852 (0.0285) (0.0329, 0.1449)

Cephalosporin 0.9111 (0.0293) (0.8449, 0.9597) 0.1042 (0.0283) (0.0521, 0.1639)

Glycopeptide 0.9123 (0.0331) (0.8368, 0.9646) 0.0906 (0.0301) (0.0412, 0.1575)

Macrolide 0.9255 (0.0266) (0.8643, 0.9681) 0.0932 (0.0272) (0.0462, 0.1527)

Nitroimidazole 0.9221 (0.0261) (0.8624, 0.9651) 0.0921 (0.0268) (0.0445, 0.1496)

Oxazolidinone 0.9206 (0.0257) (0.8630, 0.9638) 0.0951 (0.0260) (0.0485, 0.1502)

Penicillin 0.9172 (0.0267) (0.8578, 0.9615) 0.1012 (0.0269) (0.0533, 0.1586)

Polymyxin 0.9310 (0.0232) (0.8776, 0.9694) 0.0904 (0.0249) (0.0462, 0.1437)

Quinolone 0.9277 (0.0234) (0.8756, 0.9672) 0.1030 (0.0256) (0.0541, 0.1548)

Rifamycin 0.9248 (0.0259) (0.8657, 0.9670) 0.0922 (0.0262) (0.0459, 0.1494)

Table B.21: Summary statistics for parameters p0 and q0 for each antimicrobial
group for the p-Respiratory Data Set starting from patients’ first
positive test.

α β

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside −0.1689 (0.1483) (−0.5276, 0.0450) 0.0544 (0.0802) (−0.0740, 0.2395)

Antiseptic −0.0445 (0.0813) (−0.2412, 0.0780) 0.0687 (0.0627) (−0.0251, 0.2206)

Cephalosporin −0.0451 (0.1866) (−0.6855, 0.1241) 0.1067 (0.1749) (−0.0980, 0.6046)

Glycopeptide 0.0187 (0.0444) (−0.0734, 0.1046) 0.0226 (0.0347) (−0.0448, 0.0922)

Macrolide −0.0570 (0.0958) (−0.3011, 0.0740) 0.0612 (0.0916) (−0.0690, 0.2939)

Nitroimidazole −0.0610 (0.1167) (−0.3551, 0.0877) 0.1159 (0.1096) (−0.0408, 0.3838)

Oxazolidinone −0.1751 (0.2405) (−0.8020, 0.0898) 0.5592 (0.2400) (0.0492, 0.8966)

Penicillin −0.3873 (0.3137) (−0.8942, 0.0760) 0.3067 (0.3211) (−0.0836, 0.8796)

Polymyxin −0.5003 (0.2648) (−0.9127,−0.0022) 0.3606 (0.2170) (−0.0050, 0.7909)

Quinolone −0.4246 (0.2192) (−0.8604,−0.0523) 0.1106 (0.1046) (−0.0512, 0.3540)

Rifamycin −0.1538 (0.2007) (−0.6759, 0.0820) 0.2092 (0.1666) (−0.0299, 0.6179)

Table B.22: Summary statistics for parameters α and β for each antimicrobial
group for the p-Respiratory Data Set starting from patients’ first
positive test.
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φ ψ

GROUP E[ · |S̃ ] (s.d.) 95% CI E[ · |S̃ ] (s.d.) 95% CI

Aminoglycoside 0.8979 (0.0252) (0.8755, 0.9747) 0.8904 (0.0265) (0.8442, 0.9501)

Antiseptic 0.9023 (0.0599) (0.7645, 0.9919) 0.8115 (0.0135) (0.7767, 0.9396)

Cephalosporin 0.9174 (0.0534) (0.7947, 0.9950) 0.8233 (0.0185) (0.7894, 0.9403)

Glycopeptide 0.9111 (0.0524) (0.7945, 0.9927) 0.8286 (0.0137) (0.7896, 0.9398)

Macrolide 0.9072 (0.0556) (0.7836, 0.9930) 0.8208 (0.0151) (0.7853, 0.9398)

Nitroimidazole 0.9055 (0.0573) (0.7770, 0.9931) 0.8287 (0.0123) (0.7823, 0.9397)

Oxazolidinone 0.9065 (0.0561) (0.7817, 0.9927) 0.8254 (0.0153) (0.7846, 0.9397)

Penicillin 0.9120 (0.0538) (0.7923, 0.9938) 0.8220 (0.0164) (0.7884, 0.9399)

Polymyxin 0.9047 (0.0560) (0.7798, 0.9919) 0.8201 (0.0126) (0.7838, 0.9396)

Quinolone 0.9290 (0.0522) (0.8051, 0.9969) 0.8259 (0.0154) (0.7932, 0.9409)

Rifamycin 0.9038 (0.0572) (0.7744, 0.9922) 0.8196 (0.0134) (0.7815, 0.9396)

Table B.23: Summary statistics for parameters φ and ψ for each antimicrobial
group for the p-Respiratory Data Set starting from patients’ first
positive test.
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Model Fit
Day Intervals 1 2 3 4 5 6 7

N → N
obs. counts 15 7 9 5 4 5 2

Aminoglycoside (11, 17) (6, 12) (4, 10) (4, 9) (2, 7) (1, 5) (1, 4)
Antiseptic (10, 17) (6, 11) (5, 10) (3, 8) (2, 7) (1, 5) (1, 4)

Cephalosporin (11, 17) (6, 12) (5, 10) (3, 9) (2, 7) (1, 5) (1, 4)
Glycopeptide (10, 17) (6, 12) (5, 11) (4, 9) (2, 7) (1, 5) (1, 4)

Macrolide (10, 17) (6, 12) (4, 10) (4, 9) (2, 7) (1, 5) (1, 4)
Nitroimidazole (11, 17) (6, 11) (5, 10) (3, 9) (2, 7) (1, 5) (1, 4)
Oxazolidinone (11, 17) (6, 12) (5, 11) (3, 9) (3, 7) (1, 5) (0, 4)

Penicillin (10, 17) (6, 12) (5, 10) (3, 9) (2, 7) (1, 5) (1, 4)
Polymyxin (11, 17) (6, 12) (5, 11) (3, 9) (2, 7) (1, 5) (1, 4)
Quinolone (11, 18) (6, 11) (5, 10) (3, 8) (2, 7) (1, 5) (1, 4)
Rifamycin (11, 17) (6, 12) (5, 11) (3, 9) (2, 7) (1, 5) (0, 4)

N → C
obs. counts 3 5 2 4 3 0 2

Aminoglycoside (1, 7) (0, 6) (1, 6) (0, 5) (0, 5) (0, 4) (0, 3)
Antiseptic (1, 7) (1, 6) (1, 6) (1, 5) (0, 5) (0, 4) (0, 3)

Cephalosporin (1, 7) (0, 6) (1, 6) (0, 5) (0, 5) (0, 4) (0, 3)
Glycopeptide (1, 7) (0, 5) (0, 6) (0, 5) (0, 5) (0, 4) (0, 3)

Macrolide (1, 8) (0, 6) (1, 6) (0, 5) (0, 5) (0, 4) (0, 3)
Nitroimidazole (1, 7) (1, 6) (0, 6) (0, 5) (0, 5) (0, 4) (0, 3)
Oxazolidinone (1, 7) (0, 6) (0, 6) (0, 5) (0, 4) (0, 4) (0, 4)

Penicillin (1, 7) (0, 6) (0, 6) (0, 5) (0, 5) (0, 4) (0, 3)
Polymyxin (1, 7) (0, 6) (0, 6) (0, 6) (0, 5) (0, 4) (0, 3)
Quinolone (0, 7) (0, 5) (1, 6) (1, 6) (0, 5) (0, 4) (0, 3)
Rifamycin (1, 7) (0, 6) (0, 6) (0, 5) (0, 5) (0, 4) (0, 3)

C → N
obs. counts 5 3 10 12 4 6 7

Aminoglycoside (3, 12) (3, 12) (3, 13) (5, 14) (3, 10) (4, 12) (3, 10)
Antiseptic (3, 12) (3, 13) (4, 13) (5, 15) (2, 10) (4, 12) (3, 10)

Cephalosporin (2, 12) (4, 12) (4, 13) (5, 15) (3, 9) (4, 12) (3, 10)
Glycopeptide (3, 11) (3, 12) (4, 13) (5, 15) (2, 9) (4, 12) (3, 10)

Macrolide (3, 12) (3, 12) (4, 13) (4, 14) (2, 9) (4, 12) (3, 10)
Nitroimidazole (2, 11) (4, 12) (5, 13) (5, 15) (3, 10) (3, 12) (3, 10)
Oxazolidinone (3, 12) (3, 12) (4, 13) (4, 14) (2, 10) (3, 12) (3, 10)

Penicillin (2, 12) (4, 13) (5, 13) (5, 14) (2, 9) (4, 12) (3, 10)
Polymyxin (3, 12) (3, 12) (4, 12) (5, 14) (2, 9) (4, 12) (3, 10)
Quinolone (2, 12) (3, 12) (3, 13) (4, 14) (2, 9) (3, 12) (3, 10)
Rifamycin (2, 12) (3, 13) (4, 13) (5, 14) (2, 9) (4, 12) (3, 10)

C → C
obs. counts 33 26 16 14 10 12 7

Aminoglycoside (26, 35) (17, 26) (13, 22) (12, 21) (4, 11) (5, 13) (3, 11)
Antiseptic (25, 35) (16, 26) (13, 22) (11, 21) (4, 12) (6, 14) (4, 11)

Cephalosporin (25, 35) (16, 25) (13, 22) (11, 21) (4, 11) (6, 14) (4, 11)
Glycopeptide (27, 35) (17, 26) (12, 22) (11, 21) (5, 12) (6, 14) (4, 11)

Macrolide (26, 35) (17, 26) (13, 22) (12, 21) (5, 11) (6, 14) (4, 11)
Nitroimidazole (26, 35) (17, 25) (12, 21) (11, 21) (4, 11) (6, 14) (3, 11)
Oxazolidinone (26, 35) (17, 26) (13, 22) (12, 22) (4, 12) (6, 15) (4, 11)

Penicillin (26, 35) (16, 25) (13, 21) (11, 21) (5, 12) (6, 14) (4, 11)
Polymyxin (26, 35) (17, 26) (13, 22) (12, 21) (5, 12) (6, 14) (4, 11)
Quinolone (26, 36) (17, 26) (12, 22) (12, 22) (5, 12) (6, 15) (4, 11)
Rifamycin (26, 35) (16, 26) (13, 22) (12, 20) (5, 12) (5, 14) (4, 11)

Table B.24: Model fit for each antimicrobial treatment group of the p-
Respiratory Data Set starting from patients’ first positive test. The
intervals in red indicate that the observed transition counts are in-
cluded in the equal-tailed 95% quantiles.
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Figure B.11: Kernel density plots for p0, p0 + α, q0 and q0 + β for the antibiotics
for the p-Respiratory Data Set starting from patients’ first pos-
itive test. The continuous line shows the probabilities p0 and q0
whereas the dashed line shows the probabilities p0 + α and q0 + β.
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for the p-Respiratory Data Set starting from patients’ first pos-
itive test. The continuous line shows the probabilities p0 and q0
whereas the dashed line shows the probabilities p0 + α and q0 + β.
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APPENDIX C

Appendix Transmission Models

C.1 Simulation

Simulation results using the values obtained from the MRSA Data Set without

taking into account antimicrobial treatment information, i.e. β0 = 0.0011, β1 =

0.0021, φ = 0.5522 and z = 0.1570.

