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Abstract

We present some techniques in the construction of spectral triples for C∗-algebras, in particular

those which determine a compatible metric on the state space, which provides a noncommutative

analogue of geodesic distance between points on a manifold.

The main body of the thesis comprises three sections. In the first, we provide a further analysis on

the existence of spectral triples on crossed products by discrete groups and their interplay with classi-

cal metric dynamics. Dynamical systems arising from non-unital C∗-algebras and certain semidirect

products of groups are considered. The second section is a construction of spectral triples for certain

unital extensions by stable ideals, using the language of unbounded Kasparov theory as presented by

Mesland, Kaad and others. These ideas can be implemented for both the equatorial Podleś spheres

and quantum SU2 group. Finally, we investigate the potential of the construction of twisted spectral

triples, as outlined by Connes and Moscovici. We achieve a construction of twisted spectral triples

on all simple Cuntz-Krieger algebras, whose unique KMS state is obtained from the asymptotics of

the Dirac.
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1: Introduction

1.1 Background and history.

The development of noncommutative geometry as a new field of mathematical research

is based on a fundamental object known as a spectral triple. Spectral triples can be viewed

as analytical tools that describe the geometric aspects of manifolds, such as the dimension,

differential forms and geodesics. A prototype is given by a compact Riemannian manifold

M, equipped with a spinC (or spin) structure S and the formal square root of the Laplace

operator, or Dirac operator D, acting on the smooth sections, L2(M, S), of M.

Connes introduced spectral triples as a potential means of describing the homology and

index theoretic aspects in the more general language of (locally) compact topological spaces

[30], as well as to develop a theory of cyclic cohomology mimicking the de-Rham coho-

mology theory of manifolds [31], [35], [34]. Moreover, the Gelfand-Naimark-Segal theorem

makes the definition of a spectral triple, as a "Dirac-type" operator on a Hilbert space, appli-

cable to general C∗-algebras, the latter viewed naturally as a noncommutative counterpart

of a locally compact topological space in Gelfand duality theory.

Although everyone agrees that an object in noncommutative geometry is given by spec-

tral triple, on a C∗-algebra, with "good" properties, there is considerable uncertainty into

what these properties should be, since Connes’ formal definition of a spectral triple, or un-

bounded Fredholm module, offers little by way of immediate information of the C∗-algebra

besides its fundamental class in K-homology. In this respect the research seems be focused

into two viewpoints: the first is centred on Connes’ reconstruction programme [32], [79],

in which it is considered under what axioms a spectral triple can provide a complete in-

variant of a commutative C∗-algebra as a manifold. Several reconstruction theorems have

been suggested in what has become a very prominent area of research. Besides the non-

commutative tori, there do not seem to be many examples of noncommutative C∗-algebras

at present for which this sort of analysis is well understood.
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CHAPTER 1: INTRODUCTION

Another way of looking at spectral triples is as noncommutative (quantum) metric spaces,

beginning with Connes’ observation that the Dirac triple on a Riemannian spinC manifold

M recovers the geodesics between two points on the manifold [31]. To use more recent lan-

guage, a spectral triple on a C∗-algebra determines a Lipschitz seminorm on the self-adjoint

part of the smooth subalgebra, an analogue of the classical notion of Lipschitz continuous

functions. Rieffel studies seminorms of this kind extensively [100], [101], [102], and sug-

gests that a question of particular interest might be when the metric on the state space it

induces is compatible with the weak∗-topology. Rieffel provided an answer for unital C∗-

algebras and Latrémolière later extended much of this work to non-unital C∗-algebras [76],

[77].

On one hand, examples of spectral triples for general C∗-algebras which are understood

to satisfy such a metric condition are relatively few. Much of the focus so far has been

centred on C∗-algebras arising from discrete groups, when a prototype for such a metric is

given by a spectral triple coming from a length function on the group. On the other hand,

analysis of this kind has proved successful on fractal structures, such as Cantor sets, which

do not possess most of the attributes of a manifold (see [28], [92], [68] for examples).

The construction of such spectral triples gives a natural context to Rieffel’s theory of

Gromov-Hausdorff convergence for quantum metric spaces [103], [78], so that we can ask

whether deformations of manifolds "converge", in a noncommutative metric sense, to their

classical counterparts. Rieffel’s Gromov-Hausdorff convergence analysis has already been

considered in the case of the Moyal plane [12] and the Connes-Landi spheres [33], among

other examples.

The construction of spectral triples is of interest to quantum group theorists, for which

a natural question is to study the noncommutative geometry of q-deformations of clas-

sical Lie groups, such as Woronowicz’s SUq2 group [123], by writing down equivariant

Dirac operators for the group co-action. By now there are many constructions, notably that

of Neshveyev and Tuset [83], but difficulties remain in finding a unified approach which

incorporates the different points of view.

Spectral triples define Baaj-Julg cycles [4], the unbounded counterpart to Kasparov’s KK-

theory. In this point of view, there is plenty of interest concerning the construction of these
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CHAPTER 1: INTRODUCTION

unbounded cycles, which can be seen to play the role of correspondences between spectral

triples. The most interesting aspect is to present an unbounded version of the external and

internal Kasparov product, which has received attention from various authors [80], [61].

In this thesis, we shall consider the unbounded Kasparov product as a tool in the explicit

construction of spectral triples, especially in situations in which the relative K-homology is

well understood. We will collate some of the theory of compact quantum metric spaces for

C∗-algebras, which we can use to construct spectral triples with good metric properties.

1.2 Outline of the thesis and major developments.

Our focus is very much the construction of spectral triples for C∗-algebras, in a way

which offers the maximum possible insight into further developments into the subject. The

first two non-introductory chapters address some techniques and existing results which

will be used later on, whilst in Chapters 4 and 5 these methods are applied to particular C∗-

algebraic constructions, respectively crossed products by discrete groups and extensions.

In Chapter 6, we offer an analysis of geometric aspects of the much studied Cuntz-Krieger

algebras, for which it is typically not possible to write down finitely summable spectral

triples satisfying all of Connes’ axioms.

1.2.1 Spectral triples.

The definition of a spectral triple (Definition 2.2.1) should be considered an abstract list

of axioms for an object in noncommutative geometry, whose initial objects are C∗-algebras.

The properties which are of most interest to us are documented in section 2.2. We wish to

regard spectral triples as first order differential operators. In Chapter 2 we therefore study the

structure of algebras such as C1(M) := {f ∈ C0(M) : df ∈ C0(M)}. With this machinery

we will introduce spectral triples, which we can think of as providing an abstract notion of

first order differentiation. The first example is the spectral triple on the circle: the algebra

C(T) acts faithfully over the Hilbert space L2(T), from which we can study the triple,

(C1(T),L2(T),D :=
1
i

∂

∂t
). (1.2.1)
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CHAPTER 1: INTRODUCTION

The Product rule then implies that ∥Df − fD∥ = ∥f ′∥ for each f ∈ C1(T). We shall call

(C1(T),L2(T),D := 1
i
∂
∂t ) the usual spectral triple on the circle algebra. It is the first exam-

ple of a spectral triple and the simplest to study in nearly all respects.

1.2.2 The Kasparov Product.

We have found the idea of constructing new spectral triples from old ones to be implicit in

much of classical differential geometry. In Chapter 2 we study a version of the unbounded

Kasparov product developed by Kaad and Lesch [61]. Their result is an associative pairing,

KKp(A,B)⊗B KKq(B,C) 7→ KKp+q(A,C), (1.2.2)

where KK(·, ·) is the semigroup of Baaj-Julg cycles [4]. The construction requires the ex-

istence of a correspondence (Definition 2.6.8). The definition is based on an abstraction of

the algebra of "first order derivatives", rather than the whole Sobolev chain which is the

approach taken elsewhere (such as in [80]).

A spectral triple on A determines a class in KK(A, C). Given another C∗-algebra B and a

representative of KK(B,A), the pairing offers the possibility of constructing spectral triples

on B, which we have managed to exploit in a few instances in this work.

1.2.3 Quantum metric spaces.

The duality between metric spaces and Lipschitz seminorms was observed with the works

of Kantorovich and Rubenstein, who show that a compact metric space (X,d) can be recov-

ered from the algebra CLip(X) of globally d-Lipschitz functions in C(X) by the formula

d(x,y) := sup{|f(x) − f(y)| : f ∈ CLip(X), ∥f∥Lip 6 1}. (1.2.3)

and a similar metric can be defined, not only on X, but also the set of Borel probability

measures S(C(X)) of X. It is possible to formalise this to the context of both unital and non-

unital C∗-algebras, much of the analysis of which has been developed by Rieffel and, more

recently, Latrémolière. The definition we shall work with is that of a Lipschitz pair (A,L)

(Definition 3.1.3), which determines a metric dA,L on S(A). A well-known result of Rieffel

gives necessary conditions on (A,L) for dA,L to metrise the weak∗-topology (Definition
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CHAPTER 1: INTRODUCTION

3.1.11), which Latrémolière extended to the non-unital case (Proposition 3.1.13).

Because we are usually interested in Lipschitz pairs coming from spectral triples, there is

the problem to address of whether the metric dA,L might depend on A. Our first major

result confirms that this is indeed the case:

Result 1 (Proposition 3.1.13.) Let A be a unital C∗-algebra and (A,L) be a closed Lipschitz pair

on A which gives (S(A),dA,L) finite diameter. Let d1, d2 be any metrics on S(A) with d1,d2 6
dA,L and with the property that the spaces Ad1 and Ad2 defined by

Adi := {a ∈ A : ∃La > 0 such that ∥ω1(a) −ω2(a)∥ 6 Ladi(ω1,ω2), ∀ω1,ω2 ∈ S(A)}

are dense in A. Then dAd1 ,L = dAd2 ,L if and only if d1 and d2 are Lipschitz equivalent metrics.

1.2.4 Equicontinuous actions.

In [5] and [57] it was shown that the ability to write down spectral triples on the reduced

crossed product AoαG of C∗-algebras by discrete groups, starting from a spectral triple

on the "co-efficient" algebra A and via a natural description coming from the external Kas-

parov product formula [60], was a characteristic of a particular compatibility condition be-

tween the group action and the spectral triple on the coefficient algebra, which was labelled

equicontinuity in [5] and does indeed turn out to be related to the classical equicontinuity

condition of group actions on compact metric spaces.

In Chapter 4 we study the interplay between quantum metric spaces and C∗-dynamical

systems; we call the resulting structures metric C∗-dynamical systems (Definition 4.1.2). We

established some necessary C∗-algebraic conditions for a metric C∗-dynamical system to

be equicontinuous (Definition 4.2.8). A necessary condition turns out to be that the action

α : G 7→ Aut(A) is almost periodic; in other words, the G-orbit of every a ∈ A is norm-

relatively compact. (Corollary 4.2.11).

The almost periodicity condition is relatively obscure, so we decided to relate it to a

C∗-dynamical invariant of natural interest, at least for the case of single automorphisms,

Voiculescu-Brown entropy [116] [10], which is related to the classical definition of topological

entropy of a compact topological space using open covers. Positive topological entropy of
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CHAPTER 1: INTRODUCTION

a dynamical system is generally interpreted as a chaos criterium and conversely we reach

the expected conclusion that almost periodic actions are non-chaotic:

Result 2 (Proposition 4.2.15.) Let A be a unital exact C∗-algebra and α ∈ Aut(A) be an almost

periodic automorphism. Then α has zero Voiculescu-Brown entropy, i.e ht(α) = 0.

At the end of the chapter we apply these ideas to group actions on AF-algebras.

1.2.5 Spectral triples, semidirect products and crossed products.

To write down examples of crossed product C∗-algebras with good metric properties com-

ing from the crossed product constructions of [5] and [57], it is necessary to understand

for which group C∗-algebras it is possible to write down spectral triples with good met-

ric properties. For those groups arising as semidirect products, a special instance of the

crossed product construction applies and we were able to use this to prove the next result:

Result 3 (Theorem 4.4.4.) Let N be a finitely generated discrete group, LN a length function on

N and α : N 7→ N be a group automorphism such that LN(α(n)) = LN(n) for each n ∈ N. Let

(C[N], ℓ2(N),MLN) be the associated spectral triple on C∗
r(N) and let us suppose further that the

Lipschitz seminorm induced by this spectral triple satisfies Rieffel’s criteria (Proposition 3.1.10).

Let Γ := NoαZ. Then, with D andMLN defined respectively on ℓ2(Γ) as multiplication operators

with respect to length functions on Z and N,

1. (C[Γ ], ℓ2(Γ)⊕ ℓ2(Γ),

 0 D− iMLN

D+ iMLN 0

) is a spectral triple on C∗
r(Γ).

2. The Lipschitz seminorm induced by this spectral triple satisfies Rieffel’s criteria also.

The proof follows the same ideas as in the crossed product construction; integral to the

proof is the existence of so-called Fourier coefficients, which can be controlled using the

Ozawa-Rieffel cut-down procedure (Lemma 4.3.3). We remark that, unlike the length func-

tion triples, the above construction has a Z/2Z- grading, which seems crucial, although

does not immediately offer much insight to groups which are not semidirect products. Fi-

nally, we state a generalised statement of the existence of spectral triples on crossed prod-

ucts, for which the C∗-algebra A is permitted to be non-unital (Result 4: Theorem 4.5.3,

Result 5: Theorem 4.5.5).

Finally, we show that our crossed product spectral triple by Z arises as an internal Kas-
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CHAPTER 1: INTRODUCTION

parov product of the spectral triple on A and an unbounded representative of the Toeplitz

element (see [95], [55] for further details):

Result 6 (Lemma 4.6.2.) Let A be a separable C∗-algebra and α ∈ Aut(A) be an automorphism.

Let (C[Z], ℓ2(Z),DZ) be the usual triple onC∗
r(Z). Suppose that (A,HA,DA), A = C1(A), is an

ungraded spectral triple on A such that the action of α is equicontinuous (and leaves A invariant).

Then the graded spectral triple on AoαZ defined in Theorem 4.5.3 is an unbounded Kasparov

product of (C1(Z,A), ℓ2(Z)⊗̄A),DZ⊗̄1) ∈ KK1(AoαZ,A) and (A,HA,DA) ∈ KK1(A, C).

1.2.6 Extensions.

In Chapter 5 we present a construction of spectral triples and compact quantum metric

spaces via certain extensions by stable ideals, that is, we study short exact sequences of the

form

0 // K⊗B ι // E
σ // A // 0 , (1.2.4)

where A, E and B are unital C∗-algebras, the inclusion of K⊗ B in E is essential and the

quotient map σ : E 7→ A admits a completely positive splitting. Our method is to study a

cross section of the corresponding six-term sequence in K-homology,

K∗(A)
σ∗

// K∗(E)
ι∗ // K∗(B) , (1.2.5)

where ι∗ admits a right inverse, represented by an element τ∗ ∈ KK(E,B) (Proposition

5.3.1).

To construct spectral triples, we do not consider all extensions, but only smooth exten-

sions of Toeplitz type (Definition 5.4.1, Definition 5.4.2) and in particular those for whom

the representation theory has a "nice" form. The first two conditions were needed for the

construction proposed by Christensen and Ivan, who primarily looked at extensions by

compact operators [27]. We make a further commentary of the smoothness criteria, namely

that it can be interpreted as those extensions for which the respective first order differential

structures arising in the short exact sequence are compatible, so the extension has a natural

"C1- pullback structure" (Corollary 5.4.8). This gives us a natural operator algebra, E1 ⊂ E,

to consider. Under these conditions, the construction is given as follows:
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Result 7 (Theorem 5.5.4.) Let A and B be unital C∗-algebras, endowed with spectral triples

(A,HA,DA) and (B,HB,DB) respectively. Let E be a smooth extension of the form (5.3.1), where

P ∈ B(HA) is an orthogonal projection of Toeplitz type. Then, for each dense ∗-subalgebra E ⊂ E1,

(E,H⊕H,D1 ⊕D2), represented via π1 ⊕π2, defines a spectral triple on E. Moreover, the spectral

dimension of this spectral triple is given by the identity

s0(E,H⊕H,D1 ⊕D2) = s0(A,HA,DA) + s0(B,HB,DB). (1.2.6)

Furthermore, the spectral triple represents the Fredholm module σ∗(A,HA,DA)⊕ τ∗(B,HB,DB)

in K-homology. (See Section 5.5 for details and terminology).

When the spectral triples onA and B satisfy Rieffel’s metric condition, so does the spectral

triple on the extension:

Result 8 (Theorem 5.6.4.) (Esa,LD) is a compact quantum metric space.

We show that this construction leads to a spectral triple, with good metric properties, for

the case of the equatorial Podleś spheres and the quantum SU2 groups introduced in [96]

and [123] respectively as deformations of the classical spheres (Section 5.7). For both these

quantum spheres, we do not see an obvious connection between our analysis and any other

approaches in the literature.

1.2.7 Twisted spectral triples.

It is well known that the nonexistence of a unital trace prevents the possibility of con-

structing finitely summable spectral triples [30]. For C∗-algebras of this kind, such as the

Cuntz algebra [40], a different approach is required. We pursue a recent idea by Connes

and Moscovici [36], where the definition of a spectral triple is modified so that instead of

requiring [D,a] ∈ B(H) we have

[D,a]σ := Da− σ(a)D ∈ B(H); a ∈ A (1.2.7)

(Definition 6.1.8), where σ is a regular automorphism. Typically σ will be implented by

the action of a one-parameter group and in this context the motivation is to seek spectral

triples for which the Dixmier functional satisfies a KMS-condition for this action. It turns
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out that the behaviour of such "twisted" spectral triples is, for the most part, similar to

that of ordinary spectral triples (Proposition 6.1.10). Connes and Moscovici point out that,

contrary to expectations, twisted spectral triples can be used to build untwisted Chern

characters (so that the resultant cycles in cohomology are also untwisted).

Techniques in the constructions of twisted spectral triples are not widely known at present.

We seek spectral triples for all simple Cuntz-Krieger algebras ([41], Definition 6.2.4), prob-

ably among the easiest families of C∗-algebra to describe which fit into the purely infinite

category. We achieve this by viewing these algebras as Exel crossed products [50], encoding

the expanding metric geometry of the one-sided subshift.

Result 9 (Theorem 6.4.2). Let σ = σ−i logλ be the regular automorphism on OA ∼=

C(Σ+A)oαT ,LTN defined by σ(f) = f ∀f ∈ C(Σ+A) and σ(s) = λs. Let B ⊂ C1,σ(OA)

be any dense ∗-subalgebra of the Cuntz-Krieger algebra OA containing the algebra span

of s, s∗ and the natural AF-filtration ∪k>0Ak of C(Σ+A), where A is irreducible. Then

(B,L2(C(Σ+A), τ),D,σ), with D as in section 6.3, defines a twisted spectral triple on OA.

The spectral triples arising this way do not seem to be so interesting from the metric point

of view and, perhaps disappointingly, the question of finding interesting Lipschitz semi-

norms to study on algebras such as the Cuntz algebra remain unanswered. On the other

hand, twisted spectral triples allow one to recover KMSβ-states on the C∗-algebras from

the twisted version of the Dixmier trace. We conclude with the observation that, from the

spectral triple on OA constructed above, we can recover the unique KMS state on OA whose

"departure from a trace" coincides with the topological entropy of the Markov shift repre-

senting OA. I am not sure how our ideas relate to the modular spectral triples constructed

by Carey, Phillips and Rennie [15].
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2: Preliminaries

2.1 Operator ∗-algebras and operator ∗-modules.

2.1.1 Operator ∗-algebras.

In this section, a space (X, ∥ · ∥) is taken to mean a Banach space over the field of complex

numbers.

In the context of noncommutative geometry, there are many operator algebra structures

besides C∗-algebras which are of natural interest. As a motivating example, let us consider

the algebra of differentiable functions on a locally compact manifold, M, given by

C1
0(M) := {f ∈ C0(M) : f has uniformly bounded derivative },

Observe that, when equipped with the norm ∥f∥1 := ∥f∥ + supx∈M |df(x)|, then C1
0(M)

becomes a Banach algebra in its own right. Furthermore, given a Borel probability measure

µ with full support on M, we have a faithful representation of (C0(M), ∥ · ∥) on L2(M,µ)

and a faithful representation of (C1
0(M), ∥ · ∥1) on L2(M,µ)⊕ L2(M,µ) given by

f

ψ1

ψ2

 :=

 fψ1

dfψ1 + fψ2

 ; f ∈ C0(M), ψ1,ψ2 ∈ L2(M,µ). (2.1.1)

In fact, Kaad and Lesch [61] introduced the terminology operator ∗-algebra to study algebras

of this kind and we shall base our analysis closely on theirs. Some standard references for

theory of operator spaces and operator algebras can be found for example in [91] and [106].

Definition 2.1.1. A Banach space X is an operator space if is isometrically isomorphic to a

subspace of the C∗-algebra B(H) of bounded operators on a Hilbert space.

It is more usual to give an abstract version of the definition of an order unit space. In

this version, it turns out that a necessary and sufficient condition for this is requiring the

2



CHAPTER 2: PRELIMINARIES

matricial amplifications Mn(X) := {xi,j ∈ X; 1 6 i, j 6 n} themselves to be Banach spaces

in a way compatible with both the order structure Mn(X) ⊂ Mn+1(X) and the Banach

algebra structure of Mn(C). If X is an operator space, Mn(X) is an amplification of X

and there is a multiplication map m : X × X 7→ X on X then the induced maps mn :

Mn(X)×Mn(X) 7→Mn(X) are the multiplication maps given by

((mn(x,y))i,j)16i,j6n := ((

n∑
k=1

m(xi,k,yk,j))16i,j6n; x,y ∈Mn(X).

If j : X 7→ X is an involution, the induced maps jn :Mn(X) 7→Mn(X) are given by

((jn(x))i,j)16i,j6n = (j(xj,i))16i,j6n; x ∈Mn(X).

Definition 2.1.2. An operator algebra X is an operator space X with a (linear) completely

bounded multiplication mapm : X×X 7→ X, i.e there exists a K > 0 such that

∥mn(x,y)∥ 6 K∥x∥∥y∥, ∀x,y ∈Mn(X), n ∈ N. (2.1.2)

It is well known that operator algebras are precisely the closed subalgebras of bounded

operators on a Hilbert space, a proof of which can be found in Blecher’s article [7].

Definition 2.1.3. An operator ∗-algebraX is an operator algebra with a completely bounded

involution j : X 7→ X, i.e there exists an L > 0 such that

∥jn(x)∥ 6 L∥x∥, ∀x ∈Mn(X), n ∈ N. (2.1.3)

An operator ∗-algebra X differs from a C∗-algebra in that the involution j on X is in general

different from the involution coming from an algebra embedding X ⊂ B(H), even if K =

L = 1 can be chosen in the above definitions.

The most important varieties of operator ∗-algebras are those defined by derivations on

C∗-algebras, many examples of which will be constructed later on.

Definition 2.1.4. A derivation δ : A 7→ B, where A and B are C∗-algebras, and π : A 7→ B

is an injective ∗-homomorphism, is a densely defined linear map which satisfies the prod-

3
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uct rule δ(ab) = π(a)δ(b) + δ(a)π(b) whenever a,b ∈ A. We suppose additionally that

δ(a∗) = −δ(a)∗ for each a ∈ A.

Proposition 2.1.5. [62] Let A,B be C∗-algebras, equipped with an injective ∗-homomorphism

π : A 7→ B and a derivation δ : A 7→ B. Then the completion of the algebra A1 := domδ with

respect with the norm ∥a∥1 := ∥π(a)∥B + ∥δ(a)∥B and equipped with the involution from A , is

an operator ∗-algebra. There is an algebra embedding A ⊂M2(B) defined by

ρ(a) :=

π(a) 0

δ(a) π(a)

 . (2.1.4)

Example 2.1.6. Going back to the first example, we could require instead that the algebra

C1
0(M) consists of continuously differentiable functions vanishing at infinity (whose derivatives

also vanish at infinity), rather than just functions with uniformly bounded derivative. It

turns out that this algebra too can be given the structure of an operator ∗-algebra ([61]).

This raises the question of just how many examples there are and we expect this subject to

dominate the literature in the near future.

2.1.2 Operator ∗-modules.

Let us consider operator ∗-algebras of the variety considered in Proposition 2.1.5, where

B = B(H) for some separable Hilbert space H and write A1 := dom(δ). We can form the

exterior tensor product H⊗A, regarded as a rightA-module. The completion E1 of H⊗A1

with respect to the inner product norm ⟨·, ·⟩1, where

⟨a1 ⊗ ξ1,a2 ⊗ ξ2⟩1 := ⟨a1 ⊗ ξ1,a2 ⊗ ξ2⟩+ ⟨δ(a1)⊗ ξ1, δ(a2)⊗ ξ2⟩; a1,a2 ∈ A1, (2.1.5)

is itself an operator space, with a natural contractive right action of A1.

The operator ∗-module is another idea discussed and motivated in [61]. Essentially, an op-

erator ∗-module is to an operator ∗-algebra what a countably generated Hilbert C∗-module

is to a C∗-algebra. When X is an operator space,A is an operator algebra and r : X×A 7→ X

is a right action, the induced maps rn :Mn(X)×Mn(A) 7→Mn(X) are given by

((rn(e,a))i,j)16i,j6n := (

n∑
k=1

r(ei,k,ak,j))16i,j6n.

4
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Definition 2.1.7. Let A be an operator algebra with completely bounded multiplication

mapm and let X be an operator space. We call X a rightA-module if there exists a completely

bounded linear map r : X×A 7→ X such that rn(rn(e,a),b) = rn(e,mn(a,b)) for each

a,b ∈Mn(A), e ∈Mn(X) and n ∈ Z+.

Definition 2.1.8. Let X be a right A-module, where X is an operator space and A is an

operator ∗-algebra with a completely bounded multiplication map m and a completely

bounded involution j. We say that X is hermitian if there exists a completely bounded

sesquilinear form on X which is right A-linear. In other words, there exists a map (·|·) :

X⊗X 7→ A which is linear in the right co-ordinate such that

1. (e|r(f,a)) = r((e|f),a) ∀e, f ∈ X, a ∈ A and

2. j((e|f)) = (f|e) ∀e, f ∈ X.

In particular the inner product extends to (·|·)n :Mn(X)⊗Mn(X) 7→Mn(A) with the same

properties, defined by

((e|f)n)i,j =

∞∑
k=1

(ek,i|fk,j)

and there exists aM > 0 such that ∥(e|f)n∥A 6M∥e∥X∥f∥X, ∀e, f ∈Mn(X), n ∈ N.

Alternatively we can define a operator space X to be a (hermitian) left A-module in pre-

cisely the same way, except that linearity and A-linearity is now defined in the left argu-

ment.

Definition 2.1.9. Let A be an operator ∗-algebra. By the standard operator ∗-module A∞
over A we mean the completion of the space c0(A) of finite sequences in A, viewed as

a diagonal subspace of M(A) := ∪n∈NMn(A) with respect to the standard embeddings

Mn(A) ⊂Mn+1(A), whose norm is the norm induced by the inner product ((an)|(bn)) =∑
n jn(an)bn and the obvious right module action of A.

Definition 2.1.10. A hermitian operator right A-module E is called a operator ∗-module if

E ∼= PA∞, i.e E is an orthogonal direct summand in A∞.

5
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Example 2.1.11. Every countably generated Hilbert module which is a right A-module for

some C∗-algebraA is automatically an operator ∗-module when one viewsA as an operator
∗-algebra, an obvious consequence of Kasparov’s stabilisation theorem.

Example 2.1.12. In [61] it was shown that an operator space X is a ∗-module over C1
0(M)

(the algebra of continuous functions with continuous derivatives) if and only if X is a di-

rect summand in the operator space C1
0(M,H) (i.e the space of Hilbert-valued continuous

functions with continuous derivatives) for some Hilbert space H.

Example 2.1.13. More generally, the operator space E1 above is an operator module over

A1, with E1 = A1∞, as the completion of the finite sequences in c0(A1) ⊂ H⊗A1.

