
Dynamical systems techniques in

the analysis of neural systems

Kyle Wedgwood, MSc.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

December 2013



Dedicated to my late grandparents, who have been a constant

source of inspiration and support throughout my academic journey.



Abstract

As we strive to understand the mechanisms underlying neural compu-

tation, mathematical models are increasingly being used as a counterpart

to biological experimentation. Alongside building such models, there is a

need for mathematical techniques to be developed to examine the often

complex behaviour that can arise from even the simplest models. There

are now a plethora of mathematical models to describe activity at the sin-

gle neuron level, ranging from one-dimensional, phenomenological ones, to

complex biophysical models with large numbers of state variables. Network

models present even more of a challenge, as rich patterns of behaviour can

arise due to the coupling alone.

We first analyse a planar integrate-and-fire model in a piecewise-linear

regime. We advocate using piecewise-linear models as caricatures of non-

linear models, owing to the fact that explicit solutions can be found in the

former. Through the use of explicit solutions that are available to us, we

categorise the model in terms of its bifurcation structure, noting that the

non-smooth dynamics involving the reset mechanism give rise to mathemat-

ically interesting behaviour. We highlight the pitfalls in using techniques for

smooth dynamical systems in the study of non-smooth models, and show

how these can be overcome using non-smooth analysis.

Following this, we shift our focus onto the use of phase reduction tech-

niques in the analysis of neural oscillators. We begin by presenting concrete

examples showcasing where these techniques fail to capture dynamics of the

full system for both deterministic and stochastic forcing. To overcome these

failures, we derive new coordinate systems which include some notion of dis-

tance from the underlying limit cycle. With these coordinates, we are able

to capture the effect of phase space structures away from the limit cycle,

and we go on to show how they can be used to explain complex behaviour

in typical oscillatory neuron models.
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1 Introduction

1.1 Motivation

The main focus of this thesis is the use of dynamical systems techniques in the

analysis of neural behaviour. In particular, we consider the non-smooth dynamics

that arise due to the reset mechanism in the widely used integrate-and-fire model,

and the limitations and extensions of the phase reduction techniques used to study

networks of neural oscillators. In the mathematical modelling of neural networks,

there is a desire for models to be both biophysically realistic and mathematically

tractable, so that they are amenable to analysis. This thesis addresses some of the

issues regarding the use of simple phenomenological models, as well as the tech-

niques used to simplify models by reducing the dimensionality of the underlying

system.

Due to their low computational cost, integrate-and-fire type models have been

widely used in computational studies of brain behaviour. With simple modifi-

cations, the simplest model can be shown to display the same characteristics as

certain brain regions, for example in the response of ventral cochlear to periodic

stimuli [1]. More recently, planar integrate-and-fire models have been fitted to data

from real cortical neurons which great efficacy, highlighting their use as a computa-

tional tool [2]. Here, we develop a piecewise linear planar integrate-and-fire model.

The piecewise linear nature of the model allows us to construct analytical solutions

for the model and thus allows for a great deal of mathematical analysis. The non-

smooth nature of the reset mechanism in integrate-and-fire models gives rise to a

much richer bifurcation structure than for smooth models, by way of non-smooth

bifurcations, the kind of which are reviewed in [3]. Using our simple model, we

investigate these non-smooth bifurcations, the effect they have at the single cell

and network level and their relevance to neuroscience.

Neurons in the cortex may receive synaptic input from up to tens of thou-

sands of other neurons. The sheer number of connections and recurrence in such

networks thus makes network analysis complicated. Biophysical models of neural
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behaviour tend to be based on the Hodgkin–Huxley formalism, taking into account

the dynamics of the ion channels in the neuron cell membrane and the effect that

these have on the induced currents and potential difference across this membrane.

Such models tend to have high dimension, particularly when they include cell spe-

cific ionic currents. Coupling between cells tends to be either through synapses or

through gap junctions. Synaptic coupling is often modelled through further sets

of equations. Constructing a large model with all of these factors quickly becomes

prohibitively computationally expensive with the computing resources available to

us at this time, though projects, such as the Blue Brain Project [4], are attempting

to construct a virtual human brain using supercomputers. Owing to the vast num-

ber of model variables and parameters, such models are also difficult to analyse

mathematically.

Phase reduction techniques reduce the complexity of these networks by assum-

ing that the strength of coupling between cells is weak. The theory of weakly

connected neural networks is now well established, and a nice review of techniques

and results in this paradigm may be found in [5]. Under this assumption, the

dynamics of a cell in the network may be reduced to dynamics on a circle, where

the state variable is now the phase along an oscillation, and where the inputs from

other cells manifest themselves through an object known as the phase response

curve (PRC). Inputs from other cells thus affect the timing of the next oscillation

through the PRC. Since all the information about the state of the cell is now cap-

tured through a single variable, the dimensionality of the system is thus reduced

to the number of oscillators in the network. Under certain symmetry conditions,

this can be reduced further, but this will be discussed elsewhere. Being an in-

terdisciplinary subject, computational neuroscience requires a constant dialogue

between experimentalists and theoreticians. Phase reductions are a nice example

of how this can work in practice. The PRC can be constructed for a given cell ex-

perimentally by inducing a current in a voltage clamped cell. This allows a direct

comparison between mathematical models and experimental results that can be

exploited to bridge the gap between the disciplines. The connection between the

2



mathematics and experiments of PRCs is the subject of the new book [6].

The phase reduced systems are computationally cheap, since all of the complex-

ity of the system has been reduced to a single object - the PRC, and are tractable

as knowledge of the PRC and the coupling between cells will give conditions of

the stability of network states. However, the notion of what exactly is ‘weak’ is

a topic for debate. The weak assumption in phase reduction is a limiting case of

low strength inputs, but it is one made typically for mathematical convenience

rather than with any biological consideration. Even if individual inputs to a cell

are weak, the summative effect across the network, and across time may result

in non-weak effects. In addition to this, in terms of dynamical systems, nearby

invariant structures can have a pronounced effect on the dynamics of a system. By

considering a classical neural example, we show situations under which the phase

reduced system is not a good approximation to the full system, and show how, by

appending an extra variable to the system, we can circumvent these problems.

Noise is ubiquitous in biological systems. Exactly what we mean by biological

noise is another subject for debate. Indeed, there are many potential sources of

noise in neural systems, and it is possible that what appears as noise at a macro-

scopic level is simply a failure to capture all of the dynamics at the microscopic

level. To confound matters, noise also factors into experimental observation, re-

sulting in a fairly ambiguous sense of what exactly noise refers to in these systems.

Using techniques from signal analysis, meaningful signals can be extracted from

noisy ones. Understanding where this noise arises may will lead to the development

of better techniques, both for collecting and analysing data.

Whilst noise has historically been seen as a problem for biological systems,

there is a growing body of literature highlighting the potentially beneficial effects

that noise can impart on a system. Thus, understanding its role is an area of

growing interest in the field of mathematical neuroscience. In particular, in re-

cent years there has been a spate of work on phase reductions for noisy oscillators

[7, 8, 9]. Mathematically, noise can have a number of interesting effects on dynam-

ical systems. Considering the noise as a perturbation to an otherwise deterministic

3



system, noise can shift bifurcations, change the stability of invariant structures, or

induce switches between basins of attraction of different attracting sets, resulting

in mixed-mode oscillations. Such phenomena are reviewed in [10] for fast-slow

systems, which are common in neuroscience modelling, whilst specific neural ex-

amples are considered in [11]. We consider planar models of neural activity with

noise and show under what conditions such models can be reduced to a phase only

model. We go on to analyse the effects that noise can have on a system, and go

on to derive a framework for when models cannot be reduced to a phase model.

1.2 Thesis outline

Here, we outline the content of the main chapters of this thesis.

Chapter 2

We begin with a general introduction on the development of mathematical

models of neural activity and techniques used in their simplification. We review

some of the main techniques from dynamical systems theory used in their analysis

and review what kind of behaviours such models support. This chapter addresses

some of the history behind the development of these models, and some of the

criticisms of them.

We then go on to review some of the techniques from non-smooth analysis

and show what pronounced effects non-smooth dynamics can have. Following on

from this, we discuss phase reductions and their practical use in analysing network

dynamics. Finally, we consider the sources and effects of noise on neural systems

and the ongoing work in the field in this area.

Chapter 3

Considering a motivating example of bursting cells, this chapter focuses on the

development and analysis of a piecewise linear integrate-and-fire model. We show

how the simple, planar model can capture the same kinds of behaviour as more

complex, high dimensional models. In particular, we look at the phenomenon

of bursting, where a period of higher frequency oscillations is followed by a long

period of quiescence. We go on to find the bifurcation structure, tracking both
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smooth and non-smooth bifurcations. We derive the phase response curve for the

model in a tonically spiking regime and in a bursting mode. Using techniques for

non-smooth systems, we evaluate the maximal Lyapunov exponent, categorising

where chaotic solutions exist and show that the model supports chaos between

spike adding bifurcations and during the transition to oscillator death. Following

in the same light, we analyse the behaviour of two cell network.

Chapter 4

Beginning with a review of some of the applications of phase models, including

their use in experimental work, we consider the appropriateness of the phase reduc-

tion. We numerically examine three situations in which the phase reduced model

is shown to miss important behaviour of the full model. In particular, we consider

how nearby invariant structures can lead to shear induced chaos, how noisy forcing

can result in phase models overestimating the neuronal firing rate and how switch-

ing between basins of attraction of attractors give rise to altered spiking patterns.

These situations serve as a warning to computational neuroscience to take care

when applying phase reduction techniques without first checking that the required

assumptions are valid.

Chapter 5

To overcome the problems discussed in the previous chapter, we use a moving

orthonormal coordinate system, building on ideas in [12]. This coordinate system

appends the phase variable with amplitude variables, which capture the distance,

in a Euclidean sense, from the limit cycle. We discuss how the coordinate system is

established, and what considerations need to be made in order for it to be practical.

We go through some typical neuron examples to show how to implement the system

in practice. We proceed to compare the system to one studied in [13] to investigate

how the different forms of phase, and now amplitude response functions, can give

rise to chaotic dynamics. The orthonormal coordinate system retains information

about other structures in the system, whilst preserving the nomenclature and ideas

from phase reduction theory.
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Chapter 6

Building on from the previous chapter, in which we discuss the effect that

noise can have on neural oscillators, we proceed to study techniques for perform-

ing phase reductions in the stochastic setting. We review recent literature on the

subject, comparing and contrasting results and discuss future direction. We high-

light situations in which these techniques break down, in a similar vein to the

previous chapter and demonstrate the differences in the alternate interpretations

of the stochastic integral. We then present a new coordinate system, ideally suited

to describing planar oscillators and show how it may be used to study oscillators

away from the weak noise limit. Using techniques primarily used in engineering,

we show how to efficiently solve the PDEs to find the steady state probability dis-

tribution around the limit cycle in the new coordinate system. Finally, we consider

the case where the noise cannot be considered to be weak, and examine the effect

of bistablity between oscillatory and quiescent modes.

Chapter 7

The final chapter outlines the contribution of the work in this thesis and pro-

poses future work, building upon the ideas contained within it.

Glossary

Below is a list of non-standard abbreviations used in this thesis:

• HH – Hodgkin–Huxley,

• ML – Morris–Lecar,

• FHN – FitzHugh–Nagumo,

• SL – Stuart–Landau,

• PRC – Phase response curve,

• iPRC – Infinitesimal phase response curve,

• IF – Integrate-and-fire,
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• LIF – Leaky integrate-and-fire,

• QIF – Quadratic integrate-and-fire,

• LEIF – Linear-exponential integrate-and-fire,

• AIF – Absolute integrate-and-fire,

• PWL – Piecewise-linear,

• PWL-IF – Piecewise-linear integrate-and-fire,

• dHB – Discontinuous Hopf bifurcation,

• dSN – Discontinuous saddle node bifurcation,

• GB – Grazing bifurcation,

• SP – Spiking bifurcation,

• DB – Doublet bifurcation,

• OC – Orbit crisis bifurcation,

• OB – Onset of bistability bifurcation,

• HC – Homoclinic bifurcation,

• LE – Lyapunov exponent,

• MLE – Maximal Lyapunov exponent,

• SNIC – Saddle node on an invariant circle,

• CS – Connor–Stevens,

• SDE – Stochastic differential equation,

• SRK – Stochastic Runge–Kutta,

• PDF – Probability density function,

• CDF – Cumulative distribution function,

• OU – Ornstein-Uhlenbeck,
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2 Background

Of the vast numbers of cells located in the brain, the neural cells, or neurons, are

thought to be the most important in the transmission of information. Numbering

in the hundreds of billions, neurons exist with a variety of morphologies, spatial

location and electrical behaviour. Neurons communicate with one another electri-

cally and chemically via gap junctions and synapses. Whilst the neural cell types

themselves may be notably distinct, they share a common electrical behaviour: ac-

tion potentials. Though they may differ from neuron to neuron, collectively, these

action potentials, or spikes, are thought to be the key unit of neural information

processing. Under the application of a direct current, neurons can be shown to

exhibit this typified behaviour in-vivo. The action potential comprises two main

features: a rapid depolarisation of the cell membrane followed by a slower repolari-

sation of the membrane potential back to its resting state, possibly following some

overshoot. The duration of a single action potential is only a few milliseconds.

[14, 15].

2.1 The Hodgkin–Huxley model

In describing the behaviour of neural dynamics at the single cell level, and in par-

ticular, the action potential, perhaps the most seminal work is due to Hodgkin and

Huxley [16]. The model derived by the authors, for which they won a Nobel Prize

in 1963, has become the base formalism for all conductance based neuron models,

which are thought of as encompassing a primary class of biophysical models.

As the cell membrane of neurons is otherwise impermeable to ions (aside from

through the ion channels we consider below), it acts as a barrier and thus separates

charge between the cytosol and the extracellular space. This induces a difference

in potential between the exterior and the interior of the cell. We refer to this

potential difference as the membrane potential. The model essentially describes

the dynamics of ions across the cell membrane and their effect on the membrane

potential. Ions are transported through the cell membrane by ion channels, which
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are pore forming proteins. Since the ions carry electric charge, this movement

induces a current across the membrane, which affects the membrane potential.

These ion channels are typically selective for different kinds of ion, and can exist

in a variety of states, the most important being the closed and open states. In a

closed state, no ions can pass through the channels, whereas ions can pass freely

through them in the open state. Ion channels undergo conformational changes to

switch between open and closed states. For general ion channels, such changes

may be mediated by a number of factors, such as voltage, glutamate, cytosolic

calcium concentration and others. The Hodgkin–Huxley (HH) model focuses on

the voltage-gated ion channels for sodium Na+ and potassium K+. For each ionic

species, there exists a reversal difference between the intracellular and extracellular

space, which the ion channels specific to that species will try to maintain. This

is achieved by the generation of an electromotive force as the ion channels act to

drive the system towards their respective reversal potential. This reversal potential

∆V , also known as the Nernst potential [17], is the potential at which there is no

net flow of that ionic species across the membrane. It is given by

∆V =
RT

zF
ln

(
[ion]out

[ion]in

)
, (2.1)

where R is the universal gas constant, T is the absolute temperature, z is the

valence of the ionic species, F is the Faraday constant and the subscripts denote

whether the concentration is inside or outside the cell. Due to active ion pumps,

cell membranes are never truly in equilibrium, but the resting potential of a cell,

that is, in the absence of any external current, can be calculated from the Goldman

equation, written in the form below in [18], building upon earlier work in [19],

Vrest =
RT

F
ln

(∑N
i Pion+

i
[ion+

i ]out +
∑M

i Pion−i
[ion−i ]in∑N

i Pion+
i

[ion+
i ]in +

∑M
i Pion−i

[ion−i ]out

)
, (2.2)

in which there are N monovalent positive ionic species and M negative species

and Pion denotes the permeability for that ionic species. For the HH model, the

resting potential is thus given by

Vrest =
RT

F
ln

(
PK[K]out + PNa[Na]out

PK[K]in + PNa[Na]in

)
. (2.3)
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Drawing analogies from the world of electrical engineering, we may thus model

the membrane as a capacitor. As the ion channels are selectively permeable to

ions, we may model these as variable resistors. Finally, the propensity of the ion

channels to drive the system to their respective reversal potentials generates an

electromotive force, similar to a battery. Combining all of these analogies, we may

derive an equivalent electrical circuit, as shown in Fig. 1, to model the dynamics

at the membrane, after including an extra leak channel to describe the chloride

and other ions not included in this model. We thus have

C
dV

dt
= −I + Iapp, (2.4)

where C is the capacitance of the membrane, V is the membrane potential, I is

the current induced by the movement of the ions across the membrane and Iapp

is a current injected into the cell. As we here consider the effect of the Na+ and

K+ channels, we apply Kirchoff’s second law to the circuit to separate the current

into the contribution from the sodium INa channels, potassium channels IK and a

leak current IL, which accounts for all other currents not modelled. This gives us

I = INa + IK + IL. (2.5)

It remains to describe the dynamics of these currents. Treating the membrane as

being permeable to ions, we can model the currents using Ohm’s law as

IX = gX(V − VX), X ∈ {Na,K,L}. (2.6)

where gX is the conductance, the inverse of resistance, for the ion X and VX

is the reversal potential of the ion X. Hodgkin and Huxley’s great achievement

was to model the dynamics of the conductance terms gX . They postulated that

these conductances were voltage sensitive. Using a solution of choline, rather than

sodium chloride to perform their experiments, they effectively knocked out the Na+

channel, and proceeded to measure the conductance of K+, independent of Na+,

at different voltages of a voltage clamp experiment. In this way, they were able

to make empirical fits of the data to an exponential. To model the Na+ current,

10
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Figure 1: Equivalent circuit diagram of the HH model.

they compared data from the choline bath to that of a regular sea water bath to

extract the change in Na+ current, and again, fitted the data to an exponential.

Hodgkin and Huxley found that the K+current current could be modelled as

gK = gKn
4, (2.7)

where gK is the maximal conductance. In the above n ∈ [0, 1] may be regarded

as a gating variable. It was later shown that the nonlinear dependence of gK on n

was due to the gating charge [20], that is, the number of gating particles needed

to be bound at the ion channel for the channel to be in an open state. In the case

of the K+ channel, the gating charge is four, hence the quartic relationship. The

dynamics of n are given by

dn

dt
= αn(V )(1− n)− βn(V )n, (2.8)

where αn is the rate of transfer of particles to the specified location to bind to the

ion channel and βn is the rate of transfer away from this location. Letting t→∞,

we may define the steady state of (2.8) as

n∞(V ) =
αn(V )

αn(V ) + βn(V )
. (2.9)
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By fitting to data, Hodgkin and Huxley found the following forms for αn and βn

αn =
0.01(V + 10)

exp
(
V+10

10

)
− 1

, (2.10)

βn = 0.125 exp

(
V

80

)
. (2.11)

Using these forms for αn and βn in (2.9), n∞ can be seen to have a sigmoidal

shape, suggesting that over a small range of V , the conductance of K+ exhibits a

large change. It is convenient to rewrite (2.8) as

τn(V )
dn

dt
= n∞(V )− n, (2.12)

where

τn(V ) =
1

αn(V ) + βn(V )
, (2.13)

so that τn(V ) acts as a voltage-dependent time constant for the dynamics of n. The

equations governing the dynamics of Na+ are written in a similar way. This time,

we find the conductance of Na+ rises as a cubic and that an extra, inactivating

term is needed to describe the behaviour at large times. Thus, the conductance of

Na+ is written as

gNa = gNam
3h, (2.14)

where m may be thought of as an activating gating variable, whilst h is an inacti-

vating gating variable and, as before, gNa is the maximal conductance of Na+. The

dynamics of m and h are given in a similar form to those of n, though the direc-

tion of the sigmoid for h∞ is reversed compared with those of n∞ and m∞. These

sigmoids are shown in Fig. 2. The details of the gating variables are completed as

follows

τX(V )
dX(V )

dt
= X∞(V )−X, X ∈ {m,h} (2.15)

where

X∞ =
αX(V )

αX(V ) + βX(V )
, (2.16)
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with

αm =
0.1(V + 25)

exp
(
V+25

10

)
− 1

, βm = 4 exp

(
V

18

)
, (2.17)

αh = 0.07 exp

(
V

20

)
, βh =

1

exp
(
V+30

10

)
+ 1

. (2.18)

Finally, the leak current, taking into account the total effect of all ion channels

not considered, is simply modelled as

IL = gL(V − VL), (2.19)

that is, we do not include any gating variables for this current. Overall, the

current-balance equation for the membrane potential reads

C
dV

dt
= F (V,m, n, h) + Iapp, (2.20)

where,

F (V,m, n, h) = −gL(V − VL)− gKn4(V − VK)− gNam
3h(V − VNa). (2.21)

The HH model may then be shown to capture the behaviour of an isolated neuron

under the application of a direct stimulus current, both in the form of the spike

generated by the model, and the frequency of firing under direct applied current.

We show some typical behaviour of the HH model in Fig. 3. The top panel in

this figure shows the membrane potential over time when the neuron is firing.

The rapid depolarisation and hyperpolarisation are easily identified, along with a

refractory period in which no spiking occurs. The lower panel shows the evolution

of the gating variables which, as for the membrane potential, evolve slowly between

spikes and rapidly during them. It is clear that m is the fastest of the three

variables, reaching a state in which all channels are open/closed very rapidly. It

may also be seen that n and h follow similar time courses.

2.2 Dimension reduction of the Hodgkin–Huxley model

The HH model as defined above has four variables: a membrane potential, two

activating gating variable and one inactivating gating variable. In general, due to a
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Figure 2: Sigmoidal shapes of X∞(V ), X ∈ {m,n, h}. The inverse direction of h∞

compared with n∞ and m∞ belies its nature as an inactivating, rather than acti-

vating gate. Parameter values are VNa = 50 mV, VK = −77 mV, VL = −54.4 mV,

gNa = 120 mmho/cm2, gK = 36 mmho/cm2, gL = 0.3 mmho/cm2, C = 1µF/cm2.

high number of dimensions, phase space analysis can be cumbersome. Throughout

this thesis, we shall take dimension to refer to the number of variables in a given

model. The analysis of planar systems is much easier that that of systems with

higher dimension. To gain a better understanding of the dynamics of the HH

model, it is thus useful to reduce it to a planar system. The method of equivalent

potentials, as described in [21], gives us the machinery to make this reduction for

fast-slow systems, in which there exists a separation of time scales between subsets

of variables.

We first note that τm(V ) is small for all V , so that m approaches rapidly

approaches its equilibrium value, compared with n and h. Secondly, we observe

that n and h share similar time courses. In fact, the Na+ channel closing occurs at

the same rate, but in the opposite direction to K+. Hence, n and h may be slaved to

another variable, U . By assuming that m is infinitely fast compared with the other

model variables, we make a quasi-steady state approximation, m(V ) = m∞(V ),

and thus eliminate the dynamics of m. We mimic the slower approach of n and h
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Figure 3: Spiking solutions of the full HH model. The top panel shows the mem-

brane potential over time. For each action potential, we see a rapid depolarisation

at the time of initiation, followed by a rapid hyperpolarisation and then a refrac-

tory period where no firing occurs. The lower panel shows the time evolution of

the gating variables. As for the membrane potential, the gating variables evolve

slowly between spikes, but rapidly during them. This is most pronounced for m,

which quickly reaches a state in which all channels are open/closed. We also ob-

serve that n and h follow similar time courses. Parameters are as in Fig. 2, with

Iapp = 10 mA/cm2.
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to their asymptotic values by the replacement

X = X∞(U), X ∈ {n, h}. (2.22)

This equation can always be solved for U , since the functions X∞ are monotonic,

and hence invertible. We can now rewrite the sodium current as a function of U ,

so that the entire system is defined by the variables V and U . The membrane

current is now given by

f(V, U) = F (V,m∞(V ), n∞(U), h∞(U)). (2.23)

By demanding that the time dependence of the voltage dynamics of the original

system, F , match those of the reduced system, f , for a given value of V , we have

that
∂F

∂h

dh(V )

dt
+
∂F

∂n

dn(V )

dt
=

(
∂f

∂h∞

dh∞
dU

+
∂f

∂n∞

dn∞
dU

)
dU

dt
. (2.24)

Under the approximation that h ≈ h∞(U) and n ≈ n∞(U), we may solve for the

time evolution of U to obtain

C
dV

dt
= −f(V, U) + Iapp, (2.25)

dU

dt
= g(V, U), (2.26)

where

g(V, U) =

dF
dh

[
h∞(V )−h∞(U)

τh(V )

]
+ dF

dn

[
n∞(V )−n∞(U)

τn(V )

]
∂f
∂h∞

dh∞(U)
dU

+ ∂f
∂n∞

dn∞(U)
dU

(2.27)

and ∂F/∂h and ∂F/∂n are evaluated at (h, n) = (h∞(U), n∞(U)). The variable V

describes the capacitive nature of the cell, whilst U describes the time-dependence

of the membrane conductance. In fact, U may be regarded as the variable respon-

sible for the refractory period of the cell. In many planar models of neurons, such

as the Morris–Lecar [22] and FitzHugh–Nagumo [23, 24] models, the second vari-

able is typically regarded as a recovery variable, which accounts for the dynamics

of all of the gating variables, similar to U in the reduction by equivalent potentials.

Now that the system is planar, we may carry out phase-plane analysis in full.

In Fig. 4, we plot the nullclines and direction field of the reduced model. The

16



V -nullcline is depicted in green and red, whilst the U -nullcline is shown as dashed

black line. The arrows show the direction of the vector field at those points at

which they are plotted. The V -nullcline has a roughly cubic shape. This nullcline

may be thought of as being comprised of three branches, separated by extrema of

the nullcline. The U -nullcline, meanwhile, is approximately linear. When Iapp < 0,

there exists a solitary stable fixed point, on the left hand branch of the V -nullcline.

In fact, where they exist, any fixed point on the left or right hand branch of

the V -nullcline is stable, whilst fixed points existing on the middle branch are

unstable. The V -nullcline is coloured green where fixed points are stable and red

where they are unstable. At Iapp = 0, the system undergoes a Hopf bifurcation,

signified by a zero crossing of the real part, with non-zero imaginary part, of

the eigenvalues of the linearisation around the fixed point. This leads us to the

situation depicted in Fig. 4, in which the fixed point is now on the middle, unstable

branch. As there are no other fixed points in the system, an attracting limit cycle

solution can easily be shown to exist by the Poincaré-Bendixson theorem. This

limit cycle corresponds to the repetitive firing of the neuron under a constant

injected current, of Iapp = 15 mA/cm2 in this case. The limit cycle is shown in

blue. At the bifurcation point, the frequency of these oscillations may simply be

read off by examining the imaginary part of the eigenvalues of the linearisation

around the fixed point. As Iapp is increased further, these oscillations terminate

in another Hopf bifurcation, so that there exists only a stable fixed point once

again, now on the right hand branch of the V -nullcline. The HH model may

thus be thought of as an excitable model, mimicking the electrical excitability of

neurons. With no injected current, the neurons simply stay at a quiescent state.

Within a certain range of injected current, we observe repetitive spiking. At the

bifurcation point, the HH model supports oscillations with nonzero frequency.

However, certain neurons, particularly those in the cortex, have been observed to

spike with arbitrarily low frequency. We refer to this case as type I excitability,

whilst the previous case is type II excitability.

The Morris–Lecar (ML) model [22] is a planar model, built on a HH formalism,
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Figure 4: Phase plane of the reduced HH model (2.26). The red/green curve is

the V -nullcline, along which V̇ = 0, whilst the black dashed line is the U -nullcline.

The black arrows correspond to the direction of the vector field at the points at

which the are plotted. These arrows point in the direction of the flow induced by

the vector field. With an injected current of Iapp = 15 mA/cm2, the only fixed

point of the system (at the intersection of the two nullclines) is on the middle,

unstable branch of the V -nullcline, and we observe limit cycle solutions, indicated

by the blue curve. Note that the limit cycle tracks along the V -nullcline for a

good portion of its orbit, and that the direction field primarily points to the left

or right, apart from close to the V -nullcline. This is typical of excitable systems.

Other parameters are as in Fig. 3.
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including K+ and calcium (Ca2+) channels. The equations for this model are

C
dV

dt
= Iapp − gL(V − VL)− gKw(V − VK)− gCam∞(V )(V − VCa), (2.28)

dw

dt
= φ

(
w∞(V )− w

)
/τw(V ), (2.29)

where

m∞(V ) =
1

2

[
1 + tanh

(
(V − V1)/V2

)]
, τw(V ) = 1/ cosh

(
(V − V3)/(2V4)

)
,

w∞(V ) =
1

2

[
1 + tanh

(
(V − V3)/V4

)]
. (2.30)

As for the reduced HH model, the recovery variable w in (2.28)-(2.29) captures

the dynamics of the gating variables for both K+ and Ca2+. The ML model was

originally developed to describe the electrical activity in barnacle muscle fibres.

However, due to its simplicity and ability to describe a range of electrical be-

haviours, it has seen widespread use in the modelling of cortical tissue. The ML

model can display both type I and type II excitability, dependent on the parame-

ter values as provided in [15]. In fact, the excitability of a given model is related

to the bifurcation types leading to oscillatory behaviour. Hopf bifurcations give

rise to type II excitability, whereas other bifurcations, such as the saddle node on

an invariant circle (SNIC), as supported by the ML model will give rise to type

I excitability. We will discuss the SNIC bifurcation in more detail later in this

work. In Fig. 5, we show the dependence of frequency on I for the two differ-

ent excitability types. Suppose that a neuron is in a quiescent state. Instead of

forcing with a constant drive, we now inject a transient current into the neuron.

This current mimics that of a synaptic current that may occur after the firing of

a spike by a presynaptic cell. We keep the duration of the injected current fixed,

whilst varying the magnitude of the input. If the magnitude of the current is

small, we may see a small rise in the membrane potential before returning to its

resting potential, but no spiking event, by which we mean a rapid, large amplitude

excursion from the resting state. If the magnitude of the current is now increased,

we may force the neuron to fire a spike before it returns to rest. Cells will typically

only fire one spike, or one burst of spikes in response to a transient current of this
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Figure 5: Comparison of F − I curves for type I and II excitability. The SNIC

bifurcation gives rise to type I excitability, marked by a zero firing frequency

at the bifurcation point. The Hopf bifurcation gives rise to type II excitabil-

ity, with a nonzero firing frequency at the bifurcation point. Parameters are

C = 20.0µF/cm2, gK = 8.0 mmho/cm2, gL = 2.0 mmho/cm2, VK = −84.0 mV,

VL = −60.0 mV, VCa = 120.0 mV, V1 = −1.2 mV, V2 = 18.0 mV, with

φ = 0.067, gCa = 4.0 mmho/cm2, V3 = 12.0 mV, V4 = 17.4 mV for the SNIC

case, and φ = 0.04, gCa = 4.4 mmho/cm2, V3 = 2.0 mV, V4 = 30.0 mV for the Hopf

case.

type, so that there are no self sustained oscillations. We denote this kind of be-

haviour excitable, as the neuron may be induced to fire under a transient current,

even when the underlying dynamics are not oscillatory. There exists a minimum

value for the magnitude of the current that will elicit a spike in response to the

transient stimulus. This threshold value for the current may be seen more clearly

through a phase-plane analysis of the reduced HH model, for example. We note

that a cubic v-nullcline, as possessed by this reduced HH model is present in many

mathematical descriptions of excitable systems.

In Fig. 6, we depict this situation. The V -nullcline is now shown only in green,

in contrast to before, whilst the U -nullcline is still depicted by the dashed black

curve. The base current in this situation is Iapp = −5.0 mA/cm2, which is a
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hyperpolarising current, keeping the neuron at a fixed point x∗ on the stable, left

hand branch of the V -nullcline. We choose initial conditions at this fixed point and

approximate the transient stimulus by a Dirac delta given at time t = 5, scaled by

a factor I0, so that the total stimulus current injected to the system is I0. For a

sub-threshold current, indicated by the blue curve, trajectories simply decay back

to x∗, but for a sufficiently large current, indicated by the red curve, the system

will make a large amplitude excursion before returning to x∗. Examining the time

course of V , shown in the lower panel of Fig. 6, during this excursion shows that

it matches the time course of a spike. For planar models, with sufficiently large

separation of timescales between variables, this threshold may be approximated

by the middle branch of the V -nullcline. This notion of a threshold, leads us

to consider a far simpler phenomenological model, which is more amenable to

mathematical analysis.

2.3 The integrate-and-fire neuron

Originally considered as a model of frog nerve stimulation by Lapicque in 1907

[25], the integrate-and-fire (IF) model actually predates the HH model, although

the model itself was not studied mathematically or even termed ‘integrate-and-fire’

until the 1960s in works by Knight and Stein [26, 27, 28]. The model takes a far

simpler view to modelling nerve behaviour, omitting all of the details of the gating

variables as considered in the HH model. One of the most basic model of this type

is the leaky IF model (LIF), which is a simple application of Ohm’s law on the

simple circuit shown in Fig. 7. Thus, the model is

dV

dt
= −V

τ
+ I(t), (2.31)

where τ = RC is time constant of the membrane. The threshold, Vth, is introduced

by demanding that when V = Vth, V is reset to a value Vr, with Vr < Vth. More

formally:

V 7→ Vr when V (t) = Vth. (2.32)

Between threshold crossings, (2.31) simply acts as an integrator for the signal
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Figure 6: The top panel shows the phase plane of the reduced HH model in a

quiescent mode, with the parameters matching those of Fig. 3, but with Iapp =

−5.0 mA/cm2. In the absence of any other inputs, the system has a stable fixed

point, illustrated by a green circle on the left hand branch of the V -nullcline,

depicted as a dashed orange curve, whilst the U -nullcline is shown by a dashed

cyan line. Introducing an instantaneous, transient current may result in one of two

scenarios. If the transient current is not strong enough, the resulting trajectory,

shown in blue, will simply decay back to the fixed point. For a large enough

injected current, shown by the red curve, the trajectory will make a large amplitude

excursion before returning to the fixed point. An examination of the time course

of the excursion, presented in the lower panel, shows that this excursion is indeed

a spike. This behaviour is indicative of excitable behaviour that, although the

neuron is at rest, it may be induced to fire by a transient stimulus. That the

stimulus has to be strong enough, implies that there is some threshold for the

stimulus to reach before any spikes will be fired.
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Figure 7: Circuit diagram of the IF model

I(t). Using an integrating factor and with an initial condition of V (t0) at t = t0,

we may write down solutions to (2.31), as

V (t) = V (t0)e−(t−t0)/τ +

∫ t

t0

e−(t−s)/τI(s)ds. (2.33)

For a constant drive I(t) = I0, the system will simply tend towards V = I0τ . If

I0τ < Vth, then the system will remain at this subthreshold membrane potential.

If I0τ > Vth, then trajectories will reach V = Vth and will successively be reset to

V = Vr at which point V will again increase towards I0, and the system will support

non-smooth oscillations. The period of these oscillations may be calculated as

∆ = τ ln

(
I0τ − Vr

I0τ − Vth

)
H(I0τ − Vth), (2.34)

where H denotes the Heaviside step function. In such a regime, (2.31) may be

thought of as representing a neuron undergoing repetitive firing under a constant

drive, for example, system (2.26) in an oscillatory regime. Of course, the time

course of the membrane potential, which we hereon refer to as the voltage trace,

bears no resemblance to voltage traces of real neurons. In particular, there are no
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spikes. In this regard, the LIF model may be thought as representing the timing of

spikes, rather than their shape. Typically, a spike shape is appended to the voltage

traces at the threshold crossing times to give something resembling a voltage trace

from real neurons, for example as in [29].

The advantages of the LIF over biophysical models are two-fold. Firstly, given

its simplicity, the LIF is mathematically tractable and amenable to deeper analy-

sis. Secondly, the model is computationally cheap to solve. This allows for large

network studies to be performed in reasonable CPU time, as considered in [30],

for example. In spite of these advantages, one may ask in what way a model that

does not innately describe the time course of the modelled variable, in this case

voltage, can be a useful model. Whilst the spike shape of individuals may differ

from one another, there is a remarkable similarity within the spike shapes from the

same neuron. The factors contributing to the spike shape for individual neurons

is considered in [31], wherein the authors find that it is the combination of the

nonlinear ionic currents that is the key factor in determining the waveform of the

spikes. This fact underpins spike sorting algorithms for separating time courses

of membrane potentials that may arise from a number of different neurons being

measured by the same electrode. The similarity of spikes from the same neuron

leads to the hypothesis that spike shapes do not encode information. Instead, it

is presumed that, for neurons, information is encoded either in the precise tim-

ing of spikes, or in the instantaneous firing rate of a neuron [32, 33, 34]. In this

case, the LIF model is then a good model of a cell embedded within a network,

in which we are interested in the way signals are communicated. The LIF model

does, however, fail to capture physical processes that other models do, such as

post-inhibitory rebound, in which a neuron fires a spike in response to a long,

transient hyperpolarising current. Thus, the choice of which class of models to use

to represent a network of cells is very much dependent on the phenomena we wish

to study. An example of a typical trajectory for the LIF neuron (2.31) is shown

in Fig. 8

Building upon the LIF, there is now a range of different models of the IF type.
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Figure 8: Trajectories of the LIF model (2.31) with τ = 1, I0 = 1, Vth = 1 and

Vr = 0. Each time the membrane potential reaches Vth, a spike is fire and V is

reset to Vr. The shape of the spike is typically appended to the voltage trace, as

the LIF model does not produce the same kinds of spike shapes as produced in

biophysical models, such as the HH model (2.21). The resulting trajectories are

composed of a smooth orbit and a discontinuous ‘jump’.

Popular models include the Izhikevich model [35], a planar model that can support

a variety of firing types, including bursting, which is an important firing pattern

in the brain; the adaptive exponential IF model [36], which has been fitted to data

with remarkable accuracy and the quartic IF model [37]. To reduce the number

of dimensions in biophysical models, hard thresholds of the form (2.32) may be

used to replace the recovery variables. For example, for the system (2.26), we

may obtain a linear model by simply setting V = U everywhere. This is quite a

severe approximation, since V is not typically close to U except at the fixed point.

The largest value of V for which F (V ) = f(V, V ) = 0 determines the onset of

the oscillatory regime and can be used to determine the threshold for firing, since
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dV/dt > 0 for large enough values of V .

As well as being used to model biological processes in the brain, IF models

present novel mathematical problems. The non-smooth nature of the reset mecha-

nism may give rise to interesting dynamics and bifurcations that are not observed

in similar smooth systems. The classification of different kinds of nonsmooth be-

haviour is an active area of research outside of mathematical biology, as can be

seen by the recent books on the topic: [3, 38, 39]. The effect of such behaviour

on emergent dynamics at the network level is also an intriguing open topic along

with efficient and accurate simulation of such networks [40].

We have already seen that, for a constant stimulus I(t) = I0τ > Vth, the LIF

model (2.31) supports oscillations with period given by (2.34). Suppose we are

interested in knowing how perturbations to the stimulus current affects the timing

of the next spike. To this end, we split the injected signal into two components

I(t) = I0+Is, where Is is the perturbation to the mean current I0. Since we are only

interested in the times of spiking events, we can use the nonlinear transformation

θ(t) mod 1 = ψ(V ) =
1

∆

∫ V (t)

0

dU

I0τ − U
=

1

∆
ln

(
I0τ

I0τ − V

)
H(I0τ − Vth), (2.35)

to recast the dynamics in terms of a unitless phase variable θ ∈ [0, 1). Identifying

θ = 0, V = Vr, and θ = 1, V = Vth completes the specification of the new variable.

Now, every time θ = 1, the neuron fires a spike. Using (2.35), we may rewrite

(2.31) as
dθ

dt
=

1

∆
+ Is(t)R(θ), (2.36)

where

R(θ) =
eθ∆

∆I0

. (2.37)

The object R is the phase response curve (PRC). It quantifies the change in phase,

and thus, the change in spike timing, in response to perturbations of the injected

current. Thus, (2.31) has been transformed into dynamics around a circle with

constant speed where we can clearly identify the change in spike timings in re-

sponse to perturbations. If Is(t) = δ(t − nτ), then the new phase after the n’th

pulse is simply R(θ(nτ)). It is clear that we can uncover stability properties of
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solutions for a forced IF neuron solutions using the PRC. The same idea carries

over to networks of coupled IF cells by treating the signal received from each of

the cells as a perturbation to its own natural periodic orbit. We will go on to use

such techniques in the next chapter to study a network of two interacting IF type

cells.

2.4 Isochronal coordinates

The phase variable considered in (2.35), is an exact, nonlinear transformation.

Phase variables are not restricted to the analysis of IF models, however. In fact,

they can be used for any system supporting limit cycles. Suppose we have a system

of the form
dx

dt
= f(x) + εg(x), x ∈ Rn, (2.38)

which possesses an asymptotically stable limit cycle, Γ, for ε = 0 having period ∆.

The set Γ corresponds to the image of an interval [0,∆) under x with x(0) ∈ Γ.

This gives us a natural way to define a phase variable on the limit cycle itself.

Setting θ = t/∆ assigns a phase to each point, and thus Γ is now the image of

[0, 1) under x. The choice of the exact parametrisation of θ is a personal preference.

Other common choices include θ = t, and θ = 2πt/∆, so that θ ∈ [0, 2π), as shown

for a typical oscillatory solution of the HH model in Fig. 9. Each point on Γ

is then parametrised by a unique phase. Of course, there are infinitely many

different choices for this parametrisation, dependent on where we assign the zero-

phase θ = 0. As we are principally interested in the timing of spiking events, it is

natural to assign θ = 0 to the maximum value of the membrane potential. This

now uniquely assigns a phase to each point in the limit cycle. Note that the points

θ = 0 and θ = 1 are identified and that, on the limit cycle, the phase variable

evolves with a constant velocity, θ̇ = 1/∆, as before. On cycle, we have therefore

reduced nonlinear dynamics in Rn to constant velocity dynamics on S1.

We now ask the question of how to consider the effect of perturbations, that

is, of setting ε 6= 0. If we denote the flow of the unforced system by Φt, then the
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Figure 9: Parametrisation by θ of the orbit depicted in Fig. 3.

basin of Γ, denoted BΓ, is defined to be

BΓ = {x ∈ Rn|Φt(x)→ Γ as t→∞}, (2.39)

that is, the set of all points for which the flow under f tends to Γ in infinite time.

We can assign to every point in BΓ an asymptotic phase. This asymptotic phase

is the phase along the periodic orbit to which a trajectory evolved under the flow,

Φ(t, x0), of (2.38) with ε = 0, starting from a point x0 ∈BΓ, will tend to as t→∞.

More formally, the asymptotic phase θ(x0) of a point x0 is given by the condition

lim
t→∞

Φ(t, x0)− Φ(t+ θ(x0)∆, γ0) = 0, (2.40)

with γ0 ∈ Γ, being the point of zero phase on Γ. In essence, two points share

the same asymptotic phase if the distance between trajectories with those points

as initial conditions vanishes as t → ∞. In this way, we can extend the notion

of phase to points away from cycle in BΓ. Isochrons, as reviewed in [41], are a

useful notion when studying perturbations to limit cycle oscillators; they are level

sets of the asymptotic phase, i.e. they connect points of the same asymptotic

phase across the whole basin of attraction of the limit cycle. Knowledge of what
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isochron a point is on fully specifies the asymptotic behaviour of the flow from that

point, in the absence of perturbations [42],[43]. In turn, this means that isochrons

tell us whether perturbations advance or retard the phase of the oscillator, and

in particular tell us whether the timing of the next spike is earlier or later. The

isochron for a given phase is the level set of the asymptotic phase function over BΓ

I(γ) = {x ∈ BΓ | θ(x) = θ(γ), γ ∈ Γ} (2.41)

The set of isochrons ∀θ ∈ [0, 1) thus foliates the entire basin of attraction. Consider

the simple planar example of the Stuart–Landau (SL) oscillator:

ẋ =
1

2
λx−

(
1

2
λc+ ω

)
y − 1

2
λ(x2 + y2)(x− cy),

ẏ =

(
1

2
λc+ ω

)
x+

1

2
λy − 1

2
(x2 + y2)(cx+ y).

(2.42)

The limit cycle for this system is the unit circle, and a coordinate transforma-

tion shows that the isochrons for this system can be given parametrically as

x = (1 + r) cos(θ + c ln(1 + r)), y = (1 + r) sin(θ + c ln(1 + r)), for r ∈ (−1,∞)

[7]. In a similar vein, the isochrons for the classical Hopf bifurcation normal form,

which is essentially (2.42) with c = 0, can be shown to be radial lines emanat-

ing from the origin. In general, calculating isochrons is not analytically tractable

and thus numerical methods are needed to find them. Typically, these methods

start by picking points near to the limit cycle, and then by numerically integrating

backwards for one period, taking advantage of the fact that isochrons are invariant

under the flow generated by the system over one period. The accuracy of these

methods can be improved by first finding linear approximations to the isochron

near the limit cycle. This can be done, as described by Malkin in [44, 45], by

solving the adjoint equation

Q̇ = −Df(x)TQ, (2.43)

where T denotes the transpose and Df is the Jacobian of f , such that Q is periodic

(with period 1) and satisfies 〈f,Q〉 = 1/∆ everywhere and 〈·, ·〉 is the standard

vector inner product. For a given phase θ0, the vector orthogonal to Q(θ0) forms
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a linear approximation to the isochron I(Q(θ0)) at the limit cycle. Thus, points

can be chosen near to the limit cycle along these approximation and then evolved

backwards in time. More points can be added by noting that isochrons with an

asymptotic phase difference of ∆θ will map to one another under the flow over ∆θ

and −∆θ respectively [46]. By carefully inserting and removing points, smooth

curves approximating isochrons may be found. Izhikevich has written a MATLAB

code which performs such a routine [47].

The direct backward integration method for calculating isochrons suffers from

two major drawbacks. Firstly, backward integration is numerically unstable, so

that step size used during the integration must be very small. Secondly, and par-

ticularly for strongly attracting limit cycles, the trajectories generated by backward

integration may quickly diverge to infinity, and thus extending the isochrons far

from cycle becomes difficult. In 2010, Osinga and Moehlis [48] devised a contin-

uation based algorithm to efficiently compute isochrons. This method overcomes

the known problems with the instability associated with backwards integration.

The basic idea is to first find the periodic orbit Γ and the local, linear isochrons

segments by solving a periodic boundary value problem, which essentially amounts

to solving (2.43) as before. For a given phase θ0, we then approximate the isochron

by its linear segment, close to cycle. A new boundary value problem is then set

up, having as the right end point, a point on this linear segment. The bound-

ary value is then solved over for a time interval of ∆, where the left end point

now gives a new point on the same isochron (now not a linear approximation).

The solution to this boundary value problem may then be continued over a small

length of the linear segment, using the distance from the limit cycle as a contin-

uation parameter. This will thus give a curve in phase space that maps to the

linear segment under the flow Φ∆, where we now express the time dependence of

the flow operator as a subscript, and hence this curve forms part of the isochron.

This process can be manipulated, taking the same segment, now solving over a

window of k∆, k = 2, 3, . . . to find sections of the isochrons further from the limit

cycle. The concatenation of all of these continued solutions form an approxima-
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tion to the isochron at θ0. Osinga and Moehlis’ algorithm was coded and run in

AUTO, a powerful numerical continuation package. The authors claim that, since

AUTO measures the variation between orbit segments along the entire length of

an orbit, the extreme sensitivities on initial conditions that are typical in multiple

time scale problems, common in models of neurons, can be overcome. In addition,

AUTO uses adaptive step sizes for its continuation, and this algorithm for finding

isochrons is efficient.

Guillamon and Huguet gave, in [46], a new method to find high order approx-

imations to isochrons for planar systems using geometric approaches. We will

consider the general approach when Γ is hyperbolic, though similar results hold if

this is not true. The problem essentially consists of finding a vector transverse to

f , which we shall denote h, so that if the dynamics of f , expressed in isochronal

coordinates (θ, r), where r denotes the distance along the isochron, are

θ̇ =
1

∆
, ṙ =

λr

∆
, (2.44)

then we wish for the dynamics of h, written in the same coordinates, to be given

by

θ̇ = 0, ṙ = 1. (2.45)

Given these conditions, orbits of h crossing Γ will be the isochrons of f . Finding

a vector field such that this is true is clearly a nontrivial problem. However, the

authors show, that finding h is equivalent to solving for L in the PDE(
1

∆
∂θ +

λr

∆
∂r

)
L(θ, r) = f(L(θ, r)), (2.46)

where L now defines a map that will provide the isochrons of the system. As

before, this method avoids any backward integration and allows one to find high

order approximations to the isochrons, at least locally. However, the solutions only

give the isochrons up to a finite value of r, after which the backward integration

methods are needed to further extend the isochrons.

A recent paper by Mauroy and Mezić [49] presents a new method, using op-

erator theoretic, rather than geometric approaches, to find isochrons using only
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forward integration. Rather than focussing on the identification of invariant sets,

operator theory is based on tracking observables, or measures on state space. For

the calculation of isochrons, the Koopman operator, K, also known as the compo-

sition operator, defined by

K = z ◦ Φt(x), (2.47)

where z : Rn → R is some observable of the state space and Φt(x) denotes the

flow evolved for a time t of the vector field, starting at a point x. The Koopman

operator is the left adjoint of the Frobenius-Perron operator, another important

operator which encodes information about an iterated map. Mauroy and Mezić

show that the level sets of the Fourier average, z∗ω0
, of an observable z

z∗ω0
(x) = lim

T→∞

∫ T

0

(z ◦ Φt)(x)e−iω0tdt, (2.48)

where ω0 = 2π/∆ are, in fact, the isochrons of the system. Moreover, the Fourier

averages are the eigenfunctions of the Koopman operator, so that

Kz∗kω0
(x) = eikωtz∗kω0

(x), k = 1, 2, . . . (2.49)

Remarkably, this result holds for almost all observables within the set of possible

functions. The only restriction is that the first Fourier coefficient of the Fourier

observable evaluated along the limit cycle is nonzero over one period, i.e.

zΓ =
1

∆

∫ ∆

0

(z ◦ Φt)(x)e−iω0tdt 6= 0. (2.50)

Usually, a linear combination of the state variables will suffice for the observable

f . The limit in (2.48) may be replaced a large T , so that that Fourier averages

may be computed in a finite time horizon. Then, an algorithm for calculating

isochrons involves computing the Fourier averages for all points in BΓ and then

extracting level sets of the resulting tensor. In fact, z∗ω0
is precisely the phase

function we wished to find earlier. Moreover, as this method requires only for-

ward integration, it can be used to find isochrons in models with greater numbers

of variables, which is difficult using the methods of Osinga and Guillamon. In

Fig. 10, we plot the isochrons of (2.42) found using this method, superimposed
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Figure 10: Isochrons founds using the method of Fourier averages (2.48) for the SL

system (2.42), with λ = 2.0, c = 1.0, ω = 1.0. The background colour represents

the Fourier average, whilst the coloured lines are the isochrons, given as level

sets of the Fourier average. The white dots are the actual isochrons, computed

analytically.

on the computed Fourier averages. For comparison, the white dots represent the

actual isochrons. Computing isochrons is time consuming, and is thus impractical

for studies of large networks. However, using the linear approximations to the

isochrons discussed earlier, and making certain assumptions about the system, we

can use phase reduction techniques to reduce the number of dimensions in our

model.

33



2.5 Reduction of oscillatory models to a phase-only de-

scription

Close to the limit cycle, we may consider the isochrons to be equal to the linear

approximations we found earlier. If we assume that the perturbation to the system

is weak, that is, ε� 1 in (2.38), and that perturbed trajectories relax instantly to

the limit cycle, then we may rewrite (2.38) as

θ̇ =
1

∆
+ ε〈Q(θ), g(Γ(θ))〉, (2.51)

using the parametrisation for Γ we considered earlier, and where Q is the solution

to (2.43), using the same conditions as before. We call Q the infinitesimal PRC

(iPRC), analogous to R in (2.37), except that it can only describe the change

in phase for infinitesimal perturbations. We also have that Q = ∇xθ|x=Γ(θ), i.e.

the phase response curve is equal to the change in θ given a change in the state

variables, evaluated along the orbit. In fact, the phase response at a point x is

given in general by ∇xθ|x. However, the phase function θ is, in general, not known.

This is one of the reasons why there is such a desire to find efficient algorithms

for computing isochrons, since these are level sets of the phase function. Referring

back to the discussion on isochrons, it is clear that, at the orbit itself, the isochrons

are orthogonal to the PRC. In neuroscience, we generally consider perturbations

that induce additional currents through the membrane, either through injected

current or signals from other cells. In this way, the perturbations affect only

the membrane potential, V , which we generally take as the first component of a

given neural model, so that g in (2.38) contains nontrivial entries only in the first

component. Making this assumption, we need only consider the first component,

q = Q1 of Q, so that the system now reads

θ̇ =
1

∆
+ εq(θ)g1(Γ(θ)). (2.52)

As for (2.37), we have reduced the dynamics of the full system (2.38) to move-

ment with constant angular velocity on S1 modulated by perturbative effects, the

strength of which is given by εq(θ)g1(Γ(θ)), so that a reduction in the number of
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Figure 11: Infinitesimal PRC for the solution to the HH model as shown in Fig. 3.

