

The University of Nottingham

School of Computer Science

A Framework for Interactive End-user Web Automation

Essam Eliwa

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

February 2013

To my parents

ii

Abstract

This research investigates the feasibility and usefulness of a Web-based model for

end-user Web automation. The aim is to empower end users to automate their Web

interactions. Web automation is defined here as the study of theoretical and practical

techniques for applying an end-user programming model to enable the automation of

Web tasks, activities, or interactions. To date, few tools address the issue of Web

automation; moreover, their functionality and usage are limited.

A novel model is presented, which combines end-user programming techniques and

the software tools philosophy with the vision of the “Web as a platform.” The model

provided a Web-based environment that enables the rapid creation of efficient and

useful Web-oriented automation tools. It consists of a command line for the Web, a

shell scripting language, and a repository of Web commands.

A framework called Web2Sh (Web 2.0 Shell) has been implemented, which includes

the design and implementation of scripting language (WSh) enabling end users to

create and customise Web commands. A number of Web2Sh-core Web commands

were implemented. There are two techniques for extending the system: developers

can implement new core Web commands, and the use of WSh by end users to

connect, customise, and parameterise Web commands to create new commands.

The feasibility and the usefulness of the proposed model have been demonstrated by

implementing several automation scripts using Web2Sh, and by a case study based

experiment that was carried out by volunteered participants. The implemented

Web2Sh framework provided a novel and realistic environment for creating,

customising, and running Web-oriented automation tools.

iii

All praise be to Allah, the most gracious, the most merciful

Acknowledgements

It is hard to acknowledge everybody that helped me to start, continue, and finish this

work. I attempt my best and apologise dearly to those I did not mention.

I would like to extend particular thanks to my supervisors, Dr. Colin Higgins and Dr.

Peter Blanchfield, for their support, guidance, and comments on this thesis, and for

their moral support over the time of my study.

Foremost, I express my deep gratitude to my dear friends Ashraf AbdelRaouf,

Mohamed Sabri, Rami Ghorab, P. Christofi, A. Soaifan, I. Balčaitė, and M. Al-

Momani for all their support in many aspects during my study years.

The help of a number of computer science researchers has been essential at the early

years of my studies, so special thanks to A.Tsintsifas, S.Bagley, I.Celik,

M.Meccawy, M.Begum, S. Myo Htwe, and C.Schoreels.

The Phd for an international student is a lonely journey without great friends. I was

lucky to meet so many of them in Nottingham; they have been like a second family

away from home, so special thanks to A.Sabra, A.Khalifa, M.Mansour, A.Freewan,

A.Basiouni, N.Wahba, Y.Saber, M.Sobhi, S.Abdulkadir, M.Ali, A.Soghier, K.Saleh,

G.Frisso, L.McCormack, J.Durkin, A.Galati, E.Bachis, and A.Mangood.

Special gratitude to all the Egyptians who have participated in the 25
th

 January

revolution, mostly the ones who lost their lives in all of Egypt’s Tahrir squares.

There are no adequate words to express my gratitude to my parents for supporting

me emotionally, spiritually, and financially. I am also forever thankful to Ayman

and Ola Eliwa for being great and supportive siblings in my most difficult moments.

I am indebted to my whole family, especially to Dr. Hesham Khalil, my cousin who

encouraged and inspired me since I was a very young. Finally, sincere love and

gratitude to my wife Halah Yasser, whom I was blessed to marry, and who

supported me to complete such a long life-changing journey.

Thank you all, Essam Eliwa

iv

Table of Contents

Abstract ... ii
Acknowledgements .. iii

Table of Contents .. iv

List of Tables ... viii
List of Figures and Illustrations .. ix
List of Symbols, Abbreviations, and Nomenclature ... xi

CHAPTER ONE: INTRODUCTION .. 1
1.1 Motivation ... 3

1.2 Background .. 5

1.3 End-user Web Automation .. 12

1.4 Research Issues .. 14
1.4.1 Scope ... 14
1.4.2 General Aims and Objectives .. 15
1.4.3 Specific Objectives .. 17

1.4.4 Potential Users ... 17
1.4.5 Approach ... 19

1.5 Contributions ... 20
1.5.1 Web2Sh Framework Overview ... 20

1.6 Organisation of the Thesis ... 22

CHAPTER TWO: RELATED WORK ... 24
2.1 Introduction ... 24

2.2 World Wide Web ... 24
2.2.1 A Brief History of the Web ... 26

2.2.2 Web Architecture .. 28
2.2.2.1 Identification .. 29

2.2.2.2 Interaction .. 29

2.2.2.3 Representation ... 29
2.2.3 Web Scripting Languages ... 31

2.2.4 Web Mining ... 33
2.2.5 Semantic Web ... 33
2.2.6 Syndication Feeds ... 35

2.2.7 Web 2.0 ... 36
2.2.8 Rich Internet Applications (RIA) .. 38
2.2.9 User-Generated Content (UGC) .. 39

2.3 Web Automation Tools ... 40

2.3.1 Web SPHINX .. 45
2.3.2 YubNub ... 46
2.3.3 Mashups .. 47

2.3.4 Yahoo Pipes ... 49
2.3.5 Microsoft Popfly ... 51

2.3.6 Firefox plugins .. 52
2.4 UNIX Shell Scripting .. 54
2.5 A Programmable Web ... 56
2.6 Summary .. 57

v

CHAPTER THREE: WEB2SH FRAMEWORK DESIGN .. 58

3.1 Introduction ... 58
3.2 Design Objectives and Requirements .. 58
3.3 The Web2Sh Architecture ... 60

3.3.1 UNIX Tools Web Wrapper ... 61
3.4 Web2Sh Framework Design .. 63

3.4.1 Web2Sh Implementation of the Visitor Pattern .. 65
3.4.2 Web2Sh Implementation of the Command Pattern ... 67
3.4.3 Web2Sh Implementation of Abstract Factory Pattern 68

3.5 Framework Scalability ... 70
3.6 Summary .. 71

CHAPTER FOUR: WEB2SH USER INTERFACE ... 72
4.1 Introduction ... 72
4.2 Web Command Line .. 72

4.3 User Support .. 74
4.3.1 Login ... 74
4.3.2 Web Commands Help ... 75

4.4 Error Handling ... 75

4.5 Output Options .. 76
4.6 Client Side Web Commands .. 76

4.7 Implementation Decisions ... 77
4.8 Summary .. 77

CHAPTER FIVE: THE WSH SCRIPTING LANGUAGE... 78

5.1 Introduction ... 78

5.2 Scripting Language for Web Automation ... 81
5.3 Software Tools Philosophy .. 84
5.4 WSh Language Deign .. 85

5.4.1 Top-Down Parsing: ... 86
5.4.2 WSh Parser: ... 86

5.4.2.1 Command Execution: .. 87
5.4.2.2 Input /Output: .. 87

5.5 WSh Scripting Language Design .. 88
5.5.1 Language Informal Specifications .. 89

5.5.1.1 Programming Concepts ... 89
5.5.1.2 WSh item ... 89
5.5.1.3 Web Command .. 91

5.5.1.4 WSh Pipeline ... 91
5.5.1.5 The tee Web Command ... 91

5.5.1.6 Syntax .. 94
5.5.1.7 Start Symbols: .. 94
5.5.1.8 Terminals (list of keywords): .. 94
5.5.1.9 Operators: .. 94
5.5.1.10 Production Rules .. 95

5.5.1.11 Nonterminals: .. 95
5.5.2 Contextual Constraints: ... 96

5.5.2.1 Global Built-in Shell Variables: .. 96

5.5.2.2 Variable Naming: .. 96

vi

5.5.2.3 Naming Web Commands ... 97

5.5.2.4 Variable Types ... 97
5.5.2.5 Variables Scope: .. 98

5.5.3 Semantics .. 99
5.5.3.1 Basic Web Commands ... 99
5.5.3.2 New Web command example: ... 99

5.5.3.3 Artwork Importer, iTunes Example: ... 101
5.6 Language Formal Syntax: .. 103
5.7 WSh Language .. 103

5.7.1 WSh Parser and Interpreter ... 104
5.7.1.1 WSh AST ... 105

5.7.1.2 WSh AST Parsing .. 105

5.7.1.3 Parsing Variables ... 106
5.8 Summary .. 108

CHAPTER SIX: WEB COMMANDS .. 109
6.1 Introduction ... 109
6.2 Internet Media Types ... 111
6.3 Polymorphic Mime Types ... 112

6.4 Web Command General Syntax .. 112
6.5 Web Commands Input and Output .. 114

6.6 Building a Pipeline .. 114
6.7 Internet Browsing Commands ... 115

6.7.1 Fetch .. 115

6.7.2 Submit ... 119

6.8 HTML Parsing ... 120
6.8.1 GetLinks .. 120
6.8.2 GetTags ... 120

6.8.3 GetTagByID .. 121
6.9 Text-Processing ... 122

6.9.1 Extract ... 122
6.9.2 Sort .. 123

6.9.3 Replace .. 123
6.9.4 Count ... 124

6.10 Mathematical ... 124

6.10.1 Calculate .. 124
6.11 Running External Programs and scripts .. 125

6.12 Error Handling ... 125

6.13 Summary .. 126

CHAPTER SEVEN: WEB2SH APPLICATIONS .. 127
7.1 Introduction ... 127
7.2 Automation Tools for the Research Community ... 127

7.2.1 Building Arabic Corpus .. 127

7.2.2 Organizing PDF files.. 129

7.3 Automating Repetitive Web Tasks .. 129

7.3.1 Finding the Top 10 UK Movies on the BBC Web Site 130
7.3.2 Filtering and Retrieving Links .. 130

7.4 User Accessibility .. 131

vii

7.5 Building Web Mashups ... 131

7.5.1 Aggregate Search Results with Semantic Tags ... 132
7.6 Extracting Data from Web Pages .. 133
7.7 Composite Search Tasks .. 134
7.8 Vendor-Specific Web Commands ... 135
7.9 Retrieving Financial and Stock Market Indicators .. 135

7.10 Summary .. 136

CHAPTER EIGHT: EVALUATION .. 137
8.1 Introduction ... 137
8.2 Specific Hypotheses .. 138
8.3 Experiment Design .. 138

8.3.1 Task One Summary ... 140
8.3.2 Task Two Description ... 141
8.3.3 Task Three Description ... 142

8.3.4 Task Four Description ... 143
8.3.5 Task Five Description ... 146

8.4 Participants’ Background .. 147
8.5 Data Analysis ... 150

8.5.1 Qualitative Findings .. 150
8.5.2 Quantitative Findings .. 154

8.6 Summary of Findings .. 158
8.7 Summary .. 161

CHAPTER NINE: CONCLUSION AND FUTURE WORK ... 162

9.1 Introduction ... 162

9.2 The Need for a New Scripting Language .. 164
9.3 Is Yahoo Pipes Enough? .. 165
9.4 End-user Web Automation .. 167

9.5 Meeting the Objectives .. 168
9.5.1 New Model for End-user Web Automation .. 168

9.5.2 WSh, a Scripting Language for Web Automation .. 169
9.5.3 Web2Sh, a Web Automation Framework ... 171

9.5.4 Repository of Web Commands ... 172
9.6 Future Work ... 172
9.7 Closing Remarks .. 175

BIBLIOGRAPHY.. 176

APPENDIX A: RESEARCH ETHICS APPLICATION .. 187

APPENDIX B: WSH FORMAL SPECIFICATION DEFINITION FILES 198

APPENDIX C: WEB2SH EXECUTE SERVLET .. 216

APPENDIX D: ABSTRACT WEB COMMAND INTERFACE.................................... 220

viii

List of Tables

Table 6-1: Fetch Web command summary .. 117

Table 6-2: Submit Web command summary ... 119

Table 6-3: GetLinks Web command summary .. 120

Table 6-4: GetTags Web command summary ... 121

Table 6-5: GetTagByID Web command summary .. 121

Table 6-6: Extract Web command summary ... 122

Table 6-7: Sort Web command summary .. 123

Table 6-8: Replace Web command summary .. 123

Table 6-9: Count Web command summary ... 124

Table 6-10: Calculate Web command summary ... 125

ix

List of Figures and Illustrations

Figure 2-1: Internet users estimate for June 30, 2012. Source (Group 2011) 28

Figure 2-2: The Semantic Web layers, reproduced from (Berners-Lee 2002a) 35

Figure 2-3: Yahoo Pipes Editor ... 50

Figure 2-4: Microsoft Popfly ... 51

Figure 3-1: Web2Sh Architecture .. 60

Figure 3-2: Web2Sh Interactions ... 63

Figure 3-3: Web2Sh implementation of the Visitor design pattern 66

Figure 3-4 Web2Sh implementation of the Command design pattern 68

Figure 3-5: Web2Sh implementation of the Abstract Factory pattern 69

Figure 4-1: Web2Sh Command Line Interface ... 73

Figure 5-1: Using tee Web command .. 92

Figure 5-2: WSh Language processor using a tombstone diagram 104

Figure 6-1: Web2Sh pipeline ... 114

Figure 7-1 excerpt from cnn.com Web page source .. 136

Figure 8-1 Sample solution for task one in Yahoo pipes... 141

Figure 8-2 Sample solution for task two in Yahoo pipes .. 142

Figure 8-3 Sample solution for task three in Yahoo pipes 143

Figure 8-4 Sample solution for task four in Yahoo pipes .. 145

Figure 8-5 Sample solution for task five in Yahoo pipes .. 146

Figure 8-6 Participants’ programming experience .. 147

Figure 8-7 Participants’ self-evaluation of their programming skills 147

Figure 8-8 Participants’ preferred languages ... 148

Figure 8-9 Average number of hours using a Web browser weekly 149

Figure 8-10 Frequency of executing repetitive composite Web tasks 149

Figure 8-11 Mean value for time taken per task .. 154

x

Figure 8-12 Number of tasks completed by all participants 155

Figure 8-13 Final participants overall rating ... 156

Figure 8-14 Preferred system by each language users ... 157

Figure 8-15 Preferred approach by group .. 157

Figure 8-16 A system to automate Web tasks is useful ... 158

xi

List of Symbols, Abbreviations, and Nomenclature

Symbol Definition

AJAX Asynchronous JavaScript and XML

AST Abstract Syntax Tree

CUI Character User Interface

CSV Comma-separated values

EBNF Extended Backus–Naur Form

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JSF Java Server Faces

MIME Multipurpose Internet Mail Extensions

OOP Object-Oriented Programming

Web World Wide Web

Web2Sh Web 2.0 Shell (Framework)

WSh Web Shell (Scripting language)

XUL XML User Interface Language

YQL Yahoo Query Language

 1. Introduction 1

Chapter One: INTRODUCTION

This thesis presents an investigation that builds upon advanced and modern

techniques for enabling customised automation of the Web interactions. It introduces

a novel and innovative approach, which enables more useful and effective

implementation of end-user programming to automate simple and sophisticated Web

activities such as communicating, querying, and aggregating information.

This enabling approach was put into practice by designing and implementing a Web-

based framework, which was named Web2Sh (Web 2.0 Shell). This framework

empowers end users to write, customise, and run Web automation scripts that reflect

their own needs and experiences. In addition, users can share these tools. With time,

the aggregation of the users’ generated scripts will extend the framework leading to

constant growth of Web automation tools.

Web2Sh presents an enabling technology for the shift towards the Web as a platform.

It interconnects with various research fields. Yet, the focus of this research is the

study and investigation of applying an end-user programming model for the

automation of Web tasks, activities, and interactions. This thesis refers to this

research topic as end-user Web automation as a focused area that combines end-user

programming with Web standards and enabling technologies.

One of the premises of this research is that the Web is now the most important source

of general information and one of the most important technological developments of

our generation (Brin and Page 1998, Jeffrey I. Cole, Suman et al. 2003). It is also the

most widely used platform for querying, accessing, and researching information,

among other usages (Jeffrey I. Cole, Suman et al. 2003, William, Ellen et al. 2009).

Hence, there is a need for improved and innovative approaches for searching,

retrieving, and manipulating information over the Web and namely for approaches

enabling casual and experienced programmers to achieve more expeditious, efficient

and customised Web automation.

Most people experience the Web as an end-user of packaged services/resources.

Unfortunately, creators of these services cannot know the details of each job an end-

user is attempting. It is simpler and more efficient to the end users when they can

 1. Introduction 2

directly build and customise tools that they need. An end-user (casual programmer)

is a user who has limited or no programming experience. However, this type of user

may need to write or modify programs in order to accomplish some repetitive Web-

related tasks.

End-user programming is a recognised approach to allow end users to create novel

programs in a simple manner. Spreadsheet programs are often considered to be a

very good example of success in end-user programming (Margaret, Curtis et al.

2003), allowing them to write, edit, and use formulas and automation programs such

as Microsoft Excel.

End-user programming environments are also useful for expert users and even

programmers. This is due to the use of scripting languages, which are fast and easy to

learn compared to high-level programming languages. In platforms such as UNIX

shell, considerable amounts of time and effort can be saved by writing task

automation programs.

The hypothesis of this work is that the development of an interactive end-user

programming UNIX-like model for the Web, as a platform in its own terms, is

feasible and useful. Such a model would facilitate the process of automating both

simple and sophisticated Web users’ tasks. Interactive in this context refers to the

ability to accept and respond to commands from the end-user.

Web browsers are the most commonly used client for accessing, navigating, and

interacting with the Web. Various Web browsers are currently in use, and even

different versions of the same browser are common. This leads to the co-existence of

a wide variety of browsers. Hence, for a Web end-user (hereinafter, end-user)

programming environment to be widely used, it must operate on all, or at least the

majority of, Web browsers and on any type of computer or smart device that can be

used to access the web.

This thesis presents research on a new model of end-user Web automation. The

model is evaluated through the design, implementation, and testing of a Web-based

framework (Web2Sh) for writing, customizing, and running Web automation tools.

 1. Introduction 3

This chapter presents the motivation, objectives, and approach used in this work and

its scope. At the end of the chapter, an overview of the implemented framework and

the structure of the thesis are provided.

1.1 Motivation

This is an innovative research endeavour targeting a novel area of research. A main

objective of this research has been to investigate and experiment with the design,

development, and usage of an extensible Web-based framework for end-user Web

task automation.

The presented framework explores a new approach, which allows data on the Web to

be more effectively utilised through better discovery, integration, and automation.

This would enable the end-user’s Web interactions to achieve new and greater

possibilities.

The approach implements a successful model that has been available and tested on

various platforms, most notably UNIX, for automating end users’ repetitive and

tedious tasks. This model is useful for achieving automation through the effective use

of scripting languages for end-user programming, which runs over a platform-

specific shell via a command line interface.

This research shares the vision of the Web as a platform (O'Reilly 2007a). Hence,

this work integrates the development of Web2Sh framework, which targets the Web

as a platform and uses the thin client model to provide a Web command line for the

Web. It also presents a specific Web shell scripting language (WSh) in addition to a

variety of Web automation tools in the form of Web commands that can be linked

together using WSh to cater for sophisticated interactions.

The thesis emphasises that the development of effective end-user Web automation

tools is important, useful, and feasible; the current available environments for

building such tools are both limited and hardly practical for the majority of users.

 1. Introduction 4

It provides a solid foundation for future research into end-user Web automation, and

has potential wide uses for diverse Web research topics. Web2Sh offers a new

development framework that can be used by researchers to facilitate the

implementation and testing of new innovative ideas in various domains. This was

demonstrated in this research by the implementation of some useful Web commands

inspired by research from the data-mining domain.

In addition, available academic research focusing on the automation of Web tasks is

limited. Although major Web companies, most notably Yahoo, have implemented

systems related to the automation of end-user Web activities, they have hardly

produced a lot of pertinent academic literature. This indicates the importance of and

the need for greater research effort that focuses on this novel research topic. The

potential of this field has inspired this research to investigate, building on the current

literature and systems, in order to expand it so to provide the academic research

community with a more solid foundation for future research.

This research and the implemented framework takes a step forward towards fulfilling

the Web as a platform concept (O'Reilly 2007a), which is a major scientific

challenge to the Web research community. The design and development of Web2Sh

framework enables this concept by providing an environment for building useful and

flexible automation tools (Web commands). Another challenge that this thesis

addresses is the investigation and development of a robust and powerful repository of

useful, customisable, connectable, and extendable Web commands, which can handle

a wide range of users’ activities.

The main motivation for this research was therefore to investigate such a novel

research topic of end-user Web automation, which can be of great use in the current

shift towards fulfilling the vision of the Web as a platform. This research topic could

offer many potential benefits for various other Web research domains. In addition,

the work provides a significant benefit for end users with the development of an

extendable Web commands repository that facilitates the automation of a wide

spectrum of Web tasks.

 1. Introduction 5

1.2 Background

There has been a clear shift towards utilising the Web as a platform (O'Reilly 2006a,

O'Reilly 2007a) in order to provide many services and applications previously only

available on desktop computers. There is an obvious need to provide mechanisms

and tools on the Web that support the move towards the full vision of the Web as a

platform.

Whois Internet Statistics
1
 estimated 28.7% of the world population in 2010 were

active Web users, with a 444.8% usage growth in the prior 10 years. It also states that

the Web serves a total number of approximately 131 million domain names in 2011.

Researchers have identified a variety of motives for Web usage, although the specific

number and content of the categories of those motives differ. According to (Jackson

1999), the five main motives for using the Web are: interpersonal communication,

personally valued information, self-expression, entertainment, and consumptive

motives. A more recent study by (Kennon, Rodgers et al. 2002), involving

journalism college students via an open-ended questionnaire, identified four primary

types of motives for using the Web: communicating, researching, shopping, and

surfing.

In 2002 the ten most popular Internet activities according to (Jeffrey I. Cole, Suman

et al. 2003) were:

1. E-mail and instant messaging;

2. Web surfing or browsing;

3. Reading news;

4. Accessing entertainment information;

5. Shopping and buying online;

6. Hobbies;

7. Travel information;

1
 http://www.whois.sc/internet-statistics/

 1. Introduction 6

8. Medical information;

9. Playing games;

10. Credit card tracking.

Recent research in the United Kingdom (William, Ellen et al. 2009) reported that

Internet users were more likely to use search engines compared to previous years. It

also stated that the Internet has become their primary source of information. A

significant increase of the use in social networking sites in 2009 is also obvious in

the report. It stated five main categories of reasons for using the Web: seeking

information, communication and social networking, entertainment, finance and

government services, and production.

Most Web applications offer their services through a GUI based interface, usually a

Web browser, although programmers can write their own programs to automate any

customised task they require. The majority of end users cannot easily achieve such

automation due to the major lack of customisable automation tools.

Numerous Web crawlers and bots roam today’s Web. These are programs that

browse the Web, and follow links and process the Web in order to perform a variety

of services such as: full text indexing (Brin and Page 1998), product comparison

(Yun, Satya et al. 2007), Web data mining (Raymond and Hendrik 2000),

downloading, and visualisation. However, this list of services is by no means

sufficient for users growing needs. Users often require custom services that no

existing robot provides.

With the rapid growth of the Web, a parallel growth in demand for personalised Web

automation is expected. This will allow a user to delegate repetitive tasks to a robot

or a script that can generate alternative views or summaries of Web content that meet

the user’s needs (Miller and Bharat 1998).

Both Semantic Web and Web 2.0 communities aim to achieve a superior Web, by

investigating novel approaches that allows data to be used for more effective

discovery, integration, collaboration, and automation (Berners-Lee and Miller 2002b,

O'Reilly 2007a).

 1. Introduction 7

The research (Bolin, Webber et al. 2005b, Berners-Lee, Hall et al. 2006, O'Reilly

2007a, Ankolekar, Krötzsch et al. 2008) indicates that for the “Web as a platform”

vision to be realised, end users still need more efficient, accessible approaches for

automating the Web. However, the semi-structured nature of the Web, its vast size,

variety of formats, languages, and standards, and above all the GUI-HTML based

interface of the Web all present challenges for automating Web access, querying, and

manipulation.

According to (Bolin 2005a), end users still need an efficient, unified and simplified

way to accomplish Web-based tasks, particularly tedious tasks of repetitive nature.

There is still no universally applicable and flexible system envisaged that fulfils such

needs. Thus a system, with built-in extensibility to allow users to add and adapt new

tools, is highly desirable.

There have been recent and current efforts on the Web (Miller and Bharat 1998,

Pilgrim 2005, Bolin, Webber et al. 2005b, O'Reilly 2007b, Beard 2008) to provide

users with the required environments and tools to enable them to achieve a higher

level of personalised Web automation. However, it should be noted that this research

approach is different and novel in the sense that it investigates the use of simple

command line operation from within any modern Web browser, which is by far

easier, faster and more convenient to use. Furthermore, it utilises the use of data

streams, filters, and pipes similar to the UNIX shell approach that has already been

tested and widely used by various computer communities (Delaglio 1995).

One of the aims of this research is to offer broad tools that can access data in its

various formats on the Web. Few known tools offer end users with environments for

building tools to aggregate and manipulate Web content. The most recognized web-

based tool is Yahoo Pipes
2
 (Fagan 2007), yet it can only access specific formats,

mainly RSS feeds, with limited support for raw HTML pages - by far, the most

commonly used format for Web pages. The development of advanced automation

tools is a major scientific challenge to the research community. Such tools need to

cope with the ever-increasing complexity of the Web and be flexible enough to adapt

to its frequent and rapid changes.

2
 http://pipes.yahoo.com/pipes/

 1. Introduction 8

The introduced scripting language for Web2Sh framework, named WSh, enables end

users to aggregate Web commands in innovative approaches to accomplish tasks that

the original commands designers may have not even foreseen. This could later

support the development and extension of robust, flexible, adaptable, and powerful

automation tools.

This provides significant benefits for end users. Indeed, such tools would help to

alleviate the tedious effort and save time currently needed to process Web retrieved

data. It also presents new opportunities to exploit the Web for both scientific and

business purposes. Improvements in this field will lead to significantly more efficient

use of resources, both of the users’ time and the advanced utilisation of the resources

themselves.

Developers of desktop applications have relatively full control over their user

experience. However, on the Web, there is virtually no control over how clients

access, view, and use Web pages. Having this control on the desktop made it easier

for developers to build tools that end users can use to write and customise scripts to

automate a variety of tasks on platforms and applications. A good example of such a

platform is UNIX, where users could use any available shell scripting language to

automate a certain task. End users also have automation tools in various applications,

such as Microsoft Office, which offers the Visual Basic scripting language.

Most end users search for information using Web browsers with search engines as a

starting point; however, this retrieval mechanism does not necessarily address all of

the users’ needs. The end users main concern is to find all the information they seek

swiftly and accurately. However, with the vast size of the Web, achieving this is

usually a challenge (Madria, Bhowmick et al. 1999).

The huge growth of the data accessible on the Web presented two fundamental issues

regarding the effectiveness of accuracy of information search: mismatch and

overload. Mismatch means some useful and related data has been disregarded, while

overload means some assembled data is not actually related to what users need

(Yuefeng 2006).

 1. Introduction 9

In many cases, end users may require information that they need to filter and

aggregate from various search engines or specific Web pages, e.g. users may need to

retrieve a set of articles from various news sites related to a certain topic. Current

browsers and search engines give users very limited options or tools to program or

customise their own automation programs that may fulfil their own information

needs.

Recently there has been an increased research interest by major commercial Web

players such as Yahoo, Google, and Microsoft. They have started to provide Web-

based tools that facilitate Web activities automation for end users. These systems

include, Yahoo Pipes
3
, Microsoft Popfly (Foley 2009), and Google Mashup Editor

4
.

Although both Popfly and Google Mashup Editor were shutdown in their beta stage,

they showed potential and provided new ideas that did meet a recognizable success.

The only available statement by Microsoft about the closing of the Popfly project

stated that they made great progress and learned many lessons yet had to close it due

to the economic situation (Bishop 2009). As for Google, they announced that they

used the gained experience from the Mashup Editor project in their App Engine
5

project (Tholomé 2009).

Even in its beta version, PC World magazine picked Popfly as one of the most

innovative computing and consumer electronics products of 2007 (PC-World-Staff

2008).Yet, it was clear from the type of tools created by Popfly users, that it was

more suited as a fun gadget rather than serious Web automation. The situation was

different with Google Mashup Editor; it was more suitable for expert users and actual

programmers. This made it more powerful compared to other systems, but at the

same time would have been harder to utilise by the wider end users community. The

system was not even published to the public and was only available to be tested

through requesting invitations.

3
 http://pipes.yahoo.com/pipes/

4
 http://code.google.com/gme/

5
 http://code.google.com/appengine/

 1. Introduction 10

Other research teams also developed other tools. For Example:

• Chickenfoot (Bolin 2005a), which was developed as a plugin for the Firefox

Web browser.

• cURL
6
, is a desktop-based command line utility for executing a variety of

functions with URL-oriented protocols.

• Fiddler HTTP Debugging Proxy (Lawrence 2008), which logs all HTTP

traffic between a computer and the Internet.

Such approaches offer significant promise for solving specific problems, however,

the investigation of such approaches and building more robust general system should

not be underestimated. These systems have been targeting special areas, rather than

as a universal solution to a wider range of problems, and as such, they provide only

limited functionality, although they demonstrate the feasibility of work in this topic.

One of the first general tools targeting this domain was Yahoo Pipes, which

introduced a service to aggregate Web content (O'Reilly 2007b). Similar to UNIX

pipes, Modules can be combined together to create the desired output. Yahoo

launched this service in early 2007. Since then many users have been creating pipes

with various functionality. (O'Reilly 2007b) considers Yahoo Pipes as a milestone in

the history of the Internet, and describes it as “still a bit rough around the edges, it

has enormous promise in turning the Web into a programmable environment for

everyone.”

At this time, Yahoo Pipes is perhaps the most useful Web automation tool that has

been publicly available to end users (Fagan 2007, O'Reilly 2007b). However, it is

particularly limited in intent and functionality; it mainly works for RSS feeds, with

minor exceptions. In addition, it depends on a graphical interface for building users’

pipes, which affects the pipe creation process in terms of performance and speed. It

also makes it suitable only for powerful computers and close to impossible to utilise

over smart devices. While Yahoo Pipes users can combine multiple searches into a

6
 http://curl.haxx.se/

 1. Introduction 11

single feed, there is limited functionality for exploiting extracted data in other, more

flexible and powerful ways.

The Yahoo Pipes graphical user interface (GUI) makes it easy for novice users to

create modules. However, for more advanced users and programmers it would be

faster and more efficient to have a text-based editor where users can write code

rather than using the drag and drop GUI interface. Hence, it is preferable and

desirable to offer a faster text-based command line especially when creating scripts

that are more complicated.

The author of this thesis shares the view of (O'Reilly 2007b) that “Most of the non-

graphical utility programs that have run under UNIX since the beginning, some 30

years ago, share the same user interface. It is a minimal interface, but one that allows

programs to be strung together in pipelines to do a task that no single program could

do alone. Most operating systems including modern UNIX and Linux systems have

graphical interfaces that are powerful and a pleasure to use. But none of them are so

powerful or exciting to use as classic UNIX pipes and filters, and the programming

power of the shell.” This indicates a preferable non-graphical interface that can

provide similar and more advanced functionality.

This research provides an interface suited for both regular and advanced users. Many

Web2Sh Web commands have the option to produce an RSS feed (by piping to an

RSS filter at the end of any command) so that the resulting feed may then be used

from within Yahoo Pipes or any other similar tool.

Calls for combining Web services as the Web analogue to UNIX pipes have occurred

(Jeffrey 2007) but have largely gone unheeded. Expanding this concept to a general

system where the Web can be seen as a library of callable components has also been

partially envisaged by Jon Udell who had a vision of Web sites as “Data sources that

could be re-used, and of a new programming paradigm that took the whole Internet

as its platform” (O'Reilly 2007b). This research not only investigates, improves, and

implements these ideas, but also tries to take the concept further.

 1. Introduction 12

To meet its objectives, this research investigates and utilises major current Web

trends, such as Web 2.0 that work towards enabling the Web as a platform mainly by

providing usable desktop-like applications and enabling further the move towards

more interoperable applications that reside on the Internet space rather than on users

own computers.

In the Semantic Web approach, end users are mainly consumers. Semantic Web

applications mostly depend on developers and experts rather than end users to

participate in supporting the conversion or to add semantics themselves. On the other

hand, one of Web 2.0 objectives is to empower end users to be more effective.

Web 2.0 facilitates the adding of users’ content and customises their own views of

the Web. This could be one of the main reasons for the popularity of Web 2.0 jargon;

however, functionalities offered to end users by Web 2.0 applications usually limit

their capabilities. They usually cannot extend or modify beyond what the developers

of those applications offer.

This research also aims to investigate how to empower end users further in order to

play a more effective role in the transition to the Web as a platform. Web2Sh

provides a set of simple and advanced tools that end users can extend in unlimited

ways using the piping system. This enables end users to create their own tools or

simply to use tools created by others. A text-based scripting editor provides a

command line approach similar to what is available on any other platform and that

the Web still lacks. Although many may consider the Web address bar as a command

line in itself, but it has very limited functionality.

1.3 End-user Web Automation

This research uses the term Web Automation to refer to the enabling systems and

technologies, which support end users to write and run automation tools that express

their own personalised Web experiences.

An end-user programmer (casual programmer) is defined as a user who is not

concerned with programming, yet who needs some of the power of programming to

accomplish tasks effectively (Nardi 1993). On the Web, end users normally use GUI-

based applications, mostly Web browsers, for various objectives like information

 1. Introduction 13

retrieval, shopping, communication, and entertainment. Any task on the Web usually

involves a set of link clicks and forms submission to reach a required goal. For

similar goals, users would usually follow a sequence of similar steps. Usually the

users’ own experiences are the main factor affecting the speed and efficiency of

reaching a goal.

The research topic of end-user Web Automation in the context of this thesis is

defined as the study of theoretical and practical techniques for applying an end-user

programming model to enable the automation of Web tasks, activities, and

interactions.

The end-user Web automation is a novel research topic, which connects together

various computer sciences fields. This work involved the study of following topics:

• Web Enabling Technologies;

• End-user Programming;

• Programming Language Processors;

• Software Engineering;

• Concurrency;

• Information Retrieval.

 1. Introduction 14

1.4 Research Issues

The current state of the Web leads to the conclusion that there is still plenty to be

done to fulfil the move towards achieving the “Web as a platform” vision (O'Reilly

2005, O'Reilly 2006a). The current embracing of the Web has fundamentally

changed software development approaches. In the past few years, the Web has

become the most used deployment environment for software systems and

applications.

At present, end users utilise a Web browser more widely to run desktop-like

applications. In the near future, developers will write the vast majority of software

applications as a Web application or at least with considerable Web integration

(Taivalsaari, Tommi Mikkonen et al. 2008). However, there is still a significant need

for environments and tools to enable end users to achieve the same level of task

automation they find using desktop-based platforms such as Operating Systems,

Spreadsheets environments, and many other applications that offer the use of

scripting languages and basic command line tools.

1.4.1 Scope

The main scope of this research is to investigate the feasibility and importance of

enabling end users to automate and share their Web experiences. This research shows

the main aspects of the proposed Web2Sh programming platform. Web2Sh is a

framework for writing and running Web commands. It offers a Web-based shell

scripting language, Web commands repository, and a Web-based command line

interface.

To accomplish such a platform, this research must explore many computer science

domains to reach the best technical approach and design for achieving the thesis

target. However, the focus of the research is Web automation for end users.

In addition, the research investigates a set of Web commands to execute browsing,

data mining and filtering tasks. These commands provide a multiplicity of functions

such as retrieving Web pages, string manipulation, data mining, and Web page

segmentation.

 1. Introduction 15

1.4.2 General Aims and Objectives

The main aim of this research is to investigate a new approach for Web task

automation. Such an approach will provide Web users with flexible and

fundamentally more powerful ways for automating their Web interaction and in

particular for information retrieval, data mining processes, and constructing

Mashups. This approach enables Web end users to create, test, and run script-based

tools that can execute a sequence of steps required to achieve a given goal.

The overriding aim is to offer a more flexible approach in order to create and share

automation scripts in the form of “Web commands” that offer an innovative way for

users to interact with the Web, automate their activities, and share their Web

experience with other Web users.

In this context, this research investigates the development of a framework named

Web2Sh (Web 2.0 Shell, based on the term Web 2.0), which offers a command line

interface for the Web, a simple scripting language and a user friendly environment

for building Web commands in a similar approach to UNIX platform shell scripts.

To achieve such Web automation, Web2Sh offers further flexibility that allows end

users to interact with the Web and a great level of generality that facilitates the

development of tools that end users can employ in a wide range of situations and

environments. Furthermore, Web2Sh offers end users a new model to retrieve

information, create customised pages from multiple resources, and automate various

Web tasks.

Web2Sh also offers a new model for sharing users’ Web interaction experiences in

the form of customisable Web commands. It also offers new approach for Web

information retrieval and automating Web activities through a command based

interface rather than the common GUI link click common model.

 1. Introduction 16

For achieving those goals, Web2Sh emphasises two major paradigm shifts in the

Web:

1. User-generated content: This relates to enabling individuals to become an

effective part of the Web and to produce their own information, i.e. blogs,

wikis, social bookmarking, and social networking sites.

2. Thin client computing: this indicates the model where data and applications

are stored on Web servers, and users can access them from any computer via

a Web browser. Cloud Computing is a clear and exact application of this

model.

In the light of these paradigm shifts, this research investigates how far the proposed

model can enable end users to achieve Web automation. In addition, an ambitious

objective is to offer end users new, easy, and fast methods to interact with the Web

especially with the use of small devices like smart phones. Web2Sh is able to operate

fundamentally faster and in fewer steps to retrieve information from the Web; once a

user creates or learns to use a Web command he/she can then immediately and easily

put it into use (e.g. to retrieve information) by typing this command in the Web2Sh

command line. In addition, the user can easily manipulate or customise the retrieved

information by extending the Web command.