2.2 Spectral triples: background and definition.

The basic objects in noncommutative geometry are spectral triples. Everyone agrees that

on the most basic level a spectral triple, defined on a general C∗-algebra, should provide

firstly a generalised index theory, defined by a pairing with K-theory, and secondly an

abstract notion of a first order differential operator. Because a "Dirac-type" operator on a

compact manifold also recovers the dimension of the manifold from the Weyl asymptotics

of the Dirac, it is usual to associate a dimensionality invariant to a spectral triple also. In

the language of C∗-algebras, the first condition can be interpreted as saying that a spectral

triple should define a representative of K-homology. Consequently, spectral triples are also

called unbounded Fredholm modules.

2.2.1 Definition of a spectral triple.

Definition 2.2.1. LetA be a C∗-algebra. A spectral triple (A,H,D) is given by a ∗-representation

π : A 7→ B(H), a dense ∗-subalgebra A ⊂ A and a linear densely defined unbounded self-

adjoint operator D on H such that

1. π(A)domD ⊂ domD and [D,π(a)] : domD 7→ H extends to a bounded operator for

each a ∈ A and

2. π(a)(1 +D2)−1 is a compact operator for each a ∈ A.

6



CHAPTER 2: PRELIMINARIES

2.2.2 Relation to operator ∗-algebras and Sobolev spaces.

In the definition of a spectral triple, the algebra A is formally viewed as an algebra of

differentiable elements and, for a ∈ A, the operator [D,a] : domD 7→ H corresponds to a

first order derivative. To each spectral triple, we can study the "maximal" set of all such

elements. We introduce the set,

C1(A) := {a ∈ A : a(domD) ⊂ domD and [D,π(a)] extends to a bounded operator in B(H)}.

Our first assertion is that C1(A) is a ∗-algebra. Given a,b ∈ C1(A) then also ab leaves

the domain of D invariant, so that [D,ab] : domD 7→ B(H) makes sense and [D,ab] =

[D,a]b+ a[D,b], so that [D,ab] extends to a bounded operator on B(H). That a ∈ C1(A)

implies a∗ ∈ C1(A) is less clear, however. In a recent article [25], Christensen provides a

more thorough analysis of operators of the form [D,a], such as arising from spectral triples.

The following definition will be useful:

Definition 2.2.2. [25] Given a spectral triple (A,H,D) onA, an element a ∈ Awill be called

weakly D-differentiable if and only if the sesquilinear form S([D,a]) : H2 7→ C defined by

S([D,a])(ξ,η) := ⟨aξ,Dη⟩− ⟨aDξ,η⟩, ξ,η ∈ domD, (2.2.1)

is bounded. On one hand, given a ∈ C1(A) then the sesquilinear form given by S([D,a])

is evidently bounded. The converse is true by Theorem 2.11 of [25]. We can use this fact

to show that the set of weakly D-differentiable elements is closed under involution, for

indeed for each ξ,η ∈ domD,

S([D,a∗])(ξ,η) := ⟨a∗ξ,Dη⟩− ⟨a∗Dξ,η⟩ = −(⟨aη,Dξ⟩− ⟨aDη, ξ⟩)∗ =: −S([D,a](η, ξ))∗.

Proposition 2.2.3. The vector space H1 := domD becomes a Hilbert space with respect to the

inner product ⟨η1,η2⟩1 := ⟨η1,η2⟩+ ⟨Dη1,Dη2⟩. The algebra C1(A) is an operator ∗-algebra with

respect to the involution on A and the norm ∥a∥1 := ∥π(a)∥+ ∥[D,π(a)]∥. Moreover, the map

ρ : C1(A) 7→ B(H1); ρ(a)(η) := π(a)η, (2.2.2)

is an injective norm-decreasing algebra homomorphism.

7
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Proof. If (ηn)n>1 ⊂ H1 is a Cauchy sequence then (ηn)n>1 is certainly Cauchy with respect

to ∥ · ∥H. Therefore it converges to some vector η ∈ H. By the closed graph theorem

limm→∞(Dηm−Dηn) exists for each n ∈ N so that Dη = Dηn+ limm→∞(Dηm−Dηn) ∈

H and η ∈ Dom(D). So H1 is complete.

In view of Proposition 2.1.5, to show that C1(A) is an operator algebra it is only necessary

to verify that C1(A) is already complete in the norm ∥a∥1 := ∥π(a)∥+ ∥[D,π(a)]∥. A proof

of this is provided in Theorem 2.16 of [25].

Finally, ρ is an injective algebra homomorphism, which is norm decreasing because of the

estimate

∥ρ(a)∥2
B(H1)

= sup
η∈H1,∥η∥161

⟨π(a)(η),π(a)(η)⟩1

= sup
η∈H1,∥η∥161

(⟨π(a)η,π(a)η⟩+ ⟨Dρ(a)η,Dπ(a)η⟩)

= sup
η∈H1,∥η∥161

(⟨π(a)η,π(a)η⟩+ ⟨π(a)Dη,π(a)Dη⟩+ ⟨[D,π(a)]η, [D,π(a)]η⟩)

6 sup
η∈H1,∥η∥161

(∥π(a)∥2∥η∥2
1 + ∥[D,π(a)]∥2∥η∥2)

6 (∥π(a)∥+ ∥[D,π(a)]∥)2.

2.2.3 Dimension and differential forms.

Definition 2.2.4. LetA be a C∗-algebra and (A,H,D) a spectral triple onA. It will be useful

to introduce the algebra of differential 1-forms, given by

ΩD(A) := {
∑
i∈I

π(a
(0)
i )[D,π(a(1)

i )] . . . [D,π(a(r)i )], a(r)i ∈ A, r ∈ Z+}. (2.2.3)

This is can be viewed as an A-bimodule. Moreover ΩD(A) is an algebra since, given

a,b ∈ A, then also ab ∈ A and [D,π(a)]π(b) = [D,π(ab)] − π(a)[D,π(b)]. When the

spectral triple is unital, then the spectral triple is called p-summable for each p ∈ (0,∞)

such that (1 +D2)−p/2 ∈ B(H) is trace-class (note that (1 +D2)−p/2 ∈ K(H) for p > 1).

8
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The spectral dimension of (A,H,D) is then defined by

s0(A,H,D) = inf{p ∈ (0,∞) : Tr(1 +D2)−p/2 <∞} (2.2.4)

When the dimension is integer valued then the spectral triple is applicable to Connes’ re-

construction programme [32].

2.2.4 Relation to K-homology.

The standard identification between spectral triples and Fredholm modules is made in

the following way: when (A,H,D) is a spectral triple on A with the additional regularity

condition that also [(1 +D2)1/2,π(a)] is bounded for each a ∈ A then (A,H, FD := (1 +

D2)−1/2D) is a Fredholm module on A. The main thing to show is that [FD,π(a)] ∈ K(H),

which follows from

[FD,π(a)] = (1 +D2)−1/2([D,π(a)] + [(1 +D2)1/2,π(a)]FD), (2.2.5)

Note that the index of FD is then precisely the index of D : H1 7→ H. In this way the grading

structure on (A,H,D) automatically passes to (A,H, FD). Because K-homology admits a

formal Bott periodicity, it is enough for many purposes to decide whether the Fredholm

(A,H, FD) is a representative of K0(A) or K1(A). Consequently spectral triples are often

distinguished into odd and even varieties:

Definition 2.2.5. A spectral triple on A is called graded or even if there exists an operator

γ ∈ B(H) such that γ2 = id, γπ(a) = π(a)γ for each a ∈ A and γD = −Dγ. Otherwise

it will be called ungraded or odd. An even triple is formally represented via a direct sum

representation π+ ⊕ π− over an orthogonal direct sum H+ ⊕H− with a skew-diagonal

self-adjoint operator D of the form

 0 D−

D+ 0

.

2.2.5 The Dixmier trace and connection to cyclic cohomology.

The summability criteria is more significant in the development of the Dixmier trace

in noncommutative integration theory: when (A,H,D) is a spectral triple of dimension

s0 > 0, we can ask whether additionally the spectral triple is L(s0,∞)- summable, that is,

9
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the operator (1 +D2)−s0/2 belongs to the Dixmier ideal L(1,∞).In this case, a well known

procedure as highlighted in [31] leads to the construction of a trace on A, for each suitably

chosen generalised limit Limω, via the map

τω : a 7→ Trω(a(1 +D2)−s0/2), (2.2.6)

(see Appendix A for details). Connes shows that the Dixmier trace provides a geometric re-

alisation of the Chern character, which represents each finitely summable spectral triple in

the corresponding Hochschild class HCn(A) of cyclic cohomology, for n ∈ Z+ sufficiently

large. For each (n+ 1)-tuple in A, the formula (in the odd case) is

ψω(a0, . . . ,an) := Trω(a0[D,a1] . . . [D,an](1 +D2)−n/2), (2.2.7)

Connes and Moscovici improved on this work in their paper [35], achieving a noncommu-

tative statement of the Atiyah-Singer index theorem for spectral triples in relative general-

ity.

2.2.6 Connes’ distance formula on the state space.

One of the most interesting properties which comes out of a spectral triple in differential

geometry is the ability to recover the geodesics of the manifold. For a given spectral triple

(A,H,D) on A, Connes’ extended metric(1). d : S(A)× S(A) 7→ [0,∞] is defined by

dC(ω1,ω2) := sup{|ω1(a) −ω2(a)| : a = a∗ ∈ A, ∥[D,π(a)]∥ 6 1} (2.2.8)

The motivating example is prescribed by a the Dirac triple on a connected spinc manifold

M for which ∥[D, f]∥ = ∥grad(f)∥. The restriction of Connes’ metric to the point evaluation

measures dC(px,py) then coincides with the path metric dγ(x,y) along M [31]. If we

require instead that the metric dC is merely equivalent to the geodesic metric along M, then

for each spectral triple on M we require only that there exists a constant K > 0 such that

1
K
∥grad(f)∥ 6 ∥[D, f]∥ 6 K∥grad(f)∥, f ∈ C1(M),

(1) This is usually called a pseudometric in the literature but this confuses the common definition of a pseu-
dometric, which takes only finite values but where two non identical points can have distance zero.

10
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and this can be fulfilled with a wide range of spectral triples, meaning that the spinc con-

dition is not really necessary. A priori, Connes’ metric dC depends on the algebra A.

In general, a spectral triple on a unital C∗-algebra A determines, via Connes’ formula,

an extended metric d on S(A). The topology that d generates is stronger than the weak∗-

topology of S(A), so that, as Rieffel points out in [100], the natural question to ask is when

the topologies coincide. We shall discuss this in more detail in Chapter 3.

2.2.7 Riemannian metrics.

In general, the operator ∗-algebra C1(A) acts over H1, viewed as an operator space, as a

left module as in the proof of Proposition 2.2.3. It seems reasonable, for spectral triples for

which the Dixmier trace τω(a) is well defined for each a ∈ C1(A) (that is, a is measurable,

c.f Appendix A), to provide an abstract definition of a Riemannian metric.

Definition 2.2.6. A Riemannian metric on a finitely summable spectral triple (C1(A),H,D) ∈

Lp,∞, such that each a ∈ C1(A) is a measurable operator, is a left A-linear hermitian form,

g(·|·) : H1 ×H1 7→ C1(A), (2.2.9)

such that H1 is a countably generated operator ∗-module overC1(A) and furthermore there

exists n ∈ Z+ such that,

⟨ξ,η⟩H = τ(g(η|ξ)), η, ξ ∈ H1, (2.2.10)

where τ(a) = Trω(a|D|−n) for any suitably chosen generalised limit Limω.

2.3 Examples of spectral triples.

The study of spectral triples in differential geometry has a vast literature and we highly

recommend the survey articles [115], [98] for well-known examples and theory. As we are

more focused on the functional analytic aspects of these constructions, we shall not again

visit many of these ideas, except where there operator algebraic language also applies. The

first examples of a spectral triple for C∗-algebras are those arising from discrete groups.

Example 2.3.1. Connes ([30]) used this correspondence between C(T) and C∗(Z), com-

11
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ing from Pontryagin duality theory, to construct spectral triples on all reduced group C∗-

algebras coming from discrete finitely generated groups Γ , equipped with a proper length

function, that is, a map ℓ : Γ 7→ Z+ such that

ℓ(g) = 0 ⇐⇒ g = 1Γ , ℓ(gh) 6 ℓ(g) + ℓ(h), ℓ(g) = ℓ(g−1) ∀g,h ∈ Γ ,

ℓ−1({0, . . . ,n}) is finite ∀n ∈ Z+.

It is seen that the triple (C1(Γ), ℓ2(Γ),Mℓ), where Mℓeg = ℓ(g)eg is a multiplication opera-

tor and C1(Γ) := {x ∈ C∗
r(Γ) : [D, x] ∈ B(ℓ2(Γ))} contains the group ring C[Γ ], satisfies the

axioms of a spectral triple.

Example 2.3.2. A straightforward example of a spectral triple on a finite dimensional C∗-

algebra is the algebraMn(C), represented over itself and with the Dirac operator given by

transposition M 7→ Mt. Finite dimensional C∗-algebras are the only instances in which a

spectral triple can have dimension zero.

Example 2.3.3. Spectral triples have been relatively successful in describing fractal geom-

etry. Some of the well studied examples include Cantor sets, Sierpinski gaskets [29] and

aperiodic tiling spaces [68]. Although such spaces are not manifolds, the study of the met-

ric aspects is quite well developed. For example, the authors [92] showed that starting

from any ultrametric d on the Cantor set X, there is a spectral triple on C(X) whose metric

recovers d, at least up to Lipschitz equivalence.

Example 2.3.4. Constructions of spectral triples for approximately finite dimensional (AF)

C∗-algebras were proposed by Christensen and Ivan [26]. The idea is to use each AF filtra-

tion (An)n>1 of A to construct an odd spectral triple (A,H,D) on A such that ∪n>1An ⊂

A. In this way (An)n>1 can be identified naturally with the filtration ofA coming from the

spectral projections {Qn : n > 1} of D, namely

An := {a ∈ A : [Qi,π(a)] = 0 ∀i > n}. (2.3.1)

We shall outline this construction a little later on. The idea of using a filtration of a C∗-

algebra, not necessarily AF, has been pursued in a few places (e.g [110], where general con-

structions of spectral triples were proposed for all quasidiagonal C∗-algebras) but, without
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the extra structure present in Christensen-Ivan’s construction, it generally becomes diffi-

cult to say anything about the summability and metric properties.

2.4 Unbounded KK-theory.

Following the seminal works of Baaj and Julg [4], the study of unbounded Kasparov the-

ory is all over the literature these days. Unbounded KK-theory provides a similar re-

finement to ordinary KK-theory that spectral triples provide to refine K-homology. Un-

bounded KK-theory arises naturally in the geometry of fibrations and also provides a use-

ful description of the spectral flow formula, among many other things. We will tend to

view unbounded KK-theory as correspondences between spectral triples, which is broadly

how they were introduced in Mesland’s dissertation [80].

Definition 2.4.1. [4] Let A and B be separable C∗-algebras. An unbounded (Kasparov)

A-B cycle is given by a triple (A,EB,D), where EB is a countably generated right Hilbert

B-module, together with a ∗-homomorphism π : A 7→ L(EB), a norm-dense ∗-subalgebra

A ⊂ A and a densely defined self-adjoint linear operator D on EB such that

1. D is regular, i.e the operator 1 +D∗D is also densely defined and self-adjoint,

2. π(A)domD ⊂ domD and [D,π(a)] : domD 7→ EB extends to an adjointable bounded

operator in L(EB) for each a ∈ A and

3. π(a)(1 +D∗D)−1/2 extends to an element of K(EB) for each a ∈ A.

The cycle (A,EB,D) is said to be graded or even if there exists a self-adjoint operator γ ∈

L(EB) such that γ2 = id, γπ(a) = π(a)γ for each a ∈ A and γD = −Dγ. Otherwise

(A,EB,D) is called ungraded or odd.

A distinction is usually made between odd and even cycles, as with ordinary K-homology.

When B = C in the definition, so that the cycle is expressed using a Dirac operator over

a Hilbert space with compact resolvent, then the definition, up to faithfulness of the map

π : A 7→ L(EB) is that of a spectral triple.

Remark 2.4.2. In the literature, the algebra A is not usually specified. We will often find it

convenient to assume A = C1(A,B), defined as the algebra,

C1(A,B) := {a ∈ A : a(domD) ⊂ domD and [D,a] extends to a adjointable operator in L(EB)},
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which becomes an operator algebra over EB with respect to the norm ∥a∥1 := ∥a∥A +

∥[D,π(a)]∥. In some instances, we may want to stress the ∗-homomorphism π : A 7→ L(EB)

as well and write each unbounded cycle as a triple (π,EB,D).

Proposition 2.4.3. Let (EB,D) be an unbounded A-B cycle, where A and B are separable C∗-

algebras. Then E1 := dom(D) becomes a right Hilbert B-bimodule with respect to the inner product

⟨e1, e2⟩1 := ⟨e1, e2⟩+ ⟨De1,De2⟩. The natural left action of A on EB restricts to a left action of

C1(A,B) on E1 and the natural map (C1(A,B), ∥ · ∥1) 7→ (L(E1), ∥ · ∥L(E1)) is a norm-decreasing

algebra homomorphism.

Proof. Essentially the same as in Proposition 2.2.3.

There is, to my knowledge, no general understanding of the equivalences between un-

bounded cycles which captures the homotopy invariance of KK-theory. Orthogonal direct

sum trivially gives the sets KK1(A,B) and KK0(A,B) of all unbounded odd (respectively

even) A-B cycles of the form (EB,D) an abelian semigroup structure. The correspondence

between bounded and unbounded KK-cycles is then provided by the following result:

Theorem 2.4.4. [4] Let A and B be separable C∗-algebras, let p ∈ Z/2Z and suppose (EB,D) ∈

KKp(A,B) is an unbounded A-B cycle. Then (EB,D(1 +D∗D)−1/2) ∈ KKp(A,B). The map

b : KKp(A,B) 7→ KKp(A,B) defined this way is a surjective group homomorphism.

Example 2.4.5. If A,B,C are C∗-algebras, (π,EC,D) ∈ KK1(B,C) and σ : A 7→ B is a ∗-

homomorphism such that σ−1(C1(B,C)) is dense inA then (π ◦σ,EC,D) ∈ KK1(A,C). We

shall label this cycle σ∗(π,EC,D). This is clearly compatible with the contravariant functor

σ∗ in ordinary KK-theory: b(π,EC,D) ∈ KK1(B,C) 7→ σ∗(b(π,EC,D)) ∈ KK1(A,C).

2.5 The external Kasparov product.

One of the most useful properties in unbounded Kasparov theory is the ability to write

down representatives of the external Kasparov product using explicit cycles. The external

Kasparov product in ordinary KK-theory is an associative map

KKp(A1,B1)×KKq(A2,B2) 7→ KKp+q(A1 ⊗min A2,B1 ⊗min B2), (2.5.1)
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but it is hard to write down explicitly. Conversely, Baaj and Julg show that this becomes

relatively easy when the cycles are unbounded.

Given two cycles (EB1 ,D1) ∈ KK(A1,B1), (EB2 ,D2) ∈ KK(A2,B2), there is a natural

representation of A1 ⊗min A2 on the external tensor product EB1⊗̄EB2 . The derivations

δi(a) := [Di,a] determine a derivation δ on the algebraic tensor product C1(A1,B1) ⊙

C1(A2,B2) via

δ(a1 ⊗ a2) := δ1(a1)⊗ a2 + a1 ⊗ δ2(a2). (2.5.2)

Let C1(A1,B1) ⊗1 C
1(A2,B2) be the completion of this algebra with respect to the norm

∥x∥1 := ∥x∥A1⊗minA2 + ∥δ(x)∥A1⊗minA2 , which is then a Banach ∗-algebra. The statement

of the external tensor product, in the ungraded case, is the following:

Theorem 2.5.1. [4] Let A1, A2, B1 and B2 be separable C∗-algebras and let (EBi ,Di) be un-

bounded odd Ai-Bi cycles for each i ∈ {1, 2}. Write A := A1 ⊗min A2 and B := B1 ⊗min B2. As

usual let ⊗̄ denote the external tensor product. Then the triple

(
(EB1⊗̄EB2)⊕ (EB1⊗̄EB2),

 0 D1⊗̄1 − i⊗̄D2

D1⊗̄1 + i⊗̄D2 0

)
, (2.5.3)

defines an unbounded even A-B cycle. It defines a pairing

×e : KK1(A1,B1)×KK1(A2,B2) 7→ KK0(A,B). (2.5.4)

Moreover there is a commuting diagram;

KK1(A1,B1)×KK1(A2,B2)

b×b
��

×e // KK0(A,B)

b
��

KK1(A1,B1)×KK1(A2,B2)
×e // KK0(A,B).

Remark 2.5.2. Similar results may be obtained, via standard changes to the grading, in

the situation when either or both of the given cycles are even. In the most general form,

the external Kasparov product in unbounded KK-theory is the existence of a commuting

15
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diagram

KKp(A1,B1)×KKq(A2,B2)

b×b

��

×e // KKp+q(A,B)

b
��

KKp(A1,B1)×KKq(A2,B2)
×e // KKp+q(A,B).

where both p,q and p+ q are understood mod 2. Explicit expressions can be found else-

where (see the exercises in [60]).

2.6 The internal Kasparov product.

The internal Kasparov product in ordinary KK-theory is a pairing,

KKp(A,B)⊗B KKq(B,C) 7→ KKp+q(A,C), (2.6.1)

with p,q,p + q ∈ Z/2Z. To show that this product can be represented by unbounded

cycles is rather more of a challenge, but has attracted plenty of interest elsewhere.

Definition 2.6.1. Recall that, given two Hilbert modules E and F, such that E is an A-B

bimodule and F is a B-C bimodule, the inner tensor product Hilbert module E⊗B F is the

A-C bimodule given by completion of the vector tensor product E⊙ F with respect to the

inner product rule

⟨e1 ⊙ f1, e2 ⊙ f2⟩ := ⟨f1, ⟨e1, e2⟩f2⟩. (2.6.2)

The difficulties associated with this product entail lifting unbounded Fredholm operators

on each of E and F to operators on E⊗B F. This can be addressed by the use of connec-

tions, as developed by Cuntz and Quillen [42]. Kucerovsky established, under natural as-

sumptions, a set of sufficient criteria for a given unbounded cycle to represent the internal

Kasparov product of two other given cycles:

Theorem 2.6.2. [74] Let A, B, C be separable C∗-algebras and let (E, S), (F, T) be cycles in

KK1(A,B) and KK1(B,C) respectively, Then (E⊗B F,D) ∈ KK0(A,C), equipped with the usual

Z2 grading and the natural representation of A on E ⊗B F, represents the Kasparov product of

(E,S) and (F, T) provided:

16
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1.
[
(

D 0

0 T̂

 ,

 0 Te

T∗e 0

]
extends to a bounded operator on (E⊗B F)2 ⊕ F2 for e contained

in a dense subset of A · E,

2. Dom(D) ⊂ Dom(Ŝ) and

3. there exists a constant C > 0 such that ⟨Dx, Ŝx⟩+ ⟨Ŝx,Dx⟩ 6 C⟨x, x⟩, where x ∈ Dom(D).

Here, Te is the completely bounded adjointable operator (f1, f2) 7→ (e⊗ f1, e⊗ f2), T̂ :=

 0 −iT

iT 0


and Ŝ :=

 0 S⊗ 1

S⊗ 1 0

.

Example 2.6.3. Let (M, g) be a Riemannian manifold and F a Clifford bundle over M. A

spectral triple over C(M) can be defined as usual by defining a Dirac operator on L2(M, F)

as the composition of a Hermitian connection ∇F : L2(M, F) 7→ A1(M)⊗ L2(M, F) and the

Clifford map c : A1(M)⊗ L2(M, F) 7→ L2(M, F), where A1(M) is the (graded) algebra of

differential 1-forms. This defines an unbounded cycle,

(C1(M),L2(M, F), c ◦∇F) ∈ KKp(C(M), C), (2.6.3)

where p is determined by the grading of F. Moreover, each Hermitian Clifford bundle

E over M, equipped with a Hermitian pairing (·|·) : E× E 7→ C(M) defines, for some q

determined by the grading of E, an unbounded cycle

(C(M),E, IdE) ∈ KKq(C(M),C(M)). (2.6.4)

Now let ∇E : E 7→ E⊗C1(M) A
1(M) be any connection on E which is compatible with ⟨·, ·⟩.

In particular ∇E is a well defined linear map with the properties,

(1) ∇E(fe) = f∇E(e) + df⊗ e; ∀e ∈ E, f ∈ C1(M), (2.6.5)

(2)(∇E(e1)|e2) − (e1|∇E(e2))
∗ = d(⟨e1, e2⟩); ∀e1, e2 ∈ E, (2.6.6)

where (·|·) : E× (E⊗C1(M) A
1(M)) 7→ A1(M) is the usual Hermitian pairing defined by

(e1|e2 ⊗ df) := ⟨e1, e2⟩df. In this way, the map ∇E,F : E ⊗C1(M) L
2(M, F) 7→ E ⊗C1(M)

17
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A1(M)⊗C1(M) L
2(M, F) given by:

∇E,F(e⊗C1(M) f) = ∇E(e)⊗C(M) f+ e⊗C1(M) ∇
F(f) (2.6.7)

is well defined for each e ∈ E and f ∈ C1(M). Composition with the Clifford map, along

with the natural identification E⊗C∞(M) L
2(M, F)) ∼= L2(M,E⊗C∞(M) F), defines a self-

adjoint operator c ◦∇E,F over L2(M,E⊗C∞(M) F) and a spectral triple

(C1(M),L2(M,E⊗C1(M) F), c ◦∇
E,F) ∈ KKp+q(C(M), C). (2.6.8)

We can view this construction as a pairing

KKq(C(M),C(M))⊗C(M) KK
p(C(M), C) 7→ KKp+q(C(M), C). (2.6.9)

In order for a construction of this kind to be accessible to operator algebras, there are

various things to be addressed. Firstly, an algebraic treatment of Hermitian connections

on more general operator ∗-algebras is needed. Then there is the challenge of adapting

the treatment to operator ∗-modules defined over ∗-algebras, i.e to keep track of the first

order differential structure. Most challenging of all is to establish conditions in which the

resultant triple has compact resolvent. The presentations of [80], [79] and [61] address each

of these concerns, but it is the latter approach which is most relevant to our purposes. The

final part of this chapter reviews section 4-7 of that paper.

The motivation behind the construction and terminology therein is that given two un-

bounded modules (E,S) ∈ KK(A,B) and (F, T) ∈ KK(B,C), the cycles should be composible

if and only if the smooth structures are aligned in the right way. Kaad and Lesch achieve

this by constructing correspondences, which can be viewed as those connections which

themselves satisfy first order differential criteria.

Definition 2.6.4. Let B be an operator ∗-algebra and δ a derivation on B. As usual, the

algebra of 1-forms on B is given by Ω1
δ(B) := {

∑
aiδ(bi) : ai,bi ∈ B}, which we will

typically view as a right operator ∗-module over itself and a left operator ∗-module over B

in the obvious way.

18
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δwill be called essential if BΩ1
δ(B) is dense inΩ1

δ(B).

Given (E,S) in KK1(A,B) and (F, T) in KK1(B,C), suppressing notation, we can consider

the operator module Ω1
T (B1), where B1 is a dense ∗-subalgebra of C1(B,C) and δT = [T , ·].

We can view this as aB-L(F) bimodule. After completing in the norm ∥b∥1 := ∥b∥B+δT (b),

we can view B1 as an operator ∗-algebra.

Definition 2.6.5. Let (E,S) in KK1(A,B) and (F, T) in KK1(B,C) as above and suppose that

E1 ⊂ E is an operator A-B submodule which is also a countably generated right operator
∗-module over B1. In other words E1 ∼= P(B1)∞ is an orthogonal summand in the standard

right module (B1)∞. Suppose that δT is an essential derivation on B1. The Graβmannian

connection is the completely bounded linear map ∇T : E1 7→ E1 ⊗B1 Ω
1(B1) defined by:

∇T ((bn)n∈N) := (P⊗ 1)(δT (bn)n∈N). (2.6.10)

Lemma 2.6.6. [80] [61] ∇T : E1 7→ E1 ⊗B1 Ω
1(B1) is a Hermitian δT connection. It satisfies

∇T (eb) = ∇T (e)b+ e⊗ δT (b), e ∈ E1, b ∈ B1, and (2.6.11)

(e1|∇T (e2)) − (∇T (e1)|e2)
∗ = δT (⟨e1, e2⟩B), e1, e2 ∈ E1. (2.6.12)

where (·|·) : E1 × (E1 ⊗B1 L(F)) 7→ L(F) is given by (e1|e2 ⊗B1 x) := ⟨e1, e2⟩B1x.