The PRC takes both positive and negative values, showing that this neuron is a

type II neuron. This is to be expected as the bifurcation giving rise to oscillations

in the HH model is a Hopf.

dimensions is achieved. Fig. 11 shows the first component of Q for the oscillatory

solution to the HH model shown in Fig. 3. This solution was found by solving

the adjoint equation, as described in (2.43). It is interesting to note that type I

neurons support only positive values for q so that spikes may only be advanced in

such models, whereas q can take both positive and negative values for type II neu-

rons [50]. Fig. 11 clearly shows that this neuron is a type II neuron, as predicted

from the fact that the underling bifurcation is of Hopf type. PRCs are not only

a mathematical construct. Through voltage clamp techniques, PRCs may be esti-

mated from real neurons by artificially injecting a current through the membrane

of a cell [51, 52]. This allows for a direct comparison of the PRCs of real neurons

and their mathematical models. Using new technology, dynamic clamp techniques

allow for the injection of arbitrary signals into a cell with real-time feedback. The

advent of dynamic clamp techniques [53] is allowing for more advanced studies of
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neural response to realistic stimuli. A comprehensive review of phase reduction

techniques, both theoretical and experiment may be found in [6].

Using this phase reduction technique, we can analyse the effects of perturba-

tions on the timing of spikes fired by a particular cell. The perturbations may be

from some injected current, for example in experiments, or from other neurons in

a network.

2.6 Noise in neural systems

Variability is ubiquitous at all levels of the central nervous system [54]. Even when

factors are kept as constant as possible, trial to trial variability of neural response

is observed when neurons are exposed to the same stimulus. There are a number

of possible sources of this variability, and these variations have great importance

when we ask questions about the reliability of a neural network to encode and

transmit information reproducibly. The deterministic properties of the cells can

give rise to variation in response. Prior to stimuli, neurons may be in a number of

different states, in terms of the membrane potential and fraction of ion channels

that are open. These differences in initial states can give rise to different emergent

behaviour in response to exactly the same stimulus, particularly if the neuron is

highly sensitive to its initial condition [55, 56].

Aside from these deterministic properties, stochastic effects can have a pro-

nounced effect on neural dynamics [11]. The movement of ionic species is itself a

thermodynamic process as molecules arrive at the receptor sites at different rates

owing to the diffusive processes by which they travel. In addition, the receptor

ligands are limited in their ability to count the number of signalling molecules

arriving at the binding site [57, 58]. In fact, the equations governing the transition

rate of the gating variables in the HH model may be thought of as a continuum

limit of a discrete time Markovian process where the rates are the limit of the prob-

abilities of transitioning between open and closed states [59]. At the individual

neuron level, noise may result in variability of only a few milliseconds or smaller.

However, since cortical neurons are able to distinguish firing events separated on
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this order of magnitude, we cannot say for certain that these effects are negligible

[60]. It is often difficult to tell what effect the noise has on information processing

in larger networks as it is hard to distinguish a completely random process from

one acting to transmit information optimally [61]. Although the magnitude of the

individual effects is typically small, and averaging over the repertoire of stochastic

processes tends to reduce variability as a whole, we must remember that neural

networks perform highly nonlinear computations, and small effects may be am-

plified, for example, through signal transduction. In particular, these effects may

become more pronounced when neurons are close to the firing threshold [62].

2.7 Sources of noise

As well as the previously discussed thermodynamic noise in ion transport, there

exists a host of other biochemical and biophysical processes that contribute to the

stochastic nature of the neuron.

2.7.1 Electrical noise

Variation in the membrane potential of a neuron can result in variability in the

timing of both the initiation and propagation of spikes. By far, the dominant form

of electrical noise is channel noise, that is, the aforementioned opening and closing

of ion channels [63]. Stochastic studies show that the number of ion channels open

at the spiking threshold is key in determining timing precision, so that, even though

there exist a large number of ion channels at any given site, a much smaller number

contribute to neural precision [62]. For weak signals and for smaller neurons,

this can lead to increased variation in spike timing, as weaker signals are more

susceptible to these effects, and smaller neurons have much higher resistance [64].

Spatial interactions along the axon down which the action potential propagates

can cause memory effects lasting up to several hundred milliseconds and these

effects may lead to the failure of the spike to reach the release sites [65].

Smaller sources of electrical noises include Johnson noise, generated by the

thermal agitation of ions in the cytosol at equilibrium, regardless of any exter-
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nal applied current and shot noise, where the finite number of ions arriving at a

receptor is small enough to lead to statistical fluctuations. However, these noise

sources are around three orders of magnitude smaller than channel noise in neurons

[66, 67].

2.7.2 Synaptic noise

The sheer number of other cells with which each neuron communicates is enough

to generate variability by itself. Neurons receive synaptic input from a large num-

ber of other cells, and this process is simply too complex to describe accurately,

and so may only appear to be random [68]. Nevertheless, as with all biological

systems, there are microscopic sources of true noise at each synapse that are likely

to contribute to this background activity and, in turn, influence neural firing.

Experiments in the absence of presynaptic currents show miniature postsynaptic

currents, which provide strong evidence for synaptic noise [69].

The spontaneous opening of Ca2+ stores, Ca2+ channel noise, the spontaneous

triggering of vesicle release or the spontaneous fusion of a vesicle with the cell mem-

brane all contribute to synaptic noise [70]. Once the vesicle release pathway has

been triggered, a postsynaptic current will be induced, which themselves display

trial to trial variability in terms of their amplitude. The amplitude of this response

is affected by such factors as the number of vesicles released from a presynaptic

bouton, their size, diffusivity, the duration over which they are released and the

spatial distribution of the receptors on the postsynaptic cell. In addition, synaptic

receptor channel noise will also contribute to the synaptic noise [65].

2.8 Management of noise

Neural reliability refers to the ability of the neuron to reproduce a firing pattern

in response to an identical stimulus [71]. In terms of information processing, it

is clear that reliability is beneficial to neural systems for passing on information

about stimuli. Noise acts to cause jitter in spike timing, which may propagate

and amplify downstream. In extreme cases, the propagation of spike time jitter
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can cause responses across trials to bear no resemblance to one another. Thus,

the central nervous system must act to counter the harmful effects of noise. The

management of noise, and the reduction of its negative effects imparts a high

metabolic and structural cost. For example, a fly’s photoreceptors account for

around 10% of its resting metabolic consumption, whilst its eye’s optics make over

20% of the fly’s flight payload [72].

The principle of averaging can be applied whenever redundant information is

present across sensory inputs. Averaging can act to peter out the effect of noise if

multiple units carry the same information and are affected by independent noise

sources [73]. Divergence, whereby one neuron synapses onto many others can

support averaging; when signals are sent over long distances, it may be beneficial

to send the same signal redundantly over many noisy axons and reconstruct the

signal at the terminal axon rather than send the same signal along one large axon

[74]. Prior knowledge of the structure signals or noise can be used to minimise the

impact of noise as it can be used to distinguish signals and thus compensate for

any noise [75]. Often, averaging is used in conjunction with prior knowledge about

the statistical properties of signals to reduce variability of response and improve

signal detection and transmission.

2.9 Benefits of noise

It has long been thought that noise is exclusively detrimental to brain function.

This intuitive consideration is indeed backed up by experimental evidence. How-

ever, recent studies have identified situations in which noise may actually con-

tribute to neural reliability and may act to reduced variation in neural response,

referred to by some as stochastic facilitation [76]. Stochastic resonance, and the

related phenomenon of coherence resonance are active interest areas exemplifying

this. In stochastic resonance, a system which is quiescent but near threshold can

gain an increased sensitivity to weak stimuli due to noise [77]. In a deterministic

setting, the stimulus is not strong enough to induce neuronal firing by itself, but

the combined effect of the signal and noisy fluctuations drive the neuron to fire

39



a spike. This mechanism allows for the detection and processing of weaker sig-

nals in the noisy environment. The related phenomenon of coherence resonance

occurs when noise in a system makes the oscillatory response most coherent with

the time dependent stimulus, as can be measured through correlations between

the two or by examining the power spectrum of the neuronal response [78]. In

this way, stochastic effects can, counter-intuitively, increase the reliability of spike

timing, as well as aiding in the detection of weak signals.

As noise increases the likelihood of subthreshold to cause firing events, it may

help to smooth out the nonlinearities associated with the threshold. As outputs

are averaged over time, the result is an effectively smoothed nonlinearity. This

nonlinearity helps facilitate spike initiation and can improve the behaviour of the

network as a whole [54]. Finally, neural networks that have formed in noisy envi-

ronments will be more robust, and will have explored more of the potential state

space of the network, allowing for more dynamic behaviour, such as adaptation

[79].

2.10 Modelling noise

We now consider the mathematical descriptions of stochastic effects. Beginning

from first principles, we may model certain processes, such as the opening and clos-

ing of ion channels as Markov chains, and write down the state transition matrix

between different states, and then go on to describe the effect on the neuron from

these channel events [80]. From here, we may then write down the master equation

associated with such a system and use, for example, the Gillespie algorithm [81]

to find a typical solution to the problem, or Markov Chain Monte Carlo methods

to sample the probability distribution of the system [82].

Considering the size and complexity of both single neuron models and net-

works, these descriptions tend to be too costly to solve in practice, even taking

advantage of methods such as τ -leaping [83], which speeds up the Gillespie algo-

rithm. Instead, we assume that the effects of stochasticity, rather than simply

being averaged out completely, as in the deterministic models studied thus far,
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give rise to additional terms in the model equations than describe the combined

overall effect of the individual processes. This gives rise to a stochastic differen-

tial equation (SDE), which is computationally cheaper to solve. We now review

some of the key components of modelling these processes, in a general setting, but

introducing them into neuronal models where appropriate.

2.11 Random processes and sample paths

Since we typically consider random fluctuations to primarily affect the membrane

potential, we may choose to reflect the effect of noise by considering this poten-

tial to be a random variable (RV), that is, one whose value is subject to chance.

The repeated samplings of a random variable X over time gives rise to the no-

tion of a random process {Xt}, where the subscript denotes the time dependence

of the sampling. As an example of a continuous time random process, consider

the movement of ionic species in a well mixed environment. The ions will move

around by diffusive processes, but since the environment is well mixed, there is no

directed movement down a concentration gradient. Instead, each ion will follow

what manifests as an unbiased random walk. We refer to this as Brownian motion.

Each sampling of a random process, now across time, will give rise to a out-

comes at each step that are likely to differ from other samplings. Thus, there is no

true sampling of a random process across time. As such, we introduce the notion

of a sample path, Xω(t) : t 7→ X(t), with some fixed ω ∈ Ω which is one sampling

of the random process at each time step.

2.12 The Wiener process

One of the key random processes in the construction of SDEs is that of the Wiener

process. This might be more commonly thought of, outside the mathematical and

physical sciences, as describing Brownian motion, considered above. The standard

one dimensional Wiener process, {Wt}, where t > 0 are non-negative real numbers,

has the following properties
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1. W0 = 0 ,

2. The function t 7→ Wt is almost surely continuous ,

3. The process {Wt} has stationary, independent increments ,

4. The increment Wt−s −Ws has the distribution N(0,t) ,

where N(0, t) is a normal distribution with zero mean and variance t. A standard d

dimensional Wiener process can be obtained as a vector of one dimensional Wiener

processes

Wt =
(
W 1
t ,W

2
t , . . . ,W

d
t

)
. (2.53)

The Wiener process has zero mean ∀t, however, it is clear to see the variance of the

process scales linearly with time. As t→∞, the variance of the process also tends

to infinity, leading to a high irregularity of different sample paths from the same

Wiener process. In Fig. 12, we show five sample paths from the standard Wiener

process in one dimension, which typify the behaviour of the Wiener process, with

zero mean, but with variance increasing linearly with t.

2.13 Langevin equations

We now amend the deterministic system (2.38) with a random component to cap-

ture the stochastic effects in a noisy environment, and arrive at

dX = f(X)dt+
d∑
j=1

gj(X)dWj(t). (2.54)

In the above, dX = f(X)dt represents the underlying deterministic system, which

may be the previously studied HH model, for example. This is referred to as the

drift term. The remaining terms describe the role of the noise on the system.

These terms are referred to as the diffusion terms. The dWj represent increments

of a d dimensional Wiener process, as described in Sect. 2.12, whilst the gj describe

the dependence of the noise on the state variables. In a neural environment, we

might consider some of the background noise to be independent of the gating and
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Figure 12: Five sample paths of the Wiener process. In each case, we observe

different trajectories for {Wt}. It is clear to see that the trajectories are not

converging to one another, and that the variance of {Wt} is increasing with t.

membrane potential, in which case gj would simply be constant vectors. In this

case, the noise term would act solely on the membrane potential, and we would

only have diffusion terms in the equation for the membrane potential. We might

also consider channel noise, which might affect and be affected by the proportion of

open channels, in which case the gj would depend on the gating variables and would

create diffusion terms in the equations for the gating variables. We refer to the first

case as additive noise, since the noise simply acts to add on a noisy component to

the deterministic process, whilst the second is referred to as multiplicative noise,

since the noise effects are multiplied by some function of the state variables.

Equations of the type (2.54) are known as Langevin equations. Langevin equa-

tions can be formed from the master equation associated with a stochastic sys-

tem, and have the advantage of being easier to work with, since the effect of the

stochastic processes now simply appears as a product of a Wiener process and

43



some function of the state variables. In rare cases, an explicit solution to an SDE

can be found, and here the advantage over the master equation is evident. In most

cases, one must resort to numerical techniques, in which case, the computational

cost is still smaller for integrating SDEs than for simulating the master equation.

It is common to see (2.54) in the form

dX

dt
= f(X) +

d∑
j

gj(X)ξj(t), (2.55)

where ξj are random processes such that 〈ξj〉 = 0 and 〈ξ(t)ξ(s)〉 = δ(t− s), where

δ(t) is the Dirac δ function, 〈·〉 denotes taking the ensemble average and 〈xy〉 is

the correlation between x and y. We refer to ξj as a white noise process. To

get from (2.54) to (2.55), one simply has to divide through by dt, so that the

two are equivalent. However, dividing dWj(t) by dt involves taking the derivative

of the Wiener process. Mathematicians dissent from using this equation since

the derivative of the Wiener process is nowhere defined, and so this form of the

Langevin equation is more commonly used by physicists.

If we rewrite (2.54) as

dX(t) = f(X(t))dt+ g(X(t))dW (t), (2.56)

where d = 1 and we drop the j subscript, we may solve (2.54) by integrating both

sides with respect to t to give

X(t)−X(t0) =

∫ t

t0

f(X(s))ds+

∫ t

t0

g(X(s))dW (s). (2.57)

The first term on the right hand side, is easily recognised as the solution to the

deterministic part of the system, whilst the second term is a stochastic integral

with respect to a sample function W (t).

2.14 Convergence

When considering solutions of SDEs, it is important to remark on some properties

of convergence. There are a number of different notions of convergence that are

relevant to the analysis of SDEs.
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Mean-square convergence

This type of convergence deals with the mean-square deviation of a random pro-

cess. We say that {Xn} converges to X in the mean-square limit if

lim
n→∞
〈(Xn −X)2〉 = 0, (2.58)

In such a case, we write ms-lim
n→∞

{Xn} = X.

Limit in probability

We may also consider the possibility that {Xn} approaches X because the proba-

bility of deviation from X approaches zero. This means that if, for any ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0, (2.59)

then the limit in probability of Xn is X.

Limit in distribution

Finally, we may consider convergence in terms of probability distribution. This

kind of convergence occurs if, for any continuous bounded function a(x),

lim
n→∞
〈a(Xn)〉 = 〈a(X)〉, (2.60)

so that the probability density of Xn approaches that of X.

Orders of convergence

Regarding the above differing notions of convergence of random processes, it may

be shown that

Convergence in mean-square =⇒ convergence in probability.

Convergence in probability =⇒ convergence in distribution.
(2.61)

Thus, we may think of convergence in mean-square as being stronger than conver-

gence in probability and distribution, whilst convergence in distribution is weaker

than convergence in mean-square and probability.
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2.15 Stochastic integrals

In order to complete the details of the solution (2.57), we need to consider how

to evaluate the stochastic integral. Suppose that a(X, t) is an arbitrary func-

tion of time, W (t) is the Wiener process and we wish to evaluate the integral∫ t
t0
a(X, s)dW (s). In a similar way to numerical integration of ODEs, we divide

the interval [t0, t] into n subintervals by a partition

t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn = t, (2.62)

and define intermediate points such that

ti−1 ≤ τi ≤ ti, (2.63)

The stochastic integral is then defined as the limit of partial sums as n→∞,

Sn =
n∑
i=1

a(X(τi), τi) [W (ti)−W (ti−1)] . (2.64)

It is plain to see that, in general, the integral written in this way depends on the

particular choice of the intermediate points τi = αti+ (1−α)ti−1, where α ∈ [0, 1],

and thus, there are an infinite number of possible interpretations of the stochastic

integral, of which two have become the most popular.

Itô integral

The first interpretation sets α = 0, so that τi = ti−1. This defines the Itô stochastic

integral of a(X, t) as∫ t

t0

a(X(s), s)dW (s) = ms-lim
n→∞

{
n∑
i=1

a(X(ti−1), ti−1) [W (ti)−W (ti−1)]

}
, (2.65)

Two important consequences of the Itô definition of a stochastic integral are that

dW (t)2 = dt and dW (t)2+n = 0 for n ∈ N.
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Stratonovich integral

A different interpretation sets α = 1/2, so that τi = 1/2(ti−1 + ti). In this case,

we define the Stratonovich stochastic integral to be∫ t

t0

a(X(s), s)◦dW (s) = ms-lim
n→∞

n∑
i=1

a

(
1

2

(
X(ti) +X(ti−1)

)
, ti−1

)
[W (ti)−W (ti−1)] .

(2.66)

It is worth noting, that although a choice of τi as indicated above leads to (2.66),

this can also be reached by averaging X across the time points ti and ti−1. In fact,

it is only the dependence of X on t that is averaged in this way, rather than the

explicit dependence of a on t. Furthermore, if a(X, t) is differentiable in t, then the

integral may be shown to be independent of the particular choice of t ∈ [ti−1, ti].

2.16 Comparison of the Itô and Stratonovich integrals

To compare the effect of the difference in choice of interpretation of the stochastic

integral, consider the case where a(X, t) = W (t). In the Itô interpretation,∫ t

t0

W (s)dW (s) =
1

2

[
W (t)2 −W (t0)2 − (t− t0)

]
, (2.67)

whereas, in the Stratonovich interpretation∫ t

t0

W (s) ◦ dW (s) =
1

2

[
W (t)2 −W (t0)2

]
. (2.68)

The difference between the two can be accounted for by the fact that, in the

Itô sense, dW (t)2 = dt and so terms of second order in dW (t) do not vanish

on taking the limit. We note that the Stratonovich integral is precisely what we

expect to obtain under the normal rules of calculus, ignoring the stochastic nature

of the integral, and the extra term (t − t0) appears only in the Itô sense. In

fact, using the Itô interpretation of integrals requires the using a different kind of

calculus, surrounding Itô’s formula. In the context of mathematical biology, the

Itô interpretation may seem the most logical choice, since biological process are

non-anticipatory. That is, they depend only of values in the past or present, and

not in the future. However, the Stratonovich interpretation may be more suited
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if the assumption is that the noise is actually part of some other, non-observed

biologically relevant process [84]. In practice, both interpretations are used, and

there exist methods of moving between the two interpretations freely, as we shall

see shortly. One must also take care, however, to set out clearly the assumptions

made when choosing one or the other, and to remain consistent once this choice

has been made.

2.17 Itô’s formula

Itô’s formula is essentially the chain rule for Itô calculus. For a function h(x(t)),

where x ∈ R, it tells us what stochastic differential equation it obeys. If

dx(t) = f(x(t))dt+ g(x(t))dW (t), (2.69)

then, upon expanding h(x(t)) to second order in dW (t), we get

dh(x(t)) = h(x(t) + dx(t))− h(x(t)),

= h′(x(t))dx(t) +
1

2
h′′(x(t))dx(t)2 + . . . ,

= h′(x(t)){f(x(t))dt+ g(x(t))dW (t)}+
1

2
h′′(x(t))g(x(t))2dW (t)2,

=
{
f(x(t))h′(x(t)) +

1

2
g(x(t))2h′′(x(t))

}
dt+ g(x(t))h′(x(t))dW (t),

(2.70)

where in the last step we have used the fact that dW (t)2 = dt and in the penulti-

mate step, we discard terms of higher order than dW (t)2.

In the Stratonovich case, we observe the same chain rule as we would expect

from ordinary calculus

dh(x(t)) = h′(x(t)){f(x(t))dt+ g(x(t))dW (t)}. (2.71)

In the case where X ∈ Rn, we obtain the following multivariable version of

Itô’s formula

dh(X(t)) =
{∑

i

fi(X(t))∂ih(X(t)) +
1

2

∑
i,j

[
g(X(t))gT (X(t))

]
ij
∂i∂jh(X(t))

}
dt

+
∑
i,j

gij(X(t))∂ih(X(t))dWj(t), (2.72)
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For each of the respective cases, we may write an equivalent SDE in the other

representation, taking advantage of the above formula. Writing the Itô SDE as

dX = f I(X(t))dt+ gI(X(t))dW (t), (2.73)

and the Stratonovich SDE as

dX = fS(X(t))dt+ gS(X(t)) ◦ dW (t), (2.74)

we may derive the result connecting the solutions to the Itô and Stratonovich

SDEs.∫ t

t0

gS(X(s))◦dW (s) =

∫ t

t0

gI(X(s))dW (s)+
1

2

∫ t

t0

gI(X(s))∂Xg
I(X(s))ds. (2.75)

Using this integral, we may now write down the equivalent Stratonovich SDE

corresponding to (2.73) by replacing

f Ii → fSi −
1

2

∑
jk

gSjk∂kg
S
ij (2.76)

Similarly, the Itô SDE corresponding to (2.74) by replacing

fSi → f Ii +
1

2

∑
jk

gIjk∂kg
I
ij (2.77)

This gives us a nice way of converting between equivalent representations of the

same SDE. This can prove useful when analysing the probability distributions of

the solution to SDEs, or when simulating SDEs numerically.

2.18 Coloured noise

Up to this point, we have only considered the case in which the noise sources are

white. That is, where the sources of noise have no temporal correlations (other

than at zero lag), so that the autocorrelation Rx(τ) = 〈x(t)x(t + τ)〉 of a white

noise process is

Rx(τ) = δ(τ), (2.78)

where δ is the Dirac δ-function. White noise represents all temporal frequencies

equally. This is represented by white noise processes having a flat power spectral
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density (PSD), where the PSD describes how the power of a signal is distributed

across different frequencies, and is given by the Fourier transform of Rx(τ). Noise

processes in the real world are likely to have finite temporal correlations, and so a

white noise description may not be the most appropriate for modelling biological

processes and, as a neural example, it has been shown that input correlations in

noise sources may impact interspike intervals [85]. We refer to any noise process

that is not white as being a coloured noise process.

The Ornstein-Uhlenbeck (OU) process is a simple, mean-reverting noise process

that has finite temporal correlations at non-zero lag [86]. The one dimensional OU

process is written as

dη = −γηdt+ σdW (t), (2.79)

where W (t) is the Wiener process as before. We refer to the OU process as being

mean reverting, as sample paths will always tend to the mean 〈η〉 = 0. The OU

process can be solved analytically as

η(t) = η(t0)e−γt + σ

∫ t

t0

e−η(t−s)dW (s). (2.80)

If the initial condition is deterministic, or comes from a Gaussian distribution, then

η(t) is Gaussian. We may go on to calculate the temporal correlation function as

〈η(t), η(s)〉 =

[
var(η(t0))− σ2

2γ

]
e−γ(t+s) +

σ2

2γ
e−γ|t−s|, (2.81)

so that it is clear that the correlation is nonzero at nonzero lag. We note that, if

γ > 0, as t, s→∞, with finite |t− s|, the correlation function becomes stationary.

In fact, if we set the initial time at −∞, rather than 0, the solution (2.80) becomes

η(t) = σ

∫ t

−∞
e−γ(t−s)dW (s), (2.82)

in which the correlation function and mean assume their stationary values. Since

the process is Gaussian, it is stationary. At the expense of increasing the number

of state variables in our system by one, we may go on to use the OU process as a

noise source in our models to have noise terms with some temporal structure. We
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amend our SDE (2.54) to include the OU process as

dX = [f(X(t)) + g(X(t))η] dt, (2.83)

dη = −γηdt+ σdW (t), (2.84)

where we can tune γ, σ > 0 to best reflect the noise source we wish to model.

In Fig. 13, we plot the histogram of 10,000 sample paths of an OU process,

with γ = σ = 0.1, as it evolves in time. The initial condition at t = 0 is the

standard normal distribution N(0,1), and so the resulting distribution of η will

also be Gaussian ∀t, and is given by (2.80). The blue surface superimposed on the

histogram is the solution to (2.80). As we can see, the histograms approximating

the probability density match very well with the analytical solution.

2.19 Simulating stochastic processes

In almost all cases, we cannot find an analytical solution to SDEs and so numerical

schemes to efficiently and accurately simulate sample paths of SDEs is an active

area of research. In all numerical schemes, sample paths are generated by rep-

resenting Wiener increments as samples from normal distributions. Clearly, each

solution of the same SDE will only produce one sample path, and this may deviate

from the ‘true’ solution. To circumvent this problem, many runs of the same SDE

using different samples for the Wiener increments will produce different sample

paths. Provided that the numerical scheme and SDE converge, in some notion

described earlier, then ensemble averages of many sample paths should result in

a path representing the mean path of the system. Monte Carlo methods may

be used to approximate the probability distribution of the state variables of the

system by generating histograms of many sample paths. As for numerical algo-

rithms for ODEs, different routines have different rates of convergence of solutions

to the exact solutions, and different regions of stability, that is where errors in the

solution are attenuated as the numerical routine continues. Explicit or implicit

schemes may be used, where explicit schemes are generally faster, since implicit

schemes involving root finding at each step, but implicit schemes tend to have
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Figure 13: Approximate and exact solutions for the probability density function

of (2.79) with γ = σ = 0.1. The blocks show the approximate density found

by discretising time into N = 1000 bins, and plotting the histogram of ηn for

each time bin for n = 1, . . . , N . The blue surface superimposed is the solution to

(2.80). As we can see, the approximate density from the histograms matches very

well with the analytical solution.

larger regions of stability. Finally, the numerical routines may differ dependent on

whether the SDE to be simulated is of the Itô or Stratonovich type. For additive

noise cases, there will be no difference between the two, but for multiplicative noise

cases, they will differ. Of course, we also have the freedom to write an Itô equation

in its equivalent Stratonovich form and then use a Stratonovich algorithm, or vice

versa.
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Convergence of numerical schemes

Numerical routines have different rates of convergence, corresponding to what

notion of convergence is considered. When discussing numerical routines, the

order of strong convergence corresponds to convergence in mean-square, whilst the

order of weak convergence corresponds to convergence in distribution. Intuitively,

strong convergence considers the deviation of solutions found using the numerical

routine and the exact solution, whilst weak convergence considers the approach

of the average of a smooth function of the variable to its exact value. Weak

convergence is typically more rapid than strong convergence. In general, the weak

and strong orders of convergence for a given scheme are not the same. Moreover,

some schemes will give a better estimate of actual paths of a SDE, but may not

necessarily improve estimates of averages. If we are interested only in averages and

not sample paths, we may speed up the simulation of the SDE by approximating

increments in the Wiener process by matching moments to a normal distribution.

Thus, the choice of algorithm depends not only on the SDE in question, but also

on what quantities we are interested in analysing.

Multiple integrals

When considering the case in which there are multiple noise sources in a model,

we must take care to represent the combined effect of the noise terms correctly.

Generally speaking, for an SDE, written in integral form as

X(t) = X(t0) +

∫ t

t0

f(X(s))dt+

∫ t

t0

g(X(s))dW (s), (2.85)

where X ∈ Rn and W (t) ∈ Rd, for higher orders of expansion of functions, the

solution to the SDE contains terms involving the general Itô stochastic multiple

integral

Ii1,i2,...,in(t, t0) =

∫ t

t0

dWi1(s1)

∫ s1

t0

dWi2(s2) . . .

∫ sn−1

t0

dWin(sn). (2.86)

There also exist similarly defined Stratonovich multiple integrals which are more

convenient for the development of higher order algorithms. In general, these inte-
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grals cannnot be expressed in terms of Wiener increments. However, in the case

that the noise is commutative, then this is not true.

Commutative noise

Noise is said to be commutative if the following condition is satisfied

d∑
k=1

gk,j′
∂gi,j
∂Xk

=
d∑

k=1

gk,j
∂gi,j′

∂Xk

, (2.87)

for j 6= j′. This condition is satisfied automatically in the following cases

1. When the noise sources are additive.

2. Where there is only one noise term, so that j = j′ = 1.

3. When g can be written in the form

gi,j(X) = XiZi,j, (2.88)

for some arbitrary constant matrix Zi,j.

4. When d = m and gi,j ∝ δi,j, where δi,j is the Kronecker delta. This case is

called diagonal noise by Kloeden and Platen [87].

In all of the cases we consider in this thesis, there will only be one noise source.

We now go onto consider the most basic numerical algorithm for simulating SDEs,

which is a simple extension of the one-step Euler algorithm for ODEs.

Euler-Maruyama scheme

Suppose we wish to simulate (2.54) over the interval [0, T ]. We divide this interval

into N subintervals of size h = T/N at points τn = nh so that the function X(t)

is to be evaluated at the points

τ0, τ1, . . . , τN−1, τN , (2.89)

and the corresponding Wiener increments are

∆Wn = W (τn+1)−W (τn) ∼
√
hNd(0, 1), (2.90)
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where Nd is the d-dimensional normal distribution. Let us denote the solution of

the algorithm by yn. The Euler-Maruyama scheme gives the yn as

yn+1 = yn + f(yn)h+
d∑
j=1

gj(yn)∆Wn, (2.91)

It may be shown the this scheme has weak order of convergence of h, but a strong

order of convergence of only h1/2 due to the variance of the Wiener increments.

A nice implementation of (2.91) is put forward in [88]. Although the scheme is

efficient, the low order of convergence means that small h must be used to get

good approximate solutions [87].

Other schemes

The simulation of numerical routines for approximating solutions to SDEs is an

active area of research, and as such, there are now a whole suite of algorithms for

this purpose. The Milstein algorithm uses one more term in the expansion in h

of x(t) and has both a weak and strong order of convergence of h. Higher order

stochastic Runge–Kutta (SRK) methods have also been developed, but clearly

have lower orders of convergence than their ODE counterparts. The general form

for a s-stage SRK where d = 1 provides the yn as

yn+1 = yn +
s∑
i=1

aif(Yi)h+
s∑
i=1

(
b1
i∆Wn + b2

iJ10

)
g(Yi), (2.92)

Yi = yn +
i−1∑
j=1

αijf(Yj)h+
i−1∑
j=1

(
β1
ij∆Wn + β2

ijJ10

)
g(Yj), i = 1, . . . , s , (2.93)

where α and β are s× s constant matrices of coefficients and a and b are constant

row vectors of coefficients ∈ Rs. It had been thought that a strong order of

convergence of h3/2 was as good as could be obtained for such schemes. However,

Burrage and Burrage [89] found a 4-stage SRK with a strong order of h2 by using

higher order multiple stochastic integrals. Other routines extend linear multistep

methods, such as the Adams-Bashforth or Adams-Moulton methods, as discussed

in [90, 91]. Two-step schemes following this philosophy give yn as

2∑
j=0

αn−jyn−j = h
2∑
j=0

β2−jf(yn−j) +
2∑
j=1

d∑
r=1

gr(yn−j)∆Wr,n−j, (2.94)
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where α, β and γ are vectors with constant coefficients. Where β2=0, these schemes

are explicit, whereas where β2 6= 0, the schemes are implicit. Clearly, for these

schemes, we need to start from n = 2, and more importantly, we need to specify

y1 as well as y0. In general, we can take y1 from data, or we may simply use a

one-step Euler-Maruyama scheme to generate y1 from y0 and use this as initial

data for the routine.

Weak convergence

If we are only interested in averages (or some other functional) of the solution,

rather than the sample paths themselves, we may speed up algorithm through the

use of moment matching. Instead of using (2.90), we may simply use ∆Wr,n =
√
hξr,n, where the ξr,n are i.i.d as follows

P (ξr,n = 0) =
2

3
, P (ξr,n = ±

√
3) =

1

6
. (2.95)

Thus, instead of having to sample from a normal distribution, we are now only

sampling from a uniform distribution, which provides a great speed increase to the

algorithm.

Weak noise

Consider the SDE dx = f(x(t))dt + σ
∑d

r=1 gr(x)dW (t). In cases in which the

contribution of the noise is small, that is, σ � 1, we can use other algorithms to

provide efficient schemes with higher accuracy. For example, the standard fourth

order Runge–Kutta scheme appended with the term

σ

d∑
r=1

gr(yn)dWr,n, (2.96)

has a strong order of convergence of h4 + σh + σ2h1/2, which will allow for larger

stepsizes to be taken in the routine to provide the same degree of accuracy, and

thus will provide a speed up to the algorithm as a whole [92].
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2.20 The Fokker–Planck equation

2.20.1 The forward Fokker–Planck equation

The Fokker–Planck equation, which can be constructed using terms from (2.54),

can be used to derive many quantities of interest for a stochastic dynamical system

[93, 80]. In particular, the forward Fokker–Planck equation tells us about the

evolution of the probability density of the location of sample paths, given some

past distribution. The large time solution for this problem will then give the steady

state distribution of the system. From here, the ensemble average of quantities of

interest can be computed by taking the integral of the product of the quantity with

the steady state distribution over the entire domain. The forward Fokker–Planck

equation (associated with the Itô interpretation) is written as

∂P (X, t|Y, t′)
∂t

= −
∑
i

∂

∂Xi

[fi(X)P (X, t|Y, t′)]+1

2

∑
i,j

∂2

∂Xi∂Xj

[Gij(X)P (X, t|Y, t′)],

(2.97)

where

G = ggT , (2.98)

is the outer product of g with itself. The Fokker–Planck equation may be seen

to comprise of a drift term, given by the vector f , and a diffusion term, given by

the matrix G. Since (2.97) is a PDE obeying the standard rules of calculus, we

no longer need be concerned about the correct interpretation of integrals in its

solution. However, except in simple cases, we do not expect analytical solutions to

(2.97) to exist, and so we have exchanged the difficulties in solving SDEs for those

involved in the solution of PDEs. In cases where X exists in a high dimensional

space, it is often easier to use numerical techniques on sample paths of the Langevin

equation to approximate the probability distributions. Notationally, we will drop

the conditional dependence of P on (Y, t′) in the remainder of this thesis.

In order for (2.97) to be well-posed, we need to define its associated initial and

boundary conditions. Suppose that we have X ∈ S ⊂ Rn, with boundary ∂S. In

many cases, S = Rn. However, we clearly cannot numerically solve on this domain

so, in this case S merely approximates our domain. We require the normalisation
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condition ∫
S

P (X, t)dX = 1 ∀t. (2.99)

Thus, our initial condition must obviously be a probability distribution, and so we

set

P (X, 0) = R(X), where

∫
S

R(X)dX = 1. (2.100)

The probability current, J ∈ Rn, associated with (2.97) is defined to be

Ji = −fiP +
1

2

∑
j

Gij
∂P

∂Xi

. (2.101)

To ensure that our normalisation condition is always met, we impose a reflecting

boundary condition on ∂S, so that

n · J = 0, X ∈ ∂S, (2.102)

where n is the outward facing normal of ∂S at X. If we choose our domain S large

enough, and we know that P and its spatial derivatives vanish at the boundary,

it may be sufficient to impose the absorbing boundary condition, which is the

Dirichlet condition

P (X) = 0, X ∈ ∂S. (2.103)

If we are only interested in the steady state distribution, we may set ∂P/∂t = 0 in

(2.97) and solve the resulting homogeneous PDE. There are difficulties associated

with this, as this involves solving a homogeneous PDE with zero flux boundary

conditions, for which solutions are constant over the whole domain. We will ad-

dress the different ways to overcome this problem when we use the Fokker–Planck

equation for this purpose later in this thesis.

2.20.2 The backward Fokker–Planck equation

Instead of propagating information forwards, we may instead work backwards and

ask about the conditional dependence of probability distributions on later times.

This gives rise to the backward Fokker–Planck equation (associated with the Itô

58



interpretation) [93, 80]

∂P (X, t|Y, t′)
∂t

=
∑
i

fi(Y )
∂

∂Yi
[P (X, t|Y, t′)] +

1

2

∑
i,j

Gij(Y )
∂2

∂Yi∂Yj
[P (X, t|Y, t′)].

(2.104)

The absorbing boundary condition is the same as for the forward Fokker–Planck

equation, and is given by (2.103). The reflecting boundary condition takes a

slightly different form, and is given by the condition∑
i,j

niGij(Y )
∂P

∂Yj
= 0, X ∈ ∂S. (2.105)

By using variations of the backward Fokker–Planck equation and appropriate

boundary conditions, we can find the spatial distribution of moments and dis-

tributions of first exit times from a specific subset of S. This can be useful to

make observations about bistable systems. We will go through, in more detail, the

steps involved in setting up and solving the appropriate Fokker–Planck equation

when we address specific problems later in this thesis.

2.21 Transforming probability distributions

If we have a probability distribution P , say as a solution of a Fokker–Planck

equation, given in terms of Cartesian variables x, we can easily find the probability

distribution P̃ in terms of some other variables y [80]. The general formula for

transforming probability distributions is

P̃ =

∣∣∣∣ det
∂x

∂y

∣∣∣∣P. (2.106)

As an example, consider the case in which y = (φ, r) are polar coordinates. We

find P̃ to be

P̃ =

∣∣∣∣∣ det

−r sinφ cosφ

r cosφ sinφ

 ∣∣∣∣∣P = rP. (2.107)

In some cases, it will be useful to find the probability distribution in one coordinate

system and then transform it to another. These relations allow us to readily do

this.
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2.22 Phase reduction of stochastically forced oscillators

One of the recent interests in the community has been of performing the ana-

logue of phase reduction for a stochastically forced oscillator, that is, one in which

the deterministic drift part of the system supports a limit cycle solution which is

strongly attracting and where the magnitude of the diffusion terms is small rel-

ative to the drift. In this way, the diffusion term may be thought of as a weak

perturbation to the limit cycle and so we may use similar techniques as described

in Section 2.5. We begin with system (2.55) forced by a single white noise process,

which we model through increments of a Wiener process

dX = F (X)dt+ σG(X)dWt, X ∈ Rn, (2.108)

with σ � 1. We assume that this system has a periodic orbit solution, with period

∆, for σ = 0 and interpret the SDE in the Stratonovich sense. This system can

be rewritten in terms of isochronal coordinates with asymptotic phase θ and n− 1

amplitude variables described by the vector r = (r1, . . . , rn−1) as

dθ = Ω dt+ σh(θ, r)dWt, (2.109)

dri = fi(θ, r)dt+ σgi(θ, r)dWt, (2.110)

where Ω = 1/∆, h(θ, r) = (∇xθ) · G(x(θ, r)), fi(θ, r) = (∇xri) · F (x(θ, r)) and

gi(θ, r) = (∇xri) ·G(x(θ, r)), for i = 1, . . . , n. A direct application of the standard

phase reduction, as described in Sect. 2.5 results in the following phase-only system

dθ = Ω dt+ σQ(θ)dWt, (2.111)

where Q = h(θ, 0), so that the iPRC for the deterministic case can be used to

describe the phase response to stochastic perturbations. This notion underpins

comparisons of mathematical iPRCs to those estimated in experiments, as in [52],

and has been used in a number of studies of synchronisation in populations of

neurons exposed to a common noise source [94, 95, 96].

If we instead consider (2.108) in the Itô sense, we must use Itô’s formula when

performing the change of variables. The phase reduction in this case is performed
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in [97], whereupon the resulting phase equation is

dθ = Ω dt+
σ2

2
Q(θ)Q′(θ)dt+ σQ(θ)dWt. (2.112)

Using (2.112), the authors of [97] then derive analytical expressions for a number of

quantities of interest. In particular, they give a perturbative formula (expanded in

terms of the noise strength) for the firing rate of a stochastically forced oscillator.

We use this phase equation, along with the formula for the perturbed firing rate

in Sect. 4.5.

In [7], Yoshimura and Arai demonstrate examples in which (2.111) fails to

capture the dynamics of the full system (for the Stratonovich system). The authors

then go on to derive a different phase equation by considering the Fokker–Planck

equation for the evolution of the probability density for system (2.109)-(2.110).

Upon applying a Taylor expansion for solutions to the resulting PDE around the

limit cycle and defining

Y (θ) =
n∑
i=1

∂h(θ, 0)

∂ri
gi(θ, 0), (2.113)

they write down the reduced phase model for (2.108) as

dθ = Ω dt+
σ2

2
Y (θ)dt+ σQ(θ)dWt. (2.114)

We note that this differs from (2.111) through the addition of the term σ2 Y/2.

Through a comparison with numerical results for a standard oscillator model,

Yoshimura and Arai show that this modified phase equation better captures the

dynamics of the full system, compared with (2.111), for the case that they consider.

Teramae et al. [8] respond to this result from Yoshimura and Arai by first

assuming that the white noise process is the limit as τn → 0 of a noise process

with time correlation τn. Suppose that we now consider the system

dX = F (X)dt+ σG(x)η(t)dt, (2.115)

τndη = −ηdt+ dWt, (2.116)
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which we rewrite as

dθ = Ω dt+ σh(θ, r)
y
√
τn

dt, (2.117)

dri = − 1

τr
fi(θ, r)dt+ σgi(θ, r)

y
√
τn

dt, (2.118)

dy = − y

τn
dt+

dWt√
τn
, (2.119)

where τr represents the timescale of the attraction back to the limit cycle. The

phase reduction makes the assumption that τr → 0, that is, instantaneous attrac-

tion back to the limit cycle. Thus, to arrive at an equation including solely phase

for a white noise process, we need to take the limit τn → 0 and τr → 0 in (2.117)-

(2.119). Teramae et al. argue that the order in which these limits accounts for the

difference between (2.114) and (2.111). If we let k = τn/τr denote the ratio of the

two model timescales, and take both limits, we may write down a general phase

only model as

dθ = Ω dt+
σ2

2
Q(θ)Q′(θ)dt+

1

1 + k
σY (θ)dt+ σQ(θ)dWt . (2.120)

The case of k = 0 corresponds to (2.114) whereas k = ∞ corresponds to (2.111).

In later work, Goldobin et al. [9] go on to derive a phase-only model for systems

forced with coloured noise, but we do not consider that here. Armed with (2.120),

we may derive the steady state phase distribution, diffusion coefficient for the

stochastic process and demonstrate that there is a noise induced frequency shift

in the firing of the neuron, even though the white noise process does not favour

any particular frequency.
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3 Non-smooth spiking models

The present chapter focuses on the mathematical analysis of a planar, piecewise-

linear integrate-and-fire type model, building upon the leaky integrate-and-fire

(LIF) model discussed in the introduction, and forms the bulk of the work in

[98]. At present, the level of available technology prevents us from simulating full

brains in any reasonable timeframe. Projects such as the Blue Brain Project [4]

are attempts to construct a realistic model of neural tissue from first principles.

At present, initial simulations of ∼ 104 biophysically detailed neurons have been

performed, setting the scale of the tissue at roughly one neocortical column. Of

course, one does not have to resort to detailed biophysical models. Given that a

whole human brain contains ∼ 1010 neurons, there has been a push in the computa-

tional neuroscience community to develop complimentary models that are reduced

in their complexity, yet still able to generate the rich repertoire of behaviour seen

in a real nervous system. The advantage of such models lies in their mathemati-

cal tractability, and their computational cheapness relative to their more detailed

counterparts. Models such as the ML model, considered in the introduction, can

capture many of the characteristics of higher dimension models. Furthermore,

phenomenological models, such as the FitzHugh-Nagumo (FHN) model, are fur-

ther simplifications, aiming only to capture the emergent behaviour of the system,

without intrinsically describing any of the biophysical processes in a neuron. The

FHN model has a phase plane mimicking that of the reduced HH model considered

in Sect. 2.2, with a cubic v-nullcline and linear w-nullcline, where w represents a

recovery variable, and reproduces the same kinds of behaviour, such as oscillatory

spiking solutions borne out of a Hopf bifurcation, and excitability of a quiescent

state.

Analytical progress has also been possible with one further step, namely, the

introduction of piecewise-linear nullclines. The piecewise-linear paradigm takes

caricatures of the underlying vector field by dividing up the state space into a

finite number of regions, in which the vector fields governing the dynamics are
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linear. For example, for models with a cubic nullcline, a natural way to divide

the state space is to split it into three pieces, so that the extrema of the nullcline

are preserved. The vector fields are then pieced together across the boundaries

between them, which we call switching manifolds. For the FHN case, this gives

rise to the so-called McKean model [99], for which a number of results about the

existence and stability of periodic orbits are now known [100, 101, 102]. Across

the switching manifold, there are a number of interesting behaviours that can

occur, dependent on the relationship between the vector fields on either side of

the switch. This can lead to discontinuities in the vector field, or in more extreme

cases, sliding motion along the switching manifold, as considered in [103]. The

study of such motions has been an area of much recent interest, particularly since

it leads to a lack of uniqueness of trajectories in backwards time. However, we are

typically interested in piecewise smooth systems in neural modelling, since these

are generally the best caricatures of the underlying vector field. Indeed, there are

now a number of planar PWL single neuron models for mimicking the behaviour

of tonically firing neurons. A review of some of these models may be seen in

[104]. The PWL nature of such models means that techniques from non-smooth

dynamics are particularly relevant to their analysis and, as an example, recent

progress on understanding canard explosions has been made by studying PWL

models of FHN type [105]. However, the spiking patterns of such planar models

are typically not as diverse as one needs to mimic realistic firing patterns, such as

bursting. The main aim of this chapter is to extend the analysis of PWL neural

models to a case with a threshold, as in the IF case, and to allow the study of

bursting firing states.

We define bursting as a dynamic state in which a neuron fires two or more

spikes rapidly, termed the active phase, followed by a period of quiescence, termed

the silent phase [47]. Bursting patterns are observed in a number of brain re-

gions, such as the neocortex [106] and pre-Bötzinger complex [107, 108] and may

be thought of as another firing mode of a neuron. Regarding information transfer

across the brain, bursting may be a useful firing modality, as bursts are more re-
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liable than single spikes, are able to overcome synaptic transmission failure [109],

are more robust to noise [110] and potentially encode more and different informa-

tion than single spikes alone [111, 112]. Smooth dynamical systems descriptions

of bursting must have dimension three or higher, and typically involve a sepa-

ration of timescales between a fast subsystem and a slow subsystem. The fast

subsystem exists either in an oscillatory regime or a quiescent regime, and may

take describe the membrane potential and the gating variables as described in the

introduction. The slow subsystem drives the fast subsystem through bifurcations

initiating and terminating the oscillatory mode. The slower intracellular calcium

processes in cells have been put forward as candidates for the slow subsystem of

such models [47]. Systems with such a separation of timescales are amenable to

fast-slow decomposition [113]. This decomposition assumes an infinite separation

of timescales to study the two subsystems separately, with the variables of the slow

subsystem considered as parameters of the fast subsystem. The dynamics of the

slow subsystem are then obtained by describing motion on a critical manifold of

the fast subsystem in the slow subsystem. Mathematically, if we write the system

as

dx

dt
= f(x,w), fast subsystem,

dw

dt
= εg(x,w), slow subsystem,

(3.1)

where ε � 1, x ∈ Rn are the fast variables and w ∈ Rm are the slow variables.

The fast subsystem may be studied by setting ε = 0, to give

dx

dt
= f(x,w),

dw

dt
= 0

(3.2)

treating w as parameters. In order to study dynamics in the slow subsystem, we

rescale time as τ = εt. After some rearranging, and again setting ε = 0, we now

have

0 = f(x,w),

dw

dτ
= g(x,w),

(3.3)
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where f(x,w) = 0 is the critical manifold in the above differential algebraic equa-

tion. Studying bursting models in this way allows us to study two simpler mod-

els and piece together solutions at the ‘jump’ points between subsystems, using

matched asymptotics. Finally, the relaxation of an infinite separation of time

scales may be achieved using geometric singular perturbation theory, as reviewed

in [114]. This is performed by treating ε as an expansion parameter to piece to-

gether slow manifolds of the system, adhering to results from Fenichel [115]. Since

the active phase of the burst is initiated and terminated by bifurcations of the fast

subsystem, this has led to a classification of bursting types by these bifurcations

[47, 116], where the different bursting types possess different properties.

The currently most successful class of minimal models that satisfy the criterion

of being able to generate realistic firing patterns, such as bursting, are those of IF

type as considered in Sect. 2.3, where a simple threshold unit is used to caricature

the excitable aspect of real cells that gives rise to an action potential spike. In these

models, the spike shape is discontinuous. The LIF model has only one dimension,

and does not support bursting. However, appending a recovery variable akin to

that for the ML or FHN model to the LIF model will enable it to support bursting

[117, 118]. In this case, the discontinuous reset mechanism replaces the need for a

third variable required in the smooth case. One key aspect of any IF model is the

discontinuous reset of a state variable upon reaching some threshold for spiking. It

is this particular harsh nonlinearity in the dynamics that endows these models with

interesting dynamics and precludes their description using the machinery of smooth

dynamical systems. Indeed, they have much in common with models of impacting

systems that have been developed for the study of mechanical structures such as

rocking blocks [119], rattling gear boxes [120] and print hammers [121]. Many

results for impacting systems may be found in the recent book by di Bernardo et

al. [122].

This chapter combines both the ideas of using piecewise-linear systems, along

with IF type dynamics in the form of a new IF model, namely the PWL-IF model.

This model is able to reproduce a range of spiking patterns, from tonic to burst
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firing, yet is analytically tractable. In essence, the model below the threshold for

firing evolves according to a planar PWL dynamical system. We present an orig-

inal bifurcation analysis of this model in response to constant current injection,

focusing on local discontinuity-induced bifurcations. Next, in Sect. 3.7, we show

how to construct periodic orbits and determine their stability as well as calcu-

late the phase response curve (by adapting techniques originally developed for the

analysis of limit cycles in smooth dynamical systems). Following this, spike-adding

bifurcations (for bursting orbits) are described in terms of bifurcations of an asso-

ciated one-dimensional return map. Finally, the notion of Lyapunov exponents for

this IF system is developed, using techniques originally developed for the analysis

of impact oscillators.

3.1 A review of integrate-and-fire models

We begin by briefly reviewing the 1D integrate-and-fire models discussed in

Sect. 2.3. The general one-dimensional nonlinear IF model takes the form

dv

dt
= f(v) + I(t), (3.4)

such that v is reset to vR just after reaching the threshold value vth > vR. Here,

v is interpreted as a voltage variable and I(t) is an external drive (that might be

under the control of an experimentalist or arise from the activity of other neurons

to which a cell is coupled). Firing times are defined iteratively according to

Tn = inf{t |v(t) ≥ vth ; t ≥ Tn−1}. (3.5)

One-dimensional IF models with a fixed voltage threshold are caricatures of ex-

citable neural systems and as such it is well to mention that they cannot ade-

quately capture the refractory properties of real neurons. This is often achieved

with the introduction of an absolute time during which they cannot fire after

reaching threshold or by the introduction of a time dependent threshold that in-

creases after a firing event and makes it harder for the neuron to subsequently

fire (mimicking a relative refractory period), as reviewed in [32]. Moreover, real
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neurons (and HH style models) do not possess a fixed voltage threshold, and firing

ultimately depends on the state of receptors within a membrane. Although dif-

ferential equations for the threshold in IF models can be found that mimic more

closely the properties of real neurons [123], we only consider a fixed threshold in

this thesis.

Electrophysiologists often classify neuron response in terms of the so-called

F − I curve, which shows the frequency of oscillation as a function of the time

independent drive I. For the LIF model this is easily constructed from (2.34)

using F = ∆−1, showing a sharp rise in F (from zero) as I increase through the

critical value vth/τ . The tractability of this single neuron model, which has linear

dynamics between firing events, means that it is particularly suited to analysis at

the network level with event based models of chemical synapses. Indeed, a theory

of phase-locked behaviour for strong coupling has been developed for just this

scenario [124]. However, since the model does not intrinsically produce anything

mimicking the shape of an action potential, it is not well suited for all cases. In

particular, to effectively model gap junctions, we need to have a model in which

the v variable mimics the voltage of a real cell, particularly in the spiking regime.

3.2 Nonlinear IF models

The quadratic IF (QIF) neuron is the simplest generalisation of the LIF model that

captures qualitatively the behaviour of the F − I curve of a large family of more

realistic models [125]. Interestingly, this model was apparently already known to

Alan Hodgkin, and used to fit some of his data (and also subsequently analysed

by Bruce Knight). Up to shifts and constant factors it is defined by

f(v) = v2. (3.6)

Unlike the LIF model, the QIF does allow a representation of an action potential

shape (for I > 0 the voltage rises sharply to threshold), as shown in Fig. 14. For

I < 0 there are two equilibria (one stable and the other unstable) and for I > 0

these disappear via a saddle-node bifurcation at I = 0. In the oscillatory regime
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Figure 14: Voltage trace for the QIF oscillator, (3.4) with f given by (3.6), whose

solution is given by (3.7), with constant drive I = 1 with vth = 10 and vR = −1.

(I > 0), the trajectory (for constant drive) can be integrated for Tn < t < Tn+1 to

give

v(t) =
√
I tan

(
tan−1

(
vR√
I

)
+
√
I(t− Tn)

)
. (3.7)

The period of oscillation is calculated by setting v(Tn+1) = vth with v(Tn) = vR

giving

∆ =
1√
I

(
tan−1

(
vth√
I

)
− tan−1

(
vR√
I

))
H(I).

In the limit vth →∞ and vR → −∞ we see that ∆ = π/
√
I (and we have blowup of

the voltage trajectory in finite time), and the F −I curve shows a
√
I dependence,

which matches many cortical neurons much better than the LIF F − I curve. For

further discussion of this model, we refer the reader to the book by Izhikevich [47].