Another ambitious aim of the research is to investigate other domains of Web

technologies in order to support the development of a useful Web commands

repository, such as a set of commands specific for Web data mining.

Data quality is an important issue that represents a problem when applying data

mining techniques to the semi-structured data of the Web, as the unstructured Web

data requires the development of powerful and more efficient tools. Such tools

should support the discovery and analysis of interesting, unforeseen or valuable

structures in the Web data as defined in (Madria, Bhowmick et al. 1999).

The work presented in this thesis offers useful and extensible tools that implement

some data mining techniques. This offers the end-user community with direct access

to utilising such techniques themselves.

 1. Introduction 17

1.4.3 Specific Objectives

The key objectives of this research are:

3. Investigate a new model for end-user Web automation. This model should

offer an easy to use approach to automating Web tasks.

4. Design and implement a new simple and effective scripting language focused

on the development of Web automation tools.

5. Design and implement a Web-based framework to enable end users to create,

run and share Web automation tools.

6. Design and implement a repository of Web commands, as a reusable, efficient

and customisable Web automation tools.

1.4.4 Potential Users

End users are a diversity of unique individuals each with their own experiences,

goals, skills, and interests. The development of a command-line-based interface for

the Web, a Web scripting language, and a framework for developing Web

commands, would provide the community of Web end users with powerful tools that

would enable them to both save time and share their Web experience. The ability to

extend the system by collaboratively developing and sharing Web commands would

allow Web users extra flexibility by giving them the tools they require to search,

interact and customise the Web according to their own needs.

In defining the end-user (Nardi 1993) does not classify them as novices and experts,

but by the way which they represent various domains, such as academics, librarians,

doctors, students and researchers. He also defines end-user programming systems as

software that end users can use to develop and run applications; a good system

should allow end users to build their tools with the minimum amount of work.

One of the general aims of Web2Sh is to serve the wider possible set of users. Hence,

the framework offers a set of general use commands that meets the most common

activities shared among end users. However, more specific Web commands that

target specific end-user communities were developed, in order to demonstrate further

the feasibility and usefulness of the approach implemented by Web2Sh framework.

 1. Introduction 18

An important advantage of Web2Sh is that end users can create and share Web

commands in a simple way. The success of social bookmarking, blogging, wikis, and

other sites, where users are encouraged to participate actively, implies that giving

end users the chance to contribute to creating Web shell tools would be very

promising.

One community of prospected users of Web2Sh is the wide researchers’ community.

Almost all researchers in various fields use the Web to research, access and publish

information. In many cases they may need to collect data from variety of Web sites

for certain analysis reasons, for example, collecting a huge number of images, then

extract their img tags’ alt attribute value for further accessibility analysis. For

researchers with a computing background it would be easy for them to write or

customise an existing program for the task they require, however, for the majority of

researchers they could waste time doing such jobs manually and repeatedly.

Another type of prospective user is Web administrators, who work with diverse tools

to manage, monitor, configure, troubleshoot, and continually update their Web sites,

which can be distributed across multiple networks and servers, in a rapidly paced

growing and changing Web of information and services.

They may in some cases build and share custom tools for automating specific tasks

that are not supported by out of the box tools. The recent movement towards dealing

with the Web as a platform, in addition to using desktop-like Web-based

management consoles, offers many advantages. Yet, this puts an extra burden on

Web administrators, as achieving customisation and automation requires a decent

level of Web programming experience, which in many cases will be beyond their

skills, hence making it difficult to write tools with the level of customisation they

might need.

Field studies in (Eser, Eben et al. 2005) indicate the importance of collaboration

among system administrators and end users in the development and use of custom

automation tools in organisations.

The methodologies this research employs aim to provide an accessible, usable and

productive framework, which empowers end users to automate their Web

experiences. This framework should serve end users with little or no formal

 1. Introduction 19

programming training as well as users with more expertise. Hence, the design of

Web2Sh caters for the general need of regular Web users, particularly for casual

programmers. For these, programming is not their main trade; they only use it to

achieve certain tasks they may need. This type of user is not willing to spend a long

time learning a sophisticated programming language, but can invest a few hours in

learning a language that might help them to save time and increase their efficiency

by automating repetitive systematic tasks they need to do.

1.4.5 Approach

This research took the following approach in order to achieve the objectives

specified in section 1.4.3:

First, to acquire theoretical and practical understanding, the research investigates the

best known tools and Web applications that offer various approaches to full or partial

support for end users to create and share customisable automation tools (Miller and

Bharat 1998, Aquino 2005, Pilgrim 2005, Bolin, Webber et al. 2005b, Fagan 2007).

Secondly, an investigation is made of the end users’ most common activities and

possibly useful basic Web commands that can empower them to automate their most

repetitive tasks in a fast and effective manner.

Thirdly, the research investigates state of the art Web development technologies and

design techniques, which may serve the design and implementation of Web2Sh

framework.

Fourthly, Web2Sh framework implementation was accomplished through multiple

iterations of design and development, in order to realise the highest possible level of

performance, extensibility, effectiveness, and usability.

Fifthly, the framework was initially evaluated by writing, testing, and running a set

of Web commands that target possible common scenarios, which various domains of

end users could require.

Finally, a mixed method approach was used to examine the hypothesis of this thesis.

An experiment encompassed fulfilling five tasks that complemented each other. The

overall objective of the five tasks was to integrate data from Google product search

 1. Introduction 20

and Amazon Web services in order to create a mashup of a set of dynamic links that

contain an associate id of an amazon affiliate. In addition to completing their tasks,

each participant was asked to provide feedback through online questionnaires, in

which both quantitative and qualitative data was collected.

1.5 Contributions

The primary contribution of this research lies in the novel area of Web Automation.

The combination of end-user programming technique, and the power of the Web as a

platform, facilitates the creation and running of user-oriented automation scripts in

the form of Web commands. A flexible and powerful framework (Web2Sh) for

creating, customising, and running Web Automation scripts has been provided. In

addition, a repository of useful Web commands is provided for end users.

A second contribution is in the field of end-user programming. A Web scripting

language (WSh) has been developed for the generic use of creating and customising

Web commands. WSh is a task-oriented language that applies the concepts of the

software tools philosophy.

1.5.1 Web2Sh Framework Overview

This thesis presents a new Web-based programming platform “Web2Sh” for

creating, sharing, and evaluating Web commands. Web2Sh framework, in the

context of this thesis, refers to components including a command line Web interface,

Web WSh shell script, interoperability and sharing model and a repository of core

Web commands that handles many basic and composite Web activities.

The proposed system aims to serve and support the move toward the concept of

“Web as a platform.” The research investigates this concept and the limitations

regarding Web automation in terms of ease of use, reusability, flexibility, and limited

tools, which prevents utilising this concept to its full potential.

A main component of Web2Sh is a UNIX-like shell scripting language for creating

Web scripts. Extended Backus–Naur Form (EBNF) is used to create the formal

grammar for the WSh scripting language; the language itself is initially generated

 1. Introduction 21

using the JavaCC tool (Kodaganallur 2004), and then extended using the Java

language.

Web2Sh introduces a repository of Web commands, which is the main programming

unit of the shell; a Web command is a tool that executes a certain task over the Web

platform. Combining multiple Web commands is easy using the pipeline concept.

The pipe idea is to pass a command’s output into another command for extra

processing.

In addition, Web2Sh supports the thin client-computing model, hence, allowing Web

commands to utilise many server-side resources that have been usually only

accessible by developers. This model also makes Web2Sh more usable as all end

users need is a Web browser to write and run their Web commands.

End users can further utilise and customise Web commands to construct new

reusable Web commands. A primary advantage is that much of the functionality

needed by Web users can be accessible in one place. Furthermore, The WSh

scripting language provides the ability to extend Web commands repository offered

by the framework to cover new domains and functionalities.

Web2Sh utilises the power of the Java language and offers end users a usable,

extensible, and powerful set of Web commands enabling them to increase the

efficiency of how they accomplish various tasks on the Web, giving them the

possibility to customise a set of their own commands to serve individual needs. Web

commands are, from the deployment and execution point of view, server-side

programs and services. Running on the server side, allows Web commands to access

superior resources and make them easily accessible for the wider end-user

community.

Many Web sites make their services accessible to developers through different

interfaces, most commonly Web services. However, developers need to locate the

right service URL and documentation, before being able to use it. Web2Sh

empowers end users to access and utilise data across the Internet through one simple

language, eliminating the need to learn advanced programming languages and how to

locate and call different APIs.

 1. Introduction 22

While some systems exist to help search, retrieve, and process this information, there

is a dearth of advanced, powerful, and flexible applications for both novice and

expert users. Hence, this research investigates the ability of introducing a new

approach for information retrieval, creating Web Mashups, sharing users’ Web

experience, creating Web-mining tools, and automating various Web tasks.

This research proposes a novel Web-based environment for end-user programming to

enable end users to create their own specific automation programs targeted for the

World Wide Web as Web command to achieve an improved utilisation of Web

resources. This environment consists of a command line for the Web, a series of Web

commands that targets a variety of Web activities, and a simple scripting language.

1.6 Organisation of the Thesis

This chapter presented the motivation, background, scope, and objectives for this

research. It introduced the definition of the end-user Web automation, explained the

approach, and highlighted the contributions. It also provided an overview of the

developed framework (Web2Sh) and its potential users.

Chapter 2 introduces the concept of the Web as a platform, and provides an overview

of Web history, architecture, and other enabling technologies with the focus on Web

automation-related technologies and systems. It also provides an investigation of

available systems and tools that provide partial support for end-user Web

automation. It highlights and considers the advantages and disadvantages of each

tool’s approach. Finally, it provides an overview of the concept of end-user

programming, scripting languages, and command line interfaces. It also provides an

overview of the UNIX shell environment as a recognised example that implements

end-user programming and shell scripting.

Chapter 3 present the Web2Sh framework. It presents the main design challenges,

and describes solving the problem of developing a concrete useful framework for end

users Web task automation. It presents in more detail the framework architecture and

design. The implementation details of the pipeline concept are provided.

Chapter 4 provides a detailed description of the Web2Sh command line user

interface. This is the client side component of the framework.

 1. Introduction 23

Chapter 5 describes the building process of Web2Sh dedicated scripting language

(WSh). It explains the need for a scripting language to enable Web automation. It

presents the software tools philosophy, and the background needed for defining a

new scripting language and implementing its Parser; the design of WSh language is

explained, and the language informal and formal specifications are introduced.

Finally, it explains the parsing, translation, and interpretation of the code.

Chapter 6 presents Web command as the basic building block to writing Web

automation scripts. A detailed description of the syntax, structure, and general

characteristics of Web command is provided with detailed descriptions of some of

the commands provided by Web2Sh. The Web2Sh implementation of the pipeline

concept is discussed. Finally, the integration of external tools and services in

Web2Sh is discussed.

Chapter 7 reports on the use of the framework, it demonstrates the usefulness of the

framework through the implementation of various possible Web related activities.

This shows that the framework facilitates the creation and running of Web

commands in a wide range of domains.

Chapter 8 presents the evaluation of the experiment that was performed to examine

the hypothesis of this thesis. The evaluation was carried out as a user trial, involving

twenty-four participants. The user trial included the use of both Yahoo pipes and

Web2sh to produce a set of modules/Web commands, with the objective of

automating information integration between Google products and Amazon Web

services.

Chapter 9 describes the foundations and arguments for the design and

implementation decision throughout the development of Web2Sh framework, lays

out the conclusions of this research, and suggests future work.

This thesis supports the hypothesis that the development of an interactive end-user

programming UNIX-like model for the Web, as a platform in its own terms, is

feasible and useful. Chapters 8 and 9 highlight these claims by reviewing the thesis

main points and linking the model with the design and implementation of Web2Sh

framework and meeting the objectives. It also discusses the contributions while

indicating areas for future work.

 2. Related Work 24

Chapter Two: RELATED WORK

2.1 Introduction

This chapter provides the research background related to the novel area of end-user

Web automation. It starts with a general overview of the Web, Web architecture, and

its main enabling technologies, followed by a survey of related Web automation

systems and tools, and finally examines the end-user programming model and UNIX

shell scripting. A section is presented for each item.

Section 2.2 introduces an overview of the Web and the shift towards the vision of the

Web as a platform. The advantages and limitations of the Web are considered, with a

focus on the enabling technologies leading to Web task automation. A brief historical

overview of the Web is provided, followed by research background in the fields of

scripting languages, Web mining, Semantic Web, Syndication Feeds, Web 2.0, Rich

Internet Applications, and user-generated content .A sub-section is presented for

each field.

Section 2.3 defines the term Web automation, and then provides an overview of

related systems and enabling techniques. A sub-section is presented for each of the

best-known systems and tools. The advantages and disadvantages of each system’s

approach are considered.

Section 2.4 examines in more detail the concept of end-user programming. The role

and characteristics of scripting languages are presented. The usefulness of command

line interfaces is demonstrated. Finally, an overview of the UNIX shell environment

is presented as a recognised example that demonstrates the utilisation of end-user

programming and shell scripting.

2.2 World Wide Web

The World Wide Web (WWW, or simply the Web) is a vast information space in

which the items of interest, referred to as resources, grow further every day

encompassing more services and information in different languages and formats. At

present there is a clear shift towards utilising the Web as a platform (Anderson 2006,

 2. Related Work 25

O'Reilly 2006a) to provide many services and application that used to be available

only as desktop applications.

Successful utilisation of the Web as a platform unlocks many new possibilities and

challenges given the number of simultaneous users, the numerous services, and the

ever-growing information repositories. Web developers and demonstrators are

usually the main information producers on the Web. They add new content, servers,

and applications quite often, providing an endless supply of knowledge accessible by

millions of users.

Since 2005, a new approach that encourages end users to produce information

themselves proved very successful. This approach is known as User Generated

Content (UGC). It covers a wide range of Web publishing and media content Web

sites available in a range of modern technologies. It was successful in many domains

including blogging, podcasting, forums, products reviews, social networking, and

wikis (Marianna, David et al. 2008).

In desktop applications, developers expect to have control over the end-user

experience. However, on the Web, there is much less control over how the user

might view a Web page and on which browser. Hence, Web developers face many

challenges taking into account all the variables, such as the Web browser type and

version, which may have an effect on the end-user experience.

The use of well-known standard formats and protocols helps to solve these problems.

However, many developers, vendors, and even users might not always adhere to

these standards. This leads to another major challenge for creating general tools that

automate Web-based tasks. Committing to tools that utilise Web standard protocols

and formats is perhaps the best approach to cater for the majority of Web resources.

Yet, it is also important to provide end users with some tools that can also handle the

sites that may not adhere fully to the Web standards.

The Web will be more powerful when it becomes an environment which allows data

to be used for more effective discovery, integration and automation (Berners-Lee and

Miller 2002b). Both Semantic Web and Web 2.0 communities aim to achieve almost

the same goals using different approaches. They appear to be competing rather than

collaborating. However, future Web applications may make use of both of them, to

 2. Related Work 26

retain the Web 2.0 focus on community and usability, while utilising Semantic Web

infrastructure to facilitate information sharing, integration and processing via

automated tools (Ankolekar, Krötzsch et al. 2008).

Research by (Bolin, Webber et al. 2005b, Berners-Lee, Hall et al. 2006, O'Reilly

2007a, Ankolekar, Krötzsch et al. 2008) indicates that end users require automated

tools that are efficient, accessible, customisable, and useful to accomplish various

Web tasks. The semi-structured nature of the Web, the diversity of formats and

languages, and above all the GUI-HTML based interface of the Web, raise many

challenges for achieving such Web automation.

The Web is likely to be the logical choice as a platform for building and running a

Web automation framework. Hence, the next section will investigate several aspects

of the Web. First, it will offer a summary of the Web history, architecture, and

models. Secondly, it investigates enabling Web technologies that should be

considered for the architecture of such a framework.

2.2.1 A Brief History of the Web

The Web is a worldwide-shared medium for information, communication,

broadcasting, and many other services. Web pages are usually arranged into Web

sites, which are identified with domains, and connected using hypertext links.

Information on a Web page can be hard coded directly as HTML content in static

pages or retrieved dynamically from a database or XML-based documents allowing

for a higher level of interactivity with its users.

Users are a major facet of the Web, the more users the Web has the more powerful it

grows. Users participate in various Web activities through different devices, most

commonly computers, mobile phones and smart devices. According to the World

Wide Web Consortium and (Berners-Lee 2004), the Web history goes back to 1945

when (Bush 1945) published an article in Atlantic Monthly about a photo-electrical

mechanical device called “Memex”. It had the advantage that it could make and

follow links between documents on microfiche. later on, (Nelson 1965) coined the

term "Hypertext".

 2. Related Work 27

A major milestone in Web history was on March 1989, when (Berners-Lee 1989)

wrote "Information Management: A Proposal" at CERN labs. This introduced the

main principles that the Web was built upon. By 1990, Tim Berners-Lee developed

the tools necessary for a working Web: the first Web browser, the first Web server,

and the first Web pages that described the project itself. By the end of 1993, Various

browsers where introduced including the Mosaic browser for all common platforms,

over 200 HTTP servers were available, and the Web (Port 80 http) traffic measures

1% of National Science Foundation Network backbone traffic (Berners-Lee 2004). In

May 1994, the first International WWW Conference, organised by Robert Cailliau, at

CERN labs took place. The World Wide Web Consortium was founded at the

Massachusetts Institute of Technology (MIT) In September 1994, with Tim Berners-

Lee as director.

Between 1996 and 2001 the Web expanded rapidly, many e-commerce Web sites

were available and most major companies had a presence on the Web. The dot-com

bubble occurred when many new companies started solely on the Web without

having a realistic administrative ability; most of them lacked the required

characteristics for a successful business model but were able to sell their ideas to

investors because of the innovation of the dot-com concept. Inevitably, in 2001 the

bubble burst, and many dot-com companies went out of business (Yann 2005).

At present, the Web is being used everywhere; according to statistics by Miniwatts

Marketing Group (Group 2011), the Web was being used by 30.2% of the world

population in March 2011, this percentage increased by 4.3 in June 2012 to become

34.3%. This percentage represents 2,405,518,376 users.

 2. Related Work 28

Figure 2-1: Internet users estimate for June 30, 2012. Source (Group 2011)

An important facet of the current era of the Web is social networking Web sites, such

as MySpace, Facebook, and Twitter. UGC-dependent Web sites such as YouTube,

blogs, and wikis are also a notable facet of the current Web.

2.2.2 Web Architecture

Various Hypertext Systems were proposed in the early 1990s. The World Wide Web

was just one of those systems but it became the most widely used hypertext system

on the planet (Hall, Hill et al. 1993). A defining characteristic of the Web is that it

allows embedded references to a resource via a Uniform Resource Identifier (URI).

The simplicity of creating hypertext links is a key reason for the success of the

hypertext Web at the moment (Jacobs and Walsh 2004).

The Web is developing into an extraordinary platform (Berners-Lee, Hall et al.

2006), which keeps growing every day. The technologies that the Web was based on

are remarkably simple, effective, and scalable. This enabled the Web to become a

remarkable and growing information space of interconnected resources and services.

This section demonstrates a brief review of the main technologies underlying Web

architecture; Information is mostly based on the W3C Recommendation (Jacobs and

Walsh 2004), which outlined the core design components of the Web.

 2. Related Work 29

The three main architectural bases of the Web that were discussed in (Jacobs and

Walsh 2004) are:

2.2.2.1 Identification

The Uniform Resource Identifier (URI) is used to identify resources. By entering a

URI into the a Web browser address bar, or simply clicking on a Web link, the

resource that this URI points to is retrieved alongside with any other embedded

resources, such as images.

2.2.2.2 Interaction

Web agents communicate using standard protocols, e.g. HTTP, which enables

interaction between the client and the Web server through an exchange of messages

that adhere to a defined syntax and semantics. These messages would usually contain

a representation of data and metadata. It is also important to provide handling for

possible errors. For example, if the resource that the URI points to is not available on

the server that would return an HTTP 404 error.

2.2.2.3 Representation

The Web supports a wide variety of formats; the most well-known format is HTML.

Due to the nature of the Web, end users use various devices to access the Web.

Therefore, ideally, the formats used for the Web should be device independent. The

choice of an interaction protocol places limits on the formats that can be used to

transmit these messages. For example, HTTP, which is the most commonly used

protocol on the Web to retrieve Web pages, typically transmits a single octet stream

plus metadata, and uses the Multipurpose Internet Mail Extensions (MIME)

"Content-Type" and "Content-Encoding" header fields to further identify the format

of the representation (Freed and Borenstein 1996).

To illustrate how these three elements work together, a URI refers to a resource on

the Internet, which the client Web agent dereferences to try to access the

representation of the resource identified by this URI. The client Web agent interacts

with other agents to request and transfer the identified resource; this is done

according to a set of standards and protocols, e.g. TCP/IP and HTTP. The resource

 2. Related Work 30

itself is represented in a specific format, e.g. HTML or XHTML, to allow for the

right representation on the client Web agent, e.g. a Web browser.

URIs do not always refer to retrievable resources; some resources can be identified

by a URI, yet cannot be retrieved from the Web, while other resources, such as

Information resources, are resources that exist on the Web and can be retrieved from

it (Jacobs and Walsh 2004).

The three bases of identification, interaction, and representation should be separated

out to allow autonomous modular evolution of the Web architecture. Likewise, the

various technologies should be able to evolve, independently, without affecting their

interoperability with other technologies (Berners-Lee, Hall et al. 2006).

 2. Related Work 31

2.2.3 Web Scripting Languages

Scripting languages have been a very important player in the Web. Since the early

start of the Web, scripting languages like Perl (Wall, Christiansen et al. 2000) were

used to build the backend of Web sites.

Scripting languages proved their importance and power over the years, as they

offered developers the power to implement their ideas quickly. Many scripting

languages have been used on the Web, most notably PHP, Perl, ASP, ColdFusion,

JSP, JavaScript, and Ruby. Scripting languages have the advantage of a fast learning

curve and the ability to produce powerful programs with minimum programming

knowledge (Ousterhout 1998, Loui 2008).

Scripting languages tend to be loosely typed (typeless) compared to other high-level

languages such as Java, hence, are easier to learn. The typeless nature of scripting

languages results in simplicity of connecting components, less code and more

flexible programs. In addition, it minimises significantly the programmer’s write

time (Loui 2008), leading to the usefulness of using scripting languages for

automating various activities on a verity of platforms. By offering a scripting

language to their users, platforms can enable users to customise the behaviour of the

service and utilise resources according to their needs.

Scripting languages, such as UNIX shells, operate on the basis that a set of useful

components already exists in other languages. Scripts built using UNIX shells are

often used to pull together a set of filter programs into one program. This is achieved

through the utilisation of pipelines. UNIX shell Languages are string-oriented, hence

provide a uniform representation for components and values, allowing

straightforward interchange of data. All filter programs in UNIX shells read a stream

of bytes from an input stream and write a stream of bytes to an output stream. This

allows any two programs to be connected using a pipe. Such a piping process can be

flexibly utilised by users for purposes that the program designers may not even have

anticipated.

A variety of mainstream modern programming languages can be used for building

Web applications. Several frameworks, such as JavaServer Faces (JSF), are built to

facilitate the development process and provide out-of-the-box libraries with all

 2. Related Work 32

commonly needed functions. Other more specific frameworks are also available for

certain types of solutions like Oracle’s ATG or Microsoft Commerce Server for

building e-commerce applications.

Deciding on which language or framework to use is an important question. The best

way to answer this question is to decide on the available resources and the magnitude

of the required application. Using scripting languages would usually require fewer

resources in terms of cost, number of developers and time; however, for complicated

applications, with a huge number of transactions and performance requirements,

high-level programming languages are definitely more suitable.

Scripting Languages are preferred when production speed is important and programs

are subject to frequent changes. Ousterhout notes that, in a scripting language, a

single statement executes more basic machine instructions by comparison to a system

programming language (Ousterhout 1998). However, the increase in CPU speed and

complexity of modern Web applications are making scripting languages more and

more important. Scripting languages allow complex tasks to be performed in fewer

instruction lines (i.e. less code) compared to high-level programming languages,

hence scripting is considered ideal for creating mash-ups or, in other terms, gluing

Web applications together.

“If recording and replaying macros simulates a kind of autopilot, then scripting offers

a kind of proxy for human decision-making” (Loui 2008). Even when Macros

recording is used, as the case in Microsoft Office, the macro is still recorded as a

Visual Basic (VB) script. Thus, if end users are familiar with writing and

customizing VB scripts, this would give them more flexibility to effectively achieve

their goals.

 2. Related Work 33

2.2.4 Web Mining

Web data mining focuses on three aspects: Web structure mining, Web content

mining (Shian-Hua, Chi-Sheng et al. 1998) and Web usage mining (Cooley,

Mobasher et al. 1997, Zaiane, Man et al. 1998, Srivastava, Desikan et al. 2005).

From its very beginning, the potential of extracting valuable knowledge from the

Web has been quite evident. Interest in Web mining has grown rapidly, both in the

research and practitioner communities (Srivastava, Desikan et al. 2005).

While the potentials of Web mining techniques are quite evident, researchers and

developers are usually the ones who utilise those techniques. End users often have no

direct access to such techniques and often only experience its power through search

engines or other application that may make use of them. Hence, implementing some

Web mining techniques and making them available for the end-user, would involve

the end-user community and utilise its collective experience for extending those

tools. This enables a collaborative development by end users to utilise powerful

techniques through an easy to use system, which could even present further

potentials for the Web data mining research community.

2.2.5 Semantic Web

The Semantic Web was defined by (Berners-Lee and Miller 2002b) as “an extension

of the current Web in which information is given well-defined meaning enabling

computers and people to work in better cooperation”. Since (Berners-Lee 1998)

wrote his Semantic Web road map in 1998, researchers have been working on

defining standards and technologies for the Semantic Web.

The main goal of the Semantic Web is to enable machines to interpret, manage, and

integrate knowledge all over the Web in order to help humans to accomplish their

tasks in less time and with better quality. The problem is that the Web has enormous

amounts of information. In addition, it has a decentralised repository of data that

changes and grows each day. These problems make it very hard to query, find, access

and manage data on the Web. However, it must be noted that the free and

decentralised nature of the Web enabled its great success. Therefore, solutions that

enforce limitations on this freedom or attempt any kind of centralised control on the

Web might not be successful.

 2. Related Work 34

The current Web is not easy to search well. Although search engines are powerful

tools of information retrieval, the semi-structured nature of the Web is still a major

limitation. Most search terms would return a long list of results (links to documents),

where many of them might not be relevant to the user’s information needs. It all

depends on the user’s experience in writing the best search phrase and using the

advanced options of the search engine in order to get the most accurate results.

However, in the case of narrowing the scope of search, some relevant results might

be missed in the result list if they did not match the search terms.

Until recently, Search engines used to ignore what is called the “deep Web” or

“invisible Web” according to (Bergman 2001). The notion of invisible Web refers to

information buried far down on dynamically generated sites, and most standard

search engines are not able to index it.

The Semantic Web architecture as proposed by W3C consists mainly of eight layers:

• Uniform Resource Identifier (URI) & Unicode;

• Extensible Markup Language (XML) & Namespaces;

• Resource Description Framework (RDF);

• RDF Schema;

• Ontology language;

• Logic;

• Proof;

• Trust.

These layers of the Semantic Web start from solid layers such as URI, Unicode,

XML and RDF, other layers like RDFS and ontology language layers are being

developed at a fast pace. Logic, proof, and trust layers are more abstract and need

additional research efforts. Digital Signature and encryption are required for

identification and security purposes.

 2. Related Work 35

Figure 2-2: The Semantic Web layers, reproduced from (Berners-Lee 2002a)

2.2.6 Syndication Feeds

One of the major problems of the Web is the lack of proper metadata. According to

(Powers 2005) Syndication Feeds, a current standard format on the Web, is a step on

the way to providing Metadata for Web pages. The feeds are XML-based documents

that offer a form of syndication, which facilitate the provision of summaries or latest

updates of Website material to other users or applications.

There are three main common formats for Syndication Feeds on the Web:

• RDF Site Summary (RSS 1.0) (Beged-Dov, Brickley et al. 2000) was

introduced by RSS-DEV Working Group in 2000, It conforms to the W3C's

RDF Specification (Manola and Miller 2004).

• Really Simple Syndication (RSS 2.0) (Winer 2003) was released by Harvard

Law School in 2003. It evolved from Netscape's RSS 0.90 and 0.91.

• Atom (Hammersley 2005) is an XML-based document format that describes

lists of related information known as "feeds".

 2. Related Work 36

An RSS file is an XML based document describing a "channel" consisting of URL-

retrievable items. Each item consists of a title, link, and brief description. Generally,

RSS design has the following goals:

• Lightweight and Extensible: RSS is simply an XML document.

• Syndication and Multipurpose: it meets many growing application needs.

• Metadata: it provides clear structure and information about the presented data.

Syndication Feeds are one of the main enabling technologies for projects like Yahoo

Pipes. Various Web sites, services, and applications utilise Syndication Feeds. At this

moment, they are mainly most popular in Weblog (blogs) and news Web sites. This

is due to the nature of Syndication Feeds, which offer an optimum way to represent

lists of items in reverse chronological order. However, not all applications provide

support for all feed types. For example, Blogger, a very popular hosted Web-logging

tool, supports Atom and RSS 1.0 but not RSS 2.0. Google uses Atom within the

Google Mail Application. RSS 2.0 is currently very popular and widely used by

major news Web sites that provide an RSS 2.0 feed like the BBC and CNN.

2.2.7 Web 2.0

The Web 2.0 is a current trend that aims to utilise emerging Web technologies and

design principles to facilitate information sharing and provide more creativity and

collaboration among end users. It was defined in (O'Reilly 2006a) as “Business

revolution in the computer industry caused by the move to the Internet as platform,

and an attempt to understand the rules for success on that new platform. Chief among

those rules is this: Build applications that harness network effects to get better the

more that people use them”

However, the term Web 2.0 is still controversial, after the emergence of the term,

some people started calling the older Web, Web 1.0, which in their view includes

Web sites developed before 2005 (O'Reilly 2006a). One of the main facets of Web

2.0 is giving the users the ability to create their own content and share it. Some

considered that Web 1.0 was focused more on linking pages and computers while

Web 2.0 is more about linking people. Hence, most Web 2.0 applications are focused

 2. Related Work 37

on helping users. For many Web 2.0 applications, the more people use those

applications the more influential and useful they get.

(Ankolekar, Krötzsch et al. 2008) advocate that both the Semantic Web and Web 2.0

communities can work jointly to realise their vision of the Web. While often

presented as competing visions for the future of the Web, there is growing realisation

that the two concepts complement each other and that in fact both communities need

elements from the other’s technologies to overcome their own limitations.

It is important in the context of this research to highlight the key phrase “Web as a

platform.” This refers to the notion of a platform that is not just a repository of pages

and hyperlinks, but rather a whole platform where users can achieve better utilisation

of available resources. The evolution of hardware, network speeds, and Web related

technologies supports this vision.

Tim Berners-Lee has the opinion that Web 2.0 is actually only trying to realise what

Web 1.0 was meant to be. When he was asked, in a podcast interview (Anderson

2007), if it was fair to say that Web 2.0 was about connecting people while the

original Web was more about connecting computers, he answered that this was not a

true assumption, and that Web 1.0 was supposed to be all about connecting people.

In the majority of older Web applications, end users were mainly consumers of

information resources and services that were offered through various Web sites.

However, even before the rise of the Web 2.0 term, some sites did make good use of

user feedback and user generated contents, most notably Amazon.com. Now the

most popular applications are those that enable end users to share their own content

like YouTube, Flickr, and Wikis. In addition, Web 2.0 is actually mostly using the

same standards implemented by the older Web such as HTTP.

The whole controversy about the Web 2.0 term is not the issue in the context of this

thesis, except in so far as it shows that connecting people is the focus of the Web

architecture and technologies. In addition, it is the objectives that the Web

community tries to achieve that matter, which according to (Berners-Lee, Hall et al.

2006, Hinchcliffe 2006) is to make a firm shift towards allowing Web users to more

effectively utilise Web resources in order to better employ the Web as a medium to

publish, communicate, and socialise.

 2. Related Work 38

This leads to the importance of enabling more efficient reuse of data on the Web,

which requires a significant increase in the availability of information and services.

This is usually achieved by providing APIs (Application Programming Interfaces) or

Web services that enable users, primarily developers, to access and reuse data

according to their own needs.

All the major Web players are moving towards this approach, for example,

applications like Flickr, YouTube, and Amazon do provide many APIs for

developers to make it easier for them to reuse a wide range of items of interest they

provide. A good example is Facebook Graph API
7
, which enable users through basic

links to access text-based information from their accounts.

The sharing of data and the integration between Web applications, which enable the

reuse concept, is also useful for users. For example, if a user has an account on

Blogger, YouTube, and Picasa, it is just a matter of a few clicks to share any video

from YouTube on his blog or images from Picasa or Flickr.

According to (O'Reilly 2006b, Murugesan 2007) most Web applications derive their

effectiveness from the inter-human connections, as more people make more use of

them they become more effective. A popular example is eBay, where its current main

competitive edge is the amount of information that users add to it.

2.2.8 Rich Internet Applications (RIA)

Rich-Internet Applications (RIAs) are applications that employ techniques like

AJAX, Adobe Flash, Flex, Java, and Silverlight to improve the user experience in

browser based applications. Such techniques enable building Web applications that

can match the power of desktop applications. RIAs enable the replication of many

features of desktop-based applications (Noda and Helwig 2005).

RIAs combine the Web's lightweight distribution with desktop-like interfaces and

interactivity. With RIA support, Modern Web applications enable sophisticated end-

user interactions. The “Web as platform” vision is strengthened by the emerging

Web technologies.

7
 https://developers.facebook.com/docs/reference/api/

 2. Related Work 39

According to (Piero 2010), the term RIA refers to a diverse family of applications,

which have a common goal of adding new capabilities to the conventional hypertext-

based Web.

A significant characteristic of RIA is that both the client and server can start a

communication. The client stands ready to receive and execute asynchronous server

commands. This is enabled by the Asynchronous JavaScript and XML (AJAX)

technology, which allows such communication to happen without refreshing the Web

page on the client browser. This technology represents a fundamental shift in the

Web applications development. Google Maps and Google search keyword

suggestion are good examples of implementing AJAX.

Other Web browser-based approaches, such as Mozilla XML User Interface

Language

(XUL)

8
, support a rich interaction natively. However, this type of solution

is browser dependent. This usually makes such browser-based approaches accessible

only to a specific browser’s users.

2.2.9 User-Generated Content (UGC)

User-generated content refers to various kinds of information and media content,

which are usually publicly available, that end users produce. According to

(Marianna, David et al. 2008) “In particular social networking and community Web

sites have changed the way people use new media, in creating personal profiles,

sharing photos, videos, blogs and user generated content (UGC) in general.” The

most visited UGC sites in 2010 are Facebook, Wikipedia, YouTube and Twitter

(Alexa 2012).

The User-generated content is changing Web applications towards a shift in design,

focusing on more user-centric approach. Further research and development, mainly

regarding UGC applications design and evaluation is a key factor that such an

approach requires to reach its full potential. Several research topics are of relevance

regarding UGC by non-professional users. Thousands of personal status, blogs,

images, vlogs, or accounts on sharing sites are created every day even though a lot of

them may have a very short time-span (Meeyoung, Haewoon et al. 2007, Marianna,

David et al. 2008).

8
 http://www.mozilla.org/projects/xul

 2. Related Work 40

In the context of this thesis, such success and promising potentials of the User-

generated content in multiple domains, suggests that it is useful and desirable to

investigate a similar approach towards enabling users to share their Web experiences

in form of automation tools that can save time for both themselves and the end users

communities

2.3 Web Automation Tools

The Web is a dynamic information environment, which is becoming a platform on its

own. Web content changes rapidly and regularly. People revisit same Web pages

frequently to execute repetitive tasks. However, the tools used to access the Web,

including browsers and search engines, hardly offer any support for end-user

automation. Some systems aim to solve various parts of the Web automation

problem, such as Yahoo Pipes, YubNub
9
, and Chickenfoot

10
. This section

summarises these systems and other older approaches that have addressed a range of

Web automation tasks.

Most of the investigated systems are focused on certain tasks, like building

customised portals (Atsushi and Yoshiyuki 1998), building customised Web crawlers

as in Web Sphinx (Miller and Bharat 1998), or recording macros, as in LiveAgent

(Krulwich 1997), which records a sequence of browsing actions as a macro to

automate repetitive browsing tasks. Such a focused approach does not provide the

level of automation that is available on other platforms using scripting languages

such as UNIX.

Another approach envisages the use of external scripting languages, such as Perl or

Python, to build site-specific programs to achieve a certain task. This approach is

very powerful for Web developers; however, it is not as accessible or easy to use to

most end users.

The idea of having a command line for controlling the Web emerged in various

ways. Some may consider the browser address bar as a command line, given that

users can write a complicated URL to execute queries. In many Web applications,

users can even write JavaScript Commands in the address bar like:

9
 http://yubnub.org/

10
 http://groups.csail.mit.edu/uid/chickenfoot/index.php

 2. Related Work 41

Javascript: alert ("hello");

This would display an alert window with the message “hello”. This approach is very

limited and complicated as users are always limited by the size of the address bar and

the fact they need to write all their code on one line.

A more concrete implementation of a client side Web command-line which was

integrated in a Web browser to create a browser shell was presented in LAPIS

(Miller and Myers 2000, Miller 2002), this makes use of a pattern language called

text Constraints (Miller and Myers 1999) utilised for matching text and HTML tags

and enabling data extraction from Web pages.

In LAPIS, an embedded scripting language for automating Web browsing actions is

utilised where the browser address bar accepts commands as well as URLs. Users

can create their own scripts and call them from the browser command-line (address

bar). The output of a command is displayed on the browser window, and a command

can take its input from the browser window. Executed commands are included in the

browser history, which can be saved as a script for later use.

