
OFFICE SPACE ALLOCATION BY USING

MATHEMATICAL PROGRAMMING

AND META-HEURISTICS

Özgür ÜLKER, BSc., MSc.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

September 2013

Abstract

Office Space Allocation (OSA) is the task of efficient usage of spatial resources of an

organisation. A common goal in a typical OSA problem is to minimise the wastage

of space either by limiting the overuse or underuse of the facilities. The problem also

contains a myriad of hard and soft constraints based on the preferences of respective

organisations. In this thesis, the OSA variant usually encountered in academic insti-

tutions is investigated. Previous research in this area is rather sparse. This thesis pro-

vides a definition, extension, and literature review for the problem as well as a new

parametrised data instance generator.

In this thesis, two main algorithmic approaches for tackling the OSA are proposed:

The first one is integer linear programming. Based on the definition of several con-

straints and some additional variables, two different mathematical models are pro-

posed. These two models are not strictly alternatives to each other. While one of them

provides more performance for the types of instances it is applicable, it lacks general-

ity. The other approach provides less performance; however, it is easier to apply this

model to different OSA problems. The second algorithmic approach is based on meta-

heuristics. A three step process in heuristic development is followed. In the first step,

general local search techniques (descent methods, threshold acceptance, simulated an-

nealing, great deluge) traverse within the neighbourhood via random relocation and

swap moves. The second step of heuristic development aims to investigate large sec-

tions of the whole neighbourhood greedily via very fast cost calculation, cost update,

and search for best move procedures within an evolutionary local search framework.

The final step involves refinements and hybridisation of best performing (in terms of

solution quality) mathematical programming and meta-heuristic techniques developed

in prior steps.

This thesis aims to be one of the pioneering works in the research area of OSA. The major

contributions are: the analysis of the problem, a new parametrised data instance gen-

erator, mathematical programming models, and meta-heuristic approaches in order to

extend the state-of-the art in this area.

i

Acknowledgements

I want to thank my father, Durmuş Ülker first for his never-ending support both emo-

tionally and financially through all these years. Unfortunately, he has to go through a

stage 4 lung cancer during the time I have to write this thesis. This thesis is probably

my most important way to repay him for his deeds and finishing it before a potential

death has become the propelling motivation for me while I struggle to create one by

myself. The rest of my family, my mother Vildan and my brother Bariş Ülker also get

my deepest gratitude. It is great to think at least I have a home back in Turkey with

support from my family. I also want to briefly thank all my close relatives because it

will take quite a while to list all of them here.

I would like to thank my PhD supervisor Dr. Dario Landa-Silva for his comments

and guidance throughout this project, his easy-going attitude and not having a dicta-

torship over me just because he is my supervisor. Having a supervisor who previously

worked exactly in the same combinatorial optimisation problem (office space alloca-

tion) certainly helped me a lot in our discussions.

I also want to thank my internal examiner Dr. Rong Qu from University of Not-

tingham and my external examiner Prof. Julia Bennell from University of Southamp-

ton. I believe their valuable suggestions helped this thesis to become stronger and more

coherent in scope, content, and presentation.

I want to thank Dr. Ender Özcan without whom I would have probably never been

able to step into this PhD in the first place . His valuable suggestions before, during,

and hopefully after this PhD have helped me a lot in my academic development.

I am also grateful for University of Nottingham for providing me the funding,

office space, and other resources required for this project.

And last but not the least, I want to thank everyone in the ASAP group who both

asked and did not ask the dreaded question, "How is the thesis going?". I thank those

who have asked because they care. I also thank those who have not too because they

already know no one wants to talk about his/her thesis besides work hours!

iii

Dedicated to my father Durmuş Ülker

and my mother Vildan Ülker

v

Table of Contents

Abstract i

Acknowledgements iii

Table of Contents vii

List of Figures xiii

List of Tables xix

1 Introduction 1

1.1 Aims and Scope . 3

1.2 Overview of the Thesis . 5

1.3 Contributions of the Thesis . 6

1.4 Academic Papers Related to this Thesis . 8

2 Office Space Allocation 9

2.1 Introduction . 9

2.2 Space Allocation and Planning in Organisations 10

2.2.1 Case Study: Space Allocation in Universities 10

2.2.2 Case Study: Space Allocation in NASA Langley Research Centre 11

2.3 Problem Description and Formulation . 14

2.3.1 Constraints . 15

2.3.2 Quality Evaluation of an Allocation . 17

2.4 Test Data Instances from UK Universities . 19

2.4.1 University of Nottingham Dataset . 19

2.4.2 University of Wolverhampton Dataset . 19

vii

TABLE OF CONTENTS

2.5 Data Instance Generator for Office Space Allocation 20

2.5.1 Generation of Office Space Allocation Structures 21

2.5.2 Data Instance Generator Algorithm . 22

2.5.3 SVe150 and PNe150 Datasets . 27

2.6 Conclusion . 29

3 Literature Review 31

3.1 Introduction . 31

3.2 Theoretical Problems Related to Office Space Allocation 32

3.2.1 Bin Packing Problem . 32

3.2.2 Multi-dimensional Knapsack Problem . 33

3.2.3 Generalised Assignment Problem . 34

3.2.4 Clustering . 34

3.3 Previous Research on Office Space Allocation . 35

3.4 Other Practical Problems Related to Office Space Allocation 42

3.4.1 Retail Shelf Space Allocation . 42

3.4.2 Teaching Space Allocation . 43

3.5 Algorithm Complexity . 44

3.5.1 No Free Lunch Theorem . 46

3.6 Review of Solution Approaches . 47

3.6.1 Meta-heuristics . 47

3.6.2 Integer Programming . 62

3.7 Conclusion . 67

4 Integer Programming Formulations 69

4.1 Introduction . 69

4.2 Binary Mathematical Programming Model . 70

4.2.1 Formulation of the Constraints . 72

4.2.2 Objective Function . 85

4.3 Model for Re-Allocation Problem . 86

4.4 A Model with General Integer Decision Variables 88

4.5 Two Binary Integer Programming Models . 89

4.5.1 Effect of Using Floor Variables on the Size of Simplex Tables 90

viii

TABLE OF CONTENTS

4.6 Experiments Related to Integer Programming Models 91

4.6.1 Results on Nott1 and Wolverhampton Datasets 92

4.6.2 Effect of S and V on Percentage and Absolute Gaps 93

4.6.3 Effect of P and N on Percentage and Absolute Gaps 96

4.6.4 Effect of S and V on Overuse, Underuse and Soft Constraint Violations . . 98

4.6.5 Effect of P and N on Overuse, Underuse and Soft Constraint Violations . 98

4.6.6 Comparison of Models with and without Floor Variables 101

4.7 Conclusion . 104

5 Local Search Algorithms 107

5.1 Introduction . 107

5.2 Solution Representation and Data Structures . 108

5.3 Neighbourhood Operators . 110

5.4 Algorithm Outline . 112

5.5 Fast Cost Calculation for Relocate and Swap Moves 114

5.6 Experiments Related to Local Search Algorithm 117

5.6.1 Balance Between Relocate and Swap Moves 118

5.6.2 Comparison of Acceptance/Rejection Mechanisms 118

5.6.3 Complete Results on SVe150 and PNe150 Datasets 121

5.6.4 Comparison of Local Search and Integer Programming Models 122

5.7 Conclusion . 125

6 Evolutionary Local Search Algorithm 127

6.1 Introduction . 127

6.2 The Algorithm Outline . 128

6.3 Evolutionary Components . 129

6.3.1 Crossover Operators . 131

6.3.2 Mutation Operators . 133

6.4 Local Search . 135

6.4.1 Neighbourhood in Evolutionary Local Search Algorithm 135

6.4.2 Delta Stage . 137

6.4.3 Update Stage . 137

6.4.4 Partial Local Search . 146

ix

TABLE OF CONTENTS

6.4.5 Application of Tabu Search . 146

6.5 Experiments Related to Evolutionary Local Search 147

6.5.1 Effect of Orderings of Local Search . 148

6.5.2 Effect of Using Different Crossover Operators 149

6.5.3 Effect of Mutation Rate and Local Search Iterations 151

6.5.4 Effect of Local Search Size . 152

6.5.5 Effect of Population Size . 154

6.5.6 Tabu Search vs Basic Local Search . 154

6.5.7 Complete Results on SVe150 and PNe150 Datasets 155

6.5.8 Comparison of Integer Programming Models and Evolutionary Local Search157

6.5.9 Comparison of Local Search vs Evolutionary Local Search Algorithms . . 159

6.6 Conclusion . 162

7 Combining Mathematical Programming and Heuristics 163

7.1 Introduction . 163

7.2 Combination Methodologies . 164

7.2.1 Implementation Issues with CPLEX API 166

7.3 Modifications to the Local Search Heuristic . 167

7.3.1 Elimination of Repeated Delta Stage in the Local Search Heuristic 168

7.3.2 Backtracking . 169

7.3.3 Single Solution Local Search Algorithm with Backtracking 170

7.4 Experiments Related to Single Solution Local Search with Backtracking, Integer

Programming and Heuristic Combination Techniques 171

7.4.1 Effect of Backtrack Iterations and Backtrack Mutation Rate 172

7.4.2 Complete Results of Single Solution Local Search with Backtracking on

SVe150 and PNe150 Datasets . 173

7.4.3 Comparison of Single Solution Local Search with Backtracking and Inte-

ger Programming Models . 175

7.4.4 Comparison of Single Solution Local Search with Backtracking and Local

Search Algorithm . 177

7.4.5 Comparison of Single Solution Local Search with Backtracking and Evo-

lutionary Local Search Algorithm . 180

7.4.6 Comparison of Heuristic Methods in nott1 Instances 183

7.4.7 Comparison of Combination Methodologies 183

x

TABLE OF CONTENTS

7.4.8 Discussion of Results . 187

7.5 Conclusion . 190

8 Conclusion 191

8.1 Summary of Work . 191

8.1.1 From the Office Space Allocation Problem Perspective 191

8.1.2 Mathematical Models for Solving Office Space Allocation 191

8.1.3 Heuristic Approaches for Solving Office Space Allocation 192

8.1.4 Hybridisation of Mathematical Modelling and Heuristics 193

8.1.5 Overall Summary . 194

8.2 Future Work . 195

8.2.1 Modification of Office Space Allocation Problem 195

8.2.2 Re-allocation Problem in Office Space Allocation 195

8.2.3 Modification of Mathematical Programming Models 196

8.2.4 Modification of Heuristic Approaches . 196

8.2.5 Improving the Hybrid Mat-heuristic Methods 197

8.3 Final Remarks . 197

A Tables Associated with Chapter 4 199

A.1 Tables Associated with the Analysis of S, P, N, V by using Model without the

Floor Variables . 199

A.2 Tables Associated with the Comparison of Models with and without Floor Vari-

ables . 207

B Pseudo-codes Associated with Chapter 6 213

References 225

xi

List of Figures

2.1 Dashboard representation of an allocation in NASA LaRC [Ball, 2009] 12

2.2 Data instance generator algorithm (DIGA) . 24

2.3 Depiction of S, V, P and N parameters on entity, room, and constraint sets within

the data instance generator algorithm for OSA. 26

3.1 The classes P, NP, NP-Complete and NP-Hard under the conjectures P = NP and

P 6= NP . 45

3.2 A taxonomy of hybrid meta-heuristics [Talbi, 2002] 49

3.3 General local search framework . 51

3.4 Iterated local search meta-heuristic . 51

3.5 Tabu search meta-heuristic . 52

3.6 GRASP meta-heuristic . 54

3.7 Construction stage in GRASP meta-heuristic . 54

3.8 Simulated annealing meta-heuristic . 55

3.9 Threshold acceptance meta-heuristic . 56

3.10 Great deluge meta-heuristic . 57

3.11 Variable neighbourhood search meta-heuristic . 58

3.12 Ruin and recreate meta-heuristic . 58

3.13 Outline of a genetic algorithm . 60

3.14 Enumeration tree of three integer variables x1, x2, and x3 64

4.1 Relationship between x and f l binary matrices . 71

4.2 Effects of different S and V on percentage and absolute gaps under half soft constraint

penalty condition in SVe150 dataset . 95

4.3 Effects of different S and V on percentage and absolute gaps under normal soft con-

straint penalty condition in SVe150 dataset . 95

xiii

LIST OF FIGURES

4.4 Effects of different S and V on percentage and absolute gaps under double soft con-

straint penalty condition in SVe150 dataset . 95

4.5 Effects of different P and N on percentage and absolute gaps under half soft con-

straint penalty condition in PNe150 dataset . 97

4.6 Effects of different P and N on percentage and absolute gaps under normal soft con-

straint penalty condition in PNe150 dataset . 97

4.7 Effects of different P and N on percentage and absolute gaps under double soft con-

straint penalty condition in PNe150 dataset . 97

4.8 Effects of different S and V on overuse / underuse penalty and soft constraint / space

misuse penalty under half soft constraint penalty condition in SVe150 dataset 99

4.9 Effects of different S and V on overuse / underuse penalty and soft constraint / space

misuse penalty under normal soft constraint penalty condition in SVe150 dataset . . . 99

4.10 Effects of different S and V on overuse / underuse penalty and soft constraint / space

misuse penalty under double soft constraint penalty condition in SVe150 dataset. . . . 99

4.11 Effects of different P and N on overuse / underuse penalty and soft constraint / space

misuse penalty under half soft constraint penalty condition in PNe150 dataset. 100

4.12 Effects of different P and N on overuse / underuse penalty and soft constraint / space

misuse penalty under normal soft constraint penalty condition in PNe150 dataset. . . 100

4.13 Effects of different P and N on overuse / underuse penalty and soft constraint / space

misuse penalty under double soft constraint penalty condition in PNe150 dataset. . . . 100

4.14 Differences in total cost penalty (∆TP), best bound (∆BND), space misuse penalty

(∆SMP), and soft constraint penalty (∆SCP) after applying model without the floor

variables (IP1) and model with the floor variables (IP2) on SVe150 dataset (IP1 −
IP2). IP1 is better in blue regions while IP2 is better in green regions. 102

4.15 Differences in total cost penalty (∆TP), best bound (∆BND), space misuse penalty

(∆SMP), and soft constraint penalty (∆SCP) after applying model without the floor

variables (IP1) and model with the floor variables (IP2) on PNe150 dataset (IP1−
IP2). IP1 is better in blue regions while IP2 is better in green regions. 103

5.1 Relationships between entity, room and constraint objects 108

5.2 Local search (LS) algorithm . 112

5.3 Delta algorithm for not-sharing constraint . 116

5.4 Objective function value plots of different swap move rates for instances S0.60V0.60,

S1.00V1.00, P0.15N0.15, and P0.25N0.25 . 119

5.5 Objective function value plots for several instances in various acceptance/rejection

methods . 120

xiv

LIST OF FIGURES

5.6 Differences in minimum penalty (∆min) after applying IP models without/with

floor variables (IP1 and IP2) and local search (LS) on SVe150 dataset (IP1 − LS

and IP2 − LS). IP1, IP2, and LS are represented by blue, green, and red regions

respectively. 123

5.7 Differences in minimum penalty (∆min) after applying IP models without/with

floor variables (IP1 and IP2) and local search (LS) on PNe150 dataset (IP1 − ELS

and IP2 − LS). IP1, IP2, and LS are represented by blue, green, and red regions

respectively. 123

6.1 Evolutionary local search (ELS) algorithm . 128

6.2 Traditional crossover operators for office space allocation 130

6.3 Room based crossovers (RX-L and RX-P) . 131

6.4 Floor based crossovers (FX-L and FX-P) . 132

6.5 Local search stage in ELS . 135

6.6 Locations affected by the move (e, r1, r2). The e row, and r1 and r2 columns are

always affected at each relocate move. Update on f and g rows depend upon the

constraint and the allocations in r1 and r2 . 138

6.7 Differences in minimum penalty (∆min) after applying IP models without/with

floor variables (IP1 and IP2) and evolutionary local search (ELS) on SVe150 dataset

(IP1− ELS and IP2− ELS). IP1, IP2 and ELS are represented by blue, green, and

grey regions respectively. 158

6.8 Differences in minimum penalty (∆min) after applying IP models without/with

floor variables (IP1 and IP2) and evolutionary local search (ELS) on PNe150

dataset (IP1 − ELS and IP2 − ELS). IP1, IP2 and ELS are represented by blue,

green, and grey regions respectively. 158

6.9 Differences in average total cost penalty (∆TP), minimum total penalty (∆min), av-

erage space misuse penalty (∆SMP), and average soft constraint penalty (∆SCP)

after applying local search (LS) and evolutionary local search (ELS) on SVe150

dataset (LS− ELS). LS and ELS are represented by red and grey regions respec-

tively. 160

6.10 Differences in average total cost penalty (∆TP), minimum total penalty (∆min), av-

erage space misuse penalty (∆SMP), and average soft constraint penalty (∆SCP)

after applying local search (LS) and evolutionary local search (ELS) on PNe150

dataset (LS− ELS). LS and ELS are represented by red and grey regions respec-

tively. 161

7.1 Transferring bounds and fixed variables from IP solver to heuristics 165

7.2 Combination methods of mathematical programming and heuristics 166

xv

LIST OF FIGURES

7.3 Single solution local search meta-heuristic with backtracking (BCK) 171

7.4 Differences in minimum penalty (∆min) after applying IP models without/with

floor variables (IP1 and IP2) and single solution local search algorithm with back-

tracking (BCK) on SVe150 dataset (IP1− BCK and IP2− BCK). IP1, IP2 and BCK

are represented by blue, green, and yellow regions respectively. 176

7.5 Differences in minimum penalty (∆min) after applying IP models without/with

floor variables (IP1 and IP2) and single solution local search algorithm with back-

tracking (BCK) on PNe150 dataset (IP1− BCK and IP2− BCK). IP1, IP2 and BCK

are represented by blue, green, and yellow regions respectively. 176

7.6 Differences in average total cost penalty (∆TP), minimum penalty (∆min), average

space misuse penalty (∆SMP) and average soft constraint penalty (∆SCP) after ap-

plying local search (LS) and single solution local search with backtracking (BCK)

on SVe150 dataset (LS− BCK). LS and BCK are represented by red and yellow

regions respectively. 178

7.7 Differences in average total cost penalty (∆TP), minimum penalty (∆min), average

space misuse penalty (∆SMP), and average soft constraint penalty (∆SCP) after ap-

plying local search (LS) and single solution local search with backtracking (BCK)

on PNe150 dataset (LS− BCK). LS and BCK are represented by red and yellow

regions respectively. 179

7.8 Differences in average total cost penalty (∆TP), minimum penalty (∆min), average

space misuse penalty (∆SMP), and average soft constraint penalty (∆SCP) after

applying evolutionary local search (ELS) and single solution local search with

backtracking (BCK) on SVe150 dataset (ELS − BCK). ELS and BCK are repre-

sented by grey and yellow regions respectively. 181

7.9 Differences in average total cost penalty (∆TP), minimum penalty (∆min), aver-

age space misuse penalty (∆SMP), and average soft constraint penalty (∆SCP)

after applying evolutionary local search (ELS) and single solution local search

with backtracking (BCK) on PNe150 dataset (ELS − BCK). ELS and BCK are

represented by grey and yellow regions respectively. 182

7.10 Average total penalties in instances . 186

7.11 Average individual penalty values in a subset of PNe150 instances 188

7.12 Average individual penalty values in a subset of SVe150 instances 188

7.13 Average individual penalty values in nott1 instance 188

7.14 Average penalty values in nott1b instance . 188

B.1 Update algorithm for Space Misuse . 214

B.2 Update algorithm for same room constraint . 215

B.3 Update algorithm for not same room constraint . 216

xvi

LIST OF FIGURES

B.4 Part 1 for the update algorithm for not sharing constraint 217

B.5 Part 2 for the update algorithm for not sharing constraint 218

B.6 Update algorithm for adjacency constraint . 219

B.7 Update algorithm for nearby constraint . 220

B.8 Update algorithm for away from constraint . 221

B.9 Update algorithm for capacity constraint (conditions 1 and 2) 222

B.10 Update algorithm for capacity constraint (conditions 3 and 4) 223

B.11 Update algorithm for capacity constraint . 223

xvii

List of Tables

2.1 Description and penalty values for each constraint 18

2.2 Number of hard and soft constraints in the nott1 and wolver benchmark instances.

[Landa-Silva, 2003] . 20

2.3 Attributes of the instances in SVe150 and PNe150 datasets 27

2.4 Number of constraints in SVe150 and PNe150 datasets 29

4.1 The number of rows, columns, non-zero, and binary values in the simplex table

for several data instances . 91

4.2 Individual penalties for the best results obtained for each problem instance of the

nott1 and wolver datasets by using the model without floor variables 93

5.1 Experimental results on the SVe150 and PNe150 dataset instances using the local

search algorithm . 122

6.1 Impacts of different order of local search on instances S0.00V0.00, S0.40V0.80, S0.80V0.40,

P0.00N0.00, P0.10N0.20, and P0.20N0.10 . 149

6.2 Impacts of different crossover types on instances S0.00V0.00, S0.40V0.80, S0.80V0.40,

P0.00N0.00, P0.10N0.20, and P0.20N0.10 . 150

6.3 Impacts of different mutation rates (m) on instances S0.00V0.00, S0.40V0.80, S0.80V0.40,

P0.00N0.00, P0.10N0.20, and P0.20N0.10 . 152

6.4 Impacts of different local search iterations (h) on instances S0.00V0.00, S0.40V0.80,

S0.80V0.40, P0.00N0.00, P0.10N0.20, and P0.20N0.10 . 152

6.5 Impacts of different divisor values (d) on instances S0.00V0.00, S0.40V0.80, S0.80V0.40,

P0.00N0.00, P0.10N0.20, and P0.20N0.10 . 153

6.6 Impacts of different population (ps) sizes on instances S0.00V0.00, S0.40V0.80, S0.80V0.40,

P0.00N0.00, P0.10N0.20, and P0.20N0.10 . 154

6.7 Results on several SVe150 and PNe150 instances using local and tabu search

within the ELS . 155

xix

LIST OF TABLES

6.8 Experimental results on the SVe150 and PNe150 dataset instances using the evo-

lutionary local search algorithm . 156

7.1 Impacts of different backtrack iterations and backtrack mutation rate on instances

S0.00V0.00, S0.40V0.80, S0.80V0.40, P0.00N0.00, P0.10N0.20, and P0.20N0.10 173

7.2 Experimental results on the SVe150 and PNe150 dataset instances using single

solution local search heuristic with backtracking 174

7.3 Results on nott1 and nott1b instances after applying LS, ELS, and BCK 183

7.4 Results obtained in several instances using different hybridisations 185

A.1 Effects of slack and violation rates on results under half soft constraint penalty con-

dition in SVe150 dataset instances . 200

A.2 Effects of slack and violation rates on results under normal soft constraint penalty

condition in SVe150 dataset instances . 201

A.3 Effects of slack and violation rates on results under double soft constraint penalty

condition in SVe150 dataset instances . 202

A.4 Effects of negative and positive slack amounts on results under half soft constraint

penalty condition in PNe150 dataset. 203

A.5 Effects of negative and positive slack amounts on results under normal soft constraint

penalty condition in PNe150 dataset . 204

A.6 Effects of negative and positive slack amounts on results under double soft constraint

penalty condition in PNe150 dataset . 205

A.7 Results obtained in SVe150 dataset under normal soft constraint penalty condition

using model without floor variables (IP1) . 208

A.8 Results obtained in SVe150 dataset under normal soft constraint penalty condition

using model with floor variables (IP2) . 209

A.9 Results obtained in PNe150 dataset under normal soft constraint penalty condition

using models without floor variables (IP1) . 210

A.10 Results obtained in PNe150 dataset under normal soft constraint penalty condition

using models with floor variables (IP2) . 211

xx

CHAPTER 1

Introduction

Space is one of the most expensive resources in a typical organisation. The office space

allocation (OSA) process aims to make efficient use of these spatial resources such that

the misuse of space is minimised. The task of space allocation may include additional

constraints and objectives based on the preferences of the respective organisation.

In many institutions, the entities (most commonly people) that use the resources

(rooms, machines, spaces, etc.) are organised in structural units like departments. This

naturally leads to a clustering problem [Everitt et al., 2009] where each entity within

the same organisational unit should be placed in close proximity while different organ-

isational units should not be placed close to each other. This is not an issue when such

organisational units are large. In a typical university, it is not usually expected that the

rooms associated with an engineering faculty are within the same building as rooms

associated with social sciences. This enables us to decompose the office space alloca-

tion problem into smaller sub-problems; after all, most buildings within a university

are built for specific purposes, and this naturally leads to independent allocations.

However, an office space allocation problem can arise more frequently within the

same organisational unit. For example, in the Department of Computer Science at the

University of Nottingham, there are eight research groups several of which also per-

form interdisciplinary research with other departments. While it is desirable to place

each entity in the same research group within close proximity to each other away from

other research groups, this may not be always possible. After all, in a dynamic envi-

ronment where sub-organisational units constantly change over time due to arrival or

departure of new personnel, it is expected that, in time, these sub-organisational units

will be mixed with each other.

Unfortunately, not every office space allocation problem can be solved by scientific

optimisation. There is usually a fair amount of organisational politics and bureaucracy

1

CHAPTER 1. INTRODUCTION

in each institution that govern the actual space allocation process. For example, an

automated space allocation process in NASA Langley Research Centre [Ball, 2009] was

hampered by budget and other constraints for years and a manual allocation process

which was less efficient and more expensive was implemented instead in 2005.

In the office space allocation problem, the most obvious aim is to optimise the

efficient usage of space. The space misuse typically involves at least two components.

The first one is that each room should not be overused beyond its optimal capacity. The

overuse problem happens more and more in organisations with budget restrictions.

Since the cost of leasing or owning an office property is rather expensive especially in

developed countries, workers are often asked to share the office space resources. This

may lead to employees forced to work in limited space and poor work performance.

Another important and unfortunately overlooked problem is the use of the office

spaces well below their optimal capacity. In a related teaching space allocation prob-

lem, [Beyrouthy et al., 2009] investigated the usage of teaching space in universities,

and very low space utilisations (around twenty to thirty percent) were reported. Se-

vere underuse of office space can be a big financial burden due to high leasing costs or

even unnecessary new building costs. If such an underuse of rooms cannot be avoided,

then the respective space should be used by another related organisational unit. If this

is not possible, it might be beneficial to sell or rent the respective rooms instead.

Unlike other resources in most organisations, space can be a very expensive com-

modity that cannot be easily increased when needed due to the high costs and time

involved in construction/renovation of buildings. Space allocation is also a continu-

ous process due to constant changes in an organisation like departure/arrival of new

personnel, maintenance/renovation of existing office space, restructuring in organisa-

tions etc. Due to the complexities of many organisations, office space allocation may

involve many conflicting objectives and constraints. An automated allocation system

can usually deal with such conflicting objectives and constraints better than a human

decision expert especially if the size of the problem is very large. An automated system

can also provide alternative solutions to different scenarios quickly. As a result, rather

than tackling a more complex optimisation problem, a decision expert can focus on fine

tuning such solutions as required by the scenario conditions.

As a result, the main goal of this thesis is to investigate and propose solution meth-

ods that can be used in building an automated office space allocation system. In recent

years, several companies developing software related to space planning and organisa-

tion process have appeared, so it is quite possible there is an untapped financial market

for such automated systems.

2

CHAPTER 1. INTRODUCTION

1.1 Aims and Scope

Previous research on the office space allocation (OSA) problem is rather limited. Hence,

the goal of this thesis is to be one of the seminal works in this area by proposing efficient

algorithms to solve this problem. The main aims of this thesis are as follows:

• There are several different variants of OSA problems described in the literature.

This thesis aims to investigate previous OSA problems in terms of constraints

and objectives. It is also desired to add three more constraints to the problem

definition which is described in [Landa-Silva, 2003]. A related aim is to create a

parametrised data instance generator algorithm that will be used in design, test,

and analysis of the mathematical programming and meta-heuristic techniques

for the OSA problem.

• Although there are various algorithms proposed for solving OSA problem, there

is a lack of research in terms of analysis of the problem. This thesis aims to anal-

yse the nature of the problem from the perspective of space misuse, constraints,

and overall objective function. Although a multi-objective analysis (in terms of

space misuse and soft constraint penalty) was briefly described in [Landa-Silva,

2003], the analysis was rather lacking in relation to how these aspects affected the

difficulty of the problem. This thesis aims to analyse the effects of the incremen-

tal changes of four important aspects of the problem: total space misuse, space

overuse and underuse, and soft constraint violation penalty. The thesis aims to

observe how the difficulty of the problem and some of the key ratios between

these parameters are affected subjected to these incremental changes. A further

aim is to seek out some algorithm development ideas based on this analysis of

parameter effects if possible.

• There are a few mathematical programming approaches such as [Sharpe, 1973],

[Ritzman et al., 1980], [Benjamin et al., 1992], and [Giannikos et al., 1995] pro-

posed for several variants of the OSA problem. However, for the OSA problem

variant considered in this thesis, there is no mathematical programming model

or implementation reported in the literature. This thesis aims to examine the ap-

plicability of mathematical programming techniques to solve this specific OSA

problem [Landa-Silva, 2003] for the first time in literature. This thesis aims to

develop binary integer programming models based on nine types of constraints

and a weighted objective function. It will investigate the potential benefit of util-

ising room and floor relationship while developing the model. The main target in

3

CHAPTER 1. INTRODUCTION

development of integer programming models is to investigate the performance

of the model (finding optimal or near optimal solutions) in long run times.

• In the literature, most common approach for tackling the OSA problem is vari-

ous meta-heuristics. The thesis aims to build upon some of the ideas proposed

in previous heuristic designs. The key aim in this thesis is to seek out some im-

portant aspects which can improve the quality of the solutions generated by the

heuristic designs. Several of these aspects are the solution replacement strate-

gies and quick objective function value calculation procedures. The thesis aims

to investigate meta-heuristics which operate with random or greedy move op-

erators to find high quality solutions for the problem. Although several quick

cost calculation procedures based on similar move operators were described in

[Landa-Silva, 2003], these techniques only gave approximate cost changes. This

thesis aims to provide a very fast cost calculation procedure that will give the

exact changes in the objective function value based on the application of move

operators. The main target in development of these heuristics is to significantly

improve the solution quality especially in short run times.

• The final aim of this thesis is to investigate possible combinations of mathemat-

ical programming and meta-heuristics for tackling the OSA problem. Best inte-

ger programming model and best implementation of local search meta-heuristics

will be combined together. The thesis aims to investigate the efficacy of such an

approach and tries to analyse the strengths or potential pitfalls of these hybrid

combinations. Since the application of of exact approaches can quickly become

infeasible with large instances, the thesis will limit its scope to instances of small

to medium sizes. This roughly corresponds to the typical size of a three/four

storey building commonly encountered in a British university. Another impor-

tant aim with this size limitation is the desire to make a balanced comparison of

meta-heuristics, mathematical programming, and the combinations of these two.

Ultimately, the aim in this thesis is to provide a solid foundation in analysis of

the natural components of office space allocation and algorithm development for the

problem. Improving the state of art for tackling and providing best results for office

space allocation problems is the main goal of this thesis.

In this thesis, the scope is limited to the optimisation problem (the initial allocation

and space optimisation subject to a set of hard and soft constraints) which is extended

from [Landa-Silva, 2003]. Although the re-allocation problem (re-optimisation of the

solution due to the modifications to the structures of the problem) is briefly discussed,

4

CHAPTER 1. INTRODUCTION

the analysis and algorithm development of this problem variant are beyond the scope

of this thesis.

This thesis will limit the investigated size of the problem to small to medium size

buildings. This size of the problem is suitable for making balanced and objective com-

parisons between mathematical programming and meta-heuristic approaches. Larger

office space allocation problems can be decomposed into smaller problems and solved

with a bottom-up approach by combining the solutions for sub-problems.

There is a vast amount of algorithmic techniques that can be used to tackle the OSA

problem. As a result, the algorithmic focus in this thesis is limited to the investigation

of integer programming [Juenger et al., 2010], local search [Glover and Kochenberger,

2003], and genetic algorithms [Goldberg, 1989].

1.2 Overview of the Thesis

The structure of this thesis can be summarised as follows:

• Chapter 2 gives insights about the nature of the office space allocation problem.

Commonly encountered constraints and the objectives are defined here. Several

case studies related to the office space allocation process in universities and space

agencies are presented. The properties of the real world OSA data instances that

have been used throughout this research are described. Also, a new data instance

generator algorithm developed for providing new data instances to the research

community is described in this chapter.

• Chapter 3 references the literature related to the office space allocation problem.

Some key theoretical problems such as bin packing, generalised assignment, multi-

dimensional knapsack, and clustering problems that have fundamental ties to the

OSA are also described. An extensive literature review of previous research that

has been done on the OSA problem is given. Also, some practical problems that

resemble the OSA in certain aspects are explained. In the second half of this

chapter, some of the methods that can be used for developing OSA algorithms

are described. These algorithms include, but are not limited to, local search meta-

heuristics, genetic algorithms, linear integer programming models, and hybrid

combinations of these methods.

• Chapter 4 describes the mathematical model for a binary integer programming

formulation developed for OSA. The derivations of the mathematical equations

5

CHAPTER 1. INTRODUCTION

for both hard and soft constraints are presented here. Two versions of IP mod-

els (based upon the formulations of nine different constraints and space misuse

calculation) that are examined in this thesis are explained. Experiments are con-

ducted in order to analyse the nature of the problem by using parametrised data

instances. Effects of space misuse and constraint violations on the difficulty of

the problem are observed. The model with the additional (floor) variables is com-

pared to the initial model without such variables.

• Chapter 5 is devoted to the presentation of algorithms that are implemented

based upon random relocate and swap moves within a local search framework.

The goal of this approach is the rapid generation of simple local heuristic algo-

rithms that do not need very complex cost calculation procedures, and whether

such approaches are effective in generating quality solutions comparable to the

ones obtained using mathematical programming. In this framework, hill climb-

ing methods, threshold acceptance, simulated annealing, and great deluge meth-

ods are used to develop the algorithm.

• Chapter 6 presents an evolutionary local search algorithm based upon the com-

bination of a genetic algorithm and local search method that uses greedy relocate

moves. The details of a very fast cost calculation method based upon a greedy

relocate move are described. The focus is on the balance between the evolution-

ary and local search components of the algorithm, and the importance of each

sub-component of the local search procedure.

• Chapter 7 presents the final methods proposed in this thesis: a combination of

the mathematical model described in Chapter 4 and the local search methods de-

scribed in Chapter 6. First, the necessary adjustments and refinements on previ-

ous algorithms before the combination are described, then how these techniques

can be combined within a framework is explained in detail.

• Chapter 8 gives an overall review of this thesis and presents some future research

directions.

1.3 Contributions of the Thesis

The (original) contributions of this thesis are as follows:

• A description of the office space allocation problem encountered in many institu-

tions is given. An extensive literature survey regarding the office space allocation,

6

CHAPTER 1. INTRODUCTION

and other theoretical and practical problems is presented. Common constraints

and objectives in a typical office space allocation problem are described. Three

additional constraints not previously discussed in literature are considered for

the first time.

• A new parametrised data instance generator is developed to address the limited

number of tests instances in OSA area. This is the first instance generator in OSA

research that takes some of important sub-components of a typical OSA problem.

• Two variants of binary integer programming formulation are developed for solv-

ing small to medium size instances. These models can be implemented easily by

using various off-the-shelf integer linear programming (ILP) solvers. This is the

first time mathematical programming models are proposed for the specific OSA

variant tackled in this thesis.

• By using the parametrised data instance generator and the binary integer pro-

gramming models, the nature of the problem is investigated by analysing the

space misuse and the soft-constraint violation penalty components. This is the

first advanced analysis of changes in difficulty and some key ratios in a typical

OSA problem from the perspective of space misuse and constraints.

• New local search algorithms based upon strictly stochastic relocate and swap

moves under simulated annealing, threshold acceptance, and great deluge frame-

works are provided.

• An evolutionary local search algorithm for solving the OSA is proposed. New

problem specific crossover and mutation operators are presented. A new very

fast exact cost calculation procedure which yields huge speed-up gains over naive

approximate objective value computation approaches is provided.

• Comparisons of developed integer programming and meta-heuristics are pro-

vided. These comparisons include the differences in total penalty, minimum

penalty, space misuse, and soft constraint violations between the algorithms.

• A mat-heuristic technique which combines integer programming and local search

procedure for solving OSA is proposed. The effectiveness of combining the re-

fined versions of both algorithms is investigated for the first time for this prob-

lem.

7

CHAPTER 1. INTRODUCTION

1.4 Academic Papers Related to this Thesis

Published:

• [Ülker and Landa-Silva, 2010] A 0/1 Integer Programming Model for the Office Space

Allocation Problem Özgür Ülker, Dario Landa-Silva. Electronic Notes in Discrete

Mathematics, 36, pp. 575-582, 2010.

• [Ülker and Landa-Silva, 2011] Designing Difficult Office Space Allocation Problem

Instances with Mathematical Programming Özgür Ülker, Dario Landa-Silva. Exper-

imental Algorithms, Lecture Notes in Computer Science, Vol. 6630, pp. 280-291,

Springer-Verlag, 2011.

• [Ülker and Landa-Silva, 2012] Evolutionary Local Search for Solving the Office Space

Allocation Problem Özgür Ülker, Dario Landa-Silva. Proceedings of the 2012 IEEE

Congress on Evolutionary Computation (CEC 2012), pp. 3573-3580, IEEE Press,

Brisbane Australia, July 2012.

Papers to be submitted and in preparation:

• [Ülker and Landa-Silva, 2013a] Analysis of Office Space Allocation Problem using

Mathematical Programming Özgür Ülker, Dario Landa-Silva. planned to be sub-

mitted to a journal.

• [Ülker and Landa-Silva, 2013b] Two Neighbourhood Iterated Local Search Algorithm

for Space Allocation Problem Özgür Ülker, Dario Landa-Silva. planned to be sub-

mitted to a conference.

8

CHAPTER 2

Office Space Allocation

2.1 Introduction

Office space allocation (OSA) is the task of allocating office space (rooms, hallways,

etc.) to several entities subject to additional constraints. It is related to the bin packing,

multiple knapsack, and generalised assignment problems [Martello and Toth, 1990]. In office

space allocation, the primary goal is to maximise the space utilisation by reducing the

misuse of the rooms. Misuse of rooms consists of wasting space by under utilisation of

the room or overcrowding of the room by placing too many entities into it. Overuse of

the rooms is usually considered more undesirable than underuse.

In this chapter, the aim is to introduce the reader to the office space allocation

problem variant tackled in this thesis. The information related to the constraints, the

objectives, and several real world test instances is provided. A new data instance gen-

erator algorithm is also proposed. In the following chapters, most of the experiments

will be carried out on the parametrised data instances created by this generator.

This chapter is organised as follows: Some of the approaches in space allocation

and planning in organisations are explained in Section 2.2. Several case studies related

to the space allocation process in British universities and the NASA LaRC are pre-

sented. The problem description, commonly encountered constraints, and objectives

are given in Section 2.3. Section 2.4 presents the information related to the real world

data instances used in the experiments in this thesis. Section 2.5 is devoted to the data

instance generator algorithm developed to provide more test instances to the research

community. The conclusions are given in Section 2.6.

9

CHAPTER 2. OFFICE SPACE ALLOCATION

2.2 Space Allocation and Planning in Organisations

In this section, we are presenting two case studies related to office space allocation. Uni-

versities are among the major institutions that conceptualised the office space allocation

process (although not necessarily by using an automated tool). Various guidelines as

described in Section 2.2.1 have been posted by universities in their official documents.

The OSA case in NASA Langley Research Centre as described in Section 2.2.2 is an

important study to explain a real world optimisation tool to tackle the problem.

2.2.1 Case Study: Space Allocation in Universities

A typical google search on office space allocation yields a fair amount of ‘guidelines’

as described by mostly universities in the world. Unfortunately, most of these are just

’guidelines’, there is hardly a reference to an automated system because space alloca-

tion in many universities is mainly a manual process. In most universities, the govern-

ing body responsible for space allocation is the equivalent of an Estates Department.

Requests for office space are usually made officially to these departments, and in a large

office space restructuring request, a lengthy and bureaucratic review period is usually

required. The estates department usually allocates the space to individual faculties. It

is the responsibility of the faculties to allocate the space assigned to them .

However, there are official rules that are still followed for allocating the entities. In

most universities, the workers (or people who are eligible for office space) are organ-

ised in tiers, and the amount of space required for each tier is predetermined by OSA

guidelines. There are also specifications on room structures a person on a specific tier

should be allocated to.

As a case study in office space guidelines, this thesis is now going to examine

one of the most extensive guidelines in this area: University of Michigan, Ann Arbor

[of Michigan, 2012]. This guideline serves a typical example how the office space allo-

cation process is usually handled in a university.

At the top of the responsibility of allocation in University of Michigan is the Provost.

The hierarchy from top to bottom is as follows: Provost, Vice President, Deans/Unit

Directors, Department Chairs, and Faculty members.

Some of the principles in these guidelines are as follows:

• The space belongs to the institution and the Provost is ultimately responsible for

the allocation of all spatial resources of the university.

10

CHAPTER 2. OFFICE SPACE ALLOCATION

• Space is allocated based on programmatic needs and priorities as determined by

the dean or director or a unit. The decision making may be delegated to chairs

and director as long as they have high in-depth knowledge of the activities and

the allocations associated with them.

• Specific quantitative metrics should be developed in order to evaluate the re-

search space utilisation. Periodic controls should be made in order to assess

whether the current allocation meets the programmatic needs of the university.

• The research space is assigned to research activities, not to individuals, hence it

can be taken by the university if the research activity changes.

• Vacant or under-utilised space should be re-claimed, re-assigned or re-purposed.

• Schools are allowed to subsidise research activities that do not generate sufficient

indirect costs related to the space usage.

• Optimal use of research space includes shared use of resources and facilities.

• Space allocations should be based on maximum utilisation of the existing facili-

ties.

• Space allocation should adhere to health and safety regulations, and procedures.

2.2.2 Case Study: Space Allocation in NASA Langley Research Centre

One of the few reported practical applications of space allocation within a large organ-

isation corresponds to one of the oldest major National Space Agency (NASA) Centres,

the Langley Research Center (LaRC) in Virginia, US [Ball, 2009]. LaRC was historically

built on a 800 acre land comprising 300 buildings with 6000 rooms totalling 3 million

square feet of space usage. LaRC has been used mainly for Aeronautical and wind tun-

nel research as well as applications in structures and materials, flight electronics, and

atmospheric sciences. Such a large scope and different usage scenarios necessitated

specific building structures with complex infrastructure.

Recently, due to a significant reduction in funding and budget in various opera-

tional areas as well as the increasing costs of development of next generation space

vehicles, LaRC had to reassess the usage of its facilities and resources. A new dynamic

and structured allocation of resources, including the assignment of space within each

facility and across LaRC had to be developed. This process was accelerated in late 2004,

when LaRC was going through a major reorganisation in which 3000 people were ex-

pected to be relocated; the average office space per person was to be reduced from

11

CHAPTER 2. OFFICE SPACE ALLOCATION

190+ square feet to 125 while 100 facilities were scheduled for closure and demolition.

The Geographic Information System (GIS) team in LaRC was responsible for the de-

velopment of a series of automated space allocation and re-organisation tools based on

geographic information and relational database management systems. These tools supported

the development of various usage scenarios from the perspective of visualisation and

analysis of potential space allocation solutions. The GIS followed an evolutionary de-

velopment strategy with the following areas of focus:

Visualisation: During the early stages of the development, a web browser tool was

used for visualising the current personnel location, organisational distribution and

space utilisation. The interface employed a dashboard which allowed users to access

the unit square diagram, plant level map, building interior layouts and any related

tabular data. The user would be able to visualise the current conditions in the allo-

cation such as relative size and proximity of the buildings, rooms and the personnel.

A sample visualisation of dashboard is given in Figure 2.1 where a fragmentation of

organisations can be seen.

Figure 2.1: Dashboard representation of an allocation in NASA LaRC [Ball, 2009]

12

CHAPTER 2. OFFICE SPACE ALLOCATION

The visualisation tools addressed both plant level and individual building level allo-

cations. For plant level visualisation, a unit square or spatial subdivision diagram were

developed. This technique used a rectangle based representation for depicting the

buildings. The bold rectangular areas which represented the facilities within a building

were oriented based on proximity to buildings near them. The size of a rectangle rep-

resented the usable space within the facility. Size proportional sub-blocks represented

each room within a building. Colour coding was used in order to symbolise the ap-

plicability of each room for general office use or technical usage, the organisations that

owned the room, and the closeness between different ones as well as to indicate all the

personnel. The aim for colour coding was to represent the close proximity of buildings,

rooms, personnel, and their interaction with large and diverse data within a complex

facility.

Metrics and Constraints: The space planning and allocation in LaRC is a complex

problem and had to address general metrics and constraints. The developed models

should handle the critical variables and effects of the problem, should have good gen-

eralisability and they should be analysable for the feasibility of generated solutions.

The desired solution for the problem is the one that meets all the constraints and rated

by a metric. The most obvious metric of a model is the infrastructural, development

and application related costs; however, how this cost is calculated can be answered by

analysing the components of the problem.

As a typical office space allocation, the problem in LaRC involves entities such

as people or functions that consume a space such as laboratories, office and technical

areas, etc. The space is most commonly represented in terms of the area of the respec-

tive organisational unit. However, additional resources (such as communication jacks,

bandwidth, electrical power, etc.) can also be used for defining spatial resources.

The space allocation problem also involves hard and soft constraints. The hard

constraints considered can be: utilising enough space for a function or entity (mini-

mum area for different workers), compatibility with adjacent functions (supervisors

and workers should not be placed in the same room) and compatibility with features

already satisfied by the room. The soft constraints can be the improvement of organ-

isational synergy (such as allocating personnel within the same organisational unit to

nearby locations), decreasing moves costs, and symmetrical distribution of space.

Data Management: The space allocation system in LaRC has to consider the prob-

lems associated with collecting and maintaining accurate, current and dynamic data

13

CHAPTER 2. OFFICE SPACE ALLOCATION

that are fetched across different sources. An XML schema was developed for a repre-

sentation language for the nature of the problem and the models designed. An XQuery

language was used to leverage data transformation.

Optimisation Algorithms: The optimisation approach for solving the space alloca-

tion problems in LaRC contain two stages. In the first stage, the solver works on an

allocation which violates several constraints and tries to find a new solution within the

same neighbourhood that satisfies all constraints. In the second stage of the algorithm,

a greedy heuristic is applied. This heuristic improves the given constrained solution to

a locally optimal solution.

Another approach is not only improving from the current solution but also from

a random allocation. While this approach provides good results for smaller organisa-

tional units, a lot of problems with compatibility within the larger organisational units

are observed when large scale changes are made. The GIS team tries to combine both

random and greedy approaches by improving random allocations through constraint

solving, re-application of greedy heuristic and a progressive filtering algorithm.

Benefits of Using the Automated GIS System in GIS: The cost benefits of using the

proposed automated system was delineated by the GIS team in 2005 office consolida-

tion project at LARC. Due to the time constraints and the lack of funding for GIS, the

prototype automated system proposed by GIS was not used. Instead, the final decision

process was made by a manual approach. The manual approach reduced the aver-

age space utilisation per person from 192 square feet to 149 (the target was 125 square

feet). The manual solution relocated 2500 personnel with an average cost of $354 per

person. The prototype automated system was able to reduce the average space util-

isation to the target 125 square feet while relocating only 1200 personnel and in turn

would have saved the centre $460,000 while improving the organisational synergy and

minimising the disruption during the relocation. The cost savings only include office

space re-allocation process and do not include the annual cost savings associated with

additional facility closures accumulated over years and across multiple centres.

2.3 Problem Description and Formulation

In this section, a general description of the OSA problem is given. The majority of

the constraints are based on previous research in this area [Landa-Silva, 2003], [Pereira

et al., 2010], [Lopes and Girimonte, 2010]. The objective function value is taken simi-

14

CHAPTER 2. OFFICE SPACE ALLOCATION

larly to [Landa-Silva, 2003] although it also considers the constraints that are tackled

for the first time here in this thesis.

2.3.1 Constraints

Many constraints can arise in different organisations when allocating office space. Some

of the commonly encountered constraints are presented in this section. Notice that de-

pending on the specific organisation, any of these constraints can be hard (satisfied all

the time) or soft (desirable but not necessary). Usually the degree of hardness or softness

of an OSA constraint is directly related to the importance of the entities and/or room

in that specific constraint.

Allocation: An entity should be allocated to a specific room. This constraint is gen-

erally used for allocating high ranked personnel (department heads, professors, etc.) to

specific rooms which are selected specially for them. Rooms built for a specific purpose

(kitchens, toilets, dining rooms, etc.) also use this constraint which can be referred to

as the room-role relationship.

Non-Allocation: An entity should not be allocated to a specific room. This constraint

is usually used for preventing some rooms being allocated to lower ranked personnel

(students, workers, etc.).

Same Room: Two entities should be allocated to the same room. This constraint is

usually used to allocate two entities working in the same profession together in the

same room.

Not in Same Room: Two entities should not be allocated to the same room. This

constraint is usually used to prevent two entities working in different professions or in

different organisational groups being allocated to the same room.

Not Sharing: An entity should not share a room with others. This constraint is again

usually used for higher-ranked personnel who should not share a room with others. It

might also be desirable to use this constraint when the size of an individual entity is

very close to the capacity of a room.

15

CHAPTER 2. OFFICE SPACE ALLOCATION

One of: An entity has to be allocated to one of the rooms. This constraint is useful

when the floor layout contains rooms similar in size and close to each other and an

entity can be allocated in any such similar rooms.

Capacity: A room should not be over/under used. This constraint is typically used

for preventing overuse and/or underuse of some important rooms. This constraint is

usually specified with a percentage of the room space that cannot be under/overused.

In this thesis, a very strict version of this constraint is used: A room must not be over

used beyond its capacity. Any amount of overuse is prohibited. However, the soft

constraint violation penalty is still set to fixed value regardless of the amount of space

overused.

Adjacency: Two entities should be allocated to adjacent rooms. This constraint is

typically used for allocating entities with similar professions or within the same de-

partment, to rooms adjacent to each other.

Nearby: Also called the group by constraint, this constraint is similar to the adjacency

constraint although it is reserved for groups (departments, research groups, etc.). The

set of entities within a group should be allocated to the rooms close to the room to

which a group head is allocated. The nearby relationship for rooms is larger than the

adjacency relationship and typically covers a large section of a floor or the floor itself.

Away from : Two entities should be placed away from each other. This constraint is

typically used for allocating two entities away from each other. When used together

with nearby constraint, different departmental groups can be allocated away from each

other. It is also useful when it is undesirable to have two role-room relationship to-

gether in a close area (such as placing a lecture room to a noisy communal area)

Distance minimisation: This constraint (or objective) can be used as an alternative

to three proximity constraints (adjacency, nearby, and away from) to represent group re-

lationships between different organisational entities. The goal is to minimise the total

distance of entities in the same structural unit to a central point. Euclidean or Manhat-

tan distance can be used for defining the distance metric.

Reorganisation: Also referred to as re-allocation, this constraint (or objective) is used

when minimal disruption on the current allocation is desired during reassignment of

16

CHAPTER 2. OFFICE SPACE ALLOCATION

entities. It is a very common constraint especially if there is already an existing alloca-

tion of office space within an institution.

2.3.2 Quality Evaluation of an Allocation

There are two main objectives in the variant of the office space allocation problem

[Landa-Silva, 2003] considered in this thesis: the minimisation of the space misuse and

the minimisation of the soft constraint violations. The space misuse is the summation

of the under and over utilisation of the rooms beyond their capacity. Since it is not

desirable for the rooms to be overused beyond their capacity, the overuse of a room

is penalised twice as much as under-utilisation of a room. In certain cases, it is not

even possible to overuse a room at all. On the other hand, it is not desirable for a large

number of rooms being under-utilised. In such allocations, it might be preferable to

remove these severely under-utilised rooms from the problem, and redo the allocation

task with the remaining rooms.

There are additional constraints that can happen frequently in many organisations.

Nine types of such constraints are considered in this thesis. Six of these are taken from

the previous work in [Landa-Silva, 2003]. These constraints can be either hard (must be

satisfied all the time) or soft (desirable but not necessary).

The constraints and the soft constraint violation penalty values associated with

them are defined in Table 2.1. The penalty values for each soft constraint violation

were taken as in [Landa-Silva, 2003]. The penalty weights for the constraints intro-

duced in this thesis (non-allocation, not same room, and capacity) were taken similarly to

previous constraints. Notice that for the nearby constraint, two different penalty val-

ues were used: 11.18 for the nott1 instances (described in Section 2.4) and 10 for the

instances generated for this thesis (described in Section 2.5.3). During the literature re-

view, we could not trace any reasoning why the penalty value 11.18 was chosen for this

constraint type. Hence, in order to have consistency with other types of constraints, the

penalty value 10 was chosen for the instances generated for this thesis.

The difference between the adjacency and nearby constraints is that the adjacency

constraint is related to rooms that are really close to each other, whereas the nearby

relation deals with rooms that in a larger neighbourhood (like a floor or a specific large

section of a building).

In office space allocation problem, the sets E, R, and C represent entities, rooms and

constraints respectively. The set C is further divided into Cso f t and Chard to differentiate

soft and hard constraints.

17

CHAPTER 2. OFFICE SPACE ALLOCATION

Type Description Weight

allocation e should be in room r 20

non-allocation e should not be in room r 10

same room e1 and e2 should be in same room 10

not same room e1 and e2 should not be in same room 10

not sharing e should not share its room with others 50

adjacency e1 and e2 should be in adjacent rooms 10

nearby e1 and e2 should be in nearby rooms 10, 11.18*

away from e1 and e2 should be away from each other 10

capacity r should not be overused 10

Table 2.1: Description and penalty values for each constraint

In this thesis, the objective function that has to be minimised is taken as in [Landa-

Silva, 2003]: the weighted sum of the space misuse and the soft constraint violations.

The space misuse penalty SMP in a solution is given in equation 2.3.1:

SMP =
|R|

∑
i=1

max((cap(ri)− usg(ri), 2× (usg(ri)− cap(ri))) (2.3.1)

where cap(ri) and usg(ri) stand for the capacity and the used space of room ri respec-

tively. |R| refers to the number of rooms in the problem.

The soft constraint violation penalty SCP is the weighted sum of the individual

soft constraint violations which is given in equation 2.3.2:

SCP =
|Cso f t|

∑
i=1

(w(ci)× v(ci)) (2.3.2)

where v(ci) = 1 if the soft constraint is violated and v(ci) = 0 if the soft constraint is

satisfied. The weight of the soft constraint i is represented by w(ci). |Cso f t| refers to the

number of soft constraints in the problem.

With SMP and SCP defined, the total penalty TP then becomes as in equation

2.3.3:

TP = α× SMP + β× SCP (2.3.3)

where α and β are selected as 1.0 for this work.

18

CHAPTER 2. OFFICE SPACE ALLOCATION

2.4 Test Data Instances from UK Universities

2.4.1 University of Nottingham Dataset

These data instances were generated from the School of Computer Science and Infor-

mation Technology in University of Nottingham during the 1999-2000 academic year.

In the complete data instance (nott1) [Landa-Silva, 2003], there are 3 floors and 131

rooms with spaces ranging between 4.2 m2 and 437.4 m2. The number of entities is

158 and it is comprised of: 15 research rooms, 11 laboratories, 12 meeting rooms, 16

storage rooms, 6 professors, 1 reader, 5 senior lecturers, 25 lecturers, 16 research staff,

10 secretaries, 1 teaching assistant, 8 technicians, and 32 research students. The space

requirements for the smallest and largest entities are 4 m2 and 437.4 m2 respectively.

From the largest instance nott1, four more instances were generated by simplification.

In this work, further corrections were done to the instance files because it was observed

that some of the previous data instances (nott1b and nott1c) contained some invalid

constraints. This was due to the fact that the instance data were defined in three sepa-

rate files (room, entity, and constraint files) and there was some inconsistency between

these files. In some of the constraints in the constraint files, there existed some rooms

and entities that were not actually defined in the entity and room files. These entities,

rooms, and constraints associated with them were removed from the instance files (in

this case constraint files).

This thesis will deal with five nott1 instances described in Table 2.2. The numbers

of entities, rooms, and each specific constraint are given. Notice that, the most im-

portant instances are nott1, nott1b, and nott1c (in this order) while the smaller nott1d,

nott1e instances are usually used during algorithm implementation and testing.

2.4.2 University of Wolverhampton Dataset

This simple dataset gives the distribution of offices in the SC Building in the Telford

campus of University of Wolverhampton during the 1999-2000 academic year. This

instance contains 115 rooms, 115 entities and 115 hard not sharing constraints, so the

final optimal solution is going to be a one-to-one mapping between the entities and

rooms where each entity is placed to a single room in order to avoid each not sharing

constraint.

19

CHAPTER 2. OFFICE SPACE ALLOCATION

Instance nott1 nott1b nott1c nott1d nott1e Wolver

Entities 158 104 94 56 86 115

Rooms 131 77 94 56 59 115

Constraints H S H S H S H S H S H S

Allocation 0 35 0 9 0 35 0 9 0 26 0 0

Same room 0 20 0 20 0 0 0 0 0 30 0 0

Not sharing 100 0 34 0 84 0 46 0 38 0 115 0

Adjacency 5 15 3 6 5 15 3 6 1 5 0 0

Grouped by 0 10 0 64 0 37 0 24 0 0 0 0

Away from 6 14 0 0 5 8 0 0 4 6 0 0

Table 2.2: Number of hard and soft constraints in the nott1 and wolver benchmark instances. [Landa-Silva,

2003]

2.5 Data Instance Generator for Office Space Allocation

The number of test instances in the office space allocation research literature is rather

limited. One of the main goals in this research work is to provide new data instances for

the research community. Thus, a new parametrised data instance generator algorithm

was developed.

The design goals while developing this instance generator algorithm are as fol-

lows:

• Realism: Creating artificial test instances that do not have any bearing on the real

world scenarios will not be beneficial to the research community. The algorithms

created based on such unrealistic instances can lead to an erroneous understand-

ing of the problem. Some of the real world instances are analysed in order to

derive some relations between the entities, floor layouts, and constraints.

• Scalability: Although this research focuses mostly on small-medium type instances,

larger instances with higher number of entities, rooms, and constraints may be re-

quired in the future. The generator should be able to handle instances from small

to large while also retaining an understanding and control over the core funda-

mentals of the OSA problem.

• Parametrised: In order to analyse the nature of the office space allocation, extensive

tests on different types of instances are required. The ability to make incremental

changes to an instance is important to analyse how such a change affects the

difficulty and the nature of instance. A parametrised data generator can handle

20

CHAPTER 2. OFFICE SPACE ALLOCATION

these small changes in the amount of core components of an OSA problem, like

the space misuse and soft constraint violations.

2.5.1 Generation of Office Space Allocation Structures

The implementation was done to create instances totally randomly or with a optimal

or near-optimal bound on the objective function. The generator currently includes nine

types of constraints, and generation of entities, rooms, and floor layout. The following

subsections deals with the generation of the entities, rooms and constraints.

A common OSA instance contains three set of structures: entities, rooms, and con-

straints. All of these three sets contain the relationships between each other.

Entities: Each entity is defined as part of a primary and secondary group. The pri-

mary group level indicates which structural organisation the entity is in (it could be a

department, a research group etc.). Each primary group has one group head which is

used for group by constraint. The distributions used for setting the sizes of the entities

within a primary group are either uniform, constant or usually a decreasing distribu-

tion. The secondary group indicates the level or the profession of the entity (professor,

lecturer, research student, etc.). The distributions within a secondary group for the

size attributed follow constant distributions (i.e. the sizes of all the entities within a

secondary group are the same).

Rooms: The floor layout is designed by dividing each floor into subsections (wings).

After that, a specific wing is selected, the neighbouring relationships are defined ac-

cording to a linear graph based representation. Each room in one wing is numbered in

increasing order, and the likelihood of an adjacency relation between rooms numbered

closely is higher. Being near relationship is either defined on the floors or the subsection

of the floors.

Constraints: Currently, nine types of constraints are implemented. Each of these

constraints can be set as hard or soft. The next subsections describe how each constraint

is created with the generator.