No antimicrobial treatment
Ward 1

parameters E[ · |θ, y, c, r] (s.d.) 95% CI
β0 0.0025 (0.0015) (0.0001, 0.0059)
β1 0.0009 (0.0005) (0.00008, 0.0020)

β0, β1 posterior correlation −0.6081
φ 0.5009 (0.0277) (0.4473, 0.5551)
z 0.1732 (0.0142) (0.1471, 0.2025)

Table C.1: Summary statistics for the transition rates β0, β1 sensitivity φ and
importation probability z from the simulated data using the data-
structure of the MRSA Data Set, ward 1.
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Model Assessment for the Simulation

Figure C.1: Assessment for the simulated data assuming no antimicrobial
treatment. The first line shows the 95% quantile (grey area) of the
number of colonised patients from the model fit simulations data
compared to the observed number of colonised patients (black
line). The Second line shows the mean number of colonised pa-
tients (red line) from the simulations compared to the observed
number of colonised patients (black line). The third line shows
the median of the number of colonised patients (green line) from
the simulations compared to the observed number of colonised pa-
tients (black line).
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Simulation generated by the values β0 = 0.003, β1 = 0.005, φ = 0.75 and

z = 0.008.

No antimicrobial treatment
Ward 1

parameters E[ · |θ, y, c, r] (s.d.) 95% CI
β0 0.0039 (0.0021) (0.0004, 0.0086)
β1 0.0051 (0.0007) (0.0036, 0.0066)

β0, β1 posterior correlation −0.5289
φ 0.7568 (0.0195) (0.7170, 0.7938)
z 0.0791 (0.0089) (0.0630, 0.0984)

Table C.2: Summary statistics for the transition rates β0, β1 sensitivity φ and
importation probability z from the simulated data using the data-
structure of the MRSA Data Set, ward 1 , when random values were
set for their generation.
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Figure C.2: Assessment for the simulated data, when random values were set
for their generation, assuming no antimicrobial treatment. The first
line shows the 95% quantile (grey area) of the number of colonised
patients from the model fit simulations data compared to the ob-
served number of colonised patients (black line). The Second line
shows the mean number of colonised patients (red line) from the
simulations compared to the observed number of colonised pa-
tients (black line). The third line shows the median of the number
of colonised patients (green line) from the simulations compared
to the observed number of colonised patients (black line).
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C.2 MRSA Data Set

C.2.1 Susceptibility Model

log(β0/β̃0)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside −1.0223(1.7685) (−4.6066, 2.6180) −0.7048(1.6999) (−4.1818, 2.8038)

Antiseptic 2.7374(1.4937) (−0.0329, 6.0085) 1.0417(1.5666) (−2.1879, 4.2422)

Cephalosporin −1.1123(1.7399) (−4.6668, 2.4146) −0.5699(1.7293) (−4.0103, 3.0019)

Glycopeptide −0.6703(1.7253) (−4.1736, 2.8758) −0.5955(1.7527) (−4.1113, 3.0290)

Macrolide −2.4592(1.5603) (−5.7615, 0.6429) −1.5807(1.6830) (−5.0326, 1.8396)

Nitroimidazole −1.3739(1.7160) (−4.8726, 2.1354) −1.3633(1.7586) (−4.9209, 2.2115)

Oxazolidinone −2.8535(1.7760) (−6.4361, 0.7522) −4.1455(1.7958) (−7.8527,−0.4902)

Penicillin −0.9387(1.7322) (−4.4394, 2.6367) −1.5177(1.6913) (−4.9756, 1.9068)

Polymyxin −3.5102(1.7374) (−7.0696,−0.0108) −3.1431(1.6909) (−6.6249, 0.3094)

Quinolone −3.3249(1.6085) (−6.7084,−0.0948) −3.2701(1.6641) (−6.7472, 0.0763)

Rifamycin 2.5372(1.5539) (−0.4612, 5.8957) −4.1743(1.7701) (−7.7350,−0.5409)

Table C.3: Summary statistics for parameters β0 and β̃0 for each antimicrobial
group for the Susceptibility Model, for the MRSA Data Set.

log(β1/β̃1)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.7564(1.1885) (−0.9583, 3.6654) 0.6781(1.0924) (−0.9004, 3.3893)

Antiseptic 2.4933(1.3532) (0.1208, 5.5835) 1.9721(1.0558) (0.3371, 4.5754)

Cephalosporin −0.1836(1.0215) (−1.7420, 2.3219) −0.4977(0.8640) (−2.0564, 1.3743)

Glycopeptide −0.5722(0.8471) (−2.0607, 1.2679) −0.1817(0.9083) (−1.7691, 1.8375)

Macrolide 0.0467(1.0940) (−1.5047, 2.7608) 0.5136(1.1291) (−1.0936, 3.3158)

Nitroimidazole −0.4479(0.9419) (−1.8228, 1.9404) −1.1419(0.7878) (−2.6009, 0.5820)

Oxazolidinone −0.5770(1.3166) (−2.5745, 2.5845) −1.2130(1.4568) (−3.4707, 2.1570)

Penicillin 0.5330(1.2238) (−1.2938, 3.4977) 0.3640(1.1970) (−1.3688, 3.3182)

Polymyxin −0.7566(1.2422) (−2.6162, 2.2614) −0.8705(1.2076) (−2.6102, 2.1074)

Quinolone −0.8154(1.1422) (−2.4757, 1.9935) −1.5553(1.0048) (−3.0316, 0.9460)

Rifamycin 2.6411(1.3277) (0.4789, 5.7057) −1.5424(1.2867) (−3.5111, 1.5170)

Table C.4: Summary statistics for parameters β1 and β̃1 for each antimicrobial
group for the Susceptibility Model, for the MRSA Data Set.
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φ
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.5512(0.0253) (0.5016, 0.6008) 0.4784(0.0245) (0.4314, 0.5263)

Antiseptic 0.5585(0.0251) (0.5093, 0.6073) 0.4785(0.0255) (0.4295, 0.5288)

Cephalosporin 0.5553(0.0239) (0.5084, 0.6018) 0.4816(0.0253) (0.4325, 0.5315)

Glycopeptide 0.5549(0.0260) (0.5049, 0.6064) 0.4806(0.0283) (0.4200, 0.5321)

Macrolide 0.5565(0.0260) (0.5032, 0.6059) 0.4802(0.0253) (0.4317, 0.5294)

Nitroimidazole 0.5567(0.0247) (0.5075, 0.6044) 0.4730(0.0272) (0.4176, 0.5246)

Oxazolidinone 0.5558(0.0250) (0.5070, 0.6053) 0.4645(0.0243) (0.4149, 0.5100)

Penicillin 0.5562(0.0251) (0.5077, 0.6060) 0.4733(0.0258) (0.4249, 0.5254)

Polymyxin 0.5546(0.0257) (0.5035, 0.6045) 0.4811(0.0234) (0.4357, 0.5276)

Quinolone 0.5534(0.0265) (0.5014, 0.6059) 0.4785(0.0241) (0.4307, 0.5250)

Rifamycin 0.5581(0.0234) (0.5129, 0.6043) 0.4763(0.0241) (0.4298, 0.5245)

Table C.5: Summary statistics for parameter φ for each antimicrobial group for
the Susceptibility Model, for the MRSA Data Set.

z
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.1580(0.0141) (0.1316, 0.1871) 0.1647(0.0134) (0.1396, 0.1915)

Antiseptic 0.1470(0.0127) (0.1235, 0.1728) 0.1559(0.0143) (0.1291, 0.1852)

Cephalosporin 0.1542(0.0127) (0.1307, 0.1805) 0.1607(0.0155) (0.1303, 0.1912)

Glycopeptide 0.1562(0.0139) (0.1294, 0.1836) 0.1631(0.0174) (0.1345, 0.2050)

Macrolide 0.1539(0.0140) (0.1289, 0.1850) 0.1635(0.0150) (0.1357, 0.1937)

Nitroimidazole 0.1534(0.0133) (0.1293, 0.1813) 0.1636(0.0164) (0.1353, 0.1996)

Oxazolidinone 0.1542(0.0130) (0.1295, 0.1800) 0.1728(0.0145) (0.1471, 0.2048)

Penicillin 0.1535(0.0133) (0.1276, 0.1793) 0.1675(0.0151) (0.1394, 0.1982)

Polymyxin 0.1560(0.0137) (0.1311, 0.1849) 0.1630(0.0134) (0.1364, 0.1894)

Quinolone 0.1557(0.0148) (0.128, 0.1863) 0.1654(0.0138) (0.1401, 0.1945)

Rifamycin 0.1471(0.0125) (0.123, 0.172) 0.1663(0.0140) (0.1388, 0.1934)

Table C.6: Summary statistics for parameter z for each antimicrobial group for
the Susceptibility Model, for the MRSA Data Set.
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Figure C.3: Plots showing the Susceptibility Model assessement for the first 6 of
the antimicrobials of ward 1, for the MRSA Data Set.
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Figure C.4: Plots showing the Susceptibility Model assessement for the next 5
of the antimicrobials of ward 1, for the MRSA Data Set.
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Figure C.5: Plots showing the Susceptibility Model assessement for the first 6 of
the antimicrobials of ward 2, for the MRSA Data Set.