Other tools were also developed by research teams, e.g. Chickenfoot (Bolin 2005a),

which was developed as a Firefox plugin, while cURL was implemented as a

desktop-based command line utility for executing a variety of functions with URL-

oriented protocols.

Chickenfoot is built as a Firefox extension. It extends the browser’s built-in

JavaScript language to enable users to achieve some level of Web automation. The

Chickenfoot approach has the advantage that it does not worry about how data is

retrieved from a Web page. In addition, it avoids the hassle of some Web sites

responding in a different way to Web agents than they do to a Web browser. Yet, this

approach is browser dependent and it is limited by the capabilities of the JavaScript

language.

Web2Sh uses JavaScript for part of its commands, and if used on Firefox browsers it

can make use of Chickenfoot among other plugins. In addition, many of the

commands provided can be executed on the server, where one can build sophisticated

commands using the full power of any language of choice such as Java, C# or PHP.

 2. Related Work 42

The idea of using a command line to call services offered by Web applications was

presented by Jonathan Aquino in his application YubNub (Aquino 2005), which

offers a helpful way to create shortcut commands to Web applications. The YubNub

service enables the redirection to any published Web resource. Developing

commands is very simple in YubNub; all that the user needs to do is to choose a

unique command name and write the URL for the command. For example, one of the

most famous commands is “g” that redirects the user to this URL:

http://www.google.com/search?q=%s

The “%s” is used to specify that users can add input parameters to the command, so

the command “g Nottingham” will generate the URL:

http://www.google.com/search?q=Nottingham

Another approach for automating data extraction is Web crawlers. A crawler is a

program that follows hyperlinks to locate HTML pages and extract the required

information. Most search engines use crawlers to collect Web pages to index them,

but even the development of a simple Web crawler requires a serious programming

effort.

An attempt to create a framework for personal site-specific Web crawlers was tried

in SPHINX (Miller and Bharat 1998), which provides a Java-based interactive

development environment and toolkit for creating customised site-specific Web

crawlers. SPHINX supported multi-threaded page retrieval and crawl visualisation. It

also introduced the idea of classifiers, which encapsulate site-specific crawling rules

to be reused in content analysis. The crawler workbench GUI available in SPHINX

supports developing, running, and visualising crawlers in a Web browser and enables

normal users to create their own personalised crawlers, often without the need to

learn an advanced programming language. SPHINX offered powerful tools and a

GUI interface for experienced end users to create their customised crawlers.

However, to extend or fully utilise it users need good programming experience.

Mercator (Heydon and Najork 1999) is a scalable and extensible Web crawler

written entirely in Java. One of the main targets of the Mercator design was to enable

the user to scale the system to the whole Web, while SPHINX was targeting site-

specific crawling.

 2. Related Work 43

The C3W system (Jun, Aran et al. 2004) follows another approach for facilitating

composite search tasks. It attempts to reduce users’ burden by allowing them to

create their own custom interfaces through clipping, connecting, and cloning

elements from existing Web applications.

The Internet Scrapbook (Atsushi and Yoshiyuki 1998) on the other hand, targets

users with little programming skill and provides them with the facility of automating

recurring Browsing tasks. Internet Scrapbook is an information personalization

system that enables users to create customised personal pages by extracting only the

necessary parts they need from multiple Web pages (recently referred to as a

Mashup). Once the personal page is created, the system updates it automatically, as

with each call it will retrieve its data components from the original sources. The

system is based on the idea that a Web page’s main structure does not change much,

i.e. headings and positions of articles are rarely changed.

The Rainbow project (Svatek, Kosek et al. 2003) targets the Web site analysis

domain. The main aim of Rainbow was to develop a reusable, modular architecture

for Web site analysis. It provides resource classification, using an ontology to

classify Web resources. It also offers an extraction service, which extracts

information from Web pages through conversion of HTML unstructured files into

XML or structured database records. Yet the system was only used for small

business Web sites, and it did not have high precision results.

Well-known companies such as Yahoo, Google, and Microsoft started addressing

this domain. They offered Web-based tools that can make it easier for end users to

automate various tasks on the Web. In 2007, Mashup creation tools became very

popular. These started with Yahoo Pipes, later on Google introduced its Mashup

Editor for experienced developers, and Microsoft joined the fray by introducing a

Silverlight-supported Mashup visual creator named Popfly. However, Google shut

down its Mashup Editor later in 2009 and migrated to Google App Engine. Similarly,

in August 2009 Microsoft discontinued support for its popular Mashup creation

application Popfly.

Yahoo Pipes is an example of a Mashup composition tool that was made available to

end users in 2007. In Yahoo Pipes, services can be ‘piped’ together to create a data

 2. Related Work 44

composition Mashup. Yahoo Pipes utilise RSS feeds as their main source of data,

using a user-friendly GUI interface. Yet, while the GUI interface allows more novice

users to utilise the system, it has a negative effect on the speed of building new tools

and limits the potential of the system (O'Reilly 2007b). An evaluation study of a

Command-line Parser-based Order Entry Pathway for the Department of Veterans’

Affairs Electronic Patient Record showed that the command-line interface was easier

to learn, and faster to use, than the usual menu-driven system (Lovis, Chapko et al.

2001).

Each of the tools had certain advantages, yet no fair comparison can be made due to

the discontinuation of Microsoft Popfly and Google Mashup Editor while still in

their beta versions. However, general comments about the use and approach of each

system may prove useful for the design and development of a new Web automation

framework.

Microsoft Popfly, being based on the Silverlight technology, enabled very impressive

visual effects but it took a long time to produce automation tools when compared to

Yahoo Pipes. Another advantage was offering its users a quota of disk space.

However, it did not offer a reusable way to output its results compared to Yahoo

Pipes, which offers its output in the form of an RSS feed. Microsoft eventually

announced that the project was closed for economic reasons (Bishop 2009).

Finally, Google Mashup Editor was more suitable for experienced developers and

cannot be categorised as an end-user environment. It was also discontinued in its

early stages when it was only available to test through invitation requests to Google.

They subsequently announced that experience gained from the project was migrated

to its new App Engine project.

Some tools use JavaScript to write customised automation commands. JavaScript is

well known to the majority of Web developers, yet this is not the case for many

users. It also requires some knowledge of Object Oriented programming and thus

cannot be the primary choice for systems that target the end-user. For example, the

grammar for extracting Web data from the HTML source would be more complex to

write in JavaScript than in the WSh scripting language.

 2. Related Work 45

2.3.1 Web SPHINX

Web SPHINX (Site-oriented Processors for HTML INformation eXtraction) is a

Java-based toolkit and interactive development environment for building Web

crawlers. SPHINX explicitly supports personal crawlers that are site-specific and re-

locatable (Miller and Bharat 1998). It has a library of Java classes built for Web

crawling, which includes HTML parsing and pattern matching support.

The SPHINX framework supports multithreaded page retrieval, it provides a Java

applet called the crawler Workbench that allowed users to create and invoke simple

personal crawlers without the need for programming knowledge. Re-locatable

crawlers in the SPHINX system are crawlers that are capable of executing on a

remote host or on the client machine. The main target is to use a remote server with

higher processing power to overcome possible limitations of the client machine. In

addition, a site-specific crawler would better utilise these site resources, especially if

it was allowed to execute on the site server.

SPHINX represents the Web as a directed graph of pages and links, which are

reflected in Java as Page and Link objects. To write a crawler in SPHINX, the

programmer needs to extend the “Crawler” class by overriding the two methods:

• boolean shouldVisit (Link l), which decides whether Link 1

should be visited or not.

• void visit (Page p), which processes a Page p that is visited by the

crawler.

The implementation of the Crawler class used multiple threads to retrieve pages

and links. The crawler contains a queue of links, which the shouldVisit method

has approved but not retrieved yet. A crawling thread retrieves the page and passes it

for further processing according to the user’s needs. At the same time, the list of

links is retrieved from this page and passed to the shouldVisit method. If a link

was approved it is added to the queue.

SPHINX provides a facility for encapsulating knowledge needed for classifying Web

content in reusable objects called classifiers. It represents a set of rules for

 2. Related Work 46

interpreting Web pages. For example rules that can help the crawler to choose which

links on the site to follow and which to avoid. Moreover, there are rules that can

specify which parts of pages to process and which to ignore. The building of site-

specific crawling commands would be a significant part of a Web commands library.

SPHINX is a useful tool for advanced users and programmers to build customised

Web crawlers. However, it requires programming knowledge to install, run, and

extend. The program runs on the client computer making it limited to the client

machine resources. Although, it has support for executing on a remote host, this is

hard to configure and use. The system was last updated in 2002.

2.3.2 YubNub

YubNub

(Aquino 2005) was introduced as a social command line for the Web. It was

developed by Jonathan Aquino to participate in the 2005 "Rails Day" 24-hour

programming contest. All the system itself does is simple redirection. It reads the

command and redirects the user to the mapped URL with the ability to pass

parameters in the URL using the HTTP get method; later on one of the YubNub

users added post method support via a PHP script that converts from get to

post.

Developing commands is very simple in YubNub, all the user needs to do is choose a

unique command name and write the URL for the command, for example the

command yahoo simply generates the URL:

http://www.yahoo.com

Another example, the command gmap Nottingham displays a Nottingham map

using Google maps, and returns the URL:

 http://maps.google.com/maps?oi=map&q=nottingham

Advanced Web users can create their own commands by writing a Web dynamic

page in any available language like PHP, then adding a YubNub shortcut to it, e.g.

the command: strLeft Nottingham 3 It will return the URL:

 http://fromrocks.com/yubnub/strings/stringmanip.php?

command=strleft&input=abcdefg%203

 2. Related Work 47

This URL will execute the code on stringmanip.php and passes the parameters

command=strleft&input=Nottingham 3 in the URL using the get

method. The result will be the first three characters of the sent string, the browser

will display “Not.”

Another example is the command back, which was developed using JavaScript to

act as if the users pressed the back button; the command corresponds to the following

URL:

http://www.cs.nott.ac.uk/~eoe/back.html?n=-1

The user may supply the number of pages to jump back to as a parameter; if no

parameter was supplied the default value will be the value 1.

YubNub provides an online way to save shortcuts to various Web sites, however on

the scale of providing a generalised Command Line for the Web it still has long way

to go. The basic problems of YubNub are as follows:

• There is no standard for creating commands;

• It does not offer a method for users to create private commands. This is very

important for users who want to create commands that include their personal

login information to a certain site;

• It does not support secure transactions for the users to send login information

in a command;

• Commands may be easily broken. If the user removes a command page from

the server, this will cause it to return the infamous “404 page not found”

error.

2.3.3 Mashups

A Mashup is a Web application that integrates information from more than one

source into a single tool to create a different Web service that was not originally

intended by either of the original sources.

 2. Related Work 48

The very first example of a Mashup was “Craigslist + Google Maps” by Paul

Rademacher's HousingMaps. It combines information about real estate from

Craigslist with Google Maps to provide a distinct service.

Many other interesting Mashups followed like chicagocrime.org which from was one

of the original map Mashups. It combined crime data from Chicago Police

Department with Google Maps offering a page and RSS feed for every city block in

Chicago (Holovaty 2008).

Creating similar Mashups is becoming easier, ever since Google published its

Google maps API for public use. Many major services providers are providing

various APIs for their applications, thus making the process of creating Mashups

easier.

Marmite, a tool developed by (Jeffrey 2007), provides an end-user programming tool

that allows end users to create Mashups. It was implemented as a Firefox plugin

using JavaScript and the XML User Interface Language (XUL). Marmite enables end

users to create mashups that repurpose and combine existing Web content and

services in an approach similar to Spreadsheet scripting. It presents Operators; these

are pieces of code that access or operate on data. Operators can be chained together

in a data flow where the results of one operation are passed as input to the next.

 2. Related Work 49

2.3.4 Yahoo Pipes

Yahoo Pipes is a service that provides an easy way to aggregate and mashup Web

content. Similar to UNIX pipes, modules can be combined together to create the

desired output. Yahoo launched this service in early 2007. Since then many users

have been exploring it and creating pipes with various functionality.

Tim O'Reilly considers Yahoo Pipes as a milestone in the history of the Internet

(O'Reilly 2007b), He described Yahoo Pipes as follows: “While it's still a bit rough

around the edges, it has enormous promise in turning the Web into a programmable

environment for everyone”. Although most modules are still targeted to RSS feeds, it

seems that eventually Yahoo Pipes aims at creating a GUI based programmable

environment. Its focus is to allow users to aggregate data and build Mashups.

Jon Udell talked about a similar concept in the 8th International Python Conference,

He talked about the Web as a library of callable components (Udell 2000) and the

possibility of combining Web services as the Web analogue to UNIX pipes. In 1997,

he had a vision of Web sites as “Data sources that could be re-used, and of a new

programming paradigm that takes the whole Internet as its platform” (O'Reilly

2007b).

Yahoo Pipes provides a simple interface. It provides a drag and drop editor that

graphically allows users to connect Internet data sources (mostly Web feeds). It

allows its users to do many things like aggregating and filtering multiple news feeds.

Many widely used Web sites now offer search results as a feed. Examples include

Google News
11

, Technorati
12

, and Delicious
13

. Users can combine searches on

various items into a single feed.

When it was first launched, Yahoo described it as “an interactive feed aggregator and

manipulator” later on they describe it as “A powerful composition tool to aggregate,

manipulate, and Mashup content from around the Web.” That was due to the addition

of new modules like fetch page and many site-specific modules under the sources

category.

11

 http://news.google.com/
12

 http://technorati.com/
13

 http://www.delicious.com/

 2. Related Work 50

Figure 2-3: Yahoo Pipes Editor

Other sites that do not provide any feeds can be parsed to extract the required

information to be presented as an XML syndicate feed. The Feed43 engine offers this

service; it converts free-form HTML or XML documents to valid RSS feeds by

extracting snippets of text or HTML by means of applying search patterns. End users

need basic knowledge of regular expressions to use similar services.

The YQL module facilitates the use of the Yahoo Query Language
14

, which is a

SQL-like language that lets the user query, filter, and joins data across Web services.

This enables Yahoo pipes to retrieve data from various APIs through the utilisation

of open data tables
15

, which are XML files that describe how the YQL language can

be mapped onto a Web service or internet data source. (Bozzon, Brambilla et al.

2010). For example, to return top 10 images from Flickr related to Egypt, the

following YQL query can be used:

select * from flickr.photos.search where text=”egypt”

and api_key=”api_key_value” limit 10

14

 http://developer.yahoo.com/yql/
15

 http://www.datatables.org/

 2. Related Work 51

2.3.5 Microsoft Popfly

Microsoft describes Popfly as a “fun and easy way to build and share mash-ups,

games, gadgets, and Web pages.” PC World magazine picked Popfly as one of the

most innovative computing and consumer electronics products of 2007, the tool was

rated as 21 in the 25 most innovative products of the year list (PC-World-Staff 2008).

Popfly was powered by Microsoft Silverlight technology and aims to provide an easy

to use environment for an end-user to create a variety of Web-based applications and

mash-ups.

Popfly utilises Silverlight to achieve superior optical effects. It had modules that

could show the data from various sources with nice visual effects (e.g., Microsoft

Virtual Earth).

Figure 2-4: Microsoft Popfly

In 2009, Microsoft discontinued Popfly taking down all sites, references, and

resources that users had created. Popfly was visually impressive; however, it could

hardly be used to create useful Mashups. Popfly was mostly used as a fun tool to

create games or entertaining applications.

End users did not require any programming skills to use Popfly, just a good

understanding of data formats. Figure 2-4 shows a screen shot of a Popfly interface.

 2. Related Work 52

Tim O’Reilly criticised Popfly in (Markoff 2008) saying that “Popfly shows me that

Microsoft still thinks this is all about software, rather than about accumulating data

via network effects, which to me is the core of Web 2.0, They are using Popfly to

push Silverlight, rather than really trying to get into the Mashup game.”

2.3.6 Firefox plugins

Firefox offers a plugin add-on approach, with various tools for the automation of

customised Web browser-based tasks. Some plugins are targeted toward a specific

task such as DownThemAll that allows its users to download all the links or images

contained in a Web page. Other plugins allow for a wider range of task automation

such as iMacros, Greasemonkey, Accessmonkey, and Chickenfoot.

Greasemonkey is a Firefox extension which allows users to customise and

manipulate how Web pages are displayed on Firefox, by using pieces of JavaScript

(Pilgrim 2005). It allows Web users to write scripts that alter the Web pages they

visit. Advanced users of Greasemonkey can import, combine, and modify data from

a set of Web sites to create Mashups that meet their specific needs. However, writing

such scripts is very complicated and may take a long time to master.

Accessmonkey is an extension to Greasemonkey aimed for collaborative Web

accessibility improvement; It provides a common platform on which end users can

create, share and use scripts that specify accessibility improvements (Jeffrey 2007)

and also uses JavaScript to manipulate Web page content.

Chickenfoot is easier to use compared to the above-mentioned plugins. It adds a

programming environment in the Firefox sidebar so the user may develop scripts to

manipulate Web pages and automate Web browsing (Bolin, Webber et al. 2005b).

However, scripts are written in a superset of JavaScript called “Chickenscratch”

which includes commands that are suitable for operating on the rendered model of a

Web page. Writing advanced scripts in Chickenscratch would require good

programming knowledge.

iMacros
16

 imitates the macro recording in Spreadsheets to automate any repetitious

task on the Firefox Web browser; one of its main uses is automated form filling.

16

 http://www.iopus.com/imacros/firefox/

 2. Related Work 53

Such an approach can be useful for simple tasks but is tedious, hard to update and

tightly coupled to the specific Web browser it works with.

Writing scripts that fills out Web forms is a common goal for various plugins, yet the

complexity of most of these plugins, and the fact that they are tightly coupled with a

specific Web browser, plus the lack of supporting specialised easy-to-use scripting

language make them suitable primarily for experts.

Ubiquity (Beard 2008) is another plugin for the Mozilla Firefox browser. It is an

experiment by Mozilla labs, not developed by a third party. The original idea started

with the Enso
17

 project, a cross-platform, graphical, and linguistic based command-

line interface written in Python.

 Mozilla Labs, later on, applied the same approach within the Firefox browser as an

experiment aiming to connect the Web with natural language in an attempt to make it

possible for everyone to do common Web tasks more quickly and easily. The current

development status of Ubiquity is an indefinite hiatus. Ubiquity commands are also

JavaScript based and require good programming knowledge to extend by end users.

The interface is easy to use and user friendly. Ubiquity showed a great advantage

using natural language-based commands that were given aliases, making it very easy

to users to call commands, yet with no easy way to connect together the commands it

offers. Authoring any new command requires a very good knowledge of Ubiquity

itself and the JavaScript language.

Chickenfoot and Ubiquity stand out among the above plugins because they have easy

to use commands that can be used for automating the filling of Web forms, among

other tasks, with a simple supporting visual pane for writing and running commands.

However, they also depend on the browser limiting all processing to the client side.

The browser-based plugins approach is generally useful in some cases, yet it has

many limitations. A browser-based plugin would work only on a limited number of

17

 http://code.google.com/p/enso/

 2. Related Work 54

browsers; a plugin needs to be updated with each new browser version release.

Furthermore, a browser-based plugin can be executed only on the client side with a

limited set of functions.

2.4 UNIX Shell Scripting

 “UNIX shell is both a command interpreter, which provides the user interface to the

rich set of UNIX utilities, and a programming language, allowing these utilities to be

combined. Files containing commands can be created, and become commands

themselves.” (Ramey 1994)

A common environment for UNIX and Linux platforms users is the shell-based

console. Users often open a number of shell consoles, execute command-line

instructions, and automate tasks through scripts in one of the available shell scripting

languages such as C shell.

“A shell is a program that acts as the interface between you and the UNIX system,

allowing you to enter commands for the operating system to execute. In that respect,

it resembles DOS, but it hides the details of the kernel's operation from the user. So,

file redirection just uses < and >, a pipe are represented by |, output from a sub-

process by $(...), and the implementation details are handled for you. In that

respect, it's a high-level programming language for UNIX itself.” (Stones, Matthew

et al. 2000)

A very good advantage of UNIX is that it has a rich set of generic tools for operating

on text files like: grep, sort, awk, sed, etc. These tools present a very good

example as generic text processing tools for Web shell commands. However, the

generic nature of these tools can also be a weakness, because generic tools can make

only limited assumptions about the format of text files. Such generic tools are not

efficient enough and would need significant programming experience and effort

when dealing with the variety types of structured and semi-structured text on the

Web, such as HTML pages, email messages or Source code (Miller and Myers 1999,

Miller 2002).

Many Web pages use some kind of custom structure represented in HTML; for

example, search engine results, shopping catalogues, and sports scores. Developing

 2. Related Work 55

similar tools that utilise the advantage of a large base of existing UNIX shell users,

and can make better use of the semantic information available in structured text in

Web pages would be very useful for Web users.

UNIX shell main features are:

• Command interpreter

• Programming language

a. Variables

b. Flow control (Conditions and loops)

c. Constructs

d. Quoting (using single and double quote for strings)

e. Functions

f. Environment Variables

• Shell scripting is easier to learn compared to high-level languages.

• Input and output redirection is achieved using < and > characters.

• Processes piping using |, e.g. ps | sort > processes.txt

This takes the output of ps, sorts it into alphabetical order, and then writes

the output to the processes.txt file.

ps | sort | grep -v bash | more

This takes the output of ps, sorts it into alphabetical order, and then uses

grep -v bash to remove the process named bash, and finally displays it

on the screen in screen size blocks.

 2. Related Work 56

2.5 A Programmable Web

Nardi argues that “task specific programming languages are both useful and

powerful”, showing that end users can easily learn formal languages when they are

motivated and when they have programming languages which reflect their task

domain, and a suitable framework to view the output of their programs. This

principle can be seen in spreadsheet scripting, which require specific and complex

commands to be grasped by users in order to achieve their goals (Nardi 1993).

An extensible task-specific programming language targeted to automating tasks over

the Web platform needs to be able to do the following:

• Access Web resources using different protocols;

• retrieve any required Web resource;

• understand and be able to process the different data structures on Web pages;

• execute basic regular programming operations.

Early Web pages were mainly written in simple HTML code. However, nowadays

rendering most Web pages involves dealing with many other languages and

technologies, such as CSS, XML, Flash player and JavaScript. More advanced

techniques are also used for better interactivity such as AJAX.

Achieving the required automation requires collaboration between the server-side

and the client side. The server-side of a Web application needs to offer the data in

way that is accessible and which other programs, when needed, can easily process.

Web services are a very good example. Many major vendors offer APIs and Web

services to access their data without all the fancy looks and interface burden. Other

programmers within their own application are mainly the ones who use most of these

services; Mashups are a very good example of this.

On the client side, normal users need enabling tools to access such services and data

directly and a scripting language in which they may express any algorithm for task

automation if they require automating any repetitive task.

 2. Related Work 57

2.6 Summary

This chapter discussed the most popular tools for Web automation. It is a novel field

in which more research is still needed. Currently, the most noted tool, Yahoo Pipes,

is only used by a small fraction of the Web user community. It also provides limited

functionality that handles only certain formats and protocols. Yahoo defines its tool

as a composition tool to aggregate, manipulate, and Mashup content from around the

Web (Yahoo 2007).

The GUI-based interface of Yahoo Pipes is easy and fun to use, yet it requires high-

performance devices and is much slower for developing tools compared to other text-

based development environments.

Other tools implemented the approach to work over the Web browser as its platform.

These tools were developed as Firefox plugins such as Chickenfoot and Ubiquity.

While this approach is very powerful and useful for manipulating content acquired

by the browser, it suffers many limitations. These tools are mainly focused on the

page customisation and automation of the browser experience. Furthermore, they

operate on the client side only, limiting access to only some of the many Web

available resources.

The Web is moving towards becoming an independent platform. Furthermore, end

users are moving from being passive actors to becoming an integral part of Web

information growth as the user-generated content concept is pushing the Web

towards a new era where Web sites adopt a more user-centric approach.

There is little documented academic literature that focuses on end-user Web

automation as defined in this thesis. Most available tools are of commercial nature

and target only few aspects of Web automation. This shows that there is a still a lack

of tools for end users who want to automate and customise their Web interactions.

The growing complexity of Web pages and standards prevents most users from

realising such automation.

 3. Web2Sh Design and Implementation 58

Chapter Three: WEB2SH FRAMEWORK DESIGN

3.1 Introduction

This chapter describes the design of Web2Sh. It presents the main design challenges,

and describes solving the problem of developing a concrete, useful framework for

end-user Web task automation. It presents in more detail the architecture, design,

pipeline concept and characteristics of the framework. Finally, it discusses the

implementation decisions in Web2Sh.

The move towards the Web as a platform, where the main environment for computer

user interaction is the Web browser, makes it essential for such a framework to run

through the Web browser as the client. However, locating the main components of

the framework over the server tier is important. This saves end users the burden of

having to install additional software components on their machines. It also facilitates

the use of resources offered by the public cloud, which are services and resources

offered and owned by providers, like Amazon and Google, who offer the users

access to these resources only via the Internet and operate the infrastructure; i.e. data-

center hardware and software (Armbrust, Fox et al. 2010).

It is not the purpose of this chapter to describe the fine details of the design; rather it

focuses on describing the most interesting and important features of the framework.

3.2 Design Objectives and Requirements

The main objective for the design of the proposed Web2Sh framework is to

investigate and evaluate the feasibility and usefulness of end-user Web task

automation. Aiming for an infrastructure that achieves such a goal enforces design

choices that take into consideration the issues of scalability, usability, and

extensibility. The idea of developing a framework for writing, sharing, and using

customised Web automation tools, exhibits considerable benefits. It helps end users

to utilise powerful resources that have so far only been accessible to programmers. It

also empowers end users to achieve better efficiency, to save time and effort, and to

share their Web experiences.

 3. Web2Sh Design and Implementation 59

The Web2Sh framework introduces a one-stop Web-based interface for end users,

consolidating many Web automation tools in one place. Such a framework needs to

offer many advantages, including a consistent usable interface with a homogeneous

view of various Web resources. The implementation of the Web2Sh framework has

considered the following general requirements.

Scalability, the system needs to be able to handle increasing number of users and to

work efficiently under increased load.

Parallelism, the system should operate on the principle that problems can be divided

into smaller ones, which can then be solved concurrently.

Extensibility, the system design must allow for future growth by supporting the

ability to enhance the system via the addition of new functionality or modifying

existing ones.

Usability, The system needs to be easy to learn and to use for end users, allowing

them to accomplish various tasks at a satisfactory speed.

Web2Sh also aims to make use of other available tools that end users may want to

integrate into the framework. For example, a wrapper was built to enable the passing

of data between the UNIX bash shell and Web2Sh to make use of a number of its

text-processing tools, such as grep, sed, and awk, which could be used for

processing textual data. In the same way, Web2Sh can also utilise any accessible

resource or tool that generates text-based output, by implementing the appropriate

wrappers.

The implementation of Web2Sh as a Web application allows it to be accessible by

Web users from various modern browsers. It offers a set of commands, which are

usually executed on the server-side using Ajax Technology to transfer commands

and results between the client and the server without the need to refresh the page.

In addition, Web2Sh also utilises the Web browser by implementing some simple

Web commands on the client side. These Web commands aim mainly at providing

the user with access to basic browser functionalities, such as history and bookmarks

via the use of JavaScript.

 3. Web2Sh Design and Implementation 60

3.3 The Web2Sh Architecture

Web2Sh has five main components:

7. An AJAX enabled Web interface.

8. An Execute Servlet to handle communication with the Web interface.

9. The WSh scripting language Parser.

10. The WSh scripting language Interpreter.

11. A repository of Web commands.

End users can use the Web interface to write Web commands. A user terminates

writing a pipeline, or a single Web command, by typing the semicolon character. The

client then sends the code to the Web2Sh server using AJAX to exchange data with

the server without reloading the whole page. The use of a semicolon to indicate the

end of a pipeline allows users to write a pipeline across multiple lines over the

interface. Figure 3-1 demonstrates the main components and the flow of data through

the system.

Figure 3-1: Web2Sh Architecture

 3. Web2Sh Design and Implementation 61

1. The client interface sends the code using an XMLHttpRequest object;

the Execute Servlet processes the HTTP request to extract the Web

commands.

2. The Execute Servlet creates a Parser instance and sends it the code.

3. The Parser validates the code syntax. If it is valid, it will call the Interpreter

and pass an AST (Abstract Syntax Tree) representation of the code.

4/5. These steps occur repeatedly according to the number of commands in a

pipeline. The Interpreter handles the invoking of the called Web command. If

a pipeline exists, then each command executes returning a reference to its

standard output stream to the Interpreter, which connects it with the next

command’s standard input stream.

6. After the last Web command executes, the Interpreter returns the result to

the Parser.

7. The Parser object passes the result back to the Execute Servlet.

8. The Execute Servlet writes the result over the HTTP stream and sends it

to the Web browser, which processes the returned data using JavaScript and

updates the page content.

The Web2Sh framework utilises the java.net library to enable Web commands to

access the Internet to retrieve resources. The AJAX Web interface in some cases may

access the Internet directly to retrieve information through the Web browser.

3.3.1 UNIX Tools Web Wrapper

Web2Sh utilises various tools provided by the UNIX bash shell script (Ramey

1994) through an embedded UNIX shell wrapper which directs some Web

commands to be executed using the UNIX shell:

1

2

fetch “url” | txt |

unix.grep '[0-9] [0-9] [0-9]';

 3. Web2Sh Design and Implementation 62

This command will retrieve the given URL (fetch), remove all HTM tags (txt),

and then pass the text to the UNIX tool wrapper, which will call a UNIX shell to

execute the unix.grep command.

Many UNIX tools can be accessed through the wrapper, such as sed, awk,

grep, and sort.

For example:

This command fetches any URL and passes the content to sed tool, which replaces

all ‘<’ characters with < and then all ‘>’ characters with > the result will

then be displayed on the browser which would be a text representation of the whole

HTML file. This is a simple command that can enable users to view any page source

within the normal browser window.

The Web2Sh shell will search for any Web command on its list of commands, if the

command is one of the bash commands the UNIX tools wrapper would handle

passing it to the bash shell and return the results to Web2Sh.

1

2

fetch pageURL | unix.sed 's/</\</g' |

unix.sed 's/>/\>/g'sed 's/</\</g';

 3. Web2Sh Design and Implementation 63

Figure 3-2: Web2Sh Interactions

Web2Sh Wrappers are written and used in an innovative way. Its aim is to offer an

interface through which the end-user can utilise useful tools available in other

systems and platforms. It acts as a Web command for other Web2Sh commands, yet

it sends the instructions to be executed on its target platform, i.e. UNIX, and then it

return the results back to the standard output stream.

3.4 Web2Sh Framework Design

Object-oriented programming (OOP) is a practical and useful programming

technique that supports many features such as data abstraction, encapsulation,

messaging, modularity, and inheritance. It encourages modular design and software

reuse (Alan 1986, Gamma, Helm et al. 1995).

Recurring patterns exist in object-oriented programming, which provide simple,

tested, and elegant solutions to specific design problems. A design pattern is a

general design-solution to common design problems, which describes classes and

communication between objects. Design patterns assist developers to structure their

Web Services UNIX Shell

Tools

Web

Applications

Web2Sh Core

Servers
Databases Databases

Web Browser

Web2Sh

Command line

Ajax, JavaScript

HTTP

HTTP

Unix Wrapper

SOAP

 3. Web2Sh Design and Implementation 64

applications, giving them a common vocabulary to describe design concepts

(Gamma, Helm et al. 1995, Freeman, Freeman et al. 2004).

Christopher Alexander says, "Each pattern describes a problem which occurs over

and over again in our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over, without

ever doing it the same way twice" (Alexander, Ishikawa et al. 1977, Gamma, Helm et

al. 1995)

The use of design patterns helps to avoid subtle issues that may cause major

problems. In addition, it improves code readability for programmers who are familiar

with the patterns, allowing them to easily use and extend the system.

Web2Sh utilises the use of OOP and design patterns in order to speed up the

development process while meeting the system’s requirements. In addition, design

patterns represent tested and proven development paradigms for solving common

development challenges.

The Web2Sh design utilises the following design patterns (Freeman, Freeman et al.

2004):

• The Visitor Pattern.

• The Command Pattern.

• The Abstract Factory Pattern.

These patterns interconnect together to handle interpreting, calling, instantiating, and

executing the Web commands of Web2Sh.

The Visitor pattern is used to separate the Interpreter implementation from the Web

command object (a node in the AST) that it uses and the parser. This facilitates

introducing changes to either one of the components without the need to change or

re-implement the other.

 3. Web2Sh Design and Implementation 65

3.4.1 Web2Sh Implementation of the Visitor Pattern

The Visitor design pattern represents an operation to be performed on a node of the

Abstract Syntax Tree returned from the parser. This allows the definition of new

operations without changing the classes of the nodes. It also enables the extension of

the Parser functionality by simply adding a new visitor class.

A Visitor pattern has the following participants:

• Client (Web2ShInterpreter)

This Class uses only interfaces declared by Node and

Web2ShParserVisitor interfaces.

• Element Interface (Node)

This Interface defines an accept operation that takes a visitor as an argument.

• Concrete element (All AST nodes, such as ASTFlag)

This Class implements an accept operation that takes a visitor as an argument.

• Visitor Interface (Web2ShParserVisitor)

This Interface declares a visit operation for each class of

ConcreteElement.

• Concrete visitor (InterpreterVisitor)

This Class implements each operation declared by Visitor Interface.

The WSh scripting Parser receives the source code, validates it, and constructs an

abstract syntax tree (AST), which represents the Web commands’ structure of the

source code. Each node (concrete element) in the constructed AST has a

jjtAccept method taking a Web2ShParserVisitor (visitor) object for an

argument to add the required functionality to the node. All nodes implement the

Node (element) interface to guarantee the existence of jjtAccept method. A

separate concrete visitor InterpreterVisitor class implements a visitor

interface Web2ShParserVisitor to perform some particular operations, by

 3. Web2Sh Design and Implementation 66

implementing these operations in its respective visit methods. The Interpreter

decides on which visit method to call based on the type of the object passed to it as

the first parameter.

Figure 3-3: Web2Sh implementation of the Visitor design pattern

This is a visit method example:

The data object is used to save tracing data among visit methods calls for collecting

information for debugging reasons.

1

2

3

4

public Object visit(ASTFlag node, Object

data) {

}

 3. Web2Sh Design and Implementation 67

3.4.2 Web2Sh Implementation of the Command Pattern

The Command design pattern encapsulates a request as an object, thereby enabling

clients to issue different parameterized requests (Gamma, Helm et al. 1995, Freeman,

Freeman et al. 2004). Hence, it is used in Web2Sh for Web commands. This design

enables each Web command, such as the fetch command, to operate in a different

way according to the receiver type, which contains the actual action for the

command. Hence, every receiver object can execute its own implemented action.

The receiver in this case is an abstract class WebMimeType.This class is inherited

by all classes that represent a MIME type, such as Text and Image.

Each main MIME type is a parent class that is inherited

by its subtypes; for example, HTML, CSS, CSV, XML, and

Plain classes inherit from the Text class. This structure

enables the parent class to implement all the common

actions for its child classes, while, if required, each

child can implement its response action for a given

command.

A Command pattern has the following participants (Figure 3-4

• Command (org.web2sh.cmds.AbstractWebCommand), this is an

interface for executing an operation.

• Concrete Command e.g. (org.web2sh.cmds.fetch), and similar

Web commands classes. The Concrete Command defines a binding between a

Receiver object and an action, enabling the Web command to

implement execute by invoking the corresponding operation(s) on the

Receiver.

• Client (CommandManager), this creates a Concrete Command object and

sets its Receiver.

 3. Web2Sh Design and Implementation 68

• Invoker (Web2ShInterpreter), this asks the command to carry out the

request.

• Receiver (WebMimeType), this class contains the information on how to

perform the operations associated with carrying out a Web command action.

Figure 3-4 Web2Sh implementation of the Command design pattern

The implementation of the command pattern makes it easy to add new Web

commands, as the developer does not have to change existing classes. This allow for

extending the core Web commands repository without the need to alter the

framework.

3.4.3 Web2Sh Implementation of Abstract Factory Pattern

This design pattern provides an interface for creating families of related or dependent

objects (Web Resources) without specifying their concrete classes.

This is essential for Web2Sh design, as the framework in most cases does not know

which type of resource it is going to deal with. This enables the Web2Sh framework

to be independent of how Web Resources are created, composed, and represented.

Web Resources are families of all the defined MIME types.

 3. Web2Sh Design and Implementation 69

An Abstract Factory pattern has the following participants (Figure 3-5)

• Abstract Factory (ResourceAbstractFactory) , this is an interface

for operations, which creates abstract products.

• Concrete Factory (TextFactory, ImageFactory), this class

implements the operations to create concrete product objects.

• Abstract Product (WebResource), this interface is implemented by all

Web resources, such as Text.

• Concrete Product (Text, Image), this class defines a resource object to be

created by the corresponding concrete factory.

It implements the Abstract Product interface.

• Client (CommandManager), this class uses only interfaces declared by

Abstract Factory and Abstract Product interfaces.

Figure 3-5: Web2Sh implementation of the Abstract Factory pattern

 3. Web2Sh Design and Implementation 70

3.5 Framework Scalability

The literature has many definitions of the scalability term such as in (Weinstock and

Goodenough 2006, Duboc 2009). It was generally defined in (Duboc 2009) as “the

ability of a system to satisfy quality goals to levels that are acceptable to its

stakeholders when characteristics of its application domain and design vary over

expected ranges”.

Scalability in the context of this research is the ability of the software to handle an

increasing load in terms of data, processing and number of users. This can be

achieved by employing both good design and development techniques to allow for

the best use of resources. In addition, it has the capacity to use the increasing number

of processors by supporting the ability to extend resources using horizontal clustering

approaches. It is important for a Web application design to cater for efficient use of

resources in order to offer a good level of scalability, especially concerning the

number of users.