• Allocation constraint: An entity is randomly selected and assigned to a randomly

selected room. The likelihood of selecting an entity depends upon the secondary

group level (importance) of that entity.

21

CHAPTER 2. OFFICE SPACE ALLOCATION

• Non-allocation constraint: An entity and a room are randomly selected, and a con-

straint is placed on them. Entities in lower ranked secondary groups are more

likely to be selected.

• Same Room Constraint: A primary group is randomly selected, and two individu-

als are randomly selected from this group. The probability of selecting these two

individuals is based upon the sizes of the entities and the secondary group level.

It is more likely for individuals in similar lower level (research students, etc.) to

be assigned to the same room.

• Not in Same Room Constraint: Two primary groups are randomly selected. One

individual from each primary group is selected, and a constraint is placed on

them. This disables people from different primary groups to be allocated to the

same room. Alternatively, only one primary group can be selected, and then two

individuals from different secondary groups can be selected. This disables people

with different levels of professions to be assigned to the same room.

• Capacity: A room is randomly selected.

• Not sharing: A secondary group is selected. The priority is given to the higher

ranked groups where the entity sizes are naturally larger (professors, group heads,

lecturers, etc.).

• Adjacency: A primary group is picked, and two individuals from this primary

group are selected.

• Away From: Two primary groups are selected, and a constraint is assigned be-

tween two individuals chosen from each of these two primary groups.

• Group by: A primary group is selected then binary constraints between the group

head, and the other members of that group are set.

2.5.2 Data Instance Generator Algorithm

One of the goals of the generator is to create instances with known upper bounds on

the optimal value. In order to create such instances, two approaches can be considered.

The first approach starts with a predetermined floor layout (which holds the neigh-

bourhood relation) with room sizes predetermined and then tries to create constraints,

entities, and groups of entities out of it. The second approach starts with the groups,

entities, and the constraints and then tries to create or modify the floor layout and/or

the room sizes according to them.

22

CHAPTER 2. OFFICE SPACE ALLOCATION

In the generator, the second approach is taken because the modifications to the

initial random generator are less than the first approach. The first approach is also

more complex due to the modifications of three components (groups, entities, and

constraints) as opposed to mainly modifying one component (the floor layout). The

second approach greatly simplifies the implementation of the data instance generator

algorithm.

There is also another important consideration for choosing the second approach.

The second approach is more appropriate to simulate scenarios when a building is con-

structed for a specific purpose in mind. In such cases, the number of entities, groups,

and people that may use the building and the relationships between such objects may

already be (approximately) determined before the building construction. Even if the

building is not specifically constructed for a usage scenario, it is still expected that a

building will be rented or bought for a specific usage scenario. Hence, the second ap-

proach simulates such situations where the usage scenario (the relationships between

the entities that will actually use the building) determines what kind of building will

be used (rented, bought or constructed). If the usage scenario of the building is not

important, then the first approach might be more suitable instead.

The pseudo-code for the data instance generator algorithm (DIGA) is presented in

Figure 2.2. DIGA starts with the random generation (described in the previous section)

of the groups, entities, groups, and initial set of hard and soft constraints. The algorithm

then tries to create a solution out of these objects. Different strategies were considered

for handling the placement of entities in the initial constraint set to the rooms, and

it was decided on the following strategy: Certain constraint types were given prior-

ity over other constraints in the order the generator algorithm evaluates them. While

random and no specific constraint biased orderings were also tested, these random

orderings usually generated very easy to solve instances. Therefore, after some ini-

tial experimentation, the following order of satisfying constraints yielded sufficiently

difficult instances: same room, nearby, not sharing, allocation, adjacency, away from, non-

allocation, not same room, capacity.

The priority of same room constraint was due to the rather large percentage gaps

between the optimal objective function value and the bound on this value when the in-

stance contains a large number of constraints of this type. There was a large number of

nearby constraints in a typical OSA instance. In order to satisfy a maximum amount of

these constraints, this type was given a large priority as well. It could be very hard for

not sharing constraint to coexist with other constraint types (due to constraint clashes)

even if a large number of entities was initially given these constraint, so its priority

23

CHAPTER 2. OFFICE SPACE ALLOCATION

was set high as well. The capacity constraint was handled last because it was the only

constraint that was associated with rooms; thus, it was not affected by the placement

of entities related to other constraints. There was not a significant reasoning behind the

ordering of other constraints other than the initial number of such constraints set as in

Section 2.5.1.

In order to prevent a future OSA algorithm exploiting this ordering structure, the

ordering of constraints in each type is randomised. For example, if there are 30 alloca-

tion constraints, a random permutation of these constraints is created, and this order-

ing is then given to the DIGA algorithm. DIGA evaluates these allocation constraints

according to the random permutation. Future algorithms are not going to have access

to this ordering knowledge the generator uses to create the instance. Different order-

ings in each constraint type can greatly affect the final instance generated by the DIGA

algorithm. This randomisation should prevent future OSA algorithms exploiting the

design bias of constraint ordering in DIGA because the constraint ordering in the in-

stance file will differ greatly from the ordering the DIGA algorithm operates with.

Input: input file of parameters.

Output: data instance.

1: — Creation of entities (with sizes) organised within different structural groups

2: — Generation of floor layout.

3: — Creation of Initial Set of hard and soft constraints.

4: — Placement of entities according to the hard constraints.

5: — Calculate space that must required for each room.

6: — Placement of entities in the soft constraints.

7: — Room size adjustments via (positive or negative) slack spaces.

8: — Post processing

Figure 2.2: Data instance generator algorithm (DIGA)

The algorithm first places each group head to a room. Each hard constraint is se-

lected one by one and entities in that constraint are placed into rooms without violating

the respective constraint. If an entity is present in two different constraints, then fol-

lowing modifications to the constraints may be necessary:

• If an entity in an allocation constraint is already placed before, the room in the

constraint is replaced with the room the entity is already placed.

• If both entities in a same room, not same room, adjacency, near, away from hard con-

straint are placed before, the constraint is deleted unless the room placement of

the entities satisfies the respective constraint. If the constraint is soft, then the

24

CHAPTER 2. OFFICE SPACE ALLOCATION

constraint is deleted stochastically (with violation rate V). If only one entity is

placed, the other entity in that constraint is placed according to the constraint

specifications.

After all the entities in the hard constraints are placed, the minimum space (hard

capacity) required for each room to hold these entities is calculated. After this step, a

permutation is created using soft constraints with the aforementioned priority ordering

and all the related entities are placed into rooms as in hard constraints.

After all the entities related to the constraints are placed to the rooms, the remain-

ing entities (if any) are placed to randomly selected rooms. At this stage, the capacity

for each room should be readjusted. Two different methods are used to create the fi-

nal instances. In tight fit instances, the capacity for each room is set to the total space

required for all the entities allocated to that specific room. These instances have zero

space misuse and no soft or hard constraint violations, thus the optimal objective value

for these tight fit instances is zero. Another approach is to adjust these final room ca-

pacities for adjusting the space misuse. Some rooms are randomly selected, and either

additional space is added to the capacity (positive slack) or some space is subtracted

from the room capacity (negative slack). When negative slack is used, the generator con-

trols whether the adjusted room capacity is still valid for satisfying the hard constraints.

After these final adjustments, an instance with an upper bound of positive slack +2· neg-

ative slack on the optimal objective function value is created.

The initial desired goal while developing the algorithm was to create instances

with known optimal values on the objective function value, the space misuse com-

ponents or soft constraint violation penalty. However, it was quickly observed that

such an approach was extremely difficult with the current algorithm. The only optimal

values that the algorithm could guarantee were for the tight fit instances (which is de-

scribed in the paragraph above). It was quickly observed that the moment positive and

negative slack amounts were added to individual rooms, the control on the optimal ob-

jective function value, the space misuse components, and the soft constraint violation

was quickly lost. In our preliminary tests with the algorithms for office space alloca-

tion (which will be described in Chapters 4, 5, 6, and 7), a lot of higher quality solutions

(solutions that were better than the ones given by the DIGA algorithm) could be found

if the instances begin to differ from the initial tight fit instances that they were derived

from. Hence, it became excessively difficult to find tight upper bounds on the optimal

objective function value for these generated instances. The upper bound generated by

the algorithm (positiveslack + 2 · negativeslack) was unfortunately not tight enough to

be useful.

25

CHAPTER 2. OFFICE SPACE ALLOCATION

Selected with Rate S

Added

Space

Deleted Space

Figure 2.3: Depiction of S, V, P and N parameters on entity, room, and constraint sets within the data

instance generator algorithm for OSA.

DIGA Parameters: There are four basic different parameters for adjusting the diffi-

culty of the instance created. The relationships between these parameters and entity,

room, and constraint sets are depicted in Figure 2.3. These four parameters are:

• Slack Space Rate (S): After all the entities are placed into the rooms, this rate

determines whether a room will have more or less space than required by the

entities already within it. This parameter adjusts the amount of space misuse.

• Negative Slack Amount (N): Determined by a percentage of the total sizes of

the entities already placed into the room; the room capacity is reduced by this

amount. This parameter adjusts the amount of space overuse.

• Positive Slack Amount (P): Determined by a percentage of the total sizes of

the entities already placed into the room; the room capacity is increased by this

amount. This parameter adjusts the amount of space underuse.

• Violation Rate (V): When the entities in the soft constraints are to be placed

into the rooms, there may be some violations between constraints. A constraint

is removed from the constraint set probabilistically if a conflict occurs.

We can explain these parameters on Figure 2.3. Let S = 0.20, P = 0.20, N = 0.10,

and V = 0.80. In this case, it is expected that on the average, one out of five rooms will

be selected for space misuse manipulations (S = 0.20). The higher the value of S, the

more rooms will be probabilistically selected for space misuse manipulation.

26

CHAPTER 2. OFFICE SPACE ALLOCATION

After a room is selected for space manipulation, we have to decide whether the

room capacity should be increased or decreased and the amount of such increase or

decrease. The room capacity can either be increased or decreased (not both). The prob-

abilities of the decisions to increase or decrease the room capacity are equal (which is

fifty percent). The parameter P probabilistically determines the percentage of space

that will be added to the room capacity. For example, if the room capacity is initially

25 square meters, the room capacity will be increased by a value drawn from uniform

distribution (0, ..., 5) because P = 0.20 (twenty percent of 25 is 5). Conversely, the room

capacity can be decreased by a value drawn from uniform distribution (0, ..., 2.5) be-

cause N = 0.10 (ten percent of 25 is 2.5).

The V parameter controls the number of soft constraints violations. Whenever the

data instance generator algorithm faces conflicts in soft constraints, it has to decide

whether it should keep one of the conflicting soft constraints in the instance or remove

it. For example, if V = 0.80, eighty percent of the soft constraints that the algorithm

determines a conflict with other soft constraints will be kept in the instance. The re-

maining twenty percent of such conflicting soft constraints will be removed from the

instance.

2.5.3 SVe150 and PNe150 Datasets

To be used in experiments in this thesis, two data sets were created using the genera-

tor. These data sets were generated to investigate the effects of incremental parameter

changes on the difficulty of the problem. They were also used to conduct performance

comparison between various algorithms and any further analysis.

There are two datasets that were created specifically for this thesis: SVe150 and

PNe150.

Attribute Value

Number of entities: 150

Entity size: 5.5 - 30.5

Number of Groups: 10

Number of Floors: 3

Number of Rooms: 92

Number of Hard Constraints: 67

Number of Soft Constraints: 185 - 214

Table 2.3: Attributes of the instances in SVe150 and PNe150 datasets

In each of these data instances, the generator starts with the same entity set (that is

27

CHAPTER 2. OFFICE SPACE ALLOCATION

the size of the entities, the number of groups, and the groups the entities belong to are

the same initially). All the hard constraints in these instances are the same. The genera-

tor starts with the same initial soft constraint set as well. Some of the soft constraints are

pruned based upon the V parameter. Also, the initial floor layout (the neighbourhood

relation between rooms) is the same across all data instances. The aim for this incre-

mental build is due to the intent of exploring the effects of incremental changes of the

parameters on the instances.

These parameter values were decided after preliminary experimentation with gen-

eration of data instances. In SVe150 dataset, the S and V parameters were varied be-

tween 0.00 and 1.00 with 0.20 increments to provide 36 instances. P and N parameters

were set to 0.10 for this dataset. In PNe150 dataset, the P and N parameters were varied

between 0.00 and 0.25 with 0.05 increments. This provided another 36 instances.

In Table 2.3, the attributes of each data set are summarised. The fixed parameters

in both datasets were decided after preliminary experimentation with integer program-

ming models (described in Chapter 4). The main goal for setting these fixed parameters

was to create sufficiently difficult instances (that were not solved rather quickly). An-

other aim was to create a consistent basis for the instance analysis based on the four

parameters. This analysis will be described in Section 4.6 in more detail.

While creating these two data instance sets, the nott1 dataset was used an inspi-

ration to determine several attributes of the instances. The number of entities, the size

range for these entities, and the number of groups and floors were taken similarly to

the case as in nott1 instance (which was the largest real world considered in this thesis

and in the literature). The number of rooms was determined during the data instance

generator algorithm in a way all rooms in the instance were expected to be used. The

number of each specific constraint was taken similarly to nott1 instance. However, the

number of not sharing constraints was not as numerous as in nott1 because it became ex-

cessively difficult to increase the number of hard not sharing constraints in the instance

while still keeping the instance solvable. In certain cases, it was not even possible to

generate the instance in the first place with such a large number of hard not sharing

constraints in addition to other constraints.

Although any of the constraints in office space allocation problem can be hard or

soft, in our test instances, not all cases were considered. For example, the allocation, non-

allocation same room, not same room, and nearby constraints were always set as soft con-

straints. On the other hand, not sharing constraints were always hard. These were set as

such in SVe150 and PNe150 datasets in order to have consistency with nott1 instances.

Also, the relatively higher number of soft constraints compared to hard constraints was

28

CHAPTER 2. OFFICE SPACE ALLOCATION

SVe150 PNe150

Constraint Hard Soft Hard Soft

allocation 0 32 0 32

non-allocation 0 10 0 10

same room 0 25 0 25

not same room 0 10 0 10

not sharing 60 0 60 0

adjacency 1 3-15 1 9

nearby 0 90-103 0 93

away from 4 11-15 4 13

capacity 2 4 2 4

Total 67 185-214 67 196

Table 2.4: Number of constraints in SVe150 and PNe150 datasets

due to the desire to make the objective function more complicated and hence, make

the instance more difficult to solve. By making the soft constraint violation penalty

part in the objective function more complicated, it was also desired that the problem

solving was not dominated simply by the minimisation of space misuse components.

This was due to the conflicting nature of soft constraint violation penalty and the space

misuse penalty (which was reported in [Landa-Silva, 2003]). The numbers of hard and

soft constraints for each type in SVe150 and PNe150 instances are given in Table 2.4.

2.6 Conclusion

In this section, a background information regarding the office space allocation was pro-

vided. Two case studies for office space allocation in NASA LaRC Research Center and

universities were explained. The constraints, the objective function, and the data sets

were explained. Also, the implementation of a data parametrised data instance gener-

ator algorithm was provided.

During the rest of the thesis, nine types of constraints (allocation, non-allocation,

same room, not same room, not sharing, adjacency, nearby, away from, and capacity) will be

used during algorithm implementation in Chapters 4, 5, 6, and 7. The nott, SVe150,

and PNe150 instances will be heavily investigated using these proposed algorithms.

For the rest of the thesis, OSA problem variant that is given in Section 2.3.2 will

be used. The objective function given in equations 2.3.1, 2.3.2, and 2.3.3 will be used

throughout the thesis.

29

CHAPTER 3

Literature Review

3.1 Introduction

This chapter is devoted to the literature review related to office space allocation (OSA)

and several exact and heuristic approaches. Some theoretical problems related to office

space allocation and how these problems can be thought of as variants of OSA are also

explained. These problems are multi-dimensional knapsack, generalised assignment,

bin packing and clustering problems. The office space allocation problem variant un-

dertaken in this thesis can be considered as a combination and modification of these

problems in some aspects.

The theoretical or practical research on the office space allocation problem is rather

limited. One of the aims of this chapter is to give detailed information about the past

work in this area. Various mathematical models and meta-heuristic approaches to solve

different variants of OSA are explained. Information about other practical space allo-

cation problems is also given in this chapter.

Since the office space allocation problem is a combinatorial optimisation prob-

lem, preliminary concepts of computational complexity are explained. Solving many

versions of office space allocation systems may consume heavy amount of processing

power. However, they can usually be efficiently implemented in terms of memory re-

quirements. Hence, the focus of this chapter related to computational complexity will

be issues in time-complexity. These concepts include decision and optimisation problems,

the classes of P, NP, NP-Complete, NP-Hard, and the no-free-lunch theorem.

There are various solution approaches that can be used for OSA. This chapter in-

cludes a review of some of the mathematical models and meta-heuristics that have

been proposed previously in the literature and that are revisited in this thesis. Since

the focus of this thesis is on the application of mathematical programming and meta-

31

CHAPTER 3. LITERATURE REVIEW

heuristics, the literature review in this chapter targets local search meta-heuristics, ge-

netic algorithms, and integer programming solution techniques.

This chapter is organised as follows: some of the theoretical problems related to

the office space allocation are described in Section 3.2. Section 3.3 presents previous

research performed in the area of office space allocation. Some of the practical prob-

lems similar to office space allocation are presented in Section 3.4. Section 3.5 deals

with some of the important topics in computational complexity (P, NP, NP-Complete,

NP-Hard problems, and No free lunch theorem). Section 3.6 describes a range of algo-

rithms that can be considered for solving office space allocation problems. Section 3.7

concludes the literature review.

3.2 Theoretical Problems Related to Office Space Allocation

In this section, some of the theoretical problems related to the office space allocation

problem are formulated. OSA can be thought of a generalisation or combination of

these problems with additional constraints and objectives.

3.2.1 Bin Packing Problem

Bin packing problem (BPP) is a difficult combinatorial optimisation problem in which

items of different sizes have to be packed into a minimal number of bins of fixed capac-

ity. Bin packing has many variants with respect to the number of dimensions used, the

arrival of bins, and the distribution of the size of the items. The one dimensional bin

packing problem can be formulated in equations 3.2.1, 3.2.2, 3.2.3, 3.2.4, and 3.2.5 as in

[Martello and Toth, 1990]:

minimise
n

∑
i=1

yi (3.2.1)

s.t.
n

∑
j=1

sjxij ≤ cyi i = {1, . . . , n} (3.2.2)

n

∑
i=1

xij = 1 j = {1, . . . , n} (3.2.3)

yi ∈ {0, 1} i = {1, . . . , n} (3.2.4)

xij ∈ {0, 1} i = {1, . . . , n}, j = {1, . . . , n} (3.2.5)

where binary decision variable yi indicates whether the bin i holds an item or not, and

each binary decision variable xij indicates whether the item j is placed in the bin i, and

32

CHAPTER 3. LITERATURE REVIEW

n stands for the number of items being packed. The size of each item j is represented

by sj, and the capacity of a bin is represented by c (each bin has the same capacity).

In this formulation, there are n items, and as a result the maximum number of bins

(whether they are used or not) is again n as the size (sj) of a single item cannot exceed

the capacity (c) of a bin. The goal of BPP then becomes to minimise the number of

bins that are used (where yi = 1) as in equation 3.2.1 while packing all items to the bins

(equation 3.2.3) without going over the capacity c in any used bin (equation 3.2.2).

BPP can be thought of a limited variant of OSA when all the rooms (bins) in the

problem have a capacity constraint on them (that no room can be overused beyond its

capacity), and all rooms are of equal size. The items to be packed into the rooms are

the entities of various sizes, and the goal is to allocate all entities to minimal amount of

rooms subject to additional constraints.

3.2.2 Multi-dimensional Knapsack Problem

Multi-dimensional knapsack problem (MDKP) is a generalisation of the traditional knap-

sack problem [Kellerer et al., 2004] by adding more constraints (dimensions) into it. In

MDKP, there are more than one knapsack each with their own capacities. Each item

that is to be placed into the knapsacks has a profit and size value associated with it.

The goal is to place the items into the knapsacks such that the total profit is maximised

while not overusing the knapsacks beyond its capacity. The mathematical definition of

the problem as in [Puchinger et al., 2009] is given in equations 3.2.6, 3.2.7, and 3.2.8:

maximise
n

∑
j=1

pjxj (3.2.6)

s.t.
n

∑
j=1

wijxj ≤ ci i = {1, . . . , m} (3.2.7)

xj ∈ {0, 1} j = {1, . . . , n} (3.2.8)

where there is a set of n items with profits pj > 0 and m resources with capacities

ci > 0. Each item j requires an amount of wij ≥ 0 from each resource i. The binary

decision variables xj indicates which items are selected. The goal of the MDKP is to

select a subset of items with maximum total profit while not exceeding the resource

constraints of the problem.

The MDKP resembles the OSA where each room has a hard capacity on it and

cannot be overused, in this case, each room can be thought of as a knapsack. Each item

(entity) has an associated size with it and is to be placed into the knapsacks (items).

33

CHAPTER 3. LITERATURE REVIEW

The difference between MDKP and OSA is that MDKP has an explicit profit values

associated with each entity while OSA decides the cost of placing an entity to a room

dynamically based upon the other constraints of the room and the current allocation.

MDKP is also a maximisation problem whereas OSA minimises the objective function.

3.2.3 Generalised Assignment Problem

Generalised assignment problem (GAP) is the task of assigning n jobs to m agents such

that each job is uniquely assigned to one agent. The goal is to distribute all the jobs to

agents to minimise the total cost while not exceeding the capacity of an agent. GAP is

similar to MDKP. However, in MDKP, the profit of assigning an item to any knapsack is

the same whereas in GAP, each assignment of a job to a particular agent has a different

cost value. The mathematical definition as used in [Cattrysse and Wassenhove, 1992]

is given in equations 3.2.9, 3.2.10, 3.2.11, and 3.2.12 :

minimise
m

∑
i=1

n

∑
j=1

cijxij (3.2.9)

s.t.
n

∑
j=1

aijxij ≤ bi i = {1, . . . , m} (3.2.10)

m

∑
i=1

xij = 1 j = {1, . . . , n} (3.2.11)

xij = {0, 1} i = {1, . . . , m}, j = {1, . . . , n} (3.2.12)

where cij is the cost of assigning job j to agent i, aij is the capacity absorption when j

is assigned to agent i, bi the available capacity of agent i. The decision variable xij is

equal to 1 if agent i performs job j, 0 otherwise.

The GAP can be thought of OSA problem that each job (entity) has a cost (size)

associated with it, all the agents (rooms) have a hard capacity constraint and the goal

is to distribute each job (entity) to agents (rooms) such that the cost of allocation is

minimised. The difference is that while GAP uses explicit cost values for assigning

each job to an agent, OSA sets the cost of allocation of an entity to a room based upon

the constraints of the problem and the current allocation.

3.2.4 Clustering

Cluster analysis [Everitt et al., 2009] is the task of clustering (groups) a set of objects such

that the objects that are similar to each other (to a predefined metric) are placed in the

34

CHAPTER 3. LITERATURE REVIEW

same cluster while dissimilar objects are grouped in other clusters. Clustering analysis

is a very important area in data mining [Witten and Frank, 2005].

In clustering analysis, the models are derived based on the definition of the similar-

ity of the objects (that which objects form a cluster and which do not). There are various

models based upon different similarity metric, such as hierarchical clustering, centroid

models such as k-means, statistical distribution and density models, and graph based

structures.

A very commonly researched problem in clustering analysis is k-means clustering.

In this problem, the goal is to create K clusters while minimising the euclidean distance

of each entity to the cluster centre. The mathematical definition of the problem is given

in equations 3.2.13, 3.2.14, 3.2.15, and 3.2.16.

minimise
n

∑
i=1

K

∑
k=1

zki||xi − ck||2 (3.2.13)

s.t. ck =
∑xi∈Ck

Nk
i = {1, . . . , n} (3.2.14)

Nk =
n

∑
i=1

zki k = {1, . . . , K} (3.2.15)

zki = {0, 1} i = {1, . . . , n}, k = {1, . . . , K} (3.2.16)

where there are K clusters and n items. Nk represents the number of items within a

cluster. The ck is the centre of each cluster k, and zki is 1 if the item i is associated to

cluster k, 0 otherwise. The coordinate of item i is represented by xi. Each cluster centre

ck of cluster Ck is determined by the arithmetic mean of the items in the cluster Ck.

The clustering problem can represent some of the constraints in OSA such as the

proximity constraints (adjacency, nearby, away from). In OSA, it is often desired that the

entities within the same organisational unit are placed (clustered) close to each other

with adjacency and nearby constraints. On the other hand, certain units or rooms should

not be allocated within close proximity to each other as defined in away from constraints.

In this case, one goal can be to create clusters of entities where the distances between

each entity in an organisational unit are minimised while the distances between differ-

ent and unrelated units are maximised.

3.3 Previous Research on Office Space Allocation

Sharpe: The earliest study of optimum space allocation within buildings that the au-

thor of this thesis can trace back to belongs to [Sharpe, 1973]. In this article, Sharpe pro-

35

CHAPTER 3. LITERATURE REVIEW

posed a mathematical model technique for optimising floor layouts within buildings

with two main objectives: the minimisation of circulation and establishment costs. The

model was an extension of a quadratic assignment model as in [Beckman and Koop-

mans, 1957] with zero-one variables replaced by continuous variables. The model was

applied to a single-storey industrial building comprised of 6x6=36 grid locations. 19

different activities (the role of a room) were allocated based upon the interaction be-

tween each activity level. The level of interaction between each activities depended

on staff-contact hours (the interaction level) which were calculated according to the

number of hours a staff member of activity A spent with activity B. In addition to the

interaction of different activities, benefits or penalties of allocating some activities to

certain regions or the zones within a building were also considered.

Ritzman: One of the earliest works on the optimisation of office space utilisation is in

[Ritzman et al., 1980] who developed a linear programming model for the distribution

of academic offices at the Ohio State University. The objectives they considered were

assigning offices to departments with enough space for each member, minimising the

space deviation of each department from the space requirements, distribution of the

offices with air conditioning evenly among departments, minimising the distance be-

tween the rooms in a department and the administrative offices, even distribution of

high quality offices between different departments, and minimising the reassignments

of offices. The authors focused on producing multiple layouts interactively for enabling

the administrators to have control of the solution stage and for allowing them to choose

from a set of solutions.

Benjamin: A linear goal programming model was proposed for planning the layout

of floor space in a manufacturing laboratory in University of Missouri Rolla in [Ben-

jamin et al., 1992]. Five different conflicting objectives were considered: increasing the

usage of laboratory facilities, development of new courses, stimulation of research, in-

creasing the awareness of industry, and image of the university. The authors pointed

out that prioritisation of each constraint required a significant amount of time and ex-

pert knowledge of the administrators was needed especially due to the different pref-

erences of each administrator about the goals of the project.

Giannikos: A goal programming [Tamiz et al., 1998] approach to automate the dis-

tribution of offices among staff in an academic institution was proposed in [Giannikos

et al., 1995]. The objectives considered were: assigning offices with specific type evenly

36

CHAPTER 3. LITERATURE REVIEW

among the schools, assigning specific rooms to the usage of only one school, minimis-

ing the relocation of people after the allocation, and minimising the distance of each

room in one school to its administrative centre. Additionally, hard constraints included

the allocation of school heads to a office conforming to the standards, and the usability

of each office by the members of the staff in the same level or category. The authors

compared their results to the actual usage of the office spaces and concluded that the

space was allocated inefficiently with a manual method.

Burke et al.: A questionnaire by [Burke and Varley, 1998] was reported on the space

allocation process in 38 British universities. The emphasis was on the scope of the prob-

lem, computing tools to solve it, and the constraints in each university. It was reported

that very few universities used a fully automated allocation system although most of

them still used computers during the allocation process. The survey also indicated that

almost half of the institutions did not use staff should not share the rooms constraints, par-

ticularly the older universities. It was also reported that most universities extensively

used the positioning and locality constraints to group resources belonging to the same

group together and away from other groupings. It was also suggested that although

the matching the room sizes constraint could be used to reduce the reorganisation process,

it was rarely used in universities. The authors concluded that any automated allocation

system should cover all aspects of the space allocation process and should be easy to

use. They also emphasised that the system’s usage of the real world data and ability to

cope up with missing information (especially the floor layouts) was paramount.

Research on developing heuristic approaches for the office space allocation prob-

lem began with [Burke et al., 2001b]. The authors applied hill climbing, simulated

annealing [Kirkpatrick et al., 1983], and a genetic algorithm [Goldberg, 1989] to solve

the optimisation (task of creating a complete solution from scratch) and reorganisation

(task of reallocating entities in a given solution) problem. Three different move op-

erators were used: Allocate move chose an unassigned resource and allocated it to a

room. Relocate move changed the room for an already allocated resource. Swap move

interchanged the rooms of the two selected resources. For searching which resources

and rooms should be used in these moves, random and greedy methods were used.

By applying their algorithm to the real world data from three universities, the authors

observed that the hill climbing using greedy search for room allocation worked the

best for the initial optimisation of the problem. However, simulated annealing and

genetic algorithm using greedy room search yielded better results during the reorgani-

sation problem.

37

CHAPTER 3. LITERATURE REVIEW

[Burke et al., 2001a] later investigated a hybridisation of their previous approaches

under a population based framework. The initial solutions were created using a hill

climbing operator and were improved using a simulated annealing approach using

adaptive cooling technique. A mutation operator was also implemented for disrupting

the solution if the search could not find a feasible move to improve the solution quality.

The authors further augmented a population into their algorithm where the goal was to

bring an individual into a stable state by using hill climbing and simulated annealing. A

stable state occurred when either an individual reached a local optima or no further im-

provement was achieved using the simulated annealing stage. The population based

approach was further modified to produce an overall high quality population or a sin-

gle higher quality solution. The authors compared the population based algorithm to

its single solution counterpart and no real advantage in terms of solution quality was

observed.

[Burke et al., 2001c] further reported the application of multi-objective optimisa-

tion [Coello et al., 2006] to the office space allocation problem. The algorithm described

above was modified to make a comparison between a weighted aggregating objec-

tive function versus a bi-criteria multi-objective optimisation using pareto domination.

Two objectives were considered: the total space misuse due to under/over usage of

the rooms, and the weighted sum of the other constraints. It was observed that these

two objectives were conflicting in nature. The bi-criteria method was further tailored

to produce a population with high diversity of good solutions or a population with a

single high quality solution.

Landa-Silva: Prior to this thesis, the most recent results on benchmark instances

of the office space allocation problem investigated here, were reported in the paper

by [Landa-Silva and Burke, 2007] who developed an asynchronous cooperative local

search method. In this work, local search threads in a population co-operated with

each other asynchronously to improve solution quality. In order to improve the global

search strategy, a pool of genes which contained segments of the solutions was shared

between the local search threads (information sharing strategy). This shared information

was used in two ways: parts of the solutions which were marked as good were used to

improve the solutions in individual threads whereas the parts of the solutions marked

as “bad” were ignored during a diversification strategy by reconstruction with a dis-

ruption operator. The authors compared four different single-solution heuristics (hill-

climbing, simulated annealing, tabu search, and a hybrid meta-heuristic) with their

population based variants using their asynchronous cooperative mechanism. It was

38

CHAPTER 3. LITERATURE REVIEW

pointed out that their population based asynchronous algorithm which was extended

from a single-solution hybrid meta-heuristic provided the best results while a popula-

tion based tabu search algorithm provided competitive results. Based upon the exper-

iments, due to the high number of violations, group by constraint was regarded as the

most difficult one in the heuristics approaches implemented.

Lopes: [Lopes and Girimonte, 2010] extended the work by [Landa-Silva and Burke,

2007] in an office space allocation problem in European Space Agency (ESA). They

implemented four types of meta-heuristics: Hill climbing, Simulated Annealing, Tabu

Search, a Hybrid meta-heuristic by [Burke et al., 2001a]. To improve the performance

of these algorithms, variations to the local search, and new constraints management

algorithms were designed by the authors. They also pointed out that in ESA, there was

a strong hierarchy amongst the entities, therefore their entity structures took what they

called the ’standard code’ (category of the entity based upon the size and sharing) and

the ’address code’ (for the hierarchy of the units, and grouping information for the en-

tities) into consideration. The OSA problem contained allocation, adjacency, not sharing

constraints as described in [Landa-Silva, 2003]. Additionally, the problem contained

two types of grouping constraints (at department and division level) and avoid spreading

(to avoid the split of departments over several buildings/floors) which was similar to

the nearby constraint in [Landa-Silva, 2003] and avoid share across (to avoid the sharing of

offices between different departments) constraint. The authors made a clear distinction

between constraints by dividing them into two sets: the particular constraints (allocation

and adjacency constraints) which applied to a specific subject and/or target and global

constraints (the rest of the constraints) which applied to every entity. When the algo-

rithm was tested on the ESA instance by using swap, relocate, and interchange moves

as in [Landa-Silva, 2003], the authors reported the Hybrid meta-heuristic performed the

best when the run length was sufficiently long, and Tabu Search converged faster when

the run length limit was short. The authors then modified the swap and relocate move

operators with a property called length. In fixed length operators, the number of entities

and resources handled by the operator were fixed, whereas in variable length operators,

the number of entities and resources were randomly generated between 1 and length

at each iteration. The experimentations pointed out the performance of fixed length

swap and relocate operators were very poor whereas the variable length operator slightly

improved the performance of the algorithms.

Zahiri: An application of particle swarm optimisation [Poli et al., 2007] was im-

plemented in [Zahiri, 2009] to solve OSA. An adaptive fuzzy system integrate with

39

CHAPTER 3. LITERATURE REVIEW

a multi-objective particle swarm optimiser (Fuzzy-MPSO) was proposed to tackle the

same OSA problems described in [Landa-Silva, 2003]. Three design goals were con-

sidered: good generalization for the proposed algorithm, maximisation of the number

of non-dominated solutions in the Pareto front, and the maximisation of the spread of

non-dominated solutions as smooth and uniform as possible. Two performance metrics

(named aggregation factor and minimal spacing) were considered in this algorithm.

There were three fuzzy inputs in the algorithm: the aggregation factor, minimal spac-

ing for minimising the distance between the solutions, and the number of iterations

where the non-dominated points on the pareto front were not changed. Seven fuzzy

rules were used based on the linguistic description based on the parameters of the al-

gorithm. In this Fuzzy-MPSO algorithm, the values of the swarm size (the number of

swarms in the population, constriction coefficient, and neighbourhood size (fuzzy out-

puts) were dynamically adjusted for achieving trade-offs between the better-coverage,

uniformity, and closeness to the optimal pareto-front. The experiments on some of the

nott1 instances yielded acceptable results.

Trung: In [Trung et al., 2009], the authors tackled the problem of dorm room as-

signment in HCMC University of Technology by using an improved version of sim-

ulated annealing (SA) called informed SA (ISA). The task was to assign 2500 students

to the dorm rooms subject to hard and soft constraints and to minimise the objective

function value (the unhappiness of the students). The hard constraints included gen-

der restrictions to keep male and female students separate, room capacity restrictions,

satisfaction of privileged students, and the room change requests from the senior stu-

dents. The soft constraints were divided into two categories: room-student and student-

student constraints. The room-student constraints included dissatisfaction levels related

to the preferences for the hall, room type, beds, rent price, floor, reassignment and

room change requests, and partial fill (underuse) of the rooms. The student-student

constraints included dissatisfaction levels related to the preferences for music, study

habit, computer game, smoking, friend, room-mates of one student for another. The

objective function to minimise was the weighted sum of these soft constraint violations

(unhappiness value).

The ISA algorithm contained two stages: the first stage satisfied all the hard con-

straints while the second stage tried to minimise the number of soft constraint viola-

tions. The neighbourhood operator was swapping the rooms of two students of the

same gender. The algorithm used utility values for estimating the probability that a

variable-value pair (the student-room assignment pair in this case) appeared in an op-

40

CHAPTER 3. LITERATURE REVIEW

timal solution. The utility was considered significant when it was deemed important

for improving the solution of the SA. A threshold value was set in order to separate

significant utilities from non-significant ones. Another important component of the

algorithm was the repair procedure which chose a variable (student) randomly and re-

placed the current value (room) assigned to this variable by randomly choosing a new

value in order to remove the conflicts.

The authors compared their ISA algorithm with the regular SA algorithm in [Trung

et al., 2009] and for the dataset of HCMC University of Technology, a speed-up of twice

the previous performance was observed. The authors later compared their ISA algo-

rithm with SA with non-monotonic reheating and a very-fast SA algorithm with re-

annealing in [Trung and Anh, 2009] and [Anh and Trung, 2011] and claimed their ISA

algorithm was the most time efficient one.

Pereira: [Pereira et al., 2010] applied a greedy local search and tabu search algorithm

to investigate an OSA problem where the goals were to minimise the distance between

the employees in the same organisation, minimise the office space misallocation, and

maximise the office space allocation. The authors used a weighted objective function

containing these three sub-objectives. An instance generator was created, and then a

greedy local search and tabu search algorithm were used by utilizing two move opera-

tors: either the room assignment of two entities were swapped or an entity was moved

to an empty available position. Tabu search performed better on the instances created

by the authors.

Adewumi: A recent work by [Adewumi and Ali, 2010] was done in multi-stage hos-

tel space allocation problem based on data on a tertiary institution. The problem in-

volved satisfaction of the constraints based upon the accommodations of certain cate-

gories of students (foreign, freshman, senior, scholar, health, sports, discretionary) and

maximization of the space utilisation. The first stage of the algorithm tried to ascer-

tain the number of students in each category while the capacity in available hostels

was not being overused. In this stage, all students in certain categories were given

high priority in allocation. Remaining students were allocated in greedy fashion based

upon their priority level. In the second stage, students were distributed to the hostels

under specific constraints. Both of these stages used a genetic algorithm (GA) which

incorporated representations based on multidimensional array structures for hall and

block/floor allocations. One point crossover and random mutations which increased

or decreased the number of allocations at hall or block level were used in the algorithm.

41

CHAPTER 3. LITERATURE REVIEW

Awadallah: Awadallah et al. [Awadallah et al., 2012] applied harmony search algo-

rithm (HSA) [Geem et al., 2001], [Geem, 2008] to solve the same office space allocation

problems as in [Landa-Silva, 2003], [Landa-Silva and Burke, 2007]. The harmony search

algorithm was a population based meta-heuristic inspired from musical improvisation.

There were three operators to generate a new harmony at each iteration: memory con-

sideration, random reconsideration, and pitch adjustment. In this algorithm, first, the

variables (information about the entities and the rooms) of an office space allocation

problem were extracted. The second step included setting up some of the HSA param-

eters: The harmony memory consideration rate was for selecting the value that would

go through memory or random consideration procedures. The harmony memory size

determined the number of solutions stored in harmony memory. The pitch adjustment

rate determined the rate of local improvement. Each row in the harmony memory

corresponded to a solution of the space allocation problem, and these rows were con-

structed using the peckish method described in [Corne and Ross, 1996]. Each feasible

new harmony was improvised at each iteration using memory consideration (selecting

the value of the current decision variable from the best solution stochastically), ran-

dom consideration (assignment of decision variables to rooms), and pitch adjustment

(improvement procedures that employed move, swap, interchange operators similar to

the ones in [Burke et al., 2001b] and [Burke et al., 2001c]). The algorithm was tested on

some instances in the nott1 and wolver datasets, and performance of the algorithm was

adequate.

3.4 Other Practical Problems Related to Office Space Alloca-

tion

This section is devoted to exploring some other practical space allocation problems

tackled in the literature.

3.4.1 Retail Shelf Space Allocation

The retail shelf space allocation (RSSA) [Yang and Chen, 1999], [Bai, 2005] is the task

of efficient usage of shelf spaces in retail sector. Due to the scarce shelf space and

extremely varied amount of products to sell, retail companies need to reduce the cost

of shelf usage while maximising the operational profit by presenting the goods to the

customers in such a way to increase the sales.

The most basic management unit in RSSA is the stock-keeping unit (SKU). A SKU

42

CHAPTER 3. LITERATURE REVIEW

is a unique identifier of a specific product. The quantity of each SKU currently held

by a retailer is called the inventory. While keeping a large inventory may increase the

storage costs considerably, a limited inventory on the other hand can lead to lack of

products to sell. A collection of products with similar attributes forms a category. A

category is usually formed by a number of different brands having several SKUs. The

facing of a SKU is the number of an item which is visible on the shelves. A location

refers to the placement of a SKU. A highly profitable or marketed SKU is usually given

a higher facing with a better location for view by the customers.

The main goal of a RSSA system is to maximise the operational profit by finding

an efficient allocation of products to the shelves. The problem involves many different

constraints most of which depend on the corresponding retail company. However,

several physical constraints are quite common: the products should be placed to the

shelves where they can actually fit and stay (dimensional and weight requirements).

The problem is usually strictly integral as well, because each SKU should be given

facings which are integer numbers. There are also lower and upper bounds on the

facings of a SKU to provide a minimal or maximum exposure of a product. Certain

products should be placed close to each other while several other types should be kept

away from each other.

3.4.2 Teaching Space Allocation

Teaching space allocation (TSA) [Beyrouthy, 2008] is a special case of space manage-

ment problem encountered in many educational institutions. The teaching space in-

cludes lecture halls as well as rooms dedicated for tutorials, seminars, workshops, etc.

The efficiency of teaching space management is measured by the utilisation of spatial

resources. In the most common case, the utilisation is measured as the fraction of used

space over the total available space. Contrary to common perception, the utilisation

of teaching space in many universities is quite low. In fact, the percentage of practical

utilisation was reported as low as twenty to thirty percent in [Beyrouthy et al., 2009].

A typical TSA problem involves the task of assigning events (usually a set of stu-

dents taking a class) while satisfying two hard constraints: The capacity of the room

an event is assigned should not be exceeded and the number of events associated with

a room should not be larger than the available number of time slots. The target goal

is to improve the utilisation which can be quantified by using seat-hours [Beyrouthy,

2008]. A seat-hour can be defined as the summation over all timeslots and rooms of the

students allocated to that room-slot. The utilisation in this case can be measured as the

43

CHAPTER 3. LITERATURE REVIEW

fraction of the actually used seat-hours to total available seat hours.

3.5 Algorithm Complexity

The complexity theory of algorithms deals with difficulty of problems in terms of com-

putational resources required to solve them. The most common complexity analysis

is performed over time and space. The time complexity deals with the growth of com-

putational time to solve a problem as the size of the problem is increased while space

complexity deals with the growth of memory required to solve the problem. In this the-

sis, only the time complexity will be considered because the memory requirement for a

typical office space allocation problem is usually not a concern in modern computers.

For a more in depth investigation, please refer to several books in this area such as

[Sipser, 1996] and [Hopcroft et al., 2006].

The time complexity of an algorithm is measured by the amount of time required

for a given size of input (problem size) and the growth of this time with respect to the

problem size. Most commonly observed growth functions are constant, logarithmic,

polynomial, and exponential. It is desirable to develop algorithms that are more effi-

cient than the ones with exponential growth due to the quick and explosive growth of

this function which makes a lot of problems extremely difficult to solve in practice. A

problem is called tractable if there is an algorithm that can solve it in polynomial time,

and it is called intractable if there is not such an algorithm. If there can be no algorithm

that can solve the problem regardless of time complexity, the problem is referred to as

undecidable.

P versus NP: In terms of time complexity for decidable problems, these can be mainly

classified into two categories. The class P includes problems that can be solved with

a deterministic algorithm in polynomial time. The class NP (Non-deterministic poly-

nomial) includes problems that can be solved polynomially by a non-deterministic al-

gorithm (more formally by a non-deterministic Turing machine). A non-deterministic

algorithm includes two steps: in the first step, the algorithm guesses a solution for the

problem. Due to the nature of non-determinism, each solution structure of the problem

can be guessed at a given state. The second stage involves verification of the current

structure. In this stage, the verification of whether this structure is the actual solution

to the problem must be done in polynomial time if the problem is to be called as in NP.

One of the most important problems in mathematics is whether P = NP or not.

Most common conjecture while still not proven is that P 6= NP. This practically disal-

44

CHAPTER 3. LITERATURE REVIEW

lows any efficient algorithm with polynomial time from being implemented for prob-

lems that are in the difference between two sets (NP− P).

Another important classification related to NP problem is the classes of NP-Complete

and NP-Hard. A problem (or language) L is NP-Complete if and only if the two follow-

ing conditions are satisfied:

• L ∈ NP

• All problems L′ ∈ NP are reducible to L in polynomial time.

P = NP =

NP-Complete

NP-Hard

(a) P = NP

 NP

NP-Hard

NP-Complete

P

(b) P 6= NP

Figure 3.1: The classes P, NP, NP-Complete and NP-Hard under the conjectures P = NP and P 6= NP

If only the second condition is satisfied, then L is in NP-Hard. The second prop-

erty forms a relationship between all the problems in NP. Any problem in NP can be

reduced to any other NP problem in polynomial time, which allows algorithms de-

signed for a specific NP problem being used for another NP problem by means of a

polynomial time reduction. If the conjecture P = NP is true, then a polynomial algo-

rithm that can solve a specific P problem can be reduced to solve any other problem

in NP. Unfortunately, this conjecture while not proven is believed to be false, so any

possibility of an efficient deterministic polynomial time algorithm for NP problems is

slim. The diagram of classes P, NP, NP-Complete and NP-Hard is given in Figure 3.1 for

conjectures P = NP and P 6= NP.

Space Allocation as a Decision and Optimisation Problem

In complexity theory, problems are usually described in terms of decision problems.

A decision problem is described as a problem whose solution can be given in terms of a

45

CHAPTER 3. LITERATURE REVIEW

"yes-no" type answer. For example, given three integer numbers x, y, and z the problem

‘’does z divide both x and y” is a decision problem. An optimisation problem is the task

of finding the best solution among all feasible solutions. For example, the problem of

finding the ‘’minimum z that divides both x and y” is an optimisation problem.

The office space allocation problem can also be described as a decision problem as

below:

Given an entity set E of size |E|, a room set R of size |R|, a set of hard constraints

HC, and a set of soft constraints SC, is there a mapping from E to R (an allocation

of entities to rooms) such that all hard constraints are satisfied and the total penalty

(defined as the sum of the penalty for the space misuse and soft constraint violation) is

less than a fixed value TP (total penalty)? The answer to this problem is ‘yes’ if such a

mapping (allocation) exists, ‘no’ otherwise.

Any given solution to this decision problem of office space allocation can be ver-

ified in polynomial time, because it is possible to check each constraint violation and

space misuse with polynomial time algorithms and hence, this decision problem for

OSA is said to be in NP.

However, the office space allocation problem can also be described as an optimi-

sation problem. In this case, the problem becomes given the sets E, R, SC, and HC;

finding the allocation which yields the minimum total penalty. It is not possible to ver-

ify a solution to this problem in polynomial time, so the optimisation problem of office

space allocation is not in NP.

The proof of whether there is a polynomial time reduction of every problem L in

NP to the office space allocation problem and hence the proof of NP-Completeness or

NP-Hardness is beyond the scope of this thesis. Assuming there is a polynomial time

reduction of every problem L in NP to OSA, then the decision problem of the OSA will

be in NP-Complete while the optimisation version of the problem will be in NP-Hard.

3.5.1 No Free Lunch Theorem

No free lunch theorem (NFL) is theorised by Wolpert and Macready [Wolpert and

Macready, 1995], [Wolpert and Macready, 1997] to address the possibility of a general-

purpose universal optimisation algorithm. According to the NFL theorem, the average

performances of all algorithms over all types of problems are equal to each other. That

is, no algorithm is essentially better than random search when the average performance

is considered over all problems. A natural outcome of the NFL as described by Ho and

Pepyne [Ho and Pepyne, 2002] is that ‘’a general-purpose universal optimization strat-

46

CHAPTER 3. LITERATURE REVIEW

egy is theoretically impossible, and the only way one strategy can outperform another

is if it is specialised to the specific problem under consideration".

However, NFL theorem should not be interpreted as an all-or-nothing proposition

since it encompasses all problems. There can still be certain problem types and cate-

gories where an algorithm a1 can give superior results over algorithm a2. The origina-

tors of the NFL theorem, Wolpert and Macready showed the possibility of free lunches

in co-evolutionary optimisation [Wolpert and Macready, 2005].

3.6 Review of Solution Approaches

This section describes some of the solution techniques that can be considered to tackle

OSA. These methods are local search heuristics, genetic algorithms, integer program-

ming, and hybridisations of these approaches. Heuristics can be necessary if the size of

the problem grows larger than an exact algorithm can handle. Local search heuristics

are chosen to supplement the integer programming method due to the ease of simple

and efficient implementations. Finally, hybrid algorithms can be used to draw synergy

between these various solution methods for development of state of the art solution

methodologies for office space allocation problem.

This section describes some of the meta-heuristics and integer programming tech-

niques used in this thesis. Note that the following survey is not an exhaustive list of

algorithms, the specific techniques that are considered in this thesis will be described

only to provide background information to the reader to follow the remaining chapters.

The following heuristics are well researched in the literature and they are suitable for

rapid prototyping and fast, efficient implementations. Integer programming is solution

technique to provide exact results for combinatorial optimisation problems. Significant

commercial investment has been allocated to develop state of the art general purpose

integer programming solvers in the past decade. Consequently, this thesis aims to in-

vestigate the potential of using exact-inexact solution methods (and hybridisations of

these) to tackle the office space allocation problem.

3.6.1 Meta-heuristics

Heuristic, a word with a Greek origin means ’discover’ or ’find’. In optimisation, a

heuristic refers to solution method applied to a difficult optimisation problem where

an exact algorithm will consume too many resources. Meta-heuristics are extensions

and formalisms to heuristics. We now paraphrase two formal definitions to point out

47

CHAPTER 3. LITERATURE REVIEW

the perspective of this thesis in regards to meta-heuristics:

[Osman and Laporte, 1996] ‘’A meta-heuristic is formally defined as an iterative genera-

tion process which guides a subordinate heuristic by combining intelligently different concepts

for exploring and exploiting the search space, learning strategies are used to structure informa-

tion in order to find efficiently near-optimal solutions.”

[Voss et al., 1999] ‘’A meta-heuristic is an iterative master process that guides and modi-

fies the operations of subordinate heuristics to efficiently produce high-quality solutions. It may

manipulate a complete (or incomplete) single solution or a collection of solutions at each itera-

tion. The subordinate heuristics may be high (or low) level procedures, or a simple local search,

or just a construction method.”

In [Blum and Roli, 2003], several classifications of meta-heuristics according to

some of their properties were made. These classifications are as follows:

• Nature inspired vs. non-nature inspired: The meta-heuristics are classified based on

their origin. Algorithms such as genetic algorithms [Holland, 1975] and simulated

annealing [Kirkpatrick et al., 1983] are inspired from several natural phenomena

(theory of evolution and thermo-dynamical systems respectively), while several

of them like iterated local search [Lourenco et al., 2002] are not.

• Population based vs. single solution search: This classification is made based on

whether the search is performed on a single solution or using a population of dif-

ferent solutions. The single solution search methods (also called trajectory meth-

ods) such as tabu search [Glover and Laguna, 1997] or variable neighbourhood search

[Mladenovic and Hansen, 1997] operate on a trajectory in the search space while

population based algorithms simulate an evolution of a set of solutions in the

search space.

• Dynamic vs static objective functions: While many meta-heuristics usually oper-

ate with a static predetermined objective function, others like guided local search

[Voudouris and Tsang, 1999] can modify the objective function during the search

in order to escape from local minima points.

• Single vs multiple neighbourhoods: While most meta-heuristic techniques operate

on a single neighbourhood structure, others like variable neighbourhood search [Mlade-

novic and Hansen, 1997] can utilise different neighbourhoods to diversify the

search.

• Memory usage vs. memory-less: This classification is based on the application of

search history during the search. A memory-less meta-heuristic can be thought

48

CHAPTER 3. LITERATURE REVIEW

of as a Markov process where the next outcome is determined strictly based on

the current stage in the search when the number of possible outcomes is finite.

Some meta-heuristics on the other hand can employ some memory structures to

keep track of past information that can be used to guide the search.

Different types of meta-heuristics can be used together (hybridised) to solve dif-

ficult combinatorial optimisation problems. Several classifications of hybrid meta-

heuristics [Cotta-Porras, 1998], [Talbi, 2002], [Dumitrescu and Stützle, 2003], [Blum and

Roli, 2003], [Raidl, 2006] were proposed in the literature. In this section, the taxonomy

proposed by [Talbi, 2002] is presented. This taxonomy is given in Figure 3.2.

Hybrid Meta-heuristics

Low Level High Level

Relay Teamwork Relay Teamwork

Homogeneous Heterogeneous Global Partial General Specialist

H
i
e
r
a
r
c
h
i
c
a
l

F
l
a
t

Figure 3.2: A taxonomy of hybrid meta-heuristics [Talbi, 2002]

Talbi categorises hybrid algorithms in two stages: hierarchical and flat. In hierar-

chical categorisation, the top level is divided into low and high level hybrids. In low-

level hybridisation, a function of a meta-heuristic is replaced by another meta-heuristic

while in high-level hybridisation, meta-heuristics are independent; there is no relation-

ship between the internals of different meta-heuristics. The second level is divided

based on relay or teamwork. In relay hybridisation, a set of meta-heuristics works in

tandem by taking the output of the previous one as its input. Teamwork hybridisations

include cooperation mechanism with different parallel agents operating on the search

space.

By using the notions low, high, relay, and teamwork, four hierarchical classes can be

derived:

• Low-level relay (LRH): A given meta-heuristic is embedded into a single-solution

meta-heuristic.

49

CHAPTER 3. LITERATURE REVIEW

• Low-level teamwork (LTH): This hybrid utilises exploration and exploitation by

embedding a meta-heuristic in another.

• High-level relay (HRH): Several independent meta-heuristics are executed in se-

quence.

• High-level teamwork (HTH): Independent meta-heuristics perform in parallel and

cooperate to find an optimal solution.

The flat classification is performed on hierarchical classification. In homogeneous

hybrids, all the algorithms in the overall framework use the same meta-heuristic. Het-

erogeneous hybrids on the other hand are comprised of different meta-heuristics. If all

the meta-heuristics in the overall algorithm operate in the same complete search space,

then this hybrid is referred to as global. In partial hybrids, the complete problem is

divided into sub-problems each with its own search space, and each algorithm is re-

sponsible for analysing this search space. Another classification is specialist vs general

hybrids. The previously mentioned hybrids are all general hybrids, all the algorithms

in the complete meta-heuristic framework try to solve the same problem. The specialist

hybrids combine different algorithms to solve different sub-problems within a larger

problem.

Local Search

Local search (LS) [Aarts and Lenstra, 2003] is a general purpose framework to solve dif-

ficult combinatorial optimisation problems. A local search algorithm works on a single

incumbent solution and a cost function which defines the quality of the solution at

hand. The goal is to find a solution which maximises (or minimises) the cost function.

The local search algorithms work on a neighbourhood structure of a given solution and

traverse from one solution to another by means of move operators. The neighbourhood

of a present solution is defined the solutions that can be reached by a move operator

from the current solution. For the case of office space allocation problem, a move op-

erator (and hence the neighbourhood relation) can be defined as moving one entity

from the room it is allocated in to another one in the current solution. The neighbour-

hood of a solution is defined as all the solutions that can be reached from the current

solution by the move operator. The move operators can be complex, for example in

k-opt neighbourhoods, k components of the current solution are changed to produce a

neighbouring solution.

The local search usually terminates until no further improvement to the objective

50

CHAPTER 3. LITERATURE REVIEW

1: Initialise a starting solution x

2: repeat

3: Generate a new solution x∗ within the neighbourhood of x

4: if Acceptance criterion is met then

5: x ← x∗
6: until Termination criterion is met

Figure 3.3: General local search framework

function value is possible (that a local optima is reached). The pseudo-code for the gen-

eral local search framework is given in Figure 3.3. For the sake of consistency in this

thesis, from now on, the objective function value (which will be abbreviated as obj)

is always going to be minimised. There have been many improved versions of local

search which are built upon the basic framework. A few of the common local search

algorithms that are used in this thesis are presented.

Iterated Local Search

The iterated local search Lourenco et al. [2002] algorithm extends the local search meta-

heuristic with a perturbation operator. The algorithm creates an initial solution and

improves it usually until a local optimum is reached. At this stage, a perturbation

operator alters the solution. Local search is reapplied to this perturbed solution until

another local optimum is found. At this stage, an acceptance criterion is used to decide

whether to accept or reject the current solution over the previous one. The most com-

monly used acceptance criterion is to accept the new solution if it is better than the old

one.

1: Initialise a starting solution x

2: x1 ← Apply local search on x until a local optimum is found

3: repeat

4: x∗ ← Perturb x1

5: x2 ← Apply local search on x∗ until a local optimum is found

6: if x2 is better than x1 based on the acceptance criterion used then

7: x1 ← x2

8: until Termination criterion is met

Figure 3.4: Iterated local search meta-heuristic

Although the iterated local search algorithm is simple to implement, attention should

be given while designing the perturbation operator and the acceptance criterion of the

new solution. The extent of the perturbation operator should be just enough to es-

51

CHAPTER 3. LITERATURE REVIEW

cape from local optima points to guide the search to other regions of the neighbour-

hood. Very large perturbations are discouraged due to the possibility of (near) random

restarts.

The pseudo-code for iterated local search meta-heuristic is given in Figure 3.4.

Tabu Search

Tabu search (TS) [Glover, 1989] [Glover, 1990] is a local search method in which the

decision to move to a neighbouring solution depends on short or long term memory

structures. The pseudo-code for tabu search meta-heuristic is given in Figure 3.5.

1: Initialise a starting solution x

2: Initialise an empty tabu list

3: repeat

4: Generate a set of solutions X′ from x based upon a neighbourhood structure N

5: Eliminate solutions from X′ that are set as tabu

6: if solution x′ ∈ X′ is reached through a tabu move and the objective value of x′ is

best so far then

7: Reinsert x′ into X′ (aspiration criterion)

8: Select the best solution x′ ∈ X′.

9: Insert the move x′ −→ x into the tabu list with tabu tenure tt + 1

10: x ←− x′

11: Decrement the tabu tenure tt of each move in tabu list by 1

12: if the tabu tenure tt of a move in the tabu list becomes 0 then

13: remove the respective move from tabu list

14: until Termination criterion is met

Figure 3.5: Tabu search meta-heuristic

At each iteration, the TS method generates a large subset of solutions within a

search neighbourhood. This subset of solutions does not include the ones designated

as tabu (forbidden) in the respective tabu list. TS usually utilises this tabu list to prevent

returning back to recently visited solutions and hence cycles in the search. The tabu

list can be implemented in various ways, it may contain the representation of whole

solution. However, for a more efficient implementation, usually only moves, attributes

or conditions related to the tabu solution are stored in the tabu lists.

TS usually is implemented as best improvement local search algorithm, the move

that leads to the best solution in the current neighbourhood is selected. In most im-

plementations, the reverse of the most recent move is stored in the tabu list to prevent

immediate cycles. There are two issues in handling the tabu lists: the size of the tabu

52

CHAPTER 3. LITERATURE REVIEW

list and the tabu tenure which determines the duration a tabu condition is going to be

kept in the tabu list. A huge tabu list which contains a lot of tabu moves or a long

tabu tenure can lead to a lot of promising moves (moves that can lead to a better lo-

cal optima eventually) being rejected. A small tabu list or a short tabu tenure on the

other hand may not be enough to prevent the search from getting stuck in local op-

tima. The other important issue is that it is sometimes possible to accept a solution

even if it is designated as tabu. These solutions might not be visited during the search

or might be of high quality but set as tabu due to a condition in the tabu list. In order to

overcome this problem, an aspiration criterion can be set to revoke the tabu conditions.

Most commonly used aspiration criterion is to accept a tabu move if it leads to the best

encountered solution during the whole search.

Apart from this tabu list based framework, more advanced TS algorithms try to

utilise the information gathered during the search. This leads to four general long term

memory principles : recency, frequency, quality, and influence. Recency-based memory

keeps track of the most recent operations for a given solution. In frequency-based

memory, the number of times each solution (attribute or condition) is visited is kept.

Quality principle aims to identify good solution components from the accumulated

information during the search. The fourth principle, influence tries to analyse the past

decisions for determining the most critical ones during the search history.