232



APPENDIX C: APPENDIX TRANSMISSION MODELS

0 500 1000 1500

0
2

4
6

8
Oxazolidinone

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

0 500 1000 1500

0
2

4
6

8

Penicillin

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

0 500 1000 1500

0
2

4
6

8

Polymixin

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

0 500 1000 1500

0
2

4
6

8

Quinolone

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

0 500 1000 1500

0
2

4
6

8

Rifamycin

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

Susceptibility Model  Assessement − Ward 2 − b

Figure C.6: Plots showing the Susceptibility Model assessement for the next 5
of the antimicrobials of ward 2, for the MRSA Data Set.
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C.2.2 Infectivity Model

β0
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.0009(0.0008) (0.0000, 0.0030) 0.0014(0.0012) (0.0000, 0.0046)

Antiseptic 0.0007(0.0006) (0.0000, 0.0022) 0.0009(0.0007) (0.0000, 0.0026)

Cephalosporin 0.0009(0.0008) (0.0000, 0.0030) 0.0015(0.0013) (0.0000, 0.0047)

Glycopeptide 0.0010(0.0009) (0.0000, 0.0032) 0.0014(0.0011) (0.0000, 0.0043)

Macrolide 0.0010(0.0008) (0.0000, 0.0031) 0.0016(0.0012) (0.0001, 0.0045)

Nitroimidazole 0.0010(0.0009) (0.0000, 0.0033) 0.0013(0.0011) (0.0000, 0.0042)

Oxazolidinone 0.0010(0.0009) (0.0000, 0.0032) 0.0014(0.0012) (0.0000, 0.0044)

Penicillin 0.0010(0.0009) (0.0000, 0.0034) 0.0013(0.0011) (0.0000, 0.0040)

Polymyxin 0.0009(0.0008) (0.0000, 0.0031) 0.0012(0.0010) (0.0000, 0.0038)

Quinolone 0.0010(0.0009) (0.0000, 0.0034) 0.0013(0.0012) (0.0000, 0.0043)

Rifamycin 0.0010(0.0009) (0.0000, 0.0033) 0.0013(0.0012) (0.0000, 0.0044)

Table C.7: Summary statistics for parameters β0 for each antimicrobial group
for the Infectivity Model, for the MRSA Data Set.

log(β1/β
′
1)

Ward 1 Ward 2
GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.0043(1.2181) (−1.8166, 2.9772) −0.7521(1.2489) (−2.7962, 2.1884)

Antiseptic 3.0329(1.2216) (1.2548, 6.0426) 3.2235(1.1760) (1.3791, 5.9960)

Cephalosporin −1.3987(1.0307) (−3.1936, 0.8609) 0.1598(1.2496) (−1.7460, 3.1932)

Glycopeptide −1.8073(1.2085) (−4.5946, 0.2988) −1.7135(1.0505) (−4.1153, 0.1089)

Macrolide −1.8804(0.9369) (−3.8726,−0.1676) −2.8436(1.0470) (−5.3755,−1.1979)

Nitroimidazole −0.8276(1.2017) (−2.7411, 1.9800) −1.7093(1.0382) (−3.8493, 0.3769)

Oxazolidinone 0.4938(1.2955) (−1.4434, 3.6147) −0.7399(1.2871) (−2.7046, 2.3088)

Penicillin −0.2430(1.2650) (−2.1451, 2.7841) −1.5024(0.9395) (−2.9534, 0.7562)

Polymyxin −1.2452(1.1885) (−2.9589, 1.7023) −2.1536(1.0140) (−3.5907, 0.3943)

Quinolone −1.4568(1.1042) (−3.2547, 1.1724) −0.5420(1.1830) (−2.2883, 2.3641)

Rifamycin −2.0195(1.0138) (−3.6101, 0.3986) −1.1696(1.2317) (−2.9397, 1.8284)

Table C.8: Summary statistics for parameters β1 and β
′
1 for each antimicrobial

group for the Infectivity Model, for the MRSA Data Set.
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φ
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.5554(0.0249) (0.5071, 0.6042) 0.4790(0.0245) (0.4309, 0.5278)

Antiseptic 0.5584(0.0239) (0.5108, 0.6043) 0.4808(0.0251) (0.4317, 0.5296)

Cephalosporin 0.5583(0.0252) (0.5083, 0.6067) 0.4766(0.0262) (0.4264, 0.5287)

Glycopeptide 0.5556(0.0241) (0.5087, 0.6028) 0.4771(0.0254) (0.4253, 0.5253)

Macrolide 0.5488(0.0253) (0.4960, 0.5971) 0.4763(0.0266) (0.4237, 0.5274)

Nitroimidazole 0.5539(0.0256) (0.5042, 0.6044) 0.4804(0.0247) (0.4323, 0.5282)

Oxazolidinone 0.5508(0.0244) (0.5023, 0.5985) 0.4793(0.0265) (0.4255, 0.5290)

Penicillin 0.5528(0.0248) (0.5032, 0.6004) 0.4768(0.0268) (0.4220, 0.5280)

Polymyxin 0.5529(0.0250) (0.5042, 0.6018) 0.4711(0.0230) (0.4263, 0.5160)

Quinolone 0.5498(0.0234) (0.5034, 0.5952) 0.4821(0.0255) (0.4323, 0.5313)

Rifamycin 0.5488(0.0259) (0.4988, 0.6000) 0.4797(0.0268) (0.4253, 0.5301)

Table C.9: Summary statistics for parameter φ for each antimicrobial group for
the Infectivity Model, for the MRSA Data Set.

z
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.1551(0.0137) (0.1291, 0.1823) 0.1652(0.0150) (0.1359, 0.1948)

Antiseptic 0.1504(0.0122) (0.1273, 0.1755) 0.1551(0.0142) (0.1289, 0.1840)

Cephalosporin 0.1536(0.0142) (0.1281, 0.1832) 0.1662(0.0152) (0.1380, 0.1961)

Glycopeptide 0.1556(0.0126) (0.1317, 0.1811) 0.1660(0.0140) (0.1400, 0.1949)

Macrolide 0.1586(0.0138) (0.1338, 0.1896) 0.1647(0.0165) (0.1359, 0.1987)

Nitroimidazole 0.1549(0.0133) (0.1299, 0.1818) 0.1611(0.0141) (0.1345, 0.1896)

Oxazolidinone 0.1574(0.0127) (0.1337, 0.1837) 0.1638(0.0160) (0.1349, 0.1973)

Penicillin 0.1565(0.0135) (0.1316, 0.1851) 0.1667(0.0160) (0.1390, 0.2034)

Polymyxin 0.1572(0.0140) (0.1303, 0.1851) 0.1721(0.0134) (0.1470, 0.1988)

Quinolone 0.1588(0.0118) (0.1365, 0.1827) 0.1614(0.0151) (0.1336, 0.1923)

Rifamycin 0.1592(0.0141) (0.1323, 0.1871) 0.1644(0.0161) (0.1359, 0.1992)

Table C.10: Summary statistics for parameter z for each antimicrobial group
for the Infectivity Model, for the MRSA Data Set.
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Figure C.7: Plots showing the Infectivity Model assessement for the first 6 of
the antimicrobials of ward 1, for the MRSA Data Set.
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Figure C.8: Plots showing the Infectivity Model assessement for the next 5 of
the antimicrobials of ward 1, for the MRSA Data Set.
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Figure C.9: Plots showing the Infectivity Model assessement for the first 6 of
the antimicrobials of ward 2, for the MRSA Data Set.
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Figure C.10: Plots showing the Infectivity Model assessement for the next 5 of
the antimicrobials of ward 2, for the MRSA Data Set.
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C.2.3 Full Model

log(β0/β̃0)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside −0.7792(1.7416) (−4.417, 2.7697) −0.5499(1.7113) (−4.0487, 2.9213)

Antiseptic 2.6298(1.5385) (−0.3912, 5.921) 1.0744(1.6752) (−2.3297, 4.5004)

Cephalosporin −0.9576(1.7475) (−4.5343, 2.5707) −0.7503(1.7724) (−4.3395, 2.8764)

Glycopeptide −0.8868(1.7029) (−4.3231, 2.5876) −0.6914(1.6911) (−4.114, 2.7895)

Macrolide −1.8613(1.6682) (−5.2379, 1.586) −1.2212(1.6421) (−4.5795, 2.1443)

Nitroimidazole −1.3235(1.7456) (−4.8716, 2.2326) −1.0652(1.7474) (−4.6824, 2.448)

Oxazolidinone −2.8972(1.7463) (−6.4499, 0.6855) −4.0499(1.7932) (−7.6348,−0.3714)

Penicillin −1.0431(1.727) (−4.5491, 2.4754) −1.3088(1.7462) (−4.8617, 2.2169)

Polymyxin −3.095(1.664) (−6.5095, 0.2822) −3.1195(1.6855) (−6.5949, 0.294)

Quinolone −3.1181(1.6069) (−6.4783, 0.1407) −3.0392(1.6034) (−6.3991, 0.1567)

Rifamycin −1.2426(1.7637) (−4.8122, 2.3232) −3.9118(1.7549) (−7.4789,−0.3436)

Table C.11: Summary statistics for parameters β0 and β̃0 for each antimicrobial
group for the Full Model, for the MRSA Data Set.

log(β1/β̃1)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.9022(1.2158) (−0.9333, 3.8459) 0.4074(1.3104) (−1.6835, 3.4682)

Antiseptic 1.1546(1.2838) (−0.8277, 4.1935) 0.3399(0.8143) (−0.8759, 2.2791)

Cephalosporin 0.4236(1.2525) (−1.5334, 3.4256) −0.2747(1.1814) (−2.2599, 2.5284)

Glycopeptide −1.1965(1.5384) (−4.4351, 1.9369) −1.1381(1.4069) (−4.119, 1.6735)

Macrolide 0.0577(1.3386) (−2.2113, 3.1799) −0.207(1.5187) (−3.1324, 3.1132)

Nitroimidazole −0.5019(1.2557) (−2.6884, 2.349) −0.8137(1.2323) (−3.3192, 1.8178)

Oxazolidinone −0.8308(1.328) (−2.8678, 2.3374) −1.3037(1.4246) (−3.6236, 1.9936)

Penicillin 0.5946(1.1998) (−1.1649, 3.5361) 0.4466(1.214) (−1.3537, 3.3553)

Polymyxin −0.9356(1.2387) (−2.8066, 2.0516) −1.2994(1.1982) (−3.0927, 1.6366)

Quinolone −0.709(1.1609) (−2.4109, 2.1784) −0.9067(1.1333) (−2.5209, 1.941)

Rifamycin 0.9297(1.3076) (−1.106, 4.024) −1.6862(1.3865) (−3.9479, 1.5378)

Table C.12: Summary statistics for parameters β1 and β̃1 for each antimicrobial
group for the Full Model, for the MRSA Data Set.
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log(β
′
1/β̃

′
1)

Ward 1 Ward 2
GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside −0.19(1.6061) (−3.3295, 3.1883) −0.2774(1.5125) (−3.3509, 2.8895)

Antiseptic 1.5804(1.6674) (−1.8194, 5.0173) 1.1927(1.659) (−2.2912, 4.4571)

Cephalosporin −1.6491(1.2703) (−4.4263, 0.7486) −1.6279(1.6161) (−5.0028, 1.5837)

Glycopeptide 0.2912(1.1815) (−1.4769, 3.1992) 0.9081(1.3145) (−1.2831, 3.9588)

Macrolide −0.5239(1.2206) (−2.8636, 2.1216) −0.0528(0.9299) (−1.3219, 2.3121)

Nitroimidazole −0.5105(1.5383) (−3.5453, 2.8123) −1.5324(1.3927) (−4.4367, 1.2502)

Oxazolidinone −2.8655(1.8672) (−6.6228, 0.8704) NA NA

Penicillin −1.1707(1.7519) (−4.6719, 2.4526) −0.893(1.5551) (−3.8856, 2.409)

Polymyxin NA NA −1.0848(1.5164) (−3.8402, 2.2467)

Quinolone −2.4636(1.3419) (−5.3758, 0.1607) −4.8393(1.3892) (−8.0766,−2.6002)

Rifamycin NA NA NA NA

Table C.13: Summary statistics for parameters β
′
1 and β̃

′
1 for each antimicrobial

group for the Full Model, for the MRSA Data Set.