Corollary 2.6.7. [80] [61] There is a densely defined linear operator 1⊗∇T T :∈ L(E⊗B F) defined

by

(1 ⊗∇T T)(e⊗B f) := e⊗B Tf+ c ◦ (∇T (e)⊗Ω1(B1)
f); e ∈ E, f ∈ F, (2.6.13)

where c : E⊗B1 Ω
1(B1)⊗Ω1(B1)

F 7→ E⊗B F is the natural map.

Definition 2.6.8. (compare with [61].) Let (E,S) in KK1(A,B) and (F, T) in KK1(B,C), where

(F, T) is essential (that is, the left action of B on L(F) is essential and the derivation δT is

essential). A correspondence from (E,S) to (F, T) comprises a pair (B1,E1), where E1 is a

right operator ∗-module over an operator ∗-algebra B1, equipped with the Graβmannian

δT - connection ∇T : E1 7→ E1 ⊗B1 Ω
1(B1) such that the following hold:
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1. B1 ⊂ C1(B,C)) as a dense ∗-subalgebra and E1 ⊂ E as a dense pre-Hilbert submodule.

2. There exists a dense ∗-subalgebra A1 ⊂ C1(A,B) such that the commutators [1 ⊗∇T

T ,a] are densely defined and extend to a bounded operator in L(E ⊗B F) for each

a ∈ A1.

3. The operators s := S⊗ 1, t := 1 ⊗∇T T : Dom(s) ∩ Dom(t) 7→ E⊗B F have a dense

common domain of definition and furthermore for each µ ∈ R \ {0} the operator

[s, t](s− iµ)−1 : Dom(t) 7→ E⊗B F extends to a bounded operator in L(E⊗B F).

Theorem 2.6.9. [61] Let (E,S) ∈ KK1(A,B) and (F, T) ∈ KK1(B,C), where (F, T) is essential,

and let (B1,E1) be any correspondence from (E,S) to (F, T). Then

(
(E⊗B F)⊕ (E⊗B F),

 0 s− it

s+ it 0

)
, (2.6.14)

defines an element of KK0(A,C). Moreover, the pairing ⊗(B1,E1) : KK1(A,B)× KK1(B,C) 7→

KK0(A,C) defined by

(E,S)⊗(B1,E1)
(F, T) := (E⊗B F⊗ C2,

 0 s− it

s+ it 0

), (2.6.15)

represents the Kasparov product ⊗B : KK1(A,B)× KK1(B,C) 7→ KK0(A,C). That is, we have a

commuting diagram:

KK1(A,B)×KK1(B,C)

b
��

⊗(B1,E1) // KK0(A,C)

b
��

KK1(A,B)×KK1(B,C)
⊗B // KK0(A,C).

By making suitable minor adjustments analogous to the external tensor product construc-

tion, it is possible to define correspondences between even cycles, or between cycles one of

which is even and the other odd.
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3: Quantum metric spaces

3.1 Compact quantum metric spaces.

The purpose of this section is in part to give a review of the development of the quantum

metric space and to include some relevant observations and examples for later chapters.

The compact quantum metric space was a definition coined by Rieffel in a series of papers

in the late nineties [100], [101], [102] to describe those C∗-algebras admitting a so-called

Lipschitz seminorm, with which the state space can be endowed with a metric structure.

The terminology owes itself to the setting of ordinary Lipschitz functions, since a compact

metric space (X,d) defines a densely defined seminorm LLip on the algebra ring C(X, R)

of real-valued functions via

LLip(f) := sup
{
|f(x) − f(y)|

d(x,y)
: x,y ∈ X, x ̸= y

}
. (3.1.1)

and this can in some sense be thought to encode all the metric information for X, since

the metric is recovered via d(x,y) := sup{|f(x) − f(y)| : LLip(f) 6 1}. More significantly,

Monge and Kantorovich [64] show that the metric extends to the state space S(C(X)) of

Borel probability measures on X, where the formula becomes

d(µ,ν) := sup{|µ(f) − ν(f)| : f ∈ C(X, R), LLip(f) 6 1}. (3.1.2)

In the greatest generality, this metric can be used in the study of order-unit spaces, which

is the context of Rieffel’s programme. As a rule we are more interested in C∗-algebras

than order-unit spaces, so the change in approach which we present can be motivated by

"keeping track of the topology".

In general, when L : C(X, R) 7→ [0,∞] is a densely defined seminorm, the function defined

by d(µ,ν) := sup{|µ(f) − ν(f)| : f ∈ C(X, R), L(f) 6 1} is an extended metric: it is a metric

up to the possibility that it may take infinite values on certain states. The first task is, then,

to find necessary and sufficient conditions on L such that d is a metric.
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Proposition 3.1.1. Let X be a compact Hausdorff topological space, d : X×X 7→ R be an extended

metric and LLip : C(X, R) 7→ [0,∞] be as in (3.1.1). Let O := {(x,y) ∈ X× X : d(x,y) < ∞}.

Then (1) O is dense in X×X if and only if (2) {f ∈ C(X, R) : L(f) = 0} = RI.

Proof. If (2) fails then there exists an f ∈ C(X, R) and a pair (x0,y0) ∈ X × X such that

L(f) = 0 and f(x0) ̸= f(y0). By continuity of f this holds if and only if there is an open set

O containing (x0,y0) such that f(x) ̸= f(y) for each pair (x,y) ∈ O. From (3.1.2), d takes

infinite values on O and hence (1) fails. Conversely if (1) fails then there is an open subset

O of X× X on which d takes infinite values, so L(f) = 0 for any non-constant f ∈ C(X, R)

supported in O.

The above observation supports the idea that a good seminorm for metric purposes should

satisfy a nondegeneracy condition.

Definition 3.1.2. A seminorm L on a unital algebra A is called nondegenerate if {a ∈ A :

L(a) = 0} = RI.

Definition 3.1.3. LetA be a unital separable C∗-algebraA andAsa := {a = a∗ ∈ A}. A Lip-

schitz pair (A,L) on A comprises a dense unital subalgebra A ⊂ Asa and a nondegenerate

seminorm L : A 7→ [0,∞).

A Lipschitz pair (A,L) on A is seen to determine an extended metric dA,L over S(A) (oc-

casionally written dA, or dL, if the Lipschitz pair is understood) in a way which provides

a noncommutative analogue of the Monge-Kantorovich distance when A is commutative;

the metric is just

dA,L(ω1,ω2) := sup{|ω1(a) −ω2(a)| : a ∈ A, L(a) 6 1}. (3.1.3)

Conversely a metric d on S(A) defines a nondegenerate seminorm Ld on A via

Ld(a) := sup
{
|µ(a) − ν(a)|

d(µ,ν)
: µ,ν ∈ S(A), µ ̸= ν

}
. (3.1.4)
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3.1.1 Recovering a metric from a Lipschitz pair, and vice-versa.

Proposition 3.1.4. Let A be a unital C∗-algebra and let d be a metric on S(A). Consider the

pair (A,Ld), defined for some algebra A ⊂ Asa ∩ domLd, with Ld defined as in equation (3.1.4),

which may or may not be a Lipschitz pair. Then dA,Ld defined by (3.1.3) is a pseudometric and

dA,Ld 6 d. Moreover if dA,Ld is a metric and the topology d generates is compact, then the two

metrics are topologically equivalent.

Proof. The first part is immediate from the definitions. With the extra assumptions in place,

it follows that the identity map ι : (S(A),d) 7→ (S(A),dA,Ld) is a continuous map from a

compact to a Hausdorff topological space, whence a homeomorphism.

The opposite problem, namely when a Lipschitz seminorm may be recovered from the

metric that it induces, was considered in Chapter 4 of [101]. Using (3.1.3) and (3.1.4), it is

clear that if (A,L) is a Lipschitz pair on A then so is (A,LdA,L). The most important feature

of the seminorm LdA,L is that it is lower semicontinuous, whether or not L itself is.

Definition 3.1.5. A Lipschitz pair (A,L) is called lower semicontinuous if whenever (an) ⊂ A

is a sequence converging to a ∈ A such that L(an) 6 R for each n ∈ N then also L(a) 6 R.

Proposition 3.1.6. [101] IfA is a unital C∗-algebra and (A,L) is any Lipschitz pair onA such that

dA,L is a metric, then LdA,L is the largest lower semicontinuous Lipschitz seminorm smaller than

L. Consequently, LdA,L(a) = L(a) for each a ∈ A if and only if (A,L) is a lower semicontinuous

Lipschitz pair.

Definition 3.1.7. A Lipschitz pair (A,L) is called closed if it is lower semicontinuous and

A = Dom(LdA,L).

By replacing (A,L) by (Dom(LdA,L),LdA,L), we can sometimes reduce problems about Lip-

schitz pairs to the closed case. To ensure that Dom(LdA,L) is an algebra, it is important to

introduce the Leibniz rule:

L(ab) 6 L(a)∥b∥+ ∥a∥L(b) for each a,b ∈ A. (3.1.5)

Lemma 3.1.8. [102] Let A be a unital C∗-algebra and (A,L) be a closed Lipschitz pair on A. Then

(A,L) becomes a Banach space when equipped with the norm ∥a∥1 := ∥a∥ + L(a), which is a

Banach algebra provided (A,L) satisfies the Leibniz rule.
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The Leibniz rule can be thought of as a heuristic for Lipschitz seminorms coming from

unbounded derivations, such as those coming from spectral triples. For a spectral triple,

the induced metric coincides with Connes’ extended metric. The existence of a spectral

triple is a somewhat stronger than necessary hypothesis, however, since the Dirac operator

involved in the definition is assumed to have compact resolvent, which is a condition more

relevant to summability and Fredholm properties. Nevertheless, Rennie and Varilly came

up with a very interesting statement, which suggests that the extra conditions of a spectral

triple may be of metric significance to the resulting Lipschitz seminorms:

Proposition 3.1.9. [99] Let (A,H,D) be a spectral triple over a C∗-algebra A coming from a

faithful representation π : A 7→ B(H) with the property [D,π(a)] = 0 ⇐⇒ a ∈ CIA. Then

(Asa,LD), where Asa := {a ∈ A : a∗ = a} and LD(a) := ∥[D,π(a)]∥, is a lower semicontinuous

Lipschitz pair satisfying the Leibniz rule. If the representation π is nondegenerate and the spectral

triple comes with a cyclic vector ξ for (A,π) such that kerD = Cξ then Connes’ extended metric

is a metric. Further, (Asa,LD) is closed if and only if A = C1(A).

Finally, Rieffel addresses the question of whether a metric induced by a Lipschitz semi-

norm has finite diameter and whether it induces the weak∗-topology of S(A), which in

particular turns (S(A),dA,L) into a compact topological space.

For each Lipschitz pair (A,L), define BL(A) := {a ∈ A; L(a) 6 1}, B̃L(A) := {ã ∈

A/RI; L(ã) 6 1} and B1,L(A) := {a ∈ BL(A); ∥a∥ 6 1}. Formulated differently, the

statements are:

Proposition 3.1.10. [100], [101]

1. Given a unital C∗-algebra A equipped with a Lipschitz pair (A,L), equation (3.1.3) deter-

mines a metric dL,A of finite diameter if and only if B̃L(A) ⊂ A/RI is norm- bounded, and

further diamB̃L(A) 6 r if and only if diam(S(A),dL) 6 2r, for each r > 0.

2. dA,L metrises the weak∗-topology of S(A) if and only if (1) dA,L has finite diameter and (2)

B1,L(A) ⊂ A is norm- totally bounded.

Definition 3.1.11. [102] A C∗-algebra A, equipped with a Lipschitz pair (A,L) with the

property that dA,L metrises the weak∗-topology of S(A), is called a compact quantum metric

space.
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3.1.2 Dependence on the choice of algebra.

A priori, every property of a Lipschitz pair that we have discussed so far depends on the

algebra A defining it. A question which was raised in [57] was the following: given two

Lipschitz pairs (A1,L) and (A2,L) defined on the same C∗-algebra, what is the relationship

between dL,A1 and dL,A2? Are there instances, for example, in which dL,A1 is a metric on

S(A) whilst dL,A2 is not? We begin with another of Rieffel’s observations:

Lemma 3.1.12. [101] Let A be a separable unital C∗-algebra and (A1,L) and (A2,L) be two Lips-

chitz pairs on A. Then dA1,L = dA2,L if and only if BL(A1) = BL(A2).

The lemma tells us that the metrics dA1,L and dA2,L agree whenever A1 and A2 have the

same closure in the ∥ · ∥1-norm.

In general, ifA is any unital C∗-algebra, (A,L) any closed Lipschitz pair onA and d is any

metric on S(A) which is smaller than dA,L, then we can contemplate the pair (Ad,L), where

Ad is the set of all functions which are Lipschitz for d in the sense of (3.1.4). Since d 6 dA,L

and L is closed, then necessarily LdA,L 6 Ld. So long as the inclusion Ad ⊂ A is dense and

the former is an algebra, then (Ad,L) is also a Lipschitz pair. Of course, when A = C(X)

is unital, Ad is certainly an algebra and density of Ad follows from the Stone-Weierstrass

theorem. The question is, what does the metric dAd,L give us? We were able to come up

with the following proposition:

Proposition 3.1.13. Let A be a unital C∗-algebra and (A,L) be a closed Lipschitz pair on A which

gives (S(A),dA,L) finite diameter. Let d1, d2 be any metrics on S(A) with d1,d2 6 dA,L and with

the property that the spaces Ad1 and Ad2 defined by

Adi := {a ∈ A : ∃La > 0 such that |ω1(a) −ω2(a)| 6 Ladi(ω1,ω2), ∀ω1,ω2 ∈ S(A)}

are dense in A. Then dAd1 ,L = dAd2 ,L if and only if d1 and d2 are Lipschitz equivalent metrics.

Proof. One one hand, if d1 and d2 are Lipschitz equivalent then by definition there exists

a C > 1 such that 1
Cd2(ω1,ω2) 6 d1(ω1,ω2) 6 Cd2(ω1,ω2) for each ω1,ω2 ∈ S(A). It

follows that Ad1 = Ad2 and so immediately dAd1 ,L = dAd2 ,L.

Conversely if dAd1 ,L = dAd2 ,L then, from Lemma 3.1.12, BL(Ad1) = BL(Ad2). By our

standing hypotheses, Ad1 and Ad2 become Banach spaces when equipped with the norms
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∥a∥i := ∥a∥ + Ldi(a) for each i ∈ {1, 2}. Since (A,L) is closed, it follows that BL(Ad1)

and BL(Ad2) are closed Banach subspaces of Ad1 and Ad2 in the ∥ · ∥1 and ∥ · ∥2 norms

respectively. For indeed, if (an)n is a sequence in BL(Ad1) converging to a ∈ Ad1 then we

can replace (an)n with a sequence (bn)n ∈ BL(Ad1) with the same limit. Since L(bn) 6 1

for each n, also L(a) 6 1 and hence a ∈ BL(Ad1). The same argument goes for BL(Ad2).

All this means that

ι : (BL(Ad1), ∥ · ∥1) 7→ (BL(Ad2), ∥ · ∥2)

is an everywhere defined linear bijection between Banach spaces. As a consequence of the

uniform boundedness principle, the norms ∥ · ∥1 and ∥ · ∥2 are equivalent. In particular

there exists an R1 > 0 such that

Ld2(a) 6 R1(∥a∥+ Ld1(a)), ∀a ∈ BL(Ad1). (3.1.6)

Since Ld1 and Ld2 are zero on multiples of the identity, this inequality passes to the quotient

algebra and becomes

Ld2(ã) 6 R1(∥ã∥+ Ld1(ã)), ∀ã ∈ BL(Ad1)/RI. (3.1.7)

Since d1 gives S(A) finite diameter, the first part of Proposition (3.1.10) applies and we can

write

Ld2(ã) 6 R1

(
1 +

diamd1(S(A))

2

)
Ld1(ã), ∀ã ∈ BL(Ad1)/RI. (3.1.8)

By symmetry, there also exists an R2 > 0 such that

Ld1(ã) 6 R2

(
1 +

diamd2(S(A))

2

)
Ld2(ã), ∀ã ∈ BL(Ad2)/RI. (3.1.9)

Consequently Ld1 and Ld2 are equivalent Lipschitz seminorms onBL(Ad1)/RI = BL(Ad2)/RI

and so the metrics d1 and d2 are Lipschitz equivalent.
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3.1.3 Continuity and Lipschitz continuity for quantum metric spaces.

In this section we make a brief commentary on the morphisms between compact quantum

metric spaces. The terminology in the next definition is motivated by the relationship be-

tween Lipschitz functions over general compact metric spaces and differentiable functions

on manifolds.

Definition 3.1.14. [70] [124] LetA, B be C∗-algebras, equipped with lower semicontinuous

Lipschitz pairs (A,LA) and (B,LB). We say a ∗-homomorphism α : A → B is smooth if

α(A) ⊂ B and Lipschitz if there is a λ > 0 with LB(α(a)) 6 λLA(a) for all a ∈ A.

It is easy to see that a map α : A → B of bounded quantum metric spaces is Lipschitz if

and only if the induced map Tα : (S(B),dLB) → (S(A),dLA) given as

Tα(ϕ)(a) := ϕ(α(a)), (3.1.10)

is Lipschitz (with the same constant λ), for indeed if ϕ,ψ ∈ S(B) then:

dLA(Tα(ϕ), Tα(ψ)) := sup{|Tα(ϕ)(a) − Tα(ψ)(a)| : a ∈ A, LA(a) 6 1}

= sup{|ϕ(α(a)) −ψ(α(a))| : a ∈ A, LA(a) 6 1}

6 λ sup{|ϕ(α(a)) −ψ(α(a))| : a ∈ A, LB(α(a)) 6 1}

6 λdLB(ϕ,ψ).

Conversely, if the identity dLA(Tα(ϕ), Tα(ψ)) 6 λdLB(ϕ,ψ) applies then the expression for

LdLB
becomes

LdLB
(α(a)) := sup

{
|ϕ(α(a)) −ψ(α(a))|

dLB(ϕ,ψ)
: ϕ,ψ ∈ S(B), ϕ ̸= ψ

}
. (3.1.11)

Therefore, by the lower semicontinuity of LB, LB(α(a)) = LdLB
(α(a)) 6 λLA(a) for each

a ∈ A.

Lemma 3.1.15. LetA, B be C∗-algebras equipped with closed Lipschitz pairs (A,LA) and (B,LB),

Then α : A→ B is smooth if and only if it is Lipschitz.

Proof. See [124]. Alternatively, we could argue that α : (A, ∥ · ∥1) 7→ (B, ∥ · ∥1) is an every-

where defined Banach algebra map and argue as in the proof of Proposition 3.1.13.
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3.2 Locally compact quantum metric spaces.

A full treatment of Rieffel’s quantum metric picture for nonunital C∗-algebras has only

very recently become available, thanks to the works of Latrémolière in [76] and later [77].

The difficulties can be traced to the classical Wasserstein metric [120], which is defined in

the same way as the Kantorovich metric for probability measures on locally compact topo-

logical spaces. Starting from each such space X, the Wasserstein metric may take infinite

values and thus cannot be expected to recover the weak∗-topology on the set of probability

measures of X, at least if X has infinite diameter. More specifically, the Wasserstein metric

recovers the weak∗-topology only on the so-called tight subsets of S(C(X)). A collection

P ⊂ S(C(X)), where (X, ρ) is a metric space, is called Dobrushin-tight if, for any x0 ∈ X,

lim
r→∞ sup

{∫
{x∈X:ρ(x,x0)>r}

ρ(x, x0) dµ(x) : µ ∈ P

}
= 0. (3.2.1)

This suggests a dichotomy between the study of bounded quantum metric spaces, namely

when the induced metric on the (no longer compact) state space has finite diameter, and

unbounded quantum metric spaces. The former is generally easier to deal with.

Most of the complexities arise when trying to establish a counterpart of Proposition 3.1.10.

There is a technical difficulty, however, in trying to write down a precise definition of a

Lipschitz pair which accounts for both unital and non-unital C∗-algebras. For example,

given a locally compact metric space (X,d) which is not compact, the Lipschitz seminorm

LLipd on C0(X) has trivial kernel, which is never the case with a unital C∗-algebra. One

solution would be to replace A, or rather its subalgebra A, with its unitisation, which is

again the approach in [77], for a seminorm L : A 7→ [0,∞) certainly extends to a Lipschitz

seminorm L̂ : Â 7→ [0,∞) simply by setting L̂(a, λ) = L(a). We are ready to bring together

some of the ideas of [77]:

Definition 3.2.1. Let A be a separable nonunital C∗-algebra. A (lower semicontinuous,

closed) Lipschitz pair (A,L) on A is a seminorm L : A 7→ [0,∞) defined on a dense ∗-

subalgebra A of A, such that (Â, L̂) is a (lower semicontinuous, closed) Lipschitz pair on

Â.

The pair (A,L) will be called bounded if and only if (Â, L̂) is bounded. Letting BL(A) :=
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{a ∈ A; L(a) 6 1}, a calculation then shows (see [77]),

(A,L) is bounded ⇐⇒ BL(A) is norm-bounded ⇐⇒ (S(A),dA,L) is bounded.

There still remains the question of whether dA,L recovers the weak∗-topology. For bounded

Lipschitz pairs, a necessary and sufficient criterium was given:

Theorem 3.2.2. [77] Let A be a separable nonunital C∗-algebra and (A,L) a bounded Lipschitz

pair on A. Then the induced metric dA,L on the state space recovers the weak∗-topology if and only

if there exists a strictly positive element h ∈ A+ such that the set

hBL(A)h := {hah; a ∈ BL(A)} ⊂ A (3.2.2)

is norm- totally bounded.

If A admits such a Lipschitz pair then we will call A with (A,L) a bounded quantum met-

ric space(1). Notice that the unitisation of a bounded quantum metric space is a compact

quantum metric space and conversely every compact quantum metric space is a bounded

quantum metric space. Latrémolière’s earlier paper [76] essentially reduces all informa-

tion about Lipschitz pairs to the bounded case, but this was only achieved by replacing

the Wasserstein-type metric with so-called bounded Lipschitz distances, for which the above

theorem applies, but conversely may not be sufficient to recover the complete metric in-

formation. An illustration of this point of view is seen in the setting of the usual Lipschitz

seminorm on the continuous functions on the real numbers, since the usual metric

d(s, t) := sup{|f(s) − f(t)| : f ∈ C0(R, R), LLip(f) 6 1}

is unbounded and consequently the set of Borel measures on R cannot be Dobrushin-tight.

A family of bounded Lipschitz distances on R can at least be defined via

dλ(s, t) := sup{|f(s) − f(t)| : ∥f∥ 6 λ, LLip(f) 6 1}.

The main features of dλ are that it defines the weak∗- topology on the state space of C0(R)

(1)in view of Theorem 3.2.2 and the terminology in [77], a more accurate title would be "bounded locally
compact quantum metric space"
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and that dλ = min{d, 2λ} on the restriction of the metric to R.

Broadly speaking, bounded Lipschitz distances tell us the precise behaviour of a metric

on each bounded set, though not globally. In many respects the Wasserstein picture, rather

than the bounded-Lipschitz picture, is the more natural one, provided we can establish

suitable analogue of tight subsets. The proposal in [102] comprises developing a noncom-

mutative notion of topography, which can capture the sense of points "escaping at infinity",

which underpins the idea of Dobrushin tight sets. In the noncommutative world, Latré-

molière translates this to replacing a Lipschitz pair (A,L) with topographic space (A,M,L),

where M is a suitable abelian subalgebra of A containing an approximate unit of A. In [77],

it is shown that this point of view is general enough to capture both the bounded Lipschitz

distances on a quantum metric with finite diameter and the extended Monge-Kantorovich

distance on a locally compact spaces as special cases, by making a natural choice of topog-

raphy. Even with this in place, much of the theory that we have considered so far does not

behave so well when dealing with unbounded quantum metric spaces. Thus, we will say

no more about this approach and focus our analysis on bounded quantum metric spaces.

3.3 Examples.

3.3.1 Ergodic actions of compact groups.

An early example of a compact quantum metric space was observed by Rieffel in [100].

LetA be a unital C∗-algebra with a continuous weakly ergodic action α of a compact group

G. Recall that an action α : G 7→ Aut(A) is called weakly ergodic if and only if the fixed point

algebra contains only multiplies of the identity. A continuous map ℓ : G 7→ [0,∞) is called a

length function on G if it has the properties: (1) ℓ(g) = 0 ⇐⇒ g = e, (2) ℓ(g−1) = ℓ(g) ∀g ∈

G and (3) |ℓ(gh) − ℓ(h)| 6 ℓ(g) ∀g,h ∈ G. It is known in this case that

L(a) := sup{∥αg(a) − a∥/ℓ(g) : g ̸= e}, (3.3.1)

turns A into a compact quantum metric space.
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3.3.2 Algebra of compact operators.

We consider the algebra of compact operators K ∼= K(H), where H is a separable Hilbert

space. With the next result we provide a general recipe for writing down quantum metric

spaces on the compacts, which gives a metric on S(K) with finite diameter:

Proposition 3.3.1. Let D : H 7→ H be a densely defined linear self-adjoint operator such that

D−1 ∈ K(H). Then the Lipschitz pair (C(H),L), where

C := {x ∈ K : x = x∗, Dx, xD ∈ K} (3.3.2)

and L(x) := sup{∥Dx∥, ∥xD∥}, turns K(H) into a bounded quantum metric space.

Proof. Since D−1 is compact and self-adjoint, density of C in the self-adjoint part of the

compacts follows from the spectral theorem. Since K(H) is non-unital, it suffices to show

that the set {x ∈ C; L(x) 6 1} is norm- bounded and the set {x ∈ C; ∥x∥ 6 1, L(x) 6 1} is

norm- totally bounded.

To this end, let {Pk}k∈N be the spectral projections of Y := D−1 and writeQn :=
∑n
k=1 Pk.

It follows by assumption that for each ϵ > 0 there exists anN ∈ N such that ∥Y−YQn∥ 6 ϵ
2

and ∥Y −QnY∥ 6 ϵ
2 whenever n > N. For x ∈ C with L(x) < 1 and n > N, we obtain

∥QnxQn∥ 6 ∥QnxDYQn∥ 6 ∥xD∥∥Y∥ 6 ∥Y∥,

Hence ∥x∥ 6 ∥Y∥. Moreover,

∥x− xQn∥ 6 ∥xDY − xDYQn∥ 6 ∥xD∥∥Y − YQn∥ 6 ϵ

2
,

and ∥x−Qnx∥ 6 ϵ
2 by symmetry, so that ∥x−QnxQn∥ 6 ∥x−xQn∥+∥xQn−QnxQn∥ 6

ϵ. Moreover, the set Qn{x ∈ C; ∥x∥ 6 1, L(x) 6 1}Qn is bounded and the vector space it

generates is finite dimensional, so it is totally bounded. The result follows.

3.3.3 Further questions: tensor products and continuous fields.

There are two fundamental building block constructions in C∗-algebra theory for which,

to my knowledge, the interplay with quantum metrics is not fully known. The first is
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the (minimal) tensor product construction of two C∗-algebras. If (A,LA) and (B,LB) are

compact quantum metrics on A and B, how does one write down a compact quantum

metric structure on A⊗min B? The other examples of interest are C∗-algebras arising as

continuous fields.

Let X be a locally compact Hausdorff topological space. Recall that C∗-algebra A is called

a C(X)-algebra if there is a ∗-homomorphism ψ : C(X) 7→ Z(A). When this is so then A has

a natural fibration over X consisting of the family {Ax : x ∈ X} of quotient spaces, where

Ax := A/ψ({f ∈ C(X) : f(x) = 0})A. (3.3.3)

The quotient maps will be written πx : A 7→ Ax.

Definition 3.3.2. A C(X)-algebra is called a continuous field of C∗-algebras over X if the map

x 7→ ∥πx(a)∥ is continuous and ∥a∥ = supx∈X ∥πx(a)∥ for each a ∈ A (i.e the representa-

tion
∏
x∈X πx is faithful).