Greedy Randomised Adaptive Search Procedure

Greedy randomised adaptive search procedure (GRASP) [Resende and Ribeiro, 2003] is a

multi-start meta-heuristic in which each iteration of the search consists of two stages:

construction and local search. A feasible solution is generated in the construction stage

and this solution is improved to a local optima by means of a local search operator. The

pseudo-code for the greedy randomised adaptive search procedure meta-heuristic is given

in Figure 3.6.

The construction stage of GRASP randomly chooses elements from a data structure

called the restricted candidate list (RCL). In GRASP, the elements that will be used in

generation of a candidate solution are stored in a list of elements E. The incremental

cost of addition of element e ∈ E into the solution is denoted by c(e). The RCL is formed

by elements with the smallest incremental costs c(e). In a basic construction stage, the

minimum and maximum incremental costs (cmin and cmax respectively) are found first.

RCL is formed by the elements e ∈ C that fit the condition given at line 7 of Figure 3.7.

Parameter α determines the greediness and randomness of the algorithm. By varying α

53

CHAPTER 3. LITERATURE REVIEW

1: Set best solution x∗ as ∅

2: Set best objective value of x∗ as ∞ (for minimisation problems)

3: repeat

4: Generate a greedy randomised solution x using construction stage (Figure 3.7)

5: Find local optimum x′ with local search starting from solution x

6: if obj(x′) is better than obj(x∗) then

7: x∗ ← x′

8: until Termination criterion is met

Figure 3.6: GRASP meta-heuristic

from 0 to 1, the construction algorithm can shift from a pure greedy approach to a pure

random one. The element chosen randomly from the RCL is then incorporated into the

current partial solution x to result in the smallest incremental cost. This chosen element

is also removed from the list C. After the addition of this element, all incremental costs

c(e) are recalculated. The construction algorithm ends when all the elements e ∈ C are

incorporated into x. A general outline of the construction stage is given in Figure 3.7

[Resende and Ribeiro, 2003].

Input: α

Output: Solution x

1: x ← �
2: Initialise candidate set C ← E

3: Calculate incremental costs c(e) ∀e ∈ C

4: repeat

5: cmin ←minimum c(e)

6: cmax ←maximum c(e)

7: RCL← {e ∈ C|c(e) ≤ cmin + α(cmax − cmin)}
8: Select an element rcli from RCL randomly

9: x ← x ∪ rcli
10: Update C by removing rcli from C

11: Recalculate c(e) ∀e ∈ C

12: until C = ∅

Figure 3.7: Construction stage in GRASP meta-heuristic

Simulated Annealing

Simulated annealing (SA) [Kirkpatrick et al., 1983] is a local search optimisation algo-

rithm inspired from the statistical mechanics algorithm of Metropolis [Metropolis et al.,

1953]. SA starts with an initial solution, and the moves which lead to a better so-

54

CHAPTER 3. LITERATURE REVIEW

lution are always accepted. The probability of accepting a non-improving move de-

pends upon the cooling schedule. The algorithm starts with a high initial temperature

(the probability of accepting a non-improving move is higher), and the temperature

is gradually lowered (cooling procedure) during the algorithm (that the probability of

accepting a non-improving move gets less and less) . Various cooling algorithms were

proposed in the literature [Hajek, 1988], [Strenski and Kirkpatrick, 1991].

1: Initialise a starting solution x

2: Initialise a starting temperature T

3: repeat

4: Generate a solution x′ from x based upon a neighbourhood structure N

5: if objective function value obj(x′) is better than the obj(x) then

6: x ←− x′

7: else if random(0, 1) <= e− obj(x′)−obj(x)
T then

8: x ←− x′

9: else

10: reject x′

11: if temperature reduction criteria is met then

12: reduce T according to the cooling procedure

13: until Termination criterion is met

Figure 3.8: Simulated annealing meta-heuristic

Figure 3.8 represents the pseudo-code for the simulated annealing meta-heuristic.

At line 7, the annealing function is taken as in [Kirkpatrick et al., 1983].

Threshold Acceptance

Threshold acceptance is first described in [Dueck and Scheuer, 1990] and [Moscato and

Fontanari, 1990]. This algorithm is another update on the traditional local search al-

gorithm and simplification of the simulated annealing by replacing the probabilistic

acceptance criteria with a deterministic one. At each iteration of a threshold acceptance

algorithm, a new solution is randomly generated based on a neighbourhood structure

and a given solution,. If the new solution is better than the old one, the new solution is

accepted. The algorithm also accepts moves that are within a threshold of the current

solution. The threshold is usually set larger for large neighbourhoods and smaller for

small neighbourhoods. Threshold management is crucial in threshold acceptance algo-

rithms.

The pseudo-code for threshold acceptance meta-heuristic is given in Figure 3.9.

55

CHAPTER 3. LITERATURE REVIEW

1: Initialise a starting threshold T

2: Initialise a starting solution x

3: repeat

4: Generate a solution x′ from x based upon a neighbourhood structure N

5: if objective function value obj(x′) is better than the obj(x) then

6: x ←− x′

7: else if |obj(x′)− obj(x)| ≤ threshold T then

8: x ←− x′

9: else

10: reject x′

11: if No improvement to the solution is observed or a number of iterations is

passed then

12: Reduce threshold T

13: until Termination criterion is met

Figure 3.9: Threshold acceptance meta-heuristic

Great Deluge

The great deluge (GD) algorithm [Dueck, 1993] is an extension of threshold acceptance. GD

can be explained with a rain and flooding metaphor. Assuming it is raining constantly,

and there is no drainage mechanism, the water-level is expected to increase over time.

In order for a person to survive, he has to move a higher altitude above the current

water level, otherwise he will drown.

The GD operates similarly to other local search algorithms. At each iteration, the

current solution x is perturbed within a neighbourhood structure. The decision to ac-

cept or reject such a move is made based on the objective function value of the solution

and the current water level. For a minimisation problem, in order for a move to be

accepted, the objective function value should be below the current water level, other-

wise the move is rejected. The water level is decreased over time with a rate called rain

speed rs. Gradually, the acceptance of uphill moves (moves that increase the objective

function value) becomes more difficult due to the decreased water level. For an effi-

cient performance of the algorithm, the initial water level W and the rate of increase of

the water level (rain speed) rs should be adjusted very carefully.

The pseudo-code for the great deluge meta-heuristic is given in Figure 3.10.

56

CHAPTER 3. LITERATURE REVIEW

1: Initialise the starting solution x

2: Initialise the rain speed rs

3: Initialise the starting water level w

4: repeat

5: Generate a solution x′ from x based upon a neighbourhood structure N

6: if obj(x′) is better than the water level w then

7: x ←− x′

8: w← w + rs

9: else

10: reject x′

11: if no improvement to the solution is observed or other water level reduction

criteria are met then

12: reduce w

13: until Termination criterion is met

Figure 3.10: Great deluge meta-heuristic

Variable Neighbourhood Search

Variable neighbourhood search (VNS) [Mladenovic and Hansen, 1997] is based upon the

idea of using multiple neighbourhood structures during the local search. VNS algo-

rithm tries to exploit the notion that a local optimum with respect to a single neigh-

bourhood structure may not necessarily be optimal from the point of another neigh-

bourhood structure. However, a global optimum of a problem is locally optimal in

all neighbourhoods irrespective of the neighbourhood structure used. In a VNS, a fair

amount of different neighbourhood structures which can represent different regions

in the search space is desired. The intensification of the search can be satisfied via a

local search within a single neighbourhood while diversification can be achieved by

systematically switching to different neighbourhood structures.

The basic VNS algorithm is usually divided into three stages: shaking, local search,

and move stages. The neighbourhood structure list N (which contains each neighbour-

hood Nk) is sorted in order from index k = 1 to k = kmax. In the shaking stage, a random

solution is created by using the neighbourhood structure Nk starting with k = 1. The

solution in shaking stage is improved by local search operators by using this neighbour-

hood structure Nk. If the new local optimum solution is better than the incumbent

solution, then this new solution is accepted (move stage). If the solution cannot be im-

proved with this neighbourhood Nk, the algorithm switches to the next neighbourhood

(Nk+1) in the neighbourhood list. If none of the neighbourhood structures can improve

the solution x, then the neighbourhood index is reset back to k = 1, and the algorithm

57

CHAPTER 3. LITERATURE REVIEW

1: Initialise the starting solution x

2: Generate kmax amount of neighbourhood structures in N

3: repeat

4: k← 1

5: repeat

6: Shaking: Generate new solution x′ from x using the neighbourhood Nk

7: x∗ ← Apply Local search to x′

8: if obj(x∗) is better than obj(x′) then

9: Move to new local optimum x ← x∗
10: else

11: switch to next neighbourhood by k← k + 1

12: until k = kmax

13: until Termination criterion is met

Figure 3.11: Variable neighbourhood search meta-heuristic

continues with a new random solution generated by the shaking stage. The VNS algo-

rithm continues until a pre-determined termination criterion is met.

The pseudo-code for variable neighbourhood search meta-heuristic is given in Figure

3.11.

Ruin and Recreate

The ruin and recreate (R&R) [Schrimpf et al., 2000] meta-heuristic is a departure from

many local search algorithms such as threshold acceptance and simulated annealing which

choose to make small disruptions to the current solution. (R&R) instead applies rather

large disruptions to the current solution and tries to rebuild the heavily disrupted so-

lution with the goal of finding a promising new solution.

1: Initialise a solution x

2: repeat

3: x′ ← Ruin solution x

4: x∗ ← Recreate x′

5: if Acceptance criterion is met then

6: x ← x∗
7: until Termination criterion is met

Figure 3.12: Ruin and recreate meta-heuristic

In [Schrimpf et al., 2000], the proponents of the ruin and recreate algorithm claim

that complex problems are usually discontinuous in nature, and small moves and dis-

58

CHAPTER 3. LITERATURE REVIEW

ruptions within the neighbourhood may not be sufficient to find increasingly better

solutions during the search. The search landscape can be uneven, and promising solu-

tions can be far apart from each other due to many constraints in a complex combina-

torial optimisation problem. Therefore, without making drastic changes to the current

solution, it may not be possible to reach promising solutions that might be far away

from the current best solution.

A typical ruin and recreate algorithm has two states: ruin and recreate. In the ruin

stage, the current solution is heavily disrupted by removal or mutation of the compo-

nents of the solution. The recreate stage operates on the ruined solution and tries to

re-optimise it by restructuring of the deleted or mutated sections of the previous solu-

tion. When the recreate stage is finished, a new solution is obtained. The acceptance

or rejection of the new solution over the previous one is decided similar to other local

search algorithms like simulated annealing or threshold acceptance.

The pseudo-code for ruin and recreate meta-heuristic is given in Figure 3.12.

Genetic Algorithms

A genetic algorithm (GA) [Holland, 1975] is a search method to find approximate solu-

tions to optimization problems. Genetic algorithms use techniques like crossover, mu-

tation, and natural selection that are inspired from the theory of evolution. In a typical

genetic algorithm, a population of chromosomes (abstract representation of candidate

solutions, also referred to as individual) goes through an evolutionary process. The

most common representation scheme is binary encoding. The evolution usually starts

from a population initialised randomly or heuristically. In each generation, the quality

of the solutions is evaluated by a objective function value; individuals are randomly

selected and are modified by crossover and mutation operators to form a new pop-

ulation. This process continues until the optimal solution is found or a termination

criteria set by the user is met. The pseudo-code for a general genetic algorithm is given

in Figure 3.13.

In a genetic algorithm, the representation refers to the encoding of the chromo-

somes in the population.The most common approach is using fixed size binary strings

as in Holland’s original encoding method [Holland, 1975]. However, variable size and

non-binary encodings may also be used depending on the problem. The efficiency of

the encoding method is problem dependent, thus an encoding method should be ad-

justed according to the needs of the problem at hand.

At each iteration of a GA, several chromosomes are selected to generate the next

59

CHAPTER 3. LITERATURE REVIEW

1: Initialization a population of chromosomes (individuals)

2: Evaluate the objective function values of the chromosomes

3: repeat

4: Selection of chromosomes for crossover

5: Crossover

6: Mutation

7: Objective function value evaluation

8: Population Update

9: until Termination criterion is met

Figure 3.13: Outline of a genetic algorithm

population. The new population is created by means of crossover and mutation op-

erators. However, a selection operator is needed to decide which chromosomes in the

population will undergo these operations. The selection operator mimics the natural

selection in theory of evolution. Some of the commonly used selection methods are as

follows:

• Roulette wheel selection (RWS): The selection chance of the chromosome is directly

proportional to its objective function value. In this method, each chromosome

represents a pocket on the wheel, and the size of each pocket is directly pro-

portional to the probability of selection. The efficiency of this selection depends

greatly on the range of the objective function values of the chromosomes.

• Rank based selection (RBS): In this method [Baker, 1985], the chromosomes in the

population is sorted according to their objective function values, and each chro-

mosome is given a rank. The probability of selection is determined according to

this rank value, not to its actual objective function value.

• Tournament based selection: In this method [Brindle, 1981], k chromosomes chosen

randomly enter into a tournament where a winner is selected (which is usually

the chromosome with the best objective function value). This selection has several

implementation advantages such as no objective function value scaling as in RWS

or sorting as in RBS. Also, it is easy to adjust the selection pressure by changing

the size of the tournament.

After the selection, a typical GA uses a crossover to generate children solutions

from the parent chromosomes selected. The crossover is a recombination operator

which exchanges segments of solutions between chromosomes. Some of the most com-

monly used crossovers are as follows [Goldberg, 1989]:

60

CHAPTER 3. LITERATURE REVIEW

• One Point Crossover (1-PTX): A crossover point is randomly selected on the parent

chromosome, and the values beyond that point are swapped between the two

parent chromosomes.

• N Point Crossover (N-PTX): n crossover points are randomly selected on the par-

ent chromosome, and the values between odd and even crossover positions are

swapped.

• Uniform Crossover (UX): Each gene of the first parent has a fixed probability (usu-

ally 0.5) of swapping with the respective gene of the second parent.

Mutation is another important genetic operator whose purpose is to maintain the

genetic diversity between successive generations of population. With just crossover

and without mutation, it is usually impossible to generate new information not present

before in the population unless crossover operator also includes some mutational char-

acteristics. Local optima are avoided by using a mutation operator which prevents the

over-similarity of the chromosomes in the population. The most traditional mutation

in many binary coded representations is to simply flip the value of an arbitrarily chosen

gene. In many implementations, mutation is given very low rates usually proportional

to the length of the chromosome as too much mutation is inherently destructive to the

solution quality.

After new solutions have been generated by genetic operators such as selection,

crossover, and mutation, these solutions (referred to as children) have to be inserted

into the population. Some replacement strategies are as follows:

• Pure Reinsertion: Generate as many children as possible and replace all parents by

this children.

• Uniform Reinsertion: Generate less children than parents and replace them with a

uniform distribution.

• Elitist Reinsertion: Generate less children than parents and replace the worst par-

ents.

• Fitness Based Reinsertion: Generate more children than needed and reinsert the

best children only.

Memetic Algorithms

Similar to genetic algorithms, a memetic algorithm (MA) [Moscato, 1989] is a popu-

lation based meta-heuristic for solving optimization problems. Because MAs usually

61

CHAPTER 3. LITERATURE REVIEW

combine local search with genetic operators, they are also referred to as hybrid genetic

algorithms. Memetic algorithms can be categorised into two types based on where

the local search operators are applied. In a Baldwinian memetic algorithm [Baldwin,

1996], the local search is applied before the objective function value is evaluated. The

improvements of the local search are not saved in the individual; therefore acquired

traits of the parents are not inherited to the children. In a Lamarckian memetic algo-

rithm [Whitley et al., 1994], the local search is applied after the objective function value

is evaluated therefore acquired traits of the parents influence the children. Lamarckian

MA algorithms are usually faster in finding quality solutions with the risk of prema-

ture convergence. A Baldwinian MA would be more resistant to diversity loss in the

population but it is usually much more slower than its Lamarckian counterpart.

It is assumed that a genetic algorithm is able to cover a broad range in the search

landscape due to its population based nature, and a local search is able to find optimal

solutions in promising parts of the landscapes. Due to a local search component, a

memetic algorithm can also incorporate domain specific knowledge better than a blind

genetic algorithm. Therefore memetic algorithms are usually much more efficient in

terms of computing resources and tend to give state of the art results in many problems.

3.6.2 Integer Programming

A linear program is an optimisation problem consisting of decision variables, a linear

objective function, and a set of linear constraints defined as inequalities. Mathemati-

cally, a minimisation version of integer programming can be represented as in equa-

tions 3.6.1, 3.6.2, and 3.6.3 as defined in [Lübbecke and Desrosiers, 2005]:

minimise z← ∑
n∈N

cnλn (3.6.1)

s.t. ∑
n∈N

anλn ≥ b (3.6.2)

λn ≥ 0 n ∈ N (3.6.3)

where c ∈ Rn is an n-dimensional column vector of coefficients and λ is an n-dimensional

column vector of variables. The n-th element in vectors c and λ are represented by cn

and λn respectively. The objective function z to be minimised is given in equation 3.6.1

which is the dot product of c and λ. The dot product of the matrix a ∈ Rm×n and

b ∈ Rm define the m inequality constraints. Each column in matrix a is represented by

an. Each an is m sized vector. If only some of the variables in x are integers, the problem

is called mixed integer programming problem whereas pure integer programming problem

62

CHAPTER 3. LITERATURE REVIEW

refers to cases when x is purely integer. If all the variables in x are binary, the problem

is regarded as 0/1 or binary integer programming problem.

Every integer linear program, referred to as primal problem can be converted into a

dual problem which provides a bound to the optimal value of the primal problem. The dual

problem of z (which is given in equations 3.6.1, 3.6.2 and 3.6.3) is depicted in y (which is

given in equations 3.6.4, 3.6.4 and 3.6.6). The dual variables are given in vector π.

maximise y← ∑
n∈N

bnπn (3.6.4)

s.t. ∑
n∈N

anπn ≤ c (3.6.5)

πn ≥ 0 n ∈ N (3.6.6)

The minimisation version of a linear problem can be performed by simply chang-

ing the sign of c. Greater than constraints can again be converted into less than and

equal to constraints by changing the sign of corresponding coefficients and equality

constraints can be handled by using pairs of less and greater than inequalities.

A linear programming model with no integer variables can be solved efficiently

with simplex [Dantzig, 1963] and interior point based algorithms [Karmarkar, 1984].

However, the linear programming model becomes intractable or NP Complete [Garey

and Johnson, 1979] when integer variables are introduced into the model. Common

methods currently used in integer programming are branch and bound [Land and Doig,

1960] and cutting planes [Marchand et al., 2002].

Branch and Bound: The branch and bound algorithm [Land and Doig, 1960] is a

divide-and-conquer tree algorithm which recursively partitions (branching) the prob-

lem into smaller sub-problems. It is an exact algorithm, in the sense that it provides a

provable upper and lower bound on the global optimal value of the problem. Branch

and bound algorithms are unfortunately generally very slow, in the worst case, the

time required for solving the problem grows exponentially with the increased problem

sizes.

The branch and bound algorithm is based on the enumeration of integer solutions

in a tree structure [Chinneck, 2012]. Figure 3.14 depicts a possible enumeration of the

three integer variables x1, x2, and x3 where 1 ≤ x1 ≤ 3 and 0 ≤ x2, x3 ≤ 1. The goal of

the branch and bound algorithm is not to generate the tree all at once but in stages, the

algorithm tries to find the most suitable node by estimating a bound on the objective

63

CHAPTER 3. LITERATURE REVIEW

value that can be obtained by expanding the tree from that node. A bounding function

is the estimate on the best value of the objective function by expanding a non-leaf node.

Since the leaf nodes represent complete solutions, they have actual objective function

values not estimates. The design of the bounding function is very important because it

directly affects the efficiency of the algorithm.

0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1

1
2

3

x1

x2

x3

Figure 3.14: Enumeration tree of three integer variables x1, x2, and x3

At any stage, the algorithm has to decide which node to select and branch on it.

Some of the most commonly used techniques for selecting the node for branching are

as follows:

• Best-first of global best node selection: The node with the best value on the bounding

function in the branch and bound tree is chosen.

• Depth-first: Select the node with the best value on the bounding function among

the ones created by the branching. Depth-first aims to go deep within the tree

and achieve an early incumbent (best encountered so far) solution.

• Breadth-first: This technique expands the nodes in the exact order they are created.

Another important aspect of the algorithm is to decide to prune certain non-leaf

nodes. The non-leaf nodes are pruned if it can be proved that no descendent of that

non-leaf node will be infeasible or non-optimal. If the bounding function on the non-

leaf node (the estimate of the objective function value on that non-leaf node) is worse

than the objective function value of the incumbent solution, then the non-leaf node can

be pruned due to non-optimality. The expansion of a node can sometimes be stopped

due to the best possible value on the objective function being seen directly (fathoming).

64

CHAPTER 3. LITERATURE REVIEW

The decision to prune a non-leaf node due to the infeasibility of the descendants of a

non-leaf node is problem dependent.

The branch and bound algorithm can terminate when the objective function value

of the incumbent solution is better than or equal to the bounding function value of all

the non-leaf nodes in the tree. In this case, the algorithm reaches the optimal solution

of the problem.

Cutting Planes: Cutting plane algorithms are based on adding more inequalities into

a problem. The algorithm starts with a small set of inequalities (cuts), and tries to find

more cuts which do not violate the original problem but still not satisfy the current

solution at hand. More cuts are added into the problem while it is still being resolved

using linear relaxation. The algorithm terminates when no further cuts can be gen-

erated. Although there exists generic types of cuts, like Gomory cuts [Gomory, 1958]

which guarantee optimality, algorithms using these cuts converge very slowly to an

optimal solution, therefore problem specific cuts are usually employed in the state of

the art algorithms. For more information about different cutting plane method, one can

refer to [Marchand et al., 2002].

Column Generation: (Delayed) column generation (CG) [Wilhelm, 2001], [Lübbecke

and Desrosiers, 2005] is another technique to undertake integer programming prob-

lems. Instead of formulating the problem with all the constraints and objectives (a

master problem), the column generation approach starts with an initial smaller problem

with a subset of variables specifically chosen (restricted master problem - RMP). The first

stage in an iteration of column generation consists of the optimisation of the RMP and

determination of the current optimal objection function values and dual variables. In

the second stage, the algorithm tries to find a not yet considered variable to include

into the current problem for improving the solution. This stage is called the pricing

problem. For a minimisation problem, the variable can be incorporated into the solution

if it has negative reduced costs. After the pricing of the variable, new restricted master

problem is resolved. This process is repeated until it is no longer possible to incorporate

new variables with negative reduced costs. An optimal solution for the master problem

is then obtained.

A more formal and detailed definition of column generation as described by [Lübbecke

and Desrosiers, 2005] is given below. For a linear program, the master problem MP is

defined as in equations 3.6.1, 3.6.2, and 3.6.3 in Section 3.6.2:

A non-basic variable is searched for pricing and for being entered into the basis in

65

CHAPTER 3. LITERATURE REVIEW

each iteration of the simplex method. Given a non-negative vector π of dual variables,

the aim is to find a n ∈ N which minimises cn − πtan. Unfortunately, this pricing oper-

ation is too expensive when |N| is high. A restricted master problem (RMP) is created

with a small subset of variables (N′ ⊆ N columns) and is evaluated for reduced costs.

Let λ and π be the primal and dual optimal solutions to the current RMP, respectively.

When columns an are the elements of set A, cost coefficient cn is computed from an by

a function c, then the pricing is performed as in equation 3.6.7:

c̄∗ ← minimum(c(a)− πta|a ∈ A) (3.6.7)

If c̄∗ ≥ 0, the solution λ of the RMP is also the optimal solution of the master

problem. If c̄∗ is negative, then the column derived from the optimal sub-problem

solution is added to the RMP, and the RMP is re-optimised. Each a ∈ A is generated at

most once because no variable in an optimal RMP solution can have negative reduced

cost. The column generation algorithm gives an exact optimal solution if the set A is

finite. It also allows the generation of bounds on the objective function value. When an

upper bound k ≥ ∑n∈N λn is found for the optimal solution z̄ of the master problem, a

lower bound is also found because z̄ cannot be reduced more than k times the smallest

reduced cost c̄∗ as in equation 3.6.8:

z̄ + kc̄∗ ≤ z∗MP ≤ z̄ (3.6.8)

where in the optimal case, c̄∗ = 0 for the basic variables, and z̄ = z∗MP.

Hybrid Methods: Branch and cut algorithms are hybridizations of the branch and

bound and cutting planes where additional cuts are added into the sub-trees in the

branch and bound tree. Combining branch and bound and column generation into one

framework produces the branch and price algorithms. Branch and cut and branch and

price are frequently used in state of the art integer programming solvers. For more in-

formation, please refer to Wolsey [Wolsey, 1998] for integer programming and Williams

[Williams, 1999] for mathematical modelling

Mat-heuristics: A mat-heuristic [Maniezzo et al., 2009] is an optimisation method of

combining mathematical programming and heuristics techniques to solve combinatorial

optimisation problems. Puchinger and Raidl [Puchinger and Raidl, 2005] categorised

the combination of the exact algorithms and heuristics under two branches: In collabo-

rative combinations, independent algorithms exchange information with each other. The

66

CHAPTER 3. LITERATURE REVIEW

algorithms can be applied sequentially, intertwined or in parallel. In integrative com-

binations, one method (heuristic or exact approach) is integrated into another (master

algorithm) as a subcomponent. Further classifications can be found in Talbi [Talbi, 2002]

or [Dumitrescu and Stützle, 2003].

Mat-heuristics have been used in following areas in solving combinatorial optimi-

sation problems as listed in [Raidl and Puchinger, 2008]:

• finding high-quality incumbent (best) solutions and bounds in the branch-and-

bound process.

• finding relaxations for the meta-heuristic search; utilising the primal-dual rela-

tionships to generate tighter bounds.

• utilising local search in branch-and-bound process.

• using integer linear programming techniques for exploring large scale neighbour-

hoods.

• merging solutions generated from heuristics and mathematical programming.

• using integer linear programming techniques for decoding indirect and missing

representations.

• multi-stage approaches of heuristics and integer programming.

• additional cuts and column generation by the use of meta-heuristics; heuristics

can be used to solve the pricing problem in column generation and they can be used

to generate additional cuts in a cutting plane or a branch and cut algorithm.

• guidance of search and collaboration.

3.7 Conclusion

This chapter described the previous research performed in the office space allocation

area, different variants of the OSA problem tackled and various types of algorithms to

solve each type of problem. Some of the theoretical and practical problems related to

OSA were also explained. An overview of time complexity in computation theory was

given. Finally, several meta-heuristic and mathematical programming techniques that

could be utilised for solving the OSA were also explained.

The aim of this chapter was to inform the reader about the previous work in OSA

problem and algorithm techniques that were investigated in this thesis. This chapter

67

CHAPTER 3. LITERATURE REVIEW

serves as an introductory material to Chapter 4 for integer programming models, to

Chapter 5 for local search heuristics that work on acceptance-rejection of random move

neighbourhoods, to Chapter 6 for an evolutionary greedy local search algorithm that

traverses the neighbourhood greedily and to Chapter 7 for the combination of different

type of algorithms considered in Chapter 4, 5 and 6 in a single framework.

68

CHAPTER 4

Integer Programming Formulations

4.1 Introduction

In this chapter, the application of mathematical programming on the office space allo-

cation problem is investigated. The model of choice for tackling OSA is binary integer

programming formulations. Binary formulations are chosen over other representations

due to the ease of formulation of constraints and objectives in the problem and to re-

duce redundant equations in the model.

The first half of this chapter is devoted to derivations of the integer programming

models. The equations in the OSA mathematical models are derived using basic equa-

tions described in [Williams, 1999]. By using these four basic equations, each constraint

(whether it is hard or soft) is derived. Based upon different variants of some of the con-

straints, two binary integer programming models are developed. The first model does

not use specific variables to describe the floor relationships while the second model

does. These two models are not strictly alternatives to each other; one of them is a

more generalised but less effective version while the other one has more performance

in OSA instances where it is applicable.

There is also an investigation of OSA problem using the test samples created by

the parametrised data instance generator described in Section 2.5. The investigation

focuses on how different aspects of the OSA problem (space misuse, i.e. overuse and

underuse) affect the difficulty of the problem. By observing some of the ratios between

these sub-components, inquiries about the differences between the desired (while the

instance is created by the generator) and the obtained values (after the instance is

solved by a solver) are made. Also, the effect of different weights associated with

total soft constraint violation penalty on the difficulty of solving an OSA problem is

investigated in this chapter.

69

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

This chapter is organised as follows: The proofs and derivations for each hard and

soft constraint and the objective function in the binary mathematical model are given in

Section 4.2. Section 4.3 briefly describes a model for the re-allocation problem for OSA.

Section 4.4 presents the reasoning why general integer programming models are not

preferred over binary models in this study. Two binary models that are generated by

using or not using the floor variables are presented in Section 4.5. Section 4.6 presents

the experimental results on the parametrised tests instances by using both mathemati-

cal models. The conclusions for this chapter are given in Section 4.7.

4.2 Binary Mathematical Programming Model

The set of entities is denoted by E. The set of rooms is denoted by R. The set of floors

is denoted by F. The size of entity e is Se and the capacity of room r is Cr. There is a

matrix x of |E| × |R| binary decision variables where each xer = 1 if entity e is allocated

to room r, otherwise xer = 0. Let A be the adjacency list of |R| adjacency vectors each

one denoted by Ar Each Ar holds the list of rooms adjacent to room r. Similarly, let

N be the nearby list of |R| nearby vectors each one denoted by Nr. Each Nr holds the

list of rooms near to room r. The adjacency vector Ar for a room r is usually smaller

compared to the nearby vector Nr. More rooms are considered to be near to room r than

to be adjacent to the same room.

The binary representation described in the paragraph above can be extended with

additional variables which define entity and floor relationships. We will call these vari-

ables floor variables. The f l is a |E| × |F| size matrix which holds the floor each entity is

placed in. If the entity e is placed in floor f then, f le f = 1, otherwise f le f = 0. Since

each room (and hence the entity) can only be in one floor, the summation over the rows

of F is equal to 1 which is given in equation 4.2.1:

∀e ∈ E ∑
f∈F

f le f = 1 (4.2.1)

The connection between the x and f l matrices is as follows (equation 4.2.2):

∀e ∈ E ∀ f ∈ F f le f =
F

∑
r∈ f

xer (4.2.2)

The relationship between the x and f l binary matrices is depicted in Figure 4.1

with a sample allocation of entities to rooms.

There are ten requirements or constraints handled in this thesis. Most of these

constraints can be set as hard (must be satisfied) or soft (desirable to satisfy) in our

70

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

Figure 4.1: Relationship between x and f l binary matrices

formulations. In other words, when a constraint is set as soft, minimising its violation

becomes an objective in the problem formulation. The exception here is the All allocated

constraint (all entities must be allocated) which is always enforced as hard. Section

4.2.1 will present these alternative hard or soft formulations in the constraint set and in

the objective function.

For each constraint type (defined below), HCal, HCna, HCsr, HCnsr, HCnsh, HCad,

HCnr, HCaw, HCcp denote the corresponding constraint as hard while SCal, SCna, SCsr,

SCnsr, SCnsh, SCad, SCnr, SCaw, SCcp denote the corresponding constraint as soft. Note

that each soft constraint is associated with a binary indicator variable ycst which is set to

1 if the respective soft constraint is violated. Some constraint types require additional

binary variables (ycst
r) over r ∈ R.

In order to derive the following mathematical models, four different basic equa-

tions described in [Williams, 1999] were used. These are given in equations 4.2.3, 4.2.4,

4.2.5, and 4.2.6:

71

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

δ = 1 −→∑
j

ajλj ≤ b =⇒∑
j

ajλj + Mδ ≤ M + b (4.2.3)

δ = 1 −→∑
j

ajλj ≥ b =⇒∑
j

ajλj + mδ ≥ m + b (4.2.4)

∑
j

ajλj ≤ b −→ δ = 1 =⇒∑
j

ajλj − (m− ε)δ ≥ b + ε (4.2.5)

∑
j

ajλj ≥ b −→ δ = 1 =⇒∑
j

ajλj − (M + ε)δ ≤ b− ε (4.2.6)

In these equations m and M are lower and upper bounds on ∑j(ajλj) − b i.e.

m ≤ ∑j(ajλj)− b ≤ M and ε is an arbitrarily small number. Notice that in these basic

equations, a summation ∑j(ajλj) is compared to a constant b value, and the δ variable is

set according to this comparison. If the summation ∑j(ajλj) is equal to b, then a combi-

nation of equations 4.2.3 and 4.2.4 or 4.2.5, and 4.2.6 have to be used together. However,

due to the nature of office space allocation constraints, it is sometimes possible to make

some simplifications/adjustments to these equations. In a typical OSA constraint for-

mulation, a range of rooms is searched to check if a specific entity is placed into one of

these rooms; a summation of the form ∑j(ajλj) as in above equations can be used to

represent such checks.

Ideally, the bounds m and M should be taken as tight as possible in order to make

the resulting formulation as strict as possible. There are mainly two reasons for trying

to make m and M as tight as possible. If m is taken too small or M is taken too large with

respect to (ajλj)− b, the simplex algorithm may run into numerical stability issues due

to not exact representation of small floating point numbers. Also, without tight m and

M values, it may take longer to solve the linear relaxation of the problem with simplex

algorithm due to slow convergence.

4.2.1 Formulation of the Constraints

All Allocated

Hard Constraint: each entity e ∈ E must be allocated to exactly one room r ∈ R.

In all allocation, the summation over all the rooms for all entities e should be equal

to 1 as given in equation 4.2.7. This constraint is always taken as hard.

∑
r∈R

xer = 1 ∀e ∈ E (4.2.7)

72

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

Allocation Constraint

An entity should be allocated to a specific room.

Hard Constraint: entity e to be placed into room r ((e, r) ∈ HCal).

The formulation is simply derived by an equation which checks if the correspond-

ing location in the x matrix is equal to 1 as in equation 4.2.8:

xer = 1 (4.2.8)

Soft Constraint: indicator variable yal(i) is set to 1 if SCal(i) is not satisfied.

Since the constraint is violated when the corresponding location xer is equal to 0

and satisfied when it is equal to 1 as in equations 4.2.9 and 4.2.10:

xer = 0 −→ yal(i) = 1 (4.2.9)

xer = 1 −→ yal(i) = 0 (4.2.10)

The formulation for the soft constraint then becomes as in equation 4.2.11:

yal(i) = 1− xer (4.2.11)

Non-Allocation Constraint

An entity should not be allocated to a specific room.

Hard Constraint: entity e not to be placed into room r ((e, r) ∈ HCna).

The formulation is simply derived by an equation which checks if the correspond-

ing location in the x matrix is equal to 0 as in equation 4.2.12:

xer = 0 (4.2.12)

Soft Constraint: indicator variable yna(i) is set to 1 if SCna(i) is not satisfied.

This constraint is the opposite of the allocation constraint. It is violated when the

corresponding location xer is equal to 1 and satisfied when it is equal to 0 as in equations

4.2.13 and 4.2.14

xer = 0 −→ yna(i) = 0 (4.2.13)

xer = 1 −→ yna(i) = 1 (4.2.14)

The formulation for the soft constraint then becomes as in equation 4.2.15:

yna(i) = xer (4.2.15)

73

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

Same Room Constraint

Two entities should be allocated to the same room.

Hard Constraint: entities e1 and e2 to be placed into the same room ((e1, e2) ∈ HCsr).

This formulation would require the column rows of xe1 and xe2 to be equal at each

location which is given in equations 4.2.16 and 4.2.17:

xe1r = 0←→ xe2r = 0 ∀r ∈ R (4.2.16)

xe1r = 1←→ xe2r = 1 ∀r ∈ R (4.2.17)

The formulation for the hard constraint then becomes as in 4.2.18:

xe1r − xe2r = 0 ∀r ∈ R (4.2.18)

Soft Constraint: indicator variable ysr(i) is set to 1 if SCsr(i) is not satisfied.

Since soft same room constraint is non-linear at its default case, we are going to

linearise this constraint. Therefore, unlike the following constraints which start with

applying the basic equations 4.2.3, 4.2.4, 4.2.5, and 4.2.6 on the hard constraint version,

we are going to apply different logical functions for the soft same room constraint. This

should give a slightly different form in the final equation unlike the following con-

straints. Two alternate ways to formulate the soft constraint version of same room are

considered:

Absolute Value Formulation: In this formulation, the same room relationship is defined as

in equations 4.2.19 and 4.2.20:

|xe1r − xe2r| = 0 −→ ysr
r (i) = 0 (4.2.19)

|xe1r − xe2r| = 1 −→ ysr
r (i) = 1 (4.2.20)

This absolute value formulation can be represented linearly by bounding xe1r− xe2r

and xe2r − xe1r with ysr
r (i) as in equations 4.2.21 and 4.2.22:

xe1r − xe2r ≤ ysr
r (i) (4.2.21)

xe2r − xe1r ≤ ysr
r (i) (4.2.22)

Then, a summation of ysr
r (i) variables over r can be written. Notice that in this

summation, the violation will be counted twice (because two locations in ysr
r (i) are

going to 1 if the constraint is violated), that is why the final summation is multiplied

by 0.5 instead to count the violation only once. The final form then becomes as in

74

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

equation 4.2.23:

ysr(i) = 0.5 ∑
r∈R

ysr
r (i) (4.2.23)

Not IF formulation: Consider the following equations 4.2.24, 4.2.25, 4.2.26 and 4.2.27

which define the same room conditions:

xe1r = 0 AND xe2r = 0 −→ ysr
r (i) = 0 (4.2.24)

xe1r = 0 AND xe2r = 1 −→ ysr
r (i) = 0 (4.2.25)

xe1r = 1 AND xe2r = 0 −→ ysr
r (i) = 1 (4.2.26)

xe1r = 1 AND xe2r = 1 −→ ysr
r (i) = 0 (4.2.27)

In these cases, there is a check to determine whether the binary variables xe1r and

xe2r are equal or not. If both are equal to 0 or 1 (as in equations 4.2.24 and 4.2.27), then

the constraint is not violated so the corresponding sub-indicator variable ysr
r (i) can be

set to 0. The constraint will be violated as in equations 4.2.25 and 4.2.26. However,

for simplification, the violation in equation 4.2.25 can be safely ignored and it is only

counted once as in equation 4.2.26 instead. Overall, this relationship can be represented

as the negation of IF function with two variables xe1r and xe2r.

Note that this formulation will only work if the all allocated constraint is enforced

as hard (which is the default case in this thesis). Since an entity can only be allocated

to a single room and all entities have to be allocated, this formulation when summed

over all rooms will count the violation only once. As a result, the sub-indicator vari-

ables ysr
r (i) can only be 1 at one specific location where the constraint is violated. The

equation 4.2.26 is rewritten based upon this condition and then is expressed as in 4.2.28:

xe1r − xe2r ≥ 1←→ ysr
r (i) = 1 (4.2.28)

If equations 4.2.4 and 4.2.6 are applied to 4.2.28, we obtain equations 4.2.29 and

4.2.30:

ysr
r (i) = 1 −→ xe1r − xe2r ≥ b =⇒ xe1r − xe2r + mysr

r (i) ≥ m + 1 (4.2.29)

xe1r − xe2r ≥ b −→ ysr
r (i) = 1 =⇒ xe1r − xe2r − (M + ε)ysr

r (i) ≤ 1− ε (4.2.30)

where b = 1 and m ≤ xe1r − xe2r − b ≤ M, then the tightest values for m and M become

m = −2 and M = 0. By applying b, m and M, and rewriting equations 4.2.29 and

4.2.30, and summing ysr
r (i) over R, the final formulation of the same room constraint is

obtained as in equations 4.2.31 and 4.2.32.

2ysr
r (i)− 1 ≤ xe1r − xe2r ≤ 1− ε + εysr

r (i) ∀r ∈ R (4.2.31)

ysr(i) = ∑
r∈R

ysr
r (i) (4.2.32)

75

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

Not Same Room Constraint

Two entities should not be allocated to the same room.

Hard Constraint: entities e1 and e2 to be placed into different rooms ((e1, e2) ∈ HCnsr).

This formulation would require the row vectors of xe1 and xe2 to differ in two loca-

tions as in equations 4.2.33 and 4.2.34:

xe1r = 1←→ xe2r = 0 ∀r ∈ R (4.2.33)

xe1r = 0←→ xe2r = 1 ∀r ∈ R (4.2.34)

This equation can be rewritten by using a NAND function which leads to equation

4.2.35:

xe1r + xe2r ≤ 1 ∀r ∈ R (4.2.35)

Soft Constraint: indicator variable ynsr(i) is set to 1 if SCnsr(i) is not satisfied.

Starting with the hard constraint version as in 4.2.35 and by assigning a sub-indicator

variable ynsr
r (i) = 1 if the constraint is satisfied at that specific room r ∈ R, ynsr

r (i) = 0

otherwise, the following equation 4.2.36 is derived:

xe1r + xe2r ≤ 1←→ ynsr
r (i) = 1 ∀r ∈ R (4.2.36)

The basic equations 4.2.3 and 4.2.5 are applied to 4.2.36

ynsr
r (i) = 1 −→ xe1r + xe2r ≤ b =⇒ xe1r + xe2r + Mynsr

r (i) ≤ M + b (4.2.37)

xe1r + xe2r ≤ b −→ ynsr
r (i) = 1 =⇒ xe1r + xe2r − (m− ε)ynsr

r (i) ≥ b + ε (4.2.38)

where b = 1 and m ≤ xe1r + xe2r − b ≤ M. The tightest values are m and M as m = −1

and M = 1. By applying b, m and M to equations 4.2.37 and 4.2.38 and rewriting the

equations the final formulation is obtained as in equations 4.2.39 and 4.2.40. Notice

that in the final summation in 4.2.40, the formulation (1− ynsr
r (i)) is used instead. In

this way (unlike the same room soft constraint), the sub-indicator variables ynsr(i) will be

set to 1 if the constraint is violated. This type of summation is going to be used for the

rest of the constraints from now on because the derivations of not same room and the

following soft constraints start with the hard constraint formulation.

(1 + ε)− (1 + ε)ynsr
r (i) ≤ xe1r + xe2r ≤ 2− ynsr

r (i) ∀r ∈ R (4.2.39)

ynsr(i) = ∑
r∈R

(1− ynsr
r (i)) (4.2.40)

76

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

Not Sharing (Formulation 1)

An entity should not share a room with others.

Hard Constraint: entity e should not share a room with any other entity (e ∈ HCnsh).

In this variant, the row vector of e is compared with the other row vectors e′ ∈ E− e

one by one. If any row vector of e is equal to any e′, then the constraint is violated. The

comparison function is implemented using a NAND function similar to not same room

constraint:

xer + xe′r ≤ 1 ∀e′ ∈ E− e ∀r ∈ R (4.2.41)

Soft Constraint: indicator variable ynsh(i) is set to 1 if SCnsh(i) is not satisfied.

Starting with the equation 4.2.41, the sub-indicator variable ynsh(i) = 0 if the con-

straint is violated, ynsh(i) = 1 otherwise.

xer + xe′r ≤ 1←→ ynsh(i) = 1 ∀e′ ∈ E− e ∀r ∈ R (4.2.42)

By applying the basic equations 4.2.3 and 4.2.5 on 4.2.42, following equations 4.2.43

and 4.2.44 are obtained:

ynsh
e′r (i) = 1 −→ xer + xe′r ≤ b =⇒ xer + xe′r + Mynsh

e′r (i) ≤ M + b (4.2.43)

xer + xe′r ≤ b −→ ynsh
e′r (i) = 1 =⇒ xer + xe′r − (m− ε)ynsh

e′r (i) ≥ b + ε (4.2.44)

where b = 1 and m ≤ xer + xe′r − 1 ≤ M. The tightest bounds are m = −1 and M = 1.

Plugging the appropriate values in equations 4.2.43 and 4.2.44, final equations 4.2.45

and 4.2.46 are obtained.

(1− ε)− (1− ε)ynsh
e′r (i) ≤ xer + xe′r ≤ 2− ynsh

e′r (i) ∀e′ ∈ E− e ∀r ∈ R (4.2.45)

ynsh(i) = ∑
e′∈E−e

∑
r∈R

(1− ynsh
e′r (i)) (4.2.46)

During our experiments, it was observed that this row based comparison formula-

tion used too much memory. This was due to the need of additional variables for each

row comparison between the row corresponding to entity e that is not to be shared with

others. As a result, the following formulation that requires a lot less memory is going

to be described next is used in our experiments.

Not Sharing (Formulation 2)

An entity should not share a room with others.

77

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

Hard Constraint: entity e should not share a room with any other entity (e ∈ HCnsh).

In this formulation, the room r where the entity e is placed is searched (xer =

1). When the corresponding row vector r is found, the summation over the whole

vector should be 1 (or in our adjusted formulation the summation over the whole vector

minus the location xer should be 0) which is in equation 4.2.47:

xer = 1 −→ ∑
f∈E−e

x f r = 0 ∀r ∈ R (4.2.47)

Applying the basic equations 4.2.3 and 4.2.4 to 4.2.47, following conditions are

derived as in equations 4.2.48 and 4.2.49

xer = 1 −→ ∑
f∈E−e

x f r ≤ b =⇒ ∑
f∈E−e

x f r + Mxer ≤ M + b (4.2.48)

xer = 1 −→ ∑
f∈E−e

x f r ≥ b =⇒ ∑
f∈E−e

x f r + mxer ≥ m + b (4.2.49)

where b = 0 and m ≤ ∑ f∈E−e x f r ≤ M. The tightest values for m and M are m = 0 and

M = |E| − 1. By applying the values, rewriting and simplifying equations 4.2.48 and

4.2.49, the final equation 4.2.50 becomes:

∑
f∈E−e

x f r ≤ (|E| − 1)− (|E| − 1)xer ∀r ∈ R (4.2.50)

Soft Constraint: indicator variable ynsh(i) is set to 1 if SCnsh(i) is not satisfied.

Starting with the equation 4.2.50, the sub-indicator variable ynsh
r (i) = 1 if the con-

straint is satisfied, ynsh
r (i) = 0 otherwise; the condition then becomes as in equation

4.2.51.

∑
f∈E−e

x f r ≤ (|E| − 1)− (|E| − 1)xer ←→ ynsh
r (i) = 1 ∀r ∈ R (4.2.51)

Applying the basic equations 4.2.3 and 4.2.5 on 4.2.51, equations 4.2.52 and 4.2.53

are obtained respectively.

ynsh
r (i) = 1 −→ ∑

f∈E−e
x f r ≤ b =⇒ ∑

f∈E−e
x f r + Mynsh

r (i) ≤ M + b (4.2.52)

∑
f∈E−e

x f r ≤ b −→ ynsh
r (i) = 1 =⇒ ∑

f∈E−e
x f r − (m− ε)ynsh

r (i) ≥ b + ε (4.2.53)

where b = (|E| − 1)− (|E| − 1)xer and m ≤ ∑ f∈E−e x f r− ((|E| − 1)− (|E| − 1)xer) ≤ M.

By setting ∑ f∈E−e x f r to at least 0 and at most (|E| − 1) and setting xer as 0 or 1, m

and M become m = −(|E| − 1) and M = (|E| − 1). Plugging these values and with

78

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

reorganisation of equations 4.2.52 and 4.2.53, the final formulation for the not sharing

soft constraint becomes as in equations 4.2.54, 4.2.55 and 4.2.56.

(|E| − 1)(2− xer − ynsh
r (i)) ≥ ∑

f∈E−e
x f r ∀r ∈ R (4.2.54)

∑
f∈E−e

x f r ≥ (|E| − 1)(1− xer) + ε− (|E| − 1 + ε)ynsh
r (i) ∀r ∈ R (4.2.55)

ynsh(i) = ∑
r∈R

(1− ynsh
r (i)) (4.2.56)

Adjacency Constraint

Two entities should be allocated to adjacent rooms.

For this constraint, the adjacency lists A are used for each room. Each Ar list holds

the rooms adjacent to room r.

Hard Constraint: entities e1 and e2 must be placed into adjacent rooms ((e1, e2) ∈
HCad).

The formulation will check whenever the entity e1 is placed into room r, the sum-

mation over the locations xe2s ∀s ∈ Ar should be equal to 1 which is equation 4.2.57:

xe1r = 1 −→ ∑
s∈Ar

xe2s = 1 ∀r ∈ R (4.2.57)

By applying the basic equations 4.2.3 and 4.2.4 using 4.2.57, the following equa-

tions 4.2.58 and 4.2.59 are obtained respectively:

xe1r = 1 −→ ∑
s∈Ar

xe2s ≤ b =⇒ ∑
s∈Ar

xe2s + Mxe1r ≤ M + b (4.2.58)

xe1r = 1 −→ ∑
s∈Ar

xe2s ≥ b =⇒ ∑
s∈Ar

xe2s + mxe1r ≥ m + b (4.2.59)

By setting b = 1, m ≤ ∑s∈Ar
xe2s − 1 ≤ M which yields m = −1 and M = 0 are

obtained as tightest bounds. Plugging these values into equations 4.2.58 and 4.2.59, the

final equation 4.2.60 becomes:

xe1r ≤ ∑
s∈Ar

xe2s ≤ 1 ∀r ∈ R (4.2.60)

Soft Constraint: indicator variable yad(i) is set to 1 if SCad(i) is not satisfied.

Starting with the equation 4.2.60, the sub-indicator variable yad
r (i) = 1 if the con-

straint is satisfied at specific room r as in equation 4.2.61. Notice that the equation is

79

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

simplified by the removal of ∑s∈Ar
xe2s ≤ 1 since this summation can never be greater

than 1 and this inequality will hence be satisfied in all conditions.

xe1r ≤ ∑
s∈Ar

xe2s ←→ yad
r (i) = 1 ∀r ∈ R (4.2.61)

Using the basic equations 4.2.4 and 4.2.6 on 4.2.61, equations 4.2.62 and 4.2.63 are

derived respectively.

yad
r (i) = 1 −→ ∑

s∈Ar

xe2s ≥ b =⇒ ∑
s∈Ar

xe2s + myad
r (i) ≥ m + b (4.2.62)

∑
s∈Ar

xe2s ≥ b −→ yad
r (i) = 1 =⇒ ∑

s∈Ar

xe2s − (M + ε)yad
r (i) ≤ b− ε (4.2.63)

where b = xe1r and m ≤ ∑s∈Ar
xe2s − xe1r ≤ M. The tightest bounds in this case are

m = −1 and M = 1. By plugging the appropriate values in equations 4.2.62 and 4.2.63,

and with reorganisation, the final form as in equations 4.2.64 and 4.2.65 is obtained:

yad
r (i) + xe1r − 1 ≤ ∑

s∈Ar

xe2s ≤ xe1r − ε + (1 + ε)yad
r (i) ∀r ∈ R (4.2.64)

yad(i) = ∑
r∈R

(1− yad
r (i)) (4.2.65)

Nearby Constraint

Two entities should be allocated to adjacent rooms. For this constraint, the nearby lists

N are used for each room. Each Nr list holds the rooms adjacent to room r.

Hard Constraint: entities in a group placed near to the group head e2 ((e1, e2) ∈ HCnr).

The formulation will check whenever the entity e1 is placed into the room r, the

summation over the locations xe2s s ∈ Nr should be equal to 1 which is equation

4.2.66:

xe1r = 1 −→ ∑
s∈Nr

xe2s = 1 ∀r ∈ R (4.2.66)

By applying basic equations 4.2.3 and 4.2.4 on 4.2.66, following equations 4.2.67

and 4.2.68 are obtained:

xe1r = 1 −→ ∑
s∈Nr

xe2s ≤ b =⇒ ∑
s∈Nr

xe2s + Mxe1r ≤ M + b (4.2.67)

xe1r = 1 −→ ∑
s∈Nr

xe2s ≥ b =⇒ ∑
s∈Nr

xe2s + mxe1r ≥ m + b (4.2.68)

where b = 1 and m ≤ ∑s∈Nr
xe2s − 1 ≤ M. The tightest values are m = −1 and

M = 0. By plugging values in equations 4.2.67 and 4.2.68, and combining them, the

80

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

final equation 4.2.69 becomes:

xe1r ≤ ∑
s∈Nr

xe2s ≤ 1 ∀r ∈ R (4.2.69)

Soft Constraint: indicator variable ynr(i) is set to 1 if SCnr(i) is not satisfied.

Starting with the equation 4.2.69, we set the sub-indicator variable ynr
r (i) = 1 if the

constraint is satisfied at specific room r as in equation 4.2.70. Notice that the equation is

simplified by the removal of ∑s∈Nr
xe2s ≤ 1 since this summation can never be greater

than 1 and this inequality will hence be satisfied in all conditions.

xe1r ≤ ∑
s∈Nr

xe2s ←→ ynr
r (i) = 1 ∀r ∈ R (4.2.70)

Using the basic equations 4.2.4 and 4.2.6 on 4.2.70, the equations 4.2.71 and 4.2.72

are derived:

ynr
r (i) = 1 −→ ∑

s∈Nr

xe2s ≥ b =⇒ ∑
s∈Nr

xe2s + mynr
r (i) ≥ m + b (4.2.71)

∑
s∈Nr

xe2s ≥ b −→ ynr
r (i) = 1 =⇒ ∑

s∈Nr

xe2s − (M + ε)ynr
r (i) ≤ b− ε (4.2.72)

where b = xe1r and m ≤ ∑s∈Nr
xe2s − xe1r ≤ M. The tightest bounds in this case are

m = −1 and M = 1. By plugging the appropriate values in equations 4.2.71 and 4.2.72,

and with reorganisation, the final form becomes as in equations 4.2.73 and 4.2.74:

ynr
r (i) + xe1r − 1 ≤ ∑

s∈Nr

xe2s ≤ xe1r − ε + (1 + ε)ynr
r (i) ∀r ∈ R (4.2.73)

ynr(i) = ∑
r∈R

(1− ynr
r (i)) (4.2.74)

Nearby Constraint with Floor Variables

In this formulation, the floor variable matrix f l is utilised. This formulation can only

work in instances when the allocation is clearly organised in terms of floor structures. If

the neighbourhood relationship is defined in a way different than a floor relationship,

then the nearby constraint version given previously has to be used.

Hard Constraint: entities e1 and e2 must be placed in the same floor ((e1, e2) ∈ HCnr).

This formulation is practically very similar to the same room constraint that two

entities have to be placed in the same floor instead of in the same room as in equations

4.2.75 and 4.2.76:

f le1 f = 0←→ f le2 f = 0 ∀ f ∈ F (4.2.75)

f le1 f = 1←→ f le2 f = 1 ∀ f ∈ F (4.2.76)

81

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

then the formulation for the hard constraint becomes:

f le1r − f le2r = 0 ∀ f ∈ F (4.2.77)

Soft Constraint: indicator variable ynr(i) is set to 1 if SCnr(i) is not satisfied.

We rewrite the equation 4.2.77 using a similar reasoning in deriving the same room

constraint as in equation 4.2.78:

f le1 f − f le2 f ≥ 1←→ ynr
f (i) = 1 (4.2.78)

If equations 4.2.4 and 4.2.6 are applied to 4.2.78, then equations 4.2.79 and 4.2.80

become:

ynr
f (i) = 1 −→ f le1 f − f le2 f ≥ b =⇒ f le1 f − f le2 f + mynr

f (i) ≥ m + 1 (4.2.79)

f le1 f − f le2 f ≥ b −→ ynr
f (i) = 1 =⇒ f le1 f − f le2 f − (M + ε)ynr

f (i) ≤ 1− ε (4.2.80)

where b = 1 and m ≤ f le1 f − f le2 f − b ≤ M, then the tightest values for m and M

become m = −2 and M = 0. By applying b, m and M and combining, and rewriting

equations 4.2.79 and 4.2.80, and summing the ynr
r (i) over R, the final formulation for

nearby constraint is obtained in equations 4.2.81 and 4.2.82.

2ynr
f (i)− 1 ≤ f le1 f − f le2 f ≤ 1− ε + εynr

f (i) ∀ f ∈ F (4.2.81)

ynr(i) = ∑
f∈F

ynr
f (i) (4.2.82)

Away From Constraint

Two entities should be placed away from each other.

Hard Constraint: entities e1 and e2 must be placed in rooms away from each other

((e1, e2) ∈ HCaw).

The formulation will check whenever the entity e1 is placed into the room r, the

summation over the locations xe2s ∀s ∈ Nr should be equal to 0 which is:

xe1r = 1 −→ ∑
s∈Nr

xe2s = 0 ∀r ∈ R (4.2.83)

By applying basic equations 4.2.3 and 4.2.4 on 4.2.83, equations 4.2.84 and 4.2.85

are obtained respectively:

xe1r = 1 −→ ∑
s∈Nr

xe2s ≤ b =⇒ ∑
s∈Nr

xe2s + Mxe1r ≤ M + b (4.2.84)

xe1r = 1 −→ ∑
s∈Nr

xe2s ≥ b =⇒ ∑
s∈Nr

xe2s + mxe1r ≥ m + b (4.2.85)

82

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

where b = 0 and m ≤ ∑s∈Nr
xe2s ≤ M. In this case, the tightest bounds are m = 0

and M = 1. Applying these on equations 4.2.84 and 4.2.85, the final equation 4.2.86

becomes:

0 ≤ ∑
s∈Nr

xe2s ≤ 1− xe1r ∀r ∈ R (4.2.86)

Soft Constraint: indicator variable yaw(i) is set to 1 if SCaw(i) is not satisfied.

Starting with the equation 4.2.86, we set the sub-indicator variable yaw
r (i) = 1

if the constraint is satisfied at specific room r, yaw
r (i) = 0 otherwise, as in equation

4.2.87. Notice that the equation is simplified by the removal of 0 ≤ ∑s∈Nr
xe2s since the

summation can never be less than 0 and this inequality will hence be satisfied in all

conditions.

∑
s∈Nr

xe2s ≤ 1− xe1r ←→ yaw
r (i) = 1 ∀r ∈ R (4.2.87)

By applying basic equations 4.2.3 and 4.2.5 on 4.2.87, equations 4.2.88 and 4.2.88

are derived respectively:

yaw
r (i) = 1 −→ ∑

s∈Nr

xe2s ≤ b =⇒ ∑
s∈Nr

xe2s + Myaw
r (i) ≤ M + b (4.2.88)

∑
s∈Nr

xe2s ≤ b −→ yaw
r (i) = 1 =⇒ ∑

s∈Nr

xe2s − (m− ε)yaw
r (i) ≥ b + ε (4.2.89)

In this case, b = 1− xe1r and m ≤ ∑s∈Nr
xe2s − (1− xe1r) ≤ M. The tightest bounds

are m = −1 and M = 1. Plugging the appropriate values to equations 4.2.88 and 4.2.89,

final equations 4.2.90 and 4.2.91 become:

1− xe1r + ε− (1 + ε)yaw
r (i) ≤ ∑

s∈Nr

xe2s ≤ 2− xer − yaw
r (i) ∀r ∈ R (4.2.90)

yaw(i) = ∑
r∈R

(1− yaw
r (i)) (4.2.91)

Away From Constraint with Floor Variables

Hard Constraint: entities e1 and e2 must be placed in rooms away from each other

((e1, e2) ∈ HCaw).

This formulation, similar to the nearby variant, uses the floor variable matrix f l

and can only be used if the allocation is organised in terms of floor relationships. This

formulation is derived similar to the not same room constraint that the row vectors of e1

and e2 in f l should not be equal to each other as in equations 4.2.92 and 4.2.93:

f le1 f = 0←→ f le2r = 1 ∀ f ∈ F (4.2.92)

f le1 f = 1←→ f le2r = 0 ∀ f ∈ F (4.2.93)

83

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

The formulation for the hard constraint then becomes as in equation 4.2.94:

f le1 f + f le2 f ≤ 1 ∀ f ∈ F (4.2.94)

Soft Constraint: indicator variable yaw(i) is set to 1 if SCaw(i) is not satisfied.

Starting with the equation 4.2.94, the same reasoning used in deriving the not same

room constraint can be applied as in equation 4.2.95:

f le1 f + f le2 f ≤ 1←→ yaw
f (i) = 1 (4.2.95)

If equations 4.2.3 and 4.2.5 are applied to 4.2.95, then equations 4.2.96 and 4.2.97

are derived respectively:

yaw
f (i) = 1 −→ f le1 f + f le2 f ≤ b =⇒ f le1 f + f le2 f + Myaw

f (i) ≤ M + b (4.2.96)

f le1 f + f le2 f ≤ b −→ yaw
f (i) = 1 =⇒ f le1 f + f le2 f − (m− ε)yaw

f (i) ≥ b + ε (4.2.97)

where b = 1 and m ≤ f le1 f + f le2 f − 1 ≤ M. In this case, the tightest bounds are m = −1

and M = 1. Placing b, m and M into equations 4.2.96 and 4.2.97, final equations 4.2.98

and 4.2.99 are derived.

