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ABSTRACT

Lodging, the permanent displacement of plant stems from the vertical, occurs on
average once every four years in UK wheat crops, when it reduces the yield and
bread making quality of grain. Lodging usually occurs in the summer and control is
most commonly sought by applying growth retarding chemicals in the spring. This
thesis develops a method of predicting which crops are prone to lodging so that

spring lodging controls can be targeted most effectively.

A model was developed in association with this study which calculates stem and root
lodging risk from summer-time plant, weather and soil factors. The spread of the
plant’s root plate, the stem diameter and the number of shoots per plant were shown
to have very strong influences on lodging. Structural rooting depth, stem failure
yield stress, height at centre of gravity and the rate at which stems oscillate in wind

(natural frequency) were also important, but less influential.

Methods of predicting the most important lodging-associated plant characters from
crop observations in spring were developed from the literature. These were then
tested through experiments in 1995 and 1996 with factorial combinations of crops
sown in late September and late October, at 500 seeds m? and 250 seeds m™ and
with large and small levels of residual soil nitrogen. Early sowing, dense seed rates
and fertile soils all increased stem and root lodging, with sowing date having the
greatest influence. Plants sown at high densities had small root plates and were
poorly anchored; they also had fewer shoots causing a smaller leverage. ~Early sown

plants had shoots with a high centre of gravity and slow natural frequency, causing a

greater leverage. Plants sown early on fertile soils had narrow, weak stems.

Final shoot number per plant was predicted with good precision (R?=0.94) from
spring plant number m? and maximum shoot number m™ using a model of tiller
survival. Stem diameter was predicted with moderate precision (R*=0.57) from
spring canopy size and shoot number m”, via a calculation of the amount of dry

matter partitioned to each stem base. Root plate spread showed a linear and inverse



relationship to spring plant density (R’=0.48), mainly as a result of variation in the

length of the rigid roots and in the width of the plant base.

It is concluded that early season crop observations have the potential to predict the
values of the most influential lodging-associated plant characters, from which a model
of lodging can calculate the proneness of crops to stem or root lodging in time for
remedial action. The next steps would be to develop prediction schemes for other

plant characters which influence lodging and test all the predictions in a wider range

of crops, sites and seasons.
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1. INTRODUCTION

1.1 THE HGCA ‘LODGING PROJECT’

Lodging is the permanent displacement of plant stems from the vertical (Pinthus,
1973) which frequently causes serious yield losses in UK grown cereals. To help
maximise the profitability of UK cereal production the understanding and prediction
of lodging must be improved. The lodging mechanism and factors which influence
lodging have been comprehensively reviewed by Mulder (1954) and Pinthus (1973)
and further investigated by Graham (1983), Easson ef al., (1993) and Crook and
Ennos (1993). Despite this work much conjecture still exists about how best to

prevent lodging and guidelines for reducing lodging are based on intuition rather than

comprehension.

It is the aim of the Home Grown Cereals Authority (HGCA) funded ‘Lodging
Project’ to test the belief that crop inspections in the spring, together with other

intelligence can be used to significantly improve a) the assessment of lodging risk, and

b) the identification of effective controls.

To help achieve these aims an array of experimental treatments were used to
investigate the elements of husbandry known to be critical in determining lodging risk,
together with remedial controls thought most likely to reduce lodging. These
investigations have been closely associated with the first mechanistic model of
lodging, which was originally outlined by Baker (1995) and has been further
developed by Baker ef al.! (Appendix 1) and by Griffin (1998). Griffin (1998) used
the lodging model with crop measurements from the 1994-95 husbandry experiment
described in this thesis to further understand the mechanism of lodging and elucidate

the influence of environmental and husbandry factors on the process.

‘A method for asscssment of the risk of lodging in wheat'. The Journal of Theoretical Biology,
In press, sec Appendix 1.
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The main aim of this thesis was to continue the work within the overall ‘Lodging
Project’ by developing methods to predict the summer-time state of a winter wheat
crop from spring observations. If such prediction schemes could be shown to operate
successfully, they could be used in conjunction with the lodging model described in

Baker et al. (Appendix 1) for the early season prediction of lodging risk, in time for

remedial controls to be administered.