With the improvement in neuronal modelling by simply changing the shape of

the nonlinearity from (2.31) to (3.6), this raises the question as to whether more

judicious choices can improve things further still. Interestingly, Fourcaud-Trocmé

et al. [126] have shown that choosing f(v) = exp(v) (up to shifts and scaling) can

act as an approximation of a more detailed conductance-based spiking model. In

fact, it has now been shown that real cortical data (from layer-5 pyramidal cells)

can be very accurately fit with the following choice [2]:

f(v) = −1

τ
(v − vL) +

κ

τ
e(v−vκ)/κ, (3.8)

with vth = 30.0 mV, vR = −71.2 mV, vL = −68.5 mV, τ = 3.3 ms, vκ = −61.5 mV
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Figure 15: Sample voltage traces (mV) as a function of time (seconds) from the

linear-exponential IF model (green dashed line), (3.4) with f given by (3.8), and

data (red solid line) from a layer-5 pyramidal cell in response to a noisy current

injection (see [2] for further details).

and κ = 4 mV. A fit to sample data using this model may be seen in Fig. 15.

In a similar fashion to the QIF model, the linear-exponential IF (LEIF) model

obtained using (3.8) has two equilibria (defined by f(v) + I = 0), which disappear

in a saddle-node bifurcation when I = −f(v∗), where v∗ is defined by f ′(v∗) = 0.

In common with the QIF model, it is able to support oscillations with arbitrarily

low frequency just beyond the bifurcation point. Both the QIF and LEIF models

have only a weak dependence on the choice of threshold value since they both blow

up in finite time (in the absence of a threshold).

3.3 Planar IF models

Unfortunately, one-dimensional nonlinear IF models, as they stand, are unable to

reproduce bursting patterns of activity. One way to incorporate a slow process

that would give rise to bursting is by coupling the voltage dynamics to a recovery

process:

dv

dt
= f(v)− a+ I,

1

ω

da

dt
= βv − a.

(3.9)
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Figure 16: Firing patterns in the Izhikevich model (3.9) with f given in the text

below, with I = 10 and vth = 30. Voltage traces as a function of time for A: tonic

spiking, with ω = 0.02, β = 0.2, vR = −65, k = 8, B: tonic spiking, with ω = 0.02,

β = 0.2, vR = −55, k = 4, C: bursting, with ω = 0.02, β = 0.2, vR = −50, k = 2,

and D: fast spiking, with ω = 0.1, β = 0.2, vR = −65, k = 2.

Here, the parameters β and ω respectively describe the sensitivity and decay rate

of the adaptive process. Upon reaching threshold, the voltage is reset (v → vR)

and a is adjusted according to a → a + k. The Izhikevich model [127, 128] is

one such model with f(v) = 0.04v2 + 5v + 140. Interestingly, this model can

capture a number of neuronal firing patterns including tonic (repetitive) spiking,

bursting and fast spiking as illustrated in Fig. 16, despite its sensitivity to the

choice of threshold value [129]. It is worth noting that a similar model to that of

Izhikevich was independently introduced by Gröbler et al. [130] as a model of a

pyramidal cell in hippocampus CA3. The adaptive exponential integrate-and-fire

model is obtained using a linear-exponential term for f(v) (as in equation (3.8))
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[131, 132], whilst the quartic model is obtained by choosing f(v) = v4 + 2ωv [133].

Both are able to produce a wide variety of firing patterns, and the quartic model

in particular has a very nice repertoire of responses ranging from tonic spiking to

bursting as well supporting phasic responses, rebound, spike frequency adaptation,

sub-threshold oscillations and much more, all of which are discussed in detail in

[133]. Since all of these models are planar, we may study them using phase-plane

analysis, without any requirement for a separation of timescales.

3.4 The absolute IF model

Apart from the LIF model, none of the models described above admits closed form

solutions for arbitrary (non-constant) drive. A somewhat overlooked, tractable

(one-dimensional) nonlinear IF model is that of Karbowski and Kopell [134], with

a nonlinearity given by f(v) = |v|, which we shall call the absolute IF model

(AIF). Because of the choice of a PWL form of the nonlinearity, the AIF model

can be explicitly analysed. Moreover, it is also capable of generating behaviour

consistent with that of a fast-spiking interneuron [135]. The generalisation of the

model to allow for bursting behaviour is easily achieved by extending it to the

form of (3.9). A minimal AIF model with adaptation is obtained for f(v) = |v|

and β = 0. For sufficiently small k, the model fires tonically and for larger values

of k the model can also fire in a burst mode. The mechanism for this behavior

in the AIF model (and indeed all planar models discussed here) is most easily

understood in reference to the geometry of the phase-plane. We illustrate, in

Fig. 17, the phase plane for the AIF model. The analysis of how parameter space

partitions into tonic, 1-spike per burst, 2-spike per burst, etc. firing patterns is an

open mathematical (classification) challenge. It is worth noting that all the planar

models considered here have much in common and can generate a very similar

repertoire of firing behaviours, though the AIF model does not have trajectories

that blow up in finite time (in the absence of a threshold).
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Figure 17: Top left: Tonic firing in the AIF model with spike adaptation. Here,

ω = 1/3 and k = 0.75ω. Top right: Burst firing in the AIF model with spike

adaptation. Here, ω = 1/75 and k = 2ω. Bottom left: A periodic orbit in

the (v, a) plane corresponding to the tonic spiking trajectory shown above (green

curve). Also shown is the voltage nullcline (red lines) as well as the value of the

reset (black dashed line). Bottom right: Burst firing in the AIF model with spike

adaptation. Other parameters are β = 0, vR = 0.2, vth = 1 and I = 0.1.

3.5 A piecewise-linear IF model

The aspect of the LIF model that allows one to perform an analysis such as the

one above is obviously its linearity (below threshold). A similar analysis for say

the QIF, LEIF or Izhikevich model would be much harder, owing to the inherent

nonlinear nature of these models. However, the AIF model described in Sect. 3.1

is a natural starting point for the development of a more general PWL spiking

neuron model that can be explicitly analysed. We begin by advocating a new type

of PWL IF model, that we shall call the PWL-IF model. It is a generalisation of

the AIF model with adaptation that we write in the form of (3.9) with

f(v) =

v v ≥ 0

−sv v < 0

, (3.10)
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with s > 0, where we now treat all variables and parameters as being dimensionless.

Throughout this chapter, we set vR = 20,vth = 60, and note that a realistic range

for the voltage component of this model may be obtained as V = v − 40. For a

constant drive I, the model may exhibit a number of different periodic attractors,

and in particular we distinguish between those that remain sub-threshold, and

those that cross threshold, which we shall term spiking solutions. We make further

distinctions between solutions as follows.

• Fast spiking orbits: Attracting limit cycles which have v > 0 along the

entire orbit and which have v(t∗) = vth at precisely one value of t∗ ∈ [t, t +

∆] ∀t, where ∆ is the period of the limit cycle.

• Regular (or tonic) spiking orbits: Attracting limit cycles which have

v < 0 for some segment of the orbit and which have v(t∗) = vth at precisely

one value of t∗ ∈ [t, t+ ∆] ∀t, where ∆ is the period of the limit cycle.

• n-Spike bursting orbits: Attracting limit cycles which have v < 0 for

some segment of the orbit and which have v(t∗) = vth at precisely n values

of t∗ ∈ [t, t+ ∆] ∀t, where ∆ is the period of the limit cycle.

• Sub-threshold oscillations: Attracting limit cycles which have v < vth

along the entire orbit.

The fast spiking orbits are so called as they may have arbitrarily fast frequency,

whereas the frequency of regular spiking orbits must be finite. With increasing

I, the model can make a transition from regular to fast spiking. Contrary to

the case for smooth systems, periodic orbits in discontinuous systems need not

enclose a fixed point. In fact, the reset mechanism of the PWL-IF model allows

for periodic orbits of (3.9) in the absence of any fixed points. For β < 1, the

F − I curve (regular spiking) reaches a maximum value before a bifurcation to

fast spiking occurs. The switch between the two modes for β > 1 may have a

further signature of doublet (2-spike burst) firing (which we shall consider in more

detail below), and leads to a discontinuous F − I curve. We depict, in Fig. 18,
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Figure 18: Firing frequency under variation of the drive I in the PWL-IF model,

(3.9) with f given by (3.10), for: Top: β = 1.2, Bottom: β = 0.9. We can clearly

see how the firing rate changes as we move between solution types, and that the

firing rate of the model during fast spiking is much more sensitive to changes in

I than in the regular spiking mode. Other parameters are s = 0.35 and ω = 0.9.

The top curve may be thought of as moving through Fig. 22 along a horizontal

section at β = 1.2, though the blue (GB), black (SP) and pink (DB) bifurcation

curves, whereas the bottom curve shows the transition through the SP bifurcation,

this time along a horizontal section at β = 0.9.

the F − I curve for differing values of β under variation of I. We can clearly see

the transitions between the different oscillatory regimes, particularly for β = 1.2,

where we observe discontinuities in the frequency response at a grazing bifurcation,

in which a subthreshold orbit tangentially touches threshold, and at the onset and

termination of doublet firing. We will review grazing bifurcations in more detail

in the next section.
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3.6 Bifurcation structure

In order to characterise where in parameter space different types of solution exist,

it is useful to consider the different types of bifurcation that can occur. The v-

nullcline has a characteristic ‘V’ shape, whilst the a-nullcline is a straight line with

slope β. By inspection, we see that there may exist one, two or no fixed points of

(3.9) with f defined as in (3.10). There is a slight subtlety, in that the nullclines

may intercept where v > vth, generating a virtual fixed point. From here on, we

refer to the branch of the v-nullcline with v < 0 (v > 0) as the left (right) v-branch.

Since the system is PWL we may easily construct the eigenvalues of fixed points,

where they exist, as

2λ± =

1− ω ±
√

(1− ω)2 − 4ω(β − 1), v > 0,

−s− ω ±
√

(s+ ω)2 − 4ω(β + s), v < 0.

(3.11)

Thus, fixed points on the left v-branch are always stable, and the stability of fixed

points on the right v-branch depends on the sign of 1 − ω. The exact nature of

the fixed points is determined by the sign of the expression under the square root.

Since β must be less than 1 to have two fixed points, the fixed point on the right

v-branch is a saddle whenever the system supports two fixed points.

The sub-threshold dynamics are described by a continuous but non-

differentiable system, so that the Jacobian matrix (around a fixed point) is not

defined at the switching manifold, that is, the border separating linear subsys-

tems at v = 0. Non-smooth bifurcations can occur as fixed points or limit cycles

touch the switching manifold under parameter variation. Importantly, the pres-

ence of a firing threshold in IF systems means that other non-smooth bifurcations,

can arise. We illustrate, in Fig. 25, the stable solutions in the various regions

of parameter space indicated in Fig. 22. The curves in Fig. 22 are generated by

numerical continuation of solutions obtained from the firing map discussed later

in Sect. 3.12.

The PWL-IF can generate periodic behaviour via a Hopf bifurcation (HB)

of a fixed point on the right v-branch when ω = 1 (with β > 1) or through a
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discontinuous Hopf-like (dHB, black line in Fig. 22) bifurcation at I = 0 (with

ω < 1). The conditions for a Hopf bifurcation in the smooth case are also met

by the dHB, namely that the eigenvalues of the Jacobian around the fixed point

have nontrivial real part, with real part crossing through zero. For planar systems,

this is equivalent to the condition that the trace of the Jacobian (around the fixed

point) passes through a zero, whilst its determinant is non-zero. We describe

the dHB as being discontinuous since the Jacobian around the fixed point changes

discontinuously. Borne out of the dHB is a sub-threshold limit cycle, which crosses

through the switching manifold v = 0. We plot in Fig. 19, a plot of the phase plane,

and a few sample trajectories just before (I = −0.5) and just after (I = 0.5)

the dHB. Additionally, the inset in this figure shows the trace of the Jacobian

at the fixed point, evaluated under smooth variation of I, so that we see that

it clearly changes discontinuously at the bifurcation at I = 0. The limit cycle

produced by the dHB bifurcation is similar to those in smooth systems, with a few

noticeable differences. In fact, these sub-threshold limit cycles may be thought

of as being composed of two distinct spiral sections pieced together across the

switching manifold [136]. This may be seen more clearly in Fig. 20. In this figure,

we plot the extension of the spiral sections which form the limit cycle in each PWL

region using the corresponding vector field. That is, we extend the spiral section

for v > 0, into v < 0, propagating with the vector field for v > 0, instead of using

the vector field for v < 0 (and vice versa). The red curve shows the extension of

the spiral for v < 0 into v > 0. This trajectory tends towards the fixed point,

shown by the intersection of the dashed orange (representing the extension of the

left v-branch into v > 0) with the cyan line, representing the a-nullcline. Of

course, this fixed point does not exist in the full PWL system. The blue curve

is the extension of the spiral for v > 0 into v < 0. Now, the only fixed point in

this linear system is unstable (it is an unstable focus), and so trajectories spiral

outwards. We can clearly see that, the limit cycle solution is the union of these

spiral in each respective PWL region, with one section spiralling outwards, the

other complementing this by spiralling inwards (towards a virtual fixed point of
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Figure 19: Phase plane and sample solutions just before (left) and just after (right)

the dHB bifurcation. In the left panel, we set I = −0.5. We see that the fixed

point, depicted by a green circle, exists on the left v-branch and so is stable.

All of the sample trajectories spiral in towards the fixed point. For I = 0.5, in

the right panel, the fixed point, now shown as a red circle, is now on the right

v-branch and is unstable. Trajectories now tend towards a limit cycle solution,

which may be thought of as a union of spiral sections in v < 0 and v > 0. This

may be seen more clearly in Fig. 20. The inset shows the trace of the Jacobian

evaluated around the fixed point under smooth variation of I, with the vertical

black lines indicating the value of I in each of the respective panels. We observe

a discontinuity in the trace as it passes through zero, at the bifurcation at I = 0.

This is why we refer to this bifurcation as the dHB, in that it meets the conditions

for a Hopf bifurcation, but the trace of the Jacobian (and hence its eigenvalues) is

discontinuous at the bifurcation point. Also shown are the v- and a-nullclines in

orange and cyan respectively. We set β = 1.2, with other parameters as in Fig. 22,

so that this figure shows the transition across the dHB (black) curve at β = 1.2.
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the v < 0 system). Limit cycle solutions of this type differ from the smooth case

in that, firstly, the amplitude of the oscillation grows linearly with I, rather than

growing proportional to
√
I and secondly, the criticality of the Hopf bifurcation is

determined by linear, rather than cubic terms. The previous two statements are

true for general piecewise smooth systems with discontinuous Hopf bifurcations.

For PWL systems, we also have that the period of the oscillations is invariant

under changes in I (whilst the oscillation remains subthreshold). We will go on to

prove this result in Sect. 3.9.

As the limit cycle grows, it can tangentially touch the firing threshold. We

refer to this scenario as a grazing bifurcation, at v = vth, whereupon sub-threshold

oscillations are replaced by regular spiking solutions. We later illustrate, in the

phase plane, this transition from sub-threshold to spiking orbits in Fig. 30. In

Fig. 22, we may observe both the dHB (black) and the grazing bifurcation (blue)

in (I, β) parameter space. Grazing bifurcations may also occur at v = 0, where

a graze results in the transition from fast to regular spiking, which may occur

after a window of doublet firing. The black curve (SP), in Fig. 22 corresponds to

the transition to regular spiking, either from fast spiking, or from doublet firing,

whereas the pink curve (DB) marks the onset/termination of doublet firing. We

note that in order to have a graze at vth, we require that β > βc, since we need the

v-nullcline to be below the a-nullcline for v̇ = 0 in this part of the phase-plane.

The preceding discussion considers transitions to and from non-bursting solutions.

We shall consider the transitions between bursting states in due course.

Bistability can arise between a stable fixed point on the left v-branch and a

fast spiking orbit when β < 1 and I < 0. In this parameter regime, there exists

a saddle node on the right v-branch, which is key in delineating the basins of

attraction of the two attractors, as shown in Fig. 24. The basin of attraction of

the stable fixed point is the union of the set of initial data such that trajectories

reach threshold and are subsequently reset to the right of the separatrix of the

saddle on the right v-branch. A homoclinic bifurcation (HC), indicated by the

red curve in Fig. 22, will occur when the spiking limit cycle collides with the
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Figure 20: The spiral sections which form the limit cycle borne out of the dHB.

In this figure, we extend the spiral section for v < 0, into v > 0, but under the

evolution of the vector field in v < 0, rather than for v > 0 (and vice versa). As

such, we extend each the spirals by making the system linear everywhere. The

red curve shows the extension of the spiral for v < 0 into v > 0. This trajectory

tends towards the fixed point, shown by the intersection of the dashed orange

(representing the extension of the left v-branch into v > 0) with the cyan line,

representing the a-nullcline. The blue curve is the extension of the spiral for v > 0

into v < 0. The only fixed point in this case is an unstable focus and so trajectories

spiral outwards. The limit cycle is seen to be the union of these two spiral sections

in the respective PWL regions. Parameters values are as in the right panel of

Fig. 19.
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saddle, resulting in a homoclinic orbit from the saddle at the bifurcation point.

The homoclinic orbit at this point may be thought of as being comprised of two

straight lines (in addition to the reset condition), which are sections of the stable

and unstable manifolds of the saddle. The homoclinic orbit at its corresponding

bifurcation is shown in Fig. 21. Another form of bistability is also possible in this

parameter regime, namely when a regular spiking limit cycle encloses the stable

fixed point. The basin of attraction of this limit cycle is the set of points such

that trajectories reach threshold and are reset to the right of the separatrix of the

saddle (which is also enclosed by the stable spiking orbit). The basin of attraction

is thus the union of disconnected sets. Numerical studies suggest that the regular

spiking orbit is lost as the basin of attraction of the stable fixed point grows and

touches the orbit, and as such we shall call this an orbit crisis. As with the HC

bifurcation, after this point all trajectories will tend towards the stable fixed point.

A plot of the basins of attraction of the two attractors is shown in Fig. 24, whilst a

plot of parameter values for which we have an orbit crisis is depicted by the green

(OC) curve in Fig. 22.

For β < 1, we have a discontinuous saddle node bifurcation (dSN, orange line

in Fig. 22) at I = 0, where the saddle and stable fixed point come together and

annihilate one another. We refer to this as a discontinuous bifurcation owing to

the fact that the Jacobian of the system is undefined at the bifurcation point,

I = 0. For I > 0, there are no fixed points, and the only attractor is either the

regular spiking or fast spiking orbit, dependent on the value of β. We show, in

Fig. 23, the phase plane and sample trajectories just before and just after the dSN

bifurcation, using the parameter values as in Fig. 19, with β = 0.7. In the left

panel, we observe two fixed points, one on each of the v-branches. The fixed point

on the left v-branch is stable, whilst the one on the right v-branch is a saddle.

As we have bistability between between the stable fixed point and a fast spiking

solution, trajectories will head towards one of these two attractors. After the

bifurcation, at I = 0.5, we no longer have any fixed points, and so all trajectories

will tend towards the fast spiking solution. For planar systems, the condition that
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Figure 21: Homoclinic orbit at the homoclinic bifurcation point, with β = 0.7, I ≈

−0.9568. Other parameters are as in Fig. 22. We observe that the homoclinic con-

nection comprises two straight lines, which are sections of the stable and unstable

manifolds of the saddle (depicted as an orange circle), in addition to the reset

condition. Also shown are the v- and a-nullclines, in orange and cyan respectively,

and the stable fixed point (green circle). This bifurcation corresponds to crossing

the red (HC) curve in Fig. 22.

a saddle node bifurcation occurs is a passing through zero of the determinant of

the Jacobian around the fixed point. The inset of Fig. 23 shows the determinant of

this Jacobian, M . We see that, as in the case for the dHB, the determinant passes

through zero discontinuously, which is why we refer to the saddle node bifurcation

as the dSN. If β > 1, then the system only possesses one fixed point, which may

be on the left or right v-branch dependent on the sign of I. As I crosses 0 from

below, there are three scenarios: either ω > 1, in which case no change of stability

occurs and trajectories tend to the fixed point, else ω < 1 and the fixed point

becomes unstable. We either may observe sub-threshold oscillations or spiking

oscillations (either bursting or tonic) depending on the other parameter values.
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Figure 22: Bifurcation curves showing where solution types exchange stability in

the (I, β) parameter plane. Other parameters are ω = 0.9, s = 0.35, and k = 0.4.

The dHB refers to the discontinuous Hopf bifurcation, dSN refers to the discontin-

uous saddle node bifurcation, GB is the grazing bifurcation between sub-threshold

oscillations and regular spiking ones, SP is the bifurcation between the regular and

fast spiking solutions, HC is the homoclinic bifurcation occurring when the fast

spiking orbit collides with the saddle, OC is the orbit crisis, marking the loss of

the regular spiking solution, OB is the bifurcation marking the onset/termination

of bistability between sub-threshold oscillations and spiking ones, DB is the bifur-

cation marking the end of doublet firing, the onset of which occurs along the SP

curve. Regions A,B,C,D correspond to bistable parameter regimes, the solutions

of which are depicted in Fig. 25. Solution types in the other regimes are marked.
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Figure 23: Phase plane and sample solutions just before (left) and just after (right)

the dSN bifurcation. In the left panel, we set I = −0.5. We see that two fixed

points exist, one on each of the v-branches, with the left one, depicted by a green

circle, being stable, and the right one, shown by the orange circle, being a saddle.

Since the system exhibits bistability between the fixed point and a fast spiking

solution, trajectories will tend towards either of these attractors. For I = 0.5, in

the right panel, there are no fixed points. Trajectories now tend towards the fast

spiking solution, which is now the only attractor in the system. The inset shows

the determinant of the Jacobian evaluated around the fixed point under smooth

variation of I, with the vertical black lines indicating the value of I in each of

the respective panels. We observe a discontinuity in the determinant as it passes

through zero, at the bifurcation at I = 0. This is why we refer to this bifurcation

as the dSN, in that it meets the conditions for a saddle-node bifurcation, but the

determinant of the Jacobian is discontinuous at the bifurcation point. Also shown

are the v- and a-nullclines in orange and cyan respectively. We set β = 0.7, with

other parameters as in Fig. 22, so that this figure shows the transition across the

dSN (orange) curve at β = 0.7.
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Figure 24: Basins of attraction for the stable fixed point and limit cycle for β = 0.8,

I = −0.2. Other parameters are as in Fig. 22. We note that this solutions is

equivalent to the one in panel C of Fig. 25. Black denotes the basin of attraction

of the stable fixed point whereas white denotes the basin of attraction of the

limit cycle. We see that both basins are the union of disconnected sets. The

green and yellow circles depict, respectively, the stable fixed point and saddle

whilst the purple dashed lines are the separatrices of the saddle node, given by the

eigenvectors of the Jacobian there. The large amplitude limit cycle is lost at the

point where it touches the basin of attraction of the stable fixed point.

As β decreases through βc = (vth− I)/vth, the fixed point no longer exists and we

see spiking solutions only, regardless of the values of the other parameters.

In parameter regimes where bursting orbits are stable, spikes are added when

the a value after reset of the last spike of a bursting orbit crosses some value ac,

resulting in a grazing bifurcation. The graze either occurs at v = 0, when the

fixed point of (3.9), with f as in (3.10) is to the right of vR, or at v = vth if the

fixed point is to the left of vR. After this point, trajectories will be forced up

to threshold, so that the orbit gains an additional spike. For the case where the

graze occurs at v = 0, the value of ac may be found by integrating backwards from

(v, a) = (0, I), the point at which (v, v̇) = (0, 0), a time T , such that v(−T ) = vR.
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Figure 25: Solution types in the regions indicated in Fig. 22. The blue and red

solid curves indicate the periodic solutions; all solutions are stable. The orange

dashed lines are the branches of the v-nullcline, whilst the cyan dashed depicts the

a-nullcline. The green circles in the lower two figures are stable fixed points.

The value of ac is then equal to a(−T ). T is the flight time (in backwards time)

from v = 0 to v = vR and may be found numerically. For the case where the

graze occurs at v = vth, the same method can be used, this time integrating

from (v, a) = (vth, vth + I). Interestingly, for bursting orbits, the value of ac may

also be found by finding the curves of inflection of the vector field. These curves

separate trajectories that ‘bend’ rightwards, towards threshold, and those which

‘bend’ leftwards, towards the switching manifold, and are given by the solution to

the equation d2a/dv2 = 0. Substituting v = vR in the resulting equation will give

ac. Following [105], we may calculate the curves of inflection for v > 0 as

a±(v) =
v (βωσ± − 1)− I

ωσ± − 1
, (3.12)

with

σ± =
1 + ω ±

√
(1− ω)2 − 4ω(β − 1)

2βω
. (3.13)
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Note that the inflection curves only exist if solutions (3.12) are real, which is the

case if the eigenvalues (3.11) of the Jacobian of the system in the region v > 0 are

real. We comment that, since vR > 0, we need not calculate the inflection curves

for v < 0. In fact, it turns out that the eigenvalues for v < 0 are complex, and

so the inflection curves do not exist here. In the singular-limit, as ω → 0, the

inflection curve for v > 0 is precisely the right branch of the v-nullcline. Upon

substituting v = vR into (3.12), and by simulating trajectories, we find that the

solution using σ− is the relevant one, and hence

ac =
vR (βωσ− − 1)− I

ωσ− − 1
. (3.14)

To demonstrate the importance of this line for bursting trajectories, we plot the

behaviour of two solutions with initial conditions near (vR, ac) in Fig. 26. The

first of these solutions, in blue, has a(t0) < ac and the resulting trajectories bends

rightwards, toward threshold and another spike is fired. The second trajectory, in

red, has a(t0) > ac, and the change in curvature causes the resulting trajectory

to bend leftwards, away from threshold, forcing the neuron to enter the quiescent

phase of the bursting. Spike adding bifurcations can occur as the value of a

following the reset of the last spike in a burst falls below ac, and the trajectory

reaches threshold once more before falling into the quiescent phase.

The number of spikes in a burst is controlled by varying either ω, I, vR or vth.

Decreasing any of these parameters will result in bifurcations that decrease the

number of spikes in a burst. Where vR < 0, the system is unable to burst as

trajectories are always reset to the left of the right v-branch and are attracted to

the left v-branch. We also note that we observe bursts for larger values of ω in

the case where β > βc than where β < βc, and that large values of I may prohibit

bursting, so that we observe only fast spiking, so that I and β may be used as

control parameters to switch between fast spiking and burst modes.

Owing to the discontinuous nature of the flow at reset, we may observe spiking

orbits that enclose all other stable attractors, be they fixed points or sub-threshold

oscillations. The emergence of such orbits is controlled by the parameter k. Where

k is too small, trajectories will simply tend towards the attractors whose basin of
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Figure 26: The green dashed line shows the inflection curve for v > 0, which is the

curve along which d2a/dv2 = 0. This curve separates trajectories that ‘bend’ to the

right, and those that ‘bend’ to the left. The blue trajectory has an initial condition

with a < ac, where ac is the given by (3.14). This trajectory hits threshold and

so a spike is fired before the neuron enters its quiescent phase. In contrast, the

red trajectory has an initial condition with a > ac and does not reach threshold,

entering the silent phase, where v < 0. The inset shows a close up of the region of

interest, enclosed by the rectangle in the main figure, around the initial conditions,

which are depicted by the open circles. For reference, the nullclines of the system

are shown. Note that the inflection curve is near parallel to the v-nullcline, shown

as a dashed orange line. In the singular-limit, as ω → 0, the inflection curve is the

v-nullcline. Parameters are β = 1, ω = 0.08, s = 0.35, I = 4.0.
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attraction they are in. However, when k is large enough, we see the emergence

of large amplitude limit cycles. These occur as the flows get ‘interrupted’ as they

head towards an attractor in the sub-threshold system. All trajectories starting

outside these limit cycles are in the basin of attraction of such orbits.

3.7 Solutions of the PWL-IF model

To solve the PWL-IF model, that is (3.9) with f given by (3.10), it is useful to

recast the dynamics in matrix form so that:

Ẋ =

A1X + µ, X1 ≥ 0,

A2X + µ, X1 < 0,

(3.15)

where

A1 =

 1 −1

ωβ −ω

 , A2 =

−s −1

ωβ −ω

 , µ =

I
0

 , (3.16)

with Xi referring to the i’th component of X (i.e. X1 = v and X2 = a). The

solution to the equation Ẋ = MX + µ can be written using matrix exponentials

in the form

X(t) = G(t)X(0) +K(t)µ, (3.17)

where

G(t) = eMt, K(t) =

∫ t

0

G(s)ds. (3.18)

Following [137], we may easily construct explicit solutions for G and K. For a

2 × 2 matrix M with real eigenvalues λ+,− the entries of the matrix G are given

by

G11(t) =
1

λ+ − λ−
{λ+eλ+t − λ−eλ−t −m22[eλ+t − eλ−t]},

G12(t) = −λ+ −m22

λ+ − λ−
λ− −m22

m21

[eλ+t − eλ−t],

G21(t) =
m21

λ+ − λ−
[eλ+t − eλ−t],

G22(t) =
1

λ+ − λ−
{λ+eλ−t − λ−eλ+t +m22[eλ+t − eλ−t]}, (3.19)
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whilst, for K

K11(t) =
1

λ+ − λ−

{
eλ+t − eλ−t −m22

[
eλ+t − 1

λ+

− eλ−t − 1

λ−

]}
,

K12(t) = −λ+ −m22

λ+ − λ−
λ− −m22

m21

[
eλ+t − 1

λ+

− eλ−t − 1

λ−

]
,

K21(t) =
m21

λ+ − λ−

[
eλ+t − 1

λ+

− eλ−t − 1

λ−

]
,

K22(t) =
1

λ+ − λ−

{
λ+

λ−
[eλ−t − 1]− λ−

λ+

[eλ+t − 1] +m22

[
eλ+t − 1

λ+

− eλ−t − 1

λ−

]}
.

(3.20)

If M has complex, eigenvalues λ± = ν ± iω, these matrices are instead given by

G(t) =
eνt

ω̂

ω̂ cosωt− ν̂ sinωt sinωt

−(ν̂2 + ω̂2) sinωt ω̂ cosωt+ ν̂ sinωt

 (3.21)

and

K(t) =
1

ω̂

ω̂KR(t)− ν̂KI(t) KI(t)

−(ν̂2 + ω̂2)KI(t) ω̂KR(t) + ν̂KI(t)

 (3.22)

where ω̂ = ω/m12, ρ̂ = (ρ−m11)/m12 and

KR(t) =
1

ν2 + ω2

{
ν[eνt cos(ωt)− 1] + ωeνt sin(ωt)

}
, (3.23)

KI(t) =
1

ν2 + ω2

{
ω[1− eνt cos(ωt)] + νeνt sin(ωt)

}
. (3.24)

Hereafter, we refer to Gi, Ki as the above expressions with the respective matrix

M = Ai. To find a fast spiking orbit of period ∆ (in response to constant forcing),

we need only solve (X1(∆), X2(∆)) = (vth, a0 − k) subject to (X1(0), X2(0)) =

(vR, a0), which gives a pair of simultaneous equations for (∆, a0) as:

vth = G1
11(∆)vR +G1

12(∆)a0 +K1
11(∆)I, (3.25)

a0 =
G1

21(∆)vR +K1
21(∆)I + k

1−G1
22(∆)

, (3.26)

which may be solved numerically. Bursting orbits may be constructed using similar

ideas, though with more book-keeping to keep track of the sub-trajectories (each

determined by a linear system) that build the full periodic orbit. For example,

for an orbit with ‘times-of-flight’ Ti, i = 1, . . . N , (defined by the time spent in
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a region of phase space before meeting v = 0 or v = vth) describing a bursting

orbit with N − 2 spikes, we have to solve for the unknowns (T1, . . . , TN , a0) using

a system of equations of the form 0

a1

 = G1(T1)

vR

a0

+K1(T1)µ,

 0

a2

 = G2(T2)

 0

a1

+K2(T2)µ,

vth

a3

 = G1(T3)

 0

a2

+K1(T3)µ,

...vth

an

 = G1(Tn)

 vR

an−1 + k

+K1(Tn)µ, (3.27)

for n = 4, . . . , N subject to a0 = aN + k. The period of the orbit is simply

∆ =
∑N

i=1 Ti. From here onwards, we shall denote periodic orbits by z(t) where

z(0) = [vR, a0].

3.8 Numerical integration of planar IF models

Amongst the standard techniques to numerically integrate systems of the form

ẋ = f(x), one of the most common is the Runge-Kutta scheme; a multistage

predictor-corrector scheme that involves subdividing the time step and at each

stage refining the estimated solution. Such algorithms are included, for example,

in the standard suite of ODE solvers provided by MATLAB. Of these, the fourth

order scheme is popular amongst modellers for its speed and accuracy, for smooth

systems, of O(h4), where h is the stepsize used by the numerical routine. For

IF systems, Hansel showed in [138] that, owing to the error accrued at reset, the

fourth order scheme is no more accurate than its equivalent second order scheme,

and thus for numerical integration, a second order scheme should be used given

its increased speed compared to the fourth order scheme. To detect threshold

crossing, we integrate until vn > vth for some n in the numerical solution. At this
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point, we use linear interpolation to approximate both the time and the value of a

at the threshold crossing. Supposing that we have vn > vth at tn, but vn−1 < vth at

tn−1. We can then estimate the time, t∗ of the threshold crossing by interpolating

between these two values to give

t∗ = tn−1 + h
vth − vn−1

vn − vn−1

. (3.28)

We may use the values (an−1, an) to estimate the value of a∗ at the threshold

crossing as

a∗ = an−1 +
vth − vn−1

vn − vn−1

(an − an−1). (3.29)

Since (3.15) is linear, its solutions will cross threshold exponentially, and so we

will make errors by using linear interpolation to estimate the threshold crossing

time. However, we may use the transformation u = log(v + 1) and solve the new

system

du

dt
= 1 + (−1 + I − a)e−u, (3.30)

1

ω

da

dt
= β(eu − 1)− a, (3.31)

whenever v > 0, leaving the system for v < 0 unchanged. The v component of

these solutions now crosses threshold linearly, so that linear interpolation can be

applied with more accuracy. We note that we could also transform a in this way,

but since the v dynamics are faster than the a dynamics, we did not feel that there

is much of an error accrued by leaving a untransformed.

Of course, the advantage of the piecewise-linear regime is that we have solutions

in closed form. Thus, instead of resorting to any form of numerical scheme, we

may simply use symbolic dynamics to denote the sign of v and simply solve for

the times-of-flight, to either the switching manifold, if the start point has v < 0,

or threshold, if the start point has v > 0, ensuring that the flight times are never

zero. Since this step only involves an implementation of a root finding algorithm,

we can find solutions rapidly and with accuracy up to that of the machine.
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3.9 Subthreshold orbits

We may use the eigenvalues computed earlier as (3.11) to find the criticality of the

discontinuous Hopf. For this kind of Hopf, the criticality is given by linear terms

rather than the cubic ones in the smooth case. In fact, from [136], the criticality

is given by

Λ =
(1− ω)√

4ω(β − 1)− (1− ω)2
− s+ ω√

4ω(β + s)− (s+ ω)2
. (3.32)

When Λ < 0, the bifurcation is supercritical, and we can expect stable subthreshold

solutions for I > 0, in the absence of a threshold. Conversely, if Λ > 0, the

bifurcation is subcritical and we no longer have periodic solutions for I > 0, but

repelling periodic orbits exist for I < 0. At Λ = 0, there is a codimension two

bifurcation, analogous to the Bautin bifurcation. We may solve (3.32) for β to find

the equation of a surface separating the sub- from the supercritical case, as

β =
ω2 + s

s+ 2ω − 1
. (3.33)

Of course, if I is too large, we may not observe subthreshold oscillations, since the

orbits may cross threshold and we will instead observe spiking solutions. Similarly,

whilst we may not observe subthreshold orbits in the case where Λ > 0, we will see

spiking orbits, since the orbits will tend to infinity and will thus cross threshold.

We show in Fig. 27 the criticality surface for the discontinuous Hopf bifurcation.

The value of β is plotted on the z-axis. Below this criticality surface, we have

Λ > 0, and so the system does not support subthreshold oscillations, whereas we

do expect them for parameter values above the surface. It is clear that it is harder

for the system to support subthreshold orbits as ω and s decrease, meaning that

the neuron is more likely to fire spikes in regions with low ω and s.

Finding subthreshold orbits for the PWL-IF system follows the same approach

as finding spiking orbits, except this time using v = 0 rather than v = vth to piece

together solutions. The subthreshold orbits are fully specified by the identification

of the times-of-flight: T1,2 in v > 0 and v < 0 respectively, and a start point

X(t0) = [0, a1] on the switching manifold. It may be shown that T1,2 may be
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Figure 27: Criticality surface for the discontinuous Hopf bifurcation. This surface

separates the criticality of the discontinuous Hopf bifurcation at I = 0, with β

plotted on the z-axis against ω and s. Below the surface, subthreshold orbits

are not supported, whilst we may observe them for parameter values above the

surface. Whether or not subthreshold orbits are actually supported will depend on

the threshold value, since it is not explicitly included here. We see that, as s and

ω decrease, the β values required for subthreshold oscillations increases, indicating

that the neuron is more likely to fire spikes in these regions. The red line indicates

where in (s, ω) space we evaluate the bifurcation curves in Fig. 22. In particular,

the red line is the line I = 0 (with β > 1) in said figure.
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found as the solution to the system of simultaneous equations

0 = −G2
12(T2)G1

22(T1)K1
11(T1) +G1

12(T1)G2
12(T2)K1

21(T1) +G1
12(T1)K2

11(T2), (3.34)

I (G2
22(T2)K1

21(T1) +K2
21(T2))

1−G2
22(T2)G1

22(T1)
= a1 = −K

1
21(T1)I

G1
12(T1)

. (3.35)

To check the stability of the subthreshold oscillations born out of the Hopf bi-

furcations, we may construct the Floquet multipliers γ1,2 of the orbit. Following

the work in [137], we use the fact that γ1γ2 = exp
(∫ t

0
Tr(Df(s))ds

)
(where DF

denotes the Jacobian of f) and that one of the multipliers is equal to one. For

the PWL-IF model, DF ∈ {A1, A2}. We thus have that the Floquet exponents,

σ1,2 = ln(γ1,2), are given by (σ1, σ2) = (0, σ) where σ is given by:

σ =
1

T

(∫ T1

0

Tr A1 ds+

∫ T2

0

Tr A2 ds

)
,

=
1

T
(T1Tr A1 + T2Tr A2) ,

=
T1(1− ω) + T2(−s− ω)

∆
,

=
T1 − sT2

∆
− ω,

= 1− (1 + s)T2

∆
− ω, (3.36)

remembering that T1 + T2 = ∆. Requiring that σ < 0 results in the following

stability condition on T2:

T2 >
1− ω
1 + s

∆, (3.37)

which can be checked easily after solving (3.34)-(3.35). We note that the depen-

dence of the Floquet multiplier on parameters other than s, ω is wrapped up in

the definition of T2. Now that we have found explicit subthreshold solutions of

(3.15), we can show that the period of subthreshold orbits is independent of the

drive I. To start, let us define a1 and a2 to be the distinct values of a when the

orbit crosses v = 0, with a1 < a2 = G1
22(T1)a1 + IK1

21(T1). We have that

[0, a2]T = G1(T1)[0, a1]T + IK1(T1)[1, 0]T , (3.38)

[0, a1]T = G2(T2)[0, a2]T + IK2(T2)[1, 0]T . (3.39)
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Dividing these equations by I gives:

a1

I
= F 1

1 (T1),
a2

I
= F 1

2 (T1),

a2

I
= F 2

1 (T2),
a1

I
= F 2

2 (T2).

where

F i
1(Ti) = −K

i
11(Ti)

Gi
21(Ti)

, F i
2(Ti) =

Gj 6=i
22 (Tj 6=i)

I
+Kj 6=i

21 (Tj 6=i), i, j ∈ {1, 2}. (3.40)

Equating terms gives:

F 1
1 (T1) = F 2

1 (T2), (3.41)

F 1
2 (T1) = F 2

2 (T2). (3.42)

Since both these equations are independent of I, both T1 and T2 are independent of

I and so is their sum. In Fig. 28, we plot the orbits of the system borne out of the

discontinuous Hopf bifurcation, with I as the control parameter. The plot clearly

shows that the amplitude, as expected, grows linearly with I whilst the frequency

of the oscillations is constant. This is in contrast to the situation shown in Fig. 29,

in which ω is the control parameter, and the oscillations emanate from a smooth

Hopf bifurcation from a focus on the right-branch of the v-nullcline. In this case,

there exists a value of ω for which the frequency is highest, whilst the amplitude

of oscillations continues to grow in an exponential fashion with increasing ω.

As these subthreshold orbits continue to grow, they will eventually graze

against the threshold, and will thus cease to exist. It is interesting to note that,

prior to this point, the system supports bistability between a regular spiking solu-

tion and the subthreshold oscillation, so that perturbations may switch trajectories

between the basins of attractions of these solutions. Fig. 30 depicts this scenario,

with the left panel showing the oscillation just before and the right panel showing

the spiking solution just after the grazing bifurcation, with solutions of the bistable

window represented in the middle panel.
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Figure 28: Subthreshold orbits for the PWLIF system. The amplitude (blue) and

frequency (red) are plotted against the control parameter I in the inset. We clearly

observe that the amplitude grows linearly with I, whilst the frequency does not

vary. We may think of the subthreshold orbits as being two spiral sections, joined

at the switching manifold v = 0. Parameter values are ω = 0.9, β = 1.2, s =

0.35, I = 1, 2, 3, 4. The vertical lines in the inset graph correspond to the location

(in parameter space) of the depicted orbits. For reference, the threshold and

switching manifolds are also shown in the main figure as a vertical dashed line.

3.10 Phase response curves

Unlike the LIF model, which can be fully characterised by a phase variable, the

PWL-IF is planar and so a phase only description will not be sufficient to describe

the behaviour of the full system. However, we may still wish to study the effect of

weak forcing, and perform a phase reduction of the type considered in Sect. 2.5.

Here, we will solve the adjoint equation for the PWL-IF model, which gives the

iPRC, after a trivial rescaling. Recapping from Sect. 2.5, the adjoint equation is
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Figure 29: A plot of the amplitude (blue solid) and frequency (red dashed) of

a sub-threshold limit cycle born from a Hopf bifurcation. The bifurcation, at

ω = 1, in this case is not a discontinuous one as the Jacobian is continuous at

the bifurcation point. We clearly see that the frequency of the oscillations varies

with the control parameter, ω and that the amplitude of the oscillations does not

grow linearly with ω, in contrast to the discontinuous Hopf using I as the control

parameter. Other parameter values are β = 1.2, I = 4 and s = 0.35.

given by
dQ

dt
= −DF T (Z(t))Q, (3.43)

subject to the conditions QT (0)F (z(0)) = 1 and Q(t) = Q(t + ∆). The first

condition simply guarantees that θ̇ = 1 (at any point on the periodic orbit), and the

second enforces continuity (and periodicity). The (vector) iPRC, R, is related to Q

according to the scaling R = Q∆. In general, (3.43) must be solved numerically to

obtain the iPRC, say, using the adjoint routine in XPP [139]. However, for PWL

models DF (Z) is piecewise constant, and we can obtain a solution in closed form

[104]. Moreover, it is also possible to extend the Malkin method to treat an IF
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Figure 30: The transition from a subthreshold to a spiking orbit. In the left panel,

we observe only a subthreshold orbit, shown in blue, for I = 4.0. Moving to

the middle panel, we now observe bistability between a subthreshold orbit and a

spiking orbit, shown in red, for I = 4.5. Finally, the subthreshold orbit is lost via

a grazing bifurcation as it tangentially touches threshold, and so we are left with

only a spiking orbit for I = 5.0. Other parameter values are as in Fig. 28. Also

shown are the nullclines of the system. These transitions can be seen by moving

through Fig. 22 horizontally, at β = 1.2 through the grey (OB) and blue (GB)

bifurcation curves.

process [135], which would give rise to a discontinuous iPRC (at the spike time).

In this latter case, the continuity condition is swapped in favour of enforcing the

normalisation condition QT (t)F (z(t)) = 1 for all t, so that

QT (Tn)F (z(Tn)) = 1, ∀n. (3.44)

For the PWL-IF model, we may construct Q in given regions of phase space

according to the prescriptionQ(t) = J(Ti−t)Q(Ti), where J = GT [104]. Enforcing

the normalisation condition at the times Ti is enough to define a periodic (yet

discontinuous) form for Q. For example, for a simple tonic spiking orbit we see

that solving (3.43) and imposing the normalisation condition at t = 0 and t = ∆

gives a system of two linear equations in (q1, q2), where qi are the components of
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Q as

q1(∆)(vth + I − a0 + k) + q2(∆)(ω(βvth − a0 + k)) = 1,

q1(0)(vr + I − a0) + q2(0)(ω(βvr − a0)) = 1. (3.45)

Using the further result that Q(0) = ΓQ(T ) where Γ = J1(∆) for fast spiking

orbits or Γ = J1(T3)J2(T2)J1(T1) for regular spiking orbits, gives

q2(∆) =
r1 − r2Γ11 − r4Γ21

r1(Γ12r2 + r4Γ22)− (r3r2Γ11 + r3r4Γ21)
,

q1(∆) =
1

r1

(1− r3q2(∆)) , (3.46)

where

r1 = vth + I − a0 + k, r2 = vR + I − a0,

r3 = ω(vth − a0 + k), r4 = ω(vR − a0).
(3.47)

Hence, for a fast spiking orbit, the adjoint is given by Q(t) = J(∆ − t)Q(∆) and

for a regular spiking orbit the corresponding Q is

Q(t) =


J1(T1 − t)J2(T2)J1(T3)Q(∆), 0 ≤ t ≤ t1

J2(T2 − (t− t1))J1(T3)Q(∆), t1 ≤ t ≤ t2

J1(T3 − (t− t2))Q(∆), t2 ≤ t ≤ ∆

, (3.48)

where tj =
∑j

i=1 Ti. In both cases, the form of Q(∆) is given by (3.46). iPRCs for

bursting solutions may be constructed in the same way, except that discontinuities

are now not isolated to the ends of the periodic orbit, and so we must enforce both

the normalisation condition just before and just after each threshold crossing. For

subthreshold orbits, with T1, T2 being the times of flight in v > 0 and v < 0

respectively, Q takes the form

Q(t) =

J
1(T1 − t)J2(T2)Q(∆), 0 ≤ t ≤ t1

J2(T2 − (t− t1))Q(∆), t1 ≤ t ≤ ∆

, (3.49)

To find Q(∆) for these orbits, we now need to enforce the periodicity condition,

as the orbits themselves do not possess a discontinuity. Setting Γ = J2(T2)J1(T1),

the periodicity condition takes the form

(Γ11 − 1) q1(∆) + Γ12q2(∆) = 0, (3.50)
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and we now only need to enforce the first normalisation condition in (3.46). This

normalisation condition and (3.50) define a pair of linear equations:

Ψ

q1(∆)

q2(∆)

 =

1

0

 , Ψ =

 I − a1 −ωa1

Γ11 − 1 Γ12

 . (3.51)

This system can be solved using Cramer’s rule, giving qi(∆) = det Ψi/Ψ where

Ψ1 =

1 −ωa1

0 Γ12

 , Ψ2 =

 I − a1 1

Γ11 − 1 0

 . (3.52)

Typically, when studying neural oscillators, we are primarily concerned with

the first (voltage) component of Q, since perturbations to the system are usually

given by changes in the external current, which acts only on the voltage variable.

As an example, we plot in Fig. 31 the voltage component of Q for a regular spiking

orbit and a burst containing three spikes, whilst in Fig. 32, we show this for a

subthreshold orbit. Knowledge of the iPRC is fundamental in building network

descriptions of weakly coupled oscillators [140].

3.11 Weakly coupled networks

As an example, let us consider a network of two identical, interacting cells. We shall

consider gap junction coupling between the two cells. We remark that, although

the LIF models is not usually well suited to studying this form of coupling, since

it does not intrinsically include a spike shape, the PWL-IF model does include a

representation of a spike and so we may consider gap junction coupling. Through

this channel, currents are induced from one cell to another as ions move down

electrochemical gradients. We will consider the case where the channel is always

open, and will assume, in this case that the conductance of the channel ε � 1,

so that we may apply weakly coupled oscillator theory. For simplicity, we will

only consider the fast spiking case, although it is a straightforward extension to

consider regular spiking or bursting orbits. For ease of notation, in this section
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Figure 31: Left: Voltage component of the phase response curve for a regular

spiking orbit (red, solid). Right: Voltage component of the phase response curve

for a 3-spike bursting orbits (red, solid). Parameter values are β = 1.1, s = 0.35,

k = 0.4, I = 4.0 and ω = 1 for the regular spiking orbit and ω = 0.25 for the

bursting orbit. Corresponding orbits are shown in dashed blue.

we take G = G1 and J = J1 wherever they are used. In this case, the network

dynamics may be written as

dvi
dt

= f(vi) + I − ai + ε(vj − vi), (3.53)

1

ω

dai
dt

= βvi − ai, j 6= i, i, j ∈ {1, 2}. (3.54)

Using the iPRC as defined in the previous section, we may rewrite the dynamics

of the network as dynamics on a torus S1 × S1, where θi = t mod ∆, i = 1, 2 as

[141]
dθi
dt

= 1 + εR(θi)C(θj, θi), (3.55)

where C describes the coupling between the cells. For gap junction coupling, it

takes the form C(θj, θi) = v0(θj) − v0(θi), where v0 is the voltage component of

the unperturbed oscillation. We may move to a rotating frame by introducing the
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Figure 32: Voltage component of the phase response curve for a subthreshold

orbit. In particular, the subthreshold orbit is the green one depicted in Fig. 28.

The corresponding orbit is shown in dashed blue.

coordinate θi = t+ φi(t), φi ∈ [0,∆), resulting in

dφi
dt

= εR(φi + t)C(φj + t, φi + t). (3.56)

For weak coupling, each neuron still fires approximately at the unperturbed rate,

but φi slowly drifts. Since ε� 1, we can take advantage of averaging theory, taking

the average of this drift over one period to eliminate the explicit time dependence,

and arrive at an equation for the phase alone as

dφi
dt

=
ε

∆

∫ ∆

0

R(t)C(t+ (φj − φi), t)dt = εH(φj − φi). (3.57)

We refer to H as the phase interaction function [5], and note that it depends

only on the phase difference ψ = φj − φi between the two cells. This means we

can exploit the form of H to tell us about the existence and stability of solutions

for the network. Specifically, the solutions of Hodd = 1/2[H(ψ) − H(−ψ)] = 0
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give the fixed points for the evolution of ψ. For symmetrically coupled cells, the

existence of both a synchronous solution, with ψ = 0, and the anti-phase solution,

with ψ = 1/2 is guaranteed. For any solution for ψ, the sign of the derivative of

Hodd(ψ) at these solutions is the sole piece of information we need to classify its

stability: if the sign of H ′odd is positive, the solution is unstable, whilst we have

stable solutions if the sign of H ′odd is negative. Upon making the substitution

R = Q∆, the phase interaction function, H(ψ) may be written as

H(ψ) =

∫ ∆

0

Q(t)C(t+ ψ, t)dt. (3.58)

We must take care, when computing the phase interaction function to handle the

discontinuity at v = vth, or equivalently at t = ∆. As such, we decompose H as

H(ψ) =

∫ ∆−ψ

0

Q(t)C(t+ ψ, t)dt+

∫ ψ

0

Q(t+ ∆− ψ)C(t, t+ ∆− ψ)dt. (3.59)

It is convenient to first suppose that C(t+ψ) = X(t+ψ)−X(t) and simply take

the first component of this function. For a fast spiking solution, we may write

Q(t)C(t+ ψ, t), as

Q(t)C(t+ ψ, t) = J(∆− t)Q(∆)
(
G1(t+ ψ)X0 +K(t+ ψ)µ−G1(t)X0 −K(t)µ

)
,

(3.60)

where X0 = (vR, a0). Since multiples of the matrix A commute with one another,

we note that

G(t+ ψ)−G(t) = G(t)G(ψ)−G(t) = G(t)[G(ψ)− I2], (3.61)

where I2 is the identity matrix in R2. We also note that

K(t+ ψ) =

∫ t+ψ

0

G(s)ds

=

∫ t

0

G(s)ds+

∫ t+ψ

t

G(s)ds

= K(t) +

∫ ψ

0

G(s+ t)ds. (3.62)

We let

K̃(t, ψ) =

∫ ψ

0

G(s+ t)ds. (3.63)
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Using these relations, and remembering that J = GT , we may rewrite (3.60)

Q(t)P (t+ ψ, t) = GT (∆− t)Q(∆)
(
G(t)[G(ψ)− I2]X0 + K̃(t, ψ)µ

)
. (3.64)

Since the forcing is in the voltage component only, we are only interested in the

first component of H. Thus, we require the first component of

H(ψ) =

∫ ∆−ψ

0

(
GT (∆)GT (−t)Q(∆)

)
•
(
G(t)[G(ψ)− I2]X0 + K̃(t, ψ)µ

)
dt

+

∫ ψ

0

(
GT (ψ)GT (−t)Q(∆)

)
•
(
G(t)[I2 −G(∆)G(−ψ)]X0 − K̃(t,∆− ψ)µ

)
dt,

(3.65)

where • denotes elementwise multiplication. For regular spiking solutions, a similar

result holds, taking care to piece together solutions across the switching manifold.

For bursting solutions, we must take into account the multiple threshold crossings,

and split the integral for H into n distinct pieces, where n is the number of spikes

in the burst.