(1 + ε)− (1 + ε)yaw
f (i) ≤ f le1 f + f le2 f ≤ 2− yaw

f (i) ∀ f ∈ F (4.2.98)

yaw(i) = ∑
f∈F

(1− yaw
f (i)) (4.2.99)

Capacity Constraint

A room should not be overused.

Hard Constraint: Room r must not be overused (r ∈ HCcp).

For this formulation, we multiply the entity size vector S with the column vector

of the specific room r to find the space used in room r. The result should be less than

or equal to the room capacity Cr as in equation 4.2.100:

∑
e∈E

Sexer ≤ Cr (4.2.100)

Soft Constraint: indicator variable ycp(i) is set to 1 if SCcp(i) is not satisfied.

Starting with the equation 4.2.100, the indicator variable ycp(i) = 0 if the constraint

is satisfied, ycp(i) = 1 otherwise. In order to simplify the derivation process a tempo-

rary indicator variable zcp(i) = 1− ycp(i) is used.

84

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

∑
e∈E

Sexer ≤ Cr ←→ zcp(i) = 1 (4.2.101)

By applying basic equations 4.2.3 and 4.2.5 on 4.2.101, equations 4.2.102 and 4.2.103

are derived respectively:

zcp(i) = 1 −→ ∑
e∈E

Sexer ≤ b =⇒ ∑
e∈E

Sexer + Mzcp(i) ≤ M + b (4.2.102)

∑
e∈E

Sexer ≤ b −→ zcp(i) = 1 =⇒ ∑
e∈E

Sexer − (m− ε)zcp(i) ≥ b + ε (4.2.103)

where b = Cr and m ≤ ∑e∈E Sexer − Cr ≤ M. In this case, the tightest bounds are

m = −Cr and M = (∑e∈E Se − Cr). Plugging the appropriate values and replacing

zcp(i) with 1− ycp(i), the final equations are as in 4.2.104 and 4.2.105 respectively:

∑
e∈E

Sexer + (∑
e∈E

Se − Cr)(1− ycp(i)) ≤ ∑
e∈E

Se (4.2.104)

∑
e∈E

Sexer + (Cr + ε)(1− ycp(i)) ≥ Cr + ε (4.2.105)

4.2.2 Objective Function

The objective function is the weighted sum of the space misuse (underuse + 2 · overuse)

and the soft constraints violation penalty. The penalties associated to each soft con-

straint type are: wal, wna, wsr, wnsr, wnsh, wad, wnr, waw, and wcp. The objective function

Z to minimise is given in equation 4.2.106:

Z = ∑
r∈R

max

(
Cr −∑

e∈E
xerSe , 2(∑

e∈E
xerSe − Cr)

)
(4.2.106)

+ wal
|SCal|

∑
i=1

yal(i) + wna
|SCna|

∑
i=1

yna(i) + wsr
|SCsr|

∑
i=1

ysr(i)

+ wnsr
|SCnsr|

∑
i=1

ynsr(i) + wnsh
|SCnsh|

∑
i=1

ynsh(i) + wad
|SCad|

∑
i=1

yad(i)

+ wnr
|SCnr|

∑
i=1

ynr(i) + waw
|SCaw|

∑
i=1

yaw(i) + wcp
|SCcp|

∑
i=1

ycp(i)

The first line in equation 4.2.106 refers to the space misuse and the following lines

represent individual soft constraint penalties. This formulation is the most general

form for the office space allocation problem tackled in this thesis. However, the in-

stances in the data sets considered in this thesis do not contain any soft constraint for

the not sharing constraint. Therefore, the respective part in 4.2.106 (wnsh ∑|SCnsh|
i=1 ynsh(i))

85

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

can be omitted when the datasets nott1, wolver (described in Section 2.4), and SVe150

or PNe150 (described in Section 2.5.3) are considered.

The space misuse component is formulated with the maximum function. How-

ever, not every integer programming solver supports this operation. This maximum

function in this formulation can be formulated using the absolute value representation

which is similar to the absolute value formulation of the same room constraint. A list of

kr non-integer variables for each room space misuse can be used as in equation 4.2.107,

and the summation over kr variables will give the whole space misuse. These kr vari-

ables are bounded by the underuse and overuse as in equations 4.2.108 and 4.2.109.

SMP = ∑
r∈R

kr (4.2.107)

∀r ∈ R kr ≥ Cr −∑
e∈E

xerSe (4.2.108)

∀r ∈ R kr ≤ 2(Cr −∑
e∈E

xerSe) (4.2.109)

A further optimisation on the kr variables can be performed by using a constant

upper bound value K to restrict the overuse and underuse in each room as in equation

4.2.110. This can be considered as the addition of hard constraints (cuts) to the model.

This K upper bound can be set as ∞ (or sufficiently high number) if no explicit upper

bound is desired.

∀r kr ≤ K (4.2.110)

4.3 Model for Re-Allocation Problem

The mathematical formulation described in Section 4.2 is for the initial allocation prob-

lem for OSA. In that case, there is not a prior allocation of entities to room, and the

formulation creates an allocation from scratch. In this section, an extension of the allo-

cation model is presented in order to adapt to the re-allocation problem of OSA.

In the re-allocation (or re-organisation) variant of the OSA problem, the algorithm

starts with an initial partial or complete allocation of entities to rooms. The goal is to re-

optimise the solution with minimal amount of disruption to the current solution. This

problem is mostly encountered due to the arrival or departure of new entities; removal,

addition or restructuring of the office space; and removal or addition of constraints.

The formulation for the re-allocation model is based on the optimisation problem

as defined in this chapter. The solution in the optimisation problem is represented by

86

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

a binary matrix x as described in Section 4.2. In the new formulation, this matrix is

modified (and named x′ now) based upon the changes in the entity and the room sets.

We start with x′ ← x and modify x′ as according to the changes in entity and room sets.

• Entity Set: If some of the entities are removed from the problem, those entities are

removed from x′. Conversely, new entities are added to x′. The non-changing

part of the entity set is referred to as E′.

• Room Set: If some of the rooms are removed from the problem, then these rooms

are removed from the binary matrix x′. If two or more rooms are merged into

one room, then x′ will contain only one of the rooms and the other rooms will be

deleted. The non-changing part of the room set is referred to as R′.

• Constraint set: The changes in the constraint set do not affect the binary solu-

tion matrix x′. However, the objective function Z should be modified if some of

the soft constraints are altered. The updated objective function Z′ is formed by

searching for the deleted entities and rooms, and then deleting the constraints as-

sociated with them. New constraints associated with the new entities and room

added to the problem are incorporated into Z′ as well.

After these changes, it is easy to compare the two matrices x′ and x. Only the part

where the entities and rooms that are not changed in this modification is compared

in the re-allocation problem. Basically, the cells in these parts of the matrices x′ and x

are compared one by one. If two locations differ, then this shows an entity has been

re-allocated to a new room. The reorganization problem deals with the number of

reallocated entities. If the number of reallocated entities are high, then this shows a

major restructuring on the allocation of the office space (which is usually undesirable

in an organization).

Two approaches can be taken when dealing with the number of reallocated entities

in the reorganization problem.

• Hard constraint approach: The number of re-allocated entities cannot exceed a spe-

cific limit.

• Soft constraint approach: The number of re-allocated entities can be added to the

objective function with a weight as a part of soft constraint violation penalty.

In order to formulate the re-allocation problem, another binary decision matrix l of

size |R′||E′| is used. Basically, l matrix checks whether or not each cell in x′ or x differs

87

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

from each other. Each cell in the matrix l is set to 1 if there is a difference between two

matrices as in equation 4.3.1:

x′er − xer ≤ ler xer − x′er ≤ ler ∀e ∈ E′ ∀r ∈ R′ (4.3.1)

If we take re-allocation as a hard constraint, then the summation over the l matrix

should be lower than a limit value L as in equation 4.3.2:

∑
r∈|R′|

∑
e∈|E′|

ler ≤ L (4.3.2)

If we take re-organization as a soft constraint, then the summation over the l should

be added to the objective function with a weight. The modified objective function Z′

then becomes as in equation 4.3.3:

Z′ = Z + wreo ∑
r∈|R′|

∑
e∈|E′|

ler (4.3.3)

where wreo is a weight factor for the re-organisation penalty.

If the soft constraint set is changed due to addition or removal of constraints, the

respective section in the objective function Z′ is modified accordingly. If there is an

addition or removal of a hard constraint, then the respective constraint definition is

added or removed from the hard constraint set.

4.4 A Model with General Integer Decision Variables

For this thesis, preliminary investigations on different representations besides using

binary decision variables were performed. In a general integer programming model,

the whole entity-room mapping can be implemented by using an integer array g of size

|E|where each location in gi (i = {1, . . . , |E|}) represents the room an entity i is placed.

Hence, each location gi takes a value between 1 and |R|.

Although some of hard constraints like allocation, non-allocation, same-room, and not

same-room were easy to implement with this representation, modelling of the objective

function and the soft constraints required plenty of additional binary decision vari-

ables. It was quickly noticed that eventually any general integer programming model

for OSA turned into a bloated binary integer programming model with additional gen-

eral integer variables. The model could be thought of a hybrid representation which

synchronised the binary integer variable matrix x and the general integer decision vari-

able array g (as described in equation 4.4.1).

88

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

gi −
|R|

∑
k=1

kxik = 0 ∀i ∈ E (4.4.1)

where gi = r if entity i is placed to room r. The summation ∑|R|k=1 kxik synchronises

the binary matrix x (described in Section 4.2) with the general integer representation

array g. Since an entity can only be placed in just one room, the summation actually

contains only one non-zero component when the summation is taken over R. This

non-zero component is rxir where k = r and xir = 1. Since gi = r due to the way the

general integer programming representation is defined (entity i is placed into room r),

the difference between two components in equation 4.4.1 becomes 0.

Preliminary experiments yielded no benefit of using such a hybrid model over a

strictly binary variant, so further analysis of this representation is beyond the scope of

this thesis.

4.5 Two Binary Integer Programming Models

Based upon the binary decision variables, two variants of mathematical models were

developed. Both models were developed by using the same formulations for allocation,

non-allocation, same room (Not IF formulation for the soft constraints), not same room, not

sharing (formulation 2), adjacency and capacity constraints. The second formulation for

not sharing constraint was used instead of the first formulation. The second formulation

utilises a check for column summation being equal to 1 where the entity e is placed.

This is due to the fact that first formulation (which makes a row by row comparison

between the row of entity e and other rows) consumed too much memory without

providing any other computational benefit.

The main difference between two models is the existence or non-existence of floor

variables. Floor variables mainly affect the formulations of nearby and away from con-

straints since these constraints are defined over floors. Therefore, the model with the

floor variables utilises the floor variables in order to define nearby and away from con-

straints.

The model with the floor variables is superior to the one without the floor variables

given a specific subset of instances. Based upon the instances created by the generator

implemented for this thesis, the model with the floor variables provides significantly

smaller simplex tables for the integer programming solvers to work on.

However, these two models are not strictly alternatives to each other. The defini-

89

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

tions of nearby and away from constraints are very important whether the floor model

can be effective or even be applicable. For the instances considered in this thesis, the

nearby and away from constraints are defined over a floor, that two entities are near or

away from each other if they are in the same floor or not respectively. Unfortunately,

this definition is not very flexible since the granularity of the relationship is at floor

level. The model using the floor variables for the nearby and away from constraints is

not suitable if the nearby and away from relationship is not defined over the floors but

over a segment of a floor, over arbitrarily chosen rooms, or over a distance metric, etc.

It might still be possible to modify this formulation to a more limited section based for-

mulation. For example, a clustering algorithm might be used to identify the rooms that

can be clustered within a section.

Unlike the floor or section based models, the model without the floor variables will

still be able to handle section or floor based relationships regardless of how they are

defined because the granularity of the nearby or away from relationship is at room level.

Consequently, the choice between two models is also a trade-off between performance

and generalisability.

4.5.1 Effect of Using Floor Variables on the Size of Simplex Tables

In Table 4.1, the information about the simplex tables (the number of rows, columns,

non-zero and binary variables) for several test instances using models without and

with floor variables is given. This information is acquired immediately after CPLEX

solves the linear programming reduction of the mixed integer programming problem

and performs other reductions (which is called the pre-solve stage in CPLEX) but not

before the start of the branch and bound stage.

The number of rows in the simplex table is directly proportional to the number of

constraints/cuts and the number of columns is directly proportional to the number of

variables in the model. The non-zero variables refer to the number of non zero locations

in the simplex table. A sparse table with a majority of its values being zero is usually

easier to solve. The binary column gives the number of binary variables set after the

pre-solve stage. It is immediately observed that the model with the floor variables

yields a much smaller table after the pre-solve stage: The number of rows (constraints)

is reduced to one third of the case where the floor variables are not utilised. The number

of columns (variables in the model) is reduced to roughly two thirds of the previous

case. The percentage of non-zero variables is also reduced from roughly 10 percent to

6 percent in several SVe150 and PNe150 instances.

90

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

Model w/o Floor Variables Model with Floor Variables

Instance Rows Columns Non-zero Binary Rows Columns Non-zero Binary

S0.00V0.00 25128 25814 673588 25722 7966 17332 92898 17240

S0.40V0.80 29233 27912 767121 27820 9729 18267 105728 18175

S0.80V0.40 26979 26755 706707 26663 9089 17910 100829 17818

P0.00N0.00 27125 26818 710879 26726 9095 17903 100751 17811

P0.10N0.20 27129 26825 711494 26733 9095 17908 100883 17816

P0.20N0.10 27155 26843 712585 26751 9097 17914 100924 17822

nott1 32092 34893 1250566 34764 10635 24103 182789 23974

nott1b 14492 15084 388788 15007 5314 10563 56802 10486

nott1c 10653 12849 318642 12757 3577 9256 71943 9164

Table 4.1: The number of rows, columns, non-zero, and binary values in the simplex table for several data

instances

It can be observed that the most significant advantage of using the model with

floor variables is the drastic reduction in the number of rows which represent the num-

ber of nearby and away from constraints. The addition of floor variables to the model

did not increase the number of columns either. In fact, these variables further helped

elimination of other columns in the simplex table during the pre-solve stage.

4.6 Experiments Related to Integer Programming Models

To solve the 0/1 IP formulation, IBM ILOG CPLEX 12.3 [IBM-Ilog, 2013] was used on a

PC with a processor Core 2 Duo E8400 3Ghz and 2GB of RAM. The first datasets used

were University of Nottingham and Wolverhampton instances (nott1 and wolver). The

instances created by the data generator described in Section 2.5 were also used. All the

instances in the SVe150 and PNe150 dataset were tested.

When dealing with the soft constraints, the penalty weights were taken similarly

to those used in [Landa-Silva, 2003] apart from nearby constraint. For nott1 and wolver

instances, the penalty for the nearby constraint was 11.18. We could not trace any rea-

soning why such a value was chosen for this constraint. Therefore, for simplification,

the penalty for nearby constraint was taken as 10 in SVe150 and PNe150 instances. The

penalty for each constraint type was previously given in Table 2.1 in Section 2.3.2.

The effect of changing the penalty weights for each soft constraint was also tested.

The total soft constraint penalty was either divided by half (half soft constraint penalty con-

dition); taken as it was in Table 2.1 (normal soft constraint penalty condition) or multiplied

by 2 (double soft constraint penalty condition).

91

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

In the following experiments, the objective function for total penalty (TP) is taken

as the weighted summation of space misuse (SMP) and soft constraint violation penal-

ties (SCP). The formulation for the objective function in binary integer programming

models was previously given in equation 4.2.106 in Section 4.2.2. This objective func-

tion is going to be minimised subject to hard constraints. The numbers of hard and soft

constraints for nott1, SVe150, and PNe150 instances were previously given in Table 2.2

(Section 2.4) and Table 2.4 (Section 2.5.3) in Chapter 2 respectively.

In Section 4.6.1, results on nott1 and wolver datasets are presented. Effects of slack

space rate (S), violation rate (V), positive (P), and negative slack amount (N) on percentage

and absolute gaps in SVe150 and PNe150 datasets are presented in Sections 4.6.2 and

4.6.3 respectively. Effects of S, V, P, and N on some key ratios in SVe150 and PNe150

datasets are given in Sections 4.6.4 and 4.6.5 respectively. The integer programming

models with and without floor variables are compared in Section 4.6.6. The complete

tabular results related to all experiments in this chapter can be found in Appendix A.

In our experiments, each instance was given 30 minutes of running time in single-

thread mode. It was possible to run the solver indefinitely until an optimal solution

was found for a specific instance. However, our aim was to test these instances under

a fixed amount of running time and observe how the gap values between the incum-

bent solution and the bound as well as some other key ratios in OSA varied in our

parametrised instance sets. It was not trivial to make the analysis in Sections 4.6.2,

4.6.3, 4.6.4, and 4.6.5 objectively by just running the solver indefinitely without a fixed

amount of running time. This 30 minutes limit is also adhered in a somewhat differ-

ent setting tailored for the heuristic based algorithms that are going to be proposed in

Chapters 5, 6, and 7.

4.6.1 Results on Nott1 and Wolverhampton Datasets

Table 4.2 summarises the best results obtained after a run of 30 minutes on each prob-

lem instance (from nott1 to wolver). Note that these dataset instances do not contain

non-allocation, not in same room, or capacity constraints, the other six constraint types are

present in these real-world instances.

Two different experiments were run on the largest problem instance nott1. It was

observed during experiments that minimising same room constraint violations was the

most difficult, especially for the nott1b instance (value of 80.00). So, an additional ex-

periment was conducted for tackling the same room constraint in the nott1 instance

(largest one). In nott1 column, same room constraints were all set as soft, whereas in

92

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

nott1 nott1* nott1b nott1c nott1d nott1e wolver

Allocation 40.00 20.00 0.00 40.00 0.00 0.00 0.00

Same Room 0.00 0.00 80.00 0.00 0.00 0.00 0.00

Not Sharing 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Adjacency 10.00 10.00 0.00 10.00 0.00 0.00 0.00

Group by 11.18 22.36 11.18 11.18 11.18 0.00 0.00

Away From 20.00 30.00 0.00 20.00 0.00 40.00 0.00

Constraint Penalty 81.18 82.36 91.18 81.18 11.18 40.00 0.00

Overuse 130.80 106.40 64.20 182.90 164.70 13.80 486.04

Underuse 134.20 122.00 87.90 41.65 26.85 123.90 148.15

Usage Penalty 265.00 228.40 152.10 224.55 191.55 137.70 634.19

Total Penalty 346.18 310.76 243.28 305.73 202.73 177.70 634.19

Lower Bound 201.86 273.16 131.45 305.73 202.73 177.70 634.19

Percentage Gap %41.70 %12.10 %46.00 %0.00 %0.00 %0.00 %0.00

Table 4.2: Individual penalties for the best results obtained for each problem instance of the nott1 and

wolver datasets by using the model without floor variables

column nott1∗, same room constraints were all set as hard. Notice that this latter setup

achieved a lower usage penalty by roughly 35 square meters. In all these instances,

the constraint penalty turned out to be significantly lower than the usage penalty. For

the instances nott1c, nott1d, nott1e, and wolver, optimal results were obtained while

instances nott1 and nott1b remained very challenging. Note that in nott1, nott1b, and

nott1c, the previous best results reported [Landa-Silva and Burke, 2007] in the literature

were 482.2, 417.1, and 315.4 respectively. In these three instances, the best results ob-

tained were significantly improved setting new target for the algorithms in following

chapters. These new best results were reported in [Ülker and Landa-Silva, 2011].

4.6.2 Effect of S and V on Percentage and Absolute Gaps

The experiments focused on the four basic generator parameters: slack space rate (S),

violation rate (V), positive (P) and negative slack amount (N). The aim was not only to

analyse how these parameters affected the difficulty of the problem but also to see

the effect on space misuse (overuse, underuse) and (soft constraint penalty) because these

attributes and the ratios between them could be used for designing algorithms which

tracked these values during the search.

93

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

The visual representation of the experimental results on percentage and absolute

gaps between the results and the best bound obtained in SVe150 dataset is depicted in

Figures 4.2, 4.3, and 4.4. The two axes S and V represent different values for slack

and violation rates. The PG and AG axes represent the percentage and absolute gaps

obtained. Each figure represents the results under half, normal or double soft constraint

penalty conditions respectively (as described in Section 4.6).

As evidenced by the percentage gaps between the best objective value obtained and

the bound, decreasing the penalty values for each soft constraint increased the difficulty

of the instance (with respect to the proof of optimality). This was usually due to the

fact that the total penalty (which was the denominator in the percentage gap equation)

became lower due to the lower individual penalties for the soft constraints. However, it

was noticed that for higher values of S, the difference between the gaps over different

soft constraint penalty conditions became lower. This was related to the increase of im-

portance of space misuse over the soft constraint violation penalty due to the higher values

of S.

It was observed that increasing S and V did not necessarily increase the percent-

age gaps smoothly. In fact, some of the highest percentage gaps were obtained when S

was quite low especially in half and normal soft constraint penalty conditions. This was

probably due to the difficulty of reducing an already low space misuse to strictly zero.

However, this was not an issue when the space misuse became less important as in

double soft constraint penalty condition. The soft constraint violation rate V had a direct

effect on the percentage gaps. Increasing V increased the percentage gaps and unlike the

case in S the increase was more in half and normal soft constraint penalty condition. One

explanation for this could be that increasing the importance of soft constraints by dou-

bling the penalty weights forced the solver to focus on minimising the soft constraint

violations more.

The absolute gaps (difference between the best obtained solution and the bound)

were related to the percentage gaps. There was an increasing trend in this value with

high S and the increase was even higher with greater V rates. Naturally, the increase

became steeper in double soft constraint penalty condition due to the fact the total penalty

was higher in this case.

Finally, the analysis focused on finding if increasing or decreasing the soft con-

straint penalty gave better or worst results. It was observed that on the average case,

double soft constraint penalty condition gave an improvement of totalpenalty = 4.875 per

instance over normal soft constraint penalty condition. There was a further improvement

of totalpenalty = 3.983 per instance of using normal over half penalty condition. Thus, it

94

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

0.00

0.20

0.40

0.60

0.80

1.00

PG

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

(a) Percentage Gap (PG)

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

 0

 50

 100

 150

 200

AG

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

(b) Absolute Gap (AG)

Figure 4.2: Effects of different S and V on percentage and absolute gaps under half soft constraint penalty

condition in SVe150 dataset

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

0.00

0.20

0.40

0.60

0.80

1.00

PG

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

(a) Percentage Gap (PG)

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

 0

 50

 100

 150

 200

AG

 0

 20

 40

 60

 80

 100

 120

 140

 160

(b) Absolute Gap (AG)

Figure 4.3: Effects of different S and V on percentage and absolute gaps under normal soft constraint penalty

condition in SVe150 dataset

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

0.00

0.20

0.40

0.60

0.80

1.00

PG

0.00

0.10

0.20

0.30

0.40

0.50

0.60

(a) Percentage Gap (PG)

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

 0

 50

 100

 150

 200

AG

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

(b) Absolute Gap (AG)

Figure 4.4: Effects of different S and V on percentage and absolute gaps under double soft constraint penalty

condition in SVe150 dataset

might be advisable to use higher penalties for soft constraints than the ones initially set,

solve the problem with these increased soft constraint penalties and convert the total

penalty obtained to a normalised form in the end. However, such an approach may not

95

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

be necessary if the space misuse was observed high due to the reasoning that higher S

values reduced the importance of soft constraint penalty over space misuse.

4.6.3 Effect of P and N on Percentage and Absolute Gaps

In Figures 4.5, 4.6, and 4.7, the percentage (PG) and absolute gaps (AG) obtained after

experimentation on PNe150 dataset under half, normal, and double soft constraint penalty

conditions are presented. The P and N axes stand for positive and negative slack amounts

which adjust the underuse and overuse in an instance. The axes PG and AG represent

the percentage and absolute gaps obtained.

In PNe150 tests, a similar scenario as in SVe150 was observed. Performing the

search with increased soft constraint penalty yielded better results: double soft constraint

penalty condition provided totalpenalty = 4.294 per instance over normal soft constraint

penalty condition, and a further totalpenalty = 4.269 per instance improvement was ob-

served over half soft constraint penalty condition. Again similar to SVe150, the percentage

gaps tended to go higher when the weight of soft constraint penalty was reduced.

An important observation was that the difficulty of the instance was not necessar-

ily affected by increasing or decreasing P and N values independently. The percentage

gaps were usually highest when P and N were set equal or close to each other, and

the percentage gaps usually tended to get lower when the absolute value gap between

P and N was increased. The absolute value gap between the objective value, and the

bounds exhibited the similar pattern with the percentage gap case. This case was in-

teresting considering the fact that in the current model, overuse was penalised more

than underuse (by a factor of 2) yet that did not affect the P/N ratio (which maximised

the percentage gap) in a similar way. The explanation for change in the difficulty of

the instance could be attributed to how the solver handled the instance in different

overuse and underuse situations. When P was set low and N was set high, the generator

would create an instance with many under-capacitated rooms and not enough rooms

with over-capacity to compensate for them. Because of the penalty weight difference

between the overuse and underuse, the solver was expected to allocate whatever space

it could allocate (by claiming the very few over capacitated rooms or violating a soft

constraint immediately) and to reduce the overuse of the rooms. On the exact opposite

case (when P was high and N was low), the resulting instance would have many rooms

with over-capacity and few rooms with under-capacity. In this case, the solver would

have more choices to minimise the overuse penalty and could also search for a balance

between minimising the soft constraint violations and the underuse penalty. When N

96

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.00

0.20

0.40

0.60

0.80

1.00

PG

0.00

0.10

0.20

0.30

0.40

0.50

0.60

(a) Percentage Gap (PG)

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

 0

 50

 100

 150

 200

AG

 0

 20

 40

 60

 80

 100

 120

(b) Absolute Gap (AG)

Figure 4.5: Effects of different P and N on percentage and absolute gaps under half soft constraint penalty

condition in PNe150 dataset

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.00

0.20

0.40

0.60

0.80

1.00

PG

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

(a) Percentage Gap (PG)

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

 0

 50

 100

 150

 200

AG

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

(b) Absolute Gap (AG)

Figure 4.6: Effects of different P and N on percentage and absolute gaps under normal soft constraint penalty

condition in PNe150 dataset

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.00

0.20

0.40

0.60

0.80

1.00

PG

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

(a) Percentage Gap (PG)

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

 0

 50

 100

 150

 200

AG

 20

 30

 40

 50

 60

 70

 80

(b) Absolute Gap (AG)

Figure 4.7: Effects of different P and N on percentage and absolute gaps under double soft constraint penalty

condition in PNe150 dataset

and P were close to each other, the instance was expected to have rooms with over and

under capacity, thus the solver would have more choices to minimise overuse, underuse,

or the soft constraint violations. This caused instances with higher percentage gaps.

97

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

4.6.4 Effect of S and V on Overuse, Underuse and Soft Constraint Violations

Figures 4.8, 4.9 and 4.10 give a graphical depiction of O/U (overuse / underuse penalty

ratio), and SCP/SMP (soft constraint violation penalty /misuse penalty ratio) under half,

normal and double soft constraint penalty conditions respectively. We specifically focused

on these two ratios to understand how the space misuse (both overuse and underuse)

and constraint penalties were affected under various parameter settings.

It was observed that when S (slack rate) was set to 0 (corresponding to instances

with zero space misuse), the IP solver yielded results where the space overuse penalties

were exactly twice the amount of underuse penalties in all V (violation rates) conditions.

This amount coincided with the penalty weight ratio between overuse and underuse (re-

member that overusing a room was considered worse than underusing a room, hence

the penalty factor of 2). It was observed that increasing V decreased the O/U ratio.

However, the effect of V was much less than S in this experiment. It was observed that

around S = 0.60, V = 0.00, the O/U ratio was maximised. Increasing the weights for

the constraints had little effect on the O/U ratio. The SCP/SMP ratio was primarily

(and naturally) affected by increasing the weights for each constraint. Under half, nor-

mal and double constraint penalty conditions, the gradual increase on the SCP/SMP can

be observed in Figures 4.8(b), 4.9(b), and 4.10(b). It was observed that decreasing the S

parameter (decreasing the space misuse) and setting it around S = 0 (zero space misuse)

maximised this ratio. Under various settings, the ratio was maximised around medium

V values (around V = 0.2 and V = 0.6).

Notice that these instances in the SVe150 dataset were designed to have equal

amount of space overuse and space misuse. In ideal conditions during an algorithmic

search, we would try to keep the ratio O/U close to 2 (because of the weight of the

overuse = 2). Since V has barely any effect in this scenario, whenever the ratio goes

significantly above 2, it might be beneficial to just concentrate on reducing each and

every component of space misuse (whether it is overuse and overuse) rather than focusing

on reducing the soft constraint violation penalty.

4.6.5 Effect of P and N on Overuse, Underuse and Soft Constraint Violations

Figures 4.11, 4.12, and 4.13 give a graphical depiction of O/U (overuse / underuse penalty

ratio), and SCP/SMP (soft constraint penalty / space misuse penalty ratio) under half, nor-

mal, and double soft constraint penalty conditions respectively.

It was observed that when the N − P difference was increased (which meant that

98

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

O/U

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

(a) Overuse / Underuse Penalty (O/U)

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SCP/SMP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) Constraint / Space Misuse Penalty (SCP/SMP)

Figure 4.8: Effects of different S and V on overuse / underuse penalty and soft constraint / space misuse penalty

under half soft constraint penalty condition in SVe150 dataset

0.0

0.2

0.4

0.6

0.8

1.0

S

0.00

0.20

0.40

0.60

0.80

1.00

V

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

O/U

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

(a) Overuse / Underuse Penalty (O/U)

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

0.0

0.5

1.0

1.5

2.0

2.5

SCP/SMP

0.0

0.5

1.0

1.5

2.0

2.5

(b) Constraint / Space Misuse Penalty (SCP/SMP)

Figure 4.9: Effects of different S and V on overuse / underuse penalty and soft constraint / space misuse penalty

under normal soft constraint penalty condition in SVe150 dataset

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

O/U

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

(a) Overuse / Underuse Penalty (O/U)

0.00

0.20

0.40

0.60

0.80

1.00

S

0.00

0.20

0.40

0.60

0.80

1.00

V

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SCP/SMP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) Constraint / Space Misuse Penalty (SCP/SMP)

Figure 4.10: Effects of different S and V on overuse / underuse penalty and soft constraint / space misuse penalty

under double soft constraint penalty condition in SVe150 dataset.

the instance was created with the intent of having very little to no underuse and very

heavy overuse, the O/U ratio showed a very significant increase with a very quick spike.

This showed the difficulty of controlling the space overuse when there was not enough

99

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0

O/U

0.0
50.0
100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0

(a) Overuse / Underuse Penalty (O/U)

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SCP/SMP

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Constraint / Space Misuse Penalty (SCP/SMP)

Figure 4.11: Effects of different P and N on overuse / underuse penalty and soft constraint / space misuse penalty

under half soft constraint penalty condition in PNe150 dataset.

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0

O/U

0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
180.0

(a) Overuse / Underuse Penalty (O/U)

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

SCP/SMP

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

(b) Constraint / Space Misuse Penalty (SCP/SMP)

Figure 4.12: Effects of different P and N on overuse / underuse penalty and soft constraint / space misuse penalty

under normal soft constraint penalty condition in PNe150 dataset.

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

O/U

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

(a) Overuse / Underuse Penalty (O/U)

0.00

0.05

0.10

0.15

0.20

0.25

P

0.00

0.05

0.10

0.15

0.20

0.25

N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SCP/SMP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) Constraint / Space Misuse Penalty (SCP/SMP)

Figure 4.13: Effects of different P and N on overuse / underuse penalty and soft constraint / space misuse penalty

under double soft constraint penalty condition in PNe150 dataset.

rooms with sufficient space underuse to compensate for the rooms with overuse. When

the number of rooms with excess space was very low and the number of overused

rooms was very high, the IP solver immediately used up the available capacity and

100

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

the O/U ratio immediately shot up in this extreme situation. However, these instances

were very easy to solve. In design of future algorithms, somewhat counter-intuitively,

it may not be desirable to just aggressively reduce the overuse when a very high overuse

of some room space and very low usage of some room space are observed over a period

of time in the search. In this case, the algorithm might have already allocated the very

few extra space it has; therefore, it might be beneficial to try to reduce the soft constraint

violations in this case.

SCP/SMP ratio was maximised when both P and N were set very close to each

other (hence very little space misuse in this case). In this case, it might be beneficial

to design algorithms which try to lower the soft constraint violation when individual

space overuse and underuse are observed to be close to each other and SCP/SMP is

higher. It was observed that the weight of the soft constraint penalty also had an effect

on both ratios. O/U tended to get lower and SCP/SMP tended to go higher in double

soft constraint penalty condition probably due to the IP solver trying to force the soft

constraints to be satisfied in this case.

4.6.6 Comparison of Models with and without Floor Variables

In this section, the models with and without the floor variables are compared. Both

models were given 30 minutes of run-time on a Intel Core 2 Duo E8400 processor and

the tests were done on complete SVe150 and PNe150 datasets under normal soft con-

straint penalty condition.

Figures 4.14 and 4.15 depict the difference in best objective function value obtained

and the best bound on it in SVe150 and PNe150 datasets respectively. The model with-

out and with the floor variables are abbreviated as IP1 and IP2 respectively. In the

following figures, IP1 is better in blue regions while IP2 is better in green regions. As it

is discussed next, the performance of the model with the floor variables is significantly

superior to the one without these variables.

For all but two instances (S0.20V0.00 and S1.00V0.00), the model with the floor vari-

ables yielded better or at least equal results. As can be seen from Figure 4.14a, the

difference between the model increased as the V rate increased. This was expected due

to the fact that with higher rates of V, higher amounts of conflicting nearby and away

from constraints would be present in the instances. The differences peaked around mid

S and high V rates, the model without the floor variables still provided good results for

instances with low space misuse and soft constraint violation penalties. The difference in

best bound obtained in SVe150 dataset is depicted in Figure 4.14b. Using floor variables

101

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

−50

0

50

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆TP of IP1 − IP2 in SVe150

S

V

(a) ∆TP of IP1 − IP2

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆BND of IP2 − IP1 in SVe150

S

V

(b) ∆BND of IP1 − IP2

−50

0

50

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆SMP of IP1 − IP2 in SVe150

S

V

(c) ∆SMP of IP1 − IP2

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆SCP of IP1 − IP2 in SVe150

S

V

(d) ∆SCP of IP1 − IP2

Figure 4.14: Differences in total cost penalty (∆TP), best bound (∆BND), space misuse penalty (∆SMP),

and soft constraint penalty (∆SCP) after applying model without the floor variables (IP1) and

model with the floor variables (IP2) on SVe150 dataset (IP1− IP2). IP1 is better in blue regions

while IP2 is better in green regions.

improved the best bounds obtained as well, and similar to the best objective function

value case, most performance increases were observed around high V values.

In Figure 4.15a the differences of best objective function value obtained by two

models in PNe150 dataset are depicted. Using floor variables provided better results

for all instances, the performance gain was most prominent along the region where

|N − P| was maximised where the model without the floor variables struggled the

most. The best bounds were significantly improved along this diagonal as well (as

seen in Figure 4.15b). However, the best bounds improved very slightly alongside both

P and N axis over the model without floor variables.

102

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

−60

−40

−20

0

20

40

60

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆TP of IP1 − IP2 in PNe150

P

N

(a) ∆TP of IP1 − IP2

−20

−10

0

10

20

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆BND of IP2 − IP1 in PNe150

P

N

(b) ∆BND of IP1 − IP2

−60

−40

−20

0

20

40

60

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆SMP of IP1 − IP2 in PNe150

P

N

(c) ∆SMP of IP1 − IP2

−20

−10

0

10

20

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆SCP of IP1 − IP2 in PNe150

P

N

(d) ∆SCP of IP1 − IP2

Figure 4.15: Differences in total cost penalty (∆TP), best bound (∆BND), space misuse penalty (∆SMP),

and soft constraint penalty (∆SCP) after applying model without the floor variables (IP1) and

model with the floor variables (IP2) on PNe150 dataset (IP1 − IP2). IP1 is better in blue

regions while IP2 is better in green regions.

In Figures 4.14c and 4.14d, the differences of space misuse and soft constraint violation

penalties on SVE150 dataset using both models are depicted. It was observed that the

performance gain was mostly due to superior handling of the space misuse. In fact, for

a significant number of instances, the soft constraint violation did not improve at all. It

should be also noted that in instances with higher expected space misuse due to large S

rates, the improvements in space misuse were not as significant. In fact, the performance

of reducing the space misuse improved significantly in instances where higher soft con-

straint violations were expected due to large V rates. One possible explanation to this

behaviour could be that since the model with the floor variables was already efficient

103

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

in handling the large number of nearby and away from constraints, it could spend more

time in minimising the space misuse components especially by trading one or two such

constraint violations for better space misuse.

In Figures 4.15c and 4.15d, the difference between two models in reducing the space

misuse and soft constraint violation penalties in PNe150 dataset is depicted. Similar to the

case as in SVe150, most performance gains were observed in space misuse component,

especially around some of the regions along the PN diagonal. The handling of soft con-

straint violation penalties was usually improved around high P values where underuse

of rooms was expected. However, in low P rates, it could be more difficult to reduce

the soft constraint violation over the model without the floor variables.

4.7 Conclusion

In this chapter, two binary integer programming formulations designed for the office

space allocation problem were analysed. The analysis was based upon the experimen-

tal results on parametrised instances created by the instance generator as described in

Section 2.5. Four different parameters for handling space misuse, space overuse, space un-

deruse and soft constraint violation penalty were developed during the implementation of

this generator.

The experiments focused on the effects of changing the weight for soft constraint

penalty on two different instances. On the average case, it was observed that increasing

the weight of the soft constraint penalty improved the results. The improvement was

more notable in cases when the space misuse was expected to be high. In general, it was

observed that reducing an already very low space misuse was the greatest hurdle the

models struggled with. The instances were actually most difficult to solve when the

expected space overuse and underuse were close to each other and soft constraint violation

penalty was expected to be high. We also made some preliminary observations on some

of the cases where it was desirable to prioritise the space misuse components or soft

constraint violation penalty.

In this chapter, the binary integer programming formulations with and without

the floor variables were also compared. It was observed that the model with the floor

variables yielded a far simpler simplex table to work on after the pre-solve stage in

CPLEX. Significant performance improvements were observed over the model without

the floor variables.

In the preliminary research, it was observed that the order the constraints were

104

CHAPTER 4. INTEGER PROGRAMMING FORMULATIONS

handled was instrumental in designing difficult data instances. Although this chapter

includes a study of the cumulative effect of soft constraint violations, a constraint by

constraint study of each nine constraints may be planned for future work.

105

CHAPTER 5

Local Search Algorithms

5.1 Introduction

In the literature, there are various heuristic approaches already implemented for han-

dling the OSA problem such as [Burke et al., 2001c], [Burke et al., 2001a], [Landa-Silva,

2003], [Landa-Silva and Burke, 2007], [Pereira et al., 2010], and [Lopes and Girimonte,

2010]. This chapter is devoted to the implementation of a general local search heuristic

which mostly uses stochastic components. The goal of this chapter is to investigate

heuristic algorithms that are easy to implement and that do not depend upon fine-

tuned implementations of constraint handling and objective value calculations (which

is going to be covered in Chapter 6 in more detail). The algorithms in this chapter are

based upon an iterated local search [Lourenco et al., 2002] (ILS) procedure at its core.

Solutions are perturbed and improved using a local search method at each step of the

algorithm. Several methods for acceptance and rejection of new solutions at the end

of each stage of ILS are investigated. These methods include descend methods, sim-

ulated annealing [Kirkpatrick et al., 1983], threshold acceptance [Dueck and Scheuer,

1990], and great deluge algorithm [Dueck, 1993]. Initial tests are conducted in order

to determine the balance between relocate and swap moves to explore the neighbour-

hood of a given solution. Experiments are also conducted if it is beneficial to use the

aforementioned acceptance and rejection methods.

In this chapter, the main aim is an initial investigation of local search techniques

that are similar in nature to the ones previously proposed in the literature such as

[Landa-Silva, 2003], [Pereira et al., 2010], and [Lopes and Girimonte, 2010]. Given the

new datasets and new understanding of the problem from Chapter 4, this chapter will

serve as a starting point of heuristic development for OSA in this thesis. Some of the

ideas presented in this chapter will be revisited and improved in Chapters 6 and 7.

107

CHAPTER 5. LOCAL SEARCH ALGORITHMS

This chapter is organised as follows: Section 5.2 describes the solution represen-

tation and data structures used in designing the heuristics not only in this chapter but

also in Chapters 6 and 7. Section 5.3 describes the move operators and the neighbour-

hood structures considered in this chapter. Section 5.4 describes the general framework

of the local search algorithm. Section 5.5 describes a procedure for quickly calculating

the cost function changes for a random relocate or swap move. The experiments and

discussions on the results are presented in Section 5.6. Finally, the conclusions of this

chapter are given in Section 5.7.

5.2 Solution Representation and Data Structures

There are mainly three objects in a typical office space allocation problem: entity, room

and constraint objects which hold the information related to each entity, room, and

constraint respectively. An OSA problem can be formalised and implemented by using

lists of entity, room, and constraint objects, and the relationships between them. An

example diagram which depicts such relationships between these three types of objects

is given in Figure 5.1.

e1 e2 e3 e4 e5 r1 r2 r3 r4

c1 c2 c3 c4 c5 c6 c7 c8 c9

Constraints

RoomsEntities

Figure 5.1: Relationships between entity, room and constraint objects

Entity Object: An entity object contains information related to a single entity.

• Size: The storage space requirement for the entity.

108

CHAPTER 5. LOCAL SEARCH ALGORITHMS

• Room: the room the entity is currently placed.

• Group: The organisational group the entity belongs to. Used for nearby constraint

checking.

• Links of constraints: Each entity contains a list of links which point to each indi-

vidual hard and soft constraint of each type associated with this entity.

Room Object: A room object contains information related to a single room.

• Size: The storage space capacity of the room.

• Floor: The floor the room is in. It is used for nearby and away from cost calculations.

• Space misuse: The current overuse, underuse, and total space misuse are kept to

facilitate the space misuse calculations.

• List of entities: The entities currently placed into the room and specified in a list

form.

• Not sharing entities: The entities that have not sharing constraints and placed into

this room are marked to facilitate the not sharing constraint checking.

• List of constraints: Each capacity constraint (the only type of constraint considered

that applies exclusively for rooms) associated with the room.

Constraint Object: Each constraint object holds information related to the constraint

such as:

• entity: For allocation, non-allocation, and not sharing constraints.

• entity-entity: For binary constraints (same room, not same-room, adjacency, nearby,

and away from) that involve two entities.

• room: For capacity constraints.

Entity and room type of constraints (first and third types described above) are unary

constraints while entity-entity types of constraints are binary.

We decided on this representation scheme with these three object structures. The

relationships (links) between these objects are represented by pointers in C++. This

scheme enables quick access to several features such as the contents of the rooms (the

109

CHAPTER 5. LOCAL SEARCH ALGORITHMS

entities placed into specific rooms), the placement of entities, and the constraints asso-

ciated with each room and entity. This representation also helps to the efficient imple-

mentation of objective function value calculations which are going to be described in

Section 5.5 and 6.4.3.

5.3 Neighbourhood Operators

There are three common move operators designed to create the neighbourhoods in

OSA research [Burke et al., 2001c], [Burke et al., 2001a], [Landa-Silva, 2003], and [Landa-

Silva and Burke, 2007]. These three move operations are as follows:

• Relocate: This operator moves one entity from one room to another. This move

can also be referred to as simple move or single move in the literature.

• Swap: This operator swaps the allocation of two entities that have been placed in

two different rooms.

• Interchange: This operator selects two rooms and swaps the entities between these

two rooms.

Each move operation has to decide entities and room that will be associated with

the operation. The relocate move has to decide which entity should be selected initially

and which room it should be placed into later. The swap move has to decide which

two rooms and which two entities in these rooms should be selected for this operation.

Alternatively, just two entities can be selected without taking the rooms into considera-

tion. This approach cannot guarantee that two entities are going to be swapped because

the selected entities can already be in the same room. Hence, in order to force the swap,

the former approach of selecting the rooms first and then selecting two entities later is

chosen for the implemented swap move.

Similarly, interchange move has to decide which two rooms should be selected for

the operation. In [Landa-Silva, 2003], different versions of these operators were inves-

tigated. These versions differ in terms of the level of greediness or stochasticity of the

selection and placement of an entity. The entities can be selected based upon how much

constraint violation they are associated with. The decision to select the rooms can be

made based upon the space misuse of each room. Conversely, the entity or room se-

lection can be made completely randomly as well which is the approach taken in this

chapter.

110

CHAPTER 5. LOCAL SEARCH ALGORITHMS

In this thesis, the main focus will be on the relocate operator. The relocate opera-

tor is the most basic and atomic move operation in OSA. Any complex entity-room

re-allocations can be formalised via serialisations of relocate moves. The move allows

efficient cost calculation procedures both in deciding which entity should be selected

for re-allocation and which room the entity should be placed. In most cases during the

coding of the algorithm, it was observed that numerous, easy to implement, fast relocate

moves were preferred over a few complex, hard to implement, slow move operations.

A random swap operator can easily be implemented using two successive relocate op-

erations. Note that this chapter is mainly devoted to the implementations of stochastic

relocate and swap moves.

In this thesis, the interchange operator is completely ignored in designing local

search algorithms. This decision was made after the design of the mathematical pro-

gramming models described in Chapter 4 and after analysing the (optimal or near-

optimal) solutions for the instances in nott1, SVe150, and PNe150 datasets. It was

observed that for the majority of the instances, the final solution was an entity-room

mapping where a room was occupied by a single entity. This was mainly due to the

sheer number of not sharing constraints in the instances. In such cases, interchange op-

erator became practically superfluous because two rooms selected for the operation

would most likely contain only a single entity. In this case, interchange operator would

practically be reduced to a swap operator instead.

Practically, the main benefit of using an interchange operator in most OSA instances

will be causing disruptions or corrections in very few rooms; however, such disruptions

and corrections can be implemented by a series of straightforward single-point random

perturbation (randomly changing the room of an entity) and relocate moves.

Neighbourhood: Consequently, the neighbourhood in this algorithm is formed as

follows: Given a current solution, first, which type of move is going to be performed

is probabilistically decided. The parameter for this selection is swap rate which deter-

mines the probability that a swap move is performed. Naturally, the probability for a

relocate move is 1 - swap rate. Based on the probabilistic selection, a random relocate or

swap move is applied to the current solution to create the new candidate solution. The

balance between relocate and swap move is going to be tested in Section 5.6.1.

111

CHAPTER 5. LOCAL SEARCH ALGORITHMS

5.4 Algorithm Outline

The local search algorithm used in this chapter can be thought of a variation of iterated

local search [Lourenco et al., 2002] and ruin and recreate [Schrimpf et al., 2000]. The

algorithm operates on a single solution; however, it keeps track of the best encountered

solution during the search. The local search framework depicted in Figure 5.2 will be

used throughout this chapter. It also serves a starting point for the evolutionary local

search algorithm that is going to be described in Chapter 6.

Input: input file with entities, rooms, and constraints.

Output: solution (an entity-room mapping)

1: xbest = Initial solution

2: xstart = xbest

3: repeat

4: x′ ← xstart

5: Apply random perturbation to the current best solution x′

6: repeat

7: Random decision on relocate or swap move.

8: Select the entity and rooms for relocate or swap moves

9: x∗ ← Apply relocate or swap move on x′

10: if objective function value obj(x∗) is better than obj(x′) then

11: x′ ← x∗
12: else

13: Reject x∗
14: until Local search step limit in one stage is reached

15: if obj(x′) is better than obj(xbest) then

16: xbest ← x′

17: if Acceptance criterion is met according to the local search acceptance method then

18: xstart ← x′

19: else

20: xstart = xbest

21: until Time limit is reached

Figure 5.2: Local search (LS) algorithm

Initialisation: In order to create the initial solution, first the entities that have alloca-

tion constraints associated with them are processed. These entities are placed into the

respective rooms indicated by allocation constraints. Other entities are placed randomly

to the available rooms.

112

CHAPTER 5. LOCAL SEARCH ALGORITHMS

Local Search: Each local search stage works on the currently best solution xbest en-

countered during the search. At the start of each local search stage, the best solution

xbest is copied to the current solution x′ where local modifications are performed. Then,

a random perturbation is applied to x′. The size of this perturbation is small, usually

around one to five percent of the total size of the solution (which is taken as the num-

ber of entities). The chosen entities during the perturbation operation are placed into

other rooms randomly. This disruption operator is the first step of introducing new

information and providing diversification to the algorithm.

After the random perturbation, a large number of local search move operations is

performed. The neighbourhood of the current solution is searched by using the relocate

and swap operators. Any relocate or swap move that leads to a better solution than the

current one (in terms of objective function value) is accepted. Otherwise, these moves

are rejected and the search continues with the previous best solution.

Acceptance/Rejection of New Solutions: At the end of each local search stage, a

decision is made regarding whether the algorithm should continue operating on the

global best solution xbest encountered during the whole search or on the local best so-

lution x′ created during that solution. In the most frequent case, the local best solution

x′ in that stage will not improve on the global best solution xbest, hence the algorithm

has to decide whether to accept or reject this current solution. This step is extremely

crucial and often neglected in previous OSA heuristic algorithm designs like [Landa-

Silva, 2003] and [Landa-Silva and Burke, 2007]. It is observed that the algorithm can

quickly stagnate if it accepts the local best solution encountered during the most recent

local search stage over the global best solution and does not perform frequent returns

back to the global best solution xbest.

Several accept-reject mechanisms are tested in order to determine how to proceed

with the usual case when the best solution x′ after each local search stage is worse than

the global best solution xbest. In this case, the whole sequence of operations within a

local search stage can be taken as a move which leads from the global best solution xbest

to x′. Then, x′ can be accepted or rejected by using different methods. The methods

implemented are as follows:

• Only improving moves: Solution x′ is accepted if and only if it leads to a better

objective function value than solution xbest. Any non-improving or equal solution

is rejected.

• Better or equal: Solution x′ is accepted if and only if it leads to better than or equal

113

CHAPTER 5. LOCAL SEARCH ALGORITHMS

to solution xbest in terms of objective function value. Any non-improving move is

rejected.

• Threshold acceptance [Dueck and Scheuer, 1990]: Solution x′ is accepted if the dif-

ference between x′ and xbest is within a threshold value t. The solution x′ is re-

jected if such difference is beyond this threshold value.

• Simulated Annealing [Kirkpatrick et al., 1983]: Solution x′ is accepted probabilisti-

cally according to the following function in equation 5.4.1:

p = e−
obj(x′)− obj(xbest)

T
(5.4.1)

where T is the current temperature value. If the randomly chosen decimal value

from the range (0, 1) is less than equal to p, x′ is accepted, otherwise it is rejected.

• Great Deluge [Dueck, 1993]: Solution x′ is accepted if the objective function value

of the new solution is below a water-level value. Solution x′ is rejected if the ob-

jective function value of the new solution is above the current water-level.

In threshold acceptance, simulated annealing, and great deluge acceptance-reject meth-

ods, there is an associated parameter value (threshold t, temperature T, and water level

w respectively). These values are not static, they change over time. They are initialised

to higher values first to enable a large number of non-improving moves being accepted

during the starting stages of the algorithm. These values are lowered gradually during

the algorithm. This limits the amount of uphill (non-improving) moves. The decreases

∆t, ∆T, and ∆w on threshold, temperature, and the water-level are made whenever a

new best solution is encountered in the solution. As long as the algorithm can find

better solutions, the threshold, temperature, or water-levels will eventually reach zero;

in this case, the algorithm is going to accept only improving moves.

5.5 Fast Cost Calculation for Relocate and Swap Moves

In this section, a cost calculation procedure for relocate and swap moves is proposed. In

many optimisation problems, the cost function calculation process (the measurement

of the objective function value of a given solution) is the most time consuming stage. In

the literature, there are various delta evaluation methods for other problems to calculate

the ∆ (difference) between the objective function values of two successive solutions

such as in [Ross et al., 1994]. Although cost change procedures for relocate and swap

moves were proposed in [Landa-Silva, 2003] and [Landa-Silva and Burke, 2007], these

114

CHAPTER 5. LOCAL SEARCH ALGORITHMS

give approximate change in the cost calculation. In this chapter, an exact cost change

procedure for these moves is described. This procedure is going to be referred to as

Delta (∆) stage from now on.

This ∆ procedure is similar to the one implemented in [Landa-Silva, 2003] but is

adjusted to new constraints and representation of objects and move implementation of

local search in this thesis. There is going to be a more complex and elaborate cost up-

date procedure in Section 6.4.3 of Chapter 6 that is built upon this implementation. The

objective function for total penalty (TP) is taken as the weighted summation of space

misuse (SMP) and soft constraint violation penalties (SCP). The respective formula-

tions for SMP, SCP, and TP were previously given in equations 2.3.1, 2.3.2 and 2.3.3 in

Section 2.3.2. The numbers of hard and soft constraints for nott1, SVe150, and PNe150

instances were previously given in Table 2.2 (Section 2.4) and Table 2.4 (Section 2.5.3)

in Chapter 2 respectively. This definition of the objective function is also going to be

used for the rest of the meta-heuristics developed in Chapters 6 and 7.

The Delta procedure for the relocate move that sends entity e from r1 to r2 goes

through all the constraints associated with e, r1, and r2 and calculates the cost change δ

in total objective function.

The swap move select two entities e1 and e2 in two different rooms r1 and r2 and

reverses the allocations. A random swap move can be implemented using two succes-

sive relocate moves: (e1, r1, r2) followed by (e2, r2, r1). In this case, first the delta proce-

dure for the relocate move (e1, r1, r2) is performed to calculate the cost change δe1,r1,r2 .

The entity e1 is placed into room r2. Only then, the delta procedure for the relocate

move (e2, r2, r1) is performed to calculate δe2,r2,r1 . The total cost change then becomes

δ← δe1,r1,r2 + δe2,r2,r1 .

Given a relocate move (e, r1, r2), the value δ (the change in objective function value)

is calculated according to the constraints associated with e. If entity e has one of the

unary constraints or it has a binary constraint with another entity f , the rooms associ-

ated with e and f have to checked before and after the relocate move. The δ calculation

also has to check the entities in r1 and r2 for not sharing and capacity constraints.

Allocation and Non-Allocation Constraints: Room ra is the room (specified in the

respective constraint) that entity e has to be allocated to.

• If room r1 = ra and r2 6= ra, increase δ with penaltyal .

• If room r2 = ra and r1 6= ra, decrease δ with penaltyal .

115

CHAPTER 5. LOCAL SEARCH ALGORITHMS

Non-allocation is the opposite case of allocation, so reverse the conditions.

Same Room and Not Same Room Constraints: Room r f is the room the second

entity f (which is specified in the respective constraint definition) is allocated to.

• If room r1 = r f and r2 6= r f , increase δ with penaltysr.

• If room r2 = r f and r1 6= r f , decrease δ with penaltysr.

Not same room is the opposite case of same room, so reverse the conditions.

Input: Move (e, r1, r2)

Output: δnsh

1: δnsh ← 0

2: if entity e does not have a not sharing constraint then

3: if room r1 has 1 entity with not sharing constraint AND has 2 entities then

4: δnsh ← δnsh − penaltynsh

5: if room r2 has 1 entity with not sharing constraint AND has 1 entity then

6: δnsh ← δnsh + penaltynsh

7: else

8: if room r1 has more than 2 entities then

9: δnsh ← δnsh − penaltynsh

10: if room r1 has 2 entities each with not sharing constraint then

11: δnsh ← δnsh − penaltynsh

12: if room r2 has more than 1 entity then

13: δnsh ← δnsh + penaltynsh

14: if room r2 contains just single entity with not sharing constraint then

15: δnsh ← δnsh + penaltynsh

Figure 5.3: Delta algorithm for not-sharing constraint

Not Sharing: The rooms r1 and r2 are the rooms the entity e is placed before and

after the relocate move. There are two conditions based on whether the entity e has a

not sharing constraint defined on it or not. This constraint requires several case checks

related to the number of entities with not-sharing constraints in rooms r1 and r2. The

algorithm is described in the pseudo-code in Figure 5.3. Based on specific conditions

related to the number of entities, the change in cost value due to not sharing constraint

(δnsh) can be increased once or twice the penalty value of the not sharing constraint. This

is due to elimination or introduction of one or two not sharing constraint violations due

to transfer of entity e from room r1 to r2.

116

CHAPTER 5. LOCAL SEARCH ALGORITHMS

Proximity Constraints: Room r f is the room the other entity f associated with the

constraint is allocated to.

• If r1 is adjacent to r f and r2 is not adjacent to r f , increase δ with penaltyad

• If r2 is adjacent to r f and r1 is not adjacent to r f , decrease δ with penaltyad

For nearby constraint, use nearby relationships (sets) instead of adjacency. Away from is

the opposite case of nearby, so reverse the conditions.

Space Misuse: For both rooms r1 and r2, the space misuses before and after the

move are calculated. Since entity e is leaving r1, r1 may go from an overuse situation

to an underuse situation. Conversely, room r2 may go from an underuse situation

to overuse. Cost changes δspace on both rooms r1 and r2 are calculated based on the

difference between current space misuse and the previous one.

Capacity Constraint: This constraint is handled similar to the space misuse cost

change calculation. There are two conditions checked:

• Room r1 has a capacity constraint. In this case, the difference in space misuse in

room r1 before and after the move is calculated. If there is currently no overuse

situation while there was one before, decrease δcap.

• Room r2 has a capacity constraint. Again, the difference in space misuse in room

r1 and r2 before and after the move is calculated. If there is currently an overuse

situation while there was not one before, increase δcap.

5.6 Experiments Related to Local Search Algorithm

Specific experiments were performed on eight instances: three instances from SVe150

dataset (S0.00V0.00, S0.60V0.60, S1.00V1.00); three instances from PNe150 dataset (P0.00N0.00,

P0.15N0.15, P0.25N0.25); and two nott1 instances (nott1, nott1b). Also, complete exper-

iments on the whole SVe150 and PNe150 datasets were performed as well by using

only improving criterion with 10 runs each 180 seconds. Tests were performed on a

Core 2 Duo E8400 3GHz Intel machine.

In the following experiments, the objective function for total penalty (TP) is taken

as the weighted summation of space misuse (SMP) and soft constraint violation penal-

ties (SCP). The respective formulations for SMP, SCP and TP were previously given

117

CHAPTER 5. LOCAL SEARCH ALGORITHMS

in equations 2.3.1, 2.3.2 and 2.3.3 in Section 2.3.2. This objective function is going to

be minimised subject to hard constraints. The numbers of hard and soft constraints for

nott1, SVe150 and PNe150 instances were previously given in Table 2.2 (Section 2.4)

and Table 2.4 (Section 2.5.3) in Chapter 2 respectively.

Experiments related to the balance between the relocate and swap moves described

in 5.3 are presented in Section 5.6.1. The acceptance/rejection methods described in

Section 5.4 are compared in Section 5.6.2. Complete results on SVe150 and PNe150

datasets are given in Section 5.6.3. The local search algorithm is compared to the integer

programming models proposed in Chapter 4 in Section 5.6.4.

5.6.1 Balance Between Relocate and Swap Moves

In this section, whether using two different stochastic neighbourhoods with relocate or

swap moves is beneficial over using just one move is explored. At each step in a stage

of iterated local search, it is probabilistically decided which move operator is going to

be chosen. At each step, only one move type can be used, the swap rate determines

the probability the swap move is going to be chosen. Naturally, the relocate rate then

becomes 1− swap rate. The results on four different instances are presented in Figure

5.4 as box-whisker plots. These instances were given 20 runs (each 75 seconds) on a

Core 2 Duo E8400 3GHz Intel machine.