(Some authors prefer to weaken the continuity condition to requiring the maps x 7→

∥πx(a)∥ to be upper semicontinuous).

The first example of a continuous field C∗-algebra is the algebra C0(X,A), which we re-

mark can also be regarded as A⊗min C0(X). Following the discussion of this chapter, the

first object should be to realise C0(X,A) as a compact quantum metric space, starting from

a metric space (X,d) and a compact quantum metric structure on A. This is the context of

the next result:

Proposition 3.3.3. Let A be a unital C∗-algebra and (X,d) be a compact metric space. Let

(Dom(LA),LA) be a compact quantum metric space on A. Then the seminorm L defined by

L1(f) := sup
x∈X

{LA(f(x))}, L2(f) := sup
x ̸=y

{
∥f(x) − f(y)∥A

d(x,y)

}
, L(f) := L1(f)∨ L2(f),

is densely defined on C0(X,Asa) and (dom(L),L) is compact quantum metric space.

Proof. Most of the properties to be verified are elementary, so we shall focus on Rieffel’s

criteria (Proposition 3.1.10).
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For fixed ϵ ∈ (0, 1), we write down a finite open covering {Bϵ/2(xi) : i ∈ I} of X by

ϵ/2-balls centred at {xi}i∈I with respect to the metric d on X.

Let us first suppose f ∈ C0(X,Asa), where L(f̃) 6 1: We can instead write f̃ = f + RI,

where L(f) > 0. By assumption, LA(f(xi)) 6 1 for each i ∈ I and the Lipschitz seminorm

on A gives the metric on the state space finite diameter, so that there is a constant Ki > 0

such that ∥f̃(xi)∥ 6 Ki. Since also L2(f̃) < 1, it follows that

∥f̃(x)∥ 6 ∥f̃(xi)∥+ ∥f̃(x) − f̃(xi)∥ 6 Ki + d(x, xi) (3.3.4)

and hence ∥f̃∥ = supx∈X ∥f̃(x)∥ 6 maxi∈I Ki+ 1/2 and the set {f̃ ∈ C0(X,A)/RI : L(f) 6 1}

is norm-bounded.

By assumption, the collection {a ∈ A : LA(a) 6 1} is norm-totally bounded, so there is a

finite family Fϵ ⊂ A such that dist(f(xi), Fϵ) < ϵ/2 for each i ∈ I. Let fi ∈ Fϵ be the (not

necessarily unique) closest element to f(xi) and let {θi}i∈I ⊂ C(X) be a finite partition of

unity for {xi}i∈I. A calculation then shows that for each x ∈ X:

∥f(x) −
∑
i∈I

fiθi(x)∥ 6 ∥
∑

d(x,xi)<ϵ/2

d(x, xi)θi(x)∥+ ∥
∑

d(x,xi)<ϵ/2

(f(xi) − fi)θi(x)∥

< ϵ/2 + ϵ/2 = ϵ,

showing that the set {f ∈ C0(X,A) : L(f) 6 1} is totally bounded.

Remark 3.3.4. We were not successful in trying to generalise the above to the setting of

tensor products or continuous fields of C∗-algebras. In the tensor product case, we could

find a suitable analogue of the Lipschitz seminorm defined in the previous theorem. For

continuous fields, an analogous choice of seminorm seems reasonable, but we could not

find any non-trivial examples (including the C∗-algebra of the discrete Heisenberg group)

for which the proof above still applies.
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structions of spectral triples on crossed

products

4.1 Metric C∗- dynamical systems.

The motivation for some of the ideas in this chapter is to explore further the relationship

between the construction of spectral triples on crossed products, as studied by the authors

[5] [57], and ordinary metric and topological dynamics, as well as to develop a repertoire

for constructing spectral triples over crossed products of non-unital C∗-algebras. The ques-

tion of what "noncommutative metric dynamics" should entail has not really been much

considered and what follows is merely a proposal based on observations made in recent

papers. Some of our findings were somewhat surprising but we record most of these for

completeness.

As usual, C∗-algebras will be assumed separable and groups second countable and locally

compact throughout. As a convention, every Lipschitz pair (A,L) is assumed to be lower

semicontinuous and to satisfy the Leibniz rule.

Definition 4.1.1. A metric dynamical system is a triple (X,d,G) comprising a locally compact

metric space (X,d) and a group Gwith a continuous action of (X,d).

As usual, a continuous action of G on (X,d) induces a family (αγ)γ∈G of automorphisms

of the algebra ring C0(X) given by αg(f)(x) = f(g−1 · x), which in turn defines a continuous

group action of the space of probability measures on X given by g̃(µ)(f) := µ(αg−1(f)). A

metric dynamical system is certainly a topological dynamical system when one forgets the

extra metric structure. For continuous group actions of C∗-algebras, we will as usual view

the groups as topological groups, induced by the point norm topology on Aut(A). Recall
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this is the topology defined by the neighbourhood base of sets of the form

U(α;a, ϵ) := {β ∈ Aut(A,L) : ∥β(a) −α(a)∥ < ϵ} : a ∈ A, ϵ > 0. (4.1.1)

Definition 4.1.2. A metric C∗-dynamical system comprises a C∗-dynamical system (A,G,α),

where A is a C∗-algebra, equipped with a compact quantum metric structure (A,L) on A,

such that the action of G on (A,L) is smooth, that is, αg(A) = A for each g ∈ G.

Remark 4.1.3. One might ask whether we should impose an extra assumption on the re-

lationship between the group action and the seminorm L. It seems clear from our analysis

that requiring g 7→ L(αg(a)) is actually continuous (with respect to the point norm topol-

ogy on G) is too strong an assumption to make. We point out that this is not implied from

continuity of the induced action of G on the metric space (S(A),dA,L).

So how many metric C∗- dynamical systems are there floating around? The next lemma

shows that under additional assumptions, namely when the Lipschitz pair (A,L) is closed

and gives the metric on S(A) finite diameter, then we can provide a very natural character-

istic of the group action:

Lemma 4.1.4. (see also [124], [5], [57]) Let (A,L,G) be a metric C∗- dynamical system where

(A,L) is closed. Then the following equivalent conditions apply:

1. The action of G on (A,L) is bi-Lipschitz, i.e there exists constants Kg > 1,g ∈ G, such that

whenever a ∈ A then K−1
g L(a) 6 L(αg(a)) 6 KgL(a),

2. The induced action of G over the compact metric space (S(A),dA,L) defined by g̃(ω)(a) =

ω(α−1
g (a)) is bi-Lipschitz with respect to the same constants: if ω1, ω2 ∈ S(A) then

K−1
g dA,L(ω1,ω2) 6 dA,L(g̃(ω1), g̃(ω2)) 6 KgdA,L(ω1,ω2).

If in additionA = C0(X), where X is locally compact and Hausdorff, then equivalently α is spatially

implemented by a continuous action of G on X which is bi-Lipschitz in the classical sense, i.e for

x,y ∈ X we have, for the same constants, K−1
g dA,L(x,y) 6 dA,L(gx,gy) 6 KgdA,L(x,y).

Proof. This follows immediately from the comments in section 3.4 and the evident fact that

a metric dynamical system (X,d,G), such that diamd(X) <∞, is bi-Lipschitz if and only if

the extension to (S(C0(X)),d,G) is bi-Lipschitz with the same constant, with respect to the

Wasserstein metric.
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4.2 Equicontinuity, almost periodicity and the noncommutative Arzela-

Ascoli theorem.

4.2.1 Equicontinuity for metric dynamical systems.

Equicontinuity is a very important notion in the study of metric dynamics; indeed it has

been studied by a number of people [47] [75]. One can think of equicontinuity as a topo-

logical stability criterium; points in close proximity do not wander too far apart in time.

Definition 4.2.1. A metric dynamical system (X,d,G) is called equicontinuous if ∀ϵ > 0

there exists a δ > 0 such that whenever x,y ∈ X, g ∈ G and d(x,y) < δ then d(gx,gy) < ϵ.

A closely related concept when applied to compact metric spaces is almost periodicity,

which was originally introduced by Bohr and examined further by Ellis. It turns out to be

the characteristic of those group actions which admit continuous extensions to actions of

compact groups, which has many useful applications in ergodic theory.

Definition 4.2.2. Let α be a homeomorphism of a compact metric space (X,d), which de-

fines an automorphism of the algebra ring C(X) in the usual way, denoted still by α. A

collection of functions F ⊂ C(X) is called α-almost periodic if the collection {αn(f) ∈ C(X) :

n ∈ Z} is relatively compact in the sup-norm whenever f ∈ F. We call α itself almost periodic

if every f ∈ C(X) is α-almost periodic.

Theorem 4.2.3. [47] Let α be a homeomorphism of a compact metric space. Then (X,d,α) is

equicontinuous if and only if α is almost periodic.

The classical Arzela-Ascoli theorem characterises norm relatively compact families of func-

tions over a compact metric space. There are various generalisations, as well as some state-

ments appearing for actions of C∗-algebras. The following will do for our purposes.

Definition 4.2.4. IfA is a unital C∗-algebra with a metrisable state space and d is any metric

on S(A) which induces the weak∗-topology, then a family F ⊂ A will be called bounded if

sup{∥a∥ : a ∈ F} is bounded and equicontinuous if ∀ϵ > 0 there exists a δ > 0 such that

wheneverω1,ω2 ∈ S(A), a ∈ F and d(ω1,ω2) < δ then |ω1(a) −ω2(a)| < ϵ.

Theorem 4.2.5. [3] Let A be a unital C∗-algebra. A family F ⊂ A is norm-relatively compact if

and only if it is bounded and equicontinuous.
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The proof is made by identifying elements in F with their image in the Kadison bidual

Aff(S(A)) of affine maps in C(S(A)).

Definition 4.2.6. Let (A,G,α) be a C∗-dynamical system on a unital C∗-algebra A. We say

that α is almost periodic if the family {αg(a) : g ∈ G} is norm-relatively compact for each

a ∈ A, that is, the image of G in Aut(A) is relatively compact in the point-norm topology.

Corollary 4.2.7. Let (A,G,α) be a C∗-dynamical system on a unital C∗-algebra A. Let d be any

metric on S(A) which metrises the weak∗- topology and suppose that the induced action of G on

(S(A),d) is equicontinuous. Then α is almost periodic.

4.2.2 Equicontinuity for metric C∗-dynamical systems.

With the next definition we present a concept of equicontinuity for groups acting on com-

pact quantum metric spaces which is slightly more general than [57] and [5] and motivated

from the point of view of constructing spectral triples.

Definition 4.2.8. Let (A,L,G) be a metric C∗- dynamical system on a C∗-algebra A. An

element a ∈ A is said to be equicontinuous if

sup
g∈G

L(αg(a)) <∞ (4.2.1)

Let AG be the algebra of equicontinuous elements of (A,L,G). When (A,L) is closed, AG

then becomes a Banach algebra under the norm ∥a∥1,G := ∥a∥+ supg L(αg(a)).

Definition 4.2.9. We say that the metric C∗- dynamical system (A,L,G) is equicontinuous

when AG ⊂ A is dense.

For commutative C∗-algebras, a spatial interpretation of equicontinuous metric C∗- dy-

namical systems in terms of the dynamics of metric spaces is given in the following result,

which is somewhat surprising, although it seems to be related to a functoriality problem

relating the maximum of two metrics with the corresponding Lipschitz seminorm and vice-

versa.

Proposition 4.2.10. Let (X,d) be a compact metric space, α : G 7→ Homeo(X,d) a contin-

uous group action and (CLipd(X),Ld) the usual compact quantum metric structure on C(X).

Suppose that the action of G on C(X) leaves the dense subalgebra CLipd(X) invariant, so that
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(CLipd(X),Ld,G) is a metric C∗-dynamical system. Then (CLipd(X),Ld,G) is equicontinuous if

and only if

1. The system (X,d,G) is equicontinuous in the classical sense and

2. there exists an equivalent metric d ′ 6 d such that (X,d ′,G) is isometric: we have d ′(gx,gy) =

d ′(x,y) for all x,y ∈ X and g ∈ G.

Proof. Supposing (CLipd(X),Ld,G) is equicontinuous, we can write down a pseudometric

d on X of the form

d ′(x,y) := sup{|f(x) − f(y)| : f ∈ CGLipd(X, R), sup
g

L(αg(f)) 6 1}, (4.2.2)

where CGLipd(X) ⊂ CLipd(X) is the subalgebra of equicontinuous functions. Since this is

dense, d ′ is a metric, which is clearly isometric and smaller than d and must also gen-

erate the same topology as d, since ι : (X,d) 7→ (X,d ′) is continuous. This proves the

forward implication. On the other hand, if the system (X,d,G) is equicontinuous and

d ′ 6 d is as above then we may extend d ′ to the Monge-Kantorovich metric on the space

S(C(X)) of probability measures of X, so that (S(C(X)),d ′,G) is isometric. It follows Ld ′ is

a Lipschitz seminorm on C(X) and clearly (CLipd ′ (X),Ld ′ ,G) is equicontinuous. Moreover

CLipd ′ (X) ⊂ CLipd(X) since d ′ 6 d, whilst the former is dense by the Stone-Weierstrass

theorem. Hence (CLipd(X),Ld,G) is equicontinuous.

Corollary 4.2.11. Let (A,L,G), α : G 7→ Aut(A), be an equicontinuous metric C∗- dynamical

system on a C∗-algebra A. Then α is almost periodic.

Proof. The same proof as in the previous theorem shows that the system (S(A),d,G) is

equicontinuous, so the result follows from Corollary 4.2.7.

When additionally the quantum metric space (A,L) is closed and every a ∈ A is equicon-

tinuous, then we proved the following in [57], Proposition 2.6. In fact, analysis of the proof

reveals that it is not necessary to assume (A,L) is a compact quantum metric space; only

that it gives the metric on S(A) finite diameter. The statement becomes:

Proposition 4.2.12. Let (A,L,G) be a metric C∗- dynamical system on a C∗-algebra A, where

(A,L) is a closed Lipschitz pair. Then (1) (A,L,G) is equicontinuous and furthermore AG = A if
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and only if (2) there exists a metric d on S(A) equivalent to dA,L (i.e 1
Kd 6 dA,L 6 Kd for some

K > 1) such that (S(A),d,G) is isometric.

Proof. Same as in [57].

4.2.3 Relation to the compact group actions and invariant states.

Following the last section, we can study almost periodic automorphisms of C∗-algebras

via their compact extensions. When a C∗-algebra A admits an action of a compact group

G, then there is a normalised Haar measure µ onG faithful conditional expectation E : A 7→

AG into the fixed point subalgebra AG given by

E(a) :=

∫
G

αg(a)dµ.

In this way we are able to identify the states on S(AG) with G-invariant states on A. When

the group action is weakly ergodic, so that AG = C, then the conditional expectation E

defines a G-invariant trace on A. A natural consequence is that almost periodic actions

of C∗-algebras ensure the existence of G- invariant states on the algebra. This leads us to

another observation which will be needed later on.

Lemma 4.2.13. Let A be a C∗-algebra which contains a strictly positive element and suppose that

α : G 7→ Aut(A) is an almost periodic action. Then A contains a G-invariant strictly positive

element.

Proof. When A is unital then the unit is clearly the desired element, so we may assume A

to be non-unital. Let h ∈ A+ be any strictly positive element, so that ω(h) > 0 for each

ω ∈ S(A). We may extend α to a continuous action ᾱ of the point-norm completion Ḡ ofG.

Let E : A 7→ AḠ be a faithful conditional expectation. Then E(h) is G-invariant. Moreover

ω(E(h)) =
∫
Ḡω(αg(h))dµ =

∫
Ḡ g̃(ω)(h)dµ > 0 for each ω ∈ S(A), so that E(h) is strictly

positive.

4.2.4 Relation to Voiculescu-Brown entropy and induced entropy on the state space.

Voiculescu presented a definition of entropy for automorphisms of C∗-algebras, which

is closely based on the classical topological entropy of a homeomorphism coming from a
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resolving sequence of open covers [116]. His definition was instead based on a nuclear de-

composition of the C∗-algebra (that is, a net of completely positive maps factoring through

finite dimensional approximations). Brown [10] later extended the definition to exact C∗-

algebras.

The usual definition of Voiculescu-Brown entropy for unital C∗-algebras is as follows:

Given an exact C∗-algebra A, an an automorphism α of A and a faithful representation

π : A 7→ B(H), we define the set CPA(Ω, δ), withΩ ⊂ A finite and δ > 0, to be the set of all

triples (ϕ, F,ψ) such that F is a finite dimensional C∗-algebra, ψ : A 7→ F and ϕ : F 7→ B(H)

are unital completely positive maps and ∥ϕ ◦ ψ(a) − π(a)∥ < δ whenever a ∈ Ω. By

definition of exactness, CPA(Ω, δ) is non-empty. Define

rcp(Ω, δ) := inf{rank(F) : (ϕ, F,ψ) ∈ CPA(Ω, δ)}. (4.2.3)

This does not depend on π ([10]).

Definition 4.2.14. The Voiculescu-Brown entropy ht(α) of an automorphism α of an exact

C∗-algebra A is defined by

ht(α) = sup
Ω⊂⊂A

(
sup
δ>0

(
lim sup
n→∞

1
n

log rcp(Ω∪α(Ω)∪ · · · ∪αn−1(Ω), δ)
))

. (4.2.4)

Proposition 4.2.15. Let A be a unital exact C∗-algebra and α ∈ Aut(A) be an almost periodic

automorphism. Then ht(α) = 0.

Proof. Fix a faithful representation π : A 7→ B(H). By assumption, for each fixed a ∈ A the

family {αn(a) : n ∈ Z} is norm-totally bounded. Therefore, given a finite set Ω ⊂ A and

a δ > 0, the set {
∪
n∈Z α

n(Ω)} may be δ3 -norm-totally bounded by some finite set Ω ′. If

(ϕ, F,ψ) is a unital completely positive approximation in CPA(Ω ′, δ3 ) then we can see that

(ϕ, F,ψ) ∈ CPA(Ω ∪ α(Ω) ∪ · · · ∪ αn−1(Ω)a, δ) for each n > 0. To see this, fix a ∈ Ω, fix

n > 0 and fix b ∈ Ω ′ with the property that ∥αn(a) − b∥ 6 δ
3 . Then

∥π(αn(a)) −ϕ ◦ψ(αn(a))∥ 6 2δ
3

+ ∥π(b) −ϕ ◦ψ(b)∥ < δ.

Therefore, rcp(Ω∪α(Ω)∪ · · · ∪αn−1(Ω), δ) 6 rcp(Ω ′, δ3 ). Since this holds for each n > 0,
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it quickly follows that ht(α) = 0.

It would be remiss not to mention a result by Kerr in [69], in which it was shown that

when (A,α) is any C∗-dynamical system with zero Voiculescu-Brown entropy, then the

induced topological entropy ofα on the state space S(A) is also zero. It would be interesting

to examine the "noncommutative Kolmogorov" entropies for automorphisms of compact

quantum metric spaces (A,L) introduced by the same author in [70] as well.

4.2.5 Examples

Example 4.2.16. Diffeomorphisms on manifolds. Let (M, g) be a compact Riemannian

manifold, S be a spinc-structure on (M, g) and (C∞(M,L2(M, S),D) be the usual "Dirac-

type" triple on M. A Lipschitz pair on C(M) can be given by (C∞(M), ∥[D, ·]∥), where

∥[D, f]∥ = ∥grad(f)∥. Given a group Γ of diffeomorphisms of M, the triple (C∞(M), ∥[D, ·]∥, Γ)

is a C∗-metric dynamical structure on C(M). It is equicontinuous provided

sup{∥grad(αγ(f))∥ : γ ∈ Γ } <∞, ∀f ∈ C∞(M). (4.2.5)

When further M ⊂ Rn and γ : M 7→ M is represented by local coordinates in Rn for

each γ ∈ Γ then one can write grad(f ◦ γ)(x) = (Jγ(x))Tgrad(f)(γ−1(x)), where Jγ(x) is

the Jacobi matrix of γ at x, so that the group action is equicontinuous provided the partial

derivatives {∂γi∂xj
: 1 6 i, j 6 n, x ∈ M, γ ∈ Γ } are uniformly bounded.

Example 4.2.17. Cantor sets. Cantor sets admit a particularly important class of group ac-

tions known as subodometers, generalising the odometer action of Z. These were studied in

[73] and [39]. Starting with a countable discrete group Γ and a strictly decreasing sequence

(Γk)k∈N of finite index subgroups of Γ , the Cantor space X is identified with the projective

limit of the discrete spaces (Xk)k∈N, where Γ acts on Xk := Γ/Γk by left multiplication. By

equipping X with the compatible metric d((xk), (yk)) := inf{ 1
n : xk = yk, ∀1 6 k 6 n},

it is easy to see that (X,d, Γ) is an isometric, and hence equicontinuous metric dynamical

system. d is an ultrametric, so that the construction of [92] leads to spectral triples with

good Lipschitz properties on the Cantor set.

Subodometers were studied from a more C∗-algebraic perspective in [85], [18] under ad-

ditional hypotheses (i.e the group Γ is amenable, residually finite and
∩
k∈N Γn = {e}, so
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that X is equipped with a group structure as a profinite completion of the Γk). In [57] it was

showed that every equicontinuous action of a discrete group on a Cantor set was conjugate

to a subodometer, along the lines of Ellis’ original result [75].

Example 4.2.18. AF-algebras. Lipschitz seminorms for approximately finite dimensional

(AF)-algebras satisfying the regularity conditions of Rieffel (Theorem 3.1.10) were studied

by Christensen and Ivan [27]. The content of their works was to show that for each AF-

filtration (An)n∈N of a unital AF-algebra A, there exists a spectral triple on A such that

∪n∈NAn ⊂ A in such a way that the induced metric recovers the weak∗-topology on S(A),

defining a compact quantum metric space structure on A.

Recall that the construction [27] comprises the Hilbert space H = L2(A,ϕ), where ϕ is

a faithful state on ϕ. Writing H = Aξ, where ξ is a cyclic vector for the nondegen-

erate representation of A on H, the Dirac operator is given by an increasing sequence

(λn)n∈Z+ ⊂ [0,∞) which diverges to infinity and D :=
∑
n>1 λnQn, where Qn are fi-

nite rank orthogonal projections into the spaces Anξ⊖An−1ξ for each n > 1 andQ0 is the

projection into Cξ. This defines a spectral triple (A,H,D) (e.g when A = ∪n∈Z+An). Rief-

fel’s metric condition is achieved provided the λn grow sufficiently fast and this typically

depends on both the choice of state ϕ and the growth rate of the filtration (An)n∈N).

The automorphisms of AF-algebras are numerous and varied, and have been studied by

a number of authors. Perhaps the most famous is Bratteli’s bilateral shift on the two-sided

CAR-algebra [9]: writing A as the UHF algebra ⊗∞
k=−∞M2, such that An ∼= ⊗nk=−nM2

embeds unitally into An+1 ∼= ⊗nk=−nM2 via the map x 7→ 1⊗ x⊗ 1, the algebra A carries a

unique faithful trace τwhich is invariant for the shift action α on A given by

α(. . .a−k⊗ . . .a−1 ⊗a0.⊗a1 · · ·⊗ak . . . ) := . . .a−(k+1)⊗ . . .a−2 ⊗a−1.⊗a0 · · ·⊗a(k−1) . . .

The bilateral shift has positive Voiculescu-Brown entropy [9], so that it is not almost peri-

odic from Proposition 4.2.15. Thus there does not exist a compact quantum metric structure

(A,LA) on A such that (A,LA,α) is equicontinuous.

Compact actions of AF-algebras were studied in [56]. The authors provided a complete

invariant in terms of the representation rings for the class of so-called locally representable

compact group actions. Essentially these are the actions which fix a particular AF-filtration
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(An)n∈N and for which the restriction of α : G 7→ Aut(A) toAn is given by Ad(γn), where

the γn : G 7→ U(An) are unitary representations.

A natural question to consider is, given a unital AF-algebra A and compact group action

α : G 7→ Aut(A), is it always possible to write down a compact quantum metric structure

on A such that the action of G is isometric? One situation in which an answer can be

given is when there is an increasing AF-filtration (An)n∈N of A with the property that

αg(An) = An for each g ∈ G and n ∈ N. Such actions were studied in [57] and it was

shown that in this case the answer is positive and such a construction is achieved by writing

down a Christensen-Ivan triple on A affliated to (An)n∈N and a G-invariant faithful state

on A. We do not know if all compact actions of unital AF-algebras have this property,

however.

4.3 Group C∗-algebras and length functions.

Let us recall from Example 2.4.2 the fundamental construction of a spectral triple on the

reduced C∗-algebra of a discrete group. It is the triple (C[Γ ], ℓ2(Γ),ML) defined by the

usual left-regular representation λ : C∗
r(Γ) 7→ B(ℓ2(Γ)) and where ML is the multiplication

operator determined by a proper length function L : Γ 7→ Z+([30]). We should recall that

for each g ∈ Γ ,

∥[D, λ(g)]∥ = L(g), (4.3.1)

which follows since ∥[D, λ(g)]eh∥ = ∥(L(gh) − L(h))egh∥ 6 L(g), with equality when h is

the identity.

Proposition 4.3.1. [30] Provided there exists constants c, r > 0 such that |Bn| 6 c(1+n)r, where

Bn := {g ∈ Γ ; L(g) 6 n}, the spectral triple (C[Γ ], ℓ2(Γ),ML) is p summable whenever p > r+ 1.

A question which has been investigated by a number of people now is when does the Lip-

schitz seminorm on this triple satisfy Rieffel’s condition, thus giving C∗
r(Γ) the structure of

a compact quantum metric space? From Proposition 3.1.10, the question can be formulated

in the following way:

Question 4.3.2. For which discrete groups Γ and for which length functions L : Γ 7→ Z+
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are the sets

B̃L(C
∗
r(Γ)) := {x̃ ∈ C∗

r(Γ)/CI; ∥λ(x)∥ 6 1, ∥[ML, λ(x)]∥ 6 1} ⊂ C∗
r(Γ)/CI, (4.3.2)

B1,L(C
∗
r(Γ)) := {x ∈ C∗

r(Γ); ∥λ(x)∥ 6 1, ∥[ML, λ(x)]∥ 6 1} ⊂ C∗
r(Γ) (4.3.3)

respectively norm-bounded and norm- totally bounded?

A positive answer can be given for specific examples:

1. L is the word-length function and additionally Γ satisfies a "Haagerup-type" condi-

tion [87]. In particular this condition is satisfied when Γ is a hyperbolic group, which

is to say that there exists a δ > 0 such that whenever w, x,y, z ∈ Γ then

L(x−1y) + L(z−1w) 6 max{L(x−1z) + L(y−1w),L(x−1w) + L(y−1z)}+ δ. (4.3.4)

(the standard examples of such are the free groups on finitely many generators.)

2. Γ = Zd and L is an arbitrary proper length function ([100]),

(see also [3]). The approaches of [100] and [87] are entirely different. Significantly, the

methods of Ozawa and Rieffel are not sufficient to give a proof in the case Γ = Zd when-

ever d > 2. To resolve this, it is important to see how the "near diagonalisation" trick in

Chapter 2 of that article can be applied to groups on multiple generators.

4.3.1 The Ozawa-Rieffel near-diagonal cut-down procedure.

Lemma 4.3.3. [87] Let D be an unbounded self-adjoint diagonal operator on ℓ2(Z) with spectrum

contained in the integers. Then for each ϵ > 0, there exists anN0 > 0 such that whenever x ∈ B(H)

has the property that [D, x] := Dx− xD extends to a bounded operator in B(H) with ∥[D, x]∥ 6 1

and N > N0 then

∥
∑

|m−n|>N

PmxPn∥ 6 ϵ, (4.3.5)

where Pn is the orthogonal projection onto ⟨en⟩.