To demonstrate the use of the phase interaction function, we now show the re-

sults for a network of two identical neurons. In Fig. 33, we consider the case where

the coupling is through gap junctions and the neurons, in the absence of inputs,

are in a fast spiking regime. We observe that the odd part of H, shown in red, has

fixed points at ψ = 0 and ψ = ∆/2 as expected. The fixed point at 0 is unstable,

whilst the fixed point at ∆/2 is stable, having H ′odd < 0. As such, we expect to

see the anti-phase solution persist after transients have decayed. This is precisely

what is observed in the computed trajectories, shown in the bottom two panels of

this figure. In another case with gap junction coupling, this time where the cells

are in a bursting regime (with 3 spikes), we see that the phase interaction predicts

bistability of the synchronous solution and the anti-phase solution, separated by

an unstable fixed point with ψ ≈ 1. For a network solution with an initial phase

difference of ψ(0) < 1, we thus expect to see synchrony between the two cells as

t→∞, as is observed in the trajectories in Fig. 34.
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Figure 33: Top: Phase interaction function (blue) along with its odd component

(red) for a network of two gap junction-coupled neurons in an intrinsically fast

spiking regime. The open circles show the solutions of Hodd = 0. The phase

interaction function predicts stability of the anti-phase solution, with ψ = ∆/2,

which is observed by trajectories of the solution (bottom) after transients have

decayed. Parameters are are for the regular spiking orbit in Fig. 31, expect β = 0.9.

The strength of the coupling between cells is set to g = 0.001.

106



-15
-10

-5
 0
 5

 10
 15

 0  5  10  15

H

Hodd( )

H( )

-20

 0

 20

 40

 60

t

v

9.995 1.000t
x104 x104

Figure 34: Top: Phase interaction function (blue) along with its odd component

(red) for a network of two gap junction-coupled neurons in an intrinsically 3 spike

bursting regime. The open circles show the solutions of Hodd = 0. In contrast to

the situation showing in Fig.33, the phase interaction function predicts bistability

of the synchronous solution with ψ = 0, and the anti-phase solution. For initial

conditions with ψ < 1, we expect to see synchrony between the cells after transients

have decayed, which is observed by trajectories of the solution (bottom) after

transients have decayed. Parameters are are for the bursting spiking orbit in

Fig. 31, with the strength of the coupling between cells set to g = 0.001
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3.12 Firing map

We now consider an approach to study the existence and stability of behaviour of

a single neuron subject to constant forcing. Due to the nature of the non-smooth

dynamics of the system at reset, it is useful to consider a map of the adaptation

variable at successive firing times. This will collapse the dynamics of the full

system to a one-dimensional return map. This has previously been considered by

Touboul and Brette [37] for a broad class of planar nonlinear IF models. Here, we

focus on the construction of such a map for the PWL-IF model. We consider a

set, called the Poincaré section, Σ = {(v, a)|v = v̄ ∈ R} which is transverse to the

flow for all (v̄, a) ∈ Σ. The value of v̄ above is arbitrary, so that our section may

be placed anywhere in the phase plane. The first return map is function which

gives, for each value a0 ∈ R, the value of a at the next intersection with Σ, of

a trajectory starting from (v̄, a0) ∈ Σ. The second return map gives the second

intersection of such a trajectory with Σ and so forth. We refer to the firing map

as the first return map with v̄ = vR. We note that trajectories will not intersect

vR upon reaching threshold, but are reset discontinuously to it, and thus we may

consider intersection of the trajectory with Σ1 = {(v, a)|v = vth} and apply the

reset conditions to give the value of a we seek. Suppose that the trajectory starting

from (vR, an) reaches threshold at time ∆n. Defining the firing map as the unique

function P : R→ R such that P (an) = a(∆n) + k, we have

P (a) =

G
1
21(∆n)vR +G1

22(∆n)a+K1
21(∆n)I + k, a < ac,

G1
22(T3)a∗ +K1

21(T3)I + k, a > ac,

(3.66)

where T3 is the flight time from v = 0 to v = vth, a < ac is the same as the one

described in section 3.5, which separates trajectories, starting from (vR, a), which

cross the switching manifold from those which do not, and

a∗ = G2
22(T2)(G1

21(T1)vR +G2
22(T1)a

+K1
21(T1)I) +K2

21(T2)I, (3.67)

where T1 is the flight time from v = vR to v = 0 and T2 is the total flight time

in the region v < 0. The flight times are given by the solutions to transcendental
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equations and hence are not available in an explicit form, and so we find the values

of T1, T2 and T3 numerically.

At a = ac, the map may have a discontinuity, dependent on the pair (β, ω). For

the map to be discontinuous, we require that β to larger than the value in (3.33),

so that the dHB at I = 0 is subcritical. An example of such a map is depicted in

Fig. 35.

Fixed points of the map are found by solving a = P (a), and the points are

stable if |J(a)| < 1 where J(a) = P ′(a). Fixed points of the map may lose

stability via a tangent bifurcation where J(a) = 1 or a period-doubling bifurcation

where J(a) = −1. They can also be lost as they pass through the discontinuity at

a = ac.

In order to characterise the stability of the fixed points, we first need to find

an expression for J(a). We have, upon setting an = a,∆n = ∆, for a < ac that vR

P (a)

 = G1(∆)

vR

a

+K1(∆)µ+

vR − vth

k

 . (3.68)

where G1, K1 and µ are as in (3.15). Differentiating this equation with respect to

a yields: 0

J(a)

 = G1(∆)

0

1

+
d∆

da

A1G
1(∆)

vR

a

+G1(∆)µ

 . (3.69)

We may solve the first of the above equations to find an expression for d∆/da as

d∆

da
=

G1
12(∆)

(G1
21(∆)−G1

11(∆))vR + (G1
22(∆)−G1

12(∆))a−G1
11(∆)I

, (3.70)

after which we may then define J(a) in terms of d∆/da as

J(a) = G1
22(∆) +

d∆

da

(
ω
{(

βG1
11(∆) −G1

21(∆)
)
vR

+
(
βG1

12(∆)−G1
22(∆)

)
a
}

+G1
21(∆)I

)
.

(3.71)

A similar process determines J(a) for a > ac (taking care to piece together solutions

and derivatives across v = 0). We observe a qualitatively similar form of the firing
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Figure 35: First, second, third and fourth return maps at ω = 0.19, β = 1.2,

I = 4.0, s = 0.35 and k = 0.4. We see three stable fixed points on the third return

map, (dashed cobwebs) corresponding to a 3-spike burst.

map to that found by Medvedev [142] for the Chay-Keizer model [143, 144] (for

bursting in a pancreatic β-cell). The map may be thought of as divided into two

portions at ac, with the left hand portion, with a < ac, attaining some global

maximum value and the right hand portion having a small and negative slope.

Geometrically, fixed points of the firing map correspond to the intersection of the

map P with a line of unit slope and zero origin. Fixed points may exist in either

portion, and it is easy to construct scenarios in which fixed points ‘disappear’

across the discontinuity. As an example, we plot in Fig. 35, the first, second, third

and fourth return maps in a parameter regime that supports a stable burst with

3 spikes. We see three stable fixed points on the third return map, corresponding

to the a-values at the spike times.

Stable fixed points on the left hand portion of the map correspond to fast
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spiking solutions, whilst those on the right correspond to regular spiking solutions.

We note that, under parameter variation, it is possible to generate unstable fixed

points in the right hand portion of the map. In this parameter regime, we observe

doublet firing, the onset of which is marked by a period-doubling bifurcation.

Shown in Fig. 36, is the representation of doublets in the return maps. We plot

both the first and second return maps, along with their respective first derivatives.

There exists an unstable fixed point in the first return map, and two stable fixed

points in the second, corresponding to the doublet. As I is increased (decreased),

the fixed point in the first return map will move leftward (rightward) and stabilise

so that the fast (regular) spiking solution becomes stable and we lose the doublet.

The bifurcation to doublet firing occurs as fast spiking orbits approach the

switching manifold. We may track the onset and termination of doublet firing in

(I, β) parameter space by continuing the steady states for which J(a) = −1. We

find that for a given value of β, there are necessarily two bifurcation branches;

one to mark the onset and one to mark the termination of doublet firing. We also

observe that below some value of β, the model no longer fires in doublets, and

the transition from regular to fast spiking occurs exactly as the fast spiking orbit

grazes the switching manifold. Here, all of the steady states have J(a) > −1.

As well as doublet firing, we often have bistability of periodic attractors near

bifurcations, as can be seen in the top panel of Fig. 25, in which the sub-threshold

oscillation and spiking orbit are both stable. Since we cannot always ‘see’ sub-

threshold attractors with the firing map, we may repeat the same methodology,

setting v̄ = 0, thus moving the Poincaré section to Σ2 = {(v, a)|v = 0}. The

emergence of the spiking orbit is marked, as for doublet firing, by the passing of a

steady state through J(ā) = −1 so we may track this point in parameter space to

give us the boundary on which this occurs. The grazing bifurcation, resulting in the

loss of the stable sub-threshold oscillation occurs as the fixed point corresponding

to the sub-threshold oscillation crosses the discontinuity in the return map. Thus,

unlike the spiking solution, the sub-threshold oscillation is always stable where it

exists. This does not, however, preclude the existence of unstable sub-threshold
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Figure 36: First and second return maps (top), together with their first derivatives

(bottom), for the doublet firing parameter regime with ω = 0.9,β = 1.2, I = 10.0,

k = 0.04 and s = 0.35. The vertical dashed lines in the lower figures indicate where

the fixed points of the maps are. In all cases, the fixed point locations are shown

by open circles. We can see the fixed point in the first return map is unstable.

Of the three fixed points in the second return map, we observe one unstable fixed

point corresponding to the unstable fixed point in the first return map, along with

a pair of stable fixed points corresponding to a doublet.

limit cycles, which we may expect when the dHB is subcritical. We may then

observe where the fixed point ‘disappears’ to track where in parameter space the

grazing bifurcation occurs. Interestingly, we note that the system may already be

in a bistable regime as the dHB occurs. Depicted in Fig. 37 are the first return

maps just before and after the bistability between subthreshold orbits and spiking

ones, as considered in Fig. 30. In both panels, we see that there are two fixed

points. Of these fixed points, the leftmost one corresponds to the spiking orbit,
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Figure 37: First return maps (top), together with their first derivatives (bottom),

for the parameter sets in the left two panels of Fig. 30. The vertical dashed lines

in the lower figures indicate where the fixed points of the maps are, which are also

shown with open circles. We can see the leftmost fixed point in the left return

map, corresponding to a spiking solution is unstable, whilst the rightmost fixed

point on the same map is stable. As we increase I we arrive at the right pair of

figures, where both fixed points are now stable. These two firing maps reflect the

situations in the left and middle panels of Fig. 30.

whilst the rightmost corresponds to the subthreshold orbit. In the left panel we

see that the fixed point corresponding to subthreshold orbits is stable, but the one

corresponding to spiking orbits is not, having J(a) < −1. Moving to the right

panel, we now observe that both fixed points are stable, and so we have bistability

between these solutions.

The firing map is of the type that allows for a snap-back repeller, and as such

will support chaotic solutions [145]. Typically, systems have to possess at least

three dimensions to be chaotic, whilst the PWL-IF model has only two. However,
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the same is not true for non-smooth systems. In the case of the PWL-IF mode,

the hard reset condition can act to make the system chaotic. To define such a

snap-back repeller suppose a is a fixed point of P with |P ′(a)| > 1, and suppose

there exists a point a 6= a in a repelling neighbourhood of a, such that aM = a

and P ′(ak) 6= 0 for 1 ≤ k ≤ M , where ak = P k(a0). Then, a is called a snap-

back repeller of P . Essentially, this definition means that the fixed point itself

is unstable, but the map acts in such a way such trajectories starting from a

neighbourhood of a are brought back to a. Zheng and Tonnelier [146], have shown

the presence of snap-back repellers in the QIF model with adaptation. Given the

similarities between the PWL-IF model and the QIF with adaptation, we may

expect similar properties. We show an example of such a point in the PWL-IF

model in Fig. 38, along with an associated chaotic orbit in Fig. 39. We shall

now use the notion of Lyapunov exponents in non-smooth systems to demonstrate

where chaotic solutions exist in the PWL-IF model.

3.13 Maximal Lyapunov Exponents

Lyapunov exponents (LEs) measure the exponential rates of divergence of nearby

orbits of an attractor in state space and serve as a useful measure to identify re-

gions of parameter space with differing emergent behaviour. Stable equilibria have

only negative LEs, periodic attractors have one zero exponent, whilst the rest are

negative. Chaotic attractors, however, have at least one positive LE. Conversely,

where the attractor has at least one positive LE, we expect chaotic behaviour and

thus, the presence of chaos in a dynamical system may be characterised in terms

of LEs.

The spectrum of LEs, λi, for a general system Ẋ = f(X), X ∈ Rn is defined

for an initial condition X(t0) as:

λi = lim
t→∞

1

t− t0
ln
||δX(t)||
||δXi(t0)||

, (3.72)

where δX(t) is separation vector giving the distance X(t) − X̃(t) between X(t)

and the trajectory X̃(t) with a perturbed initial condition X(t0)+δX(t0), and the
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Figure 38: A snap-back repeller. Top: Firing map, Bottom: First derivative of the

firing map. We see the presence of an unstable fixed point a, in conjunction with

a point ã in its repelling neighbourhood such that P 4(ã) = a. It may be shown

that the first derivative of the evolution of ã under P is nowhere equal to zero.

Parameter values here are I = 4.0, β = 0.9, ω = 0.4, s = 0.35 and k = 0.4 .The

vertical dashed lines on the bottom plot indicate the location of a and ã. The

chaotic orbit with these parameters is shown in Fig. 39.

subscript denotes the respective components of X.

LEs for continuously differentiable dynamical systems are generally calculated

using the Jacobian of the system along the orbit that the flow produces, by solving

a variational equation. This gives rise to a state transition matrix Φ(t, t0) as the

solution to the equation

Φ̇(t, t0) = DF (X(t))Φ(t, t0), X ∈ Rn, (3.73)

Φ(t0, t0) = In, (3.74)

where In is the identity matrix in Rn. By evolving trajectories for a given system

for large times, and using Gram-Schmidt orthonormalisation [147, 148], the full

115



-5

 0

 5

 10

 15

 20

 25

 30

 35

-10  0  10  20  30  40  50  60

v

a

Figure 39: The chaotic orbit associated with the snap-back repeller in Fig. 38.

spectrum of LEs can be evaluated, by extracting eigenvalues of the state transition

matrix solution, or by considering the log increments of the L2 norm of the n

separation vectors forming the columns of Φ. If we are only interested in calculating

the maximal LE (MLE), the reorthonormalisation step is not required. This is

because the LEs essentially measure the deformation of a sphere with radius ε� 1,

centred on X(t0), along the n principle axes of the ellipsoid it becomes. These

deformations tend to be dominated along the axis with the MLE, so that as time

goes by, evaluating the rates of contraction/expansion for the other axes becomes

numerically inaccurate. For this reason, if we are only interested in the MLE, we

only need to consider the evolution of one typical separation vector, δX. In all

cases, whenever LEs are evaluated, a number of initial conditions should be chosen

to ensure that a range of phase space is sampled, and that the emergent dynamics

are global, and not just some local basin of attraction for a certain attractor.

The PWL-IF system is everywhere linear, except at v = 0, so that the Jacobian

is piecewise constant. Owing to the discontinuity in the PWL-IF model, we must
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be careful when considering what happens to δX at reset, recalling that δX is

a small perturbation to some orbit, X. In [149], a framework for studying the

evolution of δX in impacting systems, in a model for which Ẋ = F (X) between

impacts, was developed. This approach was applied to one-dimensional IF models

in [150]. We now use this framework to develop the notion of LEs for the PWL-IF

model.

In a sub-threshold regime, the linearised equations of motion around a trajec-

tory X(t) satisfy
dδX

dt
= DF (X(t))δX. (3.75)

Since our system is piecewise-linear, DF (X(t)) = M so that

DF (X(t)) =

A1, v ≥ 0

A2, v < 0

. (3.76)

In order to compute the change in δX across reset, we first introduce X− (T ) =

limε→0+ X (T − ε), so that the superscript indicates that we evaluate X at the

firing event before t = T . Similarly, we introduce X+ (T ) = limε→0+ X (T + ε)

where the superscript now means that we evaluate X just after t = T . We define

an indicator function h as

h(X) = X1 − vth (3.77)

so that the discontinuity in the system occurs at time T where h(X(T )) = 0. We

also define a vector function

g(X) =

 vR

X2 + k

 , (3.78)

which governs the transition condition across the discontinuity so that X+(T ) =

g(X−(T )). Suppose that we have two trajectories: an unperturbed trajectory X(t)

and a perturbed trajectory X̃(t) such that δX(t) = X̃(t) − X(t), and that the

unperturbed trajectory crosses threshold at time T , and the perturbed trajectory

crosses at T̃ = T + δt. Writing δX− = δX−(t) and X− = X−(t), we have, from

[149], that

H(X−)[δX− + (A1X
− + µ)δt] = 0, (3.79)
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where

H(X−) =
∂h(X)

∂XT

∣∣∣
X=X−(T )

, (3.80)

is the Jacobian of the indicator function. For our choice of h, this is simply the

row vector H(X−) = [1, 0]. We then solve (3.81) to give:

δt = − H(X−)δX−

H(X−)(A1X− + µ)
= − δv−

vth + I − a−(T )
, (3.81)

where δX− = (δv−, δa−) and X− = (v−, a−). Defining the Jacobian of the transi-

tion condition as

G(X−) =
∂g(X)

∂XT

∣∣∣
X=X−(T )

, (3.82)

we arrive at

δX+ = G(X−)δX− + [G(X−)(A1X
− + µ)− (A1X

+ + µ)]δt, (3.83)

where δX+ = δX+(T + δt). For vR < 0, we would replace (3.83) by

δX+ = G(X−)δX− + [G(X−)(A1X
− + µ)− (A2X

+ + µ)]δt. (3.84)

For the PWL-IF model the matrix G is simply

G(X−) =

0 0

0 1

 , (3.85)

so that (3.83), using (3.81) becomes

δX+ =

 0

δa−

+
δv−

vth + I − a−

 vR + I − a− − k

ω(β(vR − vth)− k)

 . (3.86)

This is linear in δv− and δa−, so we may write this in matrix form as

δX+ = S(a−(T ))δX−, (3.87)

where

S(a) =

k1(a) 0

k2(a) 1

 , (3.88)
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with

k1(a) =
vR + I − a− k
vth + I − a

, (3.89)

k2(a) =
ω(β(vR − vth)− k)

vth + I − a
. (3.90)

Thus, overall the separation vector δX evolves as

G(t− Tk)S(a−(Tk)) . . . S(a−(T1))G(T1)δX(0), (3.91)

for k = 1, 2, 3, . . . , with G(t) = exp(Mt). We remark that S is what Filippov

referred to as the saltation matrix in [103]. The MLE is then given by the natural

logarithm of the modulus of the largest eigenvalue of the matrix

L = lim
k→∞

1

∆k

S(a−(Tk))G(Tk) . . . S(a−(T1))G(T1), (3.92)

where ∆k =
∑k

i=1 Ti. A plot of the MLE in the (I, ω) plane is shown in Fig. 40.

In this region of parameter space, we see bursting orbits for smaller values of I

whereas larger values of I prohibit bursting, so that we have ‘burst death’ under

variation of I. We observe the presence of chaotic solutions both at this boundary

where burst solutions cease to exist, marked by the large sweeping vertical arc and

at the boundaries of transitions between solutions with differing numbers of spikes,

marked by the thin horizontal arcs. In these regions of parameter space, we see

that the firing map possesses snap-back repellers, so that the map also predicts

chaos.

For a one-dimensional nonlinear IF model, the above analysis becomes simpler.

Assume that, below threshold, a perturbed and unperturbed trajectory, ṽ and v

respectively, are related by the equation

δv(t) = Φ(t, Tm)δv(Tm), (3.93)

where δv = v − ṽ. Following the propagation of a perturbation through threshold

gives (cf equation (3.87))

δv+ =
v̇(T+

m)

v̇(T−m)
δv−. (3.94)
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Figure 40: MLE for the PWL-IF system, (3.9) with f given by (3.10), evaluated

at β = 0.8, k = 0.4, vth = 60, vR = 20 and s = 0.35. Warmer colours indicate

positive values, whereas cooler colours correspond to zero or negative values. We

see a marked boundary of chaotic solutions. This boundary marks the transition

between burst firing and fast spiking as we increase I to its critical value. We also

observe chaos in transitions between different burst states.

Hence the LE is

Λ = lim
t→∞

1

t
ln

∣∣∣∣ δv(t)

δv(0)

∣∣∣∣
= lim

k→∞

1

Tk − T1

k∑
m=1

ln

∣∣∣∣Φ(Tm+1, Tm)
v̇(T+

m)

v̇(T−m)

∣∣∣∣ . (3.95)

It is informative to calculate the LE for the example of a ∆-periodic orbit in a

nonlinear IF model under constant input where v̇ = f(v) + I. In this case, below

threshold, a perturbed and unperturbed trajectory are related by the equation∫ v(t)

v(0)

dv

f(v) + I
=

∫ ṽ(t)

ṽ(0)

dv

f(v) + I
. (3.96)

For small deviations between the two trajectories, we may expand (3.96) to obtain

the result Φ(t, s) = Φ(t− s), where

Φ(t) =
f(v(t)) + I

f(v(0)) + I
. (3.97)
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Hence, the LE is

Λ =
1

∆
ln

[
f(v(∆)) + I

f(v(0)) + I

v̇(∆+)

v̇(∆−)

]
= 0, (3.98)

as expected for a periodic orbit. This result nicely illustrates that although a non-

linear IF model may have a positive exponent in the absence of a firing threshold

(as would be the case for the QIF model), the firing and reset mechanism can

inhibit the exponential divergence of nearby trajectories.

We now proceed to study LEs of networks of linearly coupled IF systems.

Suppose we have a network of N cells coupled globally through gap junctions.

Writing the state vector of the matrix as Y = (v1, a1, . . . , vn, an), the subthreshold

dynamics of the network may be written as

dY

dt
=MY + F , (3.99)

where

M = IN ⊗M + g C ⊗B, (3.100)

F = 1N ⊗ µ, (3.101)

where IN is the identity matrix in RN and 1N is the N dimensional vector whose

entries are all ones. C ∈ RN×N encodes the topology of the network, while B ∈

N2×2 determines the variables through which the coupling, of strength g, occurs.

For example, in the case of a globally connected network all entries of C are equal

to one except those on the diagonal, which are given by (1 − N). Since, in the

present model only the voltage equations are coupled and the voltage variable is

the first in each state vector of a single neuron, we have

B =

1 0

0 0

 . (3.102)

The Jacobian for the variational equation is simply DF =M. We now consider the

evolution of the network separation vector δY across the discontinuity associated

with one of the neurons firing. The firing and subsequent reset of a cell i will have
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an effect on all of the elements of δY . It is convenient to reformulate the reset

conditions as N mappings Ri : R2N → R2N , i = 1, . . . N

Ri(Yi) = vR

Ri(Yi+1) = Yi+1 + k

Ri(Yj /∈{i,i+1}) = Yj

, (3.103)

We now have N distinct indicator functions, one for each neuron in the network

hi(Y ) = Y2i−1 − vth. (3.104)

Each of the indicator functions admits a normal vector ηi, which has a one in the

(2i− 1)’th position and zeros everywhere else. Following [103], we may write the

matrix Si to describe the evolution of δY across the discontinuity associated with

the firing of the i’th cell in the network as

Si(Y ) = DRi(Y ) +
[MRi(Y )−DRi(Y )MY ] ηTi

ηTiM(Y )
, (3.105)

so that

δY +(T ) = Si(Y −(T ))δY −(T ) (3.106)

upon the firing of the i’th cell, where DRi may be evaluated as the identity matrix

in R2N×2N with the (2i−1)’th entry along the leading diagonal set to zero. For the

gap junction system, we may evaluate Si as essentially being the identity matrix

with the (2i− 1)’th column replaced by a vector whose (2i− 1)’th element is

(1−Ng)vR + I − ai − k + g
∑

j vj

(1−Ng)vth + I − ai + g
∑

j v
−
j

, (3.107)

whose 2i’th element is

ω(β(vR − vth)− k)

(1−Ng)vth + I − ai + g
∑

j v
−
j

, (3.108)

whose jodd 6= (2i− 1) entries are given by

g(vR − vth)

(1−Ng)vth + I − ai + g
∑

j v
−
j

, (3.109)

with all other entries being zero.
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To illustrate the use of these matrices, we perform calculations of a network

of two cells coupled via gap junctions with g = 0.1. We note that these scenarios

differ from those covered in Sect. 3.10, since the coupling between the cells is not

weak, so that we cannot apply averaging techniques. In both cases, we solve the

variational equation associated with (3.101) and compute the MLE by summing

increments of the natural logarithm of a separation vector, rescaling as as we go.

We compare the MLE obtained rescaling δY using the matrices Si with those

obtained without rescaling. In all cases, we observe differences between the two,

and in particular, note the erroneous nature of the latter, which we shall refer to

as the näıve case.

In Fig. 41, we see the time evolution of the MLE of a system of two gap junction-

coupled cells, where the cells intrinsically burst. The large time behaviour of the

network is shown below the MLE. The MLE using the above matrices converges

towards zero, which we expect for system with periodic orbits, as we have here.

Conversely, the MLE calculated in the näıve case, without rescaling, converges to

a positive value, suggesting the presence of chaos in the system, which is not true.

A non-periodic network orbit is shown in Fig. 42. In this case, both the blue and

red curves converge to a positive value, but a larger MLE is predicted in the näıve

case.

3.14 Discussion

In this chapter, we have provided an overview of nonlinear IF models that are

currently of interest to the computational neuroscience community. Their obvious

discontinuous nature means that much can be gained from mathematical stud-

ies that make use of the growing variety of tools and techniques being developed

for the study of non-smooth and PWL systems. Through the introduction of a

particular form of PWL IF model, we have demonstrated how tools for studying

smooth neuron models can be carried over into the non-smooth models. Single

neuron studies in response to natural stimuli are highly relevant for understanding

sensory processing and unravelling the neural code, whilst theoretical analysis of
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Figure 41: Top: Time evolution of the MLE computed using the appropriate

rescaling across reset (blue), along with the exponent (red) calculated without

rescaling across reset, for a network of two gap junction-coupled neurons in an

intrinsically 3 spike bursting regime. Bottom: The large time solution shows that

the network supports a periodic solution, for which we expect a MLE of 0, which

the blue curve is converging towards, whilst the red curve is not. Parameters are

for the bursting spiking orbit in Fig. 31, with the strength of the coupling between

cells set to g = 0.1

spiking networks is relevant to brain studies at the highest level, and in particular,

for neural computation and cognition. It is clear that, although simple, planar IF

models support a rich repertoire of behaviour, as well as interesting bifurcation

structures. Building up large networks of such models can be used to describe

whole brain regions, and may elucidate how information is processed and trans-

mitted in these regions. In [98], we continue building on ideas in this chapter, to

study the existence and stability of solutions in large scale networks of PWL-IF

neurons.
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Figure 42: Top: Time evolution of the MLE computed using the appropriate

rescaling across reset (blue) along with the exponent (red) calculated without

rescaling across reset for a network of two gap junction coupled-neurons in an

intrinsically 3 spike bursting regime. Bottom: The large time solution shows that

the network is chaotic, for which we expect a positive MLE. Even though both

curves are converging towards positive values, we note that there is a significant

difference between these values. Parameters as in Fig. 41, except with ω = 0.2, I =

3.0

There remain a number of open questions regarding these models. The con-

struction of Arnol’d tongues for more general nonlinear IF models and in particular

the PWL-IF model is one obvious next step, generalising the approach used for

the LIF model, in which the non-smooth grazing bifurcations play a large role.

This question has been addressed recently, for the PWL adaptive exponential IF

model in [151], for example. Indeed, developing a way to describe the response of

such models to more complicated signals than just periodic ones is also vital for

understanding how neurons process natural stimuli. At the network level it is quite
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common to first consider the behaviour of a set of weakly interacting oscillators,

where knowledge of the iPRC is key to making progress. We have shown how to

do this here for the PWL-IF model (and indeed, it is straightforward to do this for

any single variable nonlinear IF model). However, we did not discuss the notion of

isochronal coordinates that underpins the usefulness of a coupled oscillator theory.

We shall go on to consider such coordinates later in this thesis.

In this chapter, we have focused on gap junction coupling between cells. Even

though this may be an important form of coupling between cells, chemical synapses

are by far the most dominant form of communication between neurons. In this

case it is natural to consider event based coupling, as in [124], and it then remains

a challenge to develop a theory of strong interactions. Once again, focusing on

models with sub-threshold PWL dynamics may allow for progress. It has been

shown recently that, by making the threshold fluctuate as a noisy process, that

the LIF neuron can be made to fit real data from stellate neurons in the ventral

cochlear nucleus [152]. Given the increased dynamic range of the PWL-IF model

compared with the LIF model, this leads us to believe that the PWL-IF can be

made to fit a wide range of data from experiment. The contribution of dynamics of

threshold noise on such systems is an interesting mathematical problem in its own

right [85]. The PWL nature of these models may additionally make them amenable

to finding analytical solutions for networks in a noisy environment, for example,

considering the effect of noise on reliability [153], for mixed-mode oscillations, as

considered for the noisy PWL FHN model in [154], or where the coupling between

units is noisy. Finally, building upon work in [155], we hope to analyse networks

of heterogeneous bursting neurons to analyse the existence and stability of fully

and partially synchronised states.
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4 Limitations of phase reductions

The remaining chapters of this thesis are dedicated to the phase reduction tech-

niques outlined in Sect. 2.5. Such methods are useful to reduce the number of

dimensions of a system, and can be applied to systems which support oscillations

in the absence of any external forcing. We refer to the oscillations in such a system

as the unperturbed oscillations. As we have seen in the previous chapter, the iPRC

gives information about the modulation of spike timing by external stimuli, which

can subsequently be used to make predictions for weakly coupled networks, as is

the focus of [5] and [156]. In the present chapter, we investigate the discrepancies

between the reduced system and the full system caused by structures in phase

space not considered by the iPRC. This chapter forms the majority of the work in

[157]. We recall first that the assumptions needed for the appropriate application

of a phase reduction are that the inputs to a given cell, which may be considered

to be perturbations to the intrinsic dynamics of that cell, are weak, and that the

relaxation back to the unperturbed oscillation is fast, at least with respect to the

timescale of the input. In terms of a dynamical system description, we treat the

inputs as perturbations to the limit cycle of the unperturbed system. If these

assumptions are valid, the phase variable captures all of the information we need

to describe the state of the network. In particular, the set of differences between

phases of oscillators in the network will illuminate the dynamics of the network.

It is pertinent to ask about the validity of such assumptions in a neural con-

text, taking into consideration the way in which cells interact. By far the most

common form of communication between cells is through synaptic coupling. Neu-

rons typically possess two kinds of far reaching processes: axons and dendrites.

Dendrites typically receive inputs from other cells, whilst axons typically transmit

action potentials. Synapses form at the junction of the axon of one cell, termed

the pre-synaptic cell, and the dendrite of another, termed the post-synaptic cell.

Neurotransmitters are stored in vesicles close to the cell membrane of the axon

near the synapse. When an action potential reaches a synapse along an axon, these
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neurotransmitters are exocytosed into the synaptic cleft, which is simply a small

gap between the axon of the presynaptic cell and the dendrite of the postsynaptic

cell. The neurotransmitter diffuses across the cleft and binds to ligands, which are

receptors on the dendrite of the postsynaptic cell. This induces a conformational

change in the ligand, which then allows ions to flow into the dendrite from the

extracellular space, inducing a current and thus a change in membrane potential

as it does so. In this way, electrical signals are passed from the pre- to the post-

synaptic cell.

Whilst the typical post-synaptic potential induced by a single spike may be

small, the dendritic tree, made of all the dendrites of the post-synaptic cell may

synapse on to large numbers of other cells, sometimes up to O(104), so that the

post-synaptic potential received by the soma of the cell is the summation of these

many inputs. In addition, some synapses are slower than others, meaning that

signals can persist for longer durations in the post-synaptic cell. Thus, although

individual inputs are weak, the summative effect of inputs across a large number

of cells, and across time may not be.

Perturbation methods, including the phase reduction technique, do not always

correctly reflect the true dynamical picture, as they systematically overlook aspects

of the dynamics, as we will outline in this chapter. Here, we will identify a number

of scenarios in which the predictions are significantly different from those using the

full model. One situation is when the perturbation causes the trajectory to leave

the basin of attraction of the limit cycle, which can occur even with moderately

weak forcing. Even without leaving the basin, subtler effects can result in incorrect

predictions. These situations include the presence of ‘sticky’ invariant phase-space

structures near a limit cycle, by which we mean structures along which trajectories

spend a long time, which can cause perturbation theory to overestimate the regu-

larity and frequency of a stimulated oscillator. We will also show that dynamical

shear in a neighbourhood of the oscillator can cause it to behave chaotically when

forced. These scenarios cannot be captured by infinitesimal phase reductions.

As our model of choice, we use the ML model, introduced in Sect. 2.2. We find
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that, for this model, the phenomena of interest are robust to parameter variation,

that is, they do not require fine tuning of parameters. We point out also that while

we focus here primarily on single neuron models, our findings remain relevant for

oscillators operating within networks, and we later illustrate some examples of a

two cell network.

For systems that are near a bifurcation, the phase reduction technique pro-

cedure can be used to derive analytical approximations of the iPRC via normal

forms [158]. In more general situations, such approximations are not available

analytically. However, one can obtain iPRCs through numerical computation, for

example, by solving the adjoint equation, as done in Sect. 3.10, or even directly

from experimental measurements (see, e.g., [159, 160, 41] and references therein).

We recall that we are interested in studying systems of the form

ẋ = f(x) + εg(x, t), (4.1)

where ε ∈ R, and the system with ε = 0 has an attracting hyperbolic limit cycle Γ,

with period ∆, that we may parametrise through the phase variable θ ∈ [0,∆). The

function g describes the forcing to the system, which may depend on the state of the

system. For neural systems, the forcing is generally introduced through additional

currents, and so this acts on the voltage variable, typically considered as the first

component of x, so that g(x, t) has nontrivial entries in the first component only.

Since the forcing typically represents currents, we set g(x, t) = (I(t), 0, . . . , 0)T .

We shall denote the iPRC of Γ, found by solving the adjoint equation, by R(θ), so

that the dynamics of θ are given by [161]

θ̇ = 1 + εR(θ)I(t), θ ∈ S1. (4.2)

4.1 Stochastic forcing.

Given the noisy environment in which neurons operate, we may be interested in

studying systems in which the inputs are random in nature. In this case, the basic

methodology of iPRCs can be extended to systems driven by stochastic forcing.

We may think of this, for example, of electrical background noise affecting the
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membrane potential. That is, suppose that in addition to a deterministic forcing,

we add a white-noise term, σξ(t)

ẋ = f(x) + (εI(t) + σξ(t)) k̂, σ ∈ R, (4.3)

where k̂ has a one in the first component and zeros otherwise, 〈ξ(t)〉 =

0, 〈ξ(t)ξ(s)〉 = δ(t − s), with 〈·〉 denoting the ensemble average. In [97], Ly and

Ermentrout show that with the above forcing, the phase variable θ satisfies the

equation

θ̇ = 1 + εR(θ)I(t) +
σ2

2
R(θ)R′(θ) + σR(θ)ξ(t) +O(ε3), (4.4)

assuming that ε and σ are small.

Eq. (4.4) can be used to derive a number of quantities of interest. For example,

if we view (4.4) as describing a neuron that spikes whenever θ = 0 , then a result of

Ly and Ermentrout states that the firing rate, r, resulting from a constant forcing

I(t) ≡ ε is

r(ε) = 1 +εR+ε2

∫ ∆

0

(
R

2−R2(θ)
)

dθ+
σ4

4

∫ ∆

0

R2(θ)
(
R′(θ)

)2
dθ+O(ε3), (4.5)

where R =
∫ ∆

0
R(θ) dθ. We will go on to consider a number of results regarding

stochastically forced oscillators in Chapt. 5.

4.2 Breakdown of the phase reduction

The iPRC is defined in terms of f in (4.1) and its derivative along the limit cycle

Γ. As such, it can only contain information about the flow in an infinitesimal

neighbourhood of Γ. In particular, since the iPRC only uses linear information

around the limit cycle, it is only accurate up toO(ε). We discuss, in this subsection,

a few scenarios in which the behaviour of the flow a finite distance away from Γ

can have a dramatic effect on the oscillator’s response.

We will go on to provide concrete examples of the effects of these scenarios in

a neural model later in the chapter.

(1) Leaving the basin of attraction of Γ. The simplest possible way for the phase

reduction to break down is when the forcing causes trajectories to leave the basin
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of attraction of Γ, which we shall denote BΓ. If a perturbation causes a trajectory

to leave BΓ, the behaviour of the trajectory may depend on dynamical structures

far away from ΓT . For example, if the system is bistable, or multi-stable, then

a trajectory can end up in the basin of attraction of some other attractor in the

system, and in time, it may or may not get forced back into BΓ. Needless to say,

the behaviour of such a trajectory bears little resemblance to that predicted by the

iPRC. In fact, even if the trajectory re-enters BΓ, the iPRC gives no information

about the phase at which this would occur. This is because isochrons of Γ are

only defined in BΓ, and not outside it. A consequence of this is that, even if we

had perfect information about the isochrons, we would still not be able to capture

the dynamics of this trajectory. Of course, if the other attracting sets in the

phase space are also limit cycles, with their own basins of attraction, then they

will also have isochronal coordinates defined in these basins. However, in general,

these isochronal systems will not follow the same dynamics. This scenario must

be taken into consideration when the forcing is strong relative to the distance of

∂BΓ to Γ, where ∂BΓ is the boundary of BΓ.

(2) Invariant structures and ‘trapping’. Even without leaving BΓ, perturbed

trajectories passing near to ∂BΓ can be affected by certain dynamical structures

within BΓ. These structures are non-attracting, and so, at first, may seem innocu-

ous. However, in the perturbed case, they can have a pronounced impact on the

dynamics. As an example, consider a saddle of the unperturbed flow. An orbit

passing near to this fixed point will remain near it for some time, since f ≈ 0 in the

neighbourhood of the fixed point. The exact time spent near the fixed point will

depend of the ratio of the eigenvalues of the linearised flow at the point. Of course,

the fixed point is not truly invariant for the perturbed flow, and so trajectories will

‘escape’ the fixed point, and will return to Γ after some time. However, the time

taken can be long, and this effect will not be captured by phase reductions. This

effect can be magnified if the forcing acts to move trajectories to regions of phase

space near the saddle. In fact, the forcing may act to create trapping regions by

itself, within BΓ, if the forcing is strong in comparison to the attraction to Γ.
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Figure 43: The stretch-and-fold action of a kick followed by relaxation in the

presence of shear. Top: A non-constant kick, shown in blue, moves Γ to the

black curve. Bottom: As the image of Γ under the kick relaxes back to Γ, under

the unperturbed flow, the action of shear, shown in red, causes folds to appear.

The size of the arrows corresponds to the magnitude of the effect. In both, the

horizontal grey line depicts Γ.

(3) Shear-induced chaos. This is yet another dynamical phenomenon that can-

not be captured by iPRCs, considered in some depth in [71]. In this phenomenon,

shear forces act to speed up (or slow down) trajectories further away away from Γ

compared to those closer it. This phenomenon is illustrated in Fig. 43. In each of

the two pictures, Γ is represented by the horizontal grey line. Shear refers to the

differential in the horizontal component of the velocity as one moves vertically up

in the phase space. Here, points above Γ move around ΓT faster than those below.

If we apply an impulsive perturbation, or kick, shown in blue, we can produce a

‘bump’ in Γ. As the flow relaxes, this ‘bump’ is attracted back to Γ. As it evolves,

it is folded and stretched by the flow if sufficient shear, indicated by the red lines, is
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present. This stretching and folding of phase space is associated with complex dy-

namical behaviour such as horseshoes and ‘strange attractors’. The term ‘strange

attractor’ essentially refers to an attractor which has a positive LE, starting from

almost every initial condition in the basin of attraction of the attractor. This is

precisely the kind of chaotic solution we observed in the previous chapter, for the

PWL-IF model, in Sect. 3.12. This picture suggests that perturbing a limit cycle

with strong shear can lead to chaotic dynamics as these folds accumulate over

successive kicks. It has been demonstrated, in [71], that this can indeed happen.

We mention that invariant structures within BΓ can be a contributing factor

to shear, but shear can also arise for many other reasons. We will now provide a

brief overview of shear in the context of dynamical systems, reviewing some of the

geometric ideas put forward in [162, 163] (and also [164, 165] and [166]). We focus

here on periodically-kicked oscillators, since in this setting the various dynamical

mechanisms are most transparent.

4.3 Shear-induced chaos and related phenomena

Suppose we have a system of the form

ẋ = f(x) + A ·H(x)
∞∑

k=−∞

δ(t− kT ) , k = 1, 2, . . . (4.6)

where (A, T ) ∈ R×R+ are parameters and H : Rn → Rn is a smooth function. We

assume, as before, that ẋ = f(x) has an attracting hyperbolic limit cycle Γ. This

system thus models an oscillator that is given a sharp ‘kick’ every T units of time.

At the times t = nT , we thus apply a mapping R, constructed in terms of H, to

the system. The dynamics of (4.6) can thus be obtained by iterating the time-T

map FT = ΦT ◦ R. If there is a neighbourhood U of Γ, such that R(U) ⊂ BΓ,

and T is long enough that points in R(U) return to U , i.e., FT (U) ⊂ U , then

ΓT = ∩n≥0F
n
T (U) is an attractor for the periodically kicked system FT . We may

consider ΓT = ΓT (R, T ) to be the attractor corresponding to ΓT when the oscillator

is periodically kicked.
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The structure of ΓT and the associated dynamics depend strongly on the kick

parameters A and T , as well as on the relation between the kick mapR and the flow

near Γ. When A is small, we generally expect ΓT to be a slightly perturbed version

of Γ , since hyperbolic limit cycles are robust under small perturbations [167]. In

this case, ΓT is known as an invariant circle, and the restriction of FT to ΓT is

equivalent to a diffeomorphism on S1. Circle diffeomorphisms are well known to

exhibit essentially two distinct types of behaviour: quasiperiodic motion, in which

the mapping is equivalent to rotation by an irrational angle, that is, where the

rotation number is irrational, and gradient-like behaviour characterised by fixed

points on the invariant circle. In terms of the kicked oscillator dynamics, the

former corresponds to the forced oscillator drifting in and out of phase relative

to the kicks, while the latter corresponds to stable phase-locking, as considered

previously.

To summarise, the above discussion suggests that, when kicks are weak, we

should expect fairly regular behaviour. To obtain more complicated behaviour, it

is necessary to ‘break’ the invariant circle. The main idea is best illustrated in the

following linear shear model, a version of which was first studied in [168]:

θ̇ = 1 + βρ, (4.7)

ρ̇ = −λρ+ A ·H(θ)
∞∑
n=0

δ(t− nT ) (4.8)

where (θ, ρ) ∈ S1×R are coordinates in the phase space, λ, β, and A are constants,

and H : S1 → R is a non-constant smooth function. When A = 0, the unforced

system has a limit cycle ΓT = S1 × {0}. If the quantity

β

λ
· A ≡ shear

contraction rate
· (kick ‘amplitude’) (4.9)

is sufficiently large, then there is a positive measure set T ⊂ R+ such that for

all T ∈ T , ΓT is a ‘strange attractor’ of FT . We remark that exactly how large

this parameter grouping must be depends on the function H. We also note that

it is important that H be non-constant, since H(θ) is what creates the bumps in

Fig. 43. The geometric meaning of the term involving β, the shear, is as depicted
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0

Figure 44: Geometry of folding in relation to the isochron-foliation. As in Fig. 43,

the horizontal grey line represents Γ, whilst the curved black lines are the isochrons

of the system. An initial segment, Γ0, is kicked to the blue curve, and is then

allowed to relax back to Γ, passing through the green and red curves, which are

images of the blue curve under the unperturbed flow. The red curve represents

the image of FT = ΦT ◦R of Γ. We observe that the points of the blue curve move

down towards the isochrons as they relax back towards Γ.

in Fig. 43. It is easy to see why βA/λ is key to production of chaos by fixing

two of these quantities and varying the third; the larger β or A are, the larger the

fold. Note also that weaker limit cycles are more prone to shear-induced chaos:

the closer λ is to 0, the slower R(ΓT ) returns to ΓT , and the longer the shear acts

on it, assuming T is large enough.

4.3.1 Shear-induced chaos and isochrons

In the general setting of (4.6), the shear does not appear explicitly as a parameter

of the system. To demonstrate the effect of shear in this setting, we can appeal to

the isochrons of the system to elucidate what plays the role of the shear. Let Γ

and Φt be as at the beginning of Sect. 4.3. We may think of the isochrons, Iγ, as

the strong stable manifold of Γ, as defined in Sect. 2.4.
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Figure 45: Stretch-and-fold action of a kick in the linear shear model (4.8). The

thin black lines are the isochrons of the system, which in the case of the linear

model (4.8), are simply straight lines with slope −λ/β. The thin grey line at

ρ = 0 represents the limit cycle, which is kicked, at t = t0, by H(θ) = sin(θ),

with strength A = 1 to the solid curve. After this, the orbits are allowed to evolve

under the flow generated by the continuous part of the system. The dashed and

dotted curves represent the image of the kicked solid curve under this flow, at

times t1 and t2 respectively. The green marker shows how one point, x(t0) evolves

under the flow, first to x(t1) and then to x(t2), following an isochron as it relaxes

back to the limit cycle. The effect of the shear forces and the subsequent folding,

caricatured by the red arrows, can clearly be seen.
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We now examine the action of the kick map R in relation to the isochronal

foliation. Fig. 44 is analogous to Fig. 43; it shows the image of a segment Γ0 of

Γ under FT = ΦT ◦ R. The red curve shows one application of FT , whilst the

green curve is FT/2. For illustration purposes, we assume Γ0 is kicked upward with

its end points held fixed, and assume T = np for some n, p ∈ Z+ (otherwise the

picture is shifted to another part of Γ but is qualitatively similar). Since Φnp leaves

each isochron invariant, we may imagine that, during relaxation, the flow moves

each point of the kicked curve R(Γ0) back toward Γ along the isochrons. In the

situation depicted, the effect of the shear is evident: as the blue curve moves to

the red curve, through the green curve, we clearly observe the fold forming.

This figure sheds some light into what types of kicks are conducive to the

formation of strange attractors. Kicks along isochrons, or in directions roughly

parallel to the isochrons, will not produce strange attractors, nor will kicks that

essentially carry one isochron’s manifold to another, since no folding will occur

in this case. In order to have stretching and folding, there must be movement

of points γ ∈ Γ in a direction transverse to the isochrons, so that the ordering

of points, in terms of asymptotic phase, is altered by the action of the kick. In

the linear shear model (4.8), because of the linearity of the unforced equation,

the isochrons are straight lines with slope −λ/β in (θ, ρ)-coordinates. Variation

in the sense above is created by any non-constant H; the larger the ratio βA/λ,

the greater this variation. This situation is depicted in Fig. 45. As our kick, we

choose H(θ) = sin(θ), denoted by the blue arrows, mapping Γ to the leftmost

curve. As these points relax back towards Γ, they are clearly seen to move down

their respective isochrons: the point marked in green moves from x(t0), though

x(t1) to x(t2) along its isochron, for example.

The effects of shear forces were discovered independently, in the rigorous work

of Wang and Young, who proved, under suitable geometric conditions on phase

variations, the existence of strange attractors having many of the properties com-

monly associated with chaos [164, 165]. These ideas have since been applied to

various situations; rigorous results include [162, 163, 169, 166, 170] and [171],
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and numerical results indicate the occurrence of shear-induced chaos in broader

dynamical settings [13, 71, 172].

4.3.2 Summary and comparisons

The key differences between results surrounding the standard phase reduction

technique and Sect. 4.3 are due to the assumptions we make about the forcing.

The phase reduction method amounts to viewing the perturbation as a sequence of

infinitesimal kicks, which project instantaneously the kicked trajectory towards Γ

along linearised approximations to the isochrons, following each kick. In Sect. 4.3,

a more global picture is painted, without any requirement of weakness of forcing.

This approach allows perturbed orbits to move farther from Γ, such that they have

the potential to interact, or at least pass close to, other structures. One must take

care to consider the geometry, and in particular, the curvature of the isochrons in

relation to the kick in assessing its impact.

We remark here that the phase reductions rules out a priori any possibility of

chaotic behaviour, since flows in one dimension cannot be chaotic. However, the

analysis considered in Sect. 4.3 suggests that kicks applied in a particular way,

in the full model, can give rise to positive LEs for large sets of initial conditions.

As has been stressed previously, phase reductions are very useful computational

tools, allowing for analysis and simulation of a dimension-reduced model. These

approaches have even further benefit when assessing network dynamics. Clearly,

simulation and analysis of the full model is more costly than using phase alone.

However, we feel that the messages we present in this chapter are important to

emphasise that phase-only models miss notable behaviour of full systems. Calcu-

lating the isochrons of the system and then comparing them to the form of the

kick being supplied will give a good indication of the presence of shear in a full.

Whilst there are a number of techniques to perform such analysis, we remark that,

this can more directly be achieved by simply observing successive FT images of Γ

to see whether folds develop. We will consider this for a neural model in the next

section.
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In order to illustrate these ideas in a neural setting, we will use the ML model,

as considered in Sect. 2.2, which we recall is given by

C
dV

dt
= Iapp − gL(V − VL)− gKw(V − VK)− gCam∞(V )(V − VCa), (4.10)

dw

dt
= φ

(
w∞(V )− w

)
/τw(V ), (4.11)

where

m∞(V ) =
1

2

[
1 + tanh

(
(V − V1)/V2

)]
, τw(V ) = 1/ cosh

(
(V − V3)/(2V4)

)
,

w∞(V ) =
1

2

[
1 + tanh

(
(V − V3)/V4

)]
. (4.12)

From a quiescent state, by increasing I(t) ≡ I0, from 0 to a large value, we may

drive the ML model, through a bifurcation, into an oscillatory regime, in which the

model supports limit cycles, meaning that we can then apply the phase reduction

technique. More generally, if a neuron is operating in a ‘mean-driven’ regime, in

which the stimulus it receives consists of a large DC component plus a weaker,

fluctuating AC component, one can view the AC component of the stimulus as a

perturbation of the oscillator [15]. Mathematically speaking, we treat I0 as the

DC component, whilst the other perturbations form the AC component.

Properties of interest

In order to compare the dynamics of the ML model to its phase-only analogue, we

first need to describe some features of interest. One of the most basic statistics

associated with a spiking neuron is that of its firing rate, corresponding to the

frequency of the limit cycle. Indeed, many models postulate that information is

encoded in the firing rates of neurons, rather than the specific spike times [14]. A

related feature is that of the inter-spike interval (ISI), which is simply the difference

in time between one spike and the next. The distribution of ISIs will thus contain

information about the mean firing rate, as well as the variability of regular spiking

activity.

We may also be interested in more specific properties of spike response. In

particular, we may be interested in the ability of a neuron to respond reliably
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in terms of its spike train, to repeated applications of the same stimulus. We

say that a neuron, or network of neurons, is reliable if its response does not vary

significantly over trials under such forcing. Reliability is of interest because it

constrains a neuron’s (or network’s) ability to encode information via temporal

patterns of spikes, spike coding being the other main theory in the debate on

neural information processing, as reviewed in [173]. Mathematically, a stimulus-

driven system can be viewed as a non-autonomous dynamical system of the form

ẋ = f(x, I(t)) , where I(t) represents the stimulus. We then reformulate our

discussion of reliability by asking whether the system’s response to a signal I(t)

depends in an essential way on the initial condition x(0). If not, then we can regard

the system as being reliable, otherwise it is unreliable. In order to address this

question, we may compute the MLE of the system. If the exponent is positive,

the system is unreliable, whilst if it is negative, the system is reliable. This is

due to the fact that a negative LE corresponds to phase space contraction, in

which information regarding initial conditions is lost quickly, whilst positive LEs

correspond to the dynamics amplifying small differences in initial conditions.

4.4 Chaotic response to periodic kicking

We will now show how shear can lead to chaos in the periodically forced ML model

near a homoclinic bifurcation, resulting in a lack of reliability. As mentioned in

Sect. 4.3.2, this possibility is ruled out in the case of the phase only system. To

put the ML model in a homoclinic regime, we use parameter values, taken from

[15] as shown in Table 1.

4.4.1 Geometry of the ‘homoclinic regime’

We begin by examining the phase plane of the ML model in this regime, considering

(2.28)-(2.29) with I(t) ≡ I0 for some fixed I0 as the unperturbed system, and apply

to it, periodic kicks in the v-variable.

At I0 = Icrit ≈ 35, the system possesses a homoclinic loop: that is, there is

a connection of one of the unstable and one of the stable branches of the saddle,
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Figure 46: A homoclinic bifurcation and the ‘homoclinic regime’. In this parameter

regime, the system has 3 fixed points. Stable fixed points are shown in green,

saddles are shown in orange, whilst unstable focuses are red. Left: The situation

prior to the homoclinic bifurcation, where I0 < Icrit. We see that the unstable

manifold of the saddle (blue curve) passes the stable manifold (green curve) of the

same saddle on the outside. In this scenario, the stable fixed point is the only

attractor. Middle: A homoclinic loop anchored at the saddle, with an unstable

fixed point on the right and a stable fixed point on the left. As I0 increases, the

homoclinic loop breaks apart and a limit cycle emerges as the unstable manifold of

the saddle now passes the stable manifold on the inside. Right: Phase portrait at

the parameter regime we consider, which is well past the homoclinic bifurcation.