As can be clearly seen from the box-whisker plot, combining random relocate and

swap moves in the algorithm yields better results that are statistically significant. At

both extreme spectra where only relocate or swap move is used in the algorithm, the

performance is significantly worse in all four instances. In the middle range of swap

rates (0.25 to 0.75), the performance is significantly better which signifies the synergy

between two move types. For these four instances, taking the swap rate as around 0.75

gives more tightly packed results in terms of lower and upper quartiles. The difference

between the minimum and the maximum results is usually low as well. However, swap

rate at 0.50 can give better minimum results and low median and mean values as well.

However, the spread between the lower and upper quartiles can be large. In any case,

all the values between 0.25 to 0.75 can be chosen without significantly affecting the

performance of the algorithm unlike the borderline cases of 0.00 and 1.00 as swap rate.

5.6.2 Comparison of Acceptance/Rejection Mechanisms

These experiments study the acceptance/rejection methods described in Section 5.4

which decide whether a local non-improving solution should be allowed or discarded

118

CHAPTER 5. LOCAL SEARCH ALGORITHMS

●

●

●
● ●

● ●

●
●

sw_0.00 sw_0.25 sw_0.50 sw_0.75 sw_1.00

20
0

30
0

40
0

50
0

60
0

70
0

swap rate

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(a) S0.60V0.60

●

●

●

●
●

●

●
●

●●

sw_0.00 sw_0.25 sw_0.50 sw_0.75 sw_1.00

30
0

40
0

50
0

60
0

70
0

80
0

swap rate

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(b) S1.00V1.00

●

●

●

●●

●●

sw_0.00 sw_0.25 sw_0.50 sw_0.75 sw_1.00

20
0

30
0

40
0

50
0

60
0

70
0

swap rate

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(c) P0.15 N0.15

●

●

●

●

●

●

sw_0.00 sw_0.25 sw_0.50 sw_0.75 sw_1.00

30
0

40
0

50
0

60
0

70
0

swap rate

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(d) P0.25 N0.25

Figure 5.4: Objective function value plots of different swap move rates for instances S0.60V0.60, S1.00V1.00,

P0.15N0.15, and P0.25N0.25

if it does not improve the global best solution (xbest) are tested. Five methods are tested:

Only improving (OI), better or equal (BE), simulated annealing (SA), great deluge (GD),

and threshold acceptance (TA).

SA, GD, and TA each requires the management of two parameters. The first pa-

rameter is the temperature, water level, threshold for each algorithm respectively. The

second parameter is the reduction step applied to the first parameter. The number of

combinations and fine-tuning will require great amount of experimental time, so it is

decided to simplify this process as follows: The reduction of the temperature, water

level or threshold will be made only when there is an improvement to the global best

solution. After preliminary experimentation with OI and BE, it is observed that around

500 improvements occur to the global best solution during the runtime of the search,

119

CHAPTER 5. LOCAL SEARCH ALGORITHMS

OI BE SA GD TA

35
0

40
0

45
0

50
0

55
0

60
0

65
0

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(a) nott1

●

OI EB SA GD TA

22
0

24
0

26
0

28
0

30
0

32
0

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(b) [nott1b

●

OI BE SA GD TA

40
60

80
10

0

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(c) S0.00V0.00

●

OI BE SA GD TA

40
60

80
10

0

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(d) S0.60V0.60

●

●

●

●

●

●

OI BE SA GD TA

30
0

35
0

40
0

45
0

50
0

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(e) S1.00V1.00

●

●

●

●

●

●

●

OI BE SA GD TA

10
0

15
0

20
0

25
0

30
0

35
0

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(f) P0.00 N0.00

●

●●

●

●
●

●

●

●

OI BE SA GD TA

15
0

20
0

25
0

30
0

35
0

40
0

45
0

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(g) P0.15 N0.15

●

●

●

●

●
●

●

●

OI BE SA GD TA

25
0

30
0

35
0

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(h) P0.25 N0.25

Figure 5.5: Objective function value plots for several instances in various acceptance/rejection methods

120

CHAPTER 5. LOCAL SEARCH ALGORITHMS

so the reductions in SA, GD, and TA are fine-tuned to make these algorithms operate

in OI mode after 500 improvements were made to the global best solution. In order to

achieve this balance, the following parameters are chosen:

• Simulated Annealing: initial temperature T = 50, decrement step d = 0.1.

• Great Deluge: initial water level W = 500, decrement step d = 1.

• Threshold Acceptance: initial threshold T = 50, decrement step d = 0.1.

In this test setup, each instance was given 20 runs (75 seconds each). The results

are given for eight different instances as box-whisker plots in Figure 5.5.

As it can be seen from the figures, it is not easy to decide which method performs

better than another. The large standard deviations of the results make each method

close to each other especially in terms of spread of the lower and upper quartiles. Also,

there are plenty of bad solutions encountered in the outliers of the box plots which is

mostly due to the algorithm getting stuck in a local optima pretty quickly.

However, it is observed that the performance of the accepting only improving solu-

tions over the global best solution is no worse than any other method with two param-

eters that needed to be fine-tuned. This gives only improving (OI) and to some degree

better or equal (BE) methods an advantage over other mechanisms because they are not

susceptible to poor selection of parameters associated with other acceptance/rejection

methods.

5.6.3 Complete Results on SVe150 and PNe150 Datasets

The complete results for SVe150 and PNe150 datasets are given in Table 5.1a and 5.1b

respectively. The results are obtained after 10 runs (180 seconds each). Columns µ

σ, and min represent the average best value, standard deviation, and minimum result

obtained after 10 runs. Columns SMP, SCP represent the average space misuse and

constraint penalties over 10 runs.

The most important drawback of the local search methods described in this chap-

ter is the high standard deviations as can be seen from Table 5.1a and 5.1b. Several

instances have standard deviations in the range of 60-80 while the average can be 2 or

3 times of this standard deviation. This indicates the instability of the algorithm. In

certain runs, this local search framework with mostly stochastic moves has a tendency

to yield very poor results due to inability to escape from local optima.

121

CHAPTER 5. LOCAL SEARCH ALGORITHMS

S V µ σ SMP SCP min

0.00 0.00 47.90 18.42 27.90 20.00 23.50

0.00 0.20 85.05 13.51 37.05 48.00 63.00

0.00 0.40 133.75 68.50 42.75 91.00 72.00

0.00 0.60 143.60 52.94 45.60 98.00 102.00

0.00 0.80 160.05 17.15 49.05 111.00 138.50

0.00 1.00 180.95 18.13 55.95 125.00 160.00

0.20 0.00 63.72 16.12 44.72 19.00 46.80

0.20 0.20 105.78 15.02 59.78 46.00 74.30

0.20 0.40 118.36 8.67 62.36 56.00 104.60

0.20 0.60 135.15 16.37 62.15 73.00 113.50

0.20 0.80 191.01 23.58 79.01 112.00 153.30

0.20 1.00 202.76 23.53 88.76 114.00 176.80

0.40 0.00 124.63 16.84 83.63 41.00 97.90

0.40 0.20 157.58 23.34 97.58 60.00 134.20

0.40 0.40 185.00 27.95 104.00 81.00 154.70

0.40 0.60 203.61 53.89 97.61 106.00 171.90

0.40 0.80 237.19 41.29 112.19 125.00 186.20

0.40 1.00 246.06 19.18 119.06 127.00 214.30

0.60 0.00 165.15 52.14 115.15 50.00 128.10

0.60 0.20 190.61 66.16 117.61 73.00 156.50

0.60 0.40 210.83 54.97 125.83 85.00 167.00

0.60 0.60 226.92 56.49 128.92 98.00 186.10

0.60 0.80 250.79 20.55 138.79 112.00 225.80

0.60 1.00 264.74 26.06 137.74 127.00 241.80

0.80 0.00 144.76 11.39 108.76 36.00 122.40

0.80 0.20 200.70 68.07 114.70 86.00 164.20

0.80 0.40 201.25 54.94 123.25 78.00 170.90

0.80 0.60 207.44 17.32 125.44 82.00 182.60

0.80 0.80 250.38 11.97 134.38 116.00 230.50

0.80 1.00 279.64 29.00 150.64 129.00 244.60

1.00 0.00 193.55 15.17 162.55 31.00 171.20

1.00 0.20 232.89 18.19 161.89 71.00 209.20

1.00 0.40 243.00 16.05 166.00 77.00 219.20

1.00 0.60 253.50 13.01 167.50 86.00 234.90

1.00 0.80 293.33 23.06 178.33 115.00 254.80

1.00 1.00 334.42 61.51 181.42 153.00 286.70

(a) SVe150 Instances

P N µ σ SMP SCP min

0.00 0.00 124.60 81.42 36.60 88.00 84.50

0.00 0.05 144.82 30.11 78.82 66.00 109.20

0.00 0.10 188.05 31.46 115.05 73.00 162.50

0.00 0.15 208.13 12.47 142.13 66.00 191.20

0.00 0.20 240.01 8.24 180.01 60.00 225.60

0.00 0.25 270.60 11.24 215.60 55.00 262.30

0.05 0.00 98.88 15.88 34.88 64.00 73.20

0.05 0.05 132.47 15.79 76.47 56.00 110.20

0.05 0.10 185.23 70.63 102.23 83.00 151.10

0.05 0.15 204.24 36.64 127.24 77.00 183.70

0.05 0.20 227.16 14.89 158.16 69.00 208.10

0.05 0.25 266.66 18.52 196.66 70.00 242.10

0.10 0.00 108.16 10.83 52.16 56.00 90.40

0.10 0.05 141.42 20.77 75.42 66.00 112.60

0.10 0.10 197.39 80.02 95.39 102.00 144.20

0.10 0.15 201.49 40.49 120.49 81.00 163.20

0.10 0.20 232.60 20.74 150.60 82.00 208.90

0.10 0.25 244.82 5.76 183.82 61.00 235.60

0.15 0.00 122.06 10.21 68.06 54.00 107.10

0.15 0.05 150.15 51.90 81.15 69.00 116.20

0.15 0.10 182.23 46.48 96.23 86.00 137.20

0.15 0.15 208.96 84.57 118.96 90.00 153.00

0.15 0.20 225.85 19.42 146.85 79.00 193.60

0.15 0.25 248.49 22.12 171.49 77.00 219.60

0.20 0.00 125.79 8.82 79.79 46.00 113.10

0.20 0.05 181.75 70.93 93.75 88.00 139.10

0.20 0.10 171.86 19.94 102.86 69.00 144.70

0.20 0.15 205.51 29.21 118.51 87.00 161.00

0.20 0.20 214.18 16.38 138.18 76.00 190.40

0.20 0.25 231.85 15.94 156.85 75.00 209.50

0.25 0.00 160.84 58.20 95.84 65.00 137.80

0.25 0.05 192.69 77.31 105.69 87.00 148.10

0.25 0.10 175.61 16.90 106.61 69.00 160.70

0.25 0.15 196.61 57.89 114.61 82.00 163.90

0.25 0.20 212.17 17.50 133.17 79.00 190.50

0.25 0.25 226.08 19.15 146.08 80.00 204.90

(b) PNe150 Instances

Table 5.1: Experimental results on the SVe150 and PNe150 dataset instances using the local search algo-

rithm

5.6.4 Comparison of Local Search and Integer Programming Models

In this section, we are going to analyse the difference between the local search algo-

rithm (LS) described in this chapter and the integer programming models presented in

Chapter 4. The mathematical models without and with the floor variables are abbrevi-

ated as IP1 and IP2 respectively.

122

CHAPTER 5. LOCAL SEARCH ALGORITHMS

−50

0

50

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆min of IP1 − LS in SVe150

S

V

(a) ∆min of IP1 − LS

−30

−20

−10

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆min of IP2 − LS in SVe150

S

V

(b) ∆min of IP2 − LS

Figure 5.6: Differences in minimum penalty (∆min) after applying IP models without/with floor variables

(IP1 and IP2) and local search (LS) on SVe150 dataset (IP1 − LS and IP2 − LS). IP1, IP2, and

LS are represented by blue, green, and red regions respectively.

−60

−40

−20

0

20

40

60

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆min of IP1 − LS in PNe150

P

N

(a) ∆min of IP1 − LS

−30

−20

−10

0

10

20

30

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆min of IP2 − LS in PNe150

P

N

(b) ∆min of IP2 − LS

Figure 5.7: Differences in minimum penalty (∆min) after applying IP models without/with floor variables

(IP1 and IP2) and local search (LS) on PNe150 dataset (IP1 − ELS and IP2 − LS). IP1, IP2, and

LS are represented by blue, green, and red regions respectively.

123

CHAPTER 5. LOCAL SEARCH ALGORITHMS

In Figures 5.6 and 5.7, the minimum total penalty obtained for each instance with

LS is compared to the ones obtained by IP1 and IP2 using SVe150 and PNe150 datasets

respectively. IP1 or IP2 and LS were given equal amount of running time: LS was given

10 runs (3 minutes each), while IP1 and IP2 were given a single run of 30 minutes.

The x and y axes represent slack space rate (S) and violation rate (V) in Figure 5.6

while they represent positive (P) and negative (N) slack space rate in Figure 5.7. In these

contour plots, IP1 or IP2 is better than LS in obtaining the minimum total penalty when

a region becomes more blue or green respectively. LS is better in redder regions. IP

models and LS algorithms are about equal in obtaining the minimum penalty in white

or pale coloured regions.

From a general analysis of the results, while the results in LS are of acceptable

quality, there are certain drawbacks of the current algorithm. The results are close to

the first IP model without the floor variables (IP1). However, they are significantly

behind the second IP model that utilise the floor variables (IP2).

If the instances in SVe150 are analysed in Figure 5.6a, it is observed that IP1 is bet-

ter than LS in obtaining the minimum total penalty when the soft constraint violation

penalty is expected to be low (in blue regions). However, when the parameter V in-

creases, it is observed that LS begins to perform better in obtaining the minimum total

penalty (in redder regions). It is observed that regardless of S rate, the variation of ex-

pected space misuse does not differentiate either IP1 or LS in obtaining the minimum

total penalty.

The performance is better for LS when the instances in PNe150 are analysed in Fig-

ure 5.7a. LS is generally better than IP1 in this instance set (pale to darker red regions).

The performance of LS is usually better than IP1 in high N region where the instance is

expected to have high overuse penalty due to lack of capacity. LS is significantly better

than IP1 in P = N = 0.15 region where IP1 tends to struggle.

However, LS is not competitive with IP2 in obtaining the minimum total penalty.

In SVe150 instances (Figure 5.6b), the dominance of IP2 becomes stronger in low V rates

(darker green regions). In PNe150 instances (Figure 5.7b), IP2 is consistently better than

LS apart from P = N = 0.15 (similar to IP1 in this case).

124

CHAPTER 5. LOCAL SEARCH ALGORITHMS

5.7 Conclusion

In this chapter, a general iterated local search framework that used stochastic relocate

and swap moves was proposed. This iterated local search framework periodically re-

tracted back to the best obtained solution encountered during the search and contin-

uously improved this best solution. This repeated retracting back to the best solution

was not investigated in previous heuristic designs in OSA literature and it might be one

of the most important reasons for poor performance of previous heuristic algorithms

for this problem (when such results were compared to the results obtained by integer

programming models proposed in Chapter 4). Therefore, this framework will be kept

in upcoming local search based algorithms that will be proposed in Chapters 6 and 7.

It was observed that combining relocate and swap move operators to define and

traverse the neighbourhood was beneficial to the performance of this algorithm. For

borderline cases where the algorithm operated with just a single random move op-

erator, the results were less than satisfactory. This signified the importance of using

multiple neighbourhood structures when the majority of the components of a solution

method was stochastic.

Another issue considered in this chapter was a mechanism which decided how

to proceed when a solution after a stage of local search was worse than the current

best global solution. Descent methods, simulated annealing, threshold acceptance, and

great deluge algorithm were tested. The methods apart from descent methods required

additional parameters that needed to be fine-tuned. Although a general purpose pa-

rameter handling procedure was implemented, it was not observed that results were

significantly better than only accepting the solutions that were better than the global

best solution. For the rest of the thesis, the acceptance criterion will be taken as only

improving in order to reduce the number of parameters in the algorithms in Chapters 6

and 7.

One of the most obvious drawbacks of the algorithm developed in this chapter was

the large standard deviation of the results. Several runs were observed where the algo-

rithm got stuck in local optima points quickly and was unable to improve the results.

Compared to the integer programming models described in Sections 4.2 and 4.5, the

local search algorithm was only competitive with the first integer programming model

without the floor variables (IP1) while it was completely dominated by the model with

the floor variables (IP2) when the minimum penalty obtained was minimised. In the

next chapter, more greedy move operators will be proposed in order to tackle the large

deviation in best obtained total penalties due non-avoidance from local optima.

125

CHAPTER 6

Evolutionary Local Search

Algorithm

6.1 Introduction

In this chapter, an evolutionary local search algorithm is proposed for solving the OSA

problem. At its core, this algorithm retains the iterated local search framework utilised

in Chapter 5 to intensify the search around the global best solution; however, an almost

opposite approach is taken here in regards to defining and traversing the neighbour-

hood of a given solution. The algorithm mostly relies upon the relocate move that sends

an entity from one room to another. The selection of the move and acceptance/rejection

of such a move are performed in a very greedy manner. In order for this method to

work efficiently, a very fast objective function that can handle nine different constraints

and space misuse components is developed. A local search algorithm operating with a

relocate move (sending an entity to another room) works on a search space that changes

very slowly over successive move operations. By focusing on a very efficient imple-

mentation of a relocate move in local search, finding a very good move over a large

search space becomes easier. But more importantly, this greedy implementation allows

the update of specific locations that are affected by the move. This in turn speeds up

finding the next best move in the successive operations.

This chapter is organised as follows: Section 6.2 presents the outline for the pro-

posed evolutionary local search algorithm (ELS). The details of the evolutionary com-

ponents of the algorithm are explained in Section 6.3. The implementation of the local

search stage of the algorithm with delta and update stages is explained in Section 6.4.

Experimental results on effects of the parameters of the algorithm and comparative

analysis are presented in Section 6.5. Conclusions are given in Section 6.6.

127

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

6.2 The Algorithm Outline

An evolutionary local search algorithm (ELS), also referred to as a memetic algorithm is

developed for solving the OSA problem. A memetic algorithm [Moscato, 1989] is tra-

ditionally the hybridisation of a genetic algorithm [Goldberg, 1989] with local search

mechanisms. The goal of the evolutionary components of the algorithm is typically

jumping to a different region of the search space (exploration or diversification). The lo-

cal search is then applied to quickly explore this specific region of the search space

(exploitation or intensification).

A general outline of the ELS algorithm is given in Figure 6.1. ELS contains a se-

ries of iterations of evolutionary and local search operators until a termination criterion

is met (which is usually the time limit being reached). The evolutionary components

include selection of parents for crossover, crossover, mutation, and replacement opera-

tion. The children solutions generated by the evolutionary components are improved

using a local search method which is similar to iterated local search [Lourenco et al.,

2002] and ruin and recreate [Schrimpf et al., 2000]. The local search includes methods for

searching the whole relocate neighbourhood as quickly as possible and allows rapid up-

dates to the cost change of each move in the neighbourhood. The local search method

is described in great detail in Section 6.4.

Input: input file with entities, rooms, and constraints.

Output: best solution (an entity-room mapping)

1: Randomly initialise a population of solutions

2: repeat

3: Randomly select two parent solutions for crossover

4: Apply Crossover to produce two children

5: Apply Random mutation on two children

6: Apply Allocation mutation on two children

7: Apply Same room and proximity constraint based mutation (optional)

8: Apply Local Search on two children produced

9: Replace the parents with the best solution encountered so far in ELS

10: until Time limit is reached

Figure 6.1: Evolutionary local search (ELS) algorithm

128

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

6.3 Evolutionary Components

Solution Representation and Population: The algorithm proposed here uses a stan-

dard encoding of fixed-size arrays. The length of a single solution is equal to the

number of entities and the content of each location represents the room the entity is

placed into. Small populations of 10 to 20 solutions are utilised. The solutions in the

population are initialised with a mixture of randomness and enforcement of allocation

constraints. A majority of entities associated with allocation constraints (about ninety

percent) is placed first, then the remaining entities are allocated to random rooms.

At each generation, two solutions are selected randomly from the population. Dif-

ferent selection mechanisms such as roulette-wheel, ranking, or tournament based se-

lection are tested. Since the number of solutions in the population is rather small, and

the search is mostly governed by the local search heuristic, the population usually con-

tains a good number of high quality solutions with low diversity. The diversity mea-

sure between two candidate solutions in the population can be taken as the number of

different locations in two solutions (the number of entities that are placed in different

rooms). The population diversity can be measured as the sum of pairwise diversities

of each two solutions in the population. Coupled with a rather aggressive replacement

strategy, non-random selection methods usually reduce the diversity of the population

too drastically. Due to these issues, it is decided on the random selection of solutions.

In the current implementation, a steady state population which creates two chil-

dren from two parents at each generation was implemented. A trans-generational pop-

ulation that creates and replaces a whole size population at each generation was also

tested. However, preliminary experiments yielded no discernible performance differ-

ences.

Crossover: Two solutions (parents) are selected for crossover. Different crossover op-

erators are examined including one and two point or uniform crossovers. Also, several

problem specific crossover operators based on the preservation of allocations within

rooms and floors are proposed. These crossover operators will be explained in more

detail in Section 6.3.1.

Mutation: After the crossover, different mutation operations are applied to the pro-

duced children. The first one is the traditional random mutation operator in which

a randomly selected location is changed (which effectively sends the entity from one

room to another). The mutation rate m (which is the percentage of the entities that are

129

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

randomly subjected to mutation) is an important parameter of the algorithm. The sec-

ond mutation operator is based upon the allocation constraint. The operator selects a

randomly high number of violated allocation constraints and forces them to be satis-

fied by setting the corresponding location in the solution accordingly. Other mutation

operators based on the enforcement of different constraints are also proposed. These

mutations will be described in 6.3.2.

Replacement: After the application of mutation, each child is improved using the

local search procedure which is described in Section 6.4. If the local search procedure

produces a best solution during this stage starting with the child, this new best ob-

tained solution encountered during the search replaces the parent. Otherwise, the pre-

vious best solution encountered throughout the search replaces the parent. This can be

considered as a very aggressive replacement strategy which can reduce the diversity of

the population quite fast. However, due to improved performance, this is the chosen

strategy.

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

 parent1 r4 r1 r3 r4 r4 r3 r2 r2 r3 r3 r4 r1

 parent2 r3 r2 r3 r4 r4 r2 r2 r1 r1 r3 r3 r2

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

1-PTX
child1 r4 r1 r3 r4 r4 r2 r2 r1 r1 r3 r3 r2

child2 r3 r2 r3 r4 r4 r3 r2 r2 r3 r3 r4 r1

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

2-PTX
child1 r4 r1 r3 r4 r4 r2 r2 r1 r3 r3 r4 r1

child2 r3 r2 r3 r4 r4 r3 r2 r2 r1 r3 r3 r2

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

UX
child1 r4 r2 r3 r4 r4 r2 r2 r1 r3 r3 r3 r1

child2 r3 r1 r3 r4 r4 r3 r2 r2 r1 r3 r4 r2

 perm1 1 2 1 1 2 2 1 2 1 1 2 1

 perm2 2 1 2 2 1 1 2 1 2 2 1 2

Figure 6.2: Traditional crossover operators for office space allocation

130

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

6.3.1 Crossover Operators

Several traditional crossovers are considered for the evolutionary stages of the algo-

rithm. These crossovers are one-point-crossover (1-PTX), two-point-crossover (2-PTX), and

uniform crossover (UX) as described in Section 3.6.1. These crossovers operate on gen-

eral integer variable fixed size array formulations where each location in the array cor-

responds to an entity and the content of each location signifies the room the entity is

going to be allocated to. A sample application of three traditional crossover operators

on two parent solutions is depicted in Figure 6.2.

Several OSA specific crossover operators that utilise the room and floor informa-

tion in OSA are also developed and tested. These crossover operators are inspired from

the greedy partition crossover proposed for solving the graph colouring problem [Galin-

ier and Hao, 1999]. These problem specific crossovers are:

 r1 r2 r3 r4

 parent1 e8 e9 e2 e6 e7 e12 e1 e3 e10 e11 e4 e5

 parent2 e2 e12 e7 e8 e3 e6 e9 e10 e1 e4 e5 e11

 r1 r2 r3 r4

RX-L
child1 e8 e9 e7 e2 e12 e1 e3 e10 e11 e6 e4 e5

child2 e2 e12 e6 e7 e1 e3 e6 e9 e10 e4 e5 e11

 perm1 parent1 - r1 parent2 - r2 parent1 - r3 parent2 - r4

 perm2 parent2 - r1 parent1 - r2 parent2 - r3 parent1 - r4

 r3 r2 r4 r1

RX-P
child1 e3 e6 e9 e10 e2 e7 e12 e1 e4 e5 e11 e8

child2 e1 e3 e10 e11 e7 e8 e4 e5 e6 e9 e2 e12

 perm1 parent2 - r3 parent1 - r2 parent2 - r4 parent1 - r1

 perm2 parent1 - r3 parent2 - r2 parent1 - r4 parent2 - r1

Figure 6.3: Room based crossovers (RX-L and RX-P)

Room Based Crossover: In this crossover, the goal is to transmit the allocations in

each room from the parent to the children as close as possible. This operator first creates

a room content list for each parent: it goes through each entity, finds the room the entity

is allocated to in that parent and places that entity into the corresponding location in

the room content list. In linear room based crossover (RX-L), the algorithm starts with the

room having the first index (which is r1). It transmits the entities in this room from a

randomly selected parent and transmits them to one of the children. The entities in the

room content list of the other parent are transferred to the other children. The entities

that are transmitted from one parent are deleted from the room content list of the other

parent after each transfer.

131

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

The transmission-deletion continues from the first room to the last one in linear

room based crossover (RX-L). However, this crossover has an inherent bias to the rooms

indexed with lower ids because it prioritises the transmission of these rooms due to the

simpler implementation. In order to reduce this bias, a random permutation of rooms is

created in permutation room based crossover (RX-P) at each crossover attempt. This allows

different orderings for transmissions of the room contents at each crossover. Entities

that cannot be allocated in this way are assigned randomly to the children at the end.

Example applications of room based crossovers (RX-L and RX-P) are presented

in Figure 6.3. Two children solutions (child1 and child2) are produced from two par-

ent solutions (parent1 and parent2) using the depicted permutation arrays (perm1 and

perm2).

 f1 f2

 parent1 e2 e7 e8 e12 e1 e3 e4 e5 e6 e9 e10 e11

 parent2 e2 e6 e7 e8 e9 e12 e1 e3 e4 e5 e10 e11

 f1 f2

FX-L
child1 e2 e7 e8 e12 e9 e1 e3 e4 e5 e10 e11 e6

child2 e2 e6 e7 e8 e9 e12 e1 e3 e4 e5 e10 e11

 perm1 parent1 - f1 parent2 - f2

 perm2 parent2 - f1 parent1 - f2

 f2 f1

FX-P
child1 e1 e3 e4 e5 e10 e11 e9 e2 e7 e8 e12 e6

child2 e1 e3 e4 e5 e6 e9 e10 e11 e2 e7 e8 e12

 perm1 parent2 - f2 parent1 - f1

 perm2 parent1 - f2 parent2 - f1

Figure 6.4: Floor based crossovers (FX-L and FX-P)

Floor Based Crossover: In this crossover, the goal is to transmit the allocations within

a whole floor in the parent to the children. This crossover is intended for OSA cases

where there is a clear structuring of rooms in floors (or sections of the buildings) and

preserving promising floor structures to future generations in ELS may be beneficial.

For each parent, a floor content list is generated. Each location in a floor content list is

filled with the entities allocated to that floor. There are again two variants similar to the

room based crossover. In linear floor based crossover (FX-L), the algorithm starts with the

first floor content of a randomly selected parent and transmits it to the first child. The

first floor content of the non-chosen parent is transmitted to the second child. Trans-

mitted entities are deleted from the opposite parents in order to prevent duplications.

This operator continues like a uniform crossover, selecting the next floor content in

order and transmits the entity-room mapping from a randomly chosen parent to the

132

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

children.

This transmission and deletion process goes from the first floor to the last one in

linear floor based crossover (FX-L). In the end, some of the children may lack some of

the entity-room mappings, in this case the missing mappings are randomly assigned.

Since FX-L biases the floors with low indices, permutation floor based crossover (FX-P) is

also developed. Similar to RX-P, in this crossover, a random permutation of floors is

created, and the entity-room mappings in the floors are transmitted according to the

order in the permutation.

Example applications of floor based crossovers (FX-L and FX-P) are presented in

Figure 6.4. Two children solutions (child1 and child2) are produced from two par-

ent solutions (parent1 and parent2) using the depicted permutation arrays (perm1 and

perm2).

6.3.2 Mutation Operators

There are various mutations considered over the development of the algorithm. Most

commonly used one is the traditional one point mutation. This mutation procedure

goes through all entities and randomly chooses a low percentage of them for mutation.

The disruption is performed by randomly assigning a new room different from the one

the entity is currently allocated to. This random mutation operator is one of the most

important steps in the ELS algorithm because it is the main method for introducing

new information to the search by creating new entity-room allocations that are not

present in the population.

Apart from the traditional one point mutation, several constraint based mutations

that enforce the satisfaction of such constraints are also considered. Some of these

mutations are as follows:

Allocation Mutation: In this mutation, the algorithm creates a very large subset of

the hard and soft allocation constraints (usually %80-%90) and relocates the entity to

the room specified in the constraint. It is observed that this mutation is very effective

when coupled with the traditional one point mutation; therefore, these two form an

important basis for the ELS algorithm.

Same Room Mutation: The algorithm takes a subset of hard and soft same room con-

straints and moves and checks the entities associated with such constraints in the cur-

rent allocation. If the two entities are not in the same room, then one of the entities is

133

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

moved to the room the other one is currently in. If the two entities are already in the

same room, one of them might be moved to another room with a very low probability,

otherwise they stay in the room they are currently allocated to.

Greedy Mutations based on Proximity Constraints: Based on the three proximity

constraints (adjacency, nearby and away from), three greedy mutations that try to correct

the respective constraint violations were developed. These operators can also be re-

garded as repair operators tailored to specific constraints due to the greedy corrective

nature of the operator. Note that these mutation operators are optional in this evolu-

tionary local search algorithm. It was observed that addition of these mutations did not

significantly improve or worsen the performance of the algorithm. However, for po-

tential future instances with large number of proximity constraints, it may be beneficial

to use these greedy mutation operators.

• Adjacency Mutation: The entities in a subset of adjacency constraints are considered

in this mutation. If two entities are allocated to the rooms that are not adjacent to

each other, one of the entities is chosen and randomly sent to one of the rooms that

are adjacent to the room the other entity associated to the constraint is currently

placed. If two entities are already in adjacent rooms, an entity might be sent to a

non-adjacent room with a very low probability.

• Nearby Mutation: This mutation aims to fix the nearby constraints. Each binary

nearby constraint is associated with a group head and several binary nearby con-

straints form a group structure. Thus, the mutation checks the entities associated

with a group, and moves the entities to the rooms that are near (in the same floor)

to the room the groups head is allocated to. If the entity is already in the same

floor with the group head, it might be sent to another floor with a very low prob-

ability.

• Away from Mutation: In this mutation, the entities in a subset of hard and soft

away from constraints are considered. If two entities are near to each other (in the

same floor), then one of the entities is moved to rooms that are away from the

other one (to another floor). If these entities are already in different floors, one of

them might be moved to the floor the other entity is placed to with a very low

probability.

134

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

Input: input solution

Output: output solution

1: Initial calculation of the Delta matrix ∆ (Delta Stage)

2: for = 1→ h iterations do

3: Select E′ = |E|/d entities randomly from the entity set

4: Find minimum (e, r2) in ∀e ∈ E′ ∀r ∈ R (e, r)

5: Make move (e, r1, r2)

6: Update the locations in ∆ affected by the move (e, r1, r2)

Figure 6.5: Local search stage in ELS

6.4 Local Search

The main design goal in the local search operation is to apply a short but aggressive

search to cover the relocate neighbourhood of a candidate solution as quickly as possi-

ble. A local search method is implemented based upon searching a large portion of the

relocate (one entity moved from one room to another one) neighbourhood of the current

solution as fast as possible.

There are efficient and fast update algorithms on the objective cost function in the

literature such as delta evaluation in [Ross et al., 1994]. For an efficient implementation

of greedy local search in this thesis, fast cost calculation methods that involve the space

misuse and the nine different types of constraint violations are required. In order to

identify the cost changes associated with each move, a cost change matrix called ∆ is

used. The ∆ matrix is of size |E||R| where each location (e, r) corresponds to a move

of sending the entity e from its current location to another room r and holds the cost

change of making such a move. There are two steps to maintain the ∆ matrix: delta

and update stages. These two will be described in Sections 6.4.2 and 6.4.3 respectively.

The outline of the local search stage is given in Figure 6.5.

6.4.1 Neighbourhood in Evolutionary Local Search Algorithm

ELS algorithm described in this section only uses greedy relocate moves to define and

traverse the neighbourhood unlike the LS algorithm described in Chapter 5 which uses

both relocate and swap moves. The swap operator was dropped in ELS due to following

reasons:

Delta Table Updates for Swap Moves: One of the design goals for developing ELS

was to test the greedy implementation of move operator using ∆ table as described in

135

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

Section 6.4.3. An exact implementation of swap operator that gives correct changes in

the objective cost function can be too costly in design and coding time.

Regardless of the current solution during the search, all relocate moves apart from

the ones that send the entity to the room it is already allocated to will be valid. There-

fore, all relocate moves that sends any entity to any room can be defined beforehand

and whole ∆ table can be statically kept in the memory. This is not the case in swap

move because not all swap moves are allowed given a current solution (two entities in

the same room cannot be swapped for example); therefore, ∆ table for swap move will

require some dynamic checks or it might be recreated dynamically in each iteration.

A bigger problem is the cost update calculation for the swap moves. It is easy to

update the cost change values in ∆ table for relocate moves after a swap move. The swap

move can be divided into two successive relocate moves and two update operations

for relocate move can be performed. However, the converse case of updating the cost

change values in ∆ table for swap moves after a relocate or swap move is not easy. This is

a complex operation and not necessarily an efficient one especially after a swap move.

It has to consider the potential changes of swap moves in ∆ table after two successive

relocate moves from which a single swap move is built.

An approximate cost update procedure was tested that created the ∆ table for swap

operation by adding two different ∆ tables that were generated by applying two relocate

moves individually. However, the results with this approximate method were never

better than just using the relocate move alone in the search.

Hybrids of LS and ELS: Since, it is not easy to develop an update procedure for

greedy swap move similar to greedy relocate move as in Section 6.4.3, several hybrids of

LS and ELS were tested in the local search stage. The swap move was taken as stochastic

as in Section 5.3. The relocate move was taken as greedy as in this chapter.

Several performance issues were encountered during the tests of this hybrid. The

length of the local search stage was one of the major issues. The random swap move in

LS required a higher number of local search move operations at each generation of ELS.

On the other hand, greedy relocate move required lower amount of local search move

operations. This was due to the opposite nature of random and greedy move operators.

A single random swap move would be quick but more of them will be required to

find a quality solution. A single greedy relocate move that searched a large section of

the complete neighbourhood would be expensive; however, a smaller amount of such

moves would be required to find high quality solutions.

136

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

Hybridisation of these two moves within ELS was not very successful. If random

swap moves were embedded within the greedy relocate moves in a short local search

stage, poor results were observed. The algorithm was also implemented by not em-

bedding these two moves as well. In this case, it was observed that usually one move

(either relocate or swap) took over the search process and poor synergy between two

moves was observed as a result unlike the case in Section 5.6.1.

Consequently; due to the implementation, coding, embedding and poor synergy

problems associated with swap move, ELS only used relocate moves that were greedily

implemented using fast cost update procedure with ∆ table.

6.4.2 Delta Stage

This stage is the initial calculation of the ∆ matrix given a current solution. This stage

incrementally calculates the whole single-move neighbourhood of a candidate solu-

tion. It is a very costly operation and must be used once after a large change is made

on the candidate solution. Typical examples of a large change on the candidate solution

are crossover operators, large mutation/perturbation operators, partial or full reinitial-

isation of a candidate solution. In these scenarios, it is usually necessary to perform

a recalculation of the ∆ matrix through the delta stage. In the current algorithm, this

is the first step in the local search phase after children solutions are generated by the

crossover and the mutation operators. This algorithm is derived from the fast cost cal-

culation procedure for the relocate move described in Section 5.5. The delta stage in the

ELS algorithm is a cumulative calculation of each possible relocate move.

6.4.3 Update Stage

After a single move (e, r1, r2) has been applied to the solution (entity e is moved from

room r1 to r2), certain regions of the ∆ matrix have to be updated. The algorithm goes

through all constraints associated with entity e, and rooms r1 and r2 and only updates

the locations that are affected by this single move (e, r1, r2). The affected locations (il-

lustrated in Figure 6.6) are as follows:

When an entity e is moved from room r1 to r2, we must check whether there should

be a change in space misuse of moving the rest of the entities to these two rooms in the

next iteration of the local search. This corresponds to the locations ∀e′ ∈ (E− e)(e′, r1)

and (e′, r2) in ∆ matrix (blue columns). Since the space usage in r1 is going to be reduced

and the space usage in r2 is going to be increased, the algorithm checks the difference

of the space misuse of sending the entities ∀e′ ∈ (E− e) to r1 and r2 before and after

137

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

R
r1 r2

f

E e

g

Figure 6.6: Locations affected by the move (e, r1, r2). The e row, and r1 and r2 columns are always affected

at each relocate move. Update on f and g rows depend upon the constraint and the allocations

in r1 and r2

the move is made and updates the corresponding location accordingly. Additionally,

the locations ∀r ∈ (R− r2) f ∈ Er1(f , r) and ∀r′ ∈ (R− r1) g ∈ Er2(g, r′) also need to

be updated (red regions). This corresponds to sending an entity that is already present

in either r1 or r2 to all the other rooms and updating the space misuse accordingly.

The capacity constraint (that a specific room should not be overused) needs a sim-

ilar update on the same locations as in space misuse calculations described above.

The algorithm checks whether affected rooms have space overuse before and after the

move, whether moving the other entities to rooms r1 or r2 prevents or causes an overuse

before and after the move, and updates the corresponding locations accordingly.

For the not sharing constraint (that an entity should not share a room with others),

the locations ∀e′ ∈ (E− e)(e′, r1) and (e′, r2) need to be updated because the numbers

of entities in rooms r1 and r2 are changed. Sending any other entity to r1 or r2 might

change the not sharing penalty if the rooms r1 and r2 contain entities that should not

share the rooms with others. Additionally, the locations ∀r ∈ (R− r2) f ∈ Er1(f , r) and

∀r′ ∈ (R− r1) g ∈ Er2(g, r′) might or might not require an update operation.

If entity e has any of same room, not same room, adjacency, nearby, and away from con-

straints with another entity f , then the locations ∀r ∈ R (f , r) need updating. These

locations correspond to the moves that send the entity f to other rooms. If the con-

straint is satisfied before the move and not satisfied later or in the opposite case (that

the constraint is not satisfied before the move and now it is satisfied), depending upon

the constraint, the respective constraint penalty should be either subtracted or added

to ∀r ∈ R (f , r).

138

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

There are four sub-conditions in same room, not same room, adjacency, nearby and

away from constraints while evaluating how the updates should be performed. In same

room and not same room constraints, the first check is about whether the entities were

in the same room or not before the relocate move. The second check is performed based

upon whether the entities are in the same room or not after the relocate move is per-

formed. There are four possible outcomes based on these two checks (each check has

a true or false outcome). Update algorithms work by checking these four possible out-

comes and update the corresponding locations appropriately. In adjacency, nearby, and

away from constraints, the checks are about whether the rooms the entities are placed

into are adjacent or near to each other before and after the relocate move. Again, the

update algorithms check four different outcomes and update the corresponding loca-

tions.

During the experiments, it is observed that roughly three to five percent of the ∆

matrix needs to be updated whenever a move is made. This percentage is expected to

go down if the number of rooms is increased. This is due to the fact that regardless

of the number of rooms in the instance, there will always be two rooms (the rooms

r1 and r2 where the entity e is placed before and after the relocate move) that have to

checked after each relocate move for ∆ update. As a result, the update stage will yield

in very high speed-ups for algorithms that search a large portion of the search space at

each step (such as tabu search or steepest descent). However, it is not desirable to use

the update stage in algorithms that operate on the acceptance or rejection of random

moves (such as the local search methods tested in Chapter 5).

The update algorithm must also consider the hard constraints. In this work, it is

decided not to use a very strict hard constraint checking mechanism that disables each

move that violates a hard constraint. Instead, a very large penalty value is assigned for

each hard constraint violation. This eliminates the need for strict hard constraint check

coding because the moves that lead to invalid solutions (due to the violation of hard

constraints) have already high penalty values therefore these moves are least likely to

be selected. This approach has a theoretical drawback of traversing solutions in the in-

feasible region. In practice, it is observed that the algorithm quickly eliminates all hard

constraints and begins working on the minimisation of the soft constraint violations

and space misuse.

The following subsections describe the respective update algorithms for space mis-

use and each constraint in more detail. In order to preserve the format and flow of

this thesis, the pseudo-codes associated with each update algorithm are moved to Ap-

pendix B.

139

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

Update Algorithm for Space Misuse

The update algorithm for space misuse is the most important part of the whole update

stage. This update algorithm has to run after each relocate neighbourhood move and

affects each entity in the problem. In order to speed up this process, matrix ∆sp of size

|E||R| is used. This matrix ∆sp is similar to the total cost change matrix ∆ but it only

holds the cost changes in space misuse.

The update algorithm iterates through each entity i and checks the room each i is

allocated to. There are three conditions considered. The pseudo-code of the update

algorithm for space misuse calculations is given in Figure B.1. For the sake of simplifi-

cation, the symmetric case (similar to the condition as in room r1) associated with room

r2 is omitted.

• This condition is given at lines 3-23 of Figure B.1. Entity i is in room r1 (the room

entity e is moved from). In this step, first the previous (before the move) and cur-

rent (after the move) misuse penalties with and without entity i being moved to

room r1 are calculated. By using these four values, the first component of change

in space misuse (δsm1) is calculated. In the second step, the algorithm iterates

through each room. For the case of room r2, the previous and current misuse

penalties, and the necessary cost change value (δsm2) are calculated. For the loca-

tion ∆ir2 the incremental change required is δsm1 + δsm2. For other locations ∆ij,

the incremental change is simply δsm1.

• This condition is given at lines 24-26 of Figure B.1. Entity i is in room r2 (the

room entity e is moved to). This case is a symmetrical version of the first one.

Hence, the cost change in this condition is calculated similar to the first condition

by swapping room r1 with r2.

• This condition is given at lines 28-36 of Figure B.1. Entity i is in neither room r1

nor room r2. This is the most encountered and hence the most important case

because the majority of the entities will not be either in r1 or r2. The algorithm

calculates the space misuse in rooms r1, r2 and room entity i is in and by using

the ∆sp and ∆ matrices, updates the locations ∆ir1 and ∆ir2 accordingly.

Update Algorithm for Same Room and Not Same Room Constraints

The pseudo-codes for the update algorithms for same room and not same room are given

in Figures B.2 and B.3 respectively.

140

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

The update algorithm for same room and not same room contains four conditions. For

the same room constraint, the application of the update algorithm in these conditions is

as follows:

• Entities e1 and e2 are in the same room before and after the relocate move. This

condition requires no update. This condition is given at lines 1-2 of Figures B.2

and B.3 for same room and not same room constraints respectively.

• Entities e1 and e2 were previously in the same room but now e1 is moved to an-

other room. In this case, all cost changes associated with the rooms that e2 can

be sent to, go through a penalty reduction. This condition is given at lines 3-8 of

Figures B.2 and B.3 for same room and not same room constraints respectively.

• Entities e1 and e2 were previously not in the same room but now they are in the

same room. In this case, all cost changes associated with the rooms that e2 can be

sent go through a penalty increase. This condition is given at lines 9-14 of Figures

B.2 and B.3 for same room and not same room constraints respectively.

• Entities e1 and e2 were previously not in the same room and they are still not in

the same room. In this case, the cost change of moving e2 to the previous room

of e1 is increased while the cost change of moving e2 to the current room of e1 is

decreased. This condition is given at lines 15-18 of Figures B.2 and B.3 for same

room and not same room constraints respectively.

Not same room constraint is the exact opposite of same room constraint. Therefore,

at each step, the negative operation is performed. The penalty increases at specific

location are replaced by penalty reductions and vice versa.

Update Algorithm for Not Sharing Constraint

The update algorithm for the not sharing constraint is performed every time a relo-

cate move is performed. The update operation involves every entity because the cost

changes of moving each entity to the two rooms affected by the relocate move have to

be modified. This is because of the possibility of a change in number of entities with

the not-sharing constraint in either of the two rooms affected.

The pseudo-codes for the update algorithm for not sharing constraint is given in

Figure B.4 and B.5. For the sake of simplicity, the penalty values for hard and soft

constraints are taken equal in the pseudo-code.

141

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

There are two stages in this update algorithm. The first stage updates the move

costs of sending every entity to room r1 (the room the entity e was previously located

in). The second stage updates the moves costs of sending every entity to room r2 (the

room entity e is moved to after the relocate move operation).

Stage 1 - Updating the cost changes of moving entities to room r1: Entity e is moved

out of room r1, The algorithm iterates through each other entity i in the entity set E and

checks the room it is located in. There are two sub-conditions in this stage:

• This condition is given at lines 3-21 of Figure B.4. Entity i is already in room r1.

The algorithm checks the number of entities in the room. If room r1 has currently

only one entity and neither entity e nor i has a not sharing constraint defined over

them, then no update is necessary. However, if both of them have the constraint,

then an increment in cost change is necessary, because moving i out of room r1

no longer eliminates the constraint violation since entity e is already removed.

If there are two entities residing in room r1, the algorithm checks the number of

entities which have not sharing constraint. If there is at least one such entity, then

a penalty reduction is required because moving entity i out of room r1 now elim-

inates a constraint violation. After the necessary change is calculated, then the

algorithm iterates through each room j and adds the change to each ∆ij location.

• This condition is given at lines 23-32 of Figure B.4. Entity i is in some other room

other than room r1. Again, the number of entities in room r1 is checked. If room r1

is currently empty, then whether entities e and i have not sharing or not is checked.

If none of them has the constraint, then no update is required. If only one of

them has the constraint, then a single penalty reduction is applied because one

violation no longer occurs when entity i is moved to room r1. If both entities i

and e have the constraint, then double penalty reduction is required, because two

constraint violations no longer can happen.

Stage 2 - Updating the cost changes of moving entities to room r2: Entity e is moved

to room r2. The algorithm iterates through each other entity i and checks the room it is

located in. There are again two sub-conditions in this stage:

• This condition is given at lines 3-17 of Figure B.5. Entity i is already in room r2.

In this case, if the number of entities in room r2 is currently 2, and either entity

i or e have a not sharing constraint, then a penalty reduction is applied. If both

142

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

entities in room r2 have not sharing constraint, then an additional penalty reduc-

tion is applied. This is due to the elimination of one or two previous violation of

moving i to r2. If there are three entities in room r2 instead and the third entity

has a not sharing constraint on itself, then a penalty increase is necessary due to

a potential violation caused by moving i to room r2. After the necessary change

is calculated, the algorithm iterates through each room j and adds the change to

each ∆ij location.

• This condition is given at lines 19-30 of Figure B.5. Entity i is not in room r2.

Again, the number of entities in room r2 is checked. If there is currently only a

single entity (which is e) with not sharing constraint and entity i does not have

the constraint, then penalty increase is necessary because moving i to room r2

will now cause a penalty. If entity i has a not sharing constraint on it, one or two

steps of penalty increase is necessary depending on whether e has the constraint

as well. If room r2 has another entity besides e, then depending on the possible

constraint on that entity, a penalty reduction is possible.

Update Algorithm for Adjacency, Nearby and Away from Constraints

The update algorithms for adjacency and nearby constraint are the same except from

the lists that are used during the algorithm. Adjacency lists A are used in the update

algorithm for adjacency whereas near lists N are used in nearby update algorithm.

The pseudo-codes for the update algorithms for adjacency, nearby and away from are

given in Figures B.6, B.7, and B.8 respectively.

Regardless of the constraint type, four conditions are considered:

• Entities e1 and e2 were previously in adjacent (or near) rooms. After the relocate

move, they are still in adjacent (or near) rooms. In this case, all the rooms that are

adjacent (or near) to the previous room of e1 are checked, and the cost changes

associated with e2 and these rooms go through a penalty reduction. The ∆ loca-

tions associated with e2 and the rooms that are adjacent (or near) to the current

room of e1 need a penalty increase. This condition is given at lines 1-7 of Figures

B.6, B.7, and B.8 for adjacency, nearby and away from constraints respectively.

• Entities e1 and e2 were previously in adjacent (or near) rooms. After the relocate

move, they are now not in adjacent (or near) rooms. In this case, the cost change

locations associated with e2 and all the rooms need a penalty reduction. If any of

143

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

the rooms are adjacent (or near) to the current room of e1 another penalty reduc-

tion is required in that specific location in ∆ matrix. If any of the rooms is adjacent

(or near) to the previous room of e1, then a penalty increase is applied to that in-

dividual location in ∆ matrix. This condition is given at lines 8-16 of Figures B.6,

B.7, and B.8 for adjacency, nearby and away from constraints respectively.

• Entities e1 and e2 were previously not in adjacent (or near) rooms. After the re-

locate move, they are now in adjacent (or near) rooms. In this case, the locations

associated with e2 and all rooms need a penalty increase (opposite case of the

second condition). However, the increase and reduction of penalty in specific lo-

cations related to e2 and certain rooms are adjusted in exactly the same way as in

second condition. This condition is given at lines 17-25 of Figures B.6, B.7, and

B.8 for adjacency, nearby and away from constraints respectively.

• Entities e1 and e2 were previously not in adjacent (or near) rooms. After the relo-

cate move, they are still not in adjacent (or near) rooms. This condition is treated

the same way as the first condition. This condition is given at lines 26-32 of Fig-

ures B.6, B.7 and B.8 for adjacency, nearby, and away from constraints respectively.

The away from constraint is the opposite of nearby constraint. The same conditions

are checked as in nearby constraint update function; however, the penalty reductions

and increases in modified locations are reversed.

Update Algorithm for Capacity Constraint

The update algorithm for the capacity constraint has to consider the changes associated

with each entity. Each entity is affected by the relocate move (Entity e being moved from

room r1 to r2).

The pseudo-code for the update algorithm for capacity constraint is given in Fig-

ures B.11, B.9, and B.10. In order to simplify this pseudo-code, hard and soft constraint

penalties are taken as equal and simply referred to as penaltycp.

The update algorithm iterates through each entity i and checks the room i is allo-

cated to. There are four cases the algorithm has to consider:

• This condition is given at lines 1-12 of Figure B.9. Entity i is allocated to room r1

and r1 has a capacity constraint on it. First, the space misuses in room r1 before

and after the relocate move are checked. An overuse situation in room r1 may still

continue after the relocate move operation. The space required for entity i may

144

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

be between previous overuse and current overuse values in room r1. In this case,

the algorithm iterates through each room rj except room r1 and decreases the cost

change in each location ∆ij. If a previous overuse situation is rectified due to

entity e being moved out of r1, then the algorithm checks whether the previous

overuse is less than the space required for entity i. If this is the case, then the

algorithm increases cost changes in each location ∆ij for each room j except room

r1.

• This condition is given at lines 13-24 of Figure B.9. Entity i is allocated to room

r2 which has a capacity constraint on it. This case is similar to the first one. There

may be an ongoing overuse situation before and after the move. However, since

entity e is moved to room r2, the overuse of room r2 is now greater. If the space

required for entity i is less than the current overuse amount but greater than or

equal to the previous overuse, then the locations ∆ij for each room j except room

r2 need a cost increment. Conversely, there might not be an overuse situation

before the move but there might be one due to entity e is being moved to room r2.

In this case, the locations ∆ij for each room j except r2 are decreased if the current

overuse is less than or equal to the space required for the entity i.

• This condition is given at lines 1-12 of Figure B.10. Entity i is not allocated to room

r1 or r2. The first sub-case involves sending entity i to room r1. The space misuses

of the room r1 before and after the relocate move are calculated. If there is currently

no misuse of space, then sending i to room r1 will cause an overuse, therefore, the

cost change in location ∆ir1 should be increased. If there is an underuse situation

occurring after the overuse of the room is rectified by the removal of entity e, then

the cost change in location ∆ir1 should be increased if the space required for entity

i is greater than the current underuse. If room r1 is underused before and after

the move and the space required for entity i is between the current and previous

underuse, then the cost change in location ∆ir1 should be decreased.

• This condition is given at lines 13-24 of Figure B.10. Entity i is not allocated to

room r1 or r2. This sub-case involves sending entity i to room r2. The space

misuses of the room r2 before and after the relocate move are calculated. If there

was no space misuse in room r1 before the relocate move, then the cost change

in location ∆ir2 should be decreased. There might be a case where room r2 was

previously underused but now overused due to entity e being moved into this

room. In this case, the cost change in location ∆ir2 is decreased if the previous

underuse of r2 is less than the space required for entity i. It is also possible for the

underuse situation in room r2 still persisting even if entity e is moved into this

145

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

room. The cost change in location ∆ir2 should be increased if the space required

for entity i lies between the current and previous underuse in room r2.

6.4.4 Partial Local Search

During the local search stage, the ∆ matrix is calculated first. At each one of the h

iterations, a random subset E′ of entities is selected, and the minimum location (e, r) is

searched in that subsection of the ∆ matrix. The divisor parameter d paramater adjusts

the greediness of this search. The size of the explored neighbourhood is |E|/d. When

d = 1, the whole neighbourhood is checked. When d = 2 or d = 3, one half or one

third of the search space is explored respectively. In practice, poor results are observed

with a very greedy local search when the whole neighbourhood is checked, that is why

additional experiments with different values of d are performed.

Remember that in the ∆ matrix, the columns represent the entities, while the rows

represent the rooms. In the default algorithm, search over the ∆ matrix is based on

columns i.e some of the entities are going to be chosen first and the cost changes of

sending these entities to other rooms are considered later. This corresponds to the ap-

proach of finding the best room to allocate the chosen entity. Alternatively, the rows in

the ∆ matrix can be chosen instead. In this case, the cost changes of sending each entity

to that specific rooms are considered. This corresponds to the approach of finding the

best entity that can be sent to that specific chosen room. A third alternative is randomly

switching between columns (entity selection) and rows (room selection) at each relocate

move operation of the local search. This enables the search switch between finding the

best entity for a specific room, or finding the best room for a specific entity at different

iterations.

6.4.5 Application of Tabu Search

As an alternative to the local search stage in ELS, a tabu search (TS) [Glover, 1989]

algorithm was also implemented to replace this stage. TS algorithm utilises a data

structure called a tabu list to prevent certain moves from being carried out to prevent the

search getting stuck in local optima. In the current implementation, whenever an entity

e is moved from room r1 to r2, the moves that send the entity back to r1 are considered

tabu and hence forbidden until the end of that specific local search stage. However, if

a tabu move produces the best obtained solution encountered during the entire search,

the move is still made (aspiration criteria). Another consideration in designing a TS

algorithm is the management of the tabu tenure (that how long a tabu condition is

146

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

going to be kept in tabu lists). In this work, the tabu tenure is restricted to the number

of tabu search iterations after each crossover. Another method to populate tabu lists

within an integer-programming and tabu search combination is going to be explained

in Chapter 7.

6.5 Experiments Related to Evolutionary Local Search

The algorithm is implemented using the Microsoft Visual Studio 2010 C++ compiler.

All experiments are carried out on a Windows PC with Intel Core 2 Duo E8400 (3 Ghz)

processor.

In the experiments, the SVe150 and PNe150 datasets designed in Chapter 2 are

used. For several tests, a subset of instances are used. These instances are S0.00V0.00,

S0.40V0.80, S0.80V0.40, P0.00N0.00, P0.10N0.20, and P0.20N0.10.

Experiments were carried out in order to determine the best parameter values and

operators. There are itemised below. The sections that these tested methods are de-

scribed before are given between the parenthesis.

• Ordering of local search described in Section 6.4.4 and tested in Section 6.5.1.

• Different crossover methods described in Section 6.3.1 and tested in Section 6.5.2.

• Random mutation rate (m) described in Section 6.3.2 and tested in Section 6.5.3.

• Number of local search iterations (h) after each mutation described in Section

6.4.4 and tested in Section 6.5.3.

• Divisor value (d) which adjusts the size of the neighbourhood explored by the

local search in each iteration described in Section 6.4.4 and tested in Section 6.5.4.

• Population size (ps) described in Section 6.3 and tested in Section 6.5.5.

• Comparison of using hill climbing local search and tabu search described in Sec-

tion 6.4.5 and tested in Section 6.5.6.

In addition to the tests of these individual components of ELS, complete results on

SVe150 and PNe150 datasets are given in Section 6.5.7. ELS algorithm is compared to

the integer programming models described in Chapter 4 in Section 6.5.8. ELS is also

compared to the local search heuristic described in Chapter 5 in Section 6.5.9.

In these experiments, each instance is given 20 runs of 90 seconds each for a total

execution time of 30 minutes. Our base parameter values are m = 0.03, h = 100, d = 3,

147

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

and ps = 20 unless one of them is changed in its respective test. In the proposed ELS

algorithm, the default operators are entity based ordering (ENTHC) during the search

of ∆ matrix, one-point crossover (1-PTX), random and allocation mutations.

In the following experiments, the objective function for total penalty (TP) is taken

as the weighted summation of space misuse (SMP) and soft constraint violation penal-

ties (SCP). The respective formulations for SMP, SCP, and TP were previously given

in equations 2.3.1, 2.3.2, and 2.3.3 in Section 2.3.2. This objective function is going to

be minimised subject to hard constraints. The numbers of hard and soft constraints for

nott1, SVe150, and PNe150 instances were previously given in Table 2.2 (Section 2.4)

and Table 2.4 (Section 2.5.3) in Chapter 2 respectively.

6.5.1 Effect of Orderings of Local Search

In this test, the effect of using different orderings of local search while searching for a

best move within a sub-section of the ∆ matrix is investigated. For local search oper-

ation, the hill climbing and tabu search algorithms are used. There are four different

orderings of searching through the ∆ matrix considered in this chapter. In BESTHC

and BESTTS, the whole ∆ table is searched using hill climbing and local search algo-

rithms respectively. This ordering looks for the best local entity-room pairing for that

relocate move. In ENTHC and ENTTS, a subset of entities of size |E|/d is chosen first,

and the best room the entity can be sent to is searched. The room based ordering is per-

formed in ROOMHC and ROOMTS, a subset of rooms of size |R|/d is randomly cho-

sen, and the best entity that can be sent to one of these rooms is searched. The methods

MIXEDHC and MIXEDTS alternate between entity and room based orderings at each

relocate move.