Proof. Write D =
∑
n∈E nPn, where E ⊂ Z and for each z ∈ T define Uz := zD =∑

n∈E z
nPn. This defines a strongly continuous gauge action of B(H) defined by αz(x) :=
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UzxU
∗
z. This can be extended to all Borel probability measures µ, where the formula be-

comes

αµ(x) :=

∫
T

UzxU
∗
zdµ(z). (4.3.6)

In particular, if x ∈ B(H) is such that [D, x] ∈ B(H) and additionally µ ∈ L2(T) then a

calculation shows that form,n ∈ E,

Pmαµ([D, x])Pn := µ̂(n−m)Pm[D, x]Pn = (m−n)µ̂(n−m)PmxPn. (4.3.7)

where µ̂ ∈ ℓ2(Z) is the Fourier transform of µ ∈ L2(T). For each N > 0, we can introduce

the function µ̂N ∈ ℓ2(Z) which is defined by µ̂N(n) = − 1
n for |n| > N and µ̂N(n) =

0 otherwise. Letting µN ∈ L1(T) be the inverse Fourier transform of µ̂N, the Cauchy-

Schwartz inequality implies ∥µN∥1 6
√

2π∥µ̂N∥2 → 0 as N→ ∞.

To complete the argument, fix ϵ > 0 and write xN :=
∑

|m−n|>N PmxPn. Let N ∈ N be

large enough such that ∥µN∥ 6 ϵ. Then for each x ∈ B(H) such that [D, x] is a bounded

operator we have

xN =
∑

|m−n|>N

(m−n) ˆµN(n−m)PmxPn =
∑

|m−n|>N

PmαµN([D, x])Pn, (4.3.8)

so that ∥xN∥ 6 ∥µN∥1∥[D, x]∥ 6 ϵ.

4.4 Semidirect product group C∗-algebras.

Recall that a semidirect product NoαH is a group Γ with a unique decomposition Γ =

NH such that H is a subgroup, N is a normal subgroup and the product rule is given by

(n1,h1)α ⋆ (n2,h2)α = (n1αh1(n2),h1h2)α, where α : H 7→ Aut(N) is a group action.

When N is a discrete group, α : N 7→ N is a group automorphism and LN is a proper

length function on N, there is a natural candidate for a length function on NoαZ. It is

defined by

L((n,k)α) := LN(n) + |k|, n ∈ N, k ∈ Z. (4.4.1)
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Proposition 4.4.1. L defines a proper length function on NoαZ, provided that also LN(α(n)) =

LN(n) for each n ∈ N.

Proof. It is clear that L defines a map from Γ to Z+ and that L(n,k)α = 0 if and only

if n = 1N and k = 0. Moreover, L(α−k(n),−k)α = LN(n) + |k| = L((n,k)α), proving

that L(g−1) = L(g) for each g ∈ Γ . Finally for n1,n2 ∈ N and k1,k2 ∈ Z, L((n1,h1)α ⋆

(n2,h2)α) = LN(n1αh1(n2)) + |k1 + k2| 6 LN(n1) + |k1|+ LN(n2) + |k2| = L((n1,h1)α) +

L((n2,h2)α). That L is proper is obvious.

Example 4.4.2. We can view Zd+1 as the untwisted semidirect product ZdoαZ. When the

length function on Zd is the usual one then L defined above is the usual length function

on Zd+1.

Example 4.4.3. The "Klein bottle group" ZoαZ is defined by the conjugation α(n) = −n,

which necessarily preserves any length function on Z. Hence we get a proper length func-

tion on ZoαZ.

With the next result we aim to show that the set of groups for which a positive answer to

Question 4.3.2 can be given is closed under semidirect products. We have not managed to

answer the question exactly, rather we are motivated by the ordinary spectral triple on the

algebra C∗(Zd) ∼= C(Td). The idea is to modify the spectral triple from an ungraded triple

to a graded one and this grading structure is what enables us to "cut down" the coefficients

of the group algebra which lie in the Lipschitz ball.

Set up. Write Γ := NoαZ, where N is a discrete group with a proper length function LN

and α is a group automorphism such that LN(α(n)) = LN(n) for each n ∈ N. With some

abuse of notation, let MLN denote either the usual multiplication operator on ℓ2(N) or the

multiplication operator on ℓ2(Γ) given byMLNe(n,k)α := LN(n)e(n,k)α . We can also define

D on ℓ2(Γ) by De(n,k)α := |k|e(n,k)α , so that Dom(D), Dom(MLN) ⊃ Dom(ML) and

ML =MLN +D : Dom(ML) 7→ ℓ2(NoαZ). (4.4.2)

Theorem 4.4.4. Let N be a finitely generated discrete group, LN a length function on N and

α : N 7→ N be a group automorphism such that LN(α(n)) = LN(n) for each n ∈ N. Let

(C[N], ℓ2(N),MLN) be the associated spectral triple on C∗
r(N) and let us suppose further that the
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Lipschitz seminorm induced by this spectral triple satisfies Rieffel’s criteria, i.e the sets

S̃N := {x̃ ∈ C[N]/CI; ∥[MLN , x̃]∥ 6 1} ⊂ C∗(N)/CI (4.4.3)

SN := {x ∈ C[N]; ∥x∥ 6 1, ∥[MLN , x]∥ 6 1} ⊂ C∗(N) (4.4.4)

are respectively norm- bounded and norm- totally bounded. Then,

1. (C[Γ ], ℓ2(Γ)⊕ ℓ2(Γ),

 0 D− iMLN

D+ iMLN 0

) is a spectral triple on C∗
r(Γ).

2. The Lipschitz seminorm induced by this spectral triple satisfies Rieffel’s criteria also.

Proof. First we observe the inequality

max{∥[ML, x]∥, ∥[D, x]∥} 6 2 max{∥[D− iMLN , x]∥, ∥[D+ iMLN , x]∥}, (4.4.5)

for x ∈ C[Γ ] or x ∈ C[Γ ]/CI. To prove the theorem, it suffices to show that the sets

S̃ := {x̃ ∈ C[Γ ]/CI; ∥[D, x̃]∥ 6 1, ∥[MLN , x̃]∥ 6 1} ⊂ C∗(Γ)/CI, (4.4.6)

S := {x ∈ C[Γ ]; ∥x∥ 6 1, ∥[D, x]∥ 6 1, ∥[MLN , x]∥ 6 1} ⊂ C∗(Γ) (4.4.7)

are respectively norm bounded and norm totally bounded. To this end, letU be the unitary

generator of the element (iN, 1)α ∈ Γ , where iN is the identity of N. By construction, an

element of C[Γ ] has a unique decomposition as a finite sum of the form
∑
xkU

k where

k ∈ Z and xk ∈ C[N].

It is known how to construct a conditional expectation E : C∗
r(Γ) 7→ C∗

r(N): there is a

circle action defined by γz(Uk) = zkUk and γz(x) = x for x ∈ C[N] and the conditional

expectation is the map E(x) :=
∫

T γz(x)dz. Notice that E(C[Γ ]) = C[N].

The resulting Fourier coefficients of each x ∈ C∗
r(Γ) for γ are the elements xk := E(xU−k)

for k ∈ Z. Note that for each x ∈ C[Γ ] and k ∈ Z,

∥xk∥ = ∥xkUk∥ = ∥
∫

T

z−kγz(xU
−k)dzUk∥ 6 ∥x∥ (4.4.8)
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Moreover, [MLN ,Uk] = 0 for each k ∈ Z, as revealed by the calculation

[MLN ,Uk]e(n,l)α = (LN(αk(n)) − LN(n))e(αk(n),l+k)α , n ∈ N, k ∈ Z. (4.4.9)

Therefore, for each x ∈ C[Γ ] and k ∈ Z,

∥[MLN , xk]∥ = ∥[MLN , xkUk]∥ = ∥[MLN ,
∫

T

z−kγz(xU
−k)dzUk]∥ 6 ∥[MLN , x]∥ (4.4.10)

and for each x̃ ∈ C[Γ ]/CI, then E(x̃) = x̃0 and

∥[MLN , x̃0]∥ = ∥[MLN ,
∫

T

z−kγz(x̃0)dzU
k]∥ 6 ∥[MLN , x̃]∥. (4.4.11)

Consequently, x ∈ S implies xk ∈ SN for each Fourier coefficient k and x̃ ∈ S̃ implies

x̃0 ∈ ˜SN.

Now let {Pk}k>0 be the spectral projections of D, which are rank two for k > 1. These

projections are related to the Fourier coefficients by the formula

E(x) :=
∑
m>0

PmxPm. (4.4.12)

For each x ∈ S, the proof of Lemma 4.3.3 shows that for each ϵ > 0 there exists an K ∈ N

such that

∥x−
K∑
k=0

xkU
k∥ 6 ϵ. (4.4.13)

where xk ∈ SK for k ̸= 0. Hence also

∥x̃− (x̃0 +

K∑
k=1

xkU
k)∥ 6 ϵ, (4.4.14)

where x̃0 ∈ S̃N and xk ∈ SN for k ̸= 0. By hypothesis, S̃N and SN are respectively bounded

and totally bounded, so that S̃ and S are respectively bounded and totally bounded, prov-

ing the lemma.

Corollary 4.4.5. Let Γ be a finitely generated iterated discrete semidirect product group of the form
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(((Zoα1Z)oα2 Z) . . .oαkZ). Let the length function on Γ be that induced by equation (4.2.1),

starting from the usual word-length function on Z.

Suppose that each αi ∈ Aut((Zoα1 Z)oα2 Z) . . .oαi−1 Z is determined by a permutation matrix

on the generators with length 1. Then the Lipschitz seminorm induced by the spectral triple on

C∗
r(Γ), obtained from applying the previous lemma inductively, satisfies Rieffel’s condition: we

obtain a compact quantum metric structure on C∗
r(Γ).

Remark 4.4.6. It is worth making a brief observation how we would expect the above ideas

to work for "bad cases", such as the discrete Heisenberg group,

H3 := ⟨g,h,n | gh = hg, hn = nh, ng = ghn⟩, (4.4.15)

which can be identified as a semidirect product of Z2 by Z, with conjugation defined by the

group automorphism ϕn(g,h) = (g+nh,h). Since the orbit of ϕ is infinite, there does not

exist a proper length function L on Z2 such that L(ϕn(g,h)) = L(g,h) for each (g,h) ∈ Z2.

On C∗
r(H3) ∼= C∗(U,V ,W | UV = VU, VW = WV , WU = UVW) there are two circle

actions, related to the description of the algebra as a continuous field of rotation algebras.

They are given by

σ : U 7→ zU, V 7→ V , W 7→W; τ : U 7→ U, V 7→ wV , W 7→W, (4.4.16)

where w, z ∈ T and U,V and W are the unitaries representing the generators n, g and h

respectively. Just as in the proof of Lemma 4.4.4, we can use these actions to construct

"Fourier coefficients" in U and V . There are natural well-defined operators on ℓ2(H3) given

on the generators by

δ1enαgβhγ = |α|enαgβhγ , δ2enαgβhγ = |β|enαgβhγ , (4.4.17)

where α,β,γ ∈ Z. By construction, 0 6 δ1, δ2 6 δ1 + δ2 6ML, when L is the word-length

on H3. Consequently, if we wanted to write down a spectral triple on C∗(H3) with good
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metric properties, we might try something like

(C[H3], ℓ2(H3)⊕ ℓ2(H3),

(ML − (δ1 + δ2)) δ1 − iδ2

δ1 + iδ2 −(ML − (δ1 + δ2))

), (4.4.18)

where the representation is given by two copies of the left-regular representation of C[H3]

on ℓ2(H3). We would be very interested in exploring the metric properties of this triple in

future work.

4.5 Crossed products of C∗-algebras by discrete groups.

4.5.1 Review

Both [5] and [57] addressed the following question: given a unital C∗-algebra A equipped

with a spectral triple (A,HA,DA) and a discrete group Γ , under what assumptions is it

possible to write down a spectral triple on the reduced crossed productAor,αΓ? Moreover

when (A,HA,DA) determines a compact quantum metric structure for A, under what cir-

cumstances does the resultant crossed product triple determine a compact quantum metric

structure on Aor,αΓ?

As well as provide a brief summary of these findings, we would like to consider the effect

of allowing the initial algebra A to be non-unital and prescribed with a quantum metric

structure which determines a metric on S(A) with finite diameter. Moreover, we would

like our findings to be applicable for as large a class of discrete groups as possible. The

groups which we are able to consider are those groups in Corollary 4.4.5 which arise as

iterated semidirect products by Z.

Lemma 4.5.1. Let N and H be discrete and finitely generated groups and α : H 7→ Aut(N) act as

conjugations. Then there is a natural isomorphism C∗
r(NoαH) ∼= C∗

r(N)oα̃H, where α̃h(Un) =

Uαh(n) for each n ∈ N.

If (C[N],L) is the usual Lipschitz pair on C∗
r(N) coming from a proper length function l on N

then the action of α̃ on (C[N],L) is equicontinuous for every x ∈ C[UN] if and only if there exists

a proper length function lα on N fixed by α.

Proof. On one hand if α fixes the word-length of N then clearly the action of α̃ on C[N]
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is smooth and suph∈H L(α̃h(Un)) = suph∈H L(Uαh(n)) = l(n) < ∞ for each n ∈ N, so

that α̃ is equicontinuous. On the other hand if the action of α̃ on (C[N],LN) is equicon-

tinuous and l is any proper length function (such as word-length) on N then lα(n) :=

suph∈H l(αh(n)) <∞ is clearly the desired length function on N.

4.5.2 Set up.

We suppose that we have a spectral metric C∗-dynamical system, i.e

1. A C∗-dynamical system (A, Γ ,α), where A is a separable C∗-algebra and α : Γ 7→

Aut(A) is an action of a discrete and finitely generated group,

2. a spectral triple (A,H,D) on A such that

3. (Asa,LD(a) := ∥[D,π(a)]∥) determines a quantum metric structure onAwhich gives

the metric dA,LD on S(A) finite diameter and

4. αg(A) = A for each g ∈ Γ , i.e (A,LD, Γ) is a metric C∗-dynamical system.

Recall that α is equicontinuous if the property

LΓ (a) := sup
g∈Γ

L(αg(a)) <∞, ∀a ∈ AΓ , (4.5.1)

holds for some norm dense ∗-subalgebra AΓ ⊂ A.

Definition 4.5.2. Recall that if A is a C∗-algebra, α : Γ 7→ Aut(A) is a continuous action

and πA : A 7→ B(HA) is a faithful representation then the left-regular representation is the

faithful representation of AoαZ on B(HA ⊗ ℓ2(Γ)) defined on the vector space generators

Cc(Γ ,A) := {
∑
g agug : ag ∈ A, ug ∈ U(Γ)} by the relations

π(a)(ξ⊗ eh) = πA(αh−1(a))ξ⊗ eh (4.5.2)

π(ug)(ξ⊗ eh) = ξ⊗ egh a ∈ A, ξ ∈ HA, g,h ∈ Γ , (4.5.3)

for each a ∈ A, ξ ∈ HA, g,h ∈ Γ . π is also non-degenerate whenever πA is nondegenerate.

When ξ ∈ HA is a cyclic and separating vector for πA then ξ⊗ e1Γ is a separating and cyclic

vector for π.

The existence of spectral triples on crossed products is given in the next result:
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Theorem 4.5.3. Let A be a separable C∗-algebra and Γ be a discrete group. Let (C[Γ ], ℓ2(Γ),DΓ )

be the spectral triple on C∗
r(Γ) arising from either a proper word-length function on Γ or the usual

spectral triple on C∗
r(Z). Suppose (A,HA,DA) is an odd spectral triple on A which satisfies (1),

(3) and (4) above. Then there exists a norm dense ∗-subalgebra Cc(Γ ,A) ⊂ B ⊂ Aoα,rΓ such that

(B,HA ⊗ ℓ2(Γ)⊗ C2,D :=

 0 DA ⊗ 1 − i⊗DΓ

DA ⊗ 1 + i⊗DΓ 0

), (4.5.4)

represented via π⊕ π, is an even spectral triple for the reduced crossed product Aoα,rΓ .

Proof. It remains to show that the crossed product triple satisfies the resolvent condition

whenever the C∗-algebra A is non-unital and the spectral triple (A,HA,DA) itself satisfies

the resolvent condition. We set out to show, therefore,

(π(x)⊕ π(x))(1 +D2)−1/2 ∈ K(HA ⊗ ℓ2(Γ)⊗ C2), x ∈ Cc(Γ ,A).

By writing x =
∑
agug =

∑
ugαg−1(ag) for each x ∈ Cc(Γ ,A), we see that it suffices to

show this for x = a ∈ A. By expanding (π(x)⊕ π(x))(1 +D2)−1/2 carefully, it suffices to

show

π(a)(1 +D2
A ⊗ 1 + 1 ⊗D2

Γ )
−1/2 ∈ K(HA ⊗ ℓ2(Γ)); a ∈ A.

Letting Pg denote the orthogonal projection into HA ⊗ Ceg, we can write

π(a)((1 +D2
A)⊗ 1 + 1 ⊗D2

Γ )
−1/2Pg = (πA(αg−1(a))(1 +D2

A)⊗ 1 + λ2
g)

−1/2Pg

Since (A,HA,DA) is a spectral triple on A, it satisfies the resolvent condition, so that

πA(αg−1(a))(1 +D2
A)

−1/2 ∈ K(HA) for each g ∈ Γ and for each a ∈ A. Thus

π(a)(D2
A ⊗ 1 + 1 ⊗ (1 +D2

Γ ))
−1/2Pg ∈ K(HA ⊗ ℓ2(Γ)).

Now the operator (1 +D2
Γ )

−1/2 is also compact and by assumption this means that the

eigenvalues of D2
Γ are discrete and increase to infinity. Therefore, for each ϵ > 0 there
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exists a finite subset F ⊂ Γ such that

∥(1 +D2
Γ )

−1/2)(1 − pF)∥ < ϵ (4.5.5)

where pF =
∑
g∈F Pg. Therefore, since the projection 1 ⊗ pF commutes with π(a) and

(D2
A ⊗ 1), we have

∥π(a)(D2
A ⊗ 1 + 1 ⊗ (1 +D2

Γ ))
−1/2(1 ⊗ (1 − pF))∥ < ϵ. (4.5.6)

from which it quickly follows that π(a)(D2
A ⊗ 1 + 1 ⊗ (1 +D2

Γ ))
−1/2 is compact.

Remark 4.5.4. When the spectral triple on A is even, so that the representation is of the

form πA := π+A ⊕ π−A and DA =

 0 D+
A

D−
A 0

, the argument is the same, except that the

crossed product triple is now given by an odd cycle,

(B,HA ⊗ ℓ2(Γ)⊗ C2,D :=

1 ⊗DΓ D+
A ⊗ 1

D−
A ⊗ 1 −1 ⊗DΓ

). (4.5.7)

Our next objective is to show that the spectral triple in Theorem 4.5.3 defines a bounded

quantum metric structure on Aor,αΓ , whenever the given triple (A,HA,DA) defines a

bounded quantum metric structure onA. We can provide a direct proof of this when Γ = Z:

Theorem 4.5.5. Let A be a C∗-algebra and α ∈ Aut(A). Let (Cc(Z), ℓ2(Z),DZ) be the usual

spectral triple on C∗(Z). Suppose (A,HA,DA), with A = C1(A), is an odd spectral triple on A

which turns (A,LDA) into a bounded quantum metric space, that αg(A) = A for each g ∈ Z and

that the metric C∗- dynamical system (A,LDA , Z) is equicontinuous. Let (B,HA ⊗ ℓ2(Z), D̂) be

the spectral triple in Theorem 4.5.3, where B = C1(AoαZ). Then (B,LD) is a bounded quantum

metric space.

Proof. We shall assume that A is non-unital and invoke Theorem 3.2.2. It is very straight-

forward to extend the proof to the unital case, essentially by replacing A by A/RI where

necessary. To this end, let h ∈ A+ be an α-invariant strictly positive element and u be the

unitary implementing α, so that [h,u] = 0. Since α is equicontinuous, it is almost periodic

and, from Lemma 4.2.13, we can certainly find such a h.
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Write L1(A) = {a = a∗ ∈ A : ∥[DA,πA(a)]∥ 6 1} and L1(Aoα,rZ) = {x = x∗ ∈ B :

∥[D̂, x⊕ x]∥ 6 1}. Our standing assumptions are

1. {a ∈ A : [DA,πA(a)] = 0} = 0,

2. L1(A) ⊂ A is norm-bounded and

3. hL1(A)h ⊂ A is norm-totally bounded,

and we are required to show

1. {x ∈ B : [D̂, x⊕ x] = 0} = 0,

2. L1(Aoα,rZ) is norm-bounded and

3. hL1(Aoα,rZ)h ⊂ AoαZ is norm-totally bounded.

The content of the proof is much the same as in Lemma 4.4.4 and we will write down

the steps in the same way. As in the beginning of that proof, we can deduce that, for all

x ∈ L1(Aoα,rZ), we have

max{∥[DA ⊗ 1, x]∥, ∥[1 ⊗DZ, x]∥} 6 2. (4.5.8)

Another important feature of our proof is the faithful conditional expectation E : AoαZ 7→

A, defined by

E(x) :=

∫
T

γz(x)dz, where γz(aun) := znaun. (4.5.9)

If we write by (Pn)n∈Z ∈ B(HA ⊗ ℓ2(Z)) the usual family of pairwise orthogonal projec-

tions intoHA⊗Cen then the expectation E is spatially implemented by the formula E(x) =∑
m∈Z PmxPm. For x ∈ AoαZ the nth "Fourier coefficient" is given by xn := E(u−nx).

Observe that, for each n ∈ Z, unxn =
∑
m∈Z Pm+nxPm. Moreover,

∥[DA ⊗ 1,unxn]∥ 6 ∥[DA ⊗ 1, x]∥ and ∥[1 ⊗DZ,unxn]∥ 6 ∥[1 ⊗DZ, x]∥. (4.5.10)

A calculation reveals that, for eachn ∈ Z, ∥[DA⊗1,unxn]∥ = ∥[DA⊗1,
∫

T z
−nγz(x)dz]∥ =

∥
∫

T z
−n[DA ⊗ 1,γz(x)]dz∥. The above identities hold because the gauge action x 7→ γz(x)
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is isometric for ∥[DA ⊗ 1, ·]∥ and a similar argument holds for ∥[1 ⊗DZ, ·]∥. By explicitly

evaluating the operators [DA ⊗ 1,unxn] and [1 ⊗DZ,unxn] on the basis vectors, we find

∥[DA ⊗ 1,unxn]∥ = sup
m∈Z

∥[DA,πA(αm(xn))]∥, (4.5.11)

∥[1 ⊗DZ,unxn]∥ = |n|∥πA(xn)∥. (4.5.12)

It follows that whenever x ∈ B is self-adjoint and [D̂, x⊕ x] = 0 then the Fourier coeffi-

cients vanish and so x = 0, proving the first part of the theorem. To prove the second and

third parts, we can apply the Ozawa-Rieffel cut-down procedure ([87], Chapter 2) with the

projections {Pn : n ∈ Z} to show that for each ϵ > 0 there exists an N ∈ N such that

∥x−
∑

|n−m|6N PmxPn∥ 6 ϵ/2 whenever x ∈ Bsa and ∥[D̂, x⊕ x]∥ 6 1. In other words,

∥x−
N∑

n=−N

unxn∥ 6 ϵ/2, (4.5.13)

It suffices to show that the sets SN defined for each N ∈ N by

SN := {

N∑
n=−N

unxn : ∥[DA,πA(xn)]∥ 6 1, ∥πA(xn)∥ 6 1
n
} (4.5.14)

are norm-bounded, whilst hSNh is also norm-totally bounded. Norm-boundedness of SN

follows immediately from our hypothesis, whilst hSNh can be written:

hSNh := {

N∑
n=−N

unhxnh : ∥[DA,πA(xn)]∥ 6 1, ∥πA(xn)∥ 6 1
n
} (4.5.15)

and norm-total boundedness of hSNh then follows from our hypothesis as well.

Let us investigate Connes’ metric for the state space of AoαZ. We shall study the states

of the form {ω ◦ E : ω ∈ S(A)}, which is a closed subset of S(A). Using the proof of the
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previous theorem, we have for eachω1,ω2 ∈ S(A):

d(ω1 ◦ E,ω2 ◦ E) = sup{|(ω1 ◦ E)(x) − (ω2 ◦ E)(x)| : x ∈ B, ∥[D̂, x⊕ x]∥ 6 1}

= sup{|ω1(E(x)) −ω2(E(x))| : x ∈ B, ∥[DA ⊗ 1, x]∥ 6 1}

= sup{|ω1(E(x)) −ω2(E(x))| : x ∈ B, sup
m∈Z

∥[DA,αm(E(x))]∥ 6 1}

= sup{|ω1(a) −ω2(a)| : a ∈ A, sup
m∈Z

∥[DA,αm(a)]∥ 6 1}

=: dZ(ω1,ω2)

where dZ is a compatible metric on S(A) that is isometric for α.

Remark 4.5.6. The iterated procedure highlighted in [57] to handle the existence of com-

pact quantum metric spaces on crossed products by Zd can be generalised to iterated

crossed products by Z (Corollary 4.4.5). This is immediate from Lemma 4.5.1. This ex-

tends the class of crossed product C∗-algebras for which we can construct spectral triples

with good metric properties, e.g the Generalised Bunce-Deddens algebras corresponding

to the crossed product of a Cantor set by any such group (see [85] and [18] for details).

4.6 A description of the crossed product spectral triple as an unbounded

Kasparov product.

In this section we would like to discuss the interplay between some of the spectral triples

in this section and their representatives in K-homology, which leads us nicely towards the

next chapter. The starting point will be the famed six-term exact sequence of Pimsner and

Voiculescu.

Theorem 4.6.1. [95] Let A be a σ-unital C∗-algebra and α ∈ Aut(A). Then there is a six-term

exact sequence in K-homology given by:

K0(AoαZ)
ι∗ // K0(A)

1−α∗
// K0(A)

δ0
��

K1(A)

δ1

OO

K1(A)
1−α∗

oo K1(AoαZ)
ι∗

oo
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where ι∗ : Ki(AoαZ) 7→ Ki(A) and 1 − α∗ : Ki(A) 7→ Ki(A) are the induced group homo-

morphisms in K-homology and δ0, δ1 are the boundary maps defined by left multiplication with the

generalised Toeplitz element [x] ∈ KK1(AoαZ,A).

The Toeplitz element can be expressed as the relative Kasparov bimodule of an unbounded

AoαZ-A cycle. The algebra AoαZ is canonically represented over the Hilbert module

ℓ2(Z)⊗̄A via

a(en⊗̄b) = en⊗̄α−n(a)b, u(en⊗̄b)) = en+1⊗̄b, (4.6.1)

and there is a densely defined self-adjoint regular operator DZ⊗̄1 on ℓ2(Z)⊗̄A defined by

DZ⊗̄1(en⊗̄b) = n(en⊗̄b). It is known that (C1(Z,A), ℓ2(Z)⊗̄A,DZ⊗̄1) is the desired cycle

(see [55] for details). The next result shows that the spectral triples obtained in the crossed

product construction arise by composition with [x]:

Proposition 4.6.2. Let A be a separable C∗-algebra and α ∈ Aut(A) be an automorphism. Let

(C[Z], ℓ2(Z),DZ) be the usual triple on C∗
r(Z). Suppose that (A,HA,DA), A = C1(A), is an

ungraded spectral triple on A such that the action of α is equicontinuous (and leaves A invariant).

Then the graded spectral triple on AoαZ defined in Theorem 4.5.3 is an unbounded Kasparov

product of (C1(Z,A), ℓ2(Z)⊗̄A),DZ⊗̄1) ∈ KK1(AoαZ,A) and (A,HA,DA) ∈ KK1(A, C).

Proof. Rather than verify that Kucerovsky’s criteria are satisfied, we shall use Theorem

2.6.9. The module of differential 1-forms on A coming from (A,HA,DA) is given by

Ω1(A) := {
∑
i∈I

aiδDA(bi), ai,bi ∈ A}.

where δDA(b) := [DA,πA(b)]. Since α is equicontinuous and the Lipschitz pair defined

on the spectral triple (A,HA,DA) is closed, the algebra A1 of equicontinuous entries with

the norm defined by ∥a∥1 := ∥a∥+ supn∈Z ∥δDA(α
n(a))∥ is an operator ∗-algebra, and

E1 := c0(Z,A1) becomes a countably generated right operator ∗-module.