There are two methods of clustering, namely: vertical scaling and horizontal scaling.

Vertical scaling involves increasing the number of servers on a single machine, while

horizontal scaling involves increasing the number of machines inside the cluster. The

horizontal scaling approach can be more reliable, since there are multiple machines

involved in the cluster environment, as compared to only one machine in vertical

scaling (Duboc 2009).

The scalability of a system depends on the characteristics of both the application

design and the execution environment. A design that divides an application into units

that could execute independently in parallel will allow for a superior performance

when utilising the horizontal scaling approach (Williams and Smith 2004).

To ensure the scalability of Web2Sh the design utilises the Java Platform, Enterprise

Edition (Java EE) and the Apache Tomcat application server as a well-known tested

Web application server with clustering support.

Tomcat provides the ability to deploy a Web portal application in a cluster

environment, which facilitates achieving the scalability, reliability, and high

availability required for Web applications

 3. Web2Sh Design and Implementation 71

3.6 Summary

This chapter presented the Web2Sh framework. It presented the main design

challenges and objectives, the framework architecture, and key design features.

Web2Sh is a concrete, useful framework for end-user Web task automation. It offers

end users the ability to build their own automation tools that target the Web as their

platform. The next chapter introduces the Web2Sh user interface, where users can

write and run their Web automation scripts.

 4. Web2Sh User Interface 72

Chapter Four: WEB2SH USER INTERFACE

4.1 Introduction

Web applications are becoming increasingly rich and flexible environments where

users can easily search for information, access documents, stream media files,

publish content, and play games; all from within the Web browser. Hence, any end-

user Web-oriented application needs to be usable from within a browser.

This chapter provides a detailed description of the Web2Sh command line user

interface, which is the client side component of the framework. One of the main

influences on the design and development of the Web2Sh user interface is the need

to be usable on the majority of available Web browsers and Web-enabled devices.

The interface could have been implemented as a browser plugin, e.g. for Firefox.

However, such plugins work only on specific browsers and even specific versions of

those browsers. It could also have been implemented as a separate client-based

desktop application similar to the SPHINX environment; yet again, it would have

needed to be installed on the client machine and would not actually make use of the

Web as a platform.

The simplest solution, and most effective, was to use basic Web standards such as

HTML, CSS, JavaScript, and AJAX to present a simple Web application that can be

used through almost any Web enabled device, thereby gaining benefit from the ‘Web

as a platform’ concept.

4.2 Web Command Line

The Web2Sh command line provides the user with the required interface to enter

Web commands and write scripts. The command line itself is a simple HTML text

area, where JavaScript is used to provide the required editing, running and HTTP

streaming functionality. This takes place when the user presses Enter after typing a

semicolon, indicating the end of a statement. The statement is then executed and a

new line begins with the string websh$.

 4. Web2Sh User Interface 73

Figure 4-1shows a screen shot of the Web2Sh command line. It can be displayed on

most modern browsers because it is a simple HTML page. However, JavaScript must

be enabled since the AJAX technology depends on it to interact with the server.

Figure 4-1shows three main areas of display on the page:

• The Web command area, an HTML text area, is where users write and

execute scripts.

• The result display area, which is where results, error messages, or feedback

about executing a script is displayed.

• The download area, which enable the users to download files created during

the execution of Web commands. This occurs mainly when the result is

redirected to a file. Links to download those files are displayed in this area

with feedback displayed on the main result display area.

Figure 4-1: Web2Sh Command Line Interface

 4. Web2Sh User Interface 74

Users may also set the environment to display help for any command as soon as they

write it on the command line. The command line also provides a set of basic

functionalities that would be familiar to UNIX shell users. For example when a user

presses the up arrow, it will print the last statement in the command history. If the

user presses up arrow again the one before last in command history will be

automatically written to the command line and so on.

Some of the commands offered through the command line are fully implemented on

the client side using JavaScript. For example, the clear command does not need to be

submitted to the server in order to clear the command line text area. Any command

that is related to setting the command line environment itself is also implemented on

the client side.

4.3 User Support

4.3.1 Login

The system does not yet support Hypertext Transfer Protocol Secure (HTTPS), but it

can easily be added by obtaining a public key certificate for the Web server.

Nevertheless, Web2Sh currently implements basic security procedures that enable

the use of private personal content on the system.

On initial registration, the user enters an email address and selects a login ID. This

will assign disk space on the server where any private data or personal Web

commands can be saved. Users may use any core shell command without the need to

login. Additionally, users may login to gain access to their personal private Web

commands and their dedicated disk space on the server. Users can login using the

login command on the shell.

The command takes one parameter, which is the login ID, and uses it to generate a

random password that can be used for this session only. Web2Sh sends it to the user

email and prompts the user to enter the sent password. Once the user has logged in,

http://en.wikipedia.org/wiki/Public_key_certificate

 4. Web2Sh User Interface 75

he/she can write new commands, which will be saved, under the user’s ID name

(using the ID as the namespace for the command).

4.3.2 Web Commands Help

The user may use the help or man commands followed by a Web command name

to display that command information with examples on how it may be used.

For example:

 help “fetch”;

This statement will display a summary describing the fetch command, its flags and

parameters, and examples of its uses.

4.4 Error Handling

Web2Sh provides a variety of error handling techniques. All error messages are

displayed back to the user’s result area. The main types of Web2Sh error handling

technique are:

12. For syntax and logical errors:

o The basic syntax is validated by the parser, which reports any syntax

errors;

o Each Web command is checked by the Interpreter. If a wrong flag

name or an unknown Web command was used it will generate an

error message and terminate the pipeline execution.

13. For run time errors:

o If a Web command generates an error, such as page not found, while

operating, then it will return the error message back to the user but the

pipeline will continue if there are any other available data on the

stream.

 4. Web2Sh User Interface 76

4.5 Output Options

The Web2Sh default is to send a script output to the result area of the users interface.

However, the user may change the values of some environment variables, using the

js.setEnv Web command, to change the look of the interface or the output

method.

For example, js.setEnv $output = “new”;

This will change the user output mode so that output is redirected to a new window

instead of being printed in the result area on the same page as the command line

4.6 Client Side Web Commands

Web2Sh uses JavaScript to implement a library of client side Web commands that

may be better suited for executing on the Web browser. This enables Web2Sh to

utilise the Web browser as a part of the Web platform. However, these commands

are limited in functionality, since they cannot be used in a pipeline. Client side Web

commands are usually used to effect user interface settings such as the js.setEnv

command. Client side commands all start with the namespace js to indicate that

this command is to be executed on the Web browser.

When the js namespace is detected at the beginning of a statement, the Web2Sh

interface will execute this command locally. If the user tries to use a client command

within the pipeline, an error message will be displayed.

For example, js.fetch “http://www.google.co.uk”: will fetch the

given URL and open the page in a new window.

Js. getElementById (“item4”): this command will search for an element

with the id item1 and display it on a new window. This can be useful to display

only one part of the result from the last executed pipeline. For example, if multiple

items were returned as a result for a pipeline, such as a set of links, each one will

have a unique ID such as item1, item2, and so on.

Js.print : this command will print the page.

 4. Web2Sh User Interface 77

Js.reload : this command will reload the page.

4.7 Implementation Decisions

The Web2Sh framework targets the Web as its platform. Its use should not be limited

to a certain Web browser or device. This means that the user interface needs to be

generic in order to be used over the majority of Web browsers and Web enabled

devices. The development of the user interface utilises only known Web standard

languages and technologies, which are supported on all modern Web browsers.

These languages/technologies are:

• HyperText Markup Language (HTML)

• JavaScript Language

• Cascading Style Sheets (CSS)

• Asynchronous JavaScript and XML (AJAX) technology

AJAX was a key enabling technology for the Web2Sh interface. It offers a set of

JavaScript methods that are used on the client-side. With Ajax, Web pages can send

data to, and retrieve data from, a server asynchronously without interfering with the

display and behaviour of the existing page.

4.8 Summary

This chapter presented a description of the Web2Sh command line user interface.

This is the client side component of the framework. A key feature of the user

interface was to be generic and be usable over the majority of popular Web browsers.

Hence, the development of the user interface utilises only known and popular

supported languages and technologies such as HTML, JavaScript, CSS, and the

AJAX technology. This enables the framework to be used without the limitation of

using a specific Web browser or device.

The next chapter introduces the WSh scripting language that was created to support

end users in creating and customising their own Web automation tools.

 5. WSh Scripting Language 78

Chapter Five: THE WSH SCRIPTING LANGUAGE

5.1 Introduction

With the rise of Web-based applications in general, the Web is becoming an ideal

platform to develop applications that were previously accessible only as desktop

applications. For instance, Web users can use applications, such as eyeOs
18

, which is

an Open Source Platform (Web operating system and Web office) that resembles a

desktop, but is actually in the cloud since the computing resources are delivered as a

service over the Internet. The eyeOs system was licensed under the GNU Public

License version 3 (GPL3); the latest version eyeOs 2.5 runs under The GNU Affero

General Public License. It cleverly utilises PHP, JavaScript and Ajax technologies to

present various desktop-like applications running on Web browsers. Google Web

Applications such as Mail, Docs, Calendar, and Maps, are also very good examples

of applications in the cloud

In today’s Web, end users are shifting from desktop-based to Web-based applications

and from local hard drive storage to network storage via Web servers. This, in turn,

introduces the need for a shell scripting language for the Web, which would provide

an adequate end-user tool to accomplish routine tasks. The availability of a Web

shell and a scripting language to be used for building various Web commands/tools

would be very useful for end users, programmers, and Web masters. A similar model

is implemented on UNIX platforms where various shells and tools are available for

users, programmers, and system administrators to facilitate the automation of various

tasks.

This chapter describes the proposed WSh language; a Web-based UNIX-like

scripting language for automating Web browsing tasks and for connecting together

many diverse services that are available on the Web. WSh allows users to build,

customise, and share their own Web commands to automate the execution of the

variety of tasks that they may need to accomplish. The WSh scripting language can

18

 http://eyeos.org/

 5. WSh Scripting Language 79

be considered as a step towards enabling end users to better automate and share their

Web experiences.

The Web2Sh framework implements a thin client-computing model. This means that

end users only need a Web browser in order to use, write, and run WSh scripts. The

actual parsing and execution of the scripts is mostly handled by Web2Sh server.

Web2Sh encompass the WSh scripting language. A significant advantage of the WSh

scripting language is that it enables end users to customise and integrate Web

commands in order to utilise many Web resources. For example, WSh facilitates the

invocation of Web services functionality; a procedure that normally requires

advanced programming skills.

Many scripting languages are used all over the Web; JavaScript, VBScript, and Perl

are three examples of such scripting languages. These languages can also be used for

other purposes, e.g. VBScript is widely used for writing macros in various Microsoft

applications.

In UNIX, users can write scripts to be saved as a text file, called shell scripts. These

scripts can be invoked by their names, just like built-in UNIX commands. Web2Sh

follows a similar model where users can write scripts in WSh and save them on the

Web server as Web commands. An important characteristic of WSh is that it utilises

a similar pipeline approach to UNIX shells, which allows users to connect the output

of a Web command to an input of another.

Some Web commands are able to accept different types of input, e.g. raw Text,

HTML, or XML. In this case, the Web commands behave in a polymorphic manner.

In other words, Web commands can alter their execution behaviour according to the

MIME type of the piped resource. Users may choose to filter some resources to

guarantee only certain parts of the resource are piped to the next Web command.

For example, if an HTML page has a list of students’ ids, lab time and group, an

HTML segment representing one student might resemble:

<tr>

 <td> ID2802 </td>

 <td> 4-6pm </td>

 5. WSh Scripting Language 80

 <td class="purplegroup">Purple</td>

</tr>

In this case, a user might prefer to strip all HTML tags and use a UNIX shell tool like

grep to extract the piece of text that has a certain user’s data in it. For example:

fetch “url” | txt | unix.grep “ID2802” ;

This script should print all lines containing a match to the given pattern. All HTML

tags are stripped out because of the use of the txt filter.

After reading a line of text from a Web2Sh command line, the WSh Parser breaks the

text up into words (tokens), and then determines word boundaries if quotes were

used. The resulting tokens go through a check that substitutes values for variables

and parameters.

Web2Sh interprets the resulting words as commands trailed by their flags and

arguments. Web commands are either built-in commands, which are directly

executed within the shell, or calls to external tools or programs, in which case,

Web2Sh redirects the Web command to the appropriate wrapper (e.g. the UNIX Tool

wrapper) to handle the command.

The WSh scripting Language supports a standard suite of programming constructs,

including variables, lists, arithmetic operations, strings, quoting, and pattern

matching. For flexibility and ease of use, the WSh scripting language is designed to

be case-insensitive, to avoid common case related errors that inexperienced end users

may make. This is in contrast to other languages, which are case-sensitive and take a

JavaScript similar approach, such as the Chickenfoot scripting language.

 5. WSh Scripting Language 81

The following is an example that demonstrates the ease of use of WSh in comparison

to Chickenfoot. For the following Chickenfoot script:

go("google.com")

enter("Web 2.0")

click("google search")

links = find ("link in bold")

links.count

The alternative script in WSh would be:

Google "Web 2.0" | getLinks –p1 | find –i

“<[b|strong]>” | count;

The Web command getLinks will get all the links on the page returned by

Google search, the -p flag indicates that links will be returned alongside their parent

tags, the find command would search for any links that have the tag or

. A word in the link or the whole link can be in bold. The -i flag

indicates that find should match the pattern regardless of its case. The last

command count would return the number of the links that matched the search

criteria.

5.2 Scripting Language for Web Automation

Experienced programmers as well as casual programmers (i.e. those who are less-

experienced), may use a programming language in order to implement algorithms to

achieve a higher level of automation in their daily computer usage.

Basic programming knowledge can be useful for non-expert computer users in order

to save them significant time doing repetitive tasks. Almost all major platforms offer

simple scripting languages to users in order to empower them to better utilise the

platform and enable automation. Web2Sh follows this model by providing a scripting

language that can be used to create and customise Web commands that are focused

on Web automation. One of the main advantages of the Web2Sh model over most

other platforms’ models is that Web2Sh is designed explicitly for the Web.

 5. WSh Scripting Language 82

For example, consider a user who has compiled a list of laptops that he/she is

interested in, through a set of shopping Web sites. The user wants to check which

ones have received good reviews on sites like Cnet
19

, Amazon
20

, and PcWorld
21

.

Moreover, imagine that the user also wants to check technical performance issues of

some of the laptop parts on sites such as notebookcheck.net.

This could be done by visiting each of these sites, providing details of each laptop,

then manually compiling the necessary information to carry out the comparison that

would assist in making the decision. Some services may be available on specific

Web sites such as Dell that make this comparison easier, yet this applies only for the

devices they offer. This service may also be provided by a Web site that offers price

comparison. However, if the user wishes to customise the process in ways, which

truly reflect his/her own needs and mental model, then the possibility that a Web site

can provide such specific format is not high. For this reason, end users might then

need the ability to write scripts that would automate their Web tasks in a personalised

manner. In other words, users may often need customisable tools that simplify the

process of automating the Web. The ideal approach for such an objective is through a

scripting language that allows the development and execution of scripts that take less

time than it would take to do a task manually.

The Web is shifting towards being a platform. Most computer users spend significant

part of their time interacting with the Web in different ways. Allowing end users to

better utilise the Web is essential, and a goal that many researchers have pursued.

Many available tools for automating Web tasks (Rob, Paul et al. 1997, Bolin 2005a,

Jeffrey and Richard 2007) require the user to work either with the raw semi

structured HTML of a page, Document Object Model (DOM) (Hégaret 2005) of a

Web page, or simply the rendered model of a Web page. There is also many Web

scripting languages, however, they are still mainly targeted for developers and Web

programmers. Regular Web users lack both the languages and tools to automate their

Web usage.

19

 http://www.cnet.co.uk/
20

 http://www.amazon.co.uk/
21

 http://www.pcworld.co.uk/

 5. WSh Scripting Language 83

A Web page can be represented as a long string of HTML, and users identify parts of

the page either by location or by regular expression matching. However, as the

HTML for almost all dynamic Web sites is generated by code executed on Web

servers, it is often hard to understand by end users. So writing scripts can be both

difficult and time-consuming.

Users may also access and manipulate a Web page’s content based on its DOM,

which is a standard model for Web page structure; JavaScript is the most popular

scripting language utilising the DOM. However, this model requires adequate

programming experience, including basic understanding of Object Oriented

concepts. In addition, users will still have to understand the HTML structure of the

Web page.

Furthermore, such tools or scripts would have a fragile dependency on the structure

and text in a Web page, which may break when the page changes. Therefore, it is

crucial to be able to update the scripts the user may use to adapt to possible changes

in any Web page.

Hence, to address these limitations, users need to be able to have the option to make

use of the HTML structure, Document Object Model, or to depend on the actual page

content to achieve their goals. Users may choose a different methodology to achieve

their goals, based on their programming experience and the type of task they need to

achieve.

The WSh scripting language aims to offer a wide set of tools to give its users the

ability to access and manipulate Web pages using the best model that matches their

requirements and experience. Hence, the main objectives of the language design are

simplicity, generality, usability, and expressiveness. Furthermore, writing and testing

the language is done through a Web page, as it is the most common, well-known and

simple interface to use.

Web2Sh enables users to work with different representations of the Web page. It

provides tools that support the many MIME types that may be retrieved over the

Web such as images, RSS, and PDF files.

 5. WSh Scripting Language 84

Web users are always searching for easier and more efficient ways to instruct the

Web platform to execute useful and complex tasks. For this purpose, this thesis

argues that users need new powerful and easy to use tools. Such tools should allow

the user to enter, edit, translate, and run Web commands on the Web platform.

Web2Sh provide such tools for the users; all tools are Web-based, hence, the user

only needs a modern Web browser to create, edit, share and run Web2Sh Web

commands.

The Web can be considered as a high-level platform, on which programs are written

and executed. It also comprises the use of many technologies and Web programming

languages such as PHP, Java, Perl, Dot Net, among others. The users need not worry

about any low-level operations, which are taken care of by protocols such as TCP/IP,

HTTP, FTP, and similar protocols.

5.3 Software Tools Philosophy

The software tools philosophy is well exemplified by the UNIX operating system.

The essence of this philosophy is to provide a small number of universal and simple

tools, which can be used in a variety of combinations to achieve any number of

super-tools for specialised work on individual problems (Lawler 1998).

Web2Sh applies the same philosophy, where it utilise the Web as its target platform.

It offers well designed and intelligent Web commands, which can be connected

together using the WSh Scripting language.

The basic principle is to offer a number of small, well-crafted, and bug-free tools,

that:

• Do only one well-defined task;

• Do it intelligently and well;

• Do it in a standard and well-documented way;

• Do it flexibly, with appropriate user-chosen options available;

 5. WSh Scripting Language 85

• Take input from, or send output to, other program tools from the same

toolbox;

• Do something safe, and if possible useful, when unanticipated events occur.

5.4 WSh Language Deign

To design a programming language several aspects need to be specified (Watt and

Brown 2000):

Syntax: defines what symbols (tokens/terminals) are allowed to be used in a

program, and how phrases are composed of tokens.

Contextual Constraints: defines context related rules such as scope rules

and type rules.

Semantics: describes the meaning of the program, semantics from an

operational point of view is the program behaviour when it is executed.

The Web2Sh framework required the development of a WSh scripting language to

deal with various input types of resources retrieved from the Web. The structure and

meaning of the language needed to be defined by complex formal rules. Although

developing this language from scratch is complex and error-prone, many tools such

as Lex and YACC (Levine, Mason et al. 1992) offer a good approach to develop

such language.

The most suitable available tool for this work was the Java Compiler Compiler

(JavaCC). It utilises Extended Backus-Naur Form (EBNF) to specify the syntactic

rules of the language. It generates the parser from the defined rules, where all the

generated files are Java classes, making it easy to integrate with any Java project. It

also had the advantage of available support for use within the eclipse integrated

developing environment
22

.

22

 http://sourceforge.net/projects/eclipse-javacc/

 5. WSh Scripting Language 86

5.4.1 Top-Down Parsing:

Top-down parsing is widely used to parse language grammars. A Top-down LL

Parser is usually used for context-free grammars. It parses the input from Left to

right, and constructs a leftmost derivation of the sentence.

Web2Sh implements the top-down parsing strategy to implement a Parser for the

WSh scripting language. It uses a top-down LL Parser originally generated by the

JavaCC tool based on the grammar definition in Extended Backus–Naur Form

(EBNF).

First, it indexes its start set which is the set of Nonterminals or Terminals that may

start any production rule. Secondly, any input is compared with the start set to define

which production rule may apply. Finally, if any two production rules share the same

start the Parser may look ahead to see the next symbol until it matches a unique

production rule, this behaviour is specified by using numbers, such as LL(0), LL(1)

and so on.

LL(0) would be used if there were no need to look at any token, i.e. only one

production rule applies. LL(1) would mean look only at the first token of the input, if

used this implies that no two rules share the same starting token.

5.4.2 WSh Parser:

The shell Parser reads its input from the input stream, and partitions it into

statements. The Parser splits each statement into tokens. The Parser works in these

steps:

• Split the program by statements (statements are terminated by a semicolon)

• Split statements by tokens;

• Check for syntax errors or unrecognised tokens;

• If no errors are found, build a command Abstract Syntax Tree (AST) where

each terminal/nonterminal is represented by a node (e.g. a Web command);

 5. WSh Scripting Language 87

• The Interpreter traverses the AST, checks the semantics, and executes each

instruction;

• If errors are found, return an error to the user and stop the script execution;

• Look for the longest match possible at each input point;

• If necessary, a look ahead is performed to choose the output format.

5.4.2.1 Command Execution:

The Interpreter traverses the AST passed from the Parser, and then it checks the

semantics of instructions, i.e. it validates that the correct flags and parameters are

used with each command. A pipeline will execute in the following manner:

• Read available input from the input stream;

• Pass the input to the first command in execution order;

• Runtime errors may be ignored if there are other Web commands in the

pipeline that have available data to be processed;

• Run time errors will be passed to the user, such as “page not found error.” For

example, in a script, that gets a list of links and does some work with them, if

one page is not available, the rest of pages will be processed normally.

5.4.2.2 Input /Output:

• Each Web command has an input stream and output stream;

• Utilise the use of PipedInputStream and PipedInputStream as the

raw input/output;

• The MIME type of each resource is retrieved; this reflects on the provided

functionality. E.g., the title Web command will return a PDF document

title if the mime type is application/pdf using the title entry in the

 5. WSh Scripting Language 88

document information dictionary of a PDF document, while if the mime type

is text/html the command will return the value of the title tag in the

header section of the HTML page.

• If the command can produce various output types, then a negotiate method

decides, for each command, which is the best output format to produce based

on the following commands. If no preferred format exists, the default will be

used.

The possible drawback of an interpreted language is slower execution compared to a

compiled program. However, the advantage of flexibility and ease of use is very

important for a language that is targeted for Web users.

5.5 WSh Scripting Language Design

WSh is a simple command language specialised, focused, targeted and utilised for

automating Web tasks. The WSh environment (as part of Web2Sh framework)

consists of:

An editor: tailored to WSh, this allows users to enter, modify, and save

commands on the Web. The editor works inside any common modern browser with

JavaScript support.

A parser: this runs fully on the server side. When the user writes a script, the

Parser checks the syntax and reports any errors. If no errors are found, it constructs

an Abstract Syntax Tree (AST) representation of the program and passes it to the

Interpreter.

An interpreter: this is integrated with the Parser through the implementation

of the Visitor design pattern. It visits any Web command node in the AST generated

by the Parser. Then it runs it immediately by calling the Java class that executes the

command task. The output is then returned to the User’s Web browser, piped to

another command, or redirected to a file.

 5. WSh Scripting Language 89

5.5.1 Language Informal Specifications

5.5.1.1 Programming Concepts

These are the basic concepts of WSh (Web shell) programming. This section

introduces the concept of item, Web command, tee, and pipe in the context of this

research. Each discussion focuses on how these concepts relate to the real world,

while simultaneously introducing the syntax of the WSh scripting language.

5.5.1.2 WSh item

The language will need in many cases to deal with objects with attributes, getting

regular users to understand object-oriented concepts could be harder when compared

to simple xml tags with attributes.

<book name= “...” author= “...” ISBN= “...” />

WSh calls this an item, where name or id attribute will be the item identifier. For

simplicity, only this form will be used to create items. Not the nested tags form as in

XML.

WSh integrates the mark-up language’s tag structure as a valid way to define a

variable; this has proved useful when handling much of the Web data that is included

within both HTML and XML content. Hence, WSh introduce the concept of an item

as a generic data type used to store variable values in WSh. It is similar to an object

with no methods in Object Oriented languages.

It has the following characteristics:

• It has a sub-type (tag name), a set of attributes and values;

• Each attribute name must be unique within an item;

• It is represented with a similar syntax to that of a simple XML tag.

Example 1:

 5. WSh Scripting Language 90

This statement creates a variable of the generic item type named $film. It has the

sub-type ‘movie’ and attributes name, IMDBrank, genre and director.

However, default printing of $film prints an empty string as there is no value

attribute and the tag has no content.

To print the whole item an ‘item’ flag option needs to be used. For example, the Web

command echo can be used to print the values as in the following code:

Example 2:

Creates an item variable of sub-type ‘a’ (an anchor) with an attribute href and its

value equal to link text.

1

2

3

4

$film = <movie name = “Inception”

IMDBrank = “9.1”

genre = “Action, Mystery”

director = “Christopher Nolan” />;

1

2

echo $film //prints nothing to the screen

echo $film –item

1 $link = link text ;

1

2

3

4

echo $link; //prints link text

echo $link –item; //prints the XML tag

echo $link –href;

//prints the value of href attribute

 5. WSh Scripting Language 91

5.5.1.3 Web Command

A Web command is the main building unit for executing tasks on WSh. It comprises

a unique set of valid WSh instructions that carry out a certain task. A Web command

takes by default an input stream $STDIN and passes its output to an output stream

$STDOUT.

Web2Sh users may use available commands to execute a certain task or chain a set of

commands together in a pipeline to construct a new Web command. Chapter Six

explains this concept in more detail.

5.5.1.4 WSh Pipeline

Similar to UNIX, pipes are used to pass the output of a command to the input of the

following command. The native nature of the input and output streams ($STDIN,

$STDOUT) is a stream of characters, however, these are wrapped as items (XML-

based structure) in order to enable users to easily access and utilise Web content.

The Web2Sh framework uses a pipe symbol “|” to connect the standard output of the

preceding command with the standard input of the following Web command. The

pipe also always acts as a for-each, so for example if the first command returns a list

of links the pipe will process each link through the rest of the pipeline.

5.5.1.5 The tee Web Command

The tee Web command is a special Web2Sh command. Similar to the UNIX tee,

it permits the construction of complex pipes. The idea is to split a command output

into two threads for debugging or advanced processing. In addition, it can be used to

save a pipeline output to a file.

 5. WSh Scripting Language 92

Figure 5-1: Using tee Web command

In the following example, tee is used to split the output of a Web command so that

it can be saved in a file and piped to Web2Sh’s command line interface result area at

the same time. It is can also be used to capture intermediate output before the data is

altered by another Web command or program. The tee command reads standard

input, then writes its content to standard output and simultaneously copies it into a

specified file, variable, or another Web command. The syntax differs slightly

depending on the used command's implementation.

The following pipeline returns Hello World to be printed on the Web browser and

save it to a file on server named file.txt:

The next script searches Google for Egypt, saves the result to file.txt, and then

pipes the output to the find command, which will print to the screen any results that

have Pyramids word in it.

1 echo "Hello World" | tee “file.txt” ;

1 google "Egypt" | tee "file.txt" | find "Pyramids";

 5. WSh Scripting Language 93

tee is also useful in complex pipes debugging. Using the tee command anywhere

in a pipe command sequence will divert a copy of the standard input (of tee) to

allow analyses of the correctness of this stage.

This piped Web commands sequence (pipeline) will run in this manner:

14. The google command to search for the word Egypt the result is a set of

items of type gRes. Each item has attributes title, text, and URL.

15. The pipe will run a forEach on the returned item list.

16. tee passes a copy of the item in $STDIN to print command which prints

the title of the item in bold.

17. Another copy is passed to the fetch command, which defaults to extracting

the url attribute to retrieve the Web page source.

18. The getLinks command extracts all links in the page source then prints

them.

The result will be an aggregation of each Web page title followed by the set of links

on that page.

1

2

google "Egypt" | tee print -title-b

| fetch | getLinks | print -item-ol ;

 5. WSh Scripting Language 94

5.5.1.6 Syntax

This section presents the syntax of WSh and illustrates how symbols (tokens) are

used to compose valid phrases.

5.5.1.7 Start Symbols:

• start : starts a multiline WSh script, the script is executed when the }end;

token is reached;

• new : used to declare a new command; a command has to be called in order

to be executed;

• Any Web2Sh command is a valid start for any sequence of command calls

separated by the ‘|’ operator.

5.5.1.8 Terminals (list of keywords):

• tee

• true

• false

• null

• new

5.5.1.9 Operators:

• Assignment: =

• Math: + , - , *, / ,%

• Redirection : => , =>> (the first to create new file, the second to append)

• Pipe : |

• The Web command flag prefix: -

 5. WSh Scripting Language 95

• String concatenation operator: + (decided by the nature of the first operand, if

a number, the second operand will be tested; if a number too, it will be used

as math operator. Otherwise both operands will be concatenated as strings)

• Separator for parameters or items lists : ,

• Mandatory variable name prefix : $

5.5.1.10 Production Rules

Production rules are a fixed set of rules that define how statements are composed

from terminals. In WSh the production rules are:

• Statements are terminated by a semicolon ;

• A block of code is started with an opening curly brace and terminated

with closing curly brace.

• Web command parameters start with opening round bracket ‘(’ and end

with a closing round bracket ‘)’

5.5.1.11 Nonterminals:

Nonterminals represent a particular class of phrases in the language such as

“program” and “expression.”

• Program: is a set of valid Web2Sh instructions.

• Expression: Arithmetic, Boolean, and String expressions are written in

conventional mathematical infix notation, adapted to the Unicode

character set.

• Web command: A Web2Sh command followed by optional list of flags

followed be optional list of parameters

• Simple statement : a valid Web2Sh single expression or Web command

terminated by a semicolon ‘;’

 5. WSh Scripting Language 96

• piped statement: A sequence of Web commands separated by pipes and

terminated by a semicolon ‘;’

5.5.2 Contextual Constraints:

Defines context related rules such as scope rules and type rules.

5.5.2.1 Global Built-in Shell Variables:

• $STDIN: a predefined variable that holds the input stream which is passed by

default by the pipe

• $STDOUT: is a predefined variable that holds the output of the last executed

command. The Interpreter directs the output to the screen or next command in

a pipe sequence or a file.

5.5.2.2 Variable Naming:

These are the rules and conventions for naming a Web2Sh variable:

• Must start with $ followed by a letter;

• Contains no whitespaces;

• The initial character can be followed any number of letters, numbers or

underscore characters;

• Web2Sh variables are not case-sensitive. However, consistent capitalisation

makes the code easier to read;

• It is recommended to use variable names in all lowercase letters if the name

consists of only one word. If it consists of more than one word, capitalise the

first letter of each subsequent word;

• Built-in variables are used in upper case by convention.

 5. WSh Scripting Language 97

5.5.2.3 Naming Web Commands

• Web command names are globally unique, namespaces can be used to avoid

conflicts;

• A core (global) Web command can be used by all users;

• When a user creates and shares a useful command it can be upgraded to a

global command by a Web2Sh moderator;

• Periods separate the namespace prefix from the command name;

• Each user will have a unique user name on the system, which represent his

namespace. When a user ‘user1’ creates a command ‘testCom’, it will be

automatically named ‘user1.testCom’. Using testCom by user1 will

first look for the command in the global command list, if not found it will be

looked up in his name space;

• Using ‘user1.testCom’ and ‘testCom’ by user1 is the same if there is no

global command with the name ‘testCom’.

5.5.2.4 Variable Types

• Variables are automatically defined the first time they are used;

• All variable are of the same general type ‘item’;

• A Web2Sh item is like an object but with attributes only;

• Name and ID attributes are used as the item identifier;

• Value attribute is used to set the item’s value.

• Each item has a type attribute that can be used to specify more metadata about

the type of the value attribute. For example:

 5. WSh Scripting Language 98

$num =5; generates the result:

< number name = “num” value = “5” />

• The tag name (item sub-type) is defined automatically by the shell and default

to string if no other type is detected;

• Item sub-types are transparent to users and mainly used by the shell, these

types are useful for the command to decide on the action to take. Usually they

are stemmed from MIME types, an example of an Item’s possible types are :

o String

o Number

o Double

o Char

o Html

o Xml

o RSS

• HTML content is processed first to replace <, > ,\ and “ with \<, \> , \\and \”

(using \ as escape character)

5.5.2.5 Variables Scope:

• Defining a variable on the command prompt makes it visible to all of the

current session.

• For any block of code, a variable is visible only inside its block.

 5. WSh Scripting Language 99

5.5.3 Semantics

This section describes the WSh scripting language semantics through navigating

some Web command examples, showing various functionalities of the language and

the behaviour of Web commands when executed.

5.5.3.1 Basic Web Commands

This simple Web command pipeline will return the first 10 links from a Google

search result page, using Egypt as the search keyword, and auto loop to get all

images available via each result URL.

The pipe operator ‘|’ will connect the $STDOUT from the command on the left side

with the $STDIN of the command on the right side.

The semicolon character ‘;’ indicates the end of command pipe sequence. It allows a

pipeline to be written on multiple lines. When a user presses enter after writing ‘;’

the Web commands are executed and the result displayed on the Web browser.

5.5.3.2 New Web command example:

1

2

3

4

5

6

7

new googleWordCount ($searchWord){

 $str1 = "found ";

 $str2 = " times";

 google $searchWord | fetch | txt |

 find $searchWord | count > $i;

 echo $searchWord $str1 $i $str2;

}end;

1

2

google -10 "Egypt" | fetch |

getImages;

 5. WSh Scripting Language 100

Line 1: new, marks the beginning of a new command definition named

googleWordCount. If the name already exists, the system will generate an error

message.

The left parenthesis ‘(’ marks the start of the parameters list, where $searchWord

is the parameter that is needed by the command. The right parenthesis ‘)’ marks the

end of the parameters list. Finally, the left curly bracket ‘{’ marks the start of the

Web command code block

Line 2: $str1, defines a variable. The ‘=’ assignment operator, assigns the value on

the right side to a variable on the left side. The string value “found ” is

surrounded with double quotes. The semicolon ‘;’ is used to terminate a statement.

Line 3: this has similar semantics to the second line.

Lines 4, 5: This is a Web2Sh pipeline, starting with the google command that is

executed using the value of $searchWord as its input parameter. The command

returns a list of items each representing a link returned by Google search. Then the

pipe loops over all returned links to fetch them. The following Web command, txt,

filters the html tags keeping only the text content of the Web page. The result is

forwarded to the find Web command, which return all lines where $searchWord

is found.

 google $searchWord | fetch | txt |

 find $searchWord | count > $i;

Web2Sh executes the pipeline in the following order:

19. google: use Google’s search engine to search for the given term.

20. fetch: all URLs returned as the search result.

21. txt: pipe the page to the ‘txt’ command which strips all the tags and codes

and leaves only the text content of the page

 5. WSh Scripting Language 101

22. find: The result is piped to find command, which finds the occurrences of

the search word inside the text and returns a list of items.

23. pipe the result of the find Web command to the count Web command

which returns the number of times the search word was found inside the text

Line 6: echo $searchWord + #str1 + $i + #str2 + $xurl;

This statement will print to the default output (user’s browser) the concatenated

string.

Line 7: This is the close curly brace for the end of new command. ‘end;’ is used to

finish the ‘new’.

5.5.3.3 Artwork Importer, iTunes Example:

This command will use an XML file called ‘iTunes library’; this will need to be

uploaded to any online Web address and then it will extract the value of each album

name and artist name. This will be used to build a search string for Google images to

try to retrieve the album artwork. The first three images of each album search will be

saved to a folder with the album name.

When the user chooses to create a new Web command, the script is saved to his

private disk space on the Web2Sh server. Then the command can be called by the

user assigned name space. For example, eoe.egNews;

All returned images are added to a zip file and downloaded to the user machine.

After the command, finishes all the saved data on the server are automatically erased.

For example for this entry:

<dict>

 <key>Track ID</key><integer>42</integer>

 <key>Name</key><string>Sandra - Don't Cry</string>

 <key>Artist</key><string>Sandra</string>

 5. WSh Scripting Language 102

 <key>Album</key><string>18 Greatest Hits</string>

 <key>Kind</key><string>MPEG audio file</string>

</dict>

This search phrase will be generated:

"Here by Me" + "3 Doors down" + "Seventeen Days" + “Album”

1

3

4

5

6

7

8

9

10

11

12

13

/* param $iTunesMusicLibrary : is the URL for the

iTunes Music Library XML file.*/

new iTunesArt($iTunesMusicLibrary){

 $list = XPath $iTunesMusicLibrary

 “/plist/dict/dict”;

 $list | find “ <key>Name</key>” |

 getTagValue “ <string>” | $songNames;

 $list | find “ <key>Artist</key>” |

 getTagValue “ <string>” | $artistNames;

 $list | find “ <key>Album</key>” |

 getTagValue “ <string>” | $albumNames;

 Echo $songName, $artistName, $albumName, “album” |

 gImages -3 | Zip “artwork/” + $albumName;

}end;

 5. WSh Scripting Language 103

5.6 Language Formal Syntax:

To specify a programming language syntax in a precise way an informal

specification written in English is not enough; a formal specification in a formal

language, such as Backus–Naur Form (BNF) or EBNF (Garshol 2003), is needed.