φ
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.5566(0.0254) (0.5054, 0.6054) 0.478(0.0239) (0.4328, 0.5265)

Antiseptic 0.5627(0.0249) (0.5119, 0.6101) 0.4815(0.0254) (0.4315, 0.5309)

Cephalosporin 0.5539(0.0268) (0.5021, 0.607) 0.4778(0.025) (0.4288, 0.5258)

Glycopeptide 0.5618(0.0245) (0.5141, 0.6103) 0.4838(0.0248) (0.4347, 0.532)

Macrolide 0.5518(0.0259) (0.5008, 0.6025) 0.4783(0.0253) (0.4283, 0.5279)

Nitroimidazole 0.5532(0.0252) (0.5034, 0.6016) 0.4782(0.0246) (0.4297, 0.526)

Oxazolidinone 0.5532(0.0244) (0.5053, 0.6007) 0.475(0.0253) (0.4231, 0.5237)

Penicillin 0.5516(0.024) (0.5039, 0.5982) 0.48(0.0238) (0.434, 0.5267)

Polymyxin 0.5575(0.0243) (0.5096, 0.6047) 0.4754(0.0254) (0.4262, 0.5263)

Quinolone 0.5496(0.0235) (0.5038, 0.596) 0.4775(0.0264) (0.4254, 0.5281)

Rifamycin 0.5506(0.0257) (0.5014, 0.6008) 0.4735(0.0236) (0.428, 0.5204)

Table C.14: Summary statistics for parameter φ for each antimicrobial group
for the Full Model, for the MRSA Data Set.
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z
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.1529(0.0131) (0.1281, 0.1798) 0.1647(0.014) (0.1369, 0.1917)

Antiseptic 0.1433(0.013) (0.1193, 0.1706) 0.1543(0.0141) (0.1277, 0.1838)

Cephalosporin 0.154(0.0146) (0.125, 0.1826) 0.1623(0.0145) (0.1358, 0.1923)

Glycopeptide 0.1507(0.0123) (0.127, 0.1754) 0.1588(0.0133) (0.1349, 0.1878)

Macrolide 0.155(0.0132) (0.1304, 0.1818) 0.1619(0.0141) (0.1357, 0.1915)

Nitroimidazole 0.1546(0.0132) (0.1304, 0.1817) 0.1591(0.0136) (0.1332, 0.186)

Oxazolidinone 0.1558(0.0135) (0.1312, 0.1841) 0.1629(0.0163) (0.1353, 0.2014)

Penicillin 0.1567(0.0121) (0.1335, 0.1813) 0.1633(0.0129) (0.1391, 0.1896)

Polymyxin 0.1508(0.0127) (0.1275, 0.1771) 0.1678(0.0151) (0.1386, 0.1985)

Quinolone 0.1587(0.0123) (0.1353, 0.1834) 0.1595(0.016) (0.1304, 0.1922)

Rifamycin 0.1559(0.0138) (0.1289, 0.183) 0.1665(0.0139) (0.1405, 0.1948)

Table C.15: Summary statistics for parameter z for each antimicrobial group
for the Full Model, for the MRSA Data Set.
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Figure C.11: Plots showing the Full Model assessement for the first 6 of the
antimicrobials of ward 1, for the MRSA Data Set.
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Figure C.12: Plots showing the Full Model assessement for the next 3 of the
antimicrobials of ward 1, for the MRSA Data Set.
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Figure C.13: Plots showing the Full Model assessement for the first 6 of the
antimicrobials of ward 2, for the MRSA Data Set.
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Figure C.14: Plots showing the Full Model assessement for the next 3 of the
antimicrobials of ward 2, for the MRSA Data Set.
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Sensitivity φ estimated from the data

Susceptibility Model

log(β0/β̃0)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 2.3079(1.2201) (0.1728, 5.0678) 1.1339(1.2927) (−1.4324, 3.9402)

Glycopeptide −0.5936(1.5843) (−3.7135, 2.7715) −0.1737(1.5859) (−3.3269, 3.1573)

Table C.16: Summary statistics for parameters β0 and β̃0 for Antiseptic and
Glycopeptide for the Susceptibility Model when sensitivity is esti-
mated from the data, for the MRSA Data Set.

log(β1/β̃1)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 2.1525(1.2733) (0.0638, 5.1601) 1.4539(0.9845) (−0.1007, 3.8832)

Glycopeptide −0.4577(0.6875) (−1.5668, 1.1326) −0.4963(0.7091) (−1.7759, 1.0166)

Table C.17: Summary statistics for parameters β1 and β̃1 for Antiseptic and
Glycopeptide for the Susceptibility Model when sensitivity is esti-
mated from the data, for the MRSA Data Set.

Infectivity Model

β0
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 0.0012(7.2596× 10−4) (0.00001, 0.0032) 0.0019(0.0009) (0.00002, 0.0040)

Glycopeptide 0.0016(0.0010) (0.0001, 0.0041) 0.0021(0.0012) (0.0002, 0.0049)

Table C.18: Summary statistics for parameters β0 for Antiseptic and Glycopep-
tide for the Infectivity Model when sensitivity is estimated from the
data, for the MRSA Data Set.

log(β1/β
′
1)

Ward 1 Ward 2
GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 2.9339(1.2242) (1.1539, 5.9499) 2.7606(1.3069) (1.0639, 6.3529)

Glycopeptide −1.3083(0.9550) (−3.5830, 0.2078) −1.2658(0.8712) (−3.2071, 0.3390)

Table C.19: Summary statistics for parameters β1 and β
′
1 for Antiseptic and

Glycopeptide for the Infectivity Model when sensitivity is estimated
from the data, for the MRSA Data Set.
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Full Model

log(β0/β̃0)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 2.2946(1.8022) (−0.1058, 5.3179) 1.0249(1.2515) (−1.4780, 3.6912)

Glycopeptide −0.5067(1.6147) (−3.7402, 2.9017) −0.2636(1.5738) (−3.4394, 3.0268)

Table C.20: Summary statistics for parameters β0 and β̃0 for Antiseptic and
Glycopeptide for the Full Model when sensitivity is estimated from
the data, for the MRSA Data Set.

log(β1/β̃1)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 1.0234(1.2197) (−0.8404, 4.0032) 0.2754(0.8633) (−1.0696, 2.3274)

Glycopeptide −1.0305(1.3162) (−3.8075, 1.6908) −1.0256(1.2697) (−3.6744, 1.6367)

Table C.21: Summary statistics for parameters β1 and β̃1 for Antiseptic and
Glycopeptide for the Full Model when sensitivity is estimated from
the data, for the MRSA Data Set.

log(β
′
1/β̃

′
1)

Ward 1 Ward 2
GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 1.3170(1.6323) (−2.0176, 4.6561) 1.0315(1.7947) (−2.3802, 5.3356)

Glycopeptide 0.0733(1.1005) (−1.6502, 2.7557) 0.4656(1.3450) (−1.9131, 3.5059)

Table C.22: Summary statistics for parameters β1 and β̃1 for Antiseptic and
Glycopeptide for the Full Model when sensitivity is estimated from
the data, for the MRSA Data Set.

z
Ward 1 Ward 2

Susceptibility Model
Model E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 0.1120(8.1549× 10−5) (0.0947, 0.1301) 0.1102(8.0923× 10−5) (0.0933, 0.1286)

Glycopeptide 0.1170(7.8102× 10−5) (0.1002, 0.1350) 0.1161(8.0246× 10−5) (0.0991, 0.1342)

Infectivity Model
Model E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 0.1142(8.0646× 10−5) (0.0972, 0.1325) 0.1123(8.3166× 10−5) (0.0950, 0.1307)

Glycopeptide 0.1177(0.0089) (0.1007, 0.1357) 0.1143(7.7655× 10−5) (0.0976, 0.1321)

Full Model
Model E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Antiseptic 0.1121(0.0090) (0.0952, 0.1305) 0.1093(0.0088) (0.0925, 0.1273)

Glycopeptide 0.1241(0.0100) (0.1052, 0.1447) 0.1144(0.0090) (0.0969, 0.1324)

Table C.23: Summary statistics for parameter z for Antiseptic and Glycopep-
tide for all three models when sensitivity is estimated from the
data, for the MRSA Data Set.
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Figure C.15: Plots showing the assessment for the three models, for the MRSA
Data Set: Susceptibility Model (first line), Infectivity Model (second
line) and Full Model (third line) for the Antiseptic in ward 1 when
the sensitivity is estimated from the data. The black line shows
the number of colonised patients in the ward during the study
period from the observed data and the grey area is the 95% quan-
tile from the model fit simulations.
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Figure C.16: Plots showing the assessment for the three models, for the MRSA
Data Set: Susceptibility Model (first line), Infectivity Model (second
line) and Full Model (third line) for the Antiseptic in ward 2 when
the sensitivity is estimated from the data. The black line shows
the number of colonised patients in the ward during the study
period from the observed data and the grey area is the 95% quan-
tile from the model fit simulations.
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Figure C.17: Plots showing the assessment for the three models, for the MRSA
Data Set: Susceptibility Model (first line), Infectivity Model (second
line) and Full Model (third line) for the Glycopeptide in ward 1
when the sensitivity is estimated from the data. The black line
shows the number of colonised patients in the ward during the
study period from the observed data and the grey area is the 95%
quantile from the model fit simulations.
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Figure C.18: Plots showing the assessment for the three models, for the MRSA
Data Set: Susceptibility Model (first line), Infectivity Model (second
line) and Full Model (third line) for the Glycopeptide in ward 2
when the sensitivity is estimated from the data. The black line
shows the number of colonised patients in the ward during the
study period from the observed data and the grey area is the 95%
quantile from the model fit simulations.
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C.3 Wounds Data Set

C.3.1 Susceptibility Model

log(β0/β̃0)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside −0.1195(1.6273) (−3.2962, 3.3389) −0.1552(1.567) (−3.2036, 3.1887)

Antiseptic 1.7278(1.2211) (−0.6153, 4.3613) 0.6293(1.2493) (−1.9813, 3.1444)

Cephalosporin 0.22(1.5966) (−2.7483, 3.6833) −0.0356(1.6346) (−3.2342, 3.428)

Glycopeptide 0.1556(1.5986) (−2.995, 3.5272) −0.1468(1.535) (−3.1207, 3.1593)

Macrolide −1.1919(1.4465) (−4.0986, 1.8706) −0.5878(1.4788) (−3.3698, 2.5922)