The results after 20 runs of 90 seconds (average best objective function value µ,

standard deviation σ, minimum and maximum values) on six different SVe150 and

PNe150 instances are given in Table 6.1a and 6.1b, respectively. The performances of

different ordering methods were similar due to the close average objective function

values and rather large standard deviations. However, certain trends could still be ob-

served. The tabu search version of the orderings were usually worse than the hill climb-

ing versions with the exception of BEST orderings that searched the whole ∆ table. In

this special case, BESTTS was clearly superior to BESTHC. Most successful orderings

were MIXEDHC and ENTHC while ROOMHC trailed slightly behind. It was observed

that the approach of "searching the best room for specific entities" was slightly better

than "searching the best entity for specific rooms". Hybridisation of both approaches

148

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

instance order µ σ min max

S0.00V0.00

BESTHC 77.68 24.07 47.00 139.50

BESTTS 69.53 18.75 48.00 106.00

ENTHC 53.63 17.99 19.50 97.00

ENTTS 64.63 23.35 34.50 122.00

ROOMHC 50.78 15.31 22.00 84.00

ROOMHC 60.23 21.73 22.50 118.00

MIXEDHC 49.33 18.11 12.00 90.50

MIXEDTS 65.85 17.80 36.50 102.00

S0.40V0.80

BESTHC 261.06 23.23 223.40 314.00

BESTTS 254.49 18.30 220.80 284.70

ENTHC 233.62 23.27 190.70 293.00

ENTTS 248.50 15.01 209.00 268.30

ROOMHC 242.92 22.97 205.10 297.60

ROOMHC 235.81 19.06 196.90 264.00

MIXEDHC 228.61 11.38 210.90 247.80

MIXEDTS 254.46 22.35 215.00 295.50

S0.80V0.40

BESTHC 220.43 25.17 183.70 262.40

BESTTS 211.29 15.30 187.20 235.40

ENTHC 200.34 15.03 168.90 222.80

ENTTS 211.45 19.84 188.20 260.00

ROOMHC 203.37 15.43 178.90 231.70

ROOMHC 200.64 15.12 177.00 233.40

MIXEDHC 191.36 16.70 163.60 236.90

MIXEDTS 206.19 12.72 183.50 233.00

(a) SVe150 instances

instance order µ σ min max

P0.00N0.00

BESTHC 135.78 27.09 89.00 206.00

BESTTS 124.83 21.95 80.00 162.00

ENTHC 108.35 18.89 74.00 145.50

ENTTS 123.03 17.21 90.00 165.50

ROOMHC 119.70 16.12 88.00 157.00

ROOMHC 125.10 27.40 77.50 197.50

MIXEDHC 114.98 18.62 71.50 153.50

MIXEDTS 120.30 20.23 75.50 158.50

P0.10N0.20

BESTHC 257.82 21.37 215.10 292.00

BESTTS 244.06 21.67 212.40 291.50

ENTHC 227.19 19.08 201.30 273.80

ENTTS 253.17 21.93 215.10 287.60

ROOMHC 228.81 13.52 209.90 266.50

ROOMHC 231.82 14.26 206.60 259.10

MIXEDHC 225.03 12.78 207.60 249.60

MIXEDTS 234.50 21.09 198.20 279.40

P0.20N0.10

BESTHC 202.45 22.06 169.20 269.40

BESTTS 188.68 25.63 151.60 246.60

ENTHC 166.33 14.56 140.50 199.40

ENTTS 190.39 14.96 165.80 221.80

ROOMHC 176.84 18.44 152.50 220.30

ROOMHC 172.47 23.15 142.30 218.90

MIXEDHC 162.92 16.17 137.80 202.10

MIXEDTS 179.08 15.37 152.10 211.60

(b) PNe150 instances

Table 6.1: Impacts of different order of local search on instances S0.00V0.00, S0.40V0.80, S0.80V0.40, P0.00N0.00,

P0.10N0.20, and P0.20N0.10

still worked well due to the synergy of using both approaches.

6.5.2 Effect of Using Different Crossover Operators

In this section, the effect of using different crossover operators described in Section

6.3.1 on the solution quality is investigated. For this, three traditional crossover opera-

tors and four problem specific crossovers described in Section 6.3.1 were tested. These

crossover operators are as follows:

• 1-PTX One point crossover.

• 2-PTX Two point crossover.

• UX Uniform crossover.

• RX-L Linear room based crossover.

• RX-P Permutated room based crossover.

149

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

• FX-L Linear floor based crossover.

• FX-P Permutated floor based crossover.

Each crossover was tested on six different SVe150 and PNe150 instances. Each

instance was given 20 runs of 90 seconds each. The results are given in Table 6.2a

and 6.2b for SVe150 and PNe150 instances respectively. Columns µ, σ, min and max

represent the best average result, standard deviation, minimum and maximum results

obtained over 20 runs.

instance crossover µ σ min max

S0.00V0.00

1-PTX 53.63 17.99 19.50 97.00

2-PTX 56.30 15.93 35.50 89.00

UX 54.63 14.30 30.00 84.00

RX-L 55.70 18.27 31.50 105.50

RX-P 56.88 22.34 32.50 124.50

FX-L 48.78 17.78 19.50 105.50

FX-P 55.75 14.74 24.00 80.50

S0.40V0.80

1-PTX 233.62 23.27 190.70 293.00

2-PTX 233.77 15.15 208.60 263.40

UX 237.67 15.01 216.20 267.90

RX-L 231.75 26.66 199.20 287.20

RX-P 235.68 22.36 200.80 276.70

FX-L 246.65 19.23 216.50 289.70

FX-P 236.21 21.31 197.50 269.80

S0.80V0.40

1-PTX 200.34 15.03 168.90 222.80

2-PTX 208.66 24.04 175.70 256.60

UX 195.51 18.12 162.80 225.40

RX-L 201.15 16.11 174.90 232.50

RX-P 193.52 14.59 160.20 227.30

FX-L 199.23 15.94 166.80 232.40

FX-P 196.10 11.27 169.00 218.10

(a) SVe150 instances

instance crossover µ σ min max

P0.00N0.00

1-PTX 108.35 18.89 74.00 145.50

2-PTX 117.33 22.90 87.50 179.50

UX 111.60 14.09 89.00 136.00

RX-L 112.25 17.98 74.50 143.50

RX-P 119.78 21.73 77.00 156.00

FX-L 116.48 15.97 92.50 153.00

FX-P 113.73 17.50 86.00 147.00

P0.10N0.20

1-PTX 228.09 18.92 201.30 273.80

2-PTX 227.86 16.24 204.60 261.10

UX 225.41 15.13 196.40 253.70

RX-L 229.14 13.93 203.90 253.30

RX-P 231.21 18.55 203.60 267.30

FX-L 225.46 22.36 200.30 271.70

FX-P 224.30 21.24 200.00 272.50

P0.20N0.10

1-PTX 165.60 15.06 140.50 199.40

2-PTX 172.10 23.58 142.00 246.90

UX 163.04 14.63 137.50 188.00

RX-L 174.66 17.79 149.20 214.40

RX-P 165.69 13.23 143.10 191.40

FX-L 165.71 17.38 141.90 220.00

FX-P 168.09 21.35 143.80 231.30

(b) PNe150 instances

Table 6.2: Impacts of different crossover types on instances S0.00V0.00, S0.40V0.80, S0.80V0.40, P0.00N0.00,

P0.10N0.20, and P0.20N0.10

As can be observed from the close averages and rather large standard deviations,

no crossover operator could be deemed superiour to others. The best average and the

minimum results were distributed evenly among the six instances without any observ-

able pattern. Three claims can be made why problem specific crossovers performed

not significantly better than traditional crossovers:

• Since the ELS algorithm contains a rather greedy local search procedure, the

crossover operator lacks importance, does not really need to preserve the infor-

mation in the parents and works more like a mutation operator.

150

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

• Preservation of room allocations as in RX-L and RX-P is not very important due to

the nature of the OSA instances tested. In most OSA instances, the final solution is

an entity-room mapping where the majority of the rooms contains just one entity

(especially due to not sharing constraint). Since a room does not contain too many

entities in it, the allocations in rooms are not likely to be disrupted even using

traditional crossover operators.

• Due to the low genetic diversity in the population, the children will be similar to

the parents regardless of crossover operator used.

6.5.3 Effect of Mutation Rate and Local Search Iterations

Four different mutation rates (m = 0.00, m = 0.01, m = 0.03, and m = 0.05) and

four different values for number of local search move operations after each mutation

(h = 50, h = 100 h = 250, and h = 500) were tested. The mutation rates are given

as percentages. For example if m = 0.03, three percent of the entities will be proba-

bilistically relocated on the average. Since a large mutation rate might cause a large

disruption on the solution, there might be a need for a longer local search afterwards to

obtain better results. Conversely, a small perturbation on the solution can be corrected

with a shorter local search. Therefore, a large perturbation and longer local search after-

wards will work as a diversification of the search. On the other hand, small perturbation

and shorter local search afterwards can be seen as an intensification strategy.

Results for mutation rate and local search iterations are given in Table 6.3a and

6.4a for SVe150 instances and in Table 6.3b and 6.4b for PNe150 instances respectively.

Columns m and h represent the mutation rate and the number of local search iterations

respectively. Columns µ, σ, min and max represent the average best objective value, the

standard deviation on the best objective value, the minimum and maximum objective

value obtained after 20 runs respectively.

It was observed that the mutation was essential to the success of the algorithm;

without random mutation (the case m = 0.00), the algorithm quickly got stuck in a

local optimum and produced uncompetitive results. We observed that the algorithm

worked best when the mutation rate was around (m = 0.01− 0.03), although m = 0.05

still yielded acceptable results. It was observed that the local search iterations should

be kept quite low (usually h = 50, h = 100) for the best results to be obtained. In-

creasing h beyond 500 affected the performance of the algorithm adversely, therefore,

using a long extensive local search after each crossover and mutation operator is not

recommended. Another benefit of using a lower h is that it reduced the effect of us-

151

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

instance m µ σ min max

S0.00V0.00

0.00 677.35 200.09 241.50 1107.50

0.01 64.35 19.42 38.50 111.00

0.03 51.85 20.91 24.00 92.00

0.05 52.33 18.84 22.50 84.50

S0.40V0.80

0.00 755.83 188.12 412.20 1158.10

0.01 239.47 20.13 211.50 278.30

0.03 230.49 14.90 205.50 253.20

0.05 243.77 22.11 208.90 286.30

S0.80V0.40

0.00 841.56 209.57 505.50 1242.10

0.01 199.24 16.64 171.30 249.00

0.03 198.99 17.38 171.60 239.60

0.05 204.43 15.51 186.40 243.90

(a) SVe150 instances

instance m µ σ min max

P0.00N0.00

0.00 760.75 229.60 297.50 1046.50

0.01 111.25 19.22 82.00 146.50

0.03 116.88 23.52 78.00 161.50

0.05 110.93 17.74 79.00 141.50

P0.10N0.20

0.00 787.31 154.35 574.30 1059.60

0.01 228.22 12.25 209.30 256.50

0.03 226.18 16.94 196.10 261.70

0.05 231.74 16.07 207.00 275.20

P0.20N0.10

0.00 688.20 215.08 353.70 1032.90

0.01 173.17 19.82 143.80 207.50

0.03 167.27 17.14 145.30 205.70

0.05 178.24 17.43 144.50 215.70

(b) PNe150 instances

Table 6.3: Impacts of different mutation rates (m) on instances S0.00V0.00, S0.40V0.80, S0.80V0.40, P0.00N0.00,

P0.10N0.20, and P0.20N0.10

ing different mutation rates between m = 0.01 and m = 0.05, therefore, setting the

mutation rate precisely became less important.

instance h µ σ min max

S0.00V0.00

50 56.43 15.42 28.00 87.50

100 51.85 20.91 24.00 92.00

250 56.33 22.01 13.50 110.50

500 68.80 15.10 46.00 105.00

S0.40V0.80

50 236.48 21.74 193.60 291.40

100 230.49 14.90 205.50 253.20

250 245.78 18.88 204.00 279.80

500 240.98 25.35 206.20 292.20

S0.80V0.40

50 197.94 19.93 171.00 232.10

100 198.99 17.38 171.60 239.60

250 207.67 18.86 183.40 258.30

500 212.96 15.25 183.60 235.10

(a) SVe150 instances

instance h µ σ min max

P0.00N0.00

50 117.78 18.23 92.50 168.50

100 116.88 23.52 78.00 161.50

250 127.98 23.61 87.50 175.00

500 126.43 18.42 97.50 166.50

P0.10N0.20

50 225.84 12.42 207.20 246.70

100 226.18 16.94 196.10 261.70

250 240.57 24.55 216.40 298.70

500 245.79 23.06 204.00 278.10

P0.20N0.10

50 174.15 17.96 133.50 208.50

100 167.27 17.14 145.30 205.70

250 171.14 15.78 146.50 207.00

500 176.58 17.13 145.50 201.10

(b) PNe150 instances

Table 6.4: Impacts of different local search iterations (h) on instances S0.00V0.00, S0.40V0.80, S0.80V0.40,

P0.00N0.00, P0.10N0.20, and P0.20N0.10

6.5.4 Effect of Local Search Size

The idea of dividing the whole search space in local search was previously explained

in Section 6.4.4. Table 6.5a and Table 6.5b depict the effect of using different d (divisor)

values on the SVe150 and PNe150 instances. Five different values were tested: d = 1

(100%), d = 2 (50%), d = 3 (33%), d = 4 (25%), and d = 5 (20%). One immediate obser-

152

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

vation was that searching for the whole single-move neighbourhood (d = 1) greedily

produced the worst results in all of the instances. The algorithm had a tendency to

get stuck in a local optima when d = 1 (although not severely as with the no muta-

tion case); however, by simply increasing d (and hence decreasing the greediness of the

search), the algorithm gave the best results when d was around 3 (33.3% of the ∆ matrix

searched at each iteration). However, this could be attributed to the size of a specific

instance and our implementation of the algorithm. During the profiling tests of our

code using the Visual Studio 2010 Profiler tool, it was observed that the majority of the

execution time was spent in two sections of the algorithm: searching the ∆ matrix for

the best move and the update stage after making this best move. When d = 3, these

two steps took roughly equal amount of time practically maximising the amount of

iterations per unit time.

Consequently, our conjecture after these experiments is that d should be further

increased when the size of the instance (the number of entities times the number of

rooms) is increased because the time required for searching the ∆ matrix is inversely

proportional to d while the time required for the update stage is just directly propor-

tional to the number of constraints (and hence mostly constant).

instance d µ σ min max

S0.00V0.00

1 83.50 26.26 49.00 147.00

2 56.30 20.39 28.00 110.00

3 51.40 20.58 24.00 92.00

4 57.18 14.89 23.50 85.00

5 65.65 19.99 35.50 127.50

S0.40V0.80

1 273.77 18.38 233.10 302.90

2 231.15 18.67 202.20 265.30

3 230.35 14.93 205.50 253.20

4 244.49 21.66 213.50 295.70

5 259.57 29.65 205.90 321.90

S0.80V0.40

1 228.49 24.44 194.90 276.40

2 203.68 16.51 184.20 238.30

3 199.44 17.60 171.60 239.60

4 208.61 18.79 184.80 254.30

5 205.72 23.95 171.40 253.80

(a) SVe150 instances

instance d µ σ min max

P0.00N0.00

1 134.93 14.00 108.00 159.00

2 118.03 13.06 91.00 138.50

3 117.45 23.10 78.00 161.50

4 132.10 20.96 98.00 173.50

5 120.33 19.34 82.00 146.50

P0.10N0.20

1 256.54 16.68 217.20 288.50

2 229.00 19.64 201.80 275.80

3 225.96 17.05 196.10 261.70

4 236.48 16.07 206.90 266.00

5 246.22 21.03 200.30 291.80

P0.20N0.10

1 215.03 23.89 172.00 255.60

2 178.51 26.73 144.40 228.80

3 167.12 16.80 145.30 202.70

4 174.12 16.64 149.90 212.90

5 169.94 20.07 140.60 212.30

(b) PNe150 instances

Table 6.5: Impacts of different divisor values (d) on instances S0.00V0.00, S0.40V0.80, S0.80V0.40, P0.00N0.00,

P0.10N0.20, and P0.20N0.10

153

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

6.5.5 Effect of Population Size

The final parameter tests were performed on ps, the number of solutions in a popu-

lation. The population sizes were chosen as ps = 5, ps = 10, ps = 20, ps = 50, and

ps = 100. The results for some SVe150 and PNe150 instances are given in Table 6.6a

and Table 6.6b respectively. It was observed that for the average best objective func-

tion value µ, there was not any statistically significant difference between any of the

ps values. However, for ps = 20 solutions, it was observed that the chance of finding

a best minimum value after 20 runs was slightly higher. The main benefit of using a

population-based algorithm was to keep a number of different solutions so that the

algorithm has a chance to backtrack from a local optimum to another section of the

search space by means of crossover and mutation operators.

instance ps µ σ min max

S0.00V0.00

5 52.63 16.11 33.00 98.00

10 58.30 16.68 31.00 82.50

20 51.40 20.58 24.00 92.00

50 63.28 24.99 28.50 109.50

100 49.80 20.34 16.50 99.50

S0.40V0.80

5 237.45 14.21 202.80 268.60

10 241.33 16.90 206.40 278.10

20 230.94 14.98 206.40 253.20

50 246.35 23.00 200.40 290.20

100 245.74 17.79 214.80 272.30

S0.80V0.40

5 203.72 16.59 182.70 239.10

10 201.01 13.82 177.90 226.90

20 199.34 17.49 171.60 239.60

50 208.02 17.95 173.80 247.00

100 204.41 16.69 185.70 239.30

(a) SVe150 instances

instance ps µ σ min max

P0.00N0.00

5 117.23 13.52 97.50 146.50

10 119.40 13.85 95.00 146.00

20 116.88 23.52 78.00 161.50

50 118.43 25.58 79.00 173.00

100 116.10 15.39 87.50 140.50

P0.10N0.20

5 226.54 16.28 201.30 261.80

10 223.87 12.78 198.50 248.70

20 226.18 16.94 196.10 261.70

50 226.88 14.31 205.80 261.40

100 232.62 17.66 202.80 273.40

P0.20N0.10

5 167.77 16.53 140.20 195.30

10 162.21 12.14 139.50 190.60

20 167.27 17.14 145.30 205.70

50 167.85 12.94 141.90 189.90

100 165.65 16.57 144.00 207.40

(b) PNe150 instances

Table 6.6: Impacts of different population (ps) sizes on instances S0.00V0.00, S0.40V0.80, S0.80V0.40, P0.00N0.00,

P0.10N0.20, and P0.20N0.10

6.5.6 Tabu Search vs Basic Local Search

In this section, hill climbing based local search method described in Section 6.4 is re-

placed with tabu search (described in Section 6.4.5) within the evolutionary local search

algorithm.

Table 6.7 represents the results obtained using tabu search. Columns µ, σ, and min

give the average best objective value, the standard deviation on the best objective value

and the minimum best objective value obtained after 20 runs of 90 seconds each.

154

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

It was observed that replacing the local search with the tabu search offered no ben-

efits for obtaining better average or minimum results. After using a small population,

crossover, and mutation operators and a divisor parameter to adjust the greediness of

the search, adding a tabu list structure did not offer any additional benefit over the lo-

cal search. A likely explanation for this might be the restriction of traversable search

space due to tabu moves. The search might have to go through some of the solutions

restricted by tabu moves in order to reach higher quality solutions.

Local Search Tabu Search

instance µ σ min µ σ min

S0.00V0.00 53.65 18.16 19.50 64.40 23.38 34.50

S0.40V0.80 233.62 23.27 190.70 248.48 14.99 209.00

S0.80V0.40 200.34 15.03 168.90 211.59 20.05 188.20

P0.00N0.00 108.65 19.55 74.00 123.03 17.21 90.00

P0.10N0.20 227.01 18.83 201.30 253.17 21.93 215.10

P0.20N0.10 165.25 14.78 140.50 190.22 14.97 165.80

Table 6.7: Results on several SVe150 and PNe150 instances using local and tabu search within the ELS

Tabu search algorithm will be re-evaluated in a different setting (within an integer

programming - tabu search heuristic combination) in Chapter 7.

6.5.7 Complete Results on SVe150 and PNe150 Datasets

By using the parameters obtained after experimentation on a subset of SVe150 and

PNe150, additional experiments were carried out on the full set of instances. The fol-

lowing parameters were used: mutation rate m = 0.03, population size ps = 20, the

number of local search iterations h = 100 and the divisor value of the local search d = 3.

Entity based ordering with hill climbing (ENTHC) was used in these experiments. Tra-

ditional one-point crossover and one-point random mutation were used as crossover

and mutation operators respectively.

Tables 6.8a and 6.8b represent the results obtained. Columns S, V, P, and N rep-

resent the four different parameters: slack space rate, soft constraint violation rate, positive,

and negative slack rates respectively. Columns µ and σ represent the average and stan-

dard deviation of the total penalty obtained after 10 runs respectively. Columns SMP

and SCP give the average space misuse and soft constraint violation penalty after 10

runs respectively. Column min gives the minimum total penalty obtained after 10 runs.

155

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

S V µ σ SMP SCP min

0.00 0.00 49.30 15.11 39.30 10.00 31.50

0.00 0.20 90.80 27.30 52.80 38.00 61.50

0.00 0.40 102.40 17.43 56.40 46.00 89.50

0.00 0.60 118.40 12.31 50.40 68.00 99.00

0.00 0.80 169.85 18.04 65.85 104.00 138.50

0.00 1.00 192.25 18.89 65.25 127.00 165.00

0.20 0.00 64.04 14.29 55.04 9.00 38.90

0.20 0.20 105.24 22.72 62.24 43.00 77.90

0.20 0.40 133.23 22.45 75.23 58.00 115.40

0.20 0.60 139.92 14.46 69.92 70.00 117.10

0.20 0.80 182.19 17.11 85.19 97.00 157.90

0.20 1.00 213.71 28.83 90.71 123.00 181.60

0.40 0.00 125.27 16.59 95.27 30.00 108.40

0.40 0.20 157.45 25.90 101.45 56.00 118.80

0.40 0.40 173.27 18.85 110.27 63.00 144.60

0.40 0.60 197.05 18.05 123.05 74.00 163.90

0.40 0.80 218.23 17.24 117.23 101.00 185.60

0.40 1.00 246.95 19.30 126.95 120.00 219.70

0.60 0.00 137.63 11.85 115.63 22.00 116.60

0.60 0.20 170.23 10.72 122.23 48.00 154.70

0.60 0.40 198.65 10.45 134.65 64.00 189.00

0.60 0.60 209.00 14.25 136.00 73.00 189.20

0.60 0.80 254.23 12.97 143.23 111.00 233.60

0.60 1.00 280.13 17.34 153.13 127.00 261.90

0.80 0.00 151.31 13.52 120.31 31.00 131.40

0.80 0.20 170.63 14.38 124.63 46.00 152.90

0.80 0.40 188.42 13.09 127.42 61.00 165.00

0.80 0.60 202.94 18.59 132.94 70.00 175.90

0.80 0.80 255.37 23.72 141.37 114.00 229.20

0.80 1.00 284.52 12.18 159.52 125.00 259.20

1.00 0.00 186.75 15.25 160.75 26.00 167.70

1.00 0.20 226.99 17.17 172.99 54.00 201.00

1.00 0.40 243.02 12.53 176.02 67.00 225.30

1.00 0.60 260.61 18.44 174.61 86.00 238.30

1.00 0.80 298.76 11.16 195.76 103.00 284.90

1.00 1.00 309.96 19.46 187.96 122.00 280.80

(a) SVe150 instances

P N µ σ SMP SCP min

0.00 0.00 103.75 14.60 45.75 58.00 79.00

0.00 0.05 138.90 9.06 79.90 59.00 120.80

0.00 0.10 174.45 9.22 117.45 57.00 161.70

0.00 0.15 216.14 12.34 153.14 63.00 198.40

0.00 0.20 244.64 17.54 183.64 61.00 222.90

0.00 0.25 283.79 10.31 220.79 63.00 269.20

0.05 0.00 111.01 21.50 55.01 56.00 87.90

0.05 0.05 133.29 13.50 76.29 57.00 113.90

0.05 0.10 173.08 16.11 108.08 65.00 146.90

0.05 0.15 201.85 17.62 135.85 66.00 180.40

0.05 0.20 227.66 14.74 168.66 59.00 206.60

0.05 0.25 268.28 11.81 204.28 64.00 250.60

0.10 0.00 128.74 19.64 60.74 68.00 100.50

0.10 0.05 142.71 23.96 82.71 60.00 106.00

0.10 0.10 169.92 17.08 105.92 64.00 149.40

0.10 0.15 203.62 13.83 134.62 69.00 182.40

0.10 0.20 217.43 17.65 155.43 62.00 192.20

0.10 0.25 254.31 15.28 192.31 62.00 237.00

0.15 0.00 116.55 13.32 64.55 52.00 91.50

0.15 0.05 136.17 15.01 82.17 54.00 120.20

0.15 0.10 157.63 11.56 104.63 53.00 143.50

0.15 0.15 185.43 13.92 123.43 62.00 159.30

0.15 0.20 219.86 17.90 151.86 68.00 203.10

0.15 0.25 236.59 12.55 176.59 60.00 213.70

0.20 0.00 119.61 11.29 73.61 46.00 108.60

0.20 0.05 148.65 10.12 94.65 54.00 138.90

0.20 0.10 155.50 12.12 105.50 50.00 141.70

0.20 0.15 186.63 18.79 127.63 59.00 161.50

0.20 0.20 204.08 11.13 142.08 62.00 184.10

0.20 0.25 236.96 23.25 166.96 70.00 204.40

0.25 0.00 139.03 12.99 89.03 50.00 126.00

0.25 0.05 150.55 9.51 101.55 49.00 133.90

0.25 0.10 164.91 12.96 115.91 49.00 151.20

0.25 0.15 185.92 9.77 125.92 60.00 170.70

0.25 0.20 199.60 7.71 132.60 67.00 189.80

0.25 0.25 233.41 13.21 158.41 75.00 212.40

(b) PNe150 instances

Table 6.8: Experimental results on the SVe150 and PNe150 dataset instances using the evolutionary local

search algorithm

156

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

6.5.8 Comparison of Integer Programming Models and Evolutionary Local

Search

In this section, we are going to analyse the difference in performance between the evo-

lutionary local search algorithm (ELS) described in this chapter and the integer pro-

gramming models presented in Chapter 4. The mathematical models without and with

the floor variables are abbreviated as IP1 and IP2 respectively.

In Figures 6.7 and 6.8, minimum total penalty obtained for each instance with ELS

is compared to the ones IP1 and IP2 using SVe150 and PNe150 datasets respectively.

IP1 or IP2 and ELS were given equal amount of running time: ELS was given 10 runs

(3 minutes each), while IP1 and IP2 were given a single run of 30 minutes.

The x and y axes represent slack space rate (S) and violation rate (V) in Figure 6.7

while they represent positive (P) and negative (N) slack space rate in Figure 6.8. In these

contour plots, IP1 or IP2 is better than ELS in obtaining the minimum total penalty

when a region becomes more blue or green respectively. ELS is better in grey regions.

IP models and ELS algorithms are about equal in obtaining the minimum total penalty

in white or pale coloured regions.

If IP1 and ELS are compared in SVe150 instances in Figure 6.7a, it is observed that

for lower V values where the soft constraint violation penalty is expected to be low, IP1

perform better than ELS in obtaining minimum total penalty (blue regions). However,

when the expected soft constraint violation penalty increases with larger V, ELS begins

to perform better (grey regions). It is also observed that variation of the space misuse

penalty over S parameter does not differentiate IP1 or ELS.

For the SVe150 dataset, out of the 36 instances, ELS algorithm yields better results

for 18, and the IP1 formulation is more successful for the remaining 18 of them. How-

ever, ELS still achieves 5.38 penalty improvement per instance over IP1.

ELS generally performs better than IP1 in PNe150 instances (Figure 6.8a). For

larger N values (where the instance is expected to have high overuse due to lack of

capacity), ELS performs better, especially around P = N = 0.15 region. For some low

N values, IP1 provides slightly better results in a few instances (pale blue regions). For

24 instances, ELS performs better, for the other 12 instance IP1 performs better than

ELS in obtaining minimum total penalty. Average improvement per instance is around

9.

ELS is not competitive with IP2 in obtaining the minimum total penalty for either

SVe150 (Figure 6.7b) or PNe150 (Figure 6.8b) datasets. In both figures, the dominance

157

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

−50

0

50

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆min of IP1 − ELS in SVe150

S

V

(a) ∆min of IP1 − ELS

−40

−20

0

20

40

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆min of IP2 − ELS in SVe150

S

V

(b) ∆min of IP2 − ELS

Figure 6.7: Differences in minimum penalty (∆min) after applying IP models without/with floor variables

(IP1 and IP2) and evolutionary local search (ELS) on SVe150 dataset (IP1 − ELS and IP2 −
ELS). IP1, IP2 and ELS are represented by blue, green, and grey regions respectively.

−40

−20

0

20

40

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆min of IP1 − ELS in PNe150

P

N

(a) ∆min of IP1 − ELS

−30

−20

−10

0

10

20

30

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆min of IP2 − ELS in PNe150

P

N

(b) ∆min of IP2 − ELS

Figure 6.8: Differences in minimum penalty (∆min) after applying IP models without/with floor variables

(IP1 and IP2) and evolutionary local search (ELS) on PNe150 dataset (IP1 − ELS and IP2 −
ELS). IP1, IP2 and ELS are represented by blue, green, and grey regions respectively.

158

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

of dark green regions signifies the superiority of IP2 over ELS for providing better

minimum total penalties in both datasets.

The situation here is similar to the local search and integer programming compar-

ison case (described in Section 5.6.4). The performance of ELS is between IP1 and IP2.

It is more competitive with IP1 than LS was. However, IP2 is still better than both ELS

and LS although the gap between IP2 and ELS is smaller than the gap between IP2 and

LS.

6.5.9 Comparison of Local Search vs Evolutionary Local Search Algorithms

In this section, we are going to analyse the difference in performance between the evo-

lutionary local search algorithm (ELS) described in this chapter and the local search

algorithm (LS) presented in Chapter 5.

Both LS and ELS were given 10 runs (3 minutes each). In Figures 6.9 and 6.10,

four performance measures are compared for instances in SVe150 and PNe150 datasets

respectively. These measures are differences in average total penalty (∆TP), minimum

total penalty (∆min), average space misuse penalty (∆SMP) and average soft constraint

violation penalty (∆SCP) after 10 runs.

The x and y axes represent slack space rate (S) and violation rate (V) in Figure 6.9

while they represent positive (P) and negative (N) slack space rate in Figure 6.10. In these

contour plots, LS is better than ELS when a region becomes more red, while ELS is

better in grey regions. LS and ELS algorithms give comparable performance in white

or pale red/grey regions.

It is observed that ELS is generally better in obtaining the average total cost penalty

(∆TP) in SVe150 dataset (Figure 6.9a). The average performance of ELS is especially bet-

ter in medium S range (where the expected space misuse penalty is about medium) al-

though LS can yield better results in higher V range where the expected soft constraint

violation penalty is large. LS and ELS are comparable in obtaining the minimum total

penalty (min) after 10 runs as evidenced by the abundance of white and pale red/grey

regions in Figure 6.9b. Similar to the average total cost penalty case, ELS tends to per-

form better in medium S range (except S0.60V0.40 instance) and performs worse than LS

in high V range.

When the average space misuse and soft constraint violation penalties are evalu-

ated in Figures 6.9c and 6.9d, it is observed that LS is clearly better in minimising the

space misuse penalty SMP (red regions in Figure 6.9c). However, ELS is superior in

minimising the soft constraint violation penalty SCP (grey regions in 6.9d). Since ELS

159

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

−30

−20

−10

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆TP of LS − ELS in SVe150

S

V

(a) ∆TP of LS− ELS

−30

−20

−10

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆min of LS − ELS in SVe150

S

V

(b) ∆min of LS− ELS

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆SMP of LS − ELS in SVe150

S

V

(c) ∆SMP of LS− ELS

−40

−20

0

20

40

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆SCP of LS − ELS in SVe150

S

V

(d) ∆SCP of LS− ELS

Figure 6.9: Differences in average total cost penalty (∆TP), minimum total penalty (∆min), average space

misuse penalty (∆SMP), and average soft constraint penalty (∆SCP) after applying local search

(LS) and evolutionary local search (ELS) on SVe150 dataset (LS− ELS). LS and ELS are rep-

resented by red and grey regions respectively.

minimises SCP better than LS minimises SMP, on the average case, ELS yields better

results in total penalty TP on SVe150 dataset.

The results in PNe150 give a similar picture as in SVe150 instances. ELS is superior

in minimising the average total penalty (TP) (the grey regions in Figure 6.10a). The

difference is greater in favour of ELS when the expected space underuse is high (large

P) and space overuse is low (small N). The case of difference in minimum total penalty

(∆min) is interesting as in Figure 6.10b: LS usually gives better results when N and P

values are close (where the instances are usually difficult to solve as analysed in Section

4.6.3). ELS is usually better than LS around the edges of Figure 6.10b in grey regions.

160

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

−40

−20

0

20

40

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆TP of LS − ELS in PNe150

P

N

(a) ∆TP of LS− ELS

−20

−10

0

10

20

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆min of LS − ELS in PNe150

P

N

(b) ∆min of LS− ELS

−20

−10

0

10

20

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆SMP of LS − ELS in PNe150

P

N

(c) ∆SMP of LS− ELS

−30

−20

−10

0

10

20

30

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆SCP of LS − ELS in PNe150

P

N

(d) ∆SCP of LS− ELS

Figure 6.10: Differences in average total cost penalty (∆TP), minimum total penalty (∆min), average space

misuse penalty (∆SMP), and average soft constraint penalty (∆SCP) after applying local search

(LS) and evolutionary local search (ELS) on PNe150 dataset (LS − ELS). LS and ELS are

represented by red and grey regions respectively.

A similar situation is observed in minimisation of space misuse (SMP) and soft

constraint violation penalties (SCP) as in SVe150 instances. Figure 6.10c is predomi-

nantly red which signifies the superiority of LS in minimisation of SMP. Conversely,

grey regions in Figure 6.10d shows that ELS is better in minimisation of SCP. Since

ELS minimises SCP better than LS minimises SMP, on the average case, ELS yields

better results in total penalty TP in PNe150 dataset.

161

CHAPTER 6. EVOLUTIONARY LOCAL SEARCH ALGORITHM

6.6 Conclusion

In this chapter, an evolutionary local search algorithm (ELS) was presented. The evo-

lutionary components of the algorithm included a population of solutions selected for

traditional crossover and mutation operators. Additionally, problem specific crossover

and mutation operators were also developed.

However, the most important component of this algorithm was the local search

which utilised a very fast cost calculation procedure. This mechanism enabled search-

ing for a promising relocate move (sending an entity from one room to another) within

a large neighbourhood. More importantly, after such a move was made, this proce-

dure enabled quick and complete update to the cost changes of any move in the relocate

move neighbourhood. Significant speed-ups were observed. However, swap move as

in Chapter 5 had to be dropped due to implementation efficiency problems. Relocate

and swap had also poor synergy with each other in a preliminary hybrid method with

approximate update algorithms.

The experiments focused on mutation rates, length of local search after each crossover

operation, size of the relocate move neighbourhood that was going to be searched at

each local search step, different orderings (entity or room based) to sample a fixed size

region of the neighbourhood for the search, and population size.

It was observed that the mutation was very integral to the success to the algorithm.

The traditional random mutation which changed the room of an entity stochastically

performed quite well when coupled with another mutation operator which set the enti-

ties that were associated with the allocation constraints. The duration of the local search

that was needed was observed to be proportional to the extent of the mutation. Larger

mutation rates required a longer local search in order to correct the disruptions to the

solution.

Another important issue in designing the local search was to decide on the size of

the neighbourhood that was going to be searched. Searching the whole relocate move

neighbourhood and taking the best move within it yielded poor results. Therefore,

at each step, the neighbourhood was stochastically divided into regions and only the

locations within this sub-region was searched. It was experimentally observed that

most efficient approach in deciding the size of this region was the balance between the

sub-region search time and the update time after a relocate move was made.

Overall, while ELS improved the results over LS algorithm Chapter 5, it was still

not competitive with integer programming model with floor variables from Chapter 4.

There will be further modifications to ELS in next chapter to address this issue.

162

CHAPTER 7

Combining Mathematical

Programming and Heuristics

7.1 Introduction

This chapter is devoted to final implementations of mathematical programming and

local search heuristics and the approaches to combine these two together in a frame-

work for solving the office space allocation problem. This final chapter proposes re-

finements, modifications and hybridisations to the algorithms designed in Chapters 4,

5, and 6. For the mathematical programming component, the binary integer program-

ming formulation with the floor variables that is described in Chapter 4 is used. For the

heuristic component, the evolutionary local search algorithm described in Chapter 6 is

reduced to a single-solution local search algorithm. This reduction is done to simplify

the embedding process of heuristic within a mathematical programming framework.

The necessary modifications to this reduction are explained in this chapter. This new

local search algorithm is also improved by using a large mutation based backtracking

method which allows the search to return back to a different mutated solution. Also,

different methods to combine the mathematical programming and local search compo-

nents are described. Several implementation and coding issues are encountered due

to the application programming interfaces of integer programming solvers (CPLEX

[IBM-Ilog, 2013] and Gurobi [Gurobi-Optimization, 2010]). These issues related to the

application programming interfaces (APIs) are described in this chapter.

This chapter is organised as follows: Section 7.2 describes methods to combine

mathematical programming and heuristics in a single framework. The modifications

to the local search heuristic that is used together or embedded into the mathematical

programming are explained in Section 7.3. Section 7.4 presents the experimental re-

163

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

sults and discussions of the efficacy of the combination techniques. Finally, Section

7.5 presents the conclusions of the hybrid mathematical programming and heuristic

research.

7.2 Combination Methodologies

In this section, some of the approaches that can be considered in utilising the heuristic

and the IP solver together are investigated. These methods are depicted in Figures 7.2.

• Initialising a solution for the IP solver using a meta-heuristic. In this simple approach,

the meta-heuristic is allowed to run for a small period of time until a sufficiently

high quality solution is obtained. This solution is then fed into the IP solver as

the starting solution and the IP continues without any additional input from the

heuristic apart from this starting solution generated by the heuristic. This method

is depicted in Figure 7.2a(a).

• Running heuristic and IP in tandem. In this method, first, one of the approaches

is chosen and that approach is allowed to run for a fixed period of time. The

heuristic is the preferred choice in this case due to the fact it has a higher chance

of producing a sufficiently high quality valid solution sooner than an IP solver.

Assuming heuristic is chosen first, the solution generated by the heuristic after a

fixed period of time is then fed to the IP solver. The IP solver is allowed to operate

and improve this solution. The best solution generated by the IP solver is then

sent back to the heuristic for improvement. The algorithm ends after a number of

successive heuristic-IP iterations. This method is depicted in Figure 7.2a(b).

• Passing additional information from the IP to the solver. The IP solvers like CPLEX

can generate some important information like lower and upper bound values on

the decision variables. If the lower and upper bound of a variables are equal to

each other, the decision variable is fixed to a specific value. In the case of an OSA

problem, this information can be used to determine if an entity must or must

not be allocated to a specific room or floor. This is depicted in Figure 7.1. This

entity-room-floor information can be used within a heuristic for preventing some

entities to be sent to specific rooms or floors. In a typical tabu search algorithm

[Glover and Laguna, 1997], this information (e, r) can be used to fill tabu lists.

For example, if a decision variable associated with an entity-room allocation is

fixed to 1, this means any single relocate move that moves the entity e to any other

164

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

room than r can be set as tabu. Another improvement can be made in cost calcu-

lation procedures. Since it is known that certain entity-room-floor relationships

can never happen due to certain fixed variables, cost calculation or neighbour-

hood search operators can simply ignore the locations associated with such rela-

tionships. The availability of such locations related to these fixed variables can

help more efficient implementation of the updates on the ∆ matrix which were

described in Section 6.4 previously. This method is depicted in Figure 7.2a(c).

 R R R

E

0 0 0 0

E

0 0.2 0.2 0.6

E

1 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1

0 0.4 0.6 0 0 0.4 0.6 0 0 1 1 0

0 0 0 0 0 0.5 0.5 0 1 1 1 1

0 0 0 0 0 0 1 0 1 1 1 1

0 1 0 0 0 1 0 0 0 1 0 0

 Lower Bound Current non-integer Value Upper Bound

ILP B&B

Node

Heuristic

Figure 7.1: Transferring bounds and fixed variables from IP solver to heuristics

• Incorporating a heuristic within the IP using heuristic callback. The CPLEX API al-

lows access to the nodes of the branch and bound tree during the search. An

incumbent callback allows access to a new best-known solution (incumbent solu-

tion) whenever such a solution is found. This solution can be fed to the heuristic

using an incumbent callback and the heuristic is allowed to improve this new best-

known solution. If a new best solution is obtained using the heuristic, this new

incumbent solution is passed back to the IP solver. This method is depicted in

Figure 7.2b(d). Alternatively, the heuristic can be called at different nodes in the

branch and bound process using a heuristic callback. The solutions at these nodes

will probably be incomplete. Some of the decision variables will be non-integer.

Hence, the heuristic can decide on the integer value to which these non-integer

variables can be set. The heuristic might also try to improve the solution in these

sub-nodes with the hope of generating a new-incumbent that can be passed back

165

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

to the IP solver. This method is depicted in Figure 7.2b(e).

Heuristic

ILP Solver

Best Solution

Heuristic

ILP Solver

Heuristic

ILP Solver

Heuristic

ILP Solver

Best Solution

Best Solution

Best Solution

Best Solution

Best Solution

Heuristic

ILP Solver

Heuristic

ILP Solver

Heuristic

ILP Solver

Best Solution

Best Solution, Fixed Variables

Best Solution

Best Solution, Fixed Variables

Best Solution

a b c

(a)

a. Initialisation only

b. Running heuristic and IP solver in tandem

c. Passing information between IP and heuristic

Heuristic

ILP Solver

New Incumbent
Found

No

Yes

N

N11 N12

N121 N122

Heuristic

(b)

d. Incorporating heuristic within IP nodes

e. New incumbent solution being passed to the heuristic

Figure 7.2: Combination methods of mathematical programming and heuristics

7.2.1 Implementation Issues with CPLEX API

During the implementation of mathematical models, the C++ Concert API of CPLEX

was used. Unfortunately, some of the limitations of the application programming in-

terface (API) of CPLEX prevented some features from being implemented.

166

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

Any heuristic that is going to be embedded within CPLEX has to be implemented

using a callback function via the CPLEX callback interface. The most important prob-

lem occurs due to the implementation of the callbacks using CPLEX and how addition

of such a heuristic callback within the branch and bound procedure changes the way

CPLEX operates. By default, CPLEX operates in a mode called dynamic search which is a

combination of branch and bound, cutting planes, and heuristics designed for IP problems.

However, implementing a heuristic callback to incorporate the desired features elim-

inates the dynamic search and CPLEX begins to work in a straight-forward traditional

branch and bound mode.

The second important problem is the limited access to the lower and upper bound

values of the decision variables during the IP search. Unfortunately, due to C++ API

issues, it is only possible to access the fixed decision variables (where the lower and

upper bound values on the variable are equal to each other) that are determined in

the pre-solve stage. Although CPLEX tightens these bounds and fixes additional deci-

sion variables during the search, it is not possible to determine and access these fixed

decision variables in a heuristic callback in C++ API.

7.3 Modifications to the Local Search Heuristic

Here, the evolutionary local search algorithm (ELS) designed in Chapter 6 is chosen

as a basis for heuristic to be used together with the mathematical model. There are

several problems using such a population based algorithm with an off-the-shelf inte-

ger programming solver like CPLEX. First problem is to determine the solution in the

population that should be fed into the solver when transferring from the heuristic stage

back to branch-and-bound procedure in the IP solver. The most obvious answer to this

problem is selecting the best solution in the population which is the technique used

in our implementation. Alternatively, non-best solutions in the population can also

be fed to the solver; however, after preliminary experimentation it is decided against

such an approach. In an embedded framework where a heuristic works within the IP

solver, passing a non-best solution obtained in a heuristic can be worse than the best

obtained solution by the IP solver. This is more evident especially in the later stages

of the algorithm when improvement of the overall best solution becomes excessively

more difficult. In this case, the best obtained solution transferred from the IP solver is

simply overridden by this non-best solution from the heuristic. However, depending

upon the combination method of IP and the heuristic, the IP solver can quickly regener-

ate the best previously obtained solution. In most cases, IP solver effectively eliminates

167

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

any benefit of passing a non-best solution generated by the heuristic in the first place.

A greater issue arises when transferring the solution from the IP stage to the heuris-

tic stage. Although the IP solver can provide a list of best and non-best solutions, due

to the nature of branch-and-bound procedure and the IP Solver, there can be huge gaps

between the best and the non-best solutions. These gaps between the best and the

non-best solutions can be a lot higher than the successive best solutions in a typical

meta-heuristic algorithm. Therefore, passing these non-best solutions back to a popu-

lation based algorithm might be ineffectual due to the fact that these will be overridden

immediately by the meta-heuristic.

Another problem is that the IP solver may not be able generate enough solutions

to initialise the population of the ELS. There might be cases where the IP solver can

transfer only a few quality solution back to the heuristic. In this case, solutions in the

population have to be initialised again using these few solutions. The current popula-

tion in the ELS algorithm has already low diversity of the solutions due to the aggres-

sively greedy nature of the local search component. Hence, the situation is exacerbated

due to few diverse solutions passed from the IP.

Given the above issues, it was decided to morph the population based algorithm

(ELS) from Chapter 6 into a local-search based variant operating on a single solution.

This simplifies the solution passing mechanism between the two stages (IP and heuris-

tic searches). This reduction into a local-search algorithm allowed further implementa-

tion optimisations as well. The outline of the modified algorithm is depicted in Figure

7.3. Two modifications made to the ELS algorithm (described in Chapter 6) are de-

scribed in Sections 7.3.1 and 7.3.2. The final algorithm is described in Section 7.3.3.

7.3.1 Elimination of Repeated Delta Stage in the Local Search Heuristic

The elimination of the population based algorithm and the genetic operators allows

further optimisation in the coding stage. As described in Section 6.4.2, the delta stage

is responsible for the initial calculation of the ∆ table which holds the changes in ob-

jective function value for each relocate move (sending an entity e from room r1 to r2).

This delta stage is a costly operation and has to be repeated after each crossover opera-

tion in the ELS algorithm. This is due to the large potential change on the entity-room

mapping from parents to offspring. Elimination of the crossover operator and the pop-

ulation of solutions allows easier tracking of the changes in the ∆ table because in this

form, rest of the operations in the local search all involves simple moves or a series of

simple moves and hence the changes on the ∆ table can be easily done using the update

168

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

stage algorithms described in Chapter 6.

As described in Section 6.4, the local search stage operates by the application of

several mutation operators and then a short number of relocate move operations (which

is reduced to 25 operations in the new version) with fast cost change calculations on

the ∆ table. Each local search stage begins on the global best solution xbest (the best

solution encountered in the whole search). If a new best solution is obtained during

this single step, this new best solution is set as the new global best solution. If such

a new best solution is not obtained, then the current global best solution replaces the

current solution and the new local search step continues again to improve the global

best solution.

7.3.2 Backtracking

Additional problems can arise when reducing a population based meta-heuristic into

a single-solution one. The most important problem is the elimination of population

diversity. It is observed that the single solution heuristic might be more prone to getting

stuck in local optima than the population based one due to the nature of the algorithm

which tries to improve a best-known solution greedily. In order to alleviate this issue,

methods which take the search to a previous position (backtracking) can be considered.

The backtracking mechanisms considered in this thesis are as follows:

• Applying a large random mutation to the solution and setting this solution as the

new best one. This new best solution is allowed to violate the hard constraints. In

this case, the penalty for the hard constraint can be set to an arbitrarily large num-

ber (to represent infinite penalty). There are two algorithm parameters in this

approach. The first one is the large mutation rate and this represents how disrup-

tive the random mutation is going to be. The second one is the mutation iteration

rate which sets up when a mutation is going to be performed. This parameter is

tied to an iteration counter which checks how many iterations have passed since

any improvement on the global best known solution is observed.

• Using a list of previous solutions encountered during the search and returning

back to one of these solutions during the search. The algorithm will return back

to a previous solution if no improvement can be achieved to the current best

solution after a number of iterations. The list can be formed either by only adding

a best known solution to it whenever such a best-known solution is encountered

the first time during the search. Alternatively, a sorted list of solutions ordered

169

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

according to the objective value can also be used although with additional keep-

up costs. In this type of backtracking, one of the most important issue is the

decision of backtracking depth: that how many previous solutions we should

backtrack to if there is still no improvement to the best-known solution during

the search.

After initial experimentation, it was decided to use the large mutation method in-

stead of returning back to a previous best solution. This was because the previous

solution approach did not necessarily allow escape from local optima and led to cy-

cling runs between the backtracked solution and the best solution encountered in the

search. Therefore, this thesis is going to focus on the first approach (large mutation

backtracking).

In this thesis, backtracking approach was applied to the single solution local search

algorithm (explained in Section 7.3) that was stripped down from the evolutionary local

search (ELS) from Chapter 6. Our preliminary backtracking experiments with local

search (LS) algorithm from Chapter 5 did not give satisfactory results. LS algorithm

and backtracking had poor synergy together and as a result, no improvement on the

solution quality was observed when backtracking was applied on LS.

7.3.3 Single Solution Local Search Algorithm with Backtracking

In this section, the final modified single solution local search algorithm with backtrack-

ing (BCK) is explained. Figure 7.3 depicts the pseudo-code for BCK.

This algorithm works similarly to the local search stage of ELS which was previ-

ously described in Section 6.4. At each iteration, the global best solution is passed as the

solution the current iteration of the algorithm will work on. The global ∆ table is passed

via C++ pointers for efficiency. Random mutation and allocation mutation described

in Section 6.3.2 are applied to the current solution. A shorter local search compared to

ELS is then applied to improve the solution. The update algorithms described in Sec-

tion 6.4.3 are again applied in this step. Finally, after a number of local search iterations,

the algorithm moves back to the global best solution encountered during the search. If

a new global best solution is obtained in the local search stage, this global best solution

and the ∆ table associated with this new solution are stored.

In this algorithm, backtracking is applied as follows: If there is no improvement to

the global best solution after a fixed number of iterations, then the global best solution

is perturbed with the random one-point mutation operator. This perturbed solution is

then set as the new global best solution. The respective ∆ table is calculated using Delta

170

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

algorithm described in Sections 5.5 and 6.4.2. BCK continues from this new perturbed

solution.

Input: input file with entities, rooms, and constraints.

Output: global best solution (an entity-room mapping)

1: Calculate the ∆ table

2: ∆best ← ∆

3: repeat

4: current solution← global best solution

5: ∆← ∆best

6: Apply Random Mutation on the current solution

7: Apply Allocation Mutation on the current solution

8: Apply Local Search on the current solution

9: if new global best solution is found then

10: global best solution← current solution

11: Backup ∆best table

12: if Backtracking criterion is met (no improvement in solution) then

13: Apply backtracking to the global best solution

14: until Time limit is reached

Figure 7.3: Single solution local search meta-heuristic with backtracking (BCK)

7.4 Experiments Related to Single Solution Local Search with

Backtracking, Integer Programming and Heuristic Combi-

nation Techniques

In this section, experiments related to the single solution local search with backtrack-

ing algorithm (BCK) and the combinations of integer programming with this heuristic

are presented. First, experiments showing the effect of backtrack iterations and muta-

tion rate (as described in Section 7.3) are presented in Section 7.4.1. Complete results

on SVe150 and PNe150 dataset instances using the single solution local search with

backtracking are given in Section 7.4.2. Comparisons of BCK algorithm with integer

programming models described in Chapter 4 are given in Section 7.4.3. Comparisons

of BCK to previous heuristics (local search in Chapter 5 and evolutionary local search

in Chapter 6) are given in Sections 7.4.4 and 7.4.5 respectively. The performance of local

search meta-heuristics on some nott1 instances were compared in Section 7.4.6. Results

on combination of integer programming and meta-heuristics are presented in Section

7.4.7.

171

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

In the following experiments, the objective function for total penalty (TP) is taken

as the weighted summation of space misuse (SMP) and soft constraint violation penal-

ties (SCP). The respective formulations for SMP, SCP and TP were previously given

in equations 2.3.1, 2.3.2, and 2.3.3 in Section 2.3.2. This objective function is going to

be minimised subject to hard constraints. The numbers of hard and soft constraints for

nott1, SVe150 and PNe150 instances were previously given in Table 2.2 (Section 2.4)

and Table 2.4 (Section 2.5.3) in Chapter 2 respectively.

7.4.1 Effect of Backtrack Iterations and Backtrack Mutation Rate

In this experiment, the effect of backtrack iterations and backtrack mutation rate is ex-

plored. Six data instances are chosen for experiments: S0.00V0.00, S0.40V0.80, S0.80V0.40,

P0.00N0.00, P0.10N0.20, and P0.20N0.10. Each instance is given 20 runs (90 seconds each) on

a Core 2 Duo E8400 Processor. The number of backtrack iterations (that the best solution

cannot be improved for the past such number of iterations) are 2500, 5000, and 10000.

The backtrack mutation rates are chosen as 1.5, 3.0, and 6.0 as number of entities chosen

for random mutation on average.

The results for several SVe150 and PNe150 instances are given on Tables 7.1a and

7.1b respectively. Columns b and bm represent the backtrack iterations and backtrack

mutation rate respectively. Columns µ, σ, min, and max give the average, the standard

deviation, minimum and maximum results obtained over 20 runs. As evidenced from

the close average and standard deviations, the performance of modified local search

algorithm does not overly depend on the variations of these two parameters in this

range. However, it is still observed that the performance tends to get slightly better

as the number of backtrack iterations is reduced to 2500 range. However, for backtrack

mutation rate, no conclusive result is obtained in this range.

However, it should be noted that in other preliminary experiments, it was not

possible to obtain satisfactory results under different parameter ranges (large or really

low). For larger backtrack iterations, the algorithm spent too much time on a concen-

trated small search space. It was not possible to take the backtrack iterations really lower

than 1000 either. In this opposite case, the algorithm was not allowed to extensively

explore a specific location in the search space and it was observed that the algorithm

backtracked very frequently.

Finally, the preliminary implementations and experiments on a dynamic backtrack

iterations were not successful. These implementations included either increasing or

decreasing the number of backtrack iterations as the search went on. However, it was

172

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

instance b bm µ σ min

S0.00V0.00

2500 1.50 25.10 8.74 9.00

2500 3.00 24.35 7.51 10.50

2500 6.00 23.20 6.63 7.50

5000 1.50 25.10 9.73 7.50

5000 3.00 26.05 7.95 12.00

5000 6.00 25.55 3.55 18.00

10000 1.50 27.70 7.64 12.00

10000 3.00 25.35 8.52 14.50

10000 6.00 22.75 8.04 13.50

S0.40V0.80

2500 1.50 199.87 11.24 182.00

2500 3.00 197.78 6.79 184.40

2500 6.00 204.60 10.43 190.00

5000 1.50 202.75 10.32 183.20

5000 3.00 204.38 10.27 187.30

5000 6.00 202.90 6.61 188.50

10000 1.50 205.47 11.28 188.60

10000 3.00 199.97 13.39 183.20

10000 6.00 200.31 6.46 188.60

S0.80V0.40

2500 1.50 168.33 8.00 160.20

2500 3.00 171.68 9.87 156.80

2500 6.00 172.73 11.25 162.00

5000 1.50 172.40 7.30 162.20

5000 3.00 173.52 9.66 162.00

5000 6.00 171.84 5.99 160.10

10000 1.50 175.78 13.66 155.10

10000 3.00 174.54 12.34 160.30

10000 6.00 171.39 11.03 159.00

(a) SVe150 instances

instance b bm µ σ min

P0.00N0.00

2500 1.50 80.50 9.00 67.00

2500 3.00 81.80 7.59 69.50

2500 6.00 81.90 5.79 76.00

5000 1.50 81.95 9.64 74.00

5000 3.00 83.30 5.91 74.50

5000 6.00 81.05 5.39 73.00

10000 1.50 80.85 4.87 69.50

10000 3.00 81.95 10.08 66.50

10000 6.00 82.75 9.58 74.00

P0.10N0.20

2500 1.50 197.06 3.58 191.90

2500 3.00 198.28 4.32 192.20

2500 6.00 203.44 4.20 196.10

5000 1.50 200.39 6.60 186.20

5000 3.00 199.21 5.71 190.10

5000 6.00 195.38 4.09 188.60

10000 1.50 199.20 4.64 191.30

10000 3.00 201.66 7.35 193.10

10000 6.00 199.44 7.11 190.70

P0.20N0.10

2500 1.50 140.00 5.69 131.20

2500 3.00 137.32 6.35 130.50

2500 6.00 139.01 7.54 127.50

5000 1.50 142.55 8.70 131.40

5000 3.00 135.32 6.70 121.20

5000 6.00 136.60 4.63 129.40

10000 1.50 143.72 7.12 129.90

10000 3.00 143.78 6.38 135.00

10000 6.00 140.81 5.70 132.90

(b) PNe150 instances

Table 7.1: Impacts of different backtrack iterations and backtrack mutation rate on instances S0.00V0.00,

S0.40V0.80, S0.80V0.40, P0.00N0.00, P0.10N0.20, and P0.20N0.10

observed that performance could sometimes be significantly worse than using a simple

static backtrack iteration limit.

7.4.2 Complete Results of Single Solution Local Search with Backtracking

on SVe150 and PNe150 Datasets

Tables 7.2a and 7.2b represent the results obtained. Columns S, V, P, and N represent

the four different parameters: slack space rate, soft constraint violation rate, positive, and

negative slack rates respectively. Columns µ and σ represent the average and standard

deviation of the total penalty obtained after ten runs (three minutes each) respectively.

Columns SMP and SCP give the average misuse and soft constraint violation penalty

after ten runs respectively. Column min gives the minimum total penalty obtained after

173

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

ten runs.

S V µ σ SMP SCP min

0.00 0.00 24.20 7.32 16.20 8.00 10.50

0.00 0.20 48.70 8.06 23.70 25.00 35.00

0.00 0.40 77.95 6.55 28.95 49.00 65.50

0.00 0.60 91.15 7.66 33.15 58.00 79.50

0.00 0.80 138.65 9.36 43.65 95.00 126.50

0.00 1.00 158.80 12.35 49.80 109.00 140.50

0.20 0.00 44.60 6.41 41.60 3.00 33.80

0.20 0.20 76.29 4.24 45.29 31.00 70.40

0.20 0.40 93.61 6.32 52.61 41.00 83.10

0.20 0.60 111.99 4.70 50.99 61.00 105.90

0.20 0.80 153.64 9.15 67.64 86.00 138.10

0.20 1.00 173.51 4.35 71.51 102.00 168.10

0.40 0.00 99.36 10.03 80.36 19.00 90.30

0.40 0.20 128.76 6.76 85.76 43.00 117.90

0.40 0.40 148.61 6.86 94.61 54.00 138.10

0.40 0.60 156.73 5.39 91.73 65.00 147.90

0.40 0.80 197.73 6.83 103.73 94.00 184.40

0.40 1.00 223.31 7.90 112.31 111.00 212.00

0.60 0.00 120.18 6.02 106.18 14.00 110.00

0.60 0.20 152.93 3.70 112.93 40.00 146.90

0.60 0.40 172.86 8.71 119.86 53.00 156.50

0.60 0.60 186.76 6.23 123.76 63.00 177.10

0.60 0.80 230.34 6.39 132.34 98.00 223.10

0.60 1.00 248.22 8.54 138.22 110.00 238.40

0.80 0.00 124.95 4.74 104.95 20.00 118.10

0.80 0.20 151.53 6.95 107.53 44.00 141.50

0.80 0.40 171.52 9.87 117.52 54.00 156.80

0.80 0.60 176.47 6.53 113.47 63.00 163.30

0.80 0.80 225.27 8.63 133.27 92.00 211.90

0.80 1.00 253.56 12.79 140.56 113.00 238.50

1.00 0.00 172.53 7.58 152.53 20.00 159.50

1.00 0.20 209.60 5.26 163.60 46.00 201.60

1.00 0.40 222.32 8.67 161.32 61.00 211.80

1.00 0.60 239.59 9.70 164.59 75.00 219.50

1.00 0.80 265.80 8.64 173.80 92.00 252.60

1.00 1.00 288.64 10.17 171.64 117.00 273.00

(a) SVe150 instances

P N µ σ SMP SCP min

0.00 0.00 81.80 7.59 31.80 50.00 69.50

0.00 0.00 114.52 6.32 69.52 45.00 98.90

0.00 0.00 156.17 4.26 106.17 50.00 147.40

0.00 0.00 194.23 6.79 141.23 53.00 186.10

0.00 0.00 227.07 6.29 177.07 50.00 220.10

0.00 0.00 262.89 3.10 213.89 49.00 257.70

0.05 0.00 80.40 4.49 34.40 46.00 73.00

0.05 0.05 113.79 7.27 62.79 51.00 104.20

0.05 0.10 142.80 8.06 96.80 46.00 128.40

0.05 0.15 178.44 5.56 125.44 53.00 171.00

0.05 0.20 212.00 7.82 159.00 53.00 200.60

0.05 0.25 248.25 5.09 195.25 53.00 242.10

0.10 0.00 85.34 4.91 40.34 45.00 77.40

0.10 0.05 114.31 5.58 71.31 43.00 108.10

0.10 0.10 132.07 5.73 88.07 44.00 122.70

0.10 0.15 169.27 3.67 112.27 57.00 165.30

0.10 0.20 198.34 4.28 143.34 55.00 192.20

0.10 0.25 227.19 4.35 177.19 50.00 221.40

0.15 0.00 95.32 4.49 54.32 41.00 91.50

0.15 0.05 117.15 5.42 72.15 45.00 109.60

0.15 0.10 135.83 7.44 87.83 48.00 125.70

0.15 0.15 161.29 5.91 107.29 54.00 152.70

0.15 0.20 188.20 7.10 130.20 58.00 175.10

0.15 0.25 219.11 4.83 167.11 52.00 211.80

0.20 0.00 113.26 5.12 69.26 44.00 108.60

0.20 0.05 129.40 6.07 86.40 43.00 119.20

0.20 0.10 137.32 6.35 90.32 47.00 130.50

0.20 0.15 161.22 5.36 105.22 56.00 156.30

0.20 0.20 180.26 8.56 124.26 56.00 169.20

0.20 0.25 211.18 10.11 157.18 54.00 189.60

0.25 0.00 126.00 0.00 86.00 40.00 126.00

0.25 0.05 139.08 4.23 97.08 42.00 133.30

0.25 0.10 148.83 6.60 105.83 43.00 135.60

0.25 0.15 165.26 5.32 116.26 49.00 157.80

0.25 0.20 181.71 7.82 127.71 54.00 172.50

0.25 0.25 205.60 9.22 148.60 57.00 191.70

(b) PNe150 instances

Table 7.2: Experimental results on the SVe150 and PNe150 dataset instances using single solution local

search heuristic with backtracking

174

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

7.4.3 Comparison of Single Solution Local Search with Backtracking and

Integer Programming Models

In this section, we are going to analyse the difference in performance between single

solution local search algorithm with backtracking (BCK) described in this chapter and

the integer programming models presented in Chapter 4. The mathematical models

without and with the floor variables are abbreviated as IP1 and IP2 respectively.