In addition to the homoclinic bifurcation, a Hopf bifurcation has occurred, leading

the fixed point on the right to become stable surrounded by an unstable periodic

orbit (dashed red curve).
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Parameter Value Parameter Value

I0 39.5 mA/cm2 vL -60.0 mV

C 20.0µF/cm2 vCa 120.0 mV

gCa 4.0 mmho/cm2 v1 -1.2 mV

gK 8.0 mmho/cm2 v2 18.0 mV

gL 2.0 mmho/cm2 v3 12.0 mV

vK -84.0 mV v4 17.4 mV

φ 0.23

Table 1: Parameters of ML model near a homoclinic bifurcation.

shown in orange in Fig. 46. The homoclinic loop is the blue/green curve. To the

left of the saddle lies a stable fixed point, shown in green, which attracts the left

branch of the unstable manifold, shown as a green curve. Inside the homoclinic

loop, there is an unstable focus, shown in red.

For I0 < Icrit, the unstable manifold (blue curve) of the saddle passes along

the ‘outside’ of the stable manifold (green curve), and there is no connection, as

shown in the left panel of Fig. 46. In this case, the fixed points are preserved, but

there no other invariant structures of the system, and so all trajectories will tend

towards the stable fixed point as t→∞.

For I0 > Icrit, the homoclinic loop is broken, with the unstable manifold now

‘inside’ the stable manifold, as seen in the right panel of Fig. 46. The unstable

manifold wraps around a newly emerged limit cycle, the presence of which can

be confirmed through an application of Melnikov’s method, as reviewed in [167].

We will take this limit cycle to be our Γ. Both the saddle and the stable fixed

points to the left remain unchanged in this scenario, but we note both the change

of stability of the unstable fixed point to the right to a stable one. This occurs

via a Hopf bifurcation, which gives rise to an unstable limit cycle, depicted by the

dashed red curve, which delimits BΓ and the basin of attraction of the fixed point

it encloses. For the remainder of this section, we set I0 = 39.5 mA/cm2, so that the

unforced flow will be similar to that shown in the right panel of Fig. 46. The stable
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Figure 47: Isochrons of the ML model near a homoclinic bifurcation. The green

curve depicts Γ, the attracting limit cycle, whilst the black curves are the isochrons

of the system, with 20 distinct ones plotted. We observe that the isochrons wrap

tightly around the limit cycle, with high curvature near to the saddle. This suggests

that even small perturbations in this vicinity can have a pronounced affect on the

asymptotic phase of an orbit. Also plotted are the two stable fixed points in green,

and the saddle, in orange.

limit cycle can be found by simply solving the periodic boundary value problem

associated with (2.28)-(2.29), with a suitable phase condition, whilst the unstable

limit cycle is found in a similar way, but by reversing time, t 7→ −t. An inspection

of the isochrons of the system, as depicted in Fig. 47, in this regime shows them to

be wrapped tightly around the limit cycle, with high curvature near to the saddle.

This suggests that even small perturbations in this vicinity can have a pronounced

affect on the asymptotic phase of an orbit. To apply the periodic kicks, we consider
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input of the form I(t) = I0 +A ·
∑

k δ(t−kT ) , in (2.28)-(2.29) where |A| is the kick

amplitude and T the kick period. Geometrically, this kick corresponds to shifting

simultaneously all phase points by A in the horizontal direction.

If |A| is sufficiently large, a number of situations can arise. Large negative

kicks can drive points on Γ beyond the stable manifold of the saddle. These points

will now be outside BΓ and will be attracted towards the stable fixed point on the

left. Depending on the subsequent kicks, they may then never return to BΓ. In

a similar fashion, kicks with an appropriate size and timing can drive points into

the basin of attraction of the fixed point inside the unstable limit cycle. We will

show in the next subsection that something more subtle can happen, even with

small to medium kicks which do not drive points outside of BΓ.

4.4.2 Shear-induced chaos

We turn to the question of what mechanisms may give rise to shear in such a

setting. Let us suppose that A < 0, so that the kick R moves phase points to

the left. We assume here that |A| is not large enough to force points out of BΓ.

Applying the kick uniformly to Γ, will cause about half of Γ to move inside itself,

with the remainder moving outside. If we evolve this perturbed orbit under the

flow generated by (2.28)-(2.29) for a period, with no kicks, we find that points close

to the stable manifold of the saddle are likely to follow it for a nontrivial amount

of time, taking them closer to the saddle, lengthening the time spent away from

Γ. It is clear that the closer orbits come to the saddle, the longer they remain in

its vicinity. The differences in time in the vicinity of the saddle between different

points along Γ may lead to a fold in the Φt◦R-image of Γ. Although this reasoning

tells us whether or not shear is present, it does not tell us whether it is sufficient

to cause chaos.

As mentioned in Sect. 4.3.2, the most direct way to detect the presence of

shear-induced chaos is to plot the images of R(Γ) under the unperturbed flow,

and to see if folds develop in time. Fig. 48 shows the evolution of such an image.

By t = 10, a ‘tail’ has developed: some points in this tail are evidently stuck near
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Figure 48: Shear-induced folding in the ML model. Here, the stable cycle, Γ,

shown in grey is given one kick with A = −2.0, moving Γ to the black curve on

the left, and then allowed to relax back to the cycle under the unperturbed flow.

We can clearly see a fold forming as the image of Γ under the kick relaxes back to

the limit cycle. Also shown are the unstable limit cycle as a dashed red curve, the

stable manifold of the saddle, in green, and a small portion of the corresponding

unstable manifold, in blue.

the saddle, while some other points, evidently Φt-images of points kicked inside

the cycle, have remained inside, and at t = 10 they are beginning to gain on points

in the tail in terms of their angular position (or phase) around Γ. At t = 15, these

points have overtaken those in the tail, and the difference is further exaggerated

in the last two frames. One would conclude that, for the parameters shown, the

system very likely supports shear-induced chaos.

We may continue this process further to examine the action of iterations of the

R ◦ ΦT map. In Fig. 49, we show the image of the kick trajectories after they are

evolved using the unperturbed flow for T = 27 units of time. After the second kick,

we can clearly see the tail formed during the relaxation back to cycle. Following
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the third iteration, there are now two visible folds, and we may observe three folds

about the fourth iteration. The accumulation of these folds under repeat iterations

of the map gives rise to chaotic trajectories around the strange attractor, shown

in Fig. 50.

Since this step can be done quickly for the ML model, we may use it to locate

parameters with the desired properties. The kick size used in Fig. 48 is A = −2.0,

which is physiologically reasonable: it takes at least 10-15 kicks of this size to push

a neuron over threshold. Furthermore, Fig. 48 also tells us that it takes on the

order of 15 units of time for the fold to begin to form, so that for a periodically-

kicked system to produce chaos, the kick period should probably be upwards of

20 units of time. We note that kicks with A < 0 that are delivered too frequently

may drive points to the basin of attraction of the stable fixed point to the left of

the saddle.

Now that we have a feel for the parameters for which we expect chaos, we can

use LEs to explore this region in a more systematic fashion. We evaluate MLEs

by solving the variational equation

˙δx = Df(x) δx, (4.13)

associated with (2.28)-(2.29), where, as before Df(x) is the Jacobian of (2.28)-

(2.29) evaluated around the orbit x and δx is a tangent, or separation vector. We

form an estimate for the MLE of the system, by summing increments of the natural

logarithm of the l2 norm of δx(nT ), n ∈ T:

Λ ≈ 1

NT

N∑
n=1

log |δx(nT )|, (4.14)

for large N , taking care to normalise δx after finding the log-increment (so that

the norm of δx is reset to one just after a kick). In many, but not all cases, Λ

is independent of the choice of x0. To overcome any potential problem of depen-

dence of Λ on initial conditions, for each choice of parameters, we take six random

initial conditions for x0. We also choose a random initial condition for the tangent

vector δx0, by drawing its two components independently from a standard normal
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Figure 49: Shear induced folding in the ML model under repeated iterates of the

kick and flow map. The grey curve in all panels represents the limit cycle of the

unperturbed system, whilst the green curve represents the stable manifold of the

saddle, indicated by the orange marker. The top left panel shows the image of

Γ under the first kick, which essentially moves all phase points to the left, to the

black curve. The successive panels show the image of this set of points after letting

points evolve freely under the system defined by the ML equations, and then apply

the kick again. The curves shown are the images of the initial phase points just

after each kick, as indicated in the figure. We can clearly observe the shear induced

folding, with one fold evident just after the second kick, two after the third kick

and three just after the fourth kick.
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Figure 50: The strange attractor created by shear-induced chaos. The red dashed

curve shows the basin boundary of the limit cycle Γ , which is the unstable limit

cycle borne out of the Hopf bifurcation. Here, A = −2.0, T = 27. The inset shows

a close up of the region enclosed by the red rectangle.

distribution and then normalising, so that |δx0| = 1. For each set of initial condi-

tions, (4.13) is then solved in conjunction with (2.28)-(2.29) numerically, using a

fourth-order Runge–Kutta scheme for T units of time, after which the kick map

R is applied to the solution at the end point and the process is repeated. From

the six resulting approximations for Λ, the largest and smallest are removed, and

the median of the remaining ones is taken as our approximation to the MLE of

the system.

In Fig. 51, we show Λ as a function of T for a variety of kick amplitudes. For

small A, the MLEs are predominantly negative, as expected. As we increase A, the

tendency to form positive exponents becomes greater, so that for A = −2.0 and

sufficiently large T , most exponents sampled are positive, confirming the presence

148



of sustained and robust chaos discussed in Sect. 4.3. We note, however, that this

is only a tendency as the fluctuations seen in the MLEs as we vary T are likely to

be real, and reflect the competition between the strange attractors in the system

and fixed points of the kicked map.

Although we know that the iPRC model cannot support chaos, and thus we

know that the LEs are non-positive, we may still wish to evaluate them. We find

the iPRC by solving the adjoint equation (2.43), with the appropriate periodicity

and normalisation conditions. The iPRC for the ML model near the homoclinic

bifurcation is shown in the top panel of Fig. 52, whilst, for later reference, we also

depict the iPRC for the system near a Hopf bifurcation in the bottom part of this

figure. Since the phase model is

θ̇ = 1 + A ·R(θ)
∑
k

δ(t− kT ), (4.15)

where R is the iPRC, θ simply increases with unit velocity between kicks. At the

point of the kick, we may integrate over the Dirac δ-function and use asymptotic

methods, matching solutions just prior to and just after the kick to evaluate θ

after the kick. Since the derivative of a constant is zero, there will be no increase

in separation, δθ between kicks. Across the kick, it may be shown that

δθ+ =
R(θ+)

R(θ−)
δθ−, (4.16)

where the superscript + denotes that we are evaluating just after the kick, and

the superscript − denotes that we are evaluating just before the kick. We will go

through the derivation of (4.16) and show how to evaluate θ+ in the next chapter.

The results of computing the LEs are shown in Fig. 53, where we see, in all cases,

that the MLE is never positive, and that some structure of the dependence of Λ

on T is preserved across the values of A.

Whilst we have focused on the effect of periodic kicks, it has been shown,

for the linear shear model, (4.8), that the same observations can be made for a

system with similarly sized (but different) kicks, arriving at random times that are

sufficiently far away, as shown in [13, 71]. The reasons for this are essentially the
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Figure 51: MLEs for the ML system, found by solving the variational equation

associated with the forced system. Exponents are computed as follows: For each

choice of kick amplitude and kick period, 6 random initial conditions are used

to estimate exponents via long-time simulations. The maximum and minimum

values are treated as outliers and discarded; whilst the dots mark the medians of

the remaining exponents. We see that as T increases, the tendency for the system

to support positive MLEs increases, and furthermore, this tendency increases with

increasing |A|. We remark that the fluctuations in Λ as we vary A are most likely

due to competition between the strange attractor and fixed points of the forced

system.

same as the reasons discussed in this chapter. To summarise, we remark that it

is the saddle (and its manifolds) that are the cause of the folding in this system.

It causes a reordering of points of R(Γ) in terms of their phase. In the parameter

regime that we have chosen, the saddle is not close to the limit cycle. This means

that these effects would not be captured by the iPRC. Furthermore, since the
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Figure 52: iPRC of the ML model, found by solving the adjoint equation (2.43)

with the appropriate normalisation and periodicity conditions. Top: iPRC near a

homoclinic bifurcation. Bottom: iPRC near a Hopf bifurcation.

iPRC uses information locally around Γ, it would not provide that any indication

that a breakdown had occurred.

4.5 Firing rates and interspike intervals

We now move to consider the effect of ‘sticky’ sets in the interior of ∂BΓ and probe

the differences in results between the full model and those found using the iPRC.

In this section, we will be primarily concerned with the firing rates and ISIs, rather

than the reliability, to test overall differences between the two. We remain, for the

time being, focused on the homoclinic parameter regime, where the parameter

values are as in Table 1. The boundary of BΓ is given by the stable manifold of the

saddle and the unstable limit cycle borne out of the Hopf enclosed by Γ. We have

already seen the effect that the ‘stickiness’ of the saddle can have on the dynamics
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Figure 53: MLEs for the phase-only system system, found by solving the varia-

tional equation associated with (4.15). The exponents are computed in the same

fashion as in Fig. 51. We see that exponents are never positive, and so there is no

chaos in the system.

of the full system. In a similar fashion, we can consider the unstable limit cycle as

a sticky set, since expansion away from it will be weak, as it has just emerged from

a Hopf bifurcation. Additionally, orbits coming close to it may easily be forced to

cross the unstable limit cycle, into the basin of attraction of the stable node.

We now move to consider stochastic forcing, rather than periodic kicks. This

gives rise to a system of SDEs, in which the forcing is now continuous in time.

In addition to the steady current I0, we add a white noise component ξ, so that

I(t) = I0 + σξ(t), using the notation from physics, where the units of σ are mV/s,

and study the resulting random dynamical system resulting from analysing one

realisation of the white noise process at a time.
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To perform a comparison between the full and phase only models, we thus need

to study the system of SDEs corresponding to (2.28)-(2.29), given by

C dv =
(
I0 − gL(v − vL)− gK w(v − vK)− gCa m∞(v)(v − vCa)

)
dt+ σdWt,

dw = φ
(
w∞(v)− w

)
/τw(v)dt,

(4.17)

and that corresponding to (4.2) given by

dθ =

(
1 +

σ2

2
R(θ)R′(θ)

)
dt+ σR(θ)dWt, (4.18)

where we have written both systems using standard notation from mathematics

(rather than from physics) to facilitate the use of the numerical integration scheme

detailed in Sect. 2.19. The precise details of the numerical scheme that we use to

integrate (4.17) and (4.18) can be found in Appx. A. We remark that we interpret

both (4.17) and (4.18) in the Itô sense.

In order to analyse firing rates and ISIs, we first need to define precisely what

we mean by a spike in each of the two settings. For a phase only model, we may

define a spiking event as one where the phase θ goes through some point ∈ [0,∆),

since it would pass through this point once per period in the unperturbed case.

For the full model, we use an artificial definition of spiking events, whereupon we

say that the neuron resets if v falls below -10 mV and we define a spiking event to

occur at the first crossing of v through 12.5 mV following reset. The ISIs are then

given as the differences between successive times that v passes through 12.5 mV

following reset. It may be seen in Fig. 50 how these points correspond to the

location of the limit cycle.

4.6 Comparison of firing rates.

We begin with a comparison of the firing rates of the full and reduced model,

as shown in the left panel of Fig. 54. Plotted are firing rates as a function of

the drive amplitude σ for three different systems: (i) the full ML system; (ii) the

phase reduction, computed empirically; and (iii) the phase reduction as computed
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by the perturbative formula (4.5) of Ly and Ermentrout. We plot both (ii) and (iii)

because (4.5) is itself an approximate result based on the phase reduction (4.4),

valid only for small σ. To obtain the firing rates for the phase model empirically,

we solve (4.18) numerically, then find the firing times based on the passing of

θ through some point ∈ [0,∆) and use these to compute the mean firing rate.

As one would expect, for smaller forcing amplitudes (σ < 0.1), all three agree.

As we increase σ, the perturbative formula tracks the empirical firing rate of the

phase reduction fairly well, but neither of these iPRC-based predictions capture

the dramatic drop in firing rate of the full system occurring around σ = 0.2. Shown

in the right panel of Fig. 54, is a sample path of (4.17), in the case where σ = 0.2,

where we observe that the drop in firing rate is due to trajectories spending more

time near the saddle.

4.7 Comparison of ISI distributions

We now move to consider the distribution of ISIs in the full and reduced models.

These distributions are obtained by taking the differences in spike times along sam-

ple trajectories and then by binning these data into 100 bins to form histograms,

which may be normalised to give approximations for the probability density of the

ISIs. We show, in Fig. 55, the numerically computed ISI distributions for the full

ML model and for the phase reduction (4.4). As before, for small σ, we see the

full system and phase reduction agree fairly well: the ISI distribution is concen-

trated around the period of the cycle (about 25.2), and that the shape is roughly

Gaussian. As σ increases, we see in the full ML system both a broadening of the

ISI distribution, and an overall shift toward larger ISIs. Neither of these effects

are captured by the iPRC, as they involve structures a finite distance away from

Γ . Finally, to compare the tails of the ISI distributions, we show in Table. 2, the

fraction of ISIs greater than twice the cycle period. We observe that the iPRC sys-

tematically under predicts the probability of a long inter-spike interval, consistent

with the ‘trapping’ effect of nearby invariant structures.
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Figure 54: Left: Firing rates of the stochastically-forced ML model under variation

of the noise amplitude. We compare of firing rates for the full ML system and its

phase reduction driven by white noise, where the black dots are the rates for the

full model, the red squares are from the empirical phase reduction and the blue

curve is the approximation given by the perturbative formula (4.5). We see that

all the curves are close for small σ, but that there is a significant drop in the firing

rate of the full model at σ ≈ 0.2. Right: Sample path of the full model for σ = 0.2.

We observe that the sample path drifts near to the saddle often. In the vicinity of

the saddle, the evolution of the path will slow down, explaining the drop in firing

rate observed in the left panel.
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Figure 55: ISI distributions for various σ. The solid black lines are histograms for

the full ML system, whilst the dashed blue lines are those for the phase reduction,

with the noise amplitude shown above the respective graphs. For small σ, the

histograms are very similar. However, as the noise amplitude is increased, the ISI

distributions for the full model are broader, and have a mean shifted to higher ISIs

compared to those predicted by the iPRC.

4.8 Altered spiking patterns in bistable systems

In order to consider an example in which the forcing causes trajectories to cross

∂BΓ, we now consider the ML system near a Hopf bifurcation, in which the iPRC is

given by the bottom panel of Fig. 52. Of course, there is no reason that we would

expect predictions based on the iPRC to provide any useful information in this

situation, particularly since the asymptotic phase, which is essential to reducing

models to a phase only description is not defined outside BΓ. It is however, notable
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σ Full ML iPRC

0.25 0.0225 0.0003

0.5 0.127 0.0032

1.0 0.322 0.0013

Table 2: Fraction of ISIs greater than twice the period of the limit cycle. We

observe that the iPRC underestimates the tails of the ISI distributions, and thus

underestimates the effect of ‘trapping’ of nearby invariant structures.

Parameter Value Parameter Value

φ 0.04 v3 2.0 mV

gCa 4.4 mmho/cm2 v4 30.0 mV

I0 90.0 mA/cm2

Table 3: Changes to Table. 1 to put the ML model near a Hopf bifurcation.

that even a weak drive can lead to spike patterns that are nontrivially different.

In order to put the system near the Hopf bifurcation, we use the parameters as in

Table. 1, exchanging values with those indicated in Table. 3 where necessary.

We show, in Fig. 56, the relevant dynamical structures in this scenario. In this

regime, the system has a stable limit cycle, show in blue, which we take as Γ. Each

time an orbit passes near the right-most point of Γ, we think of it as producing a

‘spike’. The system is bistable; the fixed point, depicted by the green point, from

which the limit cycle is borne out of, is also stable in this regime, and is surrounded

by an unstable limit cycle, shown in red, which separates the respective basins of

attractions. The repelling orbit is close to Γ, but since it is a positive distance

away, it will not show up in iPRC considerations. In a similar vein to Sect. 4.5,

we use a white noise perturbation of the form I(t) = I0 + σξ(t).

To more clearly observe the difference in spike patterns, we plot the voltage

traces, rather than the trajectories in phase space, as this allows us to see the time

dependence of v. In Fig. 57, we plot the voltage traces of the full model and iPRC
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Figure 56: Phase portrait for the ML model in the Hopf regime. The system pos-

sesses a stable limit cycle (blue) surrounding an unstable cycle (red) which in turn

surrounds a stable fixed point (green circle). Also shown are the nullclines of the

system with the dashed orange curve representing the v-nullcline and the dashed

cyan curve representing the w-nullclines. Here, I0 = 90 mA/cm2, corresponding to

an unforced period of about 102 ms.

predictions, computed at I0 = 90 mA/cm2, under this forcing paradigm. The top

panel shows the full ML simulation with a relatively weak forcing with σ = 0.2,

with initial conditions starting on Γ. Since the basin of the fixed point is so close

to Γ, a trajectory following Γ can easily get pushed into the basin, and then be

attracted towards the fixed point. This can happen even with very small σ. The

fixed point itself is further away from the unstable limit cycle than Γ, meaning that

it is more difficult for a trajectory near the sink to escape, into BΓ, under weak σ.

This is why, for weak noise such as σ = 0.2, it is easy to observe a transition from

dynamics around Γ to those around the fixed point, but not easy to see transition

in the reverse direction.
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Figure 57: Voltage traces for the ML system in Hopf regime. The top two panels

show simulation using the full ML model with the indicated level of stochastic

forcing. The bottom panel shows the iPRC using σ = 0.4. We observe that, for

the full model, the neuron falls almost immediately quiescent for σ = 0.2 and

alternates between quiescence and spiking for σ = 0.4, neither of which captured

by the phase-only model. Results for the phase-only model with σ = 0.2 are

not shown as they are qualitatively similar to those for σ = 0.4. Here, I0 = 90

mA/cm2.

If we now increase the strength of the noise to be a little larger, letting σ = 0.4,

the trajectory jumps back and forth more readily, as shown in the middle panel of

Fig. 57. It roughly tracks Γ for some length of time, before crossing the unstable

limit cycle, and staying near the fixed point. In terms of the voltage traces, this

manifests itself as moving alternately between a spiking and quiescent mode, albeit

at random times. Unsurprisingly, these perturbations do not have a pronounced

effect on the voltage traces from the phase-only model, as can be seen in the
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bottom panel of Fig. 57, with the spike patterns alternating only between regular

and slightly irregular patterns. Finally, we note that in this bistable situation, a

neuron can exhibit substantial sub-threshold activity. The iPRC underestimates

the extent of such activity.

4.9 A network of two cells

Since the arguments presented here focus on a single forced oscillator, we may

ask the question whether our results carry over to the network level where, in the

weakly coupled regime, identical cells tend to either synchronise behaviour, or be in

anti-phase. Considering the full dynamics of the system leads to the possibility of

other patterns of activity emerging, due to effect of the other invariant structures,

or shear effects in phase space. In this setting, our results preempt the failure of

the iPRC to capture these effects, and we now conduct simulations of a network

of two identical cells to illustrate these effects. We note that the product of the

limit cycles for the unperturbed system may not actually be an invariant set for

the coupled system, just as ΓT is the attractor, rather than Γ for the forced ML

oscillator considered earlier. However, since the limit cycle is hyperbolic, we expect

it to be robust to weak coupling between units as so we may use it as a reference

here.

First, we consider pulsatile coupling between cells in the homoclinic regime,

mimicking that of the Sect. 4.4.2. Using the same spiking and reset conditions as

in Sect. 4.5, neuron i sends a pulse of strength |A| to neuron j 6= i as vi passes

through vth=12.5 mV, so that the dynamics of the two cell network are given by

C
dvi
dt

= I0 − gL(vi − vL)− gKw(vi − vK)

− gCam∞(vi)(vi − vCa) + A ·
∑
j 6=i

δ(vj − vth), (4.19)

dwi
dt

= φ
(
w∞(vi)− wi

)
/τw(vi), i = 1, 2. (4.20)

For small |A|, the network tends to synchronise behaviour, as is predicted by

the phase analogue. However, if we set A = −2.0, we enter the chaotic regime
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as shown in Fig. 51, remembering that the natural period of the cells is around

25 ms. In this scenario, we observe a chaotic response, with the oscillators not

phase locking and find a positive MLE of Λ = 0.3937. The trajectories in this

situation are depicted in Fig. 58, as both voltage traces and trajectories in the

phase plane. If we consider gap junction coupling, rather than pulsatile coupling

between the cells, we can observe a more subtle effect of the saddle. Making this

change simply replaces the last term in (4.19) with A · (vj − vi), where A > 0.

Predictions from averaging theory suggest the anti-phase solution is stable for

weak forcing. This can be seen by examining the odd part of the phase interaction

function, H, as considered in Sect. 3.11. As before, the derivative of Hodd at the

fixed points for the phase difference, ψ, will give the stability of these fixed points.

Positive values for this derivative indicate unstable solutions, whereas negative

values imply stable solutions. As shown in Fig. 59, the anti-phase solution, with

ψ = ∆/2 is stable. Indeed, this is what we observe for small values of A (say

with A = 0.001). We show, in Fig. 60, the phase plane in this situation. Even

though trajectories do not come close to the saddle of the unperturbed system,

we can still see the effect it has on the synchronisation properties of the network.

Examining closer the portion of the trajectories closest to the saddle, we see that

the trajectory of one neuron, shown in orange, favours the ‘outside’ of the orbit,

whilst the other neuron, shown in black, favours the ‘inside’ of the orbit (by orbit,

we mean the orbit of the unperturbed system). We note that the tendency to

phase-lock in an anti-phase mode increases the closer we are, in parameter space,

to the homoclinic bifurcation, [174], further highlighting the role of the saddle

in this case. As the strength of the coupling is increased, it is not unusual to

observe an exchange of stability between the synchronous and anti-phase state in

gap junction-coupled systems near a homoclinic bifurcation [175].

In our system, we have an even more drastic effect. Around A ∼ 0.04, the

coupling between the cells results in oscillator death for the network. Past this

point, neither cell exhibits oscillatory activity, and trajectories will tend towards

a fixed point of the network equations. In Fig. 61, we show the voltage traces for
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Figure 58: Top: Trajectories of the network of pulse-coupled ML cells. Bottom:

Corresponding trajectories in the phase plane. Whilst the network is synchronous,

as predicted by the phase model, for small |A|, we see that for larger values,

here A = −2.0, the system is chaotic, with a positive MLE. We note that, since

the natural period of the unperturbed oscillator is around 25 ms, we are in the

parameter window for which we would expect chaos in the case of a single cell,

forced periodically, as in Fig. 51.
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Figure 59: Odd part of the phase interaction function, H, as used in Sect. 3.11, for

the case of two gap junction-coupled ML neurons in the homoclinic regime. The

weakly coupled oscillatory theory predicts a stable anti-phase solution for this

network, as can be seen by the negative derivative at the fixed point at ψ = ∆/2.

A = 0.04 for both the full network model and the phase-only network. As predicted

by averaging theory, the phase-only model exhibits a stable anti-phase solution,

whilst the full model, initially oscillatory, becomes quiescent around t = 3000.

Clearly, iPRCs will fail to capture both the change of stability between network

states as well the death of oscillatory activity in the network.

Finally, if we make the gap junctions stochastic, exchanging the previous term

for A · ξ · (vj − vi), and use the parameters for the ML model in the Hopf regime,

we can see the effect of leaving the basin of attraction of the full system. In

this situation, phase theory predicts synchrony between the two cells, and this is

precisely what we observe for small A ∼ 0.001. As we increase A to 0.01, we still
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Figure 60: Trajectories of the network of ML cells with gap junction coupling near

a homoclinic bifurcation. Although the orbits of neither cell come close the saddle,

we can still see the effect it has on the dynamics of the network. The trajectory of

one cell are consistently ‘outside’ the other as the network settles down to its phase

locked state. The difference in times taken to complete one revolution promote

asynchronous behaviour.

observe the tendency of the network to synchronise, but this is interrupted as one

or both of the cells enters a quiescent phase, as shown in Fig. 62. Provided that

the other cell remains in the spiking regime, the quiescent cell is likely to reenter

the spiking regime, but the synchrony between the cells will have been lost. If both

cells simultaneously enter the quiescent phase, the oscillations may be lost, since

the forcing between the two cells is dependent on the voltage difference between

them, which will approach zero if both cells are quiescent. Increasing A further

makes it more likely that cells will reenter the spiking phase, but at a further loss
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Figure 61: Top: Voltage traces for a gap junction-coupled ML network with

A = 0.04. Bottom: Voltage traces for the phase-only model of the same sys-

tem. We see that the phase model predicts a stable anti-phase solution between

the two oscillators after transients have decayed, as shown in Fig. 59. However,

in the full model, we see that a quiescent state, in which neither cell oscillates, is

asymptotically stable.

of regularity of the network.

4.10 Discussion

This chapter compares the phase reduced models of an oscillating neuron’s re-

sponse to perturbation to the response of the full model. We have shown that,

whilst the iPRC has the virtue of being analytically explicit, straightforward to

compute and results in a large reduction in terms of dimension of network models,

it may fail to capture more exotic behaviour of the full model, even under weak to

moderate forcing. In these cases, the iPRC predicts regular oscillatory behaviour

165



-40

 0

 40

 0  500  1000  1500  2000t

v (mV)

 0.1

 0.2

 0.3

 0.4

 0.5

-60 -40 -20  0  20  40v (mV)

w

Figure 62: Top: Voltage traces of a network of ML cells with stochastic gap-

junction coupling, now near a Hopf bifurcation. Bottom: Corresponding trajec-

tories in the phase plane. In this regime, the cells tend to synchronise. However,

given the proximity of BΓ to Γ in this case, trajectories may get forced into the

basin of attraction of the stable node, as has occurred in this case. The quiescent

cell now performs subthreshold oscillations, as the spiking cell still provides a per-

turbative current through the gap junction coupling, however, in this case, it is

not strong enough to return to the cell to spiking. Since the forcing between cells

is moderated by a stochastic process, the quiescent cell may reenter the spiking

mode, at which point the cells will try to synchronise again.
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when the full system is anything but. In moderate cases, this may simply mean

that the phase model misrepresents the firing pattern and ISI distribution, and in

more extreme cases, may predict regular behaviour when the full system is quies-

cent or chaotic. This is of particular importance when considering the neuroscience

applications of these oscillatory models. In biological systems, the summative ef-

fect of inputs may not be weak and the attraction to the underlying oscillation may

not be strong. In models in which we need either precise spike timing or a good

estimate of firing rates, these perturbative effects may thus lead to predictions to

be inaccurate, depending on the underling phase space of the full model.

Specifically, we presented examples from the ML neuron model to show that

1. Periodic kicking of the ML system can lead to unreliable response in the full

model via the mechanism of shear-induced chaos, contrary to iPRC predic-

tions.

2. When stochastically driven, stickiness of nearby invariant structures can lead

to lower firing rates and longer ISIs compared to iPRC predictions.

3. The forcing need not be strong to bring about serious discrepancies in firing

patterns between full and phase-reduced models.

Moreover, in all the situations examined, the phase reduction itself offers no hint

that any break down has occurred.

In terms of neural response, this means that iPRCs may overestimate spike-time

reliability and firing rates; they may also underestimate the mean and variance

in ISIs, and have a tendency to downplay sub-threshold activity. Thus, caution

needs to be exercised when interpreting results that come from phase reduction

arguments, especially for systems near bifurcation points. We have also shown

simple numerical techniques, involving the examination of the evolution of a kick

image under the unperturbed flow and straightforward numerical integration of

stochastic systems, that can flag up the presence of shear and stickiness in a

system geometrically, so that these can be examined before relying on predictions

from iPRCs. While this chapter focuses on the ML model, the geometric ideas
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are quite general. In particular, homoclinic and Hopf bifurcations are present in

a range of neural and other biological models, and we predict similar phenomena

to occur in such models. Simple numerical experiments on a network of two cells

demonstrate that these phenomena carry over to the network level, and highlight

the importance of prior considerations before phase reductions are applied to the

network.

We will go on, in the remaining chapters, to try to introduce other methods,

taking inspiration from iPRCs, to define coordinate systems, set up around the

limit cycle, that explicitly include variables capturing the distance of points away

from the limit cycle. In this case, we can capture the effect of invariant struc-

tures near to, but at a positive distance away from Γ, and analyse their effect on

trajectories of the system.
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5 A phase-amplitude description of neural oscil-

lators

In the previous chapter, we highlighted scenarios in which the phase-only descrip-

tion of a neural oscillator was not sufficient to describe the dynamics of the full

system. Of course, one could argue that the phase reduction is only appropriate

when the strength of external forcing, or of coupling to other cells is weak, and the

cells quickly relax back into their unperturbed rhythm. However, in the situations

we considered, the forcing was not physiologically unreasonable. It was shown that

the presence of other invariant structures in phase space can have a pronounced

effect on the emergent behaviour of the system, suggesting that one must consider

the geometry of phase space before performing the reduction. These effects are

likely to impact the dynamics at the network level too, so that predictions on

network behaviour using iPRCs quickly become erroneous. The failure of a phase

description is in itself no surprise and underlies why the community emphasises

the use of the word weakly in the phrase ‘weakly connected neural networks’. In-

deed, the assumption that phase alone is enough to capture the essentials of neural

response is one made more for mathematical convenience rather than being physi-

ologically motivated. In spite of this, the computational advantage of phase-based

models means that the study of many synchronisation phenomena are carried out

under this assumption, leading to possibly erroneous predictions as we move away

from the assumption of weak coupling. In the worst cases, using the phase-only

model may miss oscillator death [176], after which the network ceases to oscillate.

In other cases, the phase-only model may make errors in the prediction of stability

of phase locked states, as discussed in Sect. 4.9. In this chapter, we generalise

the phase description that allows one to track the evolution of distance from the

cycle as well as phase on cycle. We use a classical technique from the theory

of ordinary differential equations that makes use of a moving coordinate system

to analyse periodic orbits. The subsequent phase-amplitude description is shown

to be very well suited to understanding the response of the oscillator to external
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stimuli (which are not necessarily weak). We consider a number of examples of

neural oscillator models, ranging from planar through to high dimensional mod-

els, to illustrate the effectiveness of this approach in providing an improvement

over the standard phase-reduction technique. As an explicit application of this

phase-amplitude framework, we consider in some detail the response of a generic

planar model where the strong-attraction assumption does not hold, and examine

the response of the system to periodic pulsatile forcing.

Progress has previously been made to alleviate the effect of using only a phase

description, by taking higher order approximations to the isochrons themselves

to facilitate the construction of higher order iPRCs [177]. Even using perfect in-

formation about isochrons, the phase reduction still assumes persistence of the

limit-cycle and instantaneous relaxation back to cycle. However, as we saw in the

preceding chapter, the presence of nearby invariant phase-space structures such as

(unstable) fixed points and invariant manifolds may result in trajectories spending

long periods of time away from the limit cycle. Moreover, for gap junction coupling

between ML neurons in the homoclinic regime, as considered in Sect. 4.9, increas-

ing the coupling strength too much results in the destruction of any oscillatory

behaviour of the network, a phenomenon known as oscillator death [176].

Strong forcing will necessarily take one away from the neighbourhood of a cycle

where a phase description is expected to hold. Thus, developing a reduced descrip-

tion which captures some notion of distance from cycle is a key component of any

theory of forced limit cycle oscillators. The development of phase-amplitude mod-

els that better characterise the response of popular high dimensional single neuron

models is precisely the topic of this chapter. Given that it is a major challenge

to construct an isochronal foliation, we use non-isochronal phase-amplitude coor-

dinates as a practical method for obtaining a more accurate description of neural

systems. Recently, Medvedev has used this approach to understand in more detail

the synchronisation of linearly coupled stochastic limit cycle oscillators [178].

First, we consider a general coordinate transformation which recasts the dy-

namics of a system in terms of phase-amplitude coordinates. This approach is
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directly taken from the classical theory for analysing periodic orbits of ODEs,

originally considered for planar systems in [179], and for general systems in [12].

We advocate it here as one way to move beyond a purely phase-centric perspective.

We illustrate the transformation by applying it to a range of popular neuron mod-

els. Following this, we consider how inputs to the neuron are transformed under

these coordinate transformations and derive the evolution equations for the forced

phase-amplitude system. Importantly, we show that the behaviour of the phase-

amplitude system is much more able to capture that of the original single neuron

model from which it is derived. Finally, we discuss the relevance of this work

to developing a theory of network dynamics that can improve upon the standard

weak coupling approach. The bulk of this chapter forms the recently published

[180].

5.1 Phase-amplitude coordinates

Throughout this chapter, we remain focused on the study of the dynamics pre-

scribed by the system ẋ = f(x) + εg(x, t), x ∈ Rn, with solutions x = x(t) that

satisfy x(0) = x0 ∈ Rn. As before, we will assume that the system with ε = 0

admits an attracting hyperbolic periodic orbit, Γ, (namely, a periodic orbit having

one zero Floquet exponent whilst its other Floquet exponents have negative real

part), with period ∆, such that Γ(t) = Γ(t + ∆). We parametrise Γ by a phase

variable θ ∈ [0,∆), so that θ̇ = 1 for x ∈ Γ. It has long been known in the dy-

namical systems community how to construct a coordinate system based on this

notion of phase as well as a distance from cycle, see [12] for a discussion. In fact,

Ermentrout and Kopell [181] made good use of this approach to derive the phase-

interaction function for networks of weakly connected limit-cycle oscillators in the

limit of infinitely fast attraction to cycle. However, this assumption is particularly

extreme and unlikely to hold for a broad class of single neuron models. Thus, it is

interesting to return to the full phase-amplitude description. In essence, the trans-

formation to these coordinates involves setting up a moving orthonormal system

around the limit cycle. One axis of this system is chosen to be in the direction of
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the tangent vector along the orbit, and the remaining are chosen to be orthogonal.

We introduce the normalised tangent vector ξ as

ξ(θ) =
dΓ

dθ

/∣∣∣∣dΓ

dθ

∣∣∣∣ . (5.1)

The remaining coordinate axes are conveniently grouped together as the columns

of an n× (n− 1) matrix ζ. In this case we can write an arbitrary point x as

x(θ, ρ) = Γ(θ) + ζ(θ)ρ, (5.2)

where θ ∈ [0,∆) and ρ ∈ Rn−1. In the above, |ρ| represents the Euclidean distance

from the limit cycle. A caricature, in R2, of the coordinate system along an orbit

segment is shown in Fig. 63. Through the use of the variable ρ, we can consider

points away from the periodic orbit. Rather than being isochronal, lines of constant

θ are simply straight lines that emanate from a point on the orbit in the direction

of the normal. We remark that, for planar systems, we choose to have ζ pointing

outside of Γ so that points outside Γ have positive ρ. Using (5.2), we may then go

on to derive the equations of motion for the variables (θ, ρ).

5.1.1 Unforced systems

We first consider the case of an unforced oscillator. That is, we set ε = 0, so that

we start from

ẋ = f(x), x ∈ Rn. (5.3)

We make the transformation x(t) = Γ(θ(t)) + ζ(θ(t))ρ(t), giving[
dΓ(θ)

dθ
+

dζ(θ)

dθ
ρ

]
θ̇ + ζ(θ)ρ̇ = f(Γ(θ) + ζ(θ)ρ). (5.4)

We proceed by projecting (5.4) onto ξ(θ), using (5.1). The left hand side of (5.4)

now reads: [∣∣∣∣dΓ

dθ

∣∣∣∣+ ξT
dζ

dθ
ρ

]
dθ

dt
, (5.5)

where ξT denotes the transpose of ξ and the right hand side of (5.4) becomes

ξTf(Γ + ζρ) =

[∣∣∣∣dΓ

dθ

∣∣∣∣+ ξT
dζ

dθ
ρ

]
+ ξTf(Γ + ζρ)− ξTf(Γ)− ξT dζ

dθ
ρ. (5.6)
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Thus,

θ̇ = 1 + f1(θ, ρ), (5.7)

where

f1(θ, ρ) = −hT (θ, ρ)
dζ

dθ
ρ+ hT (θ, ρ) [f(Γ + ζρ)− f(Γ)] , (5.8)

with

h(θ, ρ) =

[∣∣∣∣dΓ

dθ

∣∣∣∣+ ξT
dζ

dθ
ρ

]−1

ξ(θ). (5.9)

Upon projecting both sides of (5.4) onto ζ, the left hand side reads

ζT
[

dΓ

dθ
+

dζ

dθ
ρ

]
dθ

dt
+

dρ

dt
= ζT

dζ

dθ
ρ

dθ

dt
+

dρ

dt
= ζT

dζ

dθ
ρ [1 + f1(θ, ρ)] +

dρ

dt
, (5.10)

whilst the right hand side becomes

ζTf(Γ + ζρ) = −ζTf(Γ) + ζTDfζρ− ζTDfζρ+ ζTf(Γ + ζρ), (5.11)

since ζTf(Γ) = ζTdΓ/dθ = 0 and where Df denotes the Jacobian of f. Putting

together (5.10) and (5.11) yields

ρ̇ = A(θ)ρ+ f2(θ, ρ), (5.12)

where

A(θ) = ζT
[
−dζ

dθ
+ Dfζ

]
, (5.13)

and

f2(θ, ρ) = −ζT dζ

dθ
ρf1 + ζT [f(Γ + ζρ)− f(Γ)−Dfζρ] . (5.14)

It may be easily seen that f1(θ, ρ) = O(ρ) as ρ → 0, that f2(θ, 0) = 0 and

∂f2(θ, 0)/∂ρ = 0. Overall, combining (5.7) and (5.12) we arrive at the transformed

equations of the unforced system:

θ̇ = 1 + f1(θ, ρ),

ρ̇ = A(θ)ρ+ f2(θ, ρ).
(5.15)

In the above, f1 captures the shear present in the system, that is, whether the speed

of θ increases or decreases dependent on the distance from cycle. Additionally,
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A(θ) describes the θ-dependent rate of attraction or repulsion from cycle, whilst

f2 represents a correction term to the otherwise linear ρ dynamics captured by

A. We note that even though we refer to f2 as a correction term, (5.15) is an

exact transformation of (5.3), written in (θ, ρ) coordinates in a ‘tube’ around Γ.

The width of the tube is set by a θ-dependent value of |ρ|, at which point the

transformation ceases to be invertible, and so breaks down. We go on to discuss

the break down of the transformation in Sect. 5.1.2.

Although, the (θ, ρ) coordinates are not isochronal, they offer an easy, practical

way to study the phase and amplitude of a trajectory relative to the underlying

periodic orbit. Furthermore, this coordinate system is still defined outside the

basin of attraction of Γ. In fact, we may represent other stable attractors in (θ, ρ)

coordinates. This may be useful when considering the role of, say, the saddle and

stable nodes of the ML model in the homoclinic regime, or another stable limit

cycle of the ML model in the Hopf regime.

Since ρ captures the Euclidean distance from cycle along the various coor-

dinates which comprise ζ, it is sensible to rescale variables so that the original

variables are of the same order of magnitude. In many neural models, some of the

variables represent gating variables, indicating the fraction of ion channels that

are open. As such, these variables can only take values on [0, 1], whereas varia-

tions in the variable for membrane potential along an orbit are typically O(100).

To deal with this discrepancy in magnitude amongst the variables, we rescale the

components using the affine transformation Xi = αixi, where the index indicates

the i’th component of the state variable and

αi =
max{Γ1(θ)} −min{Γ1(θ)}
max{Γi(θ)} −min{Γi(θ)}

, (5.16)

where Γi refers to the i’th component of the orbit Γ. Typically, Γ1 corresponds to

the variable representing membrane potential. The units of the αi are chosen to

be consistent with the original system (5.3).
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ξ(θ(t1)) ζ(θ(t1))

ζ(θ(t0))

ξ(θ(t0))

Figure 63: Demonstration of the moving orthonormal coordinate system along an

orbit segment. As t evolves from t0 to t1, the coordinates vary smoothly. In this

planar example, ζ always points to the outside of the orbit.

5.1.2 Computing A, f1 and f2 in terms of the original vector field

For computational ease when simulating the system, we may wish to write A, f1

and f2 in terms of the original vector field f (and its derivatives). We do this for

planar models, though the extension to higher dimensional systems is straightfor-

ward. Denoting the components of the original state variable as x = (x1, x2), we

first define an automorphism F : R2 → R2 as

F(x) = (x2,−x1), (5.17)

noting that the derivative ∂F/∂x is given by

DF =

 0 1

−1 0

 = K, (5.18)

and then defining a scalar function H : R2 → R≥0

H(x) = |x|, (5.19)

whose derivative is given by

DH =
xT

H(x)
. (5.20)
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We may now write ζ as

ζ = F(ξ(θ)) (5.21)

so that
dζ

dθ
= DF(ξ(θ))

dξ

dθ
, (5.22)

by the chain rule. We have that DF = K, so we simply need to evaluate dξ/dθ.

We proceed by writing ξ in the form:

ξ =

(
f 1(x1, x2)

H(f 1(x1, x2), f 2(x1, x2))
,

f 2(x1, x2)

H(f 1(x1, x2), f 2(x1, x2))

)T
, (5.23)

where f i is the i’th component of the original vector field f . Consider the first

component ξ1 of ξ. We have that

dξ1(x)

dθ
= Dξ1(x)

dx

dθ
. (5.24)

By the quotient rule for vectors,

Dξ1 =
HDf 1 − f 1DH

H2
. (5.25)

Define J(x) = Df(x) as the Jacobian of the original vector field. Then Df 1 is

simply given by the first row of J , which we denote by J1,•. Similarly, Df 2 would

be given by J2,• and so on. Finally, we need to evaluate DH. By the chain rule,

the components of DH are given by

DH =
[ ∂H
∂f 1

∂f 1

∂x1

+
∂H
∂f 2

∂f 2

∂x1

,
∂H
∂f 1

∂f 1

∂x2

+
∂H
∂f 2

∂f 2

∂x2

]
=
[ 1

H
dΓ

dθ
· J•,1,

1

H
dΓ

dθ
· J•,2

]
. (5.26)

Writing dζ/dθ as above, we may then write A as

A(θ) =
1

H(Γ(θ))

{
f 2(Γ(θ))

dζ1

dθ
− f 1(Γ(θ))

dζ2

dθ

}
+

1

H(Γ(θ))2

{
f 2(Γ(θ))

(
J11(Γ(θ))f 2(Γ(θ))− J12(Γ(θ))f 1(Γ(θ))

)
− f 1(Γ(θ))

(
J21(Γ(θ))f 2(Γ(θ)) + J11(Γ(θ))f 1(Γ(θ))

)}
, (5.27)
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so that A is expressed only in terms of the original vector field f and the periodic

orbit Γ. We may proceed, in a similar fashion, to find expressions for f1 and f2.

We first note that h may be written as

h(θ, ρ) =

(
f 1(Γ(θ)), f 2(Γ(θ))

)
H(Γ(θ))2 + ρ

(
f 1(Γ(θ))dζ1/dθ + f 2(Γ(θ))dζ2/dθ

) , (5.28)

and we shall denote the denominator of this expression by D(θ, ρ). We may then

compute f1 as

f1(θ, ρ) =
1

D(θ, ρ)

{
f 1(Γ(θ))

(
− ρdζ1

dθ
+ f 1(Γ(θ) + ζ(θ)ρ)− f 1(Γ(θ))

)
+ f 2(Γ(θ))

(
− ρdζ2

dθ
+ f 2(Γ(θ) + ζ(θ)ρ)− f 2(Γ(θ))

)}
, (5.29)

and f2 as

f2(θ, ρ) =
1

H(Γ(θ))

{
f2(Γ(θ))

(
ρ

dζ1

dθ
f1(θ, ρ) + f1(Γ(θ) + ζ(θ)ρ)− f1(Γ(θ))

+ ρ
J11(Γ(θ))f2(Γ(θ))− J12(Γ(θ))f1(Γ(θ))

H(Γ(θ))

)
− f1(Γ(θ))

(
ρ

dζ2

dθ
f1(θ, ρ)

+ f2(Γ(θ) + ζ(θ)ρ)− f2(Γ(θ)) + ρ
J21(Γ(θ))f2(Γ(θ))− J22f

1(Γ(θ))

H(Γ(θ))

)}
.

(5.30)

In order to evaluate the functions f1, f2 and A for models with dimension larger

than two, we need to calculate dζ/dθ. Defining by νi(θ), the direction angles of

ξ(θ), we have that

ζi = ei −
cos νi

1 + cos ν1

(e1 + ξ(θ)) = ei −
ei · ξ(θ)

1 + e1 · ξ(θ)
(e1 + ξ(θ)) , i = 2, 3, . . . , n,

(5.31)

where the index i denotes the column entry of ζ and x · y denotes the dot product

between vectors x and y. Defining

ui(θ) =
ei · ξ(θ)

1 + e1 · ξ(θ)
, (5.32)

and

wj(θ) = e1,j + ξj(θ), (5.33)
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where j denotes the row index, we have

dζi,j
dθ

= −ui
dwj
dθ
− wj

dui
dθ

. (5.34)

By the quotient rule for vectors we find that,

dui
dθ

=
(1 + e1)

(
ei · dξ

dθ

)
− (ei · ξ(θ))

(
e1 · dξ

dθ

)
(1 + e1 · ξ(θ))2 , (5.35)

and that
dwj
dθ

=
dξj
dθ

. (5.36)

Overall, we have that

dζi,j
dθ

= − ei · ξ(θ)
1 + e1 · ξ(θ)

dξj
dθ
−(e1,j + ξj(θ))

(
(1 + e1)

(
ei · dξ

dθ

)
− (ei · ξ(θ))

(
e1 · dξ

dθ

)
(1 + e1 · ξ(θ))2

)
.

(5.37)

It is pertinent to consider where this coordinate transformation breaks down,

that is, where the determinant of the Jacobian of the transformation K =

det[∂x/∂θ ∂x/∂ρ] vanishes. This never vanishes on-cycle (where ρ = 0), but may

do so for some |ρ| = k > 0. This sets an upper bound on how far away from the

limit cycle we can describe the system using these phase-amplitude coordinates.

In Fig. 64, we plot the curve along which the transformation breaks down for the

ML model. We observe that, for some values of θ, k is relatively smaller. The

breakdown occurs where lines of constant θ cross and thus the transformation is

not invertible. These values of θ correspond to points along which the orbit has

high curvature. This may be seen more clearly in Fig. 65, in which we show the

curve along which K = 0 in (v, w) space. The colours along the curve indicate the

reference point on Γ for that value of θ. We see that the transformation breaks

down inside the orbit, near the ‘corners’ of Γ. We note that although this curve

has some points which look like they have arbitrarily small ρ, the reference point

is actually on the opposite side of Γ so that the transformation breaks down at

a finite, but non-zero |ρ|. We note that this issue is less problematic in higher

dimensional models.
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Figure 64: Colours show the value of the determinant, K, of the phase-amplitude

transformation for the ML model (2.28)-(2.29). The red curve indicates where

K = 0, and thus where the coordinate transformation breaks down. Note how all

of the values for which this occurs have ρ < 0, referring to points on the inside of

Γ. Parameter values are as for the homoclinic regime as discussed in Sect. 4.4.2.

This red curve is shown in (v, w) coordinates in Fig. 65.
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Figure 65: This figure shows the determinant K of the phase-amplitude transfor-

mation for the ML model, (2.28)-(2.29), in (v, w) coordinates, along with Γ. The

orbit is as in Sect. 4.4.2, with colours specifying the phase along the orbit. The

curve K = 0 indicates where the transformation breakdown occurs, and is the

same as the red curve in Fig. 64. Along this curve, the transformation is not in-

vertible. This curve is also coloured so that the reference point along Γ is identified

with the same colour. This means that although the curve K = 0 appears to cross

the orbit (so that the breakdown would occur for trivial ρ), these points actually

have a finite and negative ρ. We see that the breakdown occurs near ‘corners’ of Γ,

that is, where the orbit has high curvature. We note that this breakdown occurs

when lines of constant θ intersect one another so that the mapping between (θ, ρ)

and (v, w) is no longer one-to-one.
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5.1.3 Forced systems

We now consider the transformation of forcing terms, allowing ε to be non-zero,

so that we now study the system

ẋ = f(x) + εg(x, t). (5.38)

Following the same steps as in the derivation of (5.15), we first project (5.38) onto

ξ, so that

θ̇ = 1 + f1(θ, ρ) + εhT (θ, ρ)g(Γ(θ) + ζ(θ)ρ, t), (5.39)

with h and f1 as before. Upon projecting (5.38) onto ζ, the left hand side reads

ζT
dζ

dθ
ρ
[
1 + f1(θ, ρ) + εhT (θ, ρ)g(Γ + ζρ, t)

]
+

dρ

dt
, (5.40)

whereas the right hand side of (5.38) is

−ζTf(Γ) + ζTDfζρ− ζTDfζρ+ ζTf(Γ + ζρ) + εζTg(Γ + ζρ, t). (5.41)

Putting the previous two equations together gives

ρ̇ = A(θ)ρ+ f2(θ, ρ) + εζTB(θ, ρ)g(Γ(θ) + ζ(θ)ρ, t), (5.42)

where A and f2 are as before and

B(θ, ρ) =

[
In −

dζ(θ)

dθ
ρh(θ, ρ)T

]
, (5.43)

where In is the identity matrix in Rn. Overall, combining (5.39) and (5.42) we

arrive at the transformed system:

θ̇ = 1 + f1(θ, ρ) + εhT (θ, ρ)g(Γ(θ) + ζ(θ, t)ρ, t),

ρ̇ = A(θ)ρ+ f2(θ, ρ) + εζTB(θ, ρ)g(Γ(θ) + ζ(θ)ρ, t).
(5.44)

The functions h and B thus show how inputs to the system ẋ = f(x) are trans-

formed to the (θ, ρ) coordinate system. For planar systems, we can show that

ζTB(θ, ρ) = ζT .