Nitroimidazole −0.2944(1.526) (−3.2384, 3.0107) −0.4767(1.5367) (−3.4004, 2.8417)

Oxazolidinone −2.2541(1.6932) (−5.5636, 1.2774) −2.2458(1.5766) (−5.2404, 1.1535)

Penicillin −0.6872(1.5605) (−3.6942, 2.6574) −0.0504(1.569) (−3.0337, 3.3155)

Polymyxin −2.0076(1.6175) (−5.1579, 1.3918) −3.0024(1.5477) (−6.0707, 0.2404)

Quinolone −1.9292(1.4428) (−4.8314, 1.1273) −1.8011(1.5432) (−4.9242, 1.4577)

Rifamycin −0.6814(1.6171) (−3.8034, 2.7325) −2.9838(1.6007) (−6.1432, 0.3764)

Table C.24: Summary statistics for parameters β0 and β̃0 for each antimicrobial
group for the Susceptibility Model, for the Wounds Data Set.

log(β1/β̃1)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.5532(1.4294) (−1.9839, 3.7955) 1.3999(1.1812) (−0.3648, 4.3364)

Antiseptic 1.617(1.5118) (−1.3035, 4.8722) 0.9875(0.8802) (−0.439, 3.0379)

Cephalosporin 0.408(1.4565) (−2.2726, 3.6343) 0.1888(0.8977) (−1.0971, 2.449)

Glycopeptide 0.1095(1.4569) (−2.6686, 3.2925) 1.0714(1.0631) (−0.4039, 3.7405)

Macrolide −0.5823(1.4388) (−3.4751, 2.5281) −0.1126(0.8806) (−1.5318, 1.9794)

Nitroimidazole −0.7323(1.442) (−3.6563, 2.3056) −0.2863(0.8263) (−1.5722, 1.6592)

Oxazolidinone −1.5849(1.465) (−4.0875, 1.7026) −0.4199(1.41) (−2.7553, 2.8659)

Penicillin −0.8668(1.3137) (−3.2572, 2.0664) 1.0764(1.1732) (−0.621, 4.0082)

Polymyxin −1.386(1.4924) (−4.143, 1.9137) −0.6892(1.2941) (−2.69, 2.4145)

Quinolone −1.9092(1.3425) (−4.6156, 0.9346) −0.3942(1.0667) (−1.8431, 2.3531)

Rifamycin −0.1898(1.4853) (−2.8128, 3.1334) −1.6475(1.4212) (−3.9447, 1.6831)

Table C.25: Summary statistics for parameters β1 and β̃1 for each antimicrobial
group for the Susceptibility Model, for the Wounds Data Set.
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φ
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.2695(0.0179) (0.2355, 0.3056) 0.3487(0.0182) (0.3131, 0.3843)

Antiseptic 0.2726(0.0167) (0.2411, 0.3064) 0.3466(0.0178) (0.3121, 0.3817)

Cephalosporin 0.2711(0.0172) (0.2378, 0.3055) 0.3486(0.0177) (0.3145, 0.3837)

Glycopeptide 0.2671(0.017) (0.2339, 0.3005) 0.3483(0.0183) (0.3124, 0.3842)

Macrolide 0.2657(0.0176) (0.2323, 0.3011) 0.3472(0.0179) (0.3117, 0.3822)

Nitroimidazole 0.2698(0.0168) (0.2377, 0.3032) 0.3469(0.0182) (0.3124, 0.3838)

Oxazolidinone 0.2663(0.0175) (0.2325, 0.3011) 0.3483(0.0186) (0.3125, 0.3855)

Penicillin 0.271(0.0174) (0.2374, 0.3056) 0.3495(0.0185) (0.3133, 0.3857)

Polymyxin 0.2655(0.0176) (0.2312, 0.3003) 0.3472(0.0177) (0.3132, 0.3825)

Quinolone 0.2703(0.0171) (0.2376, 0.3047) 0.3477(0.0179) (0.3131, 0.3832)

Rifamycin 0.2676(0.018) (0.2341, 0.3043) 0.3449(0.0188) (0.3086, 0.3821)

Table C.26: Summary statistics for parameter φ for each antimicrobial group
for the Susceptibility Model, for the Wounds Data Set.

z
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.1774(0.0242) (0.1328, 0.2247) 0.1076(0.0162) (0.0769, 0.1396)

Antiseptic 0.1607(0.0177) (0.1266, 0.1964) 0.0965(0.0141) (0.0704, 0.1257)

Cephalosporin 0.1775(0.0208) (0.1367, 0.2212) 0.1041(0.0144) (0.0769, 0.1328)

Glycopeptide 0.1854(0.0197) (0.1509, 0.2321) 0.1037(0.017) (0.0736, 0.1399)

Macrolide 0.1839(0.0231) (0.1402, 0.2313) 0.1068(0.0138) (0.0809, 0.1351)

Nitroimidazole 0.1755(0.0199) (0.139, 0.2163) 0.1039(0.016) (0.0716, 0.1346)

Oxazolidinone 0.1844(0.0219) (0.143, 0.2303) 0.1034(0.016) (0.074, 0.1373)

Penicillin 0.1744(0.0223) (0.1349, 0.221) 0.1024(0.0157) (0.0736, 0.1361)

Polymyxin 0.1854(0.0228) (0.1424, 0.2294) 0.107(0.0156) (0.0786, 0.1387)

Quinolone 0.1782(0.0192) (0.1408, 0.216) 0.106(0.0152) (0.077, 0.1367)

Rifamycin 0.1823(0.0227) (0.1389, 0.2246) 0.1096(0.017) (0.0792, 0.1444)

Table C.27: Summary statistics for parameter z for each antimicrobial group
for the Susceptibility Model, for the Wounds Data Set.
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Figure C.19: Plots showing the Susceptibility Model assessement for the first 6
of the antimicrobials of ward 1, for the Wounds Data Set.
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Figure C.20: Plots showing the Susceptibility Model assessement for the next 5
of the antimicrobials of ward 1, for the Wounds Data Set.
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Figure C.21: Plots showing the Susceptibility Model assessement for the first 6
of the antimicrobials of ward 2, for the Wounds Data Set.
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Figure C.22: Plots showing the Susceptibility Model assessement for the next 5
of the antimicrobials of ward 2, for the Wounds Data Set.
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C.3.2 Infectivity Model

β0
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.0024(0.0016) (0.0001, 0.006) 0.003(0.002) (0.0002, 0.0075)

Antiseptic 0.0017(0.0012) (0.0001, 0.0046) 0.0032(0.0016) (0.0004, 0.0068)

Cephalosporin 0.0022(0.0015) (0.0001, 0.0057) 0.0026(0.0017) (0.0002, 0.0067)

Glycopeptide 0.002(0.0014) (0.0001, 0.0054) 0.003(0.0019) (0.0002, 0.0073)

Macrolide 0.0023(0.0014) (0.0002, 0.0054) 0.0037(0.0021) (0.0004, 0.0084)

Nitroimidazole 0.0025(0.0017) (0.0002, 0.0066) 0.0039(0.0022) (0.0004, 0.0086)

Oxazolidinone 0.0025(0.0017) (0.0001, 0.0065) 0.0028(0.0017) (0.0002, 0.0068)

Penicillin 0.0027(0.0017) (0.0002, 0.0067) 0.0032(0.0019) (0.0003, 0.0077)

Polymyxin 0.0026(0.0017) (0.0002, 0.0064) 0.0029(0.0019) (0.0002, 0.0074)

Quinolone 0.0023(0.0015) (0.0001, 0.0055) 0.0026(0.0018) (0.0002, 0.0069)

Rifamycin 0.0024(0.0016) (0.0001, 0.006) 0.0029(0.0018) (0.0003, 0.0072)

Table C.28: Summary statistics for parameters β0 for each antimicrobial group
for the Infectivity Model, for the Wounds Data Set.

log(β1/β
′
1)

Ward 1 Ward 2
GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside −1.7316(1.5554) (−4.8147, 1.5565) −1.7397(1.0213) (−3.823, 0.2327)

Antiseptic 2.5656(1.3121) (0.4782, 5.6818) 2.084(0.8791) (0.8698, 4.3874)

Cephalosporin −1.3021(1.6051) (−4.4191, 2.1924) −0.6475(0.9752) (−2.3305, 1.6188)

Glycopeptide −2.3416(1.3885) (−5.5298,−0.0116) −0.7524(1.1861) (−2.9912, 1.8358)

Macrolide −2.7659(1.3899) (−5.9071,−0.2675) −2.1953(0.9775) (−4.3663,−0.4494)

Nitroimidazole −2.2434(1.3855) (−5.2645, 0.382) −2.0781(0.9108) (−4.1474,−0.5022)

Oxazolidinone −0.2825(1.4407) (−2.7929, 2.9487) −0.5989(1.248) (−2.4362, 2.4184)

Penicillin −0.8091(1.4986) (−3.6784, 2.4587) 0.4477(1.2977) (−1.4955, 3.5778)

Polymyxin −2.1251(1.4748) (−4.831, 1.1029) −0.9401(1.0964) (−2.557, 1.7851)

Quinolone −2.4686(1.3035) (−5.1828, 0.225) −0.8074(1.0124) (−2.1449, 1.8048)

Rifamycin −3.1235(1.2313) (−5.7381,−0.7031) −1.3628(1.2335) (−3.1924, 1.6189)

Table C.29: Summary statistics for parameters β1 and β
′
1 for each antimicrobial

group for the Infectivity Model, for the Wounds Data Set.
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φ
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.2673(0.0174) (0.2337, 0.3015) 0.3439(0.0184) (0.3084, 0.3803)

Antiseptic 0.2702(0.0178) (0.2367, 0.3063) 0.346(0.018) (0.3116, 0.3821)

Cephalosporin 0.2707(0.0179) (0.2359, 0.3059) 0.3492(0.0184) (0.3138, 0.3861)

Glycopeptide 0.2728(0.0172) (0.2402, 0.3075) 0.3459(0.0186) (0.31, 0.3828)

Macrolide 0.2689(0.0175) (0.2349, 0.3034) 0.343(0.0194) (0.3046, 0.3804)

Nitroimidazole 0.272(0.0178) (0.2389, 0.3086) 0.3492(0.0187) (0.3125, 0.3858)

Oxazolidinone 0.2699(0.0177) (0.2362, 0.3055) 0.3487(0.0185) (0.3124, 0.3852)

Penicillin 0.2707(0.0172) (0.2376, 0.3054) 0.3511(0.0179) (0.3169, 0.3868)

Polymyxin 0.2685(0.0164) (0.2375, 0.3017) 0.346(0.0178) (0.3114, 0.3812)

Quinolone 0.2669(0.0172) (0.2339, 0.3011) 0.3462(0.0185) (0.3094, 0.3821)

Rifamycin 0.27(0.0176) (0.2359, 0.3053) 0.3472(0.0179) (0.3127, 0.3829)