An EBNF language description consists of:

• A fixed set of Terminals: These constitute the symbols and tokens of the

programming language, such as “new” keyword;

• A fixed set of Production rules: These define how statements are composed

from terminals;

• A fixed set of Nonterminals: These are a particular class of phrases in the

language such as “declaration” and “expression” Nonterminals;

• A Start symbol: This nonterminal denotes the start of the program.

EBNF is used to define Web2Sh syntax (Appendix-A) as it is more well-ordered than

BNF, this is because EBNF offers three operators (‘?’ , ‘*’ , ‘+’) for better

handling of recursion and repetition.

5.7 WSh Language

Web2Sh is a simple Java based command language specialised, focused, targeted,

and utilised for automating Web tasks. Web2Sh is actually two things: a language

and a library of commands.

First, WSh is a scripting language based on the use of pipes, intended primarily for

creating and issuing commands to automate Web tasks. It has a simple syntax and is

easily extendable, allowing Web2Sh users to write new Web commands, customised

to their requirements, to extend the built-in set of commands.

Furthermore, the shell offers a way to call UNIX shell commands and Web services

and integrate its functionality with Web2Sh commands. Other similar systems can

 5. WSh Scripting Language 104

also be integrated by implementing specific wrappers within Web2Sh to make

external calls to those systems.

Figure 5-2: WSh Language processor using a tombstone diagram

5.7.1 WSh Parser and Interpreter

This section addresses the design and implementation of WSh Parser and Interpreter,

which parse and execute WSh scripting language. Parser and Interpreter design has

been a research topic for several decades and there exists a lot of literature about it. A

well written and practical introduction is given in (Watt and Brown 2000).

JavaCC is a lexer and parser generator for LL(k) grammars (Kodaganallur 2004).

The user needs to specify the language's lexical and syntactic description using

EBNF syntax. The generated parser merely validates the Syntax of the language

based on the defined EBNF rules. The actual functionality that each instruction

executes needs to be implemented and integrated into the Parser.

The WSh Parser is implemented with the use of the JavaCC tool. It traverses the

whole source program, parses the code, and reports any syntax errors. The Parser

generates an Abstract Syntax Tree (AST) that supports the use of the Visitor Design

Pattern. The WSh Interpreter interprets the script by traversing the AST generated by

the Parser. Each node class in the AST includes the method:

 public Object jjtAccept

 (web2shParserVisitor visitor, Object data) {

 return visitor.visit(this, data);

 }

JVM

WSh Java

JVM

JVM

Java JVM

JVM

Java

P

WSH

P

JVM

P

M

JVM

M

JVM

P

 5. WSh Scripting Language 105

web2shParserVisitor is an interface that must be implemented by any class

that needs to add functionality to each node, the Interpreter in this case. This was

explained in more detail in Section 3.4.1.

Parsing is the first pass in the interpretation process, and its purpose is to parse the

WSh script source and construct the abstract syntax tree (WSh AST), which is a tree

representation of the source program.

5.7.1.1 WSh AST

The WSh AST is a tree structure of Java objects. The nodes of this tree represent the

production rules of the recursive WSh grammar and the tree is a complete description

of the source script. Constructing an abstract syntax tree representation of the source

program brings the benefit that each of the following passes can operate on one and

the same data structure which is easy to transform and to annotate with context

information. Abstract syntax trees are explained in detail in (Appel 1998) and (Watt

and Brown 2000)

5.7.1.2 WSh AST Parsing

First, the Parser checks the source program to verify that it is well formed, according

to WSh syntax. Secondly, the WSh high-level translator performs a set of

transformations on the abstract syntax tree. The transformations have the following

purpose:

• Annotation of the AST with information needed such as deciding on each

command input/output type.

 5. WSh Scripting Language 106

5.7.1.3 Parsing Variables

The language needs, in many cases, to deal with objects with attributes, getting

regular users to understand object-oriented concepts could be harder when compared

to simple XML tags with attributes.

Hence, Web2Sh uses item as a general type, where the name or id attribute will be

the item identifier. In addition, a sub-type is decided based on the tag name. Web

commands are needed to be able to create and manipulate many markup tags; hence,

the item structure is very useful.

The example above creates an item variable of sub-type img (an html image). Each

variable is treated as a special command. If followed by a pipe, then the command

will return its own value to the next command.

So both of these forms are valid:

Using any attribute name as a flag will return this attribute value

• Item attributes must be unique ;

• An item value will be decided in this order:

o The tag content may contain other items, any valid UTF characters, or

empty;

1 $imag =

1

2

3

$link = link text

echo $link;

$link | echo ; // will print link text

1 $link –href | fetch ;

 5. WSh Scripting Language 107

o The attribute “value” content may contain any valid UTF characters

or empty.

When an item command is called, its tag content will be checked and, if found, it will

be returned. If not found, the Interpreter will look for the default attribute value

content. If found it will be returned, otherwise, an empty string will be returned.

If an item has both a tag value and a value attribute, only the tag value will be

returned. To access the value attribute, a flag with the attribute name must be used.

For example:

WSh variables are able to hold a list of values. This feature was needed as many

Web2Sh commands produce a list of items as their result.

For example:

This will retrieve all available links on the BBC home page and store the values as a

list in the $bbcLinks variable.

1

2

3

4

5

$item = <string value=”test attribute”>

 inner tag text</string>

echo $item; //will print “inner tag text”

$item –value |

echo ; //will print “test attribute”

1

2

fetch “http://www.bbc.co.uk” | getLinks

| $bbcLinks;

 5. WSh Scripting Language 108

5.8 Summary

The work in this research required the implementation of a dedicated scripting

language for achieving the goal of end-user Web automation. This chapter presented

the building process of Web2Sh dedicated scripting language (WSh). It explained the

software tools philosophy employed by WSh. It also presented the background for

defining new scripting languages. The design and development of WSh language

was explained, and the language’s informal and formal specifications were

introduced.

 6. Web2Sh Web Commands 109

Chapter Six: WEB COMMANDS

6.1 Introduction

This chapter presents Web commands as the basic building block for writing Web

automation scripts. A detailed description of the syntax, structure, and characteristics

of Web commands is provided and the Web2Sh implementation of the pipeline

concept is discussed.

Web commands are tools and filters created with the specific goal of providing

solutions for automating a set of problems in various domains connected to user/Web

interactions. Moreover, the generic approach of Web2Sh allows for connecting any

set of Web commands using pipes. This provides general solutions for a large set of

problems to meet Web users’ needs.

Web2Sh offers a repository of basic commands in various domains as a proof of

concept. The goal is to enable end users to develop new commands and be able to

customise existing ones. In addition, the collaborative nature of the framework offers

good potential to utilise end users’ experiences and to develop and share commands

in one location.

An important objective of the Web command class design is to offer support for

different resource types. To this end, the functionality of many Web2Sh commands

is designed in a way that supports different approaches based on the MIME type of

the resource piped to it. Web2Sh achieves this by implementing the command pattern

to handle a command execution, where the action of a command is decided by the

receiver class (Web resource).

 The receiver class in the command pattern can be any class representing a valid

MIME type. For additional generality, as the resource type is only decided at run

time, the receiver object is generated dynamically through the implementation of the

factory design pattern. This thesis refers to this concept as polymorphic MIME types

support. This implies that each command may function in a logically related but

different way according to the type it handles.

 6. Web2Sh Web Commands 110

According to this design feature (i.e. Polymorphic MIME types), each Web command

may support different functionality for different resources. For example, the title

Web command will return the title tag value in the case of an HTML page, while it

will return the value of the file property title in case of a PDF file.

The context of the Web command may also alter the actions it takes. For example,

the getImages Web command performs a look forward to see if there is a

following Web command in the pipeline. If there is not, it will extract all img tags in

its input stream and write them to the output stream. Otherwise, if the following

command does some image processing functionality, the getImages will retrieve

the actual image, save it, and writes its URL on Web2Sh server to the output stream.

The super class WebCommand specifies that a Web command imports a set of java

library built in classes, most significantly the java.io.PipedInputStream

and java.io.PipedOutputStream as the standard input and standard output

for each command. This allows commands to deal with input as a piped stream of

bytes and produce output as a stream of bytes. The PipedInputStream and

PipedOutPutstream classes allow a Web command to convert an

OutputStream into an Inputstream of the following command in a pipe. The

idea is that at one end of the pipe, a writer thread writes to a

PipedOutputStream. A PipedInputStream thread concurrently reads

whatever is written on the other end.

The use of PipedInputStream and PipedOutputStream classes has

many advantages making them ideal to use to implement Web2Sh pipes. A piped

output stream can be connected to a piped input stream to create a communications

pipe. This technique is useful as it supports communication between threads,

allowing each command to run as a separate thread, produce its output and pass it

simultaneously to the following command in a pipe sequence.

 6. Web2Sh Web Commands 111

6.2 Internet Media Types

As the IETF Network Working Group specified in its Request for Comments: 2046

(Freed and Borenstein 1996), there are five discrete top-level Internet media types :

24. text

25. image

26. audio

27. video

28. application

Each of these top-level types has sub levels of more specific types such as the sub

levels for text:

o text/plain

o text/html

o text/css

o text/javascript

o text/csv

o text/xml

The Network Working Group can update these types according to the new needs that

may emerge over the Web.

All command classes reside in the org.Web2Sh.mimetypes package. This

package offers implementation of the five top-level Internet types as super-classes

and implementation of some of the sublevels as child classes.

In Web2Sh, many Web commands will perform the same action for the same family

of MIME types (i.e. text or image); hence, the command action is implemented in the

super class Text. In the case of a Web command that may have different actions for

 6. Web2Sh Web Commands 112

different members of the same parent MIME type, then the action of the command is

implemented in the child classes (i.e. HTML, CSS, or CSV)

6.3 Polymorphic Mime Types

The Polymorphic MIME types design feature gives the Web commands the ability to

change their behaviour to adapt to a resource’s Internet media standard types known

as the Multipurpose Internet Mail Extensions (MIME) standard (Freed and

Borenstein 1996). For example, the fetch command when applied to a resource of

type text this would mean to retrieve the HTML resource and simply display it on the

result frame. If the command was called for a resource of type image, this will

mean by default to retrieve the actual image on the server then offer to download it

for the user. Of course, such functionality can be altered according to the flags used

with the command, as explained later in this chapter.

At this point, Web2Sh covers mainly Text and Image types as a proof of concept

in addition to the application/pdf type. However, supporting other MIME

types only needs relevant code implementation. The design of the framework enables

such extensions easily without changing the framework itself.

6.4 Web Command General Syntax

A Web command has the following syntax defined in EBNF:

WebCommand ::= WebCommandName {Flag}{Parameters};

WebCommandName ::= Letter {LetterOrDigit | '_'} ;

Flag ::= "-" LetterOrDigit {LetterOrDigit};

Parameter ::= (String | VariableName);

Parameters ::= Parameter {"," Parameter };

This means a Web command may consist of the command name, optionally followed

by one or more flags, which may optionally be followed by one or more parameters.

The Web command name can be any valid unique identifier. It must start with a

letter followed by any combination of letters or digits or underscore _. Note that, the

WSh scripting language is case insensitive.

 6. Web2Sh Web Commands 113

Each flag needs to start with a hyphen character ‘-’ followed by any combination of

numbers and letters. A flag is used to change the way a Web command may behave,

thereby giving the end users more flexibility when using the commands.

A parameter can be a valid string or a variable name. A set of parameters can be used

with comma “,” as a separator. A parameter is a value that a Web command may

need in order to operate. Parameters can be simply written at the end of a Web

command statement or they can pass to a Web command through a pipe connector.

For example:

This Web command has no flags and two parameters of type string. The command

will identify the first parameter as a valid URL and retrieve it. As the second

parameter is not a valid URL, the fetch command default is to search for the string

on Google search and then to retrieve the first returned result.

The fetch Web command has one flag and a single parameter. The command

getLinks has only one flag; it retrieves all links in the piped input from fetch.

The -r2 flag instructs the fetch Web command to recursively retrieve links up to

two levels. The ‘-e’ flag instructs the getLinks Web command to filter the results

so that they only include external links.

1 fetch "http://edition.cnn.com/","bbc";

1

2

fetch –r2 " www.cs.nott.ac.uk/~cah" |

getLinks –e;

 6. Web2Sh Web Commands 114

6.5 Web Commands Input and Output

Each Web command has a standard input and standard output stream. The

framework uses the PipedInputStream and PipedOutputStream Java

streams to handle Web command input/output. Data is written as a stream of bytes;

however, the framework adds a few Metadata values at the beginning of each item

placed on the stream in order to allow better handling of the data.

Web resources have a MIME type, where each type reflects certain attributes or

structure of the resource data. Hence, the knowledge of the MIME type offers Web

commands the ability to handle each type in a different way.

6.6 Building a Pipeline

Web2Sh supports a UNIX-like piping system to allow end users to build their simple

customisation of automation scripts. A Web2Sh pipe-sequence or pipeline is a set of

Web commands chained by their standard streams, so that the output (STDOUT) of a

command feeds directly as input (STDIN) to the next one (see Figure 6-1).

Figure 6-1: Web2Sh pipeline

 6. Web2Sh Web Commands 115

The Web2Sh framework uses a pipe symbol ‘|’ to connect the standard output of the

preceding command with the standard input of the following command. The pipe

also always acts as a for-each, so for example if the first command returns a list of

links the pipe will arrange that each link is processed through the rest of the pipe

sequence.

The following section covers examples of the currently available Web commands

covering various general Web task activities. Each command is explained in terms of

objectives, flags, and parameters.

6.7 Internet Browsing Commands

This set of commands performs basic Internet browsing tasks, such as retrieving a

Web resource and filling and submitting Web forms.

Web2Sh users will need usable Web commands to achieve the automation of various

Web common browsing tasks. For example:

• Clicking on hyperlinks.

• Filling and submitting Web forms.

• Extracting Web information.

• Aggregating information from multiple Web pages.

6.7.1 Fetch

The fetch command takes one or more Uniform Resource Locators (URL);

retrieves the MIME type of the resource the URL refers to, then acts according to

that type. The output differs based on the MIME type of the retrieved resource; the

default action for all text-based MIME types is either to output the text content as a

string to the user’s Web browser or pipe it to the next Web command. For other

MIME types, the command will fetch the resource and offer the user a link to

download it or pipe the resource as a stream of bytes to the next command.

 6. Web2Sh Web Commands 116

The most common resource on the Web is text/html; a fetch command will

simply retrieve the page HTML source code content, and display it on the result

frame or pass it to the next command for extra processing. Size limitations can be

enforced to avoid overloading the system. According to the (Ramachandran 2010)

report, the average size transferred over the network per Web page is 320 KB, this

usually includes other resources , mainly images, with a size of around 260 KB per

page.

Another supported type is application/pdf; a simple fetch will prompt the

user to download the file. If the output was piped to a find Web command

specifying the title, the PDF will be downloaded to the server and processed to

extract its title and return the title to the user. Any downloadable resources such as

images will simply prompt the user for a place to save them on the user’s machine.

Another type is text/csv resources; the user needs to enter the character that

separates fields in each row, a comma by default, as a parameter following the URL

or as a single parameter if the URL was piped to the command. Often CSV files may

have a few lines of irrelevant text, usually a description. Also using flags these lines

can be skipped.

For other types of resources, the system offers the user links to download them. If the

user uses the –zip flag, then the system compresses all retrieved resources to a

single zip file on the server for more convenient use.

 6. Web2Sh Web Commands 117

Web command name fetch

Synopsis fetch [flags] [parameters]

General Description Retrieve a resource from the Web

flags -rx: Do a recursive fetch, limited to X levels. The recursive flag is active

only when the retrieved resource is of text/html type.

-i: Retrieve only internal links. i.e., that share the same domain of the

original URL

-e : Retrieve only external links

-zip: Compress all retrieved resources and return an html link to the user,

which can be used to download the compressed zip file.

-html: Retrieve only resources of type text/html, the default with -r flag.

This flag is useful when passing a set of URLs to the fetch command.

-csv : Retrieve only resources of type text/csv.

-pdf : Retrieve only resources of type application/pdf.

-img : Retrieve only resources of super type image.

parameters Fetch command can take any string as its input parameter. If the string

contains a valid URL, the command will retrieve it. Otherwise the first

part of the string (up to 10 tokens) is used to perform a Google search and

the first result URL is used.

Pipe Input The Web command accepts input either through a pipe or as parameter

list. Input can be any set of valid URLs, strings.

Default Output For all text types, the system will write any string less than 120k directly

to the output stream.

For larger resources or non-text types, the system will write a link that

refers to the location of the resource on the Web.

MIME types Fetch command support generally supports all retrievable Web resources.

At this point it works best to retrieve all text and image types plus:

- application/pdf

- application/zip

- application/soap+xml

Table 6-1: Fetch Web command summary

 6. Web2Sh Web Commands 118

Example1:

The script above will simply retrieve the given URL and display it on the result

frame. A flag –r2 can be used, this indicate that the script should retrieve this page

and all pages it has links for, recursively, up to two levels.

Example 2:

1

2

3

4

getLinks "http://themiddleclass.org/csv" |

fetch –csv |

parseCSV -i2 -i3 -h1 |

extract "Congressperson (House)";

The script above parses the given URL, extracts all links in the page, and fetches

only the links that point to CSV files. The parseCSV Web command then parses

the files specifying to ignore lines two and three, and using line one as the metadata

header line. Finally, the extract Web command returns the list of names under the

column “Congressperson (House)”.

1 fetch "http://www.google.com";

 6. Web2Sh Web Commands 119

6.7.2 Submit

The submit Web command takes a page URL, the name (id) of a form in the page

and the values the user needs to assign for its fields in order, then submits the form

based on its method and action returning the response to the user.

Web command name submit

Synopsis submit [flags] “URL” “form id” [parameters]

General Description Fills and submit a Web form

flags -http : displays the http request used to submit the form, and the http

response.

parameters First parameter is a valid URL

Second parameter is the form name or id followed by a set of form fields’

values in order.

Pipe Input Both the page URL and the form id have to be written as parameters,

while fields’ values can be read from the parameters list or from a

pipeline.

Default Output A string representing the form submission response.

MIME types Only supports working with text/html resources. Any URL pointing to

other MIME types will return an error.

Table 6-2: Submit Web command summary

 6. Web2Sh Web Commands 120

6.8 HTML Parsing

A set of commands is provided for dealing specifically with the MIME type

text/html. Most basic HTML parsing functionalities are provided through the use

of a java-based Parser for HTML (Oswald 2006).

6.8.1 GetLinks

This Web command takes any HTML structured string as a parameter and extracts

all anchor tags from it. It outputs all extracted links to the output stream.

Web command name getLinks

Synopsis getLinks [flags] [parameters]

General Description Parses HTML structured string and extract a list of all anchor tags in it.

flags -http : output only http links.

-ftp : output only ftp links

-mail : output only email links

parameters Takes one parameter, a String representing HTML formatted text

Pipe Input a String representing HTML formatted text, this command is usually used

after a fetch command

Default Output A set of anchor tags (links)

MIME types Only supports text/html resources. Any URL pointing to other MIME

types will return an error.

Table 6-3: GetLinks Web command summary

6.8.2 GetTags

This Web command parses HTML Web pages and outputs only tag nodes. It can take

parameters specifying certain tag names to extract.

Web command name getTags

Synopsis getLinks [parameters]

General Description Parses HTML structured string and extract a list of all tags in it.

flags none

 6. Web2Sh Web Commands 121

parameters Zero or more strings representing valid HTML tag names, no parameters

indicate to retrieve all tags in the text.

Pipe Input a String representing HTML formatted text, this command is usually used

after a fetch command

Default Output A set of HTML tags

MIME types Only supports only text/html resources. Any URL pointing to other MIME

types will return an error.

Table 6-4: GetTags Web command summary

6.8.3 GetTagByID

This command extracts a certain HTML tag by its id or name. It is useful after a

fetch command to extract a certain part of the Web page for display or extra

processing.

Web command name getTagByID

Synopsis getTagByID [parameters]

General Description Parses HTML structured string , searches for a tag with a given id or name

attribute

flags none

parameters One parameter specifying the id value to search for

Pipe Input a String representing HTML formatted text, this command is usually used

after a fetch command

Default Output HTML tag

MIME types Only supports text/html resources. Any URL pointing to other MIME

types will return an error.

Table 6-5: GetTagByID Web command summary

 6. Web2Sh Web Commands 122

6.9 Text-Processing

This set of commands offers useful tools for parsing and manipulating any text-based

resources on the Web. It employs the powerful Java regular expression capabilities

enabling end users to gain even more flexibility in processing text resources.

6.9.1 Extract

This command extracts a line or a section that matches a given regular expression. It

is useful after any command that produce text-based type.

Web command name extract

Synopsis Extract [flags] [parameters]

General Description Parses any string , searches for a line or section with a given regular

expression match

flags -l : Default, Outputs only the line where a given regular expression is

matched.

-s : Outputs a section where a given regular expression is matched. The

user needs to enter a regular expression to specify the start and end of a

section as parameters.

parameters One parameter, it specifies the regular expression to match. With the –s

flag the user needs to add another two parameters specifying the section

possible matching regular expression start and end.

Pipe Input a text-based resource

Default Output Plain text

MIME types Supports any text resources. Any URL pointing to other MIME types will

return an error.

Table 6-6: Extract Web command summary

 6. Web2Sh Web Commands 123

6.9.2 Sort

This command sorts a piped list of strings alphabetically and writes them to the

standard output

Web command name sort

Synopsis sort [flags]

General Description Sorts alphabetically a list of strings

flags -a : Default, ascending sort

-d : descending sort

parameters none

Pipe Input List of strings

Default Output Plain text

MIME types Supports any text resources. Any URL pointing to other MIME types will

return an error.

Table 6-7: Sort Web command summary

6.9.3 Replace

This command processes the piped input, searches it for a given regular expression

and replaces it with a given string.

Web command name replace

Synopsis replace [flags] [parameters]

General Description Replace first matched string in piped text with a given string

flags -a : replace all matched strings

parameters Takes two parameters, the first is the regular expression to match and

replace, the second is the new string.

Pipe Input List of strings

Default Output Plain text

MIME types Supports any text resources. Any URL pointing to other MIME types will

return an error.

Table 6-8: Replace Web command summary

 6. Web2Sh Web Commands 124

6.9.4 Count

This Web command receives a list of items through a pipe, and outputs the number

of piped items.

Web command name count

Synopsis Count [flags]

General Description Count the number of piped items

flags -l: counts the number of lines for a text-based resource

-w : count number of words for a text-based resource

parameters none

Pipe Input Any list of items

Default Output Number

MIME types Supports any resource type. Will simply return the number of resources

piped to it.

 Table 6-9: Count Web command summary

6.10 Mathematical

6.10.1 Calculate

This Web command is similar to a simple calculator. It takes any simple

mathematical equation as a string, parses it and writes the result to the standard

output

Web command name Calculate

Synopsis calculate [parameters]

General Description Takes a mathematical equation as a string, parses it and writes the result to

the standard output

flags none

parameters One parameter representing a mathematical equation as a string.

Pipe Input none

Default Output Number

 6. Web2Sh Web Commands 125

MIME types none

Table 6-10: Calculate Web command summary

6.11 Running External Programs and scripts

Web2Sh offers a straightforward approach to utilise many other available services

over the Web, or even services offered by the platform it runs on. This was tested by

running some of the UNIX shell tools.

For example:

This pipeline will retrieve the given URL, and then extract only the text content

eliminating any HTML tags. Finally, the result will be passed to the UNIX grep

text search utility.

6.12 Error Handling

The first possible error that concerns Web commands is the use of a wrong command

name, flags, or parameters. This is not detected by the Parser, as it only knows of the

general command syntax rules, i.e. an identifier followed by optional flags followed

by optional parameters. If such an error occurs, then it will be detected by the

Interpreter. This will terminate the script execution and return an error message to

the user.

The second type of possible error is when a Web command tries to retrieve online

resources and fails for a group of reasons such as the famous “404 page not found

error”. In the case of an error, the Web command returns to the user an error message

reporting the error.

If a script is to return a set of items as a result, and a few of them failed to be

retrieved, then the shell prints out the results feedback to the user’s result area and

reports the errors that occurred at the beginning.

1 fetch “url” | txt | unix.grep ‘Web2Sh’;

 6. Web2Sh Web Commands 126

For Example:

This script tries to retrieve the first URL, and search Google for the second, extract

the first result URL, and retrieve it.

As the first URL refers to a non-existent file, it will generate an error, while the

second parameter works fine. The shell will aggregate the error feedback followed by

the retrieved Web page and send them to the user’s result area.

6.13 Summary

This chapter presented the main Web command as the main building block that end

users can use to create simple and sophisticated Web automation tools. Web

commands combined with the WSh scripting language provide users with the ability

to write, customise, and run scripts that save them both time and effort.

The Web command Syntax was explained and a set of examples was provided.

Furthermore, the capability of utilising external tools, such as UNIX shell tools, was

introduced. Finally, error handling at the command level was explained.

1

2

3

fetch

“http://www.cs.nott.ac.uk/~eoe/test.html”

“Essam Eliwa”;

 7. Web2Sh Applications 127

Chapter Seven: WEB2SH APPLICATIONS

7.1 Introduction

Many end users may invest time into designing and writing scripts to automate some

or all of the tasks they carry out on the Web. Other users may prefer to do these tasks

manually, yet if they find ready-made Web commands to accomplish certain tasks

they may very well opt to use them. Moreover, for many programmers the challenge

of building such scripts will be a motive in itself, and the fact that time would be

saved in the future every time they use the same script, in addition to that the created

scripts can be used by other users if it was shared as a Web command.

Web2Sh aims to provide an easy-to-use framework that enables end users to create

and execute Web commands. It offers the end-user a command line for automating

Web tasks for/on the Web. Having a script that takes some parameters (if needed),

executes the required Web activity/task, automates any repetitive work, and displays

a customised page with the results of the activity would be very useful to Web end

users. The eventual aim is to support the Web as a platform concept.

This chapter presents some of the possible uses of Web2Sh; it demonstrates the

usefulness of the framework through the implementation of various possible Web

related activities. There are many scenarios where there is a strong need for the

development of a specialised tool. The following sections demonstrate some of the

observed challenges that Web2Sh can be used to automate.

7.2 Automation Tools for the Research Community

7.2.1 Building Arabic Corpus

Web2sh was used in the process of building an Arabic corpus for research in the

Arabic printer character recognition (AbdelRaouf 2010). The corpus is a set of

collected words of a given language. The corpus included linguistic and statistical

analysis of the Arabic language. Such corpora are used for researches in the field of

optical character recognition, speech recognition, automatic translation, and natural

language processing.

 7. Web2Sh Applications 128

The role of Web2sh in the process of generating the Arabic corpus was as follows:

• To harvest text from the Web;

• To filter text selected from the Web to include only the Arabic text.

The charset Web command was implemented to filter URLs based on the ISO

character set used in the resource. For the Arabic text, the command will need to look

for the value of “iso-8859-1”, “utf-8”, or “Windows 1256” in the content attribute of

a Meta tag. The txt Web command was used to filter out HTML tags leaving only

the text content of the page, and then another Web command was created to filter

only Arabic characters based on their Unicode representations.

The following web2sh script was applied to make the needed collection and filtering

of the text.

The getlinks –r3 “URL” Web command will make recursive retrieval (up to

3 levels) of Web pages links starting with the given base URL, then charset Web

command will only output the URLs that have utf-8 based content. The list of

URLs is the passed to the fetch command for retrieval of its contents, and then the

txt Web command performs the required text filtering. Finally, the result is

appended to the file arabicText.dat, and a link to download the file will be

returned to the end-user when the pipeline finishes.

Each Web command is a Java class that was written and appended to the Web2Sh

core commands library. Building such core Web commands would require

significant programming skill and some time to build and test. However, once

implemented each command can be customised, and commands be connected

together using the Web2Sh embedded scripting language. This will enable Web2Sh

end users from quickly putting together scripts that automate complicated tasks.

1

2

getlinks –r3 “URL” | charset “utf-8” | fetch

| txt =>> “arabicText.dat”;

 7. Web2Sh Applications 129

7.2.2 Organizing PDF files

The research process often includes the download and categorization of papers in

PDF format. Many of the downloaded papers may have an unrecognized name that

does not express their contents. A researcher can upload his collection of PDF files,

compressed as a zip file, into Web2Sh, or any Web space that is available online.

A Web command (pdfRenamer) was created as part of this study to check each

PDF file, it automatically collects data on each file using the Google Scholar service,

and then it renames each file with the year followed by the title of the paper. It places

the file inside a folder named after the author name. Finally, all files are compressed

again and a link is passed to the user in order to download it.

The following web2sh script was applied to achieve this task.

7.3 Automating Repetitive Web Tasks

As mentioned in Chapter 6, Web2Sh provides end users with an easy alternative (i.e.

the Web commands) to automate complex tasks that usually require advanced

programming language knowledge. The Web2Sh Web commands can automate both

simple and sophisticated tasks that users may attempt on the Web, such as link

navigation, form filling and submitting forms, in addition to many other useful

commands that enable users to extract specific content from the page and return it to

user, or pipe it to other Web2Sh commands for further processing. Users can

combine these commands in Web2Sh pipelines to solve complex tasks, using, for

instance, a similar model to UNIX pipes where users can chain the result of one

command onto another command.

1

2

fetch “zipFileURL” | unzip |

pdfRenamer | zip;

 7. Web2Sh Applications 130

7.3.1 Finding the Top 10 UK Movies on the BBC Web Site

An end-user may create a command to get him the top 10 UK movies from BBC

Web site like:

This command will fetch http://www.bbc.co.uk/movies/ page, search for "Top UK

Movies,” -a flag instruct the command to return all the content after the first

occurrence for the string it is searching for, then the getLinks command gets the first

10 links found in the string that was piped to it.

7.3.2 Filtering and Retrieving Links

Web2Sh offers various Web commands to retrieve Web resources and filter them

based on given criteria. In the following script, a set of links that has the word

“mobile” in its text is extracted from the BBC Web page, using the find command

filters the links based on a given parameter. The links are then directed one by one to

the fetch command, which gets the content of the pages, then adds it one by one to

standard output file. This process happens when a Web command return a list of

results and it is piped to another command it will be executed for each item in the

list. The final output is the content of the Web pages that its links were retrieved and

filtered from the BBC home page.

1

2

3

4

5

new top10UkMovies() {

 fetch http://www.bbc.co.uk/movies/ |

 find -a "Top UK Movies" |

 getLinks -n 10;

}end;

1

2

getLinks “http://www.bbc.co.uk” | find

“Mobile” | fetch;

 7. Web2Sh Applications 131

7.4 User Accessibility

Web sites are usually designed for a graphical mode of interaction. Sighted users

quickly spot relevant information in Web pages. By contrast, individuals with visual

disabilities need to use screen-readers to browse the Web, it is more difficult for

them to extract the pieces of data they need directly. Web2Sh offers new approaches

for building Web commands according to the users’ needs to extract a text

representation of the data they need. Web developers and Web researchers can use

such tools to improve accessibility. W3C HTML techniques for Web content

accessibility guidelines (Chisholm, Vanderheiden et al. 2000) lays out some rules

that developers should follow.

Web2Sh can be used to enable Web developers to assess their Web sites

accessibility. For example, they can use Web2Sh scripts to follow the links in a Web

site and extract a certain value from it to evaluate, in order to improve their site

accessibility.

This script will make a two level recursive fetch on the given URL, and then for each

returned html page it extracts the image tags in the page. Finally, it will print each

found image URL followed by a tab followed by the value of its alt attribute.

7.5 Building Web Mashups

A Mashup is a Web application that combines data from more than one source into a

single integrated tool; there is an essential transformation that is taking place on the

Web based on information composition through Mashups (Anant 2006).

Web2Sh offers a novel approach for end users to build such Mashups. One of the

challenges in the development of Mashups has been the need for usable design tools

to facilitate their building by a larger number of end users. As an example, Web2Sh

commands could be used to extract information about locations of cinemas from a

1

2

fetch –r2 “URL” | getImageTags |

echo –url–t–alt;

 7. Web2Sh Applications 132

Web page and feed that information to another command to obtain a map for each

extracted location.

Another set of commands could be used to extract items from various Web pages,

such as film reviews, and to build a new page of combined information to be

displayed to the user.

For example, a user can retrieve his friend list from Facebook using the

getFbFriends command then execute a Google search on each friend name. This

returns to the user each friend name, followed by the top five links related to him on

Google search.

The final echo $out,”\n”,$STDIN; Web command instructs the shell to print

first the URL in the $out followed by a new line then followed by the items (links)

in the command input stream.

7.5.1 Aggregate Search Results with Semantic Tags

Web2Sh has a useful set of commands to enable users to extract a list of any HTML

tags within the page, such as getLinks, getHeaders, getForms,

getTables, and getlists. Users can combine, using pipes, any of these

commands with the find Web command, which can search within the returned lists

for specific patterns or specific attribute values depending on the flags that users

assign to the command.

A useful example is for a user searching for a “Java RMI Tutorial“. This user can

simply search for the term on Google, then he wants to check every link he got

against one of the social bookmarking sites to see if anyone has found this useful

before, and he may also find a more useful description for the various links.

1

2

3

getFbFriends “user”, “password” | tee $out |

google –t5 |

echo $out,”\n”,$STDIN;

 7. Web2Sh Applications 133

Instead of having multiple browser tabs / windows opened, with repeating copying

and pasting of the titles or the links, the following command can do the job and

return the results combined on one page.

This command will retrieve the top 20 results for the given search term on Google.

Then it will extract the headers where the <h3 class=”r”> tag was used (the title

of the pages that were indicated by the Google search). Then it will extract the text

inside, and then it will pass a list of the search terms to the delicious command,

which will do the search on the http://del.icio.us/ Web site and return the

results to the user.

7.6 Extracting Data from Web Pages

A Web page that is fetched using Web2Sh can be parsed as a string of characters

allowing users to search for any specific patterns on the page to extract data they

require. End users may choose to search for specific HTML tags to search within

their content or to ignore the HTML tags and search directly within the text; in this

case, they may not need to examine the page source HTML code.

Users may also use regular expressions to search for different patterns with many

Web commands, e.g. extract and grep, by using these commands Web2Sh

enables end users to search within Web pages content for specific patterns, this

includes searching the HTML tags, which can be useful in many cases. For example,

more experienced end users, with basic regular expression knowledge, can use these

Web commands to search for a pattern that matches all HTML table cells with

specific attributes.

A simple example is for extracting data using Web2Sh. If users required retrieving

all links on a Web page, and sorting them according to which URL they refer to, they

can use a set of commands like:

1

2

Google –n 20 “Java RMI Tutorial“ |

getHeaders –h2c “r” | txt | delicious;

 7. Web2Sh Applications 134

Another example; If users needed to strip all HTML tags, using the txt filter

command, and process only the text content of the page to search for a certain string,

and then display all lines that this string appeared in :

Other filter commands are available through Web2Sh such as title, URL, HTML,

RSS and css. These filters help users to extract certain parts of the page.

7.7 Composite Search Tasks

End users often need to build composite searches, where the result of one search is

the input for another. For example, in academia a researcher may want to search for

papers about some topic then get the keywords used in a paper or the list of authors,

then use them to build another search, this usually involves opening multiple browser

windows and spending time and effort copying and pasting keywords.

To take a more specific example; a user may want to search on the current top

movies on IMDB site then find the nearest cinema that displays each movie. The

following script will accomplish this task. It will return each movie name followed

by the link from Google specifying the nearby cinemas.

1 fetch bbc.co.uk | getlinks | sort;

1 fetch www.bbc.co.uk | txt | find “Egypt“;

1

2

3

4

5

fetch

“http://www.imdb.com/boxoffice/?region=uk” |

 getLinks | find “href=\"/title/” | txt |

 tee $out |

 google –t1 “ city name” | echo $out $stdin;

 7. Web2Sh Applications 135

Such a script demonstrates the usefulness and the effectiveness of using Web2Sh to

accomplish complex tasks using minimal lines of script and minimal effort.

7.8 Vendor-Specific Web Commands

Web2Sh provides a set of commands that makes use of various well-known Web

applications like major Search engines, answer.com, amazon.com, and Google.

Consider a command define that takes a term and get its definition and basic data

about it using www.answers.com, the user may use the following command:

When the user executes the command, the result page from www.answers.com

will be returned to him. This simple case of redirection has the following benefits

and potential uses:

• It saves the user significant time of browsing to get the required data;

• It offers a faster way to be used on devices like PDAs or mobile phones to

send a command;

• It can be implemented as voice commands for speed and ease of use.

7.9 Retrieving Financial and Stock Market Indicators

Users may need to extract specific information from a Web page, for example to

extract Stock Market Indicators data from the CNN home page, users can write a

WSh script to achieve this. One way of doing it might be:

This command will retrieve the CNN page, and then find li tags where the class

value has the string “market-”, extract the text contained by the div tag, which

is the name of each indicator followed by its value.

1 define “Web 2.0”;

1 Fetch “cnn” | findLi “market-” | txt

 7. Web2Sh Applications 136

Figure 7-1 excerpt from cnn.com Web page source

Such a script requires the user to be familiar with HTML well enough to examine the

page source, as in Figure 7-1, to find the best approach for extracting the required

information. Like mashups, this script will return an error when CNN updates its

page code. Hence, Web2Sh and its scripting language offers a quick and easy

platform for building similar mashups, which enable end users to quickly build and

customise scripts as they would need to be tweaked each time a data source is

changed.

7.10 Summary

This chapter introduced some of the tested automation script applications on

Web2Sh. The usefulness and extensibility of the system is evident, the framework

enables the core commands to be extended by developers to add new functionalities.

Furthermore, end users can use the WSh language to customise and combine Web

commands to achieve innovative automation tools that fit their needs.