To see this, let us write h = (h1, h2) for some scalar values h1, h2. Thus,

ζTB = ζT − ρζT
dζ1

dθ
h1

dζ1
dθ
h2

dζ2
dθ
h1

dζ2
dθ
h2

 = ζT − ρ
(
h1ζ

T dζ
dθ

h2ζ
T dζ

dθ
.
)

(5.45)
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We will now show that

ξT
dξ

dθ
= 0 =⇒ ζT

dζ

dθ
= 0, (5.46)

so that the second term in (5.45) vanishes. We begin by evaluating dξi/dθ as

dξi
dθ

=
1

H(Γ(θ))

d2Γi
dθ2
− 1

H(Γ(θ))3

dΓi
dθ

dΓ

dθ

T d2Γ

dθ2
, (5.47)

Thus,

ξT
dξ

dθ
=

1

H(Γ(θ))2

2∑
i=1

dΓi
dθ

d2Γi
dθ2
− 1

H(Γ(θ))2

(
dΓi
dθ

)2
dΓ

dθ

T d2Γ

dθ2
. (5.48)

After expanding the above equation and dropping a factor of 1/H(Γ(θ))2, we

compare coefficients of the sum in d2Γi(θ)/dθ
2, which are

dΓi
dθ
− 1

H(Γ(θ))2

{(
dΓi
dθ

)3

+
dΓi
dθ

(
dΓj 6=i

dθ

)2
}
. (5.49)

After taking out a factor of 1/H(Γ(θ))2, we have

1

H(Γ(θ))2

{
H(Γ(θ))2 dΓi

dθ
−
(

dΓi
dθ

)3

− dΓi
dθ

(
dΓj 6=i

dθ

)2
}

=
1

H(Γ(θ))2

{((
dΓi
dθ

)2

+

(
dΓj 6=i

dθ

)2
)

dΓi
dθ
−
(

dΓi
dθ

)3

− dΓi
dθ

(
dΓj 6=i

dθ

)2
}

=
1

H(Γ(θ))2

{(
dΓi
dθ

)3

+
dΓi
dθ

(
dΓj 6=i

dθ

)2

−
(

dΓi
dθ

)3

− dΓi
dθ

(
dΓj 6=i

dθ

)2
}

= 0,

(5.50)

using the definition of H. Thus, the dot product ξTdξ/dθ = 0, as is ζTdζ/dθ and

we have that ζTB = ζT so that forcing in ρ depends only on θ for planar systems.

5.2 Some neural examples

To demonstrate the application of the above coordinate transformation, we now

consider some popular single neuron models.

5.2.1 The ML model

We now return to the ML model and show how A, f1 and f2 are manifest in this

model. Throughout this chapter, we use the parameter values which put the ML
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Figure 66: Typical trajectory of the ML model of the transformed system. Left:

Time evolution of θ and ρ. Right: Trajectory plotted in the (v, w) phase plane. We

see that when ρ has a local maximum, the evolution of θ slows down, corresponding

to where trajectories pass near to the saddle.

model near a homoclinic bifurcation, as used in Sect. 4.4.2 (given by Table. 1). As

the ML model is planar, ρ is a scalar, as are the functions A and f1,2. This allows

us to use the moving coordinate system to clearly visualise parts of phase space

where trajectories are attracted towards the limit cycle, and parts in which they

move away from it, as illustrated in Fig. 66. The functions f1,2 and A, evaluated

at ρ = −0.1 are shown in Fig. 67. The evolution of θ is mostly constant, however

we clearly observe portions of the trajectories where this is slowed, along which,

ρ̇ ≈ 0. In fact, this corresponds to where trajectories pass near to the saddle,

and the dynamics stall. This occurs around θ = 15.5, and in Fig. 67 we see that

both A(θ) and f1(θ, ρ) are indeed close to 0. The reduced velocities of trajectories

here highlight the importance of considering other phase space structures in forced

systems, the details of which are missed in standard phase-only models. Forcing

in the presence of such structures may give rise to complex and even chaotic

behaviours, as we shall see in Sect. 5.3.

One of the advantages of using (θ, ρ) coordinates, is that we can represent

other phase space structures. Because of this, it is easy to tell when trajectories
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Figure 67: f1, f2 and A for the ML model, evaluated at ρ = −0.1. We clearly see

the difference in the order of magnitude between f1 and f2 for small ρ. Note that,

although the average of A over one period is negative, it is positive for a nontrivial

interval of θ. This corresponds to movement close to the stable manifold of the

saddle.

have exited the basin of attraction of Γ as a result of some external forcing. As

isochronal coordinates are only defined in BΓ, they are unable to detect these

events. In Fig. 68, we plot the relevant phase plane structures for the ML model

near a homoclinic bifurcation in (θ, ρ) coordinates, along with the transformed

nullclines of the system.
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Figure 68: Relevant phase plane structures of the ML model near a homoclinic

bifurcation in (θ, ρ) coordinates. The dashed black line represents Γ, the stable

limit cycle. The green circles are stable fixed points, whilst the orange circle is

the saddle. The stable manifold of the saddle, which acts as a separatrix between

Γ and the stable fixed point to the right is shown as a dashed orange line. The

unstable limit cycle, which serves as a separatrix between Γ and the fixed point to

the left is depicted as a dashed red curve. We have also plotted the v-nullcline as a

solid green curve, and the w-nullcline as a solid orange curve. With the exception

of the nullclines, these phase plane structures can be seen, plotted in Cartesian

coordinates, in the right panel of Fig. 46.
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5.2.2 The FitzHugh–Nagumo Model

The phenomenological FitzHugh-Nagumo (FHN) model, [182, 24] is a modification

of the van der Pol model [183], designed to capture the mathematical properties

of the HH model. This planar model comprises a voltage-like variable v alongside

a recovery variable w. The model can be used to describe both the oscillatory

and excitable behaviour of nerves. The shape of the nullclines of the reduced HH

model, as discussed in Sect. 2.2, are captured by the FHN model by simply making

the dynamics for v cubic. The dynamics for w are linear. The model is written as

µv̇ = v(a− v)(v − 1) + I − w, ẇ = v − bw. (5.51)

Throughout this chapter we use the parameter values µ = 0.05, a = 0.9, I = 1.1,

and b = 0.5. An example of a typical trajectory for the FHN model may be seen

in Fig. 69. We observe, as in Fig. 66, that their are portions along the trajectory

during which the evolution of θ slows, during which ρ is increasing. However,

we also note the rapid decay of ρ, so these effects are attenuated by the strong

attraction to the limit cycle when µ is small.

Comparison of the ML and FHN model

In Fig. 70, we plotA for the FHN model (the corresponding graph for the ML model

is found in the bottom panel of Fig. 67). We observe that, although Γ for the FHN

is repelling for some interval of θ, the absolute value of A in these intervals is far

smaller than that over intervals where Γ is attracting, so that nearby trajectories

are rapidly to it. This is in contrast to the ML model, which has comparable

absolute values for A over attracting and repelling intervals. We also note that

the size of the intervals over which A is positive are much smaller for the FHN

compared with the ML model. Fig. 71, shows a comparison of f1, f2 for both the

ML and FHN models over a range of ρ. Examining f2, which we recall captures

the nonlinear part of the attraction to Γ, we observe that it is always negative for

the FHN model, whilst it takes both positive and negative values in the ML model.

As such, f2 will cause ρ to decay even faster for trajectories further away from Γ in
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Figure 69: Typical trajectory of the FHN model. Left: Time evolution of θ and ρ.

Right: Trajectory plotted in the (v, w) phase plane. We observe that, in contrast

to the ML model in the homoclinic regime, the limit cycle is strongly attracting,

and so ρ decays to zero very rapidly. Although ρ has a local maximum, at which

the evolution θ also slows, as in Fig. 66, this effect is not as pronounced as for the

ML case.

the FHN model, whilst it acts in opposition to A for the ML model. This means

that |ρ| has to increase for the nonlinear effects, captured by f2, to overcome the

linear effects, captured by A, in the ML model. The interplay between these two

functions reflects the presence of the saddle in the phase space, since trajectories

near Γ will be taken away from Γ along the stable manifold of the saddle, before

returning to Γ along the saddle’s unstable manifold. The structure of f1 is similar

for both models, taking both positive and negative values, indicating that there

are regions in the phase plane where the evolution of phase slows down and regions

in which it speeds up.

5.2.3 A SNIC bifurcation

In addition to the bifurcation scenarios we considered in the previous chapter,

namely the homoclinic and Hopf bifurcations, the ML model also supports a SNIC

bifurcation. In this type of bifurcation, a periodic orbit is generated at the point
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Figure 70: A evaluated for the FHN model, (5.51). The corresponding function

for the ML model may be seen in Fig. 67.

where two fixed points collide and annihilate one another. The fixed points may

be thought of as existing on such a limit cycle, so that trajectories that would

otherwise follow the limit cycle are instead attracted towards the stable fixed

point. For parameters values close to, but following the bifurcation, the ‘ghost of

the saddle node’ still slows the trajectories in the vicinity where the saddle node

bifurcation occurred. This leads to type I excitability, as mentioned in other parts

of this thesis, since the frequency of the limit cycle vanishes at the bifurcation

point. One of the simplest systems exhibiting a SNIC, [46], is (4.1) with

f =

βx−my − x(x2 + y2) + y2√
x2+y2

mx+ βy − y(x2 + y2)− xy√
x2+y2

 , (5.52)

in which the bifurcation occurs at m = 1. For m > 1, there exists a limit cycle, Γ,

which is available in closed form as

Γ(θ) =
√
β (cos Ω(θ), sin Ω(θ)) , (5.53)

for a function Ω which maps the phase variable θ ∈ [0,∆) 7→ [0, 2π), where ∆ =

2π/
√
m2 − 1, given by

Ω(θ) = 2 arctan

(
m sin πθ/∆√

m2 − 1 cosπθ/∆ + sin πθ/∆

)
. (5.54)

For simplicity, we set β = 1 hereafter. Using

dΓ

dθ
= f(Γ(θ)), (5.55)

188



0
0.05

0.1
0

/2
-2

 0

 2
f1

FHN

0
0.05

0.1
0

/2

-0.4

-0.2

 0f2

0
1

2
0

/2
-0.08

-0.04

 0f2

0
1

2
0

/2
-1

 0

 1f1

ML

Figure 71: f1 and f2 evaluated for the ML model (top) and FHN model (bottom).

The structure of f1 is similar for both models, taking both positive and negative

values, indicating that there are regions in the phase plane where the evolution of

phase slows down and regions in which it speeds up. Conversely, we note that f2

is never positive for the FHN model, so that the nonlinear effects captured by f2

cause trajectories further away from Γ to be attracted faster than those close to

it. For the ML model, f2 acts in opposition to A, so that |ρ| must increase before

the nonlinear effects of f2 overcome the linear ones of A. This interplay reflects

the presence of the saddle in the phase plane of the ML model, and in particular

describes the effects of the invariant manifolds of the saddle.
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we may show that
dΩ

dθ
= m− sin Ω(θ). (5.56)

The coordinates for this system are given by

ξ(θ) =

− sin Ω(θ)

cos Ω(θ)

 , ζ(θ) =

cos Ω(θ)

sin Ω(θ)

 ,
∣∣∣dΓ

dθ

∣∣∣ =
dΩ

dθ
(5.57)

Differentiating with respect to θ, we have that

dζ

dθ
=

dΩ

dθ

− sin Ω(θ)

cos Ω(θ)

 =
dΩ

dθ
ξ(θ). (5.58)

so that

ξT
dζ

dθ
=

dΩ

dθ
. (5.59)

This yields

h(θ, ρ) =

[
dΩ

dθ
(1 + ρ)

]−1

ξ(θ). (5.60)

It can be shown that

f(Γ + ζρ)− f(Γ) = −ρ(1 + ρ)(2 + ρ)ζ + ρ (m− sin Ω(θ)) ξ, (5.61)

so that

f1(θ, ρ) = −h(θ, ρ)T
dζ

dθ
ρ+ h(θ, ρ)T [f(Γ + ζρ)− f(Γ)]

=
−ρ(m− sin Ω(θ))− ρ(1 + ρ)(2 + ρ)ξT ζ + ρ(m− sin Ω(θ))

(m− sin Ω(θ)) (1 + ρ)
= 0. (5.62)

We may also calculate

ζTDf(Γ)ζ = −2,

so that

A(θ) = ζT
dζ

dθ
+ ζTDf(Γ)ζ = −2, (5.63)

since ζTdζ/dθ = 0. Finally, since f1 = 0, we have

f2(θ, ρ) = ζT [f(Γ + ζρ)− f(Γ)]− ζTDf(Γ)ζρ

= −ρ(1 + ρ)(2 + ρ)ζT ζ + ρ(m− sin Ω(θ))ζT ξ + 2ρ

= −ρ2(3 + ρ). (5.64)
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Substituting, (5.63)-(5.64) into (5.15), we may write the dynamics of the unforced

SNIC oscillator as

θ̇ = 1, ρ̇ = −ρ(2 + 3ρ+ ρ2). (5.65)

We note two important features of (5.65). Firstly, since f1=0, there are no shear

forces present in the system. Secondly, the limit cycle is attracting for all values

of θ, and the strength of this attraction is independent of θ. This means that, in

contrast to the case near to a homoclinic bifurcation, we would not expect shear

induced chaos for a system near a SNIC, in spite of the similarities between the

two bifurcations. Since the ‘sticky’ region of phase space is now along Γ, we do

not get the same kind of folds as observed in Fig. 48. That we should not expect

shear induced chaos for the SNIC oscillator is reinforced by an inspection of the

isochrons of the system in Cartesian coordinates, which are radial lines, emanating

from the fixed point at the origin, as shown in Fig. 72. To see why these radial

isochrons do not predict shear induced chaos, recall Fig. 45, which shows the case

for the linear shear model (4.8). In this figure, we showed the movement of a kick

image down the isochrons which, for (4.8), are simply straight lines with negative

slope. The shear, in this case, caused a fold to develop as the kick image relaxed

back to Γ along these isochrons. Radial isochrons would be represented in such a

graph by vertical lines, and so the relaxation of a kick image along these isochrons

would not produce any folding. Since no folds are produced, we do not have any

shear induced chaos.

In the next example, we show how phase-amplitude coordinates can be used

for higher dimensional models. In spite of the increase in dimension, the technique

of moving to phase-amplitude coordinates may still be readily applied.

5.2.4 A 4D conductance-based model

The Connor–Stevens (CS) model [184] is built upon the HH formalism and com-

prises a fast Na+ current, a delayed K+ current, a leak current and a transient

K+ current, termed the A-current. The full CS model consists of 6 equations:

the membrane potential, the original HH gating variables and an activating and
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Figure 72: Isochrons of system (5.52). The isochrons are seen to be radial lines,

emanating from the fixed point at the origin, and are thus orthogonal to Γ. For

system (5.52) in phase-amplitude coordinates, f1 = 0 everywhere and both A and

f2 are negative and independent of θ. This means that, in contrast to the case for

a homoclinic bifurcation, we do not expect shear folding or shear induced chaos

for a system near a SNIC bifurcation.
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inactivating gating variable for the A-current. Using the method of equivalent po-

tentials [21] as done in Sect. 2.2, we may reduce the dimensionality of the system,

to include only four variables namely, the membrane potential, v, and equivalent

potential u and two gating variables (a, b). The reduced system is:

Cv̇ = −F (v, u, a, b) + I, u̇ = G(v, u), Ẋ =
X∞(v)−X

τX(v)
, X ∈ {a, b}, (5.66)

where

F (v, u, a, b) = gKn
4
∞(u)(v−vK)+gNah∞(u)m3

∞(v)(v−vNa)+gL(v−vL)+gaa
3b(v−va).

(5.67)

and

G(v, u) =

(
∂F
∂h

[
h∞(v)−h∞(u)

τh(v)

]
+ ∂F

∂n

[
n∞(v)−n∞(u)

τn(v)

])
(

∂f
∂h∞

dh∞(u)
du + ∂f

∂n∞

dn∞(u)
du

) , (5.68)

where ∂F/∂h and ∂F/∂n are evaluated at h = h∞(u) and n = n∞(u). For the

gating variables (a, b), we have

a∞(v) =

(
0.0761e

v+94.22
31.84

1 + e
v+1.17
28.93

) 1
3

, τa(v) = 0.3632 +
1.158

1 + e
v+55.96
20.12

, (5.69)

b∞(v) =

(
1

1 + e
v+53.3
14.54

)4

, τb(v) = 1.24 +
2.678

1 + e
v+50
16.027

. (5.70)

The parameter values we use are C = 1µF/cm2, gL = 0.3 mmho/cm2, gK =

36.0 mmho/cm2, ga = 47.7 mmho/cm2, I = 35.0µA/cm2, v0 = 80.0 mV, va =

−75.0 mV, vK = −77.0 mV, vL = −54.4 mV, and vNa = 50.0 mV. The solutions to

the reduced CS model under the coordinate transformation may be seen in Fig. 73,

whilst in Fig. 74, we show how this solution appears in the original coordinates.

As for the ML model, θ evolves approximately constantly throughout, though this

evolution is sped up close to θ = ∆. The trajectories of the vector ρ are more

complicated, but note that there is regularity in the pattern exhibited, and that

this occurs with approximately the same period as the underlying limit cycle. The

damping of the amplitude of oscillations in ρ over successive periods represents the

overall attraction to the limit cycle, whilst the regular behaviour of ρ represents

the specific relaxation to cycle, as shown in Fig. 74.

193



0.0

1.0

2.0

3.0

4.0

-10.0

0.0

10.0

20.0

0.0 2.0 4.0 6.0 8.0 10.0t

Figure 73: Solution of the transformed CS system. Top: Time evolution of θ.

Bottom: Time evolution of ρ coordinates. Upon transforming these coordinates

back to the original ones, we arrive at Fig. 74. In this parameter regime the model

exhibits type I firing dynamics.

5.3 Pulsatile forcing of phase-amplitude oscillators

We now consider a system with time-dependent forcing, given by (5.38) with

g(x, t) =
∑
n∈Z

(δ(t− nT ), 0, . . . , 0)T , (5.71)

where δ is the Dirac δ-function. This describes T -periodic kicks to the voltage

variable. We have already seen in Sect. 4.4.2, that even such a simple forcing

paradigm can give rise to rich dynamics [157] in the ML model. The presence of

chaos in the homoclinic regime for the ML model means that the response of the

neuron is extremely sensitive to the initial phase when the kicks occur. We may use

the phase-amplitude coordinates to see more clearly the shear effects that produce

folding in the ML model. We now show the analogues of Fig. 48 and Fig. 49 in the
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Figure 74: Transformed trajectory in (v, u, b) space of the phase-amplitude de-

scription of the reduced CS model. The dotted black line is the phase amplitude

solution transformed in the original coordinates, whilst the coloured orbit is the un-

derlying periodic orbit, where the colour corresponds to the phase along the orbit.

The solution of the phase-amplitude description of the model in (θ, ρ) coordinates

is shown in Fig. 73.

phase amplitude coordinates. As in Fig. 45, we represent Γ by the horizontal grey

line, and give it, at time t = 0, a kick of the form (5.71) with strength ε = −2 taking

it to the black curve in the top left panel. Following this, for Fig. 75, we evolve

all of the points on the black curve under (5.15) for the ML model, for the time

indicated on the panels. We notice the effect of the repelling parts of the orbit, as

ρ increases for some parts of the black curve, before decreasing as all of the points

are eventually attracted back to Γ. More importantly, we can see the effect of the

‘stickiness’ of the saddle, which has coordinates (θ, ρ) ≈ (15.4376, 14.1251). Points

along the black curve passing near to these points get ‘trapped’, whilst points away

from it do not. We can see a fold in the black curve forming at around t = 10,
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Figure 75: Analogy of Fig. 48 in phase-amplitude coordinates. At t = 0, the grey

line, representing Γ is given a kick of the form (5.71) with strength ε = −2, taking

it to the black curve in the top left panel. We then evolve points on this curve

under the flow of the ML model, using (5.15), in (θ, ρ) coordinates for the time

indicated in the panels. As in the case for the Cartesian coordinates, we can see a

fold developing as time continues. We go on to show how these folds accumulate

under repeated kicks in Fig. 76.

near θ = 15.5, which sharpens as time increases. As time continues to increase, all

points along the black curve will decay towards Γ and so the fold will not be as

prominent as t → ∞. However, we may repeat the kicks, evolving under (5.44),

with T = 25 to see the effect of repeated kicks on the system, as shown in Fig. 76,

where we plot points just after the kicks. We can clearly see the folds accumulate.

As this process continues, it will give rise to the chaos observed in Sect. 4.4.2.

We would now like to compare full planar neural models to the linear shear model

model (4.8), which we recall here, for convenience

θ̇ = 1 + βρ, ρ̇ = −λρ+ εP (θ)
∑
n∈Z

δ(t− nT ). (5.72)

By comparing with the phase-amplitude dynamics described by equations
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Figure 76: Image of Γ (black curve) under (5.44), with T = 27, where the grey line

represents Γ. This is the analogy of Fig. 49, so that we are repeating iterations

of the map which composes the action of the kick and the unforced flow. We

can clearly see folds accumulating under the repeated action of the kicks. As these

folds continue to accumulate, a strange attractor forms, leading to chaos, as shown

in Sect. 4.4.2.

(5.44), we see that the model of shear considered in (5.72) is a proxy for a more gen-

eral system, with f1(θ, ρ)→ σρ, A(θ)→ −λ and h(θ, ρ)→ 0, and ζ1(θ)→ P (θ).

Compared to the phenomenological system (5.72), models written in phase-

amplitude coordinates as (5.44) have two main differences. The intrinsic dynamics

(without kicks) are nonlinear, and the kick terms appear in both equations for θ̇

and ρ̇ (not just ρ̇). Simulations of (5.44) for both the FHN and ML models, with

ε = 0.1, show that the replacement of f1(θ, ρ) by σρ, dropping f2(θ, ρ) (which is

quadratic in ρ), and setting A(θ) = −λ does not lead to any significant qualitative

change in behaviour (for a wide range of σ, λ > 0). We therefore conclude that, at

least when the kick amplitude ε is not too large, it is more important to focus on
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the form of the forcing in the phase-amplitude coordinates. In what follows, we are

interested in discovering the effects of different functional forms of the forcing term

multiplying the δ-function, keeping other factors fixed. As examples, we choose

those forcing terms given by transforming the FHN and the ML models into phase-

amplitude coordinates. To find these functions, we first find the attracting limit

cycle solution in the ML model (2.28)-(2.29) and FHN model (5.51) using a periodic

boundary value problem solver and set up the orthonormal coordinate system

around this limit cycle. Once the coordinate system is established, we evaluate

the functions h(θ, ρ) and ζ(θ) (that appear in the system (5.44)). Using the forcing

term (5.71), we are only considering perturbations to the voltage component of

our system and thus only the first component of h and ζ will make a nontrivial

contribution to the dynamics. We define P1 as the first component of h and P2 as

the first component of ζ. We wish to force each system at the same ratio of the

natural frequency of the underlying periodic orbit. To ease comparison between

the system with the ML forcing terms and the FHN forcing terms, we rescale

θ 7→ θ/∆ so that θ ∈ [0, 1) in what follows. Implementing the above choices leads

to

θ̇ = 1 + βρ+ εP1(θ, ρ)
∑
n∈Z

δ(t− nT ),

ρ̇ = −λρ+ εP2(θ)
∑
n∈Z

δ(t− nT ).
(5.73)

It is important to emphasise that P1,2 are determined by the underlying single

neuron model (unlike in the toy model (5.72)). As emphasised in [185], one must

take care in the treatment of the state dependent ‘jumps’ caused by the δ-functions

in (5.73) to accommodate the discontinuous nature of θ and ρ at the time of the

kick. To solve (5.73), we approximate δ(t) with a normalised square pulse δτ (t) of

the form

δτ (t) =


0 t ≤ 0,

1/τ 0 < t ≤ τ,

0 t > τ,

(5.74)

where τ � 1. This means that for (n − 1)T + τ < t ≤ nT , n ∈ Z, the dynamics
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are governed by the linear system (θ̇, ρ̇) = (1 + βρ,−λρ). This can be integrated

to obtain the state of the system just before the arrival of the next kick, (θn, ρn) ≡

(θ(nT ), ρ(nT )), in the form

θn =

[
θ(t) + nT − t+

β

λ
ρ(t)

(
1− e−λ(nT−t))] mod 1, (5.75)

ρn = ρ(t)e−λ(nT−t). (5.76)

In the interval nT < t < nT + τ and using (5.74) we now need to solve the system

of nonlinear ODEs

θ̇ = 1 + βρ+
ε

τ
P1(θ, ρ), ρ̇ = −λρ+

ε

τ
P2(θ). (5.77)

Rescaling time as t = nT + τs, with 0 ≤ s ≤ 1, and writing the solution (θ, ρ)

as a regular perturbation expansion in powers of τ as (θ(s), ρ(s)) = (θ0(s) +

τθ1(s), ρ0(s) + τρ1(s)) + . . . , we find, after collecting terms of leading order in τ

that the pair (θ0(s), ρ0(s)) is governed by

dθ0

ds
= εP1(θ0(s), ρ0(s)),

dρ0

ds
= εP2(θ0(s)), 0 ≤ s ≤ 1, (5.78)

with initial conditions (θ0(0), ρ0(0)) = (θn, ρn). The solution (θ0(1), ρ0(1)) ≡

(θ+
n , ρ

+
n ) (obtained numerically) can then be taken as initial data (θ(t), ρ(t)) =

(θ+
n , ρ

+
n ) in (5.75)-(5.76) to form the stroboscopic map

θn+1 =

[
θ+
n + T − β

λ
ρ+
n

(
1− e−λT

)]
mod 1, (5.79)

ρn+1 = ρ+
n e−λT . (5.80)

Note that this has been constructed using a matched asymptotic expansion, with

(5.74), and is valid in the limit τ → 0. For weak forcing, where ε � 1, P1,2 vary

slowly through the kick and can be approximated by their values at (θn, ρn) so

that to O(ε2)

θn+1 =

[
θn + T + εP1(θn, ρn) +

β

λ

(
ρn + εP2(θn)

) (
1− e−λT

)]
mod 1, (5.81)

ρn+1 = (ρn + εP2(θn)) e−λT . (5.82)
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We choose to work with the full stroboscopic map (5.79)-(5.80), which is particu-

larly useful for comparing and contrasting the behaviour of different planar single

neuron models with arbitrary kick strength. As an indication of the presence of

chaos in the dynamics resulting from this system, we again turn to LEs, evalu-

ating the MLE of the map (5.79)-(5.80). The evolution of the separation vector,

δX = (δθ, δρ), between kicks, is given by the map

δθn+1 = δθ+
n +

β

λ
δρ+

n

(
1− e−λT

)
, δρn+1 = δρ+

n e−λT . (5.83)

In order to find (δθ+
n , δρ

+
n ), we solve the variational equation associated with (5.78),

using (δθn, δρn) as initial condition and use a matched asymptotic expansion, as

before, to piece together solutions at s = 0 and s = 1.

For the phase-only model, as considered in Chapt. 4, the above becomes more

straightforward. During the kicks, the evolution of θ for the model θ̇ = 1 +

εR(θ)
∑

n δ(t− nT ) is given by

dθ

ds
= τ + εR(θ), 0 ≤ s ≤ 1. (5.84)

Writing solutions as θ(s) = θ0(s) + τθ1(s) + . . . , and working to first order in τ ,

we obtain
dθ0

ds
= εR(θ0). (5.85)

Defining θ− as the value of θ just before the kick, separating variables and inte-

grating, matching solutions at s = 0 and s = 1, we obtain∫ θ+

θ−

dθ

R(θ)
= ε, (5.86)

which yields the implicit jump condition

F(θ+)−F(θ−) = ε, where F(θ) =

∫
dθ

R(θ)
. (5.87)

If F is invertible, we may write θ+ explicitly as

θ+ = F−1
(
F(θ−) + ε

)
. (5.88)
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If F is not invertible, then we may solve (5.87) numerically, choosing an initial

guess near θ− + εR(θ−). During a kick, we have, for δθ

dδθ

ds
= εR′(θ)δθ (5.89)

Separating variables and matching solutions for this equation yields∫ δθ+

δθ−

dδθ

δθ
= ε

∫ 1

0

R′(θ(s)) ds =

∫ θ+

θ−

R′(θ)

R(θ)
dθ. (5.90)

Integrating this equation gives

ln

(
δθ+

δθ−

)
= ln

(
R(θ+)

R(θ−)

)
=⇒ δθ+ =

R(θ+)

R(θ−)
δθ−. (5.91)

and so we arrive at (4.16), as used in Sect. 4.4.2. We note that we could equivalently

derive this expression using the technique in Sect. 3.13, taking (5.87) as the reset

map g.

In Fig. 77, we compare the functions P1,2 for both the FHN and the ML models,

evaluating the functions at ρ = 0, where the response of the system to forcing is

most prominent. We note that P2 for the FHN model is near 0 for a large set of

θ, whilst the same is true for P1 for the ML model. This means that kicks in the

FHN model will tend to primarily cause phase shifts, whilst the same kicks in the

ML model will primarily cause shifts in amplitude.

We plot, in Fig. 78 A and B, the pair (θn, θn+1), for (5.79)-(5.80) for the FHN

and ML models. For the FHN model, we find that the system has a MLE of

−0.0515 < 0. For the ML model the MLE is 0.6738 > 0. This implies that

differences in the functional forms of P1,2 can help to explain the generation of

chaos.

Now that we know the relative contribution of kicks in v to kicks in (θ, ρ), it is

also useful to know where kicks actually occur in terms of θ as this will determine

the contribution of a train of kicks to the (θ, ρ) dynamics. In Figs. 78 C and D,

we plot the distribution of kicks as a function of θ.

After transients, we observe a 1 : 1 phase-locked state for the FHN model. For

a phase-locked state, small perturbations will ultimately decay as the perturbed
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Figure 77: The blue curves show the change in θ under the action of a pulsatile

kick in v, whilst the red dashed curves show the change in ρ under the same kick.

The top plot is for the FHN model, whilst the bottom plot is for the ML model.

We evaluate the effect of the kicks at ρn = 0, where we observe the largest changes

in θ under the action of kicks.

trajectories also end up at the phase-locked state after some transient behaviour.

Examining the histogram of the kick phases, we see a grouping of kicks around the

region where P2 is roughly zero. This sharply peaked distribution of kick phases

is to be expected for discrete-time systems possessing a negative MLE, since such

systems tend to have sinks. Since P2 is small, kicks will not be felt as much in

the ρ variable and so trajectories stay close to the limit cycle. As trajectories do

not move far from the limit cycle, there is no possibility of folding, and hence no

chaotic behaviour. This helps explain why it is more difficult to generate chaotic

responses in the FHN model.

For the ML model, we observe chaotic dynamics around a strange attractor,
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Figure 78: Panel A shows successive iterates of θ in system (5.79)-(5.80) with

functions P1,2 taken from the FHN model, whilst panel B presents the same iterates

but for functions P1,2 from the ML model. Panel C shows P1,2 for the FHN model,

where the bold blue line is P1 and the red dashed line is P2. Superimposed on

this panel is a histogram displaying how kicks are distributed in terms of θ alone.

Panel D shows the same information, except this time for forcing functions from

the ML model. Parameter values are β = 3.0, λ = 0.1, ε = 0.1, and T = 2.0.
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where small perturbations can grow, leading to a positive MLE of 0.6738. This

time, the kicks are distributed fairly uniformly across θ, and so, some kicks will

take trajectories away from the limit cycle, and we have shear-induced folding and

chaotic behaviour.

5.4 Revisiting the two cell ML network

As a final example, we return to the system of two gap junction coupled ML

cells, as considered in Sect. 4.9. In the previous chapter, we showed that for weak

coupling, with strength ε = 0.001, the phase-only model description of this network

predicted a stable anti-phase rhythm between the two cells. The simulation of the

system in phase-amplitude coordinates can be seen in Fig. 79, in which the top

row shows the evolution of θ for the two cells, and the bottom row shows how

this corresponds to the voltage variables in the original coordinates. Using these

coordinates, we can shed some light onto the effect of the coupling between the

cells. We observe, for both cells, an increase in the rate of evolution of θ (from the

unperturbed case, in which θ̇ = 1) in the interval θ ∈ (17, 20). Recalling that the

saddle is at around θ ≈ 15.5, this region corresponds to the case where trajectories

come closest to the saddle and hence evolve slowly, confirmed by noticing that

these points correspond to troughs in the evolution of v, shown in the panels

below. The effect of the coupling is to pull trajectories away from this region at a

faster rate than the unperturbed case, similar to the release mechanism as studied

in [186], though without any network inhibition. As a result of this, the period

of the network oscillation is shorter than for an isolated neuron. This mechanism

may help to promote the stability of the anti-phase rhythm, since we would not

expect this effect for a synchronous network state.

5.5 Discussion

In this chapter, we have used the notion of a moving orthonormal coordinate sys-

tem around a limit cycle to study dynamics in a neighbourhood around it. This
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Figure 79: Simulation of a network of two identical ML neurons coupled through

gap junctions, using phase-amplitude coordinates (5.44). Using the phase-

amplitude coordinates, as shown in the top panels, we see an anti-phase network

solution arise. The corresponding solution in v is shown in the panels below. We

clearly see how the coupling increases the rate of evolution of θ near the saddle.

phase-amplitude coordinate system can be constructed for any given ODE system

supporting a limit cycle. A clear advantage of the transformed description over

the original one is that it allows us to gain insight into the effect of time dependent

perturbations, using the notion of shear, as we have illustrated by performing case

studies of popular neural models, in two and higher dimensions. Whilst this co-

ordinate transformation does not result in any reduction in dimensionality in the

system, as is the case with classical phase reduction techniques, it opens up av-

enues for moving away from the weak coupling limit, where ε→ 0. Importantly, it

emphasises the role of the two functions P1(θ, ρ) and P2(θ) that provide more infor-
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mation about inputs to the system than the iPRC alone. It has been demonstrated

that moderately small perturbations can exert remarkable influence on dynamics

in the presence of other invariant structures [157], which cannot be captured by

a phase-only description. In addition, small perturbations can accumulate if the

timescale of the perturbation is shorter than the timescale of attraction back to

the limit cycle. This should be given particular consideration in the analysis of

neural systems, where oscillators may be connected to thousands of other units,

so that small inputs can quickly accumulate.

One natural extension of this work is to move beyond the theory of weakly

coupled oscillators to develop a framework for describing neural systems as net-

works of phase-amplitude units. This has previously been considered for the case

of weakly coupled weakly dissipative networks of nonlinear planar oscillators (mod-

elled by small dissipative perturbations of a Hamiltonian oscillator) [187, 188, 189].

It would be interesting to develop these ideas and obtain network descriptions of

the following type

θ̇i = 1 + f1(θi, ρi) +
∑
j

wijH1(θi, θj, ρi, ρj),

ρ̇i = A(θi)ρi +
∑
j

wijH2(θi, θj, ρi, ρj),
(5.92)

with an appropriate identification of the interaction functions H1,2 in terms of the

biological interaction between neurons and the single neuron functions P1,2. Such

phase-amplitude network models are ideally suited to describing the behaviour of

the mean-field signal in networks of strongly gap junction coupled ML neurons

[190, 137], which is known to vary because individual neurons make transitions

between cycles of different amplitudes. In addition, such coordinate systems may

be useful for studying networks of bursting neurons, which are capable of sup-

porting interesting synchronisation phenomena. In a diffusively coupled network

of two square wave bursters, for example, the bursting envelope of the two cells

may be synchronised, whilst the spikes within the burst are in anti-phase [191].

Increasing the coupling strength between these two cells, can sometimes promote

a switch to a fully synchronous state, in which both the bursting envelope and
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spikes within the burst are synchronised. We have shown, in Chapt. 3 and 4 how

to use averaging theory to predict the stability of network states for a two cell

network. Averaging theory shows what phase shift between the two cells is sta-

ble, but it will not capture the subtle effect of anti-phase spikes in a synchronised

burst. Furthermore, it can be shown that, for elliptic bursters, with gap junction

and synapses, that the degree of synchronisation can change during the active

phase of a burst [192]. Whilst phase-only models cannot capture these effects,

using phase-amplitude variables will enable us to describe these phenomena in

familiar framework of phases. Finally, phase-amplitude equations may enable us

to make progress in the analysis of rhythms in heterogeneous networks, in which

different units in the network have different parameter values. This is clearly more

representative of real neural tissue, which is comprised of many different types of

neurons, each with their own morphology.

In the next chapter, we focus on the analysis of stochastically forced oscillators

in the phase-amplitude framework.
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6 Phase-amplitude descriptions of stochastically

forced neural oscillators

Building on work from the previous chapter, the present chapter focuses on the

phase-amplitude descriptions of stochastically forced oscillators. Stochastically

forced neural oscillators have been receiving a significant amount of interest in

recent years, such as in [193, 194, 195], as the community tries to better cap-

ture the dynamics of inherently stochastic biological processes. The addition of

stochastic forcing terms can have a pronounced effect on oscillatory dynamics,

even in cases where the noise strength is weak compared to the deterministic part

of the dynamics. In terms of dynamical structures, noise can serve to shift in-

variant structures around, relative to deterministic ones, and may cause a shift in

the critical values of bifurcations [11]. At the level of behaviour, this can cause

changes in the frequency of firing of an oscillator, which may have consequences

on the synchronisation properties of the network [196]. In extreme cases, it can

even quench oscillatory behaviour, or make the system move into a completely un-

predictable regime, though this is not typically a problem for weak noise sources.

Stochastic forcing can also generate oscillatory activity where the deterministic

system is quiescent via stochastic resonance [78], or may enhance entrainment to a

deterministic signal through coherence resonance [77], which may help neurons to

respond to weak signals [76, 65]. The need to understand the role that noise plays

on neural coding means that we need to have a better knowledge of the way that

noise sources impact dynamics [197, 198]. For weak noise sources, we can resort to

similar techniques as for deterministic oscillators, through the use of isochrons of

the asymptotically stable limit cycle [199, 8]. This allows us to form a perturba-

tive expansion of the dynamics, using the noise strength as a parameter, resulting

in an equation in phase alone. However, as in the case of Chapt. 4, we can also

easily find situations in which these approximations do not always capture all of

the necessary dynamical behaviour, even at the single neuron level.

From a modelling perspective, there are a plethora of considerations for stochas-
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tic signals: which interpretation of noise is used; whether the noise acts additively

or multiplicatively, and if the noise acts multiplicatively, what functional form does

the signal take; and what is the structure of the temporal correlations in the noise

source? On the simulation side, there are the same considerations as for deter-

ministic systems, namely the trade off between accuracy and speed. This problem

is exacerbated in the stochastically forced system, since inclusion of variability in

the noise sources results in lower order accuracy of numerical schemes, forcing us

to use smaller time steps to achieve the same level of accuracy as for the determin-

istic system [200]. Additionally, in order to properly simulate sample paths of a

noisy system, it is necessary to generate pseudorandom numbers at each time step,

further reducing the computational speed of numerical algorithms. We can make

use of the Fokker–Planck equation to avoid these issues in simulation [93], and find

equations for many quantities of interest associated with the SDE in the form of

a PDE, however, in some cases, the complexity in solving the resultant PDE may

mean that simulating sample paths is less onerous. Although we only consider the

white-noise case, that is where the noise has temporal correlations only at zero lag,

we note that there have been recent results in this area for the weak noise case,

both by a redefinition of the isochrons to account for the temporal correlations in

the noise [201], and through taking ensemble averages to include the correlation

function of the noise directly in the governing equation for the phase dynamics [9].

Away from the weak noise limit, another area of interest for stochastically

forced oscillators is that of bistability. In this setting, we are interested in cases

in which a stable limit cycle coexists with a stable fixed point. If we consider

such a system in terms of polar coordinates, this is akin to the classic double well

potential, in which we are interested in transitions of a particle with some injected

energy between two potential wells [80]. Relevant properties of these transitions,

such as exit time distributions, can be computed through the use of the Fokker–

Planck equation [93]. In a neural context, the transitions between quiescence and

oscillations can be related to up and down states in EEG recordings from the

cortex [202].
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As in the previous chapter, we assume that the unforced system supports pe-

riodic oscillations, and that the forcing may be considered as a perturbation to

the unforced system. In Sect. 5.1, we considered a coordinate system to describe

the dynamics of a given model around a limit cycle in Rn. This system had the

drawback that it ceased to be invertible at some finite distance away from the limit

cycle, and thus broke down. For planar systems, we may overcome this problem

by setting up a different coordinate system around the limit cycle. We begin this

chapter by reviewing some of the results for weakly forced oscillators, before later

relaxing the weak assumption and considering switching between different basins

of attraction under forcing.

6.1 Stochastically forced oscillators

Throughout this chapter, we consider systems of the form

dx = F (x)dt+ σ G(x)dWt, x ∈ R2, σ ∈ R. (6.1)

We assume that the unforced system, with noise strength σ = 0, has a hyperbolic,

attracting limit cycle, Γ, with period ∆, which may be parametrised by ϑ ∈ [0,∆),

with ϑ̇ = 1 on Γ. We note that there is only one noise source present in (6.1),

which has a state dependence given by G, and that we consider white noise only,

that is, where the noise is modelled as increments of a Wiener process.

6.2 Weakly forced systems in isochronal coordinates

We start from (6.1), interpreting the stochastic integral in the Stratonovich sense,

so that the ordinary rules of calculus hold. Under this interpretation, we may

rewrite this equation in isochronal coordinates, with an asymptotic phase ϑ ∈

[0,∆) and an amplitude variable, r, which captures the distance along an isochron,

so that r = 0 corresponds to Γ. If we perform the transformation (x1, x2) 7→ (ϑ, r),

we obtain the system

dϑ = dt+ σh(ϑ, r) ◦ dWt, dr = f(ϑ, r)dt+ σg(ϑ, r) ◦ dWt, (6.2)
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where

h(ϑ, r) = ∇xϑ·G(x(ϑ, r)), f(ϑ, r) = ∇xr·F (x(ϑ, r)), g(ϑ, r) = ∇xr·G(x(ϑ, r)).

(6.3)

Following [199], this Stratonovich SDE may be converted to an Itô SDE, yielding

dϑ = dt+
σ2

2

[
∂h(ϑ, r)

∂ϑ
h(ϑ, r) +

∂h(ϑ, r)

∂r
g(ϑ, r)

]
dt+ σh(ϑ, r)dWt,

dr = f(ϑ, r)dt+
σ2

2

[
∂g(ϑ, r)

∂ϑ
h(ϑ, r) +

∂g(ϑ, r)

∂r
g(ϑ, r)

]
dt+ σg(ϑ, r)dWt,

(6.4)

We will now show, using the Fokker–Planck equation, that the phase-only model

approximating (6.4) may be obtained by setting r = 0 in the dynamics of ϑ, and

setting dr = 0. The (forward) Fokker–Planck equation for the evolution of the

probability, P , of system (6.4) is

∂P

∂t
= − ∂

∂ϑ
[{1 +D (hϑh+ hrg)}P ] +D

∂2[h2P ]

∂ϑ2

− ∂

∂r
[{f +D (grh+ grg)}P ] + 2D

∂2[hgP ]

∂ϑ∂r
+D

∂2[g2P ]

∂r2
, (6.5)

where the subscripts ϑ and r denote partial differentiation and D = σ2/2. We

assume a periodic boundary condition for ϑ, so that P (t, 0, r) = P (t,∆, r). When

D = 0, the steady state distribution is given by P0 = ∆−1δ(r). For small D > 0,

the distribution still localises near r = 0 and rapidly decreases with increasing |r|

because of asymptotic stability of the limit cycle. It may be shown (see [199]) that

indeed, P0 localises near r = 0 to a Gaussian distribution for small D.

We now consider the domain {(ϑ, r) ∈ R2;−ε ≤ r ≤ ε} for a small constant

ε and the large time behaviour of the system. We are going to approximate the

Fokker–Planck equation up to O(D), so that the steady state distribution is no

longer given by P0 = ∆−1δ(r). In this case, we may assume that P0 = 0 and

∂P0/∂r = 0 at r = ±ε. Since P converges to P0, the localisation property holds

for P (t, ϑ, r) and so P = 0 and ∂P/∂r = 0 hold approximately at r = ±ε.

We are interested in the marginal distribution Q(t, ϑ) =
∫ ε
−ε P (t, ϑ, r)dr. We

integrate (6.5) with respect to r, over the interval [−ε, ε], upon noting that the

terms including the derivative ∂
∂r

disappear on integrating, to obtain

∂Q

∂t
= − ∂

∂ϑ

∫ ε

−ε
(1 +DK1)Q dr +D

∂2

∂ϑ2

∫ ε

−ε
K2Q dr, (6.6)
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where K1 = hϑh+hrg and K2 = h2. These functions may be expanded in the forms

K1 = hϑ(ϑ, 0)h(ϑ, 0) + hr(ϑ, 0)g(ϑ, 0) + rR1(ϑ, r) and K2 = h(ϑ, 0)2 + rR2(ϑ, r),

where R1 and R2 are functions of O(r0) or higher, with respect to r. Defining

Z(ϑ) = h(ϑ, 0), and Y (ϑ) = hr(ϑ, 0)g(ϑ, 0), (6.7)

K1 and K2 may be further rewritten as K1 = Z(ϑ)Z ′(ϑ) + Y (ϑ) + rR1(ϑ, r)

and K2 = Z(ϑ)2 + rR2(ϑ, r). Consider the integrals
∫ ε
−ε rRiP dr, for i = 1, 2.

Since P (t, ϑ, r) is approximately P0(ϑ, r) and limD→0 P0(ϑ, r) = ∆−1δ(r), the pro-

file of P (t, ϑ, r) may be approximated by δ(r) in the limit D → 0. Using this

approximation, and noting that rRi is of order O(r) or higher, we have that

limD→0

∫ ε
−ε rRiP dr = 0, implying that

lim
D→0

∂

∂ϑ

∫ ε

−ε
rR1P dr =

∂

∂ϑ
lim
D→0

∫ ε

−ε
rR1P dr = 0, (6.8)

and

lim
D→0

∂2

∂ϑ2

∫ ε

−ε
rR2P dr =

∂2

∂ϑ2
lim
D→0

∫ ε

−ε
rR2P dr = 0. (6.9)

Thus, we have D ∂
∂ϑ

∫ ε
−ε rR1Pdr = o(D) and D ∂2

∂ϑ2

∫ ε
−ε rR2Pdr = o(D). Substitut-

ing the expansions of K1 and K2 into (6.6) and using these facts, we obtain the

approximate Fokker–Planck equation for Q, up to O(D) as

∂Q

∂t
= − ∂

∂ϑ
[{1 +D (ZZ ′ + Y )}Q] +D

∂2[Z2Q]

∂ϑ2
. (6.10)

The SDE corresponding to (6.10) (in the Stratonovich sense) is

dϑ = dt+DY (ϑ)dt+ σZ(ϑ) ◦ dWt, (6.11)

which is the stochastic analogue of the phase reduction for the deterministic case.

Comparing this with the phase equation in 6.2, we see that there is an extra term

DY which appears on making the phase reduction in this stochastic setting.

Let us consider (6.10) with the periodic boundary condition Q(t, 0) = Q(t,∆)

and consider the steady state solution Q0(ϑ), obtained by setting ∂Q/∂t = 0.

Upon constructing an asymptotic solution for Q0 in terms of D up to O(D), we

have

Q0(ϑ) =
1

∆
+
D

∆

[
Z(ϑ)Z ′(ϑ)− Y (ϑ) + Y

]
+O(D2). (6.12)
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where Y is the average defined by

Y =
1

∆

∫ ∆

0

Y (ϑ)dϑ. (6.13)

The mean frequency, Ω, of the oscillator is defined by Ω = limT→∞ T
−1
∫ T

0
ϑ̇(t)dt.

This may be calculated by replacing the time average by an ensemble average:

Ω = 〈ϑ̇〉. As there is no correlation between ϑ and W in the Itô interpretation

of the noise, we may use the fact that 〈Z(ϑ)Wt〉 = 〈Z(ϑ)〉〈Wt〉 = 0, and so we

have that Ω = 1 +D〈Z(ϑ)Z ′(ϑ) + Y (ϑ)〉, which, using our expression Q0 may be

evaluated up to O(D) as

Ω = 1 +DY +O(D2). (6.14)

This equation shows the phenomenon of noise induced frequency shift. Although

Gaussian noise has no intrinsic frequency, it still induces a change in frequency

of the oscillator. We thus note the importance of the term DY in (6.11), as

without this term, we would observe no noise induced frequency shift. In addition,

(6.12) demonstrates the influence of the extra term in terms of the steady state

probability distribution around ϑ. We note that we may equivalently derive (6.14)

directly from (6.11). Though this technique for performing the phase reduction for

the stochastically forced system considered in this section has been demonstrated

here in R2, the ideas carry over easily into Rn.

6.2.1 Differences between the Itô and Stratonovich interpretations of

the phase reduction

The original system (6.1) has been considered only in the Stratonovich interpreta-

tion thus far. The Stratonovich interpretation implies that the function G is not

nonanticipating, that is, it is not statistically independent of the Wiener incre-

ment W (s) −W (t) for t < s. This is because the stochastic integral requires an

evaluation at the mid-point of the time step, rather than the left point, as used in

the Itô case. Clearly, if the functions are related to some biological process, they

cannot be acausal, that is, they cannot depend on future values, implying that a

Stratonovich interpretation is not the best one to use. However, a Stratonovich
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interpretation may be used if the noisy process is assumed to be a signal from

some other process, not described by the model equations [84]. Even in this case,

there may still be an argument for using an Itô interpretation. For example, we

may consider the noise process for a neural model to be electrical noise involving

mini-postsynaptic potentials. These processes are typically modulated by exocyto-

sis, from a presynaptic cell, of a single vesicle containing neurotransmitters, which

evokes a quantal postsynaptic conductance change [203]. The continual barrages

of such events gives rise to a noisy signal that may be thought of as a continual

approximation of discrete events, in which case an Itô interpretation may be more

appropriate than a Stratonovich one [204]. We will now consider the case in which

we use the Itô interpretation of the stochastic integral in (6.1). We note that we

could simply write the equivalent Itô SDE of (6.11) as

dϑ = dt+D[Z(ϑ)Z ′(ϑ) + Y (ϑ)]dt+ σZ(ϑ)dWt. (6.15)

However, this does not truly capture the differences between the two interpre-

tations in the original variables, since the rules regarding the transformation of

variables are different under Itô interpretation. In fact, we must resort to Itô’s

formula, as discussed in Sect. 2.17, when performing the change of variables.

Starting from (6.1) as before, now using an Itô interpretation of the noise term,

the transformation to (ϑ, r) leads to the system

dϑ = dt+
σ2

2

[
hϑh+ hrg −

∑
i

Gi

∑
j

∂Gj

∂xi

∂ϑ

∂xj

]
dt+ σh(ϑ, r)dWt, (6.16)

dr = f(ϑ, r)dt+
σ2

2

[
gϑh+ grg −

∑
i

Gi

∑
j

∂Gj

∂xi

∂r

∂xj

]
dt+ σg(ϑ, r)dWt, (6.17)

where we now see additional terms appearing in (6.16) compared with (6.2), which

is derived by first performing the transformation to (ϑ, r) coordinates under the

Stratonovich interpretation, and then considering the equivalent Itô SDE in the

new coordinates. For convenience, we define

G(ϑ) =
∑
i

Gi

∑
j

∂Gj

∂xi

∂ϑ

∂xj

∣∣∣∣
r=0

= GT (x(ϑ, 0)) ·DGT (x(ϑ, 0)) · ∇xϑ
∣∣∣
r=0

, (6.18)
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where the T denotes the transpose and DG is the Jacobian of the vector function

G with respect to x. Upon performing the phase reduction of (6.16), we have, for

D � 1

dϑ = (1 +D [Z(ϑ)Z ′(ϑ) + Y − G]) dt+ σZ(ϑ)dWt. (6.19)

This has an equivalent Stratonovich SDE:

dϑ = (1 +D [Y − G]) dt+ σZ(ϑ) ◦ dWt. (6.20)

Here, we can see the presence of extra terms compared with (6.11) in both of

the equivalent SDEs. Following the same procedure as before, and considering

expansions up to O(D), we may find the steady state probability distribution as

Q0(ϑ) =
1

∆
+
D

∆

[
Z(ϑ)Z ′(ϑ)− Y (ϑ) + Y + Z(ϑ)− G

]
+O(D2), (6.21)

where G = ∆−1
∫ ∆

0
G dϑ, and the mean frequency as

Ω = 1 +D(Y − G) +O(D2). (6.22)

To highlight the importance of the differences between the interpretations of the

stochastic integral, we now go through a numerical example.