Table C.30: Summary statistics for parameter φ for each antimicrobial group
for the Infectivity Model, for the Wounds Data Set.

z
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.1817(0.0209) (0.1432, 0.2226) 0.1099(0.0157) (0.08, 0.141)

Antiseptic 0.1672(0.0212) (0.1289, 0.2132) 0.1015(0.0144) (0.0751, 0.1312)

Cephalosporin 0.1772(0.0213) (0.14, 0.2233) 0.1067(0.0162) (0.0771, 0.1401)

Glycopeptide 0.1716(0.0191) (0.135, 0.2097) 0.1098(0.0152) (0.0812, 0.1403)

Macrolide 0.1768(0.0199) (0.1352, 0.2134) 0.1097(0.0157) (0.0805, 0.1416)

Nitroimidazole 0.1721(0.0224) (0.1223, 0.2118) 0.1055(0.0164) (0.078, 0.1434)

Oxazolidinone 0.1768(0.0232) (0.1361, 0.2257) 0.107(0.017) (0.0777, 0.1444)

Penicillin 0.1768(0.0199) (0.1386, 0.2152) 0.1037(0.0154) (0.0745, 0.135)

Polymyxin 0.1822(0.0188) (0.1453, 0.2187) 0.1099(0.0161) (0.0794, 0.143)

Quinolone 0.1814(0.0208) (0.1431, 0.2239) 0.1082(0.0165) (0.0765, 0.1419)

Rifamycin 0.1786(0.0227) (0.1355, 0.2247) 0.1064(0.015) (0.0788, 0.1381)

Table C.31: Summary statistics for parameter z for each antimicrobial group
for the Infectivity Model, for the Wounds Data Set.
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Figure C.23: Plots showing the Infectivity Model assessement for the first 6 of
the antimicrobials of ward 1, for the Wounds Data Set.
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Figure C.24: Plots showing the Infectivity Model assessement for the next 5 of
the antimicrobials of ward 1, for the Wounds Data Set.
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Figure C.25: Plots showing the Infectivity Model assessement for the first 6 of
the antimicrobials of ward 2, for the Wounds Data Set.
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Figure C.26: Plots showing the Infectivity Model assessement for the next 5 of
the antimicrobials of ward 2, for the Wounds Data Set.
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C.3.3 Full Model

log(β0/β̃0)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside −0.1933(1.6715) (−3.4953, 3.3009) 0.0339(1.5706) (−2.9346, 3.4147)

Antiseptic 1.8676(1.3636) (−0.7731, 4.8291) 0.6444(1.2722) (−1.8564, 3.3998)

Cephalosporin 0.0859(1.6553) (−3.1802, 3.5417) −0.0138(1.5862) (−3.1462, 3.3212)

Glycopeptide 0.1285(1.5976) (−3.0051, 3.5201) 0.2373(1.6004) (−2.9337, 3.6009)

Macrolide −1.3135(1.5452) (−4.4467, 1.9335) −0.156(1.4879) (−2.8622, 3.1253)

Nitroimidazole −0.5251(1.6335) (−3.7847, 2.8751) −0.1668(1.5621) (−3.187, 3.1947)

Oxazolidinone −2.2404(1.71) (−5.6461, 1.2973) −2.7492(1.7187) (−6.1866, 0.7765)

Penicillin −0.4699(1.5567) (−3.4803, 2.872) −0.3744(1.6019) (−3.5491, 3.0095)

Polymyxin −2.0536(1.9533) (−6.274, 1.6703) −2.5157(1.5398) (−5.5992, 0.7482)

Quinolone −1.8953(1.3995) (−4.5259, 1.1848) −1.7156(1.5374) (−4.7836, 1.512)

Rifamycin 0.2446(1.5406) (−2.615, 3.5988) −2.8798(1.4795) (−5.5349, 0.4005)

Table C.32: Summary statistics for parameters β0 and β̃0 for each antimicrobial
group for the Full Model, for the Wounds Data Set.

log(β1/β̃1)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.055(1.603) (−3.1504, 3.4116) 1.5159(1.3103) (−0.5694, 4.5884)

Antiseptic −0.0775(1.3531) (−2.7647, 2.8571) −0.2459(0.701) (−1.3405, 1.3772)

Cephalosporin 0.6451(1.5733) (−2.3527, 4.0277) 0.5681(1.1166) (−1.1564, 3.3093)

Glycopeptide −0.6035(1.7011) (−4.0502, 2.9046) 1.4114(1.2519) (−0.4862, 4.4192)

Macrolide −1.3395(1.7029) (−4.8145, 2.1904) 0.4355(1.4125) (−2.104, 3.6258)

Nitroimidazole −1.2825(1.6171) (−4.6156, 2.022) −0.554(1.4104) (−3.4408, 2.423)

Oxazolidinone −1.8541(1.4746) (−4.4713, 1.403) −0.5793(1.3937) (−2.852, 2.6647)

Penicillin −0.5749(1.4217) (−3.2371, 2.5781) 1.1585(1.2216) (−0.6501, 4.1468)

Polymyxin −1.6311(1.7866) (−5.3251, 1.9885) −0.615(1.3083) (−2.5957, 2.5143)

Quinolone −2.1874(1.4346) (−5.2024, 0.7954) −0.3368(1.1119) (−1.9069, 2.4369)

Rifamycin 0.6021(1.4317) (−1.8956, 3.8473) −1.7492(1.3428) (−3.8267, 1.4044)

Table C.33: Summary statistics for parameters β1 and β̃1 for each antimicrobial
group for the Full Model, for the Wounds Data Set.
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log(β
′
1/β̃

′
1)

Ward 1 Ward 2
GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.2591(1.5427) (−2.6723, 3.6029) −0.5764(1.477) (−3.567, 2.5105)

Antiseptic 2.0286(1.6551) (−1.3521, 5.4513) −0.4255(1.5153) (−3.7075, 2.5071)

Cephalosporin −0.8001(1.7382) (−4.3047, 2.7423) −1.1134(1.5127) (−4.2267, 1.9806)

Glycopeptide 0.8201(1.4012) (−1.5358, 4.0075) −0.6249(1.332) (−3.4341, 2.1044)

Macrolide 0.6935(1.3164) (−1.5503, 3.7481) −0.9584(1.1208) (−3.169, 1.3745)

Nitroimidazole −0.1571(1.4916) (−3.0548, 3.0019) −0.7387(1.0953) (−2.671, 1.8219)

Oxazolidinone NA NA NA NA

Penicillin −2.1817(1.7307) (−5.7443, 1.2612) −1.4207(1.7691) (−5.0418, 2.1777)

Polymyxin NA NA NA NA

Quinolone −1.4459(1.6485) (−4.7982, 1.9319) −1.1738(1.7175) (−4.6296, 2.3399)

Rifamycin NA NA NA NA

Table C.34: Summary statistics for parameters β
′
1 and β̃

′
1 for each antimicrobial

group for the Full Model, for the Wounds Data Set.

φ
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.273(0.0174) (0.2399, 0.3077) 0.348(0.0181) (0.3131, 0.3839)

Antiseptic 0.2732(0.0177) (0.2391, 0.3087) 0.3465(0.0184) (0.3109, 0.383)

Cephalosporin 0.2699(0.0176) (0.2367, 0.3055) 0.3502(0.0183) (0.3146, 0.3863)

Glycopeptide 0.2716(0.0176) (0.2382, 0.3072) 0.3493(0.0182) (0.3138, 0.3851)

Macrolide 0.2697(0.0173) (0.2368, 0.3047) 0.3456(0.0178) (0.3112, 0.3809)

Nitroimidazole 0.2696(0.0184) (0.2337, 0.3058) 0.3469(0.0182) (0.3117, 0.3835)

Oxazolidinone 0.2653(0.0177) (0.2311, 0.3005) 0.3461(0.0181) (0.3111, 0.3821)

Penicillin 0.2688(0.0176) (0.2354, 0.3042) 0.3472(0.0184) (0.3116, 0.3838)

Polymyxin 0.2709(0.0185) (0.2341, 0.3065) 0.3422(0.0178) (0.3081, 0.3774)

Quinolone 0.2719(0.0172) (0.2392, 0.3063) 0.3468(0.0179) (0.3124, 0.3826)

Rifamycin 0.2779(0.019) (0.2413, 0.3155) 0.3421(0.0179) (0.3079, 0.378)

Table C.35: Summary statistics for parameter φ for each antimicrobial group
for the Full Model, for the Wounds Data Set.
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z
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.1686(0.0216) (0.1285, 0.2124) 0.1023(0.0161) (0.0745, 0.1391)

Antiseptic 0.1588(0.0192) (0.1215, 0.1978) 0.0979(0.0153) (0.0694, 0.1295)

Cephalosporin 0.1754(0.0217) (0.1362, 0.2195) 0.1032(0.016) (0.0748, 0.1366)

Glycopeptide 0.1695(0.0211) (0.1323, 0.2147) 0.1011(0.0157) (0.0712, 0.1328)

Macrolide 0.1695(0.0191) (0.1332, 0.2088) 0.1034(0.0139) (0.0765, 0.1309)

Nitroimidazole 0.1678(0.0229) (0.1265, 0.2179) 0.1025(0.0156) (0.0749, 0.1371)

Oxazolidinone 0.1842(0.0216) (0.1434, 0.2283) 0.1035(0.0162) (0.0736, 0.138)

Penicillin 0.1773(0.0211) (0.1359, 0.2183) 0.1045(0.0166) (0.0748, 0.1385)

Polymyxin 0.1698(0.0214) (0.1332, 0.2157) 0.1061(0.0152) (0.0786, 0.1382)

Quinolone 0.1723(0.0194) (0.137, 0.2125) 0.1036(0.0145) (0.0767, 0.1336)

Rifamycin 0.1605(0.0232) (0.1185, 0.2088) 0.1106(0.0146) (0.083, 0.1393)

Table C.36: Summary statistics for parameter z for each antimicrobial group
for the Full Model, for the Wounds Data Set.
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Figure C.27: Plots showing the Full Model assessement for the first 6 of the
antimicrobials of ward 1, for the Wounds Data Set.
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Figure C.28: Plots showing the Full Model assessement for the next 2 of the
antimicrobials of ward 1, for the Wounds Data Set.
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Figure C.29: Plots showing the Full Model assessement for the first 6 of the
antimicrobials of ward 2, for the Wounds Data Set.
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Figure C.30: Plots showing the Full Model assessement for the next 2 of the
antimicrobials of ward 2, for the Wounds Data Set.
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C.4 Respiratory Data Set

C.4.1 Susceptibility Model

log(β0/β̃0)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.5925(1.5779) (−2.4947, 3.9999) 0.1361(1.4214) (−2.4046, 3.3279)

Antiseptic 1.3057(1.2706) (−0.9622, 4.1826) 0.6792(1.1231) (−1.4418, 3.1491)