We are required to show that (E1,A1) is a correspondence in the sense of Definition 2.6.8,

at which point it is easy to see that the triple is precisely the form described in Theorem

2.6.9.

57



CHAPTER 4: METRIC C∗-DYNAMICAL SYSTEMS AND CONSTRUCTIONS OF SPECTRAL
TRIPLES ON CROSSED PRODUCTS

By definition, the Graβmannian δDA - connection ∇ : E1 7→ E1 ⊗A1 Ω
1(A) is given by

∇(en⊗̄b) := en⊗̄δDA(b), b ∈ A1, n ∈ Z. (4.6.2)

Since the operators DZ ⊗ 1 and 1 ⊗DA clearly commute and their domain of intersection

is dense, the third criterium of Definition 2.6.8 is satisfied. Further, a calculation shows that

for each aum ∈ C[Z,A1] ⊂ AoαZ then

[∇,π(aum)](en⊗̄b) = em+n⊗̄δDA(α
−(m+n)(a))b,

so that C[Z,A1] ⊂ {x ∈ AoαZ : [D,π(x)⊕ π(x)] ∈ B(H)} and the inclusion is dense. The

result follows.

When the spectral triple on A is even to begin with, we can formulate a similar result,

the only difference being that taking the Kasparov product with the Toeplitz element now

corresponds to the boundary map δ1 : K0(A) 7→ K1(AoαZ) rather than δ0 : K1(A) 7→

K0(AoαZ). We leave the reader to fill in the details.
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5: Constructions of spectral triples arising

from extensions

5.1 Review of the theory of C∗-extensions.

5.1.1 Extensions and Brown-Douglas-Filmore theory

Recall that a C∗-algebra E is called an extension of A by B if B is contained in E as a closed

two-sided ideal and A ∼= E/B. An natural question to ask is under what assumptions the

geometric aspects of E can then be read off those of A and B, although a question in this

kind of generality is hard to answer. In this chapter we shall we restrict our attention to

extensions of a certain kind, namely short exact sequences of the form

0 // K⊗B ι // E
σ // A // 0 , (5.1.1)

Such extensions fit into the framework of Brown-Douglas-Filmore theory and its various

generalisations. Brown-Douglas-Filmore theory is motivated by the study of the properties

of essentially normal Fredholm operators. These are operators T ∈ B(H) for which T∗T − TT∗ is

a compact operator. To each compact set X ⊂ C is associated a group Ext(X) comprising all

essentially unitary equivalence classes of essentially normal operators with essential spec-

trum X. An important observation that was made was that Ext(X) can then be identified

with the unitary equivalence classes of extensions of the form

0 // K // E // C(X) // 0 , , (5.1.2)

(see [60]). The statement of the Brown-Douglas-Filmore theorem can then be phrased

as saying that Ext(X) is an abelian group and that the natural map, Index : Ext(X) 7→

Hom(K−1(X), Z), is an isomorphism (which is well-defined). Here, K−1(X) is the ordinary

K-group of X.
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Kasparov later formulated the same map as an index pairing between K-theory and the

classifying space Ext(A) of invertible extensions of A by compact operators [67], [66]. Fol-

lowing the well-known identification between the analytic and topological Fredholm index

in Atiyah-Singer index theory, the homology group Ext(A) can be defined using Fredholm

operators and, as a consequence of Voiculescu’s theorem, the correspondence is given be-

tween homotopy equivalence classes of Fredholm modules and invertible compact exten-

sions of A. In the more general language of KK-theory, the statement can be formulated:

Ext−1(A,B) ∼= KK1(A,B) (5.1.3)

whenever A and B are σ-unital C∗-algebras and Ext−1(A,B) is the homotopy invariant

classifying space of extensions of A by the stabilisation K⊗ B of B. From a practical point

of view, analysis of this correspondence tells us how to write down the boundary maps in

the six-term exact sequence for K-theory (or K-homology) arising from a given extension

of C∗-algebras.

5.1.2 Objectives and literature review.

In the light of the above remarks, we seek to address the following aspects of the geometry

of extensions:

1. To construct spectral triples on E, based on given spectral triples on each of A and B

which are related via the equation (5.1.1).

2. To show that in situations in which the spectral triples on each of A and B turn these

algebras into compact metric spaces, then we can obtain, via Connes’ metric, a natural

compact quantum metric space on E.

There are three articles of particular interest to us: we expect the ability to construct spec-

tral triples should be linked to the extension (5.1.1) admitting a "first order differential

pullback structure" with respect to the noncommutative geometry of the ideal and quotient

parts. This matter was considered in the context of extensions of C∗-algebras by Fréchet

operator ideals [119]. The smoothness assumption which we formulate later in this chapter

is based in part on their definition.
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An important development in this area, focusing solely on the compact quantum metric

aspects, was made by Chakraborty and Pal [19]. Their construction was not based on a

spectral triple approach and it seems unlikely to me that their methods can be recovered

precisely this way, though we think that the Lipschitz seminorms which come out of our

analysis are similar (though certainly not identical) to theirs.

Most significantly, Christensen and Ivan study extensions similar to ours in the special

case B = C ([27]), that is, the extension is by the algebra of compact operators, and the

assumptions which we will need to make our analysis work essentially specialise to theirs.

We have not provided an analysis of the Gromov-Hausdorff convergence aspects ([103]) of

our construction as they do with theirs, which is based on associating two real parameters

to the spectral triple on the ideal and quotient parts of the extension, but it seems reason-

ably evident we could introduce the same parameters they do at no loss of generality.

It has very recently been pointed out to me that the authors Carey et al. have recently

studied the geometric aspects of extensions, focusing specifically on the commutative and

noncommutative disc [13]. The language which they use is rather different from ours and

somewhat more explicit, but it highlights an important principal in that we would like to

compare examples arising in our approach from quantum deformations of manifolds to

their classical counterparts.

5.1.3 Varieties of extensions.

A topological extension of X by Y, where X and Y are respectively compact and locally com-

pact Hausdorff topological spaces, is a compact Hausdorff space Z = X ′ ⊔ Y ′, together

with continuous bijections ιX : X 7→ X ′, ιY : Y 7→ Y ′. Note that X ′ ⊂ Z is closed and ιX is a

homeomorphism. This determines a short exact sequence of C∗-algebras

0 // C0(Y) // C(Z) // C(X) // 0 . (5.1.4)

Example 5.1.1. Recall that Toeplitz algebra T generated by the unilateral shift has a descrip-

tion as the short exact sequence of C∗-algebras,

0 // K(H+) // T // C(T) // 0 , (5.1.5)
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Here, H+ is the Hardy space of those functions in H = L2(T) with an analytic extension

to the disc. The Toeplitz algebra is the algebra generated by operators {Tf : f ∈ C(T)},

Tf := PMfP, where P is the projection into H+ and Mf is the multiplication operator on

L2(T). It is related to the commutative extension

0 // C0(open disc) // C(closed disc) // C(T) // 0 , (5.1.6)

Example 5.1.2. The quantum group SUq2 was introduced by Woronowicz in [123]. as

a 1-parameter deformation of the ordinary SU2 group. When one considers the isomor-

phism SU(2) ∼= S3 of topological Lie groups, its C∗-algebra C(S3
q), viewed as the algebra

of functions on the quantum 3-sphere, can be defined for each q ∈ [0, 1] as the universal

C∗-algebra for generators α and β subject to the relations

α∗α+β∗β = I, αα∗ + q2ββ∗ = I, (5.1.7)

αβ = qβα, αβ∗ = qβ∗α, β∗β = ββ∗. (5.1.8)

Woronowicz shows that the C∗-algebras C(S3
q) are all isomorphic for 0 6 q < 1. For

q ∈ (0, 1), there is an alternative description of C(S3
q) as a symplectic foliation ([112], [58],

[8], [21]). We will use the description presented in [19]: write H := ℓ2(N0)⊗ ℓ2(Z) and

let S ∈ B(ℓ2(N0)) and T ∈ B(ℓ2(Z)) be the usual shift operators (i.e Sek := ek+1 ∀k >
0, Tek := ek+1∀k ∈ Z). Let Nq ∈ K(ℓ2(N0)) be defined by Nqek := qkek. There exists a

representation of C(S3
q) over H defined by:

π(α) := S∗
√

1 −N2
q ⊗ I, π(β) := Nq ⊗ T∗. (5.1.9)

The representation π is faithful: if x ∈ C(S3
q) is such that π(x) = 0 then xmust be invariant

for the action of T2 given on the generators by (γz,w : α 7→ zα,β 7→ wβ). Thus x is in the

closed linear span of polynomials in α∗α,αα∗ and β∗β. The relations (5.1.7), (5.1.8) soon

imply x = 0.

By considering the map σ : C(S3
q) → C(T) sending β to 0 and α to the generator T of
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C(T), we soon obtain a short exact sequence,

0 → K⊗C(T) → C(S3
q) → C(T) → 0. (5.1.10)

Writing π(α) = −PT∗P(1 −
√

1 −N2
q)⊗ I+ PT∗P⊗ I, we see that we have an algebra em-

bedding of C(S3
q) in the algebra PC(T)P ⊗ CI +K(ℓ2(N0))⊗ C(T), where P ∈ B(ℓ2(Z))

is the usual Toeplitz projection which has the property that [P, x] is a compact operator for

each x ∈ C(T) and PxP⊗ 1 ∈ C(S3
q) for each x ∈ C(T). This embedding is an isomorphism.

Example 5.1.3. The Podleś spheres [96] were introduced as a family of quantum homoge-

neous spaces for the action of the quantum SU2 group, which parallels the SU(2) action of

the ordinary 2-sphere. Probably the most widely studied algebraically non-trivial exam-

ples are the so-called equatorial Podleś spheres. They can be defined for each q ∈ (0, 1) as the

universal C∗-algebra for generators α and β, subject to the relations β∗ = β and

βα = qαβ, α∗α+β2 = I, q4αα∗ +β2 = q4. (5.1.11)

It is known in this case how to construct a faithful representation of C(S2
q) on the Hilbert

space H := ℓ2(N)⊗ C2, namely,

π(α) := T
√

1 −N4
q ⊗

1 0

0 1

 , π(β) := N2
q ⊗

1 0

0 −1

 . (5.1.12)

This soon leads to the semisplit short exact sequence

0 → K⊗ C2 → C(S2
q) → C(T) → 0. (5.1.13)

The equatorial Podleś sphere can be viewed as a symplectiv q-deformation of the 2-sphere

arising as gluing of two open discs about the equator, viewed as the short exact sequence,

0 → C0(R
2)⊗ C2 → C(S2) → C(T) → 0. (5.1.14)

Many other varieties of noncommutative spheres, including those in higher dimensions

and those defined using extra parameters, can be found in the literature. Some of the
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more prominent examples include the isospectral noncommutative 4-spheres of Connes

and Landi [33] and those arising as symplectic foliations ([112], [58], [8]). The noncom-

mutative geometry of quantum spheres has been studied in numerous articles ([108], [88],

[43], [44], [45], [86], [118], [20] - [24] and more besides).

5.1.4 Set up.

Convention. We suppose that we are given

1. separable and unital C∗-algebras A and B,

2. a short exact sequence (5.1.1), where E is unital and

3. K⊗B ⊂ E as an essential ideal; if I ⊂ E is another ideal then I∩K⊗B ̸= {0}.

Extensions of this form are quite easy to describe by invariants, for each essential inclusion

K⊗B ⊂ E determines a faithful unital ∗-homomorphism π of E into the multiplier algebra

M(K⊗ B) of K⊗ B, further identified with the C∗algebra L(HB) of bounded adjointable

operators on the standard right Hilbert module HB of B. The Busby invariant of (5.1.1) is

the faithful unital ∗-homomorphism,

ψ : A ∼= E/K(HB) 7→ L(HB)/K(HB) =: Q(HB). (5.1.15)

In short, we are studying unital extensions for which the diagram

0 // K⊗B �
� ι //

� _

��

E
σ //

π

��

A //

ψ

��

0

0 // K(HB)
� � // L(HB)

q // Q(HB) // 0

commutes and each vertical map is injective.

Definition 5.1.4. An extension of the above type is called semisplit if and only if ψ admits

a completely positive lift, i.e there exists a unital completely positive map s : A 7→ L(HB)

such that q ◦ s = ψ, where q : L(HB) 7→ Q(HB) is the quotient map.

Theorem 5.1.5. [6] [60] Let A, B be unital C∗-algebras and let ψ, as in equation (5.1.15), ad-

mit a completely positive splitting. Then there exists a faithful unital representation ρ : A 7→
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M2(L(HB)) ∼= L(HB ⊕HB) and an orthogonal projection P ∈M2(L(HB)):

ρ =

ρ11 ρ12

ρ21 ρ22

 ; P =

1 0

0 0

 (5.1.16)

such that ρ11(a) = s(a) for each a ∈ A. Moreover, [P, ρ(a)] ∈ K(HB ⊕HB) for each a ∈ A.

Proof. The first statement is a well known formulation of Stinespring’s theorem for Hilbert

modules (see [6], Exercise 13.7.2). The second statement can be argued as in [60], Lemma

3.1.6: Notice that s := Pρ(·)P is a ∗-homomorphism up to K(HB). By assumption, ρ is a
∗-homomorphism so that in particular ρ(aa∗) = ρ(a)ρ(a∗) for each a. Comparing matrix

entries and using the first part of the result gives us

s(aa∗) = s(a)s(a∗) + ρ12(a)ρ12(a
∗).

We deduce that ρ12(a)ρ12(a
∗) ∈ K(HB) for each a ∈ A. This means that q(ρ12(a)ρ12(a

∗)) =

0 where q is quotient map and, from the C∗-algebra identity on L(HB)/K(HB), we have

that q(ρ12(a)) = 0 and therefore ρ12(a) ∈ K(HB). ρ21 ∈ K(HB) by a similar argument.

As per convention, the pair (ρ,P) shall be called a Stinespring dilation. The next result is

the essence of Kasparov’s isomorphism between invertible (i.e semisplit) extensions and

KK-cycles [66]:

Corollary 5.1.6. Given a semisplit extension (5.1.1) and a Stinespring dilation (ρ,P), the pair

(HB ⊕HB, 2P − 1), defined by the representation ρ : A 7→ M2(HB) above, defines an ungraded

Kasparov A-B module. We shall let [ψ] denote its equivalence class in KK1(A,B).

Theorem 5.1.7. [66] Every invertible extension of the form equation (5.1.1), where A and B are

σ-unital, defines a six-term exact sequence in K-homology,

K0(A)
σ∗

// K0(E)
ι∗ // K0(B)

δ∗0
��

K1(B)

δ∗1

OO

K1(E)
ι∗

oo K1(A),
σ∗

oo

(5.1.17)
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where σ∗ : K0(A) 7→ K0(E) , ι∗ : K0(E) 7→ K0(B) are the induced group homomorphisms

and δ∗0 [x] ∈ K1(A) is the internal Kasparov product of [ψ] ∈ KK1(A,B) and [x] ∈ K0(B) and

δ∗1 [x] ∈ K
0(A) is the internal Kasparov product of [ψ] ∈ KK1(A,B) and [x] ∈ K1(B).

5.2 Extensions and KK-theory.

The diagram (5.1.17) helps to describe the K-homology of the extension E in terms of the

K-homology of A and B. When working with K-homology as a dual object to K-theory,

one must distinguish between graded and ungraded varieties. From our point of view,

however, all that we need is a way of associating K-homology to spectral triples and for

this purpose we have found that a separate handling of graded and ungraded K-homology

makes our analysis rather more difficult. Instead, we shall write K∗(·) to refer to possibly

odd or even classes of K-homology. We are aiming to construct a well defined pairing,

Φ : K∗(A)×K∗(B) 7→ K∗(E). (5.2.1)

Given a ∗-homomorphism σ : A1 7→ A2 of C∗-algebras, as usual we shall let σ∗ denote

the induced group homomorphism from K∗(A2) to K∗(A1), which is clearly well defined.

Starting from the sequence (5.1.1), we obtain another sequence,

K∗(A)
σ∗

// K∗(E)
ι∗ // K∗(B) . (5.2.2)

Both σ∗ and ι∗ are defined in the usual way by right composition with the left module ac-

tion, and their representatives in ordinary KK-theory, respectively KK(E,A) and KK(B,E),

can be expressed as σ∗ = [z1], ι∗ = [z2], where

z1 :=

σ⊕ 0, HA ⊕HA,

0 1

1 0

 ; z2 :=

ι⊕ 0, HB ⊕HB,

0 1

1 0

 ,

and σ : E 7→ A ⊂ L(HA), ι : B 7→ E ⊂ L(HB) are the natural maps. When the se-

quence (5.1.1) splits, it is known how to construct a Kasparov E-B module. For semisplit

extensions, this process can be mimicked using Theorem 5.1.5:
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Proposition 5.2.1. Given a semisplit extension (5.1.1) and a Stinespring dilation (ρ,P), the triple

z3 :=

id ⊕ (ρ ◦ σ), HB ⊕HB ⊕HB,


0 1 0

1 0 0

0 0 −1


 ,

where id : E ⊂ L(HB) and ρ ◦ σ : E 7→ L(HB ⊕HB), determines a Kasparov module τ∗ ∈

KK(E,B).

Remark 5.2.2. It is not immediately clear to me whether τ∗ ∈ KK0(E,B) or τ∗ ∈ KK1(E,B).

Proof. The non-trivial part of the proof showing that each of the commutators of the Fred-

holm operator defining z3 are in K(HB ⊕HB ⊕HB) for every element in E. To this end fix

e ∈ E and let a = σ(e). Then,




0 1 0

1 0 0

0 0 −1

 ,


e 0 0

0 ρ11(a) ρ12(a)

0 ρ21(a) ρ22(a)


 =


0 s(a) − e ρ12(a)

e− s(a) 0 ρ12(a)

−ρ21(a) −ρ21(a) 0

 .

where the whole term is in K(HB ⊕HB ⊕HB), since each entry is in K(HB).

Remark 5.2.3. We have chosen τ∗ in such a way that it can be viewed as a cross section for

the sequence 5.2.2 in the sense that ι∗ ◦ τ∗ acts as an identity on K∗(B). To see this, note that

ι∗ ◦ τ∗ ∈ KK∗(B,B) can be represented by a homotopy equivalence of Fredholm modules

zt4 :=

id ⊕ 0, HB ⊕HB ⊕HB,


0 1 0

1 0 0

0 0 −t


 ,

and z0
4 represents the direct sum of the module representing I∗B ∈ KK∗(B,B) with a degen-

erate Fredholm module.

In conclusion, for each pair of Fredholm modules [xA] ∈ K∗(A) and [xB] ∈ K∗(B) we can

construct a pairing, which will form the basis for our analysis,

Φ([xA], [xB]) := σ∗([xA])⊕ τ∗([xB]) ∈ K∗(E). (5.2.3)
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5.3 Representation theory and smooth structures.

5.3.1 An ansatz for the representation theory of semisplit extensions.

From now on, because of the difficulties involved in trying to describe the representation

theory for C∗-algebras arising as extensions, we do not consider all extensions by stable

ideals but only unital extensions of the form

E ∼= K(PHA)⊗ πB(B) + PπA(A)P⊗ CIHB , (5.3.1)

where A and B are unital C∗-algebras, πA : A 7→ B(HA) and πB : A 7→ B(HB) are faithful

nondegenerate representations over separable Hilbert spacesHA, HB and P ∈ B(HA) is an

orthogonal projection with the properties

1. [P,πA(a)] ∈ K(HA) for each a ∈ A,

2. K(PHA)⊗ πB(B)∩ PπA(A)P⊗ CIHB = {0}.

The Busby invariant ψ : A 7→ Q(PHA)⊗ πB(B) is recovered via ψ(a) := PπA(a)P ⊗ 1 +

K(PHA)⊗ πB(B), which is faithful and unital. As usual, the ideal and quotient maps will

be denoted by ι : B 7→ E and σ : E 7→ A respectively.

Extensions given by this description generalise those studied in [27], for which B = C and,

as we have seen, the noncommutative spheres discussed in Examples 5.1.2 and 5.1.3 also

belong into this class. Conversely such representations do not apply to all extensions by

stable C∗-algebras. One such exception is the generalised Toeplitz extension arising from a

crossed product of a C∗-algebra by an automorphism ([95]). To date, it is not clear to me if

it is possible to provide a natural invariant of extensions which fit the above description.

5.3.2 Toeplitz type extensions and smoothness criteria.

From now on, we shall assume the existence of spectral triples (A,HA,DA) and (B,HB,DB)

on A and B respectively. Prompted by a very similar approach in [27], we make a couple

of definitions:

Definition 5.3.1. An extension of the form (5.3.1) is said to be of Toeplitz type if [P,DA] = 0,

that is, P commutes with DA on Dom(DA).
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Definition/Proposition 5.3.2. Following [119], an extension of the form (5.3.1), together

with spectral triples (A,HA,DA) and (B,HB,DB) on A and B respectively, is called smooth

if additionally [P,πA(a)] ∈ C(HA) for each a ∈ A, where

C(HA) := {y ∈ K(HA) : DAy, yDA ∈ B(HA)}, (5.3.2)

is the dense subalgebra of "differentiable compacts", which is a Banach ∗-algebra (c.f Defi-

nition 2.1.3) with respect to the graph norm ∥y∥1 := ∥y∥+ max{∥DAy∥, ∥yDA∥}.

Proof. It has already been seen that C(HA) ⊂ K(HA) is dense. On the other hand a direct

computation shows that ∥xy∥1 6 ∥x∥1∥y∥1 for all x,y ∈ C(HA) and that C(HA) is a Banach

algebra.

Remark 5.3.3. The smoothness criterium implies that the operators given by

[PDA,πA(a)] = P[DA,πA(a)] + [P,πA(a)]DA, (5.3.3)

[(1 − P)DA,πA(a)] = (1 − P)[DA,πA(a)] − [P,πA(a)]DA, (5.3.4)

are bounded and densely defined for each a ∈ A and that the quadruple ((A,HA,DA),P)

is of Toeplitz type (c.f [27], Definition 1.2), up to the condition that also the operator DAP has

trivial kernel. As explained in the same article, this means that we can write DA = PDA ⊕

(1 − P)DA as an orthogonal direct sum and decompose the commutators [DA,πA(a)] into

its four matrix parts corresponding to the decompositionHA = PHA⊕ (1−P)HA in such a

way that the matrix entries of the closure is the closure of each of the corresponding matrix

entries.

Remark 5.3.4. As suggested in [27], it is canonical to associate Pwith the orthogonal projec-

tion into the closed span of the eigenspaces corresponding to the positive part of the spec-

trum for DA, so that extensions of Toeplitz type can be interpreted as extensions for which

the spectral triple on A satisfies not only [DA,πA(a)] ∈ B(HA) but also [|DA|,πA(a)] =

[(2P− 1)DA,πA(a)] ∈ B(HA) for all a ∈ A.

The next objective is to identify the algebra structure which characterises the first order

differential geometry of the extension, on which we can then build a spectral triple. We

shall refer back to chapter two for discussion on operator ∗-algebras. We shall adopt the
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notation, xpp := PxP, xpq := Px(1 − P), xqp := (1 − P)xP, xqq := (1 − P)x(1 − P) for

x ∈ B(HA).

Lemma 5.3.5. The maps δA : A 7→ B(HA⊗HB), δB : K(PHA)⊗πB(B) 7→ B(HA⊗HB⊗C2),

κ : A 7→ B(HA ⊗HB ⊗ C2), given by

δA(a) = [DA ⊗ 1,πA(a)⊗ 1], δB(x) =

 [1 ⊗DB, x] x(PDA ⊗ 1)

−(PDA ⊗ 1)x 0

 ,

κ(a) =


0pp 0pq [DA,πA(a)]pp ⊗ 1 DAπA(a)pq ⊗ 1

0qp 0qq 0qp 0qq

[DA,πA(a)]pp ⊗ 1 0pq 0pp −πA(a)pqDA ⊗ 1

−πA(a)qpDA ⊗ 1 0qq DAπA(a)qp ⊗ 1 [DA,πA(a)]qq ⊗ 1

 ,

are densely defined derivations in the sense that

δA(ab) = δB(a)π1(b) + π1(a)δB(b), a,b ∈ Dom(δA)

δB(xy) = δB(x)π2(y) + π2(x)δB(y), x,y ∈ Dom(δB)

κ(cd) = κ(c)π3(d) + π3(c)κ(d), c,d ∈ Dom(κ)

where π1 := πA ⊗ 1 : A 7→ B(HA ⊗ HB),π2 := id ⊕ 0 : K(PHA) ⊗ B 7→ B(HA ⊗ HB ⊗

C2),π3 := (πA ⊗ 1)⊕ 0 : A 7→ B(HA ⊗HB ⊗ C2).

The spaces A and Dom(δB) become ∗-algebras when equipped with the norms ∥a∥1,A := ∥a∥+

max{∥δA(a)∥, ∥κ(a)∥}, ∥x∥1,B := ∥x∥+ ∥δB(x)∥ respectively. The completion of these spaces

will be denoted A1 and C(PHA)⊗1 B1 respectively, where B1 is the completion of B in the norm

∥b∥1 := ∥b∥B + ∥δB(b)∥B, so that A1 and C(PHA)⊗1 B1 are operator ∗-algebras.

Proof. Necessarily A ⊂ Dom(δA) and elementary tensors in C(PHA)⊗πB(B) are in Dom(δB),

so that δA, δB and κ are densely defined. It is easy to verify that these are all derivations

and the conclusion now follows from Proposition 2.1.5.

Definition 5.3.6. For each smooth extension of the form (5.3.1),where P is of Toeplitz type,
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we define the smooth part of the extension to be the dense ∗-subalgebra,

E1 := C(PHA)⊗1 B1 + PπA(A1)P⊗1 CIHB , (5.3.5)

where the last term is understood to be the inclusion of PπA(A1)P in B(HA ⊗HB).

The assumption of smoothness ensures E1 is an algebra, which is evidently closed under

involution. Notice that necessarily C(PHA)⊗1 B1 ∩ PπA(A1)P⊗1 CIHB = {0}, so that every

element in E1 has a unique decomposition of the form x+ y, where x ∈ C(PHA)⊗1 B1 and

y ∈ PπA(A1)P⊗1 CIHB .

Lemma 5.3.7. E1 becomes an operator ∗-algebra when equipped with the norm

∥x+ y∥1,E := ∥x+ y∥+ max{∥δA(σ1(y))∥, ∥δB(x) + κ(σ1(y))∥}, (5.3.6)

where x ∈ C(PHA) ⊗1 B1, y ∈ PπA(A1)P ⊗1 CIHB and σ1 : E1 7→ A1 is the restriction of

σ : E 7→ A to E1. Moreover the natural maps ι1 : (C(PHA)⊗1 B1, ∥ · ∥1,B) 7→ (E1, ∥ · ∥1,E) and

σ1 : (E1, ∥ · ∥1,E) 7→ (A1, ∥ · ∥1,A) are norm-decreasing ∗-homomorphisms, such that ι1 is injective,

σ1 is surjective and Im(ι1) = Ker(σ1).

Proof. We will show E1 is an operator ∗-algebra in the next section. The other assertions are

obvious.

Corollary 5.3.8. A smooth extension of the form (5.3.1), where P is an orthogonal projection of

Toeplitz type, defines a continuous pullback diagram of operator ∗-algebras:

0 // C(PHA)⊗1 B1
� � ι1 //

� _

��

E1
σ1 //

� _

��

A1 //
� _

��

0

0 // K(PHA)⊗B
� � ι // E

σ // A // 0

5.4 Construction of the spectral triple.

We are ready to write down spectral triples based on the smooth part of the extension

E1. The methods automatically extend to the setting when E1 is replaced by any dense
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∗-subalgebra E, which might be easier or more natural in certain situations. The Hilbert

space in this construction is H := HA ⊗HB ⊗ C2 = (PHA ⊗HB ⊕ (1 − P)HA ⊗HB)⊗ C2,

equipped with two representations πi : E 7→ B(H) for i ∈ {1, 2},

π1 :=

(πA ◦ σ)⊗ 1 0

0 0

 , π2 :=

π̃ 0

0 (πA ◦ σ)⊗ 1

 ,

where π̃ : E 7→ B(HA ⊗HB) is the natural amplification of π : E 7→ B(PHA ⊗HB) by 0

(that is, π̃ acts as zero on the (1 − P)HA ⊗HB part of the Hilbert space). Faithfulness of π

ensures that π1 ⊕ π2 is a faithful representation.