In Figures 7.4 and 7.5, the minimum total penalty obtained for each instance with

BCK is compared to ones obtained by IP1 and IP2 using SVe150 and PNe150 datasets

respectively. IP1 or IP2 and BCK were given equal amount of running time: BCK was

given 10 runs (3 minutes each), while IP1 and IP2 were given a single run of 30 minutes.

The x and y axes represent slack space rate (S) and violation rate (V) in Figure 7.4

while they represent positive (P) and negative (N) slack space rate in Figure 7.5. In these

contour plots, IP1 or IP2 is better than BCK in obtaining the minimum total penalty

when a region becomes more blue or green respectively. BCK is better in yellow re-

gions. IP models and BCK algorithms are about equal in obtaining the minimum total

penalty in white or pale coloured regions.

As evidenced from the dominance of yellow regions in Figure 7.4a for SVe150 in-

stances, BCK is clearly superior to IP1 in obtaining the minimum total penalty. IP1 can

only provide equal or slightly better results when expected soft constraint violation

penalty is low with small V values. There is not a discernible influence of different

levels of space misuse through S. These are similar to the cases evidenced in Section

5.6.4 and 6.5.8.

BCK is also better than IP1 in PNe150 dataset in obtaining the best minimum total

penalties. The yellow dominance in Figure 7.5a signifies that BCK is better than IP1

especially in medium to high N values (where the overuse penalty is expected to be

higher). IP1 provides a few competitive results in low N values.

BCK is a lot more competitive with IP2 than LS or ELS was. For low V values, IP2

yields better minimum total penalties in green regions and for higher V values, BCK

performs better in yellow regions. It is observed that around S = 0.60, IP2 tends to

perform better than BCK while other S values do not differentiate either method.

IP2 usually performs better than BCK in PNe150 instances. Figure 7.5b is mostly

dark green because of this. However, for low P values where the expected space un-

deruse is small, BCK performs better than IP2. BCK is also better in P0.15N0.15 instance

where the heuristic methods like LS and ELS tend to give high quality results over IP

175

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

−50

0

50

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆min of IP1 − BCK in SVe150

S

V

(a) ∆min of IP1 − BCK

−30

−20

−10

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆min of IP2 − BCK in SVe150

S

V

(b) ∆min of IP2 − BCK

Figure 7.4: Differences in minimum penalty (∆min) after applying IP models without/with floor variables

(IP1 and IP2) and single solution local search algorithm with backtracking (BCK) on SVe150

dataset (IP1 − BCK and IP2 − BCK). IP1, IP2 and BCK are represented by blue, green, and

yellow regions respectively.

−60

−40

−20

0

20

40

60

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆min of IP1 − BCK in PNe150

P

N

(a) ∆min of IP1 − BCK

−10

−5

0

5

10

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆min of IP2 − BCK in PNe150

P

N

(b) ∆min of IP2 − BCK

Figure 7.5: Differences in minimum penalty (∆min) after applying IP models without/with floor variables

(IP1 and IP2) and single solution local search algorithm with backtracking (BCK) on PNe150

dataset (IP1 − BCK and IP2 − BCK). IP1, IP2 and BCK are represented by blue, green, and

yellow regions respectively.

models.

BCK is clearly superior to IP1 in both datasets and gives competitive results with

IP2 (which LS and ELS usually fail). This is the major reason BCK was chosen to be

used in development of hybrid methods with integer programming model IP2.

176

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

7.4.4 Comparison of Single Solution Local Search with Backtracking and

Local Search Algorithm

In this section, we are going to analyse the difference in performance between the lo-

cal search algorithm (LS) described in Chapter 5 and the single solution local search

algorithm with backtracking (BCK) presented in this chapter.

Both LS and BCK were given 10 runs (3 minutes each). In Figures 7.6 and 7.7,

four performance measures are compared for instances in SVe150 and PNe150 datasets

respectively. These measures are differences in average total penalty (∆TP), minimum

total penalty (∆min), average space misuse penalty (∆SMP) and average soft constraint

violation penalty (∆SCP) after 10 runs.

The x and y axes represent slack space rate (S) and violation rate (V) in Figure 7.6

while they represent positive (P) and negative (N) slack space rate in Figure 7.7. In these

contour plots, LS is better than BCK when a region becomes more red, while BCK

is better in yellow regions. LS and BCK algorithms give comparable performance in

white or pale red/yellow regions.

As it can be seen from the yellow regions in Figure 7.6, BCK is clearly superiour

to LS in all four difference metrics (∆TP, ∆min, ∆SMP, and ∆SCP) in SVe150 dataset.

The difference in space misuse penalty (∆SCP) is larger for small S values and gets

smaller as S grows larger as shown in Figure 7.6c. LS usually has good performance in

minimising the space misuse penalty compared to ELS (which was analysed in Section

6.5.9); therefore, the difference between LS and BCK which was derived from ELS is

not drastic in this metric. BCK also minimises the soft constraint violation penalty SCP

better. LS was already weak compared to ELS in this metric as analysed in Section

6.5.9. Average SCP and SMP combined together, the average TP of BCK is clearly

better than LS in Figure 7.6a; however, the difference in minimum total penalty ∆min

obtained after 10 runs is not as drastic in Figure 7.6b.

Similar to the case in SVe150, BCK is clearly superior to LS in every difference

metric for PNe150 instances in Figure 7.7. The differences ∆min in Figure 7.7b and

∆SMP in Figure 7.7c are not drastically in favour of BCK; however, BCK fixes the weak

performance of ELS in space misuse penalty. Combined with a stronger performance

in soft constraint violation penalty reduction as shown in Figure 7.7d, BCK clearly pulls

ahead in average total penalty minimisation especially in medium P and N values in

Figure 7.7a.

177

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

−60

−40

−20

0

20

40

60

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆TP of LS − BCK in SVe150

S

V

(a) ∆TP of LS− BCK

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆min of LS − BCK in SVe150

S

V

(b) ∆min of LS− BCK

−15

−10

−5

0

5

10

15

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆SMP of LS − BCK in SVe150

S

V

(c) ∆SMP of LS− BCK

−40

−20

0

20

40

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆SCP of LS − BCK in SVe150

S

V

(d) ∆SCP of LS− BCK

Figure 7.6: Differences in average total cost penalty (∆TP), minimum penalty (∆min), average space misuse

penalty (∆SMP) and average soft constraint penalty (∆SCP) after applying local search (LS) and

single solution local search with backtracking (BCK) on SVe150 dataset (LS− BCK). LS and

BCK are represented by red and yellow regions respectively.

178

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

−60

−40

−20

0

20

40

60

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆TP of LS − BCK in PNe150

P

N

(a) ∆TP of LS− BCK

−20

−10

0

10

20

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆min of LS − BCK in PNe150

P

N

(b) ∆min of LS− BCK

−15

−10

−5

0

5

10

15

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆SMP of LS − BCK in PNe150

P

N

(c) ∆SMP of LS− BCK

−60

−40

−20

0

20

40

60

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆SCP of LS − BCK in PNe150

P

N

(d) ∆SCP of LS− BCK

Figure 7.7: Differences in average total cost penalty (∆TP), minimum penalty (∆min), average space misuse

penalty (∆SMP), and average soft constraint penalty (∆SCP) after applying local search (LS) and

single solution local search with backtracking (BCK) on PNe150 dataset (LS− BCK). LS and

BCK are represented by red and yellow regions respectively.

179

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

7.4.5 Comparison of Single Solution Local Search with Backtracking and

Evolutionary Local Search Algorithm

In this section, we are going to analyse the difference in performance between the evo-

lutionary local search algorithm (ELS) described in Chapter 6 and the single solution

local search algorithm with backtracking (BCK) presented in this chapter.

Both ELS and BCK were given 10 runs (3 minutes each). In Figures 7.8 and 7.9,

four performance measures are compared for instances in SVe150 and PNe150 datasets

respectively. These measures are differences in average total penalty (∆TP), minimum

total penalty (∆min), average space misuse penalty (∆SMP), and average soft constraint

violation penalty (∆SCP) after 10 runs.

The x and y axes represent slack space rate (S) and violation rate (V) in Figure 7.8

while they represent positive (P) and negative (N) slack space rate in Figure 7.9. In these

contour plots, ELS is better than BCK when a region becomes more grey, while BCK

is better in yellow regions. ELS and BCK algorithms give comparable performance in

white or pale grey/yellow regions.

As evidenced by Figure 7.8, BCK is superior to ELS in every difference metric in

SVe150 instances. BCK fixes the weak performance of ELS in space misuse penalty

(SMP) as shown in Figure 7.8c. The improvement in this metric is greater for smaller

S-medium V valued instances. BCK also improves the comparatively strong perfor-

mance of ELS in soft constraint violation penalty (SCP) especially for larger V values

as shown in Figure 7.8d. With the combined improvement in SCP and SMP, BCK

shows a smooth improvement in average total penalty in Figure 7.8a over ELS which

it was derived from. There is also an improvement in obtaining better minimum total

penalties especially for larger V valued instances as shown in Figure 7.8b.

BCK performs better in all difference metrics in PNe150 instances as shown in

Figure 7.9. The improvement in SMP is notable in region where P and N values are

close (yellow area along the diagonal in Figure 7.9c). There is an improvement in SCP

towards small to medium P and N valued instances as shown by the slightly yellow

region in the lower left corner of Figure 7.9d. The end result is a smooth improvement

in obtaining average total penalties (TP) especially along P = 0.10 region as shown in

Figure 7.9a. Minimum total penalties are also improved especially along the diagonals

of Figure 7.9b.

180

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

−40

−20

0

20

40

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆TP of ELS − BCK in SVe150

S

V

(a) ∆TP of ELS− BCK

−30

−20

−10

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆min of ELS − BCK in SVe150

S

V

(b) ∆min of ELS− BCK

−30

−20

−10

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆SMP of ELS − BCK in SVe150

S

V

(c) ∆SMP of ELS− BCK

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

∆SCP of ELS − BCK in SVe150

S

V

(d) ∆SCP of ELS− BCK

Figure 7.8: Differences in average total cost penalty (∆TP), minimum penalty (∆min), average space mis-

use penalty (∆SMP), and average soft constraint penalty (∆SCP) after applying evolutionary

local search (ELS) and single solution local search with backtracking (BCK) on SVe150 dataset

(ELS− BCK). ELS and BCK are represented by grey and yellow regions respectively.

181

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

−40

−20

0

20

40

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆TP of ELS − BCK in PNe150

P

N

(a) ∆TP of ELS− BCK

−20

−10

0

10

20

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆min of ELS − BCK in PNe150

P

N

(b) ∆min of ELS− BCK

−20

−10

0

10

20

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆SMP of ELS − BCK in PNe150

P

N

(c) ∆SMP of ELS− BCK

−20

−10

0

10

20

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

∆SCP of ELS − BCK in PNe150

P

N

(d) ∆SCP of ELS− BCK

Figure 7.9: Differences in average total cost penalty (∆TP), minimum penalty (∆min), average space mis-

use penalty (∆SMP), and average soft constraint penalty (∆SCP) after applying evolutionary

local search (ELS) and single solution local search with backtracking (BCK) on PNe150 dataset

(ELS− BCK). ELS and BCK are represented by grey and yellow regions respectively.

182

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

nott1 nott1b

Method TP σ SMP SCP min TP σ SMP SCP min

LS 479.46 72.58 275.98 203.48 349.06 258.98 24.36 127.80 131.18 233.13

ELS 417.58 26.77 313.93 103.65 379.26 251.97 15.63 130.91 121.06 228.98

BCK 391.66 23.53 298.30 93.36 353.62 235.20 7.20 134.37 100.83 223.13

Table 7.3: Results on nott1 and nott1b instances after applying LS, ELS, and BCK

7.4.6 Comparison of Heuristic Methods in nott1 Instances

In this section, results of applying local search (LS - described in Chapter 5), evolution-

ary local search (ELS - described in Chapter 6) and single solution local search with

backtracking (BCK - described in Section 7.3) on two nott1 instances are presented.

Each instance was given 10 runs (3 minutes each). Results are presented in Table 7.3.

Columns TP, σ, SMP, SCP, and min represent the average total penalty, standard de-

viation of total penalty, average space misuse penalty, soft constraint violation penalty

and minimum total penalty after 10 runs.

Results show the progression of algorithms through the thesis when applied to

nott1 and nott1b instances. TP and SCP decrease by going from LS to ELS and then

from ELS to BCK. On the other hand, it is observed that LS algorithm seems to be

prioritising SMP over other components, that is why it is better than ELS and BCK in

this component.

A big drawback of LS over ELS and BCK is its inconsistency as evidenced by the

large standard deviation (σ) value. Actually, the minimum result for nott1 instance is

obtained by LS in this test despite its poorest average performance. In any case, all

local search heuristic methods described in this thesis yield better results for nott1 and

nott1b instances than any meta-heuristic approach reported previously in the literature.

BCK algorithm is the highest performing local search heuristic in most parameters.

Its average performance is best and it gives consistent results with very small standard

deviations. This is another reason BCK is the desired local search heuristic that will be

hybridised with integer programming methods.

7.4.7 Comparison of Combination Methodologies

For these experiments, the IP model with the floor variables was chosen and imple-

mented using CPLEX. For the heuristic to be used with IP, the single solution local

search and tabu search heuristics were used with backtracking with large mutation. In

183

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

Tables 7.4a and 7.4b, results obtained after 10 runs (6 minutes each) using various com-

bination methodologies are given. Columns µ and σ represent the mean and standard

deviation of 10 runs with each combination. The combination methodologies tested

are as follows:

• PureIP: Running the IP solver alone for 360 seconds.

• HeurHC6: Running just the single solution local search heuristic for 360 seconds.

• HeurInitPureIP: Running the local search heuristic for 90 seconds and feeding

the best solution obtained to the IP solver as a solution initialisation method. IP

runs for 270 seconds.

• HCIPTandem: Running the Local Search heuristic + IP solver in tandem three

times (3 x (60 seconds HC + 60 seconds IP)) while passing only the best solution

obtained between two stages.

• TSIPTandem: Running the Tabu Search heuristic + IP in tandem three times (3

x (60 seconds HC + 60 seconds IP)). The best solution obtained is passed between

two stages. Additionally, fixed variables are passed from the IP to the Tabu Search

heuristic in order to initialise the tabu list.

• HCIPMixed: Whenever a best solution is obtained with the IP solver, the single

solution local search heuristic with backtracking is called to improve this best

solution for 10 seconds.

• TSIPMixed: Whenever a best solution is obtained with the IP solver, the sin-

gle solution tabu search heuristic is called to improve this best solution for 10

seconds. Fixed variables are also transferred to the tabu Search heuristic.

Strictly comparing the average best results over 15 instances produced by the

above combinations, it was observed that the most successful method was HeurInit-

PureIP which initialised the MIP solver with the hill climbing local search heuristic with

backtracking. HeurInitPureIP provided best average results for six of the instances. Its

performance in other instances was competitive as well. HeurInitPureIP was followed

by strictly IP or heuristic methods (PureIP and HeurHC6 respectively) with three best

results each. However, the performance of PureIP and HeurHC6 could sometimes be

inconsistent providing either best or worst results for certain instances. Other combi-

nation methods were not particularly successful in providing the best results for the

instances. However, their average performances were consistent across the board and

were not significantly affected by certain instances.

184

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

PureIP HeurHC6 HeurInitPureIP

Instance µ σ µ σ µ σ

S0.00V0.00 10.50 0.00 18.90 6.69 13.80 12.39

S0.20V0.40 93.50 0.00 94.47 7.24 86.53 9.33

S0.40V0.80 237.20 0.00 192.49 6.32 191.97 7.73

S0.60V0.60 188.50 0.00 181.15 6.19 183.57 8.09

S0.80V0.40 184.10 0.00 163.00 4.43 161.76 7.77

S1.00V1.00 300.50 0.00 276.98 7.66 279.74 11.86

P0.00N0.00 92.00 0.00 76.70 4.43 74.65 4.70

P0.05N0.10 144.00 0.00 140.35 4.87 139.42 10.51

P0.10N0.20 203.30 0.00 195.85 5.94 191.66 4.40

P0.15N0.15 184.90 0.00 156.44 5.48 158.50 6.41

P0.20N0.10 133.50 0.00 133.81 4.30 131.46 6.24

P0.25N0.25 196.60 0.00 201.22 6.07 202.65 7.75

nott1 327.16 0.00 379.18 15.71 339.42 14.05

nott1b 286.71 0.00 231.15 8.17 239.48 8.48

nott1c 305.73 0.00 310.10 8.68 305.73 0.00

(a) Combination methods - Part 1

HCIPTandem TSIPTandem HCIPMixed TSIPMixed

Instance µ σ µ σ µ σ µ σ

S0.00V0.00 11.65 11.11 12.00 13.17 23.05 8.07 24.60 8.54

S0.20V0.40 95.94 5.17 101.26 8.66 96.94 9.93 94.85 13.17

S0.40V0.80 195.25 7.35 199.86 10.49 194.32 10.79 202.74 18.76

S0.60V0.60 184.11 6.68 184.41 6.87 185.83 10.92 189.34 11.22

S0.80V0.40 166.17 9.24 174.51 6.69 174.47 8.75 176.69 9.28

S1.00V1.00 278.02 9.84 281.11 12.85 273.65 10.50 288.81 16.06

P0.00N0.00 78.10 6.95 82.15 5.14 78.20 5.77 81.70 8.84

P0.05N0.10 138.48 8.21 145.74 11.19 142.08 11.18 139.93 10.62

P0.10N0.20 194.04 4.75 197.80 7.13 194.14 7.80 197.57 8.70

P0.15N0.15 162.62 8.11 164.93 6.32 158.92 5.28 161.51 6.99

P0.20N0.10 134.04 5.58 139.56 6.67 136.48 7.00 145.08 11.12

P0.25N0.25 204.30 6.71 205.47 9.41 206.48 11.85 201.59 9.51

nott1 340.62 15.71 346.20 22.28 337.22 14.84 342.12 16.03

nott1b 235.84 9.45 237.44 8.81 242.59 9.21 244.10 15.61

nott1c 305.73 0.00 305.73 0.00 305.73 0.00 305.73 0.00

(b) Combination methods - Part 2

Table 7.4: Results obtained in several instances using different hybridisations

185

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

CP

PNe150

SVe150

nott1

nott1b

0 50 100 150 200 250 300 350 400 450

TSIPMixed HCIPMixed TSIPTandem HCIPTandem HeurInitPureIP HeurHC6 PureIP

Figure 7.10: Average total penalties in instances

Figure 7.10 depicts the average total penalty and standard deviation on the total

penalty in PNe150 and SVe150 (over 6 different instances) in addition to nott1 and

nott1b instances respectively.

As it can be seen from Figure 7.10, for the average total penalty and standard devi-

ation over PNe150 and SVe150 instances, all seven test methods yielded close results.

However, a slight improvement was observed when the heuristic was used as an ini-

tialisation method to the IP method (HeurInitPureIP). In any case, just running the IP

model alone yielded poorer results in PNe150 and SVe150 instances, combining the

heuristic with/within the CPLEX always provided better results in five different com-

bination methods. However, running the hill climbing heuristic (HeurHC6) alone al-

ways gave higher solutions over the heuristic embedded IP methods (HCIPInTandem,

TSIPInTandem, HCIPMixed, TSIPMixed). Therefore, improvements over IP were due to

efficacy of the heuristic rather than the combination technique.

For nott1 instance, a completely different outcome was observed. This instance

was always solved more efficiently by IP solvers and the outcome was not different in

this test case either. Running just the pure integer programming method offered by far

the best results, while running just the hill climbing heuristic provided the worst ones.

Any combination technique reduced the deficiency of the heuristic considerably and

provided sufficient average performance in this instance.

186

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

However, the case with nott1b instance was similar to PNe150 and SVe150 in-

stances but completely opposite to nott1 instance. The IP solver results were consider-

ably behind any pure heuristic or heuristic-IP combination technique. The hill climber

heuristic was the fastest in this case, while any combination method provided close

competitive results and they were still far ahead of the IP Solver.

Figures 7.11, 7.12, 7.13, and 7.14 are graphical representations of each space penalty

component (overuse, underuse, total space misuse, and soft constraint violation penalties) in

a subset of PNe150, SVe150 instances in addition the nott1 and nott1b instances re-

spectively. Since six different PNe150 and SVe150 instances each were tested in ex-

periments, Figures 7.11 and 7.12 depict the results averaged over the six PNe150 and

SVe150 instances respectively. The small vertical lines in bars in each graph stand for

the standard deviation over 10 runs.

The individual analysis of each component of the total penalty was performed to

see whether a technique was more efficient in one aspect of the performance criteria.

For the overuse and underuse penalties in PNe150 and SVe150 instances, all methods

provided very close average results and standard deviations apart from the PureIP;

therefore, no definitive conclusion could be drawn about the overuse/underuse bias of

an algorithm. Consequentially, a bias in total space misuse penalty was not observed

especially with methods that utilised heuristics. However, for constraint penalty, it was

observed that the IP solver had a bias for the soft constraint violations in SV instances.

Although the IP solver provided worst results for the total space misuse penalty, it

yielded the best soft constraint violation penalty values.

While analysing the results in nott1 instance, the main shortcoming of the hill

climbing heuristic was noticed: Although HeurHC6 was most successful in reducing

the soft constraint violation penalties, it really struggled in reducing the space misuse

which explained its overall poor performance in this instance. Other methods had a

slight bias in reducing the overuse penalty over underuse in this instance. In nott1b

instance, the heuristic and heuristic/IP combinations provided close results in indi-

vidual penalties, the performance in each sub-penalty component was consistent with

their overall strong performance in total penalty while the PureIP was really poor in

each sub-component which explained its poor performance in this instance.

7.4.8 Discussion of Results

After the experiments on PNe150, SVe150, and nott1 instances, it was observed that

there was not necessarily a clear winner across the board. For PNe150 and SVe150 in-

187

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

0 10 20 30 40 50 60 70 80 90

O

U

TSIPMixed HCIPMixed TSIPTandem HCIPTandem

HeurInitPureIP HeurHC6 PureIP

(a) Overuse (O) and Underuse (U) Penalties

SCP

SMP

0 20 40 60 80 100 120

TSIPMixed HCIPMixed TSIPTandem HCIPTandem

HeurInitPureIP HeurHC6 PureIP

(b) Constraint (SCP) and Misuse (SMP) Penalties

Figure 7.11: Average individual penalty values in a subset of PNe150 instances

0 10 20 30 40 50 60 70 80 90 100

O

U

TSIPMixed HCIPMixed TSIPTandem HCIPTandem

HeurInitPureIP HeurHC6 PureIP

(a) Overuse (O) and Underuse (U) Penalties

SCP

SMP

0 20 40 60 80 100 120 140

TSIPMixed HCIPMixed TSIPTandem HCIPTandem

HeurInitPureIP HeurHC6 PureIP

(b) Constraint (SCP) and Misuse (SMP) Penalties

Figure 7.12: Average individual penalty values in a subset of SVe150 instances

0 20 40 60 80 100 120 140 160 180

O

U

TSIPMixed HCIPMixed TSIPTandem HCIPTandem

HeurInitPureIP HeurHC6 PureIP

(a) Overuse (O) and Underuse (U) Penalties

SCP

SMP

0 50 100 150 200 250 300 350

TSIPMixed HCIPMixed TSIPTandem HCIPTandem

HeurInitPureIP HeurHC6 PureIP

(b) Constraint (SCP) and Misuse (SMP) Penalties

Figure 7.13: Average individual penalty values in nott1 instance

0 10 20 30 40 50 60 70 80 90 100

O

U

TSIPMixed HCIPMixed TSIPTandem HCIPTandem

HeurInitPureIP HeurHC6 PureIP

(a) Overuse (O) and Underuse (U) Penalties

SCP

SMP

0 20 40 60 80 100 120 140 160 180

TSIPMixed HCIPMixed TSIPTandem HCIPTandem

HeurInitPureIP HeurHC6 PureIP

(b) Constraint (SCP) and Misuse (SMP) Penalties

Figure 7.14: Average penalty values in nott1b instance

188

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

stances, the HeurInitPureIP (using the hill climbing heuristic as an initialisation function

to the heuristic) performed slightly better than other methods. For nott1 instance, pure

IP solver yielded significantly better results over heuristic while it ended far behind in

nott1b instance after the heuristic and hybrid methods.

The methods other than HeurInitPureIP were not particularly successful in provid-

ing best results for instances and were usually beaten by heuristic or MIP only methods

in this criterion. However, these heuristic-IP combination methods were not suscepti-

ble to poor performance in certain instances unlike PureIP and HeurHC6, their average

performances were still quite competitive. Therefore, they might be still preferred if

more stable but not necessarily best results after a number of runs are sufficient if these

methods are applied to another set of OSA problem.

Initially desired results for access and usage of fixed variables to guide the local

search were not obtained. Passing fixed variables from the IP solver to the heuristic to

populate tabu lists in the tabu search heuristic provided no benefit. This was similar

to the case as in Chapter 6 where using tabu search algorithm was worse than using

the hill climber algorithm. One explanation to this phenomenon could be the greedi-

ness of the local search algorithms. At each iteration in the local search, the best move

was searched and selected from roughly one-third of the available relocate neighbour-

hood. Restricting not only potentially cyclic moves but also the fixed variables passed

from the IP solver by tabu lists in this greedy framework, might prevent some of the

moves that had to be made in order to find better moves later. Therefore, in the fu-

ture, algorithms that are less restrictive in penalising some section of the search space

can be explored with IP models. There should probably be more research that has to

be performed on different tabu search implementations. One alternative would be not

supplying all fixed variables to the tabu search algorithm to fill the tabu lists. Instead,

a dynamically or probabilistically created subset of these variables can be used to pop-

ulate the tabu lists.

Another big hurdle with the combination methods (especially with the ones that

embed heuristic within the IP) was the API restrictions. Whenever a heuristic was

used within CPLEX via an implementation of a heuristic callback function (as in HCIP-

Mixed and TSIPMixed), CPLEX turned down its default dynamic search behaviour and

operated in the traditional branch and cut mode for solving the MIP problem. Unfortu-

nately, the performance of CPLEX in traditional branch and cut mode was really poor

compared to dynamic search mode. As a result, the performance of embedded com-

binations (HCIPMixed and TSIPMixed) suffered as well as the method that transferred

fixed variables from CPLEX to heuristic TSIPTandem.

189

CHAPTER 7. COMBINING MATHEMATICAL PROGRAMMING AND HEURISTICS

7.5 Conclusion

In this chapter, an initial investigation of several combination techniques for hybridis-

ing mathematical programming and heuristics for solving the office space allocation

problem was presented. The evolutionary local search algorithm proposed in Chapter

6 was stripped off its evolutionary components and reduced to a single solution lo-

cal search heuristic. The goal of this approach was to simplify the embedding of the

heuristic within an IP solver.

The single solution local search heuristic was augmented with a large mutation

based backtracking method in order to return back to a previous location in the search

space to avoid local optima. Further optimisations of the delta and update stages made

this heuristic the best performing one to solve the office space allocation problem as

evidenced in Sections 7.4.4 and 7.4.5. This meta-heuristic by itself was also competitive

against the integer programming model with the floor variables in Chapter 4 unlike

local search in Chapter 5 and evolutionary local search algorithm in 6.

Various combinations methodologies to hybridise the mathematical programming

and heuristic were proposed. These included using heuristic as an initialisation func-

tion to the IP solver, using heuristic and IP solver in tandem, passing fixed variables

from the IP solver to the heuristic to initialise tabu lists, and calling the heuristic when-

ever an incumbent (best) solution was found with the IP solver.

It was observed that the best performance was observed when the heuristic was

fed into the IP solver as an initialisation routine. The performance of the CPLEX solver

significantly improved when a high quality solution was set as a starting point for its

dynamic search. Unfortunately, more advanced ideas, such as passing the fixed vari-

ables to populate the tabu list in a tabu search algorithm were not successful. Similar

to the case as in Chapter 6.5, restricting some of the available moves with the tabu lists

reduced the performance of the local search.

Embedding the heuristic within CPLEX as a heuristic callback and running the

heuristic whenever a new best solution found did not offer any benefits over non-

embedded techniques. Unfortunately, CPLEX shut down its dynamic search whenever

a heuristic callback was implemented and this was the main reason the performance

was not as good as the non-embedded techniques.

190

CHAPTER 8

Conclusion

In this chapter, the summary of the research performed from the perspectives of the

office space allocation problem, mathematical programming, and meta-heuristic is pre-

sented in Section 8.1. Section 8.2 describes some of the proposed work that can be done

in the future. Final remarks are given in Section 8.3.

8.1 Summary of Work

8.1.1 From the Office Space Allocation Problem Perspective

In this thesis, the optimisation problem of office space allocation was considered. The

definition of the optimisation problem was derived from the works of Burke et al.

[2001b], Burke et al. [2001c], Burke et al. [2001a], Burke et al. [2005], Landa-Silva [2003],

and Landa-Silva and Burke [2007]. The problem definition was extended with three

more hard and soft constraints. The number of data instances during the beginning of

this work was quite limited. In order to overcome this hurdle, a data instance generator

was implemented with the goal of creating test cases where an approximate bound on

the optimal value could be determined. Two parametrised data instance sets (SVe150

and PNe150) were generated with properties similar to the nott1 dataset which was

previously investigated in the literature.

8.1.2 Mathematical Models for Solving Office Space Allocation

In this thesis, various mathematical models were considered and proposed for the first

time for this variant OSA problem. The focus was on binary integer formulations in-

stead of general integer models. Two binary models were developed by using and not

using the floor variables (which held the information about the floor an entity was al-

191

CHAPTER 8. CONCLUSION

located to). The model without the floor variables offered more generalisability but

less performance while the model with the floor variables yielded superior results al-

though it was only applicable to instances where the nearby and away from relationships

were defined using the floors. We believe that identifying and exploiting structures like

floor and sections and formulating the constraints around them would be paramount

for obtaining high quality results with integer programming.

Using the model without the floor variables, further analysis of the problem was

conducted. The space misuse (overuse, underuse) and the soft constraint violations

were analysed over two datasets encompassing seventy-two instances specially created

for this analysis. It was observed that the most important aspect about determining the

difficulty of an instance was the balance between the overuse and underuse of space in

rooms. In a more balanced instance where there was a roughly comparable amount of

rooms with either overuse or underuse, the instance became more difficult to solve. It

was also observed that increasing the weight of the soft constraint violations improved

the solution quality.

8.1.3 Heuristic Approaches for Solving Office Space Allocation

Various meta-heuristic approaches were implemented to solve the office space alloca-

tion problem. Initial implementations (Chapter 5) started with general stochastic local

search algorithms like threshold acceptance, great deluge, and simulated annealing.

These algorithms were similar in nature to the methods devised previously in the liter-

ature (Landa-Silva [2003], Landa-Silva and Burke [2007], Lopes and Girimonte [2010],

etc.). The goal was to observe the performance of local search with a stochastic neigh-

bourhood which was comprised of relocate and swap moves randomly selected and

applied to the current incumbent solution). It was observed using the combination

of these two moves to generate the neighbourhood gave superior performance rather

than just using a single move.

It was observed that the performance of using such meta-heuristic approaches

could be uneven across the problem instances used. The algorithm might sometimes

get stuck in very poor local optima and as a result, quite high standard deviations

were observed in results. The relative performance compared to integer programming

models described in Chapter 4 were not satisfactory. Therefore, a more advanced evo-

lutionary local search heuristic algorithm was proposed in Chapter 6. It was observed

that exploring a significantly large section of a given neighbourhood was necessary to

find good relocate moves. A very fast cost calculation method allowed quick modifi-

192

CHAPTER 8. CONCLUSION

cations of the changes in objective function value of performing each relocate move in

a neighbourhood given a certain solution. Significant speed-ups were observed using

cost update algorithms for nine different constraints and the space misuse calculations.

However, swap move had to be dropped in this algorithm due to poor synergy with

relocate move and difficulty of implementing an exact cost update method that could

handle swap moves efficiently.

The final addition to the local search heuristic was implemented due to the ten-

dency of non-improvement of the solution quality in the evolutionary local search al-

gorithm. Since the algorithm was applied greedily (by selecting locally high quality

moves within a subset of the neighbourhood), it was more likely to get stuck in lo-

cal optima. A large mutation based backtracking method which disrupted the current

best solution considerably was applied if no improvement to the solution quality was

observed for a period of past iterations. This final local search heuristic with large mu-

tation backtracking (proposed in Chapter 7) was the most successful heuristic design

in this thesis.

At the core of local search heuristic designs in this thesis, there was an iterated local

search [Lourenco et al., 2002] inspired framework. The algorithm periodically retracted

back to the global best solution encountered during the search and tried to improve

this best solution continuously after a small perturbation was applied on it. Even the

replacement strategy in ELS had to be modified according to this framework. Results

were not particularly satisfactory and they were prone to getting stuck in local optima

if this ILS inspired framework was not used and the algorithm continuously operated

on the current solution. This was the first time an ILS based approach was used in

the literature for this problem. We believe that the intensification of search around the

global best solution was one of the major reasons for success of the local search methods

proposed in this thesis.

8.1.4 Hybridisation of Mathematical Modelling and Heuristics

The ultimate goal of this project was to develop OSA solution frameworks which com-

bined mathematical programming with meta-heuristics. The benefit of such an ap-

proach was to take advantage of exact methods (in terms of the guarantee of optimal-

ity or degree of closeness to it) and meta-heuristics (the ability of generating quick

solutions and handling larger problems that the mathematical programming models

could not handle). Modifications to the meta-heuristics and mathematical program-

ming models were done in order to create various combination methodologies.

193

CHAPTER 8. CONCLUSION

However, mixed results were obtained after this research. It was observed that

the most successful approach was simply to use the meta-heuristic as a short initialisa-

tion function for the integer linear programming solver. However, the results obtained

were not significantly better than using the meta-heuristic alone. The other combi-

nation techniques that tried to embed the meta-heuristic within the IP solver as a so-

lution improver, or that used the IP as a means of passing fixed variables to a tabu

search meta-heuristic were unfortunately not very successful. Some API restrictions

in CPLEX limited the ability to access the bounds of the variables as the search deep-

ened. Additionally, CPLEX disabled its advanced functionality (dynamic search) when

meta-heuristic was embedded within it via heuristic callbacks.

8.1.5 Overall Summary

In this thesis, various mathematical programming models and meta-heuristics were

implemented to solve the office space allocation problem. The definition of the problem

was extended from Landa-Silva [2003]. Best results in the literature were obtained for

the instances in nott1 dataset. Some of these results were proved optimal by using

CPLEX as well. For small to medium instances, the order of algorithm quality was

observed as follows:

• Model with floor variables initialised with single solution local search heuristic

with backtracking.

• Single solution local search heuristic with large mutation backtracking.

• Model with floor variables.

• Evolutionary local search algorithm without backtracking.

• Model without floor variables.

• Stochastic local search algorithms based on acceptance/rejection of moves and

simple cost calculation procedures.

However, any of these algorithms can still be used as a basis for future office

space allocation problems if a specific variant of the problem disallows other algo-

rithms. During the process of this research, results obtained by integer programming

models increased considerably due to improvements on the commercial IP solvers like

CPLEX. However, due to the licensing costs of these commercial tools, meta-heuristic

approaches proposed in this thesis can be preferred if quick but not necessarily prov-

ably optimal results is sufficient.

194

CHAPTER 8. CONCLUSION

8.2 Future Work

8.2.1 Modification of Office Space Allocation Problem

The space allocation problem considered in this thesis was already an extension of the

variant described in Landa-Silva [2003]. In this thesis, the proximity constraints (adja-

cency, nearby, away from) were defined using lists of rooms which held the information

about these relationships. However, in certain cases, the proximity relationship be-

tween the entities can be described using metric distance relationships instead of such

lists. For example, one nearby relationship can be defined over several entities being

allocated within 20 square meters of the group head, while another nearby relationship

is defined over 10 or 30 square meters. Additionally, the nearby constraint can be em-

bedded within the objective function as the minimisation of the cumulative distance to

the group head within the group similar to as in a typical clustering problem [Everitt

et al., 2009].

8.2.2 Re-allocation Problem in Office Space Allocation

The re-allocation problem is the task of re-optimisation of a previous allocation due to

changes in entity, room structures and the constraints associated with them. Although

a simple model was given for the re-allocation problem in Chapter 4, more adjustments

and implementations are required. Since the complexity of the re-allocation problem is

directly related to the amount of changes applied to the structures in the problem, test

cases should be designed considering these aspects.

Some of the case studies that can be considered in the future are as follows:

• The number of new entities that has to be allocated.

• The number of old entities that no longer should be allocated.

• The amount of reorganisation of the room and floor structure. The number of

rooms that have to be split, merged, destroyed, newly built or went through space

adjustment has to be considered.

• The number and the type of the constraints that are related to the new entity and

room structures have to be considered.

• The importance of restructuring, or any other aspect in addition to the number of

reallocated entries should be considered while modelling the new formulation of

the objective function.

195

CHAPTER 8. CONCLUSION

8.2.3 Modification of Mathematical Programming Models

Although major performance improvements were observed using a model with the

floor variables (at the expense of generalisability), current models were not sufficient

to handle larger instances. In fact, some preliminary experiments with a larger dataset

(roughly twice the number of rooms and entities than the current instances) showed

no improvement after the pre-solve stage of CPLEX. There was zero progression in

the objective function value of the incumbent solution and very little improvement in

the best bound obtained during the branch and bound stage even after a few hours of

running time of CPLEX.

It was observed that the number of non-zero locations in simplex tables in the cur-

rent models were really low (six percent to 10 percent of the whole table). Also, due to

the constraints and the nature of the current problem (that an entity can only be allo-

cated to one room), it may be possible to exploit several structures in the simplex table.

A method that is considered to address these issues is column generation [Lübbecke and

Desrosiers, 2005].

8.2.4 Modification of Heuristic Approaches

Throughout the design of the heuristic algorithms, the move operator that was fre-

quently used was the relocate move (that an entity is moved from one room to another).

Although this move allows the implementation of very fast and efficient cost calcula-

tion procedures, it may not be enough in making jumps in the search space to avoid

local optima. In addition to the relocate move, the swap move was also incorporated in

the search. In the future, more complex neighbourhood structures which involve real-

location of more than one entity can be considered. A simple approach is to divide a

series of moves into a chain of relocate moves and use the update procedures described

in Chapter 6. A more complex approach is to re-design the update procedures to han-

dle the re-organisation of more than one entity. Since most of the current constraints

are binary (that most involve two entities), two entity move update procedures should

be the first approach. These procedures can also help designing constraint based move

operators as well. However, it should be noted that initial attempts of coding update

algorithms that could handle swap moves efficiently were quite challenging.

Another successful component of the heuristics was backtracking to return to a

previous location in the search space. Although the preliminary research on making

the backtracking dynamic was not successful, more attention should be given to this

area. This is due the fact that the current static backtracking algorithm, while successful

196

CHAPTER 8. CONCLUSION

early on during the search, can really struggle later. Planned research on backtracking

can be on multiple backtrack points, the adjustment of mutation rate, and the number

of (dynamic or static) iterations for a decision to backtrack.

In this thesis, some of the major heuristic building blocks (such as random and

greedy components) were tested. One further extension is to use hyper-heuristics

[Burke et al., 2003], [Burke et al., 2010] to govern some of the successful building

blocks designed. Hyper-heuristics are high level heuristic methods that choose low

level heuristics. The current focus on hyper-heuristic research is to build automated

systems which allow quick prototyping of easy to implement building blocks with em-

phasis on generalisability.

8.2.5 Improving the Hybrid Mat-heuristic Methods

Current implementations of the mat-heuristics struggle due to some of the API re-

strictions of the IP solvers. Gurobi solver [Gurobi-Optimization, 2010] offers a simple

callback interface which makes some of the hybrid implementations difficult. CPLEX

solver [IBM-Ilog, 2013] on the other hand has a very extensive callback library, yet it still

has limitations on accessing the upper-bounds on the variables in C++ Concert inter-

face. Unfortunately, CPLEX disables its dynamic search whenever a callback function

is implemented. As a result, performances of embedded and bound information based

heuristics suffered compared to the non-embedded and no-bound information combi-

nations. Revisit of these previous ideas is planned after the release of future versions

of these commercial IP solvers. Application of non-commercial open source IP solvers

can also be considered in order to avoid the licence costs of the commercial solvers.

8.3 Final Remarks

Office space allocation is an important problem in many organisations especially in

situations space is a premium. In this thesis, a specific variant of this problem was

investigated and analysed. State of the art integer programming models and meta-

heuristic approaches for this problem were proposed. This thesis should serve as a

seminal work in this area, and the analysis and algorithms presented in this thesis

should provide a solid foundation for future research in this important problem.

197

APPENDIX A

Tables Associated with Chapter 4

In this section, some of the tables associated with Chapter 4 are given here. The tables

are moved from Chapter 4 in order to improve the flow in the chapter.

A.1 Tables Associated with the Analysis of S, P, N, V by using

Model without the Floor Variables

Tables A.1, A.2, and A.3 represent the results obtained under different S (slack space)

and V (soft constraint violation rates) under half, normal, and double soft constraint penalty

conditions respectively. Columns C, B, %, and AG represent the best objective function

value, best lower bound, the percentage, and absolute gaps between the best objective

value and bound respectively. Columns O, U, and O/U represent the overuse, underuse

penalties, and the ratio between them respectively. Columns SCP, SMP, and SCP/SMP

represent the soft constraint violation penalty, total space misuse penalty, and the ratio

between them respectively. The respective analysis of these tables can be found in

Sections 4.6.2 and 4.6.3.

Tables A.4, A.5, and A.6 represent the results obtained under different P (positive

slack space rate) and N (negative slack space rate) under half, normal, and double soft con-

straint penalty conditions respectively. Other column descriptions are the same as in

A.1, A.2, and A.3 as described in the paragraph above. The respective analysis of these

tables can be found in Sections 4.6.4 and 4.6.5.

199

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

S V C B % AG O U O
U SMP SCP SCP

SMP

0.00 0.00 21.00 0.00 1.00 21.00 14.00 7.00 2.00 21.00 0.00 0.00

0.00 0.20 26.50 11.65 0.56 14.85 11.00 5.50 2.00 16.50 10.00 0.61

0.00 0.40 62.50 23.46 0.62 39.04 25.00 12.50 2.00 37.50 25.00 0.67

0.00 0.60 63.50 29.89 0.53 33.61 19.00 9.50 2.00 28.50 35.00 1.23

0.00 0.80 125.00 44.86 0.64 80.14 50.00 25.00 2.00 75.00 50.00 0.67

0.00 1.00 114.00 51.68 0.55 62.32 46.00 23.00 2.00 69.00 45.00 0.65

0.20 0.00 39.80 22.72 0.43 17.08 27.80 12.00 2.32 39.80 0.00 0.00

0.20 0.20 47.60 34.76 0.27 12.84 23.00 9.60 2.40 32.60 15.00 0.46

0.20 0.40 62.80 45.87 0.27 16.93 29.80 13.00 2.29 42.80 20.00 0.47

0.20 0.60 81.80 51.62 0.37 30.18 35.80 16.00 2.24 51.80 30.00 0.58

0.20 0.80 145.90 65.54 0.55 80.36 65.20 30.70 2.12 95.90 50.00 0.52

0.20 1.00 168.60 69.86 0.59 98.74 77.00 36.60 2.10 113.60 55.00 0.48

0.40 0.00 101.40 61.06 0.40 40.34 63.00 28.40 2.22 91.40 10.00 0.11

0.40 0.20 104.40 70.40 0.33 34.00 65.00 29.40 2.21 94.40 10.00 0.11

0.40 0.40 123.80 83.12 0.33 40.68 64.60 29.20 2.21 93.80 30.00 0.32

0.40 0.60 134.40 86.80 0.35 47.60 65.00 29.40 2.21 94.40 40.00 0.42

0.40 0.80 162.70 97.99 0.40 64.71 87.20 40.50 2.15 127.70 35.00 0.27

0.40 1.00 214.40 105.74 0.51 108.66 105.00 49.40 2.13 154.40 60.00 0.39

0.60 0.00 105.60 88.14 0.17 17.46 87.00 13.60 6.40 100.60 5.00 0.05

0.60 0.20 119.80 97.51 0.19 22.29 89.80 15.00 5.99 104.80 15.00 0.14

0.60 0.40 128.20 108.93 0.15 19.27 85.40 12.80 6.67 98.20 30.00 0.31

0.60 0.60 157.20 113.30 0.28 43.90 101.40 20.80 4.88 122.20 35.00 0.29

0.60 0.80 200.50 126.12 0.37 74.38 113.60 26.90 4.22 140.50 60.00 0.43

0.60 1.00 226.10 131.65 0.42 94.45 134.00 37.10 3.61 171.10 55.00 0.32

0.80 0.00 117.70 85.06 0.28 32.64 80.20 22.50 3.56 102.70 15.00 0.15

0.80 0.20 153.90 95.26 0.38 58.64 101.00 32.90 3.07 133.90 20.00 0.15

0.80 0.40 160.30 104.73 0.35 55.57 98.60 31.70 3.11 130.30 30.00 0.23

0.80 0.60 147.60 109.89 0.26 37.71 86.80 25.80 3.36 112.60 35.00 0.31

0.80 0.80 228.90 122.48 0.46 106.42 121.00 42.90 2.82 163.90 65.00 0.40

0.80 1.00 293.20 126.45 0.57 166.75 157.20 61.00 2.58 218.20 75.00 0.34

1.00 0.00 154.90 123.85 0.20 31.05 116.00 23.90 4.85 139.90 15.00 0.11

1.00 0.20 156.10 133.71 0.14 22.39 116.80 24.30 4.81 141.10 15.00 0.11

1.00 0.40 177.10 143.43 0.19 33.67 120.80 26.30 4.59 147.10 30.00 0.20

1.00 0.60 186.00 145.09 0.22 40.91 123.40 27.60 4.47 151.00 35.00 0.23

1.00 0.80 261.90 154.40 0.41 107.50 164.00 47.90 3.42 211.90 50.00 0.24

1.00 1.00 268.60 162.68 0.39 105.92 161.80 46.80 3.46 208.60 60.00 0.29

Table A.1: Effects of slack and violation rates on results under half soft constraint penalty condition in SVe150

dataset instances

200

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

S V C B % AG O U O
U SMP SCP SCP

SMP

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NA 0.00 0.00 NA

0.00 0.20 61.50 21.47 0.65 40.03 21.00 10.50 2.00 31.50 30.00 0.95

0.00 0.40 59.50 43.08 0.28 16.42 13.00 6.50 2.00 19.50 40.00 2.05

0.00 0.60 115.50 55.76 0.52 59.74 37.00 18.50 2.00 55.50 60.00 1.08

0.00 0.80 161.50 76.58 0.53 84.92 61.00 30.50 2.00 91.50 70.00 0.77

0.00 1.00 197.00 88.31 0.55 108.69 78.00 39.00 2.00 117.00 80.00 0.68

0.20 0.00 36.80 22.76 0.38 14.04 25.80 11.00 2.35 36.80 0.00 0.00

0.20 0.20 53.80 45.15 0.16 8.65 23.80 10.00 2.38 33.80 20.00 0.59

0.20 0.40 86.30 66.21 0.23 20.09 38.80 17.50 2.22 56.30 30.00 0.53

0.20 0.60 114.80 76.42 0.33 38.38 37.80 17.00 2.22 54.80 60.00 1.09

0.20 0.80 193.60 94.30 0.51 99.30 77.00 36.60 2.10 113.60 80.00 0.70

0.20 1.00 250.90 103.45 0.59 147.45 115.20 55.70 2.07 170.90 80.00 0.47

0.40 0.00 85.80 63.10 0.26 22.70 52.60 23.20 2.27 75.80 10.00 0.13

0.40 0.20 109.40 83.67 0.24 25.73 55.00 24.40 2.25 79.40 30.00 0.38

0.40 0.40 139.70 101.42 0.27 38.28 75.20 34.50 2.18 109.70 30.00 0.27

0.40 0.60 159.40 110.11 0.31 49.29 75.00 34.40 2.18 109.40 50.00 0.46

0.40 0.80 200.10 126.72 0.37 73.38 88.80 41.30 2.15 130.10 70.00 0.54

0.40 1.00 296.70 137.80 0.54 158.90 153.20 73.50 2.08 226.70 70.00 0.31

0.60 0.00 128.90 92.97 0.28 35.93 99.20 19.70 5.04 118.90 10.00 0.08

0.60 0.20 133.30 112.59 0.16 20.71 88.80 14.50 6.12 103.30 30.00 0.29

0.60 0.40 168.50 131.12 0.22 37.38 105.60 22.90 4.61 128.50 40.00 0.31

0.60 0.60 180.40 140.55 0.22 39.85 100.20 20.20 4.96 120.40 60.00 0.50

0.60 0.80 246.70 161.17 0.35 85.53 124.40 32.30 3.85 156.70 90.00 0.57

0.60 1.00 293.90 171.97 0.41 121.93 149.20 44.70 3.34 193.90 100.00 0.52

0.80 0.00 122.40 91.07 0.26 31.33 80.00 22.40 3.57 102.40 20.00 0.20

0.80 0.20 148.00 111.18 0.25 36.82 90.40 27.60 3.28 118.00 30.00 0.25

0.80 0.40 183.00 127.75 0.30 55.25 100.40 32.60 3.08 133.00 50.00 0.38

0.80 0.60 193.60 139.86 0.28 53.74 100.80 32.80 3.07 133.60 60.00 0.45

0.80 0.80 250.70 156.48 0.38 94.22 112.20 38.50 2.91 150.70 100.00 0.66

0.80 1.00 274.20 167.70 0.39 106.50 121.20 43.00 2.82 164.20 110.00 0.67

1.00 0.00 155.60 129.85 0.17 25.75 119.80 25.80 4.64 145.60 10.00 0.07

1.00 0.20 190.90 143.81 0.25 47.09 130.00 30.90 4.21 160.90 30.00 0.19

1.00 0.40 218.80 163.61 0.25 55.19 128.60 30.20 4.26 158.80 60.00 0.38

1.00 0.60 230.30 174.42 0.24 55.88 129.60 30.70 4.22 160.30 70.00 0.44

1.00 0.80 309.40 187.68 0.39 121.72 169.00 50.40 3.35 219.40 90.00 0.41

1.00 1.00 314.40 200.16 0.36 114.24 159.00 45.40 3.50 204.40 110.00 0.54

Table A.2: Effects of slack and violation rates on results under normal soft constraint penalty condition in

SVe150 dataset instances

201

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

S V C B % AG O U O
U SMP SCP SCP

SMP

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NA 0.00 0.00 NA

0.00 0.20 52.00 44.51 0.14 7.49 8.00 4.00 2.00 12.00 40.00 3.33

0.00 0.40 105.00 73.50 0.30 31.50 30.00 15.00 2.00 45.00 60.00 1.33

0.00 0.60 134.50 97.77 0.27 36.73 23.00 11.50 2.00 34.50 100.00 2.90

0.00 0.80 239.00 129.32 0.46 109.68 66.00 33.00 2.00 99.00 140.00 1.41

0.00 1.00 338.00 148.06 0.56 189.94 132.00 66.00 2.00 198.00 140.00 0.71

0.20 0.00 28.10 23.71 0.16 4.39 20.00 8.10 2.47 28.10 0.00 0.00

0.20 0.20 78.60 64.82 0.18 13.78 27.00 11.60 2.33 38.60 40.00 1.04

0.20 0.40 100.10 99.65 0.00 0.45 28.00 12.10 2.31 40.10 60.00 1.50

0.20 0.60 159.90 117.45 0.27 42.45 41.20 18.70 2.20 59.90 100.00 1.67

0.20 0.80 238.90 145.76 0.39 93.14 67.20 31.70 2.12 98.90 140.00 1.42

0.20 1.00 255.60 168.36 0.34 87.24 65.00 30.60 2.12 95.60 160.00 1.67

0.40 0.00 89.30 67.77 0.24 21.53 61.60 27.70 2.22 89.30 0.00 0.00

0.40 0.20 137.40 107.24 0.22 30.16 67.00 30.40 2.20 97.40 40.00 0.41

0.40 0.40 155.00 137.47 0.11 17.53 65.40 29.60 2.21 95.00 60.00 0.63

0.40 0.60 216.30 153.24 0.29 63.06 79.60 36.70 2.17 116.30 100.00 0.86

0.40 0.80 294.50 183.57 0.38 110.93 118.40 56.10 2.11 174.50 120.00 0.69

0.40 1.00 333.40 203.38 0.39 130.02 131.00 62.40 2.10 193.40 140.00 0.72

0.60 0.00 118.20 105.13 0.11 13.07 85.40 12.80 6.67 98.20 20.00 0.20

0.60 0.20 164.80 143.12 0.13 21.68 89.80 15.00 5.99 104.80 60.00 0.57

0.60 0.40 199.20 171.05 0.14 28.15 99.40 19.80 5.02 119.20 80.00 0.67

0.60 0.60 231.40 191.61 0.17 39.79 94.20 17.20 5.48 111.40 120.00 1.08

0.60 0.80 310.70 224.17 0.28 86.53 120.40 30.30 3.97 150.70 160.00 1.06

0.60 1.00 404.30 246.30 0.39 158.00 182.80 61.50 2.97 244.30 160.00 0.65

0.80 0.00 126.00 102.98 0.18 23.02 82.40 23.60 3.49 106.00 20.00 0.19

0.80 0.20 172.60 142.25 0.18 30.35 86.80 25.80 3.36 112.60 60.00 0.53

0.80 0.40 203.40 167.93 0.17 35.47 94.00 29.40 3.20 123.40 80.00 0.65

0.80 0.60 238.00 189.29 0.20 48.71 90.40 27.60 3.28 118.00 120.00 1.02

0.80 0.80 323.30 219.69 0.32 103.61 120.60 42.70 2.82 163.30 160.00 0.98

0.80 1.00 372.20 239.63 0.36 132.57 153.20 59.00 2.60 212.20 160.00 0.75

1.00 0.00 167.70 127.30 0.24 40.40 121.20 26.50 4.57 147.70 20.00 0.14

1.00 0.20 206.60 170.99 0.17 35.61 133.80 32.80 4.08 166.60 40.00 0.24

1.00 0.40 248.10 201.06 0.19 47.04 134.80 33.30 4.05 168.10 80.00 0.48

1.00 0.60 282.80 219.86 0.22 62.94 144.60 38.20 3.79 182.80 100.00 0.55

1.00 0.80 368.50 243.59 0.34 124.91 188.40 60.10 3.13 248.50 120.00 0.48

1.00 1.00 376.40 264.24 0.30 112.16 167.00 49.40 3.38 216.40 160.00 0.74

Table A.3: Effects of slack and violation rates on results under double soft constraint penalty condition in

SVe150 dataset instances

202

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

P N C B % AG O U O
U SMP SCP SCP

SMP

0.00 0.00 62.50 25.09 0.60 37.41 25.00 12.50 2.00 37.50 25.00 0.67

0.00 0.05 123.10 64.33 0.48 58.77 76.20 16.90 4.51 93.10 30.00 0.32

0.00 0.10 131.40 105.10 0.20 26.30 95.60 5.80 16.48 101.40 30.00 0.30

0.00 0.15 166.80 150.40 0.10 16.40 136.60 5.20 26.27 141.80 25.00 0.18

0.00 0.20 197.90 189.90 0.04 8.00 171.60 1.30 132.00 172.90 25.00 0.14

0.00 0.25 236.70 230.20 0.03 6.50 211.20 0.50 422.40 211.70 25.00 0.12

0.05 0.00 52.00 32.30 0.38 19.70 9.80 22.20 0.44 32.00 20.00 0.63

0.05 0.05 101.20 61.85 0.39 39.35 53.40 22.80 2.34 76.20 25.00 0.33

0.05 0.10 120.80 88.60 0.27 32.20 77.00 13.80 5.58 90.80 30.00 0.33

0.05 0.15 150.80 124.27 0.18 26.53 114.40 11.40 10.04 125.80 25.00 0.20

0.05 0.20 181.30 164.04 0.10 17.26 149.00 7.30 20.41 156.30 25.00 0.16

0.05 0.25 229.30 201.64 0.12 27.66 191.40 7.90 24.23 199.30 30.00 0.15

0.10 0.00 72.70 49.40 0.32 23.30 12.20 40.50 0.30 52.70 20.00 0.38

0.10 0.05 90.70 62.78 0.31 27.92 35.00 30.70 1.14 65.70 25.00 0.38

0.10 0.10 126.60 80.82 0.36 45.78 72.80 28.80 2.53 101.60 25.00 0.25

0.10 0.15 162.20 108.14 0.33 54.06 110.60 26.60 4.16 137.20 25.00 0.18

0.10 0.20 192.30 139.99 0.27 52.31 141.60 20.70 6.84 162.30 30.00 0.18

0.10 0.25 215.30 175.53 0.18 39.77 174.00 16.30 10.67 190.30 25.00 0.13

0.15 0.00 109.30 66.50 0.39 42.80 15.20 59.10 0.26 74.30 35.00 0.47

0.15 0.05 122.00 70.70 0.42 51.30 47.80 54.20 0.88 102.00 20.00 0.20

0.15 0.10 106.30 78.45 0.26 27.85 51.20 35.10 1.46 86.30 20.00 0.23

0.15 0.15 148.00 97.71 0.34 50.29 86.40 31.60 2.73 118.00 30.00 0.25

0.15 0.20 167.80 120.82 0.28 46.98 107.20 20.60 5.20 127.80 40.00 0.31

0.15 0.25 197.60 150.23 0.24 47.37 150.80 21.80 6.92 172.60 25.00 0.14

0.20 0.00 95.20 83.60 0.12 11.60 4.40 70.80 0.06 75.20 20.00 0.27

0.20 0.05 115.10 84.39 0.27 30.71 31.80 63.30 0.50 95.10 20.00 0.21

0.20 0.10 126.20 87.61 0.31 38.59 46.40 49.80 0.93 96.20 30.00 0.31

0.20 0.15 151.00 95.08 0.37 55.92 67.00 39.00 1.72 106.00 45.00 0.42

0.20 0.20 185.60 111.65 0.40 73.95 111.00 39.60 2.80 150.60 35.00 0.23

0.20 0.25 185.80 132.82 0.29 52.98 118.20 22.60 5.23 140.80 45.00 0.32

0.25 0.00 126.90 101.00 0.20 25.90 10.60 91.30 0.12 101.90 25.00 0.25

0.25 0.05 137.80 97.85 0.29 39.95 32.00 80.80 0.40 112.80 25.00 0.22

0.25 0.10 155.00 98.68 0.36 56.32 54.00 71.00 0.76 125.00 30.00 0.24

0.25 0.15 163.60 102.33 0.37 61.27 63.80 54.80 1.16 118.60 45.00 0.38

0.25 0.20 157.90 109.59 0.31 48.31 77.60 40.30 1.93 117.90 40.00 0.34

0.25 0.25 238.40 126.10 0.47 112.30 145.00 53.40 2.72 198.40 40.00 0.20

Table A.4: Effects of negative and positive slack amounts on results under half soft constraint penalty condition

in PNe150 dataset.