Cephalosporin −1.9341(1.4933) (−5.1088, 1.053) −0.8131(1.5886) (−4.0988, 2.4921)

Glycopeptide 0.0159(1.554) (−2.9142, 3.363) −0.2966(1.5347) (−3.4441, 2.854)

Macrolide −2.4275(1.4509) (−5.6617, 0.1784) −1.3954(1.3605) (−4.3596, 1.2113)

Nitroimidazole −0.4567(1.5176) (−3.3843, 2.8352) −1.3693(1.443) (−4.4116, 1.5489)

Oxazolidinone NA NA NA NA

Penicillin −0.5378(1.5937) (−3.6955, 2.8135) −0.9788(1.3973) (−3.6084, 2.0908)

Polymyxin NA NA NA NA

Quinolone −1.738(1.5806) (−4.927, 1.5872) −1.5261(1.4873) (−4.4057, 1.6682)

Rifamycin 0.0154(1.5842) (−3.0008, 3.4063) NA NA

Table C.37: Summary statistics for parameters β0 and β̃0 for each antimicrobial
group for the Susceptibility Model, for the Respiratory Data Set.

log(β1/β̃1)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 1.1513(1.2838) (−0.8656, 4.2335) 0.4444(1.2656) (−1.684, 3.3947)

Antiseptic 1.0646(1.2607) (−1.1928, 3.9406) 0.7875(1.2866) (−1.6777, 3.6505)

Cephalosporin −0.0821(1.2131) (−2.1294, 2.7834) 0.4292(1.1728) (−1.4246, 3.238)

Glycopeptide −0.2012(1.0207) (−2.145, 2.0461) 0.7376(1.2544) (−1.3565, 3.6597)

Macrolide 1.157(1.2636) (−0.7238, 4.2388) 0.2828(1.3108) (−2.0319, 3.2581)

Nitroimidazole −0.2441(1.1066) (−2.0446, 2.3534) 0.0796(1.17) (−1.677, 2.9387)

Oxazolidinone NA NA NA NA

Penicillin 0.3138(1.288) (−1.6856, 3.3732) −0.1453(1.3321) (−2.4959, 2.8897)

Polymyxin NA NA NA NA

Quinolone −1.2023(1.0083) (−2.9061, 1.1686) −1.1535(1.1345) (−3.0902, 1.4997)

Rifamycin 1.0165(1.3501) (−1.144, 4.1833) NA NA

Table C.38: Summary statistics for parameters β1 and β̃1 for each antimicrobial
group for the Susceptibility Model, for the Respiratory Data Set.
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φ
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.568(0.036) (0.4961, 0.6375) 0.4907(0.0362) (0.421, 0.5626)

Antiseptic 0.5702(0.035) (0.4996, 0.6362) 0.4919(0.0359) (0.4223, 0.5633)

Cephalosporin 0.5692(0.0356) (0.4962, 0.6358) 0.488(0.0362) (0.4182, 0.5595)

Glycopeptide 0.571(0.0357) (0.5009, 0.6401) 0.4816(0.0375) (0.4079, 0.5542)

Macrolide 0.5748(0.0363) (0.5013, 0.6435) 0.4861(0.0373) (0.4134, 0.5595)

Nitroimidazole 0.5705(0.0363) (0.4995, 0.6409) 0.4797(0.0401) (0.4016, 0.5579)

Oxazolidinone 0.5409(0.0353) (0.4719, 0.6098) 0.4727(0.0382) (0.396, 0.546)

Penicillin 0.5711(0.0342) (0.5032, 0.6379) 0.4782(0.0377) (0.4057, 0.5521)

Polymyxin 0.5531(0.0341) (0.486, 0.6198) 0.4659(0.0334) (0.4, 0.5309)

Quinolone 0.5591(0.035) (0.4899, 0.6271) 0.4906(0.0375) (0.4183, 0.5647)

Rifamycin 0.5719(0.0357) (0.5017, 0.6416) 0.4681(0.0347) (0.3997, 0.5362)

Table C.39: Summary statistics for parameter φ for each antimicrobial group
for the Susceptibility Model, for the Respiratory Data Set.

z
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.1425(0.0211) (0.1035, 0.1851) 0.1227(0.0234) (0.0812, 0.1734)

Antiseptic 0.1416(0.0209) (0.1022, 0.1852) 0.1175(0.0225) (0.078, 0.1666)

Cephalosporin 0.1388(0.0216) (0.0991, 0.1849) 0.1214(0.0217) (0.0825, 0.1665)

Glycopeptide 0.1447(0.0213) (0.1043, 0.1883) 0.1244(0.0224) (0.0852, 0.1719)

Macrolide 0.1413(0.0219) (0.1017, 0.1877) 0.1222(0.0238) (0.079, 0.1699)

Nitroimidazole 0.1449(0.0239) (0.1042, 0.1986) 0.1187(0.0242) (0.0752, 0.1684)

Oxazolidinone 0.1615(0.0239) (0.116, 0.2091) 0.1303(0.0274) (0.0845, 0.1937)

Penicillin 0.1401(0.0206) (0.1019, 0.1824) 0.1332(0.022) (0.0929, 0.1794)

Polymyxin 0.1526(0.0226) (0.109, 0.1974) 0.1379(0.0219) (0.0963, 0.1823)

Quinolone 0.1519(0.0225) (0.1105, 0.1981) 0.1237(0.0224) (0.0831, 0.1711)

Rifamycin 0.1439(0.0214) (0.1041, 0.189) 0.1281(0.0222) (0.0862, 0.174)

Table C.40: Summary statistics for parameter z for each antimicrobial group
for the Susceptibility Model, for the Respiratory Data Set.
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Figure C.31: Plots showing the Susceptibility Model assessement for the first 6
of the antimicrobials of ward 1, for the Respiratory Data Set.
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Figure C.32: Plots showing the Susceptibility Model assessement for the next 3
of the antimicrobials of ward 1, for the Respiratory Data Set.

275



APPENDIX C: APPENDIX TRANSMISSION MODELS

0 500 1000 1500

0
2

4
6

8
Aminoglycoside

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

0 500 1000 1500

0
2

4
6

8

Antiseptic

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

0 500 1000 1500

0
2

4
6

8

Cephalosporin

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

0 500 1000 1500

0
2

4
6

8

Glycopeptide

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

0 500 1000 1500

0
2

4
6

8

Macrolide

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

0 500 1000 1500

0
2

4
6

8

Nitroimidazole

Study Period

N
o.

 o
f c

ol
on

is
ed

 p
at

ie
nt

s/
da

y simulated data
observed data

Susceptibility Model  Assessement − Ward 2 − a

Figure C.33: Plots showing the Susceptibility Model assessement for the first 6
of the antimicrobials of ward 2, for the Respiratory Data Set.
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Figure C.34: Plots showing the Susceptibility Model assessement for the next 2
of the antimicrobials of ward 2, for the Respiratory Data Set.
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C.4.2 Infectivity Model

β0
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.0052(0.0034) (0.0005, 0.0134) 0.0082(0.0052) (0.0008, 0.0207)

Antiseptic 0.0055(0.003) (0.0007, 0.0123) 0.0075(0.0042) (0.0009, 0.0172)

Cephalosporin 0.0048(0.0031) (0.0004, 0.0121) 0.009(0.0056) (0.0008, 0.0214)

Glycopeptide 0.0057(0.0034) (0.0005, 0.0133) 0.0099(0.0049) (0.0017, 0.0207)

Macrolide 0.0051(0.0032) (0.0005, 0.013) 0.0092(0.0051) (0.0012, 0.0205)

Nitroimidazole 0.0046(0.0031) (0.0003, 0.0118) 0.0113(0.0059) (0.0015, 0.0239)

Oxazolidinone 0.005(0.0032) (0.0004, 0.0127) 0.0108(0.0066) (0.0015, 0.027)

Penicillin 0.0051(0.0032) (0.0004, 0.0124) 0.0099(0.0054) (0.0013, 0.0225)

Polymyxin 0.0059(0.0038) (0.0004, 0.0146) 0.0094(0.0055) (0.0009, 0.0216)

Quinolone 0.0065(0.0038) (0.0007, 0.015) 0.0108(0.0056) (0.0018, 0.0231)

Rifamycin 0.0056(0.0034) (0.0004, 0.0133) 0.0107(0.0062) (0.0012, 0.0253)

Table C.41: Summary statistics for parameters β0 for each antimicrobial group
for the Infectivity Model, for the Respiratory Data Set.

log(β1/β
′
1)

Ward 1 Ward 2
GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside −1.1584(1.0771) (−3.0249, 1.2878) −1.2731(1.2016) (−3.395, 1.5184)

Antiseptic 1.5381(1.1245) (0.0017, 4.3725) 1.648(1.0089) (0.2477, 4.2706)

Cephalosporin −1.1999(0.9962) (−2.9637, 1.0306) −0.2811(1.3737) (−2.6257, 2.8908)

Glycopeptide −0.3054(1.3764) (−3.0855, 2.6008) −2.1824(1.3083) (−5.2109, 0.0625)

Macrolide −1.0782(1.1749) (−3.3232, 1.4962) −2.2531(0.9604) (−4.4896,−0.6459)

Nitroimidazole −1.7077(1.0488) (−3.8232, 0.3897) −0.5324(1.333) (−2.7936, 2.5714)

Oxazolidinone −1.5461(1.3086) (−3.6186, 1.5008) −1.684(1.4728) (−4.3702, 1.5571)

Penicillin −0.1436(1.3253) (−2.1841, 2.9802) −0.9845(1.4092) (−3.4915, 2.188)

Polymyxin −1.4033(1.3358) (−3.5725, 1.7129) −1.4816(1.3243) (−3.6376, 1.5207)

Quinolone −1.8414(1.2572) (−4.419, 0.7491) −0.7486(1.3405) (−3.2455, 2.2588)

Rifamycin −2.7742(0.7591) (−4.3896,−1.4035) −3.1343(0.9462) (−4.9181,−1.1638)

Table C.42: Summary statistics for parameters β1 and β
′
1 for each antimicrobial

group for the Infectivity Model, for the Respiratory Data Set.
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φ
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.57(0.0352) (0.5007, 0.6395) 0.4853(0.0358) (0.4169, 0.5569)

Antiseptic 0.57(0.0352) (0.5016, 0.6391) 0.4938(0.0375) (0.4218, 0.5675)

Cephalosporin 0.5745(0.0357) (0.5044, 0.6434) 0.4886(0.0357) (0.4178, 0.5575)

Glycopeptide 0.565(0.0354) (0.4956, 0.6341) 0.489(0.0368) (0.4185, 0.5622)

Macrolide 0.5714(0.0354) (0.5014, 0.6399) 0.4935(0.0383) (0.4185, 0.5685)

Nitroimidazole 0.5661(0.0355) (0.4969, 0.6365) 0.484(0.0387) (0.4092, 0.5604)