Lemma 5.4.1. The operators Di : dom(Di) 7→ H, i ∈ {1, 2} defined by

D1 :=

DA ⊗ 1 1 ⊗DB

1 ⊗DB −DA ⊗ 1

 , (5.4.1)

D2 :=


P⊗DB 0 PDA ⊗ 1 0

0 (1 − P)⊗DB 0 0

PDA ⊗ 1 0 −P⊗DB 0

0 0 0 (1 − P)DA ⊗ 1)

 . (5.4.2)

are linear, densely defined self-adjoint operators with compact resolvent. The common domain of

D1 and D2 is also dense. Moreover, provided there exists positive numbers p,q > 0 such that the

spectral triples (A,HA,DA) and (B,HB,DB) are respectively p- summable and q- summable then

both D1 and D2 are p+ q- summable.

Proof. We start by making the comment that the operator D1 is precisely of the form aris-

ing in the Kasparov external product between graded and ungraded spectral triples. To

show that D1 and D2 are self-adjoint operators with compact resolvent, we start by re-

marking that D1 and D2 are, by assumption, essentially self-adjoint operators with compact

resolvent. As such, they are defined on the closure of the (necessarily finite dimensional)

eigenspaces corresponding to their pure-point spectra. The spectra of D1 and D2 are count-

able subsets of R, so we shall write specD1 = {λm}m∈N and specD2 = {µn}n∈N, where

each eigenvalue has finite multiplicity.
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We have the identities,

D2
1 =

D2
A ⊗ 1 + 1 ⊗D2

B 0

0 D2
A ⊗ 1 + 1 ⊗D2

B

 , (5.4.3)

D2
2 =

PD2
A ⊗ 1 + 1 ⊗D2

B 0

0 (1 − P)D2
A ⊗ 1 + P⊗D2

B

 . (5.4.4)

Thus, given every eigenvalue pair (λ,µ) for (D1,D2) with eigenvectors (ξ,η) ∈ HA ×HB,

we can associate two eigenvectors,

ν
(1)
λ,ν :=

ξ⊗ η
0

 , ν(2)
λ,ν :=

 0

ξ⊗ η

 (5.4.5)

corresponding to the eigenvalue λ2 + µ2. Every eigenvalue of D2
1 arises this way. An ap-

plication of Nelson’s theorem then ensures that D1 is self-adjoint and has compact resol-

vent. A similar argument applies for D2, since the essential spectra of D2
1 and D2

2 coincide

(though the multiplicity of each eigenvector may be smaller). The other properties are now

obvious.

Lemma 5.4.2. The operators [Di,πi(e)] : Dom(Di) 7→ H are bounded for e ∈ E1.

Proof. Let e = x + y ∈ E, where y ∈ PπA(A1)P ⊗1 CIB and x ∈ C(PHA) ⊗1 B1. Direct

computation shows,

[D1,π1(x+ y)] = diag(δA(σ1(y)), 0), (5.4.6)

[D2,π2(x+ y)] = δB(x) + κ(σ1(y)), (5.4.7)

and the result follows. This also proves E1 is an operator algebra (Lemma 5.3.7), since by

definition ∥e∥1,E := ∥e∥+ max{∥[D1,π1(e)]∥, ∥[D2,π2(e)]∥}.

Theorem 5.4.3. Let A and B be unital C∗-algebras, endowed with spectral triples (A,HA,DA)

and (B,HB,DB) respectively. Let E be a smooth extension of the form (5.3.1), where P ∈ B(HA)

is an orthogonal projection of Toeplitz type. Then, for each dense ∗-subalgebra E ⊂ E1, (E,H⊕
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H,D1 ⊕D2), represented via π1 ⊕ π2, defines a spectral triple on E. Moreover, the spectral dimen-

sion of this spectral triple is given by the identity

s0(E,H⊕H,D1 ⊕D2) = s0(A,HA,DA) + s0(B,HB,DB). (5.4.8)

Furthermore, the spectral triple represents the Fredholm module σ∗(A,HA,DA)⊕ τ∗(B,HB,DB)

in K-homology.

Proof. This follows from 5.4.1 and 5.4.2. The last statement is illustrated in Appendix B.

5.5 Extensions of compact quantum metric spaces.

We now divert our attention to the existence of compact quantum metric spaces. There-

fore, through this chapter, we assume that the hypotheses of Theorem 5.4.3 hold and ad-

ditionally the spectral triples (A,HA,DA), (B,HB,DB), where the induced Lipschitz pairs

(A,LDA) and (B,LDB) are compact quantum metric spaces for A and B respectively. Be-

cause of this, we shall introduce the notation,

X := C(PHA)⊗1 B1 ∩ E, Y := PπA(A1)P⊗1 CIB ∩ E,

LA(x+ y) := ∥δA(σ1(y))∥, LB(x+ y) := ∥δB(x)∥, x ∈ Xsa, y ∈ Ysa,

UA,1 := {y ∈ Ysa : ∥σ1(y)∥ 6 1, LA(y) 6 1}; ŨA := {ỹ ∈ Ysa/RIA : LA(ỹ) 6 1},

UB := {x ∈ Xsa : LB(x) 6 1}.

In addition to each of the previously stated assumptions, we will adopt an extra convention

which was proposed in [27], namely PDA has trivial kernel. We remark that necessarily

KerPDA is finite rank, so that if this convention fails then we can merely replace P with

P− PKer(DA), a procedure which does not affect any other aspects of the extension.

The Lipschitz pair coming from the spectral triple on E is (Esa,L), where Esa = Xsa +

Ysa is the self-adjoint part of E and L(e) := max{∥[D1,π1(e)]∥, ∥[D2,π2(e)]∥} is the usual

seminorm coming from the spectral triple on E in Theorem 5.4.3. In this way the seminorm

L is automatically lower semicontinuous and satisfies the Leibniz rule.
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Proposition 5.5.1. (Esa,L) is nondegenerate, i.e (Esa,L) is a Lipschitz pair.

Proof. The proof comprises showing Esa ∩ L−1(0) = RIE, where IE = IA|PHA is the iden-

tity of E. Notice that the proof of Lemma 5.4.2 implies immediately LA(e) = 0 for each

e ∈ E, so that if e ∈ Esa and L(e) = 0 then σ1(e) = λIA for some λ ∈ R, by nondegeneracy

of the spectral triple on A. It also means that we can write e = x+ λIE for some x ∈ Xsa.

The same Lemma now implies δB(x) = 0, so that [1 ⊗DB, x] = 0 and (PDA ⊗ 1)x = 0.

Since PDA is invertible, x = 0. So e = λIE and L is nondegenerate.

Lemma 5.5.2. Let LA,B be the seminorm on Esa given by

LA,B(e) := max{LA(e),LB(e)}, (5.5.1)

where e ∈ Esa . Then LA,B is a Lipschitz seminorm, (Esa,LA,B) is another Lipschitz pair on E

and LA,B(e) 6 2L(e) for all e ∈ Esa.

Proof. The same argument as in the proof of Proposition 5.5.1 shows that LA,B is non-

degenerate. Fix x and y as above and write e = x + y. Expanding terms shows that

L(e) > ∥δA(σ1(y))∥ = LA(y) and L(e) > ∥κ(σ1(y)) + δB(x)∥. By projecting into the sub-

space of H corresponding to the upper left 3x3 block matrix, we find

L(e) >
∥∥∥∥
 [1 ⊗DB, x] [DA,πA(σ1(y))]pp ⊗ 1 + x(PDA ⊗ 1)

[DA,πA(σ1(y))]pp ⊗ 1 − (PDA ⊗ 1)x 0

∥∥∥∥
=

∥∥∥∥δB(x) +
 0 [DA,πA(σ1(y))]pp ⊗ 1

[DA,πA(σ1(y))]pp ⊗ 1 0

∥∥∥∥.

Therefore, LB(x) = ∥δB(x)∥ 6 ∥[DA,πA(σ1(y))]pp∥+ L(e) 6 2L(e) and hence LA,B(e) 6
2L(e) for all e ∈ Esa, as required.

Theorem 5.5.3. (Esa,L) is a compact quantum metric space.

Proof. By the previous lemma, it is sufficient to show that (Esa,LA,B) is a compact quantum

metric space and we may take E = E1. The proof consists of showing the sets

ŨE := {ẽ ∈ Esa/RIE : LA,B(ẽ) 6 1}; UE,1 := {e ∈ Esa : ∥e∥ 6 1, LA,B(e) 6 1},
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are respectively norm bounded and norm- totally bounded. By construction,

ŨE ⊂ ŨA +UB, UE,1 ⊂ UA,1 +UB, (5.5.2)

Since the spectral triple on A implements a compact quantum metric space, the spaces

ŨA = Ysa ∩ σ−1
1 ({ã ∈ Asa/RIA : ∥[DA,πA(ã)]∥ 6 1}) (5.5.3)

UA,1 = Ysa ∩ σ−1
1 ({a ∈ Asa : ∥a∥ 6 1, ∥[DA,πA(a)]∥ 6 1}), (5.5.4)

are respectively bounded and totally bounded as normed vector subspaces of Esa/RIE and

Esa respectively. It therefore suffices to show the set UB := {x = x∗ ∈ K(PHA)⊗ πB(B) :

∥δB(x)∥ 6 1} is totally bounded. By self-adjointness, we can replace the last inequality with

the inequality: max{∥[1 ⊗DB, x]∥, ∥x(PDA ⊗ 1)∥, ∥x(PDA ⊗ 1)∥} 6 1.

Effectively, we have reduced the proof to showing that we obtain a (noncompact!) quan-

tum metric structure on the stabilised ideal space K⊗B, which must give the metric on the

state space S(K⊗B) finite diameter.

Lemma 5.5.4. Let {Pk}k∈N be the spectral projections of Y := (PDA)
−1 ⊗ 1 = (PDA⊗ 1)−1 and

write Qn :=
∑n
k=1 Pk. Then for each ϵ > 0 there exists an N ∈ N such that

∥x−QNxQN∥ 6 ϵ; x ∈ UB. (5.5.5)

Moreover for each x ∈ UB and for each n ∈ N, ∥xn∥ 6 ∥Y∥, where xn := QnxQn.

Proof. Since (PDA)−1 is compact by assumption, it quickly follows that for each ϵ > 0 there

exists an N ∈ N such that ∥Y − YQn∥ 6 ϵ
2 and ∥Y −QnY∥ 6 ϵ

2 . For x ∈ UB, we obtain

∥QnxQn∥ 6 ∥Qnx(PDA ⊗ 1)YQn∥ 6 ∥x(PDA ⊗ 1)∥∥Y∥ 6 ∥Y∥,

which proves the second statement. Moreover, for x ∈ UB,

∥x− xQn∥ 6 ∥x(PDA ⊗ 1)Y − x(PDA ⊗ 1)YQn∥ 6 ∥x(PDA ⊗ 1)∥∥Y − YQn∥ 6 ϵ

2
,

and ∥x−QnxQ∥ 6 ϵ
2 by symmetry, so that ∥x−xQnx∥ 6 ∥x−xQn∥+ ∥xQn−QnxQn∥ 6
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ϵ, proving the first statement.

Returning to the proof of the theorem, it will suffice for us to show that the setsQnUBQn

are totally bounded for each n ∈ N. Any given element in this set can be expressed in the

form

xn =

mn∑
i,j=1

πB(bi,j)|ej⟩⟨ei|; , (5.5.6)

where bi,j ∈ B and {ei}
mn
i=1 is an orthonormal basis for the finite dimensional Hilbert space

EnHA. We shall write the corresponding projections in B(EnHA ⊗HB) by {pi}
mn
i=1. Since

these commute with 1 ⊗DB, we have that for x ∈ UB and n ∈ N,

∥πB(bi,j)∥ = ∥pjxnpi∥ 6 ∥xn∥ 6 ∥Y∥, (5.5.7)

∥[DB,πB(bi,j)]∥ = ∥[1 ⊗DB,pjxnpi]∥ = ∥pj[1 ⊗DB, x]pi]∥ 6 1. (5.5.8)

These estimates tell us that the sets QnUBQn are contained in the sets

Sn := {

mn∑
i,j=1

πB(bi,j)|ej⟩⟨ei|; bi,j ∈ B, ∥bi,j∥ 6 ∥Y∥, ∥[DB,πB(bi,j)]∥ 6 1}. (5.5.9)

Now we can at long last use the assumption that the spectral triple on B implements a

compact quantum metric structure, so that {b ∈ B : ∥b∥ 6 Y, ∥[DB,πB(b)]∥ 6 1} is totally

bounded and consequently the sets Sn are totally bounded as well. This concludes the

proof of the theorem.

5.6 Application to the Podleś spheres, quantum SUq2 group and other

examples.

5.6.1 The algebra C(S2
q).

Let us begin our analysis with an exposition of the construction for the equatorial Podleś

spheres (C(S2
q) = C∗(α,β : βα = qαβ, α∗α+ β2 = I, q4αα∗ + β2 = q4), for 0 < q < 1.
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It is described by the short exact sequence

0 → K⊗ C2 → C(S2
q) → C(T) → 0. (5.6.1)

The quotient map σ : C(S2
q) → C(T) appearing in this sequence is defined by σ(α) = T∗,

σ(β) = 0, where T ∈ C(T) is the unitary identified with the bilateral shift on ℓ2(Z). Clearly

s : T 7→ S⊗ IC2 , where S = PTP the unilateral shift on ℓ2(N) and P : ℓ2(Z) 7→ ℓ2(N) is the

Hardy space projection, is a splitting map for σ and we obtain a representation (5.3.1) of

C(S2
q) as the algebra,

C(S2
q) = K(ℓ2(N))⊗ C2 + PC(T)P⊗ IC2 . (5.6.2)

We introduce the spectral triples;

A = (C1(T),L2(T),
1

2πi
∂), B = (C2, C2,

0 1

1 0

).

where C1(T) = {f ∈ C(T) : f ′ ∈ C(T)}. Because P is the projection into the positive spec-

trum of ∂, the projection P is of Toeplitz type and, as in Remark 5.4.4, smoothness is implied

by the regularity condition C1(T) ⊂ Dom(δ), where δ(f) = [|∂|, f]. Consequently the con-

struction highlighted in Section 5.5 gives a spectral triple on C(S2
q). This spectral triple has

dimension one, which distinguishes it from the spectral triples proposed by D’Andrea and

Dabrowski [43].

It is well known that the triple on C(T) satisfies Rieffel’s regularity condition. The same

is true of the spectral triple on C2: the associated Lipschitz pair coming from the latter

construction is (R2,LB), where LB(λ,µ) = |λ − µ| recovers the usual discrete metric on

the two-point space. This, following the discussion in this chapter, provides us with a

construction of a compact quantum metric structure on C(S2
q) for each q ∈ (0, 1).

Remark 5.6.1. Although the Podleś spheres are isomorphic as C∗-algebras, the smooth

structures for the spectral triple on C(S2
q) will certainly depend on q. For this reason, as

well as considerations in quantum group theory, we might wish to study the Hopf algebra,
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A(C(S2
q)) of polynomials in α and β, instead. Since:

α = T ⊗

1 0

0 1

+ T(1 − (
√

1 −N4
q))⊗

1 0

0 1

 ,β = N2
q ⊗

1 0

0 −1

 (5.6.3)

and because the operators N2
q and (1 −

√
1 −N4

q) belong to the space of "differentiable

compacts", it is relatively easy to see that α and β belong to the domain of the smooth

structure of the spectral triple we are considering.

5.6.2 The algebra C(S3
q) and higher dimensions.

The analysis of the noncommutative 3-spheres C(S3
q) is notably similar to the case of the

equatorial Podleś spheres. We have a short exact sequence, and as stated earlier there is

a representation theory of C(S3
q) as the algebra PC(T)P ⊗ CI+K(ℓ2(N0))⊗ C(T). When

A = B = C(T) is prescribed with the usual spectral triple then as before we may verify that

the extension satisfies the criterium of smoothness and that we obtain a spectral triple on

C(S3
q). The methods of section 5.6 ensure that this triple implements a compact quantum

metric structure on C(S3
q), which has spectral dimension two.

The dimensionality properties of our spectral triples for this algebra is in stark contrast

from the analysis of the noncommutative geometry of the quantum SUq2 group provided

by Chakraborty and Pal, who show that an equivariant spectral triple (for the co-action on

the quantum group structure on SUq2) must have dimension at least three [20]. Much of

the analysis of the geometric aspects of this algebra seems to be based on the latter point of

view and I do not see a correspondence with the theory in this chapter.

The noncommutative n-spheres for higher dimensions can be defined inductively on n.

The spheres of odd dimension arise as short exact sequences of the form

0 → K⊗C(S1) → C(S2n+1
q ) → C(S2n−1

q ) → 0, n > 1. (5.6.4)

and the spheres of even dimension as short exact sequences of the form

0 → K⊗ C2 → C(S2n
q ) → C(S2n−1

q ) → 0, n > 1. (5.6.5)
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(see [8] for an overview and references therein).

5.6.3 Future questions: Rieffel-Gromov-Hausdorff convergence and other matters.

In [103], Rieffel proposed a notion of distance between compact quantum metric spaces,

modelled on the Gromov-Hausdorff distance. It has since been used in number of ques-

tions relating to C∗-algebras endowed with seminorms. Some of the results are quite sur-

prising: see [104], for example, in which Rieffel shows how the common observation in

quantum physics that "matrices converge to the 2-sphere" can be illustrated quite well us-

ing Rieffel-Gromov-Hausdorff convergence.

There are various perspectives that we could take with respect to convergence for exten-

sions in this chapter, especially for algebras arising as q-deformations. If we wish, we

can try to mimic the convergence studied by Christensen and Ivan in their approach [27].

They construct a two-parameter family of spectral triples (T,HA,Dα,β) for extensions of

the form

0 → K → T → A→ 0, (5.6.6)

and for α,β > 0, for which the quantum metric spaces "converge" to those on A and K

as α → 0 and β → 0. This is not sufficient, however, to study the Gromov-Hausdorff

convergence aspects of varying the parameter q, for example in the case of the Podleś

spheres. We would be most interested in the answer to the following two questions, the

first of which seems easy and the latter rather unclear:

Question 5.6.2. Let (qn)n∈N ⊂ (0, 1) be a sequence converging to q ∈ (0, 1) and let

(A(C(S2
qn

)),L) be the compact quantum metric on the Podleś sphere C(S2
qn

) for n ∈ N

highlighted in this chapter. Is it true that (A(C(S2
qn

)),L) converges to (A(C(S2
q)),L) for

Rieffel-Gromov-Hausdorff convergence?

Question 5.6.3. Suppose now that (qn)n∈N ⊂ (0, 1) converges to 1. Let (C1(S2),LD) be the

usual Lipschitz seminorm on the algebra C(S2) ∼= C(S2
1), namely for which the restriction

of the metric to S2 is the path metric. Is it true that (A(C(S2
qn

)),L) converges to (C1(S2)),L),

or any equivalent Lipschitz pair on the two-sphere, for Rieffel-Gromov-Hausdorff conver-

gence?

80



6: Construction of twisted spectral triples

6.1 Twisted spectral triples.

6.1.1 Motivation and preliminaries.

Simply stated, the main reason that that researchers are becoming increasingly interested

in the construction of twisted spectral triples is that they are applicable to a broader class

of examples than are ordinary spectral triples. Connes and Moscovici [36] suggested that

twisted spectral triples might be a characteristic of the type III von Neumann algebras, for

which the nonexistence of a trace effectively rules out the existence of finitely summable

spectral triples.

Definition 6.1.1. Let A be a ∗-algebra. By a trace on A we mean a positive linear map

τ : A 7→ R such that τ(ab) = τ(ba) for all a,b ∈ A. Such a trace will be called faithful if

whenever a ∈ A+ and τ(a) = 0 then a = 0.

Theorem 6.1.2. [30] If A is a unital C∗-algebra and (A,H,D) is a finitely summable spectral

triple then there is a trace τ on A such that τ(1) = 1.

Example 6.1.3. Another example of a C∗-algebra which cannot permit such a trace is the

Cuntz algebra O2, the simplest example of a simple purely infinite C∗-algebra. This makes

a geometric analysis of O2 a challenging, but rewarding, task.

Example 6.1.4. Another set of motivating examples for writing down twisted spectral

triples arises in examples relating to conformal actions of manifolds (see [81]). Starting

from a compact Riemannian spinC-manifold (M, g) and the group Γ = SCO(M, g) of con-

formal diffeomorphisms of M which preserve the orientation and spin structure and where

Γ0 ⊂ Γ is the connected component of the identity, the crossed product C(M)oΓ0 provides

a natural way to encode the diffeomorphism invariant structure of M. Except when Γ0

preserves the Riemannian metric, there is in general no conformal structure on which to

construct an ordinary spectral triple. This seems consistent with our analysis in Chapter 4,

where the requirement that the action of Γ0 on (M, g) is equicontinuous is needed.
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6.1.2 Regular automorphisms and KMS states.

Kubo-Martin-Schwinger (KMS) states, a concept with its origins in quantum field theory,

have been met with considerable success in the study and classification of von-Neumann

algebras. Their role in C∗-algebra theory is no less intriguing, however. For example, it

has long been known that there is exactly one such state on each Cuntz algebra On, n > 2

[84]. The KMS-condition captures the notion of a state whose "departure from a trace" is

determined by an analytic function, in the absence of a trace itself.

Definition 6.1.5. Let A be a ∗-algebra. A regular automorphism σ : A 7→ A is an invertible

linear algebra homomorphism such that

σ(a∗) := (σ−1(a))∗, a ∈ A. (6.1.1)

Definition 6.1.6. Let A be a ∗-algebra and let σ : A 7→ A be a regular automorphism. A

σ−n-twisted trace on A is a positive linear map ψ : A 7→ R with the property,

ψ(aσ−n(b)) = ψ(ba), a,b ∈ A. (6.1.2)

The formal definition of a KMS state on a C∗-algebra A depends on two parameters,

namely a fixed strongly continuous "gauge" action of R on A and an inverse temperature

β > 0.

Definition 6.1.7. Let A be a C∗-algebra, σ : R 7→ Aut(A) be a strongly continuous action of

R which admits an analytic extension to a strongly continuous action of C on some dense
∗-subalgebra, A, of A and let β > 0. A KMS(σ,β) (or just KMSβ) state on A is a positive

linear map ψ : A 7→ R with the property,

ψ(aσ−iβ(b)) = ψ(ba), a,b ∈ A. (6.1.3)

6.1.3 Definition and properties of twisted spectral triples.

I am aware of two different approaches in noncommutative geometry which have been

suggested to include those examples, such as type III von Neumann algebras, for which

the construction of finitely summable spectral triples is not possible. In [36], and later [81],
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Connes and Moscovici set about establishing a different set of axioms for a spectral triple

for which the Dixmier trace becomes a twisted trace with respect to a regular automor-

phism σ on A. Further analysis of these twisted spectral triples is provided by Fathizadeh

and Khalkhali in [54], where the named authors explore the possibilities of writing down

a version of the Connes-Chern character formula. The above analysis lead to the proposal

of a spectral triple in which most of the regularity and Fredholm properties are preserved,

but that the commutator is only bounded up to a "twisting" by σ. It is this approach we

follow.

The other approach is the construction of modular spectral triples, the definition of which

was suggested in [15] in which the geometry of the Cuntz algebra was considered, although

this has since been extended to several other examples, e.g the quantum SU2 group (see [63]

and [72]). The axioms of a modular spectral triple are based on a semifinite von Neumann

algebra, rather than an unbounded Fredholm module, however. I am not aware if the

relationship between these two points of view is fully understood.

Definition 6.1.8. Let A be a C∗-algebra. A twisted spectral triple (A,H,D,σ) is given by a
∗-representation π : A 7→ B(H), a dense ∗-subalgebra A ⊂ A, a regular automorphism σ of

A and a linear densely defined unbounded self-adjoint operator D on H such that

1. π(A)domD ⊂ domD and [D,π(a)]σ := Dπ(a) − π(σ(a))D : domD 7→ H extends to a

bounded operator for each a ∈ A and

2. π(a)(1 +D2)−1 is a compact operator for each a ∈ A.

Remark 6.1.9. A twisted spectral triple can be either even or odd as in the usual case. p-

summability and spectral dimension is defined in the same way as in the untwisted case

and the spectral triple is called regular if it satisfies the condition that also [(1+D2)1/2,π(a)]σ

extends to a bounded operator for each a ∈ A. The algebra of twisted differential 1-forms

ΩσD(A), spanned by {a ∈ A} and {[D,a]σ; b ∈ A}, becomes a bimodule as in the untwisted

case, but the left action is now given by a · b := σ(a)b for all a ∈ A and for all b ∈ ΩD(A)

(see [81] for details).

When a C∗-algebra A admits a twisted spectral triple (A,H,D,σ) and σ̃ is a maximal

analytic extension of σ, there is a natural space to study given by

C1,σ(A) := {a ∈ A : a(domD) ⊂ domD, a ∈ ∩n∈ZDom(σ̃n), ∥[D,π(σn(a))]σ̃∥ <∞,∀n ∈ Z}.
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Proposition 6.1.10. Let (A,H,D,σ) be a finite dimensional twisted spectral triple on A. Then:

1. C1,σ(A) becomes a Banach algebra when equipped with the norm

∥a∥1,σ := ∥a∥+ ∥σ(a)∥+ ∥[D,π(a)]σ∥. (6.1.4)

Moreover as in Proposition 2.2.3 we obtain an injective norm-decreasing algebra homomor-

phism ρ : C1,σ(A) 7→ B(H1), where H1 := Dom(D) with the inner product ⟨η1,η2⟩1 :=

⟨η1,η2⟩+ ⟨Dη1,Dη2⟩ and ρ is left-multiplication.

2. When additionally (A,H,D,σ) is regular, then (A,H, FD), where FD := (1 +D2)−1/2D,

defines a Fredholm module over A with the same grading.

3. When additionally (A,H,D,σ) ∈ L(p,∞) for some p > 0, the map Trω(·(1+D2)−p/2) is a

σ−p-twisted trace for each suitably chosen generalised limit (as highlighted in Appendix A):

Trω(ab(1 +D2)−p/2) = Trω(bσ−p(a)(1 +D2)−p/2) (6.1.5)

whenever a,b ∈ A.

4. (Asa,LD), where LD(a) := ∥[D,π(a)]σ∥, is a lower semicontinuous Lipschitz pair satisfy-

ing the twisted Leibniz rule L(ab) 6 L(a)∥b∥+ ∥σ(a)∥L(b) for each a,b ∈ Asa.

Proof. The proof of (2) and (3) follows as in [36] and [81], except that we do not assume that

D is invertible. Thus, the proof of (2) follows instead from the identity:

[FD,π(a)] = (1 +D2)−1/2([D,π(a)]σ + [(1 +D2)1/2,π(a)]σFD), (6.1.6)

whilst (4) is obvious and the main ingredient of (1) is the calculation

∥ab∥1,σ := ∥ab∥+ ∥σ(ab)∥+ ∥[D,π(ab)]σ∥

6 ∥a∥∥b∥+ ∥σ(a)∥∥σ(b)∥+ ∥[D,π(a)]σ∥∥b∥+ ∥σ(a)∥∥[D,π(b)]σ∥

6 (∥a∥+ ∥σ(a)∥+ ∥[D,π(a)]σ∥)(∥b∥+ ∥σ(b)∥+ ∥[D,π(b)]σ∥) =: ∥a∥1,σ∥b∥1,σ,

for each a,b ∈ A, and arguments analogous to the proof of Proposition 2.2.3.