6.2.2 Phase distribution and frequency of the SL model

As our model of choice, we study the SL model, so that F in (6.1) is given by (2.42)

from Sect. 2.4, with λ = 2, ω = 1, c = 1 and σ = 0.2. The unforced SL model has

an attracting limit cycle solution given by Γ(ϑ) = (cos(ϑ), sin(ϑ)), which has period

∆ = 2π. If we set x = (1+r) cos(ϑ+c ln(1+r)) and y = (1+r) sin(ϑ+c ln(1+r)),

then (ϑ, r) give the desired isochronal coordinates. Since there is no difference

between the Itô and Stratonovich interpretations for purely additive noise, we

must use multiplicative noise to highlight the difference between the two, and so

we take G = (x, 0) to be our forcing function. For the SL model with this form of

G, we may calculate the functions Z and Y as

Z(ϑ) = − cosϑ (sinϑ+ c cosϑ) , Y (ϑ) = c cos2 ϑ (− cos 2ϑ+ c sin 2ϑ) , (6.23)
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and

G(ϑ) = − cosϑ (sinϑ+ c cosϑ) = Z(ϑ), (6.24)

so that

Y = − c
4
, G = − c

2
. (6.25)

To compare the analytical predictions for the steady state phase distribution and

the mean frequency to those obtained by the solution of the full model, we solve

(6.1) with our chosen F and G. Since σ � 1, we may use the numerical scheme

for system with weak noise from [92]. Taking yn as approximations to the true

solution xn at time steps nh, n = 1, . . . N , where h = T/N is the stepsize and T

is the total integration length, we have

yn+1 = yn +
h

6
(k1 + k2 + k3 + k4) + σg(yn)dWn (6.26)

where dWn ∼
√
hN(0, 1) and the ki, i = 1, . . . , 4, are given by the usual Runge-

Kutta steps:

k1 = f(xn), k2 = f(xn + k1/2),

k3 = f(xn + k2/2), k4 = f(xn + k3).
(6.27)

The numerical scheme (6.26) then has a mean square error on the order of O(h4 +

σh + σ2h1/2). This scheme is appropriate for Itô systems. For the Stratonovich

case, we must thus first write down the equivalent Itô SDE before (6.26) can be

used. The equivalent Itô SDE to the Stratonovich SDE given by (6.1) with our

choice of G is

dx =

(
F (x) +

G(x)

2

)
dt+ σ G(x)dWt. (6.28)

To obtain the steady state phase phase distribution, we solve (6.1) and (6.28) using

(6.26) to obtain sample paths for 1000 distinct initial conditions and realisations of

the noisy process. We take T = 104, with N = 107, so that h = 10−4, and discard

the first N/2 time points, treating them as transients. The remaining points are

then transformed to (ϑ, r) coordinates using

ϑ = arctan2(y, x)− c log(
√
x2 + y2), (6.29)

r =
√
x2 + y2 − 1, (6.30)

216



where

arctan2(y, x) =



arctan(y/x) x > 0

arctan(y/x) + π y ≥ 0, x < 0

arctan(y/x)− π y ≤ 0, x < 0

π/2 y > 0, x = 0

−π/2 y < 0, x = 0

. (6.31)

Following this, the ϑ values are then binned into 500 non-overlapping bins to form a

histogram, which is then normalised to give an estimate of the marginal probability

density Q. To estimate the mean frequency, we use the sample trajectories in

Cartesian coordinates and the same method as in Sect. 4.5, using the crossing of

y through 0 with x > 0 to define a spiking event, and the crossing of x through

0 with y > 0 to define a resetting event. Fig. 80 shows a comparison of the

analytical steady state distributions under the Itô interpretation (red line) and

the Stratonovich interpretation (blue line) along with results from direct numerical

simulation, depicted by points with colours matching the lines. Fig. 81 shows the

same information, but for the mean frequency of the SL oscillator with increasing

D. Whilst the predictions for the phase distribution are qualitatively similar, the

same is not true for the mean frequency. In both cases, we see excellent agreement

between the analytical and numerical results, but also that the results for the Itô

and Stratonovich interpretations differ. An inspection of (6.22) compared with

(6.14), noting the values of Y and G shows that we expect the opposite behaviour

in terms of frequency shift under the two different interpretations. Under the

Stratonovich interpretation, the mean frequency falls as D is increased, whilst the

opposite is true in the Itô case.

6.3 A new coordinate system for planar systems

It is the purpose of this part of the chapter to provide a general perspective on

how to construct planar phase-amplitude coordinates, that allows one to study

dynamics in the neighbourhood of a limit cycle for arbitrary vector fields F . In
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Figure 80: Comparison of steady state phase distributions under the Itô and

Stratonovich interpretations of the stochastic integral of (6.1) for the SL model.

The red, solid curve and blue, dashed curves correspond for the Itô and

Stratonovich cases respectively, whereQ0 is taken from (6.12) and (6.21), whilst the

red and blue circles are the numerical approximations found by solving (6.1) and

(6.28). We observe excellent agreement between the analytical and numerical ap-

proximations, but note the differences between the two interpretations. Although

qualitatively similar, we note the quantitative differences between the distribu-

tions.
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Figure 81: Comparison of mean frequency under the Itô and Stratonovich inter-

pretations of the stochastic integral of (6.1) for the SL model. The red, solid curve

and blue, dashed curves correspond for the Itô and Stratonovich cases respectively,

where Ω is taken from (6.14) and (6.22), whilst the red and blue circles are the

numerical approximations found by solving (6.1) and (6.28). As in Fig. 80, we ob-

serve excellent agreement between the analytical and numerical approximations.

However, we note that the predictions for the two intrepretations are now not

qualitatively similar. The Stratonovich interpretation predicts a decrease in Ω as

D increases, whilst the prediction is reversed for the Itô case. This can be seen by

noting the extra G term in (6.22) compared with (6.14). This example highlights

the importance of the interpretation of the stochastic integral when performing

phase reductions.
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the previous chapter, we used phase-amplitude coordinates, taking the amplitude

coordinate, ρ to be the distance along a normal vector to Γ at θ. We note that

θ in this coordinate system no longer represents asymptotic phase. Using these

coordinates, we were able to describe the effects of invariant structures a finite

distance away from Γ, that would be missed by phase-only models. One limitation

of this coordinate system is that the transformation ceases to become invertible

after some finite distance |ρ| is eclipsed. This problem is associated with the

crossing of normals of Γ at distinct values of θ, so that the mapping taking x 7→

(θ, ρ) is no longer one-to-one. As such, this is less of a problem for high dimension

systems, but may present a serious issue for planar systems. Before moving to

consider stochastic oscillators, let us take a step back to consider the deterministic

version of (6.1), that is

ẋ = F (x) + σ G(x), x ∈ R2, σ ∈ R. (6.32)

We seek to introduce a phase-amplitude coordinate system that retains some no-

tion of a distance from cycle, but does not suffer from the same coordinate system

break down. To do this we introduce coordinates (θ, ρ) such that

x(θ, ρ) = Γ(θ) + ρJΓ′(θ) +
(ρJ)2

2
Γ′′(θ) + · · · = exp

{
ρJ

d

dθ

}
Γ(θ). (6.33)

Here, J generates a rotation of π/2:

J =

 0 1

−1 0

 (6.34)

To zero’th order in ρ, (6.33) describes a point on the limit cycle (x(θ, 0) = Γ(θ)).

To first order in ρ it defines a point which is on a line orthogonal to the cycle

(since Γ′(θ) is tangent to the cycle), which is simply a non-normalised version of

(5.2). It is simple to show that

∂x

∂ρ
= J

∂x

∂θ
. (6.35)

These are the Cauchy-Riemann conditions, so that the change of variables between

x and (θ, ρ) is locally conformal, and so will not break down anywhere. Given
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that for a general nonlinear planar dynamical system, Γ can only be obtained

numerically (excluding special cases, such as given by (2.42)), to make practical

use of the formal infinite series (6.33) we introduce a Fourier representation for Γ:

Γ(θ) =
∞∑

n=−∞

Γneinθ, Γn =
1

2π

∫ 2π

0

dθ Γ(θ)e−inθ ∈ R2. (6.36)

In this case x, has the representation

x(θ, ρ) =
∑
n

e2πinθ/∆e2πinρJ/∆Γn, (6.37)

which may be implemented numerically using matrix exponential operations and

the sum over n may be truncated at some prescribed level of approximation for

describing Γ. We note that we may also write x avoiding the use of any complex

variables if we so desire, through the use of hyperbolic functions as

x(θ, ρ) =
∑
n

cosh

(
2πnρ

∆

){
Γc,n cos

(
2πnθ

∆

)
+ Γs,n sin

(
2πnθ

∆

)}
+

sinh

(
2πnρ

∆

){
J Γs,n cos

(
2πnθ

∆

)
− J Γc,n sin

(
2πnθ

∆

)}
,

(6.38)

where Γ(s,c),n ∈ R2 are the sine and cosine Fourier coefficients of Γ.

6.3.1 Transformed dynamics

We now provide the dynamics for the evolution of θ and ρ. Using x = x(θ, ρ) and

differentiating with respect to t gives

ẋ =
∂x

∂θ
θ̇ +

∂x

∂ρ
ρ̇. (6.39)

Projecting this onto the orthogonal vectors ∂x/∂ρ and ∂x/∂θ gives the dynamics

θ̇ =

(
∂x
∂θ

)
· [F + σG]∣∣∂x
∂θ

∣∣2 , ρ̇ =

(
∂x
∂ρ

)
· [F + σG]∣∣∣∂x∂ρ ∣∣∣2 . (6.40)

We may also calculate ∂x/∂θ in the useful form:

∂x

∂θ
=
∑
n

(
2πin

∆

)
e2πinθ/∆e2πinρJ/∆ Γn, (6.41)

221



with ∂x/∂ρ given by (6.35). For ρ = 0 we obtain the result

θ̇ = 1 + Z(θ), Z(θ) =
F (Γ(θ))

|F (Γ(θ))|2
·G(Γ(θ)), (6.42)

where we have made use of the fact that F (Γ(θ)) = Γ′(θ). We interpret Z(θ) as the

phase response to the perturbation G. For notational simplicity, we shall rewrite

(6.40) in the form

θ̇ = Ω(θ, ρ) + σh(θ, ρ), ρ̇ = f(θ, ρ) + σg(θ, ρ), (6.43)

where

Ω(θ, ρ) =
∂x
∂θ
· F∣∣∂x

∂θ

∣∣2 , h(θ, ρ) =
∂x
∂θ
·G∣∣∂x

∂θ

∣∣2 ,
f(θ, ρ) =

∂x
∂ρ
· F∣∣∣∂x∂ρ ∣∣∣2 , g(θ, ρ) =

∂x
∂ρ
·G∣∣∣∂x∂ρ ∣∣∣2 .

(6.44)

The limit cycle (for σ = 0) is given by ρ = 0 with uniform rotation rate Ω(θ, 0) = 1.

6.3.2 The SL oscillator

To demonstrate the use of the coordinate system (θ, ρ), we will now write the

dynamics of (2.42) in the new coordinate system. The model has a limit cycle

given by Γ = (cos θ, sin θ)T , having period ∆ = 2π. Rather than resorting to the

use of Fourier coefficients, we seek to write phase points x using (6.33). To do this,

we must take derivatives of Γ. It is easy to show that

Γ(n) = (−J)n Γ, n = 1, 2, . . . (6.45)

where the superscript denotes differentiation with respect to θ, and that

J2 = −I2, Jn+3 = −Jn+1, n = 1, 2, . . . (6.46)

where I2 is the 2×2 identity matrix so that we may write (6.33) as

x(θ, ρ) = Γ(θ) + ρJΓ′(θ) +
(ρJ)2

2
Γ′′(θ) +

(ρJ)3

6
Γ′′′(θ) + . . . (6.47)

= Γ + ρΓ +
ρ2

2
Γ +

ρ3

6
Γ + . . . (6.48)

=

(
1 + ρ+

ρ2

2
+
ρ3

6
+ . . .

)
Γ (6.49)

= eρ Γ. (6.50)
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Differentiating this with respect to θ and ρ, we have

∂x

∂θ
= −eρJ Γ,

∂x

∂ρ
= eρ Γ,

∣∣∣∂x
∂θ

∣∣∣2 =
∣∣∣∂x
∂ρ

∣∣∣2 = e2ρ. (6.51)

Using these relations, we may go on to find Ω and f as

Ω = 1 +
λc

2

(
1− e2ρ

)
, f =

λ

2

(
1− e2ρ

)
. (6.52)

These two functions may be seen, plotted over ρ, in Fig. 82.

6.3.3 Steady state distribution for weak forcing

We shall now return to consider the stochastic system (6.1). For additive noise,

both the Itô and Stratonovich SDE for the phase-amplitude coordinates will be

given by

dθ = Ω(θ, ρ)dt+ σh(θ, ρ)dWt, dρ = f(θ, ρ)dt+ σg(θ, ρ)dWt, (6.53)

Since we use Fourier coefficients to describe the orbit Γ, it is convenient to also

describe P0 in terms of its Fourier coefficients. Setting

Y (θ) =
∂h(θ, 0)

∂θ
g(θ, 0), (6.54)

and adopting a Fourier representation for Q0, Z and Y as

Q0(θ) =
∑
n

Q0,neinθ, Z(θ) =
∑
n

Zneinθ, Y (θ) =
∑
n

Yneinθ, (6.55)

allows us to obtain a set of equations for the unknown amplitudes Q0,l solving

(6.10) as

−Q0,l+D
∑
n,m

ZnZmi(l−n)Q0,l−(n+m)−D
∑
n

YnQ0,l−n = Kδl,0, l ∈ Z, (6.56)

for some constant K. For D = 0, we have that Q0,0 = K, and after enforcing

normalisation we may set K = 1/∆. For small D, we may then substitute Q0,0 into

(6.56) and work to next order in D to obtain an approximation for the remaining

amplitudes, l 6= 0, in the form

Q0,l =
D

∆

 ∑
{n,m |n+m=l}

ZnZmim− Yl

 . (6.57)
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Figure 82: Functions Ω and f for the SL model in the new phase amplitude

coordinate system defined by (6.33). Both functions are independent of θ, and

have a similar dependence on ρ. The vertical dashed line represents the limit

cycle, at ρ = 0, whilst the blue and red lines respectively depict the values of Ω

and f at ρ = 0. As expected, f(θ, 0) = 0, ∂f/∂ρ|ρ=0 < 0, reflecting the stability

of the limit cycle. Similarly, Ω(θ, 0) = 1, so that θ evolves with unit speed on Γ,

whilst ∂Ω/∂ρ|ρ=0 < 0, suggesting that trajectories with ρ < 0 evolve faster (in

terms of θ) than those with ρ > 0.
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Using this we may reconstruct the distribution Q0(θ), for small D, from (6.55) as

Q0(θ) =
1

∆
+
D

∆
[Z(θ)Z ′(θ)− Y (θ) + Y0] , Y0 =

1

2π

∫ 2π

0

Y (θ) dθ. (6.58)

In a similar fashion to (6.14), the mean frequency of the oscillator is defined by

ω̃ = ω +DY0 +O(D). (6.59)

We may also calculate the phase-diffusion D̃ as

D̃ =

∫ ∞
−∞
〈[dθ(t+ τ)− 〈dθ〉][dθ(t)− 〈dθ〉]〉dτ

=

∫ ∞
−∞
〈Z(θ(t+ τ))dWt+τ Z(θ(t))dWt〉dτ +O(D2)

= D

∫ 2π

0

Z2(θ)dθ +O(D2), (6.60)

where we use the fact that 〈dWt〉 = 0 and 〈dWs dWt〉 = δ(t− s). This recovers a

result of Kuramoto [140] as expected.

6.3.4 Steady state distributions for non-weak forcing

As done in Sect. 6.2.2, if we numerically simulate a large number of sample paths

over a long time, we can bin these paths to form histograms which, when nor-

malised, will approximate the steady state probability distribution for a given

model. An alternative way to calculate the steady state distribution is by solving

the Fokker–Planck equation presented in Sect. 2.20.1. The advantages of solving

the Fokker–Planck equation over numerical simulation are that we do not need

to generate and process large volumes of data, and that the Fokker–Planck equa-

tion obeys the normal rules of calculus, as opposed to Itô’s formula. For many

one-dimensional systems, we can solve the Fokker–Planck equation explicitly, and

even go on to say something more about quantities of interest in the system. For

systems possessing more variables, finding explicit solutions is rare, and so we

must use numerical techniques to find an approximate solution. In the remainder

of this chapter, we will be solving both the Fokker–Planck equation in Cartesian

coordinates, in plane polars, and in the new phase-amplitude coordinate system,
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(6.40). In the former, the problem set-up can be found in Appx. C, whilst its

equivalent for the latter two cases is detailed in Appx. C.1.

In both cases, we need numerical techniques to solve the Fokker–Planck equa-

tion. Often used in engineering problems, particularly those involving fluid dy-

namics, finite element methods are an efficient way of solving PDEs [205]. These

methods work by dividing the domain S into a finite number of mesh elements,

the topology of which are decided generally on the problem type. The PDE to be

solved is then written in its weak form, after having been multiplied by some test

function and integrated over the problem domain to deal with higher order deriva-

tives. The equation is then solved over the mesh, writing solutions at the nodal

values of the mesh elements as coefficients of some basis functions, such that these

nodal values are the exact solution to the PDE at these points [206]. Finite element

methods are generally efficient, as the number of elements required for an accurate

solution is generally not too large. In addition, the flexibility of the discretisation

of the domain allows complex geometries to be considered, although this is not an

issue for the present problem, since we are solving on a regular domain. We use

the toolbox FEniCS [207]. Written in the Unified Form Language (UFL) Dolfin,

FEniCS presents a flexible, easy-to-use toolbox, also possessing extra toolboxes

that allow for quick visualisation of solutions and refinement of meshes. FEniCS

scripts may be written in C++ or python. In either case, expressions and func-

tions are first converted to C-code by FEniCS to allow for efficient computation of

solutions. The details for solving the Fokker–Planck equation in FEniCS can be

found in Appx. D.

An alternative to the finite element method is the finite difference method [208].

Instead of the discretising the domain into elements and solving the weak problem,

the finite difference method divides the domain by discrete differences, giving rise,

for planar systems, to a rectangular lattice on which the solution to the strong form

of the problem is approximated. As a comparison, we note that the simplest mesh

elements in the finite element scheme, namely Lagrangian elements, are triangular,

rather than rectangular. Finite difference methods have the advantage that the
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equations need not be converted to the weak form before solving. Additionally,

it has been recently demonstrated that finite difference methods may be more

accurate than finite element methods in approximating the tails of the probability

distribution [209]. In Appx. E, we present the steps we use for solving the Fokker–

Planck equation using the finite difference method.

As an example of using the finite difference method to solve the Fokker–Planck

equation in the phase-amplitude coordinate system, we return to the SL system

(2.42). We have already found Ω and f for this model. It is not difficult to

find the functions h and g in this case, and in fact, they turn out to be simple

trigonometric functions. However, since we are primarily interested in defining

functions through Fourier coefficients along with the underlying vector field in

Cartesian coordinates alone, we instead use (6.44), with (6.41). To highlight the

difference in the approximation of the steady state distribution for weak noise,

to the true distribution, we first find the weak noise approximation using (6.58).

This turns out to be a flat distribution Q0(θ) = 1/(2π), ∀θ ∈ [0, 2π). As we

increase σ, this approximation will fail to capture the nonlinear dependence on

σ, and so we expect a non-flat probability distribution for non-weak σ. To test

this, we discretise the domain S = [0, 2π) × [−1, 1] and evaluate the functions

Ω, f, g and h at the mesh points. Since these functions are independent of σ,

we need only evaluate them once, and we can use these values for any given σ.

Following this, for σ ∈ (0, 0.4], we use the scheme as described in Appx. E, with the

upwind scheme discussed in Appx. E.1, with 1000 mesh points in each of the two

axes, to find the steady state distribution in terms of (θ, ρ). We then numerically

integrate out ρ, to form the marginal density Q(θ) =
∫ R
−R P (θ, ρ) dρ. This is then

subtracted from Q0 to give the difference between the weak noise approximation

and the solution from the full system. The results are displayed in Fig. 83. For

small σ, as expected, we see little difference between the weak approximation and

the full distribution. As σ increases, there arises a periodic modulation in the

steady state distribution in terms of θ, as the nonlinear dependence of Q on σ

grows. The amplitude of the variations in the steady state distribution increases
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as σ continues to grow, and the location of the extrema of said distribution is also

dependent on σ, but we note that the maximum deviations from the mean seem

to be symmetric in terms of their magnitude. Numerical histograms of the steady

state distribution were also formed using the algorithm as detailed in Appx. B,

and the same integration method as in Sect. 6.2.2. We show a comparison of the

steady state distributions approximated by the Fokker–Planck equation and those

obtained through forming histograms of sample paths in Fig. 84. In this figure, the

black dashed line is the weak noise approximation to the steady state distribution,

the blue curve is the solution from the Fokker–Planck equation, whilst the red

dots represent the approximation from histograms of sample paths. The top panel

shows distributions for σ = 0.01, and we observe excellent agreement between all

three approximations. In the bottom panel, σ has increased to 0.2. Now, we see

that the two non-weak approximations agree very well with one another, but that

they differ from the flat distribution for the weak noise approximation.

6.4 The subcritical Hopf

In general, the summative effects of noisy perturbations in a given system may not

be weak. In this setting, we may expect more exotic behaviour from the system,

such as mixed mode oscillations [195]. We will now consider a system which is

bistable, and study transitions between the two stable states brought about as

a result of the stochastic perturbations. As our model of choice, we use the sub-

critical Hopf bifurcation presented in [210] as a canonical model for cortical activity

in the alpha band (∼ 10 Hz). The model is a fifth order Hopf, and is written in

polar coordinates (φ, r) as

φ̇ = φc, ṙ = −r5 + λr3 + βr, (6.61)

where φc > 0, λ, β ∈ R. The φ dynamics of (6.61) suggest that the system

oscillates with constant frequency φc. A bifurcation analysis of the r dynamics, as

plotted in Fig. 85, shows that, for small β, the system has r = 0 as the only stable

fixed point. Thus, although φ evolves at a constant rate, r stays at the origin, and
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Figure 83: Difference between steady state approximations for the weak noise case

of the SL model, with those formed by solving the Fokker–Planck equation in the

non-weak case, under variation of σ. The distribution for the weak noise case is

flat, with Q0 = 1/(2π)∀θ ∈ [0, 2π). For small σ, the two distributions agree well.

As σ increases, we observe a periodic modulation around the mean, which grows

in amplitude as σ increases. Numerical histograms corresponding to σ = 0.01 and

σ = 0.2 may be seen in Fig. 84.

so we would not actually observe oscillations in the dynamics (following transients).

We refer to this as quiescence. As we increase β, the system undergoes a bifurcation

giving rise to bistability. In this bistable region, there are, as expected, five fixed

points of the system for r ∈ R. However, since we are working in polar coordinates,

r is restricted to the non-negative real line. Due to the symmetry of the fixed point

equation about r = 0, two pairs of these fixed points are equivalent, and so we only

need consider the region r > 0. The quiescent state, with r = 0 is still stable, but
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Figure 84: Comparison between steady state distributions approximated by solv-

ing the Fokker–Planck equation (blue), and by binning sample paths to form his-

tograms (red). Also shown is the approximation for weak noise (black). In the top

panel, σ = 0.01, and we see excellent agreement between all three approximations.

In the bottom panel, we observe periodic modulation in both of the non-weak

approximations, but excellent agreement between them.

there is now also another stable solution, depicted by the top black curve. Since

r is now nonzero along this branch, we now observe oscillatory activity, and we

thus refer to this as the oscillatory state. Separating these two stable solutions, is

an unstable branch for an intermediate value of r, shown by the grey line. Where

these solutions exist, we shall denote the value of r corresponding to the oscillatory

state by rs and that corresponding to the unstable branch as ru. As we increase β

further still, the system undergoes another bifurcation, and now the fixed point at

r = 0 becomes unstable, and the only remaining stable solution is the oscillatory
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Figure 85: Bifurcation diagram for the r dynamics of (6.61) using β as a control

parameter. The solid black lines correspond to stable fixed points, whilst the

dashed grey lines are unstable fixed points. We observe a region of bistability in

the system. To the left of this bistable region, only the quiescent state is stable, to

the right, only the oscillatory state remains. The vertical dotted line shows where

we choose the parameter values for our study of this model.

one.

Setting φc = 10 ensures that we represent the alpha rhythm, whilst a choice of

λ = 4, β = −3.4 puts the system in the bistable regime, as shown by the dotted

vertical line in Fig. 85. We shall use these parameter values in throughout this

section. The authors of [210] then add two white noise processes, one additive and

one multiplicative to the r dynamics, leaving the φ dynamics as they stand. The

SDE for the r dynamics now reads

dr = (−r5 + λr3 + βr)dt+ σ(1− η)dW1 + ση rdW2. (6.62)
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where σ is the noise strength and η is the fraction of noise that is multiplicative

whilst 1 − η is the proportion that is additive. Owing to the fluctuations added

by the noise terms, trajectories will now not stay at the fixed points of the r

dynamics. Instead, they will fluctuate around these values, and will occasionally

cross r = ru and move towards the other fixed point value. This implies that we

need a new definition of the quiescent and oscillatory state. We shall refer to r < ru

as the quiescent state, and r > ru as the oscillatory state. The authors claim that

additive noise alone is not sufficient to replicate the relation between the mean and

the fluctuations that they observe in cortical patient data. Clearly, some additive

noise is needed, since otherwise the noise would be quenched when trajectories

enter the quiescent mode with r = 0. The authors perform numerical simulations

of (6.62) to obtain histograms representing the steady state probability distribution

of the analytic signal, and a distribution of dwell times in either the quiescent or

oscillatory modes. We first note that, since there are no perturbations in φ, and

the governing equations decouple, we can consider the dynamics of r separate to

those of φ. Hence, the system under consideration is effectively one dimensional,

and its dynamics are prescribed by a polynomial function. We may solve the

associated forward Fokker–Planck equation to give the steady state distribution

explicitly. We may also use the backward Fokker–Planck equation to find the

probability distribution of switching times between quiescence and the oscillatory

mode. The results from the paper [210] seem to be erroneous, in that the parameter

values used for the noise do not correspond to the figures they produce. This can

be shown easily by solving the Fokker–Planck equation. We provide the correct

results for the model. We note that, since the authors do not include any noisy

dynamics in the φ dynamics, there is no noise induced frequency shift. In general,

a dynamical system representing neural activity is unlikely to have noise acting

only in the radial direction. This may be overcome by transforming (6.61) into

Cartesian coordinates, resulting in

ẋ = fx(x, y) = βx− φcy − λx(x2 + y2) + x(x2 + y2)2,

ẏ = fy(x, y) = φcx+ βy − λy(x2 + y2) + y(x2 + y2)2.
(6.63)
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As before, we then use additive white noise in the x dynamics only. Upon trans-

forming this back into polar coordinates, the noise terms will appear in both the φ

and r equations, and will be multiplicative in both cases. The drawback of includ-

ing such noise terms is that the equations no longer decouple, so that we cannot

find an exact solution for the steady state probability distribution. However, we

can use the methods outlined in Appx. D to find a numerical solution instead.

6.4.1 Solution for the 1D case

The forward Fokker–Planck equation for (6.62) is

∂P

∂t
= − ∂

∂r
[(−r5 + λr3 + βr)P ] +

σ2

2

∂2

∂r2
[((1− η)2 + η2r2)P ]. (6.64)

The steady state is found by setting ∂P/∂t = 0, whereupon the resulting equation

is an ODE. So that we can impose natural boundary conditions at infinity, we

shall solve the Fokker–Planck equation on an infinite domain. Suppose that we

have the steady state distribution on r ∈ (−∞,∞) as P̃ , and we wish to find

the distribution restricting r to the positive real line, denoted by P . Since the

equations are symmetric under the transformation r 7→ −r, we have that P (r) =

P̃ (r) + P̃ (−r) = 2P̃ (r), ∀r ∈ [0,∞). For convenience, we will drop the tilde in

what follows. Assuming that P and its derivative vanish at r = ±∞, we deduce

from (6.64)

−(−r5 + λr3 + βr)P +
σ2

2

d

dr

[(
(1− η)2 + η2r2

)
P
]

= 0, (6.65)

whence
dP

dr
= 2
−r5 + λr3 + βr − σ2η2r

σ2 [(1− η2) + η2r2]
P. (6.66)

This linear equation can be solved, for example, by separation of variables, result-

ing in

P = C eΛ, (6.67)
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where

Λ =
2

σ2

∫
−r5 + λr3 + βr − σ2η2r

(1− η2) + η2r2
dr

=
1

2σ2η6

(
η2r2

(
2− η2

(
2− 2λ+ r2

)
−2
(
1 + 2η6 + η2 (λ− 2)− η4 (λ+ β − 1)

)
log
(
1 + η2(r2 − 1)

)))
,

(6.68)

and C is chosen to satisfy the normalisation condition, so that

C =

(∫ ∞
0

eΛ dr

)−1

. (6.69)

We may find explicit expressions for ru and rs as

ru =

√
1

2

(
λ−

√
λ2 + 4β

)
, rs =

√
1

2

(
λ+

√
λ2 + 4β

)
. (6.70)

We note that the condition that these roots are guaranteed to be satisfied by our

choice of parameters. In the unforced system, it is clear that the trajectories will

exists in only one of the basins of attraction. In the forced system, trajectories

are now free to cross between the two basins. Under appropriate conditions, this

may lead to a bimodal probability distribution, which will have peaks near r = 0

and r = rs. We may find conditions for the existence of a bimodal distribution,

as well as the location of these peaks, when they exist, by using (6.66). Solving

this equation after setting dP/dr = 0 in this equation will give the information we

seek. Thus, we must find the roots of the equation

r(−r4 + λr2 + β − σ2η2) = 0. (6.71)

One of the roots is clearly zero, corresponding to the quiescent state. The other

roots, for r > 0 are given by

r± =

√
1

2

(
λ±

√
λ2 + 4β − 4σ2η2

)
, (6.72)

where r+ corresponds to a peak of the distribution, whilst r− corresponds a trough.

Note that, where these roots exist, they do not coincide with the location of stable

and unstable limit cycles of the unforced system, which are given by (6.70), except

when either σ or η vanish. Thus, the multiplicative nature of the noise acts to
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shift the location of the attractors and repellers of the system. The condition for

these roots to exist on the real line is that λ2 + 4β > 4σ2η2. At the point where

4σ2η2 = λ2 + 4β, under the variation of the either of the two noise parameters

σ, η, there is a bifurcation, resulting in the probability density over r becoming

bimodal. This differs from the deterministic bifurcations (which are called dynamic

bifurcations), which give rise to the creation of new attractors. Indeed, no new

attractors have been created in the system, rather this is a so-called P -bifurcation,

as it is a change in the qualitative nature of the probability distribution. For a

review of P -bifurcations, and their differences from dynamic bifurcations, we refer

the reader to [211]. The condition for a bimodal distribution suggests only a

unimodal distribution around r = 0 exists for large values of σ and η, whilst

bimodal distributions are possible for smaller values. Recalling that η is the noise

parameter that gives the fraction of noise that is applied in a multiplicative way,

this suggests that multiplicative noise applied in this way is more likely to lead

to quiescence. This is likely due to the form of noise applied to the system; since

the contribution of the term σ2η2r2 is small when r is small, trajectories are likely

to remain near r = 0 when η is close to 1. This tendency to remain near r = 0

under such forcing is the likely reason for the deviation in switching times for

the purely additive noise case as observed in [210]. In Figs. 86 and 87, we show

this P -bifurcation using η and σ as the control parameter respectively. In both

figures, the colour corresponds to the probability at a location r. Since we are

interested in the shape of the distributions, rather than their quantitative values,

and for ease of comparisons, the probability distributions are scaled so that the

global maximum is set equal to 1. The black lines show the minima and maxima

(away from r = 0) in the probability distributions as a function of the control

parameter. In both cases, the bifurcations, characterised by the coming together

of a peak and trough are clearly shown. The red curve inset shows the bifurcation

plot of the switch between a bimodal and unimodal distribution under variation

of η and σ simultaneously. Thus, in Fig. 86, we take a horizontal cross-section of

the inset, marked by the white dotted line, whilst in Fig. 87, we take a vertical

235



cross-section. In both cases, the bifurcation point in the main figure is observed

to correspond to a crossing of a bifurcation curve in the inset. Although the

bifurcation from a bimodal to a unimodal distribution is qualitatively similar in

both figures, the behaviour past the bifurcation is not. As the noise moves from

being primarily additive to multiplicative, under the increase of η, we observe a

tightening of the probability distribution. In fact, beyond the bifurcation point, the

distribution is tightly grouped around the remaining peak at r = 0. This behaviour

is fairly robust across a range of σ, for reasons discussed earlier. Conversely, as

the noise strength σ increases, the probability distribution broadens following the

bifurcation. Although there now exists no peak corresponding to the stable limit

cycle, there is still a nontrivial probability at this point. Fig. 87 is plotted for

η = 0.3, in which the noise is mostly additive. As η increases, the effect of the

broadening of the distribution is less pronounced, in which case the distribution

remains principally around the peak at r = 0. Even though the distribution may

be bimodal, it does not guarantee that the probability at the peaks is high. Indeed,

an examination of Fig. 87 shows that, for small σ, there is switch between high

power in the peak corresponding to the stable limit cycle to the peak corresponding

to quiescence. In fact, the probability at r = r+ decreases rapidly under variation

of σ, whilst the quiescent peak grows rapidly in this same window. We may

consider this further through an examination of how the probability changes under

variation in σ. To this end, we may calculate

∂P

∂σ
=
∂C

∂σ
eΛ + C

∂Λ

∂σ
eΛ, (6.73)

where
∂Λ

∂σ
=

1

η6σ3
2 log

(
η2
(
r2 + 1

)
− 2η + 1

) (
η4(−β + λ+ 1)

+η6σ2 − 2η3(λ+ 2) + η2(λ+ 6)− 4η + 1
)

+ η4r4 − 2η2r2
(
η2(λ+ 1)− 2η + 1

)
− 2 log (η2 (r2 + 1)− 2η + 1)

σ

(6.74)

and
∂C

∂σ
=

(∫ ∞
0

eΛ dr

)−2 ∫ ∞
0

∂Λ

∂σ
eΛdr. (6.75)
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Figure 86: Distribution of probabilities under variation of η. Distributions have

been scaled so that the maximum value of the distribution is equal to 1, reflected

by the colour. The black lines correspond to the minima and maxima (away

from r = 0). A P -bifurcation, whereupon the distribution changes from being

bimodal to being unimodal can be observed where the black curves meet. The

red curve in the inset is the bifurcation diagram showing this transition under the

simultaneous variation of η and σ. The main figure thus corresponds to taking a

horizontal cross-section, as shown by the dotted white line. Here, σ = 1.5.

Zeros of (6.73) will tell us when probability begins to accumulate, or to leave

the point r. In Fig. 88, we plot both the probability at the peak corresponding

to the stable limit cycle, with its derivative shown below. Since the probability

distribution is sharply peaked for small σ, rather than plotting P (r+), we instead

plot L∗ = log(P (r+)), and similarly, we plot dL∗/dσ. We observe that L∗ is initially

high, however rapidly decreases under the increase in σ. The vertical dotted line
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Figure 87: This figure is equivalent to Fig. 86, except using σ as the control

parameter. This corresponds to now taking a vertical cross-section through the

bifurcation diagram shown in the inset. Here, η = 0.3.

shows the point at which dL∗/dσ = 0, after which L∗ begins to increase again and

no more extrema of the first derivative are found before the P -bifurcation, after

which P is unimodal. This predicts that we expect near regular oscillatory activity

for very small σ, which is quickly replaced by quiescence under small increases in

σ. After this, we would expect intermittent oscillatory and quiescent behaviour,

switching between the two modes for intermediate σ, up to the P -bifurcation.

Now that we know where we expect switching between oscillatory activity and

quiescence, we wish to know about the expected dwell times in each of these

regimes. We may set up the backward Fokker–Planck equations which give the

distribution of exit times from a given region (in this case, these regions will be

intervals). The first exit time for a point r in a given interval is the time at which
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Figure 88: Natural logarithm of the probability at the peak r = r+ under variation

of σ (top), along with its derivative with respect to σ (bottom). The vertical dotted

line shows the point where this derivative is equal to zero, at which point proba-

bility begins to accumulate at this peak. Note the rapid decrease in probability at

the peak for small σ. Parameter values are as in Fig. 87.

the true solution, with initial conditions at r leaves the region of interest. Defining

τ(r) to be the first exit time from a given point in the region of interest, we set

Pτ (r, t) = P (τ(r) > t) to be the probability that τ is larger than t. This enables

us to write down the following backward Fokker–Planck equation

∂Pτ
∂t

=
(
−r5 + λr3 + βr

) ∂Pτ
∂r

+
σ2

2

(
(1− η)2 + η2r2

) ∂2Pτ
∂r2

. (6.76)

After noting that the cumulative distribution function (CDF) of exit times is given

by 1 − Pτ , the solution to (6.76), can be used to find the CDF for each spatial

point in S. Now, in each of the two firing modes, we expect sample paths to

remain near one of the peaks of the steady state probability distribution, making
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infrequent transitions to the other peak. This means that the CDF evaluated at

the peaks should approximate the behaviour in that firing mode, thus we wish to

evaluate the distribution of exit times from r = 0 and r = r+ to r = r−, so that

our regions of interest are R1 = [0, r−) and R2 = (r−, R), where R� 1. It remains

to establish boundary and initial conditions for (6.76). Clearly, Pτ (r, 0) = 1, since

τ(r) > 0, ∀r ∈ (0,∞), regardless of which peak we assume we start from. If

we are interested in the exit from r = 0, we solve the problem in R1, and use

the absorbing boundary condition Pτ (r−, t) = 0, since points at r− will exit the

region instantaneously, and the reflecting boundary condition ∂Pτ (r, t)/∂r|r=0 = 0.

Similarly, if we need the exit time from r = rs, we solve the problem in R2 and

use the conditions Pτ (r−, t) = 0, and ∂Pτ (r, t)/∂r|r=R. The probability density

function (PDF) of exit times, which is the quantity of interest, is given by the

derivative, with respect to t, of the CDF.

In order to solve (6.76), we may simply use the finite difference scheme as

described earlier, using a backward Euler step for the time discretisation, so that

∂Pτ (r, t)

∂t
=
Pτ (r, t+ δt)− Pτ (r, t)

δt
+O(δt), (6.77)

for δt � 1. This scheme results in a system of linear equations to be solved at

each time step, which may be performed using Gaussian elimination, for example.

To obtain the PDFs from Pτ (0, t) and Pτ (rs, t), we use cubic splining to take the

derivative of the CDFs. Setting ρ = 0.3, let us consider the effect of increasing

σ on the exit time distributions. In Fig. 89, we show the PDFs for exit from the

quiescent mode (bottom) and the oscillatory mode (top). In order to facilitate

comparison of distributions across values of σ, we plot the results against log t

rather than t. If P is the probability with respect to t, then P̂ = tP will give the

probability in terms of log t. As expected, we observe a reduction in the peak of

the distribution, as increased noise tends to increase the frequency of switching

between the two modes. Additionally, we note the tightening of distributions as

σ increases for the exit from quiescence, meaning that long dwell times are less

likely as σ increases. Comparing the exit distributions for the two regions, we note

that the peaks of the distribution for exit from the oscillatory mode are at lower
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Figure 89: Exit time distributions from quiescence to the oscillatory mode (top)

and from oscillatory behaviour to quiescence (bottom). The colour denotes the

probability in log t coordinates. As we increase the noise strength, the peak of

the distribution moves to lower values of log t, as expected. We also observe a

tightening of the distribution. Note that this figure indicates that, for the chosen

value of η = 0.3, transitions from oscillatory behaviour to quiescence are faster

than the converse.

values of t than for the quiescent mode, for small σ, but that they converge as

we approach the bifurcation point. This is unsurprising, since rs − ru is smaller

than ru, as can be seen in Fig. 85, suggesting that transitions from oscillation to

quiescence are ‘easier’ than the converse. This observation suggests that transitions

from oscillation to quiescence occur quicker for small noise, suggesting that it is

harder to reach an oscillatory mode from quiescence. Let us now turn to the

question of how the type of noise affects the distributions, by fixing σ and varying

η from 0 up to the bifurcation point. The numerical considerations are exactly
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the same as before. We show, in Fig. 90, the analogous results for Fig. 89, now

varying η, fixing σ = 1.5. For the exit distributions from quiescence, we observe

that the peak shifts towards higher values as η increases. This is due to the lower

contribution of noise sources near r = 0. In addition, the distribution broadens as

we increase η, suggesting that the transitions are less regular as the noise becomes

more multiplicative in nature. There is no discernible difference in the exit time

distributions from r = r+, suggesting that transitions from oscillatory behaviour

to quiescence are mediated through noise strength, rather than how the noise acts.

6.4.2 The two-dimensional case

As mentioned previously, it is unlikely that the noise will act selectively in the

radial coordinate. In order to introduce more natural noise effects, we apply ad-

ditive noise in the first component to (6.63). This may then be transformed back

into polar coordinates, to give the following system

dφ = φc dt− σ

r
sin(φ) dWt, dr = (−r5 + λr3 + βr) dt+ σ cos(φ) dWt . (6.78)

We now only have one noise source, but it appears in the dynamics for both φ and

r. The Fokker–Planck equation for the steady state distribution associated with

(6.78) is given by

0 = −φc
∂P

∂φ
− ∂

∂r
[(−r5 + λr3 + βr)P ]

+
σ2

2r2

∂2

∂φ2
[sin2(φ)P ]− σ2

2

∂2

∂φ∂r

[
1

r
sin(2φ)P

]
+
σ2

2

∂2

∂r2
[cos2(φ)P ].

(6.79)

Our domain of interest is now the rectangle S = [0, 2π) × (0, R], for R � 1.

For this equation, we need to impose periodic boundary conditions at φ = 0 and

φ = 2π, since they are identified. To find the steady state distribution P , we must

also impose reflecting boundary conditions at r = 0 and r = R, where R � 1.

Since we are only interested in the distribution in terms of the radial coordinate

r, we may integrate out φ, to give the marginal density Q(r) =
∫ 2π

0
P (φ, r)dφ.
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Figure 90: Exit time distributions from quiescence to the oscillatory mode (top)

and from oscillatory behaviour to quiescence (bottom). The colour denotes the

probability in log t coordinates. For the transition from quiescence to oscillation,

as we increase η, the peak of the distribution moves to higher values of log t, as

expected. We also observe broadening of the distribution. There appears to be a

very limited dependence of the exit time distribution from r = r+ on η, suggesting

that these transitions are mediated through the noise strength σ, rather than

through η. In this figure, we set σ = 1.5.

We use the method outlined in Appx. D to solve (6.79), using the SUPG method

from Appx. D.1 where needed. After normalising P , we use numerical integration

routines to find Q. In Fig. 91, we show how this marginal density varies with

increasing σ. Of course, since we now have only one noise source, we cannot discuss

the interplay between additive and multiplicative noise. However, we do observe

a transition between a unimodal distribution to a bimodal one for increasing σ,

in contrast to the one dimensional case, in which the opposite occurred. As σ is
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Figure 91: Marginal steady state distribution of (6.78) in r. For ease of comparison,

the distributions are scaled so that the peak of the distribution is set equal to 1.

As σ increases, we observe a transition from a unimodal to a bimodal distribution,

corresponding to bistability between a quiescent mode and an oscillatory one. In

contrast to Fig. 87, increasing σ in this case seems to promote bistability, rather

than eliminate it. We also note the location of the peaks and troughs in the

distribution appear to depend on σ only very weakly, so that the roots of the

deterministic equation, given (6.72) may be used to approximate them.

increased further, more probability accumulates in the region corresponding to a

stable limit cycle, suggesting that increasing noise in this case supports, rather

than quenches oscillatory behaviour. It becomes difficult, in the planar case, to

find the switching time distributions, owing to fact that there are now an infinite

number of ways to transition between the two modes. The case for switching

between quiescence and oscillatory behaviour can still be done by computing the

distribution at the origin. However, the same cannot be done for the oscillatory

mode, since we would then need to consider the whole limit cycle (rather than just
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at the peak in P ). Since the point r = 0 is not defined in plane polar coordinates, to

find the exit time distribution from quiescence to oscillations, we solve the Fokker–

Planck equation for (6.63) in Cartesian coordinates, since the two are equivalent

once we choose our point of reference. Again, we define Pτ (x, t) = P (τ(x) > t),

where τ(x) is the first exit time from a point x ∈ S out of our domain. For

our domain, we choose a disc with radius given by the trough in the marginal

distribution Q, so that S = {(x, y)|
√
x2 + y2 ≤ ru}. This circular domain can

be handled in FEniCS using standard Lagrangian elements. We note that the

boundary of this domain, does not exactly correspond to the limit cycle in the

stochastic system, since the multiplicative nature of the noise will serve to move

the location of this attractor, and the radial location of the extrema in the steady

state distribution will be dependent on φ. However, indications from Fig. 92,

suggest that this will serve as a good estimate for where to place our boundary.

Along this barrier, we impose the Dirichlet boundary condition Pτ = 0, and use

the initial condition Pτ (x, 0) = 1, ∀x ∈ S as before. The Fokker–Planck equation

to be solved is given by

∂Pτ
∂t

= fx
∂Pτ
∂x

+ fy
∂Pτ
∂y

+
σ2

2

∂2Pτ
∂x2

, (6.80)

where fx, fy are as in (6.63). In Fig. 92, we see how the distribution changes as

we increase σ. As expected, as σ increases, the peak of the distribution shifts to

lower values of log t, and there is a tightening of the distribution, although this

effect is much less pronounced than for the 1-dimensional model.

Although we cannot find the exit time distribution for the converse transi-

tion, we can still ask questions about the spatial distribution of the mean time

of this switch. The differential equation for the mean first exit time T , in polar

coordinates, is given by

−1 = φc
dT

dφ
+ [−r5 + λr3 + βr]

dT

dr

+
σ2

2r2
sin2(φ)

∂2T

∂φ2
− σ2

2r
sin(2φ)

∂2T

∂φ∂r
+
σ2

2
cos2(φ)

∂2T

∂r2
.

(6.81)

Since we are interested in transitions to the quiescent state, our domain of interest

is now S = [0, 2π)× [ru, R] for vR � 1. As before, we set T = 0 at the boundary
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Figure 92: Variation of the exit time distribution from the quiescent mode for

the planar Hopf model. The colour represents the probability that the exit from

quiescence occurs at a given value of log t. As σ increases, we note a shift in

the peak of the distribution to lower values of log t. Simultaneously, there is a

tightening of the distribution around this peak, though this effect is much less

pronounced than for the one-dimensional model considered in Fig. 89.

r = ru. In addition, we apply a reflecting boundary condition dT/dr = 0 at r = R

and retain the periodic boundary condition identifying φ = 0 and φ = 2π. We

note that once the mean first exit time has been found, we may use this to find

higher moments of the exit time distribution, though we omit the details here. The

solution of (6.81), found through FEniCS may be seen to have an approximately

flat distribution across a wide range of σ, indicating that the first passage time to

the quiescent state is generally independent of the location within the domain.

We may also wish to know about the effect of the transitions on the probability

of firing, by which we mean a passing of trajectories through φ = 2π, for r > ru.
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Clearly, trajectories from points with r < ru will escape the quiescent regime

with probability 1, so we cannot say much about points here. For trajectories

starting from points with r > ru, there are two options: either they will reach the

firing threshold before they enter the quiescent mode, or they will not. Using the

backward Fokker–Planck equation, we can find the probability that trajectories

starting at a given point will reach the firing threshold before they cross r = ru.

For this problem, we choose as our domain S = [0, 2π] × [ru, R]. Let us define

Pf (y, t) to be the probability that a trajectory starting from a point y = (φ, r) ∈ S

reaches φ = 2π before crossing r = ru. We may find Pf by solving the equation

0 = φc
dPf
dφ

+ [−r5 + λr3 + βr]
dPf
dr

+
σ2

2r2
sin2(φ)

∂2Pf
∂φ2

− σ2

2r
sin(2φ)

∂2Pf
∂φ∂r

+
σ2

2
cos2(φ)

∂2Pf
∂r2

.

(6.82)

We set reflecting boundary conditions at φ = 0 and r = R. Since points on

φ = 2π will meet our condition with probability 1, we use the boundary condition

Pf (y = (2π, r), t) = 1. Similarly, points with r = ru will always fail to meet the

firing condition, so we set Pf (y = (φ, ru), t) = 0. The resulting problem can be

solved easily in FEniCS, to give Fig. 93, using the functions given in Appx. F. In

this figure, the colour represents the spatial profile of Pf , which we plot for three

distinct values of σ. In particular, we may ask a question about the probability of

repeat firing events, that is, how likely the neuron is to reach threshold again just

after being passing through threshold. The points just after threshold correspond

to the left hand portion of the plots. The top figure shows Pf for σ = 1. In

this instance, nearly all points have a high probability of firing, so that once the

cell has entered an oscillatory regime, it is more likely to reach threshold again

before becoming quiescent. As we increase σ, to σ = 2 in the middle panel and

σ = 3 in the bottom panel, we observe two effects. Firstly, Pf for points just

after firing drops significantly, so that repeat firing events without entering the

quiescent mode become increasingly unlikely. Secondly, away from r = ru, the

domain appears to separate into two distinct regions, separated very roughly at

φ = π. For points in the region φ > π, the drop-off in Pf , under variation of σ,
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is much smaller than for the region φ < π, suggesting that, once trajectories have

passed φ = π, the effect of the noise on Pf is small. This may be due to the location

of the peaks of the distribution. In Fig. 94, we plot the probability distribution

for (6.79) for σ = 0.2 in polar coordinates. We see that there are two clear peaks

in the distribution along the oscillatory attractor (with r > 0), one with φ < π

and one with φ > π. Between these two peaks, sample paths are more likely to

cross r = ru. However, at around φ = π, the drift will start to dominate over the

diffusion, and sample paths will be attracted towards the peak, away from r = ru.

Once they have reached this point, sample paths are then fairly close to the firing

threshold at φ = 2π, and so the noise is unlikely to have sufficient time to cause

sample paths to enter the quiescent mode. This helps explain the split in firing

probabilities around φ = π. As we continue to increase σ further, the distribution

across the whole domain will become flatter, and transitions between quiescence

and oscillations will become much more frequent, and so Pf will continue to fall.

Concurrently, the exit time distribution from the quiescent state will continue to

shift to smaller times, reflecting these faster transitions.

6.5 Discussion

Being biological in nature, neural systems are inherently stochastic. Exactly how

detrimental or beneficial noise is to neural computation is still an open topic,

but it is clear that mathematical models can be used to capture some aspects of

this stochasticity, and may be helpful in providing clues to answer these ques-

tions [54, 11]. In this chapter, we have highlighted some of the potential issues

when dealing with stochastically forced planar oscillators. For weak forcing, we

showed the importance of the interpretation of the stochastic integral. In particu-

lar, we demonstrated how the steady state probability distribution changes under

the different noise interpretations for a standard oscillatory model. Perhaps of

greater consequence, we demonstrated that, for that particular model, increasing

the strength of the noise had contrasting effects on the mean frequency of oscilla-

tions depending on the interpretation of noise used. In the Stratonovich case, the
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Figure 93: Spatial distribution of the probability of reaching the threshold φ = 2π

before entering a quiescent state, denoted Pf , with r < ru, plotted for three distinct

values of σ. As σ increases, Pf falls, as expected, but we observe that the domain

appears to separate into two distinct regions, around φ = π. In each of these

regions, the profile of Pf is roughly flat. For φ > π, the reduction in Pf as σ

increases is much less pronounced, suggesting that the noise has a mitigated effect

on Pf in this region.

noise acted to decrease the mean frequency, whilst for the Itô case, the same noise

instead increased the mean frequency.

Moving from the single cell to the network level, these effects will likely have

an impact on emergent behaviour, and synchronisation properties on the network.

The differences between the two increase as we increase the noise strength, so we

expect these differences to be exacerbated as we move away from the weak noise

limit. In most cases, one would expect a Stratonovich interpretation of the noise

to be a good choice for biological system, since we can assume that the noise
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Figure 94: Steady state distribution of (6.79) for σ = 0.2. Colours represent the

probability, whilst the white line is r = ru. As well as the large peak in probability

around r = 0, we can see two other peaks in the probability distribution in the

oscillatory mode. Sample paths will tend towards these peaks as they evolve.

Between the peaks, sample paths are likeliest to cross r = ru. Following the second

peak, sample paths are nearly at the firing threshold, and so are now likely to fire,

even in the presence of noise. This helps to explain why the firing probability in

Fig. 93 appears to be split into two distinct regions around φ = π.
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is, at least in part, due to some underlying process not captured by our model.

However, they may also be good reasons for opting for the Itô interpretation. In

this chapter, we have primarily focussed on what would generally be regarded as

background electrical noise. Such a noise source may be thought of as arising from

the sum of many spontaneous bursts of activity, and may not be part of some

other process. In fact, the quantal release of neurotransmitter may actually be

better modelled as an Itô process. This implies that there is a need for a better

dialogue in the community about precisely which of these interpretations is best

suited for the study of neural systems. Of course, the answer to this question is

likely to be problem dependent; the study of point models differs widely from that

of neural field models, and the choice of stochasticity should reflect this. Indeed,

the large number of potential sources of randomness in biology in general, from the

micro- to the macroscopic level is likely to lead to a diverse choice of mathematical

modelling of the system.