Oxazolidinone 0.5733(0.0355) (0.5031, 0.6423) 0.4782(0.0396) (0.4003, 0.5562)

Penicillin 0.5708(0.034) (0.5037, 0.6371) 0.4924(0.0373) (0.4197, 0.567)

Polymyxin 0.5627(0.0352) (0.4934, 0.6302) 0.4867(0.0382) (0.4137, 0.5618)

Quinolone 0.5685(0.035) (0.5017, 0.6385) 0.4894(0.0375) (0.4149, 0.5615)

Rifamycin 0.5659(0.0368) (0.4937, 0.6365) 0.4843(0.0381) (0.4108, 0.5605)

Table C.43: Summary statistics for parameter φ for each antimicrobial group
for the Infectivity Model, for the Respiratory Data Set.

z
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.1451(0.021) (0.1051, 0.1872) 0.1262(0.0209) (0.0877, 0.1699)

Antiseptic 0.1427(0.021) (0.1029, 0.186) 0.1216(0.0219) (0.0825, 0.1685)

Cephalosporin 0.1431(0.022) (0.1047, 0.1912) 0.1257(0.0228) (0.0849, 0.1735)

Glycopeptide 0.1496(0.0207) (0.111, 0.1929) 0.1198(0.0227) (0.0793, 0.1663)

Macrolide 0.1416(0.0207) (0.1025, 0.1839) 0.1179(0.0238) (0.0774, 0.1698)

Nitroimidazole 0.1502(0.0237) (0.1062, 0.198) 0.1185(0.0232) (0.0759, 0.1678)

Oxazolidinone 0.1433(0.0205) (0.1048, 0.1849) 0.128(0.0223) (0.0858, 0.1724)

Penicillin 0.1456(0.021) (0.1076, 0.1904) 0.1243(0.0225) (0.0825, 0.1695)

Polymyxin 0.1499(0.0232) (0.1079, 0.1975) 0.1257(0.0209) (0.0869, 0.1683)

Quinolone 0.1479(0.0236) (0.1055, 0.1968) 0.1251(0.0213) (0.086, 0.1702)

Rifamycin 0.1515(0.022) (0.1118, 0.196) 0.1224(0.0222) (0.0836, 0.1709)

Table C.44: Summary statistics for parameter z for each antimicrobial group
for the Infectivity Model, for the Respiratory Data Set.
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Figure C.35: Plots showing the Infectivity Model assessement for the first 6 of
the antimicrobials of ward 1, for the Respiratory Data Set.
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Figure C.36: Plots showing the Infectivity Model assessement for the next 5 of
the antimicrobials of ward 1, for the Respiratory Data Set.
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Figure C.37: Plots showing the Infectivity Model assessement for the first 6 of
the antimicrobials of ward 2, for the Respiratory Data Set.
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Figure C.38: Plots showing the Infectivity Model assessement for the next 5 of
the antimicrobials of ward 2, for the Respiratory Data Set.
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C.4.3 Full Model

log(β0/β̃0)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.4279(1.5939) (−2.6437, 3.8377) 0.1486(1.5246) (−2.7416, 3.4409)

Antiseptic 1.34(1.3317) (−1.093, 4.3194) 0.0959(1.3712) (−2.7502, 2.9367)

Cephalosporin −1.2785(1.5548) (−4.5354, 1.81) −0.693(1.5496) (−3.8885, 2.5314)

Glycopeptide 0.1423(1.6194) (−3.0836, 3.5879) 0.1106(1.363) (−2.3734, 3.1741)

Macrolide −2.3056(1.4535) (−5.5474, 0.3855) −1.426(1.3492) (−4.4194, 1.1858)

Nitroimidazole −0.3956(1.5045) (−3.3024, 2.85) −1.0732(1.3511) (−3.7033, 1.7899)

Oxazolidinone NA NA NA NA

Penicillin −0.408(1.5559) (−3.4661, 2.9013) −0.7777(1.3435) (−3.2405, 2.184)

Polymyxin NA NA NA NA

Quinolone −1.3651(1.5092) (−4.3812, 1.8398) −1.3633(1.4784) (−4.2409, 1.787)

Rifamycin 0.8697(1.4955) (−1.792, 4.1704) NA NA

Table C.45: Summary statistics for parameters β0 and β̃0 for each antimicrobial
group for the Full Model, for the Respiratory Data Set.

log(β1/β̃1)
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.5005(1.42) (−2.054, 3.6426) 0.671(1.2823) (−1.526, 3.6519)

Antiseptic 0.6221(1.3327) (−1.5822, 3.6972) 0.3789(1.1297) (−1.2848, 3.128)

Cephalosporin 0.5196(1.2598) (−1.5188, 3.5024) 0.1466(1.2368) (−2.0196, 3.0418)

Glycopeptide −0.8137(1.3748) (−3.7539, 2.0559) 0.0699(1.5749) (−3.0706, 3.3742)

Macrolide 1.0276(1.3193) (−1.0064, 4.1776) −0.4758(1.5254) (−3.488, 2.775)

Nitroimidazole −0.5441(1.326) (−3.0734, 2.3343) 0.0032(1.3479) (−2.3411, 3.0816)

Oxazolidinone NA NA NA NA

Penicillin 0.4941(1.3) (−1.5046, 3.5736) −0.342(1.3985) (−2.7818, 2.7925)

Polymyxin NA NA NA NA

Quinolone −1.5501(1.3476) (−4.1707, 1.3085) −0.8768(1.2465) (−3.0067, 2.0107)

Rifamycin 1.2282(1.4034) (−1.1482, 4.4259) NA NA

Table C.46: Summary statistics for parameters β1 and β̃1 for each antimicrobial
group for the Full Model, for the Respiratory Data Set.
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log(β
′
1/β̃

′
1)

Ward 1 Ward 2
GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.5414(1.568) (−2.556, 3.8976) −0.6714(1.6795) (−4.1312, 2.67)

Antiseptic 0.5326(1.5246) (−2.6658, 3.607) −0.1084(1.5638) (−3.3335, 3.0917)

Cephalosporin −2.2363(1.4735) (−5.468, 0.3973) 0.0119(1.6805) (−3.4129, 3.4656)

Glycopeptide 0.346(1.5236) (−2.5822, 3.6357) 0.3974(1.1723) (−1.4982, 3.2461)

Macrolide 0.2352(1.5557) (−2.8414, 3.4995) 0.8676(1.3822) (−1.4556, 3.9539)

Nitroimidazole −0.3358(1.4912) (−3.302, 2.8056) −1.0312(1.6868) (−4.4306, 2.4386)

Oxazolidinone NA NA NA NA

Penicillin −2.1122(1.7563) (−5.6594, 1.4264) −2.1086(1.7939) (−5.6063, 1.6051)

Polymyxin NA NA NA NA

Quinolone −0.815(1.4621) (−3.5721, 2.3824) −2.0896(1.6479) (−5.452, 1.314)

Rifamycin NA NA NA NA

Table C.47: Summary statistics for parameters β
′
1 and β̃

′
1 for each antimicrobial

group for the Full Model, for the Respiratory Data Set.
φ

Ward 1 Ward 2
GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.5719(0.035) (0.5039, 0.6399) 0.4834(0.0374) (0.4116, 0.5568)

Antiseptic 0.566(0.0353) (0.4967, 0.635) 0.4877(0.0366) (0.4195, 0.5633)

Cephalosporin 0.5725(0.0336) (0.5072, 0.6386) 0.4845(0.0379) (0.4099, 0.5584)

Glycopeptide 0.5719(0.0353) (0.5032, 0.6409) 0.4853(0.0361) (0.4156, 0.5574)

Macrolide 0.5714(0.0344) (0.5036, 0.6381) 0.4928(0.0361) (0.4231, 0.5634)

Nitroimidazole 0.5641(0.0378) (0.4908, 0.6381) 0.4802(0.0379) (0.4047, 0.5527)

Oxazolidinone 0.552(0.0379) (0.4769, 0.6249) 0.4679(0.0361) (0.3975, 0.5385)

Penicillin 0.5649(0.0366) (0.4917, 0.6355) 0.4727(0.0385) (0.399, 0.5486)

Polymyxin 0.536(0.0352) (0.4668, 0.604) 0.452(0.0364) (0.3787, 0.5228)

Quinolone 0.5607(0.0365) (0.4858, 0.6301) 0.4889(0.04) (0.4085, 0.5657)

Rifamycin 0.5695(0.0355) (0.4988, 0.6386) 0.4701(0.0365) (0.4, 0.5428)

Table C.48: Summary statistics for parameter φ for each antimicrobial group
for the Full Model, for the Respiratory Data Set.

z
Ward 1 Ward 2

GROUP E[ · |θ, y, c, r] (s.d.) 95% CI E[ · |θ, y, c, r] (s.d.) 95% CI

Aminoglycoside 0.1419(0.0209) (0.1032, 0.1845) 0.1227(0.0208) (0.0844, 0.1644)

Antiseptic 0.1366(0.0218) (0.094, 0.1798) 0.1201(0.0215) (0.0789, 0.163)

Cephalosporin 0.1354(0.0195) (0.1, 0.1763) 0.1191(0.0223) (0.0804, 0.1674)

Glycopeptide 0.1428(0.0221) (0.104, 0.1902) 0.1151(0.0219) (0.073, 0.1591)

Macrolide 0.1336(0.0188) (0.0995, 0.1731) 0.1193(0.0201) (0.0835, 0.162)

Nitroimidazole 0.1442(0.0222) (0.1033, 0.1894) 0.1273(0.0241) (0.0864, 0.1827)

Oxazolidinone 0.149(0.0221) (0.1089, 0.1948) 0.1278(0.0245) (0.0833, 0.1799)

Penicillin 0.1476(0.0234) (0.106, 0.1971) 0.1255(0.0218) (0.0866, 0.172)

Polymyxin 0.1595(0.0234) (0.1187, 0.2113) 0.1356(0.0255) (0.0908, 0.1892)

Quinolone 0.1502(0.0225) (0.1109, 0.1994) 0.1238(0.026) (0.0808, 0.1822)

Rifamycin 0.1409(0.0207) (0.1036, 0.1851) 0.1275(0.0233) (0.0862, 0.1762)

Table C.49: Summary statistics for parameter z for each antimicrobial group
for the Full Model, for the Respiratory Data Set.
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Figure C.39: Plots showing the Full Model assessement for the first 6 of the
antimicrobials of ward 1, for the Respiratory Data Set.
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Figure C.40: Plots showing the Full Model assessement for the next 2 of the
antimicrobials of ward 1, for the Respiratory Data Set.
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Figure C.41: Plots showing the Full Model assessement for the first 6 of the
antimicrobials of ward 2, for the Respiratory Data Set.
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Figure C.42: Plots showing the Full Model assessement for the next 2 of the
antimicrobials of ward 2, for the Respiratory Data Set.
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