Example 6.1.11. Suppose we have a C∗-algebra A, an automorphism α ∈ Aut(A) and a

faithful α-invariant state ϕ on A. Let us suppose we have a spectral triple of the form
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(A,L2(A,ϕ),D) on A, complete with a separating and cyclic vector ξϕ for ϕ. Since ϕ is

α-invariant, the algebra AoαZ is represented equivariantly over L2(A,ϕ) via,

a(bξϕ) := abξϕ; U(bξϕ) := α(a)ξϕ; U∗(bξϕ) := α
−1(b)ξϕ, a,b ∈ A. (6.1.7)

Provided further the action of α is smooth (i.e α(A) = A), U and U∗ leave the domain of

D invariant and there exists a positive invertible h ∈ Z(A) such that U∗DU = hD, there

is a natural way of writing down a spectral triple on AoαZ: A regular automorphism is

defined on the algebra B generated by U and A by

σ(aUn) := aUnhnα, (6.1.8)

where hnα := α−(n−1)(h) . . .α−1(h)h. Evaluation shows [D,aUn]σ = [D,a]Un is a bounded

operator and so (B,L2(A,ψ),D,σ) is a twisted spectral triple on AoαZ.

Remark 6.1.12. We point out that the above is a slight generalisation of the scaling automor-

phisms introduced by Moscovici in [81], in which h = λ is a positive real number.

We come now to the matter that we would like to address in this chapter.

Problem 6.1.13. Following the work of Connes and Moscovici, establish existence results

for finitely summable twisted spectral triples for Cuntz-Krieger algebras.

6.2 Crossed products by endomorphisms.

6.2.1 Exel crossed products.

When Cuntz introduced his eponymous algebra [40], it was shown amongst other things

how the behaviour of the Cuntz algebra On closely resembles the crossed product of the

fixed UHF algebra Fn under the circle action. There is a natural gauge-invariant endomor-

phism on On defined by α(x) =
∑

16j6n SjxS
∗
j , which restricts to a shift-type action on

Fn. Cuntz describes the same map as a natural automorphism α̃ on the stabilisation of Fn,

whence the isomorphism

K⊗On ∼= (K⊗ Fn)oα̃Z. (6.2.1)
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Many authors have have offered formal definitions of what a crossed product C∗-algebra

by an endomorphism might be. The most important of these include the constructions of

Paschke [89], Stacey [111] and Exel [50]. We choose to adopt the latter approach. Many

comparisons have been made between Exel and Stacey crossed products, for example in

[2], but in many cases the correspondence is not explicit.

The description of the Cuntz algebra and related examples using Exel crossed products

has many nice features. For one, the Cuntz algebra can be expressed as a crossed product

of a commutative C∗-algebra, which makes a geometric analysis easier. In fact, the alge-

bra encodes the dynamics of the full subshift, whose C∗-algebra has totally disconnected

spectrum. Moreover, it offers a relatively straightforward characterisation of KMS- states.

Given a dynamical system, comprising a unital C∗-algebra A and a ∗-endomorphism α

of A, the philosophy behind Exel’s crossed product construction is to construct a Toeplitz-

Pimsner type algebra which contains a copy of an algebraA and an extra operator Swhich

encodes the action of α. Because this algebra is "too big"- it gives a generalisation of the

Toeplitz crossed product C∗-algebra of an endomorphism- the crossed product algebra

itself is defined as a certain quotient, which mimics the passage from a Toeplitz-Pimsner to

a Cuntz-Pimsner algebra.

Definition 6.2.1. [50] We suppose that we have a unital C∗-algebra A, a ∗-endomorphism

α : A 7→ A and a positive map L : A 7→ A, called the transfer operator, such that L(α(a)b) =

aL(b) for each a,b ∈ A. The C∗-algebra T(A,α,L) is defined as the universal C∗-algebra

generated by a copy of A and an operator S such that:

Sa = α(a)S, L(a) := S∗aS ∈ A; a ∈ A. (6.2.2)

Such a universal algebra exists in each case [50].

Warning 6.2.2. Khoshkam and Skandalis define a Toeplitz Pimsner-type algebra Tα for

each endomorphism α of a C∗-algebra A in [68], but these are in general quite different to

the algebras constructed above.

Definition 6.2.3. [50] Given a unital C∗-algebra A, a ∗-endomorphism α : A 7→ A and a

positive map L : A 7→ A such that L(α(a)b) = aL(b) for each a,b ∈ A, the Exel crossed
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productAoα,LN is defined as the quotient of T(A,α,L) with respect to the ideal generated

by a− k, where a ∈ A, k ∈ ASS∗A and abS = kbS for all b ∈ A.

6.2.2 Cuntz-Krieger algebras.

Definition 6.2.4. The Cuntz-Krieger algebra OA associated with a matrix A ∈ Mn({0, 1})

is the algebra generated by partial isometries S1, . . . , Sn satisfying the relations (see [41])

S∗iSi =
n∑
j=1

Ai,jSjS
∗
j , S∗iSk = 0 (k ̸= i). (6.2.3)

The graph of OA is the finite directed graph with vertices {v1, . . . , vn} and a single edge from

vj to vi if and only if Ai,j = 1.

The Cuntz-Krieger algebra is used to describe the dynamics of the underlying graph. Let

A ∈Mn({0, 1}) be a matrix with no zero rows or columns and let OA be the Cuntz-Krieger

algebra associated toA. The subshift space is defined by Σ+A := {ξ = (ξi)i∈N ∈ {1, . . . ,n}N :

Aξi,ξi+1 = 1, ∀i ∈ N}, which becomes a compact totally disconnected space with respect

to the usual topology. The map T : Σ+A 7→ Σ+A, T(ξ1, ξ2, . . . ) = (ξ2, ξ3, . . . ) is the usual left-

shift, on Σ+A.

The dynamical system (Σ+A, T) is called the Markov subshift forA. It leads to an endomor-

phism σT on the algebra ting C(Σ+A) in the usual way by σT (f)(ξ) := f(T(ξ)). Our standing

assumption that A contains no trivial rows or columns ensures that T is surjective and a

transfer operator for (Σ+A, T) can be defined by LT (f)(ξ) := |T−1({ξ})|−1 ∑
η∈T−1({ξ}) f(η).

Thus the algebra C(Σ+A)oσT ,LTN can be formed.

Theorem 6.2.5. [50] For everyA ∈Mn({0, 1}), there is an isomorphism OA ∼= C(Σ+A)oσT ,LTN.

6.2.3 Cuntz-Krieger algebras as covering map C∗-algebras.

The abstract definition of an Exel crossed product is often hard to work with. Exel and

Vershik [52] gave a much simplified definition of the algebra Aoα,LN in the setting in

which A = C(X) is commutative, α = αT is spatially implemented by a continuous map

T : X 7→ X and, provided T is a local homeomorphism, L = LT is spatially implemented as

in the previous example.
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Definition 6.2.6. A continuous surjection T : X 7→ X, with X compact and Hausdorff,

is called a covering map if it has the property that for each x ∈ X there exists an open

neighbourhood Vx such that T−1(Vx) is a finite collection of disjoint open setsUx1 , . . . ,Uxk
such that the restriction T |Uxi : Uxi → Vx is a homeomorphism.

Every covering map T : X 7→ X defines an endomorphism αT of C(X) in the usual way

and transfer operator by:

LT (f)(x) :=
1

|T−1({x})|

∑
T(y)=x

f(y). (6.2.4)

Notice that LT ◦αT is the identity on C(X).

Lemma 6.2.7. [17] Let T be a covering map of a compact Hausdorff topological space X. Then there

exists a minimal finite covering {Ui}16i6l of X such that the restriction of T to Ui is injective.

Exel and Vershik introduce a positive family of function {vi : 1 6 i 6 l} for each such

covering given by vi := Qui, where Q(x) := |{y ∈ X; T(x) = T(y)}| and {vi : 1 6 i 6 l} is a

partition of unity for {Ui}16i6l.

Definition 6.2.8. ([52], [17]) Let T be a surjective covering map of a compact Hausdorff

topological space X. Then the C∗-algebra C(X, T) is defined as the universal C∗-algebra

generated by a copy of C(X) and an isometry s, subject to the relations:

1. sf = σT (f)s,

2. s∗fs = LT (f) and

3. 1 =
∑l
i=1 v

1/2
i ss∗v

1/2
i (f ∈ C(X)).

Theorem 6.2.9. [52] For every pair (X, T), comprising a compact Hausdorff space X and a surjec-

tive covering map T : X 7→ X, there is an isomorphism C(X, T) ∼= C(X)oσT ,LTN.

Example 6.2.10. For the Markov subshift (Σ+A,σ) defined by a matrix A ∈Mn({0, 1}) with

no zero rows or columns, the minimal covering is given by a clopen partition,

Σ+A = ∪16i6nΣA,i; ΣA,i := {ξ ∈ Σ+A : ξ1 = i}. (6.2.5)

We shall define vi = QPi, where Q(ξ) =
∑R
r=1Ar,ξ2 and Pi is the projection into C(ΣA,i).

Let us show that the covering map C∗-algebra C(Σ+A,σ) satisfies the Cuntz-Krieger relation.
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Define partial isometries {Si : 1 6 i 6 n} by Si = v
1/2
i s. A calculation then shows that for

each ξ ∈ Σ+A and 1 6 i 6 n,

S∗iSi(ξ) = LT (QPi)(ξ) =

R∑
r=1

Ar,ξ1LT (Pi)(ξ) = Ai,ξ1 . (6.2.6)

On the other hand, clearly S∗iSj = 0 for j ̸= i and

R∑
j=1

Ai,jSjS
∗
j (ξ) =

R∑
j=1

Ai,ξ1v
1/2
j ss∗v

1/2
j (ξ) = Ai,ξ1 . (6.2.7)

Hence we recover the usual Cuntz-Krieger relation (equation 6.2.3). Let us now document

some important properties of covering map C∗-algebras for later use:

Lemma 6.2.11. [52] [17] [49]

1. As a vector space, C(X, T) is a closure of the space CF(X, T) of finite sums of the form

∑
i,j>0

fi,js
isj

∗
gi,j, fi,j,gi,j ∈ C(X). (6.2.8)

2. The canonical map from C(X) to C(X, T) is injective.

3. C(X, T) is a simple C∗-algebra if and only if T : X 7→ X is irreducible, i.e there are no

nontrivial open sets U,V ⊂ X such that Tn(U)∩ V = ∅ for every n > 0.

4. There exists a gauge action σ : S1 7→ Aut(C(X, T)) given by σz(f) = f,σt(s) = zs, z ∈ T

and a faithful conditional expectation F on C(X, T) defined by F(x) =
∫

T σz(x)dz, whose

image is the C∗-subalgebra of C(X, T) generated by vectors of the form

∑
i>0

fis
isi

∗
gi, fi,gi ∈ C(X). (6.2.9)

5. There exists another conditional expectationG on C(X, T) whose image is C(X) and such that

G(F(x)) = G(x)∀x ∈ C(X, T). Furthermore

G(fsisj
∗
g) = δi,jfg; f,g ∈ C(X), i, j > 0. (6.2.10)

6. The automorphism σ−βi : CF(X, T) 7→ CF(X, T), where β > 0, is regular.
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Proof. Shown in [49] and [52].

As an immediate consequence of (6), the gauge action extends to a densely defined ana-

lytic action of C on C(X, T) defined by σz(f) = f, σz(s) = eizs. As such, Exel and Vershik

establish necessary and sufficient conditions for the existence of KMSβ states for σ.

Theorem 6.2.12. [49] Let β > 0. Then a state ψ on C(X, T) is a KMSβ state for σ if and only if

ψ = τ ◦G, where τ is a trace on C(X) such that τ(LT (e−βQf)) = τ(f) ∀f ∈ C(X).

Remark 6.2.13. In [51], Exel describes the KMS states for Cuntz-Krieger algebras explicitly

using this description. The operator Lθ(f) := LT (e
θQf) is also called the Ruelle-Perron-

Frobenius operator, so the KMS states in this case correspond to Borel probability measures

which leave the operator f 7→ L−β(f) invariant.

Definition/Proposition 6.2.14. A Markov shift (Σ+A, T) is called irreducible if equivalently T

is irreducible, A is an irreducible matrix (that is, for 1 6 i, j 6 n there exists a k > 0 such

that (Ak)i,j = 1), the graph of OA is connected and the algebra OA is simple.

The KMS-states of irreducible Cuntz-Krieger algebras have already been classified by An

Huef et al. and the analysis above provides an alternative result to the same conclusion:

Corollary 6.2.15. [1] [51] Let A ∈Mn({0, 1}) be in irreducible matrix. There is a unique KMSβ

state on each Cuntz-Krieger algebra OA, and the inverse temperature at which this occurs is β =

log ρ(A), where ρ(A) is the spectral radius of A.

6.3 The ordinary spectral triple on C(Σ+A).

Let us now show that it is possible to write down at least one finitely summable twisted

spectral triple on every simple Cuntz-Krieger algebra OA. Let us first note that (Σ+A, T) is

canonically equipped with the structure of a compact metric space in the following way:

For ξ,η ∈ Σ+A define N(ξ,η) = inf{k > 1 : ξk ̸= ηk}. For λ > 1, the metric d(ξ1, ξ2) :=

λ−N(ξ1,ξ2) metrises the natural topology of Σ+A and it is seen that d(T(ξ), T(η)) = λd(ξ,η),

unless ξ1 = η1.

Starting from an invariant measure τ on (Σ+A, T) with full support, we establish the exis-

tence of a faithful trace τ on C(Σ+A) such that τ(f) = τ(LT (f)) = τ(αT (f)). In this way, as
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highlighted in [52], we can construct a covariant representation of OA on L2(C(Σ+A), τ). It

is given by

π(s)(fξτ) := α(f)ξτ, π(s∗)(fξτ) = L(f)ξτ, (6.3.1)

where ξτ is a separating and cyclic vector for the representation of C(Σ+A) on L2(C(Σ+A), τ).

A spectral triple of Christensen-Ivan type ([26]) shall now be chosen which reflects the

metric d on Σ+A. Let P0 be the orthogonal projection into H0 := Cξ and more generally

{Pk}k>1 be the series of mutually orthogonal projections into Hk ⊖Hk−1, where

Hk := {Φ ∈ L2(C(Σ+A), τ); π(s
∗k)(Φ) ∈ H0}. (6.3.2)

The algebra C(Σ+A) is viewed as an AF-algebra with its natural filtration coming from the

representation of C(Σ+A) on B(H), so that Ak is the algebra generated by characteristic

functions {χξ1,...,ξk ; Aξi,ξi+1=1 ∀1 6 i < k} and Akξ = Hk for k > 0. Evidently,

Proposition 6.3.1. For ∪k>0Ak ⊂ A ⊂ C1(A), the triple (A,L2(C(Σ+A), τ),D :=
∑
k>1 λ

kPk)

is a spectral triple on C(Σ+A).

The proof of all the details can be traced to the construction of Christensen and Ivan for

unital AF-algebras [26].

6.4 The twisted spectral triple on OA.

Lemma 6.4.1. The isometry s satisfies the relations sP0 = P0s = P0, P1s = 0 and Pks = sPk−1

for each k > 2. In particular both s and s∗ map H∞ := ∪k>0Hk ⊂ DomD onto itself and

sD|H∞ = λ−1Ds|H∞ and s∗D|H∞ = λDs∗|H∞ .

Proof. For convenience, let πk : C(Σ+A) 7→ Ak be the projection defined by πk(f)ξ := Pk(fξ).

It suffices to prove the claims in the first sentence, since then (suppressing notation),

sD =
∑
k>1

λksPk =
∑
k>1

λkPk+1s =
∑
k>1

λk−1Pks = λ
−1Ds. (6.4.1)

Since both α and L fix multiples of the identity, the relations sP0 = P0s = P0 are clear. Also

P1s = s∗P1 = 0, since the only instance in which L(f) is a multiple of the identity is when

91



CHAPTER 6: CONSTRUCTION OF TWISTED SPECTRAL TRIPLES

also f is a multiple of the identity and L(f) = f. To prove the other relation, it suffices

to show that whenever f ∈ C(Σ+A) and k > 2 then ∥(Pks − sPk−1)fξ∥2
H = ∥πk(α(f)) −

α(πk−1(f))ξ∥2
H vanishes. However the latter is equal to τ(|g|2), where g = πk(α(f)) −

α(πk−1(f)). But for k > 2, α(Ak−1) = Ak so that g = 0, proving the claim.

The consequence of Lemma 6.4.1 is that the ordinary spectral triple (A,L2(C(Σ+A), τ),D)

onC(Σ+A) can be extended to the whole of OA, provided that a twisting is introduced which

leaves the subalgebra C(Σ+A) ⊂ OA invariant. The regular automorphism is σ = σ−i logλ,

which acts via,

σ(f) = f ∀f ∈ C(Σ+A), σ(s) = λs. (6.4.2)

Necessarily [D, s]σ = [D, s∗]σ = 0, so that {x ∈ OA; [D, x]σ ∈ B(L2(C(Σ+A), τ))} contains the

span of {fss∗g; f,g ∈ A}. We arrive at the main result of this chapter.

Theorem 6.4.2. Let B ⊂ C1,σ(OA) be any dense ∗-subalgebra of the Cuntz-Krieger algebra OA

containing the algebra span of s, s∗ and the natural AF-filtration ∪k>0Ak of C(Σ+A), where A is

irreducible. Then (B,L2(C(Σ+A), τ),D,σ), with D as above, defines a twisted spectral triple on OA.

6.5 The dimension and KMS-state for the triple on OA.

We shall now show that, at least for irreducible non-permutation matrices A, the summa-

bility properties for the twisted spectral triple on OA have a natural interpretation in terms

of the topological entropy of the Markov shift (Σ+A, T). The asymptotics of D for the twisted

spectral triple on OA depend only on the spectral triple on C(Σ+A), so we shall focus on the

latter. By construction, for each p such that (A,L2(C(Σ+A), τ),D) is p-summable,

Tr((1 +D2)−p/2) =

∞∑
k=0

(1 + λ2kp)−1/2dim(Hk) = 1 +

∞∑
k=1

(1 + λ2kp)−1/2∥Ak−1∥, (6.5.1)

where ∥Ak∥ is the norm of the matrix Ak, which corresponds with the number of admissi-

ble words of length k. As is well known,

Lemma 6.5.1. The topological entropy hTop(T) of the Markov shift T onΣ+A, whereA ∈Mn({0, 1})
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is an irreducible non-permutation matrix, is given by

hTop(T) = ρ(A) = lim
k→∞ 1

k
log ∥Ak−1∥.

where ρ(A) is the Perron-Frobenius eigenvalue of A.

Proposition 6.5.2. Let OA be a Cuntz-Krieger algebra, whereA is an irreducible non-permutation

matrix, and (B,H,D,σ) be the twisted spectral triple on OA constructed in Corollary 6.4.2. Then

the spectral dimension is given by

s0(B,H,D,σ) = logλ(e)hTop(T). (6.5.2)

Proof. This follows from the root test: letting κ(p)n := λ−p∥An−1∥1/n then we see that

s0(B,H,D,σ) = inf{p > 0 : lim sup
n→∞ log κ(p)n < 0}

= inf{p > 0 : hTop(T) − p log(λ) < 0}

= logλ(e)hTop(T).

We shall not give a detailed exposition of the resulting Dixmier functional, but it is rela-

tively easy to make a few observations. It is easy to see from inspection of the eigenvalues

of D (or (1+D2)1/2) that the spectral triple onC(Σ+A) is L(s0,∞) summable with s0 as above.

This means that for each suitably chosen generalised limit, we can write a family of positive

linear functionals on OA given by

τω(x) := Trω(x(1 +D2)−s0/2) = νω

∫
ω

(x), (6.5.3)

where νω := Trω((1+D2)−s0/2) is interpreted as a volume constant and
∫
ω : OA 7→ C is a

state. Standard analysis using Riemannian zeta functions reveals that 1 is measurable and

so the volume constant does not depend on the choice of Limω. In fact,

Corollary 6.5.3. ψ :=
∫
ω : C1,σ(OA) 7→ C is the unique KMSβ state for OA at inverse temper-

ature β = hTop(T), which does not therefore depend on Limω.
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Proof. Recall that the Dixmier functional defined by the spectral triple (B,L2(C(Σ+A), τ),D,σ)

is a σ−s0 twisted trace (Proposition 6.1.10). A computation shows that, for a,b ∈ C1,σ(OA),

ψ(ab) = ψ(bσ
− logλ ehTop(T)

−i loge λ
(a)) = ψ(bσ−i(loge λ logλ ehTop(T))(a)) = ψ(bσ−ihTop(T)

(a)),

completing the proof.

6.6 Further remarks and questions.

Remark 6.6.1. We do not see an obvious correspondence between our construction and

the modular spectral triples of Carey et. al [15]. It would be interesting to see whether

both approaches lead to the same local index formula, for example following the lead of

Moscovici’s work [81].

Remark 6.6.2. An interesting thesis of Whittaker [121] addresses the noncommutative as-

pects of an important subclass of hyperbolic dynamical systems known as Smale spaces. For

these examples, it seems preferable to work with Ruelle’s crossed product coming from a

C∗-algebra of an étale groupoid of Smale space, rather than the usual crossed product. It

can be observed that, in the finitely summable case, what Whittaker achieves is an implicit

construction of a twisted spectral triple on the stable and unstable Ruelle algebras of each

irreducible Smale space. It would be very interesting to explore the relationship between

the two viewpoints further.

Remark 6.6.3. As well as Cuntz-Krieger algebras, the Exel crossed product construction

captures the structure of many higher-rank K-graphs, as well as some examples arising

from nonunital C∗-algebras, which gives natural possibilities for further development in

this area.
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A: The Dixmier trace for finitely summable

spectral triples

We highlight a few facts about Dixmier ideals and Dixmier traces for general reference.

Rennie’s summary [98] is useful, but more detailed analyses can be found elsewhere (e.g

[31]).

Definition A.0.4. The Dixmier ideal L(1,∞)(H) of B(H), whereH is a separable Hilbert space,

is the two-sided ideal of operators

T ∈ K(H); σN(T) = O(logN), (A.0.1)

where σN(T) =
∑N
k=1 λk is the sum of the first k eigenvalues of the positive operator

(1 + T∗T)1/2 ∈ K(H) (including their multiplicities).

Definition A.0.5. A spectral triple (A,H,D) for a unital C∗-algebra A is called L(p,∞)-

summable if (1 +D2)−p/2 ∈ L(1,∞)(H).

It is well known that the above is a slightly more refined version of p-summability for

spectral triples: given a spectral triple (A,H,D) onAwhich is L(q,∞)-summable for q > p,

but not 0 < q < p, it is easy to see that s0(A,H,D) = p.

The idea is to then "define" a trace on A related to the asymptotics of the Dirac D. It is

natural to try

Tr((1 +D2)−p/2) := lim
N→∞ 1

logN
σN((1 +D2)−p/2), (A.0.2)

but the right hand side need not converge in general. Dixmier addresses this by means of

generalised limits. He does not consider all such limits, rather specifically those sequences

(αn)n∈N ∈ ℓ∞(N) with the properties,

1. Limω(αn) > 0 if and only if αn > 0, ∀n ∈ N,
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2. Limω(αn) = lim(αn) whenever (αn)n∈N converges and

3. Limω(α1,α1,α2,α2,α3, . . . ) = Limω(αn).

Definition A.0.6. For any generalised limit Limω satisfying (1), (2) and (3) above, the

Dixmier trace of an operator T ∈ L(1,∞)(H) with spec((1 + T∗T)1/2) = {λ1 6 λ2 6 . . . }

is given by

Trω(T) := Limω
1

logN

N∑
k=1

λk. (A.0.3)

The Dixmier trace satisfies most of the axioms of a trace: it defines a positive linear func-

tional on L(1,∞)(H) for each generalised limit Limω above and Trω(ST) = Trω(TS) for

each T ∈ L(1,∞)(H). The Dixmier trace vanishes on all trace-class operators.

Starting from a finitely summable spectral triple (A,H,D) which is additionally L(p,∞)-

summable for some p > 1, the analysis above provides a family {τω} of traces onA (indeed,

the whole of B(H)), namely

τω(a) := Trω(a(1 +D2)−p/2). (A.0.4)

There is good reason to consider this process to be a generalisation of volume integration

for functions on elliptic differential manifolds (see [31]). We are, however, faced with prob-

lems. Aside from the fact that it might be difficult to show whether indeed (A,H,D) is

L(p,∞)-summable for a spectral triple with dimension p, there is also the following:

Problem A.0.7. For which a ∈ A (or B(H)) is τω(a) independent of the generalised limit

Limω? (such functions are called measurable).

Problem A.0.8. Potentially it can happen that τω(1) = 0, and thus we do not recover a

trace on A with interesting properties.

The answers to both of the above are well-understood in certain contexts, but I do not

know of any particularly easy ways to verify the above for abstract classes of spectral triples

coming from C∗-algebras.
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B: A Proof of Theorem 5.4.4. (sketch)

A full proof of the final assertion in Theorem 5.5.4 is beyond the scope of this report.

However, we do outline the ideas involved, which are undoubtedly familiar to researchers

in the field.

It will suffice to show that the spectral triples, labelled (E1,H,D1) and (E1,H,D2) in Theo-

rem 5.5.4 represent the Kasparov modules σ∗(A,HA,DA) and τ∗(B,HB,DB) respectively.

Our analysis will focus on the situation in which the triples onA and B are trivially graded.

For the former, note that (E1,H,D1) represents the "pullback along σ" of the triple

(

πA ⊗ 1 0

0 0

 , (HA ⊕HB)⊗ C2,

DA ⊗ 1 1 ⊗DB

1 ⊗DB −1 ⊗DA

) ∈ KK1(A, C). (B.0.1)

The operators 1⊗DB play no role in the K-homology, since these commute with operators

of the form πA(a)⊗ 1 for each a ∈ A, so that this triple represents the direct sum of the

triple (πA⊗ 1,HA⊗HB,DA⊗ 1) ∈ KK1(A, C) and a degenerate module. The homological

information coming from the former is just the spectral triple on A itself, which establishes

the first part of the theorem.

We would like to sketch the fact that the triple (E2,H,D2) represents the internal Kasparov

product of the spectral triple (B,HB,DB) ∈ KK1(B, C) and the module

(

π̃ 0

0 (πA ◦ σ)⊗ 1

 , (HA ⊕HB)⊗ C2, D) ∈ KK(E,B),
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where,

D0 =


0 0 PDA ⊗ 1 0

0 0 0 0

PDA ⊗ 1 0 0 0

0 0 0 (1 − P)DA ⊗ 1

 ,

the latter of which can be seen to represent the map τ∗ ∈ KK(E,B) in Proposition 5.3.1 (this

is perhaps most evident when P corresponds to the projection into the positive part of the

spectrum of DA).

To see this, we remark that the Dirac operator for the spectral triple (π2,H,D2) can be

replaced with

D =


P⊗DB 0 PDA ⊗ 1 0

0 (1 − P)⊗DB 0 0

PDA ⊗ 1 0 −P⊗DB 0

0 0 0 (1 − P)DA ⊗ 1 − (1 − P)⊗DB

 ,

and the latter is, up to the grading of D0, the explicit formula for the external Kasparov

product between graded and ungraded Fredholm modules. We expect, then, that a modi-

fied version of the procedure outlined in chapter 2 can lead us to the desired conclusion.
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[112] Şerban Strătilă and Dan Voiculescu. Representations of AF-algebras and of the groupU(∞). Lecture Notes in

Mathematics, Vol. 486. Springer-Verlag, Berlin, 1975.

[113] Hiroshi Takai. Duality for C∗-crossed products and its applications. In Operator algebras and applications,

Part 1 (Kingston, Ont., 1980), volume 38 of Proc. Sympos. Pure Math., pages 369–373. Amer. Math. Soc.,

Providence, R.I., 1982.

[114] Leonid. L. Vaksman and Ya. S. Soı̆belman. Algebra of functions on the quantum group SU(n+ 1), and

odd-dimensional quantum spheres. Algebra i Analiz, 2(5):101–120, 1990.

[115] Joseph C Várilly and Pawe l Witkowski. Dirac operators and spectral geometry, 2006.

[116] Dan Voiculescu. Dynamical approximation entropies and topological entropy in operator algebras. Comm.

Math. Phys., 170(2):249–281, 1995.

105



REFERENCES

[117] Dan Voiculescu. Lectures on free probability theory. In Lectures on probability theory and statistics (Saint-Flour,

1998), volume 1738 of Lecture Notes in Math., pages 279–349. Springer, Berlin, 2000.

[118] Elmar Wagner. On the noncommutative Spin geometry of the standard Podleś sphere and index computa-
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