203

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

P N C B % AG O U O
U SMP SCP SCP

SMP

0.00 0.00 77.50 47.41 0.39 30.09 25.00 12.50 2.00 37.50 40.00 1.07

0.00 0.05 119.10 84.61 0.29 34.49 60.20 8.90 6.76 69.10 50.00 0.72

0.00 0.10 189.90 122.10 0.36 67.80 134.60 25.30 5.32 159.90 30.00 0.19

0.00 0.15 229.30 162.01 0.29 67.29 161.60 17.70 9.13 179.30 50.00 0.28

0.00 0.20 230.70 209.90 0.09 20.80 176.80 3.90 45.33 180.70 50.00 0.28

0.00 0.25 264.10 250.20 0.05 13.90 212.80 1.30 163.69 214.10 50.00 0.23

0.05 0.00 81.90 48.15 0.41 33.75 16.40 25.50 0.64 41.90 40.00 0.95

0.05 0.05 107.20 77.41 0.28 29.79 47.40 19.80 2.39 67.20 40.00 0.60

0.05 0.10 144.30 107.65 0.25 36.65 86.00 18.30 4.70 104.30 40.00 0.38

0.05 0.15 199.60 144.57 0.28 55.03 123.60 16.00 7.73 139.60 60.00 0.43

0.05 0.20 223.10 176.84 0.21 46.26 160.20 12.90 12.42 173.10 50.00 0.29

0.05 0.25 259.20 223.08 0.14 36.12 198.00 11.20 17.68 209.20 50.00 0.24

0.10 0.00 81.30 64.40 0.21 16.90 4.60 36.70 0.13 41.30 40.00 0.97

0.10 0.05 115.00 77.92 0.32 37.08 41.20 33.80 1.22 75.00 40.00 0.53

0.10 0.10 143.70 97.18 0.32 46.52 74.20 29.50 2.52 103.70 40.00 0.39

0.10 0.15 171.60 126.47 0.26 45.13 100.20 21.40 4.68 121.60 50.00 0.41

0.10 0.20 222.50 161.06 0.28 61.44 148.40 24.10 6.16 172.50 50.00 0.29

0.10 0.25 242.10 197.98 0.18 44.12 175.20 16.90 10.37 192.10 50.00 0.26

0.15 0.00 107.40 81.50 0.24 25.90 10.60 56.80 0.19 67.40 40.00 0.59

0.15 0.05 115.60 88.24 0.24 27.36 30.20 45.40 0.67 75.60 40.00 0.53

0.15 0.10 157.50 94.62 0.40 62.88 72.00 45.50 1.58 117.50 40.00 0.34

0.15 0.15 208.10 114.67 0.45 93.43 119.80 48.30 2.48 168.10 40.00 0.24

0.15 0.20 204.50 143.00 0.30 61.50 125.00 29.50 4.24 154.50 50.00 0.32

0.15 0.25 240.60 169.78 0.29 70.82 162.80 27.80 5.86 190.60 50.00 0.26

0.20 0.00 137.20 98.60 0.28 38.60 12.40 74.80 0.17 87.20 50.00 0.57

0.20 0.05 125.50 101.65 0.19 23.85 25.40 60.10 0.42 85.50 40.00 0.47

0.20 0.10 141.30 105.54 0.25 35.76 49.80 51.50 0.97 101.30 40.00 0.39

0.20 0.15 191.60 116.17 0.39 75.43 77.40 44.20 1.75 121.60 70.00 0.58

0.20 0.20 206.10 131.90 0.36 74.20 108.00 38.10 2.83 146.10 60.00 0.41

0.20 0.25 210.30 157.30 0.25 53.00 131.20 29.10 4.51 160.30 50.00 0.31

0.25 0.00 151.80 116.00 0.24 35.80 17.20 94.60 0.18 111.80 40.00 0.36

0.25 0.05 130.30 115.98 0.11 14.32 17.00 73.30 0.23 90.30 40.00 0.44

0.25 0.10 151.30 114.97 0.24 36.33 38.20 63.10 0.61 101.30 50.00 0.49

0.25 0.15 180.80 124.20 0.31 56.60 78.60 62.20 1.26 140.80 40.00 0.28

0.25 0.20 207.20 132.70 0.36 74.50 103.80 53.40 1.94 157.20 50.00 0.32

0.25 0.25 215.20 146.37 0.32 68.83 116.20 39.00 2.98 155.20 60.00 0.39

Table A.5: Effects of negative and positive slack amounts on results under normal soft constraint penalty condi-

tion in PNe150 dataset

204

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

P N C B % AG O U O
U SMP SCP SCP

SMP

0.00 0.00 137.00 77.82 0.43 59.18 38.00 19.00 2.00 57.00 80.00 1.40

0.00 0.05 168.30 115.76 0.31 52.54 73.00 15.30 4.77 88.30 80.00 0.91

0.00 0.10 194.00 155.73 0.20 38.27 104.00 10.00 10.40 114.00 80.00 0.70

0.00 0.15 242.80 210.40 0.13 32.40 150.60 12.20 12.34 162.80 80.00 0.49

0.00 0.20 296.20 249.90 0.16 46.30 213.80 22.40 9.54 236.20 60.00 0.25

0.00 0.25 318.30 290.20 0.09 28.10 215.60 2.70 79.85 218.30 100.00 0.46

0.05 0.00 106.30 80.29 0.24 26.01 6.00 20.30 0.30 26.30 80.00 3.04

0.05 0.05 163.20 109.92 0.33 53.28 71.40 31.80 2.25 103.20 60.00 0.58

0.05 0.10 184.00 137.27 0.25 46.73 85.80 18.20 4.71 104.00 80.00 0.77

0.05 0.15 223.70 187.67 0.16 36.03 113.00 10.70 10.56 123.70 100.00 0.81

0.05 0.20 262.00 226.08 0.14 35.92 152.80 9.20 16.61 162.00 100.00 0.62

0.05 0.25 289.50 265.16 0.08 24.34 198.20 11.30 17.54 209.50 80.00 0.38

0.10 0.00 141.70 94.40 0.33 47.30 18.20 43.50 0.42 61.70 80.00 1.30

0.10 0.05 152.00 109.88 0.28 42.12 39.20 32.80 1.20 72.00 80.00 1.11

0.10 0.10 162.40 129.46 0.20 32.94 60.00 22.40 2.68 82.40 80.00 0.97

0.10 0.15 229.80 159.43 0.31 70.37 119.00 30.80 3.86 149.80 80.00 0.53

0.10 0.20 248.40 190.78 0.23 57.62 159.00 29.40 5.41 188.40 60.00 0.32

0.10 0.25 282.50 239.76 0.15 42.74 168.80 13.70 12.32 182.50 100.00 0.55

0.15 0.00 132.10 111.50 0.16 20.60 0.40 51.70 0.01 52.10 80.00 1.54

0.15 0.05 158.30 118.64 0.25 39.66 32.00 46.30 0.69 78.30 80.00 1.02

0.15 0.10 164.50 127.22 0.23 37.28 50.00 34.50 1.45 84.50 80.00 0.95

0.15 0.15 209.90 151.95 0.28 57.95 81.00 28.90 2.80 109.90 100.00 0.91

0.15 0.20 249.20 185.57 0.26 63.63 134.80 34.40 3.92 169.20 80.00 0.47

0.15 0.25 268.80 209.98 0.22 58.82 161.60 27.20 5.94 188.80 80.00 0.42

0.20 0.00 150.70 128.60 0.15 22.10 1.40 69.30 0.02 70.70 80.00 1.13

0.20 0.05 158.90 132.84 0.16 26.06 21.00 57.90 0.36 78.90 80.00 1.01

0.20 0.10 198.10 136.00 0.31 62.10 61.00 57.10 1.07 118.10 80.00 0.68

0.20 0.15 221.40 150.71 0.32 70.69 90.60 50.80 1.78 141.40 80.00 0.57

0.20 0.20 243.30 167.39 0.31 75.91 132.80 50.50 2.63 183.30 60.00 0.33

0.20 0.25 256.60 190.03 0.26 66.57 155.40 41.20 3.77 196.60 60.00 0.31

0.25 0.00 214.80 146.00 0.32 68.80 19.20 95.60 0.20 114.80 100.00 0.87

0.25 0.05 171.20 148.33 0.13 22.87 17.60 73.60 0.24 91.20 80.00 0.88

0.25 0.10 182.20 147.53 0.19 34.67 38.80 63.40 0.61 102.20 80.00 0.78

0.25 0.15 234.60 157.87 0.33 76.73 87.80 66.80 1.31 154.60 80.00 0.52

0.25 0.20 216.80 169.99 0.22 46.81 90.20 46.60 1.94 136.80 80.00 0.58

0.25 0.25 246.30 183.30 0.26 63.00 123.60 42.70 2.89 166.30 80.00 0.48

Table A.6: Effects of negative and positive slack amounts on results under double soft constraint penalty condi-

tion in PNe150 dataset

205

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

A.2 Tables Associated with the Comparison of Models with

and without Floor Variables

In Tables A.7, A.8, A.9, and A.10, the results obtained from SVe150 and PNe150 datasets

using a 30 minute CPLEX run by using models without and with floor variables are

represented respectively. Columns S, V, P, and N represent the slack space rate, soft con-

straint violation rate, positive, and negative slack space rate respectively. Columns C, B, %

represent the best cost obtained, the best bound, and the percentage gap between the

best solution obtained, and the best bound respectively. Columns SMP, O, U, andSCP

represent the total space misuse, overuse, underuse, and soft constraint violation penal-

ties. The respective analysis related to these tables can be found in Section 4.6.6.

207

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

S V C B % SMP O U SCP

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.20 61.50 21.47 0.65 31.50 21.00 10.50 30.00

0.00 0.40 59.50 43.08 0.28 19.50 13.00 6.50 40.00

0.00 0.60 115.50 55.76 0.52 55.50 37.00 18.50 60.00

0.00 0.80 161.50 76.58 0.53 91.50 61.00 30.50 70.00

0.00 1.00 197.00 88.31 0.55 117.00 78.00 39.00 80.00

0.20 0.00 36.80 22.76 0.38 36.80 25.80 11.00 0.00

0.20 0.20 53.80 45.15 0.16 33.80 23.80 10.00 20.00

0.20 0.40 86.30 66.21 0.23 56.30 38.80 17.50 30.00

0.20 0.60 114.80 76.42 0.33 54.80 37.80 17.00 60.00

0.20 0.80 193.60 94.30 0.51 113.60 77.00 36.60 80.00

0.20 1.00 250.90 103.45 0.59 170.90 115.20 55.70 80.00

0.40 0.00 85.80 63.10 0.26 75.80 52.60 23.20 10.00

0.40 0.20 109.40 83.67 0.24 79.40 55.00 24.40 30.00

0.40 0.40 139.70 101.42 0.27 109.70 75.20 34.50 30.00

0.40 0.60 159.40 110.11 0.31 109.40 75.00 34.40 50.00

0.40 0.80 200.10 126.72 0.37 130.10 88.80 41.30 70.00

0.40 1.00 296.70 137.80 0.54 226.70 153.20 73.50 70.00

0.60 0.00 128.90 92.97 0.28 118.90 99.20 19.70 10.00

0.60 0.20 133.30 112.59 0.16 103.30 88.80 14.50 30.00

0.60 0.40 168.50 131.12 0.22 128.50 105.60 22.90 40.00

0.60 0.60 180.40 140.55 0.22 120.40 100.20 20.20 60.00

0.60 0.80 246.70 161.17 0.35 156.70 124.40 32.30 90.00

0.60 1.00 293.90 171.97 0.41 193.90 149.20 44.70 100.00

0.80 0.00 122.40 91.07 0.26 102.40 80.00 22.40 20.00

0.80 0.20 148.00 111.18 0.25 118.00 90.40 27.60 30.00

0.80 0.40 183.00 127.75 0.30 133.00 100.40 32.60 50.00

0.80 0.60 193.60 139.86 0.28 133.60 100.80 32.80 60.00

0.80 0.80 250.70 156.48 0.38 150.70 112.20 38.50 100.00

0.80 1.00 274.20 167.70 0.39 164.20 121.20 43.00 110.00

1.00 0.00 155.60 129.85 0.17 145.60 119.80 25.80 10.00

1.00 0.20 190.90 143.81 0.25 160.90 130.00 30.90 30.00

1.00 0.40 218.80 163.61 0.25 158.80 128.60 30.20 60.00

1.00 0.60 230.30 174.42 0.24 160.30 129.60 30.70 70.00

1.00 0.80 309.40 187.68 0.39 219.40 169.00 50.40 90.00

1.00 1.00 314.40 200.16 0.36 204.40 159.00 45.40 110.00

Table A.7: Results obtained in SVe150 dataset under normal soft constraint penalty condition using model

without floor variables (IP1)

208

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

S V C B % SMP O U SCP

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.20 32.00 24.29 0.24 12.00 8.00 4.00 20.00

0.00 0.40 50.50 44.99 0.11 10.50 7.00 3.50 40.00

0.00 0.60 86.00 64.36 0.25 36.00 24.00 12.00 50.00

0.00 0.80 120.50 94.74 0.21 40.50 27.00 13.50 80.00

0.00 1.00 153.00 103.25 0.33 63.00 42.00 21.00 90.00

0.20 0.00 36.80 22.93 0.38 36.80 25.80 11.00 0.00

0.20 0.20 52.30 46.46 0.11 32.30 22.80 9.50 20.00

0.20 0.40 72.90 68.46 0.06 32.90 23.20 9.70 40.00

0.20 0.60 92.90 87.18 0.06 32.90 23.20 9.70 60.00

0.20 0.80 159.60 110.68 0.31 89.60 61.00 28.60 70.00

0.20 1.00 183.00 122.71 0.33 83.00 56.60 26.40 100.00

0.40 0.00 79.50 68.58 0.14 69.50 48.40 21.10 10.00

0.40 0.20 101.60 88.66 0.13 71.60 49.80 21.80 30.00

0.40 0.40 139.90 102.57 0.27 89.90 62.00 27.90 50.00

0.40 0.60 157.60 118.05 0.25 107.60 73.80 33.80 50.00

0.40 0.80 186.20 146.52 0.21 96.20 66.20 30.00 90.00

0.40 1.00 215.80 157.96 0.27 135.80 92.60 43.20 80.00

0.60 0.00 107.00 93.80 0.12 97.00 84.60 12.40 10.00

0.60 0.20 130.30 113.41 0.13 100.30 86.80 13.50 30.00

0.60 0.40 149.00 132.20 0.11 109.00 92.60 16.40 40.00

0.60 0.60 173.50 148.81 0.14 113.50 95.60 17.90 60.00

0.60 0.80 211.00 177.47 0.16 121.00 100.60 20.40 90.00

0.60 1.00 221.50 184.52 0.17 131.50 107.60 23.90 90.00

0.80 0.00 113.60 91.42 0.20 103.60 80.80 22.80 10.00

0.80 0.20 144.10 112.26 0.22 114.10 87.80 26.30 30.00

0.80 0.40 166.80 129.43 0.22 116.80 89.60 27.20 50.00

0.80 0.60 185.50 146.24 0.21 125.50 95.40 30.10 60.00

0.80 0.80 222.90 175.14 0.21 142.90 107.00 35.90 80.00

0.80 1.00 240.10 189.78 0.21 150.10 111.80 38.30 90.00

1.00 0.00 161.00 123.43 0.23 151.00 123.40 27.60 10.00

1.00 0.20 171.40 153.41 0.11 141.40 117.00 24.40 30.00

1.00 0.40 206.70 169.79 0.18 156.70 127.20 29.50 50.00

1.00 0.60 208.70 186.50 0.11 138.70 115.20 23.50 70.00

1.00 0.80 253.30 199.03 0.21 163.30 131.60 31.70 90.00

1.00 1.00 270.20 221.71 0.18 170.20 136.20 34.00 100.00

Table A.8: Results obtained in SVe150 dataset under normal soft constraint penalty condition using model

with floor variables (IP2)

209

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

P N C B % SMP O U SCP

0.00 0.00 77.50 47.41 0.39 37.50 25.00 12.50 40.00

0.00 0.05 119.10 84.61 0.29 69.10 60.20 8.90 50.00

0.00 0.10 189.90 122.10 0.36 159.90 134.60 25.30 30.00

0.00 0.15 229.30 162.01 0.29 179.30 161.60 17.70 50.00

0.00 0.20 230.70 209.90 0.09 180.70 176.80 3.90 50.00

0.00 0.25 264.10 250.20 0.05 214.10 212.80 1.30 50.00

0.05 0.00 81.90 48.15 0.41 41.90 16.40 25.50 40.00

0.05 0.05 107.20 77.41 0.28 67.20 47.40 19.80 40.00

0.05 0.10 144.30 107.65 0.25 104.30 86.00 18.30 40.00

0.05 0.15 199.60 144.57 0.28 139.60 123.60 16.00 60.00

0.05 0.20 223.10 176.84 0.21 173.10 160.20 12.90 50.00

0.05 0.25 259.20 223.08 0.14 209.20 198.00 11.20 50.00

0.10 0.00 81.30 64.40 0.21 41.30 4.60 36.70 40.00

0.10 0.05 115.00 77.92 0.32 75.00 41.20 33.80 40.00

0.10 0.10 143.70 97.18 0.32 103.70 74.20 29.50 40.00

0.10 0.15 171.60 126.47 0.26 121.60 100.20 21.40 50.00

0.10 0.20 222.50 161.06 0.28 172.50 148.40 24.10 50.00

0.10 0.25 242.10 197.98 0.18 192.10 175.20 16.90 50.00

0.15 0.00 107.40 81.50 0.24 67.40 10.60 56.80 40.00

0.15 0.05 115.60 88.24 0.24 75.60 30.20 45.40 40.00

0.15 0.10 157.50 94.62 0.40 117.50 72.00 45.50 40.00

0.15 0.15 208.10 114.67 0.45 168.10 119.80 48.30 40.00

0.15 0.20 204.50 143.00 0.30 154.50 125.00 29.50 50.00

0.15 0.25 240.60 169.78 0.29 190.60 162.80 27.80 50.00

0.20 0.00 137.20 98.60 0.28 87.20 12.40 74.80 50.00

0.20 0.05 125.50 101.65 0.19 85.50 25.40 60.10 40.00

0.20 0.10 141.30 105.54 0.25 101.30 49.80 51.50 40.00

0.20 0.15 191.60 116.17 0.39 121.60 77.40 44.20 70.00

0.20 0.20 206.10 131.90 0.36 146.10 108.00 38.10 60.00

0.20 0.25 210.30 157.30 0.25 160.30 131.20 29.10 50.00

0.25 0.00 151.80 116.00 0.24 111.80 17.20 94.60 40.00

0.25 0.05 130.30 115.98 0.11 90.30 17.00 73.30 40.00

0.25 0.10 151.30 114.97 0.24 101.30 38.20 63.10 50.00

0.25 0.15 180.80 124.20 0.31 140.80 78.60 62.20 40.00

0.25 0.20 207.20 132.70 0.36 157.20 103.80 53.40 50.00

0.25 0.25 215.20 146.37 0.32 155.20 116.20 39.00 60.00

Table A.9: Results obtained in PNe150 dataset under normal soft constraint penalty condition using models

without floor variables (IP1)

210

APPENDIX A. TABLES ASSOCIATED WITH CHAPTER 4

P N C B % SMP O U SCP

0.00 0.00 71.00 54.37 0.23 21.00 14.00 7.00 50.00

0.00 0.05 103.40 93.60 0.09 63.40 56.40 7.00 40.00

0.00 0.10 134.50 132.10 0.02 94.50 91.00 3.50 40.00

0.00 0.15 196.30 171.12 0.13 146.30 139.60 6.70 50.00

0.00 0.20 222.00 209.90 0.05 172.00 171.00 1.00 50.00

0.00 0.25 260.80 250.20 0.04 210.80 210.60 0.20 50.00

0.05 0.00 65.40 57.30 0.12 25.40 5.40 20.00 40.00

0.05 0.05 99.10 87.27 0.12 59.10 42.00 17.10 40.00

0.05 0.10 135.90 116.68 0.14 95.90 80.40 15.50 40.00

0.05 0.15 170.10 156.11 0.08 120.10 110.60 9.50 50.00

0.05 0.20 210.60 192.67 0.09 150.60 145.20 5.40 60.00

0.05 0.25 240.90 228.71 0.05 190.90 185.80 5.10 50.00

0.10 0.00 74.40 74.40 0.00 34.40 0.00 34.40 40.00

0.10 0.05 97.90 88.29 0.10 57.90 29.80 28.10 40.00

0.10 0.10 117.90 106.82 0.09 77.90 57.00 20.90 40.00

0.10 0.15 156.60 140.03 0.11 106.60 90.20 16.40 50.00

0.10 0.20 179.90 174.33 0.03 129.90 120.00 9.90 50.00

0.10 0.25 218.70 211.32 0.03 168.70 159.60 9.10 50.00

0.15 0.00 91.50 91.50 0.00 51.50 0.00 51.50 40.00

0.15 0.05 108.10 96.64 0.11 68.10 25.20 42.90 40.00

0.15 0.10 121.80 103.84 0.15 81.80 48.20 33.60 40.00

0.15 0.15 161.10 131.09 0.19 111.10 81.80 29.30 50.00

0.15 0.20 174.50 159.16 0.09 124.50 105.00 19.50 50.00

0.15 0.25 201.60 190.55 0.05 151.60 136.80 14.80 50.00

0.20 0.00 108.60 108.60 0.00 68.60 0.00 68.60 40.00

0.20 0.05 112.90 110.46 0.02 72.90 17.00 55.90 40.00

0.20 0.10 122.70 114.63 0.07 82.70 37.40 45.30 40.00

0.20 0.15 145.20 136.80 0.06 95.20 59.80 35.40 50.00

0.20 0.20 166.40 151.18 0.09 116.40 88.20 28.20 50.00

0.20 0.25 199.80 174.34 0.13 149.80 124.20 25.60 50.00

0.25 0.00 126.00 125.59 0.00 86.00 0.00 86.00 40.00

0.25 0.05 129.70 124.73 0.04 89.70 16.60 73.10 40.00

0.25 0.10 131.10 126.58 0.03 91.10 31.40 59.70 40.00

0.25 0.15 151.20 141.47 0.06 101.20 52.20 49.00 50.00

0.25 0.20 162.50 154.66 0.05 112.50 74.00 38.50 50.00

0.25 0.25 187.50 169.46 0.10 137.50 104.40 33.10 50.00

Table A.10: Results obtained in PNe150 dataset under normal soft constraint penalty condition using models

with floor variables (IP2)

211

APPENDIX B

Pseudo-codes Associated with

Chapter 6

In this section, the pseudo-codes associated with the update algorithms for each con-

straint (except allocation and non-allocation) as described in Chapter 6 are presented. The

pseudo-codes were moved to the appendix to remove the clutter in the corresponding

chapter. The respective explanations for these pseudo-codes can be found in Section

6.4.3.

The update algorithm for the space misuse calculations is given in Figure B.1. Fig-

ures B.2 and B.3 depict the pseudo-code for the update algorithm for same room and not

same room constraints respectively. The pseudo-code for the update algorithm for not

sharing constraint is divided into two (Figures B.4 and B.5). The update algorithm for

three proximity constraints (adjacency, nearby, and away from) are given in Figures B.6,

B.7 and B.8 respectively. The update algorithm for the capacity constraint is divided

into three figures for clarity in Figure B.11, B.9, and B.10 respectively.

213

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, space cost change matrix ∆sp, Entity set E, Room set R

Output: cost change matrix ∆, space cost change matrix ∆sp

1: for i← 1 to |E| except e do

2: room← ei.room

3: if room = r1 then

4: prevSM1+i ← Calculate previous space misuse in r1 with entity ei

5: prevSM1−i ← Calculate previous space misuse in r1 without entity ei

6: currentSM1+i ← Calculate current space misuse in r1 with entity ei

7: currentSM1−i ← Calculate current space misuse in r1 without entity ei

8: δsm1 ← (currentSM1−i − currentSM1+i)− (prevSM1−i − prevSM1+i)

9: for j← 1 to |R| do

10: if j = r2 then

11: prevSM2+i ← Calculate previous space misuse in r2 with entity ei

12: prevSM2−i ← Calculate previous space misuse in r2 without entity ei

13: currentSM2+i ← Calculate current space misuse in r3 with entity ei

14: currentSM2−i ← Calculate current space misuse in r2 without entity ei

15: δsm2 ← (currentSM2−i − currentSM2+i)− (prevSM2−i − prevSM2+i)

16: ∆ij ← ∆ij + δsm1 + δsm2

17: ∆sp
ij ← ∆sp

ij + δsm1 + δsm2

18: else if j 6= r1 then

19: ∆ij ← ∆ij + δsm1

20: ∆sp
ij ← ∆sp

ij + δsm1

21: else

22: ∆ir1 ← 0

23: ∆sp
ir1
← 0

24: else if room = r2 then

25: Symmetric condition for r2 similar to case with r1

26: Adjust and swap r1 with r2 (shorthand notation)

27: else

28: currentMisuse1 ← Calculate the current misuse in r1

29: currentMisuse2 ← Calculate the current misuse in r2

30: currentMisusei ← Calculate the current misuse in room entity ei is in

31: δsm1 ← currentMisusei + currentMisuse1 − r1.misuse

32: δsm2 ← currentMisusei + currentMisuse2 − r2.misuse

33: ∆ir1 ← ∆ir1 + δsm1 − ∆sp
ir1

34: ∆ir2 ← ∆ir2 + δsm2 − ∆sp
ir2

35: ∆sp
ir1
← δsm1

36: ∆sp
ir2
← δsm2

Figure B.1: Update algorithm for Space Misuse

214

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: if e1.prevRoom = e2.prevRoom AND e1.currentRoom = e2.prevRoom then

2: return

3: if e1.prevRoom = e2.prevRoom AND e1.currentRoom 6= e2.prevRoom then

4: for i← 1 to |R| do

5: ∆e2i ← ∆e2i − penaltysr

6: ∆e2e1.currentRoom ← ∆e2e1.currentRoom − penaltysr

7: ∆e2e1.prevRoom ← 0

8: return

9: if e1.prevRoom 6= e2.prevRoom AND e1.currentRoom = e2.prevRoom then

10: for i← 1 to |R| do

11: ∆e2i ← ∆e2i + penaltysr

12: ∆e2e1.prevRoom ← ∆e2e1.prevRoom + penaltysr

13: ∆e2e1.currentRoom ← 0

14: return

15: if e1.prevRoom 6= e2.prevRoom AND e1.currentRoom 6= e2.prevRoom then

16: ∆e2e1.prevRoom ← ∆e2e1.prevRoom + penaltysr

17: ∆e2e1.currentRoom ← ∆e2e1.currentRoom − penaltysr

18: return

Figure B.2: Update algorithm for same room constraint

215

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: if e1.prevRoom = e2.prevRoom AND e1.currentRoom = e2.prevRoom then

2: return

3: if e1.prevRoom = e2.prevRoom AND e1.currentRoom 6= e2.prevRoom then

4: for i← 1 to |R| do

5: ∆e2i ← ∆e2i + penaltynsr

6: ∆e2e2.currentRoom ← ∆e2e2.currentRoom + penaltynsr

7: ∆e2e1.prevRoom ← 0

8: return

9: if e1.prevRoom 6= e2.prevRoom AND e1.currentRoom = e2.prevRoom then

10: for i← 1 to |R| do

11: ∆e2i ← ∆e2i − penaltynsr

12: ∆e2e1.prevRoom ← ∆e2e1.prevRoom − penaltynsr

13: ∆e2e1.currentRoom ← 0

14: return

15: if e1.prevRoom 6= e2.prevRoom AND e1.currentRoom 6= e2.prevRoom then

16: ∆e2e1.prevRoom ← ∆e2e1.prevRoom − penaltynsr

17: ∆e2e1.currentRoom ← ∆e2e1.currentRoom + penaltynsr

18: return

Figure B.3: Update algorithm for not same room constraint

216

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: for i← 1 to |E| except e do

2: δnsh ← 0

3: if r1 = ei.room then

4: if number of entities in r1 is 1 then

5: if entities ee and ei both have no not sharing constraints then

6: δnsh ← 0

7: else

8: δnsh ← penaltynsh

9: if entities ee and ei have not sharing constraints then

10: δnsh ← penaltynsh

11: else if number of entities in r1 is 2 then

12: if number of entities with not sharing is 0 then

13: δnsh ← 0

14: else if entity ei does not have a not sharing constraint then

15: δnsh ← −penaltynsh

16: else if r1 contains just two entities each with not sharing constraint then

17: δnsh ← −penaltynsh

18: else

19: δnsh ← 0

20: for j← 1 to |R| except r1 do

21: ∆ij ← ∆ij + δnsh

22: else

23: if r1 has no entities then

24: if entity ei and ee both do not have not sharing constraints then

25: δnsh ← 0

26: else if either entity ee or ei has not sharing constraint but not both then

27: δnsh ← −penaltynsh

28: else

29: δnsh ← −2xpenaltynsh

30: else if r1 contains only one entity and that entity has not sharing constraint then

31: δnsh ← penaltynsh

32: ∆ir1 ← ∆ir1 δnsh

Figure B.4: Part 1 for the update algorithm for not sharing constraint

217

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: for i← 1 to |E| except e do

2: δnsh ← 0

3: if r2 = ei.room then

4: if r2 has two entities then

5: if entities ei and ee both do not have not sharing constraint then

6: δnsh ← 0

7: else

8: δnsh ← −penaltynsh

9: if r2 has two entities with not sharing constraint then

10: δnsh ← δnsh − penaltynsh

11: else if r2 has three entities then

12: if the third entity in r2 has not sharing constraint then

13: δnsh ← δnsh + penaltynsh

14: else

15: δnsh ← 0

16: for j← 1 to |R| except r2 do

17: ∆ij ← ∆ij + δnsh

18: else

19: if r2 contains just one entity then

20: if entity ei does not have not sharing constraint then

21: if r2 has an entity with not sharing constraint then

22: δnsh ← penaltynsh

23: else

24: δnsh ← penaltynsh

25: if r2 has an entity with not sharing constraint then

26: δnsh ← δnsh + penaltynsh

27: else if r2 contains two entities then

28: if if the other entity in r2 besides ee has not sharing constraint then

29: δnsh ← −penaltynsh

30: ∆ir2 ← ∆ir2 + δnsh

Figure B.5: Part 2 for the update algorithm for not sharing constraint

218

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: if IsAdj(e1.prevRoom, e2.prevRoom) AND IsAdj(e1.currentRoom, e2.prevRoom) then

2: for i← 1 to |Ae1.prevRoom| do

3: ∆e2 Ae1.prevRoom(i) ← ∆e2 Ae1.prevRoom(i) + penaltyad

4: for i← 1 to |Ae1.currentRoom| do

5: ∆e2 Ae1.currentRoom(i) ← ∆e2 Ae1.currentRoom(i) − penaltyad

6: ∆e2e2.prevRoom ← 0

7: return

8: if IsAdj(e1.prevRoom, e2.prevRoom) AND ¬IsAdj(e1.currentRoom, e2.prevRoom) then

9: for i← 1 to |R| do

10: ∆e2i ← ∆e2i − penaltyad

11: if IsAdj(i, e1.currentRoom) = true then

12: ∆e2i ← ∆e2i − penaltyad

13: if IsAdj(i, e1.prevRoom) = true then

14: ∆e2i ← ∆e2i + penaltyad

15: ∆e2e2.prevRoom ← 0

16: return

17: if ¬IsAdj(e1.prevRoom, e2.prevRoom) AND IsAdj(e1.currentRoom, e2.prevRoom) then

18: for i← 1 to |R| do

19: ∆e2i ← ∆e2i + penaltyad

20: if IsAdj(i, e1.currentRoom) = true then

21: ∆e2i ← ∆e2i − penaltyad

22: if IsAdj(i, e1.prevRoom) = true then

23: ∆e2i ← ∆e2i + penaltyad

24: ∆e2e2.prevRoom ← 0

25: return

26: if ¬IsAdj(e1.prevRoom, e2.prevRoom) AND ¬IsAdj(e1.currentRoom, e2.prevRoom)

then

27: for i← 1 to |Ae1.prevRoom| do

28: ∆e2 Ae1.prevRoom(i) ← ∆e2 Ae1.prevRoom(i) + penaltyad

29: for i← 1 to |Ae1.currentRoom| do

30: ∆e2 Ae1.currentRoom(i) ← ∆e2 Ae1.currentRoom(i) − penaltyad

31: ∆e2e2.prevRoom ← 0

32: return

Figure B.6: Update algorithm for adjacency constraint

219

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: if IsNear(e1.prevRoom, e2.prevRoom) AND IsNear(e1.currentRoom, e2.prevRoom)

then

2: for i← 1 to |Ne1.prevRoom| do

3: ∆e2 Ne1.prevRoom(i) ← ∆e2 Ne1.prevRoom(i) + penaltynr

4: for i← 1 to |Ne1.currentRoom| do

5: ∆e2 Ne1.currentRoom(i) ← ∆e2 Ne1.currentRoom(i) − penaltynr

6: ∆e2e2.prevRoom ← 0

7: return

8: if IsNear(e1.prevRoom, e2.prevRoom) AND ¬IsNear(e1.currentRoom, e2.prevRoom)

then

9: for i← 1 to |R| do

10: ∆e2i ← ∆e2i − penaltynr

11: if IsNear(i, e1.currentRoom) = true then

12: ∆e2i ← ∆e2i − penaltynr

13: if IsNear(i, e1.prevRoom) = true then

14: ∆e2i ← ∆e2i + penaltynr

15: ∆e2e2.prevRoom ← 0

16: return

17: if ¬IsNear(e1.prevRoom, e2.prevRoom) AND IsNear(e1.currentRoom, e2.prevRoom)

then

18: for i← 1 to |R| do

19: ∆e2i ← ∆e2i + penaltynr

20: if IsNear(i, e1.currentRoom) = true then

21: ∆e2i ← ∆e2i − penaltynr

22: if IsNear(i, e1.prevRoom) = true then

23: ∆e2i ← ∆e2i + penaltynr

24: ∆e2e2.prevRoom ← 0

25: return

26: if ¬IsNear(e1.prevRoom, e2.prevRoom) AND ¬IsNear(e1.currentRoom, e2.prevRoom)

then

27: for i← 1 to |Ne1.prevRoom| do

28: ∆e2 Ne1.prevRoom(i) ← ∆e2 Ne1.prevRoom(i) + penaltynr

29: for i← 1 to |Ne1.currentRoom| do

30: ∆e2 Ne1.currentRoom(i) ← ∆e2 Ne1.currentRoom(i) − penaltynr

31: ∆e2e2.prevRoom ← 0

32: return

Figure B.7: Update algorithm for nearby constraint

220

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: if IsNear(e1.prevRoom, e2.prevRoom) AND IsNear(e1.currentRoom, e2.prevRoom)

then

2: for i← 1 to |Ne1.prevRoom| do

3: ∆e2 Ne1.prevRoom(i) ← ∆e2 Ne1.prevRoom(i) − penaltyaw

4: for i← 1 to |Ne1.currentRoom| do

5: ∆e2 Ne1.currentRoom(i) ← ∆e2 Ne1.currentRoom(i) + penaltyaw

6: ∆e2e2.prevRoom ← 0

7: return

8: if IsNear(e1.prevRoom, e2.prevRoom) AND ¬IsNear(e1.currentRoom, e2.prevRoom)

then

9: for i← 1 to |R| do

10: ∆e2i ← ∆e2i + penaltyaw

11: if IsNear(i, e1.prevRoom) = true then

12: ∆e2i ← ∆e2i − penaltyaw

13: if IsNear(i, e1.currentRoom) = true then

14: ∆e2i ← ∆e2i + penaltyaw

15: ∆e2e2.prevRoom ← 0

16: return

17: if ¬IsNear(e1.prevRoom, e2.prevRoom) AND IsNear(e1.currentRoom, e2.prevRoom)

then

18: for i← 1 to |R| do

19: ∆e2i ← ∆e2i − penaltyaw

20: if IsNear(i, e1.prevRoom) = true then

21: ∆e2i ← ∆e2i − penaltyaw

22: if IsNear(i, e1.currentRoom) = true then

23: ∆e2i ← ∆e2i + penaltyaw

24: ∆e2e2.prevRoom ← 0

25: return

26: if ¬IsNear(e1.prevRoom, e2.prevRoom) AND ¬IsNear(e1.currentRoom, e2.prevRoom)

then

27: for i← 1 to |Ne1.prevRoom| do

28: ∆e2 Ne1.prevRoom(i) ← ∆e2 Ne1.prevRoom(i) − penaltyaw

29: for i← 1 to |Ne1.currentRoom| do

30: ∆e2 Ne1.currentRoom(i) ← ∆e2 Ne1.currentRoom(i) + penaltyaw

31: ∆e2e2.prevRoom ← 0

32: return

Figure B.8: Update algorithm for away from constraint

221

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: if r1 has a capacity constraint AND room = r1 then

2: currentOveruse← r1.usage− r1.space

3: previousOveruse← currentDi f f erence + eent.space

4: if previousOveruse > 0 then

5: if currentOveruse > 0 then

6: if previousOveruse > ei.space AND currentOveruse ≤ ei.space then

7: for j← 1 to |R| except r1 do

8: ∆ij ← ∆ij − penaltycp

9: else

10: if previousOveruse ≤ ei.space then

11: for j← 1 to |R| except r1 do

12: ∆ij ← ∆ij + penaltycp

13: else if r2 has a capacity constraint AND room = r2 then

14: currentOveruse← r2.usage− r2.space

15: previousOveruse← currentOveruse− ee.space

16: if currentOveruse > 0 then

17: if previousOveruse > 0 then

18: if previousOveruse ≤ ei.space AND currentOveruse > ei.space then

19: for j← 1 to |R| except r2 do

20: ∆ij ← ∆ij + penaltycp

21: else

22: if currentOveruse ≤ ei.space then

23: for j← 1 to |R| except r2 do

24: ∆ij ← ∆ij − penaltycp

Figure B.9: Update algorithm for capacity constraint (conditions 1 and 2)

222

APPENDIX B. PSEUDO-CODES ASSOCIATED WITH CHAPTER 6

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: if r1 has a capacity constraint AND room 6= r1 then

2: currentOveruse← r1.usage− r1.space

3: previousOveruse← currentOveruse + ee.space

4: if currentOveruse = 0 then

5: ∆ir1 ← ∆ir1 + penaltycp

6: else if currentOveruse < 0 then

7: if previousOveruse > 0 then

8: if currentUnderuse < ei.space then

9: ∆ir1 ← ∆ir1 + penaltycp

10: else

11: if previousUnderuse < ei.space AND currentUnderuse ≥ ei.space then

12: ∆ir1 ← ∆ir1 − penaltycp

13: else if r2 has a capacity constraint AND room 6= r2 then

14: currentOveruse← r2.usage− r2.space

15: previousOveruse← currentDi f f erence− ee.space

16: if previousOveruse = 0 then

17: ∆ir2 ← ∆ir2 − penaltycp

18: else if previousOveruse < 0 then

19: if currentOveruse > 0 then

20: if previousUnderuse < ei.space then

21: ∆ir2 ← ∆ir2 − penaltycp

22: else

23: if currentUnderuse < ei.space AND previousUnderuse ≥ ei.space then

24: ∆ir2 ← ∆ir2 + penaltycp

Figure B.10: Update algorithm for capacity constraint (conditions 3 and 4)

Input: cost change matrix ∆, Entity set E, Room set R

Output: cost change matrix ∆

1: for i← 1 to |E| except entity e do

2: room← ei.room

3: Condition 1

4: Condition 2

5: Condition 3

6: Condition 4

Figure B.11: Update algorithm for capacity constraint

223

References

E. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. Wiley, first edition, 2003.

A. O. Adewumi and M. M. Ali. A multi-level genetic algorithm for a multi-stage space alloca-

tion problem. Mathematical and Computer Modelling, 51(1-2):109– 126, 2010.

D. T. Anh and N. T. Trung. Three improved variants of simulated annealing for optimising

dorm room assignments. International J. Intell. Inf. Database Syst., 5(3):296–312, May 2011.

ISSN 1751-5858.

M. A. Awadallah, A. T. Khader, M. A. Al-Betar, and P. C. Woon. Office-space-allocation problem

using harmony search algorithm. In Tingwen Huang, Zhigang Zeng, Chuandong Li, and

Chi-Sing Leung, editors, ICONIP (2), volume 7664 of Lecture Notes in Computer Science, pages

365–374. Springer, 2012.

R. Bai. An Investigation of Novel Approaches for Optimising Retail Shelf Space Allocation. PhD thesis,

School of Computer Science and Information Technology, University of Nottingham, 2005.

J. E. Baker. Adaptive selection methods for genetic algorithms. In Proceedings of the First Inter-

national Conference on Genetic Algorithms, pages 101–111, Mahwah, NJ, USA, 1985. Lawrence

Erlbaum Associates, Inc.

J. M. Baldwin. Adaptive Individuals in Evolving Populations: Models and Algorithms - A New Factor

in Evolution, pages 59–80. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1996.

W. B. Ball. Space utilization optimization. White Paper, 2009. URL http://gis.larc.nasa.

gov/spaceopt/.

M. Beckman and T. C. Koopmans. Assignment problems and the location of economic activities.

Econometrica, 25:53–76, 1957.

C. Benjamin, I. Ehie, and Y. Omurtag. Planning facilities at the university of missouri-rolla.

Interfaces, 22(4):94–105, 1992.

C. Beyrouthy. Models, Solution Methods and Threshold Behaviour for the Teaching Space Allocation

Problem. PhD thesis, School of Computer Science and Information technology, University of

Nottingham, 2008.

225

http://gis.larc.nasa.gov/spaceopt/
http://gis.larc.nasa.gov/spaceopt/

REFERENCES

C. Beyrouthy, E. K. Burke, B. McCollum, P. McMullan, J. D. Landa-Silva, and A. J. Parkes.

Towards improving the utilisation of university teaching space. The Journal of Operational

Research Society, 60:130–143, 2009.

C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual

comparison. ACM Comput. Surv., 35(3):268–308, September 2003.

A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, University of Alberta,

Edmonton, Canada, 1981.

E. K. Burke and D. B. Varley. Space allocation: An analysis of higher education requirements.

In The Practice and Theory of Automated Timetabling II (PATAT 1997), LNCS, Vol. 1408, pages

20–33. Springer-Verlag, 1998.

E. K. Burke, P. Cowling, and J. D. Landa-Silva. Hybrid population-based metaheuristic ap-

proaches for the space allocation problem. In Proceedings of the 2001 Congress on Evolutionary

Computation (CEC 2001), pages 232–239, 2001a.

E. K. Burke, P. Cowling, J. D. Landa-Silva, and B. McCollum. Three methods to automate the

space allocation process in UK universities. In The Practice and Theory of Automated Timetabling

III (PATAT 2004), LNCS, Vol. 2079, pages 254–273. Springer, 2001b.

E. K. Burke, P. Cowling, J. D. Landa-Silva, and S. Petrovic. Combining hybrid metaheuris-

tics and populations for the multiobjective optimisation of space allocation problems. In

Proceedings of the 2001 Genetic and Evolutionary Computation Conference (GECCO 2001), pages

1252–1259, 2001c.

E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-Heuristics: An

Emerging Direction in Modern Search Technology. In F. Glover and G. Kochenberger, edi-

tors, Handbook of Metaheuristics, International Series in Operations Research and Management

Science, chapter 16, pages 457–474. Kluwer Academic Publishers, 2003.

E. K. Burke, J. D. Landa-Silva, and E. Soubeiga. Multi-Objective Hyper-Heuristic Approaches for

Space Allocation and Timetabling, pages 129–158. Springer, 2005.

E. K. Burke, M. Hyde, G., G. Ochoa, E. Ozcan, and J. R. Woodward. A classification of hyper-

heuristics approaches. In M. Gendreau and J-Y. Potvin, editors, Handbook of Metaheuristics,

volume 57 of International Series in Operations Research and Management Science, chapter 15,

pages 449–468. Springer, second edition, 2010.

D. G. Cattrysse and L. N. Van Wassenhove. A survey of algorithms for the generalized assign-

ment problem. European Journal of Operational Research, 60(3):260–272, 1992.

J. W. Chinneck. Practical Optimization: A Gentle Introduction. Carleton University, 2012.

C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algorithms for Solving

Multi-Objective Problems. Springer-Verlag, Secaucus, NJ, USA, second edition, 2006.

226

REFERENCES

D. Corne and P. Ross. Peckish initialisation strategies for evolutionary timetabling. In Edmund

Burke and Peter Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of

Lecture Notes in Computer Science, pages 227–240. Springer Berlin Heidelberg, 1996.

C. Cotta-Porras. A study of hybridisation techniques and their application to the design of

evolutionary algorithms. AI Communications, 11(3):223–224, 1998.

G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.

G. Dueck. New optimization heuristics the great deluge algorithm and the record-to-record

travel. Journal of Computational Physics, 104:86–92, 1993.

G. Dueck and T. Scheuer. Threshold accepting: A general purpose optimization algorithm

appearing superior to simulated annealing. Journal of Computational Physics, 90(1):161–175,

1990.

I. Dumitrescu and T. Stützle. Combinations of local search and exact algorithms. In S. Cagnoni,

C. G. Johnson, J. J. R. Cardalda, R. Marchiori, D. W. Corne, J. Meyer, J. Gottlieb, M. Midden-

dorf, A. Guillot, G. Raidl, and E. Hart, editors, Applications of Evolutionary Computing, volume

2611 of Lecture Notes in Computer Science, pages 211–223. Springer Berlin Heidelberg, 2003.

B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Hodder Arnold Publication. John Wiley

& Sons, 2009. ISBN 9780340761199.

P. Galinier and J. K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of Combi-

natorial Optimization, 3(4):379–397, 1999.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. ISBN 0716710447.

Z. W. Geem. Novel derivative of harmony search algorithm for discrete design variables. Ap-

plied Mathematics and Computation, 199(1):223–230, 2008.

Z. W. Geem, J. H. Kim, and G. V. Loganathan. A New Heuristic Optimization Algorithm:

Harmony Search. SIMULATION, 76(2):60–68, feb 2001.

J. Giannikos, E. El-Darzi, and P. Lees. An integer goal programming model to allocate offices

to staff in an academic instituition. Journal of the Operational Research Society, 46(6):713–720,

1995.

F. W. Glover. Tabu search, part 1. ORSA Journal on Computing, 1:190–206, 1989.

F. W. Glover. Tabu search, part 2. ORSA Journal on Computing, 2(1):4–32, 1990.

F. W. Glover and G. A. Kochenberger. Handbook of metaheuristics, January 2003.

F. W. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA, USA,

1997.

227

REFERENCES

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley, first edition, 1989.

R. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the

American Mathematical Society, 64:275–278, 1958.

Gurobi-Optimization. Gurobi, 2010. URL http://www.gurobi.com.

B. Hajek. Cooling schedules for optimal annealing. Mathematics of Operations Research, 13(2):

311–329, 1988.

Y. C. Ho and D. L. Pepyne. Simple Explanation of the No-Free-Lunch Theorem and Its Impli-

cations. Journal of Optimization Theory and Applications, 115(3):549–570, dec 2002.

J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, third edi-

tion, 2006.

IBM-Ilog. Cplex, 2013. URL http://www-01.ibm.com/software/integration/optimization/

cplex/.

M. Juenger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, and

L. A. Wolsey G . Rinaldi. 50 Years of Integer Programming 1958-2008: From the Early Years to the

State-of-the-Art. Springer, 2010.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):

373–395, 1984. ISSN 0209-9683.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004. ISBN 978-3-540-

40286-2.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

220:671–680, 1983.

A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.

Econometrica, 28:497–520, 1960.

J. D. Landa-Silva. Metaheuristics and Multiobjective Approaches for Space Allocation. PhD thesis,

School of Computer Science and Information Technology, University of Nottingham, 2003.

J. D. Landa-Silva and E. K. Burke. Asynchronous cooperative local search for the office-space-

allocation problem. INFORMS J. on Computing, 19(4):575–587, 2007.

R. Lopes and D. Girimonte. The office-space-allocation problem in strongly hierarchized orga-

nizations. In Evolutionary Computation in Combinatorial Optimization, volume 6022 of LNCS,

pages 143–153. Springer, 2010.

228

http://www.gurobi.com
http://www-01.ibm.com/software/integration/optimization/cplex/
http://www-01.ibm.com/software/integration/optimization/cplex/

REFERENCES

H. R. Lourenco, O. C. Martin, and T. Stutzle. Iterated local search. In Handbook of Metaheuristics,

volume 57 of International Series in Operations Research and Management Science, pages 321–353.

Kluwer Academic Publishers, 2002.

M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations Research, 53

(6):1007–1023, 2005. ISSN 0030-364X.

V. Maniezzo, T. Stützle, and S. Voss. Matheuristics: Hybridizing metaheuristics and mathemat-

ical programming. Annals of Information Systems, 10, 2009.

H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes in integer and mixed

integer programming. Discrete Applied Mathematics, 123(1-3):397–446, nov 2002.

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. John Wiley

& Sons, Inc., New York, USA, 1990.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of state

calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.

N. Mladenovic and P. B. Hansen. Variable neighborhood search. Computers and Operations

Research, 24(11):1097–1100, 1997.

P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts - towards

memetic algorithms, 1989.

Pablo Moscato and J. F. Fontanari. Stochastic versus deterministic update in simulated anneal-

ing. Physics Letters A, 146(4):204–208, 1990.

University of Michigan. Research space guidelines, 2012. URL http://www.provost.umich.

edu/space/other/ResearchSpaceGuidelines.pdf.

I. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations Research, 63(5):

511–623, October 1996.

R. Pereira, K. Cummiskey, and R. Kincaid. Office space allocation optimization. In IEEE Systems

and Information Engineering Design Symposium (SIEDS 2010), pages 112–117, 2010.

R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization: An overview. Swarm Intel-

ligence, 1:33–57, 2007.

J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms in combinato-

rial optimization: A survey and classification. In First International Work-Conference pm the

Interplay Between Natural and Artificial Computation, Part II, volume 3562, pages 41–53, 2005.

J. Puchinger, G. R. Raidl, and U. Pferschy. The multidimensional knapsack problem: Structure

and algorithms. Informs Journal on Computing, 2009.

229

http://www.provost.umich.edu/space/other/ResearchSpaceGuidelines.pdf
http://www.provost.umich.edu/space/other/ResearchSpaceGuidelines.pdf

REFERENCES

G. R. Raidl. A unified view on hybrid metaheuristics. In Proceedings of the Third international

conference on Hybrid Metaheuristics, HM’06, pages 1–12, Berlin, Heidelberg, 2006. Springer-

Verlag.

G. R. Raidl and J. Puchinger. Combining (integer) linear programming techniques and meta-

heuristics for combinatorial optimization. In Hybrid Metaheuristics, pages 31–62. Springer,

2008.

M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search procedures. In

F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249. Kluwer

Academic Publishers, 2003.

L. Ritzman, J. Bradford, and R. Jacobs. A multiple objective approach to space planning for

academic facilities. Managament Science, 25(9):895–906, 1980.

P. Ross, D. Corne, and H.L. Fang. Improving evolutionary timetabling with delta evaluation

and directed mutation. In PPSN III: Proceedings of the International Conference on Evolution-

ary Computation. The Third Conference on Parallel Problem Solving from Nature, pages 556–565,

London, UK, 1994. Springer-Verlag.

G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking optimization

results using the ruin and recreate principle. Journal of Computational Physics, 159(2):139–171,

2000.

R. Sharpe. Optimum space allocation within buildings. Building Science, 8(3):201–205, 1973.

M. Sipser. Introduction to the Theory of Computation. International Thomson Publishing, first

edition, 1996.

P. N. Strenski and S. Kirkpatrick. Analysis of finite length annealing schedules. Algorithmica, 6

(3):346–366, 1991.

E. G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8(5):541–564, 2002.

M. Tamiz, D. Jones, and C. Romero. Goal programming for decision making: An overview of

the current state-of-the-art. European Journal of Operational Research, 111(3):569 – 581, 1998.

N. T. Trung and D. T. Anh. Comparing three improved variants of simulated annealing for op-

timizing dorm room assignments. In Computing and Communication Technologies, 2009. RIVF

’09. International Conference on, pages 1 –5, july 2009.

N. T. Trung, T. N. Tuan, and D. T. Anh. Informed simulated annealing for optimizing dorm

room assignments. In Intelligent Information and Database Systems, 2009. ACIIDS 2009. First

Asian Conference on, pages 265 –270, april 2009.

Ö. Ülker and J. D. Landa-Silva. A 0/1 integer programming model for the office space allocation

problem. Electronic Notes in Discrete Mathematics, 36:575–582, 2010.

230

REFERENCES

Ö. Ülker and J. D. Landa-Silva. Designing difficult office space allocation problem instances

with mathematical programming. In SEA - Symposium of Experimental Algorithms, pages 280–

291, 2011.

Ö. Ülker and J. D. Landa-Silva. Evolutionary local search for solving the office space allocation

problem. In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 3573–3580, june

2012.

Ö. Ülker and J. D. Landa-Silva. Analysis of office space allocation problem using mathematical

programming. In To be decided, pages 1–25, 2013a.

Ö. Ülker and J. D. Landa-Silva. Two neighbourhood iterated local search algorithm for space

allocation problem. In Workshop on Hybrid Meta-heuristics 2013, pages 1–15, 2013b.

S. Voss, I. H. Osman, and C. Roucairol, editors. Meta-Heuristics: Advances and Trends in Local

Search Paradigms for Optimization. Kluwer Academic Publishers, Norwell, MA, USA, 1999.

C. Voudouris and E. Tsang. Guided local search. European Journal of Operational Research, 113

(2):469–499, 1999.

D. L. Whitley, V. S. Gordon, and K. E. Mathias. Lamarckian evolution, the baldwin effect and

function optimization. In Yuval Davidor, Hans-Paul Schwefel, and Reinhard Männer, editors,

Parallel Problem Solving from Nature – PPSN III, pages 6–15, Berlin, 1994. Springer.

W. E. Wilhelm. A technical review of column generation in integer programming". Optimization

and Engineering, 2:159–200, 2001.

H. P. Williams. Model Building in Mathematical Programming. John Wiley and Sons, fourth edi-

tion, 1999.

I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan

Kaufmann Publishers in Data Management System, San Francisco, CA, USA, second edition,

2005.

D. H. Wolpert and W. G. Macready. No free lunch theorems for search. Tech. Rep. No. SFI-TR-

95-02-010, Santa Fe Institute, Santa Fe, NM, 1995.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions

on Evolutionary Computation, 1(1):67 –82, apr 1997.

D. H. Wolpert and W. G. Macready. Coevolutionary free lunches. IEEE Transactions on Evolu-

tionary Computation, 9(6):721–735, dec 2005.

L. A. Wolsey. Integer programming. Wiley Interscience, first edition, 1998.

M. H. Yang and W. C. Chen. A study on shelf space allocation and management. International

Journal of Production Economics, 60-61:309–317, 1999.

S. H. Zahiri. Fuzzy multi-objective PSO: An approach for office space allocation. Iranian Journal

of Electrical and Computer Engineering, 8(2):61–70, 2009.

231

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Aims and Scope
	Overview of the Thesis
	Contributions of the Thesis
	Academic Papers Related to this Thesis

	Office Space Allocation
	Introduction
	Space Allocation and Planning in Organisations
	Case Study: Space Allocation in Universities
	Case Study: Space Allocation in NASA Langley Research Centre

	Problem Description and Formulation
	Constraints
	Quality Evaluation of an Allocation

	Test Data Instances from UK Universities
	University of Nottingham Dataset
	University of Wolverhampton Dataset

	Data Instance Generator for Office Space Allocation
	Generation of Office Space Allocation Structures
	Data Instance Generator Algorithm
	SVe150 and PNe150 Datasets

	Conclusion

	Literature Review
	Introduction
	Theoretical Problems Related to Office Space Allocation
	Bin Packing Problem
	Multi-dimensional Knapsack Problem
	Generalised Assignment Problem
	Clustering

	Previous Research on Office Space Allocation
	Other Practical Problems Related to Office Space Allocation
	Retail Shelf Space Allocation
	Teaching Space Allocation

	Algorithm Complexity
	No Free Lunch Theorem

	Review of Solution Approaches
	Meta-heuristics
	Integer Programming

	Conclusion

	Integer Programming Formulations
	Introduction
	Binary Mathematical Programming Model
	Formulation of the Constraints
	Objective Function

	Model for Re-Allocation Problem
	A Model with General Integer Decision Variables
	Two Binary Integer Programming Models
	Effect of Using Floor Variables on the Size of Simplex Tables

	Experiments Related to Integer Programming Models
	Results on Nott1 and Wolverhampton Datasets
	Effect of S and V on Percentage and Absolute Gaps
	Effect of P and N on Percentage and Absolute Gaps
	Effect of S and V on Overuse, Underuse and Soft Constraint Violations
	Effect of P and N on Overuse, Underuse and Soft Constraint Violations
	Comparison of Models with and without Floor Variables

	Conclusion

	Local Search Algorithms
	Introduction
	Solution Representation and Data Structures
	Neighbourhood Operators
	Algorithm Outline
	Fast Cost Calculation for Relocate and Swap Moves
	Experiments Related to Local Search Algorithm
	Balance Between Relocate and Swap Moves
	Comparison of Acceptance/Rejection Mechanisms
	Complete Results on SVe150 and PNe150 Datasets
	Comparison of Local Search and Integer Programming Models

	Conclusion

	Evolutionary Local Search Algorithm
	Introduction
	The Algorithm Outline
	Evolutionary Components
	Crossover Operators
	Mutation Operators

	Local Search
	Neighbourhood in Evolutionary Local Search Algorithm
	Delta Stage
	Update Stage
	Partial Local Search
	Application of Tabu Search

	Experiments Related to Evolutionary Local Search
	Effect of Orderings of Local Search
	Effect of Using Different Crossover Operators
	Effect of Mutation Rate and Local Search Iterations
	Effect of Local Search Size
	Effect of Population Size
	Tabu Search vs Basic Local Search
	Complete Results on SVe150 and PNe150 Datasets
	Comparison of Integer Programming Models and Evolutionary Local Search
	Comparison of Local Search vs Evolutionary Local Search Algorithms

	Conclusion

	Combining Mathematical Programming and Heuristics
	Introduction
	Combination Methodologies
	Implementation Issues with CPLEX API

	Modifications to the Local Search Heuristic
	Elimination of Repeated Delta Stage in the Local Search Heuristic
	Backtracking
	Single Solution Local Search Algorithm with Backtracking

	Experiments Related to Single Solution Local Search with Backtracking, Integer Programming and Heuristic Combination Techniques
	Effect of Backtrack Iterations and Backtrack Mutation Rate
	Complete Results of Single Solution Local Search with Backtracking on SVe150 and PNe150 Datasets
	Comparison of Single Solution Local Search with Backtracking and Integer Programming Models
	Comparison of Single Solution Local Search with Backtracking and Local Search Algorithm
	Comparison of Single Solution Local Search with Backtracking and Evolutionary Local Search Algorithm
	Comparison of Heuristic Methods in nott1 Instances
	Comparison of Combination Methodologies
	Discussion of Results

	Conclusion

	Conclusion
	Summary of Work
	From the Office Space Allocation Problem Perspective
	Mathematical Models for Solving Office Space Allocation
	Heuristic Approaches for Solving Office Space Allocation
	Hybridisation of Mathematical Modelling and Heuristics
	Overall Summary

	Future Work
	Modification of Office Space Allocation Problem
	Re-allocation Problem in Office Space Allocation
	Modification of Mathematical Programming Models
	Modification of Heuristic Approaches
	Improving the Hybrid Mat-heuristic Methods

	Final Remarks

	Tables Associated with Chapter 4
	Tables Associated with the Analysis of S, P, N, V by using Model without the Floor Variables
	Tables Associated with the Comparison of Models with and without Floor Variables

	Pseudo-codes Associated with Chapter 6
	References