Following the work in Chapt. 5, we devised a coordinate system to include both

a phase around a limit cycle and an amplitude variable capturing some notion of

distance around from the limit cycle. In contrast to the coordinate system from

Chapt. 5, the amplitude variable in the new coordinate system does not measure

the Euclidean distance from the limit cycle, but instead is proportional to the

velocity of the vector field evaluated on-cycle. Although we lose the notion of the

Euclidean distance from cycle with the new amplitude variable, the new coordinate

system has some nice properties, in particular, that the derivatives of a point x

with respect to phase and amplitude coordinates are orthogonal to one another,

meaning that the transformation is locally conformal, and does not suffer from

the same breakdown condition as the previously studied system. In addition, the

dynamics of the phase and amplitude variable may be written compactly, solely in

terms of the vector field and Fourier coefficients of the limit cycle. We have shown

how to efficiently simulate sample paths of a stochastically forced system in these

coordinates to allow for a large number of paths to be computed concurrently.

This coordinate system can be easily scaled up to tackle networks of interacting
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oscillators, using both phase and amplitude variables, in which coupling between

units are stochastic processes, or for studying entrainment of oscillators to a global

stochastic signal.

Moving firmly away from the weak limit, we then considered how to analyse a

system with bistability between a quiescent and an oscillatory state. Such a model

was presented in [210] as a canonical model to explain fluctuations in the alpha

band in cortical EEG recordings. We have improved the analysis of this model,

firstly, by finding analytical solutions to the model as it is written in the original

paper. Secondly, we have used more appropriate parameter values than used by

the authors. In fact, we have strong reason to believe that the values quoted in the

paper are erroneous. For the one-dimensional case, we have studied the interplay

between the noise strength and the way in which the noise acts on the properties

of the system. In particular, we have shown how these two factors affect dwell

times in each of the stable regions and the location of peaks in the steady state

distribution. We have considered the full planar model for the subcritical Hopf,

and used a more general form of forcing to examine the effect of background noise

on firing probability and dwell times. Finally, we showed the effect that the noise

has on the firing probability of points in our domain, and how peaks in the steady

state distribution separate regions of high firing probabilities from low ones.

As the field continues to be more interested in stochastic phenomena, and

in building larger networks, the need for efficient ways to compute quantities of

interest grows. Aside from Monte Carlo simulations of sample paths, one can

also resort to solving the Fokker–Planck equation, which can be exploited to find

a number of quantities of interest. We have demonstrated two techniques for

solving the Fokker–Planck equation: finite element and finite difference methods.

Solving the Fokker–Planck equation, particularly for weak noise presents its own

set of mathematical challenges. Finding the steady state distribution involves

solving a homogenous PDE with natural boundary conditions, for which general

solutions are constant. Moreover, any calculation involving small noise terms

will give rise to a convection-dominated PDE, which are numerically challenging
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to solve. We have presented some ways to tackle these issues; in the first case

through the constraining of nodal values, and in the second through the use of

upwind schemes. There is still a need to further develop these techniques, both for

weak noise, and also to deal with systems posessing more variables [212]. Currently,

Fokker–Planck equations up to the fourth dimension can be solved accurately and

efficiently [209]. Clearly, if we wish to study networks of interacting oscillators, we

need better algorithms for solving these kinds of PDEs. Combining the study of

the Fokker–Planck equation with a phase-amplitude coordinate system, such as the

one studied in this chapter, will enable us to examine synchronisation properties

of small networks away from the weak noise limit, even for systems with other

invariant structures in their phase space. This will then pave the way to study

complex network rhythms in bistable systems, or networks which have exotic and

dynamic synchronisation behaviour, under stochastic forcing. These approaches

may also be useful to study the behaviour of coupled bursters, both to study the

effects that noise can have of the transitions between the active and silent phase of

the burst, and how this is manifest in the network behaviour [213]. Finally, these

ideas may also be applied to the study of mixed-mode oscillations, such as those

studied in [195], to examine how noise translates into emergent behaviour of the

resulting oscillation.

There are clearly many open questions surrounding the role of noise, from a

biological, mathematical and modelling perspective. As progress is made in each

of these areas, the true role and characteristics of noise in the central nervous

system will hopefully come to light.
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7 Discussion

In this thesis, we have covered a range of topics surrounding the analysis of neural

oscillators. Principally, these works have aimed to use simple models to, firstly,

demonstrate the pitfalls in using standard techniques on non-standard problems,

and secondly, to develop ways to overcome these issues. Although biophysical

models may not capture all of the qualitative features of data, and phenomenolog-

ical models do not even explicitly include any modelling of the relevant biology,

mathematical models can help us to understand the mechanisms of rhythm gen-

eration in the central nervous system. The complexity of the models scales up

as we couple single cell models together to form network ones. When studying

such models, it is not clear which emergent behaviours arise due to the intrinsic

dynamics of the oscillators, and which are due to the coupling within the network.

One only has to look at examples in [56] to see how network coupling can give

rise to interesting behaviour in networks when the individual units are relatively

uninteresting. Conversely, in examples of central pattern generators [214, 215],

intrinsic dynamics, in conjunction with mutual inhibition, are important in the

generation of anti-phase oscillations. By focusing on models of which we have a

good understanding at the single cell level, we hope to unravel the contribution

from the intrinsic dynamics and coupling at the network level.

In Chapt. 2, we analysed the PWL-IF model as presented in [98]. IF type mod-

els are principally used for their computational cheapness; building large coupled

networks of IF cells is easy to do, even on personal computers. Since the relevant

information for neural processing is thought to be encoded, for the most part, in

spike timing, rather than spike shape [32, 33], IF models can be used to study

information processing in neural networks. Nevertheless, more recent adaptations

of IF models have been fit with considerable accuracy to real data [2], suggesting

that, although only phenomenological, these models can capture a wide range of

neural behaviour. In our work, we have taken a step away from increasing the

complexity of the model, and chose to work in the PWL regime, though we note
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that the PWL model we advocate still captures the essence of a spike shape. In

this regime, we can construct analytical solutions through the use of matrix expo-

nentials, and by piecing together solutions across the switching manifold, where

the governing linear system changes. The advantage of being able to write down

solutions in this manner is that we can then probe the dynamics of our system

more easily. For the PWL model, this meant we were able to write down exact

solutions for the spike time, and return maps for spiking solutions. From here,

we could then fully characterise the behaviour of the single neuron in terms of its

bifurcation structure. Furthermore, we found structures giving rise to spike adding

bifurcations, which are generally difficult to identify in nonlinear models [216, 217],

and finally to locate regions where the system is chaotic under constant forcing.

Recently, the PWL framework has been used to study canard phenomena in the

FHN model [105], and has further been used to examine mixed-mode oscillations

for the same model under stochastic forcing [154]. In both examples, explicit solu-

tions allow us to make progress through the identification of separatrices between

small and large amplitude oscillations.

The advantages of the PWL paradigm also carry over to the network level. For

example, in [98], we constructed networks coupled through gap junctions. In this

case, the resultant network dynamics are still linear (since gap junction coupling

only adds extra linear currents). We demonstrated how to find the stability of

synchronous and asynchronous network solutions, for which the stability conditions

are given by explicit formulas.

The non-smooth nature of IF type models gives rise to mathematically in-

teresting dynamics. For the PWL-IF model, there are two regions along which

dynamics are non-smooth, namely, the switching manifold, across which the linear

dynamics change, and the threshold, at which the reset conditions are applied.

At each of these manifolds, we can observe non-smooth bifurcations. Many non-

smooth bifurcations have smooth analogues, however, the qualitative behaviour

of the attractors borne out of these bifurcations may be markedly different. For

some bifurcations, such as the grazing bifurcations, there are no smooth analogues,
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and so these give rise to behaviour that cannot be captured by a smooth system.

The classification of generic non-smooth bifurcations, and behaviours arising from

them, is an open area of research [122]. After finding the non-smooth bifurca-

tions in the PWL-IF model, we demonstrated the failure of the standard method

of calculating Lyapunov exponents in non-smooth systems, and calculated an ex-

plicit formula to give the true exponents, using techniques originally developed for

impacting mechanical oscillators [149]. Using the Lyapunov exponents, we were

able to identify regions of chaotic activity near spike adding bifurcations and burst

death. Typically, planar systems do not support chaotic behaviour, but the non-

smooth mechanisms in IF models can make systems unpredictable. A perturbative

analysis around threshold, and the switching manifold may give more insight into

the way chaotic behaviour emerges in the PWL-IF model. A more general method

for calculating Lyapunov exponents in IF models was recently presented in [218],

in which the authors go on to correct results from earlier studies [219, 220] per-

taining to networks of IF neurons. That such a paper has recently been published,

and has identified errors in quantification of exponents, highlights the need within

the computational neuroscience community to better understand the effect that

non-smoothness can have on systems.

We have studied the nature of the non-smooth bifurcations at only the single

neuron level, but it would be interesting to observe how these are manifest in

a network level description. A good place to start to answer these questions is

through the study of Arnol’d tongues, which delimit regions of entrainment of

oscillations to a given signal, and thus classify the oscillators response. These

tongues will then give us some idea about the ability of the network to synchronise,

for example, by treating the signal as input from other cells in the network. A study

of Arnol’d tongues for a PWL caricature of the adaptive exponential integrate-and-

fire model has recently been performed in [151]. It is possible that the study of

PWL modesls will allow for the construction of explicit solutions for the Arnol’d

tongues of the PWL-IF, which will aid understanding of entrainment of this model.

Of course, the construction of Arnol’d tongues is still principally a single neuron
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study, and full network studies will still need to be performed.

Another strength of IF type models is the ease in which plasticity can be intro-

duced to the system, by including dynamic synaptic variables [221], and it is clear

that the PWL-IF model could easily be modified for this purpose. The flexibility

of planar IF models in capturing a wide range of dynamical behaviour make them a

good candidate for studies of heterogeneous networks. Now that we have identified

regions of different behaviour, in terms of bursting with distinct spike numbers,

alternate kinds of tonic spiking and quiescence, we can analyse networks composed

of neurons existing in all of these regimes, extending our analysis of homogenous

networks in [98]. One of the key goals of these kinds of analyses is to predict the

network behaviour through dimension reduction, which we hope is achievable by

the use of a polynomial chaos expansion [222]. As the degree of heterogeneity in

the network increases, such methods are expected to fail, and so we must develop

new techniques to predict the network level behaviour, which we have observed to

support the within-burst synchrony changes as discussed in [192].

There is a growing interest in studying stochastic IF models, both in terms of

the analysis of the mathematical models [223, 224], and in their application to real

systems in the brain [1, 225]. Stochastic inputs, from a modelling perspective, are

better able to describe fluctuations in input currents to a given neuron, as well as

being able to capture the effect of background electrical noise. Since, for linear

systems, we may be able to write down analytical solutions to the stochastic prob-

lem, we are in a good position to study the effect that stochastic perturbations

have on entrainment, firing frequency and even qualitative behaviour. In particu-

lar, since we have categorised the important dynamical structures, we can study

how these are shifted by the stochastic perturbations and the behaviour that will

result. Following this, we may build network models in which communication be-

tween cells is noisy and study the overall effect of the perturbation compared with

the deterministic case. By amalgamating analyses for heterogeneous and stochas-

tic networks, with the potential of including plasticity, we hope to construct ever

better models of neural activity which are mathematically tractable.

257



Moving away from nonsmooth modelling, in Chapt. 4, we conducted a numer-

ical case study of the ML model to highlight the limitations of phase-only models.

In particular, we examined the response of the ML model near a homoclinic bifur-

cation and near a Hopf bifurcation (in parameter space) using parameter values

from [15]. Clearly, the power of phase models lies in the reduction in dimension

that they offer. Away from bifurcations and for weak forcing, phase reduction

methods generally do well at approximating the behaviour of the full network and

are used in a wide variety of applications. Moreover, experimental techniques can

be used to find objects such as the PRC, and thus there are direct parallels be-

tween theory experiment in this paradigm [6]. However, as we showed, there are a

number of scenarios in which the phase-only model breaks down. Alarmingly, the

phase description in this case offers no evidence that a breakdown has occurred,

meaning that it is difficult to predict at what point perturbations can no longer

be classed as weak. This problem is exacerbated at the network level; even though

the individual inputs received by a neuron from any other cell may be small, their

summative effect over the entire network, and over time, may not be. We have

already seen, for the PWL-IF model, how small changes in parameters can cause

drastic changes to the resulting dynamics, even as far as driving cells into a chaotic

regime. In terms of neural processing, this indicates that the neuron is unreliable,

since its response to the same stimulus will differ over trials [13], and this lack

of reliability will have wider impacts on the ability of a neural network to encode

stimuli [198].

We examined three scenarios in which the phase description could potentially

break down, namely, the case in which trajectories leave the basin of attraction

of the limit cycle, the effect of other invariant structures in phase space, and

dynamical shear. For the case of dynamical shear, we pinpointed an example of

the shear induced folding, and resulting chaos as predicted in [153, 71]. Although

this kind of behaviour is difficult to predict from studying the equations alone, we

provided a simple diagnostic check that can help to identify which systems may

be susceptible to these shear forces. Further to this, we examined the ‘trapping’
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effect of invariant structures and the consequences that this can have on a single

oscillator. In general, phase models systematically under-predict the tails of the

distribution for the ISI in these instances as they do not ‘feel’ structures at a small

but finite distance away from the limit cycle. In all of the cases studied as part

of this chapter, the magnitude of the forcing was small, further highlighting that

the notion of ‘weak’ in the term ‘weakly coupled oscillators’, can be misleading,

at least in the context of computational neuroscience.

The aforementioned effects are still present at the network level. For a two-cell

network, we showed that shear effects still give rise to chaotic dynamics, and that

the trapping effect of structures in phase space can lead to erroneous predictions

from the phase interaction function. Clearly, studies of larger networks are required

to see if the same phenomena are observed at this level. In some cases, the size of

the network may actually work to overcome the issues discussed in this chapter,

as the summative effects of all inputs helps to ‘regularise’ the network activity. In

other cases, the opposite may may be true; in the worst case the network dynamics

may be completely irregular, and even outside of this possibility, the predictions

from phase models may be incorrect. The key message from this body of work is

to take care when using phase reductions, as subtle effects can result in markedly

different behaviour of the full system compared with the reduced one.

Following the discussion of the limitations of perturbative techniques for neural

oscillators in the preceding chapter, in Chapt. 5, an alternate coordinate system

is presented, following ideas in [12]. Although the underlying coordinates are not

isochronal, and so the phase variable is not equivalent to the asymptotic phase, this

coordinate system offers a practical way to study systems using similar ideas to

phase models, without falling into the pitfalls highlighted in the case study of the

ML model. One of the biggest drawbacks to using isochronal coordinates is that

the asymptotic phase away from the limit cycle, apart from in rather restrictive

models, cannot be found analytically. For truly weakly coupled networks, this

is not an issue, since only dynamics in the neighbourhood of the limit cycle are

considered. If we wish to study networks away from this limit, we need some
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systematic way of ascribing phase off-cycle. Of course, we can calculate a large

number of isochrons and use these to approximate dynamics off-cycle. To this end,

there have been a number of recent developments in the computation of isochrons

through: the identification of transverse vector field for which the flow traces out

the isochrons [46], numerical continuation using the distance from cycle as a control

parameter [48] and most recently, with operator theoretic approaches [49].

Despite the advances in efficiency of computation of isochrons, the three meth-

ods presented in the previous paragraph all suffer from three problems. Firstly,

even the quickest of the three methods still takes a long time to generate the num-

ber of isochrons necessary to approximate the dynamics of the full system. Sec-

ondly, given that the phase space cannot be foliated fully using these algorithms,

the resulting dynamical system would still only be an approximation. Finally, the

generalisation to higher dimensions (above planar), although possible, vastly in-

creases both the time needed to compute isochrons and the inaccuracy associated

with the resulting dynamical system.

Instead of using isochronal coordinates, we use a moving orthonormal coor-

dinate system, in which one coordinate vector is the normalised tangent vector

along the limit cycle, and the other coordinate vectors are set up orthonormally

to it. If the system in Cartesian coordinates is in Rn, the system following the

application of the transformation has one phase variable and n−1 amplitude vari-

ables, which capture the Euclidean distance along the coordinate vectors. This

coordinate system is exact; no approximation is made during the transformation

and so the resulting dynamical system mimics the original system precisely. Ex-

tension of the coordinate system to systems with higher dimension is trivial, and

does not drastically increase computation time. Since all the functions involved

for the system are given explicitly, in terms of either the original vector field or the

limit cycle, the transformation can readily be applied to any system with a stable

limit cycle. One of the drawbacks of the phase models is that it is impossible to

identify if and when trajectories leave the basin of attraction of our reference limit

cycle. Under the moving orthonormal system, we can represent all of the relevant
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invariant structures in phase space, and even represent trajectories that do leave

the basin of attraction of the limit cycle.

Although the coordinate system does not capture information about the true

asymptotic phase of a trajectory, if the forcing is not too strong, the dynamics

will behave similarly to an isochronal system. With the inclusion of amplitude

variables, we are now able to capture the shear effects described in Chapt. 4 due

to the nonlinear effects of the saddle in the ML system. Through a comparison of

the ML and FHN model, both by an examination of the functional forms associ-

ated with the coordinate transformation, and by probing the dynamics of a system

forced periodically, we showed scenarios in which the phase model is sufficiently

good to account for off-cycle dynamics, and scenarios in which the effect of other

phase space structures gives rise to chaotic dynamics. The latter of these studies

was centred around the examination of the resulting response functions for our

phase and amplitude variables. In this study, it was found that where trajectories

are not pushed far from cycle, the resulting dynamics are not chaotic, as shear

forces rely on trajectories occasionally being taken far from the limit cycle. How-

ever, the shape of these response functions is not sufficient to fully characterise

the neuron’s response to forcing, as we also need to know about the distribution

of points where perturbations are applied. A more thorough analysis, using spec-

ified response functions, may give a greater insight into which types of model are

likeliest to support chaotic behaviour.

The ideas and techniques for the response of a single cell could be applied to

networks of interacting oscillators. For weakly coupled oscillators, one can make

predictions about the synchronisation properties of the network, through the use

of phase interaction functions. After averaging, the interactions between cells in

the network can be expressed as a function of the difference between their respec-

tive phases alone. An analogue of this, constructing a similar object for a network

retaining the information about distance from cycle, is clearly a desirable goal.

Even in the weak setting, it allows for a wider range of behaviour compared to the

phase-only model. In particular, it will also up avenues to study the synchronisa-
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tion of heterogeneous networks, for which the intrinsic dynamics may play more

of a role for some network units. Since the transformation is exact, it may also

provide some clues for predicting network behaviour away from the weak limit,

which is one of the key goals of network studies of coupled oscillators.

One of the more subtle aspects of this study was in the appropriate way to deal

with the pulsatile forcing. Typically, these kinds of forcing are modelled through

δ-functions, mediated by some state dependence on one or more of the intrinsic

variables. We adopt the approach in [226, 185] to correctly integrate the effect

of this δ-function. In the second of these references, the authors show that other

studies, based on [227], have failed to correctly address the discontinuity associated

with the δ-function, leading to markedly different network behaviour compared

with the true behaviour. Owing to the deceptive nature of this type of forcing we

echo our earlier statement that the computational neuroscience community should

be aware of the role that non-smooth dynamics can play.

Building on the ideas presented in the preceding two chapters, Chapt. 6 re-

places the deterministic perturbations with their stochastic counterparts. Biologi-

cal processes are inherently stochastic, and mathematical descriptions can be used

to capture this nature. In fact, the HH formalism is based around a continuum

approximation of Markovian dynamics [16]. There have been a number of recent

developments in the study of stochastically forced oscillators, both from the math-

ematical and experimental standpoint [193, 8, 7, 52, 53]. The consideration of

noise can, at a base level, help mathematical models to fit fluctuations in real

data. Further to this, analysing sources and consequences of noise may give a

better understanding of how key cellular mechanisms operate, as well as giving

insight for efficient neural computation in a noisy environment.

In the studies we performed, we firstly highlighted the need for consistency in

the interpretation of stochastic integrals in mathematical models. That different

choices of interpretation lead to distinct dynamics is not unknown, however, our

studies indicate how drastic the consequences can be. For the SL model, we

observed a pronounced difference in the steady state distribution of the system
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under the Itô interpretation compared with the Stratonovich one. Furthermore, we

saw dynamically opposite behaviour of the mean frequency of the oscillations. This

will clearly have an impact on the synchronisation properties at the network level.

Progress has been made in recent years in correctly performing phase reductions

of stochastically perturbed oscillators [193, 7, 9], but these studies all use integrals

of the Stratonovich type. As outlined in Chapt. 2, there are a number of potential

sources of noise in the nervous system, and there is the ever present measurement

noise to be considered when dealing with real data. Due to the large number

of such sources, some of which may more naturally be modelled under Itô type

integrals, we feel that the community should take care to observe the differences

between the two interpretations.

The types of noise we have considered have essentially modelled electrical noise,

by simply adding additive white noise to one of the state variables. Of course, there

are many other ways of introducing stochastic perturbations into mathematical

models, which will likely give rise to differing dynamics, particularly in lieu of

the discussion in the last paragraph. In fact, since the base processes underlying

biological rhythms are themselves stochastic in nature, a more natural way to

model noise might be to include it in the intrinsic dynamics, rather than treating

it as acting perturbatively [228, 229]. This leads to a more general form of random

dynamical system, but one that may better be able to describe the nature of the

real biological system [230, 231].

Following the establishment of a phase-amplitude coordinate system in

Chapt. 5, we presented an alternative system in Chapt. 6. In the alternative

system, the amplitude variable does not represent the Euclidean distance from the

limit cycle, but is instead proportional to the norm of the tangent vector around

the limit cycle. Although we thus lose the notion of Euclidean distance, the result-

ing coordinate system does not suffer from the same issues regarding coordinate

breakdown as the system in Chapt. 5. Furthermore, the coordinate system can

compactly be written in terms of the vector field and the Fourier coefficients of the

asymptotically stable limit cycle. We showed how to calculate the dynamical equa-
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tions for the phase and amplitude variables for the SL model, and went on to show

how to simulate large numbers of sample paths in these coordinates. Through

the use of these numerical routines, and by solving the forward Fokker–Planck

equation, we compared the steady state distribution for infinitesimally weak noise

to those for increasing noise strengths. In order to do this, we derived a finite

difference scheme, using upwind methods, to address the numerical instabilities

associated with convection-diffusion problems in which convection dominates dif-

fusion [208]. For very small noise, the steady state distributions match those for

the infinitesimal case, but one does not have to increase the noise strength by

too great an amount to observe differences in these distributions. In the case of

the SL model, we find a periodic modulation of the steady state distribution as

the noise strength increases, compared with the flat distribution predicted for in-

finitesimally weak noise. In both cases, histograms obtained using our numerical

routines support the solution of the Fokker–Planck equation approximated using

the finite difference method.

We may go on to extend the use of the coordinate system to the analysis of

networks. By solving the Fokker–Planck equation for a network state, we will

be able to say something about how much the coupling between units affects

the underlying oscillations, and also predict where other phase space structures

are likely to play a role in the emergent behaviour [80, 200]. By examining the

marginal distribution in phase, we will then be able to make predictions about the

synchronisation of the network, and also predict where coupling between units will

have the greatest effect on network rhythms [232].

It is clear that the development of easy-to-use toolboxes for solving the Fokker–

Planck equation, as well as PDEs in general, using both finite element and finite

difference methods will open up the avenue to probe networks of coupled oscilla-

tors. For solving the Fokker–Planck equation by the finite element method, we

used the FEniCS toolbox, freely available to download [207], and well documented

[206] with an active user community. Presently, these methods are only really

appropriate for solving problems in low dimensional space [233]. This is unsur-
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prising, since they are typically used to solve problems in physics, engineering and

theoretical mechanics, in which the dimensionality of the system is constrained by

real world geometry. However, such toolboxes are seeing more use in answering

questions about biology, for example in the study of impulse propagation in car-

diac muscles cells [234]. In particular, meshing routines are becoming ever better

at dealing with complex geometry, such as that associated with dendritic trees, so

that models can be simulated on meshes that capture biophysical structure.

As toolboxes continue to improve, we will then be able to use the Fokker–

Planck equation to make statements about network rhythms without ever having

to simulate sample paths. Using the same finite element methods, we concluded

the chapter with an analysis of a model, previously studied numerically in [210].

Although the model is purely phenomenological, it has been shown to match statis-

tics with cortical EEG data, and so this model may act as a canonical model for

cortical rhythms. We have expanded the analysis in [210] to include analytical

results, and to study more general forms of forcing, highlighting how the expected

dwell times in each of the stable modes is affected. Our study of the bistable sub-

critical Hopf showed how solutions to the Fokker–Planck equation can identify the

way in which structures in state space affect behaviour under stochastic perturba-

tions, as well as the range of quantities that the Fokker–Planck equation can be

used to find, such as exit time distributions and exit probabilities through a firing

threshold. The same kind of analyses can be used to study other systems support-

ing interesting behaviour, such as those with greater degrees or different types of

multistability, for example, those giving rise to mixed mode oscillations [195, 235].

They may also be useful in answering questions about stochastic and coherence

resonance, or how noise affects transitions between silent and active phases of

bursting neurons [213], and finally how phenomena such as array induced coher-

ence resonance occur [236, 237], and their effect on information processing in the

brain [238].
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8 Appendices

A Numerical integration of the SDEs (4.17) and

(4.18) for Chapt. 4

To solve (4.17) and (4.18), we use the stochastic Runge-Kutta scheme as described

in [89]. For a general system, of the form

dX = f(X)∆t+ σg(X)dWt, (A.1)

this scheme first divides the integration period intoN intervals of size h, whereupon

the approximation to the true solution is given by yn, n = 1, 2, . . . , N ,

yn+1 = yn +
s∑
i=1

aif(Yi)h+ σ
s∑
i=1

(
b1
i∆Wn + b2

iJ10

)
g(Yi), (A.2)

Yi = yn +
i−1∑
j=1

αijf(Yj)h+ σ
i−1∑
j=1

(
β1
ij∆Wn + β2

ijJ10

)
g(Yj), i = 1, . . . , s ,

(A.3)

where ∆Wn = h1/2ξ0, J10 = 1/2h3/2(ξ1 + ξ2/
√

3), ξ0,1,2 ∼ N(0, 1) and α, β, a

and b are constant matrices and vectors which are the solution to a series of linear

systems corresponding to a rooted tree expansion of (A.1) as a Taylor series. These

expansions are considered in more detail in [239, 87, 89]. One solution to these
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linear systems gives the coefficients as

α =


0 0 0 0

1
2

0 0 0

0 1
2

0 0

0 0 1 0

 , a =
(1

6
,
1

3
,
1

3
,
1

6

)T
,

β1 =


0 0 0 0

−0.7242916356 0 0 0

0.4237353406 −0.1994437050 0 0

−1.578475506 0.840100343 1.738375163 0

 ,

β2 =


0 0 0 0

2.702000410 0 0 0

1.757261649 0 0 0

−2.918524118 0 0 0

 ,

b1 =
(
− 0.7800788474, 0.07353768240, 1.48520013, 0.2199211524

)T
,

b2 =
(

1.693950844, 1.636107882,−3.024009558,−0.3060491602
)T
. (A.4)

The scheme requires four function evaluations per step, but provides an accuracy

of O(h2) in the strong sense. We use this routines as, although explicit, it gives

a good approximation to the true solution, without the added cost of an implicit

solver.

To improve the accuracy of our approximation of the spike times we use lin-

ear interpolation, as in Sect. 3.8, upon crossing threshold, so that the threshold

crossing time t∗ is given by

t∗ = tn−1 + h
12.5− vn−1

vn − vn−1

. (A.5)

We note that although this will improve the accuracy of our firing estimate, we

have no notion of what the stochastic process is doing between tn−1 and tn, so that

there will always be some error associated with this step.
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B Numerical integration of the stochastic phase-

amplitude equations as used in Chapt. 6

We seek an efficient algorithm to integrate (6.53). The first step, given y = (θ, ρ)

is to evaluate x, so that F (x) may be evaluated. The time consuming part of this

transformation is the matrix exponential, which needs to be done N times per step.

The näıve approach to carrying out the transformation would be to evaluate the

matrix exponential for each n = 1, . . . , N and then take sum, following how it is

written in (6.37). However, this is cumbersome, particularly when wishing to run

many simulations concurrently. It is also worth noting that, aside from the matrix

exponential, the other terms in the product (6.37) allow for the simultaneous

transformation of a number of values of y. A faster approach would be to perform

a large matrix calculation, replacing the sum in (6.37). Such matrix approaches

are used widely for other uses, particularly in signal processing.

First, we write the Fourier components of the orbit as a vector, of the form

Γn = (Γ1,1, Γ2,1, Γ1,2, Γ2,2, . . .Γ1,N , Γ2,N)T . (B.1)

We write the Fourier modes in the order 0, 1, 2, . . . , N/2,−(N/2− 1), . . . ,−1, and

construct a 1×N vector m with the modes as entries. Now, x may be written as

the matrix product given as

x = LKΓn, (B.2)

where

L = e2πimθ/∆ ⊗ 12, (B.3)

where 12 is the 2 × 2 matrix whose entires are all ones, and K is a block matrix

whose entries are the 2× 2 matrix exponentials e2πiρJ/∆. We now need to find an

efficient way to compute K. If we are only interested in doing one run at a time,

we can easily form this matrix. For M concurrent runs, where M is large, the

memory limitations in MATLAB mean that we will need to alter the approach

slightly. In essence, the method works by noting that the matrix exponential eA,
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for a generic matrix A, may be written in the form [240]

eA = V diag(exp(Λ)) V −1, (B.4)

where Λ is a vector of the eigenvalues of A and V is a matrix whose columns

are the eigenvectors associated with the eigenvalues in Λ. The function diag(x)

takes a vector x and forms a square matrix whose leading diagonal is x with zeros

everywhere else. We note that this is different to the approach used by MATLAB,

which uses Padé approximations to compute the matrix exponential [240]. In fact,

the method using Padé approximations may be quicker for one-off calculations,

but we will store the values of V and Λ for use multiple times, producing a speed

up factor. We also note that it is important that Λ in the above is a vector. It

is common, for example, when diagonalising a matrix, to find a diagonal matrix

whose leading diagonal is composed of the eigenvalues of said matrix. To evaluate

the matrix exponential, we require a diagonal matrix whose leading diagonal is

formed by taking exponentials of the eigenvalues. Writing matrices in such a

diagonal form allows for the easy computation of matrix powers. For example, if a

matrix A is written as A = V diag(Λ)V −1, then An is given as An = V diag(Λ)nV −1.

We may exploit this for our matrix exponential by noting that the terms in the

exponent of the matrix exponential, for a given ρ, are just powers of one another.

Thus, if we let

A =
2πiρ

∆
J, (B.5)

and let V and Λ be the eigenvectors and eigenvalues of A, then for each n, we

may write the matrix exponential as enA = V diag(exp(Λ))nV −1. Furthermore, we

also note that the value of ρ also acts as an exponent in the matrix exponential,

meaning that we can further simplify matters by letting

A =
2πi

∆
J, (B.6)

The matrix exponential for any ρ and n is then

enρA = V diag(exp(Λ))nρ V −1. (B.7)
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In this way, we need only compute V and Λ once, and the remaining calculations

are simple matrix multiplications with a few tensor products, which MATLAB

is optimised to do. Our results show that, even for large numbers of runs, the

norm of differences between matrix exponentials found using this approach and

the Padé approximation is ∼ O(10−13), which is smaller than the error we expect

from numerical routines to integrate SDEs of the form (6.1).

Due to the memory handling in MATLAB, the optimal strategy now differs,

depending on whether we are doing one run or many at the same time. In this

case, many means greater than 50. For one run, we may evaluate the matrix K

easily by first evaluating it as a large block diagonal matrix, and then extracting

the relevant entries needed to form K. This method starts by taking the product

V = IN ⊗ V, (B.8)

where IN is the identity matrix in RN . This creates a block diagonal matrix with

copies of V down the leading block diagonal. In a similar fashion, a 2N × 1 vector

is formed by taking the product

D = [1, 1]T ⊗ Λ. (B.9)

We note that these computations are done only once, at the beginning, and then

stored for later use. At each time step during the numerical integration, a similar

computation is carried out, given a 1× 2N vector containing copies of the Fourier

coefficient index and ρ, giving

M = [1, 1]⊗mρ. (B.10)

We note that this is most efficiently achieved in MATLAB by first computing mρ,

then introducing another 2×N matrix

L =

mρ
mρ

 , (B.11)

We then form a 2N × 1 vector M by iteratively stacking columns of L. Now, we

calculate the block diagonal matrix Z as

Z = V diag((DM)) V−1, (B.12)

270



where the power acts element-wise on D. The entries of the 1×N block vector of

2 × 2 matrices K are on the leading diagonal of the block diagonal matrix Z. To

extract them in MATLAB, we can use logical indexing by only outputting entries

of the 2N × 2N matrix Z corresponding to

I = IN ⊗ 12. (B.13)

This will give the requested entries of Z as a column vector z = Z(I). We then

form two other indexing vectors

id1 = 1N×1 ⊗ [1, 0, 1, 0]T , id2 = 1N×1 ⊗ [0, 1, 0, 1]T , (B.14)

where 1N×1 is simply a N vector whose entries are all ones. Finally, we may then

form the 2× 2N matrix K as

K = [z(id1), z(id2)]T . (B.15)

Although it is possible to use the above method for many concurrent runs, by

first taking the outer product of m and ρ, where ρ = (ρ1, . . . , ρM), this calculation

quickly becomes too large. This is because the process first requires creating a

matrix N times larger than the one we actually need to compute. Because of the

way MATLAB handles memory in blocks, this makes the process time consuming.

For a large number of concurrent runs, we may still use (B.2), but instead of using

the above process to form K, we iterate over the respective entries of m and ρ.

This does not require the use of any sparse, block diagonal matrices and so the

whole process is faster. Since,

∂x

∂θ
=

(
2πin

∆

)∑
n

e2πinθ/∆e2πinρJ/∆un, (B.16)

It is clear to see that we can use exactly the same process explained above to find

∂x/∂θ. Thus, we have that
∂x

∂θ
= L̃ KΓn, (B.17)

where

L̃ =

((
2πim

∆

)
• e2πimθ/∆

)
⊗ 12, (B.18)
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where • denotes element-wise array multiplication. This expression can then be

used to find ∂x/∂ρ. Now that we have found both x and ∂x/∂θ, it is easy to

compute the right hand sides of (6.53).

C Steady state distributions for non-weak noise

from Chapt. 6

For a planar system in Cartesian coordinates with white-noise forcing only in the

first variable, the Langevin equation is given by (6.1) with G = (1, 0)T . The

(forward) Fokker–Planck equation for this equation is

∂P

∂t
= −∂[F1P ]

∂x1

− ∂[F2P ]

∂x2

+
σ2

2

∂2P

∂x2
1

, (C.1)

where the subscript denotes the component of the vector valued function F . In the

general case, the domain, S, of x is unbounded, and so we require the boundary

conditions that

P → 0 as x1,2 → ±∞. (C.2)

If we are solving these equations numerically, our domain must necessarily be

finite, in which case we may use reflecting boundary conditions at the edge of our

domain, ∂S, given by the condition

n̂ · J = 0, (C.3)

where n̂ is the outward pointing normal on ∂S and J is the probability flux, given

by

Ji = Fi(x)P − σ2

2

∑
j

∂[GijP ]

∂xj
, i = 1, 2, (C.4)

where G = GGT . In all cases which we consider, we choose our domain to be

rectangular, that is S = [l1, l2] × [l3, l4]. Since there is no diffusion in the x2

direction (since G2 = 0), the reflecting boundary conditions (C.4) on x2 = l3 and

x2 = l4 imply that P = 0 along these edges. These are standard Dirichlet boundary

conditions. For the edges x1 = l1 and x1 = l2, we then impose the condition that

σ2

2

∂P

∂x1

= F1(x)P, (C.5)
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which is a mixed boundary condition. Now that we have established the boundary

conditions for the problem, we can complete the statement of the problem by

imposing the initial condition

P (x, 0) = R(x), (C.6)

where R is some probability distribution, satisfying the integral condition∫
S

R(x) dx = 1. (C.7)

The solution of (C.1) for large times will then give the steady state distribution

of (6.1). Rather than solving (C.1), subject to an initial condition, over a long

time, we may instead solve directly for the steady state distribution. If we set

∂P/∂t = 0 in (C.1), we arrive at

0 = −∂[F1P ]

∂x1

− ∂[F2P ]

∂x2

+
σ2

2

∂2P

∂x2
1

. (C.8)

Since the above equation is homogeneous, attempts to solve it directly will yield

only a constant solution P = p for some p ∈ R, which is clearly not the desired

solution. We may tackle this problem in one of two ways. One way is to constrain

a point in space to equal some arbitrary value when we solve the equation, and

then remove this point from the final solution [209]. We will demonstrate how this

may be used later in this chapter. The second method is to change (C.8) from a

homogeneous one to an inhomogenous one, through the substitution Q = P + 1

as used in [232]. Again, we will consider how this works in practice in due course.

C.1 Fokker–Planck equation for systems in the phase-

amplitude coordinates from Chapt. 6

If we now consider system (6.40), we must make a few changes to the problem

set up. The forward Fokker–Planck equation for the steady state distribution now

reads

0 = −∂[ΩP ]

∂θ
− ∂[fP ]

∂ρ
+
σ2

2

∂2[h2P ]

∂θ2
+ σ2∂

2[hgP ]

∂θ∂ρ
+
σ2

2

∂2[g2P ]

∂ρ2
. (C.9)
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We solve this equation on the domain S = [0,∆]× [−R,R], where R > 0. Since θ

is periodic, we use periodic boundary conditions which identify θ = 0 and θ = ∆.

If R is sufficiently large, relative to the dynamics of (C.9), we may simply use the

Dirichlet condition P = 0 at ρ = ±R, which is easier to implement numerically

than the reflecting boundary condition given by (C.4). We now consider two

different approaches for the numerical solution of (C.8) and (C.9).
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D Solution of the Fokker–Planck equation by fi-

nite element methods

In order to use the FEniCS toolbox to solve (C.1), we first need to write our

problem in its corresponding weak form. We consider the equation for the steady

state distribution in Cartesian coordinates given by (C.8). We first rewrite the

equation in an equivalent form, giving rise to the convection-diffusion equation

0 = B(x)P + F (x) · ∇P +
σ2

2
∇ · (A∇P ). (D.1)

where

A =

1 0

0 0

 , B(x) =
2∑
i=1

∂Fi
∂xi

. (D.2)

Next, we multiply this equation by a test function ν, and integrate over the domain

S to give

0 =

∫
S

νB(x)P dx+

∫
S

νF (x) · ∇P dx+
σ2

2

∫
S

ν∇ · (A∇P ) dx. (D.3)

In the current context, we refer to P as being a trial function. Equation (D.3) is

supposed to hold for all ν in some function space V̂ . The trial function lies in some,

possibly different, function space V . To solve the equation numerically, we must

transform the continuous variational problem into a discrete one by introducing

finite dimensional test and trial spaces that are subsets of the full spaces. For

simplicity, we omit the mathematical details of the workings of the finite element

method, and instead proceed to complete the problem set up. The second order

derivative in (D.3) is too high an order for the finite element method to be applied

directly. To cope with this, we integrate the offending term by parts, using Green’s

identities so that (D.3) now reads

0 =

∫
S

νB(x)P dx+

∫
S

νF (x)·∇P dx−D
∫
∂S

ν n̂·(A∇P ) ds+D

∫
S

∇ν ·(A∇P ) dx,

(D.4)

where ds denotes a boundary integral. We require that ν vanishes on parts of

the boundary where P is known. In the present problem, that means that the
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boundary integral term vanishes when x2 = l3 and x2 = l4. Along the boundary

x1 = l1 and x1 = l2, we impose the reflecting boundary condition (C.4). Denoting

∂SV as the union of these two edges, we then arrive at the weak form of our

problem, that is, find P ∈ V such that

0 =

∫
S

νB(x)P dx+

∫
S

νF (x)·∇P dx−
∫
∂SV

νfP ds+D

∫
S

∇ν ·(A∇P ) dx. (D.5)

This equation is homogenous. In order to solve it to obtain a nontrivial solution,

we make the substitution P = P̃ + 1, to arrive at∫
S

νB(x) dx−
∫
∂SV

νfds =

∫
S

νB(x)P̃ dx+

∫
S

νF (x) · ∇P̃ dx

−
∫
∂SV

νfP̃ ds+D

∫
S

∇ν · (A∇P̃ ) dx.

(D.6)

Note that the above is written in the form

L(ν) = a(P̃ , ν), (D.7)

We refer to L, which contains only linear terms in ν, as the linear form, whilst a is

referred to as the bilinear form for similar reasons. The equation can be coded as

written in (D.6) in FEniCS. The program then transforms these forms into a large

matrix system, which may then be solved using standard techniques for linear

algebra, such as Gaussian elimination. Once a solution for P̃ has been found,

it may then be transformed back to P , whereupon the normalisation condition∫
S
P dx = 1 may be applied to give the steady state probability distribution.

D.1 Small noise solutions using the finite element method

Whilst the method described in D is well suited for a large number of problems,

solutions become oscillatory or blow up if σ is too small. In short, the smallness

of the diffusion compared with the convection term causes numerical instabilities.

To overcome this problem, we may use steamline upwind Petrov-Galerkin (SUPG)

methods to stabilise the numerical scheme [82]. These methods work by adding

‘artificial diffusion’ in the direction of the convection. Provided that the artificial
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diffusion added is not too large relative to the convection, this can stabilise the

numerical scheme without greatly compromising the accuracy of the solution. One

method to add in this diffusion is to replace the test function ν with ν + δF · ∇ν.

The parameter δ defines exactly how much artificial diffusion we put into the

problem. The optimal choice for δ is still an open question, but a common choice

is

δ = h(2|F (x)|)−1, (D.8)

where h is the size of the cells in the discretisation. Our bilinear form (D.6)

can easily be updated to include these extra terms by adding to a, the term∫
S
r δF · ∇νdx where

r = B(x)P̃ −B(x) + F (x) · ∇P̃ − σ2

2
∇ · (A∇P̃ ), (D.9)

and solving as before [206]. When using the finite element methods, we shall always

use standard Lagrangian elements of degree one, which are simply triangles. In

the absence of any refinement to our initial discretisation of the domain, all of

these triangles will be congruent, so that h is identical across elements.
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E Solution of the Fokker–Planck equation using

the finite difference method

We shall now demonstrate the use of the finite difference method in solving (C.9).

In general, the discretisation of the domain does not have to be regular, but for

simplicity, we shall choose our discretisation this way. Thus, we split both the

intervals [0,∆] and [−R,R] into N subintervals, and define our spatial steps to be

δθ =
∆

N
, δρ =

2R

N
. (E.1)

Now, we need to discretise the equation (C.9). We note that we could use the

product rule to expose terms which are derivatives of P alone, for example

∂[ΩP ]

∂θ
=
∂Ω

∂θ
P + Ω

∂P

∂θ
, (E.2)

so that we have the derivative of Ω exactly, rather than taking an approximation.

Intuitively, one would expect this to be more accurate than the approximation.

However, it was shown in [241] that this leads to inaccuracies, meaning that leaving

the partial derivatives in the form as in (C.9) is preferable. For all derivatives, we

use centred difference approximations. For example, for an arbitrary function u(x)

of one variable, these derivatives would be given by

d[uP ]

dx
=
ui+1Pi+1 − ui−1Pi−1

2δx
,

d2[uP ]

dx2
=
ui+1Pi+1 − 2uiPi + ui−1Pi−1

δx2
, (E.3)

where the subscript denotes the point index, ui = u(xi), and δx is the stepsize. On

a 2D lattice, we must account for drift and diffusion in both the θ and ρ directions.

We order cells 1, . . . , N2, so that points with index i = 1, . . . , N correspond to the

edge θ = 0, points with index i = N×(N−1)+1, . . . , N×N correspond to θ = ∆.

This means that the diffusion in θ will have a similar form to (E.3), but with i+N

and i−N replacing i+1 and i−1 respectively. For the mixed derivative, we again

use a centred difference approximation, so that,

∂2[hgP ]

∂θ∂ρ
=
hgi+N+1Pi+N+1 − hgi+N−1Pi+N−1 − hgi−N+1Pi−N+1 + hgi−N−1Pi−N−1

4δθδρ
.

(E.4)
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Putting together all of the centred difference approximations, we arrive at the

following numerical scheme

0 =− Ωi+NPi+N − Ωi−NPi−N
2δθ

− fi+1Pi+1 − fi−1Pi−1

2δρ

+
σ2

2

h2
i+1Pi+1 − 2h2

iPi + h2
i−1Pi−1

δθ2

+ σ2hgi+N+1Pi+N+1 − hgi+N−1Pi+N−1 − hgi−N+1Pi−N+1 + hgi−N−1Pi−N−1

4δθδρ

+
σ2

2

g2
i+1Pi+1 − 2g2

i Pi + g2
i−1Pi−1

δρ2
.

(E.5)

This equation will hold at all of the interior points of S, that is, away from the

boundaries. Along the boundaries, we must impose the correct boundary condi-

tions. We identify θ = 0 and θ = ∆, so we need to impose periodic boundary

conditions along the top and bottom edges. Without loss of generality we consider

the adjustments needed along the boundary with θ = 0, though the adjustments

are similar for the boundary with θ = ∆. Clearly, the points i − N do not exist

for i = 1, . . . , N . However, for periodic boundary conditions, these correspond to

the points along with cell number i = N × (N − 1) + 1, . . . , N ×N . Thus, we can

replace (E.5) with

0 =− Ωi+NPi+N − Ωi+MPi+M
2δθ

− fi+1Pi+1 − fi−1Pi−1

2δρ

+
σ2

2

h2
i+1Pi+1 − 2h2

iPi + h2
i−1Pi−1

δθ2

+ σ2hgi+N+1Pi+N+1 − hgi+N−1Pi+N−1 − hgi+M+1Pi+M+1 + hgi+M−1Pi+M−1

4δθδρ

+
σ2

2

g2
i+1Pi+1 − 2g2

i Pi + g2
i−1Pi−1

δρ2
, i = 2, . . . , N,

(E.6)

where M = N × (N − 1). The equations for the boundary with θ = ∆ are similar.

For simplicity, we use the Dirichlet boundary condition P = 0 at points along the

boundaries corresponding to ρ = ±R. To impose this condition, we simply set

the contribution to the derivative approximations of any boundary points to zero.

Note that this also deals with the ‘corners’ of the boundary. After the imposition
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of boundary conditions, we now have a system of N2 linear equations for the

unknown Pi. These equations may be then recast in the form

KP = 0, (E.7)

where K is a sparse, banded diagonal matrix, of the coefficients of (E.5). In a

similar fashion to the homogeneous problem discussed in Appx. D, the solution to

(E.7) will be some constant. We can circumvent this problem by constraining one

of the points in our domain [209]. To do this, we choose a point i0 and use Pi0 = 1

as an additional boundary condition. We thus form the inhomogeneous problem

KrPr = −b, (E.8)

where Kr is the matrix K with the i0’th column removed, Pr is the vector P with

the i0’th element removed and b is the i0’th column of K. This equation can now

be solved to give a nontrivial solution, which may then be normalised to give the

steady state probability distribution. Higher order schemes have been developed

to give more accurate solutions to the Fokker–Planck equation, [212], with fewer

spatial points, but for simplicity, we will use a second order scheme.

E.1 Small noise problems using the finite difference

method

For small noise problems, we have the same issue as discussed in Appx. D.1 in that,

since diffusion is dominated by convection, the numerical scheme may give rise to

oscillatory solutions, with some negative values, or may blow up. To overcome

this problem, we can use upwind schemes as before, to add artificial diffusion in

the direction of the convective flow. For the finite difference scheme, this amounts

to replacing the centred difference with a one-sided one. For example, the forward

spatial derivative in one dimension, at a point xi, is given by

d[uP ]

dx
=
uiPi − ui−1Pi−1

δx
, (E.9)

whilst the backward spatial derivative is given by

d[uP ]

dx
=
ui+1Pi+1 − uiPi

δx
, (E.10)
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Note that, for both of the above discretisation schemes, information only comes to

xi from one direction. Clearly, this is not as accurate as the centred approximation,

since the error for both the forward and backward approximations is O(δx) whilst

it is O(δx2) for the centred version, but it has the advantage of stabilising the

numerical scheme. The choice of which approximation to use depends on which

way information ‘flows’ at the point xi. If u > 0, we expect information to come

from the left, so we use the forward derivative. Conversely, if u < 0, we expect

information to come from the right, so we use the backward derivative. We omit

the onerous details of constructing the equations using the upwind scheme here,

but it suffices to say that each of the centred difference terms in (E.5) may be

replaced with a one-sided alternative, including the mixed-derivative term, which

reduces the accuracy of the system by an order of magnitude, but provides more

numerical stability. In [241], the authors derive a weighted difference scheme for

a 1D system, which guarantees positivity of solutions, avoiding the issues with

oscillatory solutions. An extension to the 2D case would not be particularly diffi-

cult, though we opt to stick with the simple upwind method for our calculations.

Boundary conditions are handled in a similar way as (E.6), taking care to account

for which one-sided approximation is used at the point xi. Solutions to the system

are found in exactly the same way as described in Appx. E.
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F FEniCS expressions for the Fokker-Planck

equation for the phase-amplitude coordinates

in Chapt. 6

The equation to be solved in FEniCS is

∂Pτ
∂t

= C(φ, r)Pτ +B(φ, r) · ∇Pτ +∇ · (A(φ, r)∇Pτ ). (F.1)

Writing

B = (B1, B2), A =

A11 A12

A21 A22

 (F.2)

Expanding the right hand side of this equation we get

RHS =
B1

r

∂Pτ
∂φ

+B2
∂Pτ
∂r

+
1

r2

∂A11

∂φ

∂Pτ
∂φ

+
1

r2
A11

∂2Pτ
∂φ2

+
1

r

∂A12

∂φ

∂2Pτ
∂φ∂r

+
1

r

∂A21

∂r

∂Pτ
∂φ

+
1

r
A21

∂2Pτ
∂r∂φ

+
1

r
A22

∂Pτ
∂r

+
∂A22

∂r

∂Pτ
∂r

+ A22
∂2Pτ
∂r2

.

(F.3)

Now, we may expand the forward Fokker–Planck equation as

∂Pτ
∂t

= −∂Ω

∂φ
Pτ − Ω

∂Pτ
∂φ
− ∂f

∂r
Pτ − f

∂Pτ
∂r

+
σ2

2

(
∂2h2

∂φ2
Pτ + 2

∂h2

∂φ

∂Pτ
∂φ

+ h2∂
2Pτ
∂φ2

+
∂2hg

∂φ∂r
Pτ + 2

∂hg

∂φ

∂Pτ
∂r

+ hg
∂2Pτ
∂φ∂r

+
∂2hg

∂r∂φ
Pτ + 2

∂hg

∂r

∂Pτ
∂φ

+ hg
∂2Pτ
∂r∂φ

+
∂2g2

∂r2
Pτ + 2

∂g2

∂r

∂Pτ
∂r

+ g2∂
2Pτ
∂r2

)
,

(F.4)

whilst the backward Fokker–Planck equation is simply

∂Pτ
∂t

= Ω
∂Pτ
∂φ

+ f
∂Pτ
∂r

+
σ2

2

(
h2∂

2Pτ
∂φ2

+ hg
∂2Pτ
∂φ∂r

+ hg
∂2Pτ
∂r∂φ

+ g2∂
2Pτ
∂r2

)
. (F.5)

For both the forward and the backward Fokker–Planck equation, equating second

order coefficients leads to

A =

h2r hgr

hgr g2

 . (F.6)

282



For the backward Fokker–Planck equation we then find

B =

(
Ωr − σ2

2

∂h2

∂φ
r − σ2

2

∂hgr

∂r
, f − σ2

2

∂hg

∂φ
− σ2

2r
g2 − σ2

2

∂g2

∂r

)
, (F.7)

C = 0. (F.8)

For the forward Fokker–Planck equation,

B =

−Ωr + σ2r ∂h
2

∂φ
+ σ2r ∂hg

∂r
− σ2

2
− σ2

2
∂h2

∂φ
r − σ2

2
∂hgr
∂r

f + σ2 ∂g2

∂r
+ σ2 ∂hg

∂φ
− σ2

2
∂hg
∂φ
− σ2

2r
g2 − σ2

2
∂g2

∂r

 , (F.9)

C = −∂Ω

∂φ
− ∂f

∂r
+
σ2

2

(
∂2h2

∂φ2
+
∂2hg

∂φ∂r
+
∂2hg

∂r∂φ
+
∂2g2

∂r2

)
. (F.10)

For the system (6.78), we have the functions

h = −1

r
sinφ, g = cosφ, Ω = φc, f = −r5 + λr3 + βr , (F.11)

whence

∂h2

∂φ
=

sin 2φ

r2
,

∂hg

∂φ
= −cos 2φ

r

∂hg

∂r
=

sin 2φ

2r2
,

∂g2

∂r
= 0 ,

(F.12)

leading to

∂2h2

∂φ2
= 2

cos 2φ

r2
,

∂2hg

∂φ∂r
=
∂2hg

∂r∂φ
=

cos 2φ

r2
,

∂g2

∂r2
= 0. (F.13)

Putting all of this together gives rise to the following, for the backward Fokker–

Planck equation

B =

(
φcr −

σ2

2r
sin 2φ , −r5 + λr3 + βr − σ2

2r
+
σ2

2r
cos2 φ

)
. (F.14)

For the forward Fokker–Planck equation, we then have

B =

(
−φcr +

σ2

r
sin 2φ , r5 − λr3 − βr − σ2

2r
cos 2φ− σ2

2r
cos2 φ

)
, (F.15)

C =
2σ2

r2
cos 2φ+ 5r4 − 3λr2 − β. (F.16)

The reflecting boundary condition implies that

n̂ · (A∇Pτ ) = −r5 + λr3 + βr , (F.17)

where n̂ = (0,±1).
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