Chapters three to seven discussed the model implemented in Web2Sh, focusing on

the usefulness of end-user programming for Web automation. The approach followed

was to integrate a UNIX shell-like model for the Web as a platform, and to provide a

carefully designed set of Web commands that execute both simple and sophisticated

Web tasks. In addition, a scripting language focused on enabling end-user Web

automation.

The next chapter describes the evaluation of the Web2Sh system and the command

line based approach for achieving Web automation. The evaluation is done through

an experiment that includes using both Web2Sh and Yahoo pipes systems and

gathering participants’ feedback through a set of questionnaires.

 8. Evaluation 137

Chapter Eight: EVALUATION

8.1 Introduction

This chapter describes and presents the evaluation of the experiment that was

performed to examine the hypothesis of this thesis: the development of an interactive

end-user programming UNIX-like model for the Web, as a platform in its own terms,

is feasible and useful. The evaluation was carried out as a user trial that involved

twenty-four participants. The user trial involved the use of both Yahoo pipes and

Web2sh to produce a set of modules/Web commands, with the objective of

automating information integration between Google products and Amazon Web

services.

Before the main user trial, a pilot of the experiment was carried out with the aim of

examining and validating the experiment’s workflow and procedure. Based on the

feedback from the pilot run, changes were made to the instruction text and to the

questions (i.e. the narrative of the user tasks) to make them clearer to the participants

and to avoid confusion. One of the main changes was to add to the text more details

explaining the concepts of composite Web tasks and Web Automation.

The experiment was carried out over a period of three weeks. It was performed

online by providing a detailed guide for the study flow and online links to Yahoo

pipes and Web2Sh. Participants were asked to complete four online questionnaires

using “surveymonkey.net”. Participants were recruited from people who work in the

Information Technology field; however, they varied in their detailed job description

(i.e. not all of them work as developers). The participants had varying programming

experience, which ranged from less than one year to more than four years.

The experiment procedure was published on the Web and volunteer participants were

given a link to a Web page that contained the instructions and the workflow of the

experiment. Each participant was asked to give their informed consent after a brief

explanation of the experiment and the activities they would be required to carry out.

Each user was asked to fulfil five tasks that complemented each other. The overall

objective of the five tasks was to integrate data from Google product search and

 8. Evaluation 138

Amazon Web services in order to create a mashup of a set of dynamic links that

contain an associate id of an amazon affiliate. The basic idea of affiliate

marketing was explained to participants and they were asked to implement it through

five smaller tasks that build on top of each other.

8.2 Specific Hypotheses

The Web2Sh framework and Yahoo pipes system were tested in an online user trial

in order to evaluate the following hypotheses:

 H1. The development of an interactive end-user automation framework for

the Web, as a platform in its own terms, is useful.

 H2. A Command line approach is easier to learn and use, by end users with

programming experience.

8.3 Experiment Design

In order to carry out the experiment, a case study was chosen on the area of affiliate

marketing (Hoffman and Novak 2000). The experiment consisted of five tasks,

encompassing:

1. Introduction task, which mainly aims at getting the participant started with

each system.

2. A task to create an automation tool that uses Google search to retrieve a result

set.

3. A task to create an automation tool that uses the Google product search API

to return a list of products.

4. A task to create an automation tool that searches the Amazon Web site for a

specific product.

5. A task to integrate the tools created in steps 3 and 4 to create a mashup of top

returned Google product results, based on a random keyword of the

participant’s choice. Each result is to be displayed as the title of the product,

followed by an affiliate-encoded link to this product on Amazon.

 8. Evaluation 139

 Affiliate marketing is a type of performance-based marketing in which a business

rewards one or more affiliates for each visitor or customer brought about by the

affiliate's own marketing efforts. One of the pioneers of affiliate marketing is

Amazon, which offers an affiliate program when a visitor clicks from an associate's

website to Amazon and purchases a product, the associate receives a commission.

Many websites and online businesses generate additional income by becoming

marketing affiliates. The main approach is to provide links on your Web site that lead

to products or services offered by third parties. Depending on the scheme, an affiliate

(i.e. the marketer) earns a commission whenever visitors to the affiliate’s website

click on a link that leads to a third party’s website and/or makes a purchase.

In affiliate marketing, the third party (usually a company that sells a product) is able

to identify the referring affiliate by means of an affiliate’s id, which is assigned by

the third party. The affiliate’s id must be encoded in the referring URL. The

following is an example of a URL that has an Amazon affiliate’s id in it:

http://www.amazon.co.uk/?_encoding=UTF8

&tag=3ssam-21&linkCode=sb1&camp=2378&creative=8438

The affiliate’s id in this case is the value of the tag parameter, which, in this example,

is “3ssam-21”. The affiliates can encode the URLs for the products they choose to

advertise on their sites or it can be automatically generated for them.

Automating the task of generating Amazon’s affiliate encoded URLs was chosen as

the final task of the case study for the following reasons:

 Affiliate marketing has become a major strategic consideration for all e-

commerce companies (Amit, Zott et al. 2002).

 The concept has certain technological complexities that can be made simpler

with ready-made and easy to configure Web automation tools.

 Amazon was one of the first online businesses to implement an affiliate

marketing program (Hoffman and Novak 2000, Solonchev 2003).

 Amazon offer the ability to generate an affiliate encoded URL as a service

accessible through both its Web interface and its Web services.

 8. Evaluation 140

The users were divided into two groups. The first group (group A) was asked to fulfil

the five tasks using Yahoo Pipes, and then use Web2Sh. The second group (group B)

was asked to fulfil the same tasks but in the opposite order (i.e. use Web2Sh first,

and then using Yahoo Pipes). Each participant was instructed to keep a record of the

time it took to complete each task. Detailed instructions were given for the first task

to get the participant started, while notes that gradually become more general were

given to participants in the remaining tasks.

8.3.1 Task One Summary

The participants were given a list of RSS feeds URLs, and they were instructed to

retrieve and display its contents. Then they were asked to filter the results based on a

given keyword. Participants were given the names of the Web commands/modules

they need to use to implement the tasks and online support was offered to answer any

questions they had.

A Web2Sh script that can be used to implement the task:

Fetch

“http://sports.espn.go.com/espn/rss/news”

“http://rss.cnn.com/rss/si_topstories.rss”

“http://feeds.feedburner.com/foxsports/RSS/headlines”

“http://www.telegraph.co.uk/sport/othersports/americanf

ootball/rss”

“http://feeds.bbci.co.uk/sport/0/football/rss.xml?editi

on=uk”| RssFilter –o “football” “Striker”;

Another approach can be to save a list of the URLs on a Web page and the following

script:

getLinks “http://www.web2sh.net/rssFeeds.html” | fetch

| RssFilter –o “football” “Striker”;

Participants were requested to implement the same task on Yahoo pipes. An example

of a Yahoo pipe that was used to implement the task is shown in Figure 8-1.

 8. Evaluation 141

Figure 8-1 Sample solution for task one in Yahoo pipes

8.3.2 Task Two Description

This task was to create a script/module to search the Web using the Google search

API and to return the results as RSS feed. Participants were given the names of the

Web commands/modules they need to use to implement the tasks and online support

was offered to answer any questions they had.

In Web2Sh, this task can be implemented using the Google Web Command to

retrieve the search results for a given keyword:

Google “laptop”;

As Yahoo pipes does not offer a built-in module for searching Google, the

participant needed to construct the URL that needed to be used in order to retrieve

the result, and then rename the returned XML tags to enable the result to be

displayed correctly on the final output (see Figure 8-2).

 8. Evaluation 142

Figure 8-2 Sample solution for task two in Yahoo pipes

8.3.3 Task Three Description

This task was to create a script/module to use Google product search API to return a

specified number of results. The participants were requested to acquire an access key

to use the Google API. Participants were given the names of the Web

commands/modules they needed to use in order to implement the tasks, and online

support was offered to answer any questions they had.

In Web2Sh, this task can be implemented using the product Web Command,

which was created specifically to connect to Google product API to retrieve the

search results for a given keyword. The flag –nX is used to set a maximum number

of returned results:

Products -n5 “AIzaSyD0It8nmpgq……” “laptop”;

 8. Evaluation 143

The participant could also use the basic fetch Web command to retrieve the

results, and then then use the Truncate Web command to display a specified

maximum number of results as in the following script:

Fetch

“https://www.googleapis.com/shopping/search/v1/public/p

roducts?key=AIzaSyD0It8nmpgqF01UHo7hJoJzFDKbFfIboUM&cou

ntry=US&q=laptop&alt=atom” | Truncate –n5;

Similar to task two, Yahoo pipes does not offer a built in module for using the

Google product API. The participant needed to construct the required URL to be

used to retrieve the result, and then rename the returned XML tags to enable the

result to be displayed correctly on the final output (see Figure 8-3).

Figure 8-3 Sample solution for task three in Yahoo pipes

8.3.4 Task Four Description

This task was to create a script/module to use the Amazon product search API to

search for a keyword and retrieve list of Amazon products details. The participants

were offered instruction to create their own Amazon API key and associate tag

(affiliate id). As obtaining these values could take a significant time with some

 8. Evaluation 144

participants, they were offered the option to contact the researcher to obtain a

working key and tag pair if they were not interested in creating their own.

In Web2Sh, this task can be implemented using the AmazonSearch and

AmazonViewer Web Commands, which was created specifically to connect to

Google product API to retrieve the search results for a given keyword. The flag –nX

is used to set a maximum number of returned results.

AmazonSearch “AWS_ACCESS_KEY_ID” “AWS_SECRET_KEY”

 “Associate_ID” “Keyword” | AmazonViewer;

It is also possible to use the echo Web command to pass one or more keywords to

the AmazonSearch Web command as in the following script.

echo "Keyword" |

AmazonSearch “AWS_ACCESS_KEY_ID” “AWS_SECRET_KEY”

 “Associate_ID” “Keyword” | AmazonViewer;

In Yahoo pipes, the participants were instructed to search for other users’ shared

modules and use them as starting point to investigate the use of the YQL module (see

Figure 8-4).

 8. Evaluation 145

Figure 8-4 Sample solution for task four in Yahoo pipes

 8. Evaluation 146

8.3.5 Task Five Description

This task was to integrate the output of task three and four in order to use a Google

product search to retrieve a set of products based on a given keyword, then to

generate a list that have Amazon links to these products, its price and title. Each link

should have an associate id encoded in the URL.

In Web2Sh, this task can be implemented as in the following script:

products -n5 “GOOGLE_API_KEY”“laptop” | getrsstitle |

AmazonSearch “AWS_ACCESS_KEY_ID” “AWS_SECRET_KEY”

“Associate_ID”|

AmazonViewer;

In Yahoo pipes, the participants were instructed to connect the modules they created

in task three and task four. An example of one solution is shown in Figure 8-5.

Figure 8-5 Sample solution for task five in Yahoo pipes

 8. Evaluation 147

8.4 Participants’ Background

All participants were postgraduates with varying programming experience (different

years of experience and using different programming languages). Thirteen of the

twenty-four participants had programming experience of more than four years. Ten

participants had experience between one and three years while only one participant

had less than one year as shown in Figure 8-6. When asked about how confident they

were in their programming skills, seven answered very confident; fourteen answered

confident; two answered neutral; and one answered less confident as shown in Figure

8-7.

Figure 8-6 Participants’ programming experience

Figure 8-7 Participants’ self-evaluation of their programming skills

54%

17%

8%

17%

4%

More than 4 years

3 to 4 years

2 to 3 years

1 to 2 years

less than 1 year

29%

59%

8%
4%

0%

Very confident

Confident

Neutral

Less confident

Not confident

 8. Evaluation 148

All participants have used various programming languages; the most used languages

were Java, HTML, C++, C, C#, JavaScript, and XML. When asked about their

preferred language, Java was the most preferred one, by seven users, as shown in

Figure 8-8.

Figure 8-8 Participants’ preferred languages

All participants use the Web to conduct a variety of tasks; they vary in terms of the

time they spend on the Web as demonstrated in Figure 8-9. Seventeen participants

said they execute composite Web tasks from a few times a month to more than once

a day as shown in Figure 8-10, and seven participants answered that they never

execute composite Web tasks repeatedly. A composite Web task was defined as a

task such that accomplishing it involves interacting with multiple Web resources.

In answer to a given question, twenty-three participants agreed on the given sentence

that an easy to use approach to automate Web tasks is useful, and one participant

was neutral. The overall positive feedback of the participants using both Web2Sh and

Yahoo pipes (Figure 8-13 and Figure 8-16) indicates that even for the users who do

not require repetitive execution of composite Web tasks, they still considered Web

automation useful for them.

0

1

2

3

4

5

6

7

8
N

u
m

b
e

r
o

f
p

ar
ti

ci
p

an
ts

 8. Evaluation 149

Figure 8-9 Average number of hours using a Web browser weekly

Figure 8-10 Frequency of executing repetitive composite Web tasks

Only one participant specified that he used a tool (WebZip
23

) to automate the task of

retrieving and saving Web content. However, seven participants answered that they

23

 http://download.cnet.com/WebZIP/3000-2377_4-10011036.html

Less
than 10
hours a
week

11 to
20

hours a
week

21 to
30

hours a
week

31 to
40

hours a
week

More
than 40
hours a
week

Participants average Web
browser weekly usage

0 5 2 4 13

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

p
ar

ti
ci

p
an

ts

Never
Few

times a
month

Few
times a
week

Once a
day

More
than

once a
day

 How often do you
need to execute
composite tasks

repeatedly on the Web

7 5 6 3 3

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r

o
f

p
ar

ti
ci

p
an

ts

 8. Evaluation 150

have built programs to automate Web tasks. Examples of the tasks they specified are

as follows:

• An online marketing tool, using the Facebook Query Language (FQL) and

Facebook APIs, to get the participants’ own friends list on Facebook in order

to send them a private message or post on their wall.

• An application, using VB.NET, to search multiple Web resources for jobs

according to a given criteria in the term of the companies and skills of the job

seeker.

• RSS news feeds aggregator using PHP, MySQL and JavaScript.

• A C++ application to extract and save Arabic words from various Web

sources.

• Using JavaScript and Google charts API to draw a graph using data retrieved

from the Web.

The level of skill of the participants and their Web experience makes them very

suitable candidates for the experiment. Moreover, the fact that most of them did not

use Web automation tools before means that there is no prior bias to any system

before starting the experiment.

8.5 Data Analysis

8.5.1 Qualitative Findings

In order to investigate which approach was more favourable to the participants, all

participants were asked to specify which approach they preferred using for Web task

automation and why. They were offered the choice between:

 Command line approach (as in Web2Sh)

 Graphical (GUI) approach (as in Yahoo pipes)

 8. Evaluation 151

Two thirds of the participants chose the “Command line approach” as their preferred

approach. The answers of the participants regarding why they chose a specific

system indicate the following observations:

The command line approach was found to be more preferable and easier to master

for users who had programming experience. However, this is can be affected by the

type of activities they practise on a daily basis. Most participants who selected

We2Sh were found to believe that command line interfaces are easier for them to

use, as they are used to it in their work. For example, the following quotes where

extracted from participants answers:

• Participant A102: “command line is more preferable to me as it can

implement many tasks easily.”

• Participant B103: “command line easier, maybe this is because that I got used

to it during my daily tasks”.

• Participant A113: “I love scripting and this is what I found in web2sh”

Most of the participants who selected the GUI approach said that they found it more

user-friendly and more entertaining to work with. For some participants they found it

was easier to learn. For example, the following quotes where extracted from

participants answers:

• Participant A121: “I felt it was more friendly”

• Participant B111: “More user friendly”

• Participant B102: “I prefer using GUI interface as it was easier to know all

the commands and their attributes. GUI is usually easy to debug. in addition

it is easy to make pipes and use it once more”

 8. Evaluation 152

Some of the users’ comments indicated the need for better documentation, more

informative errors and more usable debugging methods in both systems. The

following quotes were extracted from participants’ answers commenting on Web2Sh:

• Participant A120: “Task 5 needs more clarification as for me it is the first

time to address the issue of Web automation. So, I would be happy if the task

is described in more detail and the Web commands were better described”

• Participant B104: “The difficulty came from a lack of information regarding

the usage and parameters of the commands”

• Participant B104 also commented: “Overall Web2Sh can be seen as a mashup

between "Curl for Dummies with a dash of command line". It is quick and

easy, very intuitive for a UNIX user. It has potential”

• Participant A113: “Having a live demo would be more likely to let me

understand more what and how to do it. Regardless of that I would

recommend using it but after including better documentation”

When asked about suggestions to increase the usefulness of the Web2Sh system

many useful ideas was presented that will be considered in the future work. Many

participants asked for the removing of the need to use a “;” at the end of pipeline.

Many users indicated the need for better messages and some other interface related

features. The following quotes where extracted from participants answers

commenting on Web2Sh:

• Participant A120: “Using Web 2.0 technologies (ontologies such as RDF and

SPARQL) will make web2sh a more intelligent tool in mapping and linking

the different content from different pages”

• Participant A120 also suggested: “Spreading the idea in scientific and

developers communities will be so beneficial. A set of tools that allow the

 8. Evaluation 153

creation of a mash-up that integrate the reported fixes of a specific bug in one

page from multiple resources would be very useful”

• Participant B103: “If a command (or set of piped commands) failed then it

would be nice to have more informative error messages”

• Participant B107: “The manual is not very clear. More specific example for

each command can make the system more useful.”

When asked to comment about Yahoo pipes system, the participants’ answers varied

between who found it easier and fun to use and who struggled to use it. Some of the

participants’ comments were:

• Participant A102: “Dealing with Yahoo pipes is not an easy process which

needs a lot of trials. I finished two tasks with the help of the researcher, but

failed to finish the third task and decided not to complete the remaining tasks

because it is very hard tool to use”

• Participant A113: “task 1 and 2 was easy to do, while tasks 3, 4, and 5 I

wasn't capable of completing them successfully so I need to have a demo in

order to be able to do it”

• Participant A105: “I had fun using it in the first two tasks”

Participants also suggested more detailed documentation and better debugging

capabilities as participant B102 commented, “A better documentation and a good

debug system to track the errors would be useful”. Participant B105 also said, “Better

documentation and notes are needed”. Both participants preferred the Yahoo pipes

approach for achieving Web automation.

Participant B115 was one of the few who finished most of the tasks on Yahoo pipes.

He reported a good feedback about his experience doing all the tasks. The feedback

indicates that having the ability to integrate various Web automation tools

 8. Evaluation 154

approaches, such as including JavaScript code in Yahoo pipes, would enable better

and faster utilisation of Web resources.

• Participant B115: “Task one was easy. Task two and three were relatively

easy, but I did not know at the time that Yahoo pipes use the name "item" as a

magic word to refer to the parsed items. Task four took too long and required

a lot of learning. The most difficult part was to generate Amazon signature in

the URL I was frustrated because while Yahoo pipes are straightforward to

use, I could not for example add a simple JavaScript that would call a Google

crypto API to generate the required signature. Task five looks easy but I had

problems in achieving it, although I think I'm few steps away from doing it

correctly.”

8.5.2 Quantitative Findings

An analysis of the time taken to implement the assigned tasks revealed that Web2Sh

was faster to implement all the tasks in comparison to Yahoo pipes (for both groups:

A and B). Figure 8-11 shows the mean time taken by participants to complete each

task. Task 4 was the most difficult to do and took most of the time in both systems.

Figure 8-11 Mean value for time taken per task

0

10

20

30

40

50

60

Task 1 Task 2 Task 3 Task 4 Task 5

Web2Sh

Yahoo Pipes

 8. Evaluation 155

The analysis of the number of completed tasks for each participant in both systems

revealed that ten participants completed only one out of the five tasks on Yahoo

pipes, and that the majority of the participants completed less than four tasks.

Participants were instructed to check other user-shared modules that may assist them

to accomplish their tasks, however only a few of them managed to make good use of

other users shared modules. This can be attributed to two reasons: (1) the existence

of a large number of user-created modules, which made the participants get a bit lost

when trying to search for useful ones to use from them; and (2) many of those

modules are out of date, rendering them dysfunctional and useless.

In Web2Sh, thirteen participants completed all the five tasks; all participants except

one completed more than two tasks. The nature of the task-specific Web commands

combined with the WSh scripting language offered by Web2Sh allowed the

participants to complete the tasks in much less time and made them more successful

in creating their customised automation scripts. It is important for Web2Sh, once it is

made available to a larger community, to put a regular maintenance mechanism in

place that would continuously validate any user-shared scripts/tools (see Figure

8-12).

Figure 8-12 Number of tasks completed by all participants

The analysis of the final participant’s general rating for both systems revealed that

the average Web2Sh rating was four, while the average rating for Yahoo pipes was

three, where one represents the lowest rating and five represents the highest rating

0

2

4

6

8

10

12

14

One Two Three four five

N
u

m
b

e
r

o
f

P
ar

ti
ci

p
an

ts

Number of Completed Tasks

Web2Sh

Yahoo

 8. Evaluation 156

(see Figure 8-13). The majority of the participants agreed that Web automation in

general is useful for them (see Figure 8-16). Two thirds of the participants answered

that they prefer the Web2Sh approach to achieve Web Automation. It was observed

that a number of factors might justify liking one approach over the other, including:

personal preferences, type of daily activities, and prior experience. For example, six

of the seven users who practised programming using a UNIX shell scripting

language preferred using Web2Sh, other users who don’t practise programming

much or tend to use a Visual development environment (e.g. visual studio) mostly

preferred Yahoo pipes (see Figure 8-14).

Another factor that seemed to affect the participants’ choice of their preferred

approach, is how familiar they are with the tasks. The participants had very little or

no information about Affiliate marketing, so there was a learning experience they

gained when using the first system based on their assigned group. Figure 8-15 shows

that for “group A” participants who started the experiment by using the Yahoo pipes

system ended to prefer Web2Sh. While for “group B” the participant were divided in

half between the two systems.

Figure 8-13 Final participants overall rating

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

N
u

m
b

e
r

o
f

p
ar

ti
ci

p
an

ts

System rating

Web2Sh

Yahoo Pipes

 8. Evaluation 157

Figure 8-14 Preferred system by each language users

Figure 8-15 Preferred approach by group

A total of eighteen participants strongly agreed with the statement “An easy to use

approach to automate Web tasks is useful”, five selected “somewhat agree” and one

was neutral. When asked whether you agree or disagree about the “Web2Sh is

useful” statement, eight participants selected “strongly agree”, eleven selected

“somewhat agree”, and five were neutral. None selected “Somewhat Disagree” or

“Strongly Disagree”. When asked whether they agree or disagree about the “Yahoo

pipes is useful” statement, five participants selected “strongly agreed”, twelve

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

p
ar

ti
ci

p
an

ts

Web2Sh

Yahoo Pipes

0

2

4

6

8

10

12

Group A Group B

N
u

m
b

e
r

o
f

p
ar

ti
ci

p
an

ts

Web2Sh

Yahoo

 8. Evaluation 158

selected “somewhat agree”, five were neutral, and two selected “somewhat disagree”

as illustrated in Figure 8-16.

Figure 8-16 A system to automate Web tasks is useful

8.6 Summary of Findings

Of the twenty-four participants, all but one agreed that a Web automation system is

useful, one participant was neutral and none disagreed. The answers were slightly

different when asked about the usefulness of each tested system (i.e. Web2Sh and

Yahoo pipes) as shown in Figure 8-16. This sample shows the development of an

interactive end-user system for Web is useful for end users with programming

background. However, qualitative feedback indicates that Web commands of more

personal interest for each user would be much more useful. This was most clearly

demonstrated when participant B104 (Software Developer) commented, “The

particular commands were of limited personal interest and thus have low usefulness.

The approach when used to generate commands of more personal interest would

yield results of much more usefulness”. Participant A111 (a system administrator

with UNIX shell experience) requested to include more UNIX familiar commands.

Participant A104 (postgraduate student) requested tools to interact with Wikipedia.

Participant A120 (postgraduate student) commented about the Web2Sh system

saying that “The idea is very interesting for broad range of users and I think that

people who depend mostly on their smart phones will be the greatest beneficiaries of

such system”

0

2

4

6

8

10

12

14

16

18

20

Strongly
Agree

Some
what
Agree

Neutral Some
what

Disagree

Strongly
Disagree

N
u
m

b
e
r

o
f
p
a
rt

ic
ip

a
n
ts

Web Automation

Web2Sh

Yahoo pipes

 8. Evaluation 159

These responses show that the general idea of a Web automation system would be

useful for a wide range of end users. However, it will be preferred to create a

domain-specific language for each group with shared interests. This would require

surveying the tasks they require the most and what would be the best naming strategy

to make the Web commands names more familiar and easy to use for them.

A major drawback in Yahoo pipes was that the majority of the user-shared modules

were not functional, usually due to a change in the structure or availability of the

Web resources they were based on. The large number of non-functional modules

makes it harder for a user to utilise tools shared by other users. The number of non-

functional modules in the Yahoo pipes system is an indication of a general drawback

when using any mashup or automation tool, which is that it will stop working as soon

as any change occurs in its data sources.

This problem is intensified when users share their Web automation tools while not

maintaining them. This was clear in Yahoo pipes. While many users share useful

modules, they are hard to find due to the numerous number shared modules and the

fact that many work only for a limited time span. Many of the modules on Yahoo

pipes fail to return any output due to this problem. For example, a book titled

“Mashup Case Studies with Yahoo! Pipes” (Loton 2008) used a pipe created by

another user to perform an Amazon items search
24

, however due to a change in

Amazon’s Web service WSDL this module is not working anymore. This means that

all other modules (as in the mentioned book) that use it also fail to work. This pipe

was created in 2007 and the book was printed on 2008. Other newer modules offer

valid solutions that worked with the new structure; however locating them is not

easy.

For example, in the evaluation reported in Chapter 8, the fourth task was a modified

version of the Amazon marketing case study in (Loton 2008). The task was only

completed by four participants in Yahoo pipes, even though many other participants

tried to complete them (for time ranging from thirty minutes up to three hours). The

participants were instructed to explore modules created and shared by other users to

solve this task, as some of the shared modules can facilitate the task implementation.

However, only a few participants managed to locate and use those modules due to

24

 http://pipes.yahoo.com/pipes/pipe.info?_id=aAHDUL193BG8LFnqiXrL0A

 8. Evaluation 160

the long list shared modules (mostly non-functional). Even when a user executes a

search using a keyword such as “Amazon API search” the list of returned modules is

too long making it much harder to locate useful and working ones. Many of the

modules was working when they were created initially, yet as the Amazon search

Web service was changed, all older modules stopped working.

This indicates a necessity to validate any public shared modules and downgrade them

to a non-working status once they fail to complete successfully. Such functionality

can be automated on Web2Sh by running a batch to test users’ shared scripts and

flagging a script if an error was returned upon execution. Constant maintenance of

the core system Web commands is also essential, in addition, enabling an advanced

search and rating system for users shared scripts must be considered, as it will be

very useful for end users.

The support for more graphical elements in the Web2Sh command line interface to

enhance its usability should be considered in the future. For example, some

participants liked the idea of having a list of modules displayed in the left side pane

in Yahoo pipes. Other participants found it confusing. Hence, adding any graphical

elements should be examined based on the targeted users, and users should be able to

enable and disable them based on their preferences.

To conclude, the following points summarise the findings of the evaluation:

• The majority of participants agreed that the notion of Web automation is

useful to them.

• The command line approach to building and automating Web tasks is

favourable to the majority of participants.

• As a development environment, participants were found to need less time to

get tasks done using the command line approach in comparison with the

Graphical (GUI) approach.

• The majority of users agreed that Web2Sh was more useful to them than

Yahoo Pipes.

 8. Evaluation 161

• The majority of users agreed that Web2Sh was easier to use than Yahoo Pipes

• Web2Sh was faster to implement the task on, in comparison to Yahoo pipes.

• More participants finished a larger number of tasks on Web2Sh in

comparison to Yahoo pipes.

8.7 Summary

The evaluation, presented in this chapter, examined the usefulness of Web2Sh via a

user study. Twenty-four participants completed the experiment, all of which had

some degree of programming experience. Eighteen of the participants strongly

agreed with the statement “An easy to use approach to automate Web tasks is

useful”, five selected “somewhat agree” and one was neutral. When asked whether

you agree or disagree about the “Web2Sh is useful” statement, eight participants

selected “strongly agree”, eleven selected “somewhat agree”, and five were neutral.

None selected “Somewhat Disagree” or “Strongly Disagree”. When asked whether

they agree or disagree about the “Yahoo pipes is useful” statement, five participants

selected “strongly agreed”, twelve selected “somewhat agree”, five were neutral, and

two selected “somewhat disagree” as illustrated in Figure 8-16.

This chapter covered the evaluation of this thesis hypothesis, which is the

development of an interactive end-user programming UNIX-like model for the Web,

as a platform in its own terms, is feasible and useful. Section 8.5 demonstrates the

findings of the evaluation, which supports the thesis hypotheses.

The next chapter describes the foundations and arguments for the design and

implementation decision throughout the development of Web2Sh framework, lays

out the conclusions of this research, and suggests future work.

 9. Conclusion and Future Work 162

Chapter Nine: CONCLUSION AND FUTURE WORK

9.1 Introduction

This research introduced Web2Sh (Web 2.0 Shell): a framework encompassing the

WSh (Web Shell) scripting language, a Web command line interface, and a

repository of Web commands. The framework demonstrated the emerging need for

tools suitable for automating and customising the user experience on the Web. The

aim of Web2Sh is to provide the required infrastructure for Web automation in order

to give Web users more control over their Web experience while moving towards the

vision of the Web as a platform.

This thesis is based on the hypothesis that the development of an interactive end-user

programming UNIX-like model for the Web, as a platform in its own terms, is

feasible and useful. The presented Web2Sh model builds on the experiences gained

from the study of other existing systems and tools of Web automation. It also uses

modern enabling Web technologies to take the concept of Web automation a step

forward.

An important design goal of the Web2Sh framework is to find an appropriate balance

between efficiency and usefulness on the one hand and ease of use on the other. It

was also important to integrate into the framework a Web-focused language (WSh)

to support the customisation and integration of Web commands to serve variety of

domains. The current implementation of the Web2Sh system offers a set of Web

commands that stand out as a proof-of-concept. This set of commands serves to

demonstrate the usefulness and the extensibility of the Web2Sh model.

The implementation of the polymorphic MIME types, (section 6.3), and other design

features allow for basic decision-making at the level of Web commands and the

Interpreter. Compared to other tools offered by other vendors and researchers,

Web2Sh has a significant advantage because of its unique approach that combines

the following elements:

• The use of the browser as a thin client, and using the server-side to run and

execute Web commands.

 9. Conclusion and Future Work 163

• The provision of a practical Web-oriented scripting language, that utilise the

flexible UNIX piping concept

• The provision of a library of Web automation tools in the form of Web

commands.

• A command line interface that enables fast implementation of WSh scripts.

This unique approach enables users to harness the power of Java and server-side

processing through a simple Web-based interface using a simple UNIX-like scripting

language.

The evaluation experiment, described in chapter 8, examined the usefulness of

Web2Sh. All of the participants had previous programming experience. Eighteen of

the participants strongly agreed with the statement “An easy-to-use approach to

automate Web tasks is useful”, five selected “somewhat agree” and one was neutral

(Figure 8-16). These responses combined with the open-ended comments of the

participants, indicated that end users, who have programming background, find an

easy to use system for Web automation to be useful for them. It also indicated that

creating a set of focused domain-specified commands to match users from specific

domains would be even more usefulness.

Most of the tools that are currently available do not offer as comprehensive an

approach as Web2Sh. Most of the other tools are too specific to a certain domain,

with no adequate ability to extend their coverage to more domains (as in the case of

Accessmonkey). Moreover, they are totally based on the client side and tightly

coupled with the browser (as in the cases of Chickenfoot, Greasemonkey, Mozilla

Ubiquity, and iMacros).

The only tool that offers a server side-based system is Yahoo Pipes, yet it is very

dependent on its graphical user interface for the creation of automation tools, which

renders it less efficient and more time consuming for experienced end users (those

who have programming background). While Yahoo pipes modules are efficient when

dealing with RSS feeds, it is much more difficult to access and extract information

from other types of Web resources, such as HTML pages.

 9. Conclusion and Future Work 164

To conclude, the features of Web2Sh demonstrate a closer relationship to the nature

of resources available on the Web, offers many useful functions with a minimum

amount of coding required, and simplify the specifications that a user needs to learn

to start using it. The following Web2Sh characteristics give it many advantages as a

framework intended for Web automation:

• A command line Web based interface that can be used from any Web

browser.

• A powerful back-end, harnessing the potential of the Java language.

• Easy to write Web commands that make use of most of the available Web

resource types.

• Web command’s Polymorphic MIME types feature enabling different

execution paths based on the MIME type of the resource passed to it.

• A UNIX-like scripting language offering a simple grammar for complex tasks

when compared to other tools.

• Users can access a set of powerful UNIX commands such as the grep

command.

• An extensible framework backend allowing the fast and easy creation of

sophisticated, domain-specific, and customisable Web commands.

9.2 The Need for a New Scripting Language

At the early stages of this work, other available scripting languages (e.g. JavaScript)

were considered for the implementation of Web2Sh framework. However, the study

of other tools (reviewed in section 2.3) showed that the approach of customising an

existing language such as JavaScript in Accessmonkey (Jeffrey and Richard 2007)

was less user-friendly and less effective compared to the tools that have their own

focused scripting language such as in Chickenfoot (Bolin, Webber et al. 2005b).

 9. Conclusion and Future Work 165

The initial requirements for the framework, its objectives, and the profile of the

potential users implied the need for implementing a focused task-oriented scripting

language that would enable easy and effective Web automation. The need for the

ability to connect Web commands to achieve sophisticated tasks combined with the

software tools philosophy and its success in the UNIX shell scripting languages

model, that presented a good model for a platform-oriented automation, implied that

a similar model would be feasible and useful for end-user task automation on the

Web as a platform.

The implemented WSh scripting language is targeted at the Web. It merges the GUI

nature of the Web with the power of the command line interface. It also enables the

use of Web commands in pipelines to achieve complex tasks as demonstrated in

Chapters 5, 7, and 8.

9.3 Is Yahoo Pipes Enough?

Yahoo is investing a lot of effort to improve its Pipes product. It has gained

considerable popularity since its launch in 2007. So far, the focus of Yahoo Pipes has

been in dealing with RSS-based feeds. It provides a minimal set of modules to

retrieve other types of resources such as regular HTML based Web pages, offering

limited functionality to parse them once they have been retrieved.

Moreover, syndicate feeds used by Yahoo Pipes usually provide only excerpts of the

page. The user needs to click on the title of any item to get the whole content. This

means that in many cases Yahoo Pipes can only access the parts that are available in

the feed.

Tim O'Reilly stated that Yahoo Pipes was a first step towards creating a

“programmable Web for everyone” (O'Reilly 2007b), arguing that Yahoo Pipes

could be considered as a good start based on the Unix shell piping approach for

creating a Mashup.

The Yahoo Pipes GUI interface makes it easy for novice users to create and run basic

modules. Yet, the graphical user interface and the limitation of the other MIME types

hinder the Yahoo Pipes tool. For casual programmers, advanced users, and

 9. Conclusion and Future Work 166

programmers it would be easier, faster, and more efficient to have a text-based editor

where users can write code rather than using the ‘drag and drop’ GUI interface.

Many Web sites still do not provide syndicate feeds. For example, the IMDB web

site offers a list of Top 250 movies as voted by their users
25

 but it would be very

difficult to deal with this list in Yahoo Pipes, as there is no available feed for it yet.

Furthermore, there is a study showing that a command line-based interface, which

utilises a natural language is usually easier to learn, faster to use, and more effective

than GUI based interfaces (Lovis, Chapko et al. 2001). Another study indicated that

combining the power of character-based user interfaces (CUI) with some graphical

component support makes such systems more user friendly (Kressin, Berger et al.

1997).

Another study shows that graphic-based interfaces have no significant advantage

over text-based interfaces for expert users, although novice users prefer the former.

For novice users there is a learning transfer effect from text-based to graphical user

interface. The mapping between the user interface and tasks is important to be

reflected in user-friendly aspects (Chen, DDS et al. 2007).

The Web is an ideal platform to employ a combination of graphical and text-based

interfaces. The idea of implementing a UNIX-like shell for the Web, for creating

automation tools and customised information retrieval, is very useful and effective. It

provides the ability to use a command line interface implemented as a simple HTML

page. This will integrate the GUI nature of HTML and the power of CUI command

line. With the rise of reach internet applications (RIA), many useful GUI components

can be added to such an interface to offer support for more novice end users.

Tim O'Reilly wrote in Unix Power Tools in 1993:

 “Most of the non-graphical utility programs that have been running under

UNIX since the beginning share the same user interface. It is a minimal

interface, to be sure, but one that allows programs to be strung together in

pipelines to do any job that no single stand-alone program could do. Now,

most operating systems, including modern UNIX and Linux systems, have

25

 http://www.imdb.com/chart/top

 9. Conclusion and Future Work 167

graphical interfaces that are powerful and easy to use, yet none of them is as

powerful or exciting to use as classic pipes and filters offered by UNIX

shells” (O'Reilly 2007b).

This indicates the need for a framework that includes a character user interface

(CUI), which can provide similar functionality to Yahoo Pipes. It would be desirable

for a framework to provide the support for a graphical interface or make use of

already available interfaces, such as Yahoo Pipes, to be integrated in the framework.

Using a text-based command line is fast and easy to use when creating sophisticated

scripts is required. The framework introduced in this research (Web2Sh) aims to

provide this interface for end users. Most Web2Sh commands can produce an RSS

feed by adding a pipe to the RSS filter command at the end of any pipeline. The

resulting feed can then be called from Yahoo! Pipes or any other similar tool as any

other data source. This way Yahoo Pipes can act as a GUI interface for many Web

commands offered by Web2Sh.