The term ‘lodging risk’ is central to this study and requires a clear definition. ‘Risk’ is
the uncertainty of a particular outcome and is used in two senses in this thesis. The
first type of ‘lodging risk’ describes the uncertainty of lodging given information
about the crop, but not the weather, at the time of lodging. This type of risk is
‘calculated’ by the lodging model of Baker et al. (Appendix 1). The second type,
which is used more commonly, describes the uncertainty of lodging using information
about the crop from its pre-lodging period e.g. the spring. This type of risk includes
an additional element of uncertainty associated with ‘prediction’ in time. It is often
used in conjunction with early season husbandry decisions such as varietal choice,

nitrogen applications and plant growth regulator (PGR) applications.

This chapter explains how lodging reduces profit margins and examines how lodging
is perceived and understood by farmers and agronomists. Furthermore, environmental
and plant factors which are believed to influence lodging risk are introduced from a
brief examination of the relevant literature. Methods of minimising lodging are
analysed and the importance of predicting lodging risk in time for remedial action is
explained. Finally, the lodging model of Baker (1995) and Baker et al. (Appendix 1)

is briefly introduced, the specific aims of the thesis are described and the thesis

content outlined.



1.2 THE COST OF LODGING TO THE FARMING INDUSTRY

When lodging occurs the profitability of a cereal crop can be drastically reduced

through decreased yield. This may be caused directly by reduced dry matter

accumulation or indirectly because of incomplete recovery of the crop at harvest.
Profit margins are further reduced by increased combining time, grain drying costs
and reduced grain quality especially through low Hagberg falling numbers. Quality is
particularly affected if harvest is delayed and the grain sprouts. Widespread lodging
occurs on average once every four years and is often associated with wet summers.

The summers of 1980, ‘85, ‘87, ‘92 and ‘97 are generally regarded as seasons with

serious lodging in recent years.

Yield losses of between 0 and 45% have been observed in artificially lodged
experiments (Weibel and Pendleton, 1964, Laude and Pauli, 1956, Mulder, 1954,
Stapper and Fischer, 1990). The level of yield loss depends on the severity of lodging
and the growth stage at which it occurs. The largest yield losses are associated with
lodging which occurs soon after anthesis, especially during grain filling, thereafter
yield losses decline (Weibel and Pendeleton, 1964; Fischer and Stapper, 1987).
During the severe lodging in 1992, when 16% of the UK wheat crop lodged (Berry et
al., 1998), yield losses of 0 to 45% would have cost growers up to £130 million,
based on 1992-93 average prices of feed wheat (HGCA, 1993). Lodging in 1992 also
caused a reduction in grain quality, with Hagberg falling numbers decreasing from a
five year UK average of 287 to 254 and thousand grain weight decreasing from 45 g
to 39 g (HGCA, 1993). This resulted in a smaller quantity of the wheat crop reaching
milling quality, thereby reducing growers income further through the loss of milling

premium, which usually varies between £15 and £25 (HGCA, 1993).

The cost of controlling lodging is also high and the application of PGRs often occurs
regardless of lodging risk as an ‘insurance measure’. For example in 1996, when
there was moderate lodging, PGRs were applied to 79% of the UK wheat area at a
cost of 10.6 million pounds (Garthwaite ef al., 1996), and in 1994 when lodging was
not widespread, 74% of the UK wheat area was treated (Garthwaite ef al., 1994). In



years of widespread lodging the application of PGRs clearly has not prevented
lodging (Woolley, 1992). Hence there is a need to understand more fully how lodging

risk is influenced to enable control measures to be targeted more effectively.

1.3 GROWERS’ PERCEPTION OF LODGING

Two common types of lodging have been identified, stem lodging and root lodging.
Stem lodging results from the bending or breaking of the lower culm internodes,
whilst root lodging is due to failure of root anchorage and results in straight,
unbroken culms leaning from the crown. To date few studies have been carried out
which define the causes of lodging and much information about lodging is reliant on
observations made by growers. It is generally agreed that lodging is due to an
interaction of the plant with the environmental factors rain, wind and soil. The
majority of growers perceive stem lodging to be the most common form of lodging.
However, debate ensues among scientists as to whether stem lodging or root lodging
predominates. Studies by Pinthus (1973), Graham (1983), Ennos (1991) and Easson
et al., (1993) favour root lodging, although studies by Neenan & Spencer-Smith
(1985) suggest that stem lodging is more likely. It woul