9.4 End-user Web Automation

This research introduced and focused on the idea of “end-user Web Automation”,

which is defined in this thesis as the study of theoretical and practical techniques for

applying an end-user programming model to enable the automation of Web tasks,

activities, and interactions. The term Web automation in this context refers to the

notion of enabling the creation of effective tools to achieve the automation of various

Web tasks. End-user Web automation is a promising and novel research field that

allows and adopts the vision of the Web as a platform. The study of this field

connects various computer science fields.

The research also introduced Web2Sh, a framework encompassing the new WSh

scripting language, a Web command line interface, and a repository of Web

commands. It demonstrated the emerging need for tools suitable for automating and

customising the user experience on the Web. Web2Sh provides the required

infrastructure for Web automation to give end users more control over their Web

experience while moving towards the vision of the Web as a platform.

 9. Conclusion and Future Work 168

The study discussed the design and implementation of the Web2Sh framework based

on a simple scripting language (WSh) that facilitates writing automation scripts.

Web2Sh aims to provide a basic set of commands in different domains. Users have

the power to create, use, and share their own commands. WSh also enables the

extension and customisation of Web commands.

In fact, Web2Sh introduces a new approach for creating and sharing Web automation

tools among end users through the development and re-use of Web commands. Thus,

it can evolve into a powerful framework that encompasses a large set of commands

in different application areas.

9.5 Meeting the Objectives

This section revisits the specific objectives set out in the first chapter of this thesis:

29. Investigate a new model for end-user Web automation that would offer an

easy to use approach to automate Web tasks.

30. Design, implement, and evaluate a new simple and effective scripting

language intended for the development of Web automation tools.

31. Design, implement, and evaluate a Web-based framework to enable end users

to create, run, and share Web automation tools.

32. Design, implement, and evaluate a repository of Web commands as a

reusable, efficient, and customisable Web automation tool.

The next four sub-sections address each of these objectives linking them to the work

achieved in this thesis.

9.5.1 New Model for End-user Web Automation

This thesis presented a novel model that combined end-user programming concepts

with Web standards and enabling technologies. The model presented can be used to

enable the automation of Web tasks, activities, and interactions. The thesis defines

this area of research as end-user Web automation.

The model introduced built on the five following design elements:

 9. Conclusion and Future Work 169

• UNIX shell scripting, see section 2.4;

• SPHINX for creating personal, site-specific Web crawlers, see section 2.3.1;

• YubNub simple command line for the Web, see section 2.3.2;

• The software tools philosophy, see section 5.3;

• The shift towards the “Web as a platform” vision.

The model approach was to apply the software tools philosophy to the Web, using

UNIX shell scripting as a proven successful model. The idea of site-specific and

customisable Web crawlers in the SPHINX framework is reflected in the introduced

concept of the Web command, at the same time considering the software tools

philosophy. The YubNub application, simple as it is, inspired the idea of a simple

command line for the Web. In order for this model to work, an important enabling

technology was Asynchronous JavaScript and XML (AJAX), which allowed the

communication through HTTP streams between the command line interface and

Web2Sh backend server.

The Web2Sh framework implemented the introduced model to show its feasibility

and usefulness as illustrated in Chapters 4-7. Chapter 8 described the evaluation of

the Web2Sh framework that was carried out through an experiment in which end

users used both Web2Sh and Yahoo pipes systems. The majority of the participants

confirmed that the Web2Sh approach was easy to use for them; only one participant

out of the twenty-four participants answered that the system was somewhat difficult

to use.

9.5.2 WSh, a Scripting Language for Web Automation

All investigated systems, which aimed at achieving a degree of Web automation,

have based their approach on the sole use of GUI-based programming, or have used

an existing Web scripting language, most commonly JavaScript. The arguments

presented in this thesis in section 2.3 and the evaluation in Chapter 8 demonstrate the

desirability and usefulness of implementing a focused scripting language with the

target of enabling easy and effective Web automation.

 9. Conclusion and Future Work 170

The success and power of the shell-scripting model in UNIX platforms inspired the

design of WSh. However, WSh extended this into the dimension of Web automation.

Hence, WSh offers a set of unique features, which enable it to provide extensive and

sophisticated tools to achieve its goal of Web automation.

One of the aims of WSh design was to enable the creation of Web commands that are

‘smart’ enough to act in a logical way based on the MIME type, context, and content

of the resource it process. In order for a smart Web command to provide certain

functionality to its users, it must be able to detect the resource MIME type, the

context within the pipeline, and attempt to examine the content itself when needed. It

then determines what actions to execute. WSh design supports the creation of

intelligent Web commands more easily. In addition, it supports the extension of core

Web commands without the need to alter the framework.

WSh design takes into account the variety of Web formats, standards, and

technologies. It implements a design whereby any Web resource’s MIME type can

be processed by the framework. According to this design (named Polymorphic

MIME types), each Web command may support different functionalities for resources

of different types and varying contents. The context of the Web command may also

affect the actions it takes.

Chapter 5 presented the knowledge and experience gained by designing and

implementing the WSh scripting language. It also described the key enabling

computer science concepts and technologies that facilitated the development of the

WSh scripting language.

The design of the WSh language makes the best of the new Web enabling

technologies and tools. By providing a Web-based command line interface, Web2Sh

users can simply create and use Web commands using a JavaScript-enabled Web

browser.

WSh contributes to the research of end-user programming and programming

language processors. Although it is not the focus of this research, it was necessary to

investigate these research topics in order to gain the knowledge required to design

and implement a scripting language that can be useful, effective, simple, and

powerful.

 9. Conclusion and Future Work 171

9.5.3 Web2Sh, a Web Automation Framework

Web2Sh contributes to the research of interactive end-user Web automation by

suggesting a new approach of automating Web tasks, activities, and interactions.

This approach is both simple and effective. As the development of Web automation

tools in general is a complex task for the majority of end users, Web2Sh can be of

great benefit to end users with little or no programming experience (casual

programmers) who want to automate their Web interactions simply, effectively, and

rapidly.

Web2Sh is also well suited for users with a UNIX shell background, as the presented

Web shell language (WSh) was inspired by the UNIX platform. Web2Sh also offers

access to those users to some of the very powerful tools of the UNIX platform such

as sed and grep. This is achieved by implementing a UNIX tools wrapper that acts

as a Web command, passes the input from Web2Sh to the appropriate UNIX tool,

and then returns the output back to Web2Sh. This approach brings the power of these

tools directly to any Web-enabled device that has a Web browser supporting

JavaScript. The evaluation presented in chapter 8 highlighted that out of seven

participants, who practised programming using UNIX shell scripting, six preferred

the Web2Sh approach in comparison to Yahoo pipes.

An additional target group of potential users is researchers. Web2Sh provides a set of

tools that enable researchers to save time and effort by enabling them to automate

some of the common research tasks, such as citing online references, processing pdf

files, collecting raw data from the Web, and checking for word synonyms.

Web2Sh utilises the user-generated content approach by offering its users the

possibility to create and share new commands. This approach allows the Web

commands repository to grow further. It also enables all its users to utilise and share

their experiences through the creation of new commands, which can bring about

many new innovative Web commands that may have not been foreseen when

developing the core Web commands.

 9. Conclusion and Future Work 172

9.5.4 Repository of Web Commands

This work introduced the Web command as a tool created with a specific goal to

provide a solution for automating simple or sophisticated tasks in various domains

related to end users’ Web interactions. As discussed in Chapter 6, Web2Sh

framework offers a repository of core Web commands with various functionalities as

a proof of concept.

The generic approach of the Web2Sh framework, combined with the WSh scripting

language, allows for connecting any set of Web commands using pipes. This

provides general solutions for a larger set of problems in order to meet the Web

users’ needs. The design of the Web2Sh framework also allows for the easy

extension of the core Web commands. Thereby, the developers can implement any

functionality they require as a Java class and then plug it into the framework.

Participants’ feedback after using both Web2Sh and Yahoo pipes, described in

chapter 8, indicates that providing general Web commands, that is commands that

can fit into any domain, is essential and enable more flexibility. However, for each

specific domain of users a more focused and advanced Web commands need to be

provided in order to offer easy and quick retrieval of data that can be of interest to

them from specific Web sources. Hence, different version of WSh language and Web

commands can be customised as a domain-specific language for each group of users

based on their needs.

9.6 Future Work

The work presented in this thesis is a solid foundation for future research in this

novel research topic. Various possible directions can be researched to continue this

work. This section highlights the most interesting ones from the perspective of end-

user Web automation.

Future work is envisaged as encompassing four directions. First, it involves

conducting a study to examine the usability of the proposed scripting language,

command line interface, and Web command repository for specific domains such as

librarians. This should lead to extension of the set of Web commands to target

domain-specific users. Secondly, additional functionality is to be added to the

 9. Conclusion and Future Work 173

command line interface to make it easier to use by non-expert users. Finally, there is

an ambitious aim also to investigate the use of a p2p model for users to share Web

commands and distribute the workload among peers’ computers.

The most prioritised continuation of this work is the extension of the core Web

commands repository to include:

• Web commands that can manipulate and process all MIME types;

• Further investigation regarding how to apply the knowledge from other Web

research domains, such as information retrieval, to create sophisticated

domain specific Web commands.

• The investigation of creating domain-specific versions of the WSh language

to target different users’ domains that can benefit the most of such system,

e.g. researchers, e-marketing agents, librarians, and system administrators.

• Investigating the possibility and possible benefits of extending client side

Web commands and enable them to be piped to other Web commands.

The performance of the system is an important issue; the current framework

implements concurrency for running Web commands in parallel and the current

Web2Sh framework can be hosted on multiple servers (server cluster) in order to

handle an increasing numbers of users. However, a further investigation is needed in

order to enable the use of distributed processing techniques on the Web command

level, i.e. distributing the execution of a pipeline among several machines.

Furthermore, there is a need to address the security of the communication between

the client interface and the server. This should be easily implemented by installing a

public key certificate to the Apache Web server hosting the framework. However,

the possibilities it opens up are immense, as the user may even use Web2Sh

infrastructure to administer the server. Wrappers can be implemented to provide such

Web commands that are related to the administration of the hosting server and even

other systems residing on the same server. An investigation of the security and

 9. Conclusion and Future Work 174

usefulness of such approach could introduce new dimensions to the usage of the

Web2Sh framework.

Another interesting investigation is to exploit the p2p approach to share and run the

Web commands. This may be of great benefit to the system performance as the

processing of the scripts can be divided among multiple machines that would host a

shared copy of each Web command.

Further research could also aim to increase the usefulness of the end-user

programming approach for enabling Web automation. Further investigations might

be conducted in order to discover if an extension is required to the WSh scripting

language, and implement such an extension if needed.

In the field of Human Computer Interaction (HCI), user experiments are needed to

test the usability of the system. It can also include a usability study comparing the

use of Web2Sh as a command line based interface approach with other GUI based

systems such as Yahoo Pipes. Such a study could also investigate adding dynamic

features to the command line interface using a JavaScript library to enable a more

user-friendly environment for the process of editing scripts.

Possible integration of the command line approach with the GUI model as proposed

by (Kressin, Berger et al. 1997) can be also considered. The proposed method is to

enhance the user-friendliness of the command line-driven programs by having a

correspondence with a series of GUI objects. This approach would be beneficial in

empowering even more novice users to utilise the Web2Sh framework while

preserving the power and speed of the command line approach.

The evaluation study in chapter 8 indicates that even for the expert users one third of

the participants preferred to use the GUI as in Yahoo pipes. The integration of Yahoo

pipes commands and Web2Sh is easily achieved through the passing of RSS feeds

from one System to the other. Hence, end users can have the choice to use a Web2Sh

command through calling it from Yahoo pipes, as long as it produces an RSS feed,

and vice versa.

 9. Conclusion and Future Work 175

9.7 Closing Remarks

This research investigated the feasibility and usefulness of developing an end-user

programming UNIX-like model for the Web that would enable the creation of more

effective and accessible Web automation tools in the form of Web commands. This

involved the development of a new scripting language dedicated to the goal of Web

automation.

No other reported systems have followed this model before. Other notable systems

have only achieved a partial level of Web automation. They also exhibited a number

of drawbacks that were highlighted in Chapter 2.

An innovative design of the Web2Sh Framework was presented, allowing for the

possibility of further future extensions. The use of the user-generated content model

with the power of the WSh language enables an extension of the Web command

repository by writing and sharing new automation scripts that glue together existing

commands. The core commands can also be easily extended by other developers,

since the design of Web2Sh follows the practices of OOP and design patterns to

allow for such extension without affecting the core of the framework.

This thesis presents a novel model that solves the problem of the lack of easily

customisable automation tools for the Web end users. It provides a general solution

that utilises various types of Web resources, and works with all modern browsers. It

has shown the feasibility of the proposed approach and the usefulness of the various

applications areas and scenarios that can be implemented to automate various users’

Web interactions, tasks, and activities.

 Bibliography 176

BIBLIOGRAPHY

AbdelRaouf, A., et al. (2010). "Building a Multi-Modal Arabic Corpus (MMAC)."

The International Journal of Document Analysis and Recognition (IJDAR) 13(4):

285-302.

Alan, S. (1986). "Encapsulation and inheritance in object-oriented programming

languages." SIGPLAN Not. 21(11): 38-45.

Alexa. (2012). "Alexa Top 500 Global Sites." from http://www.alexa.com/topsites.

Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King and S.

Angel (1977). A Pattern Language. New York, Oxford University Press.

Amit, R., C. Zott and E.-A. Center (2002). "Value drivers of e-commerce business

models." Creating value: Winners in the new business environment: 15-47.

Anant, J. (2006). Enterprise information mashups: integrating information, simply.

Proceedings of the 32nd international conference on Very large data bases, Seoul,

Korea, VLDB Endowment

Anderson, N. (2006). "Tim Berners-Lee on Web 2.0: "nobody even knows what it

means"." from http://arstechnica.com/news.ars/post/20060901-7650.html.

Anderson, N. (2007). "Tim Berners-Lee on Web 2.0: "nobody even knows what it

means"." Retrieved 29 January 2011, from

http://arstechnica.com/news.ars/post/20060901-7650.html.

Ankolekar, A., M. Krötzsch, T. Tran and D. Vrandecic (2008). "The two cultures:

Mashing up Web 2.0 and the Semantic Web." Web Semantics: Science, Services and

Agents on the World Wide Web 6(1): 70-75.

Appel, A. W. (1998). Modern compiler implementation in Java, Cambridge

University Press.

Aquino, J. (2005). "yubnub." Retrieved 30 May 2011, from http://yubnub.org/.

 Bibliography 177

Aquino, J. (2005). "YubNub, A Social Command line for the web." Retrieved 1

November 2005, from http://jonaquino.blogspot.com/2005/06/yubnub-my-entry-for-

rails-day-24-hour.html.

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica and M. Zaharia (2010). "A view of cloud computing."

Commun. ACM 53(4): 50-58.

Atsushi, S. and K. Yoshiyuki (1998). Internet scrapbook: automating Web browsing

tasks by demonstration. San Francisco, California, United States, ACM Press

Beard, C. (2008). "Introducing Ubiquity." Retrieved 20 March 2011, from

https://mozillalabs.com/blog/2008/08/introducing-ubiquity/.

Beged-Dov, G., D. Brickley, R. Dornfest, I. Davis, L. Dodds, J. Eisenzopf, D.

Galbraith, R. V. Guha, K. MacLeod, E. Miller, A. Swartz and E. v. d. Vlist. (2000).

"RDF Site Summary (RSS) 1.0." Retrieved 15 March 2008, from

http://web.resource.org/rss/1.0/spec.

Bergman, M. K. (2001). "The deep Web: Surfacing the hidden value." The Journal of

Electronic Publishing 7(1).

Berners-Lee, T. (1989). "Information Management: A Proposal." Retrieved 26 June

2008, from http://www.w3.org/History/1989/proposal.html.

Berners-Lee, T. (1998, 14 October 1998). "Semantic Web Road map." Retrieved 20

July 2008, from http://www.w3.org/DesignIssues/Semantic.html.

Berners-Lee, T. (2002a). Foreword in: Spinning the Semantic Web: Bringing the

World Wide Web to Its Full Potential, {The MIT Press}.

Berners-Lee, T. (2004). "How It All Started." Retrieved 26 june 2008, 2008, from

http://www.w3.org/2004/Talks/w3c10-HowItAllStarted/?n=1.

Berners-Lee, T., W. Hall, J. A. Hendler, K. O'Hara, N. Shadbolt and D. J. Weitzner

(2006). "A framework for web science." Found. Trends Web Sci. 1(1): 1-130.

 Bibliography 178

Berners-Lee, T. and E. Miller (2002b). "The Semantic Web lifts off." ERCIM News,

Number 51: 9-11.

Bishop, T. (2009). "Microsoft cuts Popfly mashup tool, citing economic 'refocus'."

Retrieved 4 june 2011, from

http://www.techflash.com/seattle/2009/07/Microsoft_cuts_Popfly_mashup_tool_citin

g_economic_refocus_50958577.html.

Bolin, M. (2005a). End-User Programming for the Web, Master Thesis, . MSc.

Master, MIT.

Bolin, M., M. Webber, P. Rha, T. Wilson and R. C. Miller (2005b). Automation and

customization of rendered web pages. Proceedings of the 18th annual ACM

symposium on User interface software and technology. Seattle, WA, USA, ACM.

Bozzon, A., M. Brambilla, S. Ceri and P. Fraternali (2010). Liquid query: multi-

domain exploratory search on the web. Proceedings of the 19th international

conference on World wide web, ACM.

Brin, S. and L. Page (1998). "The anatomy of a large-scale hypertextual Web search

engine." Computer Networks and ISDN Systems 30(1-7): 107-117.

Bush, V. (1945). As We May Think, The Atlantic Monthly, Electronic version

reproduced in http://adammikeal.com/courses/chi/files/jan26.bush.pdf.

Chen, J.-W., DDS, MS, MSab and J. Zhang (2007). "Comparing Text-based and

Graphic User Interfaces for Novice and Expert Users." AMIA Annu Symp Proc.:

125–129.

Chisholm, W., G. Vanderheiden and T. R. D. C. U. o. W.-.-. Madison;. (2000).

"HTML Techniques for Web Content Accessibility Guidelines 1.0." Retrieved 22

May 2011, from http://www.w3.org/TR/2000/NOTE-WCAG10-HTML-TECHS-

20001106/.

Cooley, R., B. Mobasher and J. Srivsatava. (1997). Web Mining: Information and

Pattern Discovery on the Word Wide Web. the 9th IEEE International Conference on

Tools with AI (ICTAI,97).

 Bibliography 179

Delaglio, F. G., S. Vuister, G. W. Zhu, G. Pfeifer, J. Bax, A. (1995). "NMR Pipe: A

multidimensional spectral processing system based on UNIX pipes." JOURNAL OF

BIOMOLECULAR NMR Vol 6(3): 277-293.

Duboc, A. L. d. C. L. (2009). A Framework for the Characterization and Analysis of

Software Systems Scalability. PhD, University College London.

Eser, K., H. Eben, B. Rob, C. Allen, M. Paul and Z. Haixia (2005). A1: end-user

programming for web-based system administration. Proceedings of the 18th annual

ACM symposium on User interface software and technology. Seattle, WA, USA,

ACM.

Fagan, J. C. (2007). Mashing up Multiple Web Feeds Using yahoo! pipes. Computers

in Libraries, Information Today Inc. 27: 10-17.

Foley, M. J. (2009). "Microsoft to shut down its Popfly mashup tool." Retrieved 4

June 2011, from http://www.zdnet.com/blog/microsoft/microsoft-to-shut-down-its-

popfly-mashup-tool/3378?tag=content;search-results-rivers.

Freed, N. and N. Borenstein. (1996). "Multipurpose Internet Mail Extensions."

Request for Comments: 2046; Retrieved 25th Jan, 2010 from

http://www.ietf.org/rfc/rfc2046.txt.

Freed, N. and N. Borenstein (1996). Multipurpose Internet Mail Extensions Part One:

Format of Internet Message Bodies, RFC 2046, Network Working Group, Internet

Engineering Task Force (IETF).

Freeman, E., E. Freeman, B. Bates and K. Sierra (2004). Head First Design Patterns,

O' Reilly & Associates, Inc.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1995). Design patterns: elements

of reusable object-oriented software, Addison-Wesley Longman Publishing Co., Inc.

Garshol, L. M. (2003). "BNF and EBNF: What Are They And How Do They

Work?" Retrieved 31 May 2011, from

http://www.massey.ac.nz/~kahawick/159331/BNF+EBNF-Garshol.pdf.

 Bibliography 180

Group, M. M. (2011). "World Internet Users and Population Stats." Retrieved 12

May 2011, 2008, from http://www.internetworldstats.com/stats.htm.

Hall, W., G. Hill and H. Davis (1993). The microcosm link service. Proceedings of

the fifth ACM conference on Hypertext. Seattle, Washington, United States, ACM:

256-259.

Hammersley, B. (2005). Developing Feeds with Rss and Atom, O'Reilly.

Heydon, A. and M. Najork (1999). "Mercator: A scalable, extensible Web crawler."

WORLD WIDE WEB 2: 219-230.

Hinchcliffe, D. (2006). "The State of Web 2.0." Retrieved 15 April 2008, 2008,

from http://web2.wsj2.com/the_state_of_web_20.htm.

Hoffman, D. L. and T. P. Novak (2000). "How to acquire customers on the web."

Harvard business review 78(3): 179-188.

Holovaty, A. (2008). "In memory of chicagocrime.org." Retrieved 31 March 2008,

2008, from http://www.holovaty.com/blog/archive/2008/01/31/0102.

Hégaret, P. L. (2005). "Document object model." Retrieved 17th Jan 2011, from

http://www.w3.org/DOM.

Jackson, L. A. (1999). Using the Internet for training and development. Managing

human resources in the 21st century : from core concepts to strategic choice. E. E.

Kossek and R. N. Block. Cincinnati, Ohio, South-Western College Publ: 1-26.

Jacobs, I. and N. Walsh. (2004, 15 December 2004). "Architecture of the World

Wide Web, Volume One." W3C Recommendation Retrieved 1 july 2008, 2008, from

http://www.w3.org/TR/2004/REC-webarch-20041215/.

Jeffrey I. Cole, M. Suman, P. Schramm, R. Lunn, J.-S. Aquino, D. Firth, D. Fortier,

P. Gussin, K. Hanson, W. Huang, R. Singh, M. Song, M. West and Y. Yamauchi

(2003). The UCLA Internet Report - year three. Surveying the Digital Future, UCLA

Center for Communication Policy.

 Bibliography 181

Jeffrey, P. B. (2007). "Accessmonkey: enabling and sharing end user accessibility

improvements." SIGACCESS Access. Comput.(89): 3-6.

Jeffrey, P. B. and E. L. Richard (2007). Accessmonkey: a collaborative scripting

framework for web users and developers. Proceedings of the 2007 international

cross-disciplinary conference on Web accessibility (W4A). Banff, Canada, ACM.

Jeffrey, P. B. and E. L. Richard (2007). Accessmonkey: a collaborative scripting

framework for web users and developers. Banff, Canada, ACM.

Jeffrey, W. (2007). Marmite: Towards End-User Programming for the Web.

Proceedings of the IEEE Symposium on Visual Languages and Human-Centric

Computing, IEEE Computer Society.

Jun, F., L. Aran, H. Kasper, amp and T. Yuzuru (2004). Clip, connect, clone:

combining application elements to build custom interfaces for information access.

Santa Fe, NM, USA, ACM Press

Kennon, M., S. Rodgers and Sheldon (2002). "An Improved Way to Characterize

Internet Users." Journal of Advertising Research 42(5): 85-94.

Kodaganallur, V. (2004). "Incorporating Language Processing into Java

Applications: A JavaCC Tutorial." IEEE SOFTWARE 21(4): 70-77.

Kressin, M., B. Berger and B. P. Smith (1997). Method for adding a graphical user

interface to a command line application. US. 5617527.

Krulwich, B. (1997). "Automating the Internet: Agents as User Surrogates." IEEE

Internet Computing 1(4): 34-38.

Lawler, J. M. (1998). The UNIX language family. Using Computers in Linguistics.

H. A. Dry, Routledge.

Lawrence, E. (2008). Fiddler version (2.x) [Software]. Available from

http://www.fiddlertool.com/fiddler/version.asp.

Levine, J., T. Mason and D. Brown (1992). Lex & Yacc, O'Reilly.

Loton, T. (2008). Mashup Case Studies with Yahoo! Pipes, Lulu. com.

 Bibliography 182

Loui, R. P. (2008). "In Praise of Scripting: Real Programming Pragmatism."

Computer published by IEEE Computer Society 41(7): 22-26.

Lovis, C., M. K. Chapko, D. P. Martin, T. H. Payne, R. H. Baud, P. J. Hoey and S.

D. Fihn (2001). "Evaluation of a Command-line Parser-based Order Entry Pathway

for the Department of Veterans Affairs Electronic Patient Record." J Am Med

Inform Assoc. 8(5): 486–498.

Madria, S., S. Bhowmick, W. Ng and E. Lim (1999). "Research Issues in Web Data

Mining." LECTURE NOTES IN COMPUTER SCIENCE(1676): 303-312.

Manola, F. and E. Miller. (2004). "RDF Primer, W3C Recommendation 10 February

2004." Retrieved 29 March 2008, 2008, from http://www.w3.org/TR/2004/REC-

rdf-primer-20040210/.

Margaret, B., C. Curtis, P. Omkar, R. Gregg, S. Jay and W. Chris (2003). End-user

software engineering with assertions in the spreadsheet paradigm. Proceedings of the

25th International Conference on Software Engineering. Portland, Oregon, IEEE

Computer Society.

Marianna, O., G. David, B. Petter Bae and T. Manfred (2008). Design for creating,

uploading and sharing user generated content. CHI '08 extended abstracts on Human

factors in computing systems. Florence, Italy, ACM.

Markoff, J. (2008). "Mashups Are Breaking the Mold at Microsoft." Retrieved 29

May 2011, from http://www.nytimes.com/2008/02/10/business/10slipstream.html.

Meeyoung, C., K. Haewoon, R. Pablo, A. Yong-Yeol and M. Sue (2007). I tube, you

tube, everybody tubes: analyzing the world's largest user generated content video

system. Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement. San Diego, California, USA, ACM.

Miller, R. C. (2002). Lightweight Structure in Text. PhD, Carnegie Mellon

University.

 Bibliography 183

Miller, R. C. and K. Bharat (1998). "SPHINX: a framework for creating personal,

site-specific Web crawlers." Computer Networks and ISDN Systems 30(1-7): 119-

130.

Miller, R. C. and B. A. Myers (1999). Lightweight Structured Text Processing.

USENIX 1999 Annual Technical Conference, Monterey, CA.

Miller, R. C. and B. A. Myers (2000). Integrating a Command Shell into a Web

Browser. USENIX 2000 Annual Technical Conference.

Murugesan, S. (2007). "Understanding Web 2.0." IT Professional 9(4): 34-41.

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End User

Computing. Cambridge, MA, USA. , MIT Press.

Nelson, T. H. (1965). Complex information processing: a file structure for the

complex, the changing and the indeterminate. Proceedings of the 1965 20th national

conference. Cleveland, Ohio, United States, ACM.

Noda, T. and S. Helwig (2005). Rich Internet Applications, Best Practices Report

from UW E-Business Consortium.

O'Reilly, T. (2005). "What Is Web 2.0." Retrieved 22 September 2007, from

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

O'Reilly, T. (2006a). "Web 2.0 Compact Definition: Trying Again." Retrieved 15

April 2008, from http://radar.oreilly.com/archives/2006/12/web-20-compact-

definition-tryi.html.

O'Reilly, T. (2006b). "Levels of the Game: The Hierarchy of Web 2.0 Applications."

Retrieved 30 May 2005, from http://radar.oreilly.com/2006/07/levels-of-the-game-

the-hierarc.html.

O'Reilly, T. (2007a). "What Is Web 2.0: Design Patterns and Business Models for the

Next Generation of Software." COMMUNICATIONS AND STRATEGIES(65): 17-

38.

 Bibliography 184

O'Reilly, T. (2007b). "Pipes and Filters for the Internet." oreilly radar Retrieved 29

March 2008, from http://radar.oreilly.com/archives/2007/02/pipes-and-filters-for-the-

inte.html.

Oswald, D. (2006). "HTML Parser - Project Information." Retrieved 24 April 2008,

from http://htmlparser.sourceforge.net/.

Ousterhout, J. K. (1998). "Scripting: higher level programming for the 21st Century."

Computer 31(3): 23-30.

PC-World-Staff. (2008). "The 25 Most Innovative Products of the Year." 2008, from

http://www.pcworld.com/article/140663-

5/the_25_most_innovative_products_of_the_year.html.

Piero, F. (2010). Rich Internet Applications. R. Gustavo and S.-F. Fernando. 14: 9-

12.

Pilgrim, M. (2005). Greasemonkey Hacks: Tips & Tools for Remixing the Web with

Firefox, O'Reilly Media.

Powers, S. (2005). "What Are Syndication Feeds." O'Reilly Media, from

http://www.drexel.edu/irt_new/rmcweb/What_Are_Syndication_Feeds_PDF.pdf.

Ramachandran, S. (2010). "Web metrics: Size and number of resources." Retrieved

15th Jan, 2011, from http://code.google.com/speed/articles/web-metrics.html.

Ramey, C. (1994). "Bash, the Bourne-Again Shell." In ROSE 94. The Romanian

UNIX User Group.

Raymond, K. and B. Hendrik (2000). "Web mining research: a survey." SIGKDD

Explor. Newsl. 2(1): 1-15.

Rob, B., P. M. Paul and C. K. Daniel (1997). How to personalize the Web.

Proceedings of the SIGCHI conference on Human factors in computing systems.

Atlanta, Georgia, United States, ACM.

Shian-Hua, L., S. Chi-Sheng, C. Meng Chang, H. Jan-Ming, K. Ming-Tat and H.

Yueh-Ming (1998). Extracting classification knowledge of Internet documents with

 Bibliography 185

mining term associations: a semantic approach. Proceedings of the 21st annual

international ACM SIGIR conference on Research and development in information

retrieval. Melbourne, Australia, ACM.

Solonchev, A. (2003). Electronic commerce method and system utilizing integration

server, Google Patents.

Srivastava, T., P. Desikan and V. Kumar (2005). Web Mining – Concepts,

Applications and Research Directions. Foundations and Advances in Data Mining:

275-307.

Stones, R., N. Matthew and A. Cox (2000). Beginning Linux Programming.

Svatek, V., J. Kosek, M. Labsky, J. Braza, M. Kavalec, M. Vacura, V. Vavra and V.

Snasel (2003). Rainbow - Multiway Semantic Analysis of Websites. 14th

international Workshop on Database and Expert Systems Applications, Washington,

DC, IEEE Computer Society.

Taivalsaari, A., Tommi Mikkonen, D. Ingalls and K. Palacz (2008). Web Browser as

an Application Platform: The Lively Kernel Experience. Technical report, Sun

Microsystems.

Tholomé, E. (2009). "Farewell to Mashup Editor." Retrieved 4 June 2011, from

http://googlemashupeditor.blogspot.com/2009/07/farewell-to-mashup-editor.html.

Udell, J. (2000). Three Faces of XML in Zope. Services, Documents, Datastores. 8th

International Python Conference.

Wall, L., T. Christiansen and J. Orwant (2000). Programming Perl, O’Reilly &

Associates, Sebastopol, Calif.

Watt, D. A. and D. F. Brown (2000). Programming Language Processors in Java,

Prentice Hall.

Weinstock, C. B. and J. B. Goodenough (2006). On Systems Scalability, Technical

Note CMU/SEI-2006-TN-012,, Software Engineering Institute.

 Bibliography 186

William, H. D., J. H. Ellen and G. Monica (2009). Oxford Internet survey 2009

report: the Internet in Britain, Oxford Internet Institute.

Williams, L. G. and C. U. Smith (2004). Web Application Scalability: A model-

based approach. Technical report. Software Engineering Research and Performance

Engineering Services.

Winer, D. (2003). "RSS 2.0 at Harvard Law." Retrieved 29 March 2008, 2008, from

http://cyber.law.harvard.edu/rss/rss.html.

Yahoo. (2007). "Yahoo Pipes." Retrieved 10 September 2007, from

http://pipes.yahoo.com/pipes/.

Yann, L. L. (2005). "From boom to bust and back again." Retrieved 26 june 2008,

2008, from http://news.zdnet.co.uk/internet/0,1000000097,39238833-1,00.htm.

Yuefeng, L. (2006). "Mining Ontology for Automatically Acquiring Web User

Information Needs." IEEE Transactions on Knowledge and Data Engineering 18:

554-568.

Yun, W., M. Satya and R. Arkalgud (2007). "A classification of product comparison

agents." Commun. ACM 50(8): 65-71.

Zaiane, O. R., X. Man and H. Jiawei (1998). Discovering Web access patterns and

trends by applying OLAP and data mining technology on Web logs. Research and

Technology Advances in Digital Libraries, 1998. ADL 98. Proceedings. IEEE

International.

 Appendices 187

APPENDIX A: RESEARCH ETHICS APPLICATION

School of Computer Science

Research Ethics Review Checklist

To be completed by the researcher or student undertaking the study

o This checklist should be completed for every research project that involves human
participants, use of personal data and/or biological material …

o … before potential participants are approached to take part in any research.
o The principal investigator, or the supervisor if the applicant is a student, is responsible

for exercising appropriate professional judgement in this review.
o Email the completed and signed form, together with attachments, to

cs-ethicsadmin@cs.nott.ac.uk The signature page may be scanned separately if

required and/or email approval given.

SECTION I: Applicant Details

1. Name Essam Mahmoud Mahmoud Omar Eliwa

2. Status Undergraduate Student / Postgraduate Student /

Staff

(circle as appropriate)

3. Email address psxee@nottingham.ac.uk

4. Date of application 10/01/2013

5. Is this a

resubmission?

Yes / No (circle as appropriate)

If Yes, please give details of changes in the description overleaf.

mailto:cs-ethicsadmin@cs.nott.ac.uk

 Appendices 188

SECTION II: For UG & Postgraduate Students Only

1. Module name and

number, or

MA/MSc/MPhil/PhD

course and department

PhD School of computer science

2. Supervisor’s name Colin Higgins, Peter Blanchfield

3. Student ID 4032979

Before completing this form, applicants should read the guidelines at

www.cs.nott.ac.uk/ethics and ensure that they understand

 what is defined as personal data;

 what is required for valid consent;

 the key requirements of the Data Protection Act

 the University of Nottingham Research Code of Conduct

The signature at the end of this form confirms that this has been done.

http://www.cs.nott.ac.uk/ethics

 Appendices 189

SECTION III: Project Details

1. Project Title

A Framework for Interactive End-user Web Automation

2. Proposed Start Date

and Period of Study

16
th

 Jan 2013 – 4 days

3. Description of Project,

including aims and

objectives

[Please include any

information which may

affect the consideration of

the ethics involved, eg

location of study, unusual

circumstances, age range

of participants.]

The purpose of this study is to create a datasets of Web

users’ feedback using Web automation systems. The

research investigates the feasibility and usefulness of a

Web-based model for end-user Web automation. The aim

is to empower end users to automate their Web

interactions. Web automation is defined here as the study

of theoretical and practical techniques for applying an end-

user programming model to enable the automation of Web

tasks, activities, or interactions.

Study is going to done online, participants can complete all

required tasks through their own personal computers.

All participants will be adults with some programming

experience.

The case study is performed using two web-based systems,

Web2Sh and Yahoo pipes. Half of the participants will be

requested to implement the tasks on Web2Sh first then

Yahoo pipes, the other half will do the same tasks on

Yahoo pipes then on Web2Sh. Hence, based on your group

the order of using the systems will be decided.

They are asked to fill the consent form and three

questionnaires. The flow of the study will be in the

 Appendices 190

following order:

1. Reading this instructions sheet and tasks

requirement and consenting to participate in the

study;

2. Complete a questionnaire collecting data about

your background and your experience as a web

user and/or programmer

3. Implement the tasks on the first system;

4. Complete a questionnaire collecting data about

your feedback;

5. Implement the tasks on the Second system;

6. Complete a questionnaire collecting data about

your feedback.

4. Will personal data or

biological materials be

collected, recorded

and/or analysed?

If Yes, please give details

of the data or materials

and the methods to be

used. Please describe

how safe storage will be

maintained according to

the Data Protection Act.

Yes / No [delete as applicable]

Participant Name (optional) and email (optional) is

collected in a separate contact info sheet. The email is used

only for possible follow up for future research and

informing interested participant of the outcome of the

study.

Raw data is stored initially on surveymonkey servers and

is protected under their privacy policy. This is available at:

http://www.surveymonkey.net/mp/policy/privacy-policy/

Data will be downloaded by the researcher using HTTPS

protocol, and will be randomised before its used for

analysis. Raw data will be deleted afterwards. Email

contacts will be stored in a password encrypted format on

the researcher University issued computer.

All recorded data will be stored anonymously and

confidentially. Where used in academic publications all

data will be aggregated and no personally identifiable

 Appendices 191

information will be published. Participation in this study is

voluntary; a Participant may withdraw from the study at

any time and for any reason without penalty.

SECTION IV: Research Checklist (Part 1) – for completion by the applicant

Please answer each question by ticking the appropriate box: Yes No

1. Does the study involve participants who are particularly vulnerable or

unable to give informed consent (ie children, people with learning

disabilities, prisoners, your own students)?

 NO

2. Will the study require the co-operation of a gatekeeper for the initial

access to the groups of individuals to be recruited (ie students at school,

members of a self-help group, residents of a nursing home)?

 NO

3. Will it be necessary for participants to take part in the study without their

knowledge and consent at the time (ie covert observation of people in non-

public places)?

 NO

4. Will the study involve the discussion of sensitive topics (ie sexual activity,

drug use)?

 NO

5. Will participants be asked to discuss anything or partake in any activity

that they may find embarrassing or traumatic?

 NO

6. Is it likely that the study will cause offence to participants for reasons of

ethnicity, religion, gender, sexual orientation or culture?

 NO

7. Are drugs, placebos or other substances (ie food substances, vitamins) to

be administered to the study participants or will the study involve invasive,

 NO

 Appendices 192

intrusive or potentially harmful procedures of any kind?

8. Will body fluids or biological material samples be obtained from

participants? (eg blood, tissue etc)

 NO

9. Is pain or more than mild discomfort likely to result from the study? NO

10. Could the study induce psychological stress or anxiety or cause harm or

negative consequences beyond the risks encountered in normal life?

 NO

11. Will the study involve prolonged or repetitive testing for each participant? NO

12. Will financial inducement (other than reasonable expenses and

compensation for time) be offered to participants?

 NO

13. Will the study involve the recruitment of patients, staff, tissue sample,

records or other data through the NHS or involve NHS sites and other

property? If yes, NHS REC and R&D approvals from the relevant Trusts

must be sought prior to the research being undertaken.

 NO

 Appendices 193

Research Checklist (Part 2) – for completion by the applicant

Please answer each question by ticking the appropriate box: Yes No Not

Applicable

14

.

For research conducted in public, non-governmental and private

organisations and institutions (such as schools, charities, companies and

offices), will approval be gained in advance from the appropriate

authorities?

 Not

Applicable

15

.

If the research uses human participants, personal data or the use of

biological material, will written consent be gained?

Yes

16

.

Will participants be informed of their right to withdraw from the study at any

time, without giving explanation?

Yes

17

.

If data is being collected, will this data be anonymised? Yes

18

.

Will participants be assured of the confidentiality of any data? Yes

19

.

Will all data be stored in accordance with the Data Protection Act 1998 Yes

20

.

Will participants be informed about who will have access to the data? Yes

21

.

If quotations from participants will be used, will participants be asked for

consent?

Yes

22

.

If audio-visual media (voice recording, video, photographs etc) will be

used, will participants be asked for consent?

 Not

Applicable

 Appendices 194

23

.

If digital media (eg computer records, http traffic, location logs etc) will be

used, will participants be asked for consent?

Yes

24

.

If the research involves contact with children, will the researchers have

appropriate CRB checks?

 Not

Applicable

If you have answered ‘no’ to all

questions in Part 1 and ‘yes’ to all

relevant questions in Part 2

This project is deemed to have minimal

ethical risks - go to signature page.

If you have answered ‘yes’ to any of

the questions in Part 1 or ‘no’ to any

of the questions in Part 2

Please describe in Section V why this is

necessary and how you plan to deal

with the ethical issues raised.

Please note that it is the applicant’s responsibility to follow the University of Nottingham’s

Code of Practice on Ethical Standards and any relevant academic or professional

guidelines in the conduct of the study. This includes providing appropriate

information sheets and consent forms, and ensuring confidentiality in the storage

and use of data.

Any significant change in the questions, design or conduct over the course of the

research should be notified to cs-ethicsadmin@cs.nott.ac.uk and may require a new

application for ethics approval.

 Appendices 195

SECTION V: Further Information as required for paragraph 2 above

[to be completed by the applicant]

None

 Appendices 196

RESEARCH ETHICS REVIEW CHECKLIST – SIGNATURE PAGE

SECTION VI: Applicant Declaration

Please tick to confirm each of the following statements before signing the form:

I confirm that I have read the University’s Code of Practice

I confirm that I have read the guidance documents listed on page 1

I confirm that the information provided in this application is correct

Signature of applicant: ………………………………………. Date: ……….………………….

Name of applicant: ………………………………..……………..

SECTION VII: Supervisor Declaration for UG and PG Applications

Name of Supervisor

Please tick to confirm each of the following has been approved before signing the

form:

The participant information sheet or leaflet is appropriate for this research

project

The procedures for recruiting and obtaining informed consent are appropriate

The data collection and storage methods, where applicable, are in accordance

with the Data Protection Act.

Have you received

training in research

ethics?

Yes /No [delete as applicable]

For UG and PG Taught

only:

[Initial the statement

which is applicable]

This project involves minimal ethical risk and

DOES NOT REQUIRE consideration by the

Research Ethics Committee.

This project involves more than minimal risk and

 Appendices 197

DOES REQUIRE consideration by the Research

Ethics Committee

Signature

Date

SECTION VII: For completion by a School Research Ethics Committee

Member

This approval is only required prior to the research when:

- The checklist reveals more than minimal risk for participants and/or personal data;
and/or

- The research is being carried out by a member of staff or a PhD student.

Name of SREC member

Comments or suggestions

Decision

(circle as appropriate)

 Approve Revise Reject

Signature

Date

On completion, an email confirming the decision should be sent to the applicant and the

supervisor/principal investigator. The completed form will be kept by the School Office.

 Appendices 198

APPENDIX B: WSH FORMAL SPECIFICATION

DEFINITION FILES

(*

* This is the formal grammar of web2sh using EBNF

* Author: Essam Eliwa, esomar@gmail.com

*)

Script ::= 'start' , WhiteSpace , ['new' , WhiteSpace ,

WebCommandName]

CodeBlock 'end;' ;

WebCommandName ::= Idetifier ;

Identifier ::= Letter {LetterOrDigit | '_'} ;

Letter ::=

'a'|'b'|'c'|'d'|'e'|'f'|'g'|'h'|'i'|'j'|'k'|'l'|'m'|'n'|'o'|'p'|'q'|

'r'|'s'

|'t'|'u'|'v'|'w'|'x'|'y'|'z'|

'A'|'B'|'C'|'D'|'E'|'F'|'G'|'H'|'I'|'J'|'K'|'L'|'M'|'N'|'O'|'P'|'Q'|

'R'|'S'

|'T'|'U'|'V'|'W'|'X'|'Y'|'Z' ;

Digit ::= '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9' ;

LetterOrDigit ::= Letter | Digit ;

Number ::= ['-'] Digit {Digit} ['.'] {Digit};

WhiteSpace ::= ' ' , {' '} ;

CodeBlock ::= '{' {Statement} '}' ;

VariableName ::= '$' , Idetifier ;

UnOp ::= '!' ;

BinOp ::= '+' | '-' | '*' | '/' | '^' | '%' ;

LogOp ::= '<' | '<=' | '>' | '>=' | '==' | '!=' ;

EqOp ::= '=' ;

Eos ::= ';' ;

Character ::= ? All Unicode characters - '"' ? ;

String ::= '"' {Character} '"' ;

Redirection ::= '=>' , (VariableName | FilePath) |

'=>>' , (VariableName | FilePath) ;

FilePath ::= [Character {Character} '/'] , (FilePath | FileName) ;

FileName ::= Character {Character} ;

Expression ::= "null" | "false" | "true" | Number | String | Item |

VariableName | Expression BinOp Expression | UnOp Expression ;

TagName ::= '<' , Idetifier

Item ::= TagName, { WhiteSpace, Idetifier , EqOp, String } , ('/>' |

{Character | Item}, TagName, '/>')

LogExp ::= Expression , LogOp , Expression [WhiteSpace 'and'

LogExp] [

WhiteSpace 'Or' LogExp] ;

WebCommand ::= WebCommandName , { WhiteSpace , Flag} , { WhiteSpace

,

Parameters} ;

Flag ::= "-" LetterOrDigit {LetterOrDigit} ;

Parameter ::= String | Number | VariableName ;

Pipe ::= '|' , WebCommand ;

Tee ::= 'tee' , (WebCommand | FilePath) , Pipe ;

Stmt ::= WebCommand , [{Pipe} | Tee | Redirection] , Eos |

VariableName , `=´ , Expression , Eos | ;

/**

* JavaCC basic web2sh parser grammar

* Author: Essam Eliwa, esomar@gmail.com

*/

 Appendices 199

//

options

{

JDK_VERSION = "1.6";

LOOKAHEAD= 1;

STATIC = false;

ERROR_REPORTING = true;

JAVA_UNICODE_ESCAPE = true;

DEBUG_PARSER = false;

DEBUG_LOOKAHEAD = false;

DEBUG_TOKEN_MANAGER = false;

COMMON_TOKEN_ACTION = true;

IGNORE_CASE = true;

VISITOR = true;

MULTI = true;

NODE_EXTENDS = "org.web2sh.nodes.MyNode";

TRACK_TOKENS = true;

/*TRACK_TOKENS Inserts jjtGetFirstToken(), jjtSetFirstToken(),

// getLastToken(), and jjtSetLastToken() methods in SimpleNode.

// The FirstToken is automatically set up on entry to a node scope;

// the LastToken is automatically set up on exit from a node scope*/

}

PARSER_BEGIN(web2shParser)

package org.web2sh.parser;

import java.io.*;

import java.util.*;

import org.web2sh.nodes.*;

import org.web2sh.interpreter.*;

import org.web2sh.io.streams.*;

public class web2shParser

{

/**

* send AST to Interpreter (the root node of the AST) after a

successful

parse.

* @return the void

*/

public void rootNode()

{

Web2shInterpreter interpreter = new

Web2shInterpreter(jjtree.rootNode());

// return jjtree.rootNode();

}

}

PARSER_END(web2shParser)

SKIP :

{

" "

| "\t"

| "\n"

| "\r"

}

TOKEN_MGR_DECLS :

{

private List < Comment > comments = new ArrayList < Comment > ();

//this arraylist hold all the program tokens to access any token

data

later on if needed,

//to be checked later

// public ArrayList < Token > tokens = new ArrayList < Token > ();

public List < Comment > getComments()

 Appendices 200

{

return comments;

}

public void clearComments()

{

comments.clear();

}

private void CommonTokenAction(Token token)

{

//tokens.add(token);

if (token.specialToken != null)

{

Token special = token.specialToken;

if (special.kind == SINGLE_LINE_COMMENT)

{

LineComment comment = new LineComment(special.beginLine,

special.beginColumn, special.endLine, special.endColumn,

special.image.substring(2));

comments.add(comment);

}

else if (special.kind == MULTI_LINE_COMMENT)

{

BlockComment comment = new BlockComment(special.beginLine,

special.beginColumn, special.endLine, special.endColumn,

special.image.substring(2, special.image.length() - 2));

comments.add(comment);

}

}

}

}

/* Handling Comments */

SPECIAL_TOKEN :

{

< SINGLE_LINE_COMMENT :

"//" (~["\n", "\r"])*

(

"\n"

| "\r"

| "\r\n"

)? >

}

MORE :

{

< "/*" > : IN_MULTI_LINE_COMMENT

}

< IN_MULTI_LINE_COMMENT >

SPECIAL_TOKEN :

{

< MULTI_LINE_COMMENT : "*/" > : DEFAULT

}

< IN_MULTI_LINE_COMMENT >

MORE :

{

< ~[] >

}

/* RESERVED WORDS AND LITERALS */

TOKEN : /* KEY WORDS */

{

< EXIT : "exit" ";" >

{

System.out.println("Quitting...");

 Appendices 201

System.exit(0);

}

}

TOKEN : /* OPERATORS */

{

< PIPE : "|" >

| < TEE : "tee" >

}

TOKEN :

{

< VARNAME : "$" < IDENTIFIER > >

| < IDENTIFIER :

< LETTER >

(

< LETTER >

| < DIGIT >

)* >

| < FLAG :

"-"

(

< LETTER >

| < DIGIT >

) >

| < #LETTER : ["_", "a"-"z", "A"-"Z"] >

| < #DIGIT : ["0"-"9"] >

}

TOKEN :

{

< CHARACTER_LITERAL :

"'"

(

(~["'", "\\", "\n", "\r"])

|

(

"\\"

(

["n", "t", "b", "r", "f", "\\", "'", "\""]

| ["0"-"7"] (["0"-"7"])?

| ["0"-"3"] ["0"-"7"] ["0"-"7"]

)

)

| ("\\u"

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

)

)

"'"

>

|

< STRING_LITERAL :

"\""

(

(~["\"", "\\", "\n", "\r"])

|

(

"\\"

(

["n", "t", "b", "r", "f", "\\", "'", "\""]

| ["0"-"7"] (["0"-"7"])?

 Appendices 202

| ["0"-"3"] ["0"-"7"] ["0"-"7"]

)

)

| ("\\u"

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

)

)*

"\""

>

}

SimpleNode start() #Program :

{

ASTPipedCommand rootNode;

}

{

rootNode = pipedCom() ";"

{

jjtThis.setName("Program");

jjtThis.setImage(rootNode.getImage());

jjtThis.setData(rootNode.getData());

return jjtThis;

}

}

ASTPipedCommand pipedCom() #PipedCommand :

{

SimpleNode node;

SimpleNode connector;

jjtThis.setName("PipedCommand");

}

{

node = webCom() { jjtThis.setData(node.getData());

jjtThis.setImage(node.getImage());}

(

connector = pipe() node = webCom(){ jjtThis.addData(node.getData());

jjtThis.setImage(connector.getImage() +node.getImage()); }

| connector = tee() node = params() {

jjtThis.addData(node.getData());

jjtThis.setImage(connector.getImage() +node.getImage()); }

)*

{

return jjtThis;

}

}

ASTWebCommand webCom() #WebCommand :

{

Token t;

ASTParams params;

ASTFlags flags;

}

{

t = Identifier()

{

jjtThis.setImage(t.image);

jjtThis.setName(t.image);

}

(

flags = flags()

{

 Appendices 203

jjtThis.setImage(flags.getImage());

flags.setType("FLAG");

jjtThis.addData(0, flags);

}

)?

(

params = params()

{

jjtThis.setImage(params.getImage());

params.setType("PARAM");

jjtThis.addData(1, params);

}

)?

{

return jjtThis;

}

}

Token Identifier() #void :

{

Token t;

}

{

t = < IDENTIFIER >

{

return t;

}

}

ASTFlag flag() #Flag :

{

Token t;

jjtThis.setName("flag");

}

{

t = < FLAG >

{

jjtThis.setImage(t.image);

jjtThis.addData(t);

return jjtThis;

}

}

ASTFlags flags() #Flags :

{

ASTFlag flagNode;

jjtThis.setName("flags");

}

{

(

flagNode = flag()

{

jjtThis.setImage(flagNode.getImage());

jjtThis.addData(flagNode);

}

)+

{

return jjtThis;

}

}

ASTParam param() #Param :

{

Token t;

jjtThis.setName("param");

 Appendices 204

}

{

t = < VARNAME >

{

jjtThis.setImage(t.image);

jjtThis.setType("var");

return jjtThis;

}

|

t = < STRING_LITERAL >

{

jjtThis.addData(t);

jjtThis.setImage(t.image);

jjtThis.setType("String");

return jjtThis;

}

}

ASTParams params() #Params :

{

ASTParam paramNode;

jjtThis.setName("params");

}

{

(

paramNode = param()

{

jjtThis.setImage(paramNode.getImage());

jjtThis.addData(paramNode);

}

)+

{

return jjtThis;

}

}

ASTPIPE pipe() #PIPE :

{

jjtThis.setName("PIPE");

Token t;

}

{

t = < PIPE >

{

jjtThis.addData(t);

jjtThis.setImage(t.image);

return jjtThis;

}

}

ASTTEE tee() #TEE :

{

jjtThis.setName("TEE");

Token t;

}

{

t = < TEE >

{

jjtThis.addData(t);

jjtThis.setImage(t.image);

return jjtThis;

}

}

/*@bgen(jjtree) Generated By:JJTree: Do not edit this line.

 Appendices 205

web2shGrammar.jj */

/*@egen*/ /**

* JavaCC WSh parser grammar, generated by JJTree

*/

//

options

{

JDK_VERSION = "1.6";

LOOKAHEAD= 1;

STATIC = false;

ERROR_REPORTING = true;

JAVA_UNICODE_ESCAPE = true;

DEBUG_PARSER = false;

DEBUG_LOOKAHEAD = false;

DEBUG_TOKEN_MANAGER = false;

COMMON_TOKEN_ACTION = true;

IGNORE_CASE = true;

}

PARSER_BEGIN(web2shParser)

package org.web2sh.parser;

import java.io.*;

import java.util.*;

import org.web2sh.nodes.*;

import org.web2sh.interpreter.*;

import org.web2sh.io.streams.*;

public class web2shParser/*@bgen(jjtree)*/implements

web2shParserTreeConstants/*@egen*/

{/*@bgen(jjtree)*/

protected JJTweb2shParserState jjtree = new JJTweb2shParserState();

/*@egen*/

/**

* send AST to Interpreter (the root node of the AST) after a

successful

parse.

* @return the void

*/

public void rootNode()

{

Web2shInterpreter interpreter = new

Web2shInterpreter(jjtree.rootNode());

// return jjtree.rootNode();

}

}

PARSER_END(web2shParser)

SKIP :

{

" "

| "\t"

| "\n"

| "\r"

}

TOKEN_MGR_DECLS :

{

private List < Comment > comments = new ArrayList < Comment > ();

//this arraylist hold all the program tokens to access any token

data

later on if needed,

//to be checked later

// public ArrayList < Token > tokens = new ArrayList < Token > ();

public List < Comment > getComments()

{

 Appendices 206

return comments;

}

public void clearComments()

{

comments.clear();

}

private void CommonTokenAction(Token token)

{

//tokens.add(token);

if (token.specialToken != null)

{

Token special = token.specialToken;

if (special.kind == SINGLE_LINE_COMMENT)

{

LineComment comment = new LineComment(special.beginLine,

special.beginColumn, special.endLine, special.endColumn,

special.image.substring(2));

comments.add(comment);

}

else if (special.kind == MULTI_LINE_COMMENT)

{

BlockComment comment = new BlockComment(special.beginLine,

special.beginColumn, special.endLine, special.endColumn,

special.image.substring(2, special.image.length() - 2));

comments.add(comment);

}

}

}

}

/* Handling Comments */

SPECIAL_TOKEN :

{

< SINGLE_LINE_COMMENT :

"//" (~["\n", "\r"])*

(

"\n"

| "\r"

| "\r\n"

)? >

}

MORE :

{

< "/*" > : IN_MULTI_LINE_COMMENT

}

< IN_MULTI_LINE_COMMENT >

SPECIAL_TOKEN :

{

< MULTI_LINE_COMMENT : "*/" > : DEFAULT

}

< IN_MULTI_LINE_COMMENT >

MORE :

{

< ~[] >

}

/* RESERVED WORDS AND LITERALS */

TOKEN : /* KEY WORDS */

{

< EXIT : "exit" ";" >

{

System.out.println("Quitting...");

System.exit(0);

 Appendices 207

}

}

TOKEN : /* OPERATORS */

{

< PIPE : "|" >

| < TEE : "tee" >

}

TOKEN :

{

< VARNAME : "$" < IDENTIFIER > >

| < IDENTIFIER :

< LETTER >

(

< LETTER >

| < DIGIT >

)* >

| < FLAG :

"-"

(

< LETTER >

| < DIGIT >

) >

| < #LETTER : ["_", "a"-"z", "A"-"Z"] >

| < #DIGIT : ["0"-"9"] >

}

TOKEN :

{

< CHARACTER_LITERAL :

"'"

(

(~["'", "\\", "\n", "\r"])

|

(

"\\"

(

["n", "t", "b", "r", "f", "\\", "'", "\""]

| ["0"-"7"] (["0"-"7"])?

| ["0"-"3"] ["0"-"7"] ["0"-"7"]

)

)

| ("\\u"

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

)

)

"'"

>

|

< STRING_LITERAL :

"\""

(

(~["\"", "\\", "\n", "\r"])

|

(

"\\"

(

["n", "t", "b", "r", "f", "\\", "'", "\""]

| ["0"-"7"] (["0"-"7"])?

| ["0"-"3"] ["0"-"7"] ["0"-"7"]

 Appendices 208

)

)

| ("\\u"

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

["0"-"9", "A"-"F", "a"-"f"]

)

)*

"\""

>

}

SimpleNode start() :

{/*@bgen(jjtree) Program */

ASTProgram jjtn000 = new ASTProgram(JJTPROGRAM);

boolean jjtc000 = true;

jjtree.openNodeScope(jjtn000);

jjtn000.jjtSetFirstToken(getToken(1));

/*@egen*/

ASTPipedCommand rootNode;

}

{/*@bgen(jjtree) Program */

try {

/*@egen*/

rootNode = pipedCom() ";"/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

/*@egen*/

{

jjtn000.setName("Program");

jjtn000.setImage(rootNode.getImage());

jjtn000.setData(rootNode.getData());

return jjtn000;

}/*@bgen(jjtree)*/

} catch (Throwable jjte000) {

if (jjtc000) {

jjtree.clearNodeScope(jjtn000);

jjtc000 = false;

} else {

jjtree.popNode();

}

if (jjte000 instanceof RuntimeException) {

throw (RuntimeException)jjte000;

}

if (jjte000 instanceof ParseException) {

throw (ParseException)jjte000;

}

throw (Error)jjte000;

} finally {

if (jjtc000) {

jjtree.closeNodeScope(jjtn000, true);

jjtn000.jjtSetLastToken(getToken(0));

}

}

/*@egen*/

}

ASTPipedCommand pipedCom() :

{/*@bgen(jjtree) PipedCommand */

 Appendices 209

ASTPipedCommand jjtn000 = new ASTPipedCommand(JJTPIPEDCOMMAND);

boolean jjtc000 = true;

jjtree.openNodeScope(jjtn000);

jjtn000.jjtSetFirstToken(getToken(1));

/*@egen*/

SimpleNode node;

SimpleNode connector;

jjtn000.setName("PipedCommand");

}

{/*@bgen(jjtree) PipedCommand */

try {

/*@egen*/

node = webCom() { jjtn000.setData(node.getData());

jjtn000.setImage(node.getImage());}

(

connector = pipe() node = webCom(){ jjtn000.addData(node.getData());

jjtn000.setImage(connector.getImage() +node.getImage()); }

| connector = tee() node = params() {

jjtn000.addData(node.getData());

jjtn000.setImage(connector.getImage() +node.getImage()); }

)*/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

/*@egen*/

{

return jjtn000;

}/*@bgen(jjtree)*/

} catch (Throwable jjte000) {

if (jjtc000) {

jjtree.clearNodeScope(jjtn000);

jjtc000 = false;

} else {

jjtree.popNode();

}

if (jjte000 instanceof RuntimeException) {

throw (RuntimeException)jjte000;

}

if (jjte000 instanceof ParseException) {

throw (ParseException)jjte000;

}

throw (Error)jjte000;

} finally {

if (jjtc000) {

jjtree.closeNodeScope(jjtn000, true);

jjtn000.jjtSetLastToken(getToken(0));

}

}

/*@egen*/

}

ASTWebCommand webCom() :

{/*@bgen(jjtree) WebCommand */

ASTWebCommand jjtn000 = new ASTWebCommand(JJTWEBCOMMAND);

boolean jjtc000 = true;

jjtree.openNodeScope(jjtn000);

jjtn000.jjtSetFirstToken(getToken(1));

/*@egen*/

Token t;

ASTParams params;

 Appendices 210

ASTFlags flags;

}

{/*@bgen(jjtree) WebCommand */

try {

/*@egen*/

t = Identifier()

{

jjtn000.setImage(t.image);

jjtn000.setName(t.image);

}

(

flags = flags()

{

jjtn000.setImage(flags.getImage());

flags.setType("FLAG");

jjtn000.addData(0, flags);

}

)?

(

params = params()

{

jjtn000.setImage(params.getImage());

params.setType("PARAM");

jjtn000.addData(1, params);

}

)?/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

/*@egen*/

{

return jjtn000;

}/*@bgen(jjtree)*/

} catch (Throwable jjte000) {

if (jjtc000) {

jjtree.clearNodeScope(jjtn000);

jjtc000 = false;

} else {

jjtree.popNode();

}

if (jjte000 instanceof RuntimeException) {

throw (RuntimeException)jjte000;

}

if (jjte000 instanceof ParseException) {

throw (ParseException)jjte000;

}

throw (Error)jjte000;

} finally {

if (jjtc000) {

jjtree.closeNodeScope(jjtn000, true);

jjtn000.jjtSetLastToken(getToken(0));

}

}

/*@egen*/

}

Token Identifier() :

{

Token t;

}

 Appendices 211

{

t = < IDENTIFIER >

{

return t;

}

}

ASTFlag flag() :

{/*@bgen(jjtree) Flag */

ASTFlag jjtn000 = new ASTFlag(JJTFLAG);

boolean jjtc000 = true;

jjtree.openNodeScope(jjtn000);

jjtn000.jjtSetFirstToken(getToken(1));

/*@egen*/

Token t;

jjtn000.setName("flag");

}

{/*@bgen(jjtree) Flag */

try {

/*@egen*/

t = < FLAG >/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

/*@egen*/

{

jjtn000.setImage(t.image);

jjtn000.addData(t);

return jjtn000;

}/*@bgen(jjtree)*/

} finally {

if (jjtc000) {

jjtree.closeNodeScope(jjtn000, true);

jjtn000.jjtSetLastToken(getToken(0));

}

}

/*@egen*/

}

ASTFlags flags() :

{/*@bgen(jjtree) Flags */

ASTFlags jjtn000 = new ASTFlags(JJTFLAGS);

boolean jjtc000 = true;

jjtree.openNodeScope(jjtn000);

jjtn000.jjtSetFirstToken(getToken(1));

/*@egen*/

ASTFlag flagNode;

jjtn000.setName("flags");

}

{/*@bgen(jjtree) Flags */

try {

/*@egen*/

(

flagNode = flag()

{

jjtn000.setImage(flagNode.getImage());

jjtn000.addData(flagNode);

}

)+/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

 Appendices 212

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

/*@egen*/

{

return jjtn000;

}/*@bgen(jjtree)*/

} catch (Throwable jjte000) {

if (jjtc000) {

jjtree.clearNodeScope(jjtn000);

jjtc000 = false;

} else {

jjtree.popNode();

}

if (jjte000 instanceof RuntimeException) {

throw (RuntimeException)jjte000;

}

if (jjte000 instanceof ParseException) {

throw (ParseException)jjte000;

}

throw (Error)jjte000;

} finally {

if (jjtc000) {

jjtree.closeNodeScope(jjtn000, true);

jjtn000.jjtSetLastToken(getToken(0));

}

}

/*@egen*/

}

ASTParam param() :

{/*@bgen(jjtree) Param */

ASTParam jjtn000 = new ASTParam(JJTPARAM);

boolean jjtc000 = true;

jjtree.openNodeScope(jjtn000);

jjtn000.jjtSetFirstToken(getToken(1));

/*@egen*/

Token t;

jjtn000.setName("param");

}

{/*@bgen(jjtree) Param */

try {

/*@egen*/

t = < VARNAME >/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

/*@egen*/

{

jjtn000.setImage(t.image);

jjtn000.setType("var");

return jjtn000;

}

|

t = < STRING_LITERAL >/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

 Appendices 213

/*@egen*/

{

jjtn000.addData(t);

jjtn000.setImage(t.image);

jjtn000.setType("String");

return jjtn000;

}/*@bgen(jjtree)*/

} finally {

if (jjtc000) {

jjtree.closeNodeScope(jjtn000, true);

jjtn000.jjtSetLastToken(getToken(0));

}

}

/*@egen*/

}

ASTParams params() :

{/*@bgen(jjtree) Params */

ASTParams jjtn000 = new ASTParams(JJTPARAMS);

boolean jjtc000 = true;

jjtree.openNodeScope(jjtn000);

jjtn000.jjtSetFirstToken(getToken(1));

/*@egen*/

ASTParam paramNode;

jjtn000.setName("params");

}

{/*@bgen(jjtree) Params */

try {

/*@egen*/

(

paramNode = param()

{

jjtn000.setImage(paramNode.getImage());

jjtn000.addData(paramNode);

}

)+/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

/*@egen*/

{

return jjtn000;

}/*@bgen(jjtree)*/

} catch (Throwable jjte000) {

if (jjtc000) {

jjtree.clearNodeScope(jjtn000);

jjtc000 = false;

} else {

jjtree.popNode();

}

if (jjte000 instanceof RuntimeException) {

throw (RuntimeException)jjte000;

}

if (jjte000 instanceof ParseException) {

throw (ParseException)jjte000;

}

throw (Error)jjte000;

} finally {

if (jjtc000) {

jjtree.closeNodeScope(jjtn000, true);

 Appendices 214

jjtn000.jjtSetLastToken(getToken(0));

}

}

/*@egen*/

}

ASTPIPE pipe() :

{/*@bgen(jjtree) PIPE */

ASTPIPE jjtn000 = new ASTPIPE(JJTPIPE);

boolean jjtc000 = true;

jjtree.openNodeScope(jjtn000);

jjtn000.jjtSetFirstToken(getToken(1));

/*@egen*/

jjtn000.setName("PIPE");

Token t;

}

{/*@bgen(jjtree) PIPE */

try {

/*@egen*/

t = < PIPE >/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

/*@egen*/

{

jjtn000.addData(t);

jjtn000.setImage(t.image);

return jjtn000;

}/*@bgen(jjtree)*/

} finally {

if (jjtc000) {

jjtree.closeNodeScope(jjtn000, true);

jjtn000.jjtSetLastToken(getToken(0));

}

}

/*@egen*/

}

ASTTEE tee() :

{/*@bgen(jjtree) TEE */

ASTTEE jjtn000 = new ASTTEE(JJTTEE);

boolean jjtc000 = true;

jjtree.openNodeScope(jjtn000);

jjtn000.jjtSetFirstToken(getToken(1));

/*@egen*/

jjtn000.setName("TEE");

Token t;

}

{/*@bgen(jjtree) TEE */

try {

/*@egen*/

t = < TEE >/*@bgen(jjtree)*/

{

jjtree.closeNodeScope(jjtn000, true);

jjtc000 = false;

jjtn000.jjtSetLastToken(getToken(0));

}

/*@egen*/

{

jjtn000.addData(t);

jjtn000.setImage(t.image);

 Appendices 215

return jjtn000;

}/*@bgen(jjtree)*/

} finally {

if (jjtc000) {

jjtree.closeNodeScope(jjtn000, true);

jjtn000.jjtSetLastToken(getToken(0));

}

}

/*@egen*/

}

 Appendices 216

APPENDIX C: WEB2SH EXECUTE SERVLET

package org.web2sh.ajax;

import java.io.*;

import java.util.ArrayList;

import javax.servlet.*;

import javax.servlet.http.*;

import org.web2sh.cmds.AbstractWebCommand;

import org.web2sh.cmds.WebFinish;

import org.web2sh.parser.ParseException;

import org.web2sh.parser.SimpleNode;

import org.web2sh.parser.TokenMgrError;

import org.web2sh.parser.web2shParser;

import org.web2sh.parser.web2shParserVisitor;

import org.web2sh.parser.visitor.InterpreterVisitor;

/**

* ExecuteServlet is responsible for receiving the user commands via HTTP servlet

request

* and process the request then returning

* the result over HTTP using AJAX technology

*

* @author Essam Eliwa

* @version 1.0

*/

public class ExecuteServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

private ServletContext context;

/**

* Reference to the command interface.

*/

AbstractWebCommand finish;

/**

* Reference to Reader class.

*/

org.web2sh.cmds.Reader reader;

/**

* @see javax.servlet.GenericServlet#init(javax.servlet.ServletConfig)

*/

public void init(ServletConfig config) throws ServletException {

this.context = config.getServletContext();

// System.out.println("******INFO****** Servlet context is: " +

// context.getContextPath());

}

/**

* read the request data, write the response data.

* @see javax.servlet.http.HttpServlet#doGet(javax.servlet.http.HttpServletRequest,

javax.servlet.http.HttpServletResponse)

*/

public void doGet(HttpServletRequest request, HttpServletResponse response)

 Appendices 217

throws IOException, ServletException {

String code = request.getParameter("command");

// Extract the comName which is a new command name , it will be empty

// if user was not creating new command

// target will hold the code to run.

// String newComName = request.getParameter("comName");

// have value only when create command used

// // Commented, used for for testing

// WebComParser comParser=new WebComParser(code ,newComName);

// comParser.executeStmt(code);

web2shParser parser = new web2shParser(new StringReader(code));

SimpleNode rootNode;

String result;

try {

// here traces one entry (pipedcommand/program/line)

ArrayList<String> myTracerData = new ArrayList<String>();

rootNode = parser.start();

System.out.println("rootNode string: " + rootNode.toString());

// rootNode.jjtAccept((web2shParserVisitor)new DumpPrintVistor(),

// null);

// rootNode.dump(">> ");

result = "
 for code :" + code;

// result="
output is : " +

// rootNode.jjtAccept((web2shParserVisitor)new DumpPrintVistor(),

// null);//comParser.getResult();

finish = (AbstractWebCommand) rootNode.jjtAccept(

(web2shParserVisitor) new InterpreterVisitor(),

myTracerData);

// reader = new

org.web2sh.cmds.Reader(finish.getSTDIN_Next_com());

response.setContentType("text/xml");

response.setHeader("Cache-Control", "no-cache");

finish.setWebPrintWriter(response.getWriter());

finish.writeToWeb();

/*

* boolean success = false; int counter = 0; StringBuffer item = new

* StringBuffer(); int read = -1; while (!success && counter < 5) {

*

* try { read = reader.readItem(item); //

* System.out.println(item.toString()); success = true; } catch

* (IOException e) { counter++; success = false;

* System.out.print("Finish --> Reading Fail, Wait and retry\n");

* Thread.sleep(1000); e.printStackTrace(); }

*

* }

*

* result += "
output is : " + item.toString()

* +"---aaa";//comParser.getResult();

*

* System.out.println("res string: " + item.toString());

 Appendices 218

*/

} catch (ParseException e) {

System.err.println("***INFO*** Web2sh Parse Exception: \n"

+ e.getMessage());

parser.ReInit(System.in);

result = "***INFO*** Web2sh Parse Exception: \n" + e.getMessage()

+ "
 code is:" + code;

} catch (TokenMgrError e) {

System.err.println("***INFO*** Web2sh TokenMgrError: \n"

+ e.getMessage());

parser.ReInit(System.in);

result = "***INFO*** Web2sh TokenMgrError: \n" + e.getMessage();

} catch (Exception e) {

System.err.println("***INFO*** Web2sh Exception: \n"

+ e.getMessage());

parser.ReInit(System.in);

result = "***INFO*** Web2sh Exception: \n" + e.getMessage();

e.printStackTrace();

}

// code to call ShInterpreter class to run java code

// ShInterpreter intprtr= new ShInterpreter(target);

// String result=intprtr.getResult();

// /Writes the result to a temp file to be used to open in a new window

witeResultToFile(result);

// Send back either "<valid>true</valid>" or "<valid>false</valid>"

// XML message depending on the validity of the data that was entered.

// Note that the content type is "text/xml".

//

// response.setContentType("text/xml");

// response.setHeader("Cache-Control", "no-cache");

// response.getWriter().write("<result>"+Integer.toString(len)+"</result>");

// response.getWriter().write(result);

System.out.println("*********** End servlet************");

}

/**

* @see javax.servlet.http.HttpServlet#doPost(javax.servlet.http.HttpServletRequest,

javax.servlet.http.HttpServletResponse)

*/

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {

/*

* String targetId = request.getParameter("id"); if ((targetId != null)

* && !accounts.containsKey(targetId.trim())) {

* accounts.put(targetId.trim(), "account data");

* request.setAttribute("targetId", targetId);

* context.getRequestDispatcher("/success.jsp").forward(request,

* response); } else {

* context.getRequestDispatcher("/error.jsp").forward(request,

* response); }

*/

 Appendices 219

doGet(request, response);

}

/**

* get the results and write to a temp file to open in a new window.

* @param result <code> String </code> contains the result for user command

*/

public void witeResultToFile(String result) {

// System.out.println("***Test Data, line sep is:

"+System.getProperty("line.separator"));

try {

// to do, change this path

File f = new File("resultWin.htm");

// System.out.println("***Test Data, AbsolutePath is:

"+f.getAbsolutePath());

// System.out.println("***Test Data, Path is: "+f.getPath());

PrintWriter out = new PrintWriter(new FileWriter(f));

out.print(result);

out.close();

} catch (IOException ex) {

ex.printStackTrace();

}

}

}

 Appendices 220

APPENDIX D: ABSTRACT WEB COMMAND

INTERFACE

package org.web2sh.cmds;

import java.io.IOException;

import java.io.PipedInputStream;

import java.io.PrintWriter;

/**

* The command interface for all web commands. (Command design pattern)

* @author Essam Eliwa

* @version 1.0

*/

public interface AbstractWebCommand {

public void execute();

/**

* returns a reference to an input stream of the following command in a pipe sequence

* if no other command follows it returns the final output stream to return the result to

the user,s browser

* @return a PipedInputStream

*/

public PipedInputStream getSTDIN_Next_com();

/**

* used to assign a PipedInputStream as the standard input stream of a command

* @param stdin

*/

public void setSTDIN(PipedInputStream stdin);

/**

* write the command output to the output stream given an array of bytes

* writing should always be done by a thread and reading by another thread so no

lock happens

* use writer class to write and reader class to read

* @param b

* @return <code> boolean </code>

* @throws IOException

*/

public boolean writeStdout(byte[] b) throws IOException;

/**

* write the command output to the output stream given a string

* writing should always be done by a thread and reading by another thread so no

lock happens

* use writer class to write and reader class to read

* @param str <code> String </code>

* @return <code> boolean </code>

* @throws IOException

*/

public boolean writeStdout(String str) throws IOException;

/**

* return true if there is data over the input stream and false if there is no data

 Appendices 221

available or the stream is closed.

* @return <code> boolean </code>

*/

public boolean isInputAvailable();

/**

* web command names such as: fetch, echo etc..

* @return <code>String</code> the name of a web command

*/

public String getComName();

/**

* sets the WebPrintWriter to a PrintWriter that is used to write the

* command output

*

* @param pw PrintWriter

*/

public void setWebPrintWriter(PrintWriter pw);

/**

* used by webFinish command at the end of a pipe sequence to

* output data over http to the client browser

*/

public void writeToWeb